
Pro*C/C++
Programmer's Guide

Release 9.2

Part No. A97269-03

December 2003

Pro*C/C++ Programmer’s Guide, Release 9.2

Part No. A97269-03

Copyright © 1996, 2003, Oracle. All rights reserved.

Primary Authors: Syed Mujeeb Ahmed, Jack Melnick, Neelam Singh, Tim Smith

Contributing Authors: Ruth Baylis, Paul Lane

Contributors: Bill Bailey, Subhranshu Banerjee, Julie Basu, Brian Becker, Beethoven Chang, Michael
Chiocca, Pierre Dufour, Nancy Ikeda, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Phil Locke, Valarie Moore,
Vidya Nagaraj, Jacqui Pons, Ajay Popat, Ekkehard Rohwedder, Pamela Rothman, Alan Thiesen, Gael
Stevens

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments ... xxix

Preface .. xxxi

Intended Audience... xxxi
Documentation Accessibility .. xxxi
Structure... xxxii
Related Documents .. xxxiv
Conventions ... xxxv

What's New in Pro*C/C++? ... xxxix

Oracle9i Release 2 (9.2) New Features in Pro*C/C++ .. xxxix
Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++ ... xxxix
Oracle8i Release 8.1.5 New Features in Pro*C/C++ ... xl
Oracle8i Release 8.1.4 New Features in Pro*C/C++ ... xl
Oracle8i Release 8.1.3 New Features in Pro*C/C++ ... xl

1 Introduction

What is an Oracle Precompiler?... 1-1
Why Use the Oracle Pro*C/C++ Precompiler.. 1-2
Why Use SQL ... 1-3
Why Use PL/SQL .. 1-3
Pro*C/C++ Precompiler Benefits ... 1-3
Frequently Asked Questions ... 1-5

What is a VARCHAR?... 1-5
Does Pro*C/C++ Generate Calls to the Oracle Call Interface? ... 1-6
Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?... 1-6
Can I Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?.................................... 1-6
Can I Write C++ Code, and Precompile It Using Pro*C/C++? .. 1-6
Can I Use Bind Variables Anywhere in a SQL Statement? ... 1-6
I Am Confused By Character Handling in Pro*C/C++. .. 1-6
Is There Anything Special About Character Pointers? ... 1-7
Why Does SPOOL Not Work in Pro*C/C++? ... 1-7
Where Can I Find The On-line Versions of the Example Programs? ... 1-7
How Can I Compile and Link My Application? ... 1-7
Does Pro*C/C++ Now Support Using Structures As Host Variables?...................................... 1-7

iv

Is It Possible to Have Recursive Functions In Pro*C/C++ If I Use Embedded SQL In the
Function? 1-8
Can I Use Any Release of Pro*C/C++ with Any Version of the Oracle Server? 1-8
When My Application Runs Under Oracle9i, I Keep Getting an Ora-1405 Error (Fetched
Column Value Is NULL). 1-8
Are All SQLLIB Functions Private?... 1-8
How Does Oracle9i Support The New Object Types?.. 1-9
Compatibility, Upgrading and Migration .. 1-9

2
Precompiler Concepts

Key Concepts of Embedded SQL Programming ... 2-1
Embedded SQL Statements ... 2-1

Executable Statements and Directives ... 2-2
Embedded SQL Syntax ... 2-3
Static Versus Dynamic SQL Statements ... 2-3
Embedded PL/SQL Blocks .. 2-4
Host and Indicator Variables ... 2-4
Oracle Datatypes .. 2-4
Arrays .. 2-5
Datatype Equivalencing ... 2-5
Private SQL Areas, Cursors, and Active Sets .. 2-5
Transactions ... 2-5
Errors and Warnings.. 2-6

Steps in Developing an Embedded SQL Application ... 2-6
Guidelines for Programming ... 2-7

Comments .. 2-7
Constants ... 2-8
Declare Section ... 2-8
Delimiters ... 2-8
File Length... 2-9
Function Prototyping .. 2-9

ANSI_C... 2-9
KR_C ... 2-9
CPP.. 2-9

Host Variable Names ... 2-10
Line Continuation ... 2-10
Line Length .. 2-10
MAXLITERAL Default Value ... 2-10
Operators ... 2-10
Statement Terminator ... 2-11

Conditional Precompilation .. 2-11
Symbol Definition ... 2-11
Example SELECT Statement.. 2-12

Precompile Separately .. 2-12
Guidelines .. 2-12

Referencing Cursors ... 2-12

v

Specifying MAXOPENCURSORS .. 2-12
Use a Single SQLCA ... 2-12

Compile and Link ... 2-13
Example Tables .. 2-13

Example Data... 2-13
Example Program: A Simple Query .. 2-14

3 Database Concepts

Connect to the Database.. 3-1
Using the ALTER AUTHORIZATION Clause to Change Passwords 3-2

Standard CONNECT.. 3-2
Change Password on CONNECT... 3-3

Connecting Using Oracle Net .. 3-3
Automatic Connects .. 3-3

The AUTO_CONNECT Precompiler Option .. 3-4
SYSDBA or SYSOPER System Privileges .. 3-4

Advanced Connection Options .. 3-4
Some Preliminaries .. 3-4
Concurrent Logons .. 3-5
Default Databases and Connections ... 3-5
Explicit Connections ... 3-6

Single Explicit Connection .. 3-6
Multiple Explicit Connections .. 3-9
Ensuring Data Integrity .. 3-10

Implicit Connections .. 3-10
Single Implicit Connections ... 3-10
Multiple Implicit Connections .. 3-11

Definitions of Transactions Terms ... 3-11
How Transactions Guard Your Database ... 3-12
How to Begin and End Transactions ... 3-12
Using the COMMIT Statement ... 3-13
Using the SAVEPOINT Statement .. 3-14
The ROLLBACK Statement .. 3-15

Statement-Level Rollbacks .. 3-16
The RELEASE Option ... 3-16
The SET TRANSACTION Statement .. 3-17
Override Default Locking ... 3-17

Using FOR UPDATE OF ... 3-18
Restrictions ... 3-18

Using LOCK TABLE .. 3-18
Fetch Across COMMITs .. 3-19
Distributed Transactions Handling ... 3-19
Guidelines ... 3-20

Designing Applications ... 3-20
Obtaining Locks .. 3-20
Using PL/SQL .. 3-20

vi

4 Datatypes and Host Variables

Oracle Datatypes ... 4-1
Internal Datatypes.. 4-1
External Datatypes ... 4-2

VARCHAR2 .. 4-3
NUMBER ... 4-4
INTEGER ... 4-4
FLOAT ... 4-4
STRING .. 4-5
VARNUM... 4-5
LONG ... 4-5
VARCHAR .. 4-5
ROWID ... 4-5
DATE ... 4-6
RAW ... 4-7
VARRAW .. 4-7
LONG RAW .. 4-7
UNSIGNED ... 4-7
LONG VARCHAR ... 4-7
LONG VARRAW ... 4-7
CHAR ... 4-7
CHARZ .. 4-8
CHARF .. 4-8

Additional External Datatypes... 4-8
Datetime and Interval Datatypes.. 4-8
ANSI DATE.. 4-9
TIMESTAMP.. 4-9
TIMESTAMP WITH TIME ZONE.. 4-9
TIMESTAMP WITH LOCAL TIME ZONE... 4-9
INTERVAL YEAR TO MONTH .. 4-10
INTERVAL DAY TO SECOND ... 4-10
Avoiding Unexpected Results Using Datetime... 4-10

Host Variables ... 4-10
Host Variable Declaration ... 4-10

Storage-Class Specifiers ... 4-12
Type Qualifiers .. 4-13

Host Variable Referencing .. 4-13
Restrictions ... 4-13

Indicator Variables ... 4-13
The INDICATOR Keyword .. 4-14
Example of INDICATOR Variable Usage ... 4-14
INDICATOR Variable Guidelines .. 4-15
Oracle Restrictions .. 4-15

VARCHAR Variables ... 4-15
VARCHAR Variable Declaration ... 4-15
VARCHAR Variable Referencing .. 4-16
Return NULLs to a VARCHAR Variable ... 4-17

vii

Insert NULLs Using VARCHAR Variables... 4-17
Pass VARCHAR Variables to a Function ... 4-17
Find the Length of the VARCHAR Array Component .. 4-18
Example Program: Using sqlvcp() .. 4-18

Cursor Variables ... 4-21
Declare a Cursor Variable .. 4-21
Allocate a Cursor Variable... 4-22
Open a Cursor Variable.. 4-22

Opening in a Standalone Stored Procedure ... 4-24
Return Types... 4-24

Closing and Freeing a Cursor Variable.. 4-24
Cursor Variables with the OCI (Release 7 Only) .. 4-24
Restrictions... 4-26
Example: cv_demo.sql and sample11.pc ... 4-26

cv_demo.sql .. 4-26
sample11.pc... 4-26

CONTEXT Variables... 4-29
Universal ROWIDs ... 4-30

SQLRowidGet() ... 4-31
Host Structures .. 4-31

Host Structures and Arrays .. 4-32
PL/SQL Records ... 4-33
Nested Structures and Unions .. 4-33
Host Indicator Structures .. 4-33
Example Program: Cursor and a Host Structure ... 4-34

Pointer Variables .. 4-36
Pointer Variable Declaration .. 4-36
Pointer Variable Referencing .. 4-36
Structure Pointers ... 4-37

Globalization Support.. 4-38
NCHAR Variables ... 4-39

CHARACTER SET [IS] NCHAR_CS.. 4-39
Environment Variable NLS_NCHAR .. 4-40
CONVBUFSZ Clause in VAR.. 4-40
Character Strings in Embedded SQL .. 4-41
Strings Restrictions.. 4-41
Indicator Variables ... 4-41

5 Advanced Topics

Character Data .. 5-1
Precompiler Option CHAR_MAP ... 5-1
Inline Usage of the CHAR_MAP Option.. 5-2
Effect of the DBMS and CHAR_MAP Options.. 5-2

On Input ... 5-3
On Input ... 5-4
On Output .. 5-4

VARCHAR Variables and Pointers .. 5-6

viii

On Input ... 5-6
On Output .. 5-6

Unicode Variables .. 5-7
Restrictions on Unicode Variable Usage ... 5-8

Datatype Conversion .. 5-9
Datatype Equivalencing ... 5-9

Host Variable Equivalencing ... 5-9
User-Defined Type Equivalencing .. 5-10

REFERENCE Clause .. 5-10
CHARF External Datatype ... 5-11
The EXEC SQL VAR and TYPE Directives.. 5-11
Example: Datatype Equivalencing (sample4.pc): ... 5-11

The C Preprocessor.. 5-21
How the Pro*C/C++ Preprocessor Works ... 5-21
Preprocessor Directives ... 5-22

Directives Ignored ... 5-22
ORA_PROC Macro ... 5-23
Location of Header File Specification... 5-23
Some Preprocessor Examples ... 5-23

Using #define.. 5-24
Other Preprocessor Restrictions... 5-25

SQL Statements Not Allowed in #include .. 5-25
Include the SQLCA, ORACA, and SQLDA .. 5-25
EXEC SQL INCLUDE and #include Summary .. 5-26
Defined Macros ... 5-27
Include Files ... 5-27

Precompiled Header Files.. 5-27
Precompiled Header File Creation ... 5-27
Use of the Precompiled Header Files ... 5-28
Examples .. 5-28

Redundant File Inclusion.. 5-28
Multiple Precompiled Header Files .. 5-29

Effects of Options .. 5-30
DEFINE and INCLUDE Options ... 5-30
CODE and PARSE Options .. 5-31

Usage Notes ... 5-32
The Oracle Preprocessor .. 5-32

Symbol Definition ... 5-32
An Oracle Preprocessor Example ... 5-33

Evaluation of Numeric Constants .. 5-33
Numeric Constants in Pro*C/C++ ... 5-33
Numeric Constant Rules and Examples .. 5-34

SQLLIB Extensions for OCI Release 8 Interoperability .. 5-34
Runtime Context in the OCI Release 8 Environment .. 5-35
Parameters in the OCI Release 8 Environment Handle... 5-35

Interface to OCI Release 8 ... 5-35
SQLEnvGet() .. 5-36

ix

SQLSvcCtxGet()... 5-36
Embedded OCI Release 8 Calls .. 5-37

Embedded OCI Release 7 Calls ... 5-38
Set Up the LDA.. 5-38
Remote and Multiple Connections .. 5-39

New Names for SQLLIB Public Functions... 5-39
X/Open Application Development .. 5-41

Oracle-Specific Issues .. 5-42
Connecting to Oracle .. 5-42
Transaction Control .. 5-43
OCI Calls (Release 7 Only).. 5-43
Linking .. 5-43

6
Embedded SQL

Host Variables .. 6-1
Output versus Input Host Variables .. 6-1

Indicator Variables .. 6-2
Insert NULLs .. 6-3
Returned NULLs ... 6-4
Fetch NULLs .. 6-4
Test for NULLs .. 6-4
Truncated Values ... 6-5

The Basic SQL Statements ... 6-5
The SELECT Statement ... 6-6

Available Clauses ... 6-6
The INSERT Statement ... 6-7

Using Subqueries ... 6-7
The UPDATE Statement.. 6-7
The DELETE Statement .. 6-8
The WHERE Clause .. 6-8

The DML Returning Clause ... 6-8
Cursors ... 6-9

The DECLARE CURSOR Statement ... 6-9
The OPEN Statement ... 6-10
The FETCH Statement ... 6-11
The CLOSE Statement ... 6-12

Scrollable Cursors ... 6-12
Using Scrollable Cursors .. 6-12

DECLARE SCROLL CURSOR ... 6-12
OPEN ... 6-12
FETCH ... 6-12
CLOSE.. 6-13

The CLOSE_ON_COMMIT Precompiler Option ... 6-13
The PREFETCH Precompiler Option ... 6-13

Optimizer Hints .. 6-14
Issuing Hints ... 6-15

x

The CURRENT OF Clause .. 6-15
Restrictions... 6-15

The Cursor Statements .. 6-16
A Complete Example Using Non-Scrollable Cursor .. 6-16
A Complete Example Using Scrollable Cursor ... 6-18
Positioned Update ... 6-19

7 Embedded PL/SQL

Advantages of PL/SQL ... 7-1
Better Performance .. 7-1
Integration with Oracle .. 7-2
Cursor FOR Loops .. 7-2
Procedures and Functions .. 7-2
Packages ... 7-3
PL/SQL Tables .. 7-3
User-Defined Records ... 7-4

Embedded PL/SQL Blocks ... 7-4
Host Variables ... 7-5

Example: Using Host Variables with PL/SQL .. 7-5
Complex Example ... 7-6
VARCHAR Pseudotype ... 7-8
Restriction.. 7-9

Indicator Variables .. 7-9
NULLs Handling... 7-10
Truncated Values ... 7-10

Host Arrays ... 7-10
ARRAYLEN Statement .. 7-12
Optional Keyword EXECUTE ... 7-13

Cursor Usage in Embedded PL/SQL.. 7-14
Stored PL/SQL and Java Subprograms .. 7-15

Creating Stored Subprograms .. 7-15
Calling a Stored PL/SQL or Java Subprogram... 7-17

Anonymous PL/SQL Block.. 7-17
Remote Access ... 7-20
The CALL Statement ... 7-20
CALL Example ... 7-21

Getting Information about Stored Subprograms.. 7-21
External Procedures... 7-22

Restrictions on External Procedures... 7-22
Creating the External Procedure... 7-23
SQLExtProcError() .. 7-24

Using Dynamic SQL .. 7-24

8 Host Arrays

Why Use Arrays? ... 8-1
Declaring Host Arrays .. 8-1

Restrictions.. 8-2

xi

Maximum Size of Arrays .. 8-2
Using Arrays in SQL Statements .. 8-2

Referencing Host Arrays .. 8-2
Using Indicator Arrays.. 8-3
Oracle Restrictions ... 8-3
ANSI Restriction and Requirements ... 8-3

Selecting into Arrays ... 8-4
Cursor Fetches .. 8-4
Using sqlca.sqlerrd[2] ... 8-5
Number of Rows Fetched .. 8-5
Scrollable Cursor Fetches .. 8-6
Sample Program 3: Host Arrays ... 8-6
Sample Program: Host Arrays Using Scrollable Cursor .. 8-8

Scroll Demo2.pc .. 8-8
Host Array Restrictions.. 8-10
Fetching NULLs ... 8-11
Fetching Truncated Values ... 8-11

Inserting with Arrays ... 8-11
Inserting with Arrays Restrictions.. 8-11

Updating with Arrays .. 8-12
Updating with Arrays Restrictions... 8-12

Deleting with Arrays ... 8-13
Deleting with Arrays Restrictions .. 8-13

Using the FOR Clause ... 8-13
FOR Clause Restrictions... 8-14

In a SELECT Statement .. 8-14
With the CURRENT OF Clause .. 8-14

Using the WHERE Clause ... 8-15
Arrays of Structs .. 8-15

Arrays of Structs Usage.. 8-16
Restrictions on Arrays of Structs... 8-16
Declaring an Array of Structs .. 8-16
Variables Guidelines... 8-18
Declaring a Pointer to an Array of Structs... 8-18
Examples .. 8-19

Example 1: A Simple Array of Structs of Scalars... 8-19
Example 2: Using Mixed Scalar Arrays with An Array of Structs.................................... 8-19
Example 3: Using Multiple Arrays of Structs with a Cursor... 8-20
Example 4: Individual Array and Struct Member Referencing .. 8-21
Example 5: Using Indicator Variables, a Special Case.. 8-21
Example 6: Using a Pointer to an Array of Structs.. 8-23

Mimicking CURRENT OF .. 8-23

9 Handling Runtime Errors

The Need for Error Handling .. 9-1
Error Handling Alternatives .. 9-1

Status Variables .. 9-2

xii

 The SQL Communications Area ... 9-2
The SQLSTATE Status Variable ... 9-3

 Declaring SQLSTATE .. 9-3
 SQLSTATE Values ... 9-3
Using SQLSTATE ... 9-10

If You Declare SQLSTATE ... 9-10
If You Do not Declare SQLSTATE ... 9-10

Declaring SQLCODE ... 9-10
Key Components of Error Reporting Using the SQLCA .. 9-11

Status Codes... 9-11
Warning Flags ... 9-11
Rows-Processed Count .. 9-11
Parse Error Offsets .. 9-11
Error Message Text ... 9-12

Using the SQL Communications Area (SQLCA) ... 9-12
Declaring the SQLCA .. 9-12
SQLCA Contents ... 9-13
SQLCA Structure... 9-14

sqlcaid .. 9-15
sqlcabc .. 9-15
sqlcode .. 9-15
sqlerrm ... 9-15
sqlerrp .. 9-15
sqlerrd .. 9-16
sqlwarn ... 9-16
sqlext ... 9-17

PL/SQL Considerations... 9-17
Getting the Full Text of Error Messages ... 9-17
Using the WHENEVER Directive .. 9-18

WHENEVER Conditions.. 9-19
SQLWARNING ... 9-19
SQLERROR .. 9-19
NOT FOUND ... 9-19

WHENEVER Actions.. 9-19
CONTINUE .. 9-19
DO ... 9-19
DO BREAK.. 9-19
DO CONTINUE ... 9-19
GOTO label_name .. 9-20
STOP ... 9-20

WHENEVER Examples ... 9-20
Use of DO BREAK and DO CONTINUE... 9-21
Scope of WHENEVER ... 9-22
Guidelines for WHENEVER.. 9-22

Placing the Statements ... 9-22
Handling End-of-Data Conditions ... 9-22
Avoiding Infinite Loops ... 9-23

xiii

Maintaining Addressability ... 9-23
Returning After an Error .. 9-24

Obtaining the Text of SQL Statements .. 9-24
Restrictions .. 9-26
Example Program.. 9-26

Using the Oracle Communications Area (ORACA) .. 9-26
Declaring the ORACA .. 9-27
Enabling the ORACA .. 9-27
ORACA Contents .. 9-27
Choosing Runtime Options .. 9-29
Structure of the ORACA ... 9-29

oracaid .. 9-29
oracabc .. 9-29
oracchf .. 9-29
oradbgf ... 9-29
orahchf .. 9-30
orastxtf ... 9-30
Diagnostics ... 9-30
orastxt .. 9-30
orasfnm .. 9-30
oraslnr .. 9-31
Cursor Cache Statistics ... 9-31
orahoc ... 9-31
oramoc .. 9-31
oracoc ... 9-31
oranor ... 9-31
oranpr ... 9-31
oranex ... 9-31

ORACA Example .. 9-31

10 Precompiler Options

The Precompiler Command .. 10-1
Case Sensitivity.. 10-2

Precompiler Options .. 10-2
Configuration Files .. 10-2
Precedence of Option Values... 10-3
Macro and Micro Options.. 10-4
What Occurs During Precompilation? .. 10-4
Scope of Options.. 10-5

Quick Reference .. 10-5
Entering Options ... 10-7

On the Command Line ... 10-7
Inline ... 10-7

Uses for EXEC ORACLE... 10-7
Scope of EXEC ORACLE... 10-8

Using the Precompiler Options ... 10-8
AUTO_CONNECT.. 10-8

xiv

CHAR_MAP .. 10-9
CLOSE_ON_COMMIT... 10-9
CODE .. 10-10
COMP_CHARSET... 10-11
CONFIG.. 10-11
CPP_SUFFIX .. 10-12
DBMS .. 10-12
DEF_SQLCODE... 10-13
DEFINE... 10-14
DURATION ... 10-15
DYNAMIC.. 10-15
ERRORS.. 10-15
ERRTYPE.. 10-16
FIPS.. 10-16
HEADER... 10-17
HOLD_CURSOR ... 10-18
INAME.. 10-18
INCLUDE ... 10-19
INTYPE ... 10-20
LINES .. 10-20
LNAME... 10-21
LTYPE ... 10-21
MAXLITERAL ... 10-22
MAXOPENCURSORS .. 10-22
MODE ... 10-23
NLS_CHAR.. 10-24
NLS_LOCAL.. 10-24
OBJECTS... 10-25
ONAME.. 10-25
ORACA... 10-26
PAGELEN .. 10-26
PARSE... 10-26
PREFETCH... 10-27
RELEASE_CURSOR.. 10-27
SELECT_ERROR ... 10-28
SQLCHECK.. 10-29
SYS_INCLUDE .. 10-29
THREADS .. 10-30
TYPE_CODE .. 10-30
UNSAFE_NULL .. 10-31
USERID... 10-31
UTF16_CHARSET... 10-32
VARCHAR ... 10-32
VERSION.. 10-33

11 Multithreaded Applications

What are Threads? ... 11-1

xv

Runtime Contexts in Pro*C/C++ .. 11-2
Runtime Context Usage Models... 11-3

Multiple Threads Sharing a Single Runtime Context .. 11-3
Multiple Threads Sharing Multiple Runtime Contexts ... 11-4

User Interface Features for Multithreaded Applications .. 11-5
THREADS Option ... 11-5
Embedded SQL Statements and Directives... 11-6

EXEC SQL ENABLE THREADS .. 11-6
EXEC SQL CONTEXT ALLOCATE .. 11-6
EXEC SQL CONTEXT USE .. 11-6
EXEC SQL CONTEXT FREE .. 11-7

CONTEXT USE Examples.. 11-8
Programming Considerations ... 11-9

Multithreaded Example ... 11-9
Connection Pooling... 11-15

Using the Connection Pooling Feature .. 11-16
How to Enable Connection Pooling .. 11-16
Command Line Options for Connection Pooling ... 11-16
Example ... 11-18
Performance Tuning .. 11-18

Demo Program:1 ... 11-18
Example ... 11-19

Demo Program:2 ... 11-23
Case 1: By varying CMIN ... 11-24
Case 2: By varying CMAX .. 11-25
Example ... 11-25

12 C++ Applications

Understanding C++ Support... 12-1
No Special Macro Processing .. 12-2

Precompiling for C++ ... 12-2
Code Generation.. 12-2
Parsing Code.. 12-3
Output Filename Extension ... 12-4
System Header Files ... 12-4

Example Programs... 12-4
cppdemo1.pc.. 12-4
cppdemo2.pc.. 12-7
cppdemo3.pc ... 12-10

13
Oracle Dynamic SQL

What is Dynamic SQL? .. 13-1
Advantages and Disadvantages of Dynamic SQL .. 13-2
When to Use Dynamic SQL... 13-2
Requirements for Dynamic SQL Statements .. 13-2

xvi

How Dynamic SQL Statements are Processed ... 13-3
Methods for Using Dynamic SQL ... 13-3

Method 1 .. 13-4
Method 2 .. 13-4
Method 3 .. 13-4
Method 4 .. 13-4
Guidelines ... 13-4

Avoiding Common Errors ... 13-5
Using Method 1 ... 13-6

Example Program: Dynamic SQL Method 1... 13-7
Using Method 2 ... 13-9

The USING Clause ... 13-10
Example Program: Dynamic SQL Method 2... 13-11

Using Method 3 ... 13-14
PREPARE ... 13-14
DECLARE .. 13-15
OPEN ... 13-15
FETCH ... 13-15
CLOSE .. 13-16
Example Program: Dynamic SQL Method 3... 13-16

Using Method 4 ... 13-19
 Need for the SQLDA ... 13-19
The DESCRIBE Statement ... 13-20
What is a SQLDA? .. 13-20
Implementing Oracle Method 4 ... 13-21
Restriction... 13-21

Using the DECLARE STATEMENT Statement .. 13-21
Using Host Arrays ... 13-22

Using PL/SQL .. 13-22
With Method 1 .. 13-23
With Method 2 .. 13-23
With Method 3 .. 13-23
With Oracle Method 4 ... 13-23

14 ANSI Dynamic SQL

Basics of ANSI Dynamic SQL .. 14-1
Precompiler Options... 14-2

Overview of ANSI SQL Statements .. 14-2
Example Code.. 14-5

Oracle Extensions .. 14-5
Reference Semantics.. 14-6
Using Arrays for Bulk Operations.. 14-6
Support for Arrays of Structs .. 14-8
Support for Object Types ... 14-8

ANSI Dynamic SQL Precompiler Options .. 14-8
Full Syntax of the Dynamic SQL Statements .. 14-9

ALLOCATE DESCRIPTOR.. 14-10

xvii

DEALLOCATE DESCRIPTOR.. 14-10
GET DESCRIPTOR.. 14-11
SET DESCRIPTOR... 14-14
Use of PREPARE ... 14-16
DESCRIBE INPUT... 14-17
DESCRIBE OUTPUT... 14-17
EXECUTE ... 14-18
Use of EXECUTE IMMEDIATE .. 14-19
Use of DYNAMIC DECLARE CURSOR.. 14-19
OPEN Cursor ... 14-20
FETCH .. 14-20
CLOSE a Dynamic Cursor ... 14-21
Differences From Oracle Dynamic Method 4 ... 14-21
Restrictions... 14-22

Example Programs... 14-22
ansidyn1.pc .. 14-22
ansidyn2.pc .. 14-28

15 Oracle Dynamic SQL: Method 4

Meeting the Special Requirements of Method 4 ... 15-1
What Makes Method 4 Special? ... 15-2
What Information Does Oracle Need? .. 15-2
Where Is the Information Stored? .. 15-2
How is the SQLDA Referenced? .. 15-3
How is the Information Obtained? .. 15-3

Understanding the SQLDA .. 15-3
Purpose of the SQLDA .. 15-3
Multiple SQLDAs ... 15-4
Declaring a SQLDA .. 15-4
Allocating a SQLDA .. 15-4

Using the SQLDA Variables .. 15-5
The N Variable .. 15-5
The V Variable .. 15-6
The L Variable ... 15-6
The T Variable ... 15-7
The I Variable .. 15-7
The F Variable ... 15-8
The S Variable ... 15-8
The M Variable ... 15-8
The C Variable .. 15-8
The X Variable .. 15-8
The Y Variable .. 15-9
The Z Variable .. 15-9

Some Preliminaries .. 15-9
Converting Data ... 15-9

Internal Datatypes ... 15-9
External Datatypes .. 15-10

xviii

Coercing Datatypes .. 15-11
Extracting Precision and Scale .. 15-12

Handling NULL/Not NULL Datatypes ... 15-14
The Basic Steps ... 15-15
A Closer Look at Each Step .. 15-15

Declare a Host String ... 15-16
Declare the SQLDAs .. 15-17
Allocate Storage Space for the Descriptors ... 15-17
Set the Maximum Number to DESCRIBE .. 15-17
Put the Query Text in the Host String ... 15-19
PREPARE the Query from the Host String .. 15-19
DECLARE a Cursor ... 15-20
DESCRIBE the Bind Variables .. 15-20
Reset Number of Placeholders ... 15-21
Get Values and Allocate Storage for Bind Variables ... 15-21
OPEN the Cursor .. 15-23
DESCRIBE the Select List .. 15-24
Reset Number of Select-List Items ... 15-25
Reset Length/Datatype of Each Select-list Item .. 15-25
FETCH Rows from the Active Set .. 15-27
Get and Process Select-List Values .. 15-28
Deallocate Storage .. 15-29
CLOSE the Cursor .. 15-30
Using Host Arrays ... 15-30
sample12.pc.. 15-32

Example Program: Dynamic SQL Method 4 ... 15-32
Sample Program : Dynamic SQL Method 4 using Scrollable Cursors 15-43

16 Large Objects (LOBs)

What are LOBs?.. 16-1
Internal LOBs ... 16-1
External LOBs .. 16-2
Security for BFILEs.. 16-2
LOBs versus LONG and LONG RAW... 16-2
LOB Locators.. 16-2
Temporary LOBs ... 16-3
LOB Buffering Subsystem.. 16-3

How to Use LOBs in Your Program ... 16-3
Three Ways to Access LOBs .. 16-4
LOB Locators in Your Application ... 16-5
Initializing a LOB .. 16-6

Internal LOBs.. 16-6
External LOBs ... 16-6
Temporary LOBs.. 16-7
Freeing LOBs .. 16-7

Rules for LOB Statements ... 16-7
For All LOB Statements.. 16-7

xix

For the LOB Buffering Subsystem .. 16-7
For Host Variables... 16-8

LOB Statements ... 16-9
APPEND... 16-9
ASSIGN... 16-9
CLOSE... 16-10
COPY... 16-10
CREATE TEMPORARY ... 16-11
DISABLE BUFFERING... 16-12
ENABLE BUFFERING.. 16-12
ERASE... 16-12
FILE CLOSE ALL .. 16-13
FILE SET ... 16-13
FLUSH BUFFER .. 16-14
FREE TEMPORARY.. 16-14
LOAD FROM FILE.. 16-15
OPEN .. 16-16
READ .. 16-16
TRIM ... 16-18
WRITE... 16-18
DESCRIBE .. 16-19

LOBs and the Navigational Interface .. 16-21
Transient Objects ... 16-21
Persistent Objects .. 16-21
Navigational Interface Example.. 16-22

LOB Program Examples ... 16-23
READ a BLOB, Write a File Example ... 16-23
Read a File, WRITE a BLOB Example .. 16-24
lobdemo1.pc... 16-26

17 Objects

Introduction to Objects .. 17-1
Object Types... 17-2
REFs to Object Types .. 17-2
Type Inheritance.. 17-2

Using Object Types in Pro*C/C++ ... 17-3
NULL Indicators.. 17-3

The Object Cache .. 17-4
Persistent Versus Transient Copies of Objects.. 17-4

Associative Interface... 17-4
When to Use the Associative Interface... 17-4
ALLOCATE.. 17-4
FREE.. 17-5
CACHE FREE ALL ... 17-5
Accessing Objects Using the Associative Interface .. 17-5

Navigational Interface .. 17-6
When to Use the Navigational Interface.. 17-7

xx

Rules Used in the Navigational Statements .. 17-7
OBJECT CREATE .. 17-8
OBJECT DEREF ... 17-8
OBJECT RELEASE .. 17-9
OBJECT DELETE... 17-9
OBJECT UPDATE ... 17-9
OBJECT FLUSH... 17-10
Navigational Access to Objects ... 17-10

Converting Object Attributes and C Types .. 17-12
OBJECT SET ... 17-12
OBJECT GET .. 17-13

Object Options Set/Get .. 17-14
CONTEXT OBJECT OPTION SET.. 17-15
CONTEXT OBJECT OPTION GET... 17-15

New Precompiler Options for Objects .. 17-16
VERSION.. 17-16
DURATION ... 17-16
OBJECTS... 17-17
INTYPE ... 17-17
ERRTYPE.. 17-17
SQLCHECK Support for Objects .. 17-17
Type Checking at Runtime .. 17-18

An Object Example in Pro*C/C++.. 17-18
Associative Access .. 17-18
Navigational Access.. 17-19

Example Code for Type Inheritance .. 17-20
Example Code for Navigational Access .. 17-27
Using C Structures .. 17-33
Using REFs.. 17-34

Generating a C Structure for a REF .. 17-34
Declaring REFs .. 17-34
Using REFs in Embedded SQL.. 17-34

Using OCIDate, OCIString, OCINumber, and OCIRaw... 17-35
Declaring OCIDate, OCIString, OCINumber, OCIRaw .. 17-35
Use of the OCI Types in Embedded SQL .. 17-35
Manipulating the OCI Types... 17-35

Summarizing the New Database Types in Pro*C/C++ .. 17-36
Restrictions on Using Oracle Datatypes in Dynamic SQL ... 17-38

18
Collections

Collections .. 18-1
Nested Tables... 18-1
Varrays.. 18-2
C and Collections .. 18-2

Descriptors for Collections.. 18-2
Declarations for Host and Indicator Variables ... 18-3

xxi

Manipulating Collections... 18-3
Autonomous Collection Access ... 18-3
Collection Element Access.. 18-3

Rules for Access... 18-4
Autonomous Access .. 18-4
Element Access ... 18-4

Indicator Variables .. 18-4
Autonomous Bindings .. 18-4
Element Bindings ... 18-4

OBJECT GET and SET ... 18-4
Collection Statements... 18-6

COLLECTION GET .. 18-6
COLLECTION SET ... 18-7
COLLECTION RESET .. 18-8
COLLECTION APPEND ... 18-9
COLLECTION TRIM .. 18-10
COLLECTION DESCRIBE... 18-10

Notes on the Table ... 18-12
Rules for the Use of Collections .. 18-12

Collection Example Code... 18-12
Type and Table Creation.. 18-12
GET and SET Example ... 18-14
DESCRIBE Example.. 18-15
RESET Example ... 18-16
Example Program:coldemo1.pc .. 18-18

19 The Object Type Translator

OTT Overview ... 19-1
What is the Object Type Translator.. 19-1

Creating Types in the Database .. 19-3
Invoking OTT... 19-3

Command Line... 19-4
Configuration File .. 19-4
INTYPE File .. 19-4

The OTT Command Line ... 19-4
OTT .. 19-5
Userid... 19-5
INTYPE.. 19-5
OUTTYPE.. 19-5
CODE... 19-5
HFILE... 19-5
INITFILE.. 19-6
INITFUNC... 19-6

The INTYPE File.. 19-6
OTT Datatype Mappings ... 19-7

Mapping Object Datatypes to C... 19-8
OTT Type Mapping Example... 19-10

xxii

NULL Indicator Structs .. 19-12
OTT Support for Type Inheritance ... 19-13

Substitutable Object Attributes .. 19-14
The OUTTYPE File.. 19-15

Using OTT with OCI Applications.. 19-16
Accessing and Manipulating Objects with OCI.. 19-17
Calling the Initialization Function.. 19-18
Tasks of the Initialization Function .. 19-19

Using OTT with Pro*C/C++ Applications.. 19-19
OTT Reference ... 19-21

OTT Command Line Syntax.. 19-21
OTT Parameters... 19-22

USERID.. 19-22
INTYPE.. 19-23
OUTTYPE.. 19-23
CODE... 19-23
INITFILE.. 19-23
INITFUNC... 19-24
HFILE... 19-24
CONFIG... 19-24
ERRTYPE... 19-24
CASE .. 19-24
SCHEMA_NAMES .. 19-25
TRANSITIVE .. 19-25

Where OTT Parameters Can Appear ... 19-25
Structure of the INTYPE File ... 19-26

INTYPE File Type Specifications ... 19-26
Nested #include File Generation... 19-27
SCHEMA_NAMES Usage ... 19-29
Default Name Mapping ... 19-31
Restriction... 19-31

File Name Comparison ... 19-32

20 User Exits

What Is a User Exit? .. 20-1
Why Write a User Exit? ... 20-2
Developing a User Exit... 20-2
Writing a User Exit .. 20-3

Requirements for Variables ... 20-3
The IAF GET Statement.. 20-3

Using IAF GET ... 20-4
The IAF PUT Statement.. 20-4

Using IAF PUT ... 20-5
Calling a User Exit... 20-5
Passing Parameters to a User Exit... 20-5
Returning Values to a Form ... 20-6

The IAP Constants .. 20-6

xxiii

Using the SQLIEM Function.. 20-6
Using WHENEVER... 20-7

An Example... 20-7
Precompiling and Compiling a User Exit ... 20-7
Example Program: A User Exit .. 20-7
Using the GENXTB Utility .. 20-9
Linking a User Exit into SQL*Forms ... 20-10
Guidelines .. 20-10

Naming the Exit... 20-10
Connecting to Oracle .. 20-10
Issuing I/O Calls ... 20-10
Using Host Variables .. 20-10
Updating Tables .. 20-10
Issuing Commands ... 20-11

EXEC TOOLS Statements ... 20-11
Writing a Toolset User Exit.. 20-11
EXEC TOOLS SET .. 20-11
EXEC TOOLS GET ... 20-12
EXEC TOOLS SET CONTEXT .. 20-12
EXEC TOOLS GET CONTEXT ... 20-12
EXEC TOOLS MESSAGE .. 20-13

A New Features

New In This Release ... A-1
New External Datatypes .. A-1

New In Previous Releases ... A-1
Array of Structs.. A-1
Precompiled Header Files.. A-2
CALL Statement .. A-2
Changing Passwords at Runtime.. A-2
Support for National Character Sets .. A-2
CHAR_MAP Precompiler Option .. A-2
New Names for SQLLIB Functions .. A-2
New Actions in WHENEVER Statement... A-2
Object Type Support ... A-2
Object Type Translator ... A-3
LOB Support .. A-3
ANSI Dynamic SQ .. A-3
Collections .. A-3

Miscellaneous Topics.. A-3
Unicode Support ... A-3
UTF16_CHARSET Option ... A-3
PREFETCH Option ... A-4
External Procedures .. A-4
Calling Java from PL/SQL... A-4
DML Returning Clause .. A-4
Universal ROWID ... A-4

xxiv

SYSDBA/SYSOPER Privileges in CONNECT Statements ... A-4
CLOSE_ON_COMMIT Precompiler Option... A-4
Character Strings ... A-4
Error Message Codes ... A-5
LINES Option... A-5

Migration From Earlier Releases .. A-5

B Reserved Words, Keywords, and Namespaces

Reserved Words and Keywords.. B-1
Oracle Reserved Namespaces ... B-3

C Performance Tuning

What Causes Poor Performance? ... C-1
How Can Performance Be Improved? .. C-2
Using Host Arrays .. C-2
Using Embedded PL/SQL ... C-2
Optimizing SQL Statements .. C-3

Optimizer Hints .. C-3
Trace Facility ... C-4

Using Indexes .. C-4
Taking Advantage of Row-Level Locking ... C-5
Eliminating Unnecessary Parsing ... C-5

Handling Explicit Cursors .. C-5
Cursor Control ... C-5

Using the Cursor Management Options ... C-6
SQL Areas and Cursor Cache .. C-7
Resource Use .. C-7
Infrequent Execution .. C-8
Frequent Execution ... C-8
Embedded PL/SQL Considerations ... C-9
Parameter Interactions ... C-9

Avoiding Unnecessary Reparsing .. C-9
Using Connection Pooling... C-9

D Syntactic and Semantic Checking

What Is Syntactic and Semantic Checking? .. D-1
Controlling the Type and Extent of Checking .. D-1
Specifying SQLCHECK=SEMANTICS ... D-2

Enabling a Semantic Check.. D-2
Connecting to the Oracle server... D-3
Using DECLARE TABLE .. D-3
Using DECLARE TYPE... D-4

Specifying SQLCHECK=SYNTAX ... D-4
Entering the SQLCHECK Option ... D-4

xxv

E System-Specific References

System-Specific Information... E-1
Location of Standard Header Files ... E-1
Specifying Location of Included Files for the C Compiler .. E-1
ANSI C Support... E-1
Struct Component Alignment ... E-1
Size of an Integer and ROWID .. E-1
Byte Ordering .. E-2
Connecting to the Oracle Server ... E-2
Linking in an XA Library ... E-2
Location of the Pro*C/C++ Executable ... E-2
System Configuration File ... E-2
INCLUDE Option Syntax... E-2
Compiling and Linking .. E-2
User Exits.. E-2

F Embedded SQL Statements and Directives

Summary of Precompiler Directives and Embedded SQL Statements F-3
About The Statement Descriptions ... F-6
How to Read Syntax Diagrams .. F-6

Required Keywords and Parameters .. F-7
Optional Keywords and Parameters .. F-7
Syntax Loops ... F-8
Multipart Diagrams ... F-8
Oracle Names... F-8
Statement Terminator ... F-8

ALLOCATE (Executable Embedded SQL Extension) .. F-9
ALLOCATE DESCRIPTOR (Executable Embedded SQL).. F-10
CACHE FREE ALL (Executable Embedded SQL Extension) .. F-11
CALL (Executable Embedded SQL)... F-12
CLOSE (Executable Embedded SQL) ... F-13
COLLECTION APPEND (Executable Embedded SQL Extension) ... F-14
COLLECTION DESCRIBE (Executable Embedded SQL Extension) ... F-14
COLLECTION GET (Executable Embedded SQL Extension).. F-15
COLLECTION RESET (Executable Embedded SQL Extension) ... F-16
COLLECTION SET (Executable Embedded SQL Extension)... F-16
COLLECTION TRIM (Executable Embedded SQL Extension) ... F-17
COMMIT (Executable Embedded SQL) .. F-17
CONNECT (Executable Embedded SQL Extension) ... F-19
CONTEXT ALLOCATE (Executable Embedded SQL Extension) ... F-20
CONTEXT FREE (Executable Embedded SQL Extension) ... F-21
CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension) F-22
CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext) .. F-23
CONTEXT USE (Oracle Embedded SQL Directive) .. F-23
DEALLOCATE DESCRIPTOR (Embedded SQL Statement) ... F-24
DECLARE CURSOR (Embedded SQL Directive) .. F-25

xxvi

DECLARE DATABASE (Oracle Embedded SQL Directive)... F-27
DECLARE STATEMENT (Embedded SQL Directive) .. F-28
DECLARE TABLE (Oracle Embedded SQL Directive) ... F-29
DECLARE TYPE (Oracle Embedded SQL Directive)... F-30
DELETE (Executable Embedded SQL) ... F-31
DESCRIBE (Executable Embedded SQL Extension) ... F-34
DESCRIBE DESCRIPTOR (Executable Embedded SQL) .. F-35
ENABLE THREADS (Executable Embedded SQL Extension) ... F-36
EXECUTE ... END-EXEC (Executable Embedded SQL Extension) ... F-37
EXECUTE (Executable Embedded SQL)... F-38
EXECUTE DESCRIPTOR (Executable Embedded SQL) ... F-40
EXECUTE IMMEDIATE (Executable Embedded SQL) ... F-41
FETCH (Executable Embedded SQL) ... F-42
FETCH DESCRIPTOR (Executable Embedded SQL) ... F-44
FREE (Executable Embedded SQL Extension) .. F-46
GET DESCRIPTOR (Executable Embedded SQL) ... F-47
INSERT (Executable Embedded SQL) ... F-49
LOB APPEND (Executable Embedded SQL Extension) .. F-52
LOB ASSIGN (Executable Embedded SQL Extension) ... F-52
LOB CLOSE (Executable Embedded SQL Extension) ... F-53
LOB COPY (Executable Embedded SQL Extension).. F-53
LOB CREATE TEMPORARY (Executable Embedded SQL Extension)...................................... F-53
LOB DESCRIBE (Executable Embedded SQL Extension) .. F-54
LOB DISABLE BUFFERING (Executable Embedded SQL Extension) F-55
LOB ENABLE BUFFERING (Executable Embedded SQL Extension) .. F-55
LOB ERASE (Executable Embedded SQL Extension).. F-55
LOB FILE CLOSE ALL (Executable Embedded SQL Extension) ... F-56
LOB FILE SET (Executable Embedded SQL Extension) .. F-56
LOB FLUSH BUFFER (Executable Embedded SQL Extension) ... F-57
LOB FREE TEMPORARY (Executable Embedded SQL Extension) .. F-57
LOB LOAD (Executable Embedded SQL Extension) ... F-58
LOB OPEN (Executable Embedded SQL Extension) ... F-58
LOB READ (Executable Embedded SQL Extension) ... F-58
LOB TRIM (Executable Embedded SQL Extension) .. F-59
LOB WRITE (Executable Embedded SQL Extension) ... F-59
OBJECT CREATE (Executable Embedded SQL Extension) .. F-60
OBJECT DELETE (Executable Embedded SQL Extension) .. F-61
OBJECT DEREF (Executable Embedded SQL Extension)... F-62
OBJECT FLUSH (Executable Embedded SQL Extension) .. F-62
OBJECT GET (Executable Embedded SQL Extension) ... F-63
OBJECT RELEASE (Executable Embedded SQL Extension).. F-64
OBJECT SET (Executable Embedded SQL Extension) .. F-65
OBJECT UPDATE (Executable Embedded SQL Extension) ... F-66
OPEN (Executable Embedded SQL) ... F-67
OPEN DESCRIPTOR (Executable Embedded SQL) ... F-69
PREPARE (Executable Embedded SQL) ... F-70
REGISTER CONNECT (Executable Embedded SQL Extension) .. F-71

xxvii

ROLLBACK (Executable Embedded SQL) .. F-72
SAVEPOINT (Executable Embedded SQL) ... F-75
SELECT (Executable Embedded SQL) .. F-76
SET DESCRIPTOR (Executable Embedded SQL) .. F-79
TYPE (Oracle Embedded SQL Directive) ... F-81
UPDATE (Executable Embedded SQL) .. F-82
VAR (Oracle Embedded SQL Directive) .. F-85
WHENEVER (Embedded SQL Directive) ... F-88

Index

xxviii

xxix

Send Us Your Comments

Pro*C/C++ Programmer’s Guide, Release 9.2

Part No. A97269-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xxx

xxxi

Preface

This document is a comprehensive user's guide and reference to the Pro*C/C++. It
shows you how to use the database language SQL and Oracle's procedural extension,
PL/SQL, in conjunction with Pro*C/C++ to manipulate data in an Oracle database. It
explores a full range of topics, from underlying concepts to advanced programming
techniques, and provides code examples.

This Preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Intended Audience
The Pro*C/C++ Programmer's Guide is intended for programmers, systems analysts,
project managers, and other Oracle users who perform, or are interested in learning
about, the following tasks:

■ Design and develop software applications in the Oracle environment.

■ Convert existing software applications to run in an Oracle environment.

■ Manage the development of software applications.

To use this document, you need a working knowledge of applications programming in
C and C++, and familiarity with the use of the Structured Query Language (SQL).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

xxxii

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Structure
This document contains:

Chapter 1, "Introduction"
This chapter introduces you to Pro*C/C++. You look at its role in developing
application programs that manipulate Oracle data. There is a Frequently Asked
Questions section which is important.

Chapter 2, "Precompiler Concepts"
This chapter explains how embedded SQL programs work. Programming guidelines
follow. Then the sample tables that we work with are shown, along with a sample
query Pro*C/C++ application

Chapter 3, "Database Concepts"
This chapter describes transaction processing. You learn the basic techniques that
safeguard the consistency of your database and how to connect to the database server.

Chapter 4, "Datatypes and Host Variables"
You learn about the Oracle datatypes, host variables, indicator variables, data
conversion, Unicode character strings.

Chapter 5, "Advanced Topics"
This chapter presents advanced topics, such as how to take advantage of datatype
equivalencing, C preprocessor support, new names for SQLLIB functions, and
interfacing to OCI.

Chapter 6, "Embedded SQL"
This chapter teaches you the essentials of embedded SQL programming. You learn
how to use host variables, indicator variables, cursors, cursor variables, and the
fundamental SQL commands that insert, update, select, and delete Oracle data.

Chapter 7, "Embedded PL/SQL"
This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. You learn how to use PL/SQL with
host variables, indicator variables, cursors, stored procedures, host arrays, and
dynamic SQL.

xxxiii

Chapter 8, "Host Arrays"
This chapter looks at using arrays to improve program performance. You learn how to
manipulate Oracle data using arrays, how to operate on all elements of an array with a
single SQL statement, and how to limit the number of elements processed.

Chapter 9, "Handling Runtime Errors"
This chapter discusses error reporting and recovery. It shows you how to use the
SQLSTATE and SQLCODE status variables with the WHENEVER statement to detect
errors and status changes. It also shows you how to use the SQLCA and ORACA to
detect error conditions and diagnose problems.

Chapter 10, "Precompiler Options"
This chapter details the requirements for running the Oracle Pro*C/C++ Precompiler.
You learn what happens during precompilation, how to issue the precompiler
command, and how to specify the many useful precompiler options.

Chapter 11, "Multithreaded Applications"
Writing multithreaded applications is discussed in this chapter. Your compiler must
also support multithreading.

Chapter 12, "C++ Applications"
This chapter describes how to precompile your C++ application, and lists three sample
C++ programs.

Chapter 13, "Oracle Dynamic SQL"
This chapter shows you how to take advantage of dynamic SQL. You are taught three
methods—from simple to complex—for writing flexible programs that, among other
things, let users build SQL statements interactively at run time.

Chapter 14, "ANSI Dynamic SQL"
The new ANSI dynamic SQL should be used for all new method 4 applications (where
your program accepts or builds SQL statements with a varying number of variables).
ANSI dynamic SQL must be used for applications involving complex types such as
object types, collections, cursor variables, arrays of structs, and LOBs.

Chapter 15, "Oracle Dynamic SQL: Method 4"
This chapter gives you an in-depth explanation of Dynamic SQL Method 4—dynamic
SQL using descriptors. This will tell you how to modify existing applications that were
developed before Oracle release 8.1.

Chapter 16, "Large Objects (LOBs)"
This chapter presents large object datatypes (BLOBs, CLOBs, NCLOBs, and BFILEs).
The embedded SQL commands that provide functionality comparable to OCI and
PL/SQL are presented and used in sample code.

Chapter 17, "Objects"
This chapter describes object support features: associative and navigational interfaces
(embedded SQL commands), precompiler options for objects, and restrictions on the
use of datatypes in Oracle dynamic SQL.

xxxiv

Chapter 18, "Collections"
Collection types (VARRAYS and nested tables) are described in this chapter.
Embedded SQL statements for using collections are presented, with examples.

Chapter 19, "The Object Type Translator"
This chapter discusses the Object Type Translator (OTT) which maps object types to C
structures that are used in Pro*C/C++ applications. Then it describes the OTT options,
how to use OTT, and the results.

Chapter 20, "User Exits"
This chapter focuses on writing user exits for Oracle Tools applications. You learn
about the commands that are used to interface between a forms application and a
Pro*C/C++ user exit, and how to write and link a forms user exit.

Appendix A, "New Features"
This appendix highlights the improvements and new features introduced with the 9i
release of Pro*C/C++, and where to find them in this guide.

Appendix B, "Reserved Words, Keywords, and Namespaces"
This appendix points you to where to find reserved words and keywords that have a
special meaning to Oracle and namespaces that are reserved for Oracle libraries.

Appendix C, "Performance Tuning"
This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications.

Appendix D, "Syntactic and Semantic Checking"
This appendix shows you how to use the SQLCHECK option to control the type and
extent of syntactic and semantic checking done on embedded SQL statements and
PL/SQL blocks.

Appendix E, "System-Specific References"
This appendix documents the aspects of Pro*C/C++ that can be system-specific.

Appendix F, "Embedded SQL Statements and Directives"
This appendix contains descriptions (syntax diagrams, keyword and parameter
definitions) of precompiler directives, embedded SQL statements, and Oracle's
embedded SQL extensions.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database SQL Reference

■ Oracle C++ Call Interface Programmer's Guide

■ Oracle Call Interface Programmer's Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

xxxv

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

xxxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

Convention Meaning Example

xxxvii

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxxviii

xxxix

What's New in Pro*C/C++?

This section describes new features of Pro*C/C++ releases and provides pointers to
additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*C/C++:

■ Oracle9i Release 2 (9.2) New Features in Pro*C/C++

■ Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

■ Oracle8i Release 8.1.5 New Features in Pro*C/C++

■ Oracle8i Release 8.1.4 New Features in Pro*C/C++

■ Oracle8i Release 8.1.3 New Features in Pro*C/C++

Oracle9i Release 2 (9.2) New Features in Pro*C/C++
The Oracle9i Release 9.2 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use scrollable cursor and optimize the
performance.

This section contains these topics:

■ Supporting Scrollable Cursor in Pro*C/C++

You can use scrollable cursors in your Pro*C/C++ application to fetch data in a non
sequential manner.

■ Supporting Connection Pooling in Pro*C/C++

You can use the connection pooling feature with your multithreaded Pro*C/C++
application to increase performance of the application significantly.

Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
The Oracle9i Release 1 (9.0.1) Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use UNICODE and more object features.

This section contains these topics:

■ UNICODE Support

With database "Reliable Unicode Data Type Support" in Oracle 9i, Pro*C/C++
UTF16 data can be bound to both CHAR and NCHAR columns.

■ Datetime

Datetime support in Pro*C extends to all the Datetime features in Oracle9i.

xl

■ XA Support for V8OCI

With 9i, interoperability between XA and V8OCI will become standard. Users
should be able to connect through XA, register that connection again SQLLIB and
obtain that same connection back through SQLEnvGet and SQLSvcCtxGet.

■ Inheritance

As part of the Oracle 9i support for object types, the precompiler object support
now includes support for inheritance.

■ Multilevel Collections

The collection object types support for release 9i has been enhanced to allow
collections which have multiple levels of nested tables and arrays.

Oracle8i Release 8.1.5 New Features in Pro*C/C++
The Oracle8i Release 8.1.5 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use precompiler header files.

This section contains these topics:

■ Precompiled Header Capabilities

Starting with release 8.1.5, Pro*C/C++ allows the user to precompile a header file
and store the contents of that precompilation into a special binary file that can be
instantiated in place of actually precompiling the header file when included
through the #include directive during the precompilation of an ordinary
Pro*C/C++ program or another header file.

Oracle8i Release 8.1.4 New Features in Pro*C/C++
The Oracle8i Release 8.1.4 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to call stored procedures.

This section contains these topics:

■ Calling Stored Java Procedures

A new Embedded SQL CALL statement has been introduced in Release 8.1.4 of
Pro*C/C++ to provide application developers the ability to invoke stored Java
(and PL/SQL) procedures directly without having to use an Embedded PL/SQL
anonymous block.

Oracle8i Release 8.1.3 New Features in Pro*C/C++
The Oracle8i Release 8.1.3 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use an enhanced set of features for better
application development.

This section contains these topics:

■ Embedded SQL LOB Interface

A convenient, easy to use Embedded SQL LOB Interface has been provided to give
application developers enhanced support for LOBs that is meant to provide the
same functional support for LOBs as the Oracle OCI API or PL/SQL DBMS_LOB
package.

See Also: "Precompiled Header Files" on page 5-27

xli

■ ANSI Dynamic SQL Interface

Pro*C/C++ now has a new implementation of Dynamic SQL that has been
derived from the ANSI Standard. The ANSI Dynamic SQL Interface has
enhancements over the Oracle Dynamic SQL Method 4 Interface. The ANSI
Dynamic SQL Interface supports all Oracle types including Objects, Arrays of
Structs, Cursor Variables and LOBs.

■ DML Returning Clause

Pro*C/C++ now supports the use of the DML Returning Clause on the INSERT,
UPDATE and DELETE Embedded SQL DML statements.

■ Support for Universal ROWID

Pro*C/C++ now provides a mechanism to ALLOCATE and FREE Rowid.
Descriptors are compatible with both Physical Rowids (associated with heap
tables) and Logical Rowids (associated with index organized tables).

■ Extended Support for Runtime Contexts

Extensions to the Embedded CONTEXT USE statement now allow for a developer
to specify a specific runtime context or to default to a global SQLLIB runtime
context instead.

■ External Procedure Support

External Procedures written in Pro*C/C++ are now callable from PL/SQL. A
REGISTER CONNECT Embedded SQL statement has been introduced. This new
statement is used instead of a CONNECT statement in the External Procedure to
define the current unnamed connection for the Global SQLLIB Runtime Context.

■ Support for Pre-Fetching

Oracle supports the notion of Pre-Fetching a number of rows when a query is
executed. This increases performance by eliminating the need for a server
round-trip when the rows are subsequently fetched.

■ Navigational Interface

The Navigational Interface for release 8.1.3 has been enhanced since its
introduction in 8.0.3 to include the ability to Get and Set LOB and Collection
Attributes of an Object Type as well. The optional FOR UPDATE clause in an
EXEC SQL OBJECT DEREF statement has also been enhanced with an optional
NOWAIT.

■ Enhanced Support for Collections

A new Embedded SQL Interface has been provided to allow for the ability to
access, modify and update the individual elements of a Collection. This interface is
intended to provide similar functional support for Collections that the OCI API
currently provides in a convenient, easy to use Embedded SQL style.

xlii

Introduction 1-1

1
Introduction

This chapter introduces you to the Pro*C/C++ Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
enables your applications to do. This chapter contains the following topics:

■ What is an Oracle Precompiler?

■ Why Use the Oracle Pro*C/C++ Precompiler

■ Why Use SQL

■ Why Use PL/SQL

■ Pro*C/C++ Precompiler Benefits

■ Frequently Asked Questions

What is an Oracle Precompiler?
An Oracle Precompiler is a programming tool that enables the user to embed SQL
statements in a high-level source program. As Figure 1–1 shows, the precompiler
accepts the source program as input, translates the embedded SQL statements into
standard Oracle runtime library calls, and generates a modified source program that
you can compile, link, and execute in the usual way.

Why Use the Oracle Pro*C/C++ Precompiler

1-2 Pro*C/C++ Programmer’s Guide

Figure 1–1 Embedded SQL Program Development

Why Use the Oracle Pro*C/C++ Precompiler
The Oracle Pro*C/C++ Precompiler lets you use the power and flexibility of SQL in
your application programs. A convenient, easy to use interface lets your application
access Oracle directly.

Unlike many application development tools, Pro*C/C++ lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close
monitoring of resource use, SQL statement execution, and various runtime indicators.

To resolve calls

With embedded SQL statements

With all SQL statements replaced by library calls
Modified
Source

Program

Pro*C/C++
Precompiler

System Editor

Source
Program

Compiler

Object
Program

Linker

Source
Program

Oracle
Runtime
Library
(SQLLIB)

Pro*C/C++ Precompiler Benefits

Introduction 1-3

With this information, you can change program parameters for maximum
performance.

Although precompiling adds a step to the application development process, it saves
time. The precompiler, not you, translates each embedded SQL statement into calls to
the Oracle runtime library (SQLLIB). The Pro*C/C++ precompiler also analyzes host
variables, defines mappings of structures into columns, and, with SQLCHECK=FULL,
performs semantic analysis of the embedded SQL statements.

Why Use SQL
If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively through SQL*Plus or embedded in an application program depends
on the job at hand. If the job requires the procedural processing power of C or C++, or
must be done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and
easy to learn. Being non-procedural, it lets you specify what you want done without
specifying how to do it. A few English-like statements make it easy to manipulate
Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

■ CREATE, ALTER, and DROP database tables dynamically

■ SELECT, INSERT, UPDATE, and DELETE rows of data

■ COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus. Usually, only minor changes are required to switch from
interactive to embedded SQL.

Why Use PL/SQL
An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL provides the ability to group SQL statements logically and send them to
Oracle in a block rather than one by one. This reduces network traffic and processing
overhead.

Pro*C/C++ Precompiler Benefits
As Figure 1–2 shows, Pro*C/C++ offers many features and benefits, which help you to
develop effective, reliable applications.

See Also: Chapter 7, "Embedded PL/SQL" for information about
embedding PL/SQL in Pro*C/C++ programs.

Pro*C/C++ Precompiler Benefits

1-4 Pro*C/C++ Programmer’s Guide

Figure 1–2 Features and Benefits

Pro*C/C++ enables:

■ Writing applications in C or C++.

■ Following the ANSI/ISO standards for embedding SQL statements in a high-level
language.

■ Taking advantage of dynamic SQL, an advanced programming technique that lets
your Program accept or build any valid SQL statement at runtime.

■ Designing and developing highly customized applications.

■ Writing shared server process applications.

■ Automatically converting between Oracle internal datatypes and high-level
language datatypes.

■ Improved performance by embedding PL/SQL transaction processing blocks in
your application program.

■ Specifying useful precompiler options inline and on the command line and change
their values during precompilation.

■ The use of datatype equivalencing to control the way Oracle interprets input data
and formats output data.

■ Separately precompiling several program modules, then link them into one
executable Program.

Event
Handling

Runtime
Diagnostics

Object Types ANSI/ISO SQL
Compliance

Dynamic
SQL

Threads
Support

Automatic
Datatype
Conversion

Support for
PL/SQL

Runtime
Options

Datatype
Equivalencing

Separate
Precompilation

Syntax and
Semantic
Checking

Concurrent
Connects

Array
Operations

Conditional
Precompilation

National
Character Sets

Pro*C/C++
Precompiler

Frequently Asked Questions

Introduction 1-5

■ Complete checking of the syntax and semantics of embedded SQL data
manipulation statements and PL/SQL blocks.

■ Concurrent access to Oracle databases on multiple nodes using Oracle Net.

■ The use of arrays as input and output program variables.

■ Conditionally precompiling sections of code in your host program so that it can
run in different environments.

■ Direct interface with SQL*Forms through the use of user exits written in a
high-level language.

■ Handling errors and warnings with the SQL Communications Area (SQLCA) and
the WHENEVER or DO statement.

■ The use of an enhanced set of diagnostics provided by the Oracle Communications
Area (ORACA).

■ Working with user-defined object types in the database.

■ The use of collections (varrays and nested tables) in the database.

■ The use of LOBs (Large Objects) in the database.

■ The use of National Character Set data stored in the database.

■ The use of OCI (Oracle Call Interface) functions in your program.

Pro*C/C++ is a full-featured tool that supports a professional approach to embedded
SQL programming.

Frequently Asked Questions
This section presents some questions that are frequently asked about Pro*C/C++, and
about Oracle9i in relation to Pro*C/C++. The answers are more informal than the
documentation in the rest of this Guide, but do provide references to places where you
can find the reference material.

What is a VARCHAR?
Here is a short description of VARCHARs:

VARCHAR Description

VARCHAR2 A kind of column in the database that contains variable-length
character data. This is what Oracle calls an "internal datatype",
because it is a possible column type.

VARCHAR An Oracle "external datatype" (datatype code 9). You use this
only if you are doing dynamic SQL Method 4, or datatype
equivalencing.

VARCHAR[n]

varchar[n]

This is a Pro*C/C++ "pseudotype" that you can declare as a host
variable in your Pro*C/C++ program. It is actually generated by
Pro*C/C++ as a struct, with a 2-byte length element, and a
[n]-byte character array.

Frequently Asked Questions

1-6 Pro*C/C++ Programmer’s Guide

Does Pro*C/C++ Generate Calls to the Oracle Call Interface?
No. Pro*C/C++ generates data structures and calls to its runtime library: SQLLIB.

Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?
SQLLIB is not externally documented, is unsupported, and might change from release
to release. Also, Pro*C/C++ is an ANSI/ISO compliant product, that follows the
standard requirements for embedded SQL.

SQLLIB is not an API. While it has user-callable functions, it is primarily a runtime
library for the precompiler suite of languages.

If you need to do API coding for the database, either use the Oracle Call Interface, the
client side API for the Oracle RDBMS, or mix OCI and Pro*C/C++.

See "SQLLIB Extensions for OCI Release 8 Interoperability" on page 5-34.

Can I Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?
Certainly. See Chapter 7, "Embedded PL/SQL". There is a demo program, "Calling a
Stored PL/SQL or Java Subprogram" on page 7-17.

Can I Write C++ Code, and Precompile It Using Pro*C/C++?
Yes. See Chapter 12, "C++ Applications".

Can I Use Bind Variables Anywhere in a SQL Statement?
For example, I would d like to be able to input the name of a table in my SQL
statements at runtime. But when I use host variables, I get precompiler errors.

In general, you can use host variables at anywhere in a SQL or PL/SQL, statement
where expressions are allowed. See "Host Variable Referencing" on page 4-13.

However, the following SQL statement, where table_name is a host variable, is illegal:

EXEC SQL SELECT ename,sal INTO :name, :salary FROM :table_name;

To solve your problem, you need to use dynamic SQL. See Chapter 13, "Oracle
Dynamic SQL". There is a demo program that you can adapt to do this, "Example
Program: Dynamic SQL Method 1" on page 13-7.

I Am Confused By Character Handling in Pro*C/C++.
There are many options, but we can simplify. First of all, if you need compatibility
with previous precompiler releases, and Oracle7, the safest thing to do is use
VARCHAR[n] host variables. See "VARCHAR Variable Declaration" on page 4-15.

The default datatype for all other character variables in Pro*C/C++ is CHARZ; see
"CHARZ" on page 4-8. Briefly, this means that you must null-terminate the string on
input, and it is both blank-padded and null-terminated on output.

See Also:

■ Chapter 4, "Datatypes and Host Variables"

■ Chapter 14, "ANSI Dynamic SQL"

■ Chapter 15, "Oracle Dynamic SQL: Method 4"

Frequently Asked Questions

Introduction 1-7

In release 8.0, the CHAR_MAP precompiler option was introduced to specify the
default mapping of char variables. See "Precompiler Option CHAR_MAP" on page 5-1.

If neither VARCHAR nor CHARZ works for your application, and you need total
C-like behavior (null termination, absolutely no blank-padding), use the TYPE
command and the C typedef statement, and use datatype equivalencing to convert
your character host variables to STRING. See "User-Defined Type Equivalencing" on
page 5-10. There is an example program that shows how to use the TYPE command
starting on "Example Program: Using sqlvcp()" on page 4-18.

Is There Anything Special About Character Pointers?
Yes. When Pro*C/C++ binds an input or output host variable, it must know the
length. When you use VARCHAR[n], or declare a host variable of type char[n],
Pro*C/C++ knows the length from your declaration. But when you use a character
pointer as a host variable, and use malloc() to define the buffer in your program,
Pro*C/C++ has no way of knowing the length.

On output you must not only allocate the buffer, but pad it out with some non-null
characters, then null-terminate it. On input or output, Pro*C/C++ calls strlen() for
the buffer to get the length. See "Pointer Variables" on page 4-36.

Why Does SPOOL Not Work in Pro*C/C++?
SPOOL is a special command used in SQL*Plus. It is not an embedded SQL command.
See "Key Concepts of Embedded SQL Programming" on page 2-1.

Where Can I Find The On-line Versions of the Example Programs?
Each Oracle installation should have a demo directory. If the directory is not there, or it
does not contain the example programs, see your system or database administrator.

How Can I Compile and Link My Application?
Compiling and linking are very platform specific. Your system-specific Oracle
documentation has instructions on how to link a Pro*C/C++ application. On UNIX
systems, there is a makefile called proc.mk in the demo directory. To link, say, the
demo program sample1.pc, you would enter the command line

make -f proc.mk sample1

If you need to use special precompiler options, you can run Pro*C/C++ separately,
then do the make. Or, you can create your own custom makefile. For example, if your
program contains embedded PL/SQL code, you can enter

proc cv_demo userid=scott/tiger sqlcheck=semantics
make -f proc.mk cv_demo

On VMS systems, there is a script called LNPROC that you use to link your
Pro*C/C++ applications.

Does Pro*C/C++ Now Support Using Structures As Host Variables?
 How does this work with the array interface?

You can use arrays inside a single structure, or an array of structures with the array
interface. See "Host Structures" on page 4-31 and "Pointer Variables" on page 4-36.

Frequently Asked Questions

1-8 Pro*C/C++ Programmer’s Guide

Is It Possible to Have Recursive Functions In Pro*C/C++ If I Use Embedded SQL In the
Function?

Yes. However, for embedded SQL, you must use cursor variables.

Can I Use Any Release of Pro*C/C++ with Any Version of the Oracle Server?
No. You can use an older version of Pro*C or Pro*C/C++ with a newer version of the
server, but you cannot use a newer version of Pro*C/C++ with an older version of the
server.

For example, you can use release 2.2 of Pro*C/C++ with Oracle8i, but you cannot use
release 8 of Pro*C/C++ with the Oracle7 server.

When My Application Runs Under Oracle9i, I Keep Getting an Ora-1405 Error (Fetched
Column Value Is NULL).

You are selecting a NULL into a host variable that does not have an associated
indicator variable. This is not in compliance with the ANSI/ISO standards, and was
changed beginning with Oracle7.

If possible, rewrite your program using indicator variables, and use indicators in
future development. Indicator variables are described "Indicator Variables" on
page 4-13.

Alternatively, if precompiling with MODE=ORACLE and DBMS=V7 or V8, specify
UNSAFE_NULL=YES on the command line (see "UNSAFE_NULL" on page 10-31 for
more information) to disable the ORA-01405 message.

Are All SQLLIB Functions Private?
No. There are some SQLLIB functions that you can call to get information about your
program, or its data. The SQLLIB public functions are shown here:

SQLLIB Public
Functions Description

SQLSQLDAAlloc() Used to allocate a SQL descriptor array (SQLDA) for dynamic
SQL Method 4. See "How is the SQLDA Referenced?" on
page 15-3.

SQLCDAFromResultSet
Cursor()

Used to convert a Pro*C/C++ cursor variable to an OCI cursor
data area. See "New Names for SQLLIB Public Functions" on
page 5-39.

SQLSQLDAFree() Used to free a SQLDA allocated using SQLSQLDAAlloc(). See
"New Names for SQLLIB Public Functions" on page 5-39.

SQLCDAToResultSetCur
sor()

Used to convert an OCI cursor data area to a Pro*C/C++ cursor
variable. See "New Names for SQLLIB Public Functions" on
page 5-39.

SQLErrorGetText() Returns a long error message. See "sqlerrm" on page 9-15.

SQLStmtGetText() Used to return the text of the most recently executed SQL
statement. See "Obtaining the Text of SQL Statements" on
page 9-24.

SQLLDAGetNamed() Used to obtain a valid Logon Data Area for a named connection,
when OCI calls are used in a Pro*C/C++ program. See "New
Names for SQLLIB Public Functions" on page 5-39.

Frequently Asked Questions

Introduction 1-9

In the preceding list, the functions are thread-safe SQLLIB public functions. Use these
functions in all new applications. The names of the functions were changed for release
8.0, but the old names are still supported in Pro*C/C++. For more information about
these thread-safe public functions (including their old names), see the table " SQLLIB
Public Functions -- New Names" on page 5-40.

How Does Oracle9i Support The New Object Types?
See the chapters Chapter 17, "Objects" and Chapter 19, "The Object Type Translator" for
how to use Object types in Pro*C/C++ applications.

Compatibility, Upgrading and Migration
As of 9.0.1 release, PRO*C/C++ will adopt a similar compatibility rule to OCI8- based
applications. In particular, 9i PRO*C/C++ clients will support 8i Servers (8.1.6.3,
V817x). This is subject to the same limitations that OCI8 imposes on backward
compatibility. Such applications are limited to 8i-supported features. Any application
using Oracle9i Server features will not be backward compatible.

Please report any issues with 9i PRO*C/C++ Client using 8i Server to Oracle support.

SQLLDAGetCurrent() Used to obtain a valid Logon Data Area for the most recent
connection, when OCI calls are used in a Pro*C/C++ program.
See "New Names for SQLLIB Public Functions" on page 5-39.

SQLColumnNullCheck() Returns an indication of NULL status for dynamic SQL Method
4. See "Handling NULL/Not NULL Datatypes" on page 15-14.

SQLNumberPrecV6() Returns precision and scale of numbers. See "Extracting
Precision and Scale" on page 15-12.

SQLNumberPrecV7() A variant of SQLNumberPrecV6(). See "Extracting Precision and
Scale" on page 15-12.

SQLVarcharGetLength() Used for obtaining the padded size of a VARCHAR[n]. See "Find
the Length of the VARCHAR Array Component" on page 4-18.

SQLEnvGet() Returns the OCI environment handle for a given SQLLIB
runtime context. See "SQLEnvGet()" on page 5-36.

SQLSvcCtxGet() Returns the OCI service context for the database connection. See
SQLSvcCtxGet() on page 5-36.

SQLRowidGet() Returns the universal ROWID of the last row inserted. See
"SQLRowidGet()" on page 4-31.

SQLExtProcError() Returns control to PL/SQL when an error occurs in an external
C procedure. See "SQLExtProcError()" on page 7-24.

SQLLIB Public
Functions Description

Frequently Asked Questions

1-10 Pro*C/C++ Programmer’s Guide

Precompiler Concepts 2-1

2
Precompiler Concepts

This chapter explains how embedded SQL programs do their work. You examine the
special environment in which they operate and the impact of this environment on the
design of your applications. After covering the key concepts of embedded SQL
programming and the steps you take in developing an application, this chapter uses a
simple program to illustrate the main points.

This chapter contains the following topics:

■ Key Concepts of Embedded SQL Programming

■ Steps in Developing an Embedded SQL Application

■ Guidelines for Programming

■ Example Tables

■ Example Program: A Simple Query

Key Concepts of Embedded SQL Programming
This section lays the conceptual foundation on which later chapters build. This section
contains these topics:

■ Embedded SQL Statements

■ Embedded SQL Syntax

■ Static Versus Dynamic SQL Statements

■ Embedded PL/SQL Blocks

■ Host and Indicator Variables

■ Oracle Datatypes

■ Arrays

■ Datatype Equivalencing

■ Private SQL Areas, Cursors, and Active Sets

■ Transactions

■ Errors and Warnings

Embedded SQL Statements
The term embedded SQL refers to SQL statements placed within an application
program. Because it houses the SQL statements, the application program is called a
host program, and the language in which it is written is called the host language. For

Key Concepts of Embedded SQL Programming

2-2 Pro*C/C++ Programmer’s Guide

example, Pro*C/C++ provides the ability to embed certain SQL statements in a C or
C++ host program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE modifies
rows, DELETE removes unwanted rows, and SELECT retrieves rows that meet your
search condition.

The powerful SET ROLE statement lets you dynamically manage database privileges.
A role is a named group of related system and object privileges, or a named group of
related system or object privileges granted to users or other roles. Role definitions are
stored in the Oracle data dictionary. Your applications can use the SET ROLE
statement to enable and disable roles as needed.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

Executable Statements and Directives
Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of embedded
SQL statements: executable statements and directives. Executable statements result in
calls to the runtime library SQLLIB. You use them to connect to Oracle, to define,
query, and manipulate Oracle data, to control access to Oracle data, and to process
transactions. They can be placed wherever C or C++ language executable statements
can be placed.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data. You use them to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever C or C++ variable declarations can be placed.

Table 2–1 groups the various embedded SQL statements (not a complete list):

Table 2–1 Embedded SQL Statements

DIRECTIVE PURPOSE

ARRAYLEN* To use host arrays with PL/SQL

BEGIN DECLARE
SECTION*

END DECLARE
SECTION*

To declare host variables (optional)

DECLARE* To name Oracle schema objects

INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables

WHENEVER* To handle runtime errors

Table 2–2 Embedded SQL Statements

EXECUTABLE
STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data

ALTER -

ANALYZE -

Key Concepts of Embedded SQL Programming

Precompiler Concepts 2-3

Embedded SQL Syntax
In your application program, you can freely mix complete SQL statements with
complete C statements and use C variables or structures in SQL statements. The only
special requirement for building SQL statements into your host program is that you
begin them with the keywords EXEC SQL and end them with a semicolon. Pro*C/C++
translates all EXEC SQL statements into calls to the runtime library SQLLIB.

Many embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. The following
example compares interactive and embedded ROLLBACK statements:

ROLLBACK WORK: -- interactive
EXEC SQL ROLLBACK WORK; -- embedded

These statements have the same effect, but you would use the first in an interactive
SQL environment (such as when running SQL*Plus), and the second in a Pro*C/C++
program.

Static Versus Dynamic SQL Statements
Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before runtime; that is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so on.

However, some applications might be required to accept and process any valid SQL
statement at runtime. So, you might not know until runtime all the SQL commands,
database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.

DELETE DML

INSERT -

SELECT -

UPDATE -

COMMIT To process transactions

ROLLBACK -

SAVEPOINT -

SET TRANSACTION -

DESCRIBE* To use dynamic SQL

EXECUTE* -

PREPARE* -

ALTER SESSION To control sessions

SET ROLE -

*Has no interactive counterpart

Table 2–2 (Cont.) Embedded SQL Statements

EXECUTABLE
STATEMENT PURPOSE

Key Concepts of Embedded SQL Programming

2-4 Pro*C/C++ Programmer’s Guide

Embedded PL/SQL Blocks
Pro*C/C++ treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands.

Host and Indicator Variables
Host variables are the key to communication between Oracle and your program. A
host variable is a scalar or aggregate variable declared in C and shared with Oracle,
meaning that both your program and Oracle can reference its value.

Your program uses input host variables to pass data to Oracle. Oracle uses output host
variables to pass data and status information to your program. The program assigns
values to input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere a SQL expression can be used. In SQL
statements, host variables must be prefixed with a colon (":") to set them apart from the
SQL keywords.

You can also use a C struct to contain a number of host variables. When you name the
structure in an embedded SQL statement, prefixed with a colon, Oracle uses each of
the components of the struct as a host variable.

You can associate any host variable with an optional indicator variable. An indicator
variable is a short integer variable that "indicates" the value or condition of its host
variable. You use indicator variables to assign NULLs to input host variables and to
detect NULLs or truncated values in output host variables. A NULL is a missing,
unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and
immediately follow its associated host variable. The keyword INDICATOR can be
placed between the host variable and its indicator for additional clarity.

If the host variables are packaged in a struct, and you want to use indicator variables,
you simply create a struct that has an indicator variable for each host variable in the
host structure, and name the indicator struct in the SQL statement, immediately
following the host variable struct, and prefixed with a colon. You can also use the
INDICATOR keyword to separate a host structure and its associated indicator
structure.

Oracle Datatypes
Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database tables and stores output data in
program host variables. To store a data item, Oracle must know its datatype, which
specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudocolumns, which return specific data items but
are not actual columns in a table.

See Also: Chapter 7, "Embedded PL/SQL".

Key Concepts of Embedded SQL Programming

Precompiler Concepts 2-5

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the target database
column. When Oracle outputs data to your host program, if necessary, Oracle converts
between the internal datatype of the source database column and the external datatype
of the output host variable.

Arrays
Pro*C/C++ lets you define array host variables (called host arrays) and arrays of
structures and operate on them with a single SQL statement. Using the array SELECT,
FETCH, DELETE, INSERT, and UPDATE statements, you can query and manipulate
large volumes of data with ease. You can also use host arrays inside a host variable
struct.

Datatype Equivalencing
Pro*C/C++ adds flexibility to your applications by letting you equivalence datatypes.
That means you can customize the way Oracle interprets input data and formats
output data.

On a variable-by-variable basis, you can equivalence supported C datatypes to the
Oracle external datatypes. You can also equivalence user-defined datatypes to Oracle
external datatypes.

Private SQL Areas, Cursors, and Active Sets
To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in its
private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements (queries) that return only one row. However, for queries
that return more than one row, to process beyond the first row, you must explicitly
declare a cursor (or use host arrays).

The set of rows returned is called the active set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can point
to the first row to be processed, then the next row, and so on. In the same way, an
explicit cursor "points" to the current row in the active set. This allows your program
to process the rows one at a time.

Transactions
A transaction is a series of logically related SQL statements (two UPDATEs that credit
one bank account and debit another, for example) that Oracle treats as a unit, so that
all changes brought about by the statements are made permanent or undone at the
same time.

All the data manipulation statements executed since the last data definition, COMMIT,
or ROLLBACK statement was executed make up the current transaction.

Steps in Developing an Embedded SQL Application

2-6 Pro*C/C++ Programmer’s Guide

To help ensure the consistency of your database, Pro*C/C++ lets you define
transactions using the COMMIT, ROLLBACK, and SAVEPOINT statements.

COMMIT makes permanent any changes made during the current transaction.
ROLLBACK ends the current transaction and undoes any changes made since the
transaction began. SAVEPOINT marks the current point in the processing of a
transaction; used with ROLLBACK, it undoes part of a transaction.

Errors and Warnings
When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*C/C++
provides two error handling mechanisms: the SQL Communications Area (SQLCA)
and the WHENEVER statement.

The SQLCA is a data structure that you include (or hard-code) in your host program. It
defines program variables used by Oracle to pass runtime status information to the
program. With the SQLCA, you can take different actions based on feedback from
Oracle about work just attempted. For example, you can check to see if a DELETE
statement succeeded and, if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions are: continuing with
the next statement, calling a function, branching to a labeled statement, or stopping.

Steps in Developing an Embedded SQL Application
Figure 2–1 shows the embedded SQL application development process.

Guidelines for Programming

Precompiler Concepts 2-7

Figure 2–1 Embedded SQL Application Development Process

As you can see, precompiling results in a modified source file that can be compiled
normally. Though precompiling adds a step to the traditional development process,
that step lets you write very flexible applications.

Guidelines for Programming
This section deals with embedded SQL syntax, coding conventions, and C-specific
features and restrictions. Topics are arranged alphabetically for quick reference.

Comments
You can place C-style Comments (/* ... */) in a SQL statement wherever blanks can be
placed (except between the keywords EXEC SQL). Also, you can place ANSI-style
Comments (-- ...) within SQL statements at the end of a line, as the following example
shows:

EXEC SQL SELECT ENAME, SAL
 INTO :emp_name, :salary -- output host variables
 FROM EMP
 WHERE DEPTNO = :dept_number;

You can use C++ style Comments (//) in your Pro*C/C++ source if you precompile
using the CODE=CPP precompiler option.

Steps Results

Design

Code

Precompile

Errors?

Compile

Errors?

Link

Execute

Errors?

no

yes

yes

yes

no

no

Specs

Source
Program

Modified
Source
Program

Object
Program

Executable
Program

Ship to Customer

Guidelines for Programming

2-8 Pro*C/C++ Programmer’s Guide

Constants
An L or l suffix specifies a long integer constant, a U or u suffix specifies an unsigned
integer constant, a 0X or 0x prefix specifies a hexadecimal integer constant, and an F or
f suffix specifies a float floating-point constant. These forms are not allowed in SQL
statements.

Declare Section
A Declare Section contains the host variable declarations and is of the form:

EXEC SQL BEGIN DECLARE SECTION;
/* Declare all host variables inside this section: */
 char *uid = "scott/tiger";
 ...
EXEC SQL END DECLARE SECTION;

A Declare Section begins with the statement:

EXEC SQL BEGIN DECLARE SECTION;

and ends with the statement:

EXEC SQL END DECLARE SECTION;

Between these two statements only the following are allowed:

■ Host-variable and indicator-variable declarations

■ Non-host C/C++ variables

■ EXEC SQL DECLARE statements

■ EXEC SQL INCLUDE statements

■ EXEC SQL VAR statements

■ EXEC SQL TYPE statements

■ EXEC ORACLE statements

■ C/C++ comments

A Declare Section is required when MODE=ANSI or CODE=CPP (in a C++
application) or PARSE=NONE or PARTIAL. For details of the PARSE option, see also
"Parsing Code" on page 12-3.

More than one Declare Section is allowed. They can be in different code modules.

Delimiters
While C uses single quotes to delimit single characters, as in

ch = getchar();
switch (ch)
{
case 'U': update(); break;
case 'I': insert(); break;
...

SQL uses single quotes to delimit character strings, as in

EXEC SQL SELECT ENAME, SAL FROM EMP WHERE JOB = 'MANAGER';

While C uses double quotes to delimit character strings, as in

Guidelines for Programming

Precompiler Concepts 2-9

printf("\nG'Day, mate!");

SQL uses double quotes to delimit identifiers containing special or lowercase
characters, as in

EXEC SQL CREATE TABLE "Emp2" (empno number(4), ...);

File Length
Pro*C/C++ cannot process arbitrarily long source files. There is a limit to the number
of lines allowed. The following aspects of the source file are contributing factors to the
file-size constraint:

■ Complexity of the embedded SQL statements (for example, the number of bind
and define variables).

■ Whether a database name is used (for example, connecting to a database with an
AT clause).

■ Number of embedded SQL statements.

To prevent problems related to this limitation, use multiple program units to
sufficiently reduce the size of the source files.

Function Prototyping
The ANSI C standard (X3.159-1989) provides for function prototyping. A function
prototype declares a function and the datatypes of its arguments, so that the C compiler
can detect missing or mismatched arguments.

The CODE option, which you can enter on the command line or in a configuration file,
determines the way that the precompiler generates C or C++ code.

ANSI_C
When you precompile your program with CODE=ANSI_C, the precompiler generates
fully prototyped function declarations. For example:

extern void sqlora(long *, void *);

KR_C
When you precompile with the option CODE=KR_C (KR for "Kernighan and Ritchie"),
the precompiler generates function prototypes in the same way that it does for ANSI_
C, except that function parameter lists are commented out. For example:

extern void sqlora(/*_ long *, void * _*/);

So, make sure to set the precompiler option CODE to KR_C if you use a C compiler
that does not support ANSI C. When the CODE option is set to ANSI_C, the
precompiler can also generate other ANSI-specific constructs; for example, the const
type qualifier.

CPP
When you compile with CODE=CPP you will generate C++ compatible function
prototypes. Use this option setting with C++ compilers.

See Also: Chapter 12, "C++ Applications", for more information
on using C++.

Guidelines for Programming

2-10 Pro*C/C++ Programmer’s Guide

Host Variable Names
Host variable names can consist of upper or lowercase letters, digits, and underscores,
but must begin with a letter. They can be any length, but only the first 31 characters are
significant to Pro*C/C++. Your C compiler or linker might require a shorter maximum
length, so check your C compiler user's guide.

For SQL92 standards conformance, restrict the length of host variable names to 18 or
fewer characters.

Line Continuation
You can continue SQL statements from one line to the next. You must use a backslash
(\) to continue a string literal from one line to the next, as the following example
shows:

EXEC SQL INSERT INTO dept (deptno, dname) VALUES (50, 'PURCHAS\
ING');

In this context, the precompiler treats the backslash as a continuation character.

Line Length
The maximum line length is 1299 for lines consisting of only ASCII characters, or 324
for multibyte characters.

MAXLITERAL Default Value
The precompiler option MAXLITERAL lets you specify the maximum length of string
literals generated by the precompiler. The MAXLITERAL default value is 1024. Specify
a smaller value if required. For example, if your C compiler cannot handle string
literals longer than 512 characters, you then specify MAXLITERAL=512. Check your C
compiler user's guide.

Operators
The logical operators and the "equal to" relational operator are different in C and SQL,
as the following list shows. These C operators are not allowed in SQL statements:

The following C operators also not allowed in SQL statements:

See Also: Appendix B, "Reserved Words, Keywords, and
Namespaces" for a list of words that have restrictions on their use
in applications.

SQL Operator C Operator

NOT !

AND &&

OR ||

= ==

Type C Operator

address &

bitwise &, |, ^, ~

Conditional Precompilation

Precompiler Concepts 2-11

Statement Terminator
Embedded SQL statements are always terminated by a semicolon, as the following
example shows:

EXEC SQL DELETE FROM emp WHERE deptno = :dept_number;

Conditional Precompilation
Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code C or C++ statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

EXEC ORACLE DEFINE symbol; -- define a symbol
EXEC ORACLE IFDEF symbol; -- if symbol is defined
EXEC ORACLE IFNDEF symbol; -- if symbol is not defined
EXEC ORACLE ELSE; -- otherwise
EXEC ORACLE ENDIF; -- end this control block

All EXEC ORACLE statements must be terminated with a semi-colon.

Symbol Definition
You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using the syntax:

... DEFINE=symbol ...

where symbol is not case-sensitive.

compound assignment +=, -=, *=, and so on.

conditional ?:

decrement --

increment ++

indirection *

modulus %

shift >>,<<

Note: The #define preprocessor directive is not the same as the
EXEC ORACLE DEFINE statement.

Type C Operator

Precompile Separately

2-12 Pro*C/C++ Programmer’s Guide

Some port-specific symbols are predefined for you when Pro*C/C++ is installed on
your system. For example, predefined operating symbols include CMS, MVS,
MS-DOS, UNIX, and VMS.

Example SELECT Statement
In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE IFDEF site2;
 EXEC SQL SELECT DNAME
 INTO :dept_name
 FROM DEPT
 WHERE DEPTNO= :dept_number;
EXEC ORACLE ENDIF;

You can "comment out" C, C++, or embedded SQL code by placing it between IFDEF
and ENDIF and not defining the symbol.

Precompile Separately
You can precompile several C or C++ program modules separately, then link them into
one executable program. This supports modular programming, which is required
when the functional components of a program are written and debugged by different
programmers. The individual program modules need not be written in the same
language.

Guidelines
The following guidelines will help you avoid some common problems.

Referencing Cursors
Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
DECLARE a cursor in one file, and OPEN or FETCH from it in another file. So, when
doing a separate precompilation, make sure all definitions and references to a given
cursor are in one file.

Specifying MAXOPENCURSORS
When you precompile the program module that CONNECTs to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If you
use MAXOPENCURSORS for another program module, one that does not do a
CONNECT, then that value for MAXOPENCURSORS is ignored. Only the value in
effect for the CONNECT is used at runtime.

Use a Single SQLCA
If you want to use just one SQLCA, you must declare it as global in one of the program
modules and as external in the other modules. Use the extern storage class, and the
following define in your code:

#define SQLCA_STORAGE_CLASS extern

which tells the precompiler to look for the SQLCA in another program module. Unless
you declare the SQLCA as external, each program module uses its own local SQLCA.

Example Tables

Precompiler Concepts 2-13

Compile and Link
To get an executable program, you must compile the output .c source files produced
by the precompiler, then link the resulting object modules with modules needed from
SQLLIB and system-specific Oracle libraries. If you are mixing precompiler code and
OCI calls, be sure to also link in the OCI runtime library (liboci.a on UNIX
systems).

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third-party software into a
precompiled program. Not all third-party software is compatible with Oracle. So,
linking your program shared might cause an obscure problem. In some cases, linking
standalone or two-task might solve the problem.

Compiling and linking are system dependent. On most platforms, example makefiles or
batch files are supplied that you can use to precompile, compile, and link a Pro*C/C++
application. See your system-specific documentation.

Example Tables
Most programming examples in this guide use two example database tables: DEPT
and EMP. Their definitions follow:

CREATE TABLE DEPT
 (DEPTNO NUMBER(2) NOT NULL,
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13))

CREATE TABLE EMP
 (EMPNO NUMBER(4) NOT NULL,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2))

Example Data
Respectively, the DEPT and EMP tables contain the following rows

of data:

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

Note: All source files in an application must be uniquely named,
or else an error will be generated.

Example Program: A Simple Query

2-14 Pro*C/C++ Programmer’s Guide

 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

Example Program: A Simple Query
One way to get acquainted with Pro*C/C++ and embedded SQL is to study a program
example. The following program is also available on-line in the file sample1.pc in
your Pro*C/C++ demo directory.

The program connects to Oracle, then loops, prompting the user for an employee
number. It queries the database for the employee's name, salary, and commission,
displays the information, and then continues the loop. The information is returned to a
host structure. There is also a parallel indicator structure to signal whether any of the
output values SELECTed might be NULL.

Precompile example programs using the precompiler option MODE=ORACLE.

/*
 * sample1.pc
 *
 * Prompts the user for an employee number,
 * then queries the emp table for the employee's
 * name, salary and commission. Uses indicator
 * variables (in an indicator struct) to determine
 * if the commission is NULL.
 *
 */

#include <stdio.h>
#include <string.h>

/* Define constants for VARCHAR lengths. */
#define UNAME_LEN 20
#define PWD_LEN 40

/* Declare variables.No declare section is needed if MODE=ORACLE.*/
VARCHAR username[UNAME_LEN];
/* VARCHAR is an Oracle-supplied struct */
varchar password[PWD_LEN];
/* varchar can be in lower case also. */
/*
Define a host structure for the output values of a SELECT statement.
*/
struct {
 VARCHAR emp_name[UNAME_LEN];
 float salary;
 float commission;
} emprec;
/*

Example Program: A Simple Query

Precompiler Concepts 2-15

Define an indicator struct to correspond to the host output struct. */
struct
{
 short emp_name_ind;
 short sal_ind;
 short comm_ind;
} emprec_ind;

/* Input host variable. */
int emp_number;
int total_queried;
/* Include the SQL Communications Area.
 You can use #include or EXEC SQL INCLUDE. */
#include <sqlca.h>

/* Declare error handling function. */
void sql_error();

main()
{
 char temp_char[32];

/* Connect to ORACLE--
 * Copy the username into the VARCHAR.
 */
 strncpy((char *) username.arr, "SCOTT", UNAME_LEN);
/* Set the length component of the VARCHAR. */
 username.len = strlen((char *) username.arr);
/* Copy the password. */
 strncpy((char *) password.arr, "TIGER", PWD_LEN);
 password.len = strlen((char *) password.arr);
/* Register sql_error() as the error handler. */
 EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--\n");

/* Connect to ORACLE. Program will call sql_error()
 * if an error occurs when connecting to the default database.
 */
 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to ORACLE as user: %s\n", username.arr);
/* Loop, selecting individual employee's results */
 total_queried = 0;
 for (;;)
 {
/* Break out of the inner loop when a
 * 1403 ("No data found") condition occurs.
 */
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 emp_number = 0;
 printf("\nEnter employee number (0 to quit): ");
 gets(temp_char);
 emp_number = atoi(temp_char);
 if (emp_number == 0)
 break;
 EXEC SQL SELECT ename, sal, NVL(comm, 0)
 INTO :emprec INDICATOR :emprec_ind
 FROM EMP
 WHERE EMPNO = :emp_number;
/* Print data. */

Example Program: A Simple Query

2-16 Pro*C/C++ Programmer’s Guide

 printf("\n\nEmployee\tSalary\t\tCommission\n");
 printf("--------\t------\t\t----------\n");
/* Null-terminate the output string data. */
 emprec.emp_name.arr[emprec.emp_name.len] = '\0';
 printf("%-8s\t%6.2f\t\t",
 emprec.emp_name.arr, emprec.salary);
 if (emprec_ind.comm_ind == -1)
 printf("NULL\n");
 else
 printf("%6.2f\n", emprec.commission);

 total_queried++;
 } /* end inner for (;;) */
 if (emp_number == 0) break;
 printf("\nNot a valid employee number - try again.\n");
 } /* end outer for(;;) */

 printf("\n\nTotal rows returned was %d.\n", total_queried);
 printf("\nG'day.\n\n\n");

/* Disconnect from ORACLE. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}
void sql_error(msg)
char *msg;
{
 char err_msg[128];
 int buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("\n%s\n", msg);
 buf_len = sizeof (err_msg);
 sqlglm(err_msg, &buf_len, &msg_len);
 printf("%.*s\n", msg_len, err_msg);
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Database Concepts 3-1

3
Database Concepts

This chapter explains some basic database concepts and how to perform transaction
processing. You learn the basic techniques that safeguard the consistency of your
database, including how to control if changes to Oracle data are made permanent or
undone.

This chapter contains the following topics:

■ Connect to the Database

■ Advanced Connection Options

■ Definitions of Transactions Terms

■ How Transactions Guard Your Database

■ How to Begin and End Transactions

■ Using the COMMIT Statement

■ Using the SAVEPOINT Statement

■ The ROLLBACK Statement

■ The RELEASE Option

■ The SET TRANSACTION Statement

■ Override Default Locking

■ Fetch Across COMMITs

■ Distributed Transactions Handling

■ Guidelines

Connect to the Database
The complete syntax of the CONNECT statement will be discussed in the next few
sections. Here it is:

EXEC SQL CONNECT { :user IDENTIFIED BY :oldpswd | :usr_psw }
 [[AT { dbname | :host_variable }] USING :connect_string]
 [{ALTER AUTHORIZATION :newpswd | IN { SYSDBA | SYSOPER } MODE}] ;

Your Pro*C/C++ program must connect to the database before querying or
manipulating data. To log on, simply use the CONNECT statement

EXEC SQL CONNECT :username IDENTIFIED BY :password ;

where username and password are char or VARCHAR host variables.

Connect to the Database

3-2 Pro*C/C++ Programmer’s Guide

Or, you can use the statement

EXEC SQL CONNECT :usr_pwd;

where the host variable usr_pwd contains your username and password separated by a
slash character (/).

These are simplified subsets of the CONNECT statement.

The CONNECT statement must be the first SQL statement executed by the program.
That is, other SQL statements can physically but not logically precede the CONNECT
statement in the precompilation unit.

To supply the Oracle username and password separately, you define two host
variables as character strings or VARCHARs. (If you supply a username containing
both username and password, only one host variable is needed.)

Make sure to set the username and password variables before the CONNECT is
executed, or it will fail. Your program can prompt for the values, or you can hard-code
them as follows:

char *username = "SCOTT";
char *password = "TIGER";
...
EXEC SQL WHENEVER SQLERROR ...
EXEC SQL CONNECT :username IDENTIFIED BY :password;

However, you cannot hard-code a username and password into the CONNECT
statement. You also cannot use quoted literals. For example, both of the following
statements are invalid:

EXEC SQL CONNECT SCOTT IDENTIFIED BY TIGER;
EXEC SQL CONNECT 'SCOTT' IDENTIFIED BY 'TIGER';

Using the ALTER AUTHORIZATION Clause to Change Passwords
Pro*C/C++ provides client applications with a convenient way to change a user
password at runtime through a simple extension to the EXEC SQL CONNECT
statement.

This section describes the possible outcomes of different variations of the ALTER
AUTHORIZATION clause.

Standard CONNECT
If an application issues the following statement

EXEC SQL CONNECT ..; /* No ALTER AUTHORIZATION clause */

it performs a normal connection attempt. The possible results include the following:

■ The application will connect without issue.

■ The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow
Logons. At this point, the user is encouraged to change the password before the
account becomes locked.

■ The application will fail to connect. Possible causes include the following:

See Also: "CONNECT (Executable Embedded SQL Extension)"
on page F-19

Connect to the Database

Database Concepts 3-3

■ The password is incorrect.

■ The account has expired, and is possibly in a locked state.

Change Password on CONNECT
The following CONNECT statement

EXEC SQL CONNECT .. ALTER AUTHORIZATION :newpswd;

indicates that the application wants to change the account password to the value
indicated by newpswd. After the change is made, an attempt is made to connect as
user/newpswd. This can have the following results:

■ The application will connect without issue

■ The application will fail to connect. This could be due to either of the following:

■ Password verification failed for some reason. In this case the password
remains unchanged.

■ The account is locked. Changes to the password are not permitted.

Connecting Using Oracle Net
To connect using an Oracle Net driver, substitute a service name, as defined in your
tnsnames.ora configuration file or in Oracle Names.

If you are using Oracle Names, the name server obtains the service name from the
network definition database.

See Oracle Net Services Administrator's Guide for more information about Oracle Net.

Automatic Connects
You can automatically connect to Oracle with the username

CLUSTER$username

where username is the current operating system username, and CLUSTER$username is
a valid Oracle database username. (The actual value for CLUSTER$ is defined in the
INIT.ORA parameter file.) You simply pass to the Pro*C/C++ Precompiler a slash
character, as follows:

...
char *oracleid = "/";
...
EXEC SQL CONNECT :oracleid;

This automatically connects you as user CLUSTER$username. For example, if your
operating system username is RHILL, and CLUSTER$RHILL is a valid Oracle
username, connecting with '/' automatically logs you on to Oracle as user
CLUSTER$RHILL.

You can also pass a '/' in a string to the precompiler. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

...
char oracleid[10] = "/ ";

Note: SQL*Net V1 does not work with Oracle8.

Advanced Connection Options

3-4 Pro*C/C++ Programmer’s Guide

...
EXEC SQL CONNECT :oracleid;

The AUTO_CONNECT Precompiler Option
If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTER$<username>

where username is your current operating system user or task name and
CLUSTER$username is a valid Oracle userid. The default value of AUTO_CONNECT
is NO.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

SYSDBA or SYSOPER System Privileges
Before the release of Oracle8i you did not have to use a clause such as this one to have
SYSOPER or SYSDBA system privilege, but now you must.

Append the following optional string after all other clauses to log on with either
SYSDBA or SYSOPER system privileges:

[IN { SYSDBA | SYSOPER } MODE]

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE ;

Here are the restrictions that apply to this option:

■ This option is not permitted when using the AUTO_CONNECT=YES precompiler
option setting.

■ This option is not permitted when using the ALTER AUTHORIZATION keywords
in the CONNECT statement.

Advanced Connection Options
This section describes the available options for advanced connections.

Some Preliminaries
The communicating points in a network are called nodes. Oracle Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node
to another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and
checking errors.

The Oracle Net syntax for connecting to the default database in the local domain is
simply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global
specification (all domains specified). For example:

See Also: "Using the ALTER AUTHORIZATION Clause to
Change Passwords" on page 3-2

Advanced Connection Options

Database Concepts 3-5

HR.US.ORACLE.COM

Concurrent Logons
Pro*C/C++ supports distributed processing through Oracle Net. Your application can
concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3–1, an application program
communicates with one local and three remote Oracle databases. ORA2, ORA3, and
ORA4 are simply logical names used in CONNECT statements.

Figure 3–1 Connecting through Oracle Net

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net provides a distributed processing environment for Oracle tools.
This section shows you how Pro*C/C++ supports distributed processing through
Oracle Net. You learn how your application can

■ Directly or indirectly access other databases

■ Concurrently access any combination of local and remote databases

■ Make multiple connections to the same database

For details on installing Oracle Net and identifying available databases, refer to the
Oracle Net Services Administrator's Guide and your system-specific Oracle
documentation.

Default Databases and Connections
Each node has a default database. If you specify a database name, but no domain in
your CONNECT statement, you connect to the default database on the named local or
remote node.

A default connection is made by a CONNECT statement that has no AT clause. The
connection can be to any default or nondefault database at any local or remote node.
SQL statements without an AT clause are executed against the default connection.
Conversely, a nondefault connection is made by a CONNECT statement that has an AT

Application
Program

ORA4

Remote
Oracle

Database

ORA3

ORA2

Oracle Net

Remote
Oracle

Database

Remote
Oracle

Database

Local
Oracle

Database

Advanced Connection Options

3-6 Pro*C/C++ Programmer’s Guide

clause. SQL statements with an AT clause are executed against the nondefault
connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

Explicit Connections
Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :username IDENTIFIED BY :password;

You can also use

EXEC SQL CONNECT :usr_pwd;

where usr_pwd contains username/password.

You can automatically connect to Oracle with the userid

CLUSTER$username

where username is your current operating system user or task name and
CLUSTER$username is a valid Oracle userid. You simply pass to the precompiler a
slash (/) character, as follows:

char oracleid = '/';
...
EXEC SQL CONNECT :oracleid;

This automatically connects you as user CLUSTER$username.

If you do not specify a database and node, you are connected to the default database at
the current node. If you want to connect to a different database, you must explicitly
identify that database.

With explicit connections, you connect to another database directly, giving the
connection a name that will be referenced in SQL statements. You can connect to
several databases at the same time and to the same database multiple times.

Single Explicit Connection
In the following example, you connect to a single nondefault database at a remote
node:

/* declare needed host variables */
char username[10] = "scott";
char password[10] = "tiger";
char db_string[20] = "NYNON";

/* give the database connection a unique name */
EXEC SQL DECLARE DB_NAME DATABASE;

/* connect to the nondefault database */
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT DB_NAME USING :db_string;

The identifiers in this example serve the following purposes:

■ The host variables username and password identify a valid user.

Advanced Connection Options

Database Concepts 3-7

■ The host variable db_string contains the Oracle Net syntax for connecting to a
nondefault database at a remote node.

■ The undeclared identifier DB_NAME names a nondefault connection; it is an
identifier used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database associated with DB_
NAME. Later, SQL statements using the AT clause (with DB_NAME) are executed at
the database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

/* declare needed host variables */
char username[10] = "scott";
char password[10] = "tiger";
char db_name[10] = "oracle1";
char db_string[20] = "NYNON";

/* connect to the nondefault database using db_name */
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
...

If db_name is a host variable, the DECLARE DATABASE statement is not needed. Only
if DB_NAME is an undeclared identifier must you execute a DECLARE DB_NAME
DATABASE statement before executing a CONNECT ... AT DB_NAME statement.

SQL Operations If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

EXEC SQL AT DB_NAME SELECT ...
EXEC SQL AT DB_NAME INSERT ...
EXEC SQL AT DB_NAME UPDATE ...

In the next example, db_name is a host variable:

EXEC SQL AT :db_name DELETE ...

If db_name is a host variable, all database tables referenced by the SQL statement must
be defined in DECLARE TABLE statements. Otherwise, the precompiler issues a
warning.

PL/SQL Blocks You can execute a PL/SQL block using the AT clause. The following
example shows the syntax:

EXEC SQL AT :db_name EXECUTE
 begin
 /* PL/SQL block here */
 end;
END-EXEC;

Cursor Control

See Also:

■ "Using DECLARE TABLE" on page D-3

■ "DECLARE TABLE (Oracle Embedded SQL Directive)" on
page F-29

Advanced Connection Options

3-8 Pro*C/C++ Programmer’s Guide

Cursor control statements such as OPEN, FETCH, and CLOSE are exceptions—they
never use an AT clause. If you want to associate a cursor with an explicitly identified
database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...
EXEC SQL OPEN emp_cursor ...
EXEC SQL FETCH emp_cursor ...
EXEC SQL CLOSE emp_cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL
statements that refer to the DECLAREd cursor. For example, if you OPEN the cursor in
one subprogram, then FETCH from it in another subprogram, you must declare db_
name globally.

When OPENing, CLOSing, or FETCHing from the cursor, you do not use the AT
clause. The SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in the
cursor declaration.

The AT :host_variable clause provides the ability to change the connection associated
with a cursor. However, you cannot change the association while the cursor is open.
Consider the following example:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...
strcpy(db_name, "oracle1");
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO ...
strcpy(db_name, "oracle2");
EXEC SQL OPEN emp_cursor; /* illegal, cursor still open */
EXEC SQL FETCH emp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

...
EXEC SQL CLOSE emp_cursor; -- close cursor first
strcpy(db_name, "oracle2");
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO ...

Dynamic SQL

Dynamic SQL statements are similar to cursor control statements in that some never
use the AT clause.

For dynamic SQL Method 1, you must use the AT clause if you want to execute the
statement at a nondefault connection. An example follows:

EXEC SQL AT :db_name EXECUTE IMMEDIATE :sql_stmt;

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other
dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE
never use the AT clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL EXECUTE sql_stmt;

Advanced Connection Options

Database Concepts 3-9

The following example shows Method 3:

EXEC SQL AT :db_name DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :sql_string;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;
EXEC SQL OPEN emp_cursor ...
EXEC SQL FETCH emp_cursor INTO ...
EXEC SQL CLOSE emp_cursor;

Multiple Explicit Connections
You can use the AT db_name clause for multiple explicit connections, just as you can for
a single explicit connection. In the following example, you connect to two nondefault
databases concurrently:

/* declare needed host variables */
char username[10] = "scott";
char password[10] = "tiger";
char db_string1[20] = "NYNON1";
char db_string2[20] = "CHINON";
...
/* give each database connection a unique name */
EXEC SQL DECLARE DB_NAME1 DATABASE;
EXEC SQL DECLARE DB_NAME2 DATABASE;
/* connect to the two nondefault databases */
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT DB_NAME1 USING :db_string1;
EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT DB_NAME2 USING :db_string2;

The identifiers DB_NAME1 and DB_NAME2 are declared and then used to name the
default databases at the two nondefault nodes so that later SQL statements can refer to
the databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example
shows:

/* declare needed host variables */
char username[10] = "scott";
char password[10] = "tiger";
char db_name[20];
char db_string[20];
int n_defs = 3; /* number of connections to make */
...
for (i = 0; i < n_defs; i++)
{
 /* get next database name and OracleNet string */
 printf("Database name: ");
 gets(db_name);
 printf("OracleNet) string: ");
 gets(db_string);
 /* do the connect */
 EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
}

You can also use this method to make multiple connections to the same database, as
the following example shows:

strcpy(db_string, "NYNON");

Advanced Connection Options

3-10 Pro*C/C++ Programmer’s Guide

for (i = 0; i < ndefs; i++)
{
 /* connect to the nondefault database */
 printf("Database name: ");
 gets(db_name);
 EXEC SQL CONNECT :username IDENTIFIED BY :password
 AT :db_name USING :db_string;
}
...

You must use different database names for the connections, even though they use the
same OracleNet string. However, you can connect twice to the same database using
just one database name because that name identifies both the default and nondefault
databases.

Ensuring Data Integrity
Your application program must ensure the integrity of transactions that manipulate
data at two or more remote databases. That is, the program must commit or roll back
all SQL statements in the transactions. This might be impossible if the network fails or
one of the systems crashes.

For example, suppose you are working with two accounting databases. You debit an
account on one database and credit an account on the other database, then issue a
COMMIT at each database. It is up to your program to ensure that both transactions
are committed or rolled back.

Implicit Connections
Implicit connections are supported through the Oracle distributed query facility,
which does not require explicit connections, but only supports the SELECT statement.
A distributed query allows a single SELECT statement to access data on one or more
nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the embedded
SELECT statement is executed by the specified Oracle Server, which implicitly connects
to the nondefault database(s) to get the required data.

Single Implicit Connections
In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db_link
 CONNECT TO username IDENTIFIED BY password
 USING 'NYNON';

Then, the program can query the nondefault EMP table using the database link, as
follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title
 FROM emp@db_link
 WHERE DEPTNO = :dept_number;

The database link is not related to the database name used in the AT clause of an
embedded SQL statement. It simply tells Oracle where the nondefault database is
located, the path to it, and what Oracle username and password to use. The database
link is stored in the data dictionary until it is explicitly dropped.

Definitions of Transactions Terms

Database Concepts 3-11

In our example, the default Oracle Server logs on to the nondefault database through
Oracle Net using the database link db_link. The query is submitted to the default
Server, but is "forwarded" to the nondefault database for execution.

To make referencing the database link easier, you can interactively create a synonym as
follows:

EXEC SQL CREATE SYNONYM emp FOR emp@db_link;
Then, your program can query the nondefault EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title
 FROM emp
 WHERE DEPTNO = :dept_number;

This provides location transparency for emp.

Multiple Implicit Connections
In the following example, you connect to two nondefault databases concurrently. First,
you execute the following sequence of statements to define two database links and
create two synonyms:

EXEC SQL CREATE DATABASE LINK db_link1
 CONNECT TO username1 IDENTIFIED BY password1
 USING 'NYNON';

EXEC SQL CREATE DATABASE LINK db_link2
 CONNECT TO username2 IDENTIFIED BY password2
 USING 'CHINON';

EXEC SQL CREATE SYNONYM emp FOR emp@db_link1;
EXEC SQL CREATE SYNONYM dept FOR dept@db_link2;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC
 FROM emp, dept
 WHERE emp.DEPTNO = dept.DEPTNO AND DEPTNO = :dept_number;

Oracle executes the query by performing a join between the nondefault EMP table at
db_link1 and the nondefault DEPT table at db_link2.

Definitions of Transactions Terms
Before delving into the subject of transactions, you should know the terms defined in
this section.

The jobs or tasks that Oracle manages are called sessions. A user session is invoked
when you run an application program or a tool such as SQL*Forms, and connect to the
database.

Oracle allows user sessions to work simultaneously and share computer resources. To
do this, Oracle must control concurrency, the accessing of the same data by many users.
Without adequate concurrency controls, there might be a loss of data integrity. That is,
changes to data or structures might be made in the wrong order.

Oracle uses locks (sometimes called enqueues) to control concurrent access to data. A
lock gives you temporary ownership of a database resource such as a table or row of
data. Thus, data cannot be changed by other users until you finish with it.

You need never explicitly lock a resource, because default locking mechanisms protect
Oracle data and structures. However, you can request data locks on tables or rows

How Transactions Guard Your Database

3-12 Pro*C/C++ Programmer’s Guide

when it is to your advantage to override default locking. You can choose from several
modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held by
another user, neither can continue until Oracle breaks the deadlock. Oracle signals an
error to the participating transaction that had completed the least amount of work, and
the "deadlock detected while waiting for resource" Oracle error code is returned to
sqlcode in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
Oracle generates a read-consistent view of the table's data for the query. That is, once a
query begins and as it proceeds, the data read by the query does not change. As
update activity continues, Oracle takes snapshots of the table's data and records
changes in a rollback segment. Oracle uses information in the rollback segment to build
read-consistent query results and to undo changes if necessary.

How Transactions Guard Your Database
Oracle is transaction oriented. That is, Oracle uses transactions to ensure data integrity.
A transaction is a series of one or more logically related SQL statements you define to
accomplish some task. Oracle treats the series of SQL statements as a unit so that all
the changes brought about by the statements are either committed (made permanent) or
rolled back (undone) at the same time. If your application program fails in the middle of
a transaction, the database is automatically restored to its former (pre-transaction)
state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

■ Connect to the database.

■ Make concurrent connections.

■ Begin and end transactions.

■ Use the COMMIT statement to make transactions permanent.

■ Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions.

■ Use the ROLLBACK statement to undo whole transactions.

■ Specify the RELEASE option to free resources and log off the database.

■ Use the SET TRANSACTION statement to set read-only transactions.

■ Use the FOR UPDATE clause or LOCK TABLE statement to override default
locking.

For details about the SQL statements discussed in this chapter, see Oracle Database SQL
Reference.

How to Begin and End Transactions
You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable statement
is part of a transaction. Because they cannot be rolled back and need not be committed,
declarative SQL statements are not considered part of a transaction.

Using the COMMIT Statement

Database Concepts 3-13

You end a transaction in one of the following ways:

■ Code a COMMIT or ROLLBACK statement, with or without the RELEASE option.
This explicitly makes permanent or undoes changes to the database.

■ Code a data definition statement (ALTER, CREATE, or GRANT, for example),
which issues an automatic COMMIT before and after executing. This implicitly
makes permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.
Oracle rolls back the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls
back the transaction. If your operating system fails, Oracle restores the database to its
former (pre-transaction) state.

Using the COMMIT Statement
If you do not subdivide your program with the COMMIT or ROLLBACK statement,
Oracle treats the whole program as a single transaction (unless the program contains
data definition statements, which issue automatic COMMITS).

You use the COMMIT statement to make changes to the database permanent. Until
changes are COMMITted, other users cannot access the changed data; they see it as it
was before your transaction began. Specifically, the COMMIT statement

■ Makes permanent all changes made to the database during the current transaction

■ Makes these changes visible to other users

■ Erases all savepoints (see the next section)

■ Releases all row and table locks, but not parse locks

■ Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI, closes
all explicit cursors for the connection specified in the COMMIT statement

■ Ends the transaction

The COMMIT statement has no effect on the values of host variables or on the flow of
control in your program.

When MODE=ORACLE, explicit cursors that are not referenced in a CURRENT OF
clause remain open across COMMITs. This can boost performance.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly COMMIT pending changes. Otherwise, Oracle rolls them back. In the
following example, you commit your transaction and disconnect from Oracle:

EXEC SQL COMMIT WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all Oracle resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic COMMIT before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

See Also: "Fetch Across COMMITs" on page 3-19

Using the SAVEPOINT Statement

3-14 Pro*C/C++ Programmer’s Guide

Using the SAVEPOINT Statement
You use the SAVEPOINT statement to mark and name the current point in the
processing of a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

EXEC SQL SAVEPOINT start_delete;

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the
Oracle data to its former state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and
its TO SAVEPOINT clause. In the following example, you access the table MAIL_LIST
to insert new listings, update old listings, and delete (a few) inactive listings. After the
delete, you check the third element of sqlerrd in the SQLCA for the number of rows
deleted. If the number is unexpectedly large, you roll back to the savepoint start_delete,
undoing just the delete.

...
for (;;)
{
 printf("Customer number? ");
 gets(temp);
 cust_number = atoi(temp);
 printf("Customer name? ");
 gets(cust_name);
 EXEC SQL INSERT INTO mail_list (custno, cname, stat)

 VALUES (:cust_number, :cust_name, 'ACTIVE');
...
}

for (;;)
{
 printf("Customer number? ");
 gets(temp);
 cust_number = atoi(temp);
 printf("New status? ");
 gets(new_status);
 EXEC SQL UPDATE mail_list
 SET stat = :new_status
 WHERE custno = :cust_number;
}
/* mark savepoint */
EXEC SQL SAVEPOINT start_delete;

EXEC SQL DELETE FROM mail_list
 WHERE stat = 'INACTIVE';

if (sqlca.sqlerrd[2] < 25) /* check number of rows deleted */
 printf("Number of rows deleted is %d\n", sqlca.sqlerrd[2]);

else
{
 printf("Undoing deletion of %d rows\n", sqlca.sqlerrd[2]);
 EXEC SQL WHENEVER SQLERROR GOTO sql_error;
 EXEC SQL ROLLBACK TO SAVEPOINT start_delete;

}

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL COMMIT WORK RELEASE;
exit(0);

The ROLLBACK Statement

Database Concepts 3-15

sql_error:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased.

If you give two savepoints the same name, the earlier savepoint is erased. A COMMIT
or ROLLBACK statement erases all savepoints.

The ROLLBACK Statement
You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The TO SAVEPOINT clause lets you
roll back to an intermediate statement in the current transaction, so you do not have to
undo all your changes.

If you start a transaction that does not complete (a SQL statement might not execute
successfully, for example), ROLLBACK lets you return to the starting point, so that the
database is not left in an inconsistent state. Specifically, the ROLLBACK statement

■ Undoes all changes made to the database during the current transaction

■ Erases all savepoints

■ Ends the transaction

■ Releases all row and table locks, but not parse locks

■ Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI, closes
all explicit cursors

The ROLLBACK statement has no effect on the values of host variables or on the flow
of control in your program.

When MODE=ORACLE, explicit cursors not referenced in a CURRENT OF clause
remain open across ROLLBACKs.

Specifically, the ROLLBACK TO SAVEPOINT statement

■ Undoes changes made to the database since the specified savepoint was marked

■ Erases all savepoints marked after the specified savepoint

■ Releases all row and table locks acquired since the specified savepoint was marked

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;
The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and disconnects from the database.

See Also: "Using the WHENEVER Directive" on page 9-18

Note: You cannot specify the RELEASE option in a ROLLBACK
TO SAVEPOINT statement.

The RELEASE Option

3-16 Pro*C/C++ Programmer’s Guide

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine
that includes a ROLLBACK statement, your program might enter an infinite loop if the
ROLLBACK fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement, as shown in the following
example:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

for (;;)
{
 printf("Employee number? ");

 gets(temp);
 emp_number = atoi(temp);
 printf("Employee name? ");
 gets(emp_name);
 EXEC SQL INSERT INTO emp (empno, ename)
 VALUES (:emp_number, :emp_name);

...
}
...
sql_error:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Oracle automatically rolls back transactions if your program terminates abnormally.

Statement-Level Rollbacks
Before executing any SQL statement, Oracle marks an implicit savepoint (not available
to you). Then, if the statement fails, Oracle automatically rolls it back and returns the
applicable error code to sqlcode in the SQLCA. For example, if an INSERT statement
causes an error by trying to insert a duplicate value in a unique index, the statement is
rolled back.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is saved. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

The RELEASE Option
Oracle automatically rolls back changes if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect from Oracle using the RELEASE option. Normal
termination occurs when your program runs its course, closes open cursors, explicitly
commits or rolls back work, disconnects from Oracle, and returns control to the user.

See Also: "The RELEASE Option" on page 3-16.

Override Default Locking

Database Concepts 3-17

Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT WORK RELEASE;

or

EXEC SQL ROLLBACK WORK RELEASE;

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

The SET TRANSACTION Statement
You use the SET TRANSACTION statement to begin a read-only transaction. Because
they allow "repeatable reads," read-only transactions are useful for running multiple
queries against one or more tables while other users update the same tables. An
example of the SET TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions.

Only the SELECT, COMMIT, and ROLLBACK statements are allowed in a read-only
transaction. For example, including an INSERT, DELETE, or SELECT FOR UPDATE
OF statement causes an error.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to
query or update data as usual.

A COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.
(Recall that data definition statements issue an implicit COMMIT.)

In the following example, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a
summary report. The report is unaffected by other users updating the database during
the transaction.

EXEC SQL SET TRANSACTION READ ONLY;
EXEC SQL SELECT sum(saleamt) INTO :daily FROM sales
 WHERE saledate = SYSDATE;

EXEC SQL SELECT sum(saleamt) INTO :weekly FROM sales
 WHERE saledate > SYSDATE - 7;

EXEC SQL SELECT sum(saleamt) INTO :monthly FROM sales
 WHERE saledate > SYSDATE - 30;

EXEC SQL COMMIT WORK;
 /* simply ends the transaction since there are no changes
 to make permanent */

/* format and print report */

Override Default Locking
By default, Oracle automatically locks many data structures for you. However, you can
request specific data locks on rows or tables when it is to your advantage to override
default locking. Explicit locking lets you share or deny access to a table for the
duration of a transaction or ensure multitable and multiquery read consistency.

Override Default Locking

3-18 Pro*C/C++ Programmer’s Guide

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of
a table to make sure they do not change before an UPDATE or DELETE is executed.
However, Oracle automatically obtains row-level locks at UPDATE or DELETE time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
UPDATE or DELETE.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using FOR UPDATE OF
When you DECLARE a cursor that is referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you use the FOR UPDATE OF clause to acquire
exclusive row locks. SELECT FOR UPDATE OF identifies the rows that will be
updated or deleted, then locks each row in the active set. This is useful, for example,
when you want to base an update on the existing values in a row. You must make sure
the row is not changed by another user before your update.

The FOR UPDATE OF clause is optional. For example, instead of coding

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, job, sal FROM emp WHERE deptno = 20
 FOR UPDATE OF sal;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, job, sal FROM emp WHERE deptno = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. You use the CURRENT OF clause to refer to the latest row FETCHed from a
cursor.

Restrictions
If you use the FOR UPDATE OF clause, you cannot reference multiple tables.

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the OPEN, not as they are FETCHed. Row locks are
released when you COMMIT or ROLLBACK (except when you ROLLBACK to a
savepoint). Therefore, you cannot FETCH from a FOR UPDATE cursor after a
COMMIT.

Using LOCK TABLE
You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement in the following section, locks the EMP table in row
share mode. Row share locks allow concurrent access to a table; they prevent other
users from locking the entire table for exclusive use.

EXEC SQL LOCK TABLE EMP IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one user
at a time can acquire an exclusive lock. While one user has an exclusive lock on a table,
no other users can INSERT, UPDATE, or DELETE rows in that table.

For more information about lock modes, see Oracle Database Concepts.

See Also: "The CURRENT OF Clause" on page 6-15

Distributed Transactions Handling

Database Concepts 3-19

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked
by another user. Control is immediately returned to your program, so it can do other
work before trying again to acquire the lock. (You can check sqlcode in the SQLCA to
see if the LOCK TABLE failed.) If you omit NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock. So, a query never blocks another query or an update, and an update never
blocks a query. Only if two different transactions try to update the same row will one
transaction wait for the other to complete.

Any LOCK TABLE statement implicitly closes all cursors.

Table locks are released when your transaction issues a COMMIT or ROLLBACK.

Fetch Across COMMITs
If you want to intermix COMMITs and FETCHes, do not use the CURRENT OF clause.
Instead, SELECT the ROWID of each row, then use that value to identify the current
row during the update or delete. An example follows:

...
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal, ROWID FROM emp WHERE job = 'CLERK';

...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (;;)
{
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary, :row_id;
 ...
 EXEC SQL UPDATE emp SET sal = :new_salary
 WHERE ROWID = :row_id;
 EXEC SQL COMMIT;

...
}

Note, however, that the FETCHed rows are not locked. So, you might get inconsistent
results if another user modifies a row after you read it but before you update or delete
it.

Distributed Transactions Handling
A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that accesses
a remote node using a database link. A distributed transaction includes at least one
distributed statement that updates data at multiple nodes of a distributed database. If
the update affects only one node, the transaction is non-distributed.

When you issue a COMMIT, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a ROLLBACK, all the changes
are undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if you
have FORCE TRANSACTION system privileges, you can manually commit or roll
back the transaction at your local database by using the FORCE clause. The transaction
must be identified by a quoted literal containing the transaction ID, which can be
found in the data dictionary view DBA_2PC_PENDING. Some examples follow:

EXEC SQL COMMIT FORCE '22.31.83';

Guidelines

3-20 Pro*C/C++ Programmer’s Guide

...
EXEC SQL ROLLBACK FORCE '25.33.86';

FORCE commits or rolls back only the specified transaction and does not affect your
current transaction. You cannot manually roll back in-doubt transactions to a
savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, Oracle
stores the text specified by COMMENT in the data dictionary view DBA_2PC_
PENDING along with the transaction ID. The text must be a quoted literal 50
characters in length. An example follows:

EXEC SQL COMMIT COMMENT 'In-doubt trans; notify Order Entry';

For more information about distributed transactions, see Oracle Database Concepts.

Guidelines
The following guidelines will help you avoid some common problems.

Designing Applications
When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to accomplish
a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example, a
transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

Obtaining Locks
If your application programs include SQL locking statements, make sure the Oracle
users requesting locks have the privileges needed to obtain the locks. Your DBA can
lock any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

Using PL/SQL
If a PL/SQL block is part of a transaction, COMMITs and ROLLBACKs inside the
block affect the whole transaction. In the following example, the ROLLBACK undoes
changes made by the UPDATE and the INSERT:

EXEC SQL INSERT INTO EMP ...
EXEC SQL EXECUTE
 BEGIN
 UPDATE emp ...
 ...

Note: The COMMENT clause will be deprecated in a future
release. Oracle recommends that you use transaction naming
instead.

Guidelines

Database Concepts 3-21

 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
 ...
 END;

END-EXEC;
...

Guidelines

3-22 Pro*C/C++ Programmer’s Guide

Datatypes and Host Variables 4-1

4
Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*C/C++ program.
This chapter contains the following topics:

■ Oracle Datatypes

■ Host Variables

■ Indicator Variables

■ VARCHAR Variables

■ Cursor Variables

■ CONTEXT Variables

■ Universal ROWIDs

■ Host Structures

■ Pointer Variables

■ Globalization Support

■ NCHAR Variables

This chapter also includes several complete demonstration programs that you can
study. These programs illustrate the techniques described. They are available on-line
in your demo directory, so you can compile and run them, and modify them for your
own uses.

Oracle Datatypes
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores column values in database tables, as well as the formats
used to represent pseudocolumn values such as NULL, SYSDATE, USER, and so on.
External datatypes specify the formats used to store values in input and output host
variables.

For descriptions of the Oracle internal (also called built-in) datatypes, see Oracle
Database SQL Reference.

Internal Datatypes
For values stored in database columns, Oracle uses the internal datatypes shown in
Table 4–1

Oracle Datatypes

4-2 Pro*C/C++ Programmer’s Guide

These internal datatypes can be quite different from C datatypes. For example, C has
no datatype that is equivalent to the Oracle NUMBER datatype. However, NUMBERs
can be converted between C datatypes such as float and double, with some
restrictions. For example, the Oracle NUMBER datatype allows up to 38 decimal digits
of precision, while no current C implementations can represent double with that
degree of precision.

The Oracle NUMBER datatype represents values exactly (within the precision limits),
while floating-point formats cannot represent values such as 10.0 exactly.

Use the LOB datatypes to store unstructured data (text, graphic images, video clips, or
sound waveforms). BFILE data is stored in an operating system file outside the
database. LOB types store locators that specify the location of the data.

NCHAR and NVARCHAR2 are used to store multibyte character data.

External Datatypes
As shown in Table 4–2, the external datatypes include all the internal datatypes plus
several datatypes that closely match C constructs. For example, the STRING external
datatype refers to a C null-terminated string.

Table 4–1 Oracle Internal Datatypes

Name Description

VARCHAR2 Variable-length character string, <= 4000 bytes.

NVARCHAR2 or
NCHAR VARYING

Variable-length single-byte or National Character string,<= 4000
bytes.

NUMBER Numeric value having precision and scale, represented in a base-100
format.

LONG Variable-length character string <=2**31-1 bytes.

ROWID Binary value.

DATE Fixed-length date + time value, 7 bytes.

RAW Variable-length binary data, <=2000 bytes.

LONG RAW Variable-length binary data, <=2**31-1 bytes.

CHAR Fixed-length character string, <=2000 bytes.

NCHAR Fixed-length single-byte or National Character string, <= 2000 bytes.

BFILE External file binary data, <= 4 Gbytes.

BLOB Binary data, <= 4 Gbytes.

CLOB Character data, <= 4 Gbytes.

NCLOB National Character Set data, <= 4 Gbytes.

See Also: Chapter 16, "Large Objects (LOBs)"

See Also: "Globalization Support" on page 4-38 for a discussion of
these datatypes

Table 4–2 Oracle External Datatypes

Name Description

VARCHAR2 Variable-length character string, <= 65535 bytes.

Oracle Datatypes

Datatypes and Host Variables 4-3

Brief descriptions of the Oracle datatypes follow.

VARCHAR2
You use the VARCHAR2 datatype to store variable-length character strings. The
maximum length of a VARCHAR2 value is 64K bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes, not characters.
So, if a VARCHAR2(n) variable stores multibyte characters, its maximum length can be
less than n characters.

When you precompile using the option CHAR_MAP=VARCHAR2, Oracle assigns the
VARCHAR2 datatype to all host variables that you declare as char[n] or char.

On Input Oracle reads the number of bytes specified for the input host variable, strips
any trailing blanks, then stores the input value in the target database column. Be
careful. An uninitialized host variable can contain NULLs. So, always blank-pad a
character input host variable to its declared length, and do not null-terminate it.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value contains nothing but blanks, Oracle treats it like a
NULL.

Oracle can convert a character value to a NUMBER column value if the character value
represents a valid number. Otherwise, Oracle generates an error.

NUMBER Decimal number, represented using a base-100 format.

INTEGER Signed integer.

FLOAT Real number.

STRING Null-terminated variable length character string.

VARNUM Decimal number, like NUMBER, but includes representation length
component.

LONG Fixed-length character string, up to 2**31-1 bytes.

VARCHAR Variable-length character string, <= 65533 bytes.

ROWID Binary value, external length is system dependent.

DATE Fixed-length date/time value, 7 bytes.

VARRAW Variable-length binary data, <= 65533 bytes.

RAW Fixed-length binary data, <= 65535 bytes.

LONG RAW Fixed-length binary data, <= 2**31-1 bytes.

UNSIGNED Unsigned integer.

LONG VARCHAR Variable-length character string, <= 2**31-5 bytes.

LONG VARRAW Variable-length binary data, <= 2**31-5 bytes.

CHAR Fixed-length character string, <= 65535 bytes.

CHARZ Fixed-length, null-terminated character string, <= 65534 bytes.

CHARF Used in TYPE or VAR statements to force CHAR to default to CHAR,
instead of VARCHAR2 or CHARZ.

Table 4–2 (Cont.) Oracle External Datatypes

Name Description

Oracle Datatypes

4-4 Pro*C/C++ Programmer’s Guide

On Output Oracle returns the number of bytes specified for the output host variable,
blank-padding if necessary. It then assigns the output value to the target host variable.
If a NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If there is an indicator
variable associated with the host variable, Oracle sets it to the original length of the
output value.

Oracle can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you SELECT the column value
123456789 into a character host variable of length 6, Oracle returns the value '1.2E08'. If
a NULL is selected explicitly, the value in the host variable is indeterminate. The value
of the indicator variable needs to be checked for NULL-ness.

NUMBER
You use the NUMBER datatype to store fixed or floating-point numbers. You can
specify precision and scale. The maximum precision of a NUMBER value is 38. The
magnitude range is 1.0E-130 to 9.99...9E125 (38 nines followed by 88 zeroes). Scale can
range from -84 to 127.

NUMBER values are stored in a variable-length format, starting with an exponent byte
and followed by 19 mantissa bytes. The high-order bit of the exponent byte is a sign
bit, which is set for positive numbers. The low-order 7 bits represent the magnitude.

The mantissa forms a 38-digit number with each byte representing 2 of the digits in a
base-100 format. The sign of the mantissa is specified by the value of the first
(left-most) byte. If greater than 101 then the mantissa is negative and the first digit of
the mantissa is equal to the left-most byte minus 101.

On output, the host variable contains the number as represented internally by Oracle.
To accommodate the largest possible number, the output host variable must be 22
bytes long. Only the bytes used to represent the number are returned. Oracle does not
blank-pad or null-terminate the output value. If you need to know the length of the
returned value, use the VARNUM datatype instead.

There is seldom a need to use this external datatype.

INTEGER
You use the INTEGER datatype to store numbers that have no fractional part. An
integer is a signed, 2-byte or 4-byte binary number. The order of the bytes in a word is
system dependent. You must specify a length for input and output host variables. On
output, if the column value is a real number, Oracle truncates any fractional part.

FLOAT
You use the FLOAT datatype to store numbers that have a fractional part or that
exceed the capacity of the INTEGER datatype. The number is represented using the
floating-point format of your computer and typically requires 4 or 8 bytes of storage.
You must specify a length for input and output host variables.

Oracle can represent numbers with greater precision than most floating-point
implementations because the internal format of Oracle numbers is decimal. This can
cause a loss of precision when fetching into a FLOAT variable.

Oracle Datatypes

Datatypes and Host Variables 4-5

STRING
The STRING datatype is like the VARCHAR2 datatype, except that a STRING value is
always null-terminated. When you precompile using the option CHAR_
MAP=STRING, Oracle assigns the STRING datatype to all host variables that you
declare as char[n] or char.

On Input Oracle uses the specified length to limit the scan for the null terminator. If a
null terminator is not found, Oracle generates an error. If you do not specify a length,
Oracle assumes the maximum length of 2000 bytes. The minimum length of a STRING
value is 2 bytes. If the first character is a null terminator and the specified length is 2,
Oracle inserts a null unless the column is defined as NOT NULL. If the column is
defined as NOT NULL, an error occurs. An all-blank value is stored intact.

On Output Oracle appends a null byte to the last character returned. If the string length
exceeds the specified length, Oracle truncates the output value and appends a null
byte. If a NULL is SELECTed, Oracle returns a null byte in the first character position.
If a NULL is selected explicitly, the value in the host variable is indeterminate. The
value of the indicator variable needs to be checked for NULL-ness.

VARNUM
The VARNUM datatype is like the NUMBER datatype, except that the first byte of a
VARNUM variable stores the length of the representation.

On input, you must set the first byte of the host variable to the length of the value. On
output, the host variable contains the length followed by the number as represented
internally by Oracle. To accommodate the largest possible number, the host variable
must be 22 bytes long. After SELECTing a column value into a VARNUM host
variable, you can check the first byte to get the length of the value.

Normally, there is little reason to use this datatype.

LONG
You use the LONG datatype to store fixed-length character strings.

The LONG datatype is like the VARCHAR2 datatype, except that the maximum length
of a LONG value is 2147483647 bytes or two gigabytes.

VARCHAR
You use the VARCHAR datatype to store variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a <=65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for
the length field. For longer strings, use the LONG VARCHAR datatype. If a NULL is
selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

ROWID
Before the release of Oracle8, ROWID datatype was used to store the physical address
of each row of each table, as a hexadecimal number. The ROWID contained the
physical address of the row and allowed you to retrieve the row in a single efficient
block access.

With Oracle8, the logical ROWID was introduced. Rows in Index-Organized tables do
not have permanent physical addresses. The logical ROWID is accessed using the

Oracle Datatypes

4-6 Pro*C/C++ Programmer’s Guide

same syntax as the physical ROWID. For this reason, the physical ROWID was
expanded in size to include a data object number (schema objects in the same segment).

To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle
tables) the universal ROWID was defined.

You can use character host variables to store rowids in a readable format. When you
SELECT or FETCH a rowid into a character host variable, Oracle converts the binary
value to an 18-byte character string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the rowid

0000000E.000A.0007
points to the 11th row in the 15th block in the 7th database file.

Typically, you FETCH a rowid into a character host variable, then compare the host
variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor.

DATE
You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As
Table 4–3 shows, the century, year, month, day, hour (in 24-hour format), minute, and
second are stored in that order from left to right.

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The
epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is
88. The hour byte ranges from 1 to 24. The minute and second bytes range from 1 to 60.
The time defaults to midnight (1, 1, 1).

See Also: "Universal ROWIDs" on page 4-30 for a further
discussion of how to use the universal ROWID in applications.

See Also: "Mimicking CURRENT OF" on page 8-23.

Note: If you need full portability or your application
communicates with a non-Oracle database using Oracle Open
Gateway technology, specify a maximum length of 256 (not 18)
bytes when declaring the host variable. Though you can assume
nothing about the host variable's contents, the host variable will
behave normally in SQL statements.

Table 4–3 DATE Format

Date Datatype Century Year Month Day Hour Minutes Second

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example

17-OCT-1994 at
1:23:12 PM

119 194 10 17 14 24 13

Oracle Datatypes

Datatypes and Host Variables 4-7

Normally, there is little reason to use the DATE datatype.

RAW
You use the RAW datatype to store binary data or byte strings. The maximum length
of a RAW value is 65535 bytes.

RAW data is like CHARACTER data, except that Oracle assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit RAW
data from one system to another.

VARRAW
You use the VARRAW datatype to store variable-length binary data or byte strings.
The VARRAW datatype is like the RAW datatype, except that VARRAW variables have
a 2-byte length field followed by a data field <= 65533 bytes in length. For longer
strings, use the LONG VARRAW datatype.

When you specify the length of a VARRAW variable, be sure to include 2 bytes for the
length field. The first two bytes of the variable must be interpretable as an integer.

To get the length of a VARRAW variable, simply refer to its length field.

LONG RAW
You use the LONG RAW datatype to store binary data or byte strings. The maximum
length of a LONG RAW value is 2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

UNSIGNED
You use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a
binary number of 2 or 4 bytes. The order of the bytes in a word is system dependent.
You must specify a length for input and output host variables. On output, if the
column value is a floating-point number, Oracle truncates the fractional part.

LONG VARCHAR
You use the LONG VARCHAR datatype to store variable-length character strings.
LONG VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 (2**31 - 5) bytes. When you specify
the length of a LONG VARCHAR for use in a VAR or TYPE statement, do not include
the 4 length bytes.

LONG VARRAW
You use the LONG VARRAW datatype to store variable-length binary data or byte
strings. LONG VARRAW variables have a 4-byte length field followed by a data field.
The maximum length of the data field is 2147483643 bytes. When you specify the
length of a LONG VARRAW for use in a VAR or TYPE statement, do not include the 4
length bytes.

CHAR
You use the CHAR datatype to store fixed-length character strings. The maximum
length of a CHAR value is 65535 bytes.

Oracle Datatypes

4-8 Pro*C/C++ Programmer’s Guide

On Input Oracle reads the number of bytes specified for the input host variable, does
not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value is all-blank, Oracle treats it like a character value.

On Output Oracle returns the number of bytes specified for the output host variable,
doing blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle sets it to the original length of the output value. If a NULL is selected
explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

CHARZ
When DBMS=V7 or V8, Oracle, by default, assigns the CHARZ datatype to all
character host variables in a Pro*C/C++ program. The CHARZ datatype indicates
fixed-length, null-terminated character strings. The maximum length of a CHARZ
value is 65534 bytes.

On Input The CHARZ and STRING datatypes work the same way. You must
null-terminate the input value. The null terminator serves only to delimit the string; it
does not become part of the stored data.

On Output CHARZ host variables are blank-padded if necessary, then null-terminated.
The output value is always null-terminated, even if data must be truncated. If a NULL
is selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

CHARF
The CHARF datatype is used in EXEC SQL TYPE and EXEC SQL VAR statements.
When you precompile with the DBMS option set to V7 or V8, specifying the external
datatype CHAR in a TYPE or VAR statement equivalences the C type or variable to the
fixed-length, null-terminated datatype CHARZ.

However, you might not want either of these type equivalences, but rather an
equivalence to the fixed-length external type CHAR. If you use the external type
CHARF, the C type or variable is always equivalenced to the fixed-length ANSI
datatype CHAR, regardless of the DBMS value. CHARF never allows the C type to be
equivalenced to VARCHAR2 or CHARZ. Alternatively, when you set the option
CHAR_MAP=CHARF, all host variables declared as char[n] or char are equivalenced
to a CHAR string. If a NULL is selected explicitly, the value in the host variable is
indeterminate. The value of the indicator variable needs to be checked for NULL-ness.

Additional External Datatypes
This section describes additional external datatypes.

Datetime and Interval Datatypes
The datetime and interval datatypes are briefly summarized here.

See Also: For more a more complete discussion, see Oracle
Database SQL Reference

Oracle Datatypes

Datatypes and Host Variables 4-9

ANSI DATE
The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also
has no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype.
When assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of
the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a
timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date
and time.

TIMESTAMP
The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It has
no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP(fractional_seconds_precision)

where fractional_seconds_precision (which is optional) specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME ZONE datatype
has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that
includes a time zone displacement in its value. Storage is in the same format as for
TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data stored
in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When users retrieve the data,
Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

Host Variables

4-10 Pro*C/C++ Programmer’s Guide

INTERVAL YEAR TO MONTH
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR(year_precision) TO MONTH

where the optional year_precision is the number of digits in the YEAR datetime
field. The default value of year_precision is 2.

INTERVAL DAY TO SECOND
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

■ day_precision is the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

fractional_seconds_precision is the number of digits in the fractional part of
the SECOND datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Host Variables
Host variables are the key to communication between your host program and Oracle.
Typically, a precompiler program inputs data from a host variable to Oracle, and
Oracle outputs data to a host variable in the program. Oracle stores input data in
database columns, and stores output data in program host variables.

A host variable can be any arbitrary C expression that resolves to a scalar type. But, a
host variable must also be an lvalue. Host arrays of most host variables are also
supported.

Host Variable Declaration
You declare a host variable according to the rules of the C programming language,
specifying a C datatype supported by the Oracle program interface. The C datatype
must be compatible with that of the source or target database column.

If MODE=ORACLE, you do not have to declare host variables in a special Declare
Section. However, if you do not use a Declare Section, the FIPS flagger warns you
about this, as the Declare Section is part of the ANSI SQL Standard. If CODE=CPP
(you are compiling C++ code) or PARSE=NONE or PARSE=PARTIAL, then you must
have a Declare Section.

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

See Also: "Pointer Variables" on page 4-36

Host Variables

Datatypes and Host Variables 4-11

Table 4–4 shows the C datatypes and the pseudotypes that you can use when
declaring host variables. Only these datatypes can be used for host variables.

Table 4–5 shows the compatible Oracle internal datatypes.

Table 4–4 C Datatypes for Host Variables

C Datatype or Pseudotype Description

char single character

char[n] n-character array (string)

int integer

short small integer

long large integer

float floating-point number (usually single
precision)

double floating-point number (always double
precision)

VARCHAR[n] variable-length string

Table 4–5 C to Oracle Datatype Compatibility

Internal Type C Type Description

VARCHAR2(Y)

(Note 1)

char single character

CHAR(X)

(Note 1)

char[n]

VARCHAR[n]

int

short

long

float

double

n-byte character array

n-byte variable-length character array

integer

small integer

large integer

floating-point number

double-precision floating-point

number

NUMBER int integer

NUMBER(P,S)

(Note 2)

short

int

long

float

double

char

char[n]

VARCHAR[n]

small integer

integer

large integer

floating-point number

double-precision floating-point

number

single character

n-byte character array

n-byte variable-length character array

DATE char[n]

VARCHAR[n]

n-byte character array

n-byte variable-length character array

LONG char[n]

VARCHAR[n]

n-byte character array

n-byte variable-length character array

Host Variables

4-12 Pro*C/C++ Programmer’s Guide

One-dimensional arrays of simple C types can also serve as host variables. For char[n]
and VARCHAR[n], n specifies the maximum string length, not the number of strings in
the array. Two-dimensional arrays are allowed only for char[m][n] and
VARCHAR[m][n], where m specifies the number of strings in the array and n specifies
the maximum string length.

Pointers to simple C types are supported. Pointers to char[n] and VARCHAR[n]
variables should be declared as pointer to char or VARCHAR (with no length
specification). Arrays of pointers, however, are not supported.

Storage-Class Specifiers
Pro*C/C++ lets you use the auto, extern, and static storage-class specifiers when you
declare host variables. However, you cannot use the register storage-class specifier to
store host variables, since the precompiler takes the address of host variables by
placing an ampersand (&) before them. Following the rules of C, you can use the auto
storage class specifier only within a block.

To comply with the ANSI C standard, the Pro*C/C++ Precompiler provides the ability
to declare an extern char[n] host variable with or without a maximum length, as the
following examples shows:

extern char protocol[15];
extern char msg[];

However, you should always specify the maximum length. In the last example, if msg
is an output host variable declared in one precompilation unit but defined in another,
the precompiler has no way of knowing its maximum length. If you have not allocated
enough storage for msg in the second precompilation unit, you might corrupt memory.
(Usually, "enough" is the number of bytes in the longest column value that might be
SELECTed or FETCHed into the host variable, plus one byte for a possible null
terminator.)

If you neglect to specify the maximum length for an extern char[] host variable, the
precompiler issues a warning message. The precompiler also assumes that the host
variable will store a CHARACTER column value, which cannot exceed 255 characters
in length. So, if you want to SELECT or FETCH a VARCHAR2 or a LONG column
value of length greater than 255 characters into the host variable, you must specify a
maximum length.

RAW(X)

(Note 1)

unsigned char[n]

VARCHAR[n]

n-byte character array

n-byte variable-length character array

LONG RAW unsigned char[n]

VARCHAR[n]

n-byte character array

n-byte variable-length character array

ROWID unsigned char[n]

VARCHAR[n]

n-byte character array

n-byte variable-length character array

Notes:

1. X ranges from 1 to 2000. 1 is the default value. Y ranges from 1 to 4000.

2. P ranges from 1 to 38. S ranges from -84 to 127.

Table 4–5 (Cont.) C to Oracle Datatype Compatibility

Internal Type C Type Description

Indicator Variables

Datatypes and Host Variables 4-13

Type Qualifiers
You can also use the const and volatile type qualifiers when you declare host
variables.

A const host variable must have a constant value, that is, your program cannot change
its initial value. A volatile host variable can have its value changed in ways unknown
to your program (for example, by a device attached to the system).

Host Variable Referencing
You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in C
statements, as the following example shows:

char buf[15];
int emp_number;
float salary;
...
gets(buf);
emp_number = atoi(buf);

EXEC SQL SELECT sal INTO :salary FROM emp
 WHERE empno = :emp_number;

Though it might be confusing, you can give a host variable the same name as an
Oracle table or column, as this example shows:

int empno;
char ename[10];
float sal;
...
EXEC SQL SELECT ename, sal INTO :ename, :sal FROM emp
 WHERE empno = :empno;

Restrictions
A host variable name is a C identifier, hence it must be declared and referenced in the
same upper/lower case format. It cannot substitute for a column, table, or other Oracle
object in a SQL statement, and must not be an Oracle reserved word.

A host variable must resolve to an address in the program. For this reason, function
calls and numeric expressions cannot serve as host variables. The following code is
invalid:

#define MAX_EMP_NUM 9000
...
int get_dept();
...
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
 (:MAX_EMP_NUM + 10, 'CHEN', :get_dept());

Indicator Variables
You can associate every host variable with an optional indicator variable. An indicator
variable must be defined as a 2-byte integer and, in SQL statements, must be prefixed

See Also: Appendix B, "Reserved Words, Keywords, and
Namespaces".

Indicator Variables

4-14 Pro*C/C++ Programmer’s Guide

with a colon and immediately follow its host variable (unless you use the keyword
INDICATOR). If you are using Declare Sections, you must also declare indicator
variables inside the Declare Sections.

This applies to relational columns, not object types.

The INDICATOR Keyword
To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is:

:host_variable INDICATOR :indicator_variable

which is equivalent to

:host_variable:indicator_variable

You can use both forms of expression in your host program.

Possible indicator values, and their meanings, are:

Example of INDICATOR Variable Usage
Typically, you use indicator variables to assign NULLs to input host variables and
detect NULLs or truncated values in output host variables. In the example later, you
declare three host variables and one indicator variable, then use a SELECT statement
to search the database for an employee number matching the value of host variable
emp_number. When a matching row is found, Oracle sets output host variables salary
and commission to the values of columns SAL and COMM in that row and stores a
return code in indicator variable ind_comm. The next statements use ind_comm to select
a course of action.

EXEC SQL BEGIN DECLARE SECTION;
 int emp_number;
 float salary, commission;
 short comm_ind; /* indicator variable */
EXEC SQL END DECLARE SECTION;
 char temp[16];
 float pay; /* not used in a SQL statement */
...
printf("Employee number? ");
gets(temp);
emp_number = atof(temp);

See Also: Chapter 17, "Objects"

Indicator Values Meanings

0 The operation was successful

-1 A NULL was returned, inserted, or updated.

-2 Output to a character host variable from a "long" type was
truncated, but the original column length cannot be determined.

>0 The result of a SELECT or FETCH into a character host variable
was truncated. In this case, if the host variable is a multibyte
character variable, the indicator value is the original column
length in characters. If the host variable is not a multibye
character variable, then the indicator length is the original
column length in bytes.

VARCHAR Variables

Datatypes and Host Variables 4-15

EXEC SQL SELECT SAL, COMM
 INTO :salary, :commission:ind_comm
 FROM EMP
 WHERE EMPNO = :emp_number;
if(ind_comm == -1) /* commission is null */
 pay = salary;
else
 pay = salary + commission;

INDICATOR Variable Guidelines
The following guidelines apply to declaring and referencing indicator variables. An
indicator variable must

■ Be declared explicitly (in the Declare Section if present) as a 2-byte integer.

■ Be prefixed with a colon (:) in SQL statements.

■ Immediately follow its host variable in SQL statements and PL/SQL blocks
(unless preceded by the keyword INDICATOR).

An indicator variable must not:

■ Be prefixed with a colon in host language statements.

■ Follow its host variable in host language statements.

■ Be an Oracle reserved word.

Oracle Restrictions
When DBMS=V7 or V8, if you SELECT or FETCH a NULL into a host variable that has
no indicator, Oracle issues the following error message:

ORA-01405: fetched column value is NULL

When precompiling with MODE=ORACLE and DBMS=V7 or V8 specified, you can
specify UNSAFE_NULL=YES to disable the ORA-01405 message.

VARCHAR Variables
You can use the VARCHAR pseudotype to declare variable-length character strings.
When your program deals with strings that are output from, or input to, VARCHAR2
or LONG columns, you might find it more convenient to use VARCHAR host
variables instead of standard C strings. The datatype name VARCHAR can be
uppercase or lowercase, but it cannot be mixed case. In this Guide, uppercase is used to
emphasize that VARCHAR is not a native C datatype.

VARCHAR Variable Declaration
Think of a VARCHAR as an extended C type or pre-declared struct. For example, the
precompiler expands the VARCHAR declaration

VARCHAR username[20];

into the following struct with array and length members:

See Also: "Indicator Variables" on page 6-2

See Also: "UNSAFE_NULL" on page 10-31

VARCHAR Variables

4-16 Pro*C/C++ Programmer’s Guide

struct
{
 unsigned short len;
 unsigned char arr[20];

} username;

The advantage of using VARCHAR variables is that you can explicitly reference the
length member of the VARCHAR structure after a SELECT or FETCH. Oracle puts the
length of the selected character string in the length member. You can then use this
member to do things such as adding the null ('\0') terminator.

username.arr[username.len] = '\0';

or using the length in a strncpy or printf statement; for example:

printf("Username is %.*s\n", username.len, username.arr);

You specify the maximum length of a VARCHAR variable in its declaration. The
length must lie in the range 1.65533. For example, the following declaration is invalid
because no length is specified:

VARCHAR null_string[]; /* invalid */

The length specification holds the current length of the value stored in the array
member.

You can declare multiple VARCHARs on a single line; for example:

VARCHAR emp_name[ENAME_LEN], dept_loc[DEPT_NAME_LEN];

The length specifier for a VARCHAR can be a #defined macro, or any complex
expression that can be resolved to an integer at precompile time.

You can also declare pointers to VARCHAR datatypes. See the section

VARCHAR Variable Referencing
In SQL statements, you reference VARCHAR variables using the struct name prefixed
with a colon, as the following example shows:

...
int part_number;
VARCHAR part_desc[40];
...
main()
{
 ...
 EXEC SQL SELECT pdesc INTO :part_desc
 FROM parts
 WHERE pnum = :part_number;
 ...

See Also: "VARCHAR Variables and Pointers" on page 5-6.

Note: Do not attempt to use a typedef statement such as:

typedef VARCHAR buf[64];

This causes errors during C compilation.

VARCHAR Variables

Datatypes and Host Variables 4-17

After the query is executed, part_desc.len holds the actual length of the character string
retrieved from the database and stored in part_desc.arr.

In C statements, you reference VARCHAR variables using the component names, as
the next example shows:

printf("\n\nEnter part description: ");
gets(part_desc.arr);
/* You must set the length of the string
 before using the VARCHAR in an INSERT or UPDATE */
part_desc.len = strlen(part_desc.arr);

Return NULLs to a VARCHAR Variable
Oracle automatically sets the length component of a VARCHAR output host variable.
If you SELECT or FETCH a NULL into a VARCHAR, the server does not change the
length or array members.

Insert NULLs Using VARCHAR Variables
If you set the length of a VARCHAR variable to zero before performing an UPDATE or
INSERT statement, the column value is set to NULL. If the column has a NOT NULL
constraint, Oracle returns an error.

Pass VARCHAR Variables to a Function
VARCHARs are structures, and most C compilers permit passing of structures to a
function by value, and returning structures by copy out from functions. However, in
Pro*C/C++ you must pass VARCHARs to functions by reference. The following
example shows the correct way to pass a VARCHAR variable to a function:

VARCHAR emp_name[20];
...
emp_name.len = 20;
SELECT ename INTO :emp_name FROM emp
WHERE empno = 7499;
...
print_employee_name(&emp_name); /* pass by pointer */
...

print_employee_name(name)
VARCHAR *name;
{
 ...
 printf("name is %.*s\n", name->len, name->arr);
 ...
}

Note: If you select a NULL into a VARCHAR host variable, and
there is no associated indicator variable, an ORA-01405 error occurs
at run time. Avoid this by coding indicator variables with all host
variables. (As a temporary fix, use the UNSAFE_NULL=YES
precompiler option. See also "DBMS" on page 10-12).

VARCHAR Variables

4-18 Pro*C/C++ Programmer’s Guide

Find the Length of the VARCHAR Array Component
When the precompiler processes a VARCHAR declaration, the actual length of the
array element in the generated structure can be longer than that declared. For
example, on a Sun Solaris system, the Pro*C/C++ declaration

VARCHAR my_varchar[12];

is expanded by the precompiler to

struct my_varchar
{
 unsigned short len;
 unsigned char arr[12];
};

However, the precompiler or the C compiler on this system pads the length of the
array component to 14 bytes. This alignment requirement pads the total length of the
structure to 16 bytes: 14 for the padded array and 2 bytes for the length.

The SQLVarcharGetLength() (replaces the non-threaded sqlvcp())
function—part of the SQLLIB runtime library—returns the actual (possibly padded)
length of the array member.

You pass the SQLVarcharGetLength() function the length of the data for a
VARCHAR host variable or a VARCHAR pointer host variable, and
SQLVarcharGetLength() returns the total length of the array component of the
VARCHAR. The total length includes any padding that might be added by your C
compiler.

The syntax of SQLVarcharGetLength() is

SQLVarcharGetLength (dvoid *context, unsigned long *datlen, unsigned long
*totlen);

For single-threaded applications, use sqlvcp(). Put the length of the VARCHAR in
the datlen parameter before calling sqlvcp(). When the function returns, the
totlen parameter contains the total length of the array element. Both parameters are
pointers to unsigned long integers, so must be passed by reference.

Example Program: Using sqlvcp()
The following example program shows how you can use the function in a Pro*C/C++
application. The example also uses the sqlgls() function. The example declares a
VARCHAR pointer, then uses the sqlvcp() function to determine the size required
for the VARCHAR buffer. The program FETCHes employee names from the EMP table
and prints them. Finally, the example uses the sqlgls() function to print out the SQL
statement and its function code and length attributes. This program is available on-line
as sqlvcp.pc in your demo directory.

/*
 * The sqlvcp.pc program demonstrates how you can use the
 * sqlvcp() function to determine the actual size of a
 * VARCHAR struct. The size is then used as an offset to

See Also: "New Names for SQLLIB Public Functions" on
page 5-39 for a discussion of these and all other SQLLIB public
functions.

See Also: Chapter 9, "Handling Runtime Errors"

VARCHAR Variables

Datatypes and Host Variables 4-19

 * increment a pointer that steps through an array of
 * VARCHARs.
 *
 * This program also demonstrates the use of the sqlgls()
 * function, to get the text of the last SQL statement executed.
 * sqlgls() is described in the "Error Handling" chapter of
 * The Programmer's Guide to the Oracle Pro*C/C++ Precompiler.
 */

#include <stdio.h>
#include <sqlca.h>
#include <sqlcpr.h>

/* Fake a VARCHAR pointer type. */

struct my_vc_ptr
{
 unsigned short len;
 unsigned char arr[32767];
};

/* Define a type for the VARCHAR pointer */
typedef struct my_vc_ptr my_vc_ptr;
my_vc_ptr *vc_ptr;

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR *names;
int limit; /* for use in FETCH FOR clause */
char *username = "scott/tiger";
EXEC SQL END DECLARE SECTION;
void sql_error();
extern void sqlvcp(), sqlgls();

main()
{
 unsigned int vcplen, function_code, padlen, buflen;
 int i;
 char stmt_buf[120];

 EXEC SQL WHENEVER SQLERROR DO sql_error();

 EXEC SQL CONNECT :username;
 printf("\nConnected.\n");

/* Find number of rows in table. */
 EXEC SQL SELECT COUNT(*) INTO :limit FROM emp;

/* Declare a cursor for the FETCH statement. */
 EXEC SQL DECLARE emp_name_cursor CURSOR FOR
 SELECT ename FROM emp;
 EXEC SQL FOR :limit OPEN emp_name_cursor;

/* Set the desired DATA length for the VARCHAR. */
 vcplen = 10;

/* Use SQLVCP to help find the length to malloc. */
 sqlvcp(&vcplen, &padlen);
 printf("Actual array length of VARCHAR is %ld\n", padlen);

VARCHAR Variables

4-20 Pro*C/C++ Programmer’s Guide

/* Allocate the names buffer for names.
 Set the limit variable for the FOR clause. */
 names = (VARCHAR *) malloc((sizeof (short) +
 (int) padlen) * limit);
 if (names == 0)
 {
 printf("Memory allocation error.\n");
 exit(1);
 }
/* Set the maximum lengths before the FETCH.
 * Note the "trick" to get an effective VARCHAR *.
 */
 for (vc_ptr = (my_vc_ptr *) names, i = 0; i < limit; i++)
 {
 vc_ptr->len = (short) padlen;
 vc_ptr = (my_vc_ptr *)((char *) vc_ptr +
 padlen + sizeof (short));
 }
/* Execute the FETCH. */
 EXEC SQL FOR :limit FETCH emp_name_cursor INTO :names;

/* Print the results. */
 printf("Employee names--\n");

 for (vc_ptr = (my_vc_ptr *) names, i = 0; i < limit; i++)
 {
 printf
 ("%.*s\t(%d)\n", vc_ptr->len, vc_ptr->arr, vc_ptr->len);
 vc_ptr = (my_vc_ptr *)((char *) vc_ptr +
 padlen + sizeof (short));
 }

/* Get statistics about the most recent
 * SQL statement using SQLGLS. Note that
 * the most recent statement in this example
 * is not a FETCH, but rather "SELECT ENAME FROM EMP"
 * (the cursor).
 */
 buflen = (long) sizeof (stmt_buf);

/* The returned value should be 1, indicating no error. */
 sqlgls(stmt_buf, &buflen, &function_code);
 if (buflen != 0)
 {
 /* Print out the SQL statement. */
 printf("The SQL statement was--\n%.*s\n", buflen, stmt_buf);

 /* Print the returned length. */
 printf("The statement length is %ld\n", buflen);

 /* Print the attributes. */
 printf("The function code is %ld\n", function_code);

 EXEC SQL COMMIT RELEASE;
 exit(0);
 }
 else
 {
 printf("The SQLGLS function returned an error.\n");

Cursor Variables

Datatypes and Host Variables 4-21

 EXEC SQL ROLLBACK RELEASE;
 exit(1);
 }
}

void
sql_error()
{
 char err_msg[512];
 int buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 buf_len = sizeof (err_msg);
 sqlglm(err_msg, &buf_len, &msg_len);
 printf("%.*s\n", msg_len, err_msg);

 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Cursor Variables
You can use cursor variables in your Pro*C/C++ program for queries. A cursor variable
is a handle for a cursor that must be defined and opened on the Oracle (release 7.2 or
later) server, using PL/SQL. See the PL/SQL User's Guide and Reference for complete
information about cursor variables.

The advantages of cursor variables are:

■ Ease of maintenance

Queries are centralized, in the stored procedure that opens the cursor variable. If
you need to change the cursor, you only need to make the change in one place: the
stored procedure. There is no need to change each application.

■ Convenient security

The user of the application is the username used when the Pro*C/C++ application
connects to the server. The user must have execute permission on the stored
procedure that opens the cursor but not read permission on the tables used in the
query. This capability can be used to limit access to the columns in the table, and
access to other stored procedures.

Declare a Cursor Variable
You declare a cursor variable in your Pro*C/C++ program using the Pro*C/C++
pseudotype SQL_CURSOR. For example:

EXEC SQL BEGIN DECLARE SECTION;
 sql_cursor emp_cursor; /* a cursor variable */
 SQL_CURSOR dept_cursor; /* another cursor variable */
 sql_cursor *ecp; /* a pointer to a cursor variable */
 ...
EXEC SQL END DECLARE SECTION;
ecp = &emp_cursor; /* assign a value to the pointer */

You can declare a cursor variable using the type specification SQL_CURSOR, in all
upper case, or sql_cursor, in all lower case; you cannot use mixed case.

Cursor Variables

4-22 Pro*C/C++ Programmer’s Guide

A cursor variable is just like any other host variable in the Pro*C/C++ program. It has
scope, following the scope rules of C. You can pass it as a parameter to other functions,
even functions external to the source file in which you declared it. You can also define
functions that return cursor variables, or pointers to cursor variables.

Allocate a Cursor Variable
Before you can use a cursor variable, either to open it or to FETCH it, you must
allocate the cursor. You do this using the new precompiler command ALLOCATE. For
example, to allocate the SQL_CURSOR emp_cursor that was declared in the example
earlier, you write the statement:

EXEC SQL ALLOCATE :emp_cursor;

Allocating a cursor does not require a call to the server, either at precompile time or at
runtime. If the ALLOCATE statement contains an error (for example, an undeclared
host variable), Pro*C/C++ issues a precompile-time error. Allocating a cursor variable
does cause heap memory to be used. For this reason, you can free a cursor variable in a
program loop. Memory allocated for cursor variables is not freed when the cursor is
closed, but only when an explicit CLOSE is executed, or the connection is closed:

EXEC SQL CLOSE :emp_cursor;

Open a Cursor Variable
You must open a cursor variable on the Oracle database server. You cannot use the
embedded SQL OPEN command to open a cursor variable. You can open a cursor
variable either by calling a PL/SQL stored procedure that opens the cursor (and
defines it in the same statement). Or, you can open and define a cursor variable using
an anonymous PL/SQL block in your Pro*C/C++ program.

For example, consider the following PL/SQL package, stored in the database:

CREATE PACKAGE demo_cur_pkg AS
 TYPE EmpName IS RECORD (name VARCHAR2(10));
 TYPE cur_type IS REF CURSOR RETURN EmpName;
 PROCEDURE open_emp_cur (
 curs IN OUT cur_type,
 dept_num IN NUMBER);
END;

CREATE PACKAGE BODY demo_cur_pkg AS
 CREATE PROCEDURE open_emp_cur (
 curs IN OUT cur_type,
 dept_num IN NUMBER) IS
 BEGIN
 OPEN curs FOR
 SELECT ename FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;

Note: A SQL_CURSOR is implemented as a C struct in the code
that Pro*C/C++ generates. So you can always pass it by pointer to
another function, or return a pointer to a cursor variable from a
function. But you can only pass it or return it by value if your C
compiler supports these operations.

See Also: "Closing and Freeing a Cursor Variable" on page 4-24

Cursor Variables

Datatypes and Host Variables 4-23

 END;
END;

After this package has been stored, you can open the cursor curs by calling the open_
emp_cur stored procedure from your Pro*C/C++ program, and FETCH from the cursor
in the program. For example:

...
sql_cursor emp_cursor;
char emp_name[11];
...
EXEC SQL ALLOCATE :emp_cursor; /* allocate the cursor variable */
...
/* Open the cursor on the server side. */
EXEC SQL EXECUTE
 begin
 demo_cur_pkg.open_emp_cur(:emp_cursor, :dept_num);
 end;
;
EXEC SQL WHENEVER NOT FOUND DO break;
for (;;)
{
 EXEC SQL FETCH :emp_cursor INTO :emp_name;
 printf("%s\n", emp_name);
}
...

To open a cursor using a PL/SQL anonymous block in your Pro*C/C++ program, you
define the cursor in the anonymous block. For example:

sql_cursor emp_cursor;
int dept_num = 10;
...
EXEC SQL EXECUTE
 BEGIN
 OPEN :emp_cursor FOR SELECT ename FROM emp
 WHERE deptno = :dept_num;
 END;
END-EXEC;
...

The earlier examples show how to use PL/SQL to open a cursor variable. You can also
open a cursor variable using embedded SQL with the CURSOR clause:

...
sql_cursor emp_cursor;
...
EXEC ORACLE OPTION(select_error=no);
EXEC SQL
 SELECT CURSOR(SELECT ename FROM emp WHERE deptno = :dept_num)
 INTO :emp_cursor FROM DUAL;
EXEC ORACLE OPTION(select_error=yes);

In the statement earlier, the emp_cursor cursor variable is bound to the first column of
the outermost select. The first column is itself a query, but it is represented in the form
compatible with a sql_cursor host variable since the CURSOR(...) conversion clause is
used.

Before using queries which involve the CURSOR clause, you must set the SELECT_
ERROR option to NO. This will prevent the cancellation of the parent cursor and allow
the program to run without errors.

Cursor Variables

4-24 Pro*C/C++ Programmer’s Guide

Opening in a Standalone Stored Procedure
In the example earlier, a reference cursor was defined inside a package, and the cursor
was opened in a procedure in that package. But it is not always necessary to define a
reference cursor inside the package that contains the procedures that open the cursor.

If you need to open a cursor inside a standalone stored procedure, you can define the
cursor in a separate package, and then reference that package in the standalone stored
procedure that opens the cursor. Here is an example:

PACKAGE dummy IS
 TYPE EmpName IS RECORD (name VARCHAR2(10));
 TYPE emp_cursor_type IS REF CURSOR RETURN EmpName;
END;
-- and then define a standalone procedure:
PROCEDURE open_emp_curs (
 emp_cursor IN OUT dummy.emp_cursor_type;
 dept_num IN NUMBER) IS
 BEGIN
 OPEN emp_cursor FOR
 SELECT ename FROM emp WHERE deptno = dept_num;
 END;
END;

Return Types
When you define a reference cursor in a PL/SQL stored procedure, you must declare
the type that the cursor returns. See the PL/SQL User's Guide and Reference for complete
information on the reference cursor type and its return types.

Closing and Freeing a Cursor Variable
Use the CLOSE command to close a cursor variable. For example, to close the emp_
cursor cursor variable that was OPENed in the examples earlier, use the embedded
SQL statement:

EXEC SQL CLOSE :emp_cursor;

The cursor variable is a host variable, and so you must precede it with a colon.

You can reuse ALLOCATEd cursor variables. You can open, FETCH, and CLOSE as
many times as needed for your application. However, if you disconnect from the
server, then reconnect, you must re-ALLOCATE cursor variables.

Cursors are deallocated by the FREE embedded SQL statement. For example:

EXEC SQL FREE :emp_cursor;

If the cursor is still open, it is closed and the memory allocated for it is released.

Cursor Variables with the OCI (Release 7 Only)
You can share a Pro*C/C++ cursor variable with an OCI function. To do so, you must
use the SQLLIB conversion functions, SQLCDAFromResultSetCursor() (formerly
known as sqlcdat()) and SQLCDAToResultSetCursor (formerly known as
sqlcurt()). These functions convert between OCI cursor data areas and Pro*C/C++
cursor variables.

The SQLCDAFromResultSetCursor() function translates an allocated cursor
variable to an OCI cursor data area. The syntax is:

void SQLCDAFromResultSetCursor(dvoid *context, Cda_Def *cda, void *cur,

Cursor Variables

Datatypes and Host Variables 4-25

 sword *retval);

where the parameters are:

The SQLCDAToResultSetCursor() function translates an OCI cursor data area to a
Pro*C/C++ cursor variable. The syntax is:

void SQLCDAToResultSetCursor(dvoid *context, void *cur, Cda_Def *cda,
 int *retval);

where the parameters are:

ANSI and K&R prototypes for these functions are provided in the sql2oci.h header
file. Memory for both cda and cur must be allocated prior to calling these functions.

Parameters Description

context A pointer to the SQLLIB runtime context.

cda A pointer to the destination OCI cursor data area.

cur A pointer to the source Pro*C/C++ cursor variable.

retval 0 if no error, otherwise a SQLLIB (SQL) error number.

Note: In the case of an error, the V2 and rc return code fields in the
CDA also receive the error codes. The rows processed count field in
the CDA is not set.

For non-threaded or default context applications, pass the defined
constant SQL_SINGLE_RCTX as the context.

See Also: "New Names for SQLLIB Public Functions" on
page 5-39

Parameters Description

context A pointer to the SQLLIB runtime context.

cur A pointer to the destination Pro*C/C++ cursor variable.

cda A pointer to the source OCI cursor data area.

retval 0 if no error, otherwise an error code.

Note: The SQLCA structure is not updated by this routine. The
SQLCA components are only set after a database operation is
performed using the translated cursor.

For non-threaded applications, pass the defined constant SQL_
SINGLE_RCTX as the context.

See Also: "New Names for SQLLIB Public Functions" on
page 5-39 for more details on the SQLLIB Public Functions, see the
table.

Cursor Variables

4-26 Pro*C/C++ Programmer’s Guide

Restrictions
The following restrictions apply to the use of cursor variables:

■ If you use the same cursor variable in Pro*C/C++ and OCI V7, then you must use
either SQLLDAGetCurrent() or SQLLDAGetName() immediately after connecting.

■ You cannot translate a cursor variable to an OCI release 8 equivalent.

■ You cannot use cursor variables with dynamic SQL.

■ You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands

■ The DECLARE CURSOR command does not apply to cursor variables.

■ You cannot FETCH from a CLOSEd cursor variable.

■ You cannot FETCH from a non-ALLOCATEd cursor variable.

■ If you precompile with MODE=ANSI, it is an error to close a cursor variable that is
already closed.

■ You cannot use the AT clause with the ALLOCATE command, nor with the
FETCH and CLOSE commands if they reference a cursor variable.

■ Cursor variables cannot be stored in columns in the database.

■ A cursor variable itself cannot be declared in a package specification. Only the type
of the cursor variable can be declared in the package specification.

■ A cursor variable cannot be a component of a PL/SQL record.

Example: cv_demo.sql and sample11.pc
The following example programs—a PL/SQL script and a Pro*C/C++
program—demonstrate how you can use cursor variables. These sources are available
on-line in your demo directory. Also see another version of the same application, cv_
demo.pc, in the demo directory.

cv_demo.sql
-- PL/SQL source for a package that declares and
-- opens a ref cursor
CONNECT SCOTT/TIGER;
CREATE OR REPLACE PACKAGE emp_demo_pkg as
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_cur(curs IN OUT emp_cur_type, dno IN NUMBER);
END emp_demo_pkg;

CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS
 PROCEDURE open_cur(curs IN OUT emp_cur_type, dno IN NUMBER) IS
 BEGIN
 OPEN curs FOR SELECT *
 FROM emp WHERE deptno = dno
 ORDER BY ename ASC;
 END;
END emp_demo_pkg;

sample11.pc
/*
 * Fetch from the EMP table, using a cursor variable.

Cursor Variables

Datatypes and Host Variables 4-27

 * The cursor is opened in the stored PL/SQL procedure
 * open_cur, in the EMP_DEMO_PKG package.
 *
 * This package is available on-line in the file
 * sample11.sql, in the demo directory.
 *
 */

#include <stdio.h>
#include <sqlca.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlcpr.h>

/* Error handling function. */
void sql_error(msg)
 char *msg;
{
 size_t clen, fc;
 char cbuf[128];

 clen = sizeof (cbuf);
 sqlgls((char *)cbuf, (size_t *)&clen, (size_t *)&fc);

 printf("\n%s\n", msg);
 printf("Statement is--\n%s\n", cbuf);
 printf("Function code is %ld\n\n", fc);

 sqlglm((char *)cbuf, (size_t *) &clen, (size_t *) &clen);
 printf ("\n%.*s\n", clen, cbuf);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(EXIT_FAILURE);
}

void main()
{
 char temp[32];

 EXEC SQL BEGIN DECLARE SECTION;
 char *uid = "scott/tiger";
 SQL_CURSOR emp_cursor;
 int dept_num;
 struct
 {
 int emp_num;
 char emp_name[11];
 char job[10];
 int manager;
 char hire_date[10];
 float salary;
 float commission;
 int dept_num;
 } emp_info;

 struct
 {
 short emp_num_ind;
 short emp_name_ind;

Cursor Variables

4-28 Pro*C/C++ Programmer’s Guide

 short job_ind;
 short manager_ind;
 short hire_date_ind;
 short salary_ind;
 short commission_ind;
 short dept_num_ind;
 } emp_info_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR do sql_error("Oracle error");

/* Connect to Oracle. */
 EXEC SQL CONNECT :uid;

/* Allocate the cursor variable. */
 EXEC SQL ALLOCATE :emp_cursor;

/* Exit the inner for (;;) loop when NO DATA FOUND. */
 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)
 {
 printf("\nEnter department number (0 to exit): ");
 gets(temp);
 dept_num = atoi(temp);
 if (dept_num <= 0)
 break;

 EXEC SQL EXECUTE
 begin
 emp_demo_pkg.open_cur(:emp_cursor, :dept_num);
 end;
 END-EXEC;

 printf("\nFor department %d--\n", dept_num);
 printf("ENAME SAL COMM\n");
 printf("----- --- ----\n");

/* Fetch each row in the EMP table into the data struct.
 Note the use of a parallel indicator struct. */
 for (;;)
 {
 EXEC SQL FETCH :emp_cursor
 INTO :emp_info INDICATOR :emp_info_ind;

 printf("%s ", emp_info.emp_name);
 printf("%8.2f ", emp_info.salary);
 if (emp_info_ind.commission_ind != 0)
 printf(" NULL\n");
 else
 printf("%8.2f\n", emp_info.commission);
 }

 }

/* Close the cursor. */
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE :emp_cursor;

/* Disconnect from Oracle. */

CONTEXT Variables

Datatypes and Host Variables 4-29

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(EXIT_SUCCESS);

}

CONTEXT Variables
A runtime context, usually simply called a context, is a handle to a an area in client
memory which contains zero or more connections, zero or more cursors, their inline
options (such as MODE, HOLD_CURSOR, RELEASE_CURSOR, SELECT_ERROR,
and so on.) and other additional state information.

To define a context host variable use pseudo-type sql_context. For example:

sql_context my_context ;

Use the CONTEXT ALLOCATE precompiler directive to allocate and initialize
memory for a context:

EXEC SQL CONTEXT ALLOCATE :context ;

where context is a host variable that is a handle to the context. For example:

EXEC SQL CONTEXT ALLOCATE :my_context ;

Use the CONTEXT USE precompiler directive to define which context is to be used by
the embedded SQL statements (such as CONNECT, INSERT, DECLARE CURSOR, and
so on.) from that point on in the source file, not in the flow of program logic. That
context is used until another CONTEXT USE statement is encountered. The syntax is:

EXEC SQL CONTEXT USE {:context | DEFAULT} ;

The keyword DEFAULT specifies that the default (also known as global) context is to
be used in all the embedded SQL statements that are executed subsequently, until
another CONTEXT USE directive is encountered. A simple example is:

EXEC SQL CONTEXT USE :my_context ;

If the context variable my_context has not been defined and allocated already, an
error is returned.

The CONTEXT FREE statement frees the memory used by the context after it is no
longer needed:

EXEC SQL CONTEXT FREE :context ;

An example is:

EXEC SQL CONTEXT FREE :my_context ;

The following example demonstrates the use of a default context in the same
application as a user-defined context:

CONTEXT USE Example
#include <sqlca.h>
#include <ociextp.h>
main()
{
 sql_context ctx1;
 char *usr1 = "scott/tiger";
 char *usr2 = "system/manager";

Universal ROWIDs

4-30 Pro*C/C++ Programmer’s Guide

 /* Establish connection to SCOTT in global runtime context */
 EXEC SQL CONNECT :usr1;

 /* Establish connection to SYSTEM in runtime context ctx1 */
 EXEC SQL CONTEXT ALLOCATE :ctx1;
 EXEC SQL CONTEXT USE :ctx1;
 EXEC SQL CONNECT :usr2;

 /* Insert into the emp table from schema SCOTT */
 EXEC SQL CONTEXT USE DEFAULT;
 EXEC SQL INSERT INTO emp (empno, ename) VALUES (1234, 'WALKER');
 ...
}

Universal ROWIDs
There are two kinds of table organization used in the database server: heap tables and
index-organized tables.

Heap tables are the default. This is the organization used in all tables before Oracle8.
The physical row address (ROWID) is a permanent property that is used to identify a
row in a heap table. The external character format of the physical ROWID is an 18-byte
character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque structure
that contains the primary key of the table, control information, and an optional
physical "guess". You can use this ROWID in a SQL statement containing a clause such
as "WHERE ROWID = ..." to retrieve values from the table.

The universal ROWID was introduced in the Oracle 8.1 release. Universal ROWID can
be used for both physical ROWID and logical ROWID. You can use universal ROWIDs
to access data in heap tables, or index-organized tables, since the table organization
can change with no effect on applications. The column datatype used for ROWID is
UROWID(length), where length is optional.

Use the universal ROWID in all new applications.

For more information on universal ROWIDs, see Oracle Database Concepts.

Use a universal ROWID variable this way:

■ Declare it as type pointer to OCIRowid.

■ Allocate memory for the universal ROWID variable.

■ Use the universal ROWID as a host bind variable.

■ Free the memory when finished.

For example:

OCIRowid *my_urowid ;
...
EXEC SQL ALLOCATE :my_urowid ;
/* Bind my_urowid as type SQLT_RDD -- no implicit conversion */
EXEC SQL SELECT rowid INTO :my_urowid FROM my_table WHERE ... ;
...
EXEC SQL UPDATE my_table SET ... WHERE rowid = :my_urowid ;
EXEC SQL FREE my_urpwid ;
...

Host Structures

Datatypes and Host Variables 4-31

You also have the option of using a character host variable of width between 19 (18
bytes plus the null-terminator) and 4001 as the host bind variable for universal
ROWID. Character-based universal ROWIDs are supported for heap tables only for
backward compatibility. Because universal ROWID can be variable length, there can be
truncation.

Use the character variable this way:

/* n is based on table characteristics */
int n=4001 ;
char my_urowid_char[n] ;
...
EXEC SQL ALLOCATE :my_urowid_char ;
/* Bind my_urowid_char as SQLT_STR */
EXEC SQL SELECT rowid INTO :my_urowid_char FROM my_table WHERE ... ;
EXEC ORACLE OPTION(CHAR_MAP=STRING);
EXEC SQL UPDATE my_table SET ... WHERE rowid = :my_urowid_char ;
EXEC SQL FREE :my_urowid_char ;
...

SQLRowidGet()
A SQLLIB function, SQLRowidGet(), provides the ability to retrieve a pointer to the
universal ROWID of the last row inserted, updated, or selected. The function
prototype and its arguments are:

void SQLRowidGet (dvoid *rctx, OCIRowid **urid) ;

rctx (IN)

is a pointer to a runtime context. For the default context or a non-threaded case, pass
SQL_SINGLE_RCTX.

urid (OUT)

is a pointer to a universal ROWID pointer. When a normal execution finishes, this will
point to a valid ROWID. In case of an error, NULL is returned.

Host Structures
You can use a C structure to contain host variables. You reference a structure
containing host variables in the INTO clause of a SELECT or a FETCH statement, and
in the VALUES list of an INSERT statement. Every component of the host structure
must be a legal Pro*C/C++ host variable, as defined in Table 4–4 on page 4-11.

When a structure is used as a host variable, only the name of the structure is used in
the SQL statement. However, each of the members of the structure sends data to
Oracle, or receives data from Oracle on a query. The following example shows a host
structure that is used to add an employee to the EMP table:

typedef struct
{

See Also: "Positioned Update" on page 6-19 for an example of a
positioned update using the universal ROWID.

Note: The universal ROWID pointer must have been previously
allocated to call SQLRowidGet(). Use FREE afterward on the
universal ROWID.

Host Structures

4-32 Pro*C/C++ Programmer’s Guide

 char emp_name[11]; /* one greater than column length */
 int emp_number;
 int dept_number;
 float salary;
} emp_record;
...
/* define a new structure of type "emp_record" */
emp_record new_employee;

strcpy(new_employee.emp_name, "CHEN");
new_employee.emp_number = 9876;
new_employee.dept_number = 20;
new_employee.salary = 4250.00;

EXEC SQL INSERT INTO emp (ename, empno, deptno, sal)
 VALUES (:new_employee);

The order that the members are declared in the structure must match the order that the
associated columns occur in the SQL statement, or in the database table if the column
list in the INSERT statement is omitted.

For example, the following use of a host structure is invalid, and causes a runtime
error:

struct
{
 int empno;
 float salary; /* struct components in wrong order */
 char emp_name[10];
} emp_record;

...
SELECT empno, ename, sal
 INTO :emp_record FROM emp;

The example is wrong because the components of the structure are not declared in the
same order as the associated columns in the select list. The correct form of the SELECT
statement is:

SELECT empno, sal, ename /* reverse order of sal and ename */
 INTO :emp_record FROM emp;

Host Structures and Arrays
An array is a collection of related data items, called elements, associated with a single
variable name. When declared as a host variable, the array is called a host array.
Likewise, an indicator variable declared as an array is called an indicator array. An
indicator array can be associated with any host array.

Host arrays can increase performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays
wherever scalar host variables are allowed. Also, you can associate an indicator array
with any host array.

For a complete discussion of host arrays, see also Chapter 8, "Host Arrays".

You can use host arrays as components of host structures. In the following example, a
structure containing arrays is used to INSERT three new entries into the EMP table:

struct
{

Host Structures

Datatypes and Host Variables 4-33

 char emp_name[3][10];
 int emp_number[3];
 int dept_number[3];
} emp_rec;
...
strcpy(emp_rec.emp_name[0], "ANQUETIL");
strcpy(emp_rec.emp_name[1], "MERCKX");
strcpy(emp_rec.emp_name[2], "HINAULT");
emp_rec.emp_number[0] = 1964; emp_rec.dept_number[0] = 5;
emp_rec.emp_number[1] = 1974; emp_rec.dept_number[1] = 5;
emp_rec.emp_number[2] = 1985; emp_rec.dept_number[2] = 5;

EXEC SQL INSERT INTO emp (ename, empno, deptno)
 VALUES (:emp_rec);
...

PL/SQL Records
You cannot bind a C struct to a PL/SQL record.

Nested Structures and Unions
 You cannot nest host structures. The following example is invalid:

struct
{
 int emp_number;
 struct
 {
 float salary;
 float commission;
 } sal_info; /* INVALID */
 int dept_number;
} emp_record;
...
EXEC SQL SELECT empno, sal, comm, deptno
 INTO :emp_record
 FROM emp;

Also, you cannot use a C union as a host structure, nor can you nest a union in a
structure that is to be used as a host structure.

Host Indicator Structures
When you need to use indicator variables, but your host variables are contained in a
host structure, you set up a second structure that contains an indicator variable for
each host variable in the host structure.

For example, suppose you declare a host structure student_record as follows:

struct
{
 char s_name[32];
 int s_id;
 char grad_date[9];
} student_record;

If you want to use the host structure in a query such as

EXEC SQL SELECT student_name, student_idno, graduation_date
 INTO :student_record

Host Structures

4-34 Pro*C/C++ Programmer’s Guide

 FROM college_enrollment
 WHERE student_idno = 7200;

and you need to know if the graduation date can be NULL, then you must declare a
separate host indicator structure. You declare this as

struct
{
 short s_name_ind; /* indicator variables must be shorts */
 short s_id_ind;
 short grad_date_ind;
} student_record_ind;

Reference the indicator structure in the SQL statement in the same way that you
reference a host indicator variable:

EXEC SQL SELECT student_name, student_idno, graduation_date
 INTO :student_record INDICATOR :student_record_ind
 FROM college_enrollment
 WHERE student_idno = 7200;

When the query completes, the NULL/NOT NULL status of each selected component
is available in the host indicator structure.

Example Program: Cursor and a Host Structure
The demonstration program in this section shows a query that uses an explicit cursor,
selecting data into a host structure. This program is available in the file sample2.pc
in your demo directory.

/*
 * sample2.pc
 *
 * This program connects to ORACLE, declares and opens a cursor,
 * fetches the names, salaries, and commissions of all
 * salespeople, displays the results, then closes the cursor.
 */

#include <stdio.h>
#include <sqlca.h>

#define UNAME_LEN 20
#define PWD_LEN 40

/*
 * Use the precompiler typedef'ing capability to create
 * null-terminated strings for the authentication host
 * variables. (This isn't really necessary--plain char *'s
 * does work as well. This is just for illustration.)
 */
typedef char asciiz[PWD_LEN];

EXEC SQL TYPE asciiz IS STRING(PWD_LEN) REFERENCE;

Note: This Guide conventionally names indicator variables and
indicator structures by appending _ind to the host variable or
structure name. However, the names of indicator variables are
completely arbitrary. You can adopt a different convention, or use
no convention at all.

Host Structures

Datatypes and Host Variables 4-35

asciiz username;
asciiz password;

struct emp_info
{
 asciiz emp_name;
 float salary;
 float commission;
};

/* Declare function to handle unrecoverable errors. */
void sql_error();

main()
{
 struct emp_info *emp_rec_ptr;

/* Allocate memory for emp_info struct. */
 if ((emp_rec_ptr =
 (struct emp_info *) malloc(sizeof(struct emp_info))) == 0)
 {
 fprintf(stderr, "Memory allocation error.\n");
 exit(1);
 }

/* Connect to ORACLE. */
 strcpy(username, "SCOTT");
 strcpy(password, "TIGER");

 EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--");

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to ORACLE as user: %s\n", username);

/* Declare the cursor. All static SQL explicit cursors
 * contain SELECT commands. 'salespeople' is a SQL identifier,
 * not a (C) host variable.
 */
 EXEC SQL DECLARE salespeople CURSOR FOR
 SELECT ENAME, SAL, COMM
 FROM EMP
 WHERE JOB LIKE 'SALES%';

/* Open the cursor. */
 EXEC SQL OPEN salespeople;

/* Get ready to print results. */
 printf("\n\nThe company's salespeople are--\n\n");
 printf("Salesperson Salary Commission\n");
 printf("----------- ------ ----------\n");

/* Loop, fetching all salesperson's statistics.
 * Cause the program to break the loop when no more
 * data can be retrieved on the cursor.
 */
 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)

Pointer Variables

4-36 Pro*C/C++ Programmer’s Guide

 {
 EXEC SQL FETCH salespeople INTO :emp_rec_ptr;
 printf("%-11s%9.2f%13.2f\n", emp_rec_ptr->emp_name,
 emp_rec_ptr->salary, emp_rec_ptr->commission);
 }

/* Close the cursor. */
 EXEC SQL CLOSE salespeople;

 printf("\nArrivederci.\n\n");

 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

void
sql_error(msg)
char *msg;
{
 char err_msg[512];
 int buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s\n", msg);

/* Call sqlglm() to get the complete text of the
 * error message.
 */
 buf_len = sizeof (err_msg);
 sqlglm(err_msg, &buf_len, &msg_len);
 printf("%.*s\n", msg_len, err_msg);

 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Pointer Variables
C supports pointers, which "point" to other variables. A pointer holds the address
(storage location) of a variable, not its value.

Pointer Variable Declaration
You define pointers as host variables following the normal C practice, as the next
example shows:

int *int_ptr;
char *char_ptr;

Pointer Variable Referencing
In SQL statements, prefix pointers with a colon, as shown in the following example:

EXEC SQL SELECT intcol INTO :int_ptr FROM ...

Pointer Variables

Datatypes and Host Variables 4-37

Except for pointers to character strings, the size of the referenced value is given by the
size of the base type specified in the declaration. For pointers to character strings, the
referenced value is assumed to be a NULL-terminated string. Its size is determined at
run time by calling the strlen() function. For details, see also "Globalization
Support" on page 4-38.

You can use pointers to reference the members of a struct. First, declare a pointer host
variable, then set the pointer to the address of the desired member, as shown in the
example later. The datatypes of the struct member and the pointer variable must be
the same. Most compilers will warn you of a mismatch.

struct
{
 int i;
 char c;
} structvar;
int *i_ptr;
char *c_ptr;
...
main()
{
 i_ptr = &structvar.i;
 c_ptr = &structvar.c;
/* Use i_ptr and c_ptr in SQL statements. */
...

Structure Pointers
You can use a pointer to a structure as a host variable. The following example

■ Declares a structure

■ Declares a pointer to the structure

■ Allocates memory for the structure

■ Uses the struct pointer as a host variable in a query

■ Dereferences the struct components to print the results

struct EMP_REC
{
 int emp_number;
 float salary;
};
char *name = "HINAULT";
...
struct EMP_REC *sal_rec;
sal_rec = (struct EMP_REC *) malloc(sizeof (struct EMP_REC));
...
EXEC SQL SELECT empno, sal INTO :sal_rec
 FROM emp
 WHERE ename = :name;

printf("Employee number and salary for %s: ", name);
printf("%d, %g\n", sal_rec->emp_number, sal_rec->salary);

In the SQL statement, pointers to host structures are referred to in exactly the same
way as a host structure. The "address of" notation (&) is not required; in fact, it is an
error to use it.

Globalization Support

4-38 Pro*C/C++ Programmer’s Guide

Globalization Support
Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain
thousands of characters. These languages can require at least 16 bits (two bytes) to
represent each character. How does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support, which lets you process single-byte and
multibyte character data and convert between character sets. It also lets your
applications run in different language environments. With Globalization Support,
number and date formats adapt automatically to the language conventions specified
for a user session. Thus, Globalization Support allows users around the world to
interact with Oracle in their native languages.

You control the operation of language-dependent features by specifying various
Globalization Support or NLS parameters. Default values for these parameters can be
set in the Oracle initialization file. Table 4–6 shows what each Globalization Support
parameter specifies.

The main parameters are NLS_LANGUAGE and NLS_TERRITORY. NLS_
LANGUAGE specifies the default values for language-dependent features, which
include:

■ Language for server messages

■ Language for day and month names

■ Sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

■ Date format

■ Decimal character

■ Group separator

■ Local currency symbol

■ ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows:

NLS_LANG = <language>_<territory>.<character set>

Table 4–6 Globalization Support Parameters

Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions

NLS_TERRITORY territory-dependent conventions

NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names

NLS_NUMERIC_CHARACTERS decimal character and group separator

NLS_CURRENCY local currency symbol

NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

NCHAR Variables

Datatypes and Host Variables 4-39

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding scheme
used for the terminal. An encoding scheme (usually called a character set or code page)
is a range of numeric codes that corresponds to the set of characters a terminal can
display. It also includes codes that control communication with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define NLS_LANG as
follows:

setenv NLS_LANG French_France.WE8ISO8859P1

During an Oracle database session you can change the values of Globalization Support
parameters. Use the ALTER SESSION statement as follows:

ALTER SESSION SET <globalization support_parameter> = <value>

Pro*C/C++ fully supports all the Globalization Support features that allow your
applications to process foreign language data stored in an Oracle database. For
example, you can declare foreign language character variables and pass them to string
functions such as INSTRB, LENGTHB, and SUBSTRB. These functions have the same
syntax as the INSTR, LENGTH, and SUBSTR functions, respectively, but operate on a
byte-by-byte basis rather than a character-by-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to handle
special instances of case conversion. And, you can use the function NLSSORT to
specify WHERE-clause comparisons based on linguistic rather than binary ordering.
You can even pass globalization support parameters to the TO_CHAR, TO_DATE, and
TO_NUMBER functions. For more information about Globalization Support, see
Oracle Database Application Developer's Guide - Fundamentals.

NCHAR Variables
Three internal database datatypes can store National Character Set data. They are
NCHAR, NCLOB, and NVARCHAR2 (also known as NCHAR VARYING). You use these
datatypes only in relational columns. Pro*C/C++ supported multibyte NCHAR host
variables in earlier releases, with slightly different semantics.

When you set the command-line option NLS_LOCAL to YES, multibyte support with
earlier semantics will be provided by SQLLIB (the letter "N" is stripped from the
quoted string), as in Oracle7. SQLLIB provides blank padding and stripping, sets
indicator variables, and so on.

If you set NLS_LOCAL to NO (the default), releases after Oracle7 support multibyte
strings with the new semantics (the letter "N" will be concatenated in front of the
quoted string). The database, rather than SQLLIB, provides blank padding and
stripping, and setting of indicator variables.

Use NLS_LOCAL=NO for all new applications.

CHARACTER SET [IS] NCHAR_CS
To specify which host variables hold National Character Set data, insert the clause
"CHARACTER SET [IS] NCHAR_CS" in character variable declarations. Then you are
able to store National Character Set data in those variables. You can omit the token IS.
NCHAR_CS is the name of the National Character Set.

For example:

char character set is nchar_cs *str = "<Japanese_string>";

NCHAR Variables

4-40 Pro*C/C++ Programmer’s Guide

In this example, <Japanese_string> consists of Unicode characters that are in the
National Character Set AL16UTF16, as defined by the variable NLS_NCHAR.

You can accomplish the same thing by entering NLS_CHAR=str on the command line,
and coding in your application:

char *str = "<Japanese_string>"

Pro*C/C++ treats variables declared this way as of the character set specified by the
environment variable NLS_NCHAR. The variable size of an NCHAR variable is
specified as a byte count, the same way that ordinary C variables are.

To select data into str, use the following simple query:

EXEC SQL
 SELECT ENAME INTO :str FROM EMP WHERE DEPT = n'<Japanese_string1>';

Or, you can use str in the following SELECT:

EXEC SQL
 SELECT DEPT INTO :dept FROM DEPT_TAB WHERE ENAME = :str;

Environment Variable NLS_NCHAR
Pro*C/C++ supports National Character Sets with database support when NLS_
LOCAL=NO. When NLS_LOCAL=NO, and the new environmental variable NLS_
NCHAR is set to a valid National Character Set, the database server supports
NCHAR. See NLS_NCHAR in the Oracle Database Reference.

NLS_NCHAR specifies the character set used for National Character Set data
(NCHAR, NVARCHAR2, NCLOB). If it is not specified, the character set defined or
indirectly defined by NLS_LANG will be used.

NLS_NCHAR must have a valid National Character Set specification (not a language
name, that is set by NLS_LANG) at both precompile-time and runtime. SQLLIB
performs a runtime check when the first SQL statement is executed. If the
precompile-time and runtime character sets are different, SQLLIB will return an error
code.

CONVBUFSZ Clause in VAR
You can override the default assignments by equivalencing host variables to Oracle
external datatypes, using the EXEC SQL VAR statement, This is called host variable
equivalencing.

The EXEC SQL VAR statement can have an optional clause: CONVBUFSZ (<size>).
You specify the size, <size>, in bytes, of the buffer in the Oracle runtime library used
to perform conversion of the specified host variable between character sets.

The new syntax is:

EXEC SQL VAR host_variable IS datatype [CONVBUFSZ [IS] (size)] ;

or

EXEC SQL VAR host_variable [CONVBUFSZ [IS] (size)];

where datatype is:

type_name [({ length | precision, scale })]

NCHAR Variables

Datatypes and Host Variables 4-41

Character Strings in Embedded SQL
A multibyte character string in an embedded SQL statement consists of a character
literal that identifies the string as multibyte, immediately followed by the string. The
string is enclosed in the usual single quotes.

For example, an embedded SQL statement such as

EXEC SQL SELECT empno INTO :emp_num FROM emp
 WHERE ename = N'<Japanese_string>';

contains a multibyte character string (<Japanese_string> could actually be Kanji), since
the N character literal preceding the string identifies it as a multibyte string. Since
Oracle is case-insensitive, you can use "n" or "N" in the example.

Strings Restrictions
You cannot use datatype equivalencing (the TYPE or VAR commands) with multibyte
character strings.

Dynamic SQL method 4 is not available for multibyte character string host variables in
Pro*C/C++.

Indicator Variables
You can use indicator variables with host character variables that are multibyte
characters (as specified using the NLS_CHAR option).

See Also: "VAR (Oracle Embedded SQL Directive)" on page F-85
for a complete discussion of all keywords, examples, and variables.

NCHAR Variables

4-42 Pro*C/C++ Programmer’s Guide

Advanced Topics 5-1

5
Advanced Topics

This chapter discusses advanced techniques in Pro*C/C++ and contains the following
topics:

■ Character Data

■ Datatype Conversion

■ Datatype Equivalencing

■ The C Preprocessor

■ Precompiled Header Files

■ The Oracle Preprocessor

■ Evaluation of Numeric Constants

■ SQLLIB Extensions for OCI Release 8 Interoperability

■ Interface to OCI Release 8

■ Embedded OCI Release 7 Calls

■ New Names for SQLLIB Public Functions

■ X/Open Application Development

Character Data
This section explains how the Pro*C/C++ Precompiler handles character host
variables. There are four host variable character types:

■ Character arrays

■ Pointers to strings

■ VARCHAR variables

■ Pointers to VARCHARs

Do not confuse VARCHAR (a host variable data structure supplied by the
precompiler) with VARCHAR2 (an Oracle internal datatype for variable-length
character strings).

Precompiler Option CHAR_MAP
The CHAR_MAP precompiler command line option is available to specify the default
mapping of char[n] and char host variables. Oracle maps them to CHARZ. CHARZ
implements the ANSI Fixed Character format. Strings are fixed-length, blank-padded

Character Data

5-2 Pro*C/C++ Programmer’s Guide

and null-terminated. VARCHAR2 values (including nulls) are always fixed-length and
blank-padded. Table 5–1 shows the possible settings of CHAR_MAP:

The default mapping is CHAR_MAP=CHARZ, which was the case in previous
versions of Pro*C/C++.

Use CHAR_MAP=VARCHAR2 instead of the old DBMS=V6_CHAR, which is
obsolete.

Inline Usage of the CHAR_MAP Option
Unless you declared a char or char[n] variable otherwise, the inline CHAR_MAP
option determines its mapping. The following code fragment illustrates the results of
setting this option inline in Pro*C/C++:

char ch_array[5];

strncpy(ch_array, "12345", 5);
/* char_map=charz is the default in Oracle7 and Oracle8 */
EXEC ORACLE OPTION (char_map=charz);
/* Select retrieves a string "AB" from the database */
SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;
/* ch_array == { 'A', 'B', ' ', ' ', '\0' } */

strncpy (ch_array, "12345", 5);
EXEC ORACLE OPTION (char_map=string) ;
/* Select retrieves a string "AB" from the database */
EXEC SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;
/* ch_array == { 'A', 'B', '\0', '4', '5' } */

strncpy(ch_array, "12345", 5);
EXEC ORACLE OPTION (char_map=charf);
/* Select retrieves a string "AB" from the database */
EXEC SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;
/* ch_array == { 'A', 'B', ' ', ' ', ' ' } */

Effect of the DBMS and CHAR_MAP Options
The DBMS and CHAR_MAP options determine how Pro*C/C++ treats data in
character arrays and strings. These options allow your program to observe
compatibility with ANSI fixed-length strings, or to maintain compatibility with
previous releases of Oracle and Pro*C/C++ that use variable-length strings. See

Table 5–1 CHAR_MAP Settings

CHAR_MAP Setting Is Default for Description

VARCHAR2 - All values (including null) are fixed-length
blank-padded.

CHARZ DBMS=V7,
DBMS=V8

Fixed-length blank-padded, then
null-terminated. Conforms to the ANSI
Fixed Character type.

STRING New format null-terminated. Conforms to ASCII format
used in C programs.

CHARF Previously, only
through VAR or
TYPE declarations.

Fixed-length blank-padded. null is left
unpadded.

Character Data

Advanced Topics 5-3

Chapter 10, "Precompiler Options" for a complete description of the DBMS and
CHAR_MAP options.

The DBMS option affects character data both on input (from your host variables to the
Oracle table) and on output (from an Oracle table to your host variables).

Character Array and the CHAR_MAP Option

The mapping of character arrays can also be set by the CHAR_MAP option
independent of the DBMS option. DBMS=V7 or DBMS=V8 both use CHAR_
MAP=CHARZ, which can be overridden by specifying either CHAR_
MAP=VARCHAR2 or STRING or CHARF.

On Input

Character Array On input, the DBMS option determines the format that a host
variable character array must have in your program. When the CHAR_
MAP=VARCHAR2, host variable character arrays must be blank padded, and should
not be null-terminated. When the DBMS=V7 or V8, character arrays must be
null-terminated ('\0').

When the CHAR_MAP option is set to VARCHAR2 trailing blanks are removed up to
the first non-blank character before the value is sent to the database. An un-initialized
character array can contain null characters. To make sure that the nulls are not inserted
into the table, you must blank-pad the character array to its length. For example, if you
execute the statements:

char emp_name[10];
...
strcpy(emp_name, "MILLER"); /* WRONG! Note no blank-padding */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
 (1234, :emp_name, 20);

you will find that the string "MILLER" was inserted as "MILLER\0\0\0\0" (with four
null bytes appended to it). This value does not meet the following search condition:

. . . WHERE ename = 'MILLER';

To INSERT the character array when CHAR_MAP is set to VARCHAR2, you should
execute the statements

strncpy(emp_name, "MILLER ", 10); /* 4 trailing blanks */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
 (1234, :emp_name, 20);

When DBMS=V7 or V8, input data in a character array must be null-terminated. So,
make sure that your data ends with a null.

char emp_name[11]; /* Note: one greater than column size of 10 */
...
strcpy(emp_name, "MILLER"); /* No blank-padding required */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES
 (1234, :emp_name, 20);

Character Pointer The pointer must address a null-terminated buffer that is large
enough to hold the input data. Your program must allocate enough memory to do this.

Character Data

5-4 Pro*C/C++ Programmer’s Guide

On Input
The following example illustrates all possible combinations of the effects of the
CHAR_MAP option settings on the value retrieved from a database into a character
array.

Assume a database

TABLE strdbase (..., strval VARCHAR2(6));

which contains the following strings in the column strval:

"" -- string of length 0
"AB" -- string of length 2
"KING" -- string of length 4
"QUEEN" -- string of length 5
"MILLER" -- string of length 6

In a Pro*C/C++ program, initialize the 5-character host array str with 'X' characters
and use for the retrieval of all the values in column strval:

char str[5] = {'X', 'X', 'X','X', 'X'} ;
short str_ind;
...
EXEC SQL SELECT strval INTO :str:str_ind WHERE ... ;

with the following results for the array, str, and the indicator variable, str_ind, as
CHAR_MAP is set to VARCHAR2, CHARF, CHARZ and STRING:

strval = "" "AB" "KING" "QUEEN" "MILLER"

VARCHAR2 " " -1 "AB " 0 "KING " 0 "QUEEN" 0 "MILLE" 6
CHARF "XXXXX" -1 "AB " 0 "KING " 0 "QUEEN" 0 "MILLE" 6
CHARZ " 0" -1 "AB 0" 0 "KING0" 0 "QUEE0" 5 "MILL0" 6
STRING "0XXXX" -1 "AB0XX" 0 "KING0" 0 "QUEE0" 5 "MILL0" 6

where 0 stands for the null character, '\0'.

On Output

Character Array On output, the DBMS and CHAR_MAP options determines the
format that a host variable character array will have in your program. When CHAR_
MAP=VARCHAR2, host variable character arrays are blank padded up to the length
of the array, but never null-terminated. When DBMS=V7 or V8 (or CHAR_
MAP=CHARZ), character arrays are blank padded, then null-terminated in the final
position in the array.

Consider the following example of character output:

CREATE TABLE test_char (C_col CHAR(10), V_col VARCHAR2(10));

INSERT INTO test_char VALUES ('MILLER', 'KING');

A precompiler program to select from this table contains the following embedded
SQL:

...
char name1[10];
char name2[10];
...
EXEC SQL SELECT C_col, V_col INTO :name1, :name2

Character Data

Advanced Topics 5-5

 FROM test_char;

If you precompile the program with CHAR_MAP=VARCHAR2, name1 will contain:

"MILLER####"

that is, the name "MILLER" followed by 4 blanks, with no null-termination. (If name1
had been declared with a size of 15, there are 9 blanks following the name.)

name2 will contain:

"KING######" /* 6 trailing blanks */

If you precompile the program with DBMS=V7 or V8, name1 will contain:

"MILLER###\0" /* 3 trailing blanks, then a null-terminator */

that is, a string containing the name, blank-padded to the length of the column,
followed by a null terminator. name2 will contain:

"KING#####\0"

In summary, if CHAR_MAP=VARCHAR2, the output from either a CHARACTER
column or a VARCHAR2 column is blank-padded to the length of the host variable
array. If DBMS=V7 or V8, the output string is always null-terminated.

Character Pointer The DBMS and CHAR_MAP options do not affect the way
character data are output to a pointer host variable.

When you output data to a character pointer host variable, the pointer must point to a
buffer large enough to hold the output from the table, plus one extra byte to hold a
null terminator.

The precompiler runtime environment calls strlen() to determine the size of the
output buffer, so make sure that the buffer does not contain any embedded nulls ('\0').
Fill allocated buffers with some value other than '\0', then null-terminate the buffer,
before fetching the data.

The following code fragment uses the columns and table defined in the previous
section, and shows how to declare and SELECT into character pointer host variables:

...
char *p_name1;
char *p_name2;
...
p_name1 = (char *) malloc(11);
p_name2 = (char *) malloc(11);
strcpy(p_name1, " ");
strcpy(p_name2, "0123456789");

EXEC SQL SELECT C_col, V_col INTO :p_name1, :p_name2
 FROM test_char;

Note: C pointers can be used in a Pro*C/C++ program that is
precompiled with DBMS=V7 or V8 and MODE=ANSI. However,
pointers are not legal host variable types in a SQL standard
compliant program. The FIPS flagger warns you if you use pointers
as host variables.

Character Data

5-6 Pro*C/C++ Programmer’s Guide

When the SELECT statement mentioned earlier is executed with any DBMS or CHAR_
MAP setting, the value fetched is:

"MILLER####\0" /* 4 trailing blanks and a null terminator */

"KING######\0" /* 6 blanks and null */

VARCHAR Variables and Pointers
The following example shows how VARCHAR host variables are declared:

VARCHAR emp_name1[10]; /* VARCHAR variable */
VARCHAR *emp_name2; /* pointer to VARCHAR */

On Input

VARCHAR Variables When you use a VARCHAR variable as an input host variable,
your program need only place the desired string in the array member of the expanded
VARCHAR declaration (emp_name1.arr in our example) and set the length member
(emp_name1.len). There is no need to blank-pad the array. Exactly emp_name1.len
characters are sent to Oracle, counting any blanks and nulls. In the following example,
you set emp_name1.len to 8:

strcpy((char *)emp_name1.arr, "VAN HORN");
emp_name1.len = strlen((char *)emp_name1.arr);

Pointer to a VARCHAR When you use a pointer to a VARCHAR as an input host
variable, you must allocate enough memory for the expanded VARCHAR declaration.
Then, you must place the desired string in the array member and set the length
member, as shown in the following example:

emp_name2 = malloc(sizeof(short) + 10) /* len + arr */
strcpy((char *)emp_name2->arr, "MILLER");
emp_name2->len = strlen((char *)emp_name2->arr);

Or, to make emp_name2 point to an existing VARCHAR (emp_name1 in this case), you
could code the assignment

emp_name2 = &emp_name1;

then use the VARCHAR pointer in the usual way, as in

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:emp_number, :emp_name2, :dept_number);

On Output

VARCHAR Variables When you use a VARCHAR variable as an output host variable,
the program interface sets the length member but does not null-terminate the array
member. As with character arrays, your program can null-terminate the arr member of
a VARCHAR variable before passing it to a function such as printf() or strlen().
An example follows:

emp_name1.arr[emp_name1.len] = '\0';
printf("%s", emp_name1.arr);

Or, you can use the length member to limit the printing of the string, as in:

Character Data

Advanced Topics 5-7

printf("%.*s", emp_name1.len, emp_name1.arr);

An advantage of VARCHAR variables over character arrays is that the length of the
value returned by Oracle is available immediately. With character arrays, you might
need to strip the trailing blanks yourself to get the actual length of the character string.

VARCHAR Pointers When you use a pointer to a VARCHAR as an output host
variable, the program interface determines the variable's maximum length by checking
the length member (emp_name2->len in our example). So, your program must set this
member before every fetch. The fetch then sets the length member to the actual number
of characters returned, as the following example shows:

emp_name2->len = 10; /* Set maximum length of buffer. */
EXEC SQL SELECT ENAME INTO :emp_name2 WHERE EMPNO = 7934;
printf("%d characters returned to emp_name2", emp_name2->len);

Unicode Variables
Pro*C/C++ allows fixed-width Unicode data (character set Unicode Standard Version
3.0, known simply as UCS-16) in host char variables. UCS-16 uses 2 bytes for each
character, so it is an unsigned 2-byte datatype. SQL statement text in UCS-16 is not
supported yet.

In the following example code a host variable, employee, of the Unicode type utext is
declared to be 20 Unicode characters long. A table emp is created containing the
column ename, which is 60 bytes long, so that database character sets in Asian
languages, where multibyte characters are up to three bytes long, will be supported.

utext employee[20] ; /* Unicode host variable */
EXEC SQL CREATE TABLE emp (ename CHAR(60));
/* ename is in the current database character set */
EXEC SQL INSERT INTO emp (ename) VALUES ('test') ;
/* 'test' in NLS_LANG encoding converted to database character set */
EXEC SQL SELECT * INTO :employee FROM emp ;
/* Database character set converted to Unicode */

A public header file, sqlucs2.h, must be included in your application code. It does the
following:

■ Contains the statement:

 #include <oratypes.h>

■ Defines a "Unicode varchar", uvarchar, as:

 struct uvarchar
 {
 ub2 len;
 utext arr[1] ;
 };
 typedef struct uvarchar uvarchar ;

■ Defines a "Unicode long varchar", ulong_varchar, as:

 struct ulong_varchar
 {
 ub4 len ;
 utext arr[1] ;
 }
 typedef struct ulong_varchar ulong_varchar ;

Character Data

5-8 Pro*C/C++ Programmer’s Guide

The default datatype of utext is the same as the default for any character variables,
CHARZ, which is blank-padded and null-terminated.

Use the CHAR_MAP precompiler option to change the default datatype, as follows:

#include <sqlca.h>
#include <sqlucs2.h>

main()
{
 utext employee1[20] ;

/* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 utext employee2[20] ;

 EXEC SQL CREATE TABLE emp (ename CHAR(60)) ;
 ...
/***
 Initializing employee1 or employee2 is compiler-dependent.
 **/
 EXEC SQL INSERT INTO emp (ename) VALUES (:employee1) ;
 ...
 EXEC SQL SELECT ename INTO :employee2 FROM emp;
/* employee2 is now not blank-padded and is null-terminated */
 ...

Restrictions on Unicode Variable Usage
■ Static and dynamic SQL cannot contain Unicode in the SQL statement text. The

following is not permitted:

#include oratypes.h
utext sqlstmt[100] ;
...
/* If sqlstmt contains a SQL statement: */
EXEC SQL PREPARE s1 FROM :sqlstmt ;
EXEC SQL EXECUTE IMMEDIATE :sqlstmt ;
...

■ You cannot use type equivalencing for utext variables. The following code is not
permitted:

 typedef utext utext_5 ;
 EXEC SQL TYPE utext_5 IS STRING ;

■ CONVBUFSZ cannot be used as a conversion buffer size. Use the CHAR_MAP
option instead.

■ Oracle dynamic SQL method 4 does not support Unicode.

■ Object types do not support Unicode.

See Also:

■ "CONVBUFSZ Clause in VAR" on page 4-40

■ Chapter 14, "ANSI Dynamic SQL" describes the ANSI dynamic
SQL method 4

■ Chapter 17, "Objects" describes object types

Datatype Equivalencing

Advanced Topics 5-9

Datatype Conversion
At precompile time, a default external datatype is assigned to each host variable. For
example, the precompiler assigns the INTEGER external datatype to host variables of
type short int and int.

At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external
datatypes.

Before assigning a SELECTed column (or pseudocolumn) value to an output host
variable, Oracle must convert the internal datatype of the source column to the
datatype of the host variable. Likewise, before assigning or comparing the value of an
input host variable to a column, Oracle must convert the external datatype of the host
variable to the internal datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of "1234" to a C short value. You
cannot convert a CHAR value of "65543" (number too large) or "10F" (number not
decimal) to a C short value. Likewise, you cannot convert a char[n] value that
contains any alphabetic characters to a NUMBER value.

Datatype Equivalencing
Datatype equivalencing lets you control the way Oracle interprets input data, and the
way Oracle formats output data. It provides the ability to override the default external
datatypes that the precompiler assigns. On a variable-by-variable basis, you can map
(or make equivalent) supported C host variable datatypes to Oracle external
datatypes. You can also map user-defined datatypes to Oracle external datatypes.

Host Variable Equivalencing
By default, the Pro*C/C++ Precompiler assigns a specific external datatype to every
host variable.

Table 5–2 lists the default assignments:

With the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes. The syntax you use is

Table 5–2 Default Type Assignments

C Type, or Pseudotype Oracle External Type Notes

char

char[n]

char*

VARCHAR2

CHARZ

STRING

CHARF

(CHAR_MAP=VARCHAR2)

(DBMS=V7, V8 default)

(CHAR_MAP=STRING)

(CHAR_MAP=CHARF)

int, int* INTEGER -

short, short* INTEGER -

long, long* INTEGER -

float, float* FLOAT -

double, double* FLOAT -

VARCHAR*, VARCHAR[n] VARCHAR -

Datatype Equivalencing

5-10 Pro*C/C++ Programmer’s Guide

EXEC SQL VAR host_variable IS type_name [(length)];

where host_variable is an input or output host variable (or host array) declared earlier,
type_name is the name of a valid external datatype, and length is an integer literal
specifying a valid length in bytes.

Host variable equivalencing is useful in several ways. For example, suppose you want
to SELECT employee names from the EMP table, then pass them to a routine that
expects null-terminated strings. You need not explicitly null-terminate the names.
Simply equivalence a host variable to the STRING external datatype, as follows:

...
char emp_name[11];
EXEC SQL VAR emp_name IS STRING(11);

The length of the ENAME column in the EMP table is 10 characters, so you allot the
new emp_name 11 characters to accommodate the null terminator. When you SELECT a
value from the ENAME column into emp_name, the program interface null-terminates
the value for you.

You can use any external datatypes except NUMBER (for example, VARNUM).

User-Defined Type Equivalencing
You can also map (or make equivalent) user-defined datatypes to Oracle external
datatypes. First, define a new datatype structured like the external datatype that suits
your needs. Then, map your new datatype to the external datatype using the TYPE
statement.

With the TYPE statement, you can assign an Oracle external datatype to a whole class
of host variables. The syntax you use is:

EXEC SQL TYPE user_type IS type_name [(length)] [REFERENCE];

Suppose you need a variable-length string datatype to hold graphics characters. First,
declare a struct with a short length component followed by a 65533-byte data
component. Second, use typedef to define a new datatype based on the struct. Then,
equivalence your new user-defined datatype to the VARRAW external datatype, as
shown in the following example:

struct screen
{
 short len;
 char buff[4000];
};
typedef struct screen graphics;

EXEC SQL TYPE graphics IS VARRAW(4000);
graphics crt; — host variable of type graphics
 ...

You specify a length of 4000 bytes for the new graphics type because that is the
maximum length of the data component in your struct. The precompiler allows for the
len component (and any padding) when it sends the length to the Oracle server.

REFERENCE Clause
You can declare a user-defined type to be a pointer, either explicitly, as a pointer to a
scalar or struct type, or implicitly, as an array, and use this type in an EXEC SQL TYPE

See Also: " Oracle External Datatypes" on page 4-2

Datatype Equivalencing

Advanced Topics 5-11

statement. In this case, you must use the REFERENCE clause at the end of the
statement, as shown in the following example:

typedef unsigned char *my_raw;

EXEC SQL TYPE my_raw IS VARRAW(4000) REFERENCE;
my_raw graphics_buffer;
...
graphics_buffer = (my_raw) malloc(4004);

In this example, you allocated additional memory over the type length (4000). This is
necessary because the precompiler also returns the length (the size of a short), and can
add padding after the length due to word alignment restrictions on your system. If
you do not know the alignment practices on your system, make sure to allocate
sufficient extra bytes for the length and padding (9 should usually be sufficient).

CHARF External Datatype
CHARF is a fixed-length character string. You can use this datatype in VAR and TYPE
statements to equivalence C datatypes to the fixed-length SQL standard datatype
CHAR, regardless of the setting of the DBMS or CHAR_MAP option.

When DBMS=V7 or V8, specifying the external datatype CHARACTER in a VAR or
TYPE statement equivalences the C datatype to the fixed-length datatype CHAR
(datatype code 96). However, when CHAR_MAP=VARCHAR2, the C datatype is
equivalenced to the variable-length datatype VARCHAR2 (code 1).

Now, you can always equivalence C datatypes to the fixed-length SQL standard type
CHARACTER by using the CHARF datatype in the VAR or TYPE statement. When
you use CHARF, the equivalence is always made to the fixed-length character type,
regardless of the setting of the DBMS or CHAR_MAP option.

The EXEC SQL VAR and TYPE Directives
You can code an EXEC SQL VAR ... or EXEC SQL TYPE ... statement anywhere in your
program. These statements are treated as executable statements that change the
datatype of any variable affected by them from the point that the TYPE or VAR
statement was made to the end of the scope of the variable. If you precompile with
MODE=ANSI, you must use Declare Sections. In this case, the TYPE or VAR statement
must be in a Declare Section.

Example: Datatype Equivalencing (sample4.pc):
The demonstration program in this section shows you how you can use datatype
equivalencing in your Pro*C/C++ programs. This program is available as
sample4.pc in the demo directory.It demonstrates the use of type equivalencing
using the LONG VARRAW external datatype. In order to provide a useful example
that is portable across different systems, the program inserts binary files into and
retrieves them from the database.

This program uses LOB embedded SQL statements. See also Chapter 16, "Large
Objects (LOBs)".

See Also: "Example Program: Using sqlvcp()" on page 4-18

See Also:

■ "TYPE (Oracle Embedded SQL Directive)" on page F-81

■ "VAR (Oracle Embedded SQL Directive)" on page F-85

Datatype Equivalencing

5-12 Pro*C/C++ Programmer’s Guide

Please read the introductory comments for an explanation of the program's purpose.

/***
sample4.pc
This program demonstrates the use of type equivalencing using the
LONG VARRAW external datatype. In order to provide a useful example
that is portable across different systems, the program inserts
binary files into and retrieves them from the database. For
example, suppose you have a file called 'hello' in the current
directory. You can create this file by compiling the following
source code:

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

When this program is run, we get:

$hello
Hello World!

Here is some sample output from a run of sample4:

$sample4
Connected.
Do you want to create (or re-create) the EXECUTABLES table (y/n)? y
EXECUTABLES table successfully dropped. Now creating new table...
EXECUTABLES table created.

Sample 4 Menu. Would you like to:
(I)nsert a new executable into the database
(R)etrieve an executable from the database
(L)ist the executables stored in the database
(D)elete an executable from the database
(Q)uit the program

Enter i, r, l, or q: l

Executables Length (bytes)
-------------------- --------------

Total Executables: 0

Sample 4 Menu. Would you like to:
(I)nsert a new executable into the database
(R)etrieve an executable from the database
(L)ist the executables stored in the database
(D)elete an executable from the database
(Q)uit the program

Enter i, r, l, or q: i
Enter the key under which you will insert this executable: hello
Enter the filename to insert under key 'hello'.
If the file is not in the current directory, enter the full
path: hello
Inserting file 'hello' under key 'hello'...
Inserted.

Datatype Equivalencing

Advanced Topics 5-13

Sample 4 Menu. Would you like to:
(I)nsert a new executable into the database
(R)etrieve an executable from the database
(L)ist the executables stored in the database
(D)elete an executable from the database
(Q)uit the program

Enter i, r, l, or q: l

Executables Length (bytes)
-------------------- --------------
hello 5508

Total Executables: 1

Sample 4 Menu. Would you like to:
(I)nsert a new executable into the database
(R)etrieve an executable from the database
(L)ist the executables stored in the database
(D)elete an executable from the database
(Q)uit the program

Enter i, r, l, or q: r
Enter the key for the executable you wish to retrieve: hello
Enter the file to write the executable stored under key hello into. If you
don't want the file in the current directory, enter the
full path: h1
Retrieving executable stored under key 'hello' to file 'h1'...
Retrieved.

Sample 4 Menu. Would you like to:
(I)nsert a new executable into the database
(R)etrieve an executable from the database
(L)ist the executables stored in the database
(D)elete an executable from the database
(Q)uit the program

Enter i, r, l, or q: q

We now have the binary file 'h1' created, and we can run it:

$h1
Hello World!
***/

#include <oci.h>
#include <string.h>
#include <stdio.h>
#include <sqlca.h>
#include <stdlib.h>
#include <sqlcpr.h>

/* Oracle error code for 'table or view does not exist'. */
#define NON_EXISTENT -942
#define NOT_FOUND 1403

/* This is the definition of the long varraw structure.
 * Note that the first field, len, is a long instead
 * of a short. This is becuase the first 4
 * bytes contain the length, not the first 2 bytes.

Datatype Equivalencing

5-14 Pro*C/C++ Programmer’s Guide

 */
typedef struct long_varraw {
 ub4 len;
 text buf[1];
} long_varraw;

/* Type Equivalence long_varraw to LONG VARRAW.
 * All variables of type long_varraw from this point
 * on in the file will have external type 95 (LONG VARRAW)
 * associated with them.
 */
EXEC SQL TYPE long_varraw IS LONG VARRAW REFERENCE;

/* This program's functions declared. */
#if defined(__STDC__)
 void do_connect(void);
 void create_table(void);
 void sql_error(char *);
 void list_executables(void);
 void print_menu(void);
 void do_insert(varchar *, char *);
 void do_retrieve(varchar *, char *);
 void do_delete(varchar *);
 ub4 read_file(char *, OCIBlobLocator *);
 void write_file(char *, OCIBlobLocator *);
#else
 void do_connect(/*_ void _*/);
 void create_table(/*_ void _*/);
 void sql_error(/*_ char * _*/);
 void list_executables(/*_ void _*/);
 void print_menu(/*_ void _*/);
 void do_insert(/*_ varchar *, char * _*/);
 void do_retrieve(/*_ varchar *, char * _*/);
 void do_delete(/*_ varchar * _*/);
 ub4 read_file(/*_ char *, OCIBlobLocator * _*/);
 void write_file(/*_ char *, OCIBlobLocator * _*/);
#endif

void main()
{
 char reply[20], filename[100];
 varchar key[20];
 short ok = 1;

 /* Connect to the database. */
 do_connect();

 printf("Do you want to create (or re-create) the EXECUTABLES table (y/n)? ");
 gets(reply);

 if ((reply[0] == 'y') || (reply[0] == 'Y'))
 create_table();

 /* Print the menu, and read in the user's selection. */
 print_menu();
 gets(reply);

 while (ok)

Datatype Equivalencing

Advanced Topics 5-15

 {
 switch(reply[0]) {
 case 'I': case 'i':
 /* User selected insert - get the key and file name. */
 printf("Enter the key under which you will insert this executable: ");
 key.len = strlen(gets((char *)key.arr));
 printf("Enter the filename to insert under key '%.*s'.\n",
 key.len, key.arr);
 printf("If the file is not in the current directory, enter the full\n");
 printf("path: ");
 gets(filename);
 do_insert((varchar *)&key, filename);
 break;
 case 'R': case 'r':
 /* User selected retrieve - get the key and file name. */
 printf("Enter the key for the executable you wish to retrieve: ");
 key.len = strlen(gets((char *)key.arr));
 printf("Enter the file to write the executable stored under key ");
 printf("%.*s into. If you\n", key.len, key.arr);
 printf("don't want the file in the current directory, enter the\n");
 printf("full path: ");
 gets(filename);
 do_retrieve((varchar *)&key, filename);
 break;
 case 'L': case 'l':
 /* User selected list - just call the list routine. */
 list_executables();
 break;
 case 'D': case 'd':
 /* User selected delete - get the key for the executable to delete. */
 printf("Enter the key for the executable you wish to delete: ");
 key.len = strlen(gets((char *)key.arr));
 do_delete((varchar *)&key);
 break;
 case 'Q': case 'q':
 /* User selected quit - just end the loop. */
 ok = 0;
 break;
 default:
 /* Invalid selection. */
 printf("Invalid selection.\n");
 break;
 }

 if (ok)
 {
 /* Print the menu again. */
 print_menu();
 gets(reply);
 }
 }

 EXEC SQL COMMIT WORK RELEASE;
}

/* Connect to the database. */
void do_connect()
{
 /* Note this declaration: uid is a char * pointer, so Oracle

Datatype Equivalencing

5-16 Pro*C/C++ Programmer’s Guide

 will do a strlen() on it at runtime to determine the length.
 */
 char *uid = "scott/tiger";

 EXEC SQL WHENEVER SQLERROR DO sql_error("do_connect():CONNECT");
 EXEC SQL CONNECT :uid;

 printf("Connected.\n");
}

/* Creates the executables table. */
void create_table()
{
 /* We are going to check for errors ourselves for this statement. */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL DROP TABLE EXECUTABLES;
 if (sqlca.sqlcode == 0)
 {
 printf("EXECUTABLES table successfully dropped. ");
 printf("Now creating new table...\n");
 }
 else if (sqlca.sqlcode == NON_EXISTENT)
 {
 printf("EXECUTABLES table does not exist. ");
 printf("Now creating new table...\n");
 }
 else
 sql_error("create_table()");

 /* Reset error handler. */
 EXEC SQL WHENEVER SQLERROR DO sql_error("create_table():CREATE TABLE");

 EXEC SQL CREATE TABLE EXECUTABLES
 (name VARCHAR2(30), length NUMBER(10), binary BLOB) ;

 printf("EXECUTABLES table created.\n");
}

/* Opens the binary file identified by 'filename' for reading, and writes
 it into into a Binary LOB. Returns the actual length of the file read.
 */
ub4 read_file(filename, blob)
 char *filename;
 OCIBlobLocator *blob;
{
 long_varraw *lvr;
 ub4 bufsize;
 ub4 amt;
 ub4 filelen, remainder, nbytes;
 ub4 offset = 1;
 boolean last = FALSE;
 FILE *in_fd;

 /* Open the file for reading. */
 in_fd = fopen(filename, "r");
 if (in_fd == (FILE *)0)
 return (ub4)0;

Datatype Equivalencing

Advanced Topics 5-17

 /* Determine Total File Length - Total Amount to Write to BLOB */
 (void) fseek(in_fd, 0L, SEEK_END);
 amt = filelen = (ub4)ftell(in_fd);

 /* Determine the Buffer Size and Allocate the LONG VARRAW Object */
 bufsize = 2048;
 lvr = (long_varraw *)malloc(sizeof(ub4) + bufsize);

 nbytes = (filelen > bufsize) ? bufsize : filelen;

 /* Reset the File Pointer and Perform the Initial Read */
 (void) fseek(in_fd, 0L, SEEK_SET);
 lvr->len = fread((void *)lvr->buf, (size_t)1, (size_t)nbytes, in_fd);
 remainder = filelen - nbytes;

 EXEC SQL WHENEVER SQLERROR DO sql_error("read_file():WRITE");

 if (remainder == 0)
 {
 /* Write the BLOB in a Single Piece */
 EXEC SQL LOB WRITE ONE :amt
 FROM :lvr WITH LENGTH :nbytes INTO :blob AT :offset;
 }
 else
 {
 /* Write the BLOB in Multiple Pieces using Standard Polling */
 EXEC SQL LOB WRITE FIRST :amt
 FROM :lvr WITH LENGTH :nbytes INTO :blob AT :offset;

 do {

 if (remainder > bufsize)
 nbytes = bufsize;
 else
 {
 nbytes = remainder;
 last = TRUE;
 }

 if ((lvr->len = fread(
 (void *)lvr->buf, (size_t)1, (size_t)nbytes, in_fd)) != nbytes)
 last = TRUE;

 if (last)
 {
 /* Write the Final Piece */
 EXEC SQL LOB WRITE LAST :amt
 FROM :lvr WITH LENGTH :nbytes INTO :blob;
 }
 else
 {
 /* Write an Interim Piece - Still More to Write */
 EXEC SQL LOB WRITE NEXT :amt
 FROM :lvr WITH LENGTH :nbytes INTO :blob;
 }

 remainder -= nbytes;

 } while (!last && !feof(in_fd));
 }

Datatype Equivalencing

5-18 Pro*C/C++ Programmer’s Guide

 /* Close the file, and return the total file size. */
 fclose(in_fd);
 free(lvr);
 return filelen;
}

/* Generic error handler. The 'routine' parameter should contain the name
 of the routine executing when the error occured. This would be specified
 in the 'EXEC SQL WHENEVER SQLERROR DO sql_error()' statement.
 */
void sql_error(routine)
 char *routine;
{
 char message_buffer[512];
 size_t buffer_size;
 size_t message_length;

 /* Turn off the call to sql_error() to avoid a possible infinite loop */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\nOracle error while executing %s!\n", routine);

 /* Use sqlglm() to get the full text of the error message. */
 buffer_size = sizeof(message_buffer);
 sqlglm(message_buffer, &buffer_size, &message_length);
 printf("%.*s\n", message_length, message_buffer);

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

/* Opens the binary file identified by 'filename' for writing, and copies
 the contents of the Binary LOB into it.
 */
void write_file(filename, blob)
 char *filename;
 OCIBlobLocator *blob;
{
 FILE *out_fd; /* File descriptor for the output file */
 ub4 amt;
 ub4 bufsize;
 long_varraw *lvr;

 /* Determine the Buffer Size and Allocate the LONG VARRAW Object */
 bufsize = 2048;
 lvr = (long_varraw *)malloc(sizeof(ub4) + bufsize);

 /* Open the output file for Writing */
 out_fd = fopen(filename, "w");
 if (out_fd == (FILE *)0)
 return;

 amt = 0; /* Initialize for Standard Polling (Possibly) */
 lvr->len = bufsize; /* Set the Buffer Length */

 EXEC SQL WHENEVER SQLERROR DO sql_error("write_file():READ");

Datatype Equivalencing

Advanced Topics 5-19

 /* READ the BLOB using a Standard Polling Loop */
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 EXEC SQL LOB READ :amt FROM :blob INTO :lvr WITH LENGTH :bufsize;
 (void) fwrite((void *)lvr->buf, (size_t)1, (size_t)lvr->len, out_fd);
 }

 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 /* Write the Final Piece (or First and Only Piece if not Polling) */
 (void) fwrite((void *)lvr->buf, (size_t)lvr->len, (size_t)1, out_fd);

 /* Close the Output File and Return */
 fclose(out_fd);
 free(lvr);
 return;
}

/* Inserts the binary file identified by file into the
 * executables table identified by key.
 */
void do_insert(key, file)
 varchar *key;
 char *file;
{
 OCIBlobLocator *blob;
 ub4 loblen, fillen;

 EXEC SQL ALLOCATE :blob;

 EXEC SQL WHENEVER SQLERROR DO sql_error("do_insert():INSERT/SELECT");

 EXEC SQL SAVEPOINT PREINSERT;
 EXEC SQL INSERT
 INTO executables (name, length, binary) VALUES (:key, 0, empty_blob());

 EXEC SQL SELECT binary INTO :blob
 FROM executables WHERE name = :key FOR UPDATE;

 printf(
 "Inserting file '%s' under key '%.*s'...\n", file, key->len, key->arr);

 fillen = read_file(file, blob);
 EXEC SQL LOB DESCRIBE :blob GET LENGTH INTO :loblen;

 if ((fillen == 0) || (fillen != loblen))
 {
 printf("Problem reading file '%s'\n", file);
 EXEC SQL ROLLBACK TO SAVEPOINT PREINSERT;
 EXEC SQL FREE :blob;
 return;
 }

 EXEC SQL WHENEVER SQLERROR DO sql_error("do_insert():UPDATE");
 EXEC SQL UPDATE executables
 SET length = :loblen, binary = :blob WHERE name = :key;

Datatype Equivalencing

5-20 Pro*C/C++ Programmer’s Guide

 EXEC SQL COMMIT WORK;

 EXEC SQL FREE :blob;
 EXEC SQL COMMIT;
 printf("Inserted.\n");
}

/* Retrieves the executable identified by key into file */
void do_retrieve(key, file)
 varchar *key;
 char *file;
{
 OCIBlobLocator *blob;

 printf("Retrieving executable stored under key '%.*s' to file '%s'...\n",
 key->len, key->arr, file);

 EXEC SQL ALLOCATE :blob;

 EXEC SQL WHENEVER NOT FOUND continue;
 EXEC SQL SELECT binary INTO :blob FROM executables WHERE name = :key;

 if (sqlca.sqlcode == NOT_FOUND)
 printf("Key '%.*s' not found!\n", key->len, key->arr);
 else
 {
 write_file(file, blob);
 printf("Retrieved.\n");
 }

 EXEC SQL FREE :blob;
}

/* Delete an executable from the database */
void do_delete(key)
 varchar *key;
{
 EXEC SQL WHENEVER SQLERROR DO sql_error("do_delete():DELETE");
 EXEC SQL DELETE FROM executables WHERE name = :key;

 if (sqlca.sqlcode == NOT_FOUND)
 printf("Key '%.*s' not found!\n", key->len, key->arr);
 else
 printf("Deleted.\n");
}

/* List all executables currently stored in the database */
void list_executables()
{
 char key[21];
 ub4 length;

 EXEC SQL WHENEVER SQLERROR DO sql_error("list_executables");

 EXEC SQL DECLARE key_cursor CURSOR FOR
 SELECT name, length FROM executables;

The C Preprocessor

Advanced Topics 5-21

 EXEC SQL OPEN key_cursor;

 printf("\nExecutables Length (bytes)\n");
 printf("-------------------- --------------\n");

 EXEC SQL WHENEVER NOT FOUND DO break;
 while (1)
 {
 EXEC SQL FETCH key_cursor INTO :key, :length;
 printf("%s %10d\n", key, length);
 }

 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL CLOSE key_cursor;

 printf("\nTotal Executables: %d\n", sqlca.sqlerrd[2]);
}

/* Prints the menu selections. */
void print_menu()
{
 printf("\nSample 4 Menu. Would you like to:\n");
 printf("(I)nsert a new executable into the database\n");
 printf("(R)etrieve an executable from the database\n");
 printf("(L)ist the executables stored in the database\n");
 printf("(D)elete an executable from the database\n");
 printf("(Q)uit the program\n\n");
 printf("Enter i, r, l, or q: ");
}

The C Preprocessor
Pro*C/C++ supports most C preprocessor directives. Some of the things that you can
do using the Pro*C/C++ preprocessor are:

■ Define constants and macros using the #define directive, and use the defined
entities to parameterize Pro*C/C++ datatype declarations, such as VARCHAR

■ Read files required by the precompiler, such as sqlca.h, using the #include
directive

■ Define constants and macros in a separate file, and have the precompiler read this
file using the #include directive

How the Pro*C/C++ Preprocessor Works
The Pro*C/C++ preprocessor recognizes most C preprocessor commands, and
effectively performs the required macro substitutions, file inclusions, and conditional
source text inclusions or exclusions. The Pro*C/C++ preprocessor uses the values
obtained from preprocessing, and alters the source output text (the generated .c
output file).

An example should clarify this point. Consider the following program fragment:

#include "my_header.h"
...
VARCHAR name[VC_LEN]; /* a Pro*C-supplied datatype */
char another_name[VC_LEN]; /* a pure C datatype */

The C Preprocessor

5-22 Pro*C/C++ Programmer’s Guide

...

Suppose the file my_header.h in the current directory contains, among other things,
the line

#define VC_LEN 20

The precompiler reads the file my_header.h, and uses the defined value of VC_LEN
(20), declares the structure of name as VARCHAR[20].

char is a native type. The precompiler does not substitute 20 in the declaration of
another_name[VC_LEN].

This does not matter, since the precompiler does not need to process declarations of C
datatypes, even when they are used as host variables. It is left up to the C compiler's
preprocessor to actually include the file my_header.h, and perform the substitution
of 20 for VC_LEN in the declaration of another_name.

Preprocessor Directives
The preprocessor directives that Pro*C/C++ supports are:

■ #define, to create macros for use by the precompiler and the C or C++ compiler

■ #include, to read other source files for use by the precompiler

■ #if, to precompile and compile source text based on evaluation of a constant
expression to 0

■ #ifdef, to precompile and compile source text conditionally, depending on the
existence of a defined constant

■ #ifndef, to exclude source text conditionally

■ #endif, to end an #if or #ifdef or #ifndef command

■ #else, to select an alternative body of source text to be precompiled and compiled,
in case an #if or #ifdef or #ifndef condition is not satisfied

■ #elif, to select an alternative body of source text to be precompiled and compiled,
depending on the value of a constant or a macro argument

Directives Ignored
Some C preprocessor directives are not used by the Pro*C/C++ preprocessor. Most of
these directives are not relevant for the precompiler. For example, #pragma is a
directive for the C compiler—the precompiler does not process it. The C preprocessor
directives not processed by the precompiler are:

■ #, to convert a preprocessor macro parameter to a string constant

■ ##, to merge two preprocessor tokens in a macro definition

■ #error, to produce a compile-time error message

■ #pragma, to pass implementation-dependent information to the C compiler

■ #line, to supply a line number for C compiler messages

While your C compiler preprocessor may support these directives, Pro*C/C++ does
not use them. Most of these directives are not used by the precompiler. You can use
these directives in your Pro*C/C++ program if your compiler supports them, but only
in C or C++ code, not in embedded SQL statements or declarations of variables using
datatypes supplied by the precompiler, such as VARCHAR.

The C Preprocessor

Advanced Topics 5-23

ORA_PROC Macro
Pro*C/C++ predefines a C preprocessor macro called ORA_PROC that you can use to
avoid having the precompiler process unnecessary or irrelevant sections of code. Some
applications include large header files, which provide information that is unnecessary
when precompiling. By conditionally excluding such header files based on the ORA_
PROC macro, the precompiler never reads the file.

The following example uses the ORA_PROC macro to exclude the irrelevant.h
file:

#ifndef ORA_PROC
#include <irrelevant.h>
#endif

Because ORA_PROC is defined during precompilation, the irrelevant.h file is
never included.

The ORA_PROC macro is available only for C preprocessor directives, such as #ifdef
or #ifndef. The EXEC ORACLE conditional statements do not share the same
namespaces as the C preprocessor macros. Therefore, the condition in the following
example does not use the predefined ORA_PROC macro:

EXEC ORACLE IFNDEF ORA_PROC;
 <section of code to be ignored>
EXEC ORACLE ENDIF;

ORA_PROC, in this case, must be set using either the DEFINE option or an EXEC
ORACLE DEFINE statement for this conditional code fragment to work properly.

Location of Header File Specification
The Pro*C/C++ Precompiler for each system assumes a standard location for header
files to be read by the preprocessor, such as sqlca.h, oraca.h, and sqlda.h. For
example, on most UNIX systems, the standard location is $ORACLE_
HOME/precomp/public. For the default location on your system, see your
system-specific Oracle documentation. If header files that you need to include are not
in the default location, you must use the INCLUDE= option, on the command line or
as an EXEC ORACLE option.

To specify the location of system header files, such as stdio.h or iostream.h,
where the location might be different from that hard-coded into Pro*C/C++ use the
SYS_INCLUDE precompiler option.

Some Preprocessor Examples
You can use the #define command to create named constants, and use them in place of
"magic numbers" in your source code. You can use #defined constants for declarations
that the precompiler requires, such as VARCHAR[const]. For example, instead of code
with bugs, such as:

...
VARCHAR emp_name[10];
VARCHAR dept_loc[14];
...
...
/* much later in the code ... */

See Also: Chapter 10, "Precompiler Options" for information on
the precompiler options, and about the EXEC ORACLE options.

The C Preprocessor

5-24 Pro*C/C++ Programmer’s Guide

f42()
{
 /* did you remember the correct size? */
 VARCHAR new_dept_loc[10];
 ...
}

you can code:

#define ENAME_LEN 10
#define LOCATION_LEN 14
VARCHAR new_emp_name[ENAME_LEN];
 ...
/* much later in the code ... */
f42()
{
 VARCHAR new_dept_loc[LOCATION_LEN];
 ...
}

You can use preprocessor macros with arguments for objects that the precompiler must
process, just as you can for C objects. For example:

#define ENAME_LEN 10
#define LOCATION_LEN 14
#define MAX(A,B) ((A) > (B) ? (A) : (B))

 ...
f43()
{
 /* need to declare a temporary variable to hold either an
 employee name or a department location */
 VARCHAR name_loc_temp[MAX(ENAME_LEN, LOCATION_LEN)];
 ...
}

You can use the #include, #ifdef and #endif preprocessor directives to conditionally
include a file that the precompiler requires. For example:

#ifdef ORACLE_MODE
#include <sqlca.h>
#else
 long SQLCODE;
#endif

Using #define
There are restrictions on the use of the #define preprocessor directive in Pro*C/C++
You cannot use the #define directive to create symbolic constants for use in executable
SQL statements. The following invalid example demonstrates this:

#define RESEARCH_DEPT 40
...
EXEC SQL SELECT empno, sal
 INTO :emp_number, :salary /* host arrays */
 FROM emp
 WHERE deptno = RESEARCH_DEPT; /* INVALID! */

The only declarative SQL statements where you can legally use a #defined macro are
TYPE and VAR statements. So, for example, the following uses of a macro are legal in
Pro*C/C++

The C Preprocessor

Advanced Topics 5-25

#define STR_LEN 40
...
typedef char asciiz[STR_LEN];
...
EXEC SQL TYPE asciiz IS STRING(STR_LEN) REFERENCE;
...
EXEC SQL VAR password IS STRING(STR_LEN);

Other Preprocessor Restrictions
The preprocessor ignores directives # and ## to create tokens that the precompiler
must recognize. You can use these commands (if your compiler supports them) in pure
C code that the precompiler does not have to process. Using the preprocessor
command ## is not valid in this example:

#define MAKE_COL_NAME(A) col ## A
...
EXEC SQL SELECT MAKE_COL_NAME(1), MAKE_COL_NAME(2)
 INTO :x, :y
 FROM table1;

The example is incorrect because the precompiler ignores ##.

SQL Statements Not Allowed in #include
Because of the way the Pro*C/C++ preprocessor handles the #include directive, as
described in the previous section, you cannot use the #include directive to include
files that contain embedded SQL statements. You use #include to include files that
contain purely declarative statements and directives; for example, #defines, and
declarations of variables and structures required by the precompiler, such as in
sqlca.h.

Include the SQLCA, ORACA, and SQLDA
You can include the sqlca.h, oraca.h, and sqlda.h declaration header files in
your Pro*C/C++ program using either the C/C++ preprocessor #include command,
or the precompiler EXEC SQL INCLUDE command. For example, you use the
following statement to include the SQL Communications Area structure (SQLCA) in
your program with the EXEC SQL option:

EXEC SQL INCLUDE sqlca;

To include the SQLCA using the C/C++ preprocessor directive, add the following
code:

#include <sqlca.h>

When you use the preprocessor #include directive, you must specify the file extension
(such as .h).

See Also: Chapter 9, "Handling Runtime Errors" for complete
information on the content of the sqlca.h, oraca.h, and the
sqlda.h header files.

The C Preprocessor

5-26 Pro*C/C++ Programmer’s Guide

When you precompile a file that contains a #include directive or an EXEC SQL
INCLUDE statement, you have to tell the precompiler the location of all files to be
included. You can use the INCLUDE= option, either in the command line, or in the
system configuration file, or in the user configuration file.

The default location for standard preprocessor header files, such as sqlca.h,
oraca.h, and sqlda.h, is preset in the precompiler. The location varies from system
to system. See your system-specific Oracle documentation for the default location on
your system.

When you compile the .c output file that Pro*C/C++ generates, you must use the
option provided by your compiler and operating system to identify the location of
included files.

For example, on most UNIX systems, you can compile the generated C source file
using the command

cc -o progname -I$ORACLE_HOME/sqllib/public ... filename.c ...

On VAX/OPENVMS systems, you pre-pend the include directory path to the value in
the logical VAXC$INCLUDE.

EXEC SQL INCLUDE and #include Summary
When you use an EXEC SQL INCLUDE statement in your program, the precompiler
includes the source text in the output (.c) file. Therefore, you can have declarative and
executable embedded SQL statements in a file that is included using EXEC SQL
INCLUDE.

When you include a file using #include, the precompiler merely reads the file, and
keeps track of #defined macros.

Note: If you need to include the SQLCA in multiple places, using
the #include directive, you should precede the #include with the
directive #undef SQLCA. This is because sqlca.h starts with the
lines

 #ifndef SQLCA
 #define SQLCA 1

and then declares the SQLCA struct only in the case that SQLCA is
not defined.

See Also: Chapter 10, "Precompiler Options" for more
information about the INCLUDE precompiler option, the
precedence of searches for included files, and configuration files.

Caution: VARCHAR declarations and SQL statements are not
allowed in included (#include) files. For this reason, you cannot
use SQL statements in files included using the Pro*C/C++
preprocessor #include directive.

Precompiled Header Files

Advanced Topics 5-27

Defined Macros
If you define macros on the C compiler's command line, you might also have to define
these macros on the precompiler command line, depending on the requirements of
your application. For example, if you compile with a UNIX command line such as

cc -DDEBUG ...

you should precompile using the DEFINE= option, namely

proc DEFINE=DEBUG ...

Include Files
The location of all included files that need to be precompiled must be specified on the
command line, or in a configuration file.

For example, if you are developing under UNIX, and your application includes files in
the directory /home/project42/include, you must specify this directory both on
the Pro*C/C++ command line and on the cc command line. You use commands like
these:

proc iname=my_app.pc include=/home/project42/include ...
cc -I/home/project42/include ... my_app.c

or you include the appropriate macros in a makefile. For complete information about
compiling and linking your Pro*C/C++ application, see your system-specific Oracle
documentation.

Precompiled Header Files
Precompiled header files save time and resources by precompiling header files that
contain many #include statements. The two steps in using this feature are:

■ The precompiled header file is created first,

■ The precompiled header is then automatically used in subsequent precompilation
of your application.

Use this capability with large applications that have many modules.

The precompiler option, HEADER=hdr, specifies

■ That precompiled headers are to be used,

■ That the file extension for the output file to be generated is hdr.

This option can only be entered in a configuration file or on the command line. There
is no default value for HEADER, but the input header must have a .h extension.

Precompiled Header File Creation
Assume that you have a header file called top.h.Then you can precompile it,
specifying that HEADER=hdr:

proc HEADER=hdr INAME=top.h

See Also: "INCLUDE" on page 10-19, for complete information
about precompiler options and configuration files.

Precompiled Header Files

5-28 Pro*C/C++ Programmer’s Guide

Pro*C/C++ precompiles the given input file, top.h, and generates a new precompiled
header file, top.hdr, in the same directory. The output file, top.hdr, can be moved
to a directory that the #include statement will cause to be searched.

Use of the Precompiled Header Files
Use the same value of the HEADER option with an application file that is to be
precompiled. If simple.pc contains:

#include <top.h>
...

and top.h contains:

#include <a.h>
#include <b.h>
#include <c.h>
...

then precompile this way:

proc HEADER=hdr INAME=simple.pc

When Pro*C/C++ reads the #include top.h statement, it will search for a
corresponding 'top.hdr' file and instantiate the data from that file instead of
precompiling 'top.h' again.

Examples
This section includes examples demonstrating several different cases.

Redundant File Inclusion
The following two cases illustrate two possibilities for reduntant file inclusion.

Case 1: Top-Level Header File Inclusion

A precompiled header file will only be instantiated once regardless of how many times
the file is included using a #include directive.

Suppose we precompile a top-level header file, top.h, with the value of HEADER set to
'hdr' as before. Next, we code multiple #include directives for that header file in a
program:

#include <top.h>
#include <top.h>

Note: You must provide the '.h' extension. You cannot use an
absolute path element or relative path elements such as '/', '..', and
so on., in the INAME value.

Note: Do not use the ONAME option to name the output file; it is
ignored when used with HEADER.

Note: A precompiled header file will always be used instead of its
input header file even if the input (.h) file appears first in the
standard search hierarchy of the include directories.

Precompiled Header Files

Advanced Topics 5-29

main(){}

When the first #include for top.h is encountered, the precompiled header file, top.hdr,
will be instantiated. The second inclusion of that same header file will be redundant
and thus, will be ignored.

Case 2: Nested Header File Inclusion

Suppose the file a.h contains the following statement:

#include <b.h>

and that we precompile that header file specifying HEADER as before. Pro*C/C++
will precompile both a.h and b.h generating a.hdr as a result.

Now suppose we precompile this Pro*C/C++ program:

#include <a.h>
#include <b.h>
main(){}

When the #include for a.h is encountered, the a.hdr precompiled header file will be
instantiated instead of precompiling a.h again. This instantiation will also contain the
entire contents of b.h.

Now, because b.h was included in the precompilation of a.h, and a.hdr was
instantiated, the subsequent #include of b.h in our program is redundant and thus,
will be ignored.

Multiple Precompiled Header Files
Pro*C/C++ is capable of instantiating more than one different precompiled header file
in a single precompilation. However, one pitfall to avoid occurs when two or more
precompiled header files share common header files.

For example, suppose topA.h contains the following lines:

#include <a.h>
#include <c.h>

and that topB.h contains the following lines:

#include <b.h>
#include <c.h>

Notice how topA.h and topB.h both include the same common header file, c.h.
Precompiling topA.h and topB.h with the same HEADER value will yield topA.hdr
and topB.hdr. Both, however, will contain the entire contents of c.h.

Now suppose we have a Pro*C/C++ program:

#include <topA.h>
#include <topB.h>
main(){}

Both precompiled header files, topA.hdr and topB.hdr will be instantiated as before.
However, because each shares the common header file, c.h, the contents of that file will
be instantiated twice.

Pro*C/C++ cannot determine when such commonality is occurring among
precompiled header files. Try to have each precompiled header file contain a unique
set of included headers. Sharing headers should be avoided as much as possible

Precompiled Header Files

5-30 Pro*C/C++ Programmer’s Guide

because it will ultimately slow down precompilation and utilize more memory, thus
undermining the basic intent of using precompiled header files.

Effects of Options
The following precompiler options are used with the precompilation of the
application.

DEFINE and INCLUDE Options
During any precompilation using precompiled headers, you must use the same values
for DEFINE and INCLUDE as when you created the precompiled header files. If the
values of DEFINE or INCLUDE change, you must re-create the precompiled header
files.

If development environments change, you must also re-create the precompiled header
files.

Single User Scenario

Consider a single user. If the values of either the DEFINE or the INCLUDE options
were to change, then the contents of the precompiled header files may no longer be
suitable for use in subsequent Pro*C/C++ precompilations.

Because the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options have
changed, the contents of the precompiled header file may no longer be consistent with
what a standard precompilation would result in had the corresponding .h file in the
#include directive been processed normally.

In short, if the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options
change, any precompiled header files must be re-created and Pro*C/C++ programs
which use them re-precompiled.

Multiple User Scenario

Consider two users, A and B, who develop in totally separate environments, thus
having completely different values for their DEFINE and INCLUDE options.

User A precompiles a common header file, common.h, creating a precompiled header
file common.hdrA. User B also precompiles the same header file creating
common.hdrB. However, given that the two environments are different, specifically
with respect to the values of the DEFINE and INCLUDE options used by both users, it
is not guaranteed that both user A's and B's versions of common.hdr will be the same.

To summarize

A> proc HEADER=hdrA DEFINE=<A macros> INCLUDE=<A dirs> common.h

B> proc HEADER=hdrB DEFINE=<B macros> INCLUDE=<B dirs> common.h

The generated precompiled header files common.hdrA may not equal common.hdrB
because of the different environments in which they where created. This means that
neither user A nor user B would be guaranteed that using the common.hdr created by
the other user would result in correct precompilation of the Pro*C/C++ programs in
their respective development environments.

See Also:

■ "DEFINE" on page 10-14

■ "INCLUDE" on page 10-19

Precompiled Header Files

Advanced Topics 5-31

Therefore, care should be taken when sharing or exchanging precompiled header files
between different users and different users' development environments.

CODE and PARSE Options
Pro*C/C++ does not search for C++ header files with extensions such as hpp or h++.
So do not use CODE=CPP when precompiling header files. You may use the CPP
value when precompiling the application, as long as the source code only includes .h
header files.

You can only use the values FULL or PARTIAL for the option PARSE when creating
the precompiled header files, or when precompiling the modules. The value FULL is
considered to be of higher value than PARTIAL. The value of PARSE used should be
the same or lower when precompiling modules as when you created the precompiled
header files.

Suppose we precompile a header file with PARSE set to PARTIAL as follows:

proc HEADER=hdr PARSE=PARTIAL file.h

and then try to precompile a program that includes that header file using PARSE set to
FULL:

proc HEADER=hdr PARSE=FULL program.pc

Because file.h was precompiled using a PARTIAL setting for the PARSE option, not all
of the header file would have been processed. It would therefore be possible for an
error to occur during the precompilation of the Pro*C/C++ program if a reference was
made to something in the unprocessed portion.

To illustrate, suppose that file.h contained the following code:

#define LENGTH 10
typedef int myint;

and that our program.pc contained the following short program:

#include <file.h>
main()
{
 VARCHAR ename[LENGTH];
 myint empno = ...;
 EXEC SQL SELECT ename INTO :ename WHERE JOB = :empno;
}

Because PARSE was set to PARTIAL when precompiling file.h, only the LENGTH
macro would have been processed leaving the typedef unseen.

The VARCHAR declaration and subsequent use as a host variable would succeed.
However, the use of the empno host variable would not because the myint type
declaration would never have been processed by Pro*C/C++.

Note: Precompiling the precompiled header file with
PARSE=FULL and then precompiling modules with
PARSE=PARTIAL requires that the host variables be declared
inside a Declare Section. C++ code will only be understood when
PARSE=PARTIAL.

The Oracle Preprocessor

5-32 Pro*C/C++ Programmer’s Guide

Precompiling the header file with the PARSE option set to FULL and then
precompiling the program with PARSE set to PARTIAL would work. However, the
host variables would have to be declared inside an explicit DECLARE SECTION.

Usage Notes
The file format of the generated output file of a precompiled header is not guaranteed
to remain fixed from one release to the next. Pro*C/C++ has no way of determining
which version of the precompiler was used to generate the precompiled header file
output.

Because of this, it is strongly recommended that, in order to avoid the possibility of
errors or other strange behavior during a precompilation that uses precompiled
header files, those files be regenerated by re-precompiling the corresponding header
files when upgrading to newer releases of Pro*C/C++.

The generated output from the precompilation of a header file is completely
non-portable. This means that you cannot transfer the output file from the
precompilation of a header file from one platform to another and use that file during
the subsequent precompilation of another header file or Pro*C/C++ program.

The Oracle Preprocessor
Conditional sections of code are marked by EXEC ORACLE directives that define the
environment and actions to take. You can code C statements as well as embedded SQL
statements and directives in these sections. The following EXEC ORACLE directives
let you exercise conditional control over precompilation:

EXEC ORACLE DEFINE symbol; -- define a symbol
EXEC ORACLE IFDEF symbol; -- if symbol is defined
EXEC ORACLE IFNDEF symbol; -- if symbol is not defined
EXEC ORACLE ELSE; -- otherwise
EXEC ORACLE ENDIF; -- end this block

All EXEC ORACLE statements must be terminated with a semi-colon.

Symbol Definition
You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using the syntax

... INAME=filename ... DEFINE=symbol

where symbol is not case-sensitive.

See Also:

■ "CODE" on page 10-10

■ "Parsing Code" on page 12-3

■ "PARSE" on page 10-26

Note: The #define preprocessor directive is not the same as the
EXEC ORACLE DEFINE command.

Evaluation of Numeric Constants

Advanced Topics 5-33

Some port-specific symbols are predefined for you when the Pro*C/C++ precompiler
is installed on your system.

An Oracle Preprocessor Example
In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE IFDEF site2;
 EXEC SQL SELECT DNAME
 INTO :dept_name
 FROM DEPT
 WHERE DEPTNO = :dept_number;
EXEC ORACLE ENDIF;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE IFDEF outer;
 EXEC ORACLE IFDEF inner;
 ...
 EXEC ORACLE ENDIF;
EXEC ORACLE ENDIF;

You can "Comment out" C or embedded SQL code by placing it between IFDEF and
ENDIF and not defining the symbol.

Evaluation of Numeric Constants
Previously, Pro*C/C++ allowed only numeric literals and simple constant expressions
involving numeric literals to be used when declaring the sizes of host variables (such
as char or VARCHAR), as in the following examples:

 #define LENGTH 10
 VARCHAR v[LENGTH];
 char c[LENGTH + 1];

You can now also use numeric constant declarations such as:

 const int length = 10;
 VARCHAR v[length];
 char c[length + 1];

This is highly desirable, especially for programmers who use ANSI or C++ compilers
that support such constant declarations.

Pro*C/C++ has always determined the values of constant expressions that can be
evaluated, but it has never allowed the use of a numeric constant declaration in any
constant expression.

Pro*C/C++ supports the use of numeric constant declarations anywhere that an
ordinary numeric literal or macro is used, given the macro expands to some numeric
literal.

This is used primarily for declaring the sizes of arrays for bind variables to be used in
a SQL statement.

Numeric Constants in Pro*C/C++
In Pro*C/C++, normal C scoping rules are used to find and locate the declaration of a
numeric constant declaration.

SQLLIB Extensions for OCI Release 8 Interoperability

5-34 Pro*C/C++ Programmer’s Guide

 const int g = 30; /* Global declaration to both function_1()
 and function_2() */
 void function_1()
 {
 const int a = 10; /* Local declaration only to function_1() */
 char x[a];
 exec sql select ename into :x from emp where job = 'PRESIDENT';
 }

 void function_2()
 {
 const int a = 20; /* Local declaration only to function_2() */
 VARCHAR v[a];
 exec sql select ename into :v from emp where job = 'PRESIDENT';
 }

 void main()
 {
 char m[g]; /* The global g */
 exec sql select ename into :m from emp where job = 'PRESIDENT';
 }

Numeric Constant Rules and Examples
Variables which are of specific static types need to be defined with static and
initialized. The following rules must be kept in mind when declaring numeric
constants in Pro*C/C++:

■ The const qualifier must be used when declaring the constant

■ An initializer must be used to initialize the value of the constant. This initializer
must be precompile-time evaluable.

Any attempt to use an identifier that does not resolve to a constant declaration with a
valid initializer is considered an error.

The following shows examples of what is not permitted and why:

int a;
int b = 10;
volatile c;
volatile d = 10;
const e;
const f = b;

VARCHAR v1[a]; /* No const qualifier, missing initializer */
VARCHAR v2[b]; /* No const qualifier */
VARCHAR v3[c]; /* Not a constant, missing initializer */
VARCHAR v4[d]; /* Not a constant */
VARCHAR v5[e]; /* Missing initializer */
VARCHAR v6[f]; /* Bad initializer.. b is not a constant */

SQLLIB Extensions for OCI Release 8 Interoperability
An OCI environment handle will be tied to the Pro*C/C++ runtime context, which is
of the sql_context type. That is, one Pro*C/C++ runtime context maintained by SQLLIB
during application execution will be associated with at most one OCI environment
handle. Multiple database connections are allowed for each Pro*C/C++ runtime
context, which will be associated to the OCI environment handle for the runtime
context.

Interface to OCI Release 8

Advanced Topics 5-35

Runtime Context in the OCI Release 8 Environment
An EXEC SQL CONTEXT USE statement specifies a runtime context to be used in a
Pro*C/C++ program. This context applies to all executable SQL statements that
positionally follow it in a given Pro*C/C++ file until another EXEC SQL CONTEXT
USE statement occurs. If no EXEC SQL CONTEXT USE appears in a source file, the
default "global" context is assumed. Thus, the current runtime context, and therefore
the current OCI environment handle, is known at any point in the program.

The runtime context and its associated OCI environment handle are initialized when a
database logon is performed using EXEC SQL CONNECT in Pro*C/C++.

When a Pro*C/C++ runtime context is freed using the EXEC SQL CONTEXT FREE
statement, the associated OCI environment handle is terminated and all of its
resources, such as space allocated for the various OCI handles and LOB locators, are
de-allocated. This command releases all other memory associated with the Pro*C/C++
runtime context. An OCI environment handle that is established for the default
"global" runtime remains allocated until the Pro*C/C++ program terminates.

Parameters in the OCI Release 8 Environment Handle
An OCI environment established through Pro*C/C++ will use the following
parameters:

■ The callback functions used by the environment for allocating memory, freeing
memory, writing to a text file, and flushing the output buffer will be trivial
functions that call malloc(), free(), fprintf(stderr, ...), and fflush(stderr) respectively.

■ The language will be obtained from the Globalization Support variable NLS_
LANG.

■ The error message buffer will be allocated in thread-specific storage.

Interface to OCI Release 8
SQLLIB library provides routines to obtain the OCI environment and service context
handles for database connections established through a Pro*C/C++ program. Once the
OCI handles are obtained, the user can call various OCI routines, for example, to
perform client-side DATE arithmetic, execute navigational operations on objects and
so on. These SQLLIB functions are described later, and their prototypes are available in
the public header file sql2oci.h.

A Pro*C/C++ user who mixes embedded SQL and calls in the other Oracle
programmatic interfaces must exercise reasonable care. For example, if a user
terminates a connection directly using the OCI interface, SQLLIB state is out-of-sync;
the behavior for subsequent SQL statements in the Pro*C/C++ program is undefined
in such cases.

Starting with release 8.0, the new SQLLIB functions that provide interoperability with
the Oracle OCI are declared in header file sql2oci.h:

■ SQLEnvGet(), to return a pointer to an OCI environment handle associated with
a given SQLLIB runtime context. Used for both single and shared server
environments.

Note: Pro*C/C++, the Oracle Call Interface (OCI) release 8, and
XA are not compatible. The combined use of Pro*C/C++, OCI
release 8, and XA is only recommended in Oracle9i.

Interface to OCI Release 8

5-36 Pro*C/C++ Programmer’s Guide

■ SQLSvcCtxGet(), to return an OCI service context handle for a Pro*C/C++
database connection. Used for both single and shared server environments.

■ Pass the constant SQL_SINGLE_RCTX, defined as (dvoid *)0, when you include
sql2oci.h, as the first parameter in either function, when using single threaded
runtime contexts.

SQLEnvGet()
The SQLLIB library function SQLEnvGet() (SQLLIB OCI Environment Get) returns
the pointer to the OCI environment handle associated with a given SQLLIB runtime
context. The prototype for this function is:

sword SQLEnvGet(dvoid *rctx, OCIEnv **oeh);

where:

SQLSvcCtxGet()
The SQLLIB library function SQLSvcCtxGet() (SQLLIB OCI Service Context Get)
returns the OCI service context for the Pro*C/C++ database connection. The OCI
service context can then be used in direct calls to OCI functions. The prototype for this
function is:

sword SQLSvcCtxGet(dvoid *rctx, text *dbname,
 sb4 dbnamelen, OCISvcCtx **svc);

where:

See Also: Chapter 17, "Objects"

Terms Description

Description Sets oeh to the OCIEnv corresponding to the runtime context

Parameters rctx (IN) pointer to a SQLLIB runtime context

oeh (OUT) pointer to OCIEnv

Returns SQL_SUCCESS on success

SQL_ERROR on failure

Notes The usual error status variables in Pro*C/C++ such as SQLCA
and SQLSTATE will not be affected by a call to this function

Terms Description

Description Sets svc to the OCI Service Context corresponding to the runtime
context

Parameters rctx (IN) = pointer to a SQLLIB runtime context

dbname (IN) = buffer containing the "logical" name for this
connection

dbnamelen (IN) = length of the dbname buffer

svc (OUT) = address of an OCISvcCtx pointer

Returns SQL_SUCCESS on success

SQL_ERROR on failure

Interface to OCI Release 8

Advanced Topics 5-37

Embedded OCI Release 8 Calls
To embed OCI release 8 calls in your Pro*C/C++ program:

1. Include the public header sql2oci.h

2. Declare an environment handle (type OCIEnv *) in your Pro*C/C++ program:

OCIEnv *oeh;

3. Optionally, declare a service context handle (type OCISvcCtx *) in your
Pro*C/C++ program if the OCI function you wish to call requires the Service Context
handle.

OCISvcCtx *svc;

4. Declare an error handle (type OCIError *) in your Pro*C/C++ program:

OCIError *err;

5. Connect to Oracle using the embedded SQL statement CONNECT. Do not connect
using OCI.

EXEC SQL CONNECT ...

6. Obtain the OCI Environment handle that is associated with the desired runtime
context using the SQLEnvGet function.

For single threaded applications:

retcode = SQLEnvGet(SQL_SINGLE_RCTX, &oeh);

or for shared server applications:

sql_context ctx1;
...
EXEC SQL CONTEXT ALLOCATE :ctx1;
EXEC SQL CONTEXT USE :ctx1;
...
EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;
...
retcode = SQLEnvGet(ctx1, &oeh);

7. Allocate an OCI error handle using the retrieved environment handle:

retcode = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);

8. Optionally, if needed by the OCI call you use, obtain the OCIServiceContext handle
using the SQLSvcCtxGet call:

Notes 1. The usual error status variables in Pro*C/C++ such as SQLCA
and SQLSTATE will not be affected by a call to this function

2. dbname is the same identifier used in an AT clause in an
embedded SQL statement.

3. If dbname is a null pointer or dbnamelen is 0, then the default
database connection is assumed, as in a SQL statement with no
AT clause.

4. A value of -1 for dbnamelen is used to indicate that dbname is a
zero-terminated string.

Terms Description

Embedded OCI Release 7 Calls

5-38 Pro*C/C++ Programmer’s Guide

For single threaded applications:

retcode = SQLSvcCtxGet(SQL_SINGLE_RCTX, (text *)dbname, (ub4)dbnlen, &svc);

or, for shared server environment applications:

sql_context ctx1;
...
EXEC SQL ALLOCATE :ctx1;
EXEC SQL CONTEXT USE :ctx1;
...
EXEC SQL CONNECT :uid IDENTIFIED BY :pwd AT :dbname
 USING :hst;
...
retcode = SQLSvcCtxGet(ctx1, (text *)dbname, (ub4)strlen(dbname), &svc);

Embedded OCI Release 7 Calls

To embed OCI release 7 calls in your Pro*C/C++ program, take the following steps:

■ Declare an OCI Logon Data Area (LDA) in your Pro*C/C++ program (outside the
Declare Section if you precompile with MODE=ANSI). The LDA is a structure
defined in the OCI header file oci.h. For details, see the Oracle Call Interface
programmer's Guide for Release 7.

■ Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
orlon() or onblon() calls.

■ Call the SQLLIB runtime library function sqllda() to set up the LDA.SQLLIB
function

That way, the Pro*C/C++ Precompiler and the OCI "know" that they are working
together. However, there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the
Oracle runtime library manages connections and maintains the HDA for you.

Set Up the LDA
You set up the LDA by issuing the OCI call

sqllda(&lda);

where lda identifies the LDA data structure.

If the setup fails, the lda_rc field in the lda is set to 1012 to indicate the error.

Note: A null pointer may be passed as the dbname if the
Pro*C/C++ connection is not named with an AT clause.

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

New Names for SQLLIB Public Functions

Advanced Topics 5-39

Remote and Multiple Connections
A call to sqllda() sets up an LDA for the connection used by the most recently
executed SQL statement. To set up the different LDAs needed for additional
connections, you must call sqllda() with a different LDA immediately after each
CONNECT. In the following example, you connect to two nondefault databases
concurrently:

#include <ocidfn.h>
Lda_Def lda1;
Lda_Def lda2;

char username[10], password[10], db_string1[20], dbstring2[20];
...
strcpy(username, "scott");
strcpy(password, "tiger");
strcpy(db_string1, "NYNON");
strcpy(db_string2, "CHINON");
/* give each database connection a unique name */
EXEC SQL DECLARE DB_NAME1 DATABASE;
EXEC SQL DECLARE DB_NAME2 DATABASE;
/* connect to first nondefault database */
EXEC SQL CONNECT :username IDENTIFIED BY :password;
 AT DB_NAME1 USING :db_string1;
/* set up first LDA */
sqllda(&lda1);
/* connect to second nondefault database */
EXEC SQL CONNECT :username IDENTIFIED BY :password;
 AT DB_NAME2 USING :db_string2;
/* set up second LDA */
sqllda(&lda2);

DB_NAME1 and DB_NAME2 are not C variables; they are SQL identifiers. You use
them only to name the default databases at the two nondefault nodes, so that later
SQL statements can refer to the databases by name.

New Names for SQLLIB Public Functions
The names of SQLLIB functions are listed in Table 5–3. You can use these SQLLIB
functions for both threaded and nonthreaded applications. Previously, for example,
sqlglm() was documented as the nonthreaded or default context version of this
function, while sqlglmt() was the threaded or nondefault context version, with
context as the first argument. The names sqlglm() and sqlglmt() are still
available. The new function SQLErrorGetText() requires the same arguments as
sqlglmt(). For nonthreaded or default context applications, pass the defined
constant SQL_SINGLE_RCTX as the context.

Each standard SQLLIB public function is thread-safe and accepts the runtime context
as the first argument. For example, the syntax for SQLErrorGetText() is:

void SQLErrorGetText(dvoid *context, char *message_buffer,
 size_t *buffer_size,
 size_t *message_length);

In summary, the old function names will continue to work in your existing
applications. You can use the new function names in the new applications that you
will write.

New Names for SQLLIB Public Functions

5-40 Pro*C/C++ Programmer’s Guide

Table 5–3 lists all the SQLLIB public functions and their corresponding syntax.
Cross-references to the nonthreaded or default-context usages are provided to help
you find more complete descriptions.

Table 5–3 SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference

sqlaldt() struct SQLDA *SQLSQLDAAlloc(dvoid
*context,
unsigned int maximum_
variables,
unsigned int maximum_name_
length,
unsigned int maximum_ind_name_
length);

See also "Allocating a SQLDA" on
page 15-4 .

sqlcdat() void
SQLCDAFromResultSetCursor(dvoid
*context,
Cda_Def *cda,
void *cursor,
sword *return_value);

See also "Cursor Variables with the OCI
(Release 7 Only)" on page 4-24.

sqlclut() void SQLSQLDAFree(dvoid *context,
struct SQLDA
*descriptor_name);

See also"Deallocate Storage" on
page 15-29 .

sqlcurt() void SQLCDAToResultSetCursor(dvoid
*context,
void *cursor,
Cda_Def *cda,
sword *return_value)

See also "Cursor Variables with the OCI
(Release 7 Only)" on page 4-24 .

sqlglmt() void SQLErrorGetText(dvoid
*context,
char *message_buffer,
size_t *buffer_size,
size_t *message_length);

See also "Getting the Full Text of Error
Messages" on page 9-17.

sqlglst() void SQLStmtGetText(dvoid
*context,
char *statement_buffer,
size_t *statement_length,
size_t *sqlfc);

See also "Obtaining the Text of SQL
Statements" on page 9-24.

sqlld2t() void SQLLDAGetName(dvoid
*context,
Lda_Def *lda,
text *cname,
int *cname_length);

See also "OCI Calls (Release 7 Only)" on
page 5-43

sqlldat() void SQLLDAGetCurrent(dvoid
*context,
Lda_Def *lda);

See also "Remote and Multiple
Connections" on page 5-39.

sqlnult() void SQLColumnNullCheck(dvoid
*context,
unsigned short *value_type,
unsigned short *type_code,
int *null_status);

See also "Handling NULL/Not NULL
Datatypes" on page 15-14.

X/Open Application Development

Advanced Topics 5-41

X/Open Application Development
X/Open applications run in a distributed transaction processing (DTP) environment.
In an abstract model, an X/Open application calls on resource managers (RMs) to
provide a variety of services. For example, a database resource manager provides
access to data in a database. Resource managers interact with a transaction manager
(TM), which controls all transactions for the application.

sqlprct() void SQLNumberPrecV6(dvoid
*context,
unsigned long *length,
int *precision,
int *scale);

See also "Extracting Precision and Scale"
on page 15-12.

sqlpr2t() void SQLNumberPrecV7(dvoid
*context,
unsigned long *length,
int *precision,
int *scale);

See also "Extracting Precision and Scale"
on page 15-12.

sqlvcpt() void SQLVarcharGetLength(dvoid
*context,
unsigned long *data_length,
unsigned long *total_length);

See also "Find the Length of the
VARCHAR Array Component" on
page 4-18.

N/A sword SQLEnvGet(dvoid *context,
OCIEnv **oeh);

See "SQLEnvGet()" on page 5-36.

N/A sword SQLSvcCtxGet(dvoid *context,
text *dbname,
int dbnamelen,
OCISvcCtx **svc);

See "SQLSvcCtxGet()" on page 5-36.

N/A void SQLRowidGet(dvoid *context,
OCIRowid **urid);

See "SQLRowidGet()" on page 4-31.

N/A void SQLExtProcError(dvoid
*context,
char *msg,
size_t msglen);

See "SQLExtProcError()" on page 24 for
a discussion of its use in external
procedures.

Note: For the specific datatypes used in the argument lists for
these functions, refer to your platform-specific version of the
sqlcpr.h header file.

See Also: "Interface to OCI Release 8" on page 5-35

Table 5–3 (Cont.) SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference

X/Open Application Development

5-42 Pro*C/C++ Programmer’s Guide

Figure 5–1 Hypothetical DTP Model

Figure 5–1 shows one way that components of the DTP model can interact to provide
efficient access to data in an Oracle database. The DTP model specifies the XA interface
between resource managers and the transaction manager. Oracle supplies an
XA-compliant library, which you must link to your X/Open application. Also, you
must specify the native interface between your application program and the resource
managers.

The DTP model that specifies how a transaction manager and resource managers
interact with an application program is described in the X/Open guide Distributed
Transaction Processing Reference Model and related publications, which you can obtain
by writing to

The Open Group
1010 El Camino Real, Suite 380
Menlo Park, CA 94025-4345 USA

http://www.opennc.org/

For instructions on using the XA interface, see your Transaction Processing (TP)
Monitor user's guide.

Oracle-Specific Issues
You can use the precompiler to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

Connecting to Oracle
The X/Open application does not establish and maintain connections to a database.
Instead, the transaction manager and the XA interface, which is supplied by Oracle,
handle database connections and disconnections transparently. So, normally an
X/Open-compliant application does not execute CONNECT statements.

Transaction
Manager

Oracle Server Other
Resources

Application Program

Resource
Manager

XA Interface

TX Interface

XA Interface Resource
Manager

X/Open Application Development

Advanced Topics 5-43

Transaction Control
The X/Open application must not execute statements such as COMMIT, ROLLBACK,
SAVEPOINT, and SET TRANSACTION that affect the state of global transactions. For
example, the application must not execute the COMMIT statement because the
transaction manager handles commits. Also, the application must not execute SQL
data definition statements such as CREATE, ALTER, and RENAME because they issue
an implicit COMMIT.

The application can execute an internal ROLLBACK statement if it detects an error
that prevents further SQL operations. However, this might change in later releases of
the XA interface.

OCI Calls (Release 7 Only)

If you want your X/Open application to issue OCI calls, you must use the runtime
library routine sqlld2(), which sets up an LDA for a specified connection
established through the XA interface. For a description of the sqlld2() call, see the
Oracle Call Interface Programmer's Guide for Release 7.

The following OCI calls cannot be issued by an X/Open application: OCOM, OCON,
OCOF, ONBLON, ORLON, OLON, OLOGOF.

For a discussion of how to use OCI Release 8 calls in Pro*C/C++, see also "Interface to
OCI Release 8" on page 5-35.

Linking
To get XA functionality, you must link the XA library to your X/Open application
object modules. For instructions, see your system-specific Oracle documentation.

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

X/Open Application Development

5-44 Pro*C/C++ Programmer’s Guide

Embedded SQL 6-1

6
Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded
SQL programming. This chapter contains the following topics:

■ Host Variables

■ Indicator Variables

■ The Basic SQL Statements

■ The DML Returning Clause

■ Cursors

■ Optimizer Hints

■ The CURRENT OF Clause

■ The Cursor Statements

■ A Complete Example Using Non-Scrollable Cursor

■ A Complete Example Using Scrollable Cursor

Host Variables
Oracle uses host variables to pass data and status information to your program; your
program uses host variables to pass data to Oracle.

Output versus Input Host Variables
Depending on how they are used, host variables are called output or input host
variables.

Host variables in the INTO clause of a SELECT or FETCH statement are called output
host variables because they hold column values output by Oracle. Oracle assigns the
column values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the
VALUES clause of an INSERT statement and in the SET clause of an UPDATE
statement. They are also used in the WHERE, HAVING, and FOR clauses. Input host
variables can appear in a SQL statement wherever a value or expression is allowed.

Indicator Variables

6-2 Pro*C/C++ Programmer’s Guide

You cannot use input host variables to supply SQL keywords or the names of database
objects. Thus, you cannot use input host variables in data definition statements such as
ALTER, CREATE, and DROP. In the following example, the DROP TABLE statement is
invalid:

char table_name[30];

printf("Table name? ");
gets(table_name);

EXEC SQL DROP TABLE :table_name; -- host variable not allowed

If you need to change database object names at runtime, use dynamic SQL. See also
Chapter 13, "Oracle Dynamic SQL".

Before Oracle executes a SQL statement containing input host variables, your program
must assign values to them. An example follows:

int emp_number;
char temp[20];
VARCHAR emp_name[20];

/* get values for input host variables */
printf("Employee number? ");
gets(temp);
emp_number = atoi(temp);
printf("Employee name? ");
gets(emp_name.arr);
emp_name.len = strlen(emp_name.arr);

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)
 VALUES (:emp_number, :emp_name);

Notice that the input host variables in the VALUES clause of the INSERT statement are
prefixed with colons.

Indicator Variables
You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

Attention: In an ORDER BY clause, you can use a host variable,
but it is treated as a constant or literal, and hence the contents of the
host variable have no effect. For example, the SQL statement

EXEC SQL SELECT ename, empno INTO :name,:number FROM emp ORDER
BY :ord;

appears to contain an input host variable :ord. However, the host
variable in this case is treated as a constant, and regardless of the
value of :ord, no ordering is done.

Note: You cannot use multiple indicator variables with a single
host variable within PL/SQL blocks. Doing so results in a "not all
variables bound" error.

Indicator Variables

Embedded SQL 6-3

You use indicator variables in the VALUES or SET clauses to assign NULLs to input
host variables. Use indicator variables in the INTO clause to detect NULLs or
truncated values in output host variables.

On Input
The values your program can assign to an indicator variable have the following
meanings:

On Output
The values Oracle can assign to an indicator variable have the following meanings:

Remember, an indicator variable must be defined as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and must immediately follow its host
variable.

Insert NULLs
You can use indicator variables to INSERT NULLs. Before the INSERT, for each
column you want to be NULL, set the appropriate indicator variable to -1, as shown in
the following example:

set ind_comm = -1;

EXEC SQL INSERT INTO emp (empno, comm)
 VALUES (:emp_number, :commission:ind_comm);

The indicator variable ind_comm specifies that a NULL is to be stored in the COMM
column.

You can hard code the NULL instead, as follows:

EXEC SQL INSERT INTO emp (empno, comm)
 VALUES (:emp_number, NULL);

While this is less flexible, it might be more readable. Typically, you insert NULLs
conditionally, as the next example shows:

Variable Description

-1 Oracle will assign a NULL to the column, ignoring the value of
the host variable.

>=0 Oracle will assign the value of the host variable to the column.

Variable Description

-1 The column value is NULL, so the value of the host variable is
indeterminate.

 0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable.
The integer returned by the indicator variable is the original
length of the column value, and SQLCODE in SQLCA is set to
zero.

-2 Oracle assigned a truncated column variable to the host variable,
but the original column value could not be determined (a LONG
column, for example).

Indicator Variables

6-4 Pro*C/C++ Programmer’s Guide

printf("Enter employee number or 0 if not available: ");
scanf("%d", &emp_number);

if (emp_number == 0)
 ind_empnum = -1;
else
 ind_empnum = 0;

EXEC SQL INSERT INTO emp (empno, sal)
 VALUES (:emp_number:ind_empnum, :salary);

Returned NULLs
You can also use indicator variables to manipulate returned NULLs, as the following
example shows:

EXEC SQL SELECT ename, sal, comm
 INTO :emp_name, :salary, :commission:ind_comm
 FROM emp
 WHERE empno = :emp_number;
 if (ind_comm == -1)
 pay = salary; /* commission is NULL; ignore it */
else
 pay = salary + commission;

Fetch NULLs
When DBMS=V7 or DBMS=V8, if you SELECT or FETCH NULLs into a host variable
not associated with an indicator variable, Oracle issues the following error message:

ORA-01405: fetched column value is NULL

Test for NULLs
You can use indicator variables in the WHERE clause to test for NULLs, as the
following example shows:

EXEC SQL SELECT ename, sal
INTO :emp_name, :salary
FROM emp
WHERE :commission INDICATOR :ind_comm IS NULL ...

However, you cannot use a relational operator to compare NULLs with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLs:

EXEC SQL SELECT ename, sal
INTO :emp_name, :salary
FROM emp
WHERE comm = :commission;

The next example shows how to compare values for equality when some of them
might be NULLs:

EXEC SQL SELECT ename, sal
 INTO :emp_name, :salary
 FROM emp
 WHERE (comm = :commission) OR ((comm IS NULL) AND

See Also: "DBMS" on page 10-12

The Basic SQL Statements

Embedded SQL 6-5

 (:commission INDICATOR :ind_comm IS NULL));

Truncated Values
When DBMS=V7 or V8, if you SELECT or FETCH a truncated column value into a
host variable not associated with an indicator variable, a warning is generated instead
of an error.

The Basic SQL Statements
Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on the statements that query and manipulate data.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, your only concern, besides setting the values of any input host variables, is
whether the statement succeeds or fails. To find out, you simply check the SQLCA.
(Executing any SQL statement sets the SQLCA variables.) You can check in the
following two ways:

■ Implicit checking with the WHENEVER statement

■ Explicit checking of SQLCA variables

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

■ Queries that return no rows (that is, merely check for existence)

■ Queries that return only one row

■ Queries that return more than one row

Queries that return more than one row require explicitly declared cursors or the use of
host arrays (host variables declared as arrays).

This chapter assumes the use of scalar host variables.

The following embedded SQL statements let you query and manipulate Oracle data:

See Also: Chapter 9, "Handling Runtime Errors" for more
information about the SQLCA and the WHENEVER statement

Note: Host arrays let you process "batches" of rows.

See Also: Chapter 8, "Host Arrays"

Embedded SQL
Statements Description

SELECT Returns rows from one or more tables.

INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes unwanted rows from a table.

The Basic SQL Statements

6-6 Pro*C/C++ Programmer’s Guide

The following embedded SQL statements let you define and manipulate an explicit
cursor:

The following sections, you first learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements.

The SELECT Statement
Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT ename, job, sal + 2000
INTO :emp_name, :job_title, :salary
FROM emp
WHERE empno = :emp_number;

The column names and expressions following the keyword SELECT make up the select
list. The select list in our example contains three items. Under the conditions specified
in the WHERE clause (and following clauses, if present), Oracle returns column values
to the host variables in the INTO clause.

The number of items in the select list should equal the number of host variables in the
INTO clause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example. However, if a query can return more than one row, you must FETCH the
rows using a cursor or SELECT them into a host-variable array. Cursors and the
FETCH statement are discussed later in this chapter. See also "Host Arrays" on
page 8-1for information on array processing.

If a query is written to return only one row but might actually return several rows, the
result of the SELECT is indeterminate. Whether this causes an error depends on how
you specify the SELECT_ERROR option. The default value, YES, generates an error if
more than one row is returned.

Available Clauses
You can use all of the following standard SQL clauses in your

SELECT statements:

■ INTO

■ FROM

Embedded SQL
Statements Description

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined).

See Also:

■ Chapter F, "Embedded SQL Statements and Directives" for a
detailed discussion of each statement and its clauses.

■ Oracle Database SQL Reference.

The Basic SQL Statements

Embedded SQL 6-7

■ WHERE

■ CONNECT BY

■ START WITH

■ GROUP BY

■ HAVING

■ ORDER BY

■ FOR UPDATE OF

Except for the INTO clause, the text of embedded SELECT statements can be executed
and tested interactively using SQL*Plus. In SQL*Plus, you use substitution variables or
constants instead of input host variables.

The INSERT Statement
Use the INSERT statement to add rows to a table or view. In the following example,
you add a row to the EMP table:

EXEC SQL INSERT INTO emp (empno, ename, sal, deptno)
VALUES (:emp_number, :emp_name, :salary, :dept_number);

Each column you specify in the column list must belong to the table named in the INTO
clause. The VALUES clause specifies the row of values to be inserted. The values can
be those of constants, host variables, SQL expressions, SQL functions such as USER
and SYSDATE, or user-defined PL/SQL functions.

The number of values in the VALUES clause must equal the number of names in the
column list. However, you can omit the column list if the VALUES clause contains a
value for each column in the table, in the order that they are defined in the table.

Using Subqueries
A subquery is a nested SELECT statement. Subqueries let you conduct multipart
searches. They can be used to

■ Supply values for comparison in the WHERE, HAVING, and START WITH
clauses of SELECT, UPDATE, and DELETE statements

■ Define the set of rows to be inserted by a CREATE TABLE or INSERT statement

■ Define values for the SET clause of an UPDATE statement

The following example uses a subquery in an INSERT statement to copy rows from
one table to another:

EXEC SQL INSERT INTO emp2 (empno, ename, sal, deptno)
SELECT empno, ename, sal, deptno FROM emp
WHERE job= :job_title ;

This INSERT statement uses the subquery to obtain intermediate results.

The UPDATE Statement
Use the UPDATE statement to change the values of specified columns in a table or
view. In the following example, we update the SAL and COMM columns in the EMP
table:

See Also: "INSERT (Executable Embedded SQL)" on page F-49

The DML Returning Clause

6-8 Pro*C/C++ Programmer’s Guide

EXEC SQL UPDATE emp
SET sal = :salary, comm = :commission
WHERE empno = :emp_number;

Use the optional WHERE clause to specify the conditions under which rows are
updated. See also "The WHERE Clause" on page 6-8.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example shows:

EXEC SQL UPDATE emp
SET sal = (SELECT AVG(sal)*1.1 FROM emp WHERE deptno = 20)
WHERE empno = :emp_number;

The UPDATE statement has an optional returning clause, like the INSERT and
DELETE statements. It is only allowed after the optional WHERE condition.

For more details, see also "UPDATE (Executable Embedded SQL)" on page F-82.

The DELETE Statement
Use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM emp
WHERE deptno = :dept_number ;

We have used the optional WHERE clause to specify the condition under which rows
are deleted.

The returning clause option can be used in DELETE statements also. It is allowed
after the optional WHERE condition. In the earlier example, it is good practice to
record the field values of each employee that is deleted.

The WHERE Clause
Use the WHERE clause to SELECT, UPDATE, or DELETE only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a Boolean
expression, which can include scalar host variables, host arrays (not in SELECT
statements), subqueries, and user-defined stored functions.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit
the WHERE clause in an UPDATE or DELETE statement, Oracle sets sqlwarn[4] in
the SQLCA to 'W' to warn that all rows were processed.

The DML Returning Clause
The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The DML returning clause looks like this:

{RETURNING | RETURN} {expr [,expr]}
 INTO {:hv [[INDICATOR]:iv] [, :hv [[INDICATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The

See Also: "DELETE (Executable Embedded SQL)" on page F-31

Cursors

Embedded SQL 6-9

returning clause eliminates inefficient network round trips, extra processing, and
server memory.

Oracle Dynamic SQL Method 4 does not support the DML returning clause; but ANSI
Dynamic SQL Method 4 does.

Cursors
When a query returns multiple rows, you can explicitly define a cursor to

■ Process beyond the first row returned by the query

■ Keep track of which row is currently being processed

Or, you can use host arrays.

A cursor identifies the current row in the set of rows returned by the query. This
allows your program to process the rows one at a time. The following statements let
you define and manipulate a cursor:

■ DECLARE CURSOR

■ OPEN

■ FETCH

■ CLOSE

First you use the DECLARE CURSOR statement to name the cursor and associate it
with a query.

The OPEN statement executes the query and identifies all the rows that meet the query
search condition. These rows form a set called the active set of the cursor. After
OPENing the cursor, you can use it to retrieve the rows returned by its associated
query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use a
FETCH statement to retrieve the current row in the active set. You can execute FETCH
repeatedly until all rows have been retrieved.

When done FETCHing rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

The following sections show you how to use these cursor control statements in your
application program.

The DECLARE CURSOR Statement
You use the DECLARE CURSOR statement to define a cursor by giving it a name and
associating it with a query, as the following example shows:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, empno, sal
 FROM emp
 WHERE deptno = :dept_number;

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be defined in the Declare Section. Cursor names cannot be

See Also: Chapter 14, "ANSI Dynamic SQL"

See Also: Chapter 8, "Host Arrays"

Cursors

6-10 Pro*C/C++ Programmer’s Guide

hyphenated. They can be any length, but only the first 31 characters are significant. For
ANSI compatibility, use cursor names no longer than 18 characters.

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE CURSOR statement must physically (not just
logically) precede all other SQL statements referencing the cursor. That is, forward
references to the cursor are not allowed. In the following example, the OPEN
statement is misplaced:

...
EXEC SQL OPEN emp_cursor;

EXEC SQL DECLARE emp_cursor CURSOR FOR
SELECT ename, empno, sal
 FROM emp
 WHERE ename = :emp_name;

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot DECLARE a cursor in file
A, then OPEN it in file B.

Your host program can DECLARE as many cursors as it needs. However, in a given
file, every DECLARE statement must be unique. That is, you cannot DECLARE two
cursors with the same name in one precompilation unit, even across blocks or
procedures, because the scope of a cursor is global within a file.

If you will be using many cursors, you might want to specify the
MAXOPENCURSORS option.

The OPEN Statement
You use the OPEN statement to execute the query and identify the active set. In the
following example, you OPEN a cursor named emp_cursor:

EXEC SQL OPEN emp_cursor;

OPEN zeroes the rows-processed count kept by the third element of SQLERRD in the
SQLCA. However, none of the rows are visible to the application at this point. That is
handled by the FETCH statement.

OPEN positions the cursor just before the first row of the active set. It also zeroes the
rows-processed count kept by the third element of SQLERRD in the SQLCA. However,
none of the rows is actually retrieved at this point. That will be done by the FETCH
statement.

Once you OPEN a cursor, the query's input host variables are not re-examined until
you reOPEN the cursor. Thus, the active set does not change. To change the active set,
you must reOPEN the cursor.

Generally, you should CLOSE a cursor before reOPENing it. However, if you specify
MODE=ORACLE (the default), you need not CLOSE a cursor before reOPENing it.
This can increase performance.

See Also:

■ "Precompiler Options" on page 10-2

■ Chapter C, "Performance Tuning"

Cursors

Embedded SQL 6-11

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS.

The FETCH Statement
You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause
and list of output host variables are part of the FETCH statement. In the following
example, you FETCH INTO three host variables:

EXEC SQL FETCH emp_cursor
INTO :emp_name, :emp_number, :salary;

The cursor must have been previously DECLAREd and OPENed. The first time you
execute FETCH, the cursor moves from before the first row in the active set to the first
row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been FETCHed, you must reOPEN the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reOPEN the cursor. When
MODE=ANSI, you must CLOSE the cursor before reOPENing it.

As the next example shows, you can FETCH from the same cursor using different sets
of output host variables. However, corresponding host variables in the INTO clause of
each FETCH statement must have the same datatype.

EXEC SQL DECLARE emp_cursor CURSOR FOR
SELECT ename, sal FROM emp WHERE deptno = 20;
...
EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...
for (;;)
{
 EXEC SQL FETCH emp_cursor INTO :emp_name1, :salary1;
 EXEC SQL FETCH emp_cursor INTO :emp_name2, :salary2;
 EXEC SQL FETCH emp_cursor INTO :emp_name3, :salary3;
 ...
}

If the active set is empty or contains no more rows, FETCH returns the "no data found"
error code to sqlcode in the SQLCA, or to the SQLCODE or SQLSTATE status variables.
The status of the output host variables is indeterminate. (In a typical program, the
WHENEVER NOT FOUND statement detects this error.) To reuse the cursor, you must
reOPEN it.

It is an error to FETCH on a cursor under the following conditions:

■ Before OPENing the cursor

■ After a "no data found" condition

■ After CLOSEing it

See Also: "Using the Precompiler Options" on page 10-8.

Scrollable Cursors

6-12 Pro*C/C++ Programmer’s Guide

The CLOSE Statement
When done FETCHing rows from the active set, you CLOSE the cursor to free the
resources, such as storage, acquired by OPENing the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specify the
HOLD_CURSOR and RELEASE_CURSOR options. In the following example, you
CLOSE the cursor named emp_cursor:

EXEC SQL CLOSE emp_cursor;

You cannot FETCH from a closed cursor because its active set becomes undefined. If
necessary, you can reOPEN a cursor (with new values for the input host variables, for
example).

When MODE=ORACLE, issuing a COMMIT or ROLLBACK closes cursors referenced
in a CURRENT OF clause. Other cursors are unaffected by COMMIT or ROLLBACK
and if open, remain open. However, when MODE=ANSI, issuing a COMMIT or
ROLLBACK closes all explicit cursors.

Scrollable Cursors
A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.

When a cursor is executed, the results of the query are placed into a a set of rows
called the result set. The result set can be fetched either sequentially or
non-sequentially. Non-sequential result sets are called scrollable cursors.

A scrollable cursor enables users to access the rows of a database result set in a
forward, backward, and random manner. This enables the program to fetch any row in
the result set. See Oracle Call Interface Programmer's Guide, Release 9.2.0.

Using Scrollable Cursors
The following statements let you define and manipulate a scrollable cursor.

DECLARE SCROLL CURSOR
You can use the DECLARE <cursor name> SCROLL CURSOR statement to name the
scrollable cursor and associate it with a query.

OPEN
You can use the OPEN statement in the same way as in the case of a non-scrollable
cursor.

FETCH
You can use the FETCH statement to fetch required rows in a random manner. An
application can fetch rows up or down, first or last row directly, or fetch any single
row in a random manner.

The following options are available with the FETCH statement.

1. FETCH FIRST

Fetches the first row from the result set.

See Also: Chapter 3, "Database Concepts" for more information
about COMMIT and ROLLBACK

Scrollable Cursors

Embedded SQL 6-13

2. FETCH PRIOR

Fetches the row prior to the current row.

3. FETCH NEXT

Fetches the next row from the current position. This is same as the
non-scrollable cursor FETCH.

4. FETCH LAST

Fetches the last row from the result set.

5. FETCH CURRENT

Fetches the current row.

6. FETCH RELATIVE n

Fetches the nth row relative to the current row, where n is the offset.

7. FETCH ABSOLUTE n

Fetches the nth row, where n is the offset from the start of the result set.

The following example describes how to FETCH the last record from a result set.

EXEC SQL DECLARE emp_cursor SCROLL CURSOR FOR
SELECT ename, sal FROM emp WHERE deptno=20;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH LAST emp_cursor INTO :emp_name, :sal;
EXEC SQL CLOSE emp_cursor;

CLOSE
You can use the CLOSE statement in the same way as in the case of a non-scrollable
cursor.

The CLOSE_ON_COMMIT Precompiler Option
The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose
whether or not to close all cursors when a COMMIT is executed and the macro option
MODE=ANSI. When MODE=ANSI, CLOSE_ON_COMMIT has the default value YES.
Explicitly setting CLOSE_ON_COMMIT=NO results in better performance because
cursors will not be closed when a COMMIT is executed, removing the need to re-open
the cursors and incur extra parsing.

The PREFETCH Precompiler Option
The precompiler option PREFETCH allows for more efficient queries by pre-fetching a
given number of rows. This decreases the number of server round trips needed and
reduces overall memory usage. The number of rows set by the PREFETCH option

Note: You cannot use scrollable cursors for REF cursors.

See Also:

■ "Macro and Micro Options" on page 10-4 for a discussion of
how micro options affect macro options.

■ "CLOSE_ON_COMMIT" on page 10-9 for a complete
discussion of this option.

Optimizer Hints

6-14 Pro*C/C++ Programmer’s Guide

value is used for all queries involving explicit cursors, subject to the standard
precedence rules. When used inline, the PREFETCH option must precede any of these
cursor statements:

■ EXEC SQL OPEN cursor

■ EXEC SQL OPEN cursor USING host_var_list

■ EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-fetching)
to 65535. The default value is 1.

Optimizer Hints
The Pro*C/C++ Precompiler supports optimizer hints in SQL statements. An optimizer
hint is a suggestion to the Oracle SQL optimizer that can override the optimization
approach that would normally be taken. You can use hints to specify the

■ Optimization approach for a SQL statement

■ Access path for each referenced table

■ Join order for a join

■ Method used to join tables

Note: The default value of the PREFETCH option is 1 - return a
single row for each round-trip. If you choose not to use the
PREFETCH option, using the command line, you must explicitly
disable it by setting the PREFETCH option to 0.

PREFETCH is automatically disabled when LONG or LOB columns
are being retrieved.

Note: PREFETCH is used primarily to enhance the performance
of single row fetches. PREFETCH has no effect when array fetches
are used.

Note: The PREFETCH option should be used wisely, and on a
case-by-case basis. Select an appropriate prefetch value that will
optimize performance of a specific FETCH statement. To
accomplish this, use the inline prefetch option instead of the
command line prefetch option.

Note: The performance of many large applications can be
improved simply by using indicator variables with host variables in
FETCH statements.

To enable precompiler applications to obtain the maximum
advantage from the use of the PREFETCH option on single row
fetches, it is strongly recommended that you use indicator
variables.

The CURRENT OF Clause

Embedded SQL 6-15

Hints allow you to choose between rule-based and cost-based optimization. With
cost-based optimization, you can use further hints to maximize throughput or
response time.

Issuing Hints
You can issue an optimizer hint inside a C or C++ style comment, immediately after a
SELECT, DELETE, or UPDATE command. You indicate that the comment contains one
or more hints by following the comment opener with a plus sign, leaving no space
between the opener and the '+'. For example, the following statement uses the ALL_
ROWS hint to let the cost-based approach optimize the statement for the goal of best
throughput:

EXEC SQL SELECT /*+ ALL_ROWS (cost-based) */ empno, ename, sal, job
 INTO :emp_rec FROM emp
 WHERE deptno = :dept_number;

As shown in this statement, the comment can contain optimizer hints as well as other
comments.

For more information about the cost-based optimizer, and optimizer hints, see Oracle
Database Application Developer's Guide - Fundamentals.

The CURRENT OF Clause
You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to
refer to the latest row FETCHed from the named cursor. The cursor must be open and
positioned on a row. If no FETCH has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you DECLARE a cursor that is
referenced in the CURRENT OF clause of an UPDATE or DELETE statement. The
CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary.

In the following example, you use the CURRENT OF clause to refer to the latest row
FETCHed from a cursor named emp_cursor:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal FROM emp WHERE job = 'CLERK'
 FOR UPDATE OF sal;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (;;) {
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...
 EXEC SQL UPDATE emp SET sal = :new_salary
 WHERE CURRENT OF emp_cursor;
}

Restrictions
You cannot use CURRENT OF clause on an index-organized table.

See Also: "Using FOR UPDATE OF" on page 3-18 for more
information

The Cursor Statements

6-16 Pro*C/C++ Programmer’s Guide

Explicit FOR UPDATE OF clauses or implicit FOR UPDATE clauses acquire exclusive
row locks. All rows are locked at the OPEN, not as they are FETCHed, and are released
when you COMMIT or ROLLBACK. Therefore, you cannot FETCH from a FOR
UPDATE cursor after a COMMIT. If you try to do this, Oracle returns a 1002 error
code.

Also, you cannot use host arrays with the CURRENT OF clause. For an alternative, see
also "Mimicking CURRENT OF" on page 8-23.

Furthermore, you cannot reference multiple tables in an associated FOR UPDATE OF
clause, which means that you cannot do joins with the CURRENT OF clause.

Finally, you cannot use dynamic SQL with the CURRENT OF clause.

The Cursor Statements
The following example shows the typical sequence of cursor control statements in an
application program:

 ...
/* define a cursor */
 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, job
 FROM emp
 WHERE empno = :emp_number
 FOR UPDATE OF job;

/* open the cursor and identify the active set */
 EXEC SQL OPEN emp_cursor;

/* break if the last row was already fetched */
 EXEC SQL WHENEVER NOT FOUND DO break;

/* fetch and process data in a loop */
 for (;;)
 {
 EXEC SQL FETCH emp_cursor INTO :emp_name, :job_title;

/* optional host-language statements that operate on
 the FETCHed data */

 EXEC SQL UPDATE emp
 SET job = :new_job_title
 WHERE CURRENT OF emp_cursor;
 }
...
/* disable the cursor */
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL COMMIT WORK RELEASE;
 ...

A Complete Example Using Non-Scrollable Cursor
The following complete program illustrates the use of a cursor and the FETCH
statement. The program prompts for a department number, then displays the names of
all employees in that department.

All FETCHes except the final one return a row and, if no errors were detected during
the FETCH, a success status code. The final FETCH fails and returns the "no data

A Complete Example Using Non-Scrollable Cursor

Embedded SQL 6-17

found" Oracle error code to sqlca.sqlcode. The cumulative number of rows actually
FETCHed is found in sqlerrd[2] in the SQLCA.

#include <stdio.h>

/* declare host variables */
char userid[12] = "SCOTT/TIGER";
char emp_name[10];
int emp_number;
int dept_number;
char temp[32];
void sql_error();

/* include the SQL Communications Area */
#include <sqlca.h>

main()
{ emp_number = 7499;
/* handle errors */
 EXEC SQL WHENEVER SQLERROR do sql_error("Oracle error");

/* connect to Oracle */
 EXEC SQL CONNECT :userid;
 printf("Connected.\n");

/* declare a cursor */
 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename
 FROM emp
 WHERE deptno = :dept_number;

 printf("Department number? ");
 gets(temp);
 dept_number = atoi(temp);

/* open the cursor and identify the active set */
 EXEC SQL OPEN emp_cursor;

 printf("Employee Name\n");
 printf("-------------\n");
/* fetch and process data in a loop
 exit when no more data */
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (1)
 {
 EXEC SQL FETCH emp_cursor INTO :emp_name;
 printf("%s\n", emp_name);
 }
 EXEC SQL CLOSE emp_cursor;
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

void
sql_error(msg)
char *msg;
{
 char buf[500];
 int buflen, msglen;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

A Complete Example Using Scrollable Cursor

6-18 Pro*C/C++ Programmer’s Guide

 EXEC SQL ROLLBACK WORK RELEASE;
 buflen = sizeof (buf);
 sqlglm(buf, &buflen, &msglen);
 printf("%s\n", msg);
 printf("%*.s\n", msglen, buf);
 exit(1);
}

A Complete Example Using Scrollable Cursor
The following program illustrates the use of scrollable cursor and the various options
used by the FETCH statement.

#include <stdio.h>

/* declare host variables */
char userid[12]="SCOTT/TIGER";
char emp_name[10];
void sql_error();

/* include the SQL Communications Area */
#include<sqlca.h>

main()
{
/* handle errors */
 EXEC SQL WHENEVER SQLERROR do sql_error("Oracle error");

/* connect to Oracle */
 EXEC SQL CONNECT :userid;
 printf("Connected.\n");

/* declare a scrollable cursor */
 EXEC SQL DECLARE emp_cursor SCROLL CURSOR FOR
 SELECT ename FROM emp;

/* open the cursor and identify the active set */
 EXEC SQL OPEN emp_cursor;

 /* Fetch the last row */
 EXEC SQL FETCH LAST emp_cursor INTO :emp_name;

 /* Fetch row number 5 */
 EXEC SQL FETCH ABSOLUTE 5 emp_cursor INTO :emp_name;

/* Fetch row number 10 */
 EXEC SQL FETCH RELATIVE 5 emp_cursor INTO :emp_name;

/* Fetch row number 7 */
 EXEC SQl FETCH RELATIVE -3 emp_cursor INTO :emp_name;

/* Fetch the first row */
 EXEC SQL FETCH FIRST emp_cursor INTO :emp_name;

/* Fetch row number 2*/
 EXEC SQL FETCH my_cursor INTO :emp_name;

/* Fetch row number 3 */
 EXEC SQL FETCH NEXT my_cursor INTO :emp_name;

Positioned Update

Embedded SQL 6-19

/* Fetch row number 3 */
 EXEC SQL FETCH CURRENT my_cursor INTO :emp_name;

/* Fetch row number 2 */
 EXEC SQL FETCH PRIOR my_cursor INTO :emp_name;
}

void
sql_error(msg)
char *msg;
{
 char buf[500];
 int buflen , msglen;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK TRANSACTION;
 buflen = sizeof (buf);
 sqlglm(buf, &buflen, &mesglen);
 printf("%s\n",msg);
 printf("%*.s\n",msglen,buf);
 exit(1);
}

Positioned Update
The following skeletal example demonstrates positioned update using the universal
ROWID. See also "Universal ROWIDs" on page 4-30:

#include <oci.h>
...
OCIRowid *urowid;
...
EXEC SQL ALLOCATE :urowid;
EXEC SQL DECLARE cur CURSOR FOR
 SELECT rowid, ... FROM my_table FOR UPDATE OF ...;
EXEC SQL OPEN cur;
EXEC SQL FETCH cur INTO :urowid, ...;
/* Process data */
...
EXEC SQL UPDATE my_table SET ... WHERE CURRENT OF cur;
EXEC SQL CLOSE cur;
EXEC SQL FREE :urowid;
...

Positioned Update

6-20 Pro*C/C++ Programmer’s Guide

Embedded PL/SQL 7-1

7
Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter contains the following
topics:

■ Advantages of PL/SQL

■ Embedded PL/SQL Blocks

■ Host Variables

■ Indicator Variables

■ Host Arrays

■ Cursor Usage in Embedded PL/SQL

■ Stored PL/SQL and Java Subprograms

■ External Procedures

■ Using Dynamic SQL

Advantages of PL/SQL
This section looks at some of the features and benefits offered by PL/SQL, such as:

■ Better Performance

■ Integration with Oracle

■ Cursor FOR Loops

■ Procedures and Functions

■ Packages

■ PL/SQL Tables

■ User-Defined Records

For more information about PL/SQL, see PL/SQL User's Guide and Reference.

Better Performance
PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle must process SQL statements one
at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements to
the Server. This minimizes communication between your application and Oracle.

Advantages of PL/SQL

7-2 Pro*C/C++ Programmer’s Guide

Integration with Oracle
PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL
datatypes are native to the Oracle data dictionary. Furthermore, you can use the
%TYPE attribute to base variable declarations on column definitions stored in the data
dictionary, as the following example shows:

job_title emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

Cursor FOR Loops
With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR loop,
which implicitly declares its loop index as a record, opens the cursor associated with a
given query, repeatedly fetches data from the cursor into the record, then closes the
cursor. An example follows:

DECLARE
...
BEGIN
 FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
 IF emprec.comm / emprec.sal > 0.25 THEN ...
 ...
END LOOP;
END;

Notice that you use dot notation to reference components in the record.

Procedures and Functions
PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, just write your own as follows:

PROCEDURE create_dept
 (new_dname IN CHAR(14),
 new_loc IN CHAR(13),
 new_deptno OUT NUMBER(2)) IS
BEGIN
 SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
 INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the
next value in a department-number database sequence, inserts the new number, name,
and location into the dept table, then returns the new number to the caller.

You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you pass
values to the subprogram being called. An OUT parameter lets you return values to

Advantages of PL/SQL

Embedded PL/SQL 7-3

the caller of a subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 7–1 on page 7-12 shows the legal conversions
between datatypes.

Packages
PL/SQL lets you bundle logically related types, program objects, and subprograms
into a package. With the Procedural Database Extension, packages can be compiled and
stored in an Oracle database, where their contents can be shared by many applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms; it implements the specification. In the following example, you "package"
two employment procedures:

PACKAGE emp_actions IS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);

 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

PACKAGE BODY emp_actions IS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and inaccessible.

PL/SQL Tables
PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER, PLS_
INTEGER or VARCHAR2.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. In the following example, you declare a TABLE type called
NumTabTyp:

...
DECLARE
 TYPE NumTabTyp IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
...
BEGIN
 ...

Embedded PL/SQL Blocks

7-4 Pro*C/C++ Programmer’s Guide

END;
...

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named num_
tab as follows:

num_tab(9) ...

User-Defined Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a
table or a row fetched by a cursor. However, you cannot specify the datatypes of
components in the record or define components of your own. The composite datatype
RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named components, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary, hire
date, and so on. This data is dissimilar in type but logically related. A record that
contains such components as the name, salary, and hire date of an employee would let
you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE
TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(4) NOT NULL, -- default is NULL allowed
 dname CHAR(9),
 loc CHAR(14));

Notice that the component declarations are like variable declarations. Each component
has a unique name and specific datatype. You can add the NOT NULL option to any
component declaration and so prevent the assigning of NULLs to that component.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept_rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual components in a record. For example, you
reference the dname component in the dept_rec record as follows:

dept_rec.dname ...

Embedded PL/SQL Blocks
The Pro*C/C++ Precompiler treats a PL/SQL block like a single embedded SQL
statement. So, you can place a PL/SQL block anywhere in a program that you can
place a SQL statement.

Host Variables

Embedded PL/SQL 7-5

To embed a PL/SQL block in your Pro*C/C++ program, simply bracket the PL/SQL
block with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE
...
BEGIN
 ...
END;
END-EXEC;

The keyword END-EXEC must be followed by a semicolon.

After writing your program, you precompile the source file in the usual way.

When the program contains embedded PL/SQL, you must use the
SQLCHECK=SEMANTICS command-line option, since the PL/SQL must be parsed
by the Oracle Server. SQLCHECK=SEMANTICS requires the USERID option also, to
connect to a server.

Host Variables
Host variables are the key to communication between a host language and a PL/SQL
block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and
reference host variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host
variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

Example: Using Host Variables with PL/SQL
The following example illustrates the use of host variables with PL/SQL. The program
prompts the user for an employee number, then displays the job title, hire date, and
salary of that employee.

char username[100], password[20];
char job_title[20], hire_date[9], temp[32];
int emp_number;
float salary;

#include <sqlca.h>

printf("Username? \n");
gets(username);
printf("Password? \n");
gets(password);

See Also: "Using the Precompiler Options" on page 10-8.

Note: To use VARCHAR, CHARZ, or STRING types as output
host variables in PL/SQL blocks, you must initialize the length
before entering the block. Set the length to the declared (maximum)
length of the VARCHAR, CHARZ, or STRING.

Host Variables

7-6 Pro*C/C++ Programmer’s Guide

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf("Connected to Oracle\n");
for (;;)
{
 printf("Employee Number (0 to end)? ");
 gets(temp);
 emp_number = atoi(temp);

 if (emp_number == 0)
 {
 EXEC SQL COMMIT WORK RELEASE;
 printf("Exiting program\n");
 break;
 }
/*-------------- begin PL/SQL block -----------------*/
 EXEC SQL EXECUTE
 BEGIN
 SELECT job, hiredate, sal
 INTO :job_title, :hire_date, :salary
 FROM emp
 WHERE empno = :emp_number;
 END;
 END-EXEC;
/*-------------- end PL/SQL block -----------------*/

 printf("Number Job Title Hire Date Salary\n");
 printf("------------------------------------\n");
 printf("%6d %8.8s %9.9s %6.2f\n",
 emp_number, job_title, hire_date, salary);
}
...
exit(0);

sql_error:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Notice that the host variable emp_number is set before the PL/SQL block is entered,
and the host variables job_title, hire_date, and salary are set inside the block.

Complex Example
In the example later, you prompt the user for a bank account number, transaction type,
and transaction amount, then debit or credit the account. If the account does not exist,
you raise an exception. When the transaction is complete, you display its status.

#include <stdio.h>
#include <sqlca.h>

char username[20];
char password[20];
char status[80];
char temp[32];
int acct_num;
double trans_amt;

Host Variables

Embedded PL/SQL 7-7

void sql_error();

main()
{
 char trans_type;

 strcpy(password, "TIGER");
 strcpy(username, "SCOTT");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("Connected to Oracle\n");

 for (;;)
 {
 printf("Account Number (0 to end)? ");
 gets(temp);
 acct_num = atoi(temp);

 if(acct_num == 0)
 {
 EXEC SQL COMMIT WORK RELEASE;
 printf("Exiting program\n");
 break;
 }

 printf("Transaction Type - D)ebit or C)redit? ");
 gets(temp);
 trans_type = temp[0];

 printf("Transaction Amount? ");
 gets(temp);
 trans_amt = atof(temp);

/*----------------- begin PL/SQL block -------------------*/
 EXEC SQL EXECUTE
 DECLARE
 old_bal NUMBER(9,2);
 err_msg CHAR(70);
 nonexistent EXCEPTION;

 BEGIN
 :trans_type := UPPER(:trans_type);
 IF :trans_type = 'C' THEN -- credit the account
 UPDATE accts SET bal = bal + :trans_amt
 WHERE acctid = :acct_num;
 IF SQL%ROWCOUNT = 0 THEN -- no rows affected
 RAISE nonexistent;
 ELSE
 :status := 'Credit applied';
 END IF;
 ELSIF :trans_type = 'D' THEN -- debit the account
 SELECT bal INTO old_bal FROM accts
 WHERE acctid = :acct_num;
 IF old_bal >= :trans_amt THEN -- enough funds
 UPDATE accts SET bal = bal - :trans_amt
 WHERE acctid = :acct_num;
 :status := 'Debit applied';

Host Variables

7-8 Pro*C/C++ Programmer’s Guide

 ELSE
 :status := 'Insufficient funds';
 END IF;
 ELSE
 :status := 'Invalid type: ' || :trans_type;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND OR nonexistent THEN
 :status := 'Nonexistent account';
 WHEN OTHERS THEN
 err_msg := SUBSTR(SQLERRM, 1, 70);
 :status := 'Error: ' || err_msg;
 END;
 END-EXEC;
/*----------------- end PL/SQL block ----------------------- */

 printf("\nStatus: %s\n", status);
 }
 exit(0);
}

void
sql_error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 printf("Processing error\n");
 exit(1);
}

VARCHAR Pseudotype
You can use the VARCHAR datatype to declare variable-length character strings. If the
VARCHAR is an input host variable, you must tell Oracle what length to expect.
Therefore, set the length component to the actual length of the value stored in the
string component.

If the VARCHAR is an output host variable, Oracle automatically sets the length
component. However, to use a VARCHAR (as well as CHARZ and STRING) output
host variable in your PL/SQL block, you must initialize the length component before
entering the block. So, set the length component to the declared (maximum) length of
the VARCHAR, as shown here:

int emp_number;
varchar emp_name[10];
float salary;
...
emp_name.len = 10; /* initialize length component */

EXEC SQL EXECUTE
 BEGIN
 SELECT ename, sal INTO :emp_name, :salary
 FROM emp
 WHERE empno = :emp_number;
 ...
 END;
END-EXEC;
...

Indicator Variables

Embedded PL/SQL 7-9

Restriction
Do not use C pointer or array syntax in PL/SQL blocks. The PL/SQL compiler does
not understand C host-variable expressions and is, therefore, unable to parse them. For
example, the following is invalid:

EXEC SQL EXECUTE
 BEGIN
 :x[5].name := 'SCOTT';
 ...
 END;
END-EXEC;

To avoid syntax errors, use a place-holder (a temporary variable), to hold the address
of the structure field to populate structures as shown in the following valid example:

name = x[5].name ;
EXEC SQL EXECUTE
 BEGIN
 :name := ...;
 ...
 END;
END-EXEC;

Indicator Variables
PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLs, as
follows:

IF variable IS NULL THEN ...

And, you can use the assignment operator (:=) to assign NULLs, as follows:

variable := NULL;

However, a host language such as C needs indicator variables because it cannot
manipulate NULLs. Embedded PL/SQL meets this need by letting you use indicator
variables to

■ Accept NULLs input from a host program

■ Output NULLs or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rules:

■ You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

■ If you refer to a host variable with its indicator variable, you must always refer to
it that way in the same block.

In the following example, the indicator variable ind_comm appears with its host
variable commission in the SELECT statement, so it must appear that way in the IF
statement:

...
EXEC SQL EXECUTE
BEGIN
 SELECT ename, comm

Host Arrays

7-10 Pro*C/C++ Programmer’s Guide

 INTO :emp_name, :commission :ind_comm
 FROM emp
 WHERE empno = :emp_number;
 IF :commission :ind_comm IS NULL THEN ...
 ...
END;
END-EXEC;

Notice that PL/SQL treats :commission :ind_comm like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

NULLs Handling
When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable.
In the next example, if ind_sal had a value of -1 before the PL/SQL block was entered,
the salary_missing exception is raised. An exception is a named error condition.

...
EXEC SQL EXECUTE
BEGIN
 IF :salary :ind_sal IS NULL THEN
 RAISE salary_missing;
END IF;
...
END;
END-EXEC;
...

Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string. In the following example, the host program will be able to tell, by
checking the value of ind_name, if a truncated value was assigned to emp_name:

...
EXEC SQL EXECUTE
DECLARE
...
new_name CHAR(10);
BEGIN
 ...
 :emp_name:ind_name := new_name;
 ...
END;
END-EXEC;

Host Arrays
You can pass input host arrays and indicator arrays to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER;
VARCHAR2 key types are not permitted. Normally, the entire host array is passed to
PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a
smaller array dimension.

Host Arrays

Embedded PL/SQL 7-11

Furthermore, you can use a procedure call to assign all the values in a host array to
rows in a PL/SQL table. Given that the array subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. n - m + 1. For example, if the
array subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1 .. (10 -
5 + 1) or 1 .. 6.

In the following example, you pass an array named salary to a PL/SQL block, which
uses the array in a function call. The function is named median because it finds the
middle value in a series of numbers. Its formal parameters include a PL/SQL table
named num_tab. The function call assigns all the values in the actual parameter salary
to rows in the formal parameter num_tab.

...
float salary[100];

/* populate the host array */

EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_salary REAL;
 n BINARY_INTEGER;
...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 n := 100;
 median_salary := median(:salary, n);
 ...
 END;
END-EXEC;
...

You can also use a procedure call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

Table 7–1 shows the legal conversions between row values in a PL/SQL table and
elements in a host array. For example, a host array of type LONG is compatible with a
PL/SQL table of type VARCHAR2, LONG, RAW, or LONG RAW. Notably, it is not
compatible with a PL/SQL table of type CHAR.

Note: In dynamic SQL Method 4, you cannot bind a host array to
a PL/SQL procedure with a parameter of type "table." See
also"Using Method 4" on page 13-19.

See Also: "Stored PL/SQL and Java Subprograms" on page 7-15
for an example.

Host Arrays

7-12 Pro*C/C++ Programmer’s Guide

ARRAYLEN Statement
Suppose you must pass an input host array to a PL/SQL block for processing. By
default, when binding such a host array, the Pro*C/C++ Precompiler uses its declared
dimension. However, you might not want to process the entire array. In that case, you
can use the ARRAYLEN statement to specify a smaller array dimension. ARRAYLEN
associates the host array with a host variable, which stores the smaller dimension. The
statement syntax is

EXEC SQL ARRAYLEN host_array (dimension) [EXECUTE];

where dimension is a 4-byte integer host variable, not a literal or expression.

EXECUTE is an optional keyword.

Table 7–1 Legal Datatype Conversions

PL/SQL
Table->

Host Array CHAR DATE LONG
LONG
RAW

NUMBE
R RAW ROWID

VARCHA
R2

CHARF X - - - - - - -

CHARZ X - - - - - - -

DATE - X - - - - - -

DECIMAL - - - - X - - -

DISPLAY - - - - X - - -

FLOAT - - - - X - - -

INTEGER - - - - X - - -

LONG X - X - - - - -

LONG
VARCHAR

- - X X - X - X

LONG
VARRAW

- - - X - X - -

NUMBER - - - - X - - -

RAW - - - X - X - -

ROWID - - - - - - X -

STRING - - X X - X - X

UNSIGNE
D

- - - - X - - -

VARCHAR - - X X - X - X

VARCHAR
2

- - X X - X - X

VARNUM - - - - X - - -

VARRAW - - - X - X - -

Note: The Pro*C/C++ Precompiler does not check your usage of
host arrays. For instance, no index range-checking is done.

Host Arrays

Embedded PL/SQL 7-13

The ARRAYLEN statement must appear along with, but somewhere after, the
declarations of host_array and dimension. You cannot specify an offset into the host
array. However, you might be able to use C features for that purpose. The following
example uses ARRAYLEN to override the default dimension of a C host array named
bonus:

float bonus[100];
int dimension;
EXEC SQL ARRAYLEN bonus (dimension);
/* populate the host array */
...
dimension = 25; /* set smaller array dimension */
EXEC SQL EXECUTE
DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_bonus REAL;
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
 -- compute median
 END;
 BEGIN
 median_bonus := median(:bonus, :dimension);
 ...
 END;
END-EXEC;

Only 25 array elements are passed to the PL/SQL block because ARRAYLEN reduces
the array from 100 to 25 elements. As a result, when the PL/SQL block is sent to Oracle
for execution, a much smaller host array is sent along. This saves time and, in a
networked environment, reduces network traffic.

Optional Keyword EXECUTE
Host arrays used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may
have two different interpretations based on the presence or absence of the optional
keyword EXECUTE.

By default (if the EXECUTE keyword is absent on an ARRAYLEN statement):

■ The host array is considered when determining the number of times a PL/SQL
block will be executed. (The minimum array dimension is used.)

■ The host array must not be bound to a PL/SQL index table.

 If the keyword EXECUTE is present:

■ The host array must be bound to an index table.

■ The PL/SQL block will be executed one time.

■ All host variables specified in the EXEC SQL EXECUTE statement must either

■ Be specified in an ARRAYLEN ... EXECUTE statement

■ Be scalar.

 For example, given the following PL/SQL procedure:

 CREATE OR REPLACE PACKAGE pkg AS

See Also: "Using Method 2" on page 13-9

Cursor Usage in Embedded PL/SQL

7-14 Pro*C/C++ Programmer’s Guide

 TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY_INTEGER;
 PROCEDURE proc1 (parm1 tab, parm2 NUMBER, parm3 tab);
 END;

The following Pro*C/C++ function demonstrates how host arrays can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be executed 3 times resulting in 3 new rows in the emp table.

func1()
{
 int empno_arr[5] = {1111, 2222, 3333, 4444, 5555};
 char *ename_arr[3] = {"MICKEY", "MINNIE", "GOOFY"};
 char *stmt1 = "BEGIN INSERT INTO emp(empno, ename) VALUES :b1, :b2; END;";

 EXEC SQL PREPARE s1 FROM :stmt1;
 EXEC SQL EXECUTE s1 USING :empno_arr, :ename_arr;
}

The following Pro*C/C++ function demonstrates how to bind a host array to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

func2()
{
 int ii = 2;
 int int_tab[3] = {1,2,3};
 int dim = 3;
 EXEC SQL ARRAYLEN int_tab (dim) EXECUTE;

 char *stmt2 = "begin pkg.proc1(:v1, :v2, :v3); end; ";

 EXEC SQL PREPARE s2 FROM :stmt2;
 EXEC SQL EXECUTE s2 USING :int_tab, :ii, :int_tab;
}

However the following Pro*C/C++ function will result in a precompile-time warning
because there is no ARRAYLEN...EXECUTE statement for int_arr.

func3()
{
 int int_arr[3];
 int int_tab[3] = {1,2,3};
 int dim = 3;
 EXEC SQL ARRAYLEN int_tab (dim) EXECUTE;

 char *stmt3 = "begin pkg.proc1(:v1, :v2, :v3); end; ";

 EXEC SQL PREPARE s3 FROM :stmt3;
 EXEC SQL EXECUTE s3 USING :int_tab, :int_arr, :int_tab;
}

Cursor Usage in Embedded PL/SQL
The maximum number of cursors your program can use simultaneously is determined
by the database initialization parameter OPEN_CURSORS. While executing an

See Also: Chapter 8, "Host Arrays" for a complete discussion of
using arrays.

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 7-15

embedded PL/SQL block, one cursor. the parent cursor, is associated with the entire
block and one cursor, the child cursor, is associated with each SQL statement in the
embedded PL/SQL block. Both parent and child cursors count toward the OPEN_
CURSORS limit.

The following calculation shows how to determine the maximum number of cursors
used. The sum of the cursors used must not exceed OPEN_CURSORS.

 SQL statement cursors
 PL/SQL parent cursors
 PL/SQL child cursors
+ 6 cursors for overhead

 Sum of cursors in use

If your program exceeds the limit imposed by OPEN_CURSORS, Oracle gives you an
error.

Stored PL/SQL and Java Subprograms
Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in an Oracle database, and invoked.

For more information about creating Java methods, see Oracle Database Java Developer's
Guide

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary, it is a database
object, which can be re-executed without being recompiled.

When a subprogram within a PL/SQL block or stored procedure is sent to Oracle by
your application, it is called an inline subprogram. Oracle compiles the inline
subprogram and caches it in the System Global Area (SGA) but does not store the
source or object code in the data dictionary.

Subprograms defined within a package are considered part of the package, and thus
are called packaged subprograms. Stored subprograms not defined within a package are
called standalone subprograms.

Creating Stored Subprograms
You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a host program, as the following example shows:

EXEC SQL CREATE
FUNCTION sal_ok (salary REAL, title CHAR)
RETURN BOOLEAN AS
min_sal REAL;
max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal
 FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND
 (salary <= max_sal);
 END sal_ok;
END-EXEC;

See Also: "Embedded PL/SQL Considerations" on page C-9

Stored PL/SQL and Java Subprograms

7-16 Pro*C/C++ Programmer’s Guide

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example later, you create a package that contains a procedure named get_
employees, which fetches a batch of rows from the EMP table. The batch size is
determined by the caller of the procedure, which might be another stored subprogram
or a client application.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches a
batch of employee data into the PL/SQL tables. The matching actual parameters are
host arrays. When the procedure finishes, it automatically assigns all row values in the
PL/SQL tables to corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE emp_actions AS
 TYPE CharArrayTyp IS TABLE OF VARCHAR2(10)
 INDEX BY BINARY_INTEGER;
 TYPE NumArrayTyp IS TABLE OF FLOAT
 INDEX BY BINARY_INTEGER;
 PROCEDURE get_employees(
 dept_number IN INTEGER,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT CharArrayTyp,
 job_title OUT CharArrayTyp,
 salary OUT NumArrayTyp);
 END emp_actions;
END-EXEC;
EXEC SQL CREATE OR REPLACE PACKAGE BODY emp_actions AS

 CURSOR get_emp (dept_number IN INTEGER) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;

 PROCEDURE get_employees(
 dept_number IN INTEGER,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT CharArrayTyp,
 job_title OUT CharArrayTyp,
 salary OUT NumArrayTyp) IS

 BEGIN
 IF NOT get_emp%ISOPEN THEN
 OPEN get_emp(dept_number);
 END IF;
 done_fetch := 0;
 found := 0;
 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i),
 job_title(i), salary(i);
 IF get_emp%NOTFOUND THEN
 CLOSE get_emp;
 done_fetch := 1;
 EXIT;
 ELSE
 found := found + 1;
 END IF;

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 7-17

 END LOOP;
 END get_employees;
END emp_actions;
END-EXEC;

You specify the REPLACE clause in the CREATE statement to redefine an existing
package without having to drop the package, re-create it, and re-grant privileges on it.
For the full syntax of the CREATE statement see Oracle Database SQL Reference.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails,
Oracle generates a warning, not an error.

Calling a Stored PL/SQL or Java Subprogram
To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block, or the CALL embedded SQL statement.

Anonymous PL/SQL Block
In the following example, you call a standalone procedure named raise_salary:

EXEC SQL EXECUTE
 BEGIN
 raise_salary(:emp_id, :increase);
 END;
END-EXEC;

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are C host variables.

In the next example, the procedure raise_salary is stored in a package named emp_
actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEGIN
 emp_actions.raise_salary(:emp_id, :increase);
END;
END-EXEC;

An actual IN parameter can be a literal, scalar host variable, host array, PL/SQL
constant or variable, PL/SQL table, PL/SQL user-defined record, procedure call, or
expression. However, an actual OUT parameter cannot be a literal, procedure call, or
expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

In the following example, three of the formal parameters are PL/SQL tables, and the
corresponding actual parameters are host arrays. The program calls the stored
procedure get_employees repeatedly, displaying each batch of employee data, until no
more data is found. This program is available on-line in the demo directory, in the file
sample9.pc. A SQL script to create the CALLDEMO stored package is available in
the file calldemo.sql.

/***
Sample Program 9: Calling a stored procedure

This program connects to ORACLE using the SCOTT/TIGER
account. The program declares several host arrays, then

See Also: "Creating Stored Subprograms" on page 7-15

Stored PL/SQL and Java Subprograms

7-18 Pro*C/C++ Programmer’s Guide

calls a PL/SQL stored procedure (GET_EMPLOYEES in the
CALLDEMO package) that fills the table OUT parameters. The
PL/SQL procedure returns up to ASIZE values.

Sample9 keeps calling GET_EMPLOYEES, getting ASIZE arrays
each time, and printing the values, until all rows have been
retrieved. GET_EMPLOYEES sets the done_flag to indicate "no
more data."
***/
#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE sqlca.h;

typedef char asciz[20];
typedef char vc2_arr[11];

EXEC SQL BEGIN DECLARE SECTION;
/* User-defined type for null-terminated strings */
EXEC SQL TYPE asciz IS STRING(20) REFERENCE;

/* User-defined type for a VARCHAR array element. */
EXEC SQL TYPE vc2_arr IS VARCHAR2(11) REFERENCE;

asciz username;
asciz password;
int dept_no; /* which department to query? */
vc2_arr emp_name[10]; /* array of returned names */
vc2_arr job[10];
float salary[10];
int done_flag;
int array_size;
int num_ret; /* number of rows returned */
EXEC SQL END DECLARE SECTION;

long SQLCODE;

void print_rows(); /* produces program output */
void sql_error(); /* handles unrecoverable errors */

main()
{
 int i;
 char temp_buf[32];

/* Connect to ORACLE. */
 EXEC SQL WHENEVER SQLERROR DO sql_error();
 strcpy(username, "scott");
 strcpy(password, "tiger");
 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to ORACLE as user: %s\n\n", username);
 printf("Enter department number: ");
 gets(temp_buf);
 dept_no = atoi(temp_buf);/* Print column headers. */
 printf("\n\n");

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 7-19

 printf("%-10.10s%-10.10s%s\n", "Employee", "Job", "Salary");
 printf("%-10.10s%-10.10s%s\n", "--------", "---", "------");

/* Set the array size. */
 array_size = 10;

 done_flag = 0;
 num_ret = 0;

/* Array fetch loop.
 * The loop continues until the OUT parameter done_flag is set.
 * Pass in the department number, and the array size--
 * get names, jobs, and salaries back.
 */
 for (;;)
 {
 EXEC SQL EXECUTE
 BEGIN calldemo.get_employees
 (:dept_no, :array_size, :num_ret, :done_flag,
 :emp_name, :job, :salary);
 END;
 END-EXEC;

 print_rows(num_ret);

 if (done_flag)
 break;
 }

/* Disconnect from the database. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}
void
print_rows(n)
int n;
{
 int i;

 if (n == 0)
 {
 printf("No rows retrieved.\n");
 return;
 }

 for (i = 0; i < n; i++)
 printf("%10.10s%10.10s%6.2f\n",
 emp_name[i], job[i], salary[i]);
}

/* Handle errors. Exit on any error. */
void
sql_error()
{
 char msg[512];
 int buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

Stored PL/SQL and Java Subprograms

7-20 Pro*C/C++ Programmer’s Guide

 buf_len = sizeof(msg);
 sqlglm(msg, &buf_len, &msg_len);

 printf("\nORACLE error detected:");
 printf("\n%.*s \n", msg_len, msg);

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

Remember, the datatype of each actual parameter must be convertible to the datatype
of its corresponding formal parameter. Also, before a stored procedure is exited, all
OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

SQLCHECK=SEMANTICS is required when using an anonymous PL/SQL block.

Remote Access
PL/SQL lets you access remote databases using database links. Typically, database links
are established by your DBA and stored in the Oracle data dictionary. A database link
tells Oracle where the remote database is located, the path to it, and what Oracle
username and password to use. In the following example, you use the database link
dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEGIN
 raise_salary@dallas(:emp_id, :increase);
END;
END-EXEC;

You can create synonyms to provide location transparency for remote subprograms, as
the following example shows:

CREATE PUBLIC SYNONYM raise_salary
FOR raise_salary@dallas;

The CALL Statement
The concepts presented earlier for the embedded PL/SQL block also hold true for the
CALL statement. The CALL embedded SQL statement has the form:

EXEC SQL
 CALL [schema.] [package.]stored_proc[@db_link](arg1, ...)
 [INTO :ret_var [[INDICATOR]:ret_ind]] ;

where

schema

the schema containing the procedure

package

the package containing the procedure

stored_proc

 is the Java or PL/SQL stored procedure to be called

db_link

is the optional remote database link

Stored PL/SQL and Java Subprograms

Embedded PL/SQL 7-21

arg1...

is the list of arguments (variables, literals, or expressions) passed,

ret_var

 is the optional host variable which receives the result

ind_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SEMANTICS with the CALL statement.

CALL Example
If you have created a PL/SQL function fact (stored in the package mathpkg) that
takes an integer as input and returns its factorial in an integer:

 EXEC SQL CREATE OR REPLACE PACKAGE BODY mathpkg as
 function fact(n IN INTEGER) RETURN INTEGER AS
 BEGIN
 IF (n <= 0) then return 1;
 ELSE return n * fact(n - 1);
 END IF;
 END fact;
 END mathpkge;
 END-EXEC.

then to use fact in a Pro*C/C++ application using the CALL statement:

 ...
int num, fact;
...
EXEC SQL CALL mathpkge.fact(:num) INTO :fact ;
...

Getting Information about Stored Subprograms

Chapter 4, "Datatypes and Host Variables" described how to embed OCI calls in your
host program. After calling the library routine SQLLDA to set up the LDA, use the
OCI call odessp to get useful information about a stored subprogram. When you call
odessp, you must pass it a valid LDA and the name of the subprogram. For packaged
subprograms, you must also pass the name of the package. odessp returns information
about each subprogram parameter such as its datatype, size, position, and so on. For
details, see Oracle Call Interface Programmer's Guide.

See Also:

■ "CALL (Executable Embedded SQL)" on page F-12 for more
information about the CALL statement.

■ Oracle Database Application Developer's Guide - Fundamentals, for
a complete explanation of passing arguments and other issues.

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

External Procedures

7-22 Pro*C/C++ Programmer’s Guide

You can also use the DESCRIBE_PROCEDURE stored procedure, in the DBMS_
DESCRIBE package. See Oracle Database Application Developer's Guide - Fundamentals for
more information about this procedure.

External Procedures
PL/SQL can call C functions which are external procedures. External procedures (also
known as external procedures) are stored in dynamic link libraries (DLL) or, for
example, in .so libraries under Solaris.

If the external procedure executes on the server-side, it can call back into the server to
execute SQL and PL/SQL in the same transaction. External procedures on the server
execute faster than on the client and can interface the database server with external
systems and data sources.

In order to execute a server-side external C function, the REGISTER CONNECT
embedded SQL statement must be used inside that function. The syntax of the
statement is:

EXEC SQL REGISTER CONNECT USING :epctx [RETURNING :host_context] ;

where epctx is the external procedure context (of type pointer to
OCIExtProcContext). epctx is passed to the procedure by PL/SQL.

host_context is a runtime context returned by the external procedure. Currently, it
is the default (global) context.

The REGISTER CONNECT statement will return the set of OCI handles (OCIEnv,
OCISvcCtx, and OCIError) that are associated with the current Oracle connection and
transaction. These handles are then used to define the Pro*C/C++ default unnamed
connection for the global SQLLIB runtime context. The REGISTER CONNECT
statement is therefore used instead of a CONNECT statement.

Subsequent embedded SQL statements will use this set of OCI handles. They execute
against the global SQLLIB runtime context and the unnamed connection, even those
that are in separately precompiled units. Uncommitted changes are not seen. In the
future, a (nondefault) runtime context can be returned in the optional RETURNING
clause.

There cannot already be any active default connection for the global runtime context.
A runtime error is returned if you try to use REGISTER CONNECT when a connection
already exists.

In real-world cases, the external procedure should be one that you can reuse from
many different applications.

Restrictions on External Procedures
Follow these rules for external procedures:

■ External procedures can only be in C. C++ external procedures are not supported.

■ When you are connected to the external procedure context, any additional
connection is not permitted and results in a runtime error.

■ Multithreaded external procedures are not supported. Executing an EXEC SQL
ENABLE THREADS statement is not permitted and will return a runtime error.

See Also: Oracle Call Interface Programmer's Guide for more
information about OCI functions.

External Procedures

Embedded PL/SQL 7-23

Pro*C/C++ does support multithreading in an application not using the external
procedure method we are describing.

■ You cannot use DDL statements. They result in runtime errors.

■ You cannot use transaction control statements, such as EXEC SQL COMMIT, and
EXEC SQL ROLLBACK.

■ You cannot use object navigation statements such as EXEC SQL OBJECT

■ You cannot use polling EXEC SQL LOB statements.

■ You cannot use EXEC TOOLS statements. They will result in runtime errors.

Creating the External Procedure
Here is a simple example to create the external procedure extp1.

To store an external C procedure, compile and link the code to a library such as a DLL
on NT.

Then use the following SQL command once to register the external procedure extp1:

CREATE OR REPLACE PROCEDURE extp1
AS EXTERNAL NAME "extp1"
LIBRARY mylib
WITH CONTEXT
PARAMETERS(CONTEXT) ;

Where mylib is the name of the library storing procedure extp1. WITH CONTEXT
means to implicitly call this procedure with argument of type
OCIExtProcContext*. The context is omitted in your call, but is passed to the
procedure anyway. The keyword CONTEXT appears in the CREATE statement,
however, as a place marker.

This context parameter is the one referenced in the EXEC SQL REGISTER CONNECT
statement inside extp1.

For more background on calling external procedures, see PL/SQL User's Guide and
Reference

The external procedure is called from SQL*Plus this way:

SQL>
BEGIN
 INSERT INTO emp VALUES(9999,'JOHNSON','SALESMAN',7782, sysdate, 1200,150,10);
 extp1;
END;

Here is the listing of extp1.pc:

void extp1 (epctx)
OCIExtProcContext *epctx;
{
char name[15];
 EXEC SQL REGISTER CONNECT USING :epctx;
 EXEC SQL WHENEVER SQLERROR goto err;
 EXEC SQL SELECT ename INTO :name FROM emp WHERE empno = 9999;
 return;
err: SQLExtProcError(SQL_SINGLE_
RCTX,sqlca.sqlerrm.sqlerrmc,sqlca.sqlerrm.sqlerrml);
 return;
}

Using Dynamic SQL

7-24 Pro*C/C++ Programmer’s Guide

SQLExtProcError()
The SQLLIB function SQLExtProcError() provides the ability to return control to
PL/SQL when an error occurs in an external C procedure. The function and its
arguments are:

SQLExtProcError (ctx, msg, msglen)

where:

ctx (IN) sql_context *

This is the target SQLLIB runtime context of the REGISTER CONNECT statement,
which has to be executed before this function is invoked. Only the global runtime
context is supported now.

msg (OUT) char *

The text of the error message.

msglen (OUT) size_t

The length in bytes of the message.

SQLLIB calls the OCI service function OCIExtProcRaiseExcpWithMsg when this
function is executed.

The message is from the structure sqlerrm in the SQLCA. For a discussion of the
structure of the SQLCA and sqlerrm, see "SQLCA Structure" on page 9-14.

Here is an example showing use of SQLExtProcError():

void extp1 (epctx)
OCIExtProcContext *epctx;
{
 char name[15];
 EXEC SQL REGISTER CONNECT USING :epctx;
 EXEC SQL WHENEVER SQLERROR goto err;
 EXEC SQL SELECT ename INTO :name FROM emp WHERE smpno = 9999;
 return;
 err:
 SQLExtProcError (SQL_SINGLE_RCTX, sqlca.sqlerrm.sqlerrmc,
 sqlca.sqlerrm.sqlerrml);
 printf("\n%*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 return;
}

Using Dynamic SQL
Recall that the precompiler treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to EXECUTE the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to PREPARE and EXECUTE the PL/SQL string. If the
block contains an unknown number of host variables, you must use dynamic SQL
Method 4.

See Also:

■ Chapter 13, "Oracle Dynamic SQL"

■ Chapter 14, "ANSI Dynamic SQL"

■ Chapter 15, "Oracle Dynamic SQL: Method 4"

Using Dynamic SQL

Embedded PL/SQL 7-25

Note: In dynamic SQL Method 4, you cannot bind a host array to
a PL/SQL procedure with a parameter of type "table." See also
"Using Method 4" on page 13-19.

Using Dynamic SQL

7-26 Pro*C/C++ Programmer’s Guide

Host Arrays 8-1

8
Host Arrays

This chapter looks at using arrays to simplify coding and improve program
performance. You will learn how to manipulate Oracle data using arrays, how to
operate on all the elements of an array with a single SQL statement, and how to limit
the number of array elements processed. The chapter contains the following topics:

■ Why Use Arrays?

■ Declaring Host Arrays

■ Using Arrays in SQL Statements

■ Selecting into Arrays

■ Inserting with Arrays

■ Updating with Arrays

■ Deleting with Arrays

■ Using the FOR Clause

■ Using the WHERE Clause

■ Arrays of Structs

■ Mimicking CURRENT OF

■ Using sqlca.sqlerrd[2]

Why Use Arrays?
Arrays reduce programming time and result in improved performance.

With arrays, you manipulate an entire array with a single SQL statement. Thus, Oracle
communication overhead is reduced markedly, especially in a networked
environment. A major portion of runtime is spent on network round trips between the
client program and the server database. Arrays reduce the round trips.

For example, suppose you want to insert information about 300 employees into the
EMP table. Without arrays your program must do 300 individual INSERTs—one for
each employee. With arrays, only one INSERT needs to be done.

Declaring Host Arrays
The following example declares three host arrays, each with a maximum of 50
elements:

char emp_name[50][10];
int emp_number[50];

Using Arrays in SQL Statements

8-2 Pro*C/C++ Programmer’s Guide

float salary[50];

Arrays of VARCHARs are also allowed. The following declaration is a valid host
language declaration:

VARCHAR v_array[10][30];

Restrictions
You cannot declare host arrays of pointers, except for object types.

Except for character arrays (strings), host arrays that might be referenced in a SQL
statement are limited to one dimension. So, the two-dimensional array declared in the
following example is invalid:

int hi_lo_scores[25][25]; /* not allowed */

Maximum Size of Arrays
The maximum number of array elements in a SQL statement that is accessible in one
fetch is 32K (or possibly greater, depending on the platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of array elements accessible is limited to 32512 divided by the size
of the datatype.

Using Arrays in SQL Statements
You can use host arrays as input variables in the INSERT, UPDATE, and DELETE
statements and as output variables in the INTO clause of SELECT and FETCH
statements.

The embedded SQL syntax used for host arrays and simple host variables is nearly the
same. One difference is the optional FOR clause, which lets you control array
processing. Also, there are restrictions on mixing host arrays and simple host variables
in a SQL statement.

The following sections illustrate the use of host arrays in data manipulation
statements.

Referencing Host Arrays
If you use multiple host arrays in a single SQL statement, their number of elements
should be the same. Otherwise, an "array size mismatch" warning message is issued at
precompile time. If you ignore this warning, the precompiler uses the smallest number
of elements for the SQL operation.

In this example, only 25 rows are Inserted

int emp_number[50];
char emp_name[50][10];
int dept_number[25];
/* Populate host arrays here. */

EXEC SQL INSERT INTO emp (empno, ename, deptno)
 VALUES (:emp_number, :emp_name, :dept_number);

Using Arrays in SQL Statements

Host Arrays 8-3

It is possible to subscript host arrays in SQL statements, and use them in a loop to
INSERT or fetch data. For example, you could INSERT every fifth element in an array
using a loop such as:

for (i = 0; i < 50; i += 5)
 EXEC SQL INSERT INTO emp (empno, deptno)
 VALUES (:emp_number[i], :dept_number[i]);

However, if the array elements that you need to process are contiguous, you should
not process host arrays in a loop. Simply use the non-scripted array names in your
SQL statement. Oracle treats a SQL statement containing host arrays of element
number n like the same statement executed n times with n different scalar variables.

Using Indicator Arrays
You can use indicator arrays to assign NULLs to input host arrays, and to detect NULL
or truncated values (character columns only) in output host arrays. The following
example shows how to INSERT with indicator arrays:

int emp_number[50];
int dept_number[50];
float commission[50];
short comm_ind[50]; /* indicator array */

/* Populate the host and indicator arrays. To insert a null
 into the comm column, assign -1 to the appropriate
 element in the indicator array. */
 EXEC SQL INSERT INTO emp (empno, deptno, comm)
 VALUES (:emp_number, :dept_number,
 :commission INDICATOR :comm_ind);

Oracle Restrictions
Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in an UPDATE or DELETE
statement.

ANSI Restriction and Requirements
The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are
still allowed. The use of arrays can be flagged using the FIPS flagger precompiler
option, if desired.

When doing array SELECTs and FETCHes, always use indicator arrays. That way, you
can test for NULLs in the associated output host array.

When you precompile with the precompiler option DBMS=V7 or V8, if a NULL is
selected or fetched into a host variable that has no associated indicator variable, Oracle
stops processing, sets sqlca.sqlerrd[2] to the number of rows processed, and
returns an error.

When DBMS=V7 or V8, Oracle does not consider truncation to be an error.

Selecting into Arrays

8-4 Pro*C/C++ Programmer’s Guide

Selecting into Arrays
You can use host arrays as output variables in the SELECT statement. If you know the
maximum number of rows the SELECT will return, simply declare the host arrays
with that number of elements. In the following example, you select directly into three
host arrays. Knowing the SELECT will return no more than 50 rows, you declare the
arrays with 50 elements:

char emp_name[50][20];
int emp_number[50];
float salary[50];

EXEC SQL SELECT ENAME, EMPNO, SAL
 INTO :emp_name, :emp_number, :salary
 FROM EMP
 WHERE SAL > 1000;

In the preceding example, the SELECT statement returns up to 50 rows. If there are
fewer than 50 eligible rows or you want to retrieve only 50 rows, this method will
suffice. However, if there are more than 50 eligible rows, you cannot retrieve all of
them this way. If you reexecute the SELECT statement, it just returns the first 50 rows
again, even if more are eligible. You must either declare a larger array or declare a
cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you
declared, Oracle issues an error message unless you specify SELECT_ERROR=NO.

Cursor Fetches
If you do not know the maximum number of rows a SELECT will return, you can
declare and open a cursor, then fetch from it in "batches."

Batch fetches within a loop let you retrieve a large number of rows with ease. Each
FETCH returns the next batch of rows from the current active set. In the following
example, you fetch in 20-row batches:

int emp_number[20];
float salary[20];

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT empno, sal FROM emp;

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND do break;
for (;;)
{
 EXEC SQL FETCH emp_cursor
 INTO :emp_number, :salary;
 /* process batch of rows */
 ...
}
...

Do not forget to check how many rows were actually returned in the last fetch, and
process them.

See Also: "Precompiler Options" on page 10-2 for more
information about the SELECT_ERROR option, see the section

Selecting into Arrays

Host Arrays 8-5

Using sqlca.sqlerrd[2]
For INSERT, UPDATE, DELETE, and SELECT INTO statements, sqlca.sqlerrd[2]
records the number of rows processed. For FETCH statements, it records the
cumulative sum of rows processed.

When using host arrays with FETCH, to find the number of rows returned by the most
recent iteration, subtract the current value of sqlca.sqlerrd[2] from its previous
value (stored in another variable). In the following example, you determine the
number of rows returned by the most recent fetch:

int emp_number[100];
char emp_name[100][20];

int rows_to_fetch, rows_before, rows_this_time;
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT empno, ename
 FROM emp
 WHERE deptno = 30;
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/* initialize loop variables */
rows_to_fetch = 20; /* number of rows in each "batch" */
rows_before = 0; /* previous value of sqlerrd[2] */
rows_this_time = 20;

while (rows_this_time == rows_to_fetch)
{
 EXEC SQL FOR :rows_to_fetch
 FETCH emp_cursor
 INTO :emp_number, :emp_name;
 rows_this_time = sqlca.sqlerrd[2] - rows_before;
 rows_before = sqlca.sqlerrd[2];
}
...

sqlca.sqlerrd[2] is also useful when an error occurs during an array operation.
Processing stops at the row that caused the error, so sqlerrd[2] gives the number of
rows processed successfully.

Number of Rows Fetched
Each FETCH returns, at most, the total number of rows in the array. Fewer rows are
returned in the following cases:

■ The end of the active set is reached. The "no data found" Oracle error code is
returned to SQLCODE in the SQLCA. For example, this happens if you fetch into
an array of number of elements 100 but only 20 rows are returned.

■ Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into an array of 20 number elements because after the third
FETCH, only 10 rows remain to be fetched.

■ An error is detected while processing a row. The FETCH fails and the applicable
Oracle error code is returned to SQLCODE.

See Also: "Number of Rows Fetched" on page 8-5

Selecting into Arrays

8-6 Pro*C/C++ Programmer’s Guide

The cumulative number of rows returned can be found in the third element of sqlerrd
in the SQLCA, called sqlerrd[2] in this guide. This applies to each open cursor. In
the following example, notice how the status of each cursor is maintained separately:

EXEC SQL OPEN cursor1;
EXEC SQL OPEN cursor2;
EXEC SQL FETCH cursor1 INTO :array_of_20;
/* now running total in sqlerrd[2] is 20 */
EXEC SQL FETCH cursor2 INTO :array_of_30;
/* now running total in sqlerrd[2] is 30, not 50 */
EXEC SQL FETCH cursor1 INTO :array_of_20;
/* now running total in sqlerrd[2] is 40 (20 + 20) */
EXEC SQL FETCH cursor2 INTO :array_of_30;
/* now running total in sqlerrd[2] is 60 (30 + 30) */

Scrollable Cursor Fetches
You can also use host arrays with scrollable cursors. With scrollable cursors
sqlca.sqlerrd[2] represents the maximum (absolute) row number processed.
Since an application can arbitarily position the fetches in scrollable mode, it need not
be the total number of rows processed.

While using host arrays with the FETCH statement in scrollable mode, you cannot
subtract the current value of sqlca.sqlerrd[2] from its previous value to find the
number of rows returned by the most recent iteration. The application program
determines the total number of rows in the result set by executing a FETCH LAST. The
value of sqlca.sqlerrd[2] provides the total number of rows in the result set.
Refer to "Sample Program: Host Arrays Using Scrollable Cursor" on page 8-8 for an
example illustrating the use of host arrays with scrollable cursors

Sample Program 3: Host Arrays
The demonstration program in this section shows how you can use host arrays when
writing a query in Pro*C/C++. Pay particular attention to the use of the "rows
processed count" in the SQLCA (sqlca.sqlerrd[2]). This program is available
on-line in the file sample3.pc in your demo directory.

/*
 * sample3.pc
 * Host Arrays
 *
 * This program connects to ORACLE, declares and opens a cursor,
 * fetches in batches using arrays, and prints the results using
 * the function print_rows().
 */

#include <stdio.h>
#include <string.h>

#include <sqlca.h>

#define NAME_LENGTH 20
#define ARRAY_LENGTH 5
/* Another way to connect. */
char *username = "SCOTT";
char *password = "TIGER";

See Also: "Handling Runtime Errors" on page 9-1 for more
information about the SQLCA

Selecting into Arrays

Host Arrays 8-7

/* Declare a host structure tag. */
struct
{
 int emp_number[ARRAY_LENGTH];
 char emp_name[ARRAY_LENGTH][NAME_LENGTH];
 float salary[ARRAY_LENGTH];
} emp_rec;

/* Declare this program's functions. */
void print_rows(); /* produces program output */
void sql_error(); /* handles unrecoverable errors */

main()
{
 int num_ret; /* number of rows returned */

/* Connect to ORACLE. */
 EXEC SQL WHENEVER SQLERROR DO sql_error("Connect error:");

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to ORACLE as user: %s\n", username);

 EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle error:");
/* Declare a cursor for the FETCH. */
 EXEC SQL DECLARE c1 CURSOR FOR
 SELECT empno, ename, sal FROM emp;

 EXEC SQL OPEN c1;

/* Initialize the number of rows. */
 num_ret = 0;

/* Array fetch loop - ends when NOT FOUND becomes true. */
 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)
 {
 EXEC SQL FETCH c1 INTO :emp_rec;

/* Print however many rows were returned. */
 print_rows(sqlca.sqlerrd[2] - num_ret);
 num_ret = sqlca.sqlerrd[2]; /* Reset the number. */
 }
/* Print remaining rows from last fetch, if any. */
 if ((sqlca.sqlerrd[2] - num_ret) > 0)
 print_rows(sqlca.sqlerrd[2] - num_ret);

 EXEC SQL CLOSE c1;
 printf("\nAu revoir.\n\n\n");

/* Disconnect from the database. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

void

Selecting into Arrays

8-8 Pro*C/C++ Programmer’s Guide

print_rows(n)
int n;
{
 int i;

 printf("\nNumber Employee Salary");
 printf("\n------ -------- ------\n");

 for (i = 0; i < n; i++)
 printf("%-9d%-15.15s%9.2f\n", emp_rec.emp_number[i],
 emp_rec.emp_name[i], emp_rec.salary[i]);

}

void
sql_error(msg)
char *msg;
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s", msg);
 printf("\n% .70s \n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

Sample Program: Host Arrays Using Scrollable Cursor
This program describes how to use host arrays with scrollable cursors. This program is
available on-line in the file scrolldemo2.pc in your demo directory.

Scroll Demo2.pc
/*
 * A Sample program to demonstrate the use of scrollable
 * cursors with host arrays.
 *
 * This program uses the hr/hr schema.Make sure
 * that this schema exists before executing this program
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

#define ARRAY_LENGTH 4

/* user and passwd */
char *username = "hr";
char *password = "hr";

/* Declare a host structure tag. */

Note: Note that we do a FETCH LAST to determine the number
of rows in the result set.

Selecting into Arrays

Host Arrays 8-9

struct emp_rec_array
{
 int emp_number;
 char emp_name[20];
 float salary;
} emp_rec[ARRAY_LENGTH];

/* Print the result of the query */

void print_rows()
{
 int i;

 for (i=0; i<ARRAY_LENGTH; i++)
 printf("%d %s %8.2f\n", emp_rec[i].emp_number,
 emp_rec[i].emp_name, emp_rec[i].salary);

}

/* Oracle error handler */

void sql_error(char *msg)
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s", msg);
 printf("\n% .70s \n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;
 exit(EXIT_FAILURE);
}

void main()
{
 int noOfRows; /* Number of rows in the result set */

 /* Error handler */
 EXEC SQL WHENEVER SQLERROR DO sql_error("Connect error:");

 /* Connect to the data base */
 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 /* Error handle */
 EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle error:");

 /* declare the cursor in scrollable mode */
 EXEC SQL DECLARE c1 SCROLL CURSOR FOR
 SELECT employee_id, first_name, salary FROM employees;

 EXEC SQL OPEN c1;

 EXEC SQL WHENEVER SQLERROR DO sql_error("Fetch Error:");

 /* This is a dummy fetch to find out the number of rows
 in the result set */
 EXEC SQL FETCH LAST c1 INTO :emp_rec;

 /* The number of rows in the result set is given by
 the value of sqlca.sqlerrd[2] */

Selecting into Arrays

8-10 Pro*C/C++ Programmer’s Guide

 noOfRows = sqlca. sqlerrd[2];
 printf("Total number of rows in the result set %d:\n",
 noOfRows);

 /* Fetch the first ARRAY_LENGTH number of rows */
 EXEC SQL FETCH FIRST c1 INTO :emp_rec;
 printf("******************** DEFAULT : \n");
 print_rows();

 /* Fetch the next set of ARRAY_LENGTH rows */
 EXEC SQL FETCH NEXT c1 INTO :emp_rec;
 printf("******************** NEXT : \n");
 print_rows();

 /* Fetch a set of ARRAY_LENGTH rows from the 3rd row onwards */
 EXEC SQL FETCH ABSOLUTE 3 c1 INTO :emp_rec;
 printf("******************** ABSOLUTE 3 : \n");
 print_rows();

 /* Fetch the current ARRAY_LENGTH set of rows */
 EXEC SQL FETCH CURRENT c1 INTO :emp_rec;
 printf("******************** CURRENT : \n");
 print_rows();

 /* Fetch a set of ARRAY_LENGTH rows from the 2nd offset
 from the current cursor position */
 EXEC SQL FETCH RELATIVE 2 c1 INTO :emp_rec;
 printf("******************** RELATIVE 2 : \n");
 print_rows();

 /* Again Fetch the first ARRAY_LENGTH number of rows */
 EXEC SQL FETCH ABSOLUTE 0 c1 INTO :emp_rec;
 printf("******************** ABSOLUTE 0 : \n");
 print_rows();

 /* close the cursor */
 EXEC SQL CLOSE c1;

/* Disconnect from the database. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(EXIT_SUCCESS);
}

Host Array Restrictions
Using host arrays in the WHERE clause of a SELECT statement is not allowed except
in a subquery. For an example, see "Using the WHERE Clause" on page 8-15.

Also, you cannot mix simple host variables with host arrays in the INTO clause of a
SELECT or FETCH statement. If any of the host variables is an array, all must be
arrays.

Table 8–1 shows which uses of host arrays are valid in a SELECT INTO statement:

Table 8–1 Valid Host Arrays for SELECT INTO

INTO Clause WHERE Clause Valid?

array array no

Inserting with Arrays

Host Arrays 8-11

Fetching NULLs
When doing array SELECTs and FETCHes, always use indicator arrays. That way, you
can test for NULLs in the associated output host array.

When DBMS = V7, if you SELECT or FETCH a NULL column value into a host array
not associated with an indicator array, Oracle stops processing, sets sqlerrd[2] to
the number of rows processed, and issues an error message:

Fetching Truncated Values
When DBMS=V7, truncation results in a warning message, but Oracle continues
processing.

Again, when doing array SELECTs and FETCHes, always use indicator arrays. That
way, if Oracle assigns one or more truncated column values to an output host array,
you can find the original lengths of the column values in the associated indicator array.

Inserting with Arrays
You can use host arrays as input variables in an INSERT statement. Just make sure
your program populates the arrays with data before executing the INSERT statement.

If some elements in the arrays are irrelevant, you can use the FOR clause to control the
number of rows inserted. See also "Using the FOR Clause" on page 8-13.

An example of inserting with host arrays follows:

char emp_name[50][20];
int emp_number[50];
float salary[50];
/* populate the host arrays */
...
EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:emp_name, :emp_number, :salary);

The cumulative number of rows inserted can be found in the rows-processed count,
sqlca.sqlerrd[2].

In the following example, the INSERT is done one row at a time. This is much less
efficient than the previous example, since a call to the server must be made for each
row inserted.

for (i = 0; i < array_size; i++)
 EXEC SQL INSERT INTO emp (ename, empno, sal)
 VALUES (:emp_name[i], :emp_number[i], :salary[i]);

Inserting with Arrays Restrictions
You cannot use an array of pointers in the VALUES clause of an INSERT statement; all
array elements must be data items.

scalar scalar yes

array scalar yes

scalar array no

Table 8–1 (Cont.) Valid Host Arrays for SELECT INTO

INTO Clause WHERE Clause Valid?

Updating with Arrays

8-12 Pro*C/C++ Programmer’s Guide

Mixing scalar host variables with host arrays in the VALUES clause of an INSERT
statement is not allowed. If any of the host variables is an array, all must be arrays.

Updating with Arrays
You can also use host arrays as input variables in an UPDATE statement, as the
following example shows:

int emp_number[50];
float salary[50];
/* populate the host arrays */
EXEC SQL UPDATE emp SET sal = :salary
 WHERE EMPNO = :emp_number;

The cumulative number of rows updated can be found in sqlerrd[2]. This number
does not include rows processed by an update cascade.

If some elements in the arrays are irrelevant, you can use the embedded SQL FOR
clause to limit the number of rows updated.

The last example showed a typical update using a unique key (EMP_NUMBER). Each
array element qualified just one row for updating. In the following example, each
array element qualifies multiple rows:

char job_title [10][20];
float commission[10];

...

EXEC SQL UPDATE emp SET comm = :commission
 WHERE job = :job_title;

Updating with Arrays Restrictions
Mixing simple host variables with host arrays in the SET or WHERE clause of an
UPDATE statement is not recommended. If any of the host variables is an array, all
should be arrays. Furthermore, if you use a host array in the SET clause, use one of
equal number of elements in the WHERE clause.

You cannot use host arrays with the CURRENT OF clause in an UPDATE statement.

Table 8–2 shows which uses of host arrays are valid in an UPDATE statement:

See Also: "Mimicking CURRENT OF" on page 8-23 for an
alternative.

Table 8–2 Host Arrays Valid in an UPDATE

SET Clause WHERE Clause Valid?

array array yes

scalar scalar yes

array scalar no

scalar array no

Using the FOR Clause

Host Arrays 8-13

Deleting with Arrays
You can also use host arrays as input variables in a DELETE statement. It is like
executing the DELETE statement repeatedly using successive elements of the host
array in the WHERE clause. Thus, each execution might delete zero, one, or more rows
from the table.

An example of deleting with host arrays follows:

...
int emp_number[50];

/* populate the host array */
...
EXEC SQL DELETE FROM emp
 WHERE empno = :emp_number;

The cumulative number of rows deleted can be found in sqlerrd[2]. The number
does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP_NUMBER). Each
array element qualified just one row for deletion. In the following example, each array
element qualifies multiple rows:

...
char job_title[10][20];

/* populate the host array */
...
EXEC SQL DELETE FROM emp
 WHERE job = :job_title;
...

Deleting with Arrays Restrictions
Mixing simple host variables with host arrays in the WHERE clause of a DELETE
statement is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in a DELETE statement.

Using the FOR Clause
You can use the optional embedded SQL FOR clause to set the number of array
elements processed by any of the following SQL statements:

■ DELETE

■ EXECUTE

■ FETCH

■ INSERT

■ OPEN

■ UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire array. The FOR clause lets

See Also: "Mimicking CURRENT OF" on page 8-23 for an
alternative.

Using the FOR Clause

8-14 Pro*C/C++ Programmer’s Guide

you limit the elements used to just the number you need, as the following example
shows:

char emp_name[100][20];
float salary[100];
int rows_to_insert;

/* populate the host arrays */
rows_to_insert = 25; /* set FOR-clause variable */
EXEC SQL FOR :rows_to_insert /* will process only 25 rows */
 INSERT INTO emp (ename, sal)
 VALUES (:emp_name, :salary);

The FOR clause can use an integer host variable to count array elements, or an integer
literal. A complex C expression that resolves to an integer cannot be used. For example,
the following statement that uses an integer expression is illegal:

EXEC SQL FOR :rows_to_insert + 5 /* illegal */
 INSERT INTO emp (ename, empno, sal)
 VALUES (:emp_name, :emp_number, :salary);

The FOR clause variable specifies the number of array elements to be processed. Make
sure the number does not exceed the smallest array dimension. Internally, the value is
treated as an unsigned quantity. An attempt to pass a negative value through the use
of a signed host variable will result in unpredictable behavior.

FOR Clause Restrictions
Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in a
SELECT statement or with the CURRENT OF clause.

In a SELECT Statement
If you use the FOR clause in a SELECT statement, you get an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear.
Does it mean "execute this SELECT statement n times"? Or, does it mean "execute this
SELECT statement once, but return n rows"? The problem in the former case is that
each execution might return multiple rows. In the latter case, it is better to declare a
cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :limit FETCH emp_cursor INTO ...

With the CURRENT OF Clause
You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to
the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal FROM emp WHERE empno = :emp_number;
...
EXEC SQL OPEN emp_cursor;
...
EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
...
EXEC SQL UPDATE emp SET sal = :new_salary
WHERE CURRENT OF emp_cursor;

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of limit is 1 (you can
only update or delete the current row once):

Arrays of Structs

Host Arrays 8-15

EXEC SQL FOR :limit UPDATE emp SET sal = :new_salary
WHERE CURRENT OF emp_cursor;
...
EXEC SQL FOR :limit DELETE FROM emp
WHERE CURRENT OF emp_cursor;

Using the WHERE Clause
Oracle treats a SQL statement containing host arrays of number of elements n like the
same SQL statement executed n times with n different scalar variables (the individual
array elements). The precompiler issues an error message only when such treatment
would be ambiguous.

For example, assuming the declarations

int mgr_number[50];
char job_title[50][20];

it would be ambiguous if the statement

EXEC SQL SELECT mgr INTO :mgr_number FROM emp
WHERE job = :job_title;
were treated like the imaginary statement

for (i = 0; i < 50; i++)
 SELECT mgr INTO :mgr_number[i] FROM emp
 WHERE job = :job_title[i];

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL UPDATE emp SET mgr = :mgr_number
 WHERE empno IN (SELECT empno FROM emp
 WHERE job = :job_title);

were treated like the imaginary statement

for (i = 0; i < 50; i++)
 UPDATE emp SET mgr = :mgr_number[i]
 WHERE empno IN (SELECT empno FROM emp
 WHERE job = :job_title[i]);

because there is a mgr_number in the SET clause for each row matching job_title in the
WHERE clause, even if each job_title matches multiple rows. All rows matching each
job_title can be SET to the same mgr_number. Therefore, no error message is issued.

Arrays of Structs
Using arrays of scalars, you can perform multirow operations involving a single
column only. Using structs of scalars allows users to perform single row operations
involving multiple columns.

In order to perform multirow operations involving multiple columns, however, you
previously needed to allocate several parallel arrays of scalars either separately or
encapsulated within a single struct. In many cases, it is easier to reorganize this data
structure more conveniently as a single array of structs instead.

Pro*C/C++ supports the use of arrays of structs which enable an application
programmer to perform multirow, multicolumn operations using an array of C structs.

Arrays of Structs

8-16 Pro*C/C++ Programmer’s Guide

With this enhancement, Pro*C/C++ can handle simple arrays of structs of scalars as
bind variables in embedded SQL statements for easier processing of user data. This
makes programming more intuitive, and allows users greater flexibility in organizing
their data.

In addition to supporting arrays of structs as bind variables, Pro*C/C++ also supports
arrays of indicator structs when used in conjunction with an array of structs
declaration.

Since arrays of structs are intended to be used when performing multirow operations
involving multiple columns, it is generally anticipated that they will be used in the
following ways.

■ As output bind variables in SELECT statements or FETCH statements.

■ As input bind variables in the VALUES clause of an INSERT statement.

Arrays of Structs Usage
The notion of an array of structs is not new to C programmers. It does, however,
present a conceptual difference for data storage when it is compared to a struct of
parallel arrays.

In a struct of parallel arrays, the data for the individual columns is stored
contiguously. In an array of structs, on the other hand, the column data is interleaved,
whereby each occurrence of a column in the array is separated by the space required
by the other columns in the struct. This space is known as a stride.

Restrictions on Arrays of Structs
The following restrictions apply to the use of arrays of structs in Pro*C/C++:

■ Arrays of structs (just as with ordinary structs) are not permitted inside an
embedded PL/SQL block.

■ Use of arrays of structs in WHERE or FROM clauses is prohibited.

■ Arrays of structs are not permitted with Oracle Dynamic SQL Method 4. They are
permitted with ANSI Dynamic SQL. See also "ANSI Dynamic SQL" on page 14-1.

■ Arrays of structs are not permitted in the SET clause of an UPDATE statement.

The syntax for declaring an array of structs does not change. There are, however, a few
things to keep in mind when using an array of structs.

Declaring an Array of Structs
When declaring an array of structs which will be used in a Pro*C/C++ application, the
programmer must keep in mind the following important points:

■ The struct must have a structure tag. For example, in the following code segment

 struct person {
 char name[15];

Note: Binding structs to PL/SQL records and binding arrays of
structs to PL/SQL tables of records are not part of this new
functionality. Arrays of structs may also not be used within an
embedded PL/SQL block. See also "Restrictions on Arrays of
Structs" on page 8-16.

Arrays of Structs

Host Arrays 8-17

 int age;
 } people[10];

the person variable is the structure tag. This is so the precompiler can use the name of
the struct to compute the size of the stride.

■ The members of the struct must not be arrays. The only exception to this rule is for
character types such as char or VARCHAR since array syntax is used when
declaring variables of these types.

■ char and VARCHAR members may not be two-dimensional.

■ Nested structs are not permitted as members of an array of structs. This is not a
new restriction, since nested structs have not been supported by previous releases
of Pro*C/C++.

■ The size of just the struct may not exceed the maximum value that a signed 4-byte
quantity may represent. This is typically two gigabytes.

Given these restrictions regarding the use of arrays of structs, the following
declaration is legal in Pro*C/C++

struct department {
 int deptno;
 char dname[15];
 char loc[14];
} dept[4];

while the following declaration is illegal.

struct { /* the struct is missing a structure tag */
 int empno[15]; /* struct members may not be arrays */
 char ename[15][10]; /* character types may not be 2-dimensional */
 struct nested {
 int salary; /* nested struct not permitted in array of structs */
 } sal_struct;
} bad[15];

It is also important to note that you cannot apply datatype equivalencing to either the
array of structs itself or to any of the individual fields within the struct. For example,
assuming empno is not declared as an array in the earlier illegal struct, the following is
illegal:

exec sql var bad[3].empno is integer(4);

The precompiler has no way to keep track of individual structure elements within the
array of structs. One could do the following, on the other hand, to achieve the desired
effect.

typedef int myint;
exec sql type myint is integer(4);

struct equiv {
 myint empno; /* now legally considered an integer(4) datatype */
 ...
} ok[15];

This should come as no surprise since equivalencing individual array items has not
been supported by previous releases of Pro*C/C++. For example, the following scalar
array declarations illustrate what is legal and what is not.

int empno[15];
exec sql var empno[3] is integer(4); /* illegal */

Arrays of Structs

8-18 Pro*C/C++ Programmer’s Guide

myint empno[15]; /* legal */

In summary, you may not equivalence any individual array item.

Variables Guidelines
Indicator variables for an array of structs declaration work in much the same way as a
normal struct declaration. An indicator array of structs declaration must abide by the
rules for an array of structs as follows:

■ The number of fields in the indicator struct must be less than or equal to the
number of fields in the corresponding array of structs.

■ The order of the fields must match the order of the corresponding members of the
array of structs.

■ The datatype for all elements in the indicator struct must be short.

■ The size of the indicator array must be at least the same size as the host variable
declaration. It may be larger, but it may not be smaller.

These rules generally reflect the rules for using structs as implemented in prior
releases of Pro*C/C++. The array restriction is also the same as that previously used
for arrays of scalars.

Given these rules, assume the following struct declaration:

struct department {
 int deptno;
 char dname[15];
 char loc[14];
} dept[4];

The following is a legal indicator variable struct declaration:

struct department_ind {
 short deptno_ind;
 short dname_ind;
 short loc_ind;
} dept_ind[4];

while the following is illegal as an indicator variable

struct{ /* missing indicator structure tag */
 int deptno_ind; /* indicator variable not of type short */
 short dname_ind[15];/* array element forbidden in indicator struct */
 short loc_ind[14]; /* array element forbidden in indicator struct */
} bad_ind[2]; /* indicator array size is smaller than host array */

Declaring a Pointer to an Array of Structs
In some cases, it may be desirable to declare a pointer to an array of structs. This
allows pointers to arrays of structs to be passed to other functions or used directly in
an embedded SQL statement.

See Also: "Declaring an Array of Structs" on page 8-16

Arrays of Structs

Host Arrays 8-19

Remember that FOR clauses may not be used in an embedded SQL SELECT statement.
Therefore, to retrieve data into a pointer to an array of structs, an explicit cursor and
FETCH statement must be used with the FOR clause.

Examples
The following examples demonstrate different uses of the array of structs functionality
in Pro*C/C++.

Example 1: A Simple Array of Structs of Scalars
Given the following structure declaration,

struct department {
 int deptno;
 char dname[15];
 char loc[14];
} my_dept[4];

a user could then select the dept data into my_dept as follows:

exec sql select * into :my_dept from dept;

or the user could populate my_dept first and then bulk insert it into the dept table:

exec sql insert into dept values (:my_dept);
To use an indicator variable, a parallel indicator array of structs could be declared.

struct deptartment_ind {
 short deptno_ind;
 short dname_ind;
 short loc_ind;
} my_dept_ind[4];

Data is then be selected using the same query except for the addition of the indicator
variable:

exec sql select * into :my_dept indicator :my_dept_ind from dept;

Similarly, the indicator could be used when inserting the data as well:

exec sql insert into dept values (:my_dept indicator :my_dept_ind);

Example 2: Using Mixed Scalar Arrays with An Array of Structs
As in prior releases of Pro*C/C++, when using multiple arrays for bulk handling of
user data, the size of the arrays must be the same. If they are not, the smallest array
size is chosen leaving the remaining portions of the arrays unaffected.

Given the following declarations,

struct employee {
 int empno;
 char ename[11];

Note: The length of the array referenced by a pointer to an array
of structs cannot be known during precompilation. For this reason,
an explicit FOR clause must be used when a bind variable whose
type is a pointer to an array of structs is used in any embedded SQL
statement.

Arrays of Structs

8-20 Pro*C/C++ Programmer’s Guide

} emp[14];

float sal[14];
float comm[14];

it is possible to select multiple rows for all columns in one simple query:

exec sql select empno, ename, sal, comm into :emp, :sal, :comm from emp;

We also want to know whether the column values for the commissions are NULL or
not. A single indicator array could be used given the following declaration:

short comm_ind[14];
...
exec sql select empno, ename, sal, comm
 into :emp, :sal, :comm indicator :comm_ind from emp;

You cannot declare a single indicator array of structs that encapsulate all indicator
information from the query. Therefore:

struct employee_ind { /* example of illegal usage */
 short empno_ind;
 short ename_ind;
 short sal_ind;
 short comm_ind;
} illegal_ind[15];

exec sql select empno, ename, sal, comm
 into :emp, :sal, :comm indicator :illegal_ind from emp;

is illegal (as well as undesirable). The earlier statement associates the indicator array
with the comm column only, not the entire SELECT...INTO list.

Assuming the array of structs and the sal, comm and comm_ind arrays were
populated with the desired data, insertion is straightforward:

exec sql insert into emp (empno, ename, sal, comm)
 values (:emp, :sal, :comm indicator :comm_ind);

Example 3: Using Multiple Arrays of Structs with a Cursor
For this example, we make the following declarations:

struct employee {
 int empno;
 char ename[11];
 char job[10];
} emp[14];

struct compensation {
 int sal;
 int comm;
} wage[14];

struct compensation_ind {
 short sal_ind;
 short comm_ind;
} wage_ind[14];

Our program could then make use of these arrays of structs as follows:

exec sql declare c cursor for
 select empno, ename, job, sal, comm from emp;

Arrays of Structs

Host Arrays 8-21

exec sql open c;

exec sql whenever not found do break;
while(1)
{
 exec sql fetch c into :emp, :wage indicator :wage_ind;
 ... process batch rows returned by the fetch ...
}

printf("%d rows selected.\n", sqlca.sqlerrd[2]);

exec sql close c;

Using the FOR clause Alternatively, we could have used the FOR clause to instruct the
fetch on how many rows to retrieve. Recall that the FOR clause is prohibited when
using the SELECT statement, but not the INSERT or FETCH statements.

We add the following to our original declarations

int limit = 10;
and code our example accordingly.

 exec sql for :limit
 fetch c into :emp, :wage indicator :wage_ind;

Example 4: Individual Array and Struct Member Referencing
Prior releases of Pro*C/C++ allowed array references to single structures in an array of
structs. The following is therefore legal since the bind expression resolves to a simple
struct of scalars.

exec sql select * into :dept[3] from emp;

Users can reference an individual scalar member of a specific struct in an array of
structs as the following example shows.

exec sql select dname into :dept[3].dname from dept where ...;

Naturally, this requires that the query be a single row query so only one row is
selected into the variable represented by this bind expression.

Example 5: Using Indicator Variables, a Special Case
Prior releases of Pro*C/C++ required that an indicator struct have the same number of
fields as its associated bind struct. This restriction has been relaxed when using structs
in general. By following the previously mentioned guidelines for indicator arrays of
structs it is possible to construct the following example.

struct employee {
 float comm;
 float sal;
 int empno;
 char ename[10];
} emp[14];

struct employee_ind {
 short comm;
} emp_ind[14];

exec sql select comm, sal, empno, ename

Arrays of Structs

8-22 Pro*C/C++ Programmer’s Guide

 into :emp indicator :emp_ind from emp;

The mapping of indicator variables to bind values is one-to-one. They map in
associative sequential order starting with the first field.

Be aware, however, that if any of the other fields has a fetched value of NULL and no
indicator is provided, the following error is raised:

ORA-1405: fetched column value is NULL

As an example, such is the case if sal was nullable because there is no indicator for
sal.

Suppose we change the array of structs as follows,

struct employee {
 int empno;
 char ename[10];
 float sal;
 float comm;
} emp[15];

but still used the same indicator array of structs.

Because the indicators map in associative sequential order, the comm indicator maps to
the empno field leaving the comm bind variable without an indicator once again
leading to the ORA-1405 error.

To avoid the ORA-1405 when using indicator structs that have fewer fields than their
associative bind variable structs, the nullable attributes should appear first and in
sequential order.

We could easily change this into a single-row fetch involving multiple columns by
using non-array structs and expect it to work as though the indicator struct was
declared as follows.

struct employee_ind {
 short comm;
 short sal;
 short empno;
 short ename;
} emp_ind;

Because Pro*C/C++ no longer requires that the indicator struct have the same number
of fields as its associated value struct, the earlier example is now legal in Pro*C/C++
whereas previously it was not.

Our indicator struct could now look like the following simple struct.

struct employee_ind {
 short comm;
} emp_ind;

Using the non-array emp and emp_ind structs we are able to perform a single row
fetch as follows.

exec sql fetch comm, sal, empno, ename
 into :emp indicator :emp_ind from emp;

Note once again how the comm indicator maps to the comm bind variable in this case as
well.

Mimicking CURRENT OF

Host Arrays 8-23

Example 6: Using a Pointer to an Array of Structs
This example demonstrates how to use a pointer to an array of structs.

Given the following type declaration:

typedef struct dept {
 int deptno;
 char dname[15];
 char loc[14];
} dept;

we can perform a variety of things, manipulating a pointer to an array of structs of
that type. For example, we can pass pointers to arrays of structs to other functions.

void insert_data(d, n)
 dept *d;
 int n;
{
 exec sql for :n insert into dept values (:d);
}

void fetch_data(d, n)
 dept *d;
 int n;
{
 exec sql declare c cursor for select deptno, dname, loc from dept;
 exec sql open c;
 exec sql for :n fetch c into :d;
 exec sql close c;
}

Such functions are invoked by passing the address of the array of structs as these
examples indicate.

dept d[4];
dept *dptr = &d[0];
const int n = 4;

fetch_data(dptr, n);
insert_data(d, n); /* We are treating '&d[0]' as being equal to 'd' */

Or we can simply use such pointers to arrays of structs directly in some embedded
SQL statement.

exec sql for :n insert into dept values (:dptr);

The most important thing to remember is the use of the FOR clause.

Mimicking CURRENT OF
You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer to
the latest row FETCHed from the cursor. However, you cannot use CURRENT OF with
host arrays. Instead, select the ROWID of each row, then use that value to identify the
current row during the update or delete.

For example:

char emp_name[20][10];

See Also: "The CURRENT OF Clause" on page 6-15

Mimicking CURRENT OF

8-24 Pro*C/C++ Programmer’s Guide

char job_title[20][10];
char old_title[20][10];
char row_id[20][19];
...
EXEC SQL DECLARE emp_cursor CURSOR FOR
SELECT ename, job, rowid FROM emp;
...
EXEC SQL OPEN emp_cursor;
EXEC SQL WHENEVER NOT FOUND do break;
for (;;)
{
 EXEC SQL FETCH emp_cursor
 INTO :emp_name, :job_title, :row_id;
 ...
 EXEC SQL DELETE FROM emp
 WHERE job = :old_title AND rowid = :row_id;
 EXEC SQL COMMIT WORK;
}

However, the fetched rows are not locked because no FOR UPDATE OF clause is used.
(You cannot use FOR UPDATE OF without CURRENT OF.) So, you might get
inconsistent results if another user changes a row after you read it but before you
delete it.

Handling Runtime Errors 9-1

9
Handling Runtime Errors

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle errors and status changes using the SQLSTATE status
variable, as well as the SQL Communications Area (SQLCA) and the WHENEVER
directive. You also learn how to diagnose problems using the Oracle Communications
Area (ORACA). This chapter contains the following topics:

■ The Need for Error Handling

■ Error Handling Alternatives

■ The SQLSTATE Status Variable

■ Declaring SQLCODE

■ Key Components of Error Reporting Using the SQLCA

■ Using the SQL Communications Area (SQLCA)

■ Getting the Full Text of Error Messages

■ Using the WHENEVER Directive

■ Obtaining the Text of SQL Statements

■ Using the Oracle Communications Area (ORACA)

The Need for Error Handling
A significant part of every application program must be devoted to error handling.
The main reason for error handling is that it allows your program to continue
operating in the presence of errors. Errors arise from design faults, coding mistakes,
hardware failures, invalid user input, and many other sources.

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors that are meaningful to your program. For the Pro*C/C++ Precompiler, error
handling means detecting and recovering from SQL statement execution errors. You
can also prepare to handle warnings such as "value truncated" and status changes such
as "end of data." It is especially important to check for error and warning conditions
after every SQL data manipulation statement, because an INSERT, UPDATE, or
DELETE statement might fail before processing all eligible rows in a table.

Error Handling Alternatives
There are several alternatives that you can use to detect errors and status changes in
the application. This chapter describes these alternatives, however, no specific

Error Handling Alternatives

9-2 Pro*C/C++ Programmer’s Guide

recommendations are made about what method you should use. The method is, after
all, dictated by the design of the application program or tool that you are building.

Status Variables
You can declare a separate status variable, SQLSTATE or SQLCODE, examine its value
after each executable SQL statement, and take appropriate action. The action might be
calling an error-reporting function, then exiting the program if the error is
unrecoverable. Or, you might be able to adjust data or control variables and retry the
action.

 The SQL Communications Area
Another alternative that you can use is to include the SQL Communications Area
structure (sqlca) in your program. This structure contains components that are filled in
at runtime after the SQL statement is processed by Oracle.

The SQLCA is defined in the header file sqlca.h, which you include in your program
using either of the following statements:

■ EXEC SQL INCLUDE SQLCA;

■ #include <sqlca.h>

Oracle updates the SQLCA after every executable SQL statement. (SQLCA values are
unchanged after a declarative statement.) By checking Oracle return codes stored in
the SQLCA, your program can determine the outcome of a SQL statement. This can be
done in the following two ways:

■ Implicit checking with the WHENEVER directive

■ Explicit checking of SQLCA components

You can use WHENEVER directives, code explicit checks on SQLCA components, or
do both.

The most frequently-used components in the SQLCA are the status variable
(sqlca.sqlcode), and the text associated with the error code (sqlca.sqlerrm.sqlerrmc). Other
components contain warning flags and miscellaneous information about the
processing of the SQL statement.

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a C struct that handles Oracle

See Also: ■"The SQLSTATE Status Variable" on page 9-3 and
"Declaring SQLCODE" on page 9-10 for complete information
about these status variables.

Note: In this guide, the sqlca structure is commonly referred to
using the acronym for SQL Communications Area (SQLCA). When
this guide refers to a specific component in the C struct, the
structure name (sqlca) is used.

Note: SQLCODE (upper case) always refers to a separate status
variable, not a component of the SQLCA. SQLCODE is declared as
a integer. When referring to the component of the SQLCA named
sqlcode, the fully-qualified name sqlca.sqlcode is always used.

The SQLSTATE Status Variable

Handling Runtime Errors 9-3

communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

The SQLSTATE Status Variable
The precompiler command line option MODE governs ANSI/ISO compliance. When
MODE=ANSI, declaring the SQLCA data structure is optional. However, you must
declare a separate status variable named SQLCODE. SQL92 specifies a similar status
variable named SQLSTATE, which you can use with or without SQLCODE.

After executing a SQL statement, the Oracle Server returns a status code to the
SQLSTATE variable currently in scope. The status code indicates whether the SQL
statement executed successfully or raised an exception (error or warning condition). To
promote interoperability (the ability of systems to exchange information easily), SQL92
predefines all the common SQL exceptions.

Unlike SQLCODE, which stores only error codes, SQLSTATE stores error and warning
codes. Furthermore, the SQLSTATE reporting mechanism uses a standardized coding
scheme. Thus, SQLSTATE is the preferred status variable. Under SQL92, SQLCODE is
a "deprecated feature" retained only for compatibility with SQL89 and likely to be
removed from future versions of the standard.

 Declaring SQLSTATE
When MODE=ANSI, you must declare SQLSTATE or SQLCODE. Declaring the
SQLCA is optional. When MODE=ORACLE, if you declare SQLSTATE, it is not used.

Unlike SQLCODE, which stores signed integers and can be declared outside the
Declare Section, SQLSTATE stores 5-character null-terminated strings and must be
declared inside the Declare Section. You declare SQLSTATE as

char SQLSTATE[6]; /* Upper case is required. */

 SQLSTATE Values
SQLSTATE status codes consist of a 2-character class code immediately followed by a
3-character subclass code. Aside from class code 00 ("successful completion",) the class
code denotes a category of exceptions. And, aside from subclass code 000 ("not
applicable",) the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value '22012' consists of class code 22 ("data exception") and
subclass code 012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A..H are reserved for predefined conditions (those defined in SQL92). All other class
codes are reserved for implementation-defined conditions. Within predefined classes,

See Also:

■ "Using the SQL Communications Area (SQLCA)" on page 9-12
for complete information about the SQLCA structure.

■ "Using the Oracle Communications Area (ORACA)" on
page 9-26 for complete information about the ORACA.

Note: SQLSTATE must be declared with a dimension of exactly 6
characters.

The SQLSTATE Status Variable

9-4 Pro*C/C++ Programmer’s Guide

subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are
reserved for predefined subconditions. All other subclass codes are reserved for
implementation-defined subconditions. Figure 9–1 shows the coding scheme.

Figure 9–1 SQLSTATE Coding Scheme

Table 9–1 shows the classes predefined by SQL92.

Table 9–1 Predefined Class Codes

Class Condition

00 success completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 coordinately violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

Predefined Implementation–defined

First Char in Class Code

0 . . 4 5 . . 9 A . . H I . . Z

0 . . 4

5 . . 9

A . . H

I . . Z

F
ir

st
 C

h
ar

 in
S

u
b

cl
as

s
C

o
d

e

The SQLSTATE Status Variable

Handling Runtime Errors 9-5

Table 9–2 shows how SQLSTATE status codes and conditions are mapped to Oracle
errors. Status codes in the range 60000 to 99999 are implementation-defined.

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Note: The class code HZ is reserved for conditions defined in
International Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 9–2 SQLSTATE Status Codes

Code Condition Oracle Error(s)

00000 successful completion ORA-00000

01000 warning --

01001 cursor operation conflict --

01002 disconnect error --

01003 NULL value eliminated in set function --

01004 string data-right truncation --

01005 insufficient item descriptor areas --

01006 privilege not revoked --

01007 privilege not granted --

01008 implicit zero-bit padding --

01009 search condition too long for info schema --

0100A query expression too long for info schema --

02000 no data ORA-01095

ORA-01403

07000 dynamic SQL error --

07001 using clause does not match parameter specs --

07002 using clause does not match target specs --

07003 cursor specification cannot be executed --

Table 9–1 (Cont.) Predefined Class Codes

Class Condition

The SQLSTATE Status Variable

9-6 Pro*C/C++ Programmer’s Guide

07004 using clause required for dynamic
parameters

--

07005 prepared statement not a cursor specification --

07006 restricted datatype attribute violation --

07007 using clause required for result components
invalid descriptor count

--

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index --

08000 connection exception --

08001 SQL-client unable to establish
SQL-connection

--

08002 connection name is use --

08003 connection does not exist SQL-02121

08004 SQL-server rejected SQL-connection --

08006 connection failure --

08007 transaction resolution unknown --

0A000 feature not supported ORA-03000..03099

0A001 multiple server transactions --

21000 cardinality violation ORA-01427

SQL-02112

22000 data exception --

22001 string data - right truncation ORA-01406

22002 NULL value-no indicator parameter SQL-02124

22003 numeric value out of range ORA-01426

22005 error in assignment --

22007 invalid datetime format --

22008 datetime field overflow ORA-01800..01899

22009 invalid time zone displacement value --

22011 substring error --

22012 division by zero ORA-01476

22015 interval field overflow --

22018 invalid character value for cast --

22019 invalid escape character ORA-00911

22021 character not in repertoire --

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025

ORA-04000..04019

22024 unterminated C string ORA-01479

ORA-01480

Table 9–2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

The SQLSTATE Status Variable

Handling Runtime Errors 9-7

22025 invalid escape sequence ORA-01424

ORA-01425

22026 string data-length mismatch ORA-01401

22027 trim error -

23000 integrity constraint violation ORA-02290..02299

24000 invalid cursor state ORA-001002

ORA-001003

SQL-02114

SQL-02117

25000 invalid transaction state SQL-02118

26000 invalid SQL statement name --

27000 triggered data change violation --

28000 invalid authorization specification --

2A000 direct SQL syntax error or access rule
violation

--

2B000 dependent privilege descriptors still exist --

2C000 invalid character set name --

2D000 invalid transaction termination --

2E000 invalid connection name --

33000 invalid SQL descriptor name --

34000 invalid cursor name --

35000 invalid condition number --

37000 dynamic SQL syntax error or access rule
violation

--

3C000 ambiguous cursor name --

3D000 invalid catalog name --

3F000 invalid schema name --

40000 transaction rollback ORA-02091

ORA-02092

40001 serialization failure --

40002 integrity constraint violation --

40003 statement completion unknown --

Table 9–2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

The SQLSTATE Status Variable

9-8 Pro*C/C++ Programmer’s Guide

42000 syntax error or access rule violation ORA-00022

ORA-00251

ORA-00900..00999

ORA-01031

ORA-01490..01493

ORA-01700..01799

ORA-01900..02099

ORA-02140..02289

ORA-02420..02424

ORA-02450..02499

ORA-03276..03299

ORA-04040..04059

ORA-04070..04099

44000 with check option violation ORA-01402

60000 system error ORA-00370..00429

ORA-00600..00899

ORA-06430..06449

ORA-07200..07999

ORA-09700..09999

61000 shared server and detached process errors ORA-00018..00035

ORA-00050..00068

ORA-02376..02399

ORA-04020..04039

62000 shared server and detached process errors ORA-00100..00120

ORA-00440..00569

63000 Oracle*XA and two-task interface errors ORA-00150..00159

ORA-02700..02899

ORA-03100..03199

ORA-06200..06249

SQL-02128

64000 control file, database file, and redo file errors;
archival and media recovery errors

ORA-00200..00369

ORA-01100..01250

65000 PL/SQL errors ORA-06500..06599

66000 Oracle Net driver errors ORA-06000..06149

ORA-06250..06429

ORA-06600..06999

ORA-12100..12299

ORA-12500..12599

67000 licensing errors ORA-00430..00439

69000 SQL*Connect errors ORA-00570..00599

ORA-07000..07199

Table 9–2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

The SQLSTATE Status Variable

Handling Runtime Errors 9-9

72000 SQL execute phase errors ORA-00001

ORA-01000..01099

ORA-01400..01489

ORA-01495..01499

ORA-01500..01699

ORA-02400..02419

ORA-02425..02449

ORA-04060..04069

ORA-08000..08190

ORA-12000..12019

ORA-12300..12499

ORA-12700..21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache (UCE/CUC
mismatch)

SQL-02101

82102 inconsistent cursor cache (no CUC entry for
UCE)

SQL-02102

82103 inconsistent cursor cache (out-or-range CUC
ref)

SQL-02103

82104 inconsistent cursor cache (no CUC available) SQL-02104

82105 inconsistent cursor cache (no CUC entry in
cache)

SQL-02105

82106 inconsistent cursor cache (invalid cursor
number)

SQL-02106

82107 program too old for runtime library;
re-precompile

SQL-02107

82108 invalid descriptor passed to runtime library SQL-02108

82109 inconsistent host cache (out-or-range SIT ref) SQL-02109

82110 inconsistent host cache (invalid SQL type) SQL-02110

82111 heap consistency error SQL-02111

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid
context

SQL-02116

82117 invalid OPEN or PREPARE for this
connection

SQL-02122

82118 application context not found SQL-02123

82119 unable to obtain error message text SQL-02125

82120 Precompiler/SQLLIB version mismatch SQL-02127

82121 NCHAR error; fetched number of bytes is
odd

SQL-02129

82122 EXEC TOOLS interface not available SQL-02130

82123 runtime context in use SQL-02131

Table 9–2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

Declaring SQLCODE

9-10 Pro*C/C++ Programmer’s Guide

Using SQLSTATE
The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when
you precompile with the option setting MODE=ANSI. SQLSTATE must be declared
inside a Declare Section; otherwise, it is ignored.

If You Declare SQLSTATE
■ Declaring SQLCODE is optional. If you declare SQLCODE inside the Declare

Section, the Oracle Server returns status codes to SQLSTATE and SQLCODE after
every SQL operation. However, if you declare SQLCODE outside of the Declare
Section, Oracle returns a status code only to SQLSTATE.

■ Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLSTATE and the SQLCA. In this case, to avoid compilation errors, do
not declare SQLCODE.

If You Do not Declare SQLSTATE
■ You must declare SQLCODE inside or outside the Declare Section. The Oracle

Server returns a status code to SQLCODE after every SQL operation.

■ Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLCODE and the SQLCA.

You can learn the outcome of the most recent executable SQL statement by checking
SQLSTATE explicitly with your own code or implicitly with the WHENEVER
SQLERROR directive. Check SQLSTATE only after executable SQL statements and
PL/SQL statements.

Declaring SQLCODE
When MODE=ANSI, and you have not declared a SQLSTATE status variable, you
must declare a long integer variable named SQLCODE inside or outside the Declare
Section. An example follows:

/* declare host variables */
EXEC SQL BEGIN DECLARE SECTION;
int emp_number, dept_number;
char emp_name[20];
EXEC SQL END DECLARE SECTION;

/* declare status variable--must be upper case */
long SQLCODE;

When MODE=ORACLE, if you declare SQLCODE, it is not used.

You can declare more than one SQLCODE. Access to a local SQLCODE is limited by its
scope within your program.

82124 unable to allocate runtime context SQL-02132

82125 unable to initialize process for use with
threads

SQL-02133

82126 invalid runtime context SQL-02134

HZ000 remote database access --

Table 9–2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

Key Components of Error Reporting Using the SQLCA

Handling Runtime Errors 9-11

After every SQL operation, Oracle returns a status code to the SQLCODE currently in
scope. So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER directive.

When you declare SQLCODE instead of the SQLCA in a particular compilation unit,
the precompiler allocates an internal SQLCA for that unit. Your host program cannot
access the internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle returns
the same status code to both after every SQL operation.

Key Components of Error Reporting Using the SQLCA
Error reporting depends on variables in the SQLCA. This section highlights the key
components of error reporting. The next section takes a close look at the SQLCA.

Status Codes
Every executable SQL statement returns a status code to the SQLCA variable sqlcode,
which you can check implicitly with the WHENEVER directive or explicitly with your
own code.

A zero status code means that Oracle executed the statement without detecting an
error or exception. A positive status code means that Oracle executed the statement
but detected an exception. A negative status code means that Oracle did not execute
the SQL statement because of an error.

Warning Flags
Warning flags are returned in the SQLCA variables sqlwarn[0] through
sqlwarn[7], which you can check implicitly or explicitly. These warning flags are
useful for runtime conditions not considered errors by Oracle. If no indicator variable
is available, Oracle issues an error message.

Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable sqlca.sqlerrd[2], which you can check explicitly.

Strictly speaking, this variable is not for error reporting, but it can help you avoid
mistakes. For example, suppose you expect to delete about ten rows from a table. After
the deletion, you check sqlca.sqlerrd[2] and find that 75 rows were processed. To
be safe, you might want to roll back the deletion and examine your WHERE-clause
search condition.

Parse Error Offsets
Before executing a SQL statement, Oracle must parse it to make sure it follows syntax
rules and refers to valid database objects. If Oracle finds an error, an offset is stored in
the SQLCA variable sqlca.sqlerrd[4], which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins.
As in a normal C string, the first character occupies position zero. For example, if the
offset is 9, the parse error begins at the 10th character.

The parse error offset is used for situations where a separate prepare/parse is
performed. This is typical for dynamic SQL statements.

Parse errors may arise from missing, misplaced, or misspelled keywords, invalid
options, and the like. For example, the dynamic SQL statement:

Using the SQL Communications Area (SQLCA)

9-12 Pro*C/C++ Programmer’s Guide

"UPDATE emp SET jib = :job_title WHERE empno = :emp_number"

causes the parse error

ORA-00904: invalid column name

because the column name JOB is misspelled. The value of sqlca.sqlerrd[4] is 15
because the erroneous column name JIB begins at the 16th character.

If your SQL statement does not cause a parse error, Oracle sets sqlca.sqlerrd[4]
to zero. Oracle also sets sqlca.sqlerrd[4] to zero if a parse error begins at the first
character (which occupies position zero). So, check sqlca.sqlerrd[4] only if
sqlca.sqlcode is negative, which means that an error has occurred.

Error Message Text
The error code and message for Oracle errors are available in the SQLCA variable
SQLERRMC. At most, the first 70 characters of text are stored. To get the full text of
messages longer than 70 characters, you use the sqlglm() function.

Using the SQL Communications Area (SQLCA)
The SQLCA is a data structure. Its components contain error, warning, and status
information updated by Oracle whenever a SQL statement is executed. Thus, the
SQLCA always reflects the outcome of the most recent SQL operation. To determine
the outcome, you can check variables in the SQLCA.

Your program can have more than one SQLCA. For example, it might have one global
SQLCA and several local ones. Access to a local SQLCA is limited by its scope within
the program. Oracle returns information only to the SQLCA that is in scope.

Declaring the SQLCA
When MODE=ORACLE, declaring the SQLCA is required. To declare the SQLCA, you
should copy it into your program with the INCLUDE or #include statement, as
follows:

EXEC SQL INCLUDE SQLCA;

or

#include <sqlca.h>

If you use a Declare Section, the SQLCA must be declared outside the Declare Section.
Not declaring the SQLCA results in compile-time errors.

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle to communicate with the program.

See Also: "Getting the Full Text of Error Messages" on page 9-17

Note: When your application uses Oracle Net to access a
combination of local and remote databases concurrently, all the
databases write to one SQLCA. There is not a different SQLCA for
each database.

See Also: "Advanced Connection Options" on page 3-4

Using the SQL Communications Area (SQLCA)

Handling Runtime Errors 9-13

When MODE=ANSI, declaring the SQLCA is optional. But in this case you must
declare a SQLCODE or SQLSTATE status variable. The type of SQLCODE (upper case
is required) is int. If you declare SQLCODE or SQLSTATE instead of the SQLCA in a
particular compilation unit, the precompiler allocates an internal SQLCA for that unit.
Your Pro*C/C++ program cannot access the internal SQLCA. If you declare the
SQLCA and SQLCODE, Oracle returns the same status code to both after every SQL
operation.

SQLCA Contents
The SQLCA contains the following runtime information about the outcome of SQL
statements:

■ Oracle error codes

■ Warning flags

■ Event information

■ Rows-processed count

■ Diagnostics

The sqlca.h header file is:

/*
NAME
 SQLCA : SQL Communications Area.
FUNCTION
 Contains no code. Oracle fills in the SQLCA with status info
 during the execution of a SQL stmt.
NOTES
 **
 *** ***
 *** This file is SOSD. Porters must change the data types ***
 *** appropriately on their platform. See notes/pcport.doc ***
 *** for more information. ***
 *** ***
 **

 If the symbol SQLCA_STORAGE_CLASS is defined, then the SQLCA
 will be defined to have this storage class. For example:

 #define SQLCA_STORAGE_CLASS extern

 will define the SQLCA as an extern.

 If the symbol SQLCA_INIT is defined, then the SQLCA will be
 statically initialized. Although this is not necessary in order
 to use the SQLCA, it is a good programing practice not to have
 unitialized variables. However, some C compilers/operating systems
 don't allow automatic variables to be initialized in this manner.

Note: Declaring the SQLCA is optional when MODE=ANSI, but
you cannot use the WHENEVER SQLWARNING directive without
the SQLCA. So, if you want to use the WHENEVER
SQLWARNING directive, you must declare the SQLCA.

This Guide uses SQLCODE when referring to the SQLCODE status
variable, and sqlca.sqlcode when explicitly referring to the
component of the SQLCA structure.

Using the SQL Communications Area (SQLCA)

9-14 Pro*C/C++ Programmer’s Guide

 Therefore, if you are INCLUDE'ing the SQLCA in a place where it
 would be an automatic AND your C compiler/operating system doesn't
 allow this style of initialization, then SQLCA_INIT should be left
 undefined -- all others can define SQLCA_INIT if they wish.

 If the symbol SQLCA_NONE is defined, then the SQLCA
 variable will not be defined at all. The symbol SQLCA_NONE
 should not be defined in source modules that have embedded SQL.
 However, source modules that have no embedded SQL, but need to
 manipulate a sqlca struct passed in as a parameter, can set the
 SQLCA_NONE symbol to avoid creation of an extraneous sqlca
 variable.
*/
#ifndef SQLCA
#define SQLCA 1
struct sqlca
 {
 /* ub1 */ char sqlcaid[8];
 /* b4 */ long sqlabc;
 /* b4 */ long sqlcode;
 struct
 {
 /* ub2 */ unsigned short sqlerrml;
 /* ub1 */ char sqlerrmc[70];
 } sqlerrm;
 /* ub1 */ char sqlerrp[8];
 /* b4 */ long sqlerrd[6];
 /* ub1 */ char sqlwarn[8];
 /* ub1 */ char sqlext[8];
 };
#ifndef SQLCA_NONE
#ifdef SQLCA_STORAGE_CLASS
SQLCA_STORAGE_CLASS struct sqlca sqlca
#else
 struct sqlca sqlca
#endif
#ifdef SQLCA_INIT
 = {
 {'S', 'Q', 'L', 'C', 'A', ' ', ' ', ' '},
 sizeof(struct sqlca),
 0,
 { 0, {0}},
 {'N', 'O', 'T', ' ', 'S', 'E', 'T', ' '},
 {0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0}
 }
#endif
 ;
#endif
#endif

SQLCA Structure
This section describes the structure of the SQLCA, its components, and the values they
can store.

Using the SQL Communications Area (SQLCA)

Handling Runtime Errors 9-15

sqlcaid
This string component is initialized to "SQLCA" to identify the SQL Communications
Area.

sqlcabc
This integer component holds the length, in bytes, of the SQLCA structure.

sqlcode
This integer component holds the status code of the most recently executed SQL
statement. The status code, which indicates the outcome of the SQL operation, can be
any of the following numbers:

When MODE=ANSI, +100 is returned to sqlcode after an INSERT of no rows. This can
happen when a subquery returns no rows to process.

■ <0 - Means that Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal. When they occur,
the current transaction should, in most cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle Database Error
Messages

sqlerrm
This embedded struct contains the following two components:

This component can store up to 70 characters. To get the full text of messages longer
than 70 characters, you must use the sqlglm() function (discussed later).

Make sure sqlcode is negative before you reference sqlerrmc. If you reference sqlerrmc
when sqlcode is zero, you get the message text associated with a prior SQL statement.

sqlerrp
This string component is reserved for future use.

Status Codes Description

 0 Means that Oracle executed the statement without detecting an
error or exception.

>0 Means that Oracle executed the statement but detected an
exception. This occurs when Oracle cannot find a row that meets
your WHERE-clause search condition or when a SELECT INTO
or FETCH returns no rows.

Components Description

sqlerrml This integer component holds the length of the message text
stored in sqlerrmc.

sqlerrmc This string component holds the message text corresponding to
the error code stored in sqlcode. The string is not null
terminated. Use the sqlerrml component to determine the
length.

Using the SQL Communications Area (SQLCA)

9-16 Pro*C/C++ Programmer’s Guide

sqlerrd
This array of binary integers has six elements. Descriptions of the components in
sqlerrd follow:

The rows-processed count is zeroed after an OPEN statement and incremented after a
FETCH statement. For the EXECUTE, INSERT, UPDATE, DELETE, and SELECT INTO
statements, the count reflects the number of rows processed successfully. The count
does not include rows processed by an UPDATE or DELETE CASCADE. For example,
if 20 rows are deleted because they meet WHERE-clause criteria, and 5 more rows are
deleted because they now (after the primary delete) violate column constraints, the
count is 20 not 25.

sqlwarn
This array of single characters has eight elements. They are used as warning flags.
Oracle sets a flag by assigning it a "W" (for warning) character value.

The flags warn of exceptional conditions. For example, a warning flag is set when
Oracle assigns a truncated column value to an output host variable.

Descriptions of the components in sqlwarn follow:

To find out if a column value was truncated and by how much, check the indicator
variable associated with the output host variable. The (positive) integer returned by an
indicator variable is the original length of the column value. You can increase the
length of the host variable accordingly.

Components Description

sqlerrd[0] This component is reserved for future use.

sqlerrd[1] This component is reserved for future use.

sqlerrd[2] This component holds the number of rows processed by the
most recently executed SQL statement. However, if the SQL
statement failed, the value of sqlca.sqlerrd[2] is undefined, with
one exception. If the error occurred during an array operation,
processing stops at the row that caused the error, so
sqlca.sqlerrd[2] gives the number of rows processed successfully.

Components Description

sqlerrd[3] This component is reserved for future use.

sqlerrd[4] This component holds an offset that specifies the character
position at which a parse error begins in the most recently
executed SQL statement. The first character occupies position
zero.

sqlerrd[5] This component is reserved for future use.

Components Description

sqlwarn[0] This flag is set if another warning flag is set.

sqlwarn[1] This flag is set if a truncated column value was assigned to an
output host variable. This applies only to character data. Oracle
truncates certain numeric data without setting a warning or
returning a negative sqlcode.

Getting the Full Text of Error Messages

Handling Runtime Errors 9-17

sqlext
This string component is reserved for future use.

PL/SQL Considerations
When the precompiler application executes an embedded PL/SQL block, not all
components of the SQLCA are set. For example, if the block fetches several rows, the
rows-processed count (sqlerrd[2]) is set to only 1. You should depend only on the
sqlcode and sqlerrm components of the SQLCA after execution of a PL/SQL block.

Getting the Full Text of Error Messages
The SQLCA can accommodate error messages up to 70 characters long. To get the full
text of longer (or nested) error messages, you need to use the sqlglm() function. The
syntax is

void sqlglm(char *message_buffer,
 size_t *buffer_size,
 size_t *message_length);

where:

Components Description

sqlwarn[2] This flag is set if a NULL column is not used in the result of a
SQL group function, such as AVG() or SUM().

sqlwarn[3] This flag is set if the number of columns in a query select list
does not equal the number of host variables in the INTO clause
of the SELECT or FETCH statement. The number of items
returned is the lesser of the two.

sqlwarn[4] This flag is no longer in use.

sqlwarn[5] This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY} statement fails
because of a PL/SQL compilation error.

sqlwarn[6] This flag is no longer in use.

sqlwarn[7] This flag is no longer in use.

Syntax Description

message_buffer Is the text buffer in which you want Oracle to store the error
message (Oracle blank-pads to the end of this buffer).

buffer_size Is a scalar variable that specifies the maximum size of the buffer
in bytes.

message_length Is a scalar variable in which Oracle stores the actual length of the
error message, if not truncated.

Using the WHENEVER Directive

9-18 Pro*C/C++ Programmer’s Guide

The maximum length of an Oracle error message is 512 characters including the error
code, nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by sqlglm() depends on the value
you specify for buffer_size.

The following example calls sqlglm() to get an error message of up to 200 characters
in length:

EXEC SQL WHENEVER SQLERROR DO sql_error();
...
/* other statements */
...
sql_error()
{
 char msg[200];
 size_t buf_len, msg_len;

 buf_len = sizeof (msg);
 sqlglm(msg, &buf_len, &msg_len); /* note use of pointers */
 printf("%.*s\n\n", msg_len, msg);
 exit(1);
}

Notice that sqlglm() is called only when a SQL error has occurred. Always make
sure SQLCODE (or sqlca.sqlcode) is nonzero before calling sqlglm. If you call sqlglm()
when SQLCODE is zero, you get the message text associated with a prior SQL
statement.

Using the WHENEVER Directive
By default, precompiled programs ignore Oracle error and warning conditions and
continue processing if possible. To do automatic condition checking and error
handling, you need the WHENEVER directive.

With the WHENEVER directive you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, calling a routine, branching to a labeled statement,
or stopping.

You code the WHENEVER directive using the following syntax:

Note: The types of the last two arguments for the sqlglm()
function are shown here generically as size_t pointers. However
on your platform they might have a different type. For example, on
many UNIX workstation ports, they are unsigned int *.

You should check the file sqlcpr.h, which is in the standard
include directory on your system, to determine the datatype of
these parameters.

Note: In cases where multiple runtime contexts are used, use the
version of sqlglmt() that takes a context to get the correct error
message.

See Also: Chapter 11, "Multithreaded Applications"

Using the WHENEVER Directive

Handling Runtime Errors 9-19

EXEC SQL WHENEVER <condition> <action>;

WHENEVER Conditions
You can have Oracle automatically check the SQLCA for any of the following
conditions.

SQLWARNING
sqlwarn[0] is set because Oracle returned a warning (one of the warning flags,
sqlwarn[1] through sqlwarn[7], is also set) or SQLCODE has a positive value
other than +1403. For example, sqlwarn[0] is set when Oracle assigns a truncated
column value to an output host variable.

Declaring the SQLCA is optional when MODE=ANSI. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

SQLERROR
SQLCODE has a negative value because Oracle returned an error.

NOT FOUND
SQLCODE has a value of +1403 (+100 when MODE=ANSI) because Oracle could not
find a row that meets your WHERE-clause search condition, or a SELECT INTO or
FETCH returned no rows.

When MODE=ANSI, +100 is returned to SQLCODE after an INSERT of no rows.

WHENEVER Actions
When Oracle detects one of the preceding conditions, you can have your program take
any of the following actions.

CONTINUE
Your program continues to run with the next statement if possible. This is the default
action, equivalent to not using the WHENEVER directive. You can use it to turn off
condition checking.

DO
Your program transfers control to an error handling function in the program. When
the end of the routine is reached, control transfers to the statement that follows the
failed SQL statement.

The usual rules for entering and exiting a function apply. You can pass parameters to
the error handler invoked by an EXEC SQL WHENEVER ... DO ... directive, and the
function can return a value.

DO BREAK
An actual "break" statement is placed in your program. Use this action in loops. When
the WHENEVER condition is met, your program exits the loop it is inside.

DO CONTINUE
An actual "continue" statement is placed in your program. Use this action in loops.
When the WHENEVER condition is met, your program continues with the next
iteration of the loop it is inside.

Using the WHENEVER Directive

9-20 Pro*C/C++ Programmer’s Guide

GOTO label_name
Your program branches to a labeled statement. Label names can be any length, but
only the first 31 characters are significant. Your C compiler might require a different
maximum length. Check your C compiler user's guide.

STOP
Your program stops running and uncommitted work is rolled back.

STOP in effect just generates an exit() call whenever the condition occurs. Be
careful. The STOP action displays no messages before disconnecting from Oracle.

WHENEVER Examples
If you want your program to

■ Go to close_cursor if a "no data found" condition occurs

■ Continue with the next statement if a warning occurs

■ Go to error_handler if an error occurs

you must code the following WHENEVER directives before the first executable SQL
statement:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER SQLERROR GOTO error_handler;

In the following example, you use WHENEVER...DO directives to handle specific
errors:

...
EXEC SQL WHENEVER SQLERROR DO handle_insert_error("INSERT error");
EXEC SQL INSERT INTO emp (empno, ename, deptno)
 VALUES (:emp_number, :emp_name, :dept_number);

EXEC SQL WHENEVER SQLERROR DO handle_delete_error("DELETE error");
EXEC SQL DELETE FROM dept WHERE deptno = :dept_number;
...
handle_insert_error(char *stmt)
{ switch(sqlca.sqlcode)
 {
 case -1:
 /* duplicate key value */
 ...
 break;
 case -1401:
 /* value too large */
 ...
 break;
 default:
 /* do something here too */
 ...
 break;
 }
}

handle_delete_error(char *stmt)
{
 printf("%s\n\n", stmt);
 if (sqlca.sqlerrd[2] == 0)
 {

Using the WHENEVER Directive

Handling Runtime Errors 9-21

 /* no rows deleted */
 ...
 }
 else
 { ...
 }
 ...
}

Notice how the procedures check variables in the SQLCA to determine a course of
action.

Use of DO BREAK and DO CONTINUE
This example illustrates how to display employee name, salary, and commission for
only those employees who receive commissions:

#include <sqlca.h>
#include <stdio.h>

main()
{
 char *uid = "scott/tiger";
 struct { char ename[12]; float sal; float comm; } emp;

 /* Trap any connection error that might occur. */
 EXEC SQL WHENEVER SQLERROR GOTO whoops;
 EXEC SQL CONNECT :uid;

 EXEC SQL DECLARE c CURSOR FOR
 SELECT ename, sal, comm FROM EMP ORDER BY ENAME ASC;

 EXEC SQL OPEN c;

 /* Set up 'BREAK' condition to exit the loop. */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;
 /* The DO CONTINUE makes the loop start at the next iteration when an error
occurs.*/
 EXEC SQL WHENEVER SQLERROR DO CONTINUE;

 while (1)
 {
 EXEC SQL FETCH c INTO :emp;
 /* An ORA-1405 would cause the 'continue' to occur. So only employees with */
 /* non-NULL commissions will be displayed. */
 printf("%s %7.2f %9.2f\n", emp.ename, emp.sal, emp.comm);
 }

/* This 'CONTINUE' shuts off the 'DO CONTINUE' allowing the program to
 proceed if any further errors do occur, specifically, with the CLOSE */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL CLOSE c;

 exit(EXIT_SUCCESS);

whoops:
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 exit(EXIT_FAILURE);
}

Using the WHENEVER Directive

9-22 Pro*C/C++ Programmer’s Guide

Scope of WHENEVER
Because WHENEVER is a declarative statement, its scope is positional, not logical.
That is, it tests all executable SQL statements that physically follow it in the source file,
not in the flow of program logic. So, code the WHENEVER directive before the first
executable SQL statement you want to test.

A WHENEVER directive stays in effect until superseded by another WHENEVER
directive checking for the same condition.

In the following example, the first WHENEVER SQLERROR directive is superseded
by a second, and so applies only to the CONNECT statement. The second
WHENEVER SQLERROR directive applies to both the UPDATE and DROP
statements, despite the flow of control from step1 to step3.

step1:
 EXEC SQL WHENEVER SQLERROR STOP;
 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 ...
 goto step3;

step2:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL UPDATE emp SET sal = sal * 1.10;
 ...

step3:
 EXEC SQL DROP INDEX emp_index;
 ...

Guidelines for WHENEVER
The following guidelines will help you avoid some common pitfalls.

Placing the Statements
In general, code a WHENEVER directive before the first executable SQL statement in
your program. This ensures that all ensuing errors are trapped because WHENEVER
directives stay in effect to the end of a file.

Handling End-of-Data Conditions
Your program should be prepared to handle an end-of-data condition when using a
cursor to fetch rows. If a FETCH returns no data, the program should exit the fetch
loop, as follows:

EXEC SQL WHENEVER NOT FOUND DO break;
for (;;)
{
 EXEC SQL FETCH...
}
EXEC SQL CLOSE my_cursor;
...
An INSERT can return NOT FOUND if no rows have been inserted. If you do not want
to catch that condition, use the EXEC SQL WHENEVER NOT FOUND CONTINUE
statement before the INSERT:

EXEC SQL WHENEVER NOT FOUND DO break;
for(;;)
{
 EXEC SQL FETCH ...
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL INSERT INTO ...

Using the WHENEVER Directive

Handling Runtime Errors 9-23

}
EXEC SQL CLOSE my_cursor;
...

Avoiding Infinite Loops
If a WHENEVER SQLERROR GOTO directive branches to an error handling routine
that includes an executable SQL statement, your program might enter an infinite loop
if the SQL statement fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the SQL statement, as shown in the following
example:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
...
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 ...

Without the WHENEVER SQLERROR CONTINUE statement, a ROLLBACK error
would invoke the routine again, starting an infinite loop.

Careless use of WHENEVER can cause problems. For example, the following code
enters an infinite loop if the DELETE statement sets NOT FOUND because no rows
meet the search condition:

/* improper use of WHENEVER */
...
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
for (;;)
{
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...

}

no_more:
 EXEC SQL DELETE FROM emp WHERE empno = :emp_number;
 ...

The next example handles the NOT FOUND condition properly by resetting the
GOTO target:

/* proper use of WHENEVER */
...
EXEC SQL WHENEVER NOT FOUND GOTO no_more;
for (;;)
{
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 ...

}
no_more:
 EXEC SQL WHENEVER NOT FOUND GOTO no_match;
 EXEC SQL DELETE FROM emp WHERE empno = :emp_number;
 ...

no_match:
 ...

Maintaining Addressability
Make sure all SQL statements governed by a WHENEVER GOTO directive can branch
to the GOTO label. The following code results in a compile-time error because labelA in
func1 is not within the scope of the INSERT statement in func2:

Obtaining the Text of SQL Statements

9-24 Pro*C/C++ Programmer’s Guide

func1()
{

 EXEC SQL WHENEVER SQLERROR GOTO labelA;
 EXEC SQL DELETE FROM emp WHERE deptno = :dept_number;
 ...

labelA:
...
}
func2()
{

 EXEC SQL INSERT INTO emp (job) VALUES (:job_title);
 ...

}

The label to which a WHENEVER GOTO directive branches must be in the same
precompilation file as the statement.

Returning After an Error
If your program must return after handling an error, use the DO routine_call action.
Alternatively, you can test the value of sqlcode, as shown in the following example:

...
EXEC SQL UPDATE emp SET sal = sal * 1.10;
if (sqlca.sqlcode < 0)
{ /* handle error */

EXEC SQL DROP INDEX emp_index;

Just make sure no WHENEVER GOTO or WHENEVER STOP directive is active.

Obtaining the Text of SQL Statements
In many precompiler applications it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT) that it
contains. This is especially true for applications that use dynamic SQL.

The SQLStmtGetText() function (old name:sqlgls() function)—part of the
SQLLIB runtime library—returns the following information:

■ The text of the most recently parsed SQL statement

■ The effective length of the statement

■ A function code for the SQL command used in the statement

SQLStmtGetText() is thread-safe. You can call SQLStmtGetText() after issuing a
static SQL statement. For dynamic SQL Method 1, call SQLStmtGetText() after the
SQL statement is executed. For dynamic SQL Methods 2, 3, and 4, you can call
SQLStmtGetText() as soon as the statement has been PREPAREd.

For the new names of all the SQLLIB functions, see also "New Names for SQLLIB
Public Functions" on page 5-39.

The prototype for SQLStmtGetText() is

void SQLStmtGetText(dvoid *context, char *sqlstm, size_t *stmlen, size_t *sqlfc);

The context parameter is the runtime context. For definition and use of contexts, see
"CONTEXT Variables" on page 4-29.

Obtaining the Text of SQL Statements

Handling Runtime Errors 9-25

The sqlstm parameter is a character buffer that holds the returned text of the SQL
statement. Your program must statically declare the buffer or dynamically allocate
memory for the buffer.

The stmlen parameter is a size_t variable. Before calling SQLStmtGetText(), set this
parameter to the actual size, in bytes, of the sqlstm buffer. When SQLStmtGetText()
returns, the sqlstm buffer contains the SQL statement text, blank padded to the length
of the buffer. The stmlen parameter returns the actual number of bytes in the returned
statement text, not counting blank padding. The maximum value of stmlen is
port-specific and generally will be the maximum integer size.

The sqlfc parameter is a size_t variable that returns the SQL function code for the SQL
command in the statement. Table 9–3 shows the SQL function codes for the
commands.

Table 9–3 SQL Function Codes

Code SQL Function Code SQL Function Code SQL Function

01 CREATE TABLE 26 ALTER TABLE 51 DROP TABLESPACE

02 SET ROLE 27 EXPLAIN 52 ALTER SESSION

03 INSERT 28 GRANT 53 ALTER USER

04 SELECT 29 REVOKE 54 COMMIT

05 UPDATE 30 CREATE SYNONYM 55 ROLLBACK

06 DROP ROLE 31 DROP SYNONYM 56 SAVEPOINT

07 DROP VIEW 32 ALTER SYSTEM
SWITCH LOG

57 CREATE CONTROL FILE

08 DROP TABLE 33 SET TRANSACTION 58 ALTER TRACING

09 DELETE 34 PL/SQL EXECUTE 59 CREATE TRIGGER

10 CREATE VIEW 35 LOCK TABLE 60 ALTER TRIGGER

11 DROP USER 36 (NOT USED) 61 DROP TRIGGER

12 CREATE ROLE 37 RENAME 62 ANALYZE TABLE

13 CREATE
SEQUENCE

38 COMMENT 63 ANALYZE INDEX

14 ALTER
SEQUENCE

39 AUDIT 64 ANALYZE CLUSTER

15 (NOT USED) 40 NOAUDIT 65 CREATE PROFILE

16 DROP
SEQUENCE

41 ALTER INDEX 66 DROP PROFILE

17 CREATE
SCHEMA

42 CREATE EXTERNAL
DATABASE

67 ALTER PROFILE

18 CREATE
CLUSTER

43 DROP EXTERNAL
DATABASE

68 DROP PROCEDURE

19 CREATE USER 44 CREATE DATABASE 69 (NOT USED)

20 CREATE INDEX 45 ALTER DATABASE 70 ALTER RESOURCE COST

21 DROP INDEX 46 CREATE ROLLBACK
SEGMENT

71 CREATE SNAPSHOT LOG

22 DROP CLUSTER 47 ALTER ROLLBACK
SEGMENT

72 ALTER SNAPSHOT LOG

Using the Oracle Communications Area (ORACA)

9-26 Pro*C/C++ Programmer’s Guide

The length parameter (stmlen) returns a zero if an error occurred. Possible error
conditions are:

■ No SQL statement has been parsed.

■ You passed an invalid parameter (for example, a negative length parameter).

■ An internal exception occurred in SQLLIB.

Restrictions
SQLStmtGetText() does not return the text for statements that contain the following
commands:

■ CONNECT

■ COMMIT

■ ROLLBACK

■ FETCH

There are no SQL function codes for these commands.

Example Program
The example program sqlvcp.pc, is available in the demo directory. It demonstrates
how you can use the sqlgls() function.

Using the Oracle Communications Area (ORACA)
The SQLCA handles standard SQL communications The ORACA handles Oracle
communications. When you need more information about runtime errors and status
changes than the SQLCA provides, use the ORACA. It contains an extended set of
diagnostic tools. However, use of the ORACA is optional because it adds to runtime
overhead.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of Oracle resources such as the SQL Statement Executor and the cursor
cache.

Your program can have more than one ORACA. For example, it might have one global
ORACA and several local ones. Access to a local ORACA is limited by its scope within
the program. Oracle returns information only to the ORACA that is in scope.

23 VALIDATE
INDEX

48 DROP ROLLBACK
SEGMENT

73 DROP SNAPSHOT LOG

24 CREATE
PROCEDURE

49 CREATE TABLESPACE 74 CREATE SNAPSHOT

25 ALTER
PROCEDURE

50 ALTER TABLESPACE 75 ALTER SNAPSHOT

-- -- -- -- 76 DROP

SNAPSHOT

See Also: Chapter 4, "Datatypes and Host Variables"

Table 9–3 (Cont.) SQL Function Codes

Code SQL Function Code SQL Function Code SQL Function

Using the Oracle Communications Area (ORACA)

Handling Runtime Errors 9-27

Declaring the ORACA
To declare the ORACA, copy it into your program with the INCLUDE statement or the
#include preprocessor directive, as follows:

EXEC SQL INCLUDE ORACA;

or

#include <oraca.h>

If your ORACA must be of the extern storage class, define ORACA_STORAGE_
CLASS in your program as follows:

#define ORACA_STORAGE_CLASS extern

If the program uses a Declare Section, the ORACA must be defined outside it.

Enabling the ORACA
To enable the ORACA, you must specify the ORACA option, either on the command
line with

ORACA=YES

or inline with

EXEC ORACLE OPTION (ORACA=YES);

Then, you must choose appropriate runtime options by setting flags in the ORACA.

ORACA Contents
The ORACA contains option settings, system statistics, and extended diagnostics such
as

■ SQL statement text (you can specify when to save the text)

■ The name of the file in which an error occurred (useful when using subroutines)

■ Location of the error in a file

■ Cursor cache errors and statistics

A partial listing of oraca.h is

/*
NAME
 ORACA : Oracle Communications Area.

 If the symbol ORACA_NONE is defined, then there will be no ORACA
 variable, although there will still be a struct defined. This
 macro should not normally be defined in application code.

 If the symbol ORACA_INIT is defined, then the ORACA will be
 statically initialized. Although this is not necessary in order
 to use the ORACA, it is a good pgming practice not to have
 unitialized variables. However, some C compilers/operating systems
 don't allow automatic variables to be init'd in this manner. Therefore,
 if you are INCLUDE'ing the ORACA in a place where it would be
 an automatic AND your C compiler/operating system doesn't allow this style
 of initialization, then ORACA_INIT should be left undefined --
 all others can define ORACA_INIT if they wish.
*/

Using the Oracle Communications Area (ORACA)

9-28 Pro*C/C++ Programmer’s Guide

#ifndef ORACA
#define ORACA 1

struct oraca
{
 char oracaid[8]; /* Reserved */
 long oracabc; /* Reserved */

/* Flags which are setable by User. */

 long oracchf; /* <> 0 if "check cur cache consistncy"*/
 long oradbgf; /* <> 0 if "do DEBUG mode checking" */
 long orahchf; /* <> 0 if "do Heap consistency check" */
 long orastxtf; /* SQL stmt text flag */
#define ORASTFNON 0 /* = don't save text of SQL stmt */
#define ORASTFERR 1 /* = only save on SQLERROR */
#define ORASTFWRN 2 /* = only save on SQLWARNING/SQLERROR */
#define ORASTFANY 3 /* = always save */
 struct
 {
 unsigned short orastxtl;
 char orastxtc[70];
 } orastxt; /* text of last SQL stmt */
 struct
 {
 unsigned short orasfnml;
 char orasfnmc[70];
 } orasfnm; /* name of file containing SQL stmt */
 long oraslnr; /* line nr-within-file of SQL stmt */
 long orahoc; /* highest max open OraCurs requested */
 long oramoc; /* max open OraCursors required */
 long oracoc; /* current OraCursors open */
 long oranor; /* nr of OraCursor re-assignments */
 long oranpr; /* nr of parses */
 long oranex; /* nr of executes */
 };

#ifndef ORACA_NONE

#ifdef ORACA_STORAGE_CLASS
ORACA_STORAGE_CLASS struct oraca oraca
#else
struct oraca oraca
#endif
#ifdef ORACA_INIT
 =
 {
 {'O','R','A','C','A',' ',' ',' '},
 sizeof(struct oraca),
 0,0,0,0,
 {0,{0}},
 {0,{0}},
 0,
 0,0,0,0,0,0
 }
#endif
 ;

#endif

Using the Oracle Communications Area (ORACA)

Handling Runtime Errors 9-29

#endif
/* end oraca.h */

Choosing Runtime Options
The ORACA includes several option flags. Setting these flags by assigning them
nonzero values provides the ability to

■ Save the text of SQL statements

■ Enable DEBUG operations

■ Check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

■ Check heap consistency (the heap is an area of memory reserved for dynamic
variables)

■ Gather cursor statistics

The following descriptions will help you choose the options you need.

Structure of the ORACA
This section describes the structure of the ORACA, its components, and the values
they can store.

oracaid
This string component is initialized to "ORACA" to identify the Oracle
Communications Area.

oracabc
This integer component holds the length, in bytes, of the ORACA data structure.

oracchf
If the master DEBUG flag (oradbgf) is set, this flag enables the gathering of cursor cache
statistics and lets you check the cursor cache for consistency before every cursor
operation.

The Oracle runtime library does the consistency checking and might issue error
messages, which are listed in the manual Oracle Database Error Messages. They are
returned to the SQLCA just like Oracle error messages.

This flag has the following settings:

■ Disable cache consistency checking (the default).

■ Enable cache consistency checking.

oradbgf
This master flag lets you choose all the DEBUG options. It has the following settings:

Disable all DEBUG operations (the default).

Enable all DEBUG operations.

Using the Oracle Communications Area (ORACA)

9-30 Pro*C/C++ Programmer’s Guide

orahchf
If the master DEBUG flag (oradbgf) is set, this flag tells the Oracle runtime library to
check the heap for consistency every time the precompiler dynamically allocates or
frees memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot
be cleared; subsequent change requests are ignored. It has the following settings:

■ Disable heap consistency checking (the default).

■ Enable heap consistency checking.

orastxtf
This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

■ Never save the SQL statement text (the default).

■ Save the SQL statement text on SQLERROR only.

■ Save the SQL statement text on SQLERROR or SQLWARNING.

■ Always save the SQL statement text.

The SQL statement text is saved in the ORACA embedded struct named orastxt.

Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help you
to locate errors quickly:

orastxt
This embedded struct helps you find faulty SQL statements. It lets you save the text of
the last SQL statement parsed by Oracle. It contains the following two components:

Statements parsed by the precompiler, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

orasfnm
This embedded struct identifies the file containing the current SQL statement and so
helps you find errors when multiple files are precompiled for one application. It
contains the following two components:

Components Description

orastxtl This integer component holds the length of the current SQL
statement.

orastxtc This string component holds the text of the current SQL
statement. At most, the first 70 characters of text are saved. The
string is not null terminated. Use the oratxtl length component
when printing the string.

Components Description

orasfnml This integer component holds the length of the filename stored
in orasfnmc.

orasfnmc This string component holds the filename. At most, the first 70
characters are stored.

Using the Oracle Communications Area (ORACA)

Handling Runtime Errors 9-31

oraslnr
This integer component identifies the line at (or near) which the current SQL statement
can be found.

Cursor Cache Statistics
If the master DEBUG flag (oradbgf) and the cursor cache flag (oracchf) are set, the
following variables let you gather cursor cache statistics. They are automatically set by
every COMMIT or ROLLBACK command your program issues.

Internally, there is a set of these variables for each CONNECTed database. The current
values in the ORACA pertain to the database against which the last COMMIT or
ROLLBACK was executed:

orahoc
This integer component records the highest value to which MAXOPENCURSORS was
set during program execution.

oramoc
This integer component records the maximum number of open Oracle cursors
required by your program. This number can be higher than orahoc if
MAXOPENCURSORS was set too low, which forced the precompiler to extend the
cursor cache.

oracoc
This integer component records the current number of open Oracle cursors required
by your program.

oranor
This integer component records the number of cursor cache reassignments required by
your program. This number shows the degree of "thrashing" in the cursor cache and
should be kept as low as possible.

oranpr
This integer component records the number of SQL statement parses required by your
program.

oranex
This integer component records the number of SQL statement executions required by
your program. The ratio of this number to the oranpr number should be kept as high as
possible. In other words, avoid unnecessary re-parsing.

ORACA Example
The following program prompts for a department number, inserts the name and salary
of each employee in that department into one of two tables, then displays diagnostic
information from the ORACA. This program is available online in the demo directory,
as oraca.pc.

/* oraca.pc
 * This sample program demonstrates how to

See Also: Appendix C, "Performance Tuning"

Using the Oracle Communications Area (ORACA)

9-32 Pro*C/C++ Programmer’s Guide

 * use the ORACA to determine various performance
 * parameters at runtime.
 */
#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <oraca.h>

EXEC SQL BEGIN DECLARE SECTION;
char *userid = "SCOTT/TIGER";
char emp_name[21];
int dept_number;
float salary;
char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

void sql_error();

main()
{
 char temp_buf[32];

 EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle error");
 EXEC SQL CONNECT :userid;

 EXEC ORACLE OPTION (ORACA=YES);

 oraca.oradbgf = 1; /* enable debug operations */
 oraca.oracchf = 1; /* gather cursor cache statistics */
 oraca.orastxtf = 3; /* always save the SQL statement */

 printf("Enter department number: ");
 gets(temp_buf);
 dept_number = atoi(temp_buf);

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal + NVL(comm,0) AS sal_comm
 FROM emp
 WHERE deptno = :dept_number
 ORDER BY sal_comm DESC;
 EXEC SQL OPEN emp_cursor;
 EXEC SQL WHENEVER NOT FOUND DO sql_error("End of data");

 for (;;)
 {
 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;
 printf("%.10s\n", emp_name);
 if (salary < 2500)
 EXEC SQL INSERT INTO pay1 VALUES (:emp_name, :salary);
 else
 EXEC SQL INSERT INTO pay2 VALUES (:emp_name, :salary);
 }
}

void
sql_error(errmsg)
char *errmsg;
{
 char buf[6];

Using the Oracle Communications Area (ORACA)

Handling Runtime Errors 9-33

 strcpy(buf, SQLSTATE);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL COMMIT WORK RELEASE;

 if (strncmp(errmsg, "Oracle error", 12) == 0)
 printf("\n%s, sqlstate is %s\n\n", errmsg, buf);
 else
 printf("\n%s\n\n", errmsg);

 printf("Last SQL statement: %.*s\n",
 oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
 printf("\nAt or near line number %d\n", oraca.oraslnr);
 printf
("\nCursor Cache Statistics\n------------------------\n");
 printf
("Maximum value of MAXOPENCURSORS: %d\n", oraca.orahoc);
 printf
("Maximum open cursors required: %d\n", oraca.oramoc);
 printf
("Current number of open cursors: %d\n", oraca.oracoc);
 printf
("Number of cache reassignments: %d\n", oraca.oranor);
 printf
("Number of SQL statement parses: %d\n", oraca.oranpr);
 printf
("Number of SQL statement executions: %d\n", oraca.oranex);
 exit(1);
}

Using the Oracle Communications Area (ORACA)

9-34 Pro*C/C++ Programmer’s Guide

Precompiler Options 10-1

10
Precompiler Options

This chapter tells you how to run the Pro*C/C++ precompiler, and describes the
extensive set of precompiler options in detail. This chapter contains the following
topics:

■ The Precompiler Command

■ Precompiler Options

■ Quick Reference

■ Entering Options

■ Using the Precompiler Options

The Precompiler Command
The location of the precompiler differs from system to system. The system or database
administrator usually defines logicals or aliases, or uses other system-specific means to
make the Pro*C/C++ executable accessible.

To run the Pro*C/C++ precompiler, you issue the following command:

proc option=value...

For example, the command

proc INAME=test_proc

precompiles the file test_proc.pc in the current directory, since the precompiler
assumes that the filename extension is pc. The INAME=argument specifies the source
file to be precompiled. The INAME option does not have to be the first option on the
command line, but if it is, you can omit the option specification. So, the command

proc myfile

is equivalent to

proc INAME=myfile

Note: The option value is always separated from the option name
by an equals sign, with no whitespace around the equals sign.

Precompiler Options

10-2 Pro*C/C++ Programmer’s Guide

Case Sensitivity
In general, you can use either uppercase or lowercase for precompiler option names
and values. However, if your operating system is case sensitive, like UNIX, you must
specify filename values, including the name of the Pro*C/C++ executable, using the
correct combination of uppercase and lowercase letters.

Precompiler Options
Precompiler options enable you to control how resources are used, how errors are
reported, how input and output are formatted, and how cursors are managed.

The value of an option is a literal, which represents text or numeric values. For
example, for the option

... INAME=my_test

the value is a string literal that specifies a filename.

For the option MAXOPENCURSORS

...MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, and you can represent these with the strings yes or
no, true or false, or with the integer literals 1 or 0 respectively. For example, the option

... SELECT_ERROR=yes

is equivalent to

... SELECT_ERROR=true

 or

... SELECT_ERROR=1

all of which mean that SELECT errors should be flagged at run time.

Configuration Files
A configuration file is a text file that contains precompiler options. Each record (line) in
the file contains only one option, with its associated value or values. Any options
entered on a line after the first option are ignored. For example, the following configuration
file contains the lines:

FIPS=YES

Note: The option names, and option values that do not name
specific operating system objects, such as filenames, are not
case-sensitive. In the examples in this guide, option names are
written in upper case, and option values are usually in lower case.
When you enter filenames, including the name of the Pro*C/C++
precompiler executable itself, always follow the case conventions
used by your operating system.

Some platforms, such as UNIX, require "escape characters" before
certain characters in value strings. Consult your platform-specific
documentation.

Precompiler Options

Precompiler Options 10-3

MODE=ANSI
CODE=ANSI_C

to set defaults for the FIPS, MODE, and CODE options.

There is a single system configuration file for each installation. The name of the system
configuration file is pcscfg.cfg. The location of the file is system specific.

Each Pro*C/C++ user can have one or more private configuration files. The name of
the configuration file must be specified using the CONFIG= precompiler option.

Precedence of Option Values
 The value of an option is determined, in increasing precedence, by:

■ A value built in to the precompiler

■ A value set in the Pro*C/C++ system configuration file

■ A value set in a Pro*C/C++ user configuration file

■ A value set in the command line

■ A value set inline

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in precompiler default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file, the
default now becomes 32. The user configuration file could set it to yet another value,
which then overrides the system configuration value. Finally, an inline specification
takes precedence over all preceding defaults.

Some options, such as USERID, do not have a precompiler default value. The built-in
default values for options that do have them are listed in Table 10–2 on page 10-5.

Determining Current Values
You can interactively determine the current value for one or more options by using a
question mark on the command line. For example, if you issue the command

proc ?

the complete set of options, along with their current values, is printed to your
terminal. (On a UNIX system running the C shell, escape the '?' with a backslash.) In

See Also: "Using the Precompiler Options" on page 10-8

Note: You cannot nest configuration files. This means that
CONFIG= is not a valid option inside a configuration file.

Note: Check your system-specific documentation for the
precompiler default values; they may have been changed from the
values in this chapter for your platform.

See Also:

■ "What Occurs During Precompilation?" on page 10-4 for more
information about configuration files.

■ "Using the Precompiler Options" on page 10-8.

Precompiler Options

10-4 Pro*C/C++ Programmer’s Guide

this case, the values are those built into the precompiler, overridden by any values in
the system configuration file. But if you issue the command

proc config=my_config_file.h ?

and there is a file named my_config_file.h in the current directory, all options are
listed. Values in the user configuration file supply missing values, and supersede
values built-in to the Pro*C/C++ precompiler, or values specified in the system
configuration file.

You can also determine the current value of a single option, by simply specifying that
option name, followed by =?. For example:

proc maxopencursors=?

prints the current default value for the MAXOPENCURSORS option.

Entering:

proc

will give a short summary that resembles " Precompiler Options" on page 10-5.

Macro and Micro Options
The option MODE controls several options at once. MODE is known as a macro option.
Some newer options such as CLOSE_ON_COMMIT, DYNAMIC and TYPE_CODE
control only one function and are known as micro options. A macro option has
precedence over micro options only if the macro option is at a higher level of
precedence. See "Precedence of Option Values" on page 10-3.

The following table lists the values of micro options set by the macro option values:

If you specify both MODE=ANSI and CLOSE_ON_COMMIT=NO in the user
configuration file, then cursors will not be closed after a COMMIT. If you specify
MODE=ORACLE in your configuration file and CLOSE_ON_COMMIT=YES on the
command line, then the cursors will be closed.

What Occurs During Precompilation?
During precompilation, Pro*C/C++ generates C or C++ code that replaces the SQL
statements embedded in your host program. The generated code contains data
structures that indicate the datatype, length, and address of host variables, as well as
other information required by the runtime library, SQLLIB. The generated code also
contains the calls to SQLLIB routines that perform the embedded SQL operations.

Table 10–1 How Macro Option Values Set Micro Option Values

Macro Option Micro Option

MODE=ANSI | ISO CLOSE_ON_COMMIT=YES

DYNAMIC=ANSI

TYPE_CODE=ANSI

MODE=ORACLE CLOSE_ON_COMMIT=NO

DYNAMIC=ORACLE

TYPE_CODE=ORACLE

Quick Reference

Precompiler Options 10-5

Table 10–2 on page 10-5 is a quick reference to the major precompiler options. The
options that are accepted, but do not have any affect, are not included in this table.

Scope of Options
A precompilation unit is a file containing C code and one or more embedded SQL
statements. The options specified for a given precompilation unit affect only that unit;
they have no effect on other units. For example, if you specify HOLD_CURSOR=YES
and RELEASE_CURSOR=YES for unit A, but not for unit B, SQL statements in unit A
run with these HOLD_CURSOR and RELEASE_CURSOR values, but SQL statements
in unit B run with the default values.

Quick Reference
Table 10–2 on page 10-5 is a quick reference to the Pro*C/C++ options. Options
marked with an asterisk can be entered inline.

Note: The precompiler does not generate calls to Oracle Call
Interface (OCI) routines.

See Also:

■ Oracle Database Error Messages for messages.

■ "Using the Precompiler Options" on page 10-8.

Table 10–2 Precompiler Options

Syntax Default Specifics

AUTO_CONNECT={YES | NO} NO Automatic CLUSTER$ account
connection before the first executable
statement.

CHAR_MAP={VARCHAR2 | CHARZ |
STRING | CHARF} *

CHARZ Mapping of character arrays and strings.

CLOSE_ON_COMMIT={YES | NO} NO Close all cursors on COMMIT.

CODE={ANSI_C | KR_C | CPP} KR_C Kind of C code generated.

COMP_CHARSET={MULTI_BYTE |
SINGLE_BYTE}

MULTI_BYTE The character set type the C/C++
compiler supports.

CONFIG=filename none User's private configuration file.

CPP_SUFFIX=extension none Specify the default filename extension
for C++ output files.

DBMS={V7 | NATIVE | V8} NATIVE Compatibility (Oracle7, Oracle8,
Oracle8i, Oracle9i, or the database
version to which you are connected at
precompile time).

DEF_SQLCODE={YES | NO} NO Generate a macro to #define SQLCODE.

DEFINE=name * none Define a name for use by the
Pro*C/C++ precompiler.

DURATION={TRANSACTION | SESSION} TRANSACTION Set pin duration for objects in the cache.

DYNAMIC={ANSI | ORACLE} ORACLE Specifies Oracle or ANSI SQL semantics.

Quick Reference

10-6 Pro*C/C++ Programmer’s Guide

ERRORS={YES | NO} YES Where to direct error messages (NO
means only to listing file, and not to
terminal).

ERRTYPE=filename none Name of the listing file for intype file
error messages.

FIPS={NO | SQL89 | SQL2 | YES} * none Whether to flag ANSI/ISO
non-compliance.

HEADER=extension none Specify file extension for precompiled
header files.

HOLD_CURSOR={YES | NO} * NO How cursor cache handles SQL
statement.

INAME=]filename none Name of the input file.

INCLUDE=pathname * none Directory path for EXEC SQL INCLUDE
or #include statements.

INTYPE=filename none Name of the input file for type
information.

LINES={YES | NO} NO Whether #line directives are generated.

LNAME=filename none Name of listing file.

LTYPE={NONE | SHORT | LONG} none Type of listing file to be generated, if
any.

MAXLITERAL=10..1024 1024 Maximum length (bytes) of string
literals in generated C code.

MAXOPENCURSORS=5..255 * 10 Maximum number of concurrent cached
open cursors.

MODE={ANSI | ISO | ORACLE} ORACLE ANSI/ISO or Oracle behavior.

NLS_CHAR=(var1, ..., varn) none Specify multibyte character variables.

NLS_LOCAL={YES | NO} NO Control multibyte character semantics.

OBJECTS={YES | NO} YES Support of object types.

ONAME=]filename iname.c Name of the output (code) file.

ORACA={YES | NO} * NO Whether to use the ORACA.

PAGELEN=30..256 80 Page length of the listing file.

PARSE={NONE | PARTIAL | FULL} FULL Whether Pro*C/C++ parses (with a C
parser) the.pc source.

PREFETCH=0..65535 1 Speed up queries by pre-fetching a
given number of rows.

RELEASE_CURSOR={YES | NO} * NO Control release of cursors from cursor
cache.

SELECT_ERROR={YES | NO} * YES Flagging of SELECT errors.

SQLCHECK={SEMANTICS | SYNTAX} * SYNTAX Amount of precompile time SQL
checking.

SYS_INCLUDE=pathname none Directory where system header files,
such as iostream.h, are found.

THREADS={YES | NO} NO Indicates a shared server application.

Table 10–2 (Cont.) Precompiler Options

Syntax Default Specifics

Entering Options

Precompiler Options 10-7

Entering Options
You can enter any precompiler option in the command line. Many can also be entered
inline in the precompiler program source file, using the EXEC ORACLE OPTION
statement.

On the Command Line
You enter precompiler options in the command line using the following syntax:

... [OPTION_NAME=value] [OPTION_NAME=value] ...

Separate each option=value specification with one or more spaces. For example, you
might enter the following:

... CODE=ANSI_C MODE=ANSI

Inline
You enter options inline by coding EXEC ORACLE statements, using the following
syntax:

EXEC ORACLE OPTION (OPTION_NAME=value);

For example, you might code the following:

EXEC ORACLE OPTION (RELEASE_CURSOR=yes);

Uses for EXEC ORACLE
The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change HOLD_CURSOR and
RELEASE_CURSOR on a statement-by-statement basis.

Specifying options inline or in a configuration file is also helpful if your operating
system limits the number of characters you can enter on the command line.

TYPE_CODE={ORACLE | ANSI} ORACLE Use of Oracle or ANSI type codes for
dynamic SQL.

UNSAFE_NULL={YES | NO} NO UNSAFE_NULL=YES disables the
ORA-01405 message.

USERID=username/password[@dbname] none Username/password[@dbname]
connect string.

UTF16_CHARSET={NCHAR_CHARSET |
DB_CHARSET}

NCHAR_CHARSET Specify the character set form used by
UNICODE(UTF16).

VARCHAR={YES | NO} NO Allow the use of implicit VARCHAR
structures.

VERSION={ANY | LATEST | RECENT} * RECENT Which version of an object is to be
returned.

See Also: Appendix C, "Performance Tuning" shows you how to
optimize runtime performance using inline options.

Table 10–2 (Cont.) Precompiler Options

Syntax Default Specifics

Using the Precompiler Options

10-8 Pro*C/C++ Programmer’s Guide

Scope of EXEC ORACLE
An EXEC ORACLE statement stays in effect until textually superseded by another
EXEC ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD_CURSOR=YES:

char emp_name[20];
int emp_number, dept_number;
float salary;

EXEC SQL WHENEVER NOT FOUND DO break;
EXEC ORACLE OPTION (HOLD_CURSOR=NO);

EXEC SQL DECLARE emp_cursor CURSOR FOR
SELECT empno, deptno FROM emp;

EXEC SQL OPEN emp_cursor;
printf(
"Employee Number Department\n--------------------------\n");
for (;;)
{
 EXEC SQL FETCH emp_cursor INTO :emp_number, :dept_number;
 printf("%d\t%d\n", emp_number, dept_number);
}

EXEC SQL WHENEVER NOT FOUND CONTINUE;
for (;;)
{
 printf("Employee number: ");
 scanf("%d", &emp_number);
 if (emp_number == 0)
 break;
 EXEC ORACLE OPTION (HOLD_CURSOR=YES);
 EXEC SQL SELECT ename, sal
 INTO :emp_name, :salary
 FROM emp WHERE empno = :emp_number;
 printf("Salary for %s is %6.2f.\n", emp_name, salary);

Using the Precompiler Options
This section is organized for easy reference. It lists the precompiler options
alphabetically, and for each option gives its purpose, syntax, and default value. Usage
notes that help you understand how the option works are also provided.

AUTO_CONNECT

Purpose
Allows automatic connection to the CLUSTER$ account.

Syntax
AUTO_CONNECT={YES | NO}

Default
NO

Using the Precompiler Options

Precompiler Options 10-9

Usage Notes
Can be entered only on the command line or in a configuration file.

If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTER$username

where username is your current operating system user or task name and
CLUSTER$username is a valid Oracle userid.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

CHAR_MAP

Purpose
Specifies the default mapping of C host variables of type char or char[n], and pointers
to them, into SQL.

Syntax
CHAR_MAP={VARCHAR2 | CHARZ | STRING | CHARF}

Default
CHARZ

Usage Note
Before release 8.0, you had to declare char or char[n] host variables as CHAR, using
the SQL DECLARE statement. The external datatypes VARCHAR2 and CHARZ were
the default character mappings of Oracle7.

CLOSE_ON_COMMIT

Purpose
Specifies whether or not to close all cursors on a commit statement.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

See Also:

■ "VARCHAR Variables" on page 4-15 for a table of CHAR_MAP
settings, descriptions of the datatype, and where they are the
default.

■ "Inline Usage of the CHAR_MAP Option" on page 5-2 for an
example of usage of CHAR_MAP in Pro*C/C++.

Using the Precompiler Options

10-10 Pro*C/C++ Programmer’s Guide

Usage Notes
Can be used only on the command line or in a configuration file.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and CLOSE_ON_
COMMIT=NO. If the user specifies MODE=ANSI on the command line, then any
cursors will be closed on commit.

Issuing a COMMIT or ROLLBACK closes all explicit cursors. (When
MODE=ORACLE, a commit or rollback closes only cursors referenced in a CURRENT
OF clause.)

CODE

Purpose
Specifies the format of C function prototypes generated by the Pro*C/C++
precompiler. (A function prototype declares a function and the datatypes of its
arguments.) The precompiler generates function prototypes for SQL library routines,
so that your C compiler can resolve external references. The CODE option lets you
control the prototyping.

Syntax
CODE={ANSI_C | KR_C | CPP}

Default
KR_C

Usage Notes
Can be entered on the command line, but not inline.

ANSI C standard X3.159-1989 provides for function prototyping. When CODE=ANSI_
C, Pro*C/C++ generates full function prototypes, which conform to the ANSI C
standard. An example follows:

extern void sqlora(long *, void *);

The precompiler can also generate other ANSI-approved constructs such as the const
type qualifier.

When CODE=KR_C (the default), the precompiler comments out the argument lists of
generated function prototypes, as shown here:

extern void sqlora(/*_ long *, void * _*/);

Specify CODE=KR_C if your C compiler is not compliant with the X3.159 standard.

When CODE=CPP, the precompiler generates C++ compatible code.

See Also:

■ "Scrollable Cursors" on page 6-12

■ "Macro and Micro Options" on page 10-4 for a further
discussion of the precedence of this option.

See Also: "Code Generation" on page 12-2 for all of the
consequences of using this option value.

Using the Precompiler Options

Precompiler Options 10-11

COMP_CHARSET

Purpose
Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are
not) supported by the compiler to be used. It is intended for use by developers
working in a multibyte client-side environment (for example, when NLS_LANG is set
to a multibyte character set).

Syntax
COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default
MULTI_BYTE

Usage Notes
Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is
to be compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte
string. In this case, the backslash (\) character is "escaped" with another backslash
character preceding it.

This option has no effect when NLS_LANG is set to a single-byte character set.

CONFIG

Purpose
Specifies the name of a user configuration file.

Syntax
CONFIG=filename

Default
None

Usage Notes
Can be entered only on the command line.

This option is the only way you can inform Pro*C/C++ of the name and location of
user configuration files.

Note: The need for this feature is common when developing in a
Shift-JIS environment with older C compilers.

Using the Precompiler Options

10-12 Pro*C/C++ Programmer’s Guide

CPP_SUFFIX

Purpose
The CPP_SUFFIX option provides the ability to specify the filename extension that the
precompiler appends to the C++ output file generated when the CODE=CPP option is
specified.

Syntax
CPP_SUFFIX=filename_extension

Default
System-specific.

Usage Notes
Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX option
provides the ability to specify the filename extension that the precompiler generates.
The value of this option is a string, without the quotes or the period. For example,
CPP_SUFFIX=cc, or CPP_SUFFIX=C.

DBMS

Purpose
Specifies whether Oracle follows the semantic and syntactic rules of Oracle9i, Oracle8i,
Oracle8, Oracle7, or the native version of Oracle (that is, the version to which the
application is connected).

Syntax
DBMS={NATIVE | V7 | V8}

Default
NATIVE

Usage Notes
Can be entered only on the command line, or in a configuration file.

The DBMS option lets you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
database version to which the application is connected.

When DBMS=V8, or DBMS=V7, Oracle follows the respective rules for Oracle9i
(which remain the same as for Oracle7, Oracle8, and Oracle8i).

V6_CHAR is not supported in Oracle9i and its functionality is provided by the
precompiler option CHAR_MAP.

See Also: "CHAR_MAP" on page 10-9

Using the Precompiler Options

Precompiler Options 10-13

DEF_SQLCODE

Purpose
Controls whether the Pro*C/C++ precompiler generates #define's for SQLCODE.

Syntax
DEF_SQLCODE={NO | YES}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

When DEF_SQLCODE=YES, the precompiler defines SQLCODE in the generated
source code as follows:

#define SQLCODE sqlca.sqlcode

You can then use SQLCODE to check the results of executable SQL statement. The
DEF_SQLCODE option is supplied for compliance with standards that require the use
of SQLCODE.

In addition, you must also include the SQLCA using one of the following entries in
your source code:

#include <sqlca.h>

Table 10–3 DBMS and MODE Interaction

Situation

DBMS=V7 | V8

MODE=ANSI

DBMS=V7 | V8

MODE=ORACLE

"no data found" warning code +100 +1403

fetch NULLs without using indicator
variables

error -1405 error -1405

fetch truncated values without using
indicator variables

no error but sqlwarn[1] is
set

no error but sqlwarn[1]) is set

cursors closed by COMMIT or ROLLBACK all explicit CURRENT OF only

open an already OPENed cursor error -2117 no error

close an already CLOSEd cursor error -2114 no error

SQL group function ignores NULLs no warning no warning

when SQL group function in multirow query
is called

FETCH time FETCH time

declare SQLCA structure optional required

declare SQLCODE or SQLSTATE status
variable

required optional, but Oracle ignores

integrity constraints enabled enabled

PCTINCREASE for rollback segments not allowed not allowed

MAXEXTENTS storage parameters not allowed not allowed

Using the Precompiler Options

10-14 Pro*C/C++ Programmer’s Guide

or

EXEC SQL INCLUDE SQLCA;

If the SQLCA is not included, using this option causes a precompile time error.

DEFINE

Purpose
Defines a name that can be used in #ifdef and #ifndef Pro*C/C++ precompiler
directives. The defined name can also be used by the EXEC ORACLE IFDEF and EXEC
ORACLE IFNDEF statements.

Syntax
DEFINE=name

Default
None

Usage Notes
Can be entered on the command line or inline. You can only use DEFINE to define a
name—you cannot define macros with it. For example, the following use of define is
not valid:

proc my_prog DEFINE=LEN=20

Using DEFINE in the correct way, you could do

proc my_prog DEFINE=XYZZY

And then in my_prog.pc, code

#ifdef XYZZY
...
#else
...
#endif

Or, you could just as well code

EXEC ORACLE IFDEF XYZZY;
...
EXEC ORACLE ELSE;
...
EXEC ORACLE ENDIF;

The following example is invalid:

#define XYZZY
...
EXEC ORACLE IFDEF XYZZY
...
EXEC ORACLE ENDIF;

EXEC ORACLE conditional statements are valid only if the macro is defined using
EXEC ORACLE DEFINE or the DEFINE option.

Using the Precompiler Options

Precompiler Options 10-15

If you define a name using DEFINE=, and then conditionally include (or exclude) a
code section using the Pro*C/C++ precompiler #ifdef (or #ifndef) directives, you
must also make sure that the name is defined when you run the C compiler. For
example, for UNIX cc, you must use the -D option to define the name.

DURATION

Purpose
Sets the pin duration used by subsequent EXEC SQL OBJECT CREATE and EXEC SQL
OBJECT DEREF statements. Objects in the cache are implicitly unpinned at the end of
the duration.

Syntax
DURATION={TRANSACTION | SESSION}

Default
TRANSACTION

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

TRANSACTION means that objects are implicitly unpinned when the transaction
completes.

SESSION means that objects are implicitly unpinned when the connection is
terminated.

DYNAMIC

Purpose
This micro option specifies the descriptor behavior in dynamic SQL Method 4. The
setting of MODE determines the setting of DYNAMIC.

Syntax
DYNAMIC={ORACLE | ANSI}

Default
ORACLE

Usage Notes
Cannot be entered inline by use of the EXEC ORACLE OPTION statement.

See the DYNAMIC option settings in Table 14–2 on page 14-9.

ERRORS

Purpose
Specifies whether error messages are sent to the terminal as well as the listing file
(YES), or just to the listing file (NO).

Using the Precompiler Options

10-16 Pro*C/C++ Programmer’s Guide

Syntax
ERRORS={YES | NO}

Default
YES

Usage Notes
Can be entered only on the command line, or in a configuration file.

ERRTYPE

Purpose
Specifies an output file in which errors generated in processing type files are written. If
omitted, errors are output to the screen. See also "INTYPE" on page 10-20.

Syntax
ERRTYPE=filename

Default
None

Usage Notes
Only one error file will be produced. If multiple values are entered, the last one is used
by the precompiler.

FIPS

Purpose
Specifies whether extensions to ANSI SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI format or syntax rules, except
privilege enforcement rules.

Syntax
FIPS={SQL89 | SQL2 | YES | NO}

Default
None

Usage Notes
Can be entered inline or on the command line.

When FIPS=YES, the FIPS Flagger is enabled, and warning (not error) messages are
issued if you use an Oracle extension to ANSI SQL, or use an ANSI SQL feature in a
nonconforming manner. Extensions to ANSI SQL that are flagged at precompile time
include the following:

■ Array interface including the FOR clause

■ SQLCA, ORACA, and SQLDA data structures

■ Dynamic SQL including the DESCRIBE statement

Using the Precompiler Options

Precompiler Options 10-17

■ Embedded PL/SQL blocks

■ Automatic datatype conversion

■ DATE, NUMBER, RAW, LONGRAW, VARRAW, ROWID, VARCHAR2, and
VARCHAR datatypes

■ Pointer host variables

■ Oracle OPTION statement for specifying runtime options

■ IAF statements in user exits

■ CONNECT statement

■ TYPE and VAR datatype equivalence statements

■ AT db_name clause

■ DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

■ SQLWARNING condition in WHENEVER statement

■ DO function_name() and "do break" and "do continue"actions in WHENEVER
statement

■ COMMENT and FORCE TRANSACTION clauses in COMMIT statement

■ FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement

■ RELEASE parameter in COMMIT and ROLLBACK statements

■ Optional colon-prefixing of WHENEVER...GOTO labels, and of host variables in
the INTO clause

HEADER

Purpose
Permits precompiled header files. Specifies the file extension for precompiled header
files.

Syntax
HEADER=extension

Default
NONE

Usage Notes
When precompiling a header file, this option is required and is used to specify the file
extension for the output file that is created by precompiling that header file.

When precompiling an ordinary Pro*C/C++ program this option is optional. When
given, it enables the use of the precompiled header mechanism during the
precompilation of that Pro*C/C++ program.

In both cases, this option also specifies the file extension to use when processing a
#include directive. If an #include file exists with the specified extension, Pro*C/C++
assumes the file is a precompiled header file previously generated by Pro*C/C++.
Pro*C/C++ will then instantiate the data from that file rather than process the
#include directive and precompile the included header file.

Using the Precompiler Options

10-18 Pro*C/C++ Programmer’s Guide

This option is only allowed on the command line or in a configuration file. It is not
allowed inline. When using this option, specify the file extension only. Do not include
any file separators. For example, do not include a period '.' in the extension.

HOLD_CURSOR

Purpose
Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
HOLD_CURSOR={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.

You can use HOLD_CURSOR to improve the performance of your program. See also
Appendix C, "Performance Tuning"

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement. HOLD_
CURSOR controls what happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cursor
is closed, the precompiler marks the link as reusable. The link is reused as soon as the
cursor cache entry to which it points is needed for another SQL statement. This frees
memory allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES, the link is maintained; the precompiler does not reuse it.
This is useful for SQL statements that are often executed because it speeds up
subsequent executions and there is no need to re-parse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD_CURSOR before CLOSEing
the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and HOLD_CURSOR=NO
overrides RELEASE_CURSOR=NO. For information showing how these two options
interact, see Table C–1 on page C-9.

INAME

Purpose
Specifies the name of the input file.

Syntax
INAME=path_and_filename

See Also: "Precompiled Header Files" on page 5-27

Using the Precompiler Options

Precompiler Options 10-19

Default
None

Usage Notes
Can be entered only on the command line.

All input file names must be unique at precompilation time.

You can omit the filename extension if it is .pc. If the input filename is the first option
on the command line, you can omit the INAME= part of the option. For example:

proc sample1 MODE=ansi

to precompile the file sample1.pc, using ANSI mode. This command is the same as

proc INAME=sample1 MODE=ansi

INCLUDE

Purpose
Specifies a directory path for files included using the #include or EXEC SQL
INCLUDE directives.

Syntax
INCLUDE=pathname or INCLUDE=(path_1,path_2,...,path_n)

Default
Current directory and paths built into Pro*C/C++.

Usage Notes
Can be entered inline or on the command line.

You use INCLUDE to specify a directory path for included files. The precompiler
searches directories in the following order:

1. the current directory

2. the system directory specified in a SYS_INCLUDE precompiler option

3. the directories specified by the INCLUDE option, in the order they are entered

4. the built-in directories for standard header files

You normally do not need to specify a directory path for Oracle-specific header files
such as sqlca.h and sqlda.h.

For all other header files, the precompiler does not assume a .h extension.

You must still use INCLUDE to specify directory paths for non-standard files, unless
they are stored in the current directory. You can specify more than one path on the
command line, as follows:

... INCLUDE=path_1 INCLUDE=path_2 ...

Note: If you specify an Oracle-specific filename without an
extension for inclusion, Pro*C/C++ assumes an extension of .h. So,
included files should have an extension, even if it is not .h.

Using the Precompiler Options

10-20 Pro*C/C++ Programmer’s Guide

The syntax for specifying a directory path using the INCLUDE option is system
specific. Follow the conventions used for your operating system

INTYPE

Purpose
Specifies one or more OTT-generated type files (only needed if Object types are used in
the application).

Syntax
INTYPE=(file_1,file_2,...,file_n)

Default
None

Usage Notes
There will be one type file for each Object type in the Pro*C/C++ code.

LINES

Purpose
Specifies whether the Pro*C/C++ precompiler adds #line preprocessor directives to its
output file.

Syntax
LINES={YES | NO}

Default
NO

Usage Notes
Can be entered only on the command line.

The LINES option helps with debugging.

When LINES=YES, the Pro*C/C++ precompiler adds #line preprocessor directives to
its output file.

Normally, your C compiler increments its line count after each input line is processed.
The #line directives force the compiler to reset its input line counter so that lines of
precompiler-generated code are not counted. Moreover, when the name of the input
file changes, the next #line directive specifies the new filename.

The C compiler uses the line numbers and filenames to show the location of errors.
Thus, error messages issued by the C compiler always refer to your original source

Note: If the file you want to include resides in another directory,
make sure that there is no file with the same name in the current
directory.

Using the Precompiler Options

Precompiler Options 10-21

files, not the modified (precompiled) source file. This also enables stepping through
the original source code using most debuggers.

When LINES=NO (the default), the precompiler adds no #line directives to its output
file.

LNAME

Purpose
Specifies the name of the listing file.

Syntax
LNAME=filename

Default
None

Usage Notes
Can be entered only on the command line.

The default filename extension for the listing file is .lis.

LTYPE

Purpose
Specifies the type of listing file generated.

Syntax
LTYPE={NONE | SHORT | LONG}

Default
SHORT

Usage Notes
Can be entered on the command line or in a configuration file.

When a listing file is generated, the LONG format is the default. With LTYPE=LONG
specified, all of the source code is listed as it is parsed and messages listed as they are
generated. In addition, the Pro*C/C++ options currently in effect are listed.

With LTYPE=SHORT specified, only the generated messages are listed—no source
code—with line references to the source file to help you locate the code that generated
the message condition.

Note: The Pro*C/C++ precompiler does not support the #line
directive. This means that you cannot directly code #line directives
in the precompiler source. But you can still use the LINES= option
to have the precompiler insert #line directives for you. See also
"Directives Ignored" on page 5-22.

Using the Precompiler Options

10-22 Pro*C/C++ Programmer’s Guide

With LTYPE=NONE specified, no list file is produced unless the LNAME option
explicitly specifies a name for a list file. Under the latter condition, the list file is
generated with LTYPE=LONG assumed.

MAXLITERAL

Purpose
Specifies the maximum length of string literals generated by the precompiler, so that
compiler limits are not exceeded.

Syntax
MAXLITERAL=integer, range is 10 to 1024

Default
1024

Usage Notes
Cannot be entered inline.

The maximum value of MAXLITERAL is compiler dependent. For example, some C
compilers cannot handle string literals longer than 512 characters, so you would
specify MAXLITERAL=512.

Strings that exceed the length specified by MAXLITERAL are divided during
precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value only once, and
the EXEC ORACLE statement must precede the first EXEC SQL statement. Otherwise,
Pro*C/C++ issues a warning message, ignores the extra or misplaced EXEC ORACLE
statement, and continues processing.

MAXOPENCURSORS

Purpose
Specifies the number of concurrently open cursors that the precompiler tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes
Can be entered inline or on the command line.

You can use MAXOPENCURSORS to improve the performance of your program.
When precompiling separately, use MAXOPENCURSORS. MAXOPENCURSORS
specifies the initial size of the SQLLIB cursor cache.

Using the Precompiler Options

Precompiler Options 10-23

When an implicit statement is executed and HOLD_CURSOR=NO, or an explicit
cursor is closed, the cursor entry is marked as reusable. If this statement is issued
again and the cursor entry has not been used for another statement, it is reused.

If a new cursor is needed and the number of cursors allocated is less than
MAXOPENCURSORS, then the next one in the cache is allocated. Once
MAXOPENCCURSORS has been exceeded Oracle first tries to reuse a previous entry.
If there are no free entries, then an additional cache entry will be allocated. Oracle will
continue to do this until the program runs out of memory or the database parameter
OPEN_CURSORS is exceeded.

During normal processing, when using HOLD_CURSOR=NO and RELEASE_
CURSOR=NO (the default), it is advisable to set MAXOPENCURSORS to no more
than 6 less than the database parameter OPEN_CURSORS to allow for the cursors
used by the data dictionary to process statements.

As your program's need for concurrently open cursors grows, you might want to
respecify MAXOPENCURSORS to match the need. A value of 45 to 50 is not
uncommon, but remember that each cursor requires another private SQL area in the
user process memory space. The default value of 10 is adequate for most programs.

MODE

Purpose
Specifies whether your program observes Oracle practices or complies with the
current ANSI/ISO SQL standards.

Syntax
MODE={ANSI | ISO | ORACLE}

Default
ORACLE

Usage Notes
Can be entered only on the command line or in a configuration file.

In the context of this option ISO is equivalent to ANSI.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices. For example, a Declare Section is optional, and blanks are stripped.

When MODE=ANSI, your program complies fully with the ANSI SQL standard, and
the following changes go into effect:

■ Issuing a COMMIT or ROLLBACK closes all explicit cursors.

■ You cannot OPEN an already open cursor or CLOSE an already closed cursor.
(When MODE=ORACLE, you can reOPEN an open cursor to avoid re-parsing.)

■ You must declare a either a long variable named SQLCODE or a char
SQLSTATE[6] variable (uppercase is required for both variables) that is in the

See Also:

■ Appendix C, "Performance Tuning"

■ "Guidelines for Programming" on page 2-7

Using the Precompiler Options

10-24 Pro*C/C++ Programmer’s Guide

scope of every EXEC SQL statement. The same SQLCODE or SQLSTATE variable
need not be used in each case; that is, the variable need not be global.

■ Declaring the SQLCA is optional. You need not include the SQLCA.

■ The "no data found" Oracle warning code returned to SQLCODE becomes +100
instead of +1403. The message text does not change.

■ You must have a Declare Section for host variables.

NLS_CHAR

Purpose
Specifies which C host character variables are treated by the precompiler as multibyte
character variables.

Syntax
NLS_CHAR=varname or NLS_CHAR=(var_1,var_2,...,var_n)

Default
None.

Usage Notes
Can be entered only on the command line, or in a configuration file.

This option provides the ability to specify at precompile time a list of the names of one
or more host variables that the precompiler must treat as multibyte character variables.
You can specify only C char variables or Pro*C/C++ VARCHARs using this option.

If you specify in the option list a variable that is not declared in your program, then
the precompiler generates no error.

NLS_LOCAL

Purpose
Determines whether multibyte character set conversions are performed by the
precompiler runtime library, SQLLIB, or by the database server.

Syntax
NLS_LOCAL={NO | YES}

Default
NO

Usage Notes
When set to YES, local multibyte support is provided by Pro*C/C++ and the SQLLIB
library. The option NLS_CHAR must be used to indicate which C host variables are
multibyte.

When set to NO, Pro*C/C++ will use the database server support for multibyte
objects. Set NLS_LOCAL to NO for all new applications.

Environment variable NLS_NCHAR must be set to a valid fixed-width National
Character Set. Variable-width National Character Sets are not supported.

Using the Precompiler Options

Precompiler Options 10-25

Can be entered only on the command line, or in a configuration file.

OBJECTS

Purpose
Requests support for object types.

Syntax
OBJECTS={YES | NO}

Default
YES

Usage Notes
Can only be entered in the command line.

ONAME

Purpose
Specifies the name of the output file. The output file is the C code file that the
precompiler generates.

Syntax
ONAME=path_and_filename

Default
INAME with a .c extension.

Usage Notes
Can be entered only on the command line. Use this option to specify the full path
name of the output file, where the path name differs from that of the input (.pc) file.
For example, if you issue the command:

proc iname=my_test

the default output filename is my_test.c. If you want the output filename to be my_
test_1.c, issue the command

proc iname=my_test oname=my_test_1.c

You should add the .c extension to files specified using ONAME because one is not
added by default.

Note: Oracle recommends that you not let the output filename
default, but rather name it explicitly using ONAME. If you specify
an ONAME value without an extension, the name of the generated
file will not have one.

Using the Precompiler Options

10-26 Pro*C/C++ Programmer’s Guide

ORACA

Purpose
Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax
ORACA={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.

When ORACA=YES, you must place either the EXEC SQL INCLUDE ORACA or
#include oraca.h statement in your program.

PAGELEN

Purpose
Specifies the number of lines for each physical page of the listing file.

Syntax
PAGELEN=integer

Default
80

Usage Notes
Cannot be entered inline. The value range allowed is 30..256..

PARSE

Purpose
Specifies the way that the Pro*C/C++ precompiler parses the source file.

Syntax
PARSE={FULL | PARTIAL | NONE}

Default
FULL

Usage Notes
To generate C++ compatible code, the PARSE option must be either NONE or
PARTIAL.

If PARSE=NONE or PARSE=PARTIAL, all host variables must be declared inside a
Declare Section. See

Using the Precompiler Options

Precompiler Options 10-27

The variable SQLCODE must also be declared inside a declare section, or it cannot be
relied on to detect errors. Check the default value of PARSE for your platform.

If PARSE=FULL, the C parser is used, and it does not understand C++ constructs, such
as classes, in your code.

With PARSE=FULL or PARSE=PARTIAL Pro*C/C++ fully supports C preprocessor
directives, such as #define, #ifdef, and so on. However, with PARSE=NONE
conditional preprocessing is supported by EXEC ORACLE statements.

PREFETCH

Purpose
Use this option to speed up queries by pre-fetching a number of rows.

Syntax
PREFETCH=integer

Default
1

Usage Notes
Can be used in a configuration file or on the command-line. The value of the integer is
used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used in-line it must placed before OPEN statements with explicit cursors. Then
the number of rows pre-fetched when that OPEN is done is determined by the last
in-line PREFETCH option in effect.

The value range allowed is 0.. 65535.

RELEASE_CURSOR

Purpose
Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
RELEASE_CURSOR={YES | NO}

Note: Some platforms have the default value of PARSE as other
than FULL. See your system-dependent documentation.

See Also:

■ "Parsing Code" on page 12-3 for more information on the
PARSE option.

■ "Declare Section" on page 2-8

■ "Conditional Precompilation" on page 2-11

Using the Precompiler Options

10-28 Pro*C/C++ Programmer’s Guide

Default
NO

Usage Notes
Can be entered inline or on the command line.

You can use RELEASE_CURSOR to improve the performance of your program.

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache and
private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, the precompiler immediately removes the link. This frees memory
allocated to the private SQL area and releases parse locks. To make sure that associated
resources are freed when you CLOSE a cursor, you must specify RELEASE_
CURSOR=YES.

When RELEASE_CURSOR=NO, the link is maintained. The precompiler does not
reuse the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are often executed
because it speeds up subsequent executions. There is no need to re-parse the statement
or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set RELEASE_CURSOR before
CLOSEing the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES. For a table showing how
these two options interact, see Appendix C, "Performance Tuning".

SELECT_ERROR

Purpose
Specifies whether your program generates an error when a SELECT statement returns
more than one row, or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={YES | NO}

Default
YES

Usage Notes
Can be entered inline or on the command line.

When SELECT_ERROR=YES, an error is generated when a single-row SELECT returns
too many rows, or when an array SELECT returns more rows than the host array can
accommodate. The result of the SELECT is indeterminate.

See Also: Appendix C, "Performance Tuning"

Using the Precompiler Options

Precompiler Options 10-29

When SELECT_ERROR=NO, no error is generated when a single-row SELECT returns
too many rows, or when an array SELECT returns more rows than the host array can
accommodate.

Whether you specify YES or NO, a random row is selected from the table. The only
way to ensure a specific ordering of rows is to use the ORDER BY clause in your
SELECT statement. When SELECT_ERROR=NO and you use ORDER BY, Oracle
returns the first row, or the first n rows when you are SELECTing into an array. When
SELECT_ERROR=YES, whether or not you use ORDER BY, an error is generated when
too many rows are returned.

SQLCHECK

Purpose
Specifies the type and extent of syntactic and semantic checking.

Syntax
SQLCHECK={SEMANTICS | FULL | SYNTAX}

Default
SYNTAX

Usage Notes
SEMANTICS is the same as FULL.

Can be entered inline or on the command line.

SYS_INCLUDE

Purpose
Specifies the location of system header files.

Syntax
SYS_INCLUDE=pathname | (path1, ..., pathn)

Default
System-specific.

Usage Notes
Pro*C/C++ searches for standard system header files, such as stdio.h, in standard
locations that are platform specific. For example, on almost all UNIX systems, the file
stdio.h has the full path name /usr/include/stdio.h.

But C++ compilers can have system header files, such as stdio.h, that are not in the
standard system locations. You can use the SYS_INCLUDE command line option to
specify a list of directory paths that Pro*C/C++ searches to look for system header
files. For example:

SYS_INCLUDE=(/usr/lang/SC2.0.1/include,/usr/lang/SC2.1.1/include)

See Also: "What Is Syntactic and Semantic Checking?" on
page D-1 for complete details.

Using the Precompiler Options

10-30 Pro*C/C++ Programmer’s Guide

The search path that you specify using SYS_INCLUDE overrides the default header
location.

If PARSE=NONE, the value specified in SYS_INCLUDE is irrelevant for the
precompilation, since there is no need for Pro*C/C++ to include system header files in
the precompilation. (You must, of course, still include Oracle-specific headers, such as
sqlca.h. and system header files, with #include directives for pre-processing by the
compiler.)

The precompiler searches directories in the following order:

1. The current directory

2. The system directory specified in the SYS_INCLUDE precompiler option

3. The directories specified by the INCLUDE option, in the order entered

4. The built-in directory for standard header files

Because of step 3, you normally do not need to specify a directory path for standard
header files such as sqlca.h and sqlda.h.

THREADS

Purpose
When THREADS=YES, the precompiler searches for context declarations.

Syntax
THREADS={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This precompiler option is required for any program that requires multithreading
support.

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT
USE directive is encountered before the first context is visible and an executable SQL
statement is found.

TYPE_CODE

Purpose
This micro option specifies whether ANSI or Oracle datatype codes are used in
dynamic SQL Method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default
ORACLE

See Also: Chapter 11, "Multithreaded Applications"

Using the Precompiler Options

Precompiler Options 10-31

Usage Notes
Cannot be entered inline.

See the possible option settings in Table 14–3

.

UNSAFE_NULL

Purpose
Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when
fetching NULLs without using indicator variables.

Syntax
UNSAFE_NULL={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=ORACLE.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL
block. You must use indicator variables to avoid ORA-01405 errors.

USERID

Purpose
Specifies an Oracle username and password.

Syntax
USERID=username/password[@dbname]

Default
None

Usage Notes
Can be entered only on the command line.

Do not specify this option when using the automatic connect feature, which accepts
your Oracle username prefixed with CLUSTER$. The actual value of the "CLUSTER$"
string is set as a parameter in the INIT.ORA file.

When SQLCHECK=SEMANTICS, if you want the precompiler to get needed
information by connecting to Oracle and accessing the data dictionary, you must also
specify USERID.

Using the Precompiler Options

10-32 Pro*C/C++ Programmer’s Guide

UTF16_CHARSET

Purpose
Specify the character set form used by UNICODE(UTF16) variables.

Syntax
UTF16_CHARSET={NCHAR_CHARSET | DB_CHARSET}

Default
NCHAR_CHARSET

Usage Notes
Can be used only on the command line or in a configuration file, but not inline.

If UTF16_CHARSET=NCHAR_CHARSET (the default), the UNICODE(UTF16) bind /
define buffer is converted according to the server side National Character Set. There
may be a performance impact when the target column is CHAR.

If UTF16_CHAR=DB_CHARSET, the UNICODE(UTF16) bind / define buffer is
converted according to the database character set.

VARCHAR

Purpose
Instructs the Pro*C/C++ precompiler to interpret some structs as VARCHAR host
variables.

Syntax
VARCHAR={NO | YES}

Default
NO

Usage Notes
Can be entered only on the command line.

When VARCHAR=YES, a C struct that you code as

struct {
 short len;
 char arr[n];
} name;

is interpreted by the precompiler as a VARCHAR[n] host variable.

VARCHAR can be used in conjunction with the NLS_CHAR option to designate a
multibyte character variable.

Caution: There may be data loss when the target column is
NCHAR.

Using the Precompiler Options

Precompiler Options 10-33

VERSION

Purpose
Determines which version of the object will be returned by the EXEC SQL OBJECT
DEREF statement.

Syntax
VERSION={RECENT | LATEST | ANY}

Default
RECENT

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

RECENT means that if the object has been selected into the object cache in the current
transaction, then that object is returned. For transactions running in serializable mode,
this option has the same effect as LATEST without incurring as many network round
trips. Most applications should use RECENT.

LATEST means that if the object does not reside in the object cache, it is retrieved from
the database. If It does reside in the object cache, it is refreshed from the server. Use
LATEST with caution because it incurs the greatest number of network round trips.
Use LATEST only when it is imperative that the object cache is kept as coherent as
possible with the server buffer cache

ANY means that if the object already resides in the object cache, return that object. If
not, retrieve the object from the server. ANY incurs the fewest network round trips.
Use in applications that access read-only objects or when a user will have exclusive
access to the objects.

Using the Precompiler Options

10-34 Pro*C/C++ Programmer’s Guide

Multithreaded Applications 11-1

11
Multithreaded Applications

If your development platform does not support threads, ignore this chapter. This
chapter contains the following topics:

■ What are Threads?

■ Runtime Contexts in Pro*C/C++

■ Runtime Context Usage Models

■ User Interface Features for Multithreaded Applications

■ Multithreaded Example

■ Connection Pooling

What are Threads?
Multithreaded applications have multiple threads executing in a shared address space.
Threads are "lightweight" subprocesses that execute within a process. They share code
and data segments, but have their own program counters, machine registers and stack.
Global and static variables are common to all threads, and a mutual exclusivity
mechanism is often required to manage access to these variables from multiple threads
within an application. Mutexes are the synchronization mechanism to insure that data
integrity is preserved.

For further discussion of mutexes, see texts on multithreading. For more detailed
information about multithreaded applications, see the documentation of your threads
functions.

Pro*C/C++ supports development of multithreaded Oracle Server applications (on
platforms that support multithreaded applications) using the following:

■ A command-line option to generate thread-safe code

■ Embedded SQL statements and directives to support multithreading

■ Thread-safe SQLLIB and other client-side Oracle libraries

Note: When using XA with the Pro*C/C++ Precompiler, you must
use multithreading provided by XA. Use of multithreading
provided by Pro*C/C++ using the statement

EXEC SQL ENABLE THREADS

 will result in an error.

Runtime Contexts in Pro*C/C++

11-2 Pro*C/C++ Programmer’s Guide

The chapter's topics discuss how to use the preceding features to develop
multithreaded Pro*C/C++ applications:

■ Runtime contexts for multithreaded applications

■ Two models for using runtime contexts

■ User-interface features for multithreaded applications

■ Programming considerations for writing multithreaded applications with
Pro*C/C++

■ An example multithreaded Pro*C/C++ application

Runtime Contexts in Pro*C/C++
To loosely couple a thread and a connection, Pro*C/C++ introduces the notion of a
runtime context. The runtime context includes the following resources and their
current states:

■ Zero or more connections to one or more Oracle Servers

■ Zero or more cursors used for the server connections

■ Inline options, such as MODE, HOLD_CURSOR, RELEASE_CURSOR, and
SELECT_ERROR

Rather than simply supporting a loose coupling between threads and connections,
Pro*C/C++ provides the ability to loosely couple threads with runtime contexts.
Pro*C/C++ allows your application to define a handle to a runtime context, and pass
that handle from one thread to another.

For example, an interactive application spawns a thread, T1, to execute a query and
return the first 10 rows to the application. T1 then terminates. After obtaining the
necessary user input, another thread, T2, is spawned (or an existing thread is used)
and the runtime context for T1 is passed to T2 so it can fetch the next 10 rows by
processing the same cursor. See Figure 11–1, "Loosely Coupling Connections and
Threads".

Note: While your platform may support a particular thread
package, see your platform-specific Oracle documentation to
determine whether Oracle supports it.

Runtime Context Usage Models

Multithreaded Applications 11-3

Figure 11–1 Loosely Coupling Connections and Threads

Runtime Context Usage Models
Two possible models for using runtime contexts in multithreaded Pro*C/C++
applications are shown here:

■ Multiple threads sharing a single runtime context

■ Multiple threads using separate runtime contexts

Regardless of the model you use for runtime contexts, you cannot share a runtime
context between multiple threads at the same time. If two or more threads attempt to
use the same runtime context simultaneously, a runtime error occurs.

Multiple Threads Sharing a Single Runtime Context
Figure 11–2 shows an application running in a multithreaded environment. The
various threads share a single runtime context to process one or more SQL statements.
Again, runtime contexts cannot be shared by multiple threads at the same time. The
mutexes in Figure 11–2 show how to prevent concurrent usage.

Server

ThreadT1

.

..

Main Program

Application

USE :ctx
Fetch...

Thread

USE :ctx
Fetch...

ThreadT2

USE :ctx
Fetch...

. ..

ENABLE THREADS
ALLOCATE :ctx
Connect...
...
FREE :ctx

Execution
Time

Shared runtime
context is
passed from
one thread to
the next

Tn

Runtime Context Usage Models

11-4 Pro*C/C++ Programmer’s Guide

Figure 11–2 Context Sharing Among Threads

Multiple Threads Sharing Multiple Runtime Contexts
Figure 11–3 shows an application that executes multiple threads using multiple
runtime contexts. In this situation, the application does not require mutexes, because
each thread has a dedicated runtime context.

Application

Server

Thread1

USE :ctx

. ..

Mutex
Select...

Thread

USE :ctx
Mutex
Select...

Thread2

USE :ctx
Mutex

UnMutex UnMutexUnMutex
Update...

Main Program

ENABLE THREADS
ALLOCATE :ctx
USE :ctx
Connect...
Spawning Threads...
FREE :ctx

n

User Interface Features for Multithreaded Applications

Multithreaded Applications 11-5

Figure 11–3 No Context Sharing Among Threads

User Interface Features for Multithreaded Applications
The Pro*C/C++ Precompiler provides the following user-interface features to support
multithreaded applications:

■ Command-line option, THREADS=YES|NO

■ Embedded SQL statements and directives

■ Thread-safe SQLLIB public functions

THREADS Option
With THREADS=YES specified on the command line, the Pro*C/C++ Precompiler
ensures that the generated code is thread-safe, given that you follow the guidelines.
With THREADS=YES specified, Pro*C/C++ verifies that all SQL statements execute
within the scope of a user-defined runtime context. If your program does not meet this
requirement, a precompiler error is returned.

See Also: "Programming Considerations" on page 11-9 for
guidelines regarding the THREADS option

Application

Server

Thread1

USE :ctx1

. ..

Connect...
Select...

Thread

USE :ctxn
Connect...
Select...

Thread2

USE :ctx2
Connect...
Update...

Main Program

ENABLE THREADS
ALLOCATE :ctx1
ALLOCATE :ctx2
...
ALLOCATE :ctxn
...
Spawning Threads...
...
FREE :ctx1
FREE :ctx2
...
FREE :ctxn

n

User Interface Features for Multithreaded Applications

11-6 Pro*C/C++ Programmer’s Guide

Embedded SQL Statements and Directives
The following embedded SQL statements and directives support the definition and
usage of runtime contexts and threads:

■ EXEC SQL ENABLE THREADS;

■ EXEC SQL CONTEXT ALLOCATE :context_var;

■ EXEC SQL CONTEXT USE { :context_var | DEFAULT};

■ EXEC SQL CONTEXT FREE :context_var;

For these EXEC SQL statements, context_var is the handle to the runtime context and
must be declared of type sql_context as follows:

sql_context <context_variable>;

Using DEFAULT means that the default (global) runtime context will be used in all
embedded SQL statements that lexically follow until another CONTEXT USE
statement overrides it.

EXEC SQL ENABLE THREADS
This executable SQL statement initializes a process that supports multiple threads.
This must be the first executable SQL statement in your multithreaded application.

EXEC SQL CONTEXT ALLOCATE
This executable SQL statement allocates and initializes memory for the specified
runtime context; the runtime-context variable must be declared of type sql_context.

EXEC SQL CONTEXT USE
This directive instructs the precompiler to use the specified runtime context for
subsequent executable SQL statements. The runtime context specified must be
previously allocated using an EXEC SQL CONTEXT ALLOCATE statement.

The EXEC SQL CONTEXT USE directive works similarly to the EXEC SQL
WHENEVER directive in that it affects all executable SQL statements which
positionally follow it in a given source file without regard to standard C scope rules. In
the following example, the UPDATE statement in function2() uses the global
runtime context, ctx1:

sql_context ctx1; /* declare global context ctx1 */

function1()

Note: When using XA with the Pro*C/C++ Precompiler, you must
use multithreading provided by XA. Use of multithreading
provided by Pro*C using the statement

EXEC SQL ENABLE THREADS

 will result in an error.

See Also: "ENABLE THREADS (Executable Embedded SQL
Extension)" on page F-36

See Also: "CONTEXT ALLOCATE (Executable Embedded SQL
Extension)" on page F-20

User Interface Features for Multithreaded Applications

Multithreaded Applications 11-7

{
 sql_context :ctx1; /* declare local context ctx1 */
 EXEC SQL CONTEXT ALLOCATE :ctx1;
 EXEC SQL CONTEXT USE :ctx1;
 EXEC SQL INSERT INTO ... /* local ctx1 used for this stmt */
 ...
}

function2()
{
 EXEC SQL UPDATE ... /* global ctx1 used for this stmt */
}

To use the global context after using a local context, add this code to function1():

function1()
{
 sql_context :ctx1; /* declare local context ctx1 */
 EXEC SQL CONTEXT ALLOCATE :ctx1;
 EXEC SQL CONTEXT USE :ctx1;
 EXEC SQL INSERT INTO ... /* local ctx1 used for this stmt */
 EXEC SQL CONTEXT USE DEFAULT;
 EXEC SQL INSERT INTO ... /* global ctx1 used for this stmt */
 ...
}

In the next example, there is no global runtime context. The precompiler refers to the
ctx1 runtime context in the generated code for the UPDATE statement. However, there
is no context variable in scope for function2(), so errors are generated at compile
time.

function1()
{
 sql_context ctx1; /* local context variable declared */
 EXEC SQL CONTEXT ALLOCATE :ctx1;
 EXEC SQL CONTEXT USE :ctx1;
 EXEC SQL INSERT INTO ... /* ctx1 used for this statement */
 ...
}
function2()
{
 EXEC SQL UPDATE ... /* Error! No context variable in scope */
}

EXEC SQL CONTEXT FREE
This executable SQL statement frees the memory associated with the specified runtime
context and places a null pointer in the host program variable.

See Also:

■ "CONTEXT OBJECT OPTION GET (Executable Embedded SQL
Extension)" on page F-22

■ "CONTEXT ALLOCATE (Executable Embedded SQL
Extension)" on page F-20

See Also: "CONTEXT FREE (Executable Embedded SQL
Extension)" on page F-21

User Interface Features for Multithreaded Applications

11-8 Pro*C/C++ Programmer’s Guide

CONTEXT USE Examples
The following code fragments show how to use embedded SQL statements and
precompiler directives for two typical programming models; they use thread_create() to
create threads.

The first example showing multiple threads using multiple runtime contexts:

main()
{
 sql_context ctx1,ctx2; /* declare runtime contexts */
 EXEC SQL ENABLE THREADS;
 EXEC SQL CONTEXT ALLOCATE :ctx1;
 EXEC SQL CONTEXT ALLOCATE :ctx2;
 ...
/* spawn thread, execute function1 (in the thread) passing ctx1 */
 thread_create(..., function1, ctx1);
/* spawn thread, execute function2 (in the thread) passing ctx2 */
 thread_create(..., function2, ctx2);
 ...
 EXEC SQL CONTEXT FREE :ctx1;
 EXEC SQL CONTEXT FREE :ctx2;
 ...
}

void function1(sql_context ctx)
{
 EXEC SQL CONTEXT USE :ctx;
/* execute executable SQL statements on runtime context ctx1!!! */
 ...
}

void function2(sql_context ctx)
{
 EXEC SQL CONTEXT USE :ctx;
/* execute executable SQL statements on runtime context ctx2!!! */
 ...
}

The next example shows how to use multiple threads that share a common runtime
context. Because the SQL statements executed in function1() and function2()
potentially execute at the same time, you must place mutexes around every executable
EXEC SQL statement to ensure serial, therefore safe, manipulation of the data.

main()
{
 sql_context ctx; /* declare runtime context */
 EXEC SQL CONTEXT ALLOCATE :ctx;
 ...
/* spawn thread, execute function1 (in the thread) passing ctx */
 thread_create(..., function1, ctx);
/* spawn thread, execute function2 (in the thread) passing ctx */
 thread_create(..., function2, ctx);
 ...
}

void function1(sql_context ctx)
{
 EXEC SQL CONTEXT USE :ctx;
/* Execute SQL statements on runtime context ctx. */
 ...

Multithreaded Example

Multithreaded Applications 11-9

}

void function2(sql_context ctx)
{
 EXEC SQL CONTEXT USE :ctx;
/* Execute SQL statements on runtime context ctx. */
 ...
}

Programming Considerations
While Oracle ensures that the SQLLIB code is thread-safe, you are responsible for
ensuring that your Pro*C/C++ source code is designed to work properly with threads;
for example, carefully consider your use of static and global variables.

In addition, multithreaded applications require design decisions regarding the
following:

■ Declaring the SQLCA as a thread-safe struct, typically an auto variable and one for
each runtime context

■ Declaring the SQLDA as a thread-safe struct, like the SQLCA, typically an auto
variable and one for each runtime context

■ Declaring host variables in a thread-safe fashion, in other words, carefully
consider your use of static and global host variables.

■ Avoiding simultaneous use of a runtime context in multiple threads

■ Whether or not to use default database connections or to explicitly define them
using the AT clause

Also, no more than one executable embedded SQL statement, for example, EXEC SQL
UPDATE, may be outstanding on a runtime context at a given time.

Existing requirements for precompiled applications also apply. For example, all
references to a given cursor must appear in the same source file.

Multithreaded Example
The following program is one approach to writing a multithreaded embedded SQL
application. The program creates as many sessions as there are threads. Each thread
executes zero or more transactions, that are specified in a transient structure called
"records."

/*
 * Name: Thread_example1.pc
 *
 * Description: This program illustrates how to use threading in
 * conjunction with precompilers. The program creates as many
 * sessions as there are threads. Each thread executes zero or
 * more transactions, that are specified in a transient
 * structure called 'records'.
 * Requirements:

Note: This program was developed specifically for a Sun
workstation running Solaris. Either the DCE or Solaris threads
package is usable with this program. See your platform-specific
documentation for the availability of threads packages.

Multithreaded Example

11-10 Pro*C/C++ Programmer’s Guide

 * The program requires a table 'ACCOUNTS' to be in the schema
 * scott/tiger. The description of ACCOUNTS is:
 * SQL> desc accounts
 * Name Null? Type
 * ------------------------------- ------- ------
 * ACCOUNT NUMBER(36)
 * BALANCE NUMBER(36,2)
 *
 * For proper execution, the table should be filled with the accounts
 * 10001 to 10008.
 *
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlca.h>

#define _EXC_OS_ _EXC__UNIX
#define _CMA_OS_ _CMA__UNIX

#ifdef DCE_THREADS
 #include <pthread.h>
#else
 #include <thread.h>
#endif

/* Function prototypes */
void err_report();
#ifdef DCE_THREADS
void do_transaction();
#else
void *do_transaction();
#endif
void get_transaction();
void logon();
void logoff();

#define CONNINFO "scott/tiger"
#define THREADS 3

struct parameters
{ sql_context * ctx;
 int thread_id;
};
typedef struct parameters parameters;

struct record_log
{ char action;
 unsigned int from_account;
 unsigned int to_account;
 float amount;
};
typedef struct record_log record_log;

record_log records[]= { { 'M', 10001, 10002, 12.50 },
 { 'M', 10001, 10003, 25.00 },
 { 'M', 10001, 10003, 123.00 },
 { 'M', 10001, 10003, 125.00 },

Multithreaded Example

Multithreaded Applications 11-11

 { 'M', 10002, 10006, 12.23 },
 { 'M', 10007, 10008, 225.23 },
 { 'M', 10002, 10008, 0.70 },
 { 'M', 10001, 10003, 11.30 },
 { 'M', 10003, 10002, 47.50 },
 { 'M', 10002, 10006, 125.00 },
 { 'M', 10007, 10008, 225.00 },
 { 'M', 10002, 10008, 0.70 },
 { 'M', 10001, 10003, 11.00 },
 { 'M', 10003, 10002, 47.50 },
 { 'M', 10002, 10006, 125.00 },
 { 'M', 10007, 10008, 225.00 },
 { 'M', 10002, 10008, 0.70 },
 { 'M', 10001, 10003, 11.00 },
 { 'M', 10003, 10002, 47.50 },
 { 'M', 10008, 10001, 1034.54}};

static unsigned int trx_nr=0;
#ifdef DCE_THREADS
pthread_mutex_t mutex;
#else
mutex_t mutex;
#endif

/***
 * Main
 **/
main()
{
 sql_context ctx[THREADS];
#ifdef DCE_THREADS
 pthread_t thread_id[THREADS];
 pthread_addr_t status;
#else
 thread_t thread_id[THREADS];
 int status;
#endif
 parameters params[THREADS];
 int i;

 EXEC SQL ENABLE THREADS;

 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);

 /* Create THREADS sessions by connecting THREADS times */
 for(i=0;i<THREADS;i++)
 {
 printf("Start Session %d....",i);
 EXEC SQL CONTEXT ALLOCATE :ctx[i];
 logon(ctx[i],CONNINFO);
 }

 /*Create mutex for transaction retrieval */
#ifdef DCE_THREADS
 if (pthread_mutex_init(&mutex,pthread_mutexattr_default))
#else
 if (mutex_init(&mutex, USYNC_THREAD, NULL))
#endif

Multithreaded Example

11-12 Pro*C/C++ Programmer’s Guide

 {
 printf("Can't initialize mutex\n");
 exit(1);
 }

 /*Spawn threads*/
 for(i=0;i<THREADS;i++)
 {
 params[i].ctx=ctx[i];
 params[i].thread_id=i;

 printf("Thread %d... ",i);
#ifdef DCE_THREADS
 if (pthread_create(&thread_id[i],pthread_attr_default,
 (pthread_startroutine_t)do_transaction,
 (pthread_addr_t) ¶ms[i]))
#else
 if (status = thr_create
 (NULL, 0, do_transaction, ¶ms[i], 0, &thread_id[i]))
#endif
 printf("Cant create thread %d\n",i);
 else
 printf("Created\n");
 }

 /* Logoff sessions....*/
 for(i=0;i<THREADS;i++)
 {
 /*wait for thread to end */
 printf("Thread %d",i);
#ifdef DCE_THREADS
 if (pthread_join(thread_id[i],&status))
 printf("Error when waiting for thread % to terminate\n", i);
 else
 printf("stopped\n");

 printf("Detach thread...");
 if (pthread_detach(&thread_id[i]))
 printf("Error detaching thread! \n");
 else
 printf("Detached!\n");
#else
 if (thr_join(thread_id[i], NULL, NULL))
 printf("Error waiting for thread to terminate\n");
#endif
 printf("Stop Session %d....",i);
 logoff(ctx[i]);
 EXEC SQL CONTEXT FREE :ctx[i];
 }

 /*Destroys mutex*/
#ifdef DCE_THREADS
 if (pthread_mutex_destroy(&mutex))
#else
 if (mutex_destroy(&mutex))
#endif
 {
 printf("Can't destroy mutex\n");

Multithreaded Example

Multithreaded Applications 11-13

 exit(1);
 }
}

/***
 * Function: do_transaction
 *
 * Description: This functions executes one transaction out of the
 * records array. The records array is 'managed' by
 * the get_transaction function.
 *
 *
 **/
#ifdef DCE_THREADS
void do_transaction(params)
#else
void *do_transaction(params)
#endif
parameters *params;
{
 struct sqlca sqlca;
 record_log *trx;
 sql_context ctx=params->ctx;

 /* Done all transactions ? */
 while (trx_nr < (sizeof(records)/sizeof(record_log)))
 {
 get_transaction(&trx);

 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;

 printf("Thread %d executing transaction\n",params->thread_id);
 switch(trx->action)
 {
 case 'M': EXEC SQL UPDATE ACCOUNTS
 SET BALANCE=BALANCE+:trx->amount
 WHERE ACCOUNT=:trx->to_account;
 EXEC SQL UPDATE ACCOUNTS
 SET BALANCE=BALANCE-:trx->amount
 WHERE ACCOUNT=:trx->from_account;
 break;
 default: break;
 }
 EXEC SQL COMMIT;
 }
}

/***
 * Function: err_report
 *
 * Description: This routine prints out the most recent error
 *
 **/
void err_report(sqlca)
struct sqlca sqlca;
{
 if (sqlca.sqlcode < 0)
 printf("\n%.*s\n\n",sqlca.sqlerrm.sqlerrml,sqlca.sqlerrm.sqlerrmc);

Multithreaded Example

11-14 Pro*C/C++ Programmer’s Guide

 exit(1);
}

/***
 * Function: logon
 *
 * Description: Logs on to the database as USERNAME/PASSWORD
 *
 ***/
void logon(ctx,connect_info)
sql_context ctx;
char * connect_info;
{
 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;
 EXEC SQL CONNECT :connect_info;
 printf("Connected!\n");

}

/**
 * Function: logoff
 *
 * Description: This routine logs off the database
 *
 **/
void logoff(ctx)
sql_context ctx;
{
 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;
 EXEC SQL COMMIT WORK RELEASE;
 printf("Logged off!\n");
}

/**
 * Function: get_transaction
 *
 * Description: This routine returns the next transaction to process
 *
 **/
void get_transaction(trx)
record_log ** trx;
{
#ifdef DCE_THREADS
 if (pthread_mutex_lock(&mutex))
#else
 if (mutex_lock(&mutex))
#endif
 printf("Can't lock mutex\n");

 *trx=&records[trx_nr];

 trx_nr++;

#ifdef DCE_THREADS
 if (pthread_mutex_unlock(&mutex))
#else
 if (mutex_unlock(&mutex))

Connection Pooling

Multithreaded Applications 11-15

#endif
 printf("Can't unlock mutex\n");
}

Connection Pooling
Connection pool is a group of physical connections to a database that can be re-used
by several named connections. The objective of the connection pooling feature is to
improve performance, and reduce resource use by avoiding usage of dedicated
connections by each named connection.

Figure 11–4 illustrates functionality of the connection pooling feature. In this example,
four threads of the application are interacting with the database using the connection
pool. The connection pool has two physical connections. The connection pool handle is
used by four threads using different runtime contexts.

Figure 11–4 Connection Pooling

thread1()
{
EXEC SQL CONTEXT ALLOCATE :ctx1;
EXEC SQL CONNECT :uid AT :TC1 USING :db_string;
...

}

thread2()
{
EXEC SQL CONTEXT ALLOCATE :ctx2;
EXEC SQL CONNECT :uid AT :TC2 USING :db_string;
...

}

thread3()
{
EXEC SQL CONTEXT ALLOCATE :ctx3;
EXEC SQL CONNECT :uid AT :TC3 USING :db_string;
EXEC SQL AT :TC3 SELECT count(*) into :count FROM emp;
...

}

thread4()

Connection Pooling

11-16 Pro*C/C++ Programmer’s Guide

{
EXEC SQL CONTEXT ALLOCATE :ctx4;
EXEC SQL CONNECT :uid AT :TC4 USING :db_string;
...

}

In this example, four named connections TC1, TC2, TC3, and TC4 are virtual
connections created by threads T1, T2, T3, and T4 respectively. Named connections
TC1, TC2, TC3, and TC4 from different runtime contexts share the same connection
pool, and share physical database connections available in the connection pool. Two
physical connections, C1 and C2, serve four named connections and connect to the
same database.

When the first connect request TC1 from thread T1 is received, SQLLIB creates a
connection pool with one physical connection C1 to the database. When another
connect request TC2 from thread T2 is sent to the same database, C1 serves the TC2
request to the database, if it is free. Otherwise, a new physical connection C2 is created
to serve the request. If another connect request from thread T3 named TC3 comes in,
TC3 either waits for a specified time or returns an error message, if both physical
connections C1 and C2 are busy.

When thread T2 needs to select data using the TC2 named connection, it acquires any
free physical connection, C1 or C2. After the request is served, the chosen connection
will again be available in the connection pool, so that another named or virtual
connection can utilize the same physical connection.

Using the Connection Pooling Feature
This section comprises the following topics:

■ How to Enable Connection Pooling

■ Command Line Options for Connection Pooling

■ Example

■ Performance Tuning

How to Enable Connection Pooling
To enable connection pooling while precompiling an application, user must set the
command line option CPOOL=YES. Based on CPOOL=YES/NO, the connection pool
feature is enabled or disabled.

Command Line Options for Connection Pooling
Table 11-1 lists the command line options for connection pooling:

Note: By default, CPOOL is set to NO and hence the connection
pool feature is disabled. This feature cannot be enabled or disabled
inline.

Connection Pooling

Multithreaded Applications 11-17

A typical multithreaded application creates a pool of 'n' server handles. The 'n' value
needs to be specified by providing the CMIN value during precompilation. A
minimum number of physical connections (CMIN) to the database are created initially.
For new incoming requests, the mapping from a virtual connection (named
connection) to a physical connection is carried out as described in the following
section:

Case 1: If a physical connection is available (among the already opened connections), a
new request will be served by this connection.

Case 2: If all physical connections are in use then,

Table 11–1 Command Line Options for Connection Pooling

Option
Valid
Value Default Remarks

CPOOL YES/NO NO Based on this option, the precompiler generates the appropriate code
that directs SQLLIB to enable or disable the connection pool feature.

Note: If this option is set to NO, other options will be ignored by the
precompiler.

CMAX Valid
values are
1 and
above

100 Specifies the maximum number of physical connections that can be
opened for the database. CMAX value should be at least
CMIN+CINCR.

Note: Once this value is reached, more physical connections cannot
be opened.

In a typical application, running 100 concurrent database operations
is more than sufficient. The user can set an appropriate value.

CMIN Valid
values are
1 and
above

- Specifies the minimum number of physical connections in the
connection pool. Initially, all physical connections as specified
through CMIN are opened to the server. Subsequently, physical
connections are opened only when necessary. Users should set the
total number of planned or expected concurrent statements to be run
by the application to get optimum performance. The default value is
set to 2, as it is expected that users writing multithreaded
applications would create at least two threads.

CINCR Valid
values are
1 and
above

1 Allows the application to set the next increment for physical
connections to be opened to the database, if the current number of
physical connections is less than CMAX. To avoid creating
unnecessary extra connections, the default value is set to 1.

CTIMEOUT Valid
values are
more than
1

Will not be
set; hence
will not
time out.

Physical connections that are idle for more than the specified time (in
seconds) are terminated to maintain an optimum number of open
physical connections. If this attribute is not set, the physical
connections are never timed out. Hence, physical connections will
not be closed until the connection pool is terminated.

Note: Creating a new physical connection will cost a round trip to
the server.

CNOWAIT Valid
values are
1 and
above

Will not be
set; hence
waits for a
free
connection.

This attribute determines if the application must repeatedly try for a
physical connection when all other physical connections in the pool
are found busy, and the total number of physical connections has
already reached its maximum. If physical connections are not
available and no more physical connections can be opened, an error
is thrown when this attribute is set. Otherwise, the call waits until it
acquires another connection. By default, this is not to be set because a
thread can wait until it acquires a free connection, instead of
returning an error.

Connection Pooling

11-18 Pro*C/C++ Programmer’s Guide

Case 2a: If the number of opened connections has not reached the maximum limit
(CMAX), new CINCR connections are created, and one of these connections is used to
serve the request.

Case 2b: If the number of opened connections has reached the maximum limit
(CMAX) without the CNOWAIT being set, the request waits until it acquires a
connection. Otherwise, the application displays an error message that all physical
connections are busy and no more physical connections can be opened.

Example
Refer Figure 11-4 for an illustration of the following example.

Let
CMIN be 1,
CMAX be 2, and
CINCR be 1.

Consider the following scenario. When the first request TC1 comes in, SQLLIB creates
the connection pool with one physical connection C1. When another request TC2
comes in, the application checks if C1 is free. As C1 is used to serve the first request
(Case 1), a new physical connection C2 is created to serve the request (Case 2a). If
another request TC3 comes in, and if both C1 and C2 are busy, then TC3 either waits
for a specified time or returns with an error message (Case 2b).

Performance Tuning
Users can set the connection pooling parameters to get better performance, based on
the application. The Performance Graph in Figure 11–5 on page 11-19 illustrates
performance gain by changing the CMIN value for the Pro*C/C++ Demo Program:1
on page 11-18. Demo Program:2 on page 11-23 illustrates performance gain by
changing the CMAX parameter.

Demo Program:1
The following connection pool parameters are used while precompiling the Demo
Program:1.

CMAX = 40
CINCR = 3
CMIN = 1..40
CTIMEOUT - Do not set
(indicates that physical connection never times out)

CNOWAIT - Do not set
(indicates that the thread waits until it gets a free connection; see Table 11–1,
" Command Line Options for Connection Pooling" on page 11-17, for more details)

Other command line options to precompile are based on the example provided in the
following section:

userid = hr/hr
sqlcheck = full
dbms = v8
threads = yes

Note: In this example, No. of threads = 40, and database
operations are done against the local database.

Connection Pooling

Multithreaded Applications 11-19

It was observed that with CPOOL=NO (without connection pool), time taken by the
application was 6.1 seconds. Whereas, with CPOOL=YES (with connection pool),
minimum time taken by the application was 1.3 seconds, with CMIN=2.

In both cases, the time taken for database query operation may remain same. The
connection pool does not reduce for database query operations except for CONNECT
statements. The overall time taken for total connection operations when CPOOL=YES
will be less compared to the case when CPOOL=NO. In the earlier example, when
CPOOL=NO, the application will create 40 dedicated connections. When
CPOOL=YES, it will create 2 connections initially and only if 2 threads access the
connections concurrently, it will create more connections. Otherwise, all threads will
share those 2 connections. So the application avoids 38 connections which in turn
avoids 38 round trips to the server to establish connections. This is where the
application gains performance by three times.

Figure 11–5 Performance Graph

The CPOOL=YES curve represents the time taken by the application when connection
pool is enabled. The CPOOL=NO curve represents the time taken by the application
when connection pool is disabled.

Example
/*
* cpdemo1.pc
*
* Description:
* The program creates as many sessions as there are threads.
* Each thread connects to the default database, calls COMMIT and
* executes a simple SELECT statement. Each thread have its own
* runtime contexts.
*
*/

Note: The earlier result was observed with a Sparc Ultra60 single
CPU, 256 MB RAM machine, running one Oracle9i server on Solaris
2.6 operating system; the server and client were running on the
same machine.

Connection Pooling

11-20 Pro*C/C++ Programmer’s Guide

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlca.h>

#define _EXC_OS_ _EXC__UNIX
#define _CMA_OS_ _CMA__UNIX
#define MAX_ROWS 256
#define BUFF_LEN 21

#ifdef DCE_THREADS
#include <pthread.h>
#else
#include <thread.h>
#endif

/* Function prototypes */
void err_report();
#ifdef DCE_THREADS
void do_transaction();
#else
void *do_transaction();
#endif
void get_transaction();
void logon();
void logoff();

#define CONNINFO "hr/hr"
#define THREADS 40

struct parameters
 {
 sql_context * ctx;
 int thread_id;
 };
typedef struct parameters parameters;

struct timeval tp1;
struct timeval tp2;

/***************************************
* Main
***************************************/

main()
{
 sql_context ctx[THREADS];
#ifdef DCE_THREADS
 pthread_t thread_id[THREADS];
 pthread_addr_t status;
#else
 thread_t thread_id[THREADS];
 int status;
#endif
 parameters params[THREADS];
 int i;

 EXEC SQL ENABLE THREADS;
 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);

Connection Pooling

Multithreaded Applications 11-21

 if(gettimeofday(&tp1) == -1)
 {
 perror("First: ");
 exit(0);
 }

 /* Create THREADS sessions by connecting THREADS times */
 for(i=0;i<THREADS;i++)
 {
 printf("Start Session %d....",i);
 EXEC SQL CONTEXT ALLOCATE :ctx[i];
 logon(ctx[i],CONNINFO);
 }

 /*Spawn threads*/
 for(i=0;i<THREADS;i++)
 {
 params[i].ctx=ctx[i];
 params[i].thread_id=i;

#ifdef DCE_THREADS
 if (pthread_create(&thread_id[i],pthread_attr_default,
 (pthread_startroutine_t)do_transaction,
 (pthread_addr_t) ¶ms[i]))
#else
 if (status = thr_create
 (NULL, 0, do_transaction, ¶ms[i], 0, &thread_id[i]))
#endif
 printf("Cant create thread %d\n",i);
 else
 printf("Created Thread %d\n", i);
 }

 /* Logoff sessions....*/
 for(i=0;i<THREADS;i++)
 {
 /*wait for thread to end */
#ifdef DCE_THREADS
 if (pthread_join(thread_id[i],&status))
 printf("Error when waiting for thread % to terminate\n", i);
 else
 printf("stopped\n");

 printf("Detach thread...");
 if (pthread_detach(&thread_id[i]))
 printf("Error detaching thread! \n");
 else
 printf("Detached!\n");
#else
 if (thr_join(thread_id[i], NULL, NULL))
 printf("Error waiting for thread to terminate\n");
#endif
 logoff(ctx[i]);
 EXEC SQL CONTEXT FREE :ctx[i];
 }

 if(gettimeofday(&tp2) == -1)
 {
 perror("Second: ");
 exit(0);

Connection Pooling

11-22 Pro*C/C++ Programmer’s Guide

 }

 printf(" \n\nTHE TOTAL TIME TAKEN FOR THE PROGRAM EXECUTION = %f \n\n",
(float)(tp2.tv_sec - tp1.tv_sec) + ((float)(tp2.tv_usec - tp1.tv_
usec)/1000000.0));

}

/***
* Function: do_transaction
* Description: This function calls CMMIT and execute a simple SELECT
* statement.
***/
#ifdef DCE_THREADS
void do_transaction(params)
#else
void *do_transaction(params)
#endif
parameters *params;
{
 struct sqlca sqlca;
 char empName[MAX_ROWS][BUFF_LEN];
 int src_count;
 sql_context ctx=params->ctx;

 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;
 printf("Thread %d executing transaction\n",params->thread_id);
 EXEC SQL COMMIT;
 EXEC SQL SELECT FIRST_NAME into empName from EMPLOYEES where JOB_ID=
 (select JOB_ID from EMPLOYEES where EMPLOYEE_ID=205);
}

/**
* Function: err_report
* Description: This routine prints out the most recent error
**/
void err_report(sqlca)
struct sqlca sqlca;
{
 if (sqlca.sqlcode < 0)
 printf("\n%.*s\n\n",sqlca.sqlerrm.sqlerrml,sqlca.sqlerrm.sqlerrmc);
 exit(1);
}

/**
* Function: logon
* Description: Logs on to the database as USERNAME/PASSWORD
**/
void logon(ctx,connect_info)
sql_context ctx;
char * connect_info;
{
 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;
 EXEC SQL CONNECT :connect_info;
 printf("Connected!\n");
}

Connection Pooling

Multithreaded Applications 11-23

/***
* Function: logoff
* Description: This routine logs off the database
***/
void logoff(ctx)
sql_context ctx;
{
 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 EXEC SQL CONTEXT USE :ctx;
 EXEC SQL COMMIT WORK RELEASE;
}

Demo Program:2
The following connection pool parameters are used while precompiling the Demo
Program:2.

CMAX = 5..40

CINCR = 3

CMIN = 1..40

CTIMEOUT - Do not set

(indiactes that physical connection never times out)

CNOWAIT - Do not set

(indicates that thread waits until it gets a free connection; see Table 11–1, " Command
Line Options for Connection Pooling" on page 11-17, for more details)

Other command line options to precompile are based on the example provided in the
following section:

userid = hr/hr

sqlcheck = full

dbms = v8

threads = yes

The following figure illustrates the performance graph for cpdemo2.

In this example, the demo program does UPDATE operation along with SELECT
operation. The best performance is observed when CMIN=5 and CMAX=14. The
performance improvement in this demo is around 2.3 times when CPOOL=YES is
used over the use of CPOOL=NO option.

The "cpdemo1" shows more than 3 times performance improvement, whereas
"cpdemo2" shows only 2.3 times performance improvement. The reason being
"cpdemo1" uses simple SELECT statement whereas "cpdemo2" uses UPDATE and
SELECT statements. "cpdemo1" spends more time in creating connections than the
database operations. When connection pool is enabled, it saves time as lesser number
of connections are created. So, overall performance becomes better. Since "cpdemo2"
spends less time in creating connections compared to the database operations, the
overall performance gain is less.

Note: In this example, No. of threads = 40, and database
operations are done against the local database.

Connection Pooling

11-24 Pro*C/C++ Programmer’s Guide

In the following graphs, the CPOOL=YES curve represents the time taken by the
application when connection pool is enabled. The CPOOL=NO curve represents the
time taken by the application when connection pool is disabled. The demo program
"cpdemo2" creates 40 threads. With CPOOL=NO option, each thread establishes its
own dedicated connection to the server. Hence 40 connections are created. The same
demo program when built with CPOOL=YES option, and with CMAX set to 14, a
maximum of 14 connections are created. So, at most it creates 14 connections and these
14 connections will be shared across 40 threads which will avoid another 26 dedicated
connections, thereby the program avoids 26 round-trips to the server.

The following two graphs are drawn one with varying CMIN and other with varying
CMAX respectively.

Case 1: By varying CMIN

Figure 11–6 Performance Graph Case 1

The application takes around 7.5 seconds for execution with CPOOL=NO. With
CPOOL=YES, and CMIN=8 and CMAX=14, the execution time reduces to 4.5 seconds.
So, the improvement of performance is about 1.7 times. The difference in performance
is because of different database operations (SELECT vs UPDATE) which is purely a
server side activity and beyond the scope of connection pool feature which is a client
side feature.

Connection Pooling

Multithreaded Applications 11-25

Case 2: By varying CMAX

Figure 11–7 Performance Graph Case 2

For the preceding graph the demo program was run with CMIN=15 ,CINCR=3 and
the best performance was observed at CMAX=14. It takes around 7.4 seconds for the
execution when CPOOL=NO. With CPOOL=YES, when CMAX=14 the execution time
reduces to around 3.1 seconds resulting in 2.3 times performance gain.

The performance improvement for cpdemo2 was more when CMAX was varied. So, to
get the best performance for a given application, the user is expected to vary CMIN
(case 1) and CMAX(case 2) suitably till the best performance is achieved.

Example
 /*
 * Program to show the performance improvement when cpool option is used
 * Run this program with cpool=no. Record the time taken for the program to
 * execute
 *
 * Compare the execution time
 *
 * This program also demonstrates the impact of properly tuned CMAX
 * parameter on the performance
 *
 * Run the program with the following parameter values for best performance
 *
 * CMIN=5
 * CINCR=2
 * CMAX=14
 *
 */

#include <stdio.h>
#include <sqlca.h>

#ifdef DCE_THREADS
#include <pthread.h>
#else
#include <thread.h>
#endif

Connection Pooling

11-26 Pro*C/C++ Programmer’s Guide

#define CONNINFO "hr/hr"
#define THREADS 40
#define MAX_ROWS 256
#define BUFF_LEN 21

/***** prototypes ************** */
#ifdef DCE_THREADS
void selectFunction();
void updateFunction();
#else
void *selectFunction();
void *updateFunction();
#endif

void err_report(struct sqlca sqlca);
/* ************************* */

/***** parameter to the function selectFunction, updateFunction */
struct parameters
{
 sql_context ctx;
 char connName[20];
 char dbName[20];
 int thread_id;
};
typedef struct parameters parameters;
/***/

parameters params[THREADS];

struct timeval tp1;
struct timeval tp2;

int main()
{
 int i, status;
 thread_t thread_id[THREADS];

 int thrNos[THREADS];

 for(i=0; i<THREADS; i++)
 thrNos[i] = i;

 EXEC SQL ENABLE THREADS;

 /* Time before executing the program */
 if(gettimeofday(&tp1) == -1){
 perror("First: ");
 exit(0);
 }

 EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
 /* connect THREADS times to the data base */
 for(i=0; i<THREADS; i++)
 {
 strcpy(params[i].dbName, "inst1");
 sprintf(params[i].connName,"conn%d", i);
 params[i].thread_id = i;

 /* logon to the data base */

Connection Pooling

Multithreaded Applications 11-27

 EXEC SQL CONTEXT ALLOCATE :params[i].ctx;
 EXEC SQL CONTEXT USE :params[i].ctx;
 EXEC SQL CONNECT :CONNINFO
 AT :params[i].connName USING :params[i].dbName;
 }

 /* create THREADS number of threads */
 for(i=0;i<THREADS;i++)
 {
 printf("Creating thread %d \n", i);
 if(i%2)
 {
 /* do a select operation if the thread id is odd */
#ifdef DCE_THREADS
 if(pthread_create(&thread_id[i],pthread_attr_default,
 (pthread_startroutine_t)selectFunction,
 (pthread_addr_t) ¶ms[i]))
#else
 if(thr_create(NULL, 0, selectFunction,
 ¶ms[i], 0, &thread_id[i]))
#endif
 printf("Cant create thread %d \n", i);
 }
 else
 {
 /* othewise do an update operation */
#ifdef DCE_THREADS
 if(pthread_create(&thread_id[i],pthread_attr_default,
 (pthread_startroutine_t)updateFunction,
 (pthread_addr_t) ¶ms[i]))
#else
 if(thr_create(NULL, 0, updateFunction,
 ¶ms[i], 0, &thread_id[i]))
#endif
 printf("Cant create thread %d \n", i);
 }

 }

 for(i=0; i<THREADS; i++)
 {
#ifdef DCE_THREADS
 if(pthread_join(thread_id[i],&status))
 printf("Error when waiting for thread % to terminate\n", i);

 if(pthread_detach(&thread_id[i]))
 printf("Error detaching thread! \n");
#else
 if(thr_join(thread_id[i], NULL, NULL))
 printf("Error waiting for thread i(%d) to terminate\n", i);
#endif
 }

 if(gettimeofday(&tp2) == -1){
 perror("Second: ");
 exit(0);
 }

 printf(" \n\nTHE TOTAL TIME TAKEN FOR THE PROGRAM EXECUTION = %f \n\n",

Connection Pooling

11-28 Pro*C/C++ Programmer’s Guide

 (float)(tp2.tv_sec - tp1.tv_sec) + ((float)(tp2.tv_usec -
 tp1.tv_usec)/1000000.0));

 /* free the context */
 for(i=0; i<THREADS; i++)
 {
 EXEC SQL CONTEXT USE :params[i].ctx;
 EXEC SQL AT :params[i].connName COMMIT WORK RELEASE;

 EXEC SQL CONTEXT FREE :params[i].ctx;
 }

 return 0;
}

#ifdef DCE_THREADS
void selectFunction(parameters *params)
#else
void *selectFunction(parameters *params)
#endif
{
 char empName[MAX_ROWS][BUFF_LEN];
 printf("Thread %d selecting \n", params->thread_id);

 EXEC SQL CONTEXT USE :params->ctx;
 EXEC SQL AT : params->connName
 SELECT FIRST_NAME into empName from EMPLOYEES;
 printf("Thread %d selected\n", params->thread_id);
 return 0;
}

#ifdef DCE_THREADS
void updateFunction(parameters *params)
#else
void *updateFunction(parameters *params)
#endif
{
 printf(" Thread %d Updating ... \n", params->thread_id);

 EXEC SQL CONTEXT USE :params->ctx;
 EXEC SQL AT :params->connName update EMPLOYEES
 set SALARY = 4000 where DEPARTMENT_ID = 10;

 /* commit the changes */
 EXEC SQL AT :params->connName COMMIT;

 printf(" Thread %d Updated ... \n", params->thread_id);
 return 0;
}

/*********** Oracle error ***********/
void err_report(struct sqlca sqlca)
{
 if (sqlca.sqlcode < 0)
 printf("\n%.*s\n\n",sqlca.sqlerrm.sqlerrml,sqlca.sqlerrm.sqlerrmc);

 exit(0);
}

Connection Pooling

Multithreaded Applications 11-29

Connection Pooling

11-30 Pro*C/C++ Programmer’s Guide

C++ Applications 12-1

12
C++ Applications

This chapter describes how you can use the Pro*C/C++ Precompiler to precompile
your C++ embedded SQL application, and how Pro*C/C++ generates C++ compatible
code. This chapter contains the following topics:

■ Understanding C++ Support

■ Precompiling for C++

■ Example Programs

Understanding C++ Support
To understand how Pro*C/C++ supports C++, you must understand the basic
functional capabilities of Pro*C/C++. In particular, you must be aware of how
Pro*C/C++ differs from Pro*C Version 1.

The basic capabilities of Pro*C/C++ are:

■ Full C preprocessor support. You can use #define, #include, #ifdef, and
other preprocessor directives in your Pro*C/C++ program, to handle constructs
that the precompiler itself must process.

■ Use of native C structures as host variables, including the ability to pass structs (or
pointers to structs) as host variables to functions, and write functions that return
host structures or struct pointers.

To support its C preprocessor capabilities and to enable host variables to be declared
outside a special Declare Section, Pro*C/C++ incorporates a complete C parser. The
Pro*C/C++ parser is a C parser; it cannot parse C++ code.

This means that for C++ support, you must be able to disable the C parser, or at least
partially disable it. To disable the C parser, the Pro*C/C++ Precompiler includes
command-line options to give you control over the extent of C parsing that
Pro*C/C++ performs on your source code.

See Also:

■ "Oracle Datatypes" on page 4-1

■ "Structure Pointers" on page 4-37

■ "Precompiling for C++" on page 12-2

Precompiling for C++

12-2 Pro*C/C++ Programmer’s Guide

No Special Macro Processing
Using C++ with Pro*C/C++ does not require any special preprocessing or special
macro processors that are external to Pro*C/C++. There is no need to run a macro
processor on the output of the precompiler to achieve C++ compatibility.

If you are a user of a release of Pro*C/C++ Precompiler before this one, and you did
use macro processors on the precompiler output, you should be able to precompile
your C++ applications using Pro*C/C++ with no changes to your code.

Precompiling for C++
To control precompilation so that it accommodates C++, there are four considerations:

■ Code emission by the precompiler

■ Parsing capability

■ The output filename extension

■ The location of system header files

Code Generation
You must be able to specify what kind of code, C compatible code or C++ compatible
code, the precompiler generates. Pro*C/C++ by default generates C code. C++ is not a
perfect superset of C. Some changes are required in generated code so that it can be
compiled by a C++ compiler.

For example, in addition to emitting your application code, the precompiler interposes
calls to its runtime library, SQLLIB. The functions in SQLLIB are C functions. There is
no special C++ version of SQLLIB. For this reason, if you want to compile the
generated code using a C++ compiler, Pro*C/C++ must declare the functions called in
SQLLIB as C functions.

For C output, the precompiler would generate a prototype such as

void sqlora(unsigned long *, void *);

But for C++ compatible code, the precompiler must generate

extern "C" {
void sqlora(unsigned long *, void *);
};

You control the kind of code Pro*C/C++ generates using the precompiler option
CODE. There are three values for this option: CPP, KR_C, and ANSI_C. The differences
between these options can be illustrated by considering how the declaration of the
SQLLIB function sqlora differs among the three values for the CODE option:

void sqlora(/*_ unsigned long *, void * _*/); /* K&R C */

void sqlora(unsigned long *, void *); /* ANSI C */

extern "C" { /* CPP */
void sqlora(unsigned long *, void *);
};

When you specify CODE=CPP, the precompiler

■ Generates C++ compilable code.

Precompiling for C++

C++ Applications 12-3

■ Gives the output file a platform-specific file extension (suffix), such as ".C" or ".cc",
rather than the standard ".c" extension. (You can override this by using the CPP_
SUFFIX option.)

■ Causes the value of the PARSE option to default to PARTIAL. You can also specify
PARSE=NONE. If you specify PARSE=FULL, an error is issued at precompile
time.

■ Allows the use of the C++ style // Comments in your code. This style of
Commenting is also permitted inside SQL statements and PL/SQL blocks when
CODE=CPP.

■ Pro*C/C++ recognizes SQL optimizer hints that begin with //+.

■ Requires that header files generated by OTT (Object Type Translator) must be
included inside a declare section.

Parsing Code
You must be able to control the effect of the Pro*C/C++ C parser on your code. You do
this by using the PARSE precompiler option, which controls how the precompiler's C
parser treats your code.

The values and effects of the PARSE option are:

This option value is the default if the value of the CODE option is anything other than
CPP. It is an error to specify PARSE=FULL when CODE=CPP.

To generate C++ compatible code, the PARSE option must be either NONE or
PARTIAL. If PARSE=FULL, the C parser runs, and it does not understand C++
constructs in your code, such as classes.

See Also: "CODE" on page 10-10 for information about the KR_C
and ANSI_C values for the CODE option.

Table 12–1 Values and Effects of the PARSE Option

Values Effects

PARSE=NONE The value NONE has the following effects:

■ C preprocessor directives are understood only inside a
declare section.

■ You must declare all host variables inside a Declare
Section.

■ Precompiler release 1.x behavior

PARSE=PARTIAL The value PARTIAL has the following effects:

■ All preprocessor directives are understood

■ You must declare all host variables inside a Declare
Section

This option value is the default if CODE=CPP

PARSE=FULL The value FULL has the following effects:

■ The precompiler C parser runs on your code.

■ All Preprocessor directives are understood.

■ You can declare host variables at any place that they can
be declared legally in C.

Example Programs

12-4 Pro*C/C++ Programmer’s Guide

Output Filename Extension
Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX option
provides the ability to specify the filename extension that the precompiler generates.
The value of this option is a string, without the quotes or the period. For example,
CPP_SUFFIX=cc, or CPP_SUFFIX=C.

System Header Files
Pro*C/C++ searches for standard system header files, such as stdio.h, in standard
locations that are platform specific. Pro*C/C++ does not search for header files with
extensions such as hpp or h++. For example, on almost all UNIX systems, the file
stdio.h has the full path name /usr/include/stdio.h.

But a C++ compiler has its own version of stdio.h that is not in the standard system
location. When you are precompiling for C++, you must use the SYS_INCLUDE
precompiler option to specify the directory paths that Pro*C/C++ searches to look for
system header files. For example:

SYS_INCLUDE=(/usr/lang/SC2.0.1/include,/usr/lang/SC2.1.1/include)

Use the INCLUDE precompiler option to specify the location of non-system header
files. The directories specified by the SYS_INCLUDE option are searched before
directories specified by the INCLUDE option. See also: "INCLUDE" on page 10-19.

If PARSE=NONE, the values specified in SYS_INCLUDE and INCLUDE for system
files are not relevant, since there is no need for Pro*C/C++ to include system header
files. (You can, of course, still include Pro*C/C++-specific headers, such sqlca.h,
using the EXEC SQL INCLUDE statement.)

Example Programs
This section includes three example Pro*C/C++ programs that include C++ constructs.
Each of these programs is available on-line, in your demo directory.

cppdemo1.pc

/* cppdemo1.pc
 *
 * Prompts the user for an employee number, then queries the
 * emp table for the employee's name, salary and commission.
 * Uses indicator variables (in an indicator struct) to
 * determine if the commission is NULL.
 */

#include <iostream.h>
#include <stdio.h>
#include <string.h>

// Parse=partial by default when code=cpp,
// so preprocessor directives are recognized and parsed fully.
#define UNAME_LEN 20
#define PWD_LEN 40

// Declare section is required when CODE=CPP and/or
// PARSE={PARTIAL|NONE}
EXEC SQL BEGIN DECLARE SECTION;

Example Programs

C++ Applications 12-5

 VARCHAR username[UNAME_LEN]; // VARCHAR is an ORACLE pseudotype
 varchar password[PWD_LEN]; // can be in lower case also

 // Define a host structure for the output values
 // of a SELECT statement
 struct empdat {
 VARCHAR emp_name[UNAME_LEN];
 float salary;
 float commission;
 } emprec;

 // Define an indicator struct to correspond to the
 // host output struct
 struct empind {
 short emp_name_ind;
 short sal_ind;
 short comm_ind;
 } emprec_ind;

 // Input host variables
 int emp_number;
 int total_queried;
EXEC SQL END DECLARE SECTION;

// Define a C++ class object to match the desired
// struct from the above declare section.
class emp {
 char ename[UNAME_LEN];
 float salary;
 float commission;
public:
 // Define a constructor for this C++ object that
 // takes ordinary C objects.
 emp(empdat&, empind&);
 friend ostream& operator<<(ostream&, emp&);
};

emp::emp(empdat& dat, empind& ind)
{
 strncpy(ename, (char *)dat.emp_name.arr, dat.emp_name.len);
 ename[dat.emp_name.len] = '\0';
 this->salary = dat.salary;
 this->commission = (ind.comm_ind < 0) ? 0 : dat.commission;
}

ostream& operator<<(ostream& s, emp& e)
{
 return s << e.ename << " earns " << e.salary <<
 " plus " << e.commission << " commission."
 << endl << endl;
}

// Include the SQL Communications Area
// You can use #include or EXEC SQL INCLUDE
#include <sqlca.h>

// Declare error handling function
void sql_error(char *msg);

Example Programs

12-6 Pro*C/C++ Programmer’s Guide

main()
{
 char temp_char[32];

 // Register sql_error() as the error handler
 EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error:");

 // Connect to ORACLE. Program calls sql_error()
 // if an error occurs
 // when connecting to the default database.
 // Note the (char *) cast when
 // copying into the VARCHAR array buffer.
 username.len = strlen(strcpy((char *)username.arr, "SCOTT"));
 password.len = strlen(strcpy((char *)password.arr, "TIGER"));

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 // Here again, note the (char *) cast when using VARCHARs
 cout << "\nConnected to ORACLE as user: "
 << (char *)username.arr << endl << endl;

 // Loop, selecting individual employee's results
 total_queried = 0;
 while (1)
 {
 emp_number = 0;
 printf("Enter employee number (0 to quit): ");
 gets(temp_char);
 emp_number = atoi(temp_char);
 if (emp_number == 0)
 break;

 // Branch to the notfound label when the
 // 1403 ("No data found") condition occurs
 EXEC SQL WHENEVER NOT FOUND GOTO notfound;

 EXEC SQL SELECT ename, sal, comm
 INTO :emprec INDICATOR :emprec_ind // You can also use
 // C++ style
 FROM EMP // Comments in SQL statemtents.
 WHERE EMPNO = :emp_number;

 {
 // Basic idea is to pass C objects to
 // C++ constructors thus
 // creating equivalent C++ objects used in the
 // usual C++ way
 emp e(emprec, emprec_ind);
 cout << e;
 }

 total_queried++;
 continue;
notfound:
 cout << "Not a valid employee number - try again."
 << endl << endl;
 } // end while(1)

 cout << endl << "Total rows returned was "
 << total_queried << endl;

Example Programs

C++ Applications 12-7

 cout << "Have a nice day!" << endl << endl;

 // Disconnect from ORACLE
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

void sql_error(char *msg)
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 cout << endl << msg << endl;
 cout << sqlca.sqlerrm.sqlerrmc << endl;
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

cppdemo2.pc
The next application is a simple modular example. First, execute the following SQL
script, cppdemo2.sql, in SQL*Plus:

Rem This is the SQL script that accompanies the cppdemo2 C++ Demo
Rem Program. Run this prior to Precompiling the empclass.pc file.
/
CONNECT SCOTT/TIGER
/
CREATE OR REPLACE VIEW emp_view AS SELECT ename, empno FROM EMP
/
CREATE OR REPLACE PACKAGE emp_package AS
 TYPE emp_cursor_type IS REF CURSOR RETURN emp_view%ROWTYPE;
 PROCEDURE open_cursor(curs IN OUT emp_cursor_type);
END emp_package;
/
CREATE OR REPLACE PACKAGE BODY emp_package AS
 PROCEDURE open_cursor(curs IN OUT emp_cursor_type) IS
 BEGIN
 OPEN curs FOR SELECT ename, empno FROM emp_view ORDER BY ename ASC;
 END;
END emp_package;
/
EXIT
/

The header file empclass.h defines the class emp:

// This class definition may be included in a Pro*C/C++ application
// program using the EXEC SQL INCLUDE directive only. Because it
// contains EXEC SQL syntax, it may not be included using a #include
// directive. Any program that includes this header must be
// precompiled with the CODE=CPP option. This emp class definition
// is used when building the cppdemo2 C++ Demo Program.

class emp
{
 public:
 emp(); // Constructor: ALLOCATE Cursor Variable
 ~emp(); // Desctructor: FREE Cursor Variable

Example Programs

12-8 Pro*C/C++ Programmer’s Guide

 void open(); // Open Cursor
 void fetch() throw (int); // Fetch (throw NOT FOUND condition)
 void close(); // Close Cursor

 void emp_error(); // Error Handler

 EXEC SQL BEGIN DECLARE SECTION;
 // When included using EXEC SQL INCLUDE, class variables have
 // global scope and are thus basically treated as ordinary
 // global variables by Pro*C/C++ during precompilation.
 char ename[10];
 int empno;
 EXEC SQL END DECLARE SECTION;

 private:
 EXEC SQL BEGIN DECLARE SECTION;
 // Pro*C/C++ treats this as a simple global variable also.
 SQL_CURSOR emp_cursor;
 EXEC SQL END DECLARE SECTION;
};

The code in empclass.pc contains the emp methods:

#include <stdio.h>
#include <stdlib.h>

// This example uses a single (global) SQLCA that is shared by the
// emp class implementation as well as the main program for this
// application.
#define SQLCA_STORAGE_CLASS extern
#include <sqlca.h>

// Include the emp class specification in the implementation of the
// class body as well as the application program that makes use of it.
EXEC SQL INCLUDE empclass.h;

emp::emp()
{
 // The scope of this WHENEVER statement spans the entire module.
 // Note that the error handler function is really a member function
 // of the emp class.
 EXEC SQL WHENEVER SQLERROR DO emp_error();
 EXEC SQL ALLOCATE :emp_cursor; // Constructor - ALLOCATE Cursor.
}

emp::~emp()
{
 EXEC SQL FREE :emp_cursor; // Destructor - FREE Cursor.
}

void emp::open()
{
 EXEC SQL EXECUTE
 BEGIN
 emp_package.open_cursor(:emp_cursor);
 END;
 END-EXEC;
}

void emp::close()
{

Example Programs

C++ Applications 12-9

 EXEC SQL CLOSE :emp_cursor;
}

void emp::fetch() throw (int)
{
 EXEC SQL FETCH :emp_cursor INTO :ename, :empno;
 if (sqlca.sqlcode == 1403)
 throw sqlca.sqlcode; // Like a WHENEVER NOT FOUND statement.
}

void emp::emp_error()
{
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

The main program, cppdemo2.pc, uses the cursor variable:

// Pro*C/C++ sample program demonstrating a simple use of Cursor Variables
// implemented within a C++ class framework. Build this program as follows
//
// 1. Execute the cppdemo2.sql script within SQL*Plus
// 2. Precompile the empclass.pc program as follows
// > proc code=cpp sqlcheck=full user=scott/tiger lines=yes empclass
// 3. Precompile the cppdemo2.pc program as follows
// > proc code=cpp lines=yes cppdemo2
// 4. Compile and Link
//
// Note that you may have to specify various include directories using the
// include option when precompiling.

#include <stdio.h>
#include <stdlib.h>
#include <sqlca.h>

static void sql_error()
{
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

// Physically include the emp class definition in this module.
EXEC SQL INCLUDE empclass.h;

int main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *uid = "scott/tiger";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :uid;

 emp *e = new emp(); // Invoke Constructor - ALLOCATE Cursor Variable.

 e->open(); // Open the Cursor.

Example Programs

12-10 Pro*C/C++ Programmer’s Guide

 while (1)
 {
 // Fetch from the Cursor, catching the NOT FOUND condition
 // thrown by the fetch() member function.
 try { e->fetch(); } catch (int code)
 { if (code == 1403) break; }
 printf("Employee: %s[%d]\n", e->ename, e->empno);
 }

 e->close(); // Close the Cursor.

 delete e; // Invoke Destructor - FREE Cursor Variable.

 EXEC SQL ROLLBACK WORK RELEASE;
 return (0);
}

cppdemo3.pc
/*
 * cppdemo3.pc : An example of C++ Inheritance
 *
 * This program finds all salesman and prints their names
 * followed by how much they earn in total (ie; including
 * any commissions).
 */

#include <iostream.h>
#include <stdio.h>
#include <sqlca.h>
#include <string.h>

#define NAMELEN 10

class employee { // Base class is a simple employee
public:
 char ename[NAMELEN];
 int sal;
 employee(char *, int);
};

employee::employee(char *ename, int sal)
{
 strcpy(this->ename, ename);
 this->sal = sal;
}

// A salesman is a kind of employee
class salesman : public employee
{
 int comm;
public:
 salesman(char *, int, int);
 friend ostream& operator<<(ostream&, salesman&);
};

// Inherits employee attributes
salesman::salesman(char *ename, int sal, int comm)
 : employee(ename, sal), comm(comm) {}

Example Programs

C++ Applications 12-11

ostream& operator<<(ostream& s, salesman& m)
{
 return s << m.ename << m.sal + m.comm << endl;
}

void print(char *ename, int sal, int comm)
{
 salesman man(ename, sal, comm);
 cout << man;
}

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *uid = "scott/tiger";
 char ename[NAMELEN];
 int sal, comm;
 short comm_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO error;

 EXEC SQL CONNECT :uid;
 EXEC SQL DECLARE c CURSOR FOR
 SELECT ename, sal, comm FROM emp WHERE job = 'SALESMAN'
 ORDER BY ename;
 EXEC SQL OPEN c;

 cout << "Name Salary" << endl << "------ ------" << endl;

 EXEC SQL WHENEVER NOT FOUND DO break;
 while(1)
 {
 EXEC SQL FETCH c INTO :ename, :sal, :comm:comm_ind;
 print(ename, sal, (comm_ind < 0) ? 0 : comm);
 }
 EXEC SQL CLOSE c;
 exit(0);

error:
 cout << endl << sqlca.sqlerrm.sqlerrmc << endl;
 exit(1);
}

Example Programs

12-12 Pro*C/C++ Programmer’s Guide

Oracle Dynamic SQL 13-1

13
Oracle Dynamic SQL

This chapter shows you how to use Oracle Dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. You will learn
four methods for writing programs that accept and process SQL statements at run
time. This chapter contains the following topics:

■ What is Dynamic SQL?

■ Advantages and Disadvantages of Dynamic SQL

■ When to Use Dynamic SQL

■ Requirements for Dynamic SQL Statements

■ How Dynamic SQL Statements are Processed

■ Methods for Using Dynamic SQL

■ Using Method 1

■ Using Method 2

■ Using Method 3

■ Using Method 4

■ Using the DECLARE STATEMENT Statement

■ Using PL/SQL

What is Dynamic SQL?
Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the
statement's makeup is unknown until run time. Such statements can, and probably

Note: Oracle Dynamic SQL does not support object types, cursor
variables, arrays of structs, DML returning clauses, Unicode
variables, and LOBs. Use ANSI Dynamic SQL method 4 instead.

Advantages and Disadvantages of Dynamic SQL

13-2 Pro*C/C++ Programmer’s Guide

will, change from execution to execution. They are aptly called dynamic SQL
statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL
Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

When to Use Dynamic SQL
In practice, static SQL will meet nearly all your programming needs. Use dynamic
SQL only if you need its open-ended flexibility. Its use is suggested when one of the
following items is unknown at precompile time:

■ Text of the SQL statement (commands, clauses, and so on)

■ The number of host variables

■ The datatypes of host variables

■ References to database objects such as columns, indexes, sequences, tables,
usernames, and views

Requirements for Dynamic SQL Statements
To represent a dynamic SQL statement, a character string must contain the text of a
valid SQL statement, but not contain the EXEC SQL clause, or the statement
terminator, or any of the following embedded SQL commands:

■ ALLOCATE

■ CLOSE

■ DECLARE

■ DESCRIBE

■ EXECUTE

■ FETCH

■ FREE

■ GET

■ INCLUDE

Methods for Using Dynamic SQL

Oracle Dynamic SQL 13-3

■ OPEN

■ PREPARE

■ SET

■ WHENEVER

In most cases, the character string can contain dummy host variables. They hold places
in the SQL statement for actual host variables. Because dummy host variables are just
placeholders, you do not declare them and can name them anything you like. For
example, Oracle makes no distinction between the following two strings:

'DELETE FROM EMP WHERE MGR = :mgr_number AND JOB = :job_title'
'DELETE FROM EMP WHERE MGR = :m AND JOB = :j'

How Dynamic SQL Statements are Processed
Typically, an application program prompts the user for the text of a SQL statement and
the values of host variables used in the statement. Oracle then parses the SQL
statement to ensure it meets syntax rules.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the
addresses of the host variables so that it can read or write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL statement
requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

Methods for Using Dynamic SQL
This section introduces four methods you can use to define dynamic SQL statements.
It briefly describes the capabilities and limitations of each method, then offers
guidelines for choosing the right method. Later sections show you how to use the
methods, and include example programs that you can study.

The four methods are increasingly general. That is, Method 2 encompasses Method 1,
Method 3 encompasses Methods 1 and 2, and so on. However, each method is most
useful for handling a certain kind of SQL statement, as Table 13–1 shows:

Table 13–1 Methods for Using Dynamic SQL

Method Kind of SQL Statement

1 non-query without host variables

2 non-query with known number of input host variables

3 query with known number of select-list items and input host
variables

4 query with unknown number of select-list items or input host
variables

Note: The term select-list item includes column names and
expressions such as SAL * 1.10 and MAX(SAL).

Methods for Using Dynamic SQL

13-4 Pro*C/C++ Programmer’s Guide

Method 1
This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any
placeholders for input host variables. For example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'
'GRANT SELECT ON EMP TO scott'

With Method 1, the SQL statement is parsed every time it is executed.

Method 2
This method lets your program accept or build a dynamic SQL statement, then process
it using the PREPARE and EXECUTE commands. The SQL statement must not be a
query. The number of placeholders for input host variables and the datatypes of the
input host variables must be known at precompile time. For example, the following
host strings fall into this category:

'INSERT INTO EMP (ENAME, JOB) VALUES (:emp_name, :job_title)'
'DELETE FROM EMP WHERE EMPNO = :emp_number'

With Method 2, the SQL statement is parsed just once, but can be executed many times
with different values for the host variables. SQL data definition statements such as
CREATE and GRANT are executed when they are PREPAREd.

Method 3
This method lets your program accept or build a dynamic query, then process it using
the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor
commands. The number of select-list items, the number of placeholders for input host
variables, and the datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number'

Method 4
This method lets your program accept or build a dynamic SQL statement, then process
it using descriptors. The number of select-list items, the number of placeholders for
input host variables, and the datatypes of the input host variables can be unknown
until run time. For example, the following host strings fall into this category:

'INSERT INTO EMP (<unknown>) VALUES (<unknown>)'
'SELECT <unknown> FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or input host variables.

Guidelines
With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the ';' statement terminator.

See Also: "Using Method 4" on page 13-19

Methods for Using Dynamic SQL

Oracle Dynamic SQL 13-5

With Methods 2 and 3, the number of placeholders for input host variables and the
datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more
difficult to code. As a rule, use the simplest method you can. However, if a dynamic
SQL statement will be executed repeatedly by Method 1, use Method 2 instead to
avoid reparsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding and a full
understanding of dynamic SQL concepts. In general, use Method 4 only if you cannot
use Methods 1, 2, or 3.

The decision logic in Figure 13–1 will help you choose the right method.

Avoiding Common Errors
If you precompile using the command-line option DBMS=V6_CHAR, blank-pad the
array before storing the SQL statement. That way, you clear extraneous characters.
This is especially important when you reuse the array for different SQL statements. As
a rule, always initialize (or re-initialize) the host string before storing the SQL
statement. Do not null-terminate the host string. Oracle does not recognize the null
terminator as an end-of-string sentinel. Instead, Oracle treats it as part of the SQL
statement.

If you precompile with the command-line option DBMS=V8, make sure that the string
is null terminated before you execute the PREPARE or EXECUTE IMMEDIATE
statement.

Regardless of the value of DBMS, if you use a VARCHAR variable to store the
dynamic SQL statement, make sure the length of the VARCHAR is set (or reset)
correctly before you execute the PREPARE or EXECUTE IMMEDIATE statement.

Using Method 1

13-6 Pro*C/C++ Programmer’s Guide

Figure 13–1 Choosing the Right Method

Using Method 1
The simplest kind of dynamic SQL statement results only in "success" or "failure" and
uses no host variables. Some examples follow:

'DELETE FROM table_name WHERE column_name = constant'
'CREATE TABLE table_name ...'
'DROP INDEX index_name'
'UPDATE table_name SET column_name = constant'
'GRANT SELECT ON table_name TO username'
'REVOKE RESOURCE FROM username'

Method 1 parses, then immediately executes the SQL statement using the EXECUTE
IMMEDIATE command. The command is followed by a character string (host variable
or literal) containing the SQL statement to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :host_string | string_literal };

Method 1 Method 2 Method 3 Method 4

no

no

no

yes

yes

yes

no

no

no

yes

yes

yes

Is it a query?
Does its select list

contain an unknown
number of items?

Does it contain
input host
variables?

Does it
contain an

unknown number of
input host
variables?

Does it
contain an unknown

number of input
host variables?

Will it be executed
repeatedly?

About the SQL statement...

Using Method 1

Oracle Dynamic SQL 13-7

In the following example, you use the host variable dyn_stmt to store SQL statements
input by the user:

char dyn_stmt[132];
...
for (;;)
{
 printf("Enter SQL statement: ");
 gets(dyn_stmt);
 if (*dyn_stmt == '\0')
 break;
 /* dyn_stmt now contains the text of a SQL statement */
 EXEC SQL EXECUTE IMMEDIATE :dyn_stmt;
}
...

You can also use string literals, as the following example shows:

EXEC SQL EXECUTE IMMEDIATE 'REVOKE RESOURCE FROM MILLER';

Because EXECUTE IMMEDIATE parses the input SQL statement before every
execution, Method 1 is best for statements that are executed only once. Data definition
language statements usually fall into this category.

Example Program: Dynamic SQL Method 1
The following program uses dynamic SQL Method 1 to create a table, insert a row,
commit the insert, then drop the table. This program is available on-line in your demo
directory in the file sample6.pc.

/*
 * sample6.pc: Dynamic SQL Method 1
 *
 * This program uses dynamic SQL Method 1 to create a table,
 * insert a row, commit the insert, then drop the table.
 */

#include <stdio.h>
#include <string.h>

/* Include the SQL Communications Area, a structure through
 * which ORACLE makes runtime status information such as error
 * codes, warning flags, and diagnostic text available to the
 * program.
 */
#include <sqlca.h>

/* Include the ORACLE Communications Area, a structure through
 * which ORACLE makes additional runtime status information
 * available to the program.
 */
#include <oraca.h>

/* The ORACA=YES option must be specified to enable you
 * to use the ORACA.
 */

EXEC ORACLE OPTION (ORACA=YES);

/* Specifying the RELEASE_CURSOR=YES option instructs Pro*C

Using Method 1

13-8 Pro*C/C++ Programmer’s Guide

 * to release resources associated with embedded SQL
 * statements after they are executed. This ensures that
 * ORACLE does not keep parse locks on tables after data
 * manipulation operations, so that subsequent data definition
 * operations on those tables do not result in a parse-lock
 * error.
 */

EXEC ORACLE OPTION (RELEASE_CURSOR=YES);

void dyn_error();

main()
{
/* Declare the program host variables. */
 char *username = "SCOTT";
 char *password = "TIGER";
 char *dynstmt1;
 char dynstmt2[10];
 VARCHAR dynstmt3[80];

/* Call routine dyn_error() if an ORACLE error occurs. */

 EXEC SQL WHENEVER SQLERROR DO dyn_error("Oracle error:");

/* Save text of current SQL statement in the ORACA if an
 * error occurs.
 */
 oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 puts("\nConnected to ORACLE.\n");

/* Execute a string literal to create the table. This
 * usage is actually not dynamic because the program does
 * not determine the SQL statement at run time.
 */
 puts("CREATE TABLE dyn1 (col1 VARCHAR2(4))");

 EXEC SQL EXECUTE IMMEDIATE
 "CREATE TABLE dyn1 (col1 VARCHAR2(4))";

/* Execute a string to insert a row. The string must
 * be null-terminated. This usage is dynamic because the
 * SQL statement is a string variable whose contents the
 * program can determine at run time.
 */
 dynstmt1 = "INSERT INTO DYN1 values ('TEST')";
 puts(dynstmt1);

 EXEC SQL EXECUTE IMMEDIATE :dynstmt1;

/* Execute a SQL statement in a string to commit the insert.
 * Pad the unused trailing portion of the array with spaces.
 * Do NOT null-terminate it.
 */
 strncpy(dynstmt2, "COMMIT ", 10);

Using Method 2

Oracle Dynamic SQL 13-9

 printf("%.10s\n", dynstmt2);

 EXEC SQL EXECUTE IMMEDIATE :dynstmt2;

/* Execute a VARCHAR to drop the table. Set the .len field
 * to the length of the .arr field.
 */
 strcpy(dynstmt3.arr, "DROP TABLE DYN1");
 dynstmt3.len = strlen(dynstmt3.arr);
 puts((char *) dynstmt3.arr);

 EXEC SQL EXECUTE IMMEDIATE :dynstmt3;

/* Commit any outstanding changes and disconnect from Oracle. */
 EXEC SQL COMMIT RELEASE;

 puts("\nHave a good day!\n");

 return 0;
}

void
dyn_error(msg)
char *msg;
{
/* This is the Oracle error handler.
 * Print diagnostic text containing the error message,
 * current SQL statement, and location of error.
 */
 printf("\n%.*s\n",
 sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 printf("in \"%.*s...\'\n",
 oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
 printf("on line %d of %.*s.\n\n",
 oraca.oraslnr, oraca.orasfnm.orasfnml,
 oraca.orasfnm.orasfnmc);

/* Disable Oracle error checking to avoid an infinite loop
 * should another error occur within this routine as a
 * result of the rollback.
 */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any pending changes and disconnect from Oracle. */
 EXEC SQL ROLLBACK RELEASE;

 exit(1);
}

Using Method 2
What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement,
which cannot be a query, is first PREPAREd (named and parsed), then EXECUTEd.

With Method 2, the SQL statement can contain placeholders for input host variables
and indicator variables. You can PREPARE the SQL statement once, then EXECUTE it
repeatedly using different values of the host variables. Furthermore, you need not

Using Method 2

13-10 Pro*C/C++ Programmer’s Guide

rePREPARE the SQL statement after a COMMIT or ROLLBACK (unless you log off
and reconnect).

You can use EXECUTE for non-queries with Method 4.

The syntax of the PREPARE statement follows:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };

PREPARE parses the SQL statement and gives it a name.

The statement_name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in the Declare Section. It simply designates the
PREPAREd statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL EXECUTE statement_name [USING host_variable_list];

where host_variable_list stands for the following syntax:

:host_variable1[:indicator1] [, host_variable2[:indicator2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable.

In the following example, the input SQL statement contains the placeholder n:

...
int emp_number INTEGER;
char delete_stmt[120], search_cond[40];;
...
strcpy(delete_stmt, "DELETE FROM EMP WHERE EMPNO = :n AND ");
printf("Complete the following statement's search condition--\n");
printf("%s\n", delete_stmt);
gets(search_cond);
strcat(delete_stmt, search_cond);

EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
for (;;)
{

 printf("Enter employee number: ");
 gets(temp);
 emp_number = atoi(temp);
 if (emp_number == 0)
 break;
 EXEC SQL EXECUTE sql_stmt USING :emp_number;
}
...

With Method 2, you must know the datatypes of input host variables at precompile
time. In the last example, emp_number was declared as an int. It could also have been
declared as type float, or even a char, because Oracle supports all these datatype
conversions to the internal Oracle NUMBER datatype.

The USING Clause
When the SQL statement is EXECUTEd, input host variables in the USING clause
replace corresponding placeholders in the PREPAREd dynamic SQL statement.

Using Method 2

Oracle Dynamic SQL 13-11

Every placeholder in the PREPAREd dynamic SQL statement must correspond to a
different host variable in the USING clause. So, if the same placeholder appears two or
more times in the PREPAREd statement, each appearance must correspond to a host
variable in the USING clause.

The names of the placeholders need not match the names of the host variables.
However, the order of the placeholders in the PREPAREd dynamic SQL statement
must match the order of corresponding host variables in the USING clause.

If one of the host variables in the USING clause is an array, all must be arrays.

To specify NULLs, you can associate indicator variables with host variables in the
USING clause.

Example Program: Dynamic SQL Method 2
The following program uses dynamic SQL Method 2 to insert two rows into the EMP
table, then delete them. This program is available on-line in your demo directory, in
the file sample7.pc.

/*
 * sample7.pc: Dynamic SQL Method 2
 *
 * This program uses dynamic SQL Method 2 to insert two rows into
 * the EMP table, then delete them.
 */

#include <stdio.h>
#include <string.h>

#define USERNAME "SCOTT"
#define PASSWORD "TIGER"

/* Include the SQL Communications Area, a structure through
 * which ORACLE makes runtime status information such as error
 * codes, warning flags, and diagnostic text available to the
 * program.
 */
#include <sqlca.h>

/* Include the ORACLE Communications Area, a structure through
 * which ORACLE makes additional runtime status information
 * available to the program.
 */
#include <oraca.h>

/* The ORACA=YES option must be specified to enable use of
 * the ORACA.
 */
EXEC ORACLE OPTION (ORACA=YES);

char *username = USERNAME;
char *password = PASSWORD;
VARCHAR dynstmt[80];
int empno = 1234;
int deptno1 = 97;
int deptno2 = 99;

See Also: "Indicator Variables" on page 6-2.

Using Method 2

13-12 Pro*C/C++ Programmer’s Guide

/* Handle SQL runtime errors. */
void dyn_error();

main()
{
/* Call dyn_error() whenever an error occurs
 * processing an embedded SQL statement.
 */
 EXEC SQL WHENEVER SQLERROR DO dyn_error("Oracle error");

/* Save text of current SQL statement in the ORACA if an
 * error occurs.
 */
 oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 puts("\nConnected to Oracle.\n");

/* Assign a SQL statement to the VARCHAR dynstmt. Both
 * the array and the length parts must be set properly.
 * Note that the statement contains two host-variable
 * placeholders, v1 and v2, for which actual input
 * host variables must be supplied at EXECUTE time.
 */
 strcpy(dynstmt.arr,
 "INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:v1, :v2)");
 dynstmt.len = strlen(dynstmt.arr);

/* Display the SQL statement and its current input host
 * variables.
 */
 puts((char *) dynstmt.arr);
 printf(" v1 = %d, v2 = %d\n", empno, deptno1);

/* The PREPARE statement associates a statement name with
 * a string containing a SQL statement. The statement name
 * is a SQL identifier, not a host variable, and therefore
 * does not appear in the Declare Section.

 * A single statement name can be PREPAREd more than once,
 * optionally FROM a different string variable.
 */
 EXEC SQL PREPARE S FROM :dynstmt;

/* The EXECUTE statement executes a PREPAREd SQL statement
 * USING the specified input host variables, which are
 * substituted positionally for placeholders in the
 * PREPAREd statement. For each occurrence of a
 * placeholder in the statement there must be a variable
 * in the USING clause. That is, if a placeholder occurs
 * multiple times in the statement, the corresponding
 * variable must appear multiple times in the USING clause.
 * The USING clause can be omitted only if the statement
 * contains no placeholders.
 *
 * A single PREPAREd statement can be EXECUTEd more
 * than once, optionally USING different input host

Using Method 2

Oracle Dynamic SQL 13-13

 * variables.
 */
 EXEC SQL EXECUTE S USING :empno, :deptno1;

/* Increment empno and display new input host variables. */

 empno++;
 printf(" v1 = %d, v2 = %d\n", empno, deptno2);

/* ReEXECUTE S to insert the new value of empno and a
 * different input host variable, deptno2.
 * A rePREPARE is unnecessary.
 */
 EXEC SQL EXECUTE S USING :empno, :deptno2;

/* Assign a new value to dynstmt. */

 strcpy(dynstmt.arr,
 "DELETE FROM EMP WHERE DEPTNO = :v1 OR DEPTNO = :v2");
 dynstmt.len = strlen(dynstmt.arr);

/* Display the new SQL statement and its current input host
 * variables.
 */
 puts((char *) dynstmt.arr);
 printf(" v1 = %d, v2 = %d\n", deptno1, deptno2);

/* RePREPARE S FROM the new dynstmt. */

 EXEC SQL PREPARE S FROM :dynstmt;

/* EXECUTE the new S to delete the two rows previously
 * inserted.
 */
 EXEC SQL EXECUTE S USING :deptno1, :deptno2;

/* Commit any pending changes and disconnect from Oracle. */

 EXEC SQL COMMIT RELEASE;
 puts("\nHave a good day!\n");
 exit(0);
}

void
dyn_error(msg)
char *msg;
{
/* This is the ORACLE error handler.
 * Print diagnostic text containing error message,
 * current SQL statement, and location of error.
 */
 printf("\n%s", msg);
 printf("\n%.*s\n",
 sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 printf("in \"%.*s...\"\n",
 oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
 printf("on line %d of %.*s.\n\n",
 oraca.oraslnr, oraca.orasfnm.orasfnml,
 oraca.orasfnm.orasfnmc);

Using Method 3

13-14 Pro*C/C++ Programmer’s Guide

/* Disable ORACLE error checking to avoid an infinite loop
 * should another error occur within this routine.
 */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Roll back any pending changes and
 * disconnect from Oracle.
 */
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Using Method 3
Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you must
use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of
placeholders for input host variables must be known at precompile time. However, the
names of database objects such as tables and columns need not be specified until run
time. Names of database objects cannot be host variables. Clauses that limit, group,
and sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be
specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

PREPARE statement_name FROM { :host_string | string_literal };
DECLARE cursor_name CURSOR FOR statement_name;
OPEN cursor_name [USING host_variable_list];
FETCH cursor_name INTO host_variable_list;
CLOSE cursor_name;

Scrollable Cursors can also be used with Method 3. The following sequence of
embedded SQL statements must be used for scrollable cursors.

PREPARE statement_name FROM { :host_string | string_literal };
DECLARE cursor_name SCROLL CURSOR FOR statement_name;
OPEN cursor_name [USING host_variable_list];
FETCH [FIRST| PRIOR|NEXT|LAST|CURRENT | RELATIVE fetch_offset
 |ABSOLUTE fetch_offset] cursor_name INTO host_variable_list;
CLOSE cursor_name;

Now we look at what each statement does.

PREPARE
PREPARE parses the dynamic SQL statement and gives it a name. In the following
example, PREPARE parses the query stored in the character string select_stmt and
gives it the name sql_stmt:

char select_stmt[132] =
 "SELECT MGR, JOB FROM EMP WHERE SAL < :salary";
EXEC SQL PREPARE sql_stmt FROM :select_stmt;

Commonly, the query WHERE clause is input from a terminal at run time or is
generated by the application.

Using Method 3

Oracle Dynamic SQL 13-15

The identifier sql_stmt is not a host or program variable, but must be unique. It
designates a particular dynamic SQL statement.

The following statement is correct also:

EXEC SQL PREPARE sql_stmt FROM SELECT MGR, JOB FROM EMP WHERE SAL < :salary;

The following prepare statement, which uses the '%' wildcard, is correct also:

EXEC SQL PREPARE S FROM select ename FROM test WHERE ename LIKE 'SMIT%';

DECLARE
DECLARE defines a cursor by giving it a name and associating it with a specific query.
Continuing our example, DECLARE defines a cursor named emp_cursor and associates
it with sql_stmt, as follows:

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

The identifiers sql_stmt and emp_cursor are not host or program variables, but must be
unique. If you declare two cursors using the same statement name, the precompiler
considers the two cursor names synonymous.

We can define a scrollable cursor named emp_cursor and associate it with sql_stmt as
follows:

EXEC SQL DECLARE emp_cursor SCROLL CURSOR FOR sql_stmt;

For example, if you execute the statements

EXEC SQL PREPARE sql_stmt FROM :select_stmt;
EXEC SQL DECLARE emp_cursor FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :delete_stmt;
EXEC SQL DECLARE dept_cursor FOR sql_stmt;

when you OPEN emp_cursor, you will process the dynamic SQL statement stored in
delete_stmt, not the one stored in select_stmt.

OPEN
OPEN allocates an Oracle cursor, binds input host variables, and executes the query,
identifying its active set. OPEN also positions the cursor on the first row in the active
set and zeroes the rows-processed count kept by the third element of sqlerrd in the
SQLCA. Input host variables in the USING clause replace corresponding placeholders
in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates emp_cursor and assigns the host variable salary to the
WHERE clause, as follows:

EXEC SQL OPEN emp_cursor USING :salary;

FETCH
FETCH returns a row from the active set, assigns column values in the select list to
corresponding host variables in the INTO clause, and advances the cursor to the next
row. If there are no more rows, FETCH returns the "no data found" Oracle error code
to sqlca.sqlcode.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables mgr_number and job_title, as follows:

Using Method 3

13-16 Pro*C/C++ Programmer’s Guide

EXEC SQL FETCH emp_cursor INTO :mgr_number, :job_title;

If the cursor is declared in SCROLL mode, you can then use the various FETCH
orientation modes to randomly access the result set.

CLOSE
CLOSE disables the cursor. Once you CLOSE a cursor, you can no longer FETCH from
it.

In our example, CLOSE disables emp_cursor, as follows:

EXEC SQL CLOSE emp_cursor;

Example Program: Dynamic SQL Method 3
The following program uses dynamic SQL Method 3 to retrieve the names of all
employees in a given department from the EMP table. This program is available
on-line in your demo directory, in the file sample8.pc

/*
 * sample8.pc: Dynamic SQL Method 3
 *
 * This program uses dynamic SQL Method 3 to retrieve the names
 * of all employees in a given department from the EMP table.
 */

#include <stdio.h>
#include <string.h>

#define USERNAME "SCOTT"
#define PASSWORD "TIGER"

/* Include the SQL Communications Area, a structure through
 * which ORACLE makes runtime status information such as error
 * codes, warning flags, and diagnostic text available to the
 * program. Also include the ORACA.
 */
#include <sqlca.h>
#include <oraca.h>

/* The ORACA=YES option must be specified to enable use of
 * the ORACA.
 */
EXEC ORACLE OPTION (ORACA=YES);

char *username = USERNAME;
char *password = PASSWORD;
VARCHAR dynstmt[80];
VARCHAR ename[10];
int deptno = 10;

void dyn_error();

main()
{
/* Call dyn_error() function on any error in
 * an embedded SQL statement.

Using Method 3

Oracle Dynamic SQL 13-17

 */
 EXEC SQL WHENEVER SQLERROR DO dyn_error("Oracle error");

/* Save text of SQL current statement in the ORACA if an
 * error occurs.
 */
 oraca.orastxtf = ORASTFERR;

/* Connect to Oracle. */

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 puts("\nConnected to Oracle.\n");

/* Assign a SQL query to the VARCHAR dynstmt. Both the
 * array and the length parts must be set properly. Note
 * that the query contains one host-variable placeholder,
 * v1, for which an actual input host variable must be
 * supplied at OPEN time.
 */
 strcpy(dynstmt.arr,
 "SELECT ename FROM emp WHERE deptno = :v1");
 dynstmt.len = strlen(dynstmt.arr);

/* Display the SQL statement and its current input host
 * variable.
 */
 puts((char *) dynstmt.arr);
 printf(" v1 = %d\n", deptno);
 printf("\nEmployee\n");
 printf("--------\n");

/* The PREPARE statement associates a statement name with
 * a string containing a SELECT statement. The statement
 * name is a SQL identifier, not a host variable, and
 * therefore does not appear in the Declare Section.

 * A single statement name can be PREPAREd more than once,
 * optionally FROM a different string variable.
 */
 EXEC SQL PREPARE S FROM :dynstmt;

/* The DECLARE statement associates a cursor with a
 * PREPAREd statement. The cursor name, like the statement
 * name, does not appear in the Declare Section.

 * A single cursor name cannot be DECLAREd more than once.
 */
 EXEC SQL DECLARE C CURSOR FOR S;

/* The OPEN statement evaluates the active set of the
 * PREPAREd query USING the specified input host variables,
 * which are substituted positionally for placeholders in
 * the PREPAREd query. For each occurrence of a
 * placeholder in the statement there must be a variable
 * in the USING clause. That is, if a placeholder occurs
 * multiple times in the statement, the corresponding
 * variable must appear multiple times in the USING clause.

 * The USING clause can be omitted only if the statement
 * contains no placeholders. OPEN places the cursor at the

Using Method 3

13-18 Pro*C/C++ Programmer’s Guide

 * first row of the active set in preparation for a FETCH.

 * A single DECLAREd cursor can be OPENed more than once,
 * optionally USING different input host variables.
 */
 EXEC SQL OPEN C USING :deptno;

/* Break the loop when all data have been retrieved. */

 EXEC SQL WHENEVER NOT FOUND DO break;

/* Loop until the NOT FOUND condition is detected. */

 for (;;)
 {
/* The FETCH statement places the select list of the
 * current row into the variables specified by the INTO
 * clause, then advances the cursor to the next row. If
 * there are more select-list fields than output host
 * variables, the extra fields will not be returned.
 * Specifying more output host variables than select-list
 * fields results in an ORACLE error.
 */
 EXEC SQL FETCH C INTO :ename;

/* Null-terminate the array before output. */
 ename.arr[ename.len] = '\0';
 puts((char *) ename.arr);
 }

/* Print the cumulative number of rows processed by the
 * current SQL statement.
 */
 printf("\nQuery returned %d row%s.\n\n", sqlca.sqlerrd[2],
 (sqlca.sqlerrd[2] == 1) ? "" : "s");

/* The CLOSE statement releases resources associated with
 * the cursor.
 */
 EXEC SQL CLOSE C;

/* Commit any pending changes and disconnect from Oracle. */
 EXEC SQL COMMIT RELEASE;
 puts("Sayonara.\n");
 exit(0);
}

void
dyn_error(msg)
char *msg;
{
 printf("\n%s", msg);
 sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml] = '\0';
 oraca.orastxt.orastxtc[oraca.orastxt.orastxtl] = '\0';
 oraca.orasfnm.orasfnmc[oraca.orasfnm.orasfnml] = '\0';
 printf("\n%s\n", sqlca.sqlerrm.sqlerrmc);
 printf("in \"%s...\"\n", oraca.orastxt.orastxtc);
 printf("on line %d of %s.\n\n", oraca.oraslnr,
 oraca.orasfnm.orasfnmc);

Using Method 4

Oracle Dynamic SQL 13-19

/* Disable ORACLE error checking to avoid an infinite loop
 * should another error occur within this routine.
 */
 EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Release resources associated with the cursor. */
 EXEC SQL CLOSE C;

/* Roll back any pending changes and disconnect from Oracle. */
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Using Method 4
This section gives an overview of Oracle Dynamic SQL Method 4. Oracle Dynamic
SQL Method 4 does not support object types, results sets, arrays of structs, or LOBs.

ANSI SQL does support all datatypes. Use ANSI SQL for all new applications.

There is a kind of dynamic SQL statement that your program cannot process using
Method 3. When the number of select-list items or placeholders for input host
variables is unknown until run time, your program must use a descriptor. A descriptor
is an area of memory used by your program and Oracle to hold a complete description
of the variables in a dynamic SQL statement.

Recall that for a multirow query, you FETCH selected column values INTO a list of
declared output host variables. If the select list is unknown, the host-variable list
cannot be established at precompile time by the INTO clause. For example, you know
the following query returns two column values:

SELECT ename, empno FROM emp WHERE deptno = :dept_number;

However, if you let the user define the select list, you might not know how many
column values the query will return.

 Need for the SQLDA
To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor Area
(SQLDA). Because it holds descriptions of columns in the query select list, this
structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of placeholders
for input host variables, the host-variable list cannot be established at precompile time
by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE BIND
VARIABLES command and declare another kind of SQLDA called a bind descriptor to
hold descriptions of the placeholders for input host variables. (Input host variables are
also called bind variables.)

If your program has more than one active SQL statement (it might have OPENed two
or more cursors, for example), each statement must have its own SQLDA(s). However,

See Also:

■ Chapter 15, "Oracle Dynamic SQL: Method 4"

■ Chapter 14, "ANSI Dynamic SQL"

Using Method 4

13-20 Pro*C/C++ Programmer’s Guide

non-concurrent cursors can reuse SQLDAs. There is no set limit on the number of
SQLDAs in a program.

The DESCRIBE Statement
DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a PREPAREd dynamic query to determine its name, datatype,
constraints, length, scale, and precision. It then stores this information in the select
descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines
each placeholder in a PREPAREd dynamic SQL statement to determine its name,
length, and the datatype of its associated input host variable. It then stores this
information in the bind descriptor for your use. For example, you might use
placeholder names to prompt the user for the values of input host variables.

What is a SQLDA?
A SQLDA is a host-program data structure that holds descriptions of select-list items
or input host variables.

SQLDA variables are not defined in the Declare Section.

The select SQLDA contains the following information about a query select list:

■ Maximum number of columns that can be DESCRIBEd

■ Actual number of columns found by DESCRIBE

■ Addresses of buffers to store column values

■ Lengths of column values

■ Datatypes of column values

■ Addresses of indicator-variable values

■ Addresses of buffers to store column names

■ Sizes of buffers to store column names

■ Current lengths of column names

The bind SQLDA contains the following information about the input host variables in
a SQL statement:

■ Maximum number of placeholders that can be DESCRIBEd

■ Actual number of placeholders found by DESCRIBE

■ Addresses of input host variables

■ Lengths of input host variables

■ Datatypes of input host variables

■ Addresses of indicator variables

■ Addresses of buffers to store placeholder names

■ Sizes of buffers to store placeholder names

■ Current lengths of placeholder names

Using the DECLARE STATEMENT Statement

Oracle Dynamic SQL 13-21

■ Addresses of buffers to store indicator-variable names

■ Sizes of buffers to store indicator-variable names

■ Current lengths of indicator-variable names

Implementing Oracle Method 4
With Oracle Method 4, you generally use the following sequence of embedded SQL
statements:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };

EXEC SQL DECLARE cursor_name CURSOR FOR statement_name;
EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name
 INTO bind_descriptor_name;

EXEC SQL OPEN cursor_name
 [USING DESCRIPTOR bind_descriptor_name];

EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name
 INTO select_descriptor_name;

EXEC SQL FETCH cursor_name
 USING DESCRIPTOR select_descriptor_name;

EXEC SQL CLOSE cursor_name;

However, select and bind descriptors need not work in tandem. So, if the number of
columns in a query select list is known, but the number of placeholders for input host
variables is unknown, you can use the Method 4 OPEN statement with the following
Method 3 FETCH statement:

EXEC SQL FETCH emp_cursor INTO host_variable_list;

Conversely, if the number of placeholders for input host variables is known, but the
number of columns in the select list is unknown, you can use the Method 3 OPEN
statement

EXEC SQL OPEN cursor_name [USING host_variable_list];

with the Method 4 FETCH statement.

EXECUTE can be used for nonqueries with Method 4.

Restriction
In Dynamic SQL Method 4, you cannot bind a host array to a PL/SQL procedure with
a parameter of type "table."

Using the DECLARE STATEMENT Statement
With Methods 2, 3, and 4, you might need to use the statement

EXEC SQL [AT db_name] DECLARE statement_name STATEMENT;

where db_name and statement_name are identifiers used by the precompiler, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4" for
information on the SQLDA structure and variable names.

Using PL/SQL

13-22 Pro*C/C++ Programmer’s Guide

DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
nondefault database. An example using Method 2 follows:

EXEC SQL AT remote_db DECLARE sql_stmt STATEMENT;
EXEC SQL PREPARE sql_stmt FROM :dyn_string;
EXEC SQL EXECUTE sql_stmt;

In the example, remote_db tells Oracle where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

EXEC SQL DECLARE sql_stmt STATEMENT;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :dyn_string;

The usual sequence of statements is

EXEC SQL PREPARE sql_stmt FROM :dyn_string;
EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

Using Host Arrays
The use of host arrays in static SQL and dynamic SQL is similar. For example, to use
input host arrays with dynamic SQL Method 2, simply use the syntax

EXEC SQL EXECUTE statement_name USING host_array_list;

where host_array_list contains one or more host arrays.

Similarly, to use input host arrays with Method 3, use the following syntax:

OPEN cursor_name USING host_array_list;

To use output host arrays with Method 3, use the following syntax:

FETCH cursor_name INTO host_array_list;

With Method 4, you must use the optional FOR clause to tell Oracle the size of your
input or output host array.

Using PL/SQL
The Pro*C/C++ Precompiler treats a PL/SQL block like a single SQL statement. So,
like a SQL statement, a PL/SQL block can be stored in a string host variable or literal.
When you store the PL/SQL block in the string, omit the keywords EXEC SQL
EXECUTE, the keyword END-EXEC, and the ';' statement terminator.

However, there are two differences in the way the precompiler handles SQL and
PL/SQL:

■ The precompiler treats all PL/SQL host variables as input host variables whether
they serve as input or output host variables (or both) inside the PL/SQL block.

■ You cannot FETCH from a PL/SQL block because it might contain any number of
SQL statements.

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4"

Using PL/SQL

Oracle Dynamic SQL 13-23

With Method 1
If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE
the PL/SQL string in the usual way.

With Method 2
If the PL/SQL block contains a known number of input and output host variables, you
can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. When the PL/SQL string is
EXECUTEd, host variables in the USING clause replace corresponding placeholders in
the PREPAREd string. Though the precompiler treats all PL/SQL host variables as
input host variables, values are assigned correctly. Input (program) values are
assigned to input host variables, and output (column) values are assigned to output
host variables.

Every placeholder in the PREPAREd PL/SQL string must correspond to a host
variable in the USING clause. So, if the same placeholder appears two or more times in
the PREPAREd string, each appearance must correspond to a host variable in the
USING clause.

With Method 3
Methods 2 and 3 are the same except that Method 3 allows FETCHing. Since you
cannot FETCH from a PL/SQL block, just use Method 2 instead.

With Oracle Method 4
If the PL/SQL block contains an unknown number of input or output host variables,
you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input and
output host variables in the bind descriptor. Because the precompiler treats all
PL/SQL host variables as input host variables, executing DESCRIBE SELECT LIST has
no effect.

Caution: In dynamic SQL Method 4, you cannot bind a host
array to a PL/SQL procedure with a parameter of type "table."

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4" for
information on the use of bind descriptors with method 4.

Caution: Do not use ANSI-style Comments (- -) in a PL/SQL
block that will be processed dynamically because end-of-line
characters are ignored. As a result, ANSI-style Comments extend
to the end of the block, not just to the end of a line. Instead, use
C-style Comments (/* ... */).

Using PL/SQL

13-24 Pro*C/C++ Programmer’s Guide

ANSI Dynamic SQL 14-1

14
ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (also known as
SQL92 dynamic SQL) which should be used for new Method 4 applications. It has
enhancements over the older Oracle dynamic SQL Method 4, described in the previous
chapter.

The ANSI Method 4 supports all Oracle types, while the older Oracle Method 4 does
not support object types, cursor variables, arrays of structs, DML returning clauses,
Unicode variables, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the
older Oracle dynamic SQL Method 4, descriptors are defined in the user's Pro*C/C++
program. In both cases, Method 4 means that your Pro*C/C++ program accepts or
builds SQL statements that contain a varying number of host variables.

This chapter contains the following topics:

■ Basics of ANSI Dynamic SQL

■ Overview of ANSI SQL Statements

■ Oracle Extensions

■ ANSI Dynamic SQL Precompiler Options

■ Full Syntax of the Dynamic SQL Statements

■ Example Programs

Basics of ANSI Dynamic SQL
Consider the SQL statement:

SELECT ename, empno FROM emp WHERE deptno = :deptno_data

The steps you follow to use ANSI dynamic SQL are:

■ Declare variables, including a string to hold the statement to be executed.

■ Allocate descriptors for input and output variables.

■ Prepare the statement.

■ Describe input for the input descriptor.

■ Set the input descriptor (in our example the one input host bind variable,
deptno_data).

■ Declare and open a dynamic cursor.

Overview of ANSI SQL Statements

14-2 Pro*C/C++ Programmer’s Guide

■ Set the output descriptors (in our example, the output host variables ename and
empno).

■ Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and empno
data fields from each row.

■ Do something with the data retrieved (output it, for instance).

■ Close the dynamic cursor and deallocate the input and output descriptors.

Precompiler Options
Set the micro precompiler option DYNAMIC to ANSI, or set the macro option MODE
to ANSI, which causes the default value of DYNAMIC to be ANSI. The other setting of
DYNAMIC is ORACLE.

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to
ANSI, or set the macro option MODE to ANSI which makes the default setting of
TYPE_CODE to ANSI. To set TYPE_CODE to ANSI, DYNAMIC must also be ANSI.

Oracle's implementation of the ANSI SQL types in Table 14–1, " ANSI SQL Datatypes"
does not exactly match the ANSI standard. For example, a describe of a column
declared as INTEGER will return the code for NUMERIC. As Oracle moves closer to
the ANSI standard, small changes in behavior may be required. Use the ANSI types
with precompiler option TYPE_CODE set to ANSI if you want your application to be
portable across database platforms and as ANSI compliant as possible. Do not use
TYPE_CODE set to ANSI if such changes are not acceptable.

Overview of ANSI SQL Statements
Allocate a descriptor area first before using it in a dynamic SQL statement.

The ALLOCATE DESCRIPTOR statement syntax is:

EXEC SQL ALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 [WITH MAX {:occurrences | numeric_literal}];

A global descriptor can be used in any module in the program. A local descriptor can
be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam, can be a literal in single quotes or a character value
stored in a host variable.

occurrences is the maximum number of bind variables or columns that the
descriptor can hold. This must be a numeric literal. The default is 100.

When a descriptor is no longer needed, deallocate it to conserve memory. Otherwise,
deallocation is done automatically when there are no more active database
connections.

The deallocate statement is:

EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal};

Use the DESCRIBE statement to obtain information on a prepared SQL statement.
DESCRIBE INPUT describes bind variables for the dynamic statement that has been
prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of
the output columns. The simplified syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] sql_statement
 USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal};

Overview of ANSI SQL Statements

ANSI Dynamic SQL 14-3

If your SQL statement has input and output values, you must allocate two descriptors:
one for input and one for output values. If there are no input values, for example:

SELECT ename, empno FROM emp ;

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS, UPDATES,
DELETES and the WHERE clauses of SELECT statements. Use SET DESCRIPTOR to
set the number of input bind variables (stored in COUNT) when you have not done a
DESCRIBE into your input descriptor:

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 COUNT = {:kount | numeric_literal};

kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR
statement for each host variable, giving at least the data source of the variable:

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number DATA = :hv3;

You can also set the type and length of the input host variable:

EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number TYPE = :hv1, LENGTH = :hv2, DATA = :hv3;

We use the identifiers hv1, hv2, and hv3 to remind us that the values must be
supplied by host variables. item_number is the position of the input variable in the SQL
statement.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to
ANSI:

Note: When TYPE_CODE=ORACLE, if you do not set TYPE and
LENGTH, either explicitly using the SET statement or implicitly by
doing a DESCRIBE OUTPUT, the precompiler will use values for
them derived from the host variable itself. When TYPE_
CODE=ANSI, you must set TYPE using the values in Table 14–1,
" ANSI SQL Datatypes". You should also set LENGTH because the
ANSI default lengths may not match those of your host variables.

Table 14–1 ANSI SQL Datatypes

Datatype Type Code

CHARACTER 1

CHARACTER VARYING 12

DATE 9

DECIMAL 3

DOUBLE PRECISION 8

FLOAT 6

INTEGER 4

NUMERIC 2

REAL 7

Overview of ANSI SQL Statements

14-4 Pro*C/C++ Programmer’s Guide

DATA is the value of the host variable that is to be input

You can also set other input values such as indicator, precision and scale.

The numeric values in the SET DESCRIPTOR statement must be declared as either int
or short int, except for indicator and returned length values which you must
declare as short int.

For example, in the following example, when you want to retrieve an empno, set these
values: VALUE = 2, because empno is the second output host variable in the dynamic
SQL statement. The host variable empno_typ is set to 3 (Oracle Type for integer). The
length of a host integer, empno_len, is set to 4, which is the size of the host variable.
The DATA is equated to the host variable empno_data which will receive the value
from the database table. The code fragment is as follows:

...
char *dyn_statement = "SELECT ename, empno FROM emp
 WHERE deptno = :deptno_number" ;
int empno_data ;
int empno_typ = 3 ;
int empno_len = 4 ;
...
EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE = :empno_typ, LENGTH = :empno_len,
 DATA = :empno_data ;

After setting the input values, execute or open your statement using the input
descriptor. If there are output values in your statement, set them before doing a
FETCH. If you have performed a DESCRIBE OUTPUT, you may have to test the actual
type and length of your host variables. The DESCRIBE execution produces internal
types and lengths that differ from your host variable external types and length.

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the
returned data. Again we show a simplified syntax with details later in this chapter:

EXEC SQL GET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number :hv1 = DATA, :hv2 = INDICATOR, :hv3 = RETURNED_LENGTH ;

desc_nam and item_number can be literals or host variables. A descriptor name can
be a literal such as 'out'. An item number can be a numeric literal such as 2.

hv1, hv2, and hv3 are host variables. They must be host variables, not literals.
Only three are shown in the example.

Use either long, int or short for all numeric values, except for indicator and returned
length variables, which must be short.

SMALLINT 5

See Also: Figure 15–2, " Oracle External Datatypes and Datatype
Codes" for the Oracle type codes

See Also: "SET DESCRIPTOR" on page 14-14 for a complete
discussion of all the possible descriptor item names

See Also: Table 14–4 on page 14-11 for a list of all possible items
of returned data that you can get

Table 14–1 (Cont.) ANSI SQL Datatypes

Datatype Type Code

Oracle Extensions

ANSI Dynamic SQL 14-5

Example Code
The following example demonstrates the use of ANSI Dynamic SQL. It allocates an
input descriptor ('in') and an output descriptor ('out') to execute a SELECT statement.
Input values are set using the SET DESCRIPTOR statement. The cursor is opened and
fetched from and the resulting output values are retrieved using a GET DESCRIPTOR
statement.

...
char* dyn_statement = "SELECT ename, empno FROM emp WHERE deptno = :deptno_data" ;
int deptno_type = 3, deptno_len = 2, deptno_data = 10 ;
int ename_type = 97, ename_len = 30 ;
char ename_data[31] ;
int empno_type = 3, empno_len = 4 ;
int empno_data ;
long SQLCODE = 0 ;
...
main ()
{
/* Place preliminary code, including connection, here. */
...
EXEC SQL ALLOCATE DESCRIPTOR 'in' ;
EXEC SQL ALLOCATE DESCRIPTOR 'out' ;
EXEC SQL PREPARE s FROM :dyn_statement ;
EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' ;
EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE = :deptno_type,
 LENGTH = :deptno_len, DATA = :deptno_data ;
EXEC SQL DECLARE c CURSOR FOR s ;
EXEC SQL OPEN c USING DESCRIPTOR 'in' ;
EXEC SQL DESCRIBE OUTPUT s USING DESCRIPTOR 'out' ;
EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = :ename_type,
 LENGTH = :ename_len, DATA = :ename_data ;
EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE = :empno_type,
 LENGTH = :empno_len, DATA = :empno_data ;

EXEC SQL WHENEVER NOT FOUND DO BREAK ;
while (SQLCODE == 0)
{
 EXEC SQL FETCH c INTO DESCRIPTOR 'out' ;
 EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :ename_data = DATA ;
 EXEC SQL GET DESCRIPTOR 'out' VALUE 2 :empno_data = DATA ;
 printf("\nEname = %s Empno = %s", ename_data, empno_data) ;
}
EXEC SQL CLOSE c ;
EXEC SQL DEALLOCATE DESCRIPTOR 'in' ;
EXEC SQL DEALLOCATE DESCRIPTOR 'out' ;
...
}

Scrollable cursors can also be used with ANSI Dynamic SQL. In order to use ANSI
dynamic SQL with scrollable cursors, we DECLARE the cursor in SCROLL mode. Use
the various fetch orientation modes with the FETCH statement to access the result set.

Oracle Extensions
These extensions are described next:

■ Reference semantics for data items in SET statements.

■ Arrays for bulk operations.

Oracle Extensions

14-6 Pro*C/C++ Programmer’s Guide

■ Support for object types, NCHAR columns, and LOBs.

Reference Semantics
The ANSI standard specifies value semantics. To improve performance, Oracle has
extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses
the addresses of your host variables, avoiding a copy. Thus, reference semantics can
provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = :ename_type,
 LENGTH = :ename_len, REF DATA = :ename_data ;
EXEC SQL DESCRIPTOR 'out' VALUE 2 TYPE = :empno_type,
 LENGTH = :empno_len, REF DATA = :empno_data ;

Then the host variables receive the results of the retrieves. The GET statement is not
needed. The retrieved data is written directly into ename_data and empno_data
after each FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and RETURNED_
LENGTH items (which can vary with each row fetched) as in this fragment of code:

int indi, returnLen ;
...
EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE = :ename_type,
 LENGTH = :ename_len, REF DATA = :ename_data,
 REF INDICATOR = :indi, REF RETURNED_LENGTH = :returnLen ;

After each fetch, returnLen holds the actual retrieved length of the ename field,
which is useful for CHAR or VARCHAR2 data.

ename_len will not receive the returned length. It will not be changed by the FETCH
statement. Use a DESCRIBE statement, followed by a GET statement to find out the
maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed
them up. With reference semantics, the host variable is used rather than a value copied
into the descriptor area. The host variable data at the time of execution of the SQL
statement is used, not its data at the time of the SET. Here is an example:

int x = 1 ;
EXEC SQL SET DESCRIPTOR 'value' VALUE 1 DATA = :x ;
EXEC SQL SET DESCRIPTOR 'reference' VALUE 1 REF DATA = :x ;
x = 2 ;
EXEC SQL EXECUTE s USING DESCRIPTOR 'value' ; /* Will use x = 1 */
EXEC SQL EXECUTE s USING DESCRIPTOR 'reference' ; /* Will use x = 2 */

Using Arrays for Bulk Operations
Oracle extends the SQL92 ANSI dynamic standard by providing bulk operations. To
use bulk operations, use the FOR clause with an array size to specify the amount of
input data or the number of rows you want to process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of
data or number of rows. For example, to use a maximum array size of 100:

See Also: "SET DESCRIPTOR" on page 14-14 for many more
details on the differences

Oracle Extensions

ANSI Dynamic SQL 14-7

EXEC SQL FOR 100 ALLOCATE DESCRIPTOR 'out' ;

or:

int array_size = 100 ;
...
EXEC SQL FOR :array_size ALLOCATE DESCRIPTOR 'out' ;

The FOR clause is then used in subsequent statements that access the descriptor. In an
output descriptor the FETCH statement must have an array size equal to or less than
the array size already used in the ALLOCATE statement:

EXEC SQL FOR 20 FETCH c1 USING DESCRIPTOR 'out' ;

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or
RETURNED_LENGTH values, must use the same array size as the FETCH statement.

int val_data[20] ;
short val_indi[20] ;
...
EXEC SQL FOR 20 GET DESCRIPTOR 'out' VALUE 1 :val_data = DATA,
 :val_indi = INDICATOR ;

However, GET statements that reference other items which do not vary from row to
row, such as LENGTH, TYPE and COUNT, must not use the FOR clause:

int cnt, len ;
...
EXEC SQL GET DESCRIPTOR 'out' :cnt = COUNT ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :len = LENGTH ;

The same holds true for SET statements with reference semantics. SET statements
which precede the FETCH and employ reference semantics for DATA, INDICATOR, or
RETURNED_LENGTH must have the same array size as the FETCH:

int ref_data[20] ;
short ref_indi[20] ;
...
EXEC SQL FOR 20 SET DESCRIPTOR 'out' VALUE 1 REF DATA = :ref_data,
 REF INDICATOR = :ref_indi ;

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance,
the EXECUTE or OPEN statement must use an array size equal to or less than the size
used in the ALLOCATE statement. The SET statement, for both value and reference
semantics, that accesses DATA, INDICATOR, or RETURNED_LENGTH must use the
same array size as in the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

The following code example illustrates a bulk operation with no output descriptor
(there is no output, only input to be inserted into the table emp). The value of COUNT is
2 (there are two host variables, ename_arr and empno_arr, in the INSERT
statement). The data array ename_arr holds three character strings: "Tom", "Dick"
and "Harry", in that order. The indicator array ename_ind has a value of -1 for the
second element; so a NULL will be inserted instead of "Dick". The data array empno_
arr contains three employee numbers. A DML returning clause could be used to
confirm the actual names inserted.

...
char* dyn_statement = "INSERT INTO emp (ename) VALUES (:ename_arr)" ;
char ename_arr[3][6] = {Tom","Dick","Harry"} ;
short ename_ind[3] = {0,-1,0} ;

ANSI Dynamic SQL Precompiler Options

14-8 Pro*C/C++ Programmer’s Guide

int ename_len = 6, ename_type = 97, cnt = 2 ;
int empno_arr[3] = {8001, 8002, 8003} ;
int empno_len = 4 ;
int empno_type = 3 ;
int array_size = 3 ;
EXEC SQL FOR :array_size ALLOCATE DESCRIPTOR 'in' ;
EXEC SQL SET DESCRIPTOR 'in' COUNT = :cnt ;
EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE = :ename_type, LENGTH = :ename_len ;
EXEC SQL SET DESCRIPTOR 'in' VALUE 2 TYPE = :empno_type, LENGTH = :empno_len ;
EXEC SQL FOR :array_size SET DESCRIPTOR 'in' VALUE 1
 DATA = :ename_arr, INDICATOR = :ename_ind ;
EXEC SQL FOR :array_size SET DESCRIPTOR 'in' VALUE 2
 DATA = :empno_arr ;
EXEC SQL PREPARE s FROM :dyn_statement ;
EXEC SQL FOR :array_size EXECUTE s USING DESCRIPTOR 'in' ;
...

The preceding code will insert these values:

EMPNO ENAME
 8001 Tom
 8002
 8003 Harry

Support for Arrays of Structs
You must set the HOST_STRIDE_LENGTH to the size of the struct, and the
INDICATOR_STRIDE_LENGTH to the size of the indicator struct, and the
RETURNED_LENGTH_STRIDE to the size of your returned length struct.

Arrays of structs are supported by ANSI dynamic SQL, but are not supported by the
older Oracle dynamic SQL.

Support for Object Types
For the object types that you have defined yourself, use Oracle TYPE equal to 108. For
an object type column, use a DESCRIBE statement to obtain USER_DEFINED_TYPE_
VERSION, USER_DEFINED_TYPE_NAME, USER_DEFINED_TYPE_NAME_
LENGTH, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_
SCHEMA_LENGTH.

If you do not employ the DESCRIBE statement to retrieve these values, you have to set
them yourself through the SET DESCRIPTOR statement.

ANSI Dynamic SQL Precompiler Options
The macro option MODE sets ANSI compatibility characteristics and controls a
number of functions. It can have the values ANSI or ORACLE. For individual
functions there are micro options that override the MODE setting. See also "MODE" on
page 10-23.

See Also:

■ "The DML Returning Clause" on page 6-8

■ "Using the FOR Clause" on page 8-13 for a discussion of
restrictions and cautions

See Also: Table 14–5, " Oracle Extensions to Definitions of
Descriptor Item Names for GET DESCRIPTOR" on page 14-12

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-9

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic
SQL. The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle
datatype codes are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes
ANSI automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.

This table describes functionality and how the DYNAMIC setting affects them.

The micro option TYPE_CODE is set by the precompiler to the same setting as the
macro option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

Here is the functionality corresponding to the TYPE_CODE settings:

Full Syntax of the Dynamic SQL Statements

Table 14–2 DYNAMIC Option Settings

Function DYNAMIC = ANSI DYNAMIC = ORACLE

Descriptor creation. Must use ALLOCATE
statement.

Must use function
SQLSQLDAAlloc(). See"New
Names for SQLLIB Public
Functions" on page 5-39.

Descriptor
destruction.

May use DEALLOCATE
statement.

May use function
SQLLDAFree(). See "New
Names for SQLLIB Public
Functions" on page 5-39.

Retrieving data. May use both FETCH and GET
statements.

Must use only FETCH
statement.

Setting input data. May use DESCRIBE INPUT
statement. Must use SET
statement.

Must set descriptor values in
code. Must use DESCRIBE
BIND VARIABLES statement.

Descriptor
representation.

Single quoted literal or host
identifier which contains the
descriptor name.

Host variable, a pointer to
SQLDA.

Data types available. All ANSI types except BIT and
all Oracle types.

Oracle types except objects,
LOBs, arrays of structs and
cursor variables.

Table 14–3 TYPE_CODE Option Settings

Function TYPE_CODE = ANSI TYPE_CODE = ORACLE

Data type code
numbers input and
returned in dynamic
SQL.

Use ANSI code numbers when
ANSI type exists. Otherwise,
use the negative of the Oracle
code number.

Only valid when DYNAMIC =
ANSI.

Use Oracle code numbers.

May be used regardless of the
setting of DYNAMIC.

See Also: Chapter F, "Embedded SQL Statements and Directives"
for more details on all these statements

Full Syntax of the Dynamic SQL Statements

14-10 Pro*C/C++ Programmer’s Guide

ALLOCATE DESCRIPTOR

Purpose
Use this statement to allocate a SQL descriptor area. Supply a descriptor and the
maximum number of occurrences of host bind items, and an array size. This statement
is only for the ANSI dynamic SQL.

Syntax
EXEC SQL [FOR [:]array_size] ALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal} [WITH MAX occurrences] ;

Variables
array_size

This is in an optional clause (it is an Oracle extension) that supports array processing.
It tells the precompiler that the descriptor is usable for array processing.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name. Local descriptors must be unique in the module. A runtime error is
generated if the descriptor has been allocated, but not deallocated, previously. A global
descriptor must be unique for the application, or a runtime error results.

occurrences

The maximum number of host variables possible in the descriptor. It must be an
integer constant between 0 and 64K, or an error is returned. Default is 100. The clause
is optional. A precompiler error results if it does not conform to these rules.

 Examples
EXEC SQL ALLOCATE DESCRIPTOR 'SELDES' WITH MAX 50 ;

EXEC SQL FOR :batch ALLOCATE DESCRIPTOR GLOBAL :binddes WITH MAX 25 ;

DEALLOCATE DESCRIPTOR

Purpose
Use this statement to deallocate a SQL descriptor area that has been previously
allocated, to free memory. This statement is only used for the ANSI dynamic SQL.

Syntax
EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal} ;

Variable
GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-11

desc_nam

A runtime error results when a descriptor with the same name and scope has not been
allocated, or has been allocated and deallocated already.

Examples
EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' ;

EXEC SQL DEALLOCATE DESCRIPTOR :binddes ;

GET DESCRIPTOR

Purpose
Use to obtain information from a SQL descriptor area.

Syntax
EXEC SQL [FOR [:]array_size] GET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 { :hv0 = COUNT | VALUE item_number
 :hv1 = item_name1 [{, :hvN = item_nameN}] } ;

Variables
array_size

The FOR array_size is an optional Oracle extension. array_size has to be equal
to the field array_size in the FETCH statement.

COUNT

The total number of bind variables.

desc_nam

Descriptor name.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

VALUE item_number

The position of the item in the SQL statement. item_number can be a variable or a
constant. If item_number is greater than COUNT, the "no data found" condition is
returned. item_number must be greater than 0.

hv1 .. hvN

These are host variables to which values are transferred.

item_name1 .. item_nameN

The descriptor item names corresponding to the host variables. The possible ANSI
descriptor item names are:

Table 14–4 Definitions of Descriptor Item Names for GET DESCRIPTOR

Descriptor Item Name Meaning

TYPE Use the negative value of Oracle type code if the ANSI
datatype is not in the table and TYPE_CODE=ANSI.

Full Syntax of the Dynamic SQL Statements

14-12 Pro*C/C++ Programmer’s Guide

The Oracle additional descriptor item names are:

LENGTH Length of data in the column: in characters for NCHAR; in
bytes otherwise. Set by the DESCRIBE OUTPUT.

OCTET_LENGTH Length of data in bytes.

RETURNED_LENGTH The actual data length after a FETCH.

RETURNED_OCTET_LENGTH Length of the returned data in bytes.

PRECISION The number of digits.

SCALE For exact numeric types, the number of digits to the right of
the decimal point.

NULLABLE If 1, the column can have NULL values. If 0,the column cannot
have NULL values.

INDICATOR The associated indicator value.

DATA The data value.

NAME Column name.

CHARACTER_SET_NAME Column's character set.

See Also:

■ Table 14–1, " ANSI SQL Datatypes" on page 14-3 for the ANSI
type codes

■ " Oracle External Datatypes and Datatype Codes" on
page 15-11 for the Oracle type codes

Table 14–5 Oracle Extensions to Definitions of Descriptor Item Names for GET
DESCRIPTOR

Descriptor Item Name Meaning

NATIONAL_CHARACTER If 2, NCHAR or NVARCHAR2. If 1, character. If 0,
non-character.

INTERNAL_LENGTH The internal length, in bytes.

HOST_STRIDE_LENGTH The size of the host struct in bytes.

INDICATOR_STRIDE_
LENGTH

The size of the indicator struct in bytes.

RETURNED_LENGTH_
STRIDE

The size of the returned-length struct in bytes.

USER_DEFINED_TYPE_
VERSION

Used for character representation of object type version.

USER_DEFINED_TYPE_
NAME

Name of object type.

USER_DEFINED_TYPE_
NAME_LENGTH

Length of name of object type.

USER_DEFINED_TYPE_
SCHEMA

Used for character representation of the object's schema.

USER_DEFINED_TYPE_
SCHEMA_LENGTH

Length of USER_DEFINED_TYPE_SCHEMA.

Table 14–4 (Cont.) Definitions of Descriptor Item Names for GET DESCRIPTOR

Descriptor Item Name Meaning

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-13

Usage Notes
Use the FOR clause in GET DESCRIPTOR statements which contain DATA,
INDICATOR, and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input
and output, you must set the type to be the external type of your host variable.

TYPE is the ANSI SQL Datatype code. Use the negative value of the Oracle type code
if the ANSI type is not in the table.

LENGTH contains the column length in characters for fields that have fixed-width
National Character Sets. It is in bytes for other character columns. It is set in
DESCRIBE OUTPUT.

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in
bytes or characters as described for LENGTH. The fields OCTET_LENGTH and
RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it
cannot.

CHARACTER_SET_NAME only has meaning for character columns. For other types,
it is undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If
data = NULL, but the indicator was not requested, an error is generated at runtime
("DATA EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").

Oracle-Specific Descriptor Item Names

NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR2 column.
If the column is a character (but not National Character) column, this item is set to 1. If
a non-character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the
same value as the length member of the Oracle SQL descriptor area.

The following three items are not returned by a DESCRIBE OUTPUT statement.

■ HOST_STRIDE_LENGTH is the size of the struct of host variables.

■ INDICATOR_STRIDE_LENGTH is the size of the struct of indicator variables.

■ RETURNED_LENGTH_STRIDE is the size of the struct of returned-length
variables

NATIONAL_CHARACTER If 2, NCHAR or NVARCHAR2. If 1, character. If 0,
non-character.

See Also:

■ Table 14–1, " ANSI SQL Datatypes" on page 14-3

■ " Oracle External Datatypes and Datatype Codes" on
page 15-11

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4"

Table 14–5 (Cont.) Oracle Extensions to Definitions of Descriptor Item Names for GET
DESCRIPTOR

Descriptor Item Name Meaning

Full Syntax of the Dynamic SQL Statements

14-14 Pro*C/C++ Programmer’s Guide

The following items apply only to object types when the precompiler option OBJECTS
has been set to YES.

■ USER_DEFINED_TYPE_VERSION contains the character representation of the
type version.

■ USER_DEFINED_TYPE_NAME is the character representation of the name of the
type.

■ USER_DEFINED_TYPE_NAME_LENGTH is the length of the type name in bytes.

■ USER_DEFINED_TYPE_SCHEMA is the character representation of the schema
name of the type.

■ USER_DEFINED_TYPE_SCHEMA_LENGTH is the length in characters of the
type's schema name.

Examples
EXEC SQL GET DESCRIPTOR :binddes :n = COUNT ;

EXEC SQL GET DESCRIPTOR 'SELDES' VALUE 1 :t = TYPE, :l = LENGTH ;

EXEC SQL FOR :batch GET DESCRIPTOR LOCAL 'SELDES'
 VALUE :sel_item_no :i = INDICATOR, :v = DATA ;

SET DESCRIPTOR

Purpose
Use this statement to set information in the descriptor area from host variables. The
SET DESCRIPTOR statement supports only host variables for the item names.

Syntax
EXEC SQL [FOR array_size] SET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal} {COUNT = :hv0 |
 VALUE item_number
 [REF] item_name1 = :hv1
 [{, [REF] item_nameN = :hvN}]} ;

Variables
array_size

This optional Oracle clause permits using arrays when setting the descriptor items
DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in a
SET DESCRIPTOR that contains the FOR clause. All host variable array sizes must
match. Use the same array size for the SET statement that you use for the FETCH
statement.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.

COUNT

The number of bind (input) or define (output) variables.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-15

VALUE item_number

Position in the dynamic SQL statement of a host variable.

hv1 .. hvN

The host variables (not constants) that you set.

item_nameI

In a similar way to the GET DESCRIPTOR syntax desc_item_name can take on these
values.

The Oracle extensions to the descriptor item names are:

See Also: "GET DESCRIPTOR" on page 14-11

Table 14–6 Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

TYPE Use negative value of the Oracle type if there is no
corresponding ANSI type.

LENGTH Maximum length of data in the column.

INDICATOR The associated indicator value. Set for reference semantics.

DATA Value of the data to be set. Set for reference semantics.

CHARACTER_SET_NAME Column's character set.

TYPE Use negative value of the Oracle type if there is no
corresponding ANSI type.

See Also:

■ Table 14–1, " ANSI SQL Datatypes" on page 14-3 for the ANSI
type codes

■ " Oracle External Datatypes and Datatype Codes" on
page 15-11 for the Oracle type codes

Table 14–7 Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

RETURNED_LENGTH Length returned after a FETCH. Set if reference semantics is
being used.

NATIONAL_CHARACTER Set to 2 when the input host variable is an NCHAR or
NVARCHAR2 type.

HOST_STRIDE_LENGTH Size of the host variable struct in bytes.

INDICATOR_STRIDE_
LENGTH

Size of the indicator variable in bytes.

RETURNED_LENGTH_
STRIDE

Size of the returned-length struct in bytes.

USER_DEFINED_TYPE_
NAME

Name of object type.

USER_DEFINED_TYPE_
NAME_LENGTH

Length of name of object type.

Full Syntax of the Dynamic SQL Statements

14-16 Pro*C/C++ Programmer’s Guide

Usage Notes
Reference semantics is another optional Oracle extension that speeds performance.
Use the keyword REF before these descriptor items names only: DATA, INDICATOR,
RETURNED_LENGTH. When you use the REF keyword you do not need to use a
GET statement. Complex data types (object and collection types, arrays of structs, and
the DML returning clause) all require the REF form of SET DESCRIPTOR.

When REF is used the associated host variable itself is used in the SET. The GET is not
needed in this case. The RETURNED_LENGTH can only be set when you use the REF
semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.

Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

When setting an object type's characteristics, you must set USER_DEFINED_TYPE_
NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED_TYPE_SCHEMA and USER_DEFINED_TYPE_
SCHEMA_LENGTH default to the current connection.

Set CHARACTER_SET_NAME to UTF16 for client-side Unicode support.

Example
int bindno = 2 ;
short indi = -1 ;
char data = "ignore" ;
int batch = 1 ;

EXEC SQL FOR :batch ALLOCATE DESCRIPTOR 'binddes' ;
EXEC SQL SET DESCRIPTOR GLOBAL :binddes COUNT = 3 ;
EXEC SQL FOR :batch SET DESCRIPTOR :bindes
 VALUE :bindno INDICATOR = :indi, DATA = :data ;
...

Use of PREPARE

Purpose
The PREPARE statement used in this method is the same as the PREPARE statement
used in the other dynamic SQL methods. An Oracle extension allows a quoted string
for the SQL statement, as well as a variable.

USER_DEFINED_TYPE_
SCHEMA

Used for character representation of the object's schema.

USER_DEFINED_TYPE_
SCHEMA_LENGTH

Length of USER_DEFINED_TYPE_SCHEMA.

See Also: "The DML Returning Clause" on page 6-8

See Also: "Using Arrays for Bulk Operations" on page 14-6 for
examples of bulk arrays

Table 14–7 (Cont.) Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-17

Syntax
EXEC SQL PREPARE statement_id FROM :sql_statement ;

Variables
statement_id

This must not be declared; it is a undeclared SQL identifier.

sql_statement

A character string (a constant or a variable) holding the embedded SQL statement.

Example
char* statement = "SELECT ENAME FROM emp WHERE deptno = :d" ;
EXEC SQL PREPARE S1 FROM :statement ;

DESCRIBE INPUT

Purpose
This statement returns information about the bind variables.

Syntax
EXEC SQL DESCRIBE INPUT statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal} ;

Variables
statement_id

The same as used in PREPARE and DESCRIBE OUTPUT. This must not be declared; it
is an undeclared SQL identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes
DESCRIBE INPUT only sets COUNT and NAME items.

Examples
EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR GLOBAL :binddes ;
EXEC SQL DESCRIBE INPUT S2 USING DESCRIPTOR 'input' ;

DESCRIBE OUTPUT

Purpose
Use this statement to obtain information about the output columns in a PREPAREd
statement. The ANSI syntax differs from the older Oracle syntax. The information

Full Syntax of the Dynamic SQL Statements

14-18 Pro*C/C++ Programmer’s Guide

which is stored in the SQL descriptor area is the number of values returned and
associated information such as type, length, and name.

Syntax
EXEC SQL DESCRIBE [OUTPUT] statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal} ;

Variables
statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

OUTPUT is the default and can be omitted.

Examples
char* desname = "SELDES" ;
EXEC SQL DESCRIBE S1 USING SQL DESCRIPTOR 'SELDES' ; /* Or, */
EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :desname ;

EXECUTE

Purpose
EXECUTE matches input and output variables in a prepared SQL statement and then
executes the statement. This ANSI version of EXECUTE differs from the older
EXECUTE statement by allowing two descriptors in one statement to support DML
returning clause.

Syntax
EXEC SQL [FOR :array_size] EXECUTE statement_id
 [USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}] ;

Variables
array_size

The number of rows the statement will process.

statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier. It can be a literal.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-19

desc_nam

The descriptor name.

Usage Notes
The INTO clause implements the DML returning clause for INSERT, UPDATE and
DELETE.

Examples
EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR GLOBAL :binddes ;

EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES' ;

Use of EXECUTE IMMEDIATE

Purpose
Executes a literal or host variable character string containing the SQL statement.The
ANSI SQL form of this statement is the same as in the older Oracle dynamic SQL:

Syntax
EXEC SQL EXECUTE IMMEDIATE {:sql_statement | string_literal}

Variable
sql_statement

The SQL statement or PL/SQL block in a character string.

Example
EXEC SQL EXECUTE IMMEDIATE :statement ;

Use of DYNAMIC DECLARE CURSOR

Purpose
Declares a cursor that is associated with a statement which is a query. This is a form of
the generic Declare Cursor statement.

Syntax
EXEC SQL DECLARE cursor_name CURSOR FOR statement_id;

Variables
cursor_name

A cursor variable (a SQL identifier, not a host variable).

statement_id

An undeclared SQL identifier.

Example
EXEC SQL DECLARE C1 CURSOR FOR S1 ;

See Also: "The DML Returning Clause" on page 6-8

Full Syntax of the Dynamic SQL Statements

14-20 Pro*C/C++ Programmer’s Guide

OPEN Cursor

Purpose
The OPEN statement associates input parameters with a cursor and then opens the
cursor.

Syntax
EXEC SQL [FOR :array_size] OPEN dyn_cursor
 [[USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam1 | string_literal}]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam2 | string_literal}]] ;

Variables
array_size

This limit is less than or equal to number specified when the descriptor was allocated.

dyn_cursor

The cursor variable.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes
If the prepared statement associated with the cursor contains colons or question
marks, a USING clause must be specified, or an error results at runtime. The DML
returning clause is supported.

Examples
EXEC SQL OPEN C1 USING SQL DESCRIPTOR :binddes ;

EXEC SQL FOR :limit OPEN C2 USING DESCRIPTOR :b1, :b2
 INTO SQL DESCRIPTOR :seldes ;

FETCH

Purpose
Fetches a row for a cursor declared with a dynamic DECLARE statement.

Syntax
EXEC SQL [FOR :array_size] FETCH cursor INTO [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal} ;

Variables
array_size

The number of rows the statement will process.

See Also: "The DML Returning Clause" on page 6-8

Full Syntax of the Dynamic SQL Statements

ANSI Dynamic SQL 14-21

cursor

The dynamic cursor that was previously declared.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name.

Usage Notes
The optional array_size in the FOR clause must be less than or equal to the
number specified in the ALLOCATE DESCRIPTOR statement.

Examples
EXEC SQL FETCH FROM C1 INTO DESCRIPTOR 'SELDES' ;

EXEC SQL FOR :arsz FETCH C2 INTO DESCRIPTOR :desc ;

CLOSE a Dynamic Cursor

Purpose
Closes a dynamic cursor. Syntax has not changed from the older Oracle Method 4:

Syntax
EXEC SQL CLOSE cursor ;

Variable
cursor

The dynamic cursor that was previously declared.

Example
EXEC SQL CLOSE C1 ;

Differences From Oracle Dynamic Method 4
The ANSI dynamic SQL interface supports all the datatypes supported by the Oracle
dynamic Method 4, with these additions:

■ All datatypes, including object types, result sets, and LOB types are supported by
ANSI Dynamic SQL.

■ The ANSI mode uses an internal SQL descriptor area which is an expansion of the
external SQLDA used in Oracle older dynamic Method 4 to store its input and
output information.

■ New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET
DESCRIPTOR.

■ The DESCRIBE statement does not return the names of indicator variables in ANSI
Dynamic SQL.

Example Programs

14-22 Pro*C/C++ Programmer’s Guide

■ ANSI Dynamic SQL does not allow you to specify the maximum size of the
returned column name or expression. The default size is set at 128.

■ The descriptor name must be either an identifier in single-quotes or a host variable
preceded by a colon.

■ For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced by
the optional keyword OUTPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

■ For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be
replaced by the keyword INPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

■ The optional keyword SQL can come before the keyword DESCRIPTOR in the
USING clause of the EXECUTE, FETCH and OPEN statements.

Restrictions
Restrictions in effect on ANSI dynamic SQL are:

■ You cannot mix ANSI and Oracle dynamic SQL methods in the same module.

■ The precompiler option DYNAMIC must be set to ANSI. The precompiler option
TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSI.

■ The SET statement supports only host variables as item names.

Example Programs
The following two programs are in the demo directory.

ansidyn1.pc
This program demonstrates using ANSI Dynamic SQL to process SQL statements
which are not known until runtime. It is intended to demonstrate the simplest (though
not the most efficient) approach to using ANSI Dynamic SQL. It uses ANSI compatible
value semantics and ANSI type codes. ANSI SQLSTATE is used for error numbers.
Descriptor names are literals. All input and output is through ANSI varying character
type.

The program connects you to ORACLE using your username and password, then
prompts you for a SQL statement. Enter legal SQL or PL/SQL statements using
regular, not embedded, SQL syntax and terminate each statement with a semicolon.
Your statement will be processed. If it is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters. There is a limit on the
size of the variables, MAX_VAR_LEN, defined as 255. This program processes up to 40
bind variables and 40 select-list items. DML returning clauses and user defined types
are not supported with value semantics.

Precompile the program with mode = ansi, for example:

proc mode=ansi ansidyn1

Using mode=ansi will set dynamic and type_code to ansi.

/***
ANSI Dynamic Demo 1: ANSI Dynamic SQL with value semantics,
 literal descriptor names
 and ANSI type codes

Example Programs

ANSI Dynamic SQL 14-23

This program demonstates using ANSI Dynamic SQL to process SQL
statements which are not known until runtime. It is intended to
demonstrate the simplest (though not the most efficient) approach
to using ANSI Dynamic SQL. It uses ANSI compatible value semantics
and ANSI type codes. ANSI Sqlstate is used for error numbers.
Descriptor names are literals. All input and output is through ANSI the
varying character type.

The program connects you to ORACLE using your username and password,
then prompts you for a SQL statement. Enter legal SQL or PL/SQL
statements using regular, not embedded, SQL syntax and terminate each
statement with a seimcolon. Your statement will be processed. If it
is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters.
There is a limit on the size of the variables, MAX_VAR_LEN, defined as 255.
This program processes up to 40 bind variables and 40 select-list items.
DML returning statments and user defined types are not supported with
value semantics.

Precompile the program with mode=ansi, for example:

proc mode=ansi ansidyn1

Using mode=ansi will set dynamic and type_code to ansi.

***/

#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include <stdlib.h>
#include <sqlcpr.h>

#define MAX_OCCURENCES 40
#define MAX_VAR_LEN 255
#define MAX_NAME_LEN 31

#ifndef NULL
#define NULL 0
#endif

/* Prototypes */
#if defined(__STDC__)
 void sql_error(void);
 int oracle_connect(void);
 int get_dyn_statement(void);
 int process_input(void);
 int process_output(void);
 void help(void);
#else
 void sql_error(/*_ void _*/);
 int oracle_connect(/*_ void _*/);
 int get_dyn_statement(/* void _*/);
 int process_input(/*_ void _*/);
 int process_output(/*_ void _*/);
 void help(/*_ void _*/);
#endif

Example Programs

14-24 Pro*C/C++ Programmer’s Guide

EXEC SQL INCLUDE sqlca;

char SQLSTATE[6];

/* global variables */
EXEC SQL BEGIN DECLARE SECTION;
 char dyn_statement[1024];
 char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

/* Define a buffer to hold longjmp state info. */
jmp_buf jmp_continue;

/* A global flag for the error routine. */
int parse_flag = 0;
/* A global flag to indicate statement is a select */
int select_found;

void main()
{

 /* Connect to the database. */
 if (oracle_connect() != 0)
 exit(1);

 EXEC SQL WHENEVER SQLERROR DO sql_error();

 /* Allocate the input and output descriptors. */
 EXEC SQL ALLOCATE DESCRIPTOR 'input_descriptor';
 EXEC SQL ALLOCATE DESCRIPTOR 'output_descriptor';

 /* Process SQL statements. */
 for (;;)
 {
 (void) setjmp(jmp_continue);

 /* Get the statement. Break on "exit". */
 if (get_dyn_statement() != 0)
 break;

 /* Prepare the statement and declare a cursor. */
 parse_flag = 1; /* Set a flag for sql_error(). */
 EXEC SQL PREPARE S FROM :dyn_statement;
 parse_flag = 0; /* Unset the flag. */

 EXEC SQL DECLARE C CURSOR FOR S;

 /* Call the function that processes the input. */
 if (process_input())
 exit(1);

 /* Open the cursor and execute the statement. */
 EXEC SQL OPEN C USING DESCRIPTOR 'input_descriptor';

 /* Call the function that processes the output. */
 if (process_output())
 exit(1);

Example Programs

ANSI Dynamic SQL 14-25

 /* Close the cursor. */
 EXEC SQL CLOSE C;

 } /* end of for(;;) statement-processing loop */

 /* Deallocate the descriptors */
 EXEC SQL DEALLOCATE DESCRIPTOR 'input_descriptor';
 EXEC SQL DEALLOCATE DESCRIPTOR 'output_descriptor';

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL COMMIT WORK;
 puts("\nHave a good day!\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 return;
}

int get_dyn_statement()
{
 char *cp, linebuf[256];
 int iter, plsql;

 for (plsql = 0, iter = 1; ;)
 {
 if (iter == 1)
 {
 printf("\nSQL> ");
 dyn_statement[0] = '\0';
 select_found = 0;
 }

 fgets(linebuf, sizeof linebuf, stdin);

 cp = strrchr(linebuf, '\n');
 if (cp && cp != linebuf)
 *cp = ' ';
 else if (cp == linebuf)
 continue;

 if ((strncmp(linebuf, "SELECT", 6) == 0) ||
 (strncmp(linebuf, "select", 6) == 0))
 {
 select_found=1;;
 }

 if ((strncmp(linebuf, "EXIT", 4) == 0) ||
 (strncmp(linebuf, "exit", 4) == 0))
 {
 return -1;
 }

 else if (linebuf[0] == '?' ||
 (strncmp(linebuf, "HELP", 4) == 0) ||
 (strncmp(linebuf, "help", 4) == 0))
 {
 help();

Example Programs

14-26 Pro*C/C++ Programmer’s Guide

 iter = 1;
 continue;
 }

 if (strstr(linebuf, "BEGIN") ||
 (strstr(linebuf, "begin")))
 {
 plsql = 1;
 }

 strcat(dyn_statement, linebuf);

 if ((plsql && (cp = strrchr(dyn_statement, '/'))) ||
 (!plsql && (cp = strrchr(dyn_statement, ';'))))
 {
 *cp = '\0';
 break;
 }
 else
 {
 iter++;
 printf("%3d ", iter);
 }
 }
 return 0;
}

int process_input()
{
 int i;
 EXEC SQL BEGIN DECLARE SECTION;
 char name[31];
 int input_count, input_len, occurs, ANSI_varchar_type;
 char input_buf[MAX_VAR_LEN];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL DESCRIBE INPUT S USING DESCRIPTOR 'input_descriptor';
 EXEC SQL GET DESCRIPTOR 'input_descriptor' :input_count = COUNT;

 ANSI_varchar_type=12;
 for (i=0; i < input_count; i++)
 {
 occurs = i +1; /* occurence is 1 based */
 EXEC SQL GET DESCRIPTOR 'input_descriptor'
 VALUE :occurs :name = NAME;
 printf ("\nEnter value for input variable %*.*s: ", 10,31, name);
 fgets(input_buf, sizeof(input_buf), stdin);
 input_len = strlen(input_buf) - 1; /* get rid of new line */
 input_buf[input_len] = '\0'; /* null terminate */
 EXEC SQL SET DESCRIPTOR 'input_descriptor'
 VALUE :occurs TYPE = :ANSI_varchar_type,
 LENGTH = :input_len,
 DATA = :input_buf;
 }
 return(sqlca.sqlcode);
}

int process_output()

Example Programs

ANSI Dynamic SQL 14-27

{
 int i, j;
 EXEC SQL BEGIN DECLARE SECTION;
 int output_count, occurs, type, len, col_len;
 short indi;
 char data[MAX_VAR_LEN], name[MAX_NAME_LEN];
 EXEC SQL END DECLARE SECTION;
 if (!select_found)
 return(0);

 EXEC SQL DESCRIBE OUTPUT S USING DESCRIPTOR 'output_descriptor';

 EXEC SQL GET DESCRIPTOR 'output_descriptor' :output_count = COUNT;

 printf ("\n");
 type = 12; /* ANSI VARYING character type */
 len = MAX_VAR_LEN; /* use the max allocated length */
 for (i = 0; i < output_count; i++)
 {
 occurs = i + 1;
 EXEC SQL GET DESCRIPTOR 'output_descriptor' VALUE :occurs
 :name = NAME;
 printf("%-*.*s ", 9,9, name);
 EXEC SQL SET DESCRIPTOR 'output_descriptor' VALUE :occurs
 TYPE = :type, LENGTH = :len;
 }
 printf("\n");

 /* FETCH each row selected and print the column values. */
 EXEC SQL WHENEVER NOT FOUND GOTO end_select_loop;

 for (;;)
 {
 EXEC SQL FETCH C INTO DESCRIPTOR 'output_descriptor';
 for (i=0; i < output_count; i++)
 {
 occurs = i + 1;
 EXEC SQL GET DESCRIPTOR 'output_descriptor' VALUE :occurs
 :data = DATA, :indi = INDICATOR;
 if (indi == -1)
 printf("%-*.*s ", 9,9, "NULL");
 else
 printf("%-*.*s ", 9,9, data); /* simplified output formatting */
 /* truncation will occur, but columns will line up */
 }
 printf ("\n");
 }
end_select_loop:
 return(0);
}

void help()
{
 puts("\n\nEnter a SQL statement or a PL/SQL block at the SQL> prompt.");
 puts("Statements can be continued over several lines, except");
 puts("within string literals.");
 puts("Terminate a SQL statement with a semicolon.");

Example Programs

14-28 Pro*C/C++ Programmer’s Guide

 puts("Terminate a PL/SQL block (which can contain embedded semicolons)");
 puts("with a slash (/).");
 puts("Typing \"exit\" (no semicolon needed) exits the program.");
 puts("You typed \"?\" or \"help\" to get this message.\n\n");
}

void sql_error()
{
 /* ORACLE error handler */
 printf("\n\nANSI sqlstate: %s: ", SQLSTATE);
 printf ("\n\n%.70s\n",sqlca.sqlerrm.sqlerrmc);
 if (parse_flag)
 printf
 ("Parse error at character offset %d in SQL statement.\n",
 sqlca.sqlerrd[4]);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK;
 longjmp(jmp_continue, 1);
}

int oracle_connect()
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[128];
 VARCHAR password[32];
 EXEC SQL END DECLARE SECTION;

 printf("\nusername: ");
 fgets((char *) username.arr, sizeof username.arr, stdin);
 username.arr[strlen((char *) username.arr)-1] = '\0';
 username.len = (unsigned short)strlen((char *) username.arr);

 printf("password: ");
 fgets((char *) password.arr, sizeof password.arr, stdin);
 password.arr[strlen((char *) password.arr) - 1] = '\0';
 password.len = (unsigned short)strlen((char *) password.arr);

 EXEC SQL WHENEVER SQLERROR GOTO connect_error;

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 printf("\nConnected to ORACLE as user %s.\n", username.arr);

 return 0;

connect_error:
 fprintf(stderr, "Cannot connect to ORACLE as user %s\n", username.arr);
 return -1;
}

ansidyn2.pc
This program demonstrates using ANSI Dynamic SQL to process SQL statements
which are not known until runtime. It uses the Oracle extensions for batch processing
and reference semantics.

Example Programs

ANSI Dynamic SQL 14-29

The program connects you to ORACLE using your username and password, then
prompts you for a SQL statement. Enter legal SQL or PL/SQL statement using
interactive, not embedded, SQL syntax, terminating the statement with a semicolon.
Your statement will be processed. If it is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters. There is a limit on the
size of the variables, MAX_VAR_LEN, defined as 255. This program processes up to 40
bind variables and 40 select-list items.

Precompile the program with dynamic = ansi, for example:

proc dynamic=ansi ansidyn2

/***
ANSI Dynamic Demo 2: ANSI Dynamic SQL with reference semantics,
 batch processing and global descriptor
 names in host variables

This program demonstates using ANSI Dynamic SQL to process SQL
statements which are not known until runtime. It uses the Oracle
extensions for batch processing and reference semantics.

The program connects you to ORACLE using your username and password,
then prompts you for a SQL statement. Enter legal SQL or PL/SQL
statement using interactive, not embedded, SQL syntax, terminating the
statement with a seimcolon. Your statement will be processed. If it
is a query, the fetched rows are displayed.

If your statement has input bind variables (other than in a where clause),
the program will ask for an input array size and then allow you to enter
that number of input values. If your statment has output, the program will
ask you for an output array size and will do array fetchng using that value.
It will also output the rows fetched in one batch together, so using a small
value for the output array size will improve the look of the output.
For example, connected as scott/tiger, try select empno, ename from emp
with an output array size of 4;

You can enter multiline statements. The limit is 1023 characters.
There is a limit on the size of the variables, MAX_VAR_LEN, defined as 255.
This program processes up to 40 bind variables and 40 select-list items.

Precompile with program with dynamic=ansi, for example:

proc dynamic=ansi ansidyn2

***/

#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include <stdlib.h>
#include <sqlcpr.h>

#define MAX_OCCURENCES 40
#define MAX_ARRSZ 100
#define MAX_VAR_LEN 255
#define MAX_NAME_LEN 31

#ifndef NULL
#define NULL 0

Example Programs

14-30 Pro*C/C++ Programmer’s Guide

#endif

/* Prototypes */
#if defined(__STDC__)
 void sql_error(void);
 int oracle_connect(void);
 int get_dyn_statement(void);
 int process_input(void);
 int process_output(void);
 void rows_processed(void);
 void help(void);
#else
 void sql_error(/*_ void _*/);
 int oracle_connect(/*_ void _*/);
 int get_dyn_statement(/* void _*/);
 int process_input(/*_ void _*/);
 int process_output(/*_ void _*/);
 void rows_processed(/*_ void _*/);
 void help(/*_ void _*/);
#endif

EXEC SQL INCLUDE sqlca;

/* global variables */
char dyn_statement[1024]; /* statement variable */
EXEC SQL VAR dyn_statement IS STRING(1024);

char indesc[]="input_descriptor"; /* descriptor names */
char outdesc[]="output_descriptor";
char input[MAX_OCCURENCES][MAX_ARRSZ][MAX_VAR_LEN +1], /* data areas */
 output[MAX_OCCURENCES][MAX_ARRSZ][MAX_VAR_LEN + 1];

short outindi[MAX_OCCURENCES][MAX_ARRSZ]; /* output indicators */
short *iptr;

int in_array_size; /* size of input batch, i.e., number of rows */
int out_array_size; /* size of input batch, i.e., number of rows */
int max_array_size=MAX_ARRSZ; /* maximum arrays size used for allocates */

char *dml_commands[] = {"SELECT", "select", "INSERT", "insert",
 "UPDATE", "update", "DELETE", "delete"};

int select_found, cursor_open = 0;

/* Define a buffer to hold longjmp state info. */
jmp_buf jmp_continue;

/* A global flag for the error routine. */
int parse_flag = 0;

void main()
{

 /* Connect to the database. */
 if (oracle_connect() != 0)
 exit(1);

 EXEC SQL WHENEVER SQLERROR DO sql_error();

Example Programs

ANSI Dynamic SQL 14-31

 /* Allocate the input and output descriptors. */
 EXEC SQL FOR :max_array_size
 ALLOCATE DESCRIPTOR GLOBAL :indesc;
 EXEC SQL FOR :max_array_size
 ALLOCATE DESCRIPTOR GLOBAL :outdesc;

 /* Process SQL statements. */
 for (;;)
 {
 (void) setjmp(jmp_continue);

 /* Get the statement. Break on "exit". */
 if (get_dyn_statement() != 0)
 break;

 /* Prepare the statement and declare a cursor. */
 parse_flag = 1; /* Set a flag for sql_error(). */
 EXEC SQL PREPARE S FROM :dyn_statement;
 parse_flag = 0; /* Unset the flag. */

 EXEC SQL DECLARE C CURSOR FOR S;

 /* Call the function that processes the input. */
 if (process_input())
 exit(1);

 /* Open the cursor and execute the statement. */
 EXEC SQL FOR :in_array_size
 OPEN C USING DESCRIPTOR GLOBAL :indesc;
 cursor_open = 1;

 /* Call the function that processes the output. */
 if (process_output())
 exit(1);

 /* Tell user how many rows were processed. */
 rows_processed();

 } /* end of for(;;) statement-processing loop */

 /* Close the cursor. */
 if (cursor_open)
 EXEC SQL CLOSE C;

 /* Deallocate the descriptors */
 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL :indesc;
 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL :outdesc;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL COMMIT WORK RELEASE;
 puts("\nHave a good day!\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 return;
}

int get_dyn_statement()

Example Programs

14-32 Pro*C/C++ Programmer’s Guide

{
 char *cp, linebuf[256];
 int iter, plsql;

 for (plsql = 0, iter = 1; ;)
 {
 if (iter == 1)
 {
 printf("\nSQL> ");
 dyn_statement[0] = '\0';
 select_found = 0;
 }

 fgets(linebuf, sizeof linebuf, stdin);

 cp = strrchr(linebuf, '\n');
 if (cp && cp != linebuf)
 *cp = ' ';
 else if (cp == linebuf)
 continue;

 if ((strncmp(linebuf, "SELECT", 6) == 0) ||
 (strncmp(linebuf, "select", 6) == 0))
 {
 select_found=1;;
 }

 if ((strncmp(linebuf, "EXIT", 4) == 0) ||
 (strncmp(linebuf, "exit", 4) == 0))
 {
 return -1;
 }

 else if (linebuf[0] == '?' ||
 (strncmp(linebuf, "HELP", 4) == 0) ||
 (strncmp(linebuf, "help", 4) == 0))
 {
 help();
 iter = 1;
 continue;
 }

 if (strstr(linebuf, "BEGIN") ||
 (strstr(linebuf, "begin")))
 {
 plsql = 1;
 }

 strcat(dyn_statement, linebuf);

 if ((plsql && (cp = strrchr(dyn_statement, '/'))) ||
 (!plsql && (cp = strrchr(dyn_statement, ';'))))
 {
 *cp = '\0';
 break;
 }
 else
 {
 iter++;
 printf("%3d ", iter);

Example Programs

ANSI Dynamic SQL 14-33

 }
 }
 return 0;
}

int process_input()
{
 int i, j;
 char name[31];
 int input_count, input_len= MAX_VAR_LEN;
 int occurs, string_type = 5;
 int string_len;
 char arr_size[3];

 EXEC SQL DESCRIBE INPUT S USING DESCRIPTOR GLOBAL :indesc;
 EXEC SQL GET DESCRIPTOR GLOBAL :indesc :input_count = COUNT;

 if (input_count > 0 && !select_found)
 { /* get input array size */
 printf ("\nEnter value for input array size (max is %d) : ",
 max_array_size);
 fgets(arr_size, 4, stdin);
 in_array_size = atoi(arr_size);
 }
 else
 {
 in_array_size = 1;
 }
 for (i=0; i < input_count; i++)
 {
 occurs = i +1; /* occurence is 1 based */
 EXEC SQL GET DESCRIPTOR GLOBAL :indesc
 VALUE :occurs :name = NAME;

 for (j=0; j < in_array_size; j++)
 {
 if (in_array_size == 1)
 printf ("\nEnter value for input variable %*.*s: ",10,31, name);
 else
 printf ("\nEnter %d%s value for input variable %*.*s: ",
 j +1, ((j==0) ? "st" : (j==1) ? "nd" : (j==2) ? "rd" :"th"),
 10,31, name);
 fgets(input[i][j], sizeof(input[i][j]), stdin);
 string_len = strlen(input[i][j]);
 input[i][j][string_len - 1] = '\0'; /* change \n to \0 */
 }
 EXEC SQL SET DESCRIPTOR GLOBAL :indesc
 VALUE :occurs TYPE = :string_type, LENGTH = :input_len;
 EXEC SQL FOR :in_array_size
 SET DESCRIPTOR GLOBAL :indesc
 VALUE :occurs REF DATA = :input[i];
 }

 return(sqlca.sqlcode);
}

int process_output()
{

Example Programs

14-34 Pro*C/C++ Programmer’s Guide

 int i, j;
 int output_count, occurs;
 int type, output_len= MAX_VAR_LEN;
 char name[MAX_OCCURENCES][MAX_NAME_LEN];
 int rows_this_fetch=0, cumulative_rows=0;
 char arr_size[3];
 if (!select_found)
 return(0);
 EXEC SQL DESCRIBE OUTPUT S USING DESCRIPTOR GLOBAL :outdesc;

 EXEC SQL GET DESCRIPTOR GLOBAL :outdesc :output_count = COUNT;

 if (output_count > 0)
 {
 printf ("\nEnter value for output array size (max is %d) : ",
 max_array_size);
 fgets(arr_size, 4, stdin);
 out_array_size = atoi(arr_size);
 }
 if (out_array_size < 1) /* must have at least one */
 out_array_size = 1;

 printf ("\n");

 for (i = 0; i < output_count; i++)
 {
 occurs = i + 1;
 EXEC SQL GET DESCRIPTOR GLOBAL :outdesc VALUE :occurs
 :type = TYPE, :name[i] = NAME;
 occurs = i + 1; /* occurence is one based */
 type = 5; /* force all data to be null terminated character */
 EXEC SQL SET DESCRIPTOR GLOBAL :outdesc VALUE :occurs
 TYPE = :type, LENGTH = :output_len;

 iptr = (short *)&outindi[i]; /* no mult-dimension non-char host vars */
 EXEC SQL FOR :out_array_size
 SET DESCRIPTOR GLOBAL :outdesc VALUE :occurs
 REF DATA = :output[i], REF INDICATOR = :iptr;
 }

 EXEC SQL WHENEVER NOT FOUND GOTO end_select_loop;

 /* print the column headings */
 for (j=0; j < out_array_size; j++)
 for (i=0; i < output_count; i++)
 printf("%-*.*s ", 9,9, name[i]);
 printf("\n");

 /* FETCH each row selected and print the column values. */
 for (;;)
 {
 EXEC SQL FOR :out_array_size
 FETCH C INTO DESCRIPTOR GLOBAL :outdesc;
 rows_this_fetch = sqlca.sqlerrd[2] - cumulative_rows;
 cumulative_rows = sqlca.sqlerrd[2];
 if (rows_this_fetch)
 for (j=0; j < out_array_size && j < rows_this_fetch; j++)
 { /* output by columns using simplified formatting */

Example Programs

ANSI Dynamic SQL 14-35

 for (i=0; i < output_count; i++)
 {
 if (outindi[i][j] == -1)
 printf("%-*.*s ", 9, 9, "NULL");
 else
 printf("%-*.*s ", 9, 9, output[i][j]); /* simplified */
 /* output formatting may cause truncation */
 /* but columns will line up */
 }
 }
 printf ("\n");
 }

end_select_loop:
 /* print any unprinted rows */
 rows_this_fetch = sqlca.sqlerrd[2] - cumulative_rows;
 cumulative_rows = sqlca.sqlerrd[2];
 if (rows_this_fetch)
 for (j=0; j < out_array_size && j < rows_this_fetch; j++)
 { /* output by columns using simplified formatting */
 for (i=0; i < output_count; i++)
 {
 if (outindi[i][j] == -1)
 printf("%-*.*s ",9, 9, "NULL");
 else
 printf("%-*.*s ", 9, 9, output[i][j]);
 }
 }
 return(0);
}

void rows_processed()
{
 int i;
 for (i = 0; i < 8; i++)
 {
 if (strncmp(dyn_statement, dml_commands[i], 6) == 0)
 {
 printf("\n\n%d row%c processed.\n", sqlca.sqlerrd[2],
 sqlca.sqlerrd[2] == 1 ? ' ' : 's');
 break;
 }
 }
 return;
}

void help()
{
 puts("\n\nEnter a SQL statement or a PL/SQL block at the SQL> prompt.");
 puts("Statements can be continued over several lines, except");
 puts("within string literals.");
 puts("Terminate a SQL statement with a semicolon.");
 puts("Terminate a PL/SQL block (which can contain embedded semicolons)");
 puts("with a slash (/).");
 puts("Typing \"exit\" (no semicolon needed) exits the program.");
 puts("You typed \"?\" or \"help\" to get this message.\n\n");
}

Example Programs

14-36 Pro*C/C++ Programmer’s Guide

void sql_error()
{
 /* ORACLE error handler */
 printf ("\n\n%.70s\n",sqlca.sqlerrm.sqlerrmc);
 if (parse_flag)
 printf
 ("Parse error at character offset %d in SQL statement.\n",
 sqlca.sqlerrd[4]);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK;
 longjmp(jmp_continue, 1);
}

int oracle_connect()
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[128];
 VARCHAR password[32];
 EXEC SQL END DECLARE SECTION;

 printf("\nusername: ");
 fgets((char *) username.arr, sizeof username.arr, stdin);
 username.arr[strlen((char *) username.arr)-1] = '\0';
 username.len = (unsigned short)strlen((char *) username.arr);

 printf("password: ");
 fgets((char *) password.arr, sizeof password.arr, stdin);
 password.arr[strlen((char *) password.arr) - 1] = '\0';
 password.len = (unsigned short)strlen((char *) password.arr);

 EXEC SQL WHENEVER SQLERROR GOTO connect_error;

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 printf("\nConnected to ORACLE as user %s.\n", username.arr);

 return 0;

connect_error:
 fprintf(stderr, "Cannot connect to ORACLE as user %s\n", username.arr);
 return -1;
}

Oracle Dynamic SQL: Method 4 15-1

15
Oracle Dynamic SQL: Method 4

This chapter shows you how to implement Oracle dynamic SQL Method 4, which lets
your program accept or build dynamic SQL statements that contain a varying number
of host variables. Use this to support existing applications. Use ANSI Dynamic SQL
Method 4 for all new applications.

Oracle Dynamic SQL Method 4 does not support object types, cursor variables, arrays
of structs, DML returning clauses, Unicode variables, and LOBs. Use ANSI Dynamic
SQL Method 4 instead. This chapter contains the following topics:

■ Meeting the Special Requirements of Method 4

■ Understanding the SQLDA

■ Using the SQLDA Variables

■ Some Preliminaries

■ The Basic Steps

■ A Closer Look at Each Step

■ Example Program: Dynamic SQL Method 4

■ Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

Meeting the Special Requirements of Method 4
Before looking into the requirements of Method 4, you should feel comfortable with
the terms select-list item and placeholder. Select-list items are the columns or
expressions following the keyword SELECT in a query. For example, the following
dynamic query contains three select-list items:

SELECT ename, job, sal + comm FROM emp WHERE deptno = 20

Placeholders are dummy bind variables that hold places in a SQL statement for actual
bind variables. You do not declare placeholders, and can name them anything you like.

Placeholders for bind variables are most often used in the SET, VALUES, and WHERE
clauses. For example, the following dynamic SQL statements each contain two
placeholders:

INSERT INTO emp (empno, deptno) VALUES (:e, :d)

See Also:

■ Chapter 13, "Oracle Dynamic SQL" for a discussion of dynamic
SQL Methods 1, 2, and 3, and an overview of Method 4

■ Chapter 14, "ANSI Dynamic SQL"

Meeting the Special Requirements of Method 4

15-2 Pro*C/C++ Programmer’s Guide

DELETE FROM dept WHERE deptno = :num OR loc = :loc

What Makes Method 4 Special?
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

■ Accept or build dynamic SQL statements that contain an unknown number of
select-list items or placeholders, and

■ Take explicit control over datatype conversion between Oracle and C types

To add this flexibility to your program, you must give the Oracle runtime library
additional information.

What Information Does Oracle Need?
The Pro*C/C++ Precompiler generates calls to Oracle for all executable dynamic SQL
statements. If a dynamic SQL statement contains no select-list items or placeholders,
Oracle needs no additional information to execute the statement. The following
DELETE statement falls into this category:

DELETE FROM emp WHERE deptno = 30

However, most dynamic SQL statements contain select-list items or placeholders for
bind variables, as does the following

UPDATE statement:

UPDATE emp SET comm = :c WHERE empno = :e

To execute a dynamic SQL statement that contains placeholders for bind variables or
select-list items, Oracle needs information about the program variables that hold the
input (bind) values, and that will hold the FETCHed values when a query is executed.
The information needed by Oracle is:

■ The number of bind variables and select-list items

■ The length of each bind variable and select-list item

■ The datatype of each bind variable and select-list item

■ The address of each bind variable, and of the output variable that will receive each
select-list item

Where Is the Information Stored?
All the information Oracle needs about select-list items or placeholders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA). The SQLDA struct is defined in the sqlda.h header file.

Descriptions of select-list items are stored in a select descriptor, and descriptions of
placeholders for bind variables are stored in a bind descriptor.

The values of select-list items are stored in output variables; the values of bind
variables are stored in input variables. You store the addresses of these variables in the
select or bind SQLDA so that Oracle knows where to write output values and read
input values.

How do values get stored in these data variables? Output values are FETCHed using a
cursor, and input values are typically filled in by the program, usually from
information entered interactively by the user.

Understanding the SQLDA

Oracle Dynamic SQL: Method 4 15-3

How is the SQLDA Referenced?
The bind and select descriptors are usually referenced by pointer. A dynamic SQL
program should declare a pointer to at least one bind descriptor, and a pointer to at
least one select descriptor, in the following way:

#include <sqlda.h>
...
SQLDA *bind_dp;
SQLDA *select_dp;

You can then use the SQLSQLDAAlloc() function to allocate the descriptor, as
follows:

bind_dp = SQLSQLDAAlloc(runtime_context, size, name_length, ind_name_length);

SQLSQLDAAlloc() was known as sqlaldt() before Oracle8.

The constant SQL_SINGLE_RCTX is defined as (dvoid*)0. Use it for runtime_context
when your application is single-threaded.

How is the Information Obtained?
You use the DESCRIBE statement to help obtain the information Oracle needs.

The DESCRIBE SELECT LIST statement examines each select-list item to determine its
name and name length. It then stores this information in the select SQLDA for your
use. For example, you might use select-list names as column headings in a printout.
The total number of select-list items is also stored in the SQLDA by DESCRIBE.

The DESCRIBE BIND VARIABLES statement examines each placeholder to determine
its name and length, then stores this information in an input buffer and bind SQLDA
for your use. For example, you might use placeholder names to prompt the user for
the values of bind variables.

Understanding the SQLDA
This section describes the SQLDA data structure in detail. You learn how to declare it,
what variables it contains, how to initialize them, and how to use them in your
program.

Purpose of the SQLDA
Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or placeholders for bind variables. To process this kind of dynamic
SQL statement, your program must explicitly declare SQLDAs, also called descriptors.
Each descriptor is a struct which you must copy or code into your program.

A select descriptor holds descriptions of select-list items, and the addresses of output
buffers where the names and values of select-list items are stored.

See Also:

■ Table 15–3, " Precision and Scale Values for SQL Datatypes" on
page 15-13, for information on this and other SQLLIB functions

■ "Allocating a SQLDA" on page 15-4 for detailed information
about SQLSQLDAAlloc() and its parameters

Understanding the SQLDA

15-4 Pro*C/C++ Programmer’s Guide

A bind descriptor holds descriptions of bind variables and indicator variables, and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

Multiple SQLDAs
If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA(s). You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named sel_desc1, sel_
desc2, and sel_desc3, so that you can FETCH from three concurrently OPEN cursors.
However, non-concurrent cursors can reuse SQLDAs.

Declaring a SQLDA
To declare a SQLDA, include the sqlda.h header file. The contents of the SQLDA are:

struct SQLDA
{
 long N; /* Descriptor size in number of entries */
 char **V; Ptr to Arr of addresses of main variables */
 long *L; /* Ptr to Arr of lengths of buffers */
 short *T; /* Ptr to Arr of types of buffers */
 short **I; * Ptr to Arr of addresses of indicator vars */
 long F; /* Number of variables found by DESCRIBE */
 char **S; /* Ptr to Arr of variable name pointers */
 short *M; /* Ptr to Arr of max lengths of var. names */
 short *C; * Ptr to Arr of current lengths of var. names */
 char **X; /* Ptr to Arr of ind. var. name pointers */
 short *Y; /* Ptr to Arr of max lengths of ind. var. names */
 short *Z; /* Ptr to Arr of cur lengths of ind. var. names */
};

Allocating a SQLDA
After declaring a SQLDA, you allocate storage space for it with the
SQLSQLDAAlloc() library function (known as sqlaldt() before Oracle8), using the
syntax:

descriptor_name = SQLSQLDAAlloc (runtime_context, max_vars, max_name, max_ind_
name);

where:

Note: The "name" of a select-list item can be a column name, a
column alias, or the text of an expression such as sal + comm.

Syntax Description

runtime_context pointer to runtime context

max_vars Is the maximum number of select-list items or placeholders that
the descriptor can describe.

max_name Is the maximum length of select-list or placeholder names.

Using the SQLDA Variables

Oracle Dynamic SQL: Method 4 15-5

Besides the descriptor, SQLSQLDAAlloc() allocates data buffers to which descriptor
variables point.

Figure 15–1 shows whether variables are set by SQLSQLDAAlloc() calls, DESCRIBE
commands, FETCH commands, or program assignments.

Figure 15–1 How Variables Are Set

Using the SQLDA Variables
This section explains the purpose and use of each variable in the SQLDA.

The N Variable
N specifies the maximum number of select-list items or placeholders that can be
DESCRIBEd. Thus, N determines the number of elements in the descriptor arrays.

max_ind_name Is the maximum length of indicator variable names, which are
optionally appended to placeholder names. This parameter
applies to bind descriptors only, so set it to zero when allocating
a select descriptor.

See Also:

■ "Using the SQLDA Variables" on page 15-5 for information
about SQLSQLDAAlloc()

■ "Allocate Storage Space for the Descriptors" on page 15-17

Syntax Description

SELECT ENAME FROM EMP WHERE EMPNO=NUM

select–list item (SLI) placeholder (P) for
bind variable (BV)

Select SQLDA

Output Buffers Input Buffers

Address of SLI name buffer

Address of SLI value buffer

Length of SLI name

Datatype of select-list item

Length of SLI name buffer

Length of SLI value buffer

Datatype of SLI value buffer

Address of P name buffer

Address of BV value buffer

Length of P name

Length of P name buffer

Length of BV valuebuffer

Datatype of BV value buffer

Name of select-list item

Value of select-list item

Name of placeholders

Value of bind variables

Set by:
SQLSQLDAAlloc

Program

DESCRIBE

DESCRIBE

SQLSQLDAAlloc

Program

Program

DESCRIBE

FETCH

Select SQLDA

Using the SQLDA Variables

15-6 Pro*C/C++ Programmer’s Guide

Before issuing the optional DESCRIBE command, you must set N to the dimension of
the descriptor arrays using the SQLSQLDAAlloc() library function. After the
DESCRIBE, you must reset N to the actual number of variables DESCRIBEd, which is
stored in the F variable.

The V Variable
V is a pointer to an array of addresses of data buffers that store select-list or
bind-variable values.

When you allocate the descriptor, SQLSQLDAAlloc() zeros the elements V[0]
through V[N - 1] in the array of addresses.

For select descriptors, you must allocate data buffers and set this array before issuing
the FETCH command. The statement

EXEC SQL FETCH ... USING DESCRIPTOR ...

directs Oracle to store FETCHed select-list values in the data buffers to which V[0]
through V[N - 1] point. Oracle stores the ith select-list value in the data buffer to
which V[i] points.

For bind descriptors, you must set this array before issuing the OPEN command. The
statement

EXEC SQL OPEN ... USING DESCRIPTOR ...

directs Oracle to execute the dynamic SQL statement using the bind-variable values to
which V[0] through V[N - 1] point. Oracle finds the ith bind-variable value in the
data buffer to which V[i] points.

The L Variable
L is a pointer to an array of lengths of select-list or bind-variable values stored in data
buffers.

For select descriptors, DESCRIBE SELECT LIST sets the array of lengths to the
maximum expected for each select-list item. However, you might want to reset some
lengths before issuing a FETCH command. FETCH returns at most n characters, where
n is the value of L[i] before the FETCH.

The format of the length differs among Oracle datatypes. For CHAR or VARCHAR2
select-list items, DESCRIBE SELECT LIST sets L[i] to the maximum length of the
select-list item. For NUMBER select-list items, scale and precision are returned
respectively in the low and next-higher bytes of the variable. You can use the library
function SQLNumberPrecV6() to extract precision and scale values from L[i]. See
also "Extracting Precision and Scale" on page 15-12.

You must reset L[i] to the required length of the data buffer before the FETCH. For
example, when coercing a NUMBER to a C char string, set L[i] to the precision of the
number plus two for the sign and decimal point. When coercing a NUMBER to a C
float, set L[i] to the length of floats on your system. For more information about the
lengths of coerced datatypes, see also "Converting Data" on page 15-9.

For bind descriptors, you must set the array of lengths before issuing the OPEN
command. For example, you can use strlen() to get the lengths of bind-variable
character strings entered by the user, then set the appropriate array elements.

Because Oracle accesses a data buffer indirectly, using the address stored in V[i], it
does not know the length of the value in that buffer. If you want to change the length

Using the SQLDA Variables

Oracle Dynamic SQL: Method 4 15-7

Oracle uses for the ith select-list or bind-variable value, reset L[i] to the length you
need. Each input or output buffer can have a different length.

The T Variable
T is a pointer to an array of datatype codes of select-list or bind-variable values. These
codes determine how Oracle data is converted when stored in the data buffers
addressed by elements of the V array.

For select descriptors, DESCRIBE SELECT LIST sets the array of datatype codes to the
internal datatype (CHAR, NUMBER, or DATE, for example) of the items in the select
list.

Before FETCHing, you might want to reset some datatypes because the internal format
of Oracle datatypes can be difficult to handle. For display purposes, it is usually a
good idea to coerce the datatype of select-list values to VARCHAR2 or STRING. For
calculations, you might want to coerce numbers from Oracle to C format.

The high bit of T[i] is set to indicate the NULL/not NULL status of the ith select-list
item. You must always clear this bit before issuing an OPEN or FETCH command. You
use the library function SQLColumnNullCheck() to retrieve the datatype code and
clear the NULL/not NULL bit.

You should change the Oracle NUMBER internal datatype to an external datatype
compatible with that of the C data buffer to which V[i] points.

For bind descriptors, DESCRIBE BIND VARIABLES sets the array of datatype codes
to zeros. You must set the datatype code stored in each element before issuing the
OPEN command. The code represents the external (C) datatype of the data buffer to
which V[i] points. Often, bind-variable values are stored in character strings, so the
datatype array elements are set to 1 (the VARCHAR2 datatype code). You can also use
datatype code 5 (STRING).

To change the datatype of the ith select-list or bind-variable value, reset T[i] to the
datatype you want.

The I Variable
I is a pointer to an array of addresses of data buffers that store indicator-variable
values.

You must set the elements I[0] through I[N - 1] in the array of addresses.

For select descriptors, you must set the array of addresses before issuing the FETCH
command. When Oracle executes the statement

EXEC SQL FETCH ... USING DESCRIPTOR ...

if the ith returned select-list value is NULL, the indicator-variable value to which I[i]
points is set to -1. Otherwise, it is set to zero (the value is not NULL) or a positive
integer (the value was truncated).

See Also: "Converting Data" on page 15-9

See Also: "Coercing Datatypes" on page 15-11

See Also: "Handling NULL/Not NULL Datatypes" on page 15-14

Using the SQLDA Variables

15-8 Pro*C/C++ Programmer’s Guide

For bind descriptors, you must set the array of addresses and associated indicator
variables before issuing the OPEN command. When Oracle executes the statement

EXEC SQL OPEN ... USING DESCRIPTOR ...

the data buffer to which I[i] points determines whether the ith bind variable has a
NULL value. If the value of an indicator variable is -1, the value of its associated bind
variable is NULL.

The F Variable
F is the actual number of select-list items or placeholders found by DESCRIBE.

F is set by DESCRIBE. If F is less than zero, DESCRIBE has found too many select-list
items or placeholders for the allocated size of the descriptor. For example, if you set N
to 10 but DESCRIBE finds 11 select-list items or placeholders, F is set to -11. This
feature lets you dynamically reallocate a larger storage area for select-list items or
placeholders if necessary.

The S Variable
S is a pointer to an array of addresses of data buffers that store select-list or
placeholder names as they appear in dynamic SQL statements.

You use SQLSQLDAAlloc() to allocate the data buffers and store their addresses in
the S array.

DESCRIBE directs Oracle to store the name of the ith select-list item or placeholder in
the data buffer to which S[i] points.

The M Variable
M is a pointer to an array of maximum lengths of data buffers that store select-list or
placeholder names. The buffers are addressed by elements of the S array.

When you allocate the descriptor, SQLSQLDAAlloc() sets the elements M[0] through
M[N - 1] in the array of maximum lengths. When stored in the data buffer to which
S[i] points, the ith name is truncated to the length in M[i] if necessary.

The C Variable
C is a pointer to an array of current lengths of select-list or placeholder names.

DESCRIBE sets the elements C[0] through C[N - 1] in the array of current lengths.
After a DESCRIBE, the array contains the number of characters in each select-list or
placeholder name.

The X Variable
X is a pointer to an array of addresses of data buffers that store indicator-variable
names. You can associate indicator-variable values with select-list items and bind
variables. However, you can associate indicator-variable names only with bind
variables. So, X applies only to bind descriptors.

Use SQLSQLDAAlloc() to allocate the data buffers and store their addresses in the X
array.

DESCRIBE BIND VARIABLES directs Oracle to store the name of the ith indicator
variable in the data buffer to which X[i] points.

Some Preliminaries

Oracle Dynamic SQL: Method 4 15-9

The Y Variable
Y is a pointer to an array of maximum lengths of data buffers that store
indicator-variable names. Like X, Y applies only to bind descriptors.

You use SQLSQLDAAlloc() to set the elements Y[0] through Y[N - 1] in the array
of maximum lengths. When stored in the data buffer to which X[i] points, the ith
name is truncated to the length in Y[i] if necessary.

The Z Variable
Z is a pointer to an array of current lengths of indicator-variable names. Like X and Y,
Z applies only to bind descriptors.

DESCRIBE BIND VARIABLES sets the elements Z[0] through Z[N - 1] in the array
of current lengths. After a DESCRIBE, the array contains the number of characters in
each indicator-variable name.

Some Preliminaries
You need a working knowledge of the following subjects to implement dynamic SQL
Method 4:

■ Converting Data

■ Coercing Datatypes

■ Handling NULL/Not NULL Datatypes

Converting Data
This section provides more detail about the T (datatype) descriptor array. In host
programs that use neither datatype equivalencing nor dynamic SQL Method 4, the
conversion between Oracle internal and external datatypes is determined at
precompile time. By default, the precompiler assigns a specific external datatype to
each host variable in the Declare Section. For example, the precompiler assigns the
INTEGER external datatype to host variables of type int.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the T descriptor array.

Internal Datatypes
Internal datatypes specify the formats used by Oracle to store column values in
database tables, as well as the formats used to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle returns the internal
datatype code for each select-list item to the T descriptor array. For example, the
datatype code for the ith select-list item is returned to T[i].

Table 15–1 shows the Oracle internal datatypes and their codes:

Some Preliminaries

15-10 Pro*C/C++ Programmer’s Guide

External Datatypes
External datatypes specify the formats used to store values in input and output host
variables.

The DESCRIBE BIND VARIABLES command sets the T array of datatype codes to
zeros. So, you must reset the codes before issuing the OPEN command. The codes tell
Oracle which external datatypes to expect for the various bind variables. For the ith
bind variable, reset T[i] to the external datatype you want.

Table 15–2 shows the Oracle external datatypes and their codes, as well as the C
datatype normally used with each external datatype.

Table 15–1 Oracle Internal Datatypes

Oracle Internal Datatype Code

VARCHAR2 1

NUMBER 2

LONG 8

ROWID 11

DATE 12

RAW 23

LONG RAW 24

CHARACTER (or CHAR) 96

Some Preliminaries

Oracle Dynamic SQL: Method 4 15-11

Coercing Datatypes
For a select descriptor, DESCRIBE SELECT LIST can return any of the Oracle internal
datatypes. Often, as in the case of character data, the internal datatype corresponds
exactly to the external datatype you want to use. However, a few internal datatypes
map to external datatypes that can be difficult to handle. So, you might want to reset
some elements in the T descriptor array. For example, you might want to reset
NUMBER values to FLOAT values, which correspond to float values in C. Oracle does
any necessary conversion between internal and external datatypes at FETCH time. So,
be sure to reset the datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the T
array of datatype codes to tell Oracle the external datatype of each bind variable.
Oracle does any necessary conversion between external and internal datatypes at
OPEN time.

Table 15–2 Oracle External Datatypes and Datatype Codes

External Datatype Code C Datatype

VARCHAR2 1 char[n]

NUMBER 2 char[n] (n <= 22)

INTEGER 3 int

FLOAT 4 float

STRING 5 char[n+1]

VARNUM 6 char[n] (n <= 22)

DECIMAL 7 float

LONG 8 char[n]

VARCHAR 9 char[n+2]

ROWID 11 char[n]

DATE 12 char[n]

VARRAW 15 char[n]

RAW 23 unsigned char[n]

LONG RAW 24 unsigned char[n]

UNSIGNED 68 unsigned int

DISPLAY 91 char[n]

LONG VARCHAR 94 char[n+4]

LONG VARRAW 95 unsigned char[n+4]

CHAR 96 char[n]

CHARF 96 char[n]

CHARZ 97 char[n+1]

See Also:

■ Chapter , "Oracle Datatypes"

■ Oracle Database SQL Reference.

Some Preliminaries

15-12 Pro*C/C++ Programmer’s Guide

When you reset datatype codes in the T descriptor array, you are "coercing datatypes."
For example, to coerce the ith select-list value to STRING, you use the following
statement:

/* Coerce select-list value to STRING. */
select_des->T[i] = 5;

When coercing a NUMBER select-list value to STRING for display purposes, you must
also extract the precision and scale bytes of the value and use them to compute a
maximum display length. Then, before the FETCH, you must reset the appropriate
element of the L (length) descriptor array to tell Oracle the buffer length to use.

For example, if DESCRIBE SELECT LIST finds that the ith select-list item is of type
NUMBER, and you want to store the returned value in a C variable declared as float,
simply set T[i] to 4 and L[i] to the length of floats on your system.

Extracting Precision and Scale
The library function SQLNumberPrecV6() (previously known as sqlprc())
extracts precision and scale. Normally, it is used after the DESCRIBE SELECT LIST,
and its first argument is L[i]. You call SQLNumberPrecV6() using the following
syntax:

SQLNumberPrecV6(dvoid *runtime_context, int *length, int *precision,
 int *scale);

where:

See Also: "Extracting Precision and Scale" on page 15-12

Caution: In some cases, the internal datatypes that DESCRIBE
SELECT LIST returns might not suit your purposes. Two
examples of this are DATE and NUMBER. When you DESCRIBE
a DATE select-list item, Oracle returns the datatype code 12 to the
T descriptor array. Unless you reset the code before the FETCH,
the date value is returned in its 7-byte internal format. To get the
date in character format (DD-MON-YY), you can change the
datatype code from 12 to 1 (VARCHAR2) or 5 (STRING), and
increase the L value from 7 to 9 or 10.

Similarly, when you DESCRIBE a NUMBER select-list item,
Oracle returns the datatype code 2 to the T array. Unless you reset
the code before the FETCH, the numeric value is returned in its
internal format, which is probably not what you want. So, change
the code from 2 to 1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), 5
(STRING) or some other appropriate datatype.

Note: See your platform-specific SQLNumberPrecV6 header file
for the correct prototype for your platform.

Syntax Description

runtime_context Is the pointer to the runtime context

Some Preliminaries

Oracle Dynamic SQL: Method 4 15-13

When the scale is negative, add its absolute value to the length. For example, a
precision of 3 and scale of -2 allow for numbers as large as 99900.

The following example shows how SQLNumberPrecV6() is used to compute
maximum display lengths for NUMBER values that will be coerced to STRING:

/* Declare variables for the function call. */
sqlda *select_des; /* pointer to select descriptor */
int prec; /* precision */
int scal; /* scale */
extern void SQLNumberPrecV6(); /* Declare library function. */
/* Extract precision and scale. */
SQLNumberPrecV6(SQL_SINGLE_RCTX, &(select_des->L[i]), &prec, &scal);
/* Allow for maximum size of NUMBER. */
if (prec == 0)
 prec = 38;

/* Allow for possible decimal point and sign. */
select_des->L[i] = prec + 2;
/* Allow for negative scale. */
if (scal < 0)
 select_des->L[i] += -scal;

Notice that the first argument in this function call points to the ith element in the array
of lengths, and that all three parameters are addresses.

The SQLNumberPrecV6() function returns zero as the precision and scale values for
certain SQL datatypes. The SQLNumberPrecV7() function is similar, having the same
argument list, and returning the same values, except in the cases of these SQL
datatypes:

length Is a pointer to a long integer variable that stores the length of an
Oracle NUMBER value; the length is stored in L[i]. The scale and
precision of the value are stored respectively in the low and
next-higher bytes.

precision Is a pointer to an integer variable that returns the precision of
the NUMBER value. Precision is the number of significant digits.
It is set to zero if the select-list item refers to a NUMBER of
unspecified size. In this case, because the size is unspecified, you
might want to assume the maximum precision (38).

scale Is a pointer to an integer variable that returns the scale of the
NUMBER value. Scale specifies where rounding will occur. For
example, a scale of 2 means the value is rounded to the nearest
hundredth (3.456 becomes 3.46); a scale of -3 means the number
is rounded to the nearest thousand (3456 becomes 3000).

Table 15–3 Precision and Scale Values for SQL Datatypes

SQL Datatype Binary Precision Scale

FLOAT 126 -127

FLOAT(N) N (range is 1 to 126) -127

REAL 63 -127

DOUBLE PRECISION 126 -127

Syntax Description

Some Preliminaries

15-14 Pro*C/C++ Programmer’s Guide

Handling NULL/Not NULL Datatypes
For every select-list column (not expression), DESCRIBE SELECT LIST returns a
NULL/not NULL indication in the datatype array T of the select descriptor. If the ith
select-list column is constrained to be not NULL, the high-order bit of T[i] is clear;
otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the NULL/not NULL
bit is set, you must clear it. (Never set the bit.)

You can use the library function SQLColumnNullCheck() (previously was called
sqlnul()) to find out if a column allows NULLs, and to clear the datatype's
NULL/not NULL bit. You call SQLColumnNullCheck() using the syntax:

SQLColumnNullCheck(dvoid *context, unsigned short *value_type,
 unsigned short *type_code, int *null_status);
where:

The following example shows how to use SQLColumnNullCheck():

/* Declare variables for the function call. */
sqlda *select_des; /* pointer to select descriptor */
unsigned short dtype; /* datatype without null bit */
int nullok; /* 1 = null, 0 = not null */
extern void SQLColumnNullCheck(); /* Declare library function. */
/* Find out whether column is not null. */
SQLColumnNUllCheck(SQL_SINGLE_RCTX, (unsigned short *)&(select_des->T[i]), &dtype,
&nullok);
if (nullok)
{
 /* Nulls are allowed. */
 ...
 /* Clear the null/not null bit. */

SQLColumnNullCheck(SQL_SINGLE_RCTX, &(select_des->T[i]), &(select_des->T[i]),
&nullok);
}

Notice that the first and second arguments in the second call to the
SQLColumnNullCheck() function point to the ith element in the array of datatypes,
and that all three parameters are addresses.

Syntax Description

context Is a pointer to the runtime context

value_type Is a pointer to an unsigned short integer variable that stores the
datatype code of a select-list column; the datatype is stored in
T[i].

type_code Is a pointer to an unsigned short integer variable that returns the
datatype code of the select-list column with the high-order bit
cleared.

null_status Is a pointer to an integer variable that returns the null status of
the select-list column. 1 means the column allows nulls; 0 means
it does not.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-15

The Basic Steps
Method 4 can be used to process any dynamic SQL statement. In the coming example,
a query is processed so you can see how both input and output host variables are
handled.

To process the dynamic query, our example program takes the following steps:

1. Declare a host string in the Declare Section to hold the query text.

2. Declare select and bind SQLDAs.

3. Allocate storage space for the select and bind descriptors.

4. Set the maximum number of select-list items and placeholders that can be
DESCRIBEd.

5. Put the query text in the host string.

6. PREPARE the query from the host string.

7. DECLARE a cursor FOR the query.

8. DESCRIBE the bind variables INTO the bind descriptor.

9. Reset the number of placeholders to the number actually found by DESCRIBE.

10. Get values and allocate storage for the bind variables found by DESCRIBE.

11. OPEN the cursor USING the bind descriptor.

12. DESCRIBE the select list INTO the select descriptor.

13. Reset the number of select-list items to the number actually found by DESCRIBE.

14. Reset the length and datatype of each select-list item for display purposes.

15. FETCH a row from the database INTO the allocated data buffers pointed to by the
select descriptor.

16. Process the select-list values returned by FETCH.

17. Deallocate storage space used for the select-list items, placeholders, indicator
variables, and descriptors.

18. CLOSE the cursor.

A Closer Look at Each Step
This section discusses each step in detail. At the end of this chapter is a Commented,
full-length program illustrating Method 4.

With Method 4, you use the following sequence of embedded SQL statements:

EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };

EXEC SQL DECLARE cursor_name CURSOR FOR statement_name;
EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name
 INTO bind_descriptor_name;

EXEC SQL OPEN cursor_name
 [USING DESCRIPTOR bind_descriptor_name];

EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name

Note: Some of these steps are unnecessary if the dynamic SQL
statement contains a known number of select-list items or
placeholders.

A Closer Look at Each Step

15-16 Pro*C/C++ Programmer’s Guide

 INTO select_descriptor_name;
EXEC SQL FETCH cursor_name
 USING DESCRIPTOR select_descriptor_name;

EXEC SQL CLOSE cursor_name;

Scrollable cursors can also be used with Method 4. The following sequence of
embedded SQL statements must be used for scrollable cursors.

 EXEC SQL PREPARE statement_name
 FROM { :host_string | string_literal };
 EXEC SQL DECLARE cursor_name SCROLL CURSOR FOR statement_name;
 EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name
 INTO bind_descriptor_name;
 EXEC SQL OPEN cusor_name
 [USING DESCRIPTOR bind_descriptor_name];
 EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name
 INTO select_descriptor_name;
 EXEC SQL FETCH [FIRST| PRIOR|NEXT|LAST|CURRENT | RELATIVE fetch_offset
 |ABSOLUTE fetch_offset] cursor_name USING DESCRIPTOR
 select_descriptor_name;
 EXEC SQL CLOSE cursor_name;

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH cursor_name INTO host_variable_list;

Or, if the number of placeholders for bind variables in a dynamic SQL statement is
known, you can omit DESCRIBE BIND VARIABLES and use the following Method 3
OPEN statement:

EXEC SQL OPEN cursor_name [USING host_variable_list];

Next, you see how these statements allow your host program to accept and process a
dynamic SQL statement using descriptors.

■ Confine descriptor arrays to 3 elements

■ Limit the maximum length of names to 5 characters

■ Limit the maximum length of values to 10 characters

Declare a Host String
Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (select_stmt in our example) must be declared as a character string.

 ...
 int emp_number;
 VARCHAR emp_name[10];
 VARCHAR select_stmt[120];
 float bonus;

Note: Several figures accompany the following discussion. To
avoid cluttering the figures, it was necessary to do the following:

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-17

Declare the SQLDAs
In our example, instead of hardcoding the SQLDA data structure, you use INCLUDE
to copy it into your program, as follows:

#include <sqlda.h>

Then, because the query might contain an unknown number of select-list items or
placeholders for bind variables, you declare pointers to select and bind descriptors, as
follows:

sqlda *select_des;
sqlda *bind_des;

Allocate Storage Space for the Descriptors
Recall that you allocate storage space for a descriptor with the SQLSQLDAAlloc()
library function. The syntax, using ANSI C notation, is:

SQLDA *SQLSQLDAAlloc(dvoid *context, unsigned int max_vars, unsigned int max_name,
unsigned int max_ind_name);

The SQLSQLDAAlloc() function allocates the descriptor structure and the arrays
addressed by the pointer variables V, L, T, and I.

If max_name is nonzero, arrays addressed by the pointer variables S, M, and C are
allocated. If max_ind_name is nonzero, arrays addressed by the pointer variables X, Y,
and Z are allocated. No space is allocated if max_name and max_ind_name are zero.

If SQLSQLDAAlloc() succeeds, it returns a pointer to the structure. If
SQLSQLDAAlloc() fails, it returns a zero.

In our example, you allocate select and bind descriptors, as follows:

select_des = SQLSQLDAAlloc(SQL_SINGLE_RCTX, 3, (size_t) 5, (size_t) 0);
bind_des = SQLSQLDAAlloc(SQL_SINGLE_RCTX, 3, (size_t) 5, (size_t) 4);

For select descriptors, always set max_ind_name to zero so that no space is allocated for
the array addressed by X.

Set the Maximum Number to DESCRIBE
Next, you set the maximum number of select-list items or placeholders that can be
DESCRIBEd, as follows:

select_des->N = 3;
bind_des->N = 3;

Figure 15–2 and Figure 15–3 represent the resulting descriptors.

Note: In the select descriptor (Figure 15–2), the section for
indicator-variable names is crossed out to show that it is not used.

A Closer Look at Each Step

15-18 Pro*C/C++ Programmer’s Guide

Figure 15–2 Initialized Select Descriptor

N

V

L

T

I

S

M

C

Data Buffers

For names of placeholders:

0 1 2 3

set by sqlald()

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

0

1

2

3

F

X

Y

Z

0

1

2

0

1

2

0

0

0

0

1

2

0

0

0

set by sqlald()

4

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-19

Figure 15–3 Initialized Bind Descriptor

Put the Query Text in the Host String
Continuing our example, you prompt the user for a SQL statement, then store the
input string in select_stmt, as follows:

printf("\n\nEnter SQL statement: ");
gets(select_stmt.arr);
select_stmt.len = strlen(select_stmt.arr);

We assume the user entered the following string:

"SELECT ename, empno, comm FROM emp WHERE comm < :bonus"

PREPARE the Query from the Host String
PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string select_stmt and gives it the name sql_stmt, as follows:

EXEC SQL PREPARE sql_stmt FROM :select_stmt;

N

V

L

T

I

S

M

C

Data Buffers

For names of placeholders:

0 1 2 3

set by sqlald()

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

0

1

2

3

F

X

Y

Z

0

1

2

0

1

2

4

4

4

0

1

2

set by sqlald()

For names of indicators:

0 1 2

4

3

A Closer Look at Each Step

15-20 Pro*C/C++ Programmer’s Guide

DECLARE a Cursor
DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, you use the following syntax:

EXEC SQL DECLARE cursor_name CURSOR FOR SELECT ...

To declare a cursor for dynamic queries, the statement name given to the dynamic
query by PREPARE is substituted for the static query. In our example, DECLARE
CURSOR defines a cursor named emp_cursor and associates it with sql_stmt, as follows:

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

DESCRIBE the Bind Variables
DESCRIBE BIND VARIABLES puts descriptions of placeholders into a bind descriptor.
In our example, DESCRIBE readies bind_des, as follows:

EXEC SQL DESCRIBE BIND VARIABLES FOR sql_stmt INTO bind_des;

Note that bind_des must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but
precede the OPEN statement.

Figure 15–4 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set F to the actual number of placeholders found in the processed SQL
statement.

Note: You can declare a cursor for all dynamic SQL statements,
not just queries. With non-queries, OPENing the cursor executes
the dynamic SQL statement.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-21

Figure 15–4 Bind Descriptor after the DESCRIBE

Reset Number of Placeholders
Next, you must reset the maximum number of placeholders to the number actually
found by DESCRIBE, as follows:

bind_des->N = bind_des->F;

Get Values and Allocate Storage for Bind Variables
Your program must get values for the bind variables found in the SQL statement, and
allocate memory for them. How the program gets the values is up to you. For example,
they can be hardcoded, read from a file, or entered interactively.

In our example, a value must be assigned to the bind variable that replaces the
placeholder bonus in the query WHERE clause. So, you choose to prompt the user for
the value, then process it as follows:

for (i = 0; i < bind_des->F; i++)
{
 printf("\nEnter value of bind variable %.*s:\n? ",

N

V

L

T

I

S

M

C

Data Buffers

For names of placeholders:

B O N U

0 1 2 3

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

5

0

0

0

1

2

0

0

0

3

F set by DESCRIBE1

X

Y

Z

0

1

2

0

1

2

4

4

4

0

1

2

0

0

0

set by DESCRIBE

For names of indicators:

0 1 2

set by DESCRIBE

set by DESCRIBE

S

4

3

A Closer Look at Each Step

15-22 Pro*C/C++ Programmer’s Guide

 (int) bind_des->C[i], bind_des->S[i]);
 gets(hostval);
 /* Set length of value. */
 bind_des->L[i] = strlen(hostval);
 /* Allocate storage for value and null terminator. */
 bind_des->V[i] = malloc(bind_des->L[i] + 1);
 /* Allocate storage for indicator value. */
 bind_des->I[i] = (unsigned short *) malloc(sizeof(short));
 /* Store value in bind descriptor. */
 strcpy(bind_des->V[i], hostval);
 /* Set value of indicator variable. */
 (bind_des->I[i]) = 0; / or -1 if "null" is the value */
 /* Set datatype to STRING. */
 bind_des->T[i] = 5;

}

Assuming that the user supplied a value of 625 for bonus, Figure 15–5 shows the
resulting bind descriptor. Notice that the value is null-terminated.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-23

Figure 15–5 Bind Descriptor after Assigning Values

OPEN the Cursor
The OPEN statement used for dynamic queries is like that used for static queries
except that the cursor is associated with a bind descriptor. Values determined at run
time and stored in buffers addressed by elements of the bind descriptor arrays are
used to evaluate the SQL statement. With queries, the values are also used to identify
the active set.

In our example, OPEN associates emp_cursor with bind_des, as follows:

EXEC SQL OPEN emp_cursor USING DESCRIPTOR bind_des;

Remember, bind_des must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the active
set and positions the cursor at the first row.

N

V

L

T

I

S

M

C

Data Buffers

For names of placeholders:

B O N U

0 1 2 3

reset by program

0

1

2

0

1

2

3

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

5

0

0

0

1

2

1

0

0

1

F 1

X

Y

Z

0

1

2

0

1

2

4

4

4

0

1

2

0

0

0

set by program

For names of indicators:

0 1 2

reset by program

S

4

3

For values of placeholders:

0 set by program

6 2 5 \0

0 1 2 3

set by program

A Closer Look at Each Step

15-24 Pro*C/C++ Programmer’s Guide

DESCRIBE the Select List
If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement must
follow the OPEN statement but precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items in a select descriptor. In
our example, DESCRIBE readies select_des, as follows:

EXEC SQL DESCRIBE SELECT LIST FOR sql_stmt INTO select_des;

Accessing the Oracle data dictionary, DESCRIBE sets the length and datatype of each
select-list value.

Figure 15–6 shows the select descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set F to the actual number of items found in the query select list. If
the SQL statement is not a query, F is set to zero.

Also notice that the NUMBER lengths are not usable yet. For columns defined as
NUMBER, you must use the library function SQLNumberPrecV6() to extract
precision and scale.

See Also: "Coercing Datatypes" on page 15-11

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-25

Figure 15–6 Select Descriptor after the DESCRIBE

Reset Number of Select-List Items
Next, you must reset the maximum number of select-list items to the number actually
found by DESCRIBE, as follows:

select_des->N = select_des->F;

Reset Length/Datatype of Each Select-list Item
In our example, before FETCHing the select-list values, you allocate storage space for
them using the library function malloc(). You also reset some elements in the length
and datatype arrays for display purposes.

for (i=0; i<select_des->F; i++)

N

V

L

T

I

S

M

C

Data Buffers

For names of placeholders:

E

E

C

N

M

O

A

P

M

M

N

M

0 1 2 3

0

1

2

0

1

2

10

#

#

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

5

5

4

0

1

2

1

2

2

3

F set by DESCRIBE1

X

Y

Z

0

1

2

0

1

2

0

0

0

0

1

2

0

0

0

set by DESCRIBE

For names of indicators:

0 1 2

set by DESCRIBE

E

O

4

3

set by DESCRIBE

#=internal number

set by DESCRIBE

A Closer Look at Each Step

15-26 Pro*C/C++ Programmer’s Guide

{
 /* Clear null bit. */
 SQLColumnNullCheck(SQL_SINGLE_RCTX, (unsigned short *)&(select_des->T[i]),

 (unsigned short *)&(select_des->T[i]), &nullok);
 /* Reset length if necessary. */
 switch(select_des->T[i])
 {
 case 1: break;
 case 2: SQLNumberPrecV6(SQL_SINGLE_RCTX, (unsigned long *)

 &(select_des->L[i]), &prec, &scal);
 if (prec == 0) prec = 40;
 select_des->L[i] = prec + 2;
 if (scal < 0) select_des->L[i] += -scal;
 break;
 case 8: select_des->L[i] = 240;
 break;
 case 11: select_des->L[i] = 18;
 break;
 case 12: select_des->L[i] = 9;
 break;
 case 23: break;
 case 24: select_des->L[i] = 240;
 break;
 }
 /* Allocate storage for select-list value. */
 select_des->V[i] = malloc(select_des->L[i]+1);
 /* Allocate storage for indicator value. */
 select_des->I[i] = (short *)malloc(sizeof(short *));
 /* Coerce all datatypes except LONG RAW to STRING. */
 if (select_des->T[i] != 24) select_des->T[i] = 5;

}

Figure 15–7 shows the resulting select descriptor. Notice that the NUMBER lengths are
now usable and that all the datatypes are STRING. The lengths in L[1] and L[2] are
6 and 9 because we increased the DESCRIBEd lengths of 4 and 7 by 2 to allow for a
possible sign and decimal point.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-27

Figure 15–7 Select Descriptor before the FETCH

FETCH Rows from the Active Set
FETCH returns a row from the active set, stores select-list values in the data buffers,
and advances the cursor to the next row in the active set. If there are no more rows,
FETCH sets sqlca.sqlcode to the "no data found" Oracle error code. In our example,
FETCH returns the values of columns ENAME, EMPNO, and COMM to select_des, as
follows:

EXEC SQL FETCH emp_cursor USING DESCRIPTOR select_des;

Figure 15–8 shows the select descriptor in our example after the FETCH. Notice that
Oracle has stored the select-list and indicator values in the data buffers addressed by
the elements of V and I.

For names of slect-lis
N

V

L

T

I

S

M

C

Data Buffers

For names of select-list items:

E

E

C

N

M

O

A

P

M

M

N

M

0 1 2 3

reset by program

0

1

2

0

1

2

10

6

9

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

5

5

4

0

1

2

5

2

2

3

F 3

X

Y

Z

0

1

2

0

1

2

0

0

0

0

1

2

0

0

0

0 1 2

reset by program

E

O

4

3

reset by program

For values of indicators:

4 5 6 7 8

A Closer Look at Each Step

15-28 Pro*C/C++ Programmer’s Guide

For output buffers of datatype 1, Oracle, using the lengths stored in the L array,
left-justifies CHAR or VARCHAR2 data and right-justifies NUMBER data. For output
buffer of type 5 (STRING), Oracle left-justifies and null terminates CHAR,
VARCHAR2, and NUMBER data.

The value 'MARTIN' was retrieved from a VARCHAR2(10) column in the EMP table.
Using the length in L[0], Oracle left-justifies the value in a 10-byte field, filling the
buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced to '7654'.
However, the length in L[1] was increased by 2 to allow for a possible sign and
decimal point. So, Oracle left-justifies and null terminates the value in a 6-byte field.

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to '482.50'.
Again, the length in L[2] was increased by 2. So, Oracle left-justifies and null
terminates the value in a 9-byte field.

Get and Process Select-List Values
After the FETCH, your program can process the returned values. In our example,
values for columns ENAME, EMPNO, and COMM are processed.

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-29

Figure 15–8 Selected Descriptor after the FETCH

Deallocate Storage
You use the free() library function to deallocate the storage space allocated by
malloc(). The syntax is as follows:

free(char *pointer);

In our example, you deallocate storage space for the values of the select-list items, bind
variables, and indicator variables, as follows:

for (i = 0; i < select_des->F; i++) /* for select descriptor */
{
 free(select_des->V[i]);
 free(select_des->I[i]);

}
for (i = 0; i < bind_des->F; i++) /* for bind descriptor */

M

0

0

0

N

V

L

T

I

S

M

C

Data Buffers

For names of select-list items:

E

E

C

N

M

O

A

P

M

M

N

M

0 1 2 3

0

1

2

0

1

2

10

6

9

0

1

2

0

1

2

0

1

2

5

5

5

0

1

2

5

5

4

0

1

2

5

5

5

3

F 3

X

Y

Z

0

1

2

0

1

2

0

0

0

0

1

2

0

0

0

A R

7

0 1 2

E

O

4

T

6

4

3

For values of indicators:

I

5

8

N

4

2

\0

.

4 5 6

5

7

0

8 9

set by FETCH

\0

set by FETCH

\0

For names of select-list items:

A Closer Look at Each Step

15-30 Pro*C/C++ Programmer’s Guide

{
 free(bind_des->V[i]);
 free(bind_des->I[i]);

}

You deallocate storage space for the descriptors themselves with the
SQLSQLDAFree() library function, using the following syntax:

SQLSQLDAFree(context, descriptor_name);

The descriptor must have been allocated using SQLSQLDAAlloc(). Otherwise, the
results are unpredictable.

In our example, you deallocate storage space for the select and bind descriptors as
follows:

SQLSQLDAFree(SQL_SINGLE_RCTX, select_des);
SQLSQLDAFree(SQL_SINGLE_RCTX, bind_des);

CLOSE the Cursor
CLOSE disables the cursor. In our example, CLOSE disables emp_cursor as follows:

EXEC SQL CLOSE emp_cursor;

Using Host Arrays
To use input or output host arrays with Method 4, you must use the optional FOR
clause to tell Oracle the size of your host array.

You must set descriptor entries for the ith select-list item or bind variable using the
syntax

V[i] = array_address;
L[i] = element_size;

where array_address is the address of the host array, and element_size is the size of one
array element.

Then, you must use a FOR clause in the EXECUTE or FETCH statement (whichever is
appropriate) to tell Oracle the number of array elements you want to process. This
procedure is necessary because Oracle has no other way of knowing the size of your
host array.

In the complete program example later, three input host arrays are used to INSERT
rows into the EMP table. EXECUTE can be used for Data Manipulation Language
statements other than queries with Method 4.

#include <stdio.h>
#include <sqlcpr.h>
#include <sqlda.h>
#include <sqlca.h>

#define NAME_SIZE 10
#define INAME_SIZE 10
#define ARRAY_SIZE 5

/* connect string */

See Also: Chapter 8, "Host Arrays" for more information on the
FOR clause

A Closer Look at Each Step

Oracle Dynamic SQL: Method 4 15-31

char *username = "scott/tiger";

char *sql_stmt =
"INSERT INTO emp (empno, ename, deptno) VALUES (:e, :n, :d)";
int array_size = ARRAY_SIZE; /* must have a host variable too */

SQLDA *binda;

char names[ARRAY_SIZE][NAME_SIZE];
int numbers[ARRAY_SIZE], depts[ARRAY_SIZE];

/* Declare and initialize indicator vars. for empno and deptno columns */
short ind_empno[ARRAY_SIZE] = {0,0,0,0,0};
short ind_dept[ARRAY_SIZE] = {0,0,0,0,0};

main()
{
 EXEC SQL WHENEVER SQLERROR GOTO sql_error;

/* Connect */
 EXEC SQL CONNECT :username;
 printf("Connected.\n");

/* Allocate the descriptors and set the N component.
 This must be done before the DESCRIBE. */
 binda = SQLSQLDAAlloc(SQL_SINGLE_RCTX, 3, NAME_SIZE, INAME_SIZE);
 binda->N = 3;

/* Prepare and describe the SQL statement. */
 EXEC SQL PREPARE stmt FROM :sql_stmt;
 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO binda;

/* Initialize the descriptors. */
 binda->V[0] = (char *) numbers;
 binda->L[0] = (long) sizeof (int);
 binda->T[0] = 3;
 binda->I[0] = ind_empno;

 binda->V[1] = (char *) names;
 binda->L[1] = (long) NAME_SIZE;
 binda->T[1] = 1;
 binda->I[1] = (short *)0;

 binda->V[2] = (char *) depts;
 binda->L[2] = (long) sizeof (int);
 binda->T[2] = 3;
 binda->I[2] = ind_dept;

/* Initialize the data buffers. */
 strcpy(&names[0] [0], "ALLISON");
 numbers[0] = 1014;
 depts[0] = 30;

 strcpy(&names[1] [0], "TRUSDALE");
 numbers[1] = 1015;
 depts[1] = 30;

 strcpy(&names[2] [0], "FRAZIER");
 numbers[2] = 1016;
 depts[2] = 30;

Example Program: Dynamic SQL Method 4

15-32 Pro*C/C++ Programmer’s Guide

 strcpy(&names[3] [0], "CARUSO");
 numbers[3] = 1017;
 ind_dept[3] = -1; /* set indicator to -1 to insert NULL */
 depts[3] = 30; /* value in depts[3] is ignored */

 strcpy(&names[4] [0], "WESTON");
 numbers[4] = 1018;
 depts[4] = 30;

/* Do the INSERT. */
 printf("Adding to the Sales force...\n");

 EXEC SQL FOR :array_size
 EXECUTE stmt USING DESCRIPTOR binda;

/* Print rows-processed count. */
 printf("%d rows inserted.\n\n", sqlca.sqlerrd[2]);
 EXEC SQL COMMIT RELEASE;
 exit(0);

sql_error:
/* Print Oracle error message. */
 printf("\n%.70s", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

sample12.pc
A simple dynamic SQL example using array fetches is shown in file sample12.pc in
the demo directory.

Example Program: Dynamic SQL Method 4
This program shows the basic steps required to use dynamic SQL with Method 4.
After connecting to Oracle, the program:

■ Allocates memory for the descriptors using SQLSQLDAAlloc()

■ Prompts the user for a SQL statement

■ PREPAREs the statement

■ DECLAREs a cursor

■ Checks for any bind variables using DESCRIBE BIND

■ OPENs the cursor

■ DESCRIBEs any select-list items.

If the input SQL statement is a query, the program FETCHes each row of data, then
CLOSEs the cursor. This program is available on-line in the demo directory, in the file
sample10.pc.

/***
Sample Program 10: Dynamic SQL Method 4

This program connects you to ORACLE using your username and
password, then prompts you for a SQL statement. You can enter

Example Program: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 15-33

any legal SQL statement. Use regular SQL syntax, not embedded SQL.
Your statement will be processed. If it is a query, the rows
fetched are displayed.
You can enter multiline statements. The limit is 1023 characters.
This sample program only processes up to MAX_ITEMS bind variables and
MAX_ITEMS select-list items. MAX_ITEMS is #defined to be 40.
***/

#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include <sqlda.h>
#include <stdlib.h>
#include <sqlcpr.h>

/* Maximum number of select-list items or bind variables. */
#define MAX_ITEMS 40

/* Maximum lengths of the _names_ of the
 select-list items or indicator variables. */
#define MAX_VNAME_LEN 30
#define MAX_INAME_LEN 30

#ifndef NULL
#define NULL 0
#endif

/* Prototypes */
#if defined(__STDC__)
 void sql_error(void);
 int oracle_connect(void);
 int alloc_descriptors(int, int, int);
 int get_dyn_statement(void);
 void set_bind_variables(void);
 void process_select_list(void);
 void help(void);
#else
 void sql_error(/*_ void _*/);
 int oracle_connect(/*_ void _*/);
 int alloc_descriptors(/*_ int, int, int _*/);
 int get_dyn_statement(/* void _*/);
 void set_bind_variables(/*_ void -*/);
 void process_select_list(/*_ void _*/);
 void help(/*_ void _*/);
#endif

char *dml_commands[] = {"SELECT", "select", "INSERT", "insert",
 "UPDATE", "update", "DELETE", "delete"};

EXEC SQL INCLUDE sqlda;
EXEC SQL INCLUDE sqlca;

EXEC SQL BEGIN DECLARE SECTION;
 char dyn_statement[1024];
 EXEC SQL VAR dyn_statement IS STRING(1024);
EXEC SQL END DECLARE SECTION;

SQLDA *bind_dp;
SQLDA *select_dp;

Example Program: Dynamic SQL Method 4

15-34 Pro*C/C++ Programmer’s Guide

/* Define a buffer to hold longjmp state info. */
jmp_buf jmp_continue;

/* A global flag for the error routine. */
int parse_flag = 0;

void main()
{
 int i;

 /* Connect to the database. */
 if (oracle_connect() != 0)
 exit(1);

 /* Allocate memory for the select and bind descriptors. */
 if (alloc_descriptors(MAX_ITEMS, MAX_VNAME_LEN, MAX_INAME_LEN) != 0)
 exit(1);

 /* Process SQL statements. */
 for (;;)
 {
 (void) setjmp(jmp_continue);

 /* Get the statement. Break on "exit". */
 if (get_dyn_statement() != 0)
 break;

 /* Prepare the statement and declare a cursor. */
 EXEC SQL WHENEVER SQLERROR DO sql_error();

 parse_flag = 1; /* Set a flag for sql_error(). */
 EXEC SQL PREPARE S FROM :dyn_statement;
 parse_flag = 0; /* Unset the flag. */

 EXEC SQL DECLARE C CURSOR FOR S;

 /* Set the bind variables for any placeholders in the
 SQL statement. */
 set_bind_variables();

 /* Open the cursor and execute the statement.
 * If the statement is not a query (SELECT), the
 * statement processing is completed after the
 * OPEN.
 */

 EXEC SQL OPEN C USING DESCRIPTOR bind_dp;

 /* Call the function that processes the select-list.
 * If the statement is not a query, this function
 * just returns, doing nothing.
 */
 process_select_list();

 /* Tell user how many rows processed. */
 for (i = 0; i < 8; i++)
 {
 if (strncmp(dyn_statement, dml_commands[i], 6) == 0)
 {
 printf("\n\n%d row%c processed.\n", sqlca.sqlerrd[2],

Example Program: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 15-35

 sqlca.sqlerrd[2] == 1 ? '\0' : 's');
 break;
 }
 }
 } /* end of for(;;) statement-processing loop */

 /* When done, free the memory allocated for
 pointers in the bind and select descriptors. */
 for (i = 0; i < MAX_ITEMS; i++)
 {
 if (bind_dp->V[i] != (char *) 0)
 free(bind_dp->V[i]);
 free(bind_dp->I[i]); /* MAX_ITEMS were allocated. */
 if (select_dp->V[i] != (char *) 0)
 free(select_dp->V[i]);
 free(select_dp->I[i]); /* MAX_ITEMS were allocated. */
 }

 /* Free space used by the descriptors themselves. */
 SQLSQLDAFree(SQL_SINGLE_RCTX, bind_dp);
 SQLSQLDAFree(SQL_SINGLE_RCTX, select_dp);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 /* Close the cursor. */
 EXEC SQL CLOSE C;

 EXEC SQL COMMIT WORK RELEASE;
 puts("\nHave a good day!\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 return;
}

int oracle_connect()
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[128];
 VARCHAR password[32];
 EXEC SQL END DECLARE SECTION;

 printf("\nusername: ");
 fgets((char *) username.arr, sizeof username.arr, stdin);
 username.arr[strlen((char *) username.arr)-1] = '\0';
 username.len = (unsigned short)strlen((char *) username.arr);

 printf("password: ");
 fgets((char *) password.arr, sizeof password.arr, stdin);
 password.arr[strlen((char *) password.arr) - 1] = '\0';
 password.len = (unsigned short)strlen((char *) password.arr);

 EXEC SQL WHENEVER SQLERROR GOTO connect_error;

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 printf("\nConnected to ORACLE as user %s.\n", username.arr);

 return 0;

Example Program: Dynamic SQL Method 4

15-36 Pro*C/C++ Programmer’s Guide

connect_error:
 fprintf(stderr, "Cannot connect to ORACLE as user %s\n", username.arr);
 return -1;
}

/*
 * Allocate the BIND and SELECT descriptors using SQLSQLDAAlloc().
 * Also allocate the pointers to indicator variables
 * in each descriptor. The pointers to the actual bind
 * variables and the select-list items are realloc'ed in
 * the set_bind_variables() or process_select_list()
 * routines. This routine allocates 1 byte for select_dp->V[i]
 * and bind_dp->V[i], so the realloc will work correctly.
 */

alloc_descriptors(size, max_vname_len, max_iname_len)
int size;
int max_vname_len;
int max_iname_len;
{
 int i;

 /*
 * The first SQLSQLDAAlloc parameter is the runtime context.

 * The second parameter determines the maximum number of
 * array elements in each variable in the descriptor. In
 * other words, it determines the maximum number of bind
 * variables or select-list items in the SQL statement.
 *
 * The third parameter determines the maximum length of
 * strings used to hold the names of select-list items
 * or placeholders. The maximum length of column
 * names in ORACLE is 30, but you can allocate more or less
 * as needed.
 *
 * The fourth parameter determines the maximum length of
 * strings used to hold the names of any indicator
 * variables. To follow ORACLE standards, the maximum
 * length of these should be 30. But, you can allocate
 * more or less as needed.
 */

 if ((bind_dp =
 SQLSQLDAAlloc(SQL_SINGLE_RCTX, size, max_vname_len, max_iname_len)) ==
 (SQLDA *) 0)
 {
 fprintf(stderr,
 "Cannot allocate memory for bind descriptor.");
 return -1; /* Have to exit in this case. */
 }

 if ((select_dp =
 SQLSQLDAAlloc (SQL_SINGLE_RCTX, size, max_vname_len, max_iname_len)) ==
 (SQLDA *) 0)
 {
 fprintf(stderr,
 "Cannot allocate memory for select descriptor.");
 return -1;

Example Program: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 15-37

 }
 select_dp->N = MAX_ITEMS;

 /* Allocate the pointers to the indicator variables, and the
 actual data. */
 for (i = 0; i < MAX_ITEMS; i++) {
 bind_dp->I[i] = (short *) malloc(sizeof (short));
 select_dp->I[i] = (short *) malloc(sizeof(short));
 bind_dp->V[i] = (char *) malloc(1);
 select_dp->V[i] = (char *) malloc(1);
 }

 return 0;
}

int get_dyn_statement()
{
 char *cp, linebuf[256];
 int iter, plsql;

 for (plsql = 0, iter = 1; ;)
 {
 if (iter == 1)
 {
 printf("\nSQL> ");
 dyn_statement[0] = '\0';
 }

 fgets(linebuf, sizeof linebuf, stdin);

 cp = strrchr(linebuf, '\n');
 if (cp && cp != linebuf)
 *cp = ' ';
 else if (cp == linebuf)
 continue;

 if ((strncmp(linebuf, "EXIT", 4) == 0) ||
 (strncmp(linebuf, "exit", 4) == 0))
 {
 return -1;
 }

 else if (linebuf[0] == '?' ||
 (strncmp(linebuf, "HELP", 4) == 0) ||
 (strncmp(linebuf, "help", 4) == 0))
 {
 help();
 iter = 1;
 continue;
 }

 if (strstr(linebuf, "BEGIN") ||
 (strstr(linebuf, "begin")))
 {
 plsql = 1;
 }

 strcat(dyn_statement, linebuf);

Example Program: Dynamic SQL Method 4

15-38 Pro*C/C++ Programmer’s Guide

 if ((plsql && (cp = strrchr(dyn_statement, '/'))) ||
 (!plsql && (cp = strrchr(dyn_statement, ';'))))
 {
 *cp = '\0';
 break;
 }
 else
 {
 iter++;
 printf("%3d ", iter);
 }
 }
 return 0;
}

void set_bind_variables()
{
 int i, n;
 char bind_var[64];

 /* Describe any bind variables (input host variables) */
 EXEC SQL WHENEVER SQLERROR DO sql_error();

 bind_dp->N = MAX_ITEMS; /* Initialize count of array elements. */
 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO bind_dp;

 /* If F is negative, there were more bind variables
 than originally allocated by SQLSQLDAAlloc(). */
 if (bind_dp->F < 0)
 {
 printf ("\nToo many bind variables (%d), maximum is %d\n.",
 -bind_dp->F, MAX_ITEMS);
 return;
 }

 /* Set the maximum number of array elements in the
 descriptor to the number found. */
 bind_dp->N = bind_dp->F;

 /* Get the value of each bind variable as a
 * character string.
 *
 * C[i] contains the length of the bind variable
 * name used in the SQL statement.
 * S[i] contains the actual name of the bind variable
 * used in the SQL statement.
 *
 * L[i] will contain the length of the data value
 * entered.
 *
 * V[i] will contain the address of the data value
 * entered.
 *
 * T[i] is always set to 1 because in this sample program
 * data values for all bind variables are entered
 * as character strings.
 * ORACLE converts to the table value from CHAR.

Example Program: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 15-39

 *
 * I[i] will point to the indicator value, which is
 * set to -1 when the bind variable value is "null".
 */
 for (i = 0; i < bind_dp->F; i++)
 {
 printf ("\nEnter value for bind variable %.*s: ",
 (int)bind_dp->C[i], bind_dp->S[i]);
 fgets(bind_var, sizeof bind_var, stdin);

 /* Get length and remove the new line character. */
 n = strlen(bind_var) - 1;

 /* Set it in the descriptor. */
 bind_dp->L[i] = n;

 /* (re-)allocate the buffer for the value.
 SQLSQLDAAlloc() reserves a pointer location for
 V[i] but does not allocate the full space for
 the pointer. */

 bind_dp->V[i] = (char *) realloc(bind_dp->V[i],
 (bind_dp->L[i] + 1));

 /* And copy it in. */
 strncpy(bind_dp->V[i], bind_var, n);

 /* Set the indicator variable's value. */
 if ((strncmp(bind_dp->V[i], "NULL", 4) == 0) ||
 (strncmp(bind_dp->V[i], "null", 4) == 0))
 *bind_dp->I[i] = -1;
 else
 *bind_dp->I[i] = 0;

 /* Set the bind datatype to 1 for CHAR. */
 bind_dp->T[i] = 1;
 }
 return;
}

void process_select_list()
{
 int i, null_ok, precision, scale;

 if ((strncmp(dyn_statement, "SELECT", 6) != 0) &&
 (strncmp(dyn_statement, "select", 6) != 0))
 {
 select_dp->F = 0;
 return;
 }

 /* If the SQL statement is a SELECT, describe the
 select-list items. The DESCRIBE function returns
 their names, datatypes, lengths (including precision
 and scale), and NULL/NOT NULL statuses. */

 select_dp->N = MAX_ITEMS;

Example Program: Dynamic SQL Method 4

15-40 Pro*C/C++ Programmer’s Guide

 EXEC SQL DESCRIBE SELECT LIST FOR S INTO select_dp;

 /* If F is negative, there were more select-list
 items than originally allocated by SQLSQLDAAlloc(). */
 if (select_dp->F < 0)
 {
 printf ("\nToo many select-list items (%d), maximum is %d\n",
 -(select_dp->F), MAX_ITEMS);
 return;
 }

 /* Set the maximum number of array elements in the
 descriptor to the number found. */
 select_dp->N = select_dp->F;

 /* Allocate storage for each select-list item.

 SQLNumberPrecV6() is used to extract precision and scale
 from the length (select_dp->L[i]).

 sqlcolumnNullCheck() is used to reset the high-order bit of
 the datatype and to check whether the column
 is NOT NULL.

 CHAR datatypes have length, but zero precision and
 scale. The length is defined at CREATE time.

 NUMBER datatypes have precision and scale only if
 defined at CREATE time. If the column
 definition was just NUMBER, the precision
 and scale are zero, and you must allocate
 the required maximum length.

 DATE datatypes return a length of 7 if the default
 format is used. This should be increased to
 9 to store the actual date character string.
 If you use the TO_CHAR function, the maximum
 length could be 75, but will probably be less
 (you can see the effects of this in SQL*Plus).

 ROWID datatype always returns a fixed length of 18 if
 coerced to CHAR.

 LONG and
 LONG RAW datatypes return a length of 0 (zero),
 so you need to set a maximum. In this example,
 it is 240 characters.

 */

 printf ("\n");
 for (i = 0; i < select_dp->F; i++)
 {
 char title[MAX_VNAME_LEN];
 /* Turn off high-order bit of datatype (in this example,
 it does not matter if the column is NOT NULL). */
 SQLColumnNullCheck ((unsigned short *)&(select_dp->T[i]),
 (unsigned short *)&(select_dp->T[i]), &null_ok);

 switch (select_dp->T[i])

Example Program: Dynamic SQL Method 4

Oracle Dynamic SQL: Method 4 15-41

 {
 case 1 : /* CHAR datatype: no change in length
 needed, except possibly for TO_CHAR
 conversions (not handled here). */
 break;
 case 2 : /* NUMBER datatype: use SQLNumberPrecV6() to
 extract precision and scale. */
 SQLNumberPrecV6(SQL_SINGLE_RCTX,
 (unsigned long *)&(select_dp->L[i]), &precision, &scale);
 /* Allow for maximum size of NUMBER. */
 if (precision == 0) precision = 40;
 /* Also allow for decimal point and
 possible sign. */
 /* convert NUMBER datatype to FLOAT if scale > 0,
 INT otherwise. */
 if (scale > 0)
 select_dp->L[i] = sizeof(float);
 else
 select_dp->L[i] = sizeof(int);
 break;

 case 8 : /* LONG datatype */
 select_dp->L[i] = 240;
 break;

 case 11 : /* ROWID datatype */
 select_dp->L[i] = 18;
 break;

 case 12 : /* DATE datatype */
 select_dp->L[i] = 9;
 break;

 case 23 : /* RAW datatype */
 break;

 case 24 : /* LONG RAW datatype */
 select_dp->L[i] = 240;
 break;
 }
 /* Allocate space for the select-list data values.
 SQLSQLDAAlloc() reserves a pointer location for
 V[i] but does not allocate the full space for
 the pointer. */

 if (select_dp->T[i] != 2)
 select_dp->V[i] = (char *) realloc(select_dp->V[i],
 select_dp->L[i] + 1);
 else
 select_dp->V[i] = (char *) realloc(select_dp->V[i],
 select_dp->L[i]);

 /* Print column headings, right-justifying number
 column headings. */

 /* Copy to temporary buffer in case name is null-terminated */
 memset(title, ' ', MAX_VNAME_LEN);
 strncpy(title, select_dp->S[i], select_dp->C[i]);
 if (select_dp->T[i] == 2)
 if (scale > 0)

Example Program: Dynamic SQL Method 4

15-42 Pro*C/C++ Programmer’s Guide

 printf ("%.*s ", select_dp->L[i]+3, title);
 else
 printf ("%.*s ", select_dp->L[i], title);
 else
 printf("%-.*s ", select_dp->L[i], title);

 /* Coerce ALL datatypes except for LONG RAW and NUMBER to
 character. */
 if (select_dp->T[i] != 24 && select_dp->T[i] != 2)
 select_dp->T[i] = 1;

 /* Coerce the datatypes of NUMBERs to float or int depending on
 the scale. */
 if (select_dp->T[i] == 2)
 if (scale > 0)
 select_dp->T[i] = 4; /* float */
 else
 select_dp->T[i] = 3; /* int */
 }
 printf ("\n\n");

 /* FETCH each row selected and print the column values. */
 EXEC SQL WHENEVER NOT FOUND GOTO end_select_loop;

 for (;;)
 {
 EXEC SQL FETCH C USING DESCRIPTOR select_dp;

 /* Since each variable returned has been coerced to a
 character string, int, or float very little processing
 is required here. This routine just prints out the
 values on the terminal. */
 for (i = 0; i < select_dp->F; i++)
 {
 if (*select_dp->I[i] < 0)
 if (select_dp->T[i] == 4)
 printf ("%-*c ",(int)select_dp->L[i]+3, ' ');
 else
 printf ("%-*c ",(int)select_dp->L[i], ' ');
 else
 if (select_dp->T[i] == 3) /* int datatype */
 printf ("%*d ", (int)select_dp->L[i],
 *(int *)select_dp->V[i]);
 else if (select_dp->T[i] == 4) /* float datatype */
 printf ("%*.2f ", (int)select_dp->L[i],
 *(float *)select_dp->V[i]);
 else /* character string */
 printf ("%-*.*s ", (int)select_dp->L[i],
 (int)select_dp->L[i], select_dp->V[i]);
 }
 printf ("\n");
 }
end_select_loop:
 return;
}

void help()
{

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

Oracle Dynamic SQL: Method 4 15-43

 puts("\n\nEnter a SQL statement or a PL/SQL block at the SQL> prompt.");
 puts("Statements can be continued over several lines, except");
 puts("within string literals.");
 puts("Terminate a SQL statement with a semicolon.");
 puts("Terminate a PL/SQL block (which can contain embedded semicolons)");
 puts("with a slash (/).");
 puts("Typing \"exit\" (no semicolon needed) exits the program.");
 puts("You typed \"?\" or \"help\" to get this message.\n\n");
}

void sql_error()
{
 /* ORACLE error handler */
 printf ("\n\n%.70s\n",sqlca.sqlerrm.sqlerrmc);
 if (parse_flag)
 printf
 ("Parse error at character offset %d in SQL statement.\n",
 sqlca.sqlerrd[4]);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK;
 longjmp(jmp_continue, 1);
}

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors
The following demo program describes the scrollable cursor feature applied with
oracle dynamic method 4. This program is available on-line in the file
scrolldemo1.pc in your demo directory.

ScrollDemo1.pc
/*
 * This demo program exhibits the scrollable cursor feature
 * used with oracle dynamic method 4. The scrollable cursor
 * feature can also be used with ANSI dynamic method 4.
 *
 * This program takes as argument the username/passwd. Once
 * logged in, it prompts for a select query.It then prompts
 * for the orientation and prints the results of the query.
 *
 * Before executing this example, make sure that the hr/hr
 * schema exists.
 */

#include <stdio.h>
#include <sqlca.h>
#include <sqlda.h>

#include <sqlcpr.h>
#include <stdlib.h>

#include <setjmp.h>

#define MAX_SELECT_ITEMS 200
#define MAX_CHARS 500

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

15-44 Pro*C/C++ Programmer’s Guide

/* Maximum size of a select-list item name */
#define MAX_NAME_SIZE 50

SQLDA *selda;
SQLDA *bind_des;
jmp_buf beginEnv;
jmp_buf loopEnv;

/* Data buffer */
char c_data[MAX_SELECT_ITEMS][MAX_CHARS];

char username[60];
char stmt[500];

/* Print the generic error message & exit */

void sql_error()
{
 char msgbuf[512];
 size_t msgbuf_len, msg_len;

 msgbuf_len = sizeof(msgbuf);
 sqlglm(msgbuf, &msgbuf_len, &msg_len);

 printf ("\n\n%.*s\n", msg_len, msgbuf);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(EXIT_FAILURE);
}

/* Print the error message and continue to query
 the user */
void sql_loop_error()
{
 char msgbuf[512];
 size_t msgbuf_len, msg_len;
 int code = sqlca.sqlcode;

 msgbuf_len = sizeof(msgbuf);
 sqlglm(msgbuf, &msgbuf_len, &msg_len);

 printf ("\n%.*s\n", msg_len, msgbuf);
 printf("The error code is %d\n", sqlca.sqlcode);
 if (code==-900 || code == -942 || code == -904)
 longjmp(beginEnv, 1);

 longjmp(loopEnv, 1);
}

/* FETCH has returned the "no data found" error code.
 This means that either we have reached the end of
 the active set or the offset refers to a row beyond the
 active set */
void no_data_found()
{
 printf("\nNo Data available at the specified offset\n");
 longjmp(loopEnv, 1);
}

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

Oracle Dynamic SQL: Method 4 15-45

void main(int argc, char *argv[])
{
 int i, n;
 int sli; /* select-list item */
 int offset;
 int contFlag;
 char bindVar[20];
 char *u, temp[3];
 char choice;

 /* Error Handler */
 EXEC SQL WHENEVER SQLERROR DO sql_error();

 if (argc == 1)
 {
 printf("Logging in as default user hr\n");
 strcpy(username, "hr/hr");
 }
 else
 strcpy(username, argv[1]);

 /* Establish a connection to the data base */
 EXEC SQL CONNECT :username;

 u = username;
 while(*++u != '/');
 *u = '\0';

 /* Error Handler */
 EXEC SQL WHENEVER SQLERROR DO sql_loop_error();
 for (;;)
 {

 setjmp(beginEnv);
 printf("[%s] SQL > ", username);
 gets(stmt);
 if (!strlen(stmt))
 continue;

 if (!strcmp(tolower(stmt), "exit"))
 break;

 selda = sqlald(MAX_SELECT_ITEMS, MAX_NAME_SIZE, 0);
 bind_des = sqlald(MAX_SELECT_ITEMS, MAX_NAME_SIZE, 30);

 /* prepare an sql statement for the query*/
 EXEC SQL PREPARE S FROM :stmt;

 /* Declare a cursor as scrollable */
 EXEC SQL DECLARE C SCROLL CURSOR FOR S;

 for (i=0; i<MAX_SELECT_ITEMS; i++)
 {
 bind_des->I[i] = (short *) malloc(sizeof (short));
 bind_des->V[i] = (char *) malloc(1);
 }
 bind_des->N = MAX_SELECT_ITEMS;

 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO bind_des;

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

15-46 Pro*C/C++ Programmer’s Guide

 /* set up the bind variables */
 if (bind_des->F < 0)
 {
 printf("Bind descriptor, value exceeds the limit\n");
 exit(-1);
 }

 bind_des->N = bind_des->F;
 for (i=0; i<bind_des->F; i++)
 {
 printf("Enter the value for bind variable %.*s: ",
 (int)bind_des->C[i], bind_des->S[i]);

 fgets(bindVar, sizeof(bindVar), stdin);
 n = strlen(bindVar) - 1;

 bind_des->L[i] = n;
 bind_des->V[i] = (char *) realloc(bind_des->V[i],
 (bind_des->L[i] +1));

 strncpy(bind_des->V[i], bindVar, n);
 if ((strncmp(bind_des->V[i], "NULL", 4) == 0) ||
 (strncmp(bind_des->V[i], "null", 4) == 0))
 *bind_des ->I[i] = -1;
 else
 *bind_des ->I[i] = 0;

 bind_des->T[i] = 1;
 }

 /* open the cursor */
 EXEC SQL OPEN C USING DESCRIPTOR bind_des;
 EXEC SQL DESCRIBE SELECT LIST FOR S INTO selda;

 if (selda->F < 0)
 {
 printf("Select descriptor, value exceeds the limit\n");
 exit(-1);
 }

 selda->N = selda->F;
 for (sli = 0; sli < selda->N; sli++)
 {
 /* Set addresses of heads of the arrays
 in the V element. */
 selda->V[sli] = c_data[sli];
 /* Convert everything to varchar on output. */
 selda->T[sli] = 1;
 /* Set the maximum lengths. */
 selda->L[sli] = MAX_CHARS;
 }

 while(1)
 {

 printf("\n\nEnter the row number to be fetched \n");
 printf("1.ABSOLUTE\n");
 printf("2.RELATIVE\n");
 printf("3.FIRST \n");

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

Oracle Dynamic SQL: Method 4 15-47

 printf("4.NEXT \n");
 printf("5.PREVIOUS \n");
 printf("6.LAST \n");
 printf("7.CURRENT \n");
 printf("Enter your choice --> ");
 scanf("%c",&choice);

 EXEC SQL WHENEVER NOT FOUND DO no_data_found();
 switch(choice)
 {
 case '1': printf("\nEnter Offset :");
 scanf("%d",&offset);
 EXEC SQL FETCH ABSOLUTE :offset C USING DESCRIPTOR selda;
 break;
 case '2': printf("\nEnter Offset :");
 scanf("%d",&offset);
 EXEC SQL FETCH RELATIVE :offset C USING DESCRIPTOR selda;
 break;
 case '3': EXEC SQL FETCH FIRST C USING DESCRIPTOR selda;
 break;
 case '4': EXEC SQL FETCH NEXT C USING DESCRIPTOR selda;
 break;
 case '5': EXEC SQL FETCH PRIOR C USING DESCRIPTOR selda;
 break;
 case '6': EXEC SQL FETCH LAST C USING DESCRIPTOR selda;
 break;
 case '7': EXEC SQL FETCH CURRENT C USING DESCRIPTOR selda;
 break;
 default : printf("Invalid choice\n");
 continue;
 }

 /* print the row */
 for (sli=0; sli<selda->N; sli++)
 printf("%.10s ", c_data[sli]);

 puts("");

 setjmp(loopEnv);
 contFlag = 'x';
 while(contFlag != 'Y' && contFlag != 'N')
 {
 printf("\nContinue with the current fetch? [y/n] : ");
 contFlag = toupper(getchar());
 }

 if (contFlag != 'Y')
 break;
 }

 EXEC SQL CLOSE C;
 }

 EXEC SQL ROLLBACK RELEASE;
 exit(EXIT_SUCCESS);
}

Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

15-48 Pro*C/C++ Programmer’s Guide

Large Objects (LOBs) 16-1

16
Large Objects (LOBs)

This chapter describes the support provided by embedded SQL statements for the
LOB (Large Object) datatypes.

The four types of LOBs are introduced and compared to the older LONG and LONG
RAW datatypes.

The embedded SQL interface in Pro*C/C++ is shown to provide similar functionality
to that of the Oracle Call Interface API and the PL/SQL language.

The LOB statements and their options and host variables are presented.

Lastly, examples of Pro*C/C++ programs using the LOB interface are presented as
simple illustrations of usage.

This chapter contains the following topics:

■ What are LOBs?

■ How to Use LOBs in Your Program

■ Rules for LOB Statements

■ LOB Statements

■ LOBs and the Navigational Interface

■ LOB Program Examples

What are LOBs?
Use LOB (large object) columns to store large amounts of data (maximum size is 4
Gigabytes) such as ASCII text, National Character text, files in various graphics
formats, and sound wave forms.

Internal LOBs
Internal LOBs (BLOBs, CLOBs, NCLOBs) are stored in database table spaces and have
transactional support (Commit, Rollback, and so on. work with them) of the database
server.

BLOBs (Binary LOBs) store unstructured binary (also called "raw") data, such as video
clips.

CLOBs (Character LOBs) store large blocks of character data from the database
character set.

NCLOBs (National Character LOBs) store large blocks of character data from the
National Character Set.

What are LOBs?

16-2 Pro*C/C++ Programmer’s Guide

External LOBs
External LOBs are operating system files outside the database tablespaces, that have
no transactional support from the database server.

BFILEs (Binary Files) store data in external binary files. A BFILE can be in GIF, JPEG,
MPEG, MPEG2, text, or other formats.

Security for BFILEs
The DIRECTORY object is used to access and use BFILEs. The DIRECTORY is a logical
alias name (stored in the server) for the actual physical directory in the server file
system containing the file. Users are permitted to access the file only if granted access
privilege on the DIRECTORY object.

■ The DDL (Data Definition Language) SQL statements CREATE, REPLACE,
ALTER, and DROP are used with DIRECTORY database objects.

■ The DML (Data Management Language) SQL statements are used to GRANT and
REVOKE the READ system and object privileges on DIRECTORY objects.

A example CREATE DIRECTORY directive is:

EXEC SQL CREATE OR REPLACE DIRECTORY "Mydir" AS '/usr/home/mydir' ;

Other users or roles can read the directory only if you grant them permission with a
DML (Data Manipulation Language) statement, such as GRANT. For example, to
allow user scott to read BFILES in directory /usr/home/mydir:

EXEC SQL GRANT READ ON DIRECTORY "Mydir" TO scott ;

Up to 10 BFILES can be opened simultaneously in one session. This default value can
be changed by setting the SESSION_MAX_OPEN_FILES parameter.

See Oracle Database Application Developer's Guide - Fundamentals for more details on
DIRECTORY objects and BFILE security. See Oracle Database SQL Reference for more
details on the GRANT command.

LOBs versus LONG and LONG RAW
LOBs are different from the older LONG and LONG RAW datatypes in many ways.

■ The maximum size of a LOB is 4 Gigabytes versus 2 Gigabytes for LONG and
LONG RAW.

■ You can use random as well as sequential access methods on LOBs; you can only
use sequential access methods on LONG and LONG RAW.

■ LOBs (except NCLOBs) can be attributes of an object type that you define.

■ Tables can have multiple LOB columns, but can have only one LONG or LONG
RAW column.

Migration of existing LONG and LONG Raw attributes to LOBs is recommended by
Oracle. Oracle plans to end support of LONG and LONG RAW in future releases. See
Oracle9i Database Migration for more information on migration.

LOB Locators
A LOB locator points to the actual LOB contents. The locator is returned when you
retrieve the LOB, not the LOB's contents. LOB locators cannot be saved in one
transaction or session and used again in a later transaction or session.

How to Use LOBs in Your Program

Large Objects (LOBs) 16-3

Temporary LOBs
You can create temporary LOBs, that are like local variables, to assist your use of
database LOBs. Temporary LOBs are not associated with any table, are only accessible
by their creator, have locators (which is how they are accessed), and are deleted when
a session ends.

There is no support for temporary BFILES. Temporary LOBs are only permitted to be
input variables (IN values) in the WHERE clauses of INSERT, UPDATE, or DELETE
statements. They are also permitted as values inserted by an INSERT statement, or a
value in the SET clause of an UPDATE statement. Temporary LOBs have no
transactional support from the database server, which means that you cannot do
COMMITS or ROLLBACKs on them.

Temporary LOB locators can span transactions. They also are deleted when the server
abnormally terminates, and when an error is returned from a database SQL operation.

LOB Buffering Subsystem
The LBS (LOB Buffering Subsystem) is an area of user memory provided for use as a
buffer for one or more LOBs in the client's address space.

Buffering has these advantages, especially for applications on a client that does many
small reads and writes to specific regions of the LOB:

■ The LBS reduces round trips to the server because you fill the buffer with multiple
reads/writes to the LOBs, then write to the server when a FLUSH directive is
executed.

■ Buffering also reduces the total number of LOB updates on the server. This creates
better LOB performance and saves disk space.

Oracle provides a simple buffer subsystem; not a cache. Oracle does not guarantee that
the contents of a buffer are always synchronized with the server LOB value. Use the
FLUSH statement to actually write updates in the server LOB.

Buffered read/write of a LOB are performed through its locator. A locator enabled for
buffering provides a consistent read version of the LOB until you perform a write
through that locator.

After being used for a buffered WRITE, a locator becomes an updated locator and
provides access to the latest LOB version as seen through the buffering subsystem. All
further buffered WRITEs to the LOB can only be done through this updated locator.
Transactions involving buffered LOB operations cannot migrate across user sessions.

The LBS is managed by the user, who is responsible for updating server LOB values by
using FLUSH statements to update them. It is single-user and singlethreaded. Use
ROLLBACK and SAVEPOINT actions to guarantee correctness in the server LOBs.
Transactional support for buffered LOB operations is not guaranteed by Oracle. To
ensure transactional semantics for buffered LOB updates, you must maintain logical
savepoints to perform a rollback in the event of an error.

For more information on the LBS, see Oracle Database Application Developer's Guide -
Fundamentals.

How to Use LOBs in Your Program
This section describes some of the important programming issues related to the use of
LOBs in your Pro*C/C++ application.

How to Use LOBs in Your Program

16-4 Pro*C/C++ Programmer’s Guide

Three Ways to Access LOBs
The three methods available to access LOBs in Pro*C/C++ are:

■ The DBMS_LOB package inside PL/SQL blocks.

■ OCI (Oracle Call Interface) function calls.

■ Embedded SQL statements.

The SQL statements are designed to give users a functional equivalent to the PL/SQL
interface while avoiding the complexity of the OCI interface.

The following table compares LOB access by OCI function calls in Pro*C/C++,
PL/SQL, and embedded SQL statements in Pro*C/C++. Empty boxes indicate missing
functionality.

Table 16–1 LOB Access Methods

OCI 1 PL/SQL2 Pro*C/C++ Embedded SQL

- COMPARE() -

- INSTR() -

- SUBSTR() -

OCILobAppend APPEND() APPEND

OCILobAssign := ASSIGN

OCILobCharSetForm - -

OCICharSetId - -

OCILobClose CLOSE() CLOSE

OCILobCopy COPY() COPY

OCILobCreateTemporary CREATETEMPORARY() CREATE TEMPORARY

OCILobDisableBuffering - DISABLE BUFFERING

OCILobEnableBuffering - ENABLE BUFFERING

OCILobErase ERASE() ERASE

OCILobGetChunkSize GETCHUNKSIZE() DESCRIBE

OCILobIsOpen ISOPEN() DESCRIBE

OCILobFileClose FILECLOSE() CLOSE

OCILobFileCloseAll FILECLOSEALL() FILE CLOSE ALL

OCILobFileExists FILEEXISTS() DESCRIBE

OCILobFileGetName FILEGETNAME() DESCRIBE

OCILobFileIsOpen FILEISOPEN() DESCRIBE

OCILobFileOpen FILEOPEN() OPEN

OCILobFileSetName BFILENAME() FILE SET3

OCILobFlushBuffer - FLUSH BUFFER

OCILobFreeTemporary FREETEMPORARY() FREE TEMPORARY

OCILobGetLength GETLENGTH() DESCRIBE

OCILobIsEqual = -

OCILobIsTemporary ISTEMPORARY() DESCRIBE

How to Use LOBs in Your Program

Large Objects (LOBs) 16-5

LOB Locators in Your Application
To use a LOB locator in your Pro*C/C++ application, include the oci.h header file and
declare a pointer to the type OCIBlobLocator for BLOBs, OCIClobLocator for CLOBs
and NCLOBs, or OCIBFileLocator for BFILEs.

For an NCLOB, you must either

■ Use the clause 'CHARACTER SET IS NCHAR_CS' in the C/C++ declaration,

■ Or, you must have already used an NLS_CHAR precompiler option on the
command line or in a configuration file to set the NLS_NCHAR environment
variable.

Here is how it is done:

/* In your precompiler program */
#include <oci.h>
...
OCIClobLocator CHARACTER SET IS NCHAR_CS *a_nclob ;

Or, if you have already set the precompiler option NLS_CHAR this way when
invoking Pro*C/C++:

NLS_CHAR=(a_nclob)

you can omit the CHARACTER SET clause in your code:

#include <oci.h>
...
OCIClobLocator *a_nclob ;

The other declarations are simple:

OCILobLoadFromFile LOADFROMFILE() LOAD FROM FILE

OCILobLocatorIsInit - -

OCILobOpen OPEN() OPEN

OCILobRead READ() READ

OCILobTrim TRIM() TRIM

OCILobWrite WRITE() WRITE

OCILobWriteAppend WRITEAPPEND() WRITE
1 For C/C++ users only. Prototypes for these functions are in ociap.h.
2From dbmslob.sql. All routines are prefixed with 'DBMS_LOB.' except BFILENAME.
3 The BFILENAME() built in SQL function may also be used.

Note: You must explicitly lock the row before using any of the
new statements that modify or change a LOB in any way.
Operations that can modify a LOB value are APPEND, COPY,
ERASE, LOAD FROM FILE, TRIM, and WRITE.

See Also: "NLS_CHAR" on page 10-24

Table 16–1 (Cont.) LOB Access Methods

OCI 1 PL/SQL2 Pro*C/C++ Embedded SQL

How to Use LOBs in Your Program

16-6 Pro*C/C++ Programmer’s Guide

/* In your precompiler program */
#include <oci.h>
...
OCIBlobLocator *a_blob ;
OCIClobLocator *a_clob ;
OCIBFileLocator *a_bfile ;

Initializing a LOB
There are different techniques which are used to intialize the different types of LOBs.
Each is described in this section.

Internal LOBs
To initialize a BLOB to empty, use the EMPTY_BLOB() function or, use the ALLOCATE
SQL statement. For CLOBs and NCLOBs, use the EMPTY_CLOB() function. See Oracle
Database SQL Reference for more about EMPTY_BLOB() and EMPTY_CLOB().

These functions are permitted only in the VALUES clause of an INSERT statement or
as the source of the SET clause in an UPDATE statement.

For example:

EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (EMPTY_BLOB(), EMPTY_CLOB()) ;

The ALLOCATE statement allocates a LOB locator and initializes it to empty. So, the
following code is equivalent to the previous example:

#include <oci.h>
...
OCIBlobLocator *blob ;
OCIClobLocator *clob ;
EXEC SQL ALLOCATE :blob ;
EXEC SQL ALLOCATE :clob ;
EXEC SQL INSERT INTO lob_table (a_blob, a_clob)
 VALUES (:blob, :clob) ;

External LOBs
Use the LOB FILE SET statement to initialize the DIRECTORY alias of the BFILE and
FILENAME this way:

#include <oci.h>
...
char *alias = "lob_dir" ;
char *filename = "image.gif" ;
OCIBFileLocator *bfile ;
EXEC SQL ALLOCATE :bfile ;
EXEC SQL LOB FILE SET :bfile
 DIRECTORY = :alias, FILENAME = :filename ;
EXEC SQL INSERT INTO file_table (a_bfile) VALUES (:bfile) ;

Refer to Oracle Database Application Developer's Guide - Fundamentals for a complete
description of DIRECTORY object naming conventions and DIRECTORY object
privileges.

Alternatively, you can use the BFILENAME('directory', 'filename') function in an
INSERT or UPDATE statement to initialize a BFILE column or attribute for a particular
row, and give the name of the actual physical directory and filename:

EXEC SQL INSERT INTO file_table (a_bfile)

Rules for LOB Statements

Large Objects (LOBs) 16-7

 VALUES (BFILENAME('lob_dir', 'image.gif'))
 RETURNING a_bfile INTO :bfile ;

Temporary LOBs
A temporary LOB is initialized to empty when it is first created using the embedded
SQL LOB CREATE TEMPORARY statement. The EMPTY_BLOB() and EMPTY_
CLOB() functions cannot be used with temporary LOBs.

Freeing LOBs
The FREE statement is used to free the memory reserved by an ALLOCATE statement:

EXEC SQL FREE :a_blob;

Rules for LOB Statements
Here are the rules for using LOB statements:

For All LOB Statements
These general restrictions and limitations apply when manipulating LOBs with the
SQL LOB statements:

■ The FOR clause is not allowed in EXEC SQL LOB statements since only one LOB
locator can be used in those statements.

■ Distributed LOBs are not supported. Although you may use the AT database
clause in any of the new embedded SQL LOB statements, you cannot mix LOB
locators that were created or ALLOCATEd using different database connections in
the same SQL LOB statement.

■ For the LOB READ and WRITE operations, OCI provides a callback mechanism
whereby the client can specify a callback function that will be executed each time a
piece of the LOB value is either read or written. The embedded SQL LOB
approach does not support this capability.

■ OCI provides a mechanism that allows users to create and specify their own
durations that can be used when creating temporary LOBs. There is also a
mechanism for specifying that the buffer cache be used for READ and WRITE
operations on temporary LOBs. This interface does not support these capabilities.

For the LOB Buffering Subsystem
For the LBS, these rules must be followed:

■ Errors in read or write accesses are reported at the next access to the server.
Therefore, error recovery has to be coded by you, the user.

■ When updating a LOB with buffered writes, do not update the same LOB with a
method that bypasses the LOB Buffering Subsystem.

Note: BFILENAME() does not check permissions on the directory
or filename, or whether the physical directory actually exists.
Subsequent file accesses that use the BFILE locator will do those
checks and return an error if the file is inaccessible.

Rules for LOB Statements

16-8 Pro*C/C++ Programmer’s Guide

■ An updated LOB locator enabled for buffering can be passed as an IN parameter
to a PL/SQL procedure, but not as an IN OUT or OUT parameter. An error is
returned, An error also is returned when there is an attempt to return an updated
locator.

■ An ASSIGN of an updated locator enabled for buffering to another locator is not
allowed.

■ You can append to the LOB value with buffered writes, but the starting offset must
be one character after the end of the LOB. The LBS does not allow APPEND
statements resulting in zero-byte fillers or spaces in LOBs in the database server.

■ The character sets of the host locator bind variable and the database server CLOB
must be the same.

■ Only ASSIGN, READ and WRITE statements work with a locator enabled for
buffering.

■ The following statements result in errors when used with a locator enabled for
buffering: APPEND, COPY, ERASE, DESCRIBE (LENGTH only), and TRIM.
Errors are also returned when you use these statements with a locator that is not
enabled for buffering, if the LOB pointed to by the locator is being accessed in
buffered mode by another locator.

■ Committing the transaction.

■ Migrating from the current transaction to another.

■ Disabling buffer operations on a LOB.

■ Returning from an external procedure execution back to the PL/SQL routine.

Follow this recipe:

■ Call the external callout.

■ ENABLE the locator for buffering.

■ READ or WRITE using the locator.

■ FLUSH the LOB (LOBs are never implicitly flushed).

■ Disable the locator for buffering.

■ Return to the function/procedure/method in PL/SQL.

You have to explicitly FLUSH a LOB.

For Host Variables
Use the following rules and notes for the LOB statements:

■ src and dst can refer to either internal or external LOB locators, but file refers only
to external locators.

Note: The FLUSH statement must be used on a LOB enabled by
the LOB Buffering Subsystem before.

Note: If an external callout is called from a PL/SQL block with a
locator parameter, then all buffering, including the ENABLE
statement should be done inside the callout.

LOB Statements

Large Objects (LOBs) 16-9

■ Numeric host values (amt, src_offset, dst_offset, and so on) are
declared as a 4-byte unsigned integer variable. The values are restricted between
0 and 4 Gigabytes.

■ The concept of NULL is part of a LOB locator. There is no need for indicator
variables in the LOB statements. NULL cannot be used with numeric value
variables such as amt, src_offset, and so on and result in an error.

■ The offset values src_offset and dst_offset have default values 1.

LOB Statements
The statements are presented alphabetically. In all the statements where it appears,
database refers to a database connection

APPEND

Purpose
This statement appends a LOB value at the end of another LOB.

Syntax
EXEC SQL [AT [:]database] LOB APPEND :src TO :dst ;

Host Variables
src (IN)

An internal LOB locator uniquely referencing the source LOB.

dst (IN OUT)

An internal LOB locator uniquely referencing the destination LOB.

Usage Notes
The data is copied from the source LOB to the end of the destination LOB, extending
the destination LOB up to a maximum of 4 Gigabytes. If the LOB is extended beyond 4
Gigabytes, an error will occur.

The source and destination LOBs must already exist and the destination LOB must be
initialized.

Both the source and destination LOBs must be of the same internal LOB type. It is an
error to have enabled LOB buffering for either type of locator.

ASSIGN

Purpose
Assigns a LOB or BFILE locator to another.

Syntax
EXEC SQL [AT [:]database] LOB ASSIGN :src to :dst ;

Host Variables
src (IN)

LOB or BFILE locator source copied from.

LOB Statements

16-10 Pro*C/C++ Programmer’s Guide

dst (IN OUT)

LOB or BFILE locator copied to.

Usage Notes
After the assignment, both locators refer to the same LOB value. The destination LOB
locator must be a valid initialized (ALLOCATEd) locator.

For internal LOBs, the source locator's LOB value is copied to the destination locator's
LOB value only when the destination locator is stored in the table. For Pro*C/C++,
issuing a FLUSH of an object containing the destination locator will copy the LOB
value.

An error is returned when a BFILE locator is assigned to an internal LOB locator and
vice-versa. It is also an error if the src and dst LOBs are not of the same type.

If the source locator is for an internal LOB that was enabled for buffering, and the
source locator has been used to modify the LOB value through the LOB Buffering
Subsystem, and the buffers have not been FLUSHed since the WRITE, then the source
locator cannot be assigned to the destination locator. This is because only one locator
for each LOB can modify the LOB value through the LOB Buffering Subsystem.

CLOSE

Purpose
Close an open LOB or BFILE.

Syntax
EXEC SQL [AT [:]database] LOB CLOSE :src ;

Host Variables
src (IN OUT)

The locator of the LOB or BFILE to be closed.

Usage Notes
It is an error to close the same LOB twice either with different locators or with the
same locator. For external LOBs, no error is produced if the BFILE exists but has not
been opened.

It is an error to COMMIT a transaction before closing all previously opened LOBs. At
transaction ROLLBACK time, all LOBs that are still open will be discarded without
first being closed.

COPY

Purpose
Copy all or part of a LOB value into a second LOB.

Syntax
EXEC SQL [AT [:]database] LOB COPY :amt FROM :src [AT :src_offset]
 TO :dst [AT :dst_offset] ;

LOB Statements

Large Objects (LOBs) 16-11

Host Variables
amt (IN)

The maximum number of bytes for BLOBs, or characters for CLOBs and NCLOBs, to
copy.

src (IN)

The locator of the source LOB.

src_offset (IN)

This is the number of characters for CLOB or NCLOB, and the number of bytes for a
BLOB, starting from 1 at the beginning of the LOB.

dst (IN)

The locator of the destination LOB.

dst_offset (IN)

The destination offset. Same rules as for src_offset.

Usage Notes
If the data already exists at the destination's offset and beyond, it is overwritten with
the source data. If the destination's offset is beyond the end of the current data,
zero-byte fillers (BLOBs) or spaces (CLOBs) are written into the destination LOB from
the end of the current data to the beginning of the newly written data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is a runtime error to extend this
LOB beyond 4 Gigabytes.

It is also an error to try to copy from a LOB that is not initialized.

Both the source and destination LOBs must be of the same type. LOB buffering must
not be enabled for either locator.

The amt variable indicates the maximum amount to copy. If the end of the source LOB
is reached before the specified amount is copied, the operation terminates without an
error.

To make a temporary LOB permanent, the COPY statement must be used to explicitly
COPY the temporary LOB into a permanent one.

CREATE TEMPORARY

Purpose
Creates a temporary LOB.

Syntax
EXEC SQL [AT [:]database] LOB CREATE TEMPORARY :src ;

Host Variables
src (IN OUT)

Before execution, when IN, src is a LOB locator previously ALLOCATEd.

After execution, when OUT, src is a LOB locator that will point to a new empty
temporary LOB.

LOB Statements

16-12 Pro*C/C++ Programmer’s Guide

Usage Notes
After successful execution, the locator points to a newly created temporary LOB that
resides on the database server independent of a table. The temporary LOB is empty
and has zero length.

At the end of a session, all temporary LOBs are freed. READs and WRITEs to
temporary LOBs never go through the buffer cache.

DISABLE BUFFERING

Purpose
Disables LOB buffering for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB DISABLE BUFFERING :src ;

Host Variable
src (IN OUT)

An internal LOB locator.

Usage Notes
This statement does not support BFILEs. Subsequent reads or writes will not be done
through the LBS.

ENABLE BUFFERING

Purpose
Enables LOB buffering for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB ENABLE BUFFERING :src ;

Host Variable
src (IN OUT)

An internal LOB locator.

Usage Notes
This statement does not support BFILEs. Subsequent reads and writes are done
through the LBS.

ERASE

Purpose
Erases a given amount of LOB data starting from a given offset.

Note: Use a FLUSH BUFFER command to make changes
permanent, since this statement does not implicitly flush the
changes made in the LOB Buffering Subsystem.

LOB Statements

Large Objects (LOBs) 16-13

Syntax
EXEC SQL [AT [:]database] LOB ERASE :amt FROM :src [AT :src_offset] ;

Host Variables
amt (IN OUT)

The input is the number of bytes or characters to erase. The returned output is the
actual number erased.

src (IN OUT)

An internal LOB locator.

src_offset (IN)

The offset from the beginning of the LOB, starting from 1.

Usage Notes
This statement does not support BFILEs.

After execution, amt returns the actual number of characters/bytes that were erased.
The actual number and requested number will differ if the end of the LOB value is
reached before erasing the requested number of characters/bytes. If the LOB is empty,
amt will indicate that 0 characters/bytes were erased.

For BLOBs, erasing means zero-byte fillers overwrite the existing LOB value. For
CLOBs, erasing means that spaces overwrite the existing LOB value.

FILE CLOSE ALL

Purpose
Closes all BFILES opened in the current session.

Syntax
EXEC SQL [AT [:]database] LOB FILE CLOSE ALL ;

Usage Notes
If there are any open files in the session whose closure has not been handled properly,
you can use the FILE CLOSE ALL statement to close all files opened in the session, and
resume file operations from the beginning.

FILE SET

Purpose
Sets DIRECTORY alias and FILENAME in a BFILE locator.

Syntax
EXEC SQL [AT [:]database] LOB FILE SET :file
 DIRECTORY = :alias, FILENAME = :filename ;

Host Variables
file (IN OUT)

BFILE locator where the DIRECTORY alias and FILENAME is set.

LOB Statements

16-14 Pro*C/C++ Programmer’s Guide

alias (IN)

DIRECTORY alias name to set.

filename (IN)

The FILENAME to set.

Usage Notes
The given BFILE locator must be first ALLOCATEd prior to its use in this statement.

Both the DIRECTORY alias name and FILENAME must be provided.

The maximum length of the DIRECTORY alias is 30 bytes. The maximum length of the
FILENAME is 255 bytes.

The only external datatypes supported for use with the DIRECTORY alias name and
FILENAME attributes are CHARZ, STRING, VARCHAR, VARCHAR2 and CHARF.

It is an error to use this statement with anything but an external LOB locator.

FLUSH BUFFER

Purpose
Writes this LOB's buffers to the database server.

Syntax
EXEC SQL [AT [:]database] LOB FLUSH BUFFER :src [FREE] ;

Host Variables
src (IN OUT)

Internal LOB locator.

Usage Notes
Writes the buffer data to the database LOB in the server from the LOB referenced by
the input locator.

LOB buffering must have already been enabled for the input LOB locator.

The FLUSH operation, by default, does not free the buffer resources for reallocation to
another buffered LOB operation. However, if you want to free the buffer explicitly, you
can include the optional FREE keyword to so indicate.

FREE TEMPORARY

Purpose
Free the temporary space for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB FREE TEMPORARY :src ;

Host Variable
src (IN OUT)

The LOB locator pointing to the temporary LOB.

LOB Statements

Large Objects (LOBs) 16-15

Usage Notes
The input locator must point to a temporary LOB. The output locator is marked not
initialized and can be used in subsequent LOB statements.

LOAD FROM FILE

Purpose
Copy all or a part of a BFILE into an internal LOB.

Syntax
EXEC SQL [AT [:]database] LOB LOAD :amt FROM FILE :file [AT :src_offset] INTO
 :dst [AT :dst_offset] ;

Host Variables
amt (IN)

Maximum number of bytes to be loaded.

file (IN OUT)

The source BFILE locator.

src_offset (IN)

The number of bytes offset from the beginning of the file, starting from 1.

dst (IN OUT)

The destination LOB locator which can be BLOB, CLOB, be NCLOB.

dst_offset (IN)

The number of bytes (for BLOBs) or characters (CLOBs and NCLOBs) from the
beginning of the destination LOB where writing will begin. It starts at 1.

Usage Notes
The data is copied from the source BFILE to the destination internal LOB. No character
set conversions are performed when copying the BFILE data to a CLOB or NCLOB.
Therefore, the BFILE data must already be in the same character set as the CLOB or
NCLOB in the database.

The source and destination LOBs must already exist. If the data already exists at the
destination's start position, it is overwritten with the source data. If the destination's
start position is beyond the end of the current data, zero-byte fillers (BLOBs) or spaces
(CLOBs and NCLOBs) are written into the destination LOB. The fillers are written to
the destination LOB from the end of the data to the beginning of the newly written
data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is an error to extend this LOB
beyond 4 Gigabytes.

It is also an error to copy from a BFILE that is not initialized.

The amount parameter indicates the maximum amount to load. If the end of the
source BFILE is reached before the specified amount is loaded, the operation
terminates without error.

LOB Statements

16-16 Pro*C/C++ Programmer’s Guide

OPEN

Purpose
Open a LOB or BFILE for read or read/write access.

Syntax
EXEC SQL [AT [:]database] LOB OPEN :src [READ ONLY | READ WRITE] ;

Host Variables
src (IN OUT)

LOB locator of the LOB or BFILE.

Usage Notes
The default mode in which a LOB or BFILE can be OPENed is for READ ONLY access.

For internal LOBs, being OPEN is associated with the LOB, not the locator. Assigning
an already OPENed locator to another locator does not count as OPENing a new LOB.
Instead, both locators refer to the same LOB. For BFILEs, being OPEN is associated
with the locator.

Only 32 LOBs can be OPEN at any one time. An error will be returned when the 33rd
LOB is OPENed.

There is no support for writable BFILEs. Therefore, when you OPEN a BFILE in READ
WRITE mode, an error is returned.

It is also an error to open a LOB in READ ONLY mode and then attempt to WRITE to
the LOB.

READ

Purpose
Reads all or part of a LOB or BFILE into a buffer.

Syntax
EXEC SQL [AT [:]database] LOB READ :amt FROM :src [AT :src_offset]
 INTO :buffer [WITH LENGTH :buflen] ;

Host Variables
amt (IN OUT)

The input is the number of characters or bytes to be read. The output is the actual
number of characters or bytes that were read.

If the amount of bytes to be read is larger than the buffer length it is assumed that the
LOB is being READ in a polling mode. On input if this value is 0, then the data will be
read in a polling mode from the input offset until the end of the LOB.

The number of bytes or characters actually read is returned in amt. If the data is read
in pieces, amt will always contain the length of the last piece read.

When the end of a LOB is reached an ORA-1403: no data found error will be issued.

When reading in a polling mode, the application must invoke the LOB READ
repeatedly to read more pieces of the LOB until no more data is left. Control the use of

LOB Statements

Large Objects (LOBs) 16-17

the polling mode with the NOT FOUND condition in a WHENEVER directive to catch
the ORA-1403 error.

src (IN)

The LOB or BFILE locator.

src_offset (IN)

This is the absolute offset from the beginning of the LOB value from which to start
reading. For character LOBs it is the number of characters from the beginning of the
LOB. For binary LOBs or BFILEs it is the number of bytes. The first position is 1.

buffer (IN/OUT)

A buffer into which the LOB data will be read. The external datatype of the buffer is
restricted to only a few types depending on the type of the source LOB. The maximum
length of the buffer depends on the external datatype being used to store the LOB
value. The following table summarizes the legal external datatypes and their
corresponding maximum lengths categorized by source LOB type:

buflen (IN)

Specifies the length of the given buffer when it cannot be determined otherwise.

Usage Notes
A BFILE must already exist on the database server and it must have been opened
using the input locator. The database must have permission to read the file and you,
the user, must have read permission on the directory.

It is an error to try to read from an un-initialized LOB or BFILE.

The length of the buffer is determined this way:

■ From buflen, when the WITH LENGTH clause is present.

■ In the absence of the WITH LENGTH clause, the length is determined by treating
the buffer host variable in OUT mode.

Table 16–2 Source LOB and Precompiler Datatypes

External
LOB1

1 Any of the external datatypes shown can be used with BFILES.

Internal
LOB

Precompiler
External Datatype

Precompiler
Maximum
Length 2

2 Lengths are measured in bytes, not characters.

PL/SQL
Datatype

PL/SQL
Maximum
Length

BFILE

BLOB RAW

VARRAW

LONG RAW

LONG VARRAW

65535

65533

2147483647

2147483643

RAW 32767

BFILE CLOB VARCHAR2

VARCHAR

LONG VARCHAR

65535

65533

2147483643

VARCHAR2 32767

BFILE NCLOB NVARCHAR2 4000 NVARCHAR2 4000

LOB Statements

16-18 Pro*C/C++ Programmer’s Guide

TRIM

Purpose
Truncates the LOB value.

Syntax
EXEC SQL [AT [:]database] LOB TRIM :src TO :newlen ;

Host Variables
src (IN OUT)

LOB locator for internal LOB.

newlen (IN)

The new length of the LOB value.

Usage Notes
This statement is not for BFILES. The new length cannot be greater than the current
length, or an error is returned.

WRITE

Purpose
Writes the contents of a buffer to a LOB.

Syntax
EXEC SQL [AT [:]database] LOB WRITE [APPEND] [FIRST | NEXT | LAST | ONE]
 :amt FROM :buffer [WITH LENGTH :buflen] INTO :dst [AT :dst_offset] ;

Host Variables

amt (IN OUT)
The input is the number of characters or bytes to be written.

The output is the actual number of characters or bytes that is written.

When writing using a polling method, amt will return the cumulative total length
written for the execution of the WRITE statement after a WRITE LAST is executed. If
the WRITE statement is interrupted, amt will be undefined.

buffer (IN)
A buffer from which the LOB data is written.

dst (IN OUT)
The LOB locator.

See Also:

■ "Globalization Support" on page 4-15

■ "READ a BLOB, Write a File Example" on page 16-23

See Also: "READ" on page 16-16 for the lengths of datatypes.

LOB Statements

Large Objects (LOBs) 16-19

dst_offset (IN)
The offset from the beginning of the LOB (counting from 1), in characters for CLOBs
and NCLOBs, in bytes for BLOBs.

buflen (IN)
The buffer length when it cannot be calculated in any other way.

Usage Notes
If LOB data already exists, it is overwritten with the data stored in the buffer. If the
offset specified is beyond the end of the data currently in the LOB, zero-byte fillers or
spaces are inserted into the LOB.

Specifying the keyword APPEND in the WRITE statement causes the data to
automatically be written to the end of the LOB. When APPEND is specified, the
destination offset is assumed to be the end of the LOB. It is an error to specify the
destination offset when using the APPEND option in the WRITE statement.

The buffer can be written to the LOB in one piece (using the ONE orientation which is
the default) or it can be provided piece-wise using a standard polling method.

Polling is begun by using FIRST, then NEXT to write subsequent pieces. The LAST
keyword is used to write the final piece that terminates the write.

Using this piece-wise write mode, the buffer and the length can be different in each
call if the pieces are of different sizes and from different locations.

If the total amount of data passed to Oracle is less than the amount specified by the
amt parameter after doing all the writes, an error results.

The same rules apply for determining the buffer length as in the READ statement.

DESCRIBE

Purpose
This is a statement that is equivalent to several OCI and PL/SQL statements (which is
why it is saved for last). Use the LOB DESCRIBE SQL statement to retrieve attributes
from a LOB. This capability is similar to OCI and PL/SQL procedures. The LOB
DESCRIBE statement has this format:

Syntax
EXEC SQL [AT [:]database] LOB DESCRIBE :src GET attribute1 [{, attributeN}]
 INTO :hv1 [[INDICATOR] :hv_ind1] [{, :hvN [[INDICATOR] :hv_indN] }] ;

where an attribute can be any of these choices:

CHUNKSIZE | DIRECTORY | FILEEXISTS | FILENAME | ISOPEN | ISTEMPORARY | LENGTH

Host variables
src (IN)

The LOB locator of an internal or external LOB.

hv1 ... hvN ... (OUT)

The host variables that receive the attribute values, in the order specified in the
attribute name list.

See Also: "READ a BLOB, Write a File Example" on page 16-23

LOB Statements

16-20 Pro*C/C++ Programmer’s Guide

hv_ind1 ... hv_indN ... (OUT)

Optional host variables that receive the indicator NULL status in the order of the
attribute name list.

This table describes the attributes, which LOB it is associated with, and the C types
into which they should be read:

Usage Notes
Indicator variables should be declared short. After execution has completed,
sqlca.sqlerrd[2] contains the number of attributes retrieved without error. If there was

Table 16–3 LOB Attributes

LOB Attribute Attribute Description Restrictions C Type

CHUNKSIZE The amount (in bytes for BLOBs and
characters for CLOBs/NCLOBs) of space
used in the LOB chunk to store the LOB
value. You speed up performance if you
issue READ/WRITE requests using a
multiple of this chunk size. If all WRITEs
are done on a chunk basis, no
extra/excess versioning is done nor
duplicated. Users could batch up the
WRITE until they have enough for a
chunk instead of issuing several WRITE
calls for the same CHUNK.

BLOBs, CLOBs
and NCLOBs
only

unsigned
int

DIRECTORY The name of the DIRECTORY alias for the
BFILE. The maximum length is 30 bytes.

FILE LOBs only char * 1

1 For DIRECTORY and FILENAME attributes, the only external datatypes that will be supported are
CHARZ, STRING, VARCHAR, VARCHAR2 and CHARF.

FILEEXISTS Determines whether or not the BFILE
exists on the server's operating system's
file system. FILEEXISTS is true when it is
nonzero; false when it equals 0.

FILE LOBs only signed int

FILENAME The name of the BFILE. The maximum
length is 255 bytes.

FILE LOBs only char *

ISOPEN For BFILEs, if the input BFILE locator was
never used in an OPEN statement, the
BFILE is considered not to be OPENed by
this locator. However, a different BFILE
locator may have OPENed the BFILE.
More than one OPEN can be performed
on the same BFILE using different
locators. For LOBs, if a different locator
OPENed the LOB, the LOB is still
considered to be OPEN by the input
locator. ISOPEN is true when it is
nonzero; false when it equals 0.

- signed int

ISTEMPORARY Determines whether or not the input LOB
locator refers to a temporary LOB or not.
ISTEMPORARY is true when it is
nonzero; false when it equals 0.

BLOBs, CLOBs
and NCLOBs
only

signed int

LENGTH Length of BLOBs and BFILEs in bytes,
CLOBs and NCLOBs in characters. For
BFILEs, the length includes EOF if it
exists. Empty internal LOBs have zero
length. LOBs/BFILEs that are not
initialized have undefined length.

- unsigned
int

LOBs and the Navigational Interface

Large Objects (LOBs) 16-21

an execution error, the attribute at which it occurred is one more than the contents of
sqlca.sqlerrd[2].

DESCRIBE Example
Here is a simple Pro*C/C++ example that extracts the DIRECTORY and FILENAME
attributes of a given BFILE:

The oci.h header file is needed for the proper type resolution and compilation of the
following OCIBFileLocator declaration:

#include <oci.h>
...
OCIBFileLocator *bfile ;
char directory[31], filename[256] ;
short d_ind, f_ind ;

Finally, select a BFILE locator from some LOB table and perform the DESCRIBE:

EXEC SQL ALLOCATE :bfile ;
EXEC SQL SELECT a_bfile INTO :bfile FROM lob_table WHERE ... ;
EXEC SQL LOB DESCRIBE :bfile
 GET DIRECTORY, FILENAME INTO :directory:d_ind, :filename:f_ind ;

Indicator variables are only valid for use with the DIRECTORY and FILENAME
attributes. These attributes are character strings whose values may be truncated if the
host variable buffers used to hold their values aren't large enough. When truncation
occurs, the value of the indicator will be set to the original length of the attribute.

LOBs and the Navigational Interface
The navigational interface can also be used to work with object types that contain
LOBs as attributes.

Transient Objects
Use the OBJECT CREATE statement to create transient and persistent objects with
LOB attributes. You can ASSIGN a temporary LOB to the LOB attribute of a transient
object, then copy the value to a permanent LOB or a LOB attribute of a persistent
object to save the data. Or, ASSIGN the temporary LOB to the LOB attribute and use
FLUSH to write the value to the database.

You can create a transient object with a BFILE attribute and read data from the BFILE
on disk. Remember, temporary BFILEs are not supported.

Persistent Objects
When you create a persistent object in the object cache that contains an internal LOB
attribute, the LOB attribute is implicitly set to empty. You must first flush this object
using the OBJECT FLUSH statement, thereby inserting a row into the table and
creating an empty LOB. Once the object is refreshed in the object cache (using the
VERSION=LATEST option), the real locator is read into the attribute.

When creating an object with a BFILE attribute, the BFILE is set to NULL. It must be
updated with a valid directory alias and filename before the BFILE can be read.

A temporary LOB may be ASSIGNed to a LOB attribute of a persistent object. The
actual LOB value will be copied when the object is flushed. A user may also explicitly

See Also: "Navigational Access to Objects" on page 17-10

LOBs and the Navigational Interface

16-22 Pro*C/C++ Programmer’s Guide

copy a temporary LOB's value to a LOB attribute of a persistent object using the
temporary LOB locator and a locator for the LOB attribute in a COPY statement.

Navigational Interface Example
Use the OBJECT GET and SET statements to handle LOBs through the navigational
interface.

You can retrieve a LOB locator that is an attribute of an object type and use it in any of
the new embedded SQL LOB statements. Place LOB locators back into object types as
attributes using the OBJECT SET statement.

Doing so is the same as a direct LOB ASSIGN operation. The same rules apply to an
OBJECT GET or SET of a LOB attribute from or to an object type that would apply if a
LOB ASSIGN had been performed instead, including type enforcement.

For example, suppose we had this simple type definition

CREATE TYPE lob_type AS OBJECT (a_blob BLOB) ;

This example assumes that the type is a column in the database with a valid (and
initialized) BLOB attribute.

The OTT-generated C structure usable by Pro*C/C++ looks like this:

struct lob_type
{
 OCIBlobLocator *a_blob ;
} ;
typedef struct lob_type lob_type ;

You can write a Pro*C/C++ program to extract the BLOB attribute and retrieve the
BLOB's current length in a DESCRIBE statement. You can then TRIM the BLOB to half
its size, setting the attribute back with a SET OBJECT and then make the change
permanent with an OBJECT FLUSH.

First include oci.h and make some local variable declarations:

#include <oci.h>
lob_type *lob_type_p ;
OCIBlobLocator *blob = (OCIBlobLocator *)0 ;
unsigned int length ;

Select the BLOB attribute from the object, do an OBJECT GET, and do a DESCRIBE to
get the current length of the BLOB:

EXEC SQL ALLOCATE :blob ;
EXEC SQL SELECT a_column
 INTO :lob_type_p FROM a_table WHERE ... FOR UPDATE ;
EXEC SQL OBJECT GET a_blob FROM :lob_type_p INTO :blob ;
EXEC SQL LOB DESCRIBE :blob GET LENGTH INTO :length ;

Cut the length in half and TRIM the BLOB to that new length:

length = (unsigned int)(length / 2) ;
EXEC SQL LOB TRIM :blob TO :length ;

Once the BLOB has been changed, set the BLOB attribute back into the object, FLUSH
the change back to the server, and commit:

See Also: Chapter 19, "The Object Type Translator" for
information on creating an INTYPE file for OTT and running OTT.

LOB Program Examples

Large Objects (LOBs) 16-23

EXEC SQL OBJECT SET a_blob OF :lob_type_p TO :blob ;
EXEC SQL OBJECT FLUSH :lob_type_p ;
EXEC SQL FREE :blob ;
EXEC SQL COMMIT WORK ;

LOB Program Examples
Here are two examples which show how to read and write BFILEs and BLOBs.

READ a BLOB, Write a File Example
In this example we will be reading data from a BLOB with an unknown arbitrary
length into a buffer and then writing the data from the buffer into an external file. Our
buffer is small, so depending on the size of the BLOB we are reading, we may be able
to read the BLOB value into the buffer in a single READ statement or we may be
required to utilize a standard polling method instead.

First we start off with oci.h and some simple local variable declarations

#include <oci.h>
OCIBlobLocator *blob ;
FILE *fp ;
unsigned int amt, offset = 1 ;

Now we need a buffer to store the BLOB value and then write to the file from:

#define MAXBUFLEN 5000
unsigned char buffer[MAXBUFLEN] ;
EXEC SQL VAR buffer IS RAW(MAXBUFLEN) ;

Allocate the BLOB host variable and select a BLOB which we will READ:

EXEC SQL ALLOCATE :blob ;
EXEC SQL SELECT a_blob INTO :blob FROM lob_table WHERE ... ;

We can then open the external file to which we will write the BLOB value:

fp = fopen((const char *)"image.gif", (const char *)"w") ;

If the buffer can hold the entire LOB value in a single READ we need to catch the NOT
FOUND condition to signal LOB READ termination:

EXEC SQL WHENEVER NOT FOUND GOTO end_of_lob ;

Now do our first READ. We set the amount to the maximum value of 4 Gigabytes. It is
larger than our buffer so if the LOB doesn't fit we will READ using a polling mode:

amt = 4294967295 ;
EXEC SQL LOB READ :amt FROM :blob AT :offset INTO :buffer ;

If we get here then it means that the buffer was not large enough to hold the entire
LOB value, so we must write what we have using binary I/O and continue reading:

(void) fwrite((void *)buffer, (size_t)MAXBUFLEN, (size_t)1, fp) ;

We use a standard polling method to continue reading with the LOB READ inside of
an infinite loop. We can set up the NOT FOUND condition to terminate the loop:

EXEC SQL WHENEVER NOT FOUND DO break ;
while (TRUE)
 {

LOB Program Examples

16-24 Pro*C/C++ Programmer’s Guide

During polling, the offset is not used so we can omit it in subsequent LOB READs. We
need the amount, however, because it will tell us how much was READ in the last
READ invocation

 EXEC SQL LOB READ :amt FROM :blob INTO :buffer ;
 (void) fwrite((void *)buffer, (size_t)MAXBUFLEN, (size_t)1, fp) ;
 }

Here, we have reached the end of the LOB value. The amount holds the amount of the
last piece that was READ. During polling, the amount for each interim piece was set to
MAXBUFLEN, or the maximum size of our buffer:

end_of_lob:
(void) fwrite((void *)buffer, (size_t)amt, (size_t)1, fp) ;

The basic structure of this code should allow internal LOBs of arbitrary length to be
READ into local buffers and then written to external files. It has been modeled after
OCI and PL/SQL. Refer to the examples in the Appendix of the Oracle Call Interface
Programmer's Guide and to the appropriate chapter of the Oracle Database Application
Developer's Guide - Fundamentals for further details.

Read a File, WRITE a BLOB Example
In this example we will be reading data from a file with a known arbitrary length into
a buffer and then writing the data from the buffer into an internal BLOB. Our buffer is
small, so depending on the size of the file we are reading, we may be able to write the
file data into the LOB in a single WRITE or we may be required to utilize a standard
polling method instead.

First we start off with oci.h and some simple local variable declarations

#include <oci.h>
OCIBlobLocator *blob ;
FILE *fp ;
unsigned int amt, offset = 1 ;
unsigned filelen, remainder, nbytes ;
boolean last ;

We need a buffer to store the file data and then write to the LOB:

#define MAXBUFLEN 5000
unsigned char buffer[MAXBUFLEN] ;
EXEC SQL VAR buffer IS RAW(MAXBUFLEN) ;

We initialize an empty BLOB in an empty table and retrieve that BLOB into an
ALLOCATEd locator and then fill it with the data from the file:

EXEC SQL ALLOCATE :blob ;
EXEC SQL INSERT INTO lob_table (a_blob) VALUES (EMPTY_BLOB())
 RETURNING a_blob INTO :blob ;

Open the binary file and determine its length. The total amount we write to our BLOB
is the actual length of the binary file:

fp = fopen((const char *)"image.gif", (const char *)"r") ;
(void) fseek(fp, 0L, SEEK_END) ;
filelen = (unsigned int)ftell(fp) ;
amt = filelen ;

Set up our initial read of the file, determining the number of bytes to read based on our
buffer size:

LOB Program Examples

Large Objects (LOBs) 16-25

if (filelen > MAXBUFLEN)
 nbytes = MAXBUFLEN ;
else
 nbytes = filelen ;

Issue a file I/O operation to read n bytes of data from our file, fp, into our buffer and
determine how much is left to read. Start reading from the beginning of the file:

(void) fseek(fp, 0L, SEEK_SET) ;
(void) fread((void *)buffer, (size_t)nbytes, (size_t)1, fp) ;
remainder = filelen - nbytes ;

Based on what is left, either write the buffer in a single piece or initiate polling to write
the data from the file in several smaller pieces:

 if (remainder == 0)
 {

In this case we can write the data in a single piece:

 EXEC SQL LOB WRITE ONE :amt
 FROM :buffer INTO :blob AT :offset ;
 }
 else
 {
Initiate the polling method for writing the data piece-wise into the LOB. First, to
initiate the polling method, we use the FIRST orientation on the initial WRITE:

 EXEC SQL LOB WRITE FIRST :amt
 FROM :buffer INTO :blob AT :offset ;

Set up a simple loop to implement the polling method:

 last = FALSE ;
 EXEC SQL WHENEVER SQLERROR DO break ;
 do
 {

Calculate the number of bytes to read from the file and subsequently to WRITE into
the destination LOB. Also determine if this will be our LAST piece:

 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN ;
 else
 {
 nbytes = remainder ;
 last = TRUE ;
 }

Again read the next nbytes from the file on the file system into our buffer. If any error
occurs during a file read, we automatically set the next WRITE to be the LAST one:

 if fread((void *)buffer, (size_t)nbytes, (size_t)1, fp) != 1)
 last = TRUE ;

At this point, either WRITE the LAST piece or an interim NEXT piece which would
indicate that there is still data left to be processed from the file:

 if (last)
 {
 EXEC SQL LOB WRITE LAST :amt
 FROM :buffer INTO :blob ;
 }

LOB Program Examples

16-26 Pro*C/C++ Programmer’s Guide

 else
 {
 EXEC SQL LOB WRITE NEXT :amt
 FROM :buffer INTO :blob ;
 }
 remainder -= nbytes ;
 }
while (!last && !feof(fp)) ;

This code example allows files of arbitrary length to be read into a local buffer and
then written to a LOB. It has been modeled after OCI examples. Refer to the examples
in the Appendix of the Oracle Call Interface Programmer's Guide for further details.

lobdemo1.pc
This program, lobdemo1.pc, illustrates several LOB embedded SQL statements. The
source code is in the demo directory. The application uses a table named license_
table whose columns are social security number, name, and a CLOB containing text
summarizing driving offenses. Several simplified SQL operations of a typical motor
vehicle department are modeled.

The possible actions are:

■ Add new records.

■ List records by social security number.

■ List information in a record, given a social security number.

■ Append a new traffic violation to an existing CLOB's contents.

/***

 SCENARIO:

 We consider the example of a database used to store driver's
 licenses. The licenses are stored as rows of a table containing
 three columns: the sss number of a person, his name in text and the
 text summary of the info found in his license.

 The sss number is the driver's unique social security number.

 The name is the driver's given name as found on his ID card.

 The text summary is a summary of the information on the driver,
 including his driving record, which can be arbitrarily long and may
 contain comments and data regarding the person's driving ability.

 APPLICATION OVERVIEW:

 This example demonstrate how a Pro*C client can handle the new LOB
 datatypes through PL/SQL routines. Demonstrated are mechanisms for
 accessing and storing lobs to tables and manipulating LOBs through
 the stored procedures available via the dbms_lob package.

**/

/***

LOB Program Examples

Large Objects (LOBs) 16-27

 To run the demo:

 1. Execute the script, lobdemo1c.sql in SQL*Plus
 2. Precompile using Pro*C/C++
 proc lobdemo1 user=scott/tiger sqlcheck=full
 3. Compile/Link (This step is platform specific)

**/

/*** The following will be added to the creation script for this example ***
 *** This code can be found in lobdemo1c.sql ***

connect scott/tiger;

set serveroutput on;

Rem Make sure database has no license_table floating around

drop table license_table;

Rem ABSTRACTION:
Rem A license table reduces the notion of a driver's license into three
Rem distinct components - a unique social security number (sss),
Rem a name (name), and a text summary of miscellaneous information.

Rem IMPLEMENTATION:
Rem Our implementation follows this abstraction

create table license_table(
 sss char(9),
 name varchar2(50),
 txt_summary clob);

insert into license_table
values('971517006', 'Dennis Kernighan',
'Wearing a Bright Orange Shirt - 31 Oct 1996');

insert into license_table
values('555001212', 'Eight H. Number',
'Driving Under the Influence - 1 Jan 1997');

insert into license_table
values('010101010', 'P. Doughboy',
'Impersonating An Oracle Employee - 10 Jan 1997');

insert into license_table
values('555377012', 'Calvin N. Hobbes',
'Driving Under the Influence - 30 Nov 1996');

select count(*) from license_table;

Rem Commit to save
commit;

**/

/**************************
 * Begin lobdemo1.pc code *
 **************************/

LOB Program Examples

16-28 Pro*C/C++ Programmer’s Guide

#define EX_SUCCESS 0
#define EX_FAILURE 1

#ifndef STDIO
include <stdio.h>
#endif /* STDIO */

#ifndef SQLCA_ORACLE
include <sqlca.h>
#endif /* SQLCA_ORACLE */

#ifndef OCI_ORACLE
include <oci.h>
#endif /* OCI_ORACLE */

#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#ifndef LOBDEMO1_ORACLE
include "lobdemo1.h"
#endif /* LOBDEMO1_ORACLE */

/***********
 * Defines *
 ***********/
#define SSS_LENGTH 12
#define NAME_LENGTH 50 /* corresponds with max length of name in table */
#define BUFLEN 1024
#define MAXCRIME 5
#define DATELENGTH 12

/***********
 * Globals *
 ***********/

char *CrimeList[MAXCRIME]={ "Driving Under the Influence",
 "Grand Theft Auto",
 "Driving Without a License",
 "Impersonating an Oracle Employee",
 "Wearing a Bright Orange Shirt" };

char curdate[DATELENGTH];

/***********************
 * Function prototypes *
 ***********************/

#if defined(__STDC__)
 void GetDate(void);
 void PrintSQLError(void);
 void Driver(void);
 void ListRecords(void);
 void PrintCrime(OCIClobLocator *a_clob);
 void GetRecord(void);
 void NewRecord(void);
 char *NewCrime(void);
 void GetName(char *name_holder);
 void AppendToClob(OCIClobLocator *a_clob, char *charbuf);

LOB Program Examples

Large Objects (LOBs) 16-29

 void AddCrime(void);
 void ReadClob(OCIClobLocator *a_clob);
 boolean GetSSS(char *suggested_sss);
#else
 void GetDate();
 void PrintSQLError();
 void Driver();
 void ListRecords();
 void PrintCrime(/* OCIClobLocator *a_clob */);
 void GetRecord();
 void NewRecord();
 char *NewCrime();
 void GetName(/* char *name_holder */);
 void AppendToClob(/* OCIClobLocator *a_clob, char *charbuf */);
 void AddCrime();
 boolean GetSSS(/* char *suggested_sss */);
#endif

/*
 * NAME
 * GetDate
 * DESCRIPTION
 * Get date from user
 * LOB FEATURES
 * none
 */

void GetDate()
{
 time_t now;

 now = time(NULL);
 strftime(curdate, 100, " - %d %b %Y", localtime(&now));
}

main()
{
 char * uid = "scott/tiger";

 EXEC SQL WHENEVER SQLERROR DO PrintSQLError();

 printf("Connecting to license database account: %s \n", uid);
 EXEC SQL CONNECT :uid;

 GetDate();

 printf("\t*******************************\n");
 printf("\t* Welcome to the DMV Database *\n");
 printf("\t*******************************\n\n");
 printf("Today's Date is%s\n", curdate);

 Driver();

 EXEC SQL COMMIT RELEASE;

 return (EX_SUCCESS);
}

/*
 * NAME

LOB Program Examples

16-30 Pro*C/C++ Programmer’s Guide

 * Driver
 * DESCRIPTION
 * Command Dispatch Routine
 * LOB FEATURES
 * none
 */

void Driver()
{
 char choice[20];
 boolean done = FALSE;

 while (!done)
 {
 printf("\nLicense Options:\n");
 printf("\t(L)ist available records by SSS number\n");
 printf("\t(G)et information on a particular record\n");
 printf("\t(A)dd crime to a record\n");
 printf("\t(I)nsert new record to database\n");
 printf("\t(Q)uit\n");
 printf("Enter your choice: ");

 fgets(choice, 20, stdin);
 switch(toupper(choice[0]))
 {
 case 'L':
 ListRecords();
 break;
 case 'G':
 GetRecord();
 break;
 case 'A':
 AddCrime();
 break;
 case 'I':
 NewRecord();
 break;
 case 'Q':
 done = TRUE;
 break;
 default:
 break;
 }
 }
}

/*
 * NAME
 * ListRecords
 * DESCRIPTION
 * List available records by sss number
 * LOB FEATURES
 * none
 */

void ListRecords()
{
 char *select_sss = "SELECT SSS FROM LICENSE_TABLE";
 char sss[10];

LOB Program Examples

Large Objects (LOBs) 16-31

 EXEC SQL PREPARE sss_exec FROM :select_sss;
 EXEC SQL DECLARE sss_cursor CURSOR FOR sss_exec;
 EXEC SQL OPEN sss_cursor;

 printf("Available records:\n");

 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 EXEC SQL FETCH sss_cursor INTO :sss;
 printf("\t%s\n", sss);
 }
 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 EXEC SQL CLOSE sss_cursor;
}

/*
 * NAME
 * PrintCrime
 * DESCRIPTION
 * Tests correctness of clob
 * LOB FEATURES
 * OCIlobRead and OCILobGetLength
 */

void PrintCrime(a_clob)
 OCIClobLocator *a_clob;
{
 ub4 lenp;

 printf("\n");
 printf("=====================\n");
 printf(" CRIME SHEET SUMMARY \n");
 printf("=====================\n\n");

 EXEC SQL LOB DESCRIBE :a_clob GET LENGTH INTO :lenp;

 if(lenp == 0) /* No crime on file */
 {
 printf("Record is clean\n");
 }
 else
 {
 ub4 amt = lenp;
 varchar *the_string = (varchar *)malloc(2 + lenp);

 the_string->len = (ub2)lenp;

 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL LOB READ :amt
 FROM :a_clob INTO :the_string WITH LENGTH :lenp;

 printf("%.*s\n", the_string->len, the_string->arr);
 free(the_string);
 }
}

/*

LOB Program Examples

16-32 Pro*C/C++ Programmer’s Guide

 * NAME
 * GetRecord
 * DESCRIPTION
 * Get license of single individual
 * LOB FEATURES
 * allocate and select of blob and clob
 */

void GetRecord()
{
 char sss[SSS_LENGTH];

 if(GetSSS(sss) == TRUE)
 {
 OCIClobLocator *license_txt;
 char name[NAME_LENGTH]={'\0'};

 EXEC SQL ALLOCATE :license_txt;

 EXEC SQL SELECT name, txt_summary INTO :name, :license_txt
FROM license_table WHERE sss = :sss;

 printf("==\n\n");
 printf("NAME: %s\tSSS: %s\n", name, sss);
 PrintCrime(license_txt);
 printf("\n\n==\n");

 EXEC SQL FREE :license_txt;
 }
 else
 {
 printf("SSS Number Not Found\n");
 }
}

/*
 * NAME
 * NewRecord
 * DESCRIPTION
 * Create new record in database
 * LOB FEATURES
 * EMPTY_CLOB() and OCILobWrite
 */

void NewRecord()
{
 char sss[SSS_LENGTH], name[NAME_LENGTH] = {'\0'};

 if(GetSSS(sss) == TRUE)
 {
 printf("Record with that sss number already exists.\n");
 return;
 }
 else
 {
 OCIClobLocator *license_txt;

 EXEC SQL ALLOCATE :license_txt;

 GetName(name);

LOB Program Examples

Large Objects (LOBs) 16-33

 EXEC SQL INSERT INTO license_table
VALUES (:sss, :name, empty_clob());

 EXEC SQL SELECT TXT_SUMMARY INTO :license_txt FROM LICENSE_TABLE
WHERE SSS = :sss;

 printf("==\n\n");
 printf("NAME: %s\tSSS: %s\n", name, sss);
 PrintCrime(license_txt);
 printf("\n\n==\n");

 EXEC SQL FREE :license_txt;
 }
}

/*
 * NAME
 * NewCrime
 * DESCRIPTION
 * Query user for new crime
 * LOB FEATURES
 * None
 */

char *NewCrime()
{
 int SuggestedCrimeNo;
 int i;
 char crime[10];

 printf("Select from the following:\n");
 for(i = 1; i <= MAXCRIME; i++)
 printf("(%d) %s\n", i, CrimeList[i-1]);

 printf("Crime (1-5): ");
 fgets(crime, 10, stdin);
 SuggestedCrimeNo = atoi(crime);

 while((SuggestedCrimeNo < 1) || (SuggestedCrimeNo > MAXCRIME))
 {
 printf("Invalid selection\n");
 printf("Crime (1-5): ");
 fgets(crime, 10, stdin);
 SuggestedCrimeNo = atoi(crime);
 }

 return CrimeList[SuggestedCrimeNo-1];
}

/*
 * NAME
 * AppendToClob
 * DESCRIPTION
 * Append String charbuf to a Clob in the following way:
 * if the contents of the clob a_clob were <foo> and the
 * contents of charbuf were <bar>, after the append a_clob
 * will contain: <foo>\n<bar> - <curdate>
 * where <curdate> is today's date as obtained by the
 * GetDate procedure.

LOB Program Examples

16-34 Pro*C/C++ Programmer’s Guide

 * LOB FEATURES
 * OCILobWrite
 * NOTE
 * Potentially, charbuf can be a very large string buffer.
 * Furthermore, it should be noted that lobs and lob
 * performance were designed for large data. Therefore,
 * users are encouraged to read and write large chunks of
 * data to lobs.
 */

void AppendToClob(a_clob, charbuf)
 OCIClobLocator *a_clob;
 char *charbuf;
{
 ub4 ClobLen, WriteAmt, Offset;
 int CharLen = strlen(charbuf);
 int NewCharbufLen = CharLen + DATELENGTH + 4;
 varchar *NewCharbuf;

 NewCharbuf = (varchar *)malloc(2 + NewCharbufLen);

 NewCharbuf->arr[0] = '\n';
 NewCharbuf->arr[1] = '\0';
 strcat((char *)NewCharbuf->arr, charbuf);
 NewCharbuf->arr[CharLen + 1] = '\0';
 strcat((char *)NewCharbuf->arr, curdate);

 NewCharbuf->len = NewCharbufLen;

 EXEC SQL LOB DESCRIBE :a_clob GET LENGTH INTO :ClobLen;

 WriteAmt = NewCharbufLen;
 Offset = ClobLen + 1;

 EXEC SQL LOB WRITE ONE :WriteAmt FROM :NewCharbuf
 WITH LENGTH :NewCharbufLen INTO :a_clob AT :Offset;

 free(NewCharbuf);
}

/*
 * NAME
 * AddCrime
 * DESCRIPTION
 * Add a crime to a citizen's crime file
 * LOB FEATURES
 * OCILobWrite
 */

void AddCrime()
{
 char sss[SSS_LENGTH];

 if (GetSSS(sss) == TRUE)
 {
 OCIClobLocator *license_txt;
 char *crimebuf;
 char name[NAME_LENGTH] = {'\0'};

 EXEC SQL ALLOCATE :license_txt;

LOB Program Examples

Large Objects (LOBs) 16-35

 EXEC SQL SELECT txt_summary INTO :license_txt FROM license_table
WHERE sss = :sss FOR UPDATE;

 crimebuf = NewCrime();

 printf("Added %s to CrimeList\n", crimebuf);
 AppendToClob(license_txt, crimebuf);

 EXEC SQL SELECT name INTO :name FROM license_table WHERE sss = :sss;

 printf("NAME: %s SSS: %s\n", name, sss);
 PrintCrime(license_txt);

 EXEC SQL COMMIT;
 EXEC SQL FREE :license_txt;
 }
 else
 {
 printf("SSS Number Not Found\n");
 }
}

/*
 * NAME
 * GetSSS
 * DESCRIPTION
 * Fills the passed buffer with a client-supplied social security number
 * Returns FALSE if sss does not correspond to any entry in the database,
 * else returns TRUE
 * LOB FEATURES
 * none
 */

boolean GetSSS(suggested_sss)
 char *suggested_sss;
{
 int count = 0;
 int i;

 printf("Social Security Number: ");
 fgets(suggested_sss, SSS_LENGTH, stdin);

 for(i = 0; ((suggested_sss[i] != '\0') && (i < SSS_LENGTH)); i++)
 {
 if(suggested_sss[i] == '\n')
suggested_sss[i]='\0';
 }

 EXEC SQL SELECT COUNT(*) INTO :count FROM license_table
 WHERE sss = :suggested_sss;

 return (count != 0);
}

/*
 * NAME
 * GetName
 * DESCRIPTION
 * Get name from user.

LOB Program Examples

16-36 Pro*C/C++ Programmer’s Guide

 *
 * LOB FEATURES
 * none
 */

void GetName(name_holder)
 char *name_holder;
{
 int count=0;
 int i;

 printf("Enter Name: ");
 fgets(name_holder, NAME_LENGTH + 1, stdin);

 for(i = 0; name_holder[i] != '\0'; i++)
 {
 if(name_holder[i] == '\n')
name_holder[i]='\0';
 }

 return;
}

/*
 * NAME
 * PrintSQLError
 * DESCRIPTION
 * Prints an error message using info in sqlca and calls exit.
 * COLLECTION FEATURES
 * none
 */

void PrintSQLError()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("SQL error occurred...\n");
 printf("%.*s\n", (int)sqlca.sqlerrm.sqlerrml,
 (CONST char *)sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK RELEASE;
 exit(EX_FAILURE);
}

Objects 17-1

17
Objects

This chapter describes the support in Pro*C/C++ for user-defined objects. This chapter
contains the following topics:

■ Introduction to Objects

■ Using Object Types in Pro*C/C++

■ The Object Cache

■ Associative Interface

■ Navigational Interface

■ Converting Object Attributes and C Types

■ Object Options Set/Get

■ New Precompiler Options for Objects

■ An Object Example in Pro*C/C++

■ Example Code for Type Inheritance

■ Example Code for Navigational Access

■ Using C Structures

■ Using REFs

■ Using OCIDate, OCIString, OCINumber, and OCIRaw

■ Summarizing the New Database Types in Pro*C/C++

■ Restrictions on Using Oracle Datatypes in Dynamic SQL

Introduction to Objects
In addition to the Oracle relational datatypes supported since Oracle8, Pro*C/C++
supports user-defined datatypes, which are:

■ Object types

■ REFs to object types

■ Collection object types

■ Type inheritance

See Also: Chapter 18, "Collections"

Introduction to Objects

17-2 Pro*C/C++ Programmer’s Guide

Object Types
An object type is a user-defined datatype that has attributes, the variables that form the
datatype defined by a CREATE TYPE SQL statement, and methods, functions and
procedures that are the set of allowed behaviors of the object type. We consider object
types with only attributes in this guide.

For example:

--Defining an object type...
CREATE TYPE employee_type AS OBJECT(
 name VARCHAR2(20),
 id NUMBER,
 MEMBER FUNCTION get_id(name VARCHAR2) RETURN NUMBER);
/
--
--Creating an object table...
CREATE TABLE employees OF employee_type;
--Instantiating an object, using a constructor...
INSERT INTO employees VALUES (
 employee_type('JONES', 10042));

LONG, LONG RAW, NCLOB, NCHAR and NCHAR Varying are not allowed as
datatypes in attributes of objects.

REFs to Object Types
REF (short for "reference") was also new in Oracle8. It is a reference to an object stored
in a database table, instead of the object itself. REF types can occur in relational
columns and also as datatypes of an object type. For example, a table employee_tab can
have a column that is a REF to an object type employee_t itself:

CREATE TYPE employee_t AS OBJECT(
 empname CHAR(20),
 empno INTEGER,
 manager REF employee_t);
/
CREATE TABLE employee_tab OF employee_t;

Type Inheritance
Oracle9i supports type inheritance of objects. This enables sharing of attributes and
methods between similar object types, as well as extending the characteristics of an
object type.

Pro*C/C++ supports type inheritance of object types with the following SQL
operators:

■ IS OF type

■ TREAT

The IS OF type operator is used to test an object instance for specific type information.

The following code example returns the references to all p objects where p is of type
Employee_t and Student_t.

SELECT REF(p)
 FROM person_tab p
 WHERE VALUE(p) IS OF (Employee_t, Student_t);

Using Object Types in Pro*C/C++

Objects 17-3

The following code example returns all rows where p is of type Student_t only.

SELECT VALUE(p)
 FROM person_tab p
 WHERE VALUE(p) IS OF (ONLY Student_t);

The TREAT operator is used to modify the declared type of an expression.

The following code example returns all rows where p is of type Student_t. For all
instances of p that are not of type Student_t, null is returned.

SELECT TREAT(VALUE(p) AS Student_t)
 FROM person_tab p;

The following code example returns the references to all p objects of type Student_t
and any objects of subtype PartTimeStudent_t.

SELECT TREAT(REP(p) AS REF Student_t)
 FROM person_tab p
 WHERE VALUE(p) IS OF (Student_t);

Using Object Types in Pro*C/C++
Declare pointers to C structures generated by the OTT (Object Type Translator) as host
and indicator variables in your Pro*C/C++ application. Use of an indicator variable is
optional for an object type, but Oracle recommends it.

Represent object types in a Pro*C/C++ program as C structures generated from the
database objects using OTT. You must

■ Include in the Pro*C/C++ program the OTT-generated header file with structure
definitions and the associated NULL indicator structures, and the C type for a REF
to the object type.

■ Enter the typefile generated by OTT as an INTYPE Pro*C/C++ command-line
option. This typefile encodes the correspondence between the OTT-generated C
structures and the associated object types in the database, as well as schema and
type version information.

NULL Indicators
C structures representing the NULL status of object types are generated by the Object
Type Translator. You must use these generated structure types in declaring indicator
variables for object types.

Other Oracle types do not require special treatment for NULL indicators.

Because object types have internal structure, NULL indicators for object types also
have internal structure. A NULL indicator structure for a non-collection object type
provides atomic (single) NULL status for the object type as a whole, as well as the
NULL status of every attribute. OTT generates a C structure to represent the NULL
indicator structure for the object type. The name of the NULL indicator structure is
Object_typename_ind where Object_typename is the name of the C structure for the
user-defined type in the database.

See Also: Chapter 19, "The Object Type Translator"

Se Also: "Datatypes and Host Variables" on page 4-1 for more
information about NULL indicators.

The Object Cache

17-4 Pro*C/C++ Programmer’s Guide

The Object Cache
The object cache is an area of memory on the client that is allocated for your program's
use in interfacing with database objects. There are two interfaces to working with
objects. The associative interface manipulates "transient" copies of the objects and the
navigational interface manipulates "persistent" objects.

Persistent Versus Transient Copies of Objects
Objects that you allocated in the cache with EXEC SQL ALLOCATE statements in
Pro*C/C++ are transient copies of persistent objects in the Oracle database. As such,
you can update these copies in the cache after they are fetched in, but in order to make
these changes persistent in the database, you must use explicit SQL commands. This
"transient copy" or "value-based" object caching model is an extension of the relational
model, in which scalar columns of relational tables can be fetched into host variables,
updated in place, and the updates communicated to the server.

Associative Interface
The associative interface manipulates transient copies of objects. Memory is allocated
in the object cache with the EXEC SQL ALLOCATE statement.

One object cache is created for each SQLLIB runtime context.

Objects are retrieved by the EXEC SQL SELECT or EXEC SQL FETCH statements.
These statements set values for the attributes of the host variable. If a NULL indicator
is provided, it is also set.

Objects are inserted, updated, or deleted using EXEC SQL INSERT, EXEC SQL
UPDATE, and EXEC SQL DELETE statements. The attributes of the object host
variable must be set before the statement is executed.

Transactional statements EXEC SQL COMMIT and EXEC SQL ROLLBACK are used to
write the changes permanently on the server or to abort the changes.

You explicitly free memory in the cache for the objects by use of the EXEC SQL FREE
statement. When a connection is terminated, Oracle implicitly frees its allocated
memory.

When to Use the Associative Interface
Use in these cases:

■ To access large collections of objects where explicit joins between tables are not
expensive.

■ To access objects that are not referenceable; they do not have object identity. For
example, an object type in a relational column.

■ When an operation such as UPDATE or INSERT is applied to a set of objects. For
example, add a bonus of $1000 to all employees in a department.

ALLOCATE
You allocate space in the object cache with this statement. The syntax is:

EXEC SQL [AT [:]database] ALLOCATE :host_ptr [[INDICATOR]:ind_ptr] ;

 Variables entered are:

Associative Interface

Objects 17-5

database (IN)

a zero-terminated string containing the name of the database connection, as
established previously through the statement:

EXEC SQL CONNECT :user [AT [:]database];

If the AT clause AT is omitted, or if database is an empty string, the default database
connection is assumed.

host_ptr (IN)

a pointer to a host structure generated by OTT for object types, collection object types,
or REFs, or a pointer to one of the new C datatypes: OCIDate, OCINumber, OCIRaw,
or OCIString.

ind_ptr (IN)

The indicator variable, ind_ptr, is optional, as is the keyword INDICATOR. Only
pointers to struct-typed indicators can be used in the ALLOCATE and FREE
statements.

host_ptr and ind_ptr can be host arrays.

The duration of allocation is the session. Any instances will be freed when the session
(connection) is terminated, even if not explicitly freed by a FREE statement.

For more details, see "ALLOCATE (Executable Embedded SQL Extension)" on
page F-9 and "FREE (Executable Embedded SQL Extension)" on page F-46.

FREE
EXEC SQL [AT[:]database] [OBJECT] FREE :host_ptr [[INDICATOR]:ind_ptr];

You de-allocate the space for an object that is placed in the object cache using the FREE
statement. Variables used are the same as in the ALLOCATE statement.

CACHE FREE ALL
EXEC SQL [AT [:]database] [OBJECT] CACHE FREE ALL;

Use the earlier statement to free all object cache memory for the specified database
connection.

Accessing Objects Using the Associative Interface
When accessing objects using SQL, Pro*C/C++ applications manipulate transient
copies of the persistent objects. This is a direct extension of the relational access
interface, which uses SELECT, UPDATE and DELETE statements.

In Figure 17–1 on page 17-6, you allocate memory in the cache for a transient copy of
the persistent object. with the ALLOCATE statement. The allocated object does not
contain data, but it has the form of the struct generated by the OTT.

person *per_p;
...

Note: Pointers to host and indicator variables are not set to null.

See Also: "CACHE FREE ALL (Executable Embedded SQL
Extension)" on page F-11

Navigational Interface

17-6 Pro*C/C++ Programmer’s Guide

EXEC SQL ALLOCATE :per_p;

You can execute a SELECT statement to populate the cache. Or, use a FETCH
statement or a C assignment to populate the cache with data.

EXEC SQL SELECT ... INTO :per_p FROM person_tab WHERE ...

Make changes to the server objects with INSERT, UPDATE or DELETE statements, as
shown in the illustration. You can insert the data is into the table by the INSERT
statement:

EXEC SQL INSERT INTO person_tab VALUES(:per_p);

Finally, free memory associated with the copy of the object with the FREE statement:

EXEC SQL FREE :per_p;

Figure 17–1 Accessing Objects Using SQL

Navigational Interface
Use the navigational interface to access the same schema as the associative interface.
The navigational interface accesses objects, both persistent and transient) by
dereferencing REFs to objects and traversing ("navigating") from one object to another.
Some definitions follow.

Pinning an object is the term used to mean dereferencing the object, allowing the
program to access it.

CREATE

POPULATE
[Select]

UPDATE

FREE

Application Object Cache

person *per_p;
...
EXEC SQL
 ALLOCATE :per_p;

...
EXEC SQL
 SELECT ...INTO :per_p
 FROM person_tab
 WHERE ...

...
 EXEC SQL
 INSERT
 INTO person_tab
 VALUES (:per_p);

...
 EXEC SQL
 FREE :per_p;

Empty Person created

Populated with data

Server updated

Object Freed

Oracle9i

Empty Copy

Transient Copy

Navigational Interface

Objects 17-7

Unpinning means indicating to the cache that the object is no longer needed.

Dereferencing can be defined as the server using the REF to create a version of the object
in the client. While the cache maintains the association between objects in the cache
and the corresponding server objects, it does not provide automatic coherency. You
have the responsibility to ensure correctness and consistency of the contents of the
objects in the cache.

Releasing an object copy indicates to the cache that the object is not currently being
used. To free memory, release objects when they are no longer needed to make them
eligible for implicit freeing.

Freeing an object copy removes it from the cache and releases its memory area.

Marking an object tells the cache that the object copy has been updated in the cache
and the corresponding server object must be updated when the object copy is flushed.

Un-marking an object removes the indication that the object has been updated.

Flushing an object writes local changes made to marked copies in the cache to the
corresponding objects in the server. The object copies in the cache are also unmarked
at this time.

Refreshing an object copy in the cache replaces it with the latest value of the
corresponding object in the server.

The navigational and associative interfaces can be used together.

Use the EXEC SQL OBJECT statements, the navigational interface, to update, delete,
and flush cache copies (write changes in the cache to the server).

When to Use the Navigational Interface
Use the navigational interface:

■ To access a single or small set of objects where explicit joins between tables are
expensive. When you use dereferencing to navigate between objects, you perform
implicit joins which are less expensive than an explicit join across two entire tables.

■ To make many small changes to many different objects. It is more convenient to
fetch all objects to the client, make changes, mark them as updated, and flush all
the changes back to the server.

Rules Used in the Navigational Statements
Embedded SQL OBJECT statements are described later with these assumptions:

■ If an AT clause is absent, the default (unnamed) connection is assumed.

■ Host variables can be arrays, except where specifically noted.

■ Use the FOR clause to explicitly specify the array dimension. If absent, the
minimum dimension of the pertinent host variables is used.

■ After execution of the statement, if the SQLCA is provided as a status variable, the
number of elements processed is returned in sqlca.sqlerrd[2].

■ Parameters have IN or OUT (or both) specified to signify input or output.

See Also: "Example Code for Navigational Access" on page 17-27
for an illustration of using the navigational and associative
interfaces together

Navigational Interface

17-8 Pro*C/C++ Programmer’s Guide

OBJECT CREATE
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT CREATE :obj [INDICATOR]:obj_ind
[TABLE tab] [RETURNING REF INTO :ref] ;

where tab is:

{:hv | [schema.]table}

Use this statement to create a referenceable object in the object cache. The type of the
object corresponds to the host variable obj. When optional type host variables (:obj_
ind,:ref,:ref_ind) are supplied, they must all correspond to the same type.

The referenceable object can be either persistent (TABLE clause is supplied) or
transient (TABLE clause is absent). Persistent objects are implicitly pinned and marked
as updated. Transient objects are implicitly pinned.

The host variables are:

obj (OUT)

The object instance host variable, obj, must be a pointer to a structure generated by
OTT. This variable is used to determine the referenceable object that is created in the
object cache. After a successful execution, obj will point to the newly created object.

obj_ind (OUT)

This variable points to an OTT-generated indicator structure. Its type must match that
of the object instance host variable. After a successful execution, obj_ind will be a
pointer to the parallel indicator structure for the referenceable object.

tab (IN)

Use the table clause to create persistent objects. The table name can be specified as a
host variable, hv, or as an undeclared SQL identifier. It can be qualified with a schema
name. Do not use trailing spaces in host variables containing the table name.

hv (IN)

A host variable specifying a table. If a host variable is used, it must not be an array. It
must not be blank-padded. It is case-sensitive. When an array of persistent objects is
created, they are all associated with the same table.

table (IN)

An undeclared SQL identifier which is case-sensitive.

ref (OUT)

The reference host variable must be a pointer to the OTT-generated reference type. The
type of ref must match that of the object instance host variable. After execution, ref
contains a pointer to the ref for the newly created object.

Attributes are initially set to null. Creating new objects for object views is not currently
supported.

Creating new objects for object views is not currently supported.

OBJECT DEREF
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT DEREF :ref INTO :obj
[[INDICATOR]:obj_ind] [FOR UPDATE [NOWAIT]] ;

See Also: Appendix F, "Embedded SQL Statements and
Directives" for SQL OBJECT statements and syntax diagrams

Navigational Interface

Objects 17-9

Given an object reference, ref, the OBJECT DEREF statement pins the corresponding
object or array of objects in the object cache. Pointers to these objects are returned in
the variables obj and obj_ind.

The host variables are:

ref (IN)

This is the object reference variable, which must be a pointer to the OTT-generated
reference type. This variable (or array of variables) is dereferenced, returning a pointer
to the corresponding object in the cache.

obj (OUT)

The object instance host variable, obj, must be a pointer to an OTT-generated structure.
Its type must match that of the object reference host variable. After successful
execution, obj contains a pointer to the pinned object in the object cache.

obj_ind (OUT)

The object instance indicator variable, obj_ind, must be a pointer to an OTT-generated
indicator structure. Its type must match that of the object reference indicator variable.
After successful execution, obj_ind contains a pointer to the parallel indicator structure
for the referenceable object.

FOR UPDATE

If this clause is present, an exclusive lock is obtained for the corresponding object in
the server.

NOWAIT

If this optional keyword is present, an error is immediately returned if another user
has already locked the object.

OBJECT RELEASE
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT RELEASE :obj ;

This statement unpins the object in the object cache. When an object is not pinned and
not updated, it is eligible for implicit freeing.

If an object has been dereferenced n times, it must be released n times to be eligible for
implicit freeing from the object cache. Oracle advises releasing all objects that are no
longer needed.

OBJECT DELETE
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT DELETE :obj ;

For persistent objects, this statement marks an object or array of objects as deleted in
the object cache. The object is deleted in the server when the object is flushed or when
the cache is flushed. The memory reserved in the object cache is not freed.

For transient objects, the object is marked as deleted. The memory for the object is not
freed.

OBJECT UPDATE
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT UPDATE :obj ;

Navigational Interface

17-10 Pro*C/C++ Programmer’s Guide

For persistent objects, this statement marks them as updated in the object cache. The
changes are written to the server when the object is flushed or when the cache is
flushed.

For transient objects, this statement is a no-op.

OBJECT FLUSH
EXEC SQL [AT [:]database] [FOR [:]count] OBJECT FLUSH :obj ;

This statement flushes persistent objects that have been marked as updated, deleted,
or created, to the server.

Navigational Access to Objects
See Figure 17–2 for an illustration of the navigational interface.

Use the ALLOCATE statement to allocate memory in the object cache for a copy of the
REF to the person object. The allocated REF does not contain data.

person *per_p;
person_ref *per_ref_p;
...
EXEC SQL ALLOCATE :per_p;

Populate the allocated memory by using a SELECT statement to retrieve the REF of the
person object (exact format depends on the application):

EXEC SQL SELECT ... INTO :per_ref_p;

The DEREF statement is then used to pin the object in the cache, so that changes can be
made in the object. The DEREF statement takes the pointer per_ref_p and creates an
instance of the person object in the client-side cache. The pointer per_p to the person
object is returned.

EXEC SQL OBJECT DEREF :per_ref_p INTO :per_p;

Note: An exclusive lock is implicitly obtained when the object is
flushed. After the statement successfully completes, the objects are
unmarked. If the object version is LATEST (see next section), then
the object will be implicitly refreshed.

Navigational Interface

Objects 17-11

Figure 17–2 Navigational Access

Make changes to the object in the cache by using C assignment statements, or by using
data conversions with the OBJECT SET statement.

Then you must mark the object as updated. See Figure 17–3. To mark the object in the
cache as updated, and eligible to be flushed to the server:

EXEC SQL OBJECT UPDATE :per_p;

You send changes to the server by the FLUSH statement:

EXEC SQL OBJECT FLUSH :per_p;

You release the object:

EXEC SQL OBJECT RELEASE :per_p;

Make changes to the objects ...

Application Object Cache

 person_ref *per_ref_p;
 person *per_p;
 ...
 EXEC SQL
 ALLOCATE :per_p;

...
EXEC SQL
 SELECT ...
 INTO :per_ref_p;

...
 EXEC SQL OBJECT
 DEREF :per_ref_p
 INTO :per_p;

Empty Person REF created

Populate REF

Fetch the object using the REF
Oracle9i

Empty Copy

Transient Copy

Persistent Copy

CREATE

POPULATE
[Select]

DEREF THE
REF TO

GET THE
OBJECT

Converting Object Attributes and C Types

17-12 Pro*C/C++ Programmer’s Guide

Figure 17–3 Navigational Access (continued)

The statements in the next section are used to make the conversions between object
attributes and C types.

Converting Object Attributes and C Types
This section covers issues relating to attribute and type conversion.

OBJECT SET
EXEC SQL [AT [:]database]
 OBJECT SET [{'*' | {attr[, attr]} } OF]
 :obj [[INDICATOR]:obj_ind]
 TO {:hv [[INDICATOR]:hv_ind]
 [, :hv [INDICATOR]:hv_ind]]} ;

Use this statement with objects created by both the associative and the navigational
interfaces. This statement updates the attributes of the object. For persistent objects,
the changes will be written to the server when the object is updated and flushed.
Flushing the cache writes all changes made to updated objects to the server.

The OF clause is optional. If absent, all the attributes of obj are set. The same result is
achieved by writing:

... OBJECT SET * OF ...

The host variable list can include structures that are exploded to provide values for the
attributes. However, the number of attributes in obj must match the number of
elements in the exploded variable list.

Host variables and attributes are:

attr

The attributes are not host variables, but rather simple identifiers that specify which
attributes of the object will be updated. The first attribute in the list is paired with the

Application Object Cache

 person_ref *per_ref_p;
 person *per_p;
 ...
 EXEC SQL OBJECT
 UPDATE :per_p;

...
EXEC SQL OBJECT
 FLUSH :per_p;

...
 EXEC SQL OBJECT
 RELEASE :per_p;

Release

Oracle9i

Transient Copy

Persistent Copy

MARK OBJECT
UPDATED

FLUSH CHANGES
TO THE SERVER

RELEASE
OBJECT

Flush Object

Mark Object

Converting Object Attributes and C Types

Objects 17-13

first expression in the list, and so on. The attribute must be one of either OCIString,
OCINumber, OCIDate, or OCIRef.

obj (IN/OUT)

obj specifies the object to be updated. The bind variable obj must not be an array. It
must be a pointer to an OTT-generated structure.

obj_ind (IN/OUT)

The parallel indicator structure that will be updated. It must be a pointer to an
OTT-generated indicator structure.

hv (IN)

This is the bind variable used as input to the OBJECT SET statement. hv must be an int,
float, OCIRef *, a one-dimensional char array, or a structure of these types.

hv_ind (IN)

This is the associated indicator that is used as input to the OBJECT SET statement. hv_
ind must be a 2-byte integer scalar or a structure of 2-byte integer scalars.

Using Indicator Variables:

If a host variable indicator is present, then an object indicator must also be present.

If hv_ind is set to -1, the associated field in the obj_ind is set to -1.

The following implicit conversions are permitted:

■ [OCIString | STRING | VARCHAR | CHARZ] to OCIString

■ OCIRef to OCIRef

■ [OCINumber | int | float | double] to OCINumber

■ [OCIDate | STRING | VARCHAR | CHARZ] to OCIDate

OBJECT GET
EXEC SQL [AT [:]database]
 OBJECT GET [{ '*' | {attr[, attr]} } FROM]
 :obj [[INDICATOR]:obj_ind]
 INTO {:hv [[INDICATOR]:hv_ind]
 [, :hv [[INDICATOR]:hv_ind]]} ;

This statement converts the attributes of an object into native C types.

The FROM clause is optional. If absent, all the attributes of obj are converted. The same
result is achieved by writing:

... OBJECT GET * FROM ...

Note:

■ Nested structures are not allowed.

■ This statement cannot be used to set a referenceable object to be
atomically NULL. Set the appropriate field of the NULL
indicator instead.

■ Conversions between the OCIDateTime or OCIInterval
datatypes and OCIString are not supported.

Object Options Set/Get

17-14 Pro*C/C++ Programmer’s Guide

The host variable list may include structures that are exploded to receive the values of
the attributes. However, the number of attributes in obj must match the number of
elements in the exploded host variable list.

Host variables and attributes:

attr

The attributes are not host variables, but simple identifiers that specify which
attributes of the object will be retrieved. The first attribute in the list is paired with the
first host variable in the list, and so on. The attribute must represent a base type. It
must be OCIString, OCINumber, OCIRef, or OCIDate.

obj (IN)

This specifies the object that serves as the source for the attribute retrieval. The bind
variable obj must not be an array.

hv (OUT)

This is the bind variable used to hold output from the OBJECT GET statement. It can
be an int, float, double, a one-dimensional char array, or a structure containing those
types. The statement returns the converted attribute value in this host variable.

hv_ind (OUT)

This is the associated indicator variable for the attribute value. It is a 2-byte integer
scalar or a structure of 2-byte integer scalars.

Using Indicator Variables:

If no object indicator is specified, it is assumed that the attribute is valid. It is a program
error to convert object attributes to C types if the object is atomically NULL or if the
requested attribute is NULL and no object indicator variable is supplied. It may not be
possible to raise an Oracle error in this situation.

If the object variable is atomically NULL or the requested attribute is NULL, and a
host variable indicator (hv_ind) is supplied, then it is set to -1.

If the object is atomically NULL or the requested attribute is NULL, and no host
variable indicator is supplied, then an error is raised.

The following implicit conversions are permitted:

■ OCIString to [STRING | VARCHAR | CHARZ | OCIString]

■ OCINumber to [int | float | double | OCINumber]

■ OCIRef to OCIRef

■ OCIDate to [STRING | VARCHAR | CHARZ | OCIDate]

Object Options Set/Get
The runtime context has options which are set to default values when the runtime
context is created and allocated. You can then set these options with this embedded
SQL directive:

Note: ■

■ Nested structures are not allowed

■ Conversions between the OCIDateTime or OCIInterval
datatypes and OCIString are not supported

Object Options Set/Get

Objects 17-15

CONTEXT OBJECT OPTION SET
EXEC SQL CONTEXT OBJECT OPTION SET {option[, option]} TO {:hv[, :hv]} ;

where the variables are:

:hv(IN) ...

The input bind variables hv ..., are of type STRING, VARCHAR, or CHARZ.

option ...

Simple identifiers that specify which option of the runtime context to update. The first
option is paired with the first input bind variable, and so on. Here are the values
supported at this time:

An example is:

char *new_format = "DD-MM-YYYY";
char *new_lang = "French";
char *new_date = "14-07-1789";
/* One of the attributes of the license type is dateofbirth */
license *aLicense;
...
/* Declaration and allocation of context ... */
EXEC SQL CONTEXT OBJECT OPTION SET DATEFORMAT, DATELANG TO :new_format, :new_
lang;
/* Navigational object obtained */
...
EXEC SQL OBJECT SET dateofbirth OF :aLicense TO :new_date;
...

CONTEXT OBJECT OPTION GET
The context affected is understood to be the context in use at the time. To determine
the values of these options, use this directive:

EXEC SQL CONTEXT OBJECT OPTION GET {option[, option]} INTO {:hv[, :hv]} ;

Where the values of option are found in Table 17–1, " Valid Choices for CONTEXT
OBJECT OPTION Values" on page 17-15.

The bind variables, hv ... are used as output, and are of type STRING, VARCHAR, or
CHARZ. The context affected is understood to be the context in use at the time.

Table 17–1 Valid Choices for CONTEXT OBJECT OPTION Values

Option Value Specifies

DATEFORMAT Format for Date attributes and collection elements.

DATELANG Globalization Support language for all Date and Datetime
types.

See Also:

■ Oracle Database SQL Reference for a complete list of allowed
formats

■ "CONTEXT OBJECT OPTION SET (Executable Embedded SQL
Ext)" on page F-23

New Precompiler Options for Objects

17-16 Pro*C/C++ Programmer’s Guide

New Precompiler Options for Objects
To support objects, use these precompiler options:

VERSION
This option determines which version of the object is returned by the EXEC SQL
OBJECT DEREF statement. This gives you varying levels of consistency between cache
objects and server objects.

Use the EXEC ORACLE OPTION statement to set it inline. Permitted values are:

RECENT (default)
If the object has been selected into the object cache in the current transaction, then
return that object. If the object has not been selected, it is retrieved from the server. For
transactions that are running in serializable mode, this option has the same behavior
as VERSION=LATEST without incurring as many network round trips. This value can
be safely used with most Pro*C/C++ applications.

LATEST
If the object does not reside in the object cache, it is retrieved from the database. If it
does reside in the object cache, it is refreshed from the server. Use this value with
caution because it will incur the greatest number of network round trips. Use it only
when it is imperative that the object cache be kept as coherent as possible with the
server-side buffer.

ANY
If the object already resides in the object cache, then return that object. If the object
does not reside in the object cache, retrieve it from the server. This value will incur the
fewest number of network round trips. Use in applications that access read-only
objects or when a user will have exclusive access to the objects.

DURATION
Use this precompiler option to set the pin duration used by subsequent EXEC SQL
OBJECT CREATE and EXEC SQL OBJECT DEREF statements. Objects in the cache are
implicitly unpinned at the end of the duration.

Use with navigational interface only.

You can set this option in the EXEC ORACLE OPTION statement. Permitted values
are:

TRANSACTION (default)
Objects are implicitly unpinned when the transaction completes.

SESSION
Objects are implicitly unpinned when the connection is terminated.

See Also:

■ Oracle Database SQL Reference for a complete list of the allowed
formats

■ "CONTEXT OBJECT OPTION GET (Executable Embedded SQL
Extension)" on page F-22

New Precompiler Options for Objects

Objects 17-17

OBJECTS
This precompiler option provides the ability to use the object cache.

The OBJECTS default value, for DBMS=NATIVE | V8, is YES. The default size of the
object cache is the same as the OCI default cache size, 8 Mbytes.

INTYPE
If your program uses any object types, collection object types, or REFs, you must give
the INTYPE files in this command-line option.

Specify the INTYPE option using the syntax:

 INTYPE=filename1 INTYPE=filename2 ...

where filename1, and so on., is the name of the typefiles generated by OTT. These files
are meant to be a read-only input to Pro*C/C++. The information in it, though in
plain-text form, might be encoded, and might not necessarily be interpretable by you,
the user.

You can provide more than one INTYPE file as input to a single Pro*C/C++
precompilation unit.

This option cannot be used inline in EXEC ORACLE statements.

OTT generates C structure declarations for object types created in the database, and
writes type names and version information to a file called the typefile.

An object type may not necessarily have the same name as the C structure type or C++
class type that represents it. This could arise for the following reasons:

■ The name of the object type specified in the server includes characters not legal in
a C or C++ identifier

■ The user asked OTT to use a different name for the structure or class

■ The user asked OTT to change the case of names

Under these circumstances, it is impossible to infer from the structure or class
declaration which object type it matches. This information, which is required by
Pro*C/C++, is generated by OTT in the type file.

ERRTYPE
 ERRTYPE=filename

Writes errors to the file specified, as well as to the screen. If omitted, errors are directed
to the screen only. Only one ERRTYPE is allowed. As is usual with other single-valued
command-line options, if you enter multiple values for ERRTYPE on the command
line, the last one supersedes the earlier values.

This option cannot be used inline in EXEC ORACLE statements.

SQLCHECK Support for Objects
Object types and their attributes are represented in a C program according to the C
binding of Oracle types. If the precompiler command-line option SQLCHECK is set to
SEMANTICS or FULL, Pro*C/C++ verifies during precompilation that host variable
types conform to the mandated C bindings for the types in the database schema. In

See Also: "OBJECTS" on page 10-25

An Object Example in Pro*C/C++

17-18 Pro*C/C++ Programmer’s Guide

addition, runtime checks are always performed to verify that Oracle types are mapped
correctly during program execution. See also "SQLCHECK" on page 10-29.

Relational datatypes are checked in the usual manner.

A relational SQL datatype is compatible with a host variable type if the two types are
the same, or if a conversion is permitted between the two. Object types, on the other
hand, are compatible only if they are the same type. They must

■ Have the same name

■ Be in the same schema (if a schema is explicitly specified)

When you specify the option SQLCHECK=SEMANTICS or FULL, during
precompilation Pro*C/C++ logs onto the database using the specified userid and
password, and verifies that the object type from which a structure declaration was
generated is identical to the object type used in the embedded SQL statement.

Type Checking at Runtime
Pro*C/C++ gathers the type name, version, and possibly schema information for
Object, collection Object, and REF host variables, for a type from the input INTYPE
file, and stores this information in the code that it generates. This enables access to the
type information for Object and REF bind variables at runtime. Appropriate errors are
returned for type mismatches.

An Object Example in Pro*C/C++
Let us examine a simple object example. You create a type person and a table person_
tab, which has a column that is also an object type, address:

create type person as object (
 lastname varchar2(20),
 firstname char(20),
 age int,
 addr address
)
/
create table person_tab of person;

Insert data in the table, and proceed.

Associative Access
Consider the case of how to change a lastname value from "Smith" to "Smythe", using
Pro*C/C++.

Run the OTT to generate C structures which map to person. In your Pro*C/C++
program you must include the header file generated by OTT.

In your application, declare a pointer, person_p, to the persistent memory in the
client-side cache. Then allocate memory and use the returned pointer:

char *new_name = "Smythe";
person *person_p;
...
EXEC SQL ALLOCATE :person_p;

Memory is now allocated for a copy of the persistent object. The allocated object does
not yet contain data.

An Object Example in Pro*C/C++

Objects 17-19

Populate data in the cache either by C assignment statements or by using SELECT or
FETCH to retrieve an existing object:

EXEC SQL SELECT VALUE(p) INTO :person_p FROM person_tab p WHERE lastname =
'Smith';

Changes made to the copy in the cache are transmitted to the server database by use of
INSERT, UPDATE, and DELETE statements:

EXEC SQL OBJECT SET lastname OF :person_p TO :new_name;
EXEC SQL INSERT INTO person_tab VALUES(:person_p);

Free cache memory in this way:

EXEC SQL FREE :person_p;

Navigational Access
Allocate memory in the object cache for a copy of the REF to the object person. The
ALLOCATE statement returns a pointer to the REF:

person *person_p;
person_ref *per_ref_p;
...
EXEC SQL ALLOCATE :per_ref_p;

The allocated REF contains no data. To populate it with data, retrieve the REF of the
object:

EXEC SQL SELECT ... INTO :per_ref_p;

Then dereference the REF to put an instance of object in the client-side cache. The
dereference command takes the per_ref_p and creates an instance of the corresponding
object in the cache:

EXEC SQL OBJECT DEREF :per_ref_p INTO :person_p;

Make changes to data in the cache by using C assignments, or by using OBJECT GET
statements:

/* lname is a C variable to hold the result */
EXEC SQL OBJECT GET lastname FROM :person_p INTO :lname;
...
EXEC SQL OBJECT SET lastname OF :person_p TO :new_name;
/* Mark the changed object as changed with OBJECT UPDATE command */;
EXEC SQL OBJECT UPDATE :person_p;
EXEC SQL FREE :per_ref_p;

To make the changes permanent in the database, use FLUSH:

EXEC SQL OBJECT FLUSH :person_p;

Changes have been made to the server; the object can now be released. Objects that are
released are not necessarily freed from the object cache memory immediately. They are
placed on a least-recently used stack. When the cache is full, the objects are swapped
out of memory.

Only the object is released; the REF to the object remains in the cache. To release the
REF, use the RELEASE statement. for the REF. To release the object pointed to by
person_p:

EXEC SQL OBJECT RELEASE :person_p;

Example Code for Type Inheritance

17-20 Pro*C/C++ Programmer’s Guide

Or, issue a transaction commit and all objects in the cache are released, provided the
pin duration has been set appropriately.

Example Code for Type Inheritance
The following code example creates four object types:

■ Person_t

■ Employee_t as a subtype of Person_t

■ Student_t as a subtype of Person_t

■ PartTimeStudent_t as a subtype of Student_t

and one table:

■ person_tab to hold Person_t and its subtype objects

The SQL file, inhdemo1.sql, that creates the object types and table, and then inserts
values into the table, is:

connect scott/tiger;

rem ** Always drop your objects in reverse dependency order
drop table person_tab;
drop type PartTimeStudent_t;
drop type Student_t;
drop type Employee_t;
drop type Person_t;

rem ** Create the TYPES, TYPED TABLES and TABLES we need

rem ** Create a Person_t ADT
CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;
/

rem ** Create a Person_t subtype Employee_t
CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));
/

rem ** Create a Person_t subtype Student_t
CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;
/

rem ** Create a Student_t subtype PartTimeStudent_t
CREATE TYPE PartTimeStudent_t UNDER Student_t
(numhours NUMBER);
/

rem ** Create a typed table for person_t objects
CREATE table person_tab of person_t;

Example Code for Type Inheritance

Objects 17-21

rem ** Insert 2 Employee_t objects into the person_t typed table
insert into person_tab values
 (Employee_t(123456, 'Alison Laurence', '100 Geary Street, San Francisco, CA
94013',
1001, 'CEO'));
insert into person_tab values
 (Employee_t(234567, 'William Bates', '123 Main Street, Anytown, WA 97818',
1002,'CFO'));

rem ** Insert 2 Student_t objects into the person_t typed table
insert into person_tab values
 (Student_t(20001, 'Van Gates', '1825 Aikido Way, Los Angeles, CA, 45300', 20,
'English'));
insert into person_tab values
 (Student_t(20002, 'Bill Wallace', '12 Shugyo Blvd, Los Angeles, CA, 95100', 30,
'Computer Science'));

rem ** Insert 1 PartTimeStudent_t object into the person_t typed table
insert into person_tab values
 (PartTimeStudent_t(20003, 'Jean Claude', '874 Richmond Street, New York, NY
45100',
40, 'Music',20));

commit;

Here is the listing of the intype file for our example, inhdemo1.typ:

case=same
type person_t
type employee_t
type student_t
type parttimestudent_t

Here is the listing of the precompiler file, inhdemo1.pc:

/***
 *
 * This is a simple Pro*C/C++ program designed to illustrate how to
 * access type inheritance objects.
 *
 * To build the executable:
 *
 * 1. Execute the SQL script, inhdemo1.sql in SQL*Plus to create:
 * - 4 object types person_t, employee_t as a subtype of person_t,
 * student_t as a subtype of person_t and parttimestudent_t as
 * a subtype of student_t.
 * - 1 typed table person_tab to hold "person_t" and its subtype objects
 *
 * 2. Run OTT: (The following command should appear on one line)
 * ott intype=inhdemo1.typ hfile=inhdemo1.h outtype=out.typ
 * code=c userid=scott/tiger
 *
 * 3. Precompile using Pro*C/C++:
 * proc inhdemo1 intype=out.typ
 * 4. Compile/Link (This step is platform specific)

Example Code for Type Inheritance

17-22 Pro*C/C++ Programmer’s Guide

 *
 **/

/* Include files */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlda.h>

#include <sqlca.h> /* SQL Communications Area */
#include <sql2oci.h> /* SQLLIB interoperability routines for OCI8 */
#include "inhdemo1.h" /* OTT-generated header with C typedefs for the */
 /* database types "person" and "address" */
/* Macros */
#define ARRAY_SIZE 10
#define NAME_LENGTH 31
#define ADDR_LENGTH 101

/* Global variables */

 char *uid="scott/tiger";
 int i;
 int count;
 VARCHAR dynstmt[100];

main()
{

 printf("\n*** STARTING OBJECT TYPE INHERITANCE DEMO ***\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--\n");

 EXEC SQL connect :uid;
 printf("Connected successfully.\n");

 exec sql select count(*) into :count from person_tab;
 printf("\nThere are %d entries in table person_tab.\n", count);

 do_fetch_all(); /* Fetch person_t objects */
 do_fetch_employee(); /* Fetch employee_t objects */
 do_fetch_student(); /* Fetch only student_t objects */
 do_fetch_parttimestudent(); /* Fetch parttimestuden_t objects */
 do_fetch_student_employee(); /* Fetch student_t and employee_t objects */

 printf("\nFetching only student_t objects with dynamic sql:\n");
 strcpy((char *)dynstmt.arr,
 "SELECT value(p) from person_tab p where value(p) is of (only student_t)");
 do_dynamic_fetch(); /* Fetch student_t object with dynamic sql */

 printf("\nFetching student_t and its subtype objects with dynamic sql:\n");
 strcpy((char *)dynstmt.arr,
 "SELECT treat(value(p) as student_t) from person_tab p where value(p) is
of(student_t)");
 do_dynamic_fetch(); /* Fetch student_t object with dynamic sql */

 printf("\n*** END OF OBJECT TYPE INHERITANCE DEMO ***\n");
 exit(EXIT_SUCCESS);

}

Example Code for Type Inheritance

Objects 17-23

void printPerson(person)
 person_t *person;
{
 int writtenSSN=-1;
 text writtenName[NAME_LENGTH];
 text writtenAddr[ADDR_LENGTH];

 EXEC SQL OBJECT GET SSN, NAME, ADDRESS FROM :person INTO
 :writtenSSN, :writtenName, :writtenAddr;
 printf("\nSSN=%10d\nNAME=%s\nAddr=%s\n", writtenSSN, writtenName,
 writtenAddr);
}

void printEmployee(employee)
 employee_t *employee;
{
 int writtenID=-1;
 text writtenMgr[NAME_LENGTH];

 printPerson(employee);
 EXEC SQL OBJECT GET EMPID, MGR FROM :employee INTO :writtenID, :writtenMgr;
 printf("EMPID=%10d\nMGR=%s\n", writtenID, writtenMgr);
}

void printStudent(student)
 student_t *student;
{
 int writtendeptid=-1;
 text writtenMajor[NAME_LENGTH];

 printPerson(student);
 EXEC SQL OBJECT GET DEPTID, MAJOR FROM :student INTO :writtendeptid,
:writtenMajor;
 printf("DEPTID=%10d\nMAJOR=%s\n", writtendeptid, writtenMajor);
}

void printPartTimeStudent(parttimes)
 parttimestudent_t *parttimes;
{
 int written_numhours=-1;

 printStudent(parttimes);
 EXEC SQL OBJECT GET NUMHOURS FROM :parttimes INTO :written_numhours;
 printf("NUMHOURS=%10d\n", written_numhours);
}

/* Declare error handling function. */
sql_error(msg)
 char *msg;
{
 char err_msg[128];
 size_t buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s\n", msg);
 buf_len = sizeof (err_msg);
 sqlglm(err_msg, &buf_len, &msg_len);
 printf("%.*s\n", msg_len, err_msg);

Example Code for Type Inheritance

17-24 Pro*C/C++ Programmer’s Guide

 EXEC SQL ROLLBACK RELEASE;
 exit(EXIT_FAILURE);
}

/***
 * The following function shows how to select person_t objects
 **/

do_fetch_all()
{
person_t *personArray[ARRAY_SIZE];
person_t_ind *personArray_ind[ARRAY_SIZE];

 printf("\nFetching person_t objects:\n");

 exec sql declare c1 cursor for
 select value(p) from person_tab p;

 exec sql allocate :personArray:personArray_ind;

 exec sql open c1;

 exec sql whenever not found goto :done;
 while(sqlca.sqlcode==0)
 {
 exec sql fetch c1 into :personArray:personArray_ind;
 if (sqlca.sqlcode == 1403) goto done;
 for (i=0; i < ARRAY_SIZE; i++)
 printPerson(personArray[i]);
 }

 done:
 for (i=0; i < sqlca.sqlerrd[2] % ARRAY_SIZE; i++)
 printPerson(personArray[i]);

 printf("Total number of person_t objects fetched: %d.\n",
 sqlca.sqlerrd[2]);

 exec sql close c1;
 exec sql free :personArray:personArray_ind;
}

/***
 * The following function shows how to select person_t subtype employee_t
 * objects
 **/

do_fetch_employee()
{
employee_t *empArray[ARRAY_SIZE];
employee_t_ind *empArray_ind[ARRAY_SIZE];

 printf("\nFetching employee_t objects:\n");

 exec sql allocate :empArray:empArray_ind;

 exec sql declare c2 cursor for
 select value(p) from person_tab p
 where value(p) is of (employee_t);

Example Code for Type Inheritance

Objects 17-25

 exec sql open c2;

 exec sql whenever not found goto :done_emp;
 while(sqlca.sqlcode==0)
 {
 exec sql fetch c2 into :empArray:empArray_ind;
 for (i=0; i < ARRAY_SIZE; i++)
 printEmployee(empArray[i]);
 }

 done_emp:
 for (i=0; i < sqlca.sqlerrd[2] % ARRAY_SIZE; i++)
 printEmployee(empArray[i]);

 printf("Total number of employee_t objects fetched: %d.\n",
 sqlca.sqlerrd[2]);

 exec sql close c2;
 exec sql free :empArray:empArray_ind;
}

/***
 * The following function shows how to select person_t subtype student_t
 * objects
 **/

do_fetch_student()
{
student_t *studentArray[ARRAY_SIZE];
student_t_ind *studentArray_ind[ARRAY_SIZE];

 printf("\nFetching student_t objects:\n");

 exec sql declare c3 cursor for
 select value(p) from person_tab p
 where value(p) is of (student_t);

 exec sql allocate :studentArray:studentArray_ind;

 exec sql open c3;

 exec sql whenever not found goto :done_student;
 for (;;)
 {
 exec sql fetch c3 into :studentArray:studentArray_ind;
 for (i=0; i < ARRAY_SIZE; i++)
 printStudent(studentArray[i]);
 }

 done_student:
 for (i=0; i < sqlca.sqlerrd[2] % ARRAY_SIZE; i++)
 printStudent(studentArray[i]);

 printf("Total number of student_t objects fetched: %d.\n",
 sqlca.sqlerrd[2]);

 exec sql close c3;
 exec sql free :studentArray:studentArray_ind;
}

Example Code for Type Inheritance

17-26 Pro*C/C++ Programmer’s Guide

/***
 * The following function shows how to select student_t subtype
 * parttimestudent objects
 **/

do_fetch_parttimestudent()
{
parttimestudent_t *parttimestudentArrayArray[ARRAY_SIZE];
parttimestudent_t_ind *parttimestudentArrayArray_ind[ARRAY_SIZE];

 printf("\nFetching parttimestudent_t objects:\n");

 exec sql declare c4 cursor for
 select value(p) from person_tab p
 where value(p) is of (parttimestudent_t);

 exec sql allocate :parttimestudentArrayArray:parttimestudentArrayArray_ind;

 exec sql open c4;

 exec sql whenever not found goto :done_parttimestudent;
 while(sqlca.sqlcode==0)
 {
 exec sql fetch c4 into :parttimestudentArrayArray:parttimestudentArrayArray_
ind;
 for (i=0; i < ARRAY_SIZE; i++)
 printPartTimeStudent(parttimestudentArrayArray[i]);
 }

 done_parttimestudent:
 for (i=0; i < sqlca.sqlerrd[2] % ARRAY_SIZE; i++)
 printPartTimeStudent(parttimestudentArrayArray[i]);

 printf("Total number of parttimestudent_t objects fetched: %d.\n",
 sqlca.sqlerrd[2]);

 exec sql close c4;
 exec sql free :parttimestudentArrayArray:parttimestudentArrayArray_ind;
}

/***
 * The following function shows how to select person_t subtypes student_t
 * and employee_t objects
 **/

do_fetch_student_employee()
{
person_t *personArray[ARRAY_SIZE];
person_t_ind *personArray_ind[ARRAY_SIZE];

 printf("\nFetching only student_t and employee_t objects:\n");

 exec sql declare c5 cursor for
 select value(p) from person_tab p
 where value(p) is of (only student_t, employee_t);

 exec sql allocate :personArray:personArray_ind;

 exec sql open c5;

Example Code for Navigational Access

Objects 17-27

 exec sql whenever not found goto :done_student_employee;
 while(sqlca.sqlcode==0)
 {
 exec sql fetch c5 into :personArray:personArray_ind;
 for (i=0; i < ARRAY_SIZE; i++)
 printPerson(personArray[i]);
 }

 done_student_employee:
 for (i=0; i < sqlca.sqlerrd[2] % ARRAY_SIZE; i++)
 printPerson(personArray[i]);

 printf("Total number of stuent_t and employee_t objects fetched: %d.\n",
sqlca.sqlerrd[2]);

 exec sql close c5;
 exec sql free :personArray:personArray_ind;
}

/***
 * The following function shows how to select person_t subtype student_t
 * objects using dynamic sql.
 **/

do_dynamic_fetch()
{
student_t *student;
student_t_ind *student_ind;

 exec sql allocate :student:student_ind;

 dynstmt.len = (unsigned short)strlen((char *)dynstmt.arr);
 EXEC SQL PREPARE S FROM :dynstmt;
 EXEC SQL DECLARE C CURSOR FOR S;
 EXEC SQL OPEN C;

 exec sql whenever not found do break;
 for (;;)
 {
 EXEC SQL FETCH C INTO :student:student_ind;
 printStudent(student);
 }

 printf("\nQuery returned %d row%s.\n", sqlca.sqlerrd[2],
 (sqlca.sqlerrd[2] == 1) ? "" : "s");

 EXEC SQL CLOSE C;
 exec sql free :student:student_ind;
}

Example Code for Navigational Access
The example object code creates three object types; budoka is a martial arts expert:

■ Customer

■ Budoka

■ Location

Example Code for Navigational Access

17-28 Pro*C/C++ Programmer’s Guide

and two tables:

■ person_tab

■ customer_tab

The SQL file, navdemo1.sql, which creates the types and tables, and then inserts
values into the tables, is:

connect scott/tiger

drop table customer_tab;
drop type customer;
drop table person_tab;
drop type budoka;
drop type location;

create type location as object (
 num number,
 street varchar2(60),
 city varchar2(30),
 state char(2),
 zip char(10)
);
/

create type budoka as object (
 lastname varchar2(20),
 firstname varchar(20),
 birthdate date,
 age int,
 addr location
);
/

create table person_tab of budoka;

create type customer as object (
 account_number varchar(20),
 aperson ref budoka
);
/

create table customer_tab of customer;

insert into person_tab values (
 budoka('Seagal', 'Steven', '14-FEB-1963', 34,
 location(1825, 'Aikido Way', 'Los Angeles', 'CA', 45300)));
insert into person_tab values (
 budoka('Norris', 'Chuck', '25-DEC-1952', 45,
 location(291, 'Grant Avenue', 'Hollywood', 'CA', 21003)));
insert into person_tab values (
 budoka('Wallace', 'Bill', '29-FEB-1944', 53,
 location(874, 'Richmond Street', 'New York', 'NY', 45100)));
insert into person_tab values (
 budoka('Van Damme', 'Jean Claude', '12-DEC-1964', 32,
 location(12, 'Shugyo Blvd', 'Los Angeles', 'CA', 95100)));

insert into customer_tab
 select 'AB123', ref(p)
 from person_tab p where p.lastname = 'Seagal';

Example Code for Navigational Access

Objects 17-29

insert into customer_tab
 select 'DD492', ref(p)
 from person_tab p where p.lastname = 'Norris';
insert into customer_tab
 select 'SM493', ref(p)
 from person_tab p where p.lastname = 'Wallace';
insert into customer_tab
 select 'AC493', ref(p)
 from person_tab p where p.lastname = 'Van Damme';

commit work;

Here is a listing of the intype file for our example, navdemo1.typ:

case=lower
type location
type budoka
type customer

The header file produced by the OTT, navdemo1.h, is included in the precompiler
code with the #include preprocessor directive.

Read the comments throughout the precompiler code. The program adds one new
budoka object (for Jackie Chan), then prints out all the customers in the customer_tab
table.

Here is a listing of the precompiler file, navdemo1.pc:

/***
 *
 * This is a simple Pro*C/C++ program designed to illustrate the
 * Navigational access to objects in the object cache.
 *
 * To build the executable:
 *
 * 1. Execute the SQL script, navdemo1.sql in SQL*Plus
 * 2. Run OTT: (The following command should appear on one line)
 * ott intype=navdemo1.typ hfile=navdemo1.h outtype=navdemo1_o.typ
 * code=c user=scott/tiger
 * 3. Precompile using Pro*C/C++:
 * proc navdemo1 intype=navdemo1_o.typ
 * 4. Compile/Link (This step is platform specific)
 *
 ***/

#include "navdemo1.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlca.h>

void whoops(errcode, errtext, errtextlen)
 int errcode;
 char *errtext;
 int errtextlen;
{

See Also: "The OTT Command Line" on page 19-4 for a
description of the format for the intype file

Example Code for Navigational Access

17-30 Pro*C/C++ Programmer’s Guide

 printf("ERROR! sqlcode=%d: text = %.*s", errcode, errtextlen, errtext);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(EXIT_FAILURE);
}

void main()
{
 char *uid = "scott/tiger";

 /* The following types are generated by OTT and defined in navdemo1.h */
 customer *cust_p; /* Pointer to customer object */
 customer_ind *cust_ind; /* Pointer to indicator struct for customer */
 customer_ref *cust_ref; /* Pointer to customer object reference */
 budoka *budo_p; /* Pointer to budoka object */
 budoka_ref *budo_ref; /* Pointer to budoka object reference */
 budoka_ind *budo_ind; /* Pointer to indicator struct for budoka */

 /* These are data declarations to be used to insert/retrieve object data */
 VARCHAR acct[21];
 struct { char lname[21], fname[21]; int age; } pers;
 struct { int num; char street[61], city[31], state[3], zip[11]; } addr;

 EXEC SQL WHENEVER SQLERROR DO whoops(
 sqlca.sqlcode, sqlca.sqlerrm.sqlerrmc, sqlca.sqlerrm.sqlerrml);

 EXEC SQL CONNECT :uid;

 EXEC SQL ALLOCATE :budo_ref;

 /* Create a new budoka object with an associated indicator
 * variable returning a REF to that budoka as well.
 */
 EXEC SQL OBJECT CREATE :budo_p:budo_ind TABLE PERSON_TAB
 RETURNING REF INTO :budo_ref;

 /* Create a new customer object with an associated indicator */
 EXEC SQL OBJECT CREATE :cust_p:cust_ind TABLE CUSTOMER_TAB;

 /* Set all budoka indicators to NOT NULL. We
 * will be setting all attributes of the budoka.
 */
 budo_ind->_atomic = budo_ind->lastname = budo_ind->firstname =
 budo_ind->age = OCI_IND_NOTNULL;

 /* We will also set all address attributes of the budoka */
 budo_ind->addr._atomic = budo_ind->addr.num = budo_ind->addr.street =
 budo_ind->addr.city = budo_ind->addr.state = budo_ind->addr.zip =
 OCI_IND_NOTNULL;

 /* All customer attributes will likewise be set */
 cust_ind->_atomic = cust_ind->account_number = cust_ind->aperson =
 OCI_IND_NOTNULL;

 /* Set the default CHAR semantics to type 5 (STRING) */
 EXEC ORACLE OPTION (char_map=string);

 strcpy((char *)pers.lname, (char *)"Chan");
 strcpy((char *)pers.fname, (char *)"Jackie");
 pers.age = 38;

Example Code for Navigational Access

Objects 17-31

 /* Convert native C types to OTS types */
 EXEC SQL OBJECT SET lastname, firstname, age OF :budo_p TO :pers;

 addr.num = 1893;
 strcpy((char *)addr.street, (char *)"Rumble Street");
 strcpy((char *)addr.city, (char *)"Bronx");
 strcpy((char *)addr.state, (char *)"NY");
 strcpy((char *)addr.zip, (char *)"92510");

 /* Convert native C types to OTS types */
 EXEC SQL OBJECT SET :budo_p->addr TO :addr;

 acct.len = strlen(strcpy((char *)acct.arr, (char *)"FS926"));

 /* Convert native C types to OTS types - Note also the REF type */
 EXEC SQL OBJECT SET account_number, aperson OF :cust_p TO :acct, :budo_ref;

 /* Mark as updated both the new customer and the budoka */
 EXEC SQL OBJECT UPDATE :cust_p;
 EXEC SQL OBJECT UPDATE :budo_p;

 /* Now flush the changes to the server, effectively
 * inserting the data into the respective tables.
 */
 EXEC SQL OBJECT FLUSH :budo_p;
 EXEC SQL OBJECT FLUSH :cust_p;

 /* Associative access to the REFs from CUSTOMER_TAB */
 EXEC SQL DECLARE ref_cur CURSOR FOR
 SELECT REF(c) FROM customer_tab c;

 EXEC SQL OPEN ref_cur;

 printf("\n");

 /* Allocate a REF to a customer for use below */
 EXEC SQL ALLOCATE :cust_ref;

 EXEC SQL WHENEVER NOT FOUND DO break;
 while (1)
 {
 EXEC SQL FETCH ref_cur INTO :cust_ref;

 /* Pin the customer REF, returning a pointer to a customer object */
 EXEC SQL OBJECT DEREF :cust_ref INTO :cust_p:cust_ind;

 /* Convert the OTS types to native C types */
 EXEC SQL OBJECT GET account_number FROM :cust_p INTO :acct;
 printf("Customer Account is %.*s\n", acct.len, (char *)acct.arr);

 /* Pin the budoka REF, returning a pointer to a budoka object */
 EXEC SQL OBJECT DEREF :cust_p->aperson INTO :budo_p:budo_ind;

 /* Convert the OTS types to native C types */
 EXEC SQL OBJECT GET lastname, firstname, age FROM :budo_p INTO :pers;
 printf("Last Name: %s\nFirst Name: %s\nAge: %d\n",
 pers.lname, pers.fname, pers.age);

 /* Do the same for the address attributes as well */

Example Code for Navigational Access

17-32 Pro*C/C++ Programmer’s Guide

 EXEC SQL OBJECT GET :budo_p->addr INTO :addr;
 printf("Address:\n");
 printf(" Street: %d %s\n City: %s\n State: %s\n Zip: %s\n\n",
 addr.num, addr.street, addr.city, addr.state, addr.zip);

 /* Unpin the customer object and budoka objects */
 EXEC SQL OBJECT RELEASE :cust_p;
 EXEC SQL OBJECT RELEASE :budo_p;
 }

 EXEC SQL CLOSE ref_cur;

 EXEC SQL WHENEVER NOT FOUND DO whoops(
 sqlca.sqlcode, sqlca.sqlerrm.sqlerrmc, sqlca.sqlerrm.sqlerrml);

 /* Associatively select the newly created customer object */
 EXEC SQL SELECT VALUE(c) INTO :cust_p FROM customer_tab c
 WHERE c.account_number = 'FS926';

 /* Mark as deleted the new customer object */
 EXEC SQL OBJECT DELETE :cust_p;

 /* Flush the changes, effectively deleting the customer object */
 EXEC SQL OBJECT FLUSH :cust_p;

 /* Associatively select a REF to the newly created budoka object */
 EXEC SQL SELECT REF(p) INTO :budo_ref FROM person_tab p
 WHERE p.lastname = 'Chan';

 /* Pin the budoka REF, returning a pointer to the budoka object */
 EXEC SQL OBJECT DEREF :budo_ref INTO :budo_p;

 /* Mark the new budoka object as deleted in the object cache */
 EXEC SQL OBJECT DELETE :budo_p;

 /* Flush the changes, effectively deleting the budoka object */
 EXEC SQL OBJECT FLUSH :budo_p;

 /* Finally, free all object cache memory and log off */
 EXEC SQL OBJECT CACHE FREE ALL;

 EXEC SQL COMMIT WORK RELEASE;

 exit(EXIT_SUCCESS);
}

 When the program is executed, the result is:

Customer Account is AB123
Last Name: Seagal
First Name: Steven
Birthdate: 02-14-1963
Age: 34
Address:
 Street: 1825 Aikido Way
 City: Los Angeles
 State: CA
 Zip: 45300

Customer Account is DD492

Using C Structures

Objects 17-33

Last Name: Norris
First Name: Chuck
Birthdate: 12-25-1952
Age: 45
Address:
 Street: 291 Grant Avenue
 City: Hollywood
 State: CA
 Zip: 21003

Customer Account is SM493
Last Name: Wallace
First Name: Bill
Birthdate: 02-29-1944
Age: 53
Address:
 Street: 874 Richmond Street
 City: New York
 State: NY
 Zip: 45100

Customer Account is AC493
Last Name: Van Damme
First Name: Jean Claude
Birthdate: 12-12-1965
Age: 32
Address:
 Street: 12 Shugyo Blvd
 City: Los Angeles
 State: CA
 Zip: 95100

Customer Account is FS926
Last Name: Chan
First Name: Jackie
Birthdate: 10-10-1959
Age: 38
Address:
 Street: 1893 Rumble Street
 City: Bronx
 State: NY
 Zip: 92510

Using C Structures
Before Oracle8, Pro*C/C++ allowed you to specify a C structure as a single host
variable in a SQL SELECT statement. In such cases, each member of the structure is
taken to correspond to a single database column in a relational table; that is, each
member represents a single item in the select list returned by the query.

In Oracle8i and later versions, an object type in the database is a single entity and can
be selected as a single item. This introduces an ambiguity with the Oracle7 notation: is
the structure for a group of scalar variables, or for an object?

Pro*C/C++ uses the following rule to resolve the ambiguity:

A host variable that is a C structure is considered to represent an object type only if its
C declaration was generated using OTT, and therefore its type description appears in a
typefile specified in an INTYPE option to Pro*C/C++. All other host structures are

Using REFs

17-34 Pro*C/C++ Programmer’s Guide

assumed to be uses of the Oracle7 syntax, even if a datatype of the same name resides
in the database.

Thus, if you use new object types that have the same names as existing structure host
variable types, be aware that Pro*C/C++ uses the object type definitions in the
INTYPE file. This can lead to compilation errors. To correct this, you might rename the
existing host variable types, or use OTT to choose a new name for the object type.

The preceding rule extends transitively to user-defined datatypes that are aliased to
OTT-generated datatypes. To illustrate, let emptype be a structure generated by OTT in
a header file dbtypes.h and you have the following statements in your Pro*C/C++
program:

#include <dbtypes.h>
typedef emptype myemp;
myemp *employee;

The typename myemp for the variable employee is aliased to the OTT-generated
typename emptype for some object type defined in the database. Therefore, Pro*C/C++
considers the variable employee to represent an object type.

The preceding rules do not imply that a C structure having or aliased to an
OTT-generated type cannot be used for fetches of non-object type data. The only
implication is that Pro*C/C++ will not automatically expand such a structure -- the
user is free to employ the "longhand syntax" and use individual fields of the structure
for selecting or updating single database columns.

Using REFs
The REF type denotes a reference to an object, instead of the object itself. REF types
may occur in relational columns and also in attributes of an object type.

Generating a C Structure for a REF
The C representation for a REF to an object type is generated by OTT during type
translation. For example, a reference to a user-defined PERSON type in the database
may be represented in C as the type "Person_ref". The exact type name is determined
by the OTT options in effect during type translation. The OTT-generated typefile must
be specified in the INTYPE option to Pro*C/C++ and the OTT-generated header
#included in the Pro*C/C++ program. This scheme ensures that the proper
type-checking for the REF can be performed by Pro*C/C++ during precompilation.

A REF type does not require a special indicator structure to be generated by OTT; a
scalar signed 2-byte indicator is used instead.

Declaring REFs
A host variable representing a REF in Pro*C/C++ must be declared as a pointer to the
appropriate OTT-generated type.

Unlike object types, the indicator variable for a REF is declared as the signed 2-byte
scalar type OCIInd. As always, the indicator variable is optional, but it is a good
programming practice to use one for each host variable declared.

Using REFs in Embedded SQL
REFs reside in the object cache. However, indicators for REFs are scalars and cannot be
allocated in the cache. They generally reside in the user stack.

Using OCIDate, OCIString, OCINumber, and OCIRaw

Objects 17-35

Prior to using the host structure for a REF in embedded SQL, allocate space for it in the
object cache by using the EXEC SQL ALLOCATE command. After use, free using the
EXEC SQL FREE or EXEC SQL CACHE FREE ALL commands.

Memory for scalar indicator variables is not allocated in the object cache, and hence
indicators are not permitted to appear in the ALLOCATE and FREE commands for
REF types. Scalar indicators declared as OCIInd reside on the program stack. At
runtime, the ALLOCATE statement causes space to be allocated in the object cache for
the specified host variable. For the navigational interface, use EXEC SQL GET and
EXEC SQL SET, not C assignments.

Pro*C/C++ supports REF host variables in associative SQL statements and in
embedded PL/SQL blocks.

Using OCIDate, OCIString, OCINumber, and OCIRaw
These OCI types are new C representations for a date, a varying-length
zero-terminated string, an Oracle number, and varying-length binary data respectively.
In certain cases, these types provide more functionality than earlier C representations
of these quantities. For example, the OCIDate type provides client-side routines to
perform DATE arithmetic, which in earlier releases required SQL statements at the
server.

Declaring OCIDate, OCIString, OCINumber, OCIRaw
The OCI* types appear as object type attributes in OTT-generated structures, and you
use them as part of object types in Pro*C/C++ programs. Other than their use in object
types, Oracle recommends that the beginner-level C and Pro*C/C++ user avoid
declaring individual host variables of these types. An experienced Pro*C/C++ user
may wish to declare C host variables of these types to take advantage of the advanced
functionality these types provide. The host variables must be declared as pointers to
these types, for example, OCIString *s. The associated (optional) indicators are
scalar signed 2-byte quantities, declared, for example, OCIInd s_ind.

Use of the OCI Types in Embedded SQL
Space for host variables of these types may be allocated in the object cache using EXEC
SQL ALLOCATE. Scalar indicator variables are not permitted to appear in the
ALLOCATE and FREE commands for these types. You allocate such indicators
statically on the stack, or dynamically on the heap. De-allocation of space can be done
using the statement EXEC SQL FREE, EXEC SQL CACHE FREE ALL, or automatically
at the end of the session.

Manipulating the OCI Types
Except for OCIDate, which is a structure type with individual fields for various date
components: year, month, day, hour and so on., the other OCI types are encapsulated,
and are meant to be opaque to an external user. In contrast to the way existing C types
like VARCHAR are currently handled in Pro*C/C++, you include the OCI header file

See Also: "Navigational Interface" on page 17-6 for a description
of these statements

See Also: "Navigational Interface" on page 17-6 for a description
of these statements

Summarizing the New Database Types in Pro*C/C++

17-36 Pro*C/C++ Programmer’s Guide

oci.h and employ its functions to perform DATE arithmetic, and to convert these
types to and from native C types such as int, char, and so on.

Summarizing the New Database Types in Pro*C/C++
Table 17–2 lists the new database types for Object support:

Table 17–2 Using New Database Types in Pro*C/C++

Operations
Database
Type DECLARE ALLOCATE FREE MANIPULATE

Object type Host:
Pointer to
OTT-genera
ted C struct

Indicator:
Pointer to
OTT-genera
ted
indicator
struct

Associative
interface:

EXEC SQL
ALLOCATE

Navigational
interface:

EXEC SQL
OBJECT CREATE
...

EXEC SQL
OBJECT DEREF

allocates memory
for host var and
indicator in object
cache

Freed by EXEC SQL
FREE, or EXEC SQL
CACHE FREE ALL,
or automatically at
end of session.

Dereference the C
pointer to get each
attribute.
Manipulation
method depends
on type of attribute
(see later).

COLLECTION
Object type

(NESTED
TABLE AND
VARYING
ARRAY)

Host:
Pointer to
OTT-genera
ted C struct

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates memory
for host var in
object cache.

Freed by EXEC SQL
FREE, or EXEC SQL
CACHE FREE ALL,
or automatically at
end of session.

Use OCIColl*
functions (defined
in oci.h) to get/set
elements. See also
Chapter 18,
"Collections".

REF Host:
Pointer to
OTT-genera
ted C struct

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates memory
for host var in
object cache.

Freed by EXEC SQL
FREE, or EXEC SQL
CACHE FREE ALL,
or automatically at
end of session.

Use EXEC SQL
OBJECT DEREF

Use EXEC SQL
OBJECT SET/GET
for navigational
interface.

LOB Host:

OCIBlobLo
cator *,
OCIClobLo
cator *, or
OCIBfileLo
cator *.

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates memory
for the host var in
user heap using

malloc().

Freed by EXEC SQL
FREE, or
automatically when
all Pro*C/C++
connections are
closed. EXEC SQL
CACHE FREE ALL
frees only LOB
attributes of objects.

Or use embedded
PL/SQL stored
procedures in the
dbms_lob package,
or

Use OCILob*
functions defined
in oci.h.

See also "Large
Objects (LOBs)" on
page 16-1.

Summarizing the New Database Types in Pro*C/C++

Objects 17-37

Table 17–3 shows how to use the new C datatypes in Pro*C/C++:

Note:

Host arrays of
these types
may be
declared and
used in bulk
fetch/insert
SQL
operations in
Pro*C/C++.

- - - -

Table 17–3 Using New C Datatypes in Pro*C/C++

Operations

C Type DECLARE ALLOCATE FREE MANIPULATE

OCIDate Host: OCIDate *

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates
memory for host
var in object
cache

Freed by EXEC
SQL FREE, or
EXEC SQL
CACHE FREE
ALL, or
automatically at
end of session.

(1) Use
OCIDate*
functions
defined in oci.h.

(2) Use EXEC
SQL OBJECT
GET/SET, or

(3) Use
OCINumber*
functions
defined in oci.h.

OCINumber Host:
OCINumber *

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates
memory for host
var in object
cache

Freed by EXEC
SQL FREE, or
EXEC SQL
CACHE FREE
ALL, or
automatically at
end of session.

(1) Use EXEC
SQL OBJECT
GET/SET, or

(2) Use
OCINumber*
functions
defined in oci.h.

OCIRaw Host: OCIRaw *

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates
memory for host
var in object
cache

Freed by EXEC
SQL FREE, or
EXEC SQL
CACHE FREE
ALL, or
automatically at
end of session.

Use OCIRaw*
functions
defined in oci.h.

OCIString Host: OCIString
*

Indicator:
OCIInd

EXEC SQL
ALLOCATE

allocates
memory for host
var in object
cache

EXEC SQL
FREE, or EXEC
SQL CACHE
FREE ALL, or
automatically at
end of session.

(1) Use EXEC
SQL OBJECT
GET/SET, or

(2) use
OCIString*
functions
defined in oci.h.

Table 17–2 (Cont.) Using New Database Types in Pro*C/C++

Operations
Database
Type DECLARE ALLOCATE FREE MANIPULATE

Restrictions on Using Oracle Datatypes in Dynamic SQL

17-38 Pro*C/C++ Programmer’s Guide

The new datatypes for Oracle8 were Ref, BLOB, NCLOB, CLOB, and BFILE. These
types may be used in objects or in relational columns. In either case, they are mapped
to host variables according to the C bindings.

Restrictions on Using Oracle Datatypes in Dynamic SQL
Pro*C/C++ currently supports these different types of dynamic SQL methods:
methods 1, 2, 3, and 4 (ANSI and Oracle).

The dynamic methods 1, 2, and 3 will handle all Pro*C/C++ extensions mentioned
earlier, including the new object types, REF, Nested Table, Varying Array, NCHAR,
NCHAR Varying and LOB types.

The older Dynamic SQL method 4 is generally restricted to the Oracle types supported
by Pro*C/C++ prior to release 8.0. It does allow host variables of the NCHAR,
NCHAR Varying and LOB datatypes. Dynamic method 4 is not available for object
types, Nested Table, Varying Array, and REF types.

Instead, use ANSI Dynamic SQL Method 4 for all new applications, because it
supports all datatypes introduced in Oracle8i.

Note:

Host arrays of
these types may
not be used in
bulk fetch/insert
SQL operations
in Pro*C/C++.

- - - -

See Also: "Summarizing the New Database Types in Pro*C/C++"
on page 17-36 for a description of the C bindings

See Also:

■ Chapter 13, "Oracle Dynamic SQL"

■ Chapter 14, "ANSI Dynamic SQL"

■ Chapter 15, "Oracle Dynamic SQL: Method 4"

Table 17–3 (Cont.) Using New C Datatypes in Pro*C/C++

Operations

C Type DECLARE ALLOCATE FREE MANIPULATE

Collections 18-1

18
Collections

This chapter describes other kinds of object types, known as collections, and the ways
of using them in Pro*C/C++. We present methods to access collections and their
elements. This chapter contains the following topics:

■ Collections

■ Descriptors for Collections

■ OBJECT GET and SET

■ Collection Statements

■ Collection Example Code

Collections
There are two kinds of collection object types: nested tables and varrays.

Collections may occur both in relational columns and also as attributes within an
object type. All collections must be named object types in the database. In the case of
varrays, you must first create a named type in the database, specifying the desired
array element type and maximum array dimension.

With Oracle9i, you are no longer limited to a single level of nesting. Oracle9i supports
multilevel collections of objects enabling multiple levels of nested tables and varrays.

Nested Tables
A nested table is a collection of rows, called elements, within a column. For each row
of the database table there are many such elements. A simple example is the list of
tasks that each employee is working on. Thus many-to-one relationships can be stored
in one table, without needing to join employee and task tables.

Nested tables differ from C and C++ arrays in these ways:

■ Arrays have a fixed upper bound; nested tables are unbounded (have no
maximum index).

■ Arrays have consecutive subscripts (are dense); nested tables can be either dense or
sparse (have non-consecutive subscripts). When a nested table is retrieved into an
array in a program, the gaps are skipped, resulting in a filled array that has no
gaps.

Use the CREATE TYPE statement to define a table type that can be nested within other
object types in one or more columns of a relational table.

For example:, to store several projects in each department of an organization:

Descriptors for Collections

18-2 Pro*C/C++ Programmer’s Guide

CREATE TYPE project_type AS OBJECT (
 pno CHAR(5),
 pname CHAR(20),
 budget NUMBER(7,2)) ;

CREATE TYPE project_table AS TABLE OF project_type ;

CREATE TABLE depts (
 dno CHAR(5),
 dname CHAR(20),
 budgets_limit NUMBER(15,2),
 projects project_table)
 NESTED TABLE projects STORE AS depts_projects ;

Varrays
Unlike nested tables, you must specify the maximum number of elements when you
create a VARRAY type. Varrays are only dense, unlike nested tables, which can be
dense or sparse. The elements of a varray and a nested table are both numbered from
0.

You create a varray with CREATE TYPE statements such as:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(10),
 salary NUMBER(8,2)
) ;
CREATE TYPE employees AS VARRAY(15) OF employee ;
CREATE TYPE department AS OBJECT
(
 name VARCHAR2(15),
 team employees
) ;

Use VARRAY as a datatype of a column of a relational table, or as the attribute of an
object type. This saves storage space compared to a relational table that has up to 15
records for each team, each containing the team's name.

C and Collections
In a C or C++ program a nested table is read in starting from index value 0 of the
collection. When you write the nested table into an array, the elements of the nested
table are stored starting at array index 0. When a nested table which is sparse (has
gaps in its index) is stored into an array, the gaps are skipped. When reading the array
back into the nested table, the gaps are re-created.

In a C or C++ program varrays are written into an array, starting at index 0. When read
back into the varray, the elements are restored starting at index 0 in the same order.
Thus, arrays are easily used to access collections.

Descriptors for Collections
The C type for a nested table is a pointer to OCITable. For varrays, it is a pointer to
OCIArray. (Both are subtypes of a pointer to OCIColl). Use the OTT (Object Type
Translator) utility to generate typedefs in header files that you then include in your
application code. See also Chapter 19, "The Object Type Translator".

Descriptors for Collections

Collections 18-3

The host structure for a collection is a descriptor through which the elements in the
collection may be accessed. These descriptors do not hold the actual elements of the
collection, but instead contain the pointers to them. Memory for both the descriptor
and its associated elements come from the object cache.

Following the usual procedure for object types, the OTT-generated typefile must be
specified in the INTYPE precompiler option to Pro*C/C++ and the OTT-generated
headers included in the Pro*C/C++ program using the #include preprocessor
directive. This ensures that the proper type-checking for the collection object type can
be performed during precompilation.

Unlike other object types, however, a collection object type does not require a special
indicator structure to be generated by OTT; a scalar indicator is used instead. This is
because an atomic NULL indicator is sufficient to denote whether a collection as a
whole is NULL. The NULL status of each individual element in a collection may
(optionally) be represented in separate indicators associated to each element.

Declarations for Host and Indicator Variables
As for the other object types, a host variable representing a collection object type must
be declared as a pointer to the appropriate OTT-generated typedef.

Unlike other object types, however, the indicator variable for a collection object type as
a whole is declared as a scalar signed 2-byte type, OCIInd. The indicator variable is
optional, but it is a good programming practice to use one for each host variable
declared in Pro*C/C++.

Manipulating Collections
There are two ways to manipulate a collection: the collection is treated as an
autonomous entity without access to its elements, or its elements are accessed,
appended to, truncated, and so on.

Autonomous Collection Access
Using a C collection descriptor (OCITable or OCIArray) allows only assignment of the
collection as a whole. The OBJECT GET embedded SQL statement binds the collection
to a C host variable descriptor. The opposite occurs in an OBJECT SET statement
which binds the C host descriptor to the collection.

It is possible to bind more than one collection to a compatible C descriptor in the same
statement, or include bindings of other scalars in the same statement where binding of
a collection to a C descriptor occurs.

Collection Element Access
The C collection descriptor is used to access elements of a collection. The descriptor
contains the internal attributes of the collection such as its start and end points, and
other information.

A slice of elements are bound to a host array that has a compatible data type. A slice of
a collection is defined as the contents between a starting index and an ending index.
The slice maps to an array, which can have a dimension larger than the number of slice
elements.

See Also: "Converting Object Attributes and C Types" on
page 17-12

OBJECT GET and SET

18-4 Pro*C/C++ Programmer’s Guide

Binding a scalar is the same as having a host array of dimension one, or having an
optional FOR clause evaluated to one.

Rules for Access
Access rules are different for autonomous and element access.

Autonomous Access
■ The FOR clause is not allowed since the collection is treated as a whole.

■ Because nested tables and varrays are defined differently, assignments between
them are not possible.

■ Multiple assignments of several collections to C descriptors are allowed in the
same statement. You can assign a collection to a C descriptor and also bind other
scalar datatypes in the same statement.

Element Access
■ FOR clauses are permitted. If omitted, the smallest array dimension gives the

number of iterations to perform.

■ Only one collection can be accessed at a time.

Indicator Variables
Each access method has its own way of using indicator variables.

Autonomous Bindings
The single indicator variable holds the NULL status of the collection as a single entity.
This says nothing about the NULL status in the elements.

Element Bindings
The indicator variables show whether an element is NULL or not. If a slice of
collection data is bound to a host array which has its own indicator array, that
indicator array will contain the NULL status of each element in the slice.

When the collection element type is a user-defined object type, the indicator variable
associated with the host variable contains the NULL status of the object and of its
attributes.

OBJECT GET and SET
The navigational statements OBJECT SET and OBJECT GET permit you to retrieve and
update collection attributes as well as object types defined by you.

For elements that are object types, the OBJECT GET statement retrieves all attributes of
the object into the host variables when either the

 '*' | {attr [, attr]} FROM

Note: The FOR clause variable specifies the number of array
elements to be processed. Make sure the number does not exceed
the smallest array dimension. Internally, the value is treated as an
unsigned quantity. An attempt to pass a negative value through the
use of a signed host variable will result in unpredictable behavior.

OBJECT GET and SET

Collections 18-5

clause is omitted, or 'OBJECT GET * FROM ' is used:

EXEC SQL [AT [:]database]
 OBJECT GET ['*' | {attr [,attr]} FROM]
 :object [[INDICATOR] :object_ind]
 INTO {:hv [[INDICATOR] :hv_ind]
 [,:hv [[INDICATOR] :hv_ind]]} ;

The OBJECT SET statement causes all attributes of the object to be updated using the
host variables when either the

 '*' | {attr, [, attr]} OF

clause is omitted or 'OBJECT SET * OF' is used :

EXEC SQL [AT [:]database]
 OBJECT SET ['*' | {attr [, attr]} OF]
 :object [INDICATOR] :object_ind]
 TO {:hv [[INDICATOR] :hv_ind]
 [,:hv [[INDICATOR] :hv_ind]]} ;

This table shows how object and collection types are mapped by these two statements:

The object or collection must be type compatible with the attribute to which it is
bound. Collection attributes are type compatible if and only if they are both either
varray or nested table, and their element types are compatible.

This next table shows how type compatibility for the elements of two collection types
is obtained.

The object to which the REF refers must be type compatible with the REF to which it is
bound.

See Also: "Converting Object Attributes and C Types" on
page 17-12 for complete details of the OBJECT GET and OBJECT
SET statements.

Table 18–1 Object and Collection Attributes

Attribute Type Representation Host Data Type

Object OTT-Generated Structure Pointer to OTT Structure

Collection OCIArray, OCITable (OCIColl) OCIArray *, OCITable * (OCIColl *)

Table 18–2 Collection and Host Array Allowable Type Conversions

Collection Element Type Representation Host Data Type

CHAR, VARCHAR, VARCHAR2 OCIString string, VARCHAR, CHARZ,
OCIString

REF OCIRef OCIRef

INTEGER, SMALLINT, INT OCINumber int, short, OCINumber

NUMBER, NUMERIC, REAL,
FLOAT, DOUBLE PRECISION

OCINumber int, float, double, OCINumber

DATE OCIDate string, VARCHAR, CHARZ,
OCIDate

Collection Statements

18-6 Pro*C/C++ Programmer’s Guide

In both tables OBJECT GET converts database types from the type on the left, using
the format specified in the Representation column to an internal datatype using the
format in the Host Data Type column. OBJECT SET converts in the opposite direction.

No Explicit Type Checking
The precompiler does not support explicit type checking on the bindings between
collection element datatypes and host variable datatypes. Type-checking is done at
runtime.

Collection Statements
This section includes descriptions of the collection statements.

COLLECTION GET

Purpose
The COLLECTION GET statement is analogous to the OBJECT GET statement, but is
designed for collections. It retrieves the elements of a collection, sets the current slice,
and converts elements to C types where appropriate.

Syntax
EXEC SQL [AT [:]database] [FOR :num]
 COLLECTION GET :collect [[INDICATOR] :collect_ind]
 INTO :hv [[INDICATOR] :hv_ind] ;

Variables
num (IN)

The number of elements requested. If this clause is omitted, the array size of the host
variable (scalar has 1) determines the number of elements retrieved from the
collection.

collect (IN)

A host variable C collection descriptor.

collect_ind (IN)

An optional indicator variable returning the NULL status of the collection.

hv (OUT)

The host variable that receives the collection element values.

hv_ind (OUT)

An optional indicator variable returning the NULL status of hv if it is a scalar, or an
array holding the status of each element in the slice.

Usage Notes
The number of elements actually returned in the last COLLECTION GET is set in
sqlca.sqlerrd[2] (not the cumulative total of all GETs). See also "sqlerrd" on page 9-16.

The number returned can be less than the number requested when one or both of the
slice endpoints exceed the collection bounds. This can occur when:

■ The collection descriptor has not been initialized in a syntactically correct
ALLOCATE statement, is NULL, or invalid for any other reason.

Collection Statements

Collections 18-7

■ The collection is NULL. Its associated indicator is -1.

■ The collection is empty (has no elements).

■ More elements were requested than are remaining in the collection.

■ A COLLECTION TRIM statement has been executed, resulting in the endpoint
index being below the starting index of the current slice.

An improperly initialized C collection descriptor results in an error. All other
situations in the list will raise an ORA-01403: no data found error condition. In
this case, the total number of elements successfully retrieved before the error occurs is
still stored in sqlca.sqlerrd[2].

The initial GET or the first GET after a RESET affects the slice as follows:

■ The ending index of the slice will be the index where the final element was found;
it depends on how many elements are requested. If there were not enough
elements in the remaining portion of the collection to satisfy the request, then the
ending index will be the last index in the collection.

Subsequent GETs affect the slice indexes as follows:

■ The index of the start-point is the index where the first element was found after
the end-point of the previous slice. If no more elements are left after the end-point
of the previous slice, the starting index is that of the last element in the collection.

■ The ending index of the next slice will be the index where the final element was
found; it depends on how many elements are requested. If there were not enough
elements in the remaining portion of the collection to satisfy the request given the
position of the previous slice, then the ending index will be the last index in the
collection.

COLLECTION SET

Purpose
The COLLECTION SET statement is analogous to the OBJECT SET statement; it is
used for updating element values of collections. Elements in the current slice are
converted from the native C types to Oracle datatypes.

Syntax
EXEC SQL [AT [:]database] [FOR :num]
 COLLECTION SET :collect [[INDICATOR] :collect_ind]
 TO :hv [[INDICATOR] :hv_ind] ;

Variables
num (IN)

This optional scalar value is the maximum number of elements to be updated in the
slice. If this clause is omitted, the array size of the host variable (scalar has 1)
determines the number of elements updated from the collection.

collect (OUT)

A host variable C collection descriptor.

collect_ind (OUT)

An optional indicator variable which determines the NULL status of the collection.

hv (IN)

Collection Statements

18-8 Pro*C/C++ Programmer’s Guide

A host variable that contains the values to be updated in the collection.

hv_ind (IN)

An associated indicator variable representing the NULL status of the host variable.

Usage Notes
The following restrictions apply:

■ A COLLECTION GET must be executed before a COLLECTION SET.

■ The starting and ending indexes of the slice always remain unchanged. This is true
even if less elements are placed in the collection than can be stored in the current
slice. A SET statement never changes the endpoints of the slice. It only changes
elements in the current slice.

■ The COLLECTION SET is intended only to update those elements in the current
slice. You cannot append new elements to a collection using the COLLECTION
SET statement.

■ If an attempt is made to SET more elements than the current slice contains, only
those elements that fit in the existing slice are updated. Remaining elements
beyond the end of the slice are unaffected and any extra values supplied by the
host variable are unused.

The dimension of the host variable or the value num specified in an optional FOR
clause gives the maximum number of elements requested to be updated in the
collection.

The variable sqlca.sqlerrd[2] returns the number of elements successfully updated by
the previous SET statement (not a cumulative total), which can be less than the
number requested to be set (as for the GET), for these cases:

■ The C collection descriptor has not been correctly initialized in a syntactically
correct ALLOCATE statement, or is NULL, or otherwise invalid.

■ The collection is empty.

■ There were fewer elements in the remaining portion of the collection than were
requested to be set given the position of the current slice in the collection.

■ The end of the current slice was breached. This can happen only when an attempt
is made to set more elements than are in the existing slice.

■ A TRIM has been performed on the collection, bringing the maximum endpoint
index value of the collection below the starting index of the current slice.

Issuing a COLLECTION SET immediately after a COLLECTION GET or SET will only
update the values of the elements in the existing slice. A COLLECTION GET that
immediately follows a COLLECTION SET will advance the slice as already described.

COLLECTION RESET

Purpose
Reset the collection slice endpoints back to the beginning of the collection.

Syntax
EXEC SQL [AT [:]database]
 COLLECTION RESET :collect
 [[INDICATOR] :collect_ind] ;

Collection Statements

Collections 18-9

Variables
collect (IN/OUT)

The collection whose endpoints are to be reset.

collect_ind

Optional indicator variable determining NULL status of the collection.

Usage Notes
An error occurs if the given collection is NULL, or otherwise invalid.

COLLECTION APPEND

Purpose
This statement appends a set of elements (one or more) to the end of a collection,
increasing the size of the collection.

Syntax
EXEC SQL [AT [:]database] [FOR :num]
 COLLECTION APPEND :src [[INDICATOR] :src_ind]
 TO :collect [[INDICATOR] :collect_ind] ;

Variables
num (IN)

A scalar that contains the number of elements to be appended. If absent, the array size
of src is the number of elements to be appended.

src (IN)

Scalar or array of elements to be appended to the collection.

src_ind (IN)

An optional indicator variable (scalar or array) determining the NULL status of the
elements appended.

collect (IN OUT)

The collection to which elements are appended.

collect_ind (IN)

An optional indicator variable determining the NULL status of the collection.

Usage Notes
Elements are appended one at a time (the collection is increased in size by one, the
data is copied to that element, and so on).

The variable sqlca.sqlerrd[2] returns the number of elements successfully
appended by the latest APPEND (not a cumulative total). An error results if there is an
attempt to add elements beyond the upper bound of the collection, or to append to a
NULL collection. Only the elements that fit will be appended.

Collection Statements

18-10 Pro*C/C++ Programmer’s Guide

COLLECTION TRIM

Purpose
This statement removes elements from the end of a collection.

Syntax
EXEC SQL [AT [:]database]
 COLLECTION TRIM :num
 FROM :collect [[INDICATOR] :collect_ind] ;

Variables
num (IN)

A host scalar variable which is how many elements are to be removed. The maximum
permitted value is two Gigabytes.

collect (IN OUT)

The collection to be trimmed.

collect_ind (IN)

An optional indicator variable determining the NULL status of the collection.

Usage Notes
Restrictions applied:

■ The FOR clause is not allowed.

■ The maximum value of num is 2 Gigabytes (the largest number in a 4-byte signed
binary variable.

■ No indicator is allowed with num.

If num is greater than the size of the collection, an error is returned. A warning is
returned if a TRIM removes any elements from the current slice.

COLLECTION DESCRIBE

Purpose
This statement returns information about a collection.

Syntax
EXEC SQL [AT [:]database]
 COLLECTION DESCRIBE :collect [[INDICATOR] :collect_ind]
 GET attribute1 [{, attributeN}]
 INTO :hv1 [[INDICATOR] :hv_ind1] [{, hvN [[INDICATOR] :hv_indN]}] ;

where attributeN is:

DATA_SIZE | TYPECODE | DATA_TYPE | NUM_ELEMENTS
 | PRECISION | SCALE | TYPE_NAME | TYPE_SCHEMA | SIZE | TABLE_SIZE

Variables
collect (IN)

The host variable C collection descriptor.

Collection Statements

Collections 18-11

collect_ind (IN)

An optional indicator variable containing the NULL status of the collection.

hv1 .. hvN (OUT)

Output host variables where the information is to be stored.

hv_ind1 .. hv_indN (OUT)

Indicator variables for the output host variables.

Usage Notes
These restrictions are in effect:

■ The collection cannot be NULL.

■ Host variable types should be compatible with the types of the returned attributes.

■ Indicator variables for the attributes are only required for TYPE_NAME and
TYPE_SCHEMA attribute values where text truncation can occur.

■ A FOR clause is not allowed.

■ The variable sqlca.sqlerrd[2] returns the number of successful attributes retrieved
with no errors. If the DESCRIBE statement incurs an error, then sqlca.sqlqerrd[2]
contains the number of attributes returned before that error, and is one less than
the attribute where the error occurred.

The following table gives attributes, descriptions, and C types for the attributes
retrieved:

Table 18–3 Attributes of a COLLECTION DESCRIBE

Attribute Description C Type Notes

DATA_SIZE The maximum size of the type attribute. The
returned length is in bytes for strings. It is 22
for NUMBERs.

unsigned short Not valid for object or
object REF elements.

TYPECODE OCI type code. OCITypeCode -

DATA_TYPE The internal numeric type code of the
collection items.

unsigned short -

NUM_ELEMENTS The maximum number of elements in the
varray.

unsigned int Only valid for type
VARRAY.

PRECISION The precision of numeric type attributes.
When the returned value is 0 the item being
described is not initialized and is NULL in
the data dictionary.

unsigned char Only valid for elements of
type NUMBER.

SCALE The scale of numeric type attributes. When
the returned value is -127 the item being
described is not initialized and is NULL in
the data dictionary.

signed char Only valid for elements of
type NUMBER.

TYPE_NAME A string containing the name of the type.
For an object type, its name is returned. For
a REF the name of the data type pointed to
by the REF is returned. External data types
allowed are CHARZ, STRING, and
VARCHAR.

char * Only valid for object and
object REF elements.

Collection Example Code

18-12 Pro*C/C++ Programmer’s Guide

Notes on the Table
Pro*C/C++ only supports the external datatypes CHARZ, STRING, and VARCHAR
for the attributes TYPE_NAME and TYPE_SCHEMA.

All the DESCRIBE attributes, except for SIZE and TABLE_SIZE, depend on the
element type of the collection and are independent of any one particular instance of
the collection. The SIZE and TABLE_SIZE attributes, on the other hand, are attributes
whose values strictly depend on a specific instance of the collection. The SIZE or
TABLE_SIZE values will change from one collection instance to another in cases where
an allocated collection descriptor is being reused to refer to different instances of the
same collection. NUM_ELEMENTS is an attribute of the collection type (a VARRAY in
this case), not the collection element type, and is independent of any one particular
instance of the collection.

Rules for the Use of Collections
■ A host variable collection descriptor must always be explicitly allocated.

■ The metadata (internal Oracle data from the database about a collection and its
element type) is collected during an ALLOCATE. That metadata becomes invalid
when the connection in which the ALLOCATE was made is closed or if the type
changes after the ALLOCATE.

■ Use the ALLOCATE and FREE statements to begin and end use of each C
collection descriptor.

Collection Example Code
Here are examples of SQL and Pro*C/C++ code that illustrates the use of the
COLLECTION SQL statements:

Type and Table Creation
Assuming a connection as scott/tiger, we create the following types using SQL:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(10),
 salary NUMBER(8,2)
) ;
CREATE TYPE employees AS VARRAY(15) OF employee ;
CREATE TYPE department AS OBJECT

TYPE_SCHEMA The schema name where the type was
created. External data types allowed are
CHARZ, STRING, and VARCHAR.

char * Only valid for object and
object REF elements.

SIZE The number of elements actually stored in
the collection. For nested tables, SIZE
includes the empty elements. A TRIM
statement decrements the SIZE of the
collection by the number of elements
trimmed.

signed int -

TABLE_SIZE The number of elements in the nested table.
It does not include the gaps.

signed int Only valid for nested
tables.

Table 18–3 (Cont.) Attributes of a COLLECTION DESCRIBE

Attribute Description C Type Notes

Collection Example Code

Collections 18-13

(
 name VARCHAR2(15),
 team employees
) ;

Now for the header file generated by the Object Type Translator. The following intype
file (called in.typ) will be used as input to OTT:

case=lower
type employee
type employees
type department

The following command will generate the header file:

ott intype=in.typ outtype=out.typ hfile=example.h user=scott/tiger code=c

This header file, example.h, is produced by OTT:

#ifndef EXAMPLE_ORACLE
define EXAMPLE_ORACLE

#ifndef OCI_ORACLE
include <oci.h>
#endif

typedef OCIRef employee_ref ;
typedef OCIArray employees ;
typedef OCIRef department_ref ;

struct employee
{
 OCIString * name ;
 OCINumber salary ;
} ;
typedef struct employee employee ;

struct employee_ind
{
 OCIInd _atomic ;
 OCIInd name ;
 OCIInd salary ;
} ;
typedef struct employee_ind employee_ind ;
struct department_ind
{
 OCIInd _atomic ;
 OCIInd name ;
 OCIInd team ;
} ;
typedef struct department_ind department_ind ;

#endif

Note: The oci.h file includes orl.h which has a typedef that
defines OCIArray. That typedef looks like the following 'typedef
OCIColl OCIArray;' where OCIColl is an opaque structure
representing a generic collection.

Collection Example Code

18-14 Pro*C/C++ Programmer’s Guide

Now create a simple table that has one column as follows:

CREATE TABLE division (subdivision department) ;

Now we will insert a few rows into that table:

INSERT INTO division (subdivision) VALUES
(department('Accounting',
 employees(employee('John', 75000),
 employee('Jane', 75000)))
);
INSERT INTO division (subdivision) VALUES
(department('Development',
 employees(employee('Peter', 80000),
 employee('Paula', 80000)))
) ;
INSERT INTO division (subdivision) VALUES
(department('Research',
 employees(employee('Albert', 95000),
 employee('Alison', 95000)))
);

We can now use these type definitions and table information in the examples to follow.

GET and SET Example
Suppose we want to retrieve the values from the collection attribute of an example
object, modify them in some simple way and place them back into the collection.

First, we need to include example.h and declare a variable for the object type:

#include <example.h>
department *dept_p ;

Now we will select the 'Development' department from the division table:

 EXEC SQL ALLOCATE :dept_p ;
 EXEC SQL SELECT subdivision INTO :dept_p
 FROM division WHERE name = 'Development' ;

We also need a variable for the team varray of employee object types and one to
represent a single employee object. We will be giving all team members of the
'Development' department a raise so we need a variable for that also:

 employees *emp_array ;
 employee *emp_p ;
 double salary ;

Now we must ALLOCATE our varray C Collection and employee object descriptors.
We will retrieve the actual collection from the object using the navigational interface:

 EXEC SQL ALLOCATE :emp_array ;
 EXEC SQL ALLOCATE :emp_p ;
 EXEC SQL OBJECT GET team FROM :dept_p INTO :emp_array ;

We will use a loop to iterate through the varray elements, controlling loop termination
by using the WHENEVER directive:

 EXEC SQL WHENEVER NOT FOUND DO break ;
 while (TRUE)
 {

Collection Example Code

Collections 18-15

First, retrieve the element from the collection so that we can alter it. The actual element
type is an employee object:

 EXEC SQL COLLECTION GET :emp_array INTO :emp_p ;

Now that we have the actual object element, we can then proceed to change an
attribute's value using the existing navigational interface. In this case, we give a 10%
salary increase to everyone:

 EXEC SQL OBJECT GET salary FROM :emp_p INTO :salary ;
 salary += (salary * .10) ;
 EXEC SQL OBJECT SET salary OF :emp_p TO :salary ;

Once we are done making our changes, we can update the value of the attribute of
the object element we are currently at in the collection:

 EXEC SQL COLLECTION SET :emp_array TO :emp_p ;
 }

Once we are done iterating through all of the collection elements, we must then
update the column of the table that stores the object that contains the collection we just
finished modifying:

 EXEC SQL UPDATE division SET subdivision = :dept_p ;

We can then FREE all of our resources and COMMIT our work thus terminating this
sequence of operations:

 EXEC SQL FREE :emp_array ;
 EXEC SQL FREE :emp_p ;
 EXEC SQL FREE :dept_p ;
 EXEC SQL COMMIT WORK ;

Although this is a fairly small and simple example, it is quite comprehensive. It clearly
demonstrates how a collection attribute can be retrieved from an object into a C
Collection Descriptor using the semantic extensions to the navigational OBJECT GET
statement. Using that C Descriptor we then saw how to use the new COLLECTION
GET and SET statements to retrieve and update the actual elements of that collection.
We used the navigational interface to modify the attribute values of the collection
object element type.

DESCRIBE Example
This example illustrates a simple use of the DESCRIBE SQL statement. We want to find
out some basic information about a given collection.

First we need our example header file, an object pointer and a SQL Collection
Descriptor:

#include <example.h>
department *dept_p ;

Now we ALLOCATE the object pointer and retrieve our object from the table as
before:

EXEC SQL ALLOCATE :dept_p ;
EXEC SQL SELECT subdivision INTO :dept_p
 FROM division WHERE name = 'Research' ;

Declare Pro*C/C++ variables to store the collection attribute information we want:

int size ;

Collection Example Code

18-16 Pro*C/C++ Programmer’s Guide

char type_name[9] ;
employees *emp_array ;

Allocate the collection descriptor, then use the navigational interface to get the
collection attribute from the object:

EXEC SQL ALLOCATE :emp_array ;
EXEC SQL OBJECT GET team FROM :dept_p INTO :emp_array ;

Finally, we can use the new COLLECTION DESCRIBE statement to extract the desired
collection attribute information:

EXEC SQL COLLECTION DESCRIBE :emp_array
 GET SIZE, TYPE_NAME INTO :size, :type_name ;

Because the type employees is a VARRAY of object employee, we can extract the type
name.

After successful completion of the DESCRIBE, the value of size should be 2 (there
are 2 elements, Albert and Alison, in this collection instance, Research). The type_
name variable should read "EMPLOYEE\0" (it is a CHARZ by default).

Once we are finished with the SQL Descriptor and the object pointer we can FREE
their resources:

EXEC SQL FREE :emp_array ;
EXEC SQL FREE :dept_p ;

We have just illustrated that the DESCRIBE mechanism is used to extract useful
information from a C Collection Descriptor about the underlying collection to which
the descriptor refers.

RESET Example
Now suppose that instead of giving just the employees in Development a raise, as in
the GET and SET example, we give raises to everybody in the entire division.

We start off as before, including our example header file generated by the Object Type
Translator. This time, however, we will be using a cursor to iterate through all
departments in the division, one at a time:

#include <example.h>
EXEC SQL DECLARE c CURSOR FOR SELECT subdivision FROM division ;

We will need some local variables to manipulate our data:

department *dept_p ;
employees *emp_array ;
employee *emp_p ;
double salary ;
int size ;

Before we can use the object and collection variables, we must first initialize them by
using this ALLOCATE statement:

EXEC SQL ALLOCATE :emp_array ;

Note: You are permitted to use host variable names that are the
same as the desired collection attribute name, as in this example.

Collection Example Code

Collections 18-17

EXEC SQL ALLOCATE :emp_p ;

Now we are ready to use our cursor to iterate through all of the departments in the
division:

EXEC SQL OPEN c ;
EXEC SQL WHENEVER NOT FOUND DO break ;
while (TRUE)
 {
 EXEC SQL FETCH c INTO :dept_p ;

At this point, we have a department object. We need to use the Navigational Interface
to extract the 'team' VARRAY attribute from the department:

 EXEC SQL OBJECT GET team FROM :dept_p INTO :emp_array ;

Before we can start referring to the collection, we need to guarantee that the slice
endpoints are set to the beginning of the current collection instance (not the end of a
previous instance) by use of the RESET statement:

 EXEC SQL COLLECTION RESET :emp_array ;

Now we will iterate through all elements of the varray and update the salaries as we
did before. The existing WHENEVER directive remains in effect for this loop as well:

 while (TRUE)
 {
 EXEC SQL COLLECTION GET :emp_array INTO :emp_p ;
 EXEC SQL OBJECT GET salary FROM :emp_p INTO :salary ;
 salary += (salary * .05) ;
 EXEC SQL OBJECT SET salary OF :emp_p TO :salary ;

When we are finished, we'll update the collection attribute:

 EXEC SQL COLLECTION SET :emp_array TO :emp_p ;
 }

As before, we need to update the column of the table that stores the object that
contains the collection that we just finished modifying:

 EXEC SQL UPDATE division SET subdivision = :dept_p ;
 }

Loop termination signifies the end of processing. We can now FREE all of our
resources and COMMIT our work:

EXEC SQL CLOSE c ;
EXEC SQL FREE :emp_p ;
EXEC SQL FREE :emp_array ;
EXEC SQL FREE :dept_p ;
EXEC SQL COMMIT WORK ;

This example demonstrates how it is possible to reuse an ALLOCATEd Collection
Descriptor for different instances of the same collection type. The COLLECTION
RESET statement ensures the slice endpoints are set back to the beginning of the
current collection instance. They do not remain in their existing positions after being
moved during the referencing of a previous collection instance.

By using the COLLECTION RESET statement in this fashion, application developers
need not explicitly FREE and reALLOCATE a Collection Descriptor with each new
instance of the same collection type.

Collection Example Code

18-18 Pro*C/C++ Programmer’s Guide

Example Program:coldemo1.pc
The following program, coldemo1.pc, is in the demo directory.

This example demonstrates three ways for the Pro*C client to navigate through
collection-typed database columns. Although the examples presented use nested
tables, they also apply to varrays.

Here is the SQL*Plus file, coldemo1.sql, that sets up the table using the inserts and
data contained in calidata.sql:

REM **
REM ** This is a SQL*Plus script to demonstrate collection manipulation
REM ** in Pro*C/C++.
REM ** Run this script before executing OTT for the coldemo1.pc program
REM **

connect scott/tiger;

set serveroutput on;

REM Make sure database has no old version of the table and types

DROP TABLE county_tbl;
DROP TYPE citytbl_t;
DROP TYPE city_t;

REM ABSTRACTION:
REM The counties table contains census information about each of the
REM counties in a particular U.S. state (California is used here).
REM Each county has a name, and a collection of cities.
REM Each city has a name and a population.

REM IMPLEMENTATION:
REM Our implementation follows this abstraction
REM Each city is implemented as a "city" OBJECT, and the
REM collection of cities in the county is implemented using
REM a NESTED TABLE of "city" OBJECTS.

CREATE TYPE city_t AS OBJECT (name CHAR(30), population NUMBER);
/

CREATE TYPE citytbl_t AS TABLE OF city_t;
/

CREATE TABLE county_tbl (name CHAR(30), cities citytbl_t)
 NESTED TABLE cities STORE AS citytbl_t_tbl;

REM Load the counties table with data. This example uses estimates of
REM California demographics from Janurary 1, 1996.

@calidata.sql;

REM Commit to save
COMMIT;

See the comments at the beginning of the following program for explanations of how
to set up the table, and then the functionality demonstrated by this program.

 /* *** */
 /* Demo program for Collections in Pro*C */

Collection Example Code

Collections 18-19

 /* *** */

/***

 In SQL*Plus, run the SQL script coldemo1.sql to create:
 - 2 types: city_t (OBJECT) and citytbl_t (NESTED TABLE)
 - 1 relational table county_tbl which contains a citytbl_t nested table

 Next, run the Object Type Translator (OTT) to generate typedefs of C structs
 corresponding to the city_t and citytbl_t types in the databases:
 ott int=coldemo1.typ outt=out.typ hfile=coldemo1.h code=c user=scott/tiger

 Then, run the Pro*C/C++ Precompiler as follows:
 proc coldemo1 intype=out.typ

 Finally, link the generated code using the Pro*C Makefile:
 (Compiling and Linking applications is a platform dependent step).

 **

 Scenario:
 We consider the example of a database used to store census
 information for the state of California. The database has a table
 representing the counties of California. Each county has a name
 and a collection of cities. Each city has a name and a population.

 Application Overview:
 This example demonstrates three ways for the Pro*C client to
 navigate through collection-typed database columns. Although the
 examples presented use nested tables, they also apply to varrays.
 Collections-specific functionality is demonstrated in three
 different functions, as described below.

 PrintCounties shows examples of
 * Declaring collection-typed host variables and arrays
 * Allocating and freeing collection-typed host variables
 * Using SQL to load a collection-typed host variable
 * Using indicators for collection-typed host variables
 * Using OCI to examine a collection-typed host variables

 PrintCounty shows examples of
 * Binding a ref cursor host variable to a nested table column
 * Allocating and freeing a ref cursor
 * Using the SQL "CURSOR" clause

 CountyPopulation shows examples of
 * Binding a "DECLARED" cursor to a nested table column
 * Using the SQL "THE" clause

**/

/* Include files */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h> /* SQL Communications Area */
#include <coldemo1.h> /* OTT-generated header with C typedefs for the */
 /* database types city_t and citytbl_t */
#ifndef EXIT_SUCCESS

Collection Example Code

18-20 Pro*C/C++ Programmer’s Guide

define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
define EXIT_FAILURE 1
#endif

#define CITY_NAME_LEN 30
#define COUNTY_NAME_LEN 30
#define MAX_COUNTIES 60

/* Function prototypes */

#if defined(__STDC__)
 void OptionLoop(void);
 boolean GetCountyName(char *countyName);
 void PrintCounties(void);
 long CountyPopulation(CONST char *countyName);
 void PrintCounty(CONST char *countyName);
 void PrintSQLError(void);
 void PrintCountyHeader(CONST char *county);
 void PrintCity(city_t *city);
#else
 void OptionLoop();
 boolean GetCountyName(/*_ char *countyName _*/);
 void PrintCounties();
 long CountyPopulation(/*_ CONST char *countyName _*/);
 void PrintCounty(/*_ CONST char *countyName _*/);
 void PrintSQLError(/*_ void _*/);
 void PrintCountyHeader(/*_ CONST char *county _*/);
 void PrintCity(/*_ city_t *city _*/);
#endif

/*
 * NAME
 * main
 * COLLECTION FEATURES
 * none
 */
int main()
{
 char * uid = "scott/tiger";

 EXEC SQL WHENEVER SQLERROR DO PrintSQLError();

 printf("\nPro*Census: Release California - Jan 1 1996.\n");
 EXEC SQL CONNECT :uid;

 OptionLoop();

 printf("\nGoodbye\n\n");
 EXEC SQL ROLLBACK RELEASE;
 return(EXIT_SUCCESS);
}

/*
 * NAME
 * OptionLoop
 * DESCRIPTION
 * A command dispatch routine.
 * COLLECTION FEATURES

Collection Example Code

Collections 18-21

 * none
 */
void OptionLoop()
{
 char choice[30];
 boolean done = FALSE;
 char countyName[COUNTY_NAME_LEN + 1];

 while (!done)
 {
 printf("\nPro*Census options:\n");
 printf("\tlist information for (A)ll counties\n");
 printf("\tlist information for one (C)ounty\n");
 printf("\tlist (P)opulation total for one county\n");
 printf("\t(Q)uit\n");
 printf("Choice? ");

 fgets(choice, 30, stdin);
 switch(toupper(choice[0]))
 {
 case 'A':
 PrintCounties();
 break;
 case 'C':
 if (GetCountyName(countyName))
PrintCounty(countyName);
 break;
 case 'P':
 if (GetCountyName(countyName))
printf("\nPopulation for %s county: %ld\n",
 countyName, CountyPopulation(countyName));
 break;
 case 'Q':
 done = TRUE;
 break;
 default:
 break;
 }
 }
}

/*
 * NAME
 * GetCountyName
 * DESCRIPTION
 * Fills the passed buffer with a client-supplied county name.
 * Returns TRUE if the county is in the database, and FALSE otherwise.
 * COLLECTION FEATURES
 * none
 */
boolean GetCountyName(countyName)
 char *countyName;
{
 int count;
 int i;

 printf("County name? ");
 fgets(countyName, COUNTY_NAME_LEN + 1, stdin);

Collection Example Code

18-22 Pro*C/C++ Programmer’s Guide

 /* Convert the name to uppercase and remove the trailing '\n' */
 for (i = 0; countyName[i] != '\0'; i++)
 {
 countyName[i] = (char)toupper(countyName[i]);
 if (countyName[i] == '\n') countyName[i] = '\0';
 }

 EXEC SQL SELECT COUNT(*) INTO :count
 FROM county_tbl WHERE name = :countyName;

 if (count != 1)
 {
 printf("\nUnable to find %s county.\n", countyName);
 return FALSE;
 }
 else
 return TRUE;
}

/*
 * NAME
 * PrintCounties
 * DESCRIPTION
 * Prints the population and name of each city of every county
 * in the database.
 * COLLECTION FEATURES
 * The following features correspond to the inline commented numbers
 * 1) Host variables for collection-typed objects are declared using
 * OTT-generated types. Both array and scalar declarations are allowed.
 * Scalar declarations must be of type pointer-to-collection-type, and
 * array declarations must of type array-of-pointer-to-collection-type.
 * 2) SQL ALLOCATE should be used to allocate space for the collection.
 * SQL FREE should be used to free the memory once the collection is
 * no longer needed. The host variable being allocated or free'd
 * can be either array or scalar.
 * 3) SQL is used to load into or store from collection-typed host variables
 * and arrays. No special syntax is needed.
 * 4) The type of an indicator variable for a collection is OCIInd.
 * An indicators for a collections is declared and used just like
 * an indicator for an int or string.
 * 5) The COLLECTION GET Interface is used to access and manipulate the
 * contents of collection-typed host variables. Each member of the
 * collection used here has type city_t, as generated by OTT.
 */
void PrintCounties()
{
 citytbl_t *cityTable[MAX_COUNTIES]; /* 1 */
 OCIInd cityInd[MAX_COUNTIES]; /* 4 */
 char county[MAX_COUNTIES][COUNTY_NAME_LEN + 1];
 int i, numCounties;
 city_t *city;

 EXEC SQL ALLOCATE :cityTable; /* 2 */
 EXEC SQL ALLOCATE :city;

 EXEC SQL SELECT name, cities
 INTO :county, :cityTable:cityInd FROM county_tbl; /* 3, 4 */

 numCounties = sqlca.sqlerrd[2];

Collection Example Code

Collections 18-23

 for (i = 0; i < numCounties; i++)
 {
 if (cityInd[i] == OCI_IND_NULL) /* 4 */
 {
 printf("Unexpected NULL city table for %s county\n", county[i]);
 }
 else
 { /* 5 */
 PrintCountyHeader(county[i]);
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 EXEC SQL COLLECTION GET :cityTable[i] INTO :city;
 PrintCity(city);
 }
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 }
 }

 EXEC SQL FREE :city;
 EXEC SQL FREE :cityTable; /* 2 */
}

/*
 * NAME
 * PrintCountyHeader
 * COLLECTION FEATURES
 * none
 */
void PrintCountyHeader(county)
 CONST char *county;
{
 printf("\nCOUNTY: %s\n", county);
}

/*
 * NAME
 * PrintCity
 * COLLECTION FEATURES
 * none
 */
void PrintCity(city)
 city_t *city;
{
 varchar newCITY[CITY_NAME_LEN];
 int newPOP;

 EXEC SQL OBJECT GET NAME, POPULATION from :city INTO :newCITY, :newPOP;
 printf("CITY: %.*s POP: %d\n", CITY_NAME_LEN, newCITY.arr, newPOP);
}

/*
 * NAME
 * PrintCounty
 * DESCRIPTION
 * Prints the population and name of each city in a particular county.
 * COLLECTION FEATURES
 * The following features correspond to the inline commented numbers

Collection Example Code

18-24 Pro*C/C++ Programmer’s Guide

 * 1) A ref cursor host variable may be used to scroll through the
 * rows of a collection.
 * 2) Use SQL ALLOCATE/FREE to create and destroy the ref cursor.
 * 3) The "CURSOR" clause in SQL can be used to load a ref cursor
 * host variable. In such a case, the SELECT ... INTO does an
 * implicit "OPEN" of the ref cursor.
 * IMPLEMENTATION NOTES
 * In the case of SQL SELECT statements which contain an embedded
 * CURSOR(...) clause, the Pro*C "select_error" flag must be "no"
 * to prevent cancellation of the parent cursor.
 */
void PrintCounty(countyName)
 CONST char *countyName;
{
 sql_cursor cityCursor; /* 1 */
 city_t *city;

 EXEC SQL ALLOCATE :cityCursor; /* 2 */
 EXEC SQL ALLOCATE :city;

 EXEC ORACLE OPTION(select_error=no);
 EXEC SQL SELECT
 CURSOR(SELECT VALUE(c) FROM TABLE(county_tbl.cities) c)
 INTO :cityCursor
 FROM county_tbl
 WHERE county_tbl.name = :countyName; /* 3 */
 EXEC ORACLE OPTION(select_error=yes);

 PrintCountyHeader(countyName);

 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 EXEC SQL FETCH :cityCursor INTO :city;
 PrintCity(city);
 }
 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 EXEC SQL CLOSE :cityCursor;

 EXEC SQL FREE :cityCursor; /* 2 */
 EXEC SQL FREE :city;
}

/*
 * NAME
 * CountyPopulation
 * DESCRIPTION
 * Returns the number of people living in a particular county.
 * COLLECTION FEATURES
 * The following features correspond to the inline commented numbers
 * 1) A "DECLARED" cursor may be used to scroll through the
 * rows of a collection.
 * 2) The "THE" clause in SQL is used to convert a single nested-table
 * column into a table.
 */
long CountyPopulation(countyName)
 CONST char *countyName;
{

Collection Example Code

Collections 18-25

 long population;
 long populationTotal = 0;

 EXEC SQL DECLARE cityCursor CURSOR FOR
 SELECT c.population
 FROM THE(SELECT cities FROM county_tbl
 WHERE name = :countyName) AS c; /* 1, 2 */

 EXEC SQL OPEN cityCursor;

 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 EXEC SQL FETCH cityCursor INTO :population;
 populationTotal += population;
 }
 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 EXEC SQL CLOSE cityCursor;
 return populationTotal;
}

/*
 * NAME
 * PrintSQLError
 * DESCRIPTION
 * Prints an error message using info in sqlca and calls exit.
 * COLLECTION FEATURES
 * none
 */
void PrintSQLError()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("SQL error occurred...\n");
 printf("%.*s\n", (int)sqlca.sqlerrm.sqlerrml,
 (CONST char *)sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK RELEASE;
 exit(EXIT_FAILURE);
}

Collection Example Code

18-26 Pro*C/C++ Programmer’s Guide

The Object Type Translator 19-1

19
The Object Type Translator

This chapter discusses the OTT (Object Type Translator), which maps database object
types, LOB types, and collection types to C structs for use in Pro*C/C++ applications.

The chapter includes the following sections:

■ OTT Overview

■ What is the Object Type Translator

■ Using OTT with OCI Applications

■ Using OTT with Pro*C/C++ Applications

■ OTT Reference

OTT Overview
OTT (The Object Type Translator) assists in the development of applications that make
use of user-defined types in an Oracle server.

Through the use of SQL CREATE TYPE statements, you can create object types. The
definitions of these types are stored in the database, and can be used in the creation of
database tables. Once these tables are populated, an OCI, Pro*C/C++, or Java
programmer can access objects stored in the tables.

An application that accesses object data must be able to represent the data in a host
language format. This is accomplished by representing object types as C structs. It
would be possible for a programmer to code struct declarations by hand to represent
database object types, but this can be very time-consuming and error-prone if many
types are involved. OTT simplifies this step by automatically generating appropriate
struct declarations. For Pro*C/C++, the application only needs to include the header
file generated by OTT. In OCI, the application also needs to call an initialization
function generated by OTT.

In addition to creating structs that represent stored datatypes, OTT also generates
parallel indicator structs which indicate whether an object type or its fields are NULL.

For detailed information about object types, refer to Chapter 16, "Large Objects
(LOBs)", Chapter 17, "Objects", and Chapter 18, "Collections".

What is the Object Type Translator
The Object Type Translator (OTT) converts database definitions of object types and
named collection types into C struct declarations which can be included in an OCI or
Pro*C/C++ application.

What is the Object Type Translator

19-2 Pro*C/C++ Programmer’s Guide

Both OCI programmers and Pro*C/C++ programmers must explicitly invoke OTT to
translate database types to C representations. OCI programmers must also initialize a
data structure called the Type Version Table with information about the user-defined
types required by the program. Code to perform this initialization is generated by
OTT. In Pro*C/C++, the type version information is recorded in the OUTTYPE file
which is passed as a parameter to Pro*C/C++.

On most operating systems, OTT is invoked on the command line. It takes as input an
INTYPE file, and it generates an OUTTYPE file and one or more C header files and an
optional implementation file (for OCI programmers). The following is an example of a
command that invokes OTT:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

This command causes OTT to connect to the database with username scott and
password tiger, and translate database types to C structs, based on instructions in the
INTYPE file, demoin.typ. The resulting structs are output to the header file, demo.h,
for the host language (C) specified by the CODE parameter. The OUTTYPE file,
demoout.typ, receives information about the translation.

Each of these parameters is described in more detail in later sections of this chapter.

Sample demoin.typ file:

CASE=LOWER
TYPE employee

Sample demoout.typ file:

CASE = LOWER
TYPE SCOTT.EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h

In this example, the demoin.typ file contains the type to be translated, preceded by
TYPE (for example, TYPE employee). The structure of the OUTTYPE file is similar to
the INTYPE file, with the addition of information obtained by OTT.

Once OTT has completed the translation, the header file contains a C struct
representation of each type specified in the INTYPE file, and a NULL indicator struct
corresponding to each type. For example, if the employee type listed in the INTYPE
file was defined as

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

the header file generated by OTT (demo.h) includes, among other items, the following
declarations:

struct employee
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;

What is the Object Type Translator

The Object Type Translator 19-3

 OCINumber salary;
};
typedef struct emp_type emp_type;

struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct employee_ind employee_ind;

The datatypes that appear in the struct declarations (for example, OCIString and
OCIInd) are special datatypes which were new in Oracle8. For more information
about these types, see "OTT Datatype Mappings" on page 19-7.

The following sections describe these aspects of using OTT:

■ Creating Types in the Database

■ Invoking OTT

■ The OTT Command Line

■ The INTYPE File

■ OTT Datatype Mappings

■ NULL Indicator Structs

■ OTT Support for Type Inheritance

The remaining sections of the chapter discuss the use of OTT with OCI and
Pro*C/C++, followed by a reference section that describes command line syntax,
parameters, INTYPE file structure, nested #include file generation, schema names
usage, default name mapping, and restrictions.

Creating Types in the Database
The first step in using OTT is to create object types or named collection types and store
them in the database. This is accomplished through the use of the SQL CREATE TYPE
statement.

See Also: For information about creating object types and collections, refer to
Chapter 17, "Objects".

Invoking OTT
The next step is to invoke OTT.

You can specify OTT parameters on the command line, or in a file called a
configuration file. Certain parameters can also be specified in the INTYPE file.

Note: Parameters in the INTYPE file control the way generated
structs are named. In this example, the struct name employee
matches the database type name employee. The struct name is in
lower case because of the line CASE=LOWER in the INTYPE file.

What is the Object Type Translator

19-4 Pro*C/C++ Programmer’s Guide

If you specify a parameter in more than one place, its value on the command line will
take precedence over its value in the INTYPE file, which takes precedence over its
value in a user-defined configuration file, which takes precedence over its value in the
default configuration file.

For global options -- that is, options on the command line or options at the beginning
of the INTYPE file before any TYPE statements -- the value on the command line
overrides the value in the INTYPE file. (The options that can be specified globally in
the INTYPE file are CASE, CODE, INITFILE, OUTDIR, and INITFUNC, but not HFILE.)
Anything in the INTYPE file in a TYPE specification applies to a particular type only,
and overrides anything on the command line that would otherwise apply to the type.
So if you enter TYPE person HFILE=p.h, it applies to person only and overrides
the HFILE on the command line. The statement is not considered a command-line
parameter.

Command Line
Parameters (also called options) set on the command line override any set elsewhere.

See Also: For information about creating object types and collections, refer to
Chapter 17, "Objects".

Configuration File
A configuration file is a text file that contains OTT parameters. Each non-blank line in
the file contains one parameter, with its associated value or values. If more than one
parameter is put on a line, only the first one will be used. No whitespace may occur on
any non-blank line of a configuration file.

A configuration file can be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist, but
can be empty. The name of the default configuration file is ottcfg.cfg, and the
location of the file is system-specific. See your platform-specific documentation for
further information.

INTYPE File
The INTYPE file gives a list of types for OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the INTYPE
file. See "The INTYPE File" on page 19-6 for more information.

The OTT Command Line
On most platforms, OTT is invoked on the command line. You can specify the input
and output files and the database connection information, among other things.
Consult your platform-specific documentation to see how to invoke OTT on your
platform.

The following is an example (example 1) of an OTT invocation from the command
line:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

The following sections describe the elements of the command line used in this
example.

Note: No spaces are permitted around the equals sign (=).

What is the Object Type Translator

The Object Type Translator 19-5

For a detailed discussion of the various OTT command line options, see "OTT
Reference" on page 19-21.

OTT
Causes OTT to be invoked. It must be the first item on the command line.

Userid
Specifies the database connection information which OTT will use. In example one,
OTT will attempt to connect with username scott and password tiger.

INTYPE
Specifies the name of the INTYPE file which will be used. In example 1, the name of
the INTYPE file is specified as demoin.typ.

OUTTYPE
Specifies the name of the OUTTYPE file. When OTT generates the C header file, it also
writes information about the translated types into the OUTTYPE file. This file contains
an entry for each of the types that is translated, including its version string, and the
header file to which its C representation was written.

In example one, the name of the OUTTYPE file is specified as demoout.typ.

CODE
Specifies the target language for the translation. The following options are available:

■ C (equivalent to ANSI_C)

■ ANSI_C (for ANSI C)

■ KR_C (for Kernighan & Ritchie C)

There is currently no default value, so this parameter is required.

Struct declarations are identical in both C dialects. The style in which the initialization
function defined in the INITFILE file is defined depends on whether KR_C is used. If
the INITFILE option is not used, all three options are equivalent.

HFILE
Specifies the name of the C header file to which the generated structs should be
written. In example 1, the generated structs will be stored in a file called demo.h.

Note: If the file specified by OUTTYPE already exists, it will be
overwritten when OTT runs, with one exception: if the contents of
the file as generated by OTT are identical to the previous contents
of the file, OTT will not actually write to the file. This preserves the
modification time of the file so that UNIX make and similar facilities
on other platforms do not perform unnecessary recompilations.

What is the Object Type Translator

19-6 Pro*C/C++ Programmer’s Guide

INITFILE
Specifies the use of the C source file into which the type initialization function is to be
written.

The initialization function is only needed in OCI programs. In Pro*C/C++ programs,
the Pro*C/C++ runtime library initializes types for the user.

INITFUNC
Specifies the name of the initialization function to be defined in the INITFILE.

If this parameter is not used and an initialization function is generated, the name of
the initialization function will be the same as the base name of the INITFILE.

This function is only needed in OCI programs.

The INTYPE File
When you run OTT, the INTYPE file tells OTT which database types should be
translated. It can also control the naming of the generated structs. You can create the
INTYPE file, or use the OUTTYPE file of a previous invocation of OTT. If the INTYPE
parameter is not used, all types in the schema to which OTT connects are translated.

The following is a simple example of a user-created INTYPE file:

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

The first line, with the CASE keyword, indicates that generated C identifiers should be
in lower case. However, this CASE option is only applied to those identifiers that are
not explicitly mentioned in the INTYPE file. Thus, employee and ADDRESS would
always result in C structures employee and ADDRESS, respectively. The members of
these structures would be named in lower case.

See "CASE" on page 19-24 for further information regarding the CASE option.

Note: If the file specified by HFILE already exists, it will be
overwritten when OTT runs, with one exception: if the contents of
the file as generated by OTT are identical to the previous contents
of the file, OTT will not actually write to the file. This preserves the
modification time of the file so that UNIX make and similar facilities
on other platforms do not perform unnecessary recompilations.

Note: If the file specified by INITFILE already exists, it will be
overwritten when OTT runs, with one exception: if the contents of
the file as generated by OTT are identical to the previous contents
of the file, OTT will not actually write to the file. This preserves the
modification time of the file so that UNIX make and similar facilities
on other platforms do not perform unnecessary recompilations.

What is the Object Type Translator

The Object Type Translator 19-7

The lines that begin with the TYPE keyword specify which types in the database
should be translated. In this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and
PURCHASE_ORDER types.

The TRANSLATE...AS keywords specify that the name of an object attribute should be
changed when the type is translated into a C struct. In this case, the SALARY$
attribute of the employee type is translated to salary.

The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a struct. In this case, the purchase_order database
type is translated into a struct called p_o.

If you do not use AS to translate a type or attribute name, the database name of the
type or attribute will be used as the C identifier name, except that the CASE option will
be observed, and any characters that cannot be mapped to a legal C identifier character
will be replaced by an underscore. Reasons for translating a type or attribute name
include:

■ the name contains characters other than letters, digits, and underscores

■ the name conflicts with a C keyword

■ the type name conflicts with another identifier in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

■ the programmer prefers a different name

OTT may need to translate additional types that are not listed in the INTYPE file. This
is because OTT analyzes the types in the INTYPE file for type dependencies before
performing the translation, and translates other types as necessary. For example, if the
ADDRESS type were not listed in the INTYPE file, but the Person type had an
attribute of type ADDRESS, OTT would still translate ADDRESS because it is required
to define the Person type.

A normal case-insensitive SQL identifier can be spelled in any combination of upper
and lower case in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person" to reference SQL identifiers that have
been created in a case-sensitive manner, for example, CREATE TYPE "Person". A SQL
identifier is case-sensitive if it was quoted when it was declared.

Quotation marks can also be used to refer to a SQL identifier that is also an
OTT-reserved word, for example, TYPE "CASE". In this case, the quoted name must be
in upper case if the SQL identifier was created in a case-insensitive manner, for
example, CREATE TYPE Case. If an OTT-reserved word is used to refer to the name of
a SQL identifier but is not quoted, OTT will report a syntax error in the INTYPE file.

See Also: For a more detailed specification of the structure of the INTYPE file and the
available options, see "Structure of the INTYPE File" on page 19-26.

OTT Datatype Mappings
When OTT generates a C struct from a database type, the struct contains one element
corresponding to each attribute of the object type. The datatypes of the attributes are
mapped to types that are used in Oracle object data types. The datatypes found in

Note: As of Release 1 (9.0.1), users may specify TRANSITIVE =
FALSE to not generate types that are not specified in the INTYPE
file. TRANSITIVE is set to TRUE by default.

What is the Object Type Translator

19-8 Pro*C/C++ Programmer’s Guide

Oracle include a set of predefined, primitive types, and provide for the creation of
user-defined types, like object types and collections.

The set of predefined types includes standard types that are familiar to most
programmers, including number and character types. It also includes datatypes that
were introduced with Oracle8 (for example, BLOB or CLOB).

Oracle also includes a set of predefined types that are used to represent object type
attributes in C structs. As an example, consider the following object type definition,
and its corresponding OTT-generated struct declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary$ NUMBER);

The OTT output, assuming CASE=LOWER and no explicit mappings of type or attribute
names, is:

struct employee
{ OCIString * name;
 OCINumber empno;
 OCINumber department;
 OCIDate hiredate;
 OCINumber salary_;
};
typedef struct emp_type emp_type;
struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd department;
 OCIInd hiredate;
 OCIInd salary_;
}
typedef struct employee_ind employee_ind;

The indicator struct (struct employee_ind) is explained in "NULL Indicator
Structs" on page 19-12.

The datatypes in the struct declarations—OCIString, OCINumber, OCIDate,
OCIInd—are C mappings of object types introduced in Oracle8. They are used here to
map the datatypes of the object type attributes. The NUMBER datatype of the empno
attribute, maps to the new OCINumber datatype, for example. These new datatypes
can also be used as the types of bind and define variables.

See Also: For further information about the use of datatypes, including object
datatypes in OCI applications, refer to the Oracle Call Interface Programmer's Guide.

Mapping Object Datatypes to C
This section describes the mappings of object attribute types to C types generated by
OTT. "OTT Type Mapping Example" on page 19-10 includes examples of many of these
different mappings. Table 19–1 lists the mappings from types that can be used as
attributes of object datatypes that are generated by OTT.

What is the Object Type Translator

The Object Type Translator 19-9

Table 19–2 shows the mappings of named collection types to object datatypes
generated by OTT:

If an object type includes an attribute of a REF or collection type, a typedef for the REF
or collection type is first generated. Then the struct declaration corresponding to the
object type is generated. The struct includes an element whose type is a pointer to the
REF or collection type.

If an object type includes an attribute whose type is another object type, OTT first
generates the nested type (if TRANSITIVE = TRUE.) It then maps the object type
attribute to a nested struct of the type of the nested object type.

The C datatypes to which OTT maps non-object database attribute types are
structures, which, except for OCIDate, are opaque.

Table 19–1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping

VARCHAR2(N) OCIString *

VARCHAR(N) OCIString *

CHAR(N), CHARACTER(N) OCIString *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

REAL OCINumber

INT, INTEGER, SMALLINT OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

DATE OCIDate *

BLOB OCIBlobLocator *

CLOB OCIClobLocator *

BFILE OCIBFileLocator *

Nested Object Type C name of the nested object type.

REF Declared using typedef; equivalent to
OCIRef *.

RAW(N) OCIRaw *

Table 19–2 Object Datatype Mappings for Collection Types

Named Collection Type C Mapping

VARRAY Declared using typedef; equivalent to OCIArray *.

NESTED TABLE Declared using typedef; equivalent to OCITable *.

Note: For REF, VARRAY, and NESTED TABLE types, OTT
generates a typedef. The type declared in the typedef is then used
as the type of the data member in the struct declaration. For
examples, see "OTT Type Mapping Example" on page 19-10.

What is the Object Type Translator

19-10 Pro*C/C++ Programmer’s Guide

OTT Type Mapping Example
The following example demonstrates the various type mappings created by OTT.

Given the following database types:

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255));

and an INTYPE file that includes:

CASE = LOWER
TYPE many_types

OTT would generate the following C structs:

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray; /* part of many_types */
typedef OCITable my_table; /* part of many_types*/
typedef OCIRef other_type_ref;
struct object_type /* part of many_types */
{
 OCIString * object_name;
};
typedef struct object_type object_type;

struct object_type_ind /*indicator struct for*/
{ /*object_types*/
 OCIInd _atomic;
 OCIInd object_name;
};

Note: Comments are provided here to help explain the structs.
These comments are not part of actual OTT output.

What is the Object Type Translator

The Object Type Translator 19-11

typedef struct object_type_ind object_type_ind;

struct many_types
{
 OCIString * the_varchar;
 OCIString * the_char;
 OCIBlobLocator * the_blob;
 OCIClobLocator * the_clob;
 struct object_type the_object;
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 OCIDate the_date;
 OCINumber the_num;
 OCIRaw * the_raw;
};
typedef struct many_types many_types;

struct many_types_ind /*indicator struct for*/
{ /*many_types*/
 OCIInd _atomic;
 OCIInd the_varchar;
 OCIInd the_char;
 OCIInd the_blob;
 OCIInd the_clob;
 struct object_type_ind the_object; /*nested*/
 OCIInd another_ref;
 OCIInd the_ref;
 OCIInd the_varray;
 OCIInd the_table;
 OCIInd the_date;
 OCIInd the_num;
 OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

#endif

Notice that even though only one item was listed for translation in the INTYPE file,
two object types and two named collection types were translated. This is because the
OTT parameter "TRANSITIVE" on page 19-25, has the default value of TRUE. As
described in that section, when TRANSITIVE=TRUE, OTT automatically translates
any types which are used as attributes of a type being translated, in order to complete
the translation of the listed type.

This is not the case for types that are only accessed by a pointer or REF in an object
type attribute. For example, although the many_types type contains the
attribute another_ref REF other_type, a declaration of struct other_
type was not generated.

This example also illustrates how typedefs are used to declare VARRAY, NESTED
TABLE, and REF types.

The typedefs occur near the beginning:

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

What is the Object Type Translator

19-12 Pro*C/C++ Programmer’s Guide

In the struct many_types, the VARRAY, NESTED TABLE, and REF attributes are
declared:

struct many_types
{
 ...
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 ...
}

NULL Indicator Structs
Each time OTT generates a C struct to represent a database object type, it also
generates a corresponding NULL indicator struct. When an object type is selected into
a C struct, NULL indicator information can be selected into a parallel struct.

For example, the following NULL indicator struct was generated in the example in the
previous section:

struct many_types_ind
{
OCIInd _atomic;
OCIInd the_varchar;
OCIInd the_char;
OCIInd the_blob;
OCIInd the_clob;
struct object_type_ind the_object;
OCIInd another_ref;
OCIInd the_ref;
OCIInd the_varray;
OCIInd the_table;
OCIInd the_date;
OCIInd the_num;
OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

The layout of the NULL struct is important. The first element in the struct (_atomic)
is the atomic NULL indicator. This value indicates the NULL status for the object type as
a whole. The atomic NULL indicator is followed by an indicator element
corresponding to each element in the OTT-generated struct representing the object
type.

Notice that when an object type contains another object type as part of its definition (in
the earlier example, it is the object_type attribute), the indicator entry for that attribute
is the NULL indicator struct (object_type_ind) corresponding to the nested object
type.

VARRAYs and NESTED TABLEs contain the NULL information for their elements.
The datatype for all other elements of a NULL indicator struct is OCIInd.

See Also: For more information about atomic NULLness, refer to the discussion of
object types in Oracle Call Interface Programmer's Guide.

What is the Object Type Translator

The Object Type Translator 19-13

OTT Support for Type Inheritance
To support type inheritance of objects, OTT generates a C struct to represent an object
subtype by declaring the inherited attributes in an encapsulated struct with the special
name '_super', before declaring the new attributes. Thus, for an object subtype that
inherits from a supertype, the first element in the struct is named '_super', followed by
elements corresponding to each attribute of the subtype.The type of the element
named '_super' is the name of the supertype.

For example, given the type Person_t, with subtype Student_t and subtype
Employee_t, which are created as follows:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

and, given an INTYPE file which includes:

CASE=SAME
TYPE EMPLOYEE_T
TYPE STUDENT_T
TYPE PERSON_T

OTT generates the following C structs for Person_t, Student_t, and Employee_t
and their null indicator structs:

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef EMPLOYEE_T_ref;
typedef OCIRef STUDENT_T_ref;
typedef OCIRef PERSON_T_ref;

struct PERSON_T
{
 OCINumber SSN;
 OCIString * NAME;
 OCIString * ADDRESS;
};
typedef struct PERSON_T PERSON_T;

struct PERSON_T_ind
{
 OCIInd _atomic;
 OCIInd SSN;
 OCIInd NAME;
 OCIInd ADDRESS;
};

What is the Object Type Translator

19-14 Pro*C/C++ Programmer’s Guide

typedef struct PERSON_T_ind PERSON_T_ind;

struct EMPLOYEE_T
{
 PERSON_T _super;
 OCINumber EMPID;
 OCIString * MGR;
};
typedef struct EMPLOYEE_T EMPLOYEE_T;

struct EMPLOYEE_T_ind
{
 PERSON_T _super;
 OCIInd EMPID;
 OCIInd MGR;
};
typedef struct EMPLOYEE_T_ind EMPLOYEE_T_ind;

struct STUDENT_T
{
 PERSON_T _super;
 OCINumber DEPTID;
 OCIString * MAJOR;
};
typedef struct STUDENT_T STUDENT_T;

struct STUDENT_T_ind
{
 PERSON_T _super;
 OCIInd DEPTID;
 OCIInd MAJOR;
};
typedef struct STUDENT_T_ind STUDENT_T_ind;

#endif

The earlier C mapping convention allows simple up-casting from an instance of a
subtype to an instance of a supertype in C to work properly. For example:

STUDENT_T *stu_ptr = some_ptr; /* some STUDENT_T instance */
PERSON_T *pers_ptr = (PERSON_T *)stu_ptr; /* up-casting */

The null indicator structs are generated similarly. Note that for the supertype
Person_t null indicator struct, the first element is '_atomic', and that for the subtypes
Employee_t and Student_t null indicator structs, the first element is '_super' (no
atomic element is generated for subtypes).

Substitutable Object Attributes
For attributes of NOT FINAL types (and therefore potentially substitutable), the
embedded attribute is represented as a pointer.

Consider a type Book_t created as:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
 author Person_t /* substitutable */);

The corresponding C struct generated by OTT contains a pointer to Person_t:

struct Book_t

What is the Object Type Translator

The Object Type Translator 19-15

{
 OCIString *title;
 Person_t *author; /* pointer to Person_t struct */
}

The null indicator struct corresponding to the earlier type is:

struct Book_t_ind
{
 OCIInd _atomic;
 OCIInd title;
 OCIInd author;
}

Note that the null indicator struct corresponding to the author attribute can be
obtained from the author object itself. See OBJECT GET on page 17-13.

If a type is defined to be FINAL, it cannot have any subtypes. An attribute of a FINAL
type is therefore not substitutable. In such cases, the mapping is as before: the attribute
struct is inline. Now, if the type is altered and defined to be NOT FINAL, the mapping
will have to change. The new mapping is generated by running OTT again.

The OUTTYPE File
The OUTTYPE file is named on the OTT command line. When OTT generates the C
header file, it also writes the results of the translation into the OUTTYPE file. This file
contains an entry for each of the types that is translated, including its version string,
and the header file to which its C representation was written.

The OUTTYPE file from one OTT run can be used as the INTYPE file for a subsequent
OTT invocation.

For example, given the simple INTYPE file used earlier in this chapter

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE person
TYPE PURCHASE_ORDER AS p_o

the user has chosen to specify the case for OTT-generated C identifiers, and has
provided a list of types that should be translated. In two of these types, naming
conventions are specified.

The following example shows what the OUTTYPE file looks like after running OTT:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person

Using OTT with OCI Applications

19-16 Pro*C/C++ Programmer’s Guide

 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

When examining the contents of the OUTTYPE file, you might discover types listed that
were not included in the INTYPE specification. For example, if the INTYPE file only
specified that the person type was to be translated:

CASE = LOWER
TYPE PERSON

and the definition of the person type includes an attribute of type address, then the
OUTTYPE file will include entries for both PERSON and ADDRESS. The person type
cannot be translated completely without first translating address.

When the parameter TRANSITIVE has been set to TRUE (it is the default), OTT
analyzes the types in the INTYPE file for type dependencies before performing the
translation, and translates other types as necessary.

Using OTT with OCI Applications
C header and implementation files that have been generated by OTT can be used by an
OCI application that accesses objects in a database server. Incorporate the header file
into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and manipulate
object data in the host language format.

Figure 19–1 shows the steps involved in using OTT with OCI.

1. SQL is used to create type definitions in the database.

2. OTT generates a header file containing C representations of object types and
named collection types. It also generates an implementation file, as named with
the INITFILE option.

3. The application is written. User-written code in the OCI application declares and
calls the INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCI application, including the implementation file generated by OTT, is
compiled and linked with the OCI libraries.

6. The OCI executable is run against the Oracle Server.

Using OTT with OCI Applications

The Object Type Translator 19-17

Figure 19–1 Using OTT with OCI

Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations
using program variables declared to be of types that appear in the OTT-generated
header file.

For example, an application might fetch a REF to an object using a SQL SELECT
statement and then pin that object using the appropriate OCI function. Once the object
has been pinned, its attribute data can be accessed and manipulated with other OCI
functions.

OCI includes a set of datatype mapping and manipulation functions specifically
designed to work on attributes of object types and named collection types.

Some of the available functions follow:

■ OCIStringSize() gets the size of an OCIString string.

■ OCINumberAdd() adds two OCINumber numbers together.

■ OCILobIsEqual() compares two LOB locators for equality.

■ OCIRawPtr() gets a pointer to an OCIRaw raw datatype.

■ OCICollAppend() appends an element to a collection type (OCIArray or
OCITable).

■ OCITableFirst() returns the index for the first existing element of a nested
table (OCITable).

SQL DDL

Object File

OCI library

Executable

Object File

Linker

Oracle
Database

Type
Definitions

Compiler

OTT

Implementation
File

Header
File

OCI source
File

#include

Using OTT with OCI Applications

19-18 Pro*C/C++ Programmer’s Guide

■ OCIRefIsNull() tests if a REF (OCIRef) is NULL

These functions are described in detail in the following chapters of the Oracle Call
Interface Programmer's Guide:

■ Chapter 2, which covers OCI concepts, including binding and defining

■ Chapter 6, which covers object access and navigation

■ Chapter 7, which covers datatype mapping and manipulation

■ Chapter 12, which lists datatype mapping and manipulation functions

Calling the Initialization Function
OTT generates a C initialization function if requested. The initialization function tells
the environment, for each object type used in the program, which version of the type is
used. You can specify a name for the initialization function when invoking OTT with
the INITFUNC option, or may allow OTT to select a default name based on the name
of the implementation file (INITFILE) containing the function.

The initialization function takes two arguments, an environment handle pointer and
an error handle pointer. There is typically a single initialization function, but this is not
required. If a program has several separately compiled pieces requiring different
types, you may want to execute OTT separately for each piece requiring, for each
piece, one initialization file, containing an initialization function.

After you create an environment handle by an explicit OCI object call, for example, by
calling OCIEnvInit(), you must also call the initialization functions explicitly for
each environment handle. This gives each handle access to all the datatypes used in
the entire program.

If an environment handle is implicitly created using embedded SQL statements, such
as EXEC SQL CONTEXT USE and EXEC SQL CONNECT, the handle is initialized
implicitly, and the initialization functions need not be called. This is relevant for
Pro*C/C++ applications, or when Pro*C/C++ is being combined with OCI
applications.

The following example shows an initialization function.

Given an INTYPE file, ex2c.typ, containing

TYPE SCOTT.PERSON
TYPE SCOTT.ADDRESS

and the command line

ott userid=scott/tiger intype=ex2c outtype=ex2co hfile=ex2ch.h initfile=ex2cv.c

OTT generates the following to the file ex2cv.c:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "SCOTT", 5,
 "PERSON", 6,
 "$8.0", 4);

Using OTT with Pro*C/C++ Applications

The Object Type Translator 19-19

 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "SCOTT", 5,
 "ADDRESS", 7,
 "$8.0", 4);
 return status;
}

The function ex2cv creates the type version table and inserts the types SCOTT.PERSON
and SCOTT.ADDRESS.

If a program explicitly creates an environment handle, all the initialization functions
must be generated, compiled, and linked, because they must be called for each
explicitly created handle. If a program does not explicitly create any environment
handles, initialization functions are not required.

A program that uses an OTT-generated header file must also use the initialization
function generated at the same time. More precisely, if a header file generated by OTT
is included in a compilation that generates code that is linked into program P, and an
environment handle is explicitly created somewhere in program P, the implementation
file generated by the same invocation of OTT must also be compiled and linked into
program P. Doing this correctly is your responsibility.

Tasks of the Initialization Function
The C initialization function supplies version information about the types processed
by OTT. It adds to the type-version table the name and version identifier of every
OTT-processed object datatype.

The type-version table is used by the Open Type Manager (OTM) to determine which
version of a type a particular program uses. Different initialization functions generated
by OTT at different times may add some of the same types to the type version table.
When a type is added more than once, OTM ensures that the same version of the type
is registered each time.

It is the OCI programmer's responsibility to declare a function prototype for the
initialization function, and to call the function.

Using OTT with Pro*C/C++ Applications
When building Pro*C/C++ applications, the type-translation process can be simpler
than when building OCI-based applications. This is because precompiler-generated
code will automatically initialize the type version table.

A C header file generated by OTT can be used by a Pro*C/C++ application to access
objects in a database server. The header file is incorporated into the code with an
#include statement. Once the header file has been included, the Pro*C/C++
application can access and manipulate object data in the host language format.

Figure 19–2 shows the steps involved in using OTT with Pro*C/C++.

1. SQL is used to create type definitions in the database.

Note: In the current release of Oracle9i, each type has only one
version. Initialization of the type version table is required only for
compatibility with future releases of Oracle9i.

Using OTT with Pro*C/C++ Applications

19-20 Pro*C/C++ Programmer’s Guide

2. OTT generates a header file containing C representations of object types, REF
types, and named collection types. It also generates an OUTTYPE file that is passed
as the INTYPE parameter to Pro*C/C++.

3. The header file is included in a Pro*C/C++ source code file.

4. The Pro*C/C++ application is compiled and linked with the Pro*C/C++ run-time
library SQLLIB.

5. The Pro*C/C++ executable is run against the Oracle Server.

Figure 19–2 Building an Object-oriented Pro*C/C++ Application

As noted in step 2, earlier, the OUTTYPE file generated by OTT serves a special purpose
for Pro*C/C++ programmers. Pass the OUTTYPE file to the new INTYPE command
line parameter when invoking Pro*C/C++. The contents of this file are used by the
precompiler to determine which database types correspond to which OTT-generated
structs. OCI programmers must make this association explicitly through the use of
special bind, define, and type information access functions.

Also, the precompiler generates code to initialize the type version table with the types
named in the OTT OUTTYPE (Pro*C/C++ INTYPE) file.

Note: Oracle recommends that the OUTTYPE file from OTT always
serve as the INTYPE file to Pro*C/C++. It would be possible for
you to write an INTYPE file for Pro*C/C++, but this is not
recommended, due to the possibility of errors being introduced.

SQL DDL

Executable

Linker

Oracle9i
Server

Type
Definitions

OTT Pro*C / C++

Header
File

SQL Runtime
Library

Type
File(s)

C / C++ Source
File

#include

Pro*C / C++
Source

File

Compiler

Object
File

OTT Reference

The Object Type Translator 19-21

One way to manipulate the attributes of objects retrieved from the server is to call the
OCI datatype mapping and manipulation functions. Before doing this, the application
must first call SQLEnvGet() to obtain an OCI environment handle to pass to the OCI
functions, and SQLSvcCtxGet() to obtain an OCI service context to pass to the OCI
functions. There are also Pro*C facilities that can be used to manipulate object
attributes. See Chapter 17, "Objects" for more information.

The process of calling OCI functions from Pro*C/C++ is described briefly in
"Accessing and Manipulating Objects with OCI" on page 19-17, and in more detail in
Chapter 8 of Oracle Call Interface Programmer's Guide.

OTT Reference
Behavior of OTT is controlled by parameters which can appear on the OTT command
line or in a CONFIG file. Certain parameters may also appear in the INTYPE file. This
section provides detailed information about the following topics:

■ OTT Command Line Syntax

■ OTT Parameters

■ Where OTT Parameters Can Appear

■ Structure of the INTYPE File

■ Nested #include File Generation

■ SCHEMA_NAMES Usage

■ Default Name Mapping

■ Restriction

The following conventions are used in this chapter to describe OTT syntax:

■ Italic strings are to be supplied by the user.

■ Strings in UPPERCASE are entered as shown, except that case is not significant.

■ Square brackets [...] enclose optional items.

■ An ellipsis (...) immediately following an item (or items enclosed in brackets)
means that the item can be repeated any number of times.

■ Punctuation symbols other than those described earlier are entered as shown.
These include '.', '@', and so on.

OTT Command Line Syntax
The OTT command-line interface is used when explicitly invoking OTT to translate
database types into C structs. This is always required when developing OCI
applications or Pro*C/C++ applications that use objects.

An OTT command-line statement consists of the keyword OTT, followed by a list of
OTT parameters.

The parameters that can appear on an OTT command-line statement are as follows:

 [USERID=username/password[@db_name]]
 [INTYPE=in_filename]
 OUTTYPE=out_filename
 CODE={C|ANSI_C|KR_C}
 [HFILE=filename]
 [ERRTYPE=filename]

OTT Reference

19-22 Pro*C/C++ Programmer’s Guide

 [CONFIG=filename]
 [INITFILE=filename]
 [INITFUNC=filename]
 [CASE={SAME|LOWER|UPPER|OPPOSITE}]
 [SCHEMA_NAMES={ALWAYS|IF_NEEDED|FROM_INTYPE}]
 [TRANSITIVE=TRUE|FALSE]

The HFILE parameter is almost always used. If omitted, HFILE must be specified
individually for each type in the INTYPE file. If OTT determines that a type not listed
in the INTYPE file must be translated, an error will be reported. Therefore, it is safe to
omit the HFILE parameter only if the INTYPE file was previously generated as an OTT
OUTTYPE file.

If the INTYPE file is omitted, the entire schema will be translated. See the parameter
descriptions in the following section for more information.

The following is an example of an OTT command line statement (enter it as one line):

OTT userid=scott/tiger intype=in.typ outtype=out.typ code=c hfile=demo.h
errtype=demo.tls case=lower

Each of the OTT command line parameters is described in the following sections.

OTT Parameters
Enter parameters on the OTT command line using the following format:

parameter=value

where parameter is the literal parameter string and value is a valid parameter setting.
The literal parameter string is not case sensitive.

Separate command-line parameters using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no whitespace
is permitted within a line, and each parameter must appear on a separate line.
Additionally, the parameters CASE, HFILE, INITFUNC, and INITFILE can appear in
the INTYPE file.

USERID
The USERID parameter specifies the Oracle username, password, and optional
database name (Oracle Net database specification string). If the database name is
omitted, the default database is assumed. The syntax of this parameter is:

USERID=username/password[@db_name]

If this is the first parameter, "USERID=" may be omitted as shown here:

OTT username/password...

The USERID parameter is optional. If you omit it, OTT automatically attempts to
connect to the default database as user CLUSTER$username, where username is the
user's operating system user name.

Note: Generally, the order of the parameters following the OTT
command does not matter, and only the OUTTYPE and CODE
parameters are always required.

OTT Reference

The Object Type Translator 19-23

INTYPE
The INTYPE parameter specifies the name of the file from which to read the list of
object type specifications. OTT translates each type in the list. The syntax for this
parameter is

INTYPE=filename

"INTYPE=" may be omitted if USERID and INTYPE are the first two parameters, in
that order, and "USERID=" is omitted. If INTYPE is not specified, all types in the user's
schema will be translated.

OTT username/password filename...

The INTYPE file can be thought of as a makefile for type declarations. It lists the types
for which C struct declarations are needed. The format of the INTYPE file is described
in "Structure of the INTYPE File" on page 19-26.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or "typ" will be added.

OUTTYPE
The name of a file into which OTT will write type information for all the object
datatypes it processes. This includes all types explicitly named in the INTYPE file, and
may include additional types that are translated (if TRANSITIVE=TRUE) because they
are used in the declarations of other types that need to be translated. This file may be
used as an INTYPE file in a future invocation of OTT.

OUTTYPE=filename

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE
information replaces the old information in the INTYPE file. This provides a
convenient way for the same INTYPE file to be used repeatedly in the cycle of altering
types, generating type declarations, editing source code, precompiling, compiling, and
debugging.

OUTTYPE must be specified.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or "typ" will be added.

CODE
CODE= C|KR_C|ANSI_C

This is the desired host language for OTT output, that may be specified as CODE=C,
CODE=KR_C, or CODE=ANSI_C. "CODE=C" is equivalent to "CODE=ANSI_C".

There is no default value for this parameter; it must be supplied.

INITFILE
The INITFILE parameter specifies the name of the file where the OTT-generated
initialization file is to be written. OTT does not generate the initialization function if
you omit this parameter.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB
run-time library performs the necessary initializations. An OCI program user must

OTT Reference

19-24 Pro*C/C++ Programmer’s Guide

compile and link the INITFILE file(s), and must call the initialization function(s)
when an environment handle is created.

If the file name of an INITFILE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "C" or ".c" will be added.

INITFILE=filename

INITFUNC
The INITFUNC parameter is used only in OCI programs. It specifies the name of the
initialization function generated by OTT. If this parameter is omitted, the name of the
initialization function is derived from the name of the INITFILE.

INITFUNC=filename

HFILE
The name of the include (.h) file to be generated by OTT for the declarations of types
that are mentioned in the INTYPE file but whose include files are not specified there.
This parameter is required unless the include file for each type is specified
individually in the INTYPE file. This parameter is also required if a type not
mentioned in the INTYPE file must be generated because other types require it (if
TRANSITIVE=TRUE), and these other types are declared in two or more different files.

If the file name of an HFILE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "H" or ".h" will be added.

HFILE=filename

CONFIG
The CONFIG parameter specifies the name of the OTT configuration file, that lists
commonly used parameter specifications. Parameter specifications are also read from a
system configuration file in a platform-dependent location. All remaining parameter
specifications must appear on the command line, or in the INTYPE file.

CONFIG=filename

Note: A CONFIG parameter is not allowed in the CONFIG file.

ERRTYPE
If you supply this parameter, a listing of the INTYPE file is written to the ERRTYPE
file, along with all informational and error messages. Informational and error
messages are sent to the standard output whether or not ERRTYPE is specified.

Essentially, the ERRTYPE file is a copy of the INTYPE file with error messages added.
In most cases, an error message will include a pointer to the text that caused the error.

If the file name of an ERRTYPE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "TLS" or "tls" will be added.

ERRTYPE=filename

CASE
This parameter affects the case of certain C identifiers generated by OTT. The possible
values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE = SAME, the case of
letters is not changed when converting database type and attribute names to C
identifiers. If CASE=LOWER, all uppercase letters are converted to lowercase. If

OTT Reference

The Object Type Translator 19-25

CASE=UPPER, all lowercase letters are converted to uppercase. If CASE=OPPOSITE, all
uppercase letters are converted to lower-case, and vice-versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

This parameter affects only those identifiers (attributes or types not explicitly listed)
not mentioned in the INTYPE file. Case conversion takes place after a legal identifier
has been generated.

TYPE Worker

then OTT will generate

struct Worker {...};

On the other hand, if the INTYPE file were written as

TYPE wOrKeR

OTT would generate

struct wOrKeR {...};

following the case of the INTYPE file.

Case-insensitive SQL identifiers not mentioned in the INTYPE file will appear in upper
case if CASE=SAME, and in lower case if CASE=OPPOSITE. A SQL identifier is
case-insensitive if it was not quoted when it was declared.

SCHEMA_NAMES
This parameter offers control in qualifying the database name of a type from the
default schema with a schema name in the OUTTYPE file. The OUTTYPE file generated
by OTT contains information about the types processed by OTT, including the type
names.

See "SCHEMA_NAMES Usage" on page 19-29 for further information.

TRANSITIVE
Takes the values TRUE (the default) or FALSE. Indicates whether type dependencies
not explicitly listed in the INTYPE file are to be translated, or not. If
TRANSITIVE=FALSE is specified, then types not mentioned in the INTYPE file are not
generated. This is the case even if they were used as attribute types of other generated
types.

Where OTT Parameters Can Appear
Supply OTT parameters on the command line, in a CONFIG file named on the
command line, or both. Some parameters are also allowed in the INTYPE file.

OTT is invoked as follows:

OTT username/password parameters

If one of the parameters on the command line is

Note: The case of the C struct identifier for a type specifically
mentioned in the INTYPE is the same as its case in the INTYPE file.
For example, if the INTYPE file includes the following line

OTT Reference

19-26 Pro*C/C++ Programmer’s Guide

CONFIG=filename

additional parameters are read from the configuration file named filename.

In addition, parameters are also read from a default configuration file in a
platform-dependent location. This file must exist, but can be empty. Each line in the
configuration may contain one parameter, with no whitespace on the line.

If OTT is executed without any arguments, an on-line parameter reference is
displayed.

The types for OTT to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, INITFILE, INITFUNC, and HFILE may also appear
in the INTYPE file. OUTTYPE files generated by OTT include the CASE parameter, and
include the INITFILE, and INITFUNC parameters if an initialization file was
generated. The OUTTYPE file specifies the HFILE individually for each type.

The case of the OTT command is platform-dependent.

Structure of the INTYPE File
The INTYPE and OUTTYPE files list the types translated by OTT and provide all the
information needed to determine how a type or attribute name is translated to a legal
C identifier. These files contain one or more type specifications. These files also may
contain specifications of the following options:

■ CASE

■ HFILE

■ INITFILE

■ INITFUNC

If the CASE, INITFILE, or INITFUNC options are present, they must precede any type
specifications. If these options appear both on the command line and in the INTYPE
file, the value on the command line is used.

For an example of a simple user-defined INTYPE file, and of the full OUTTYPE file that
OTT generates from it, see "OTT Support for Type Inheritance" on page 19-13.

INTYPE File Type Specifications
A type specification in the INTYPE names an object datatype that is to be translated.
The following is an example of a user-created INTYPE file:

TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE type_name [AS type_identifier]
[VERSION [=] version_string]
[HFILE [=] hfile_name]
[TRANSLATE{member_name [AS identifier]}...]

The syntax of type_name is:

[schema_name.]type_name

OTT Reference

The Object Type Translator 19-27

where schema_name is the name of the schema that owns the given object datatype, and
type_name is the name of the type. The default schema is that of the user running OTT.
The default database is the local database.

The components of a type specification are:

■ type name is the name of an object datatype.

■ type identifier is the C identifier used to represent the type. If omitted, the default
name mapping algorithm will be used. For further information, see "Default Name
Mapping" on page 19-31.

■ version string is the version string of the type that was used when the code was
generated by a previous invocation of OTT. The version string is generated by
OTT and written to the OUTTYPE file, that may later be used as the INTYPE file
when OTT is later executed. The version string does not affect the OTT's
operation, but will eventually be used to select which version of the object
datatype should be used in the running program.

■ hfile name is the name of the header file in which the declarations of the
corresponding struct or class appears or will appear. If hfile name is omitted, the file
named by the command-line HFILE parameter will be used if a declaration is
generated.

■ member name is the name of an attribute (data member) which is to be translated to
the following identifier.

■ identifier is the C identifier used to represent the attribute in the user program. You
can specify identifiers in this way for any number of attributes. The default name
mapping algorithm will be used for the attributes that are not mentioned.

An object datatype may need to be translated for one of two reasons:

■ It appears in the INTYPE file.

■ It is required to declare another type that must be translated, and TRANSITIVE =
TRUE.

If a type that is not mentioned explicitly is required by types declared in exactly one
file, the translation of the required type is written to the same file(s) as the explicitly
declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or more
different files, the translation of the required type is written to the global HFILE file.

Nested #include File Generation
Every HFILE generated by OTT #includes other necessary files, and #defines a
symbol constructed from the name of the file, that may be used to determine if the
HFILE has already been included. Consider, for example, a database with the
following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

where the INTYPE file contains:

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

OTT Reference

19-28 Pro*C/C++ Programmer’s Guide

If we invoke OTT with

ott scott/tiger tott95i.typ outtype=tott95o.typ code=c

then it will generate the two following header files.

File tott95b.h is:

#ifndef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#ifndef TOTT95A_ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref;
struct px3
{
 struct px1 col1;
};
typedef struct px3 px3;
struct px3_ind
{
 OCIInd _atomic;
 struct px1_ind col1
};
typedef struct px3_ind px3_ind;
#endif

File tott95a.h is:

#ifndef TOTT95A_ORACLE
#define TOTT95A_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
typedef OCIRef px1_ref;
struct px1
{
 OCINumber col1;
 OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{
 OCIInd _atomic;
 OCIInd col1;
 OCIInd col2;
}
typedef struct px1_ind px1_ind;
#endif

In this file, the symbol TOTT95B_ORACLE is defined first so that the programmer
may conditionally include tott95b.h without having to worry whether tott95b.h
depends on the include file using the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

OTT Reference

The Object Type Translator 19-29

Using this technique, you can include "tott95b.h" from some file, say "foo.h", without
having to know whether some other file included by "foo.h" also includes "tott95b.h".

After the definition of the symbol TOTT95B_ORACLE, the file oci.h is #included.
Every HFILE generated by OTT includes oci.h, that contains type and function
declarations that the Pro*C/C++ or OCI programmer will find useful. This is the only
case in which OTT uses angle brackets in an #include.

Next, the file tott95a.h is included because it contains the declaration of "struct
px1", that tott95b.h requires. When the INTYPE file requests that type declarations
be written to more than one file, OTT will determine which other files each HFILE
must include, and will generate the necessary #includes.

Note that OTT uses quotes in this #include. When a program including tott95b.h
is compiled, the search for tott95a.h begins where the source program was found,
and will thereafter follow an implementation-defined search rule. If tott95a.h
cannot be found in this way, a complete file name (for example, a UNIX absolute path
name beginning with /) should be used in the INTYPE file to specify the location of
tott95a.h.

SCHEMA_NAMES Usage
This parameter affects whether the name of a type from the default schema to which
OTT is connected is qualified with a schema name in the OUTTYPE file.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

There are three settings:

■ SCHEMA_NAMES=ALWAYS(default)

All type names in the OUTTYPE file are qualified with a schema name.

■ SCHEMA_NAMES=IF_NEEDED

The type names in the OUTTYPE file that belong to the default schema are not
qualified with a schema name. As always, type names belonging to other schemas
are qualified with the schema name.

■ SCHEMA_NAMES=FROM_INTYPE

A type mentioned in the INTYPE file is qualified with a schema name in the
OUTTYPE file if, and only if, it was qualified with a schema name in the INTYPE
file. A type in the default schema that is not mentioned in the INTYPE file but that
has to be generated because of type dependencies is written with a schema name
only if the first type encountered by OTT that depends on it was written with a
schema name. However, a type that is not in the default schema to which OTT is
connected is always written with an explicit schema name.

The OUTTYPE file generated by OTT is the Pro*C/C++ INTYPE file. This file matches
database type names to C struct names. This information is used at run-time to make
sure that the correct database type is selected into the struct. If a type appears with a
schema name in the OUTTYPE file (Pro*C/C++ INTYPE file), the type will be found in
the named schema during program execution. If the type appears without a schema
name, the type will be found in the default schema to which the program connects,
which may be different from the default schema OTT used.

OTT Reference

19-30 Pro*C/C++ Programmer’s Guide

An Example
If SCHEMA_NAMES is set to FROM_INTYPE, and the INTYPE file reads:

TYPE Person
TYPE joe.Dept
TYPE sam.Company

then the Pro*C/C++ application that uses the OTT-generated structs will use the types
sam.Company, joe.Dept, and Person. Person without a schema name refers to the Person
type in the schema to which the application is connected.

If OTT and the application both connect to schema joe, the application will use the
same type (joe.Person) that OTT used. If OTT connected to schema joe but the
application connects to schema mary, the application will use the type mary.Person.
This behavior is appropriate only if the same "CREATE TYPE Person" statement has
been executed in schema joe and schema mary.

On the other hand, the application will use type joe.Dept regardless of to which
schema the application is connected. If this is the behavior you want, be sure to
include schema names with your type names in the INTYPE file.

In some cases, OTT translates a type that the user did not explicitly name. For
example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(
street VARCHAR2(40),
city VARCHAR(30),
state CHAR(2),
zip_code CHAR(10)
);

CREATE TYPE Person AS OBJECT
(
name CHAR(20),
age NUMBER,
addr ADDRESS
);

Now suppose that OTT connects to schema joe, SCHEMA_NAMES=FROM_INTYPE is
specified, and the user's INTYPE files include either

TYPE Person or TYPE joe.Person

but do not mention the type joe.Address, which is used as a nested object type in type
joe.Person. If "TYPE joe.Person" appeared in the INTYPE file, "TYPE joe.Person" and
"TYPE joe.Address" will appear in the OUTTYPE file. If "Type Person" appeared in the
INTYPE file, "TYPE Person" and "TYPE Address" will appear in the OUTTYPE file.

If the joe.Address type is embedded in several types translated by OTT, but is not
explicitly mentioned in the INTYPE file, the decision of whether to use a schema name
is made the first time OTT encounters the embedded joe.Address type. If, for some
reason, the user wants type joe.Address to have a schema name but does not want type
Person to have one, you must explicitly request

TYPE joe.Address

in the INTYPE FILE.

In the usual case in which each type is declared in a single schema, it is safest for you
to qualify all type names with schema names in the INTYPE file.

OTT Reference

The Object Type Translator 19-31

Default Name Mapping
When OTT creates a C identifier name for an object type or attribute, it translates the
name from the database character set to a legal C identifier. First, the name is
translated from the database character set to the character set used by OTT. Next, if a
translation of the resulting name is supplied in the INTYPE file, that translation is
used. Otherwise, OTT translates the name character-by-character to the compiler
character set, applying the CASE option. The following describes this in more detail.

When OTT reads the name of a database entity, the name is automatically translated
from the database character set to the character set used by OTT. In order for OTT to
read the name of the database entity successfully, all the characters of the name must
be found in the OTT character set, although a character may have different encodings
in the two character sets.

The easiest way to guarantee that the character set used by OTT contains all the
necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character set.
That is, if the compiler character set is 7-bit ASCII, the OTT character set must include
7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC, the OTT
character set must include 7-bit EBCDIC as a subset. The user specifies the character
set that OTT uses by setting the NLS_LANG environment variable, or by some other
platform-specific mechanism.

Once OTT has read the name of a database entity, it translates the name from the
character set used by OTT to the compiler's character set. If a translation of the name
appears in the INTYPE file, OTT uses that translation.

Otherwise, OTT attempts to translate the name as follows:

1. First, if the OTT character set is a multibyte character set, all multibyte characters
in the name that have singlebyte equivalents are converted to those singlebyte
equivalents.

2. Next, the name is converted from the OTT character set to the compiler character
set. The compiler character set is a singlebyte character set such as US7ASCII.

3. Finally, the case of letters is set according to the CASE option in effect, and any
character that is not legal in a C identifier, or that has no translation in the
compiler character set, is replaced by an underscore. If at least one character is
replaced by an underscore, OTT gives a warning message. If all the characters in a
name are replaced by underscores, OTT gives an error message.

Character-by-character name translation does not alter underscores, digits, or
singlebyte letters that appear in the compiler character set, so legal C identifiers are not
altered.

Name translation may, for example, translate accented singlebyte characters such as
"o" with an umlaut or "a" with an accent grave to "o" or "a", and may translate a
multibyte letter to its singlebyte equivalent. Name translation will typically fail if the
name contains multibyte characters that lack singlebyte equivalents. In this case, the
user must specify name translations in the INTYPE file.

OTT will not detect a naming clash caused by two or more database identifiers being
mapped to the same C name, nor will it detect a naming problem where a database
identifier is mapped to a C keyword.

Restriction
The following restriction affects the use of OTT.

OTT Reference

19-32 Pro*C/C++ Programmer’s Guide

File Name Comparison
Currently, OTT determines if two files are the same by comparing the file names
provided by the user on the command line or in the INTYPE file. But one potential
problem can occur when OTT needs to know if two file names refer to the same file.
For example, if the OTT-generated file foo.h requires a type declaration written to
foo1.h, and another type declaration written to /private/smith/foo1.h, OTT should
generate one #include if the two files are the same, and two #includes if the files
are different. In practice, though, it concludes that the two files are different, and
generates two #includes, as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/smith/foo1.h"
#endif

If foo1.h and /private/smith/foo1.h are different files, only the first one will be
included. If foo1.h and /private/smith/foo1.h are the same file, a redundant
#include will be written.

Therefore, if a file is mentioned several times on the command line or in the INTYPE
file, each mention of the file should use exactly the same file name.

User Exits 20-1

20
User Exits

This chapter focuses on writing user exits for your Oracle Tools applications. You learn
how C subroutines can do certain jobs more quickly and easily than SQL*Forms and
Oracle Forms. This chapter contains the following topics:

■ What Is a User Exit?

■ Why Write a User Exit?

■ Developing a User Exit

■ Writing a User Exit

■ Calling a User Exit

■ Passing Parameters to a User Exit

■ Returning Values to a Form

■ An Example

■ Precompiling and Compiling a User Exit

■ Example Program: A User Exit

■ Using the GENXTB Utility

■ Linking a User Exit into SQL*Forms

■ Guidelines

■ EXEC TOOLS Statements

This chapter is supplemental. For more information about user exits, refer to the
SQL*Forms Designer's Reference, the Oracle Forms Reference Manual, Vol. 2, and your
system-specific Oracle documentation.

What Is a User Exit?
A user exit is a C subroutine written by you and called by Oracle Forms to do
special-purpose processing. You can embed SQL statements and PL/SQL blocks in
your user exit, then precompile it as you would a host program.

When called by an Oracle Forms V3 trigger, the user exit runs, then returns a status
code to Oracle Forms. Your exit can display messages on the Oracle Forms status line,
get and set field values, do high-speed computations and table lookups, and
manipulate Oracle data.

Figure 20–1 shows how an Oracle Forms application interacts with a user exit.

Why Write a User Exit?

20-2 Pro*C/C++ Programmer’s Guide

Figure 20–1 Oracle Forms and a User Exit

Why Write a User Exit?
SQL*Forms Version 3 provides the ability to use PL/SQL blocks in triggers. So, in most
cases, instead of calling a user exit, you can use the procedural power of PL/SQL. If
the need arises, you can call user exits from a PL/SQL block with the USER_EXIT
function. User exits are harder to write and implement than SQL, PL/SQL, or
SQL*Forms commands. So, you will probably use them only to do processing that is
beyond the scope of SQL, PL/SQL, and SQL*Forms. Some common uses follow:

■ Operations more quickly or easily done in a third generation languages like C
(numerical integration, for instance)

■ Controlling real time devices or processes (issuing a sequence of instructions to a
printer or graphics device, for example)

■ Data manipulations that need extended procedural capabilities (recursive sorting,
for example)

■ Special file I/O operations

Developing a User Exit
This section outlines the way to develop a SQL*Forms 3.0 user exit; later sections go
into more detail.

To incorporate a user exit into a form, you take the following steps:

See Also: "EXEC TOOLS Statements" on page 20-11 for more
information about the EXEC TOOLS options available with Oracle
Forms, V4.

SQL*Forms

Field

Message

Status Code

Values

Database Server

Trigger

User Exit

Message Line

Writing a User Exit

User Exits 20-3

■ Write the user exit in Pro*C.

■ Precompile the source code.

■ Compile the. c file from step 2.

■ Use the GENXTB utility to create a database table, IAPXTB.

■ Use the GENXTB form in SQL*Forms to insert your user exit information into the
table.

■ Use the GENXTB utility to read the information from the table and create an
IAPXIT source code module. Then compile the source code module.

■ Create a new SQL*Forms executable by linking the standard SQL*Forms modules,
your user exit object, and the IAPXIT object created in step 6.

■ In the form, define a trigger to call the user exit.

■ Instruct operators to use the new IAP when running the form. This is unnecessary
if the new IAP replaces the standard one. For details, see the Oracle installation or
user's guide for your system.

Writing a User Exit
You can use the following kinds of statements to write your SQL*Forms user exit:

■ C code

■ EXEC SQL

■ EXEC ORACLE

■ EXEC TOOLS

This section focuses on the EXEC TOOLS statements, which let you pass values
between SQL*Forms and a user exit.

Requirements for Variables
The variables used in EXEC TOOLS statements must correspond to field names used
in the form definition. If a field reference is ambiguous because you did not specify a
block name, EXEC IAF defaults to the context block—the block that calls the user exit.
An invalid or ambiguous reference to a form field generates an error. Host variables
must be prefixed with a colon (:) in EXEC IAF statements.

The IAF GET Statement
This statement allows your user exit to "get" values from fields on a form and assign
them to host variables. The user exit can then use the values in calculations, data
manipulations, updates, and so on. The syntax of the GET statement follows:

EXEC IAF GET field_name1, field_name2, ...
 INTO :host_variable1, :host_variable2, ...;

where field_name can be any of the following SQL*Forms variables:

■ Field

Note: Indicator variables are not allowed in EXEC IAF GET and
PUT statements.

Writing a User Exit

20-4 Pro*C/C++ Programmer’s Guide

■ Block.field

■ System variable

■ Global variable

■ Host variable (prefixed with a colon) containing the value of a field, block.field,
system variable, or global variable

If a field_name is not qualified, the field must be in the context block.

Using IAF GET
The following example shows how a user exit GETs a field value and assigns it to a
host variable:

EXEC IAF GET employee.job INTO :new_job;

All field values are character strings. If it can, GET converts a field value to the
datatype of the corresponding host variable. If an illegal or unsupported datatype
conversion is attempted, an error is generated.

In the last example, a constant is used to specify block.field. You can also use a host
string to specify block and field names, as follows:

char blkfld[20] = "employee.job";
EXEC IAF GET :blkfld INTO :new_job;

Unless the field is in the context block, the host string must contain the full block.field
reference with intervening period. For example, the following usage is invalid:

char blk[20] = "employee";
strcpy(fld, "job");
EXEC IAF GET :blk.:fld INTO :new_job;

You can mix explicit and stored field names in a GET statement field list, but not in a
single field reference. For example, the following usage is invalid:

strcpy(fld, "job");
EXEC IAF GET employee.:fld INTO :new_job;

The IAF PUT Statement
This statement allows your user exit to "put" the values of constants and host variables
into fields on a form. Thus, the user exit can display on the SQL*Forms screen any
value or message you like. The syntax of the PUT statement follows:

EXEC IAF PUT field_name1, field_name2, ...
 VALUES (:host_variable1, :host_variable2, ...);

where field_name can be any of the following SQL*Forms variables:

■ field

■ block.field

■ system variable

■ global variable

■ host variable (prefixed with a colon) containing the value of a field, block.field,
system variable, or global variable

Passing Parameters to a User Exit

User Exits 20-5

Using IAF PUT
The following example shows how a user exit PUTs the values of a numeric constant,
string constant, and host variable into fields on a form:

EXEC IAF PUT employee.number, employee.name, employee.job
 VALUES (7934, 'MILLER', :new_job);

Like GET, PUT lets you use a host string to specify block and field names, as follows:

char blkfld[20] = "employee.job";
...
EXEC IAF PUT :blkfld VALUES (:new_job);

On character-mode terminals, a value PUT into a field is displayed when the user exit
returns, rather than when the assignment is made, provided the field is on the current
display page. On block-mode terminals, the value is displayed the next time a field is
read from the device.

If a user exit changes the value of a field several times, only the last change takes
effect.

Calling a User Exit
You call a user exit from a SQL*Forms trigger using a packaged procedure named
USER_EXIT (supplied with SQL*Forms). The syntax you use is

USER_EXIT(user_exit_string [, error_string]);

where user_exit_string contains the name of the user exit plus optional parameters and
error_string contains an error message issued by SQL*Forms if the user exit fails. For
example, the following trigger command calls a user exit named LOOKUP:

USER_EXIT('LOOKUP');

Notice that the user exit string is enclosed by single (not double) quotes.

Passing Parameters to a User Exit
When you call a user exit, SQL*Forms passes it the following parameters
automatically:

However, the user exit string provides the ability to pass additional parameters to the
user exit. For example, the following trigger command passes two parameters and an
error message to the user exit LOOKUP:

Notice that the user exit string is enclosed by single (not double) quotes.

USER_EXIT('LOOKUP 2025 A', 'Lookup failed');

Parameters Description

Command Line Is the user exit string.

Command Line Length Is the length (in characters) of the user exit string.

Error Message Is the error string (failure message) if one is defined.

Error Message Length Is the length of the error string.

In-Query Is a Boolean value indicating whether the exit was called in
normal or query mode.

Returning Values to a Form

20-6 Pro*C/C++ Programmer’s Guide

You can use this feature to pass field names to the user exit, as the following example
shows:

USER_EXIT('CONCAT firstname, lastname, address');

However, it is up to the user exit, not SQL*Forms, to parse the user exit string.

Returning Values to a Form
When a user exit returns control to SQL*Forms, it must also return a code indicating
whether it succeeded, failed, or suffered a fatal error. The return code is an integer
constant defined by SQL*Forms (see the next section). The three results have the
following meanings:

The IAP Constants
SQL*Forms defines three symbolic constants for use as return codes. Depending on the
host language, they are prefixed with IAP or SQL. For example, they might be
IAPSUCC, IAPFAIL, and IAPFTL.

Using the SQLIEM Function
By calling the function SQLIEM, your user exit can specify an error message that
SQL*Forms will display on the message line if the trigger step fails or on the Display
Error screen if the step causes a fatal error. The specified message replaces any
message defined for the step. The syntax of the SQLIEM function call is

sqliem (char *error_message, int message_length);

where error_message and message_length are character and integer variables,
respectively. The Pro*C/C++ Precompiler generates the appropriate external function
declaration for you. You pass both parameters by reference; that is, you pass their addresses,
not their values. SQLIEM is a SQL*Forms function; it cannot be called from other Oracle
tools such as SQL*ReportWriter.

Results Meaning

success The user exit encountered no errors. SQL*Forms proceeds to the
success label or the next step, unless the Reverse Return Code
switch is set by the calling trigger step.

failure The user exit detected an error, such as an invalid value in a
field. An optional message passed by the exit appears on the
message line at the bottom of the SQL*Forms screen and on the
Display Error screen. SQL*Forms responds as it does to a SQL
statement that affects no rows.

fatal error The user exit detected a condition that makes further processing
impossible, such as an execution error in a SQL statement. An
optional error message passed by the exit appears on the
SQL*Forms Display Error screen. SQL*Forms responds as it
does to a fatal SQL error. If a user exit changes the value of a
field, then returns a failure or fatal error code, SQL*Forms does
not discard the change. Nor does SQL*Forms discard changes
when the Reverse Return Code switch is set and a success code is
returned.

Example Program: A User Exit

User Exits 20-7

Using WHENEVER
You can use the WHENEVER statement in an exit to detect invalid datatype
conversions (SQLERROR), truncated values PUT into form fields (SQLWARNING),
and queries that return no rows (NOT FOUND).

An Example
The following example shows how a user exit that uses the EXEC IAF GET and PUT
routines, as well as the sqliem function, is coded.

int
myexit()
{
 char field1[20], field2[20], value1[20], value2[20];
 char result_value[20];
 char errmsg[80];
 int errlen;

 #include sqlca.h
 EXEC SQL WHENEVER SQLERROR GOTO sql_error;
 /* get field values into form */
 EXEC IAF GET :field1, :field2 INTO :value1, :value2;
 /* manipulate the values to obtain result_val */
 ...
 /* put result_val into form field result */
 EXEC IAF PUT result VALUES (:result_val);
 return IAPSUCC; /* trigger step succeeded */

sql_error:
 strcpy(errmsg, CONCAT("MYEXIT", sqlca.sqlerrm.sqlerrmc);
 errlen = strlen(errmsg);
 sqliem(errmsg, &errlen); /* send error msg to Forms */
 return IAPFAIL;

Precompiling and Compiling a User Exit
User exits are precompiled like standalone host programs. For instructions on
compiling a user exit, see the Oracle installation or user's guide for your system.

Example Program: A User Exit
The following example shows a user exit.

/**
Sample Program 5: SQL*Forms User Exit

This user exit concatenates form fields. To call the user
exit from a SQL*Forms trigger, use the syntax

 user_exit('CONCAT field1, field2, ..., result_field');

where user_exit is a packaged procedure supplied with SQL*Forms
and CONCAT is the name of the user exit. A sample form named
CONCAT invokes the user exit.
**/

See Also: Chapter 10, "Precompiler Options"

Example Program: A User Exit

20-8 Pro*C/C++ Programmer’s Guide

#define min(a, b) ((a < b) ? a : b)
#include <stdio.h>
#include <string.h>

/* Include the SQL Communications Area, a structure through which
 * Oracle makes runtime status information such as error
 * codes, warning flags, and diagnostic text available to the
 * program.
 */
#include <sqlca.h>

/* All host variables used in embedded SQL in this example
 * appear in the Declare Section.
 */
EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR field[81];
 VARCHAR value[81];
 VARCHAR result[241];
EXEC SQL END DECLARE SECTION;

/* Define the user exit, called "concat". */
int concat(cmd, cmdlen, msg, msglen, query)
char *cmd; /* command line in trigger step ("CONCAT...") */
int *cmdlen; /* length of command line */
char *msg; /* trigger step failure message from form */
int *msglen; /* length of failure message */
int *query; /* TRUE if invoked by post-query trigger,
 FALSE otherwise */
{
 char *cp = cmd + 7; /* pointer to field list in
 cmd string; 7 characters
 are needed for "CONCAT " */
 char *fp = (char*)&field.arr[0]; /* pointer to a field name in
 cmd string */
 char errmsg[81]; /* message returned to SQL*Forms
 on error */
 int errlen; /* length of message returned
 to SQL*Forms */

/* Branch to label sqlerror if an ORACLE error occurs. */
 EXEC SQL WHENEVER SQLERROR GOTO sqlerror;

 result.arr[0] = '\0';

/* Parse field names from cmd string. */
 for (; *cp != '\0'; cp++)
 {
 if (*cp != ',' && *cp != ' ')
 /* Copy a field name into field.arr from cmd. */
 {
 *fp = *cp;
 fp++;
 }
 else
 if (*cp == ' ')
 { /* Have whole field name now. */
 *fp = '\0';
 field.len = strlen((char *) field.arr);

Using the GENXTB Utility

User Exits 20-9

 /* Get field value from form. */
 EXEC IAF GET :field INTO :value;
 value.arr[value.len] = '\0';
 strcat((char *) result.arr, (char *) value.arr);
 fp = (char *)&field.arr[0]; /* Reset field pointer. */
 }
 }

/* Have last field name now. */
 *fp = '\0';
 field.len = strlen((char *) field.arr);
 result.len = strlen((char *) result.arr);

/* Put result into form. */
 EXEC IAF PUT :field VALUES (:result);

/* Trigger step succeeded. */
 return(IAPSUCC);

sqlerror:
 strcpy(errmsg, "CONCAT: ");
 strncat(errmsg, sqlca.sqlerrm.sqlerrmc, min(72,
 sqlca.sqlerrm.sqlerrml));
 errlen = strlen(errmsg);
/* Pass error message to SQL*Forms status line. */
 sqliem(errmsg, &errlen);
 return(IAPFAIL); /* Trigger step failed. */
}

Using the GENXTB Utility
The IAP program table IAPXTB in module IAPXIT contains an entry for each user exit
linked into IAP. IAPXTB tells IAP the name, location, and host language of each user
exit. When you add a new user exit to IAP, you must add a corresponding entry to
IAPXTB. IAPXTB is derived from a database table, also named IAPXTB. You can
modify the database table by running the GENXTB form on the operating system
command line, as follows:

RUNFORM GENXTB username/password

A form is displayed for you to enter the following information for each user exit you
define:

■ Exit name

■ C-language code

■ Date created

■ Date last modified

■ Comments

After modifying the IAPXTB database table, use the GENXTB utility to read the table
and create an Assembler or C source program that defines the module IAPXIT and the
IAPXTB program table it contains. The source language used depends on your
operating system. The syntax you use to run the GENXTB utility is

GENXTB username/password outfile

See Also: "Guidelines" on page 20-10

Linking a User Exit into SQL*Forms

20-10 Pro*C/C++ Programmer’s Guide

where outfile is the name you give the Assembler or C source program that GENXTB
creates.

Linking a User Exit into SQL*Forms
Before running a form that calls a user exit, you must link the user exit into IAP, the
SQL*Forms component that runs a form. The user exit can be linked into your
standard version of IAP or into a special version for those forms that call the exit.

To produce a new executable copy of IAP, link your user exit object module, the
standard IAP modules, the IAPXIT module, and any modules needed from the Oracle
and C link libraries.

The details of linking are system-dependent. Check the Oracle installation or user's
guide for your system.

Guidelines
The guidelines in this section will help you avoid some

common pitfalls.

Naming the Exit
The name of your user exit cannot be an Oracle reserved word. Also avoid using
names that conflict with the names of SQL*Forms commands, function codes, and
externally defined names used by SQL*Forms. The name of the user exit entry point in
the source code becomes the name of the user exit itself. The exit name must be a valid
C function name, and a valid filename for your operating system.

SQL*Forms converts the name of a user exit to upper case before searching for the exit.
Therefore, the exit name must be in upper case in your source code.

Connecting to Oracle
User exits communicate with Oracle using the connection made by SQL*Forms.
However, a user exit can establish additional connections to any database by using
SQL*Net.

Issuing I/O Calls
File I/O is supported but screen I/O is not.

Using Host Variables
Restrictions on the use of host variables in a standalone program also apply to user
exits. Host variables must be prefixed with a colon in EXEC SQL and EXEC IAF
statements. The use of host arrays is not allowed in EXEC IAF statements.

Updating Tables
Generally, a user exit should not UPDATE database tables associated with a form. For
example, suppose an operator updates a record in the SQL*Forms work space, then a
user exit UPDATEs the corresponding row in the associated database table. When the

See Also: "Advanced Connection Options" on page 3-4

EXEC TOOLS Statements

User Exits 20-11

transaction is COMMITted, the record in the SQL*Forms work space is applied to the
table, overwriting the user exit UPDATE.

Issuing Commands
Avoid issuing a COMMIT or ROLLBACK command from your user exit because
Oracle will commit or roll back work begun by the SQL*Forms operator, not just work
done by the user exit. Instead, issue the COMMIT or ROLLBACK from the SQL*Forms
trigger. This also applies to data definition commands (such as ALTER, CREATE, and
GRANT) because they issue an implicit COMMIT before and after executing.

EXEC TOOLS Statements
EXEC TOOLS statements support the basic Oracle Toolset (Oracle Forms V4, Oracle
Report V2, and Oracle Graphics V2) by providing a generic way to handle get, set, and
exception callbacks from user exits. The following discussion focuses on Oracle Forms
but the same concepts apply to Oracle Report and Oracle Graphics.

Writing a Toolset User Exit
Besides EXEC SQL, EXEC ORACLE, and host language statements, you can use the
following EXEC TOOLS statements to write an Oracle Forms user exit:

■ SET

■ GET

■ SET CONTEXT

■ GET CONTEXT

■ MESSAGE

The EXEC TOOLS GET and SET statements replace the EXEC IAF GET and PUT
statements used with earlier versions of Oracle Forms. Unlike IAF GET and PUT,
however, TOOLS GET and SET accept indicator variables. The EXEC TOOLS
MESSAGE statement replaces the message-handling function sqliem. Now, let us take a
brief look at all the EXEC TOOLS statements. For more information, see the Oracle
Forms Reference Manual, Vol 2.

EXEC TOOLS SET
The EXEC TOOLS SET statement passes values from a user exit to Oracle Forms.
Specifically, it assigns the values of host variables and constants to Oracle Forms
variables and items. Values passed to form items display after the user exit returns
control to the form. To code the EXEC TOOLS SET statement, you use the syntax

EXEC TOOLS SET form_variable[, ...]
 VALUES ({:host_variable :indicator | constant}[, ...]);

where form_variable is an Oracle Forms field, block.field, system variable, or global
variable, or a host variable (prefixed with a colon) containing the value of one of the
foregoing items. In the following example, a user exit passes an employee name to
Oracle Forms:

char ename[20];
short ename_ind;

...

EXEC TOOLS Statements

20-12 Pro*C/C++ Programmer’s Guide

 strcpy(ename, "MILLER");
 ename_ind = 0;
 EXEC TOOLS SET emp.ename VALUES (:ename :ename_ind);

In this example, emp.ename is an Oracle Forms block.field.

EXEC TOOLS GET
The EXEC TOOLS GET statement passes values from Oracle Forms to a user exit.
Specifically, it assigns the values of Oracle Forms variables and items to host variables.
As soon as the values are passed, the user exit can use them for any purpose. To code
the EXEC TOOLS GET statement, you use the syntax

EXEC TOOLS GET form_variable[, ...]
 INTO :host_variable:indicator[, ...];

where form_variable is an Oracle Forms field, block.field, system variable, or global
variable, or a host variable (prefixed with a colon) containing the value of one of the
foregoing items. In the following example, Oracle Forms passes an item name from a
block to your user exit:

...
char name_buff[20];
VARCHAR name_fld[20];

strcpy(name_fld.arr, "EMP.NAME");
name_fld.len = strlen(name_fld.arr);
EXEC TOOLS GET :name_fld INTO :name_buff;

EXEC TOOLS SET CONTEXT
The EXEC TOOLS SET CONTEXT statement saves context information from a user
exit for later use in another user exit. A pointer variable points to a block of memory in
which the context information is stored. With SET CONTEXT, you need not declare a
global variable to hold the information. To code the EXEC TOOLS SET CONTEXT
statement, you use the syntax

EXEC TOOLS SET CONTEXT :host_pointer_variable
 IDENTIFIED BY context_name;

where context_name is an undeclared identifier or a character host variable (prefixed
with a colon) that names the context area.

...
char *context_ptr;
char context[20];

strcpy(context, "context1")
EXEC TOOLS SET CONTEXT :context IDENTIFIED BY application1;

EXEC TOOLS GET CONTEXT
The EXEC TOOLS GET CONTEXT statement retrieves context information (saved
earlier by SET CONTEXT) into a user exit. A host-language pointer variable points to a
block of memory in which the context information is stored. To code the EXEC TOOLS
GET CONTEXT statement, you use the syntax

EXEC TOOLS GET CONTEXT context_name
 INTO :host_pointer_variable;

EXEC TOOLS Statements

User Exits 20-13

where context_name is an undeclared identifier or a character host variable (prefixed
with a colon) that names the context area. In the following example, your user exit
retrieves context information 1saved earlier:

...
char *context_ptr;

EXEC TOOLS GET CONTEXT application1 INTO :context_ptr;

EXEC TOOLS MESSAGE
The EXEC TOOLS MESSAGE statement passes a message from a user exit to Oracle
Forms. The message is displayed on the Oracle Forms message line after the user exit
returns control to the form. To code the EXEC TOOLS MESSAGE statement, you use
the syntax

EXEC TOOLS MESSAGE message_text [severity_code];

where message_text is a quoted string or a character host variable (prefixed with a
colon), and the optional severity_code is an integer constant or an integer host variable
(prefixed with a colon). The MESSAGE statement does not accept indicator variables.
In the following example, your user exit passes an error message to Oracle Forms:

EXEC TOOLS MESSAGE 'Bad field name! Please reenter.';

EXEC TOOLS Statements

20-14 Pro*C/C++ Programmer’s Guide

New Features A-1

A
New Features

This appendix lists the new features offered in the Pro*C/C++ Precompiler. Each new
feature is described briefly, and a reference to the more complete description in the
chapters is provided. This appendix contains the following topics:

■ New In This Release

■ New In Previous Releases

■ Miscellaneous Topics

■ Migration From Earlier Releases

New In This Release
This section describes features which are new in this release.

New External Datatypes
Five new external datatypes are available:

■ INTERVAL DAY TO SECOND

■ INTERVAL YEAR TO MONTH

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

See "Additional External Datatypes"

New In Previous Releases
This section describes features which were new in prior releases.

Array of Structs
Pro*C/C++ supports the use of arrays of structs which enable you to perform
multirow, multicolumn operations. With this enhancement, Pro*C/C++ can handle
simple arrays of structs of scalars as bind variables in embedded SQL statements for
easier processing of user data. This makes programming more intuitive, and allows
users greater flexibility in organizing their data.

In addition to supporting arrays of structs as bind variables, Pro*C/C++ now also
supports arrays of indicator structs when used in conjunction with an array of structs
declaration. See "Arrays of Structs" on page 8-15.

New In Previous Releases

A-2 Pro*C/C++ Programmer’s Guide

Precompiled Header Files
The precompiler option HEADER specifies that precompiled header files are to be
created and used to reduce the time and computer resources needed for developing
large projects. See "Precompiled Header Files" on page 5-27.

CALL Statement
The CALL embedded SQL statement invokes a stored procedure. It can be used
instead of an embedded PL/SQL block in new applications. See "CALL (Executable
Embedded SQL)" on page F-12.

Changing Passwords at Runtime
Pro*C/C++ provides client applications with a convenient way to change a user
password at runtime through a simple extension to the EXEC SQL CONNECT
statement. See "Using the ALTER AUTHORIZATION Clause to Change Passwords" on
page 3-2.

Support for National Character Sets
Pro*C/C++ supports National Character Sets (for NCHAR, NVARCHAR2, NCLOB
columns) with database support, when NLS_LOCAL=NO. When NLS_LOCAL=NO,
and the new environmental variable NLS_NCHAR is set to a valid National Character
Set, NCHAR will be supported. See "Environment Variable NLS_NCHAR" on
page 4-40.

The clause CHARACTER SET [IS] NCHAR_CS can be specified in character variable
declarations. This has the same effect as naming the variable in the NLS_CHAR
precompiler option. See "CHARACTER SET [IS] NCHAR_CS" on page 4-39.

A new clause, CONVBUFSZ, is available in the EXEC SQL VAR statement, for
character set conversion. See "The EXEC SQL VAR and TYPE Directives" on page 5-11.

CHAR_MAP Precompiler Option
This option specifies the default mapping of C host char variables. Character strings
are CHARZ (fixed-length blank-padded and 0-terminated) by default. For more
information, see "Precompiler Option CHAR_MAP" on page 5-1.

New Names for SQLLIB Functions
SQLLIB functions have new aliases, which co-exist with the old function names for
this release of Pro*C/C++. See "New Names for SQLLIB Public Functions" on
page 5-39.

New Actions in WHENEVER Statement
The DO BREAK and DO CONTINUE actions are now supported by the embedded
SQL directive WHENEVER. See "Using the WHENEVER Directive" on page 9-18 and
"WHENEVER (Embedded SQL Directive)" on page F-88.

Object Type Support
Pro*C/C++ now provides the ability to map C structures to Object types that you
defined for the database server.

Miscellaneous Topics

New Features A-3

See Chapter 17, "Objects" for a description of how to access objects in a Pro*C/C++
program using an associative interface and a navigational interface (Executable
Embedded SQL Extensions).

A example program that illustrates how to access objects is listed in "Example Code for
Navigational Access" on page 17-27.

Object Type Translator
A new chapter describes the Object Type Translator (OTT) utility, which maps
database object types to C structs for use in OCI and Pro*C/C++ applications. OTT is
run before running the precompiler. See Chapter 19, "The Object Type Translator".

You can mix OCI function calls with embedded SQL statements in your application.
New OCI interoperability functions, are available, as well as library routines to
manipulate OCIString and OCINumber datatypes. For a description of Pro*C/C++
object support, see Chapter 17, "Objects".

LOB Support
An embedded SQL statement interface allows LOBs (large objects) to be used in
precompiler applications. How LOBs are used, the internal and external LOBs, and
comparisons with other ways to handle LOBs are presented. A presentation of each
new SQL statement is made. Example code shows how to use the LOB interface. See
the chapter Chapter 16, "Large Objects (LOBs)" for complete details.

ANSI Dynamic SQ
The complete ANSI implementation of dynamic SQL Method 4 through embedded
SQL statements is presented in Chapter 14, "ANSI Dynamic SQL". An overview with
simple examples is presented. This is followed by a complete discussion of the new
SQL statements. Example programs from the demo directory are then shown.

Collections
The two kinds of collections (VARRAYs and Nested Tables) are presented and
compared to other datatypes. Then the embedded SQL commands that manipulate
collections are described. See Chapter 18, "Collections".

Miscellaneous Topics
This section covers a variety of topics of interest to the Pro*C/C++ programmer.

Unicode Support
Support for Unicode(UCS16) character set in bind and define variables is described in
"Unicode Variables" on page 5-7.

UTF16_CHARSET Option
Specifies the default character set form used by UNICODE(UTF16) variables for
performance and backward compatibility.

See Also: "UTF16_CHARSET" on page 10-32

Miscellaneous Topics

A-4 Pro*C/C++ Programmer’s Guide

PREFETCH Option
This precompiler option speeds up database access by "prefetching" values, thus
cutting down the number of network round trips. See "The PREFETCH Precompiler
Option" on page 6-13.

External Procedures
External procedures written in C can be called from PL/SQL blocks. The REGISTER
CONNECT embedded SQL statement is used by the procedures. See "External
Procedures" on page 7-22.

Calling Java from PL/SQL
Stored procedures written in Java can be called from your application. For information
on how to call a procedure written in Java, see "Stored PL/SQL and Java
Subprograms" on page 7-15.

DML Returning Clause
This clause is allowed in INSERT, DELETE, and UPDATE statements. See "The DML
Returning Clause" on page 6-8.

Universal ROWID
The support for universal ROWID datatype is presented. Index-organized tables use
this concept. See "Universal ROWIDs" on page 4-30.

SYSDBA/SYSOPER Privileges in CONNECT Statements
To set these privileges using the CONNECT statement, see"Connect to the Database"
on page 3-1.

CLOSE_ON_COMMIT Precompiler Option
The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose
whether or not to close all cursors when a COMMIT is executed and the macro option
MODE=ANSI. See "#include <stdio.h>" and "CLOSE_ON_COMMIT" on page 10-9.

Character Strings
Many applications have been written under the assumption that character strings are
of varying length (such as VARCHAR2). By default, fixed-length, blank-padded,
NULL-terminated character strings (CHARZ) are used to conform to the current SQL
standards.

If your application assumes that character strings are varying in length (and this is
especially important in the string comparison semantics), then you should precompile
your application using the options DBMS=V8 and CHAR_MAP=VARCHAR2. See
"Character Data" on page 5-1 for details.

See the description of the DBMS options in "DBMS" on page 10-12 for a complete list of
the effects of the DBMS options.

Migration From Earlier Releases

New Features A-5

Error Message Codes
Error and warning codes are different between earlier releases of Pro*C/C++ and the
current release. See Oracle Database Error Messages for a complete list of codes and
messages.

The runtime messages issued by SQLLIB now have the prefix SQL-, rather than the
RTL- prefix used in earlier Pro*C/C++ and Pro*C releases. The message codes remain
the same as those of earlier releases.

When precompiling with SQLCHECK=SEMANTICS, PLS is the prefix used by the
PL/SQL compiler. Such errors are not from Pro*C/C++.

LINES Option
When LINES=YES, error messages issued by the C compiler always refer to your
original source files, not the modified (precompiled) source file. This also enables
stepping through the original source code using most debuggers. See "LINES" on
page 10-20.

Migration From Earlier Releases
For existing Pro*C/C++ applications to work in the Oracle9i environment, the
following actions must be taken:

■ Relink existing Pro*C/C++ applications with the Oracle9i SQLLIB library.

Specific functionality previously available in Pro*C/C++ is no longer supported in
Oracle9i. This includes:

■ The Graphical User Interface (GUI) for Pro*C/C++ on a computer running
Windows NT Server or Windows NT Workstation

■ The Intype File Assistant (IFA) for Pro*C/C++ for the Object Type Translator
(OTT) on a computer running the Windows NT Server or Windows NT
Workstation

■ The Logon Data Area (LDA) is no longer supported in Oracle9i. The ability to embed
OCI Release 7 calls in your Pro*C/C++ program will be phased out by the next
major Oracle release.

For specific information about migrating to Oracle9i, see Oracle9i Database Migration.

Migration From Earlier Releases

A-6 Pro*C/C++ Programmer’s Guide

Reserved Words, Keywords, and Namespaces B-1

B
Reserved Words, Keywords, and

Namespaces

This appendix contains the following topics:

■ Reserved Words and Keywords

■ Oracle Reserved Namespaces

Reserved Words and Keywords
Some words are reserved by Oracle. That is, they have a special meaning to Oracle and
cannot be redefined. For this reason, you cannot use them to name database objects
such as columns, tables, or indexes. To view the lists of the Oracle reserved words for
SQL and PL/SQL, see the Oracle Database SQL Reference and the PL/SQL User's Guide
and Reference.

Pro*C/C++ keywords, like C or C++ keywords, should not be used as variables in
your program. Otherwise, an error will be generated. An error may result if they are
used as the name of a database object such as a column. Here are the keywords used in
Pro*C/C++:

Table B–1 Pro*C and C++ Keywords

Keywords Keywords Keywords Keywords Keywords

all allocate alter analyze and

any arraylen as asc at

audit authorization avg begin between

bind both break by cache

call cast char character character

charf charz check close collection

comment commit connect constraint constraints

context continue convbufsz count create

current currval cursor database date

dateformat datelang day deallocate dec

decimal declare default define delete

deref desc describe descriptor display

distinct do double drop else

enable end endif escape exec

Reserved Words and Keywords

B-2 Pro*C/C++ Programmer’s Guide

exec execute exists explain extract

fetch float flush for force

found free from function get

global go goto grant group

having hour iaf identified ifdef

ifndef immediate in indicator input

insert integer intersect interval into

is is leading level like

list lob local lock long

max message min minus minute

mode month multiset nchar nchar_cs

next nextval noaudit not notfound

nowait null number numeric nvarchar

nvarchar2 object ocibfilelocator ocibloblocator ocicloblocator

ocidate ociextproccontext ocinumber ociraw ocirowid

ocistring of only open option

option or oracle order output

overlaps package partition precision prepare

prior procedure put raw read

real ref reference register release

rename replace return returning revoke

role rollback rowid rownum savepoint

second section select set set

smallint some sql sql_context sql_cursor

sqlerror sqlwarning start statement stddev

stop string sum sysdate sysdba

sysoper table temporary the threads

time timestamp timezone_hour timezone_minute to

tools trailing transaction trigger trim

truncate type uid ulong_varchar union

unique unsigned update use user

using uvarchar validate values varchar

varchar varchar2 variables variance varnum

varraw view whenever where with

work year zone - -

Table B–1 (Cont.) Pro*C and C++ Keywords

Keywords Keywords Keywords Keywords Keywords

Oracle Reserved Namespaces

Reserved Words, Keywords, and Namespaces B-3

Oracle Reserved Namespaces
The following table contains a list of namespaces that are reserved by Oracle. The
initial characters of function names in Oracle libraries are restricted to the character
strings in this list. Because of potential name conflicts, do not use function names that
begin with these characters. For example, the Oracle Net Transparent Network Service
functions all begin with the characters NS, so you need to avoid naming functions that
begin with NS.

The list in the table is not a comprehensive list of all functions within the Oracle
reserved namespaces. For a complete list of functions within a particular namespace,
refer to the document that corresponds to the appropriate Oracle library.

Table B–2 Oracle Reserved Namespaces

Namespace Library

 XA external functions for XA applications only

 SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

 O, OCI external OCI functions internal OCI functions

 UPI, KP function names from the Oracle UPI layer

NA

NC

ND

NL

NM

NR

NS

NT

NZ

OSN

TTC

Oracle Net Native services product

Oracle Net RPC project

Oracle Net Directory

Oracle Net Network Library layer

Oracle Net Net Management Project

Oracle Net Interchange

Oracle Net Transparent Network Service

Oracle Net Drivers

Oracle Net Security Service

Oracle Net V1

Oracle Net Two task

 GEN, L, ORA Core library functions

 LI, LM, LX function names from the Oracle Globalization Support layer

 S function names from system-dependent libraries

Oracle Reserved Namespaces

B-4 Pro*C/C++ Programmer’s Guide

Performance Tuning C-1

C
Performance Tuning

This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications. Using these methods, you can often reduce
processing time by 25% or more. This appendix contains the following topics:

■ What Causes Poor Performance?

■ How Can Performance Be Improved?

■ Using Host Arrays

■ Using Embedded PL/SQL

■ Optimizing SQL Statements

■ Using Indexes

■ Taking Advantage of Row-Level Locking

■ Eliminating Unnecessary Parsing

■ Using Connection Pooling

What Causes Poor Performance?
One cause of poor performance is high communications overhead. The server must
process SQL statements one at a time. Thus, each statement results in another call to
single and higher overhead. In a networked environment, SQL statements must be
sent over the network, adding to network traffic. Heavy network traffic can slow down
your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so
flexible, you can get the same result with two different statements, but one statement
might be less efficient. For example, the following two SELECT statements return the
same rows (the name and number of every department having at least one employee):

EXEC SQL SELECT dname, deptno
 FROM dept
 WHERE deptno IN (SELECT deptno FROM emp);

EXEC SQL SELECT dname, deptno
 FROM dept
 WHERE EXISTS
 (SELECT deptno FROM emp WHERE dept.deptno = emp.deptno);

However, the first statement is slower because it does a time-consuming full scan of
the EMP table for every department number in the DEPT table. Even if the DEPTNO
column in EMP is indexed, the index is not used because the subquery lacks a WHERE
clause naming DEPTNO.

How Can Performance Be Improved?

C-2 Pro*C/C++ Programmer’s Guide

A third cause of poor performance is unnecessary parsing and binding. Recall that
before executing a SQL statement, the server must parse and bind it. Parsing means
examining the SQL statement to make sure it follows syntax rules and refers to valid
database objects. Binding means associating host variables in the SQL statement with
their addresses so that the server can read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and
binding, which adds noticeably to processing overhead.

How Can Performance Be Improved?
If you are unhappy with the performance of your precompiled programs, there are
several ways you can reduce overhead.

You can greatly reduce communications overhead, especially in networked
environments, by

■ Using host arrays

■ Using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by

■ Optimizing SQL statements

■ Using indexes

■ Taking advantage of row-level locking

■ Eliminating unnecessary parsing

■ Avoiding unnecessary reparsing

The following sections look at each of these ways to cut overhead.

Using Host Arrays
Host arrays can increase performance because they let you manipulate an entire
collection of data with a single SQL statement. For example, suppose you want to
INSERT salaries for 300 employees into the EMP table. Without arrays your program
must do 300 individual INSERTs—one for each employee. With arrays, only one
INSERT is necessary. Consider the following statement:

EXEC SQL INSERT INTO emp (sal) VALUES (:salary);

If salary is a simple host variable, the server executes the INSERT statement once,
inserting a single row into the EMP table. In that row, the SAL column has the value of
salary. To insert 300 rows this way, you must execute the INSERT statement 300 times.

However, if salary is a host array of size 300, all 300 rows are inserted into the EMP
table at once. In each row, the SAL column has the value of an element in the salary
array.

For more information, see Chapter 8, "Host Arrays".

Using Embedded PL/SQL
As Figure C–1 shows, if your application is database-intensive, you can use control
structures to group SQL statements in a PL/SQL block, then send the entire block to
the database server. This can drastically reduce communication between your
application and the database server.

Optimizing SQL Statements

Performance Tuning C-3

Also, you can use PL/SQL subprograms to reduce calls from your application to the
server. For example, to execute ten individual SQL statements, ten calls are required,
but to execute a subprogram containing ten SQL statements, only one call is required.

Figure C–1 PL/SQL Boosts Performance

PL/SQL can also cooperate with Oracle application development tools such as Oracle
Forms. By adding procedural processing power to these tools, PL/SQL boosts
performance. Using PL/SQL, a tool can do any computation quickly and efficiently
without calling on the database server. This saves time and reduces network traffic.

For more information, see Chapter 7, "Embedded PL/SQL", and the PL/SQL User's
Guide and Reference.

Optimizing SQL Statements
For every SQL statement, the Oracle optimizer generates an execution plan, which is a
series of steps that the server takes to execute the statement. These steps are
determined by rules given in Oracle9i Application Developer's Guide - Fundamentals.
Following these rules will help you write optimal SQL statements.

Optimizer Hints
In some cases, you can suggest to the server the way to optimize a SQL statement.
These suggestions, called hints, let you influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit the
scope of information used to optimize a SQL statement, while others suggest overall
strategies.

You can use hints to specify the

■ Optimization approach for a SQL statement

RPC

SQL
IF ... THEN

SQL
ELSE

SQL
END IF
SQL

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs

Oracle9i
with PL/SQL

Oracle9i
with PL/SQL
and Stored
Procedures

PL/SQL Increases Performance
Especially in Networked Environments

Using Indexes

C-4 Pro*C/C++ Programmer’s Guide

■ Access path for each referenced table

■ Join order for a join

■ Method used to join tables

Hence, hints fall into the following four categories:

■ Optimization Approach

■ Access Path

■ Join Order

■ Join Operation

For example, the two optimization approach hints, COST and NOCOST, invoke the
cost-based optimizer and the rule-based optimizer, respectively.

You give hints to the optimizer by placing them in a C-style comment immediately
after the verb in a SELECT, UPDATE, INSERT, or DELETE statement. For instance, the
optimizer uses the cost-based approach for the following statement:

SELECT /*+ COST */ ename, sal INTO ...

For C++ code, optimizer hints in the form //+ are also recognized.

For more information about optimizer hints, see Oracle Database Application Developer's
Guide - Fundamentals.

Trace Facility
You can use the SQL trace facility and the EXPLAIN PLAN statement to identify SQL
statements that might be slowing down your application.

The SQL trace facility generates statistics for every SQL statement executed. From
these statistics, you can determine which statements take the most time to process.
Then, you can concentrate your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement in
your application. An execution plan describes the database operations that must be
carried out to execute a SQL statement. You can use the execution plan to identify
inefficient SQL statements.

For instructions on using these tools and analyzing their output, see Oracle Database
Application Developer's Guide - Fundamentals.

Using Indexes
Using ROWIDs, an index associates each distinct value in a table column with the rows
containing that value. An index is created with the CREATE INDEX statement. For
details, see Oracle Database SQL Reference.

You can use indexes to boost the performance of queries that return less than 15% of
the rows in a table. A query that returns 15% or more of the rows in a table is executed
faster by a full scan, that is, by reading all rows sequentially.

Any query that names an indexed column in its WHERE clause can use the index. For
guidelines that help you choose which columns to index, see Oracle Database
Application Developer's Guide - Fundamentals.

Eliminating Unnecessary Parsing

Performance Tuning C-5

Taking Advantage of Row-Level Locking
By default, data is locked at the row level rather than at the table level. Row-level
locking allows multiple users to access different rows in the same table concurrently.
The resulting performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction
processing option. For more information about table locking, see the section "Using
LOCK TABLE" on page 3-18.

Applications that do online transaction processing benefit most from row-level
locking. If your application relies on table-level locking, modify it to take advantage of
row-level locking. In general, avoid explicit table-level locking.

Eliminating Unnecessary Parsing
Eliminating unnecessary parsing requires correct handling of cursors and selective use
of the following cursor management options:

■ MAXOPENCURSORS

■ HOLD_CURSOR

■ RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL
areas.

Handling Explicit Cursors
Recall that there are two types of cursors: implicit and explicit. A cursor is implicitly
declared for all data definition and data manipulation statements. However, for
queries that return more than one row, you must explicitly declare a cursor (or use
host arrays). You use the DECLARE CURSOR statement to declare an explicit cursor.
The way you handle the opening and closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reOPEN the cursor. OPEN will use any
new host-variable values. You can save processing time if you do not CLOSE the
cursor first.

Only CLOSE a cursor when you want to free the resources (memory and locks)
acquired by OPENing the cursor. For example, your program should CLOSE all
cursors before exiting.

Cursor Control
In general, there are three ways to control an explicitly declared cursor:

■ Use DECLARE, OPEN, and CLOSE.

■ Use PREPARE, DECLARE, OPEN, and CLOSE.

■ COMMIT closes the cursor when MODE=ANSI.

With the first way, beware of unnecessary parsing. OPEN does the parsing, but only if
the parsed statement is unavailable because the cursor was CLOSEd or never

Note: To make performance tuning easier, you can reOPEN an
already open cursor. However, this is an ANSI extension. So, when
MODE=ANSI, you must CLOSE a cursor before reOPENing it.

Eliminating Unnecessary Parsing

C-6 Pro*C/C++ Programmer’s Guide

OPENed. Your program should DECLARE the cursor, reOPEN it every time the value
of a host variable changes, and CLOSE it only when the SQL statement is no longer
needed.

With the second way (for dynamic SQL Methods 3 and 4), PREPARE does the parsing,
and the parsed statement is available until a CLOSE is executed. Your program should
do the following:

■ PREPARE the SQL statement

■ DECLARE the cursor

■ Again OPEN the cursor every time the value of a host variable changes

■ Again PREPARE the SQL statement

■ Again OPEN the cursor if the SQL statement changes

■ CLOSE the cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a
potential cause of unnecessary reparsing of the SQL statement. In the next example,
both the OPEN and CLOSE statements are inside the outer while loop. When
MODE=ANSI, the CLOSE statement must be positioned as shown, because ANSI
requires a cursor to be CLOSEd before being reOPENed.

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, sal from emp where sal > :salary and
 sal <= :salary + 1000;
salary = 0;
while (salary < 5000)
{
 EXEC SQL OPEN emp_cursor;
 while (SQLCODE==0)
 {
 EXEC SQL FETCH emp_cursor INTO
 ...
 }
 salary += 1000;
 EXEC SQL CLOSE emp_cursor;
}

With MODE=ORACLE, however, a CLOSE statement can execute without the cursor
being OPENed. By placing the CLOSE statement outside the outer while loop, you can
avoid possible reparsing at each iteration of the OPEN statement.

...
while (salary < 5000)
{
 EXEC SQL OPEN emp_cursor;
 while (sqlca.sqlcode==0)
 {
 EXEC SQL FETCH emp_cursor INTO
 ...
 }
 salary += 1000;
}
EXEC SQL CLOSE emp_cursor;

Using the Cursor Management Options
A SQL statement need be parsed only once unless you change its makeup. For
example, you change the makeup of a query by adding a column to its select list or

Eliminating Unnecessary Parsing

Performance Tuning C-7

WHERE clause. The HOLD_CURSOR, RELEASE_CURSOR, and
MAXOPENCURSORS options give you some control over how the server manages the
parsing and reparsing of SQL statements. Declaring an explicit cursor gives you
maximum control over parsing.

SQL Areas and Cursor Cache
When a data manipulation statement is executed, its associated cursor is linked to an
entry in the Pro*C/C++ cursor cache. The cursor cache is a continuously updated area
of memory used for cursor management. The cursor cache entry is in turn linked to a
private SQL area.

The private SQL area, a work area created dynamically at run time, contains the
addresses of host variables, and other information needed to process the statement. An
explicit cursor lets you name a SQL statement, access the information in its private
SQL area, and, to some extent, control its processing.

Figure C–2 represents the cursor cache after your program has done an INSERT and a
DELETE.

Figure C–2 Cursors Linked using the Cursor Cache

Resource Use
The maximum number of open cursors for each user session is set by the initialization
parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is
needed and there are no free cache entries, the server tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit
cursors, on the status of the cursor itself.

If the value of MAXOPENCURSORS is less than the number of cache entries actually
needed, the server uses the first cache entry marked as reusable. For example, suppose
an INSERT statement's cache entry E(1) is marked as reusable, and the number of
cache entries already equals MAXOPENCURSORS. If the program executes a new
statement, cache entry E(1) and its private SQL area might be reassigned to the new
statement. To reexecute the INSERT statement, the server would have to reparse it and
reassign another cache entry.

The server allocates an additional cache entry if it cannot find one to reuse. For
example, if MAXOPENCURSORS=8 and all eight entries are active, a ninth is created.
If necessary, the server keeps allocating additional cache entries until it runs out of
memory or reaches the limit set by OPEN_CURSORS. This dynamic allocation adds to
processing overhead.

Cursor Cache

Context Area

Context Area

E(1)

E(2)

E(MAXOPENCURSORS)

EXEC SQL INSERT ...
Cursor

EXEC SQL DELETE ...
Cursor

.

.

.

.

.

.

Eliminating Unnecessary Parsing

C-8 Pro*C/C++ Programmer’s Guide

Thus, specifying a low value for MAXOPENCURSORS saves memory but causes
potentially expensive dynamic allocations and deallocations of new cache entries.
Specifying a high value for MAXOPENCURSORS assures speedy execution but uses
more memory.

Infrequent Execution
Sometimes, the link between an infrequently executed SQL statement and its private
SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after the server executes the SQL statement
and the cursor is closed, the precompiler marks the link between the cursor and cursor
cache as reusable. The link is reused as soon as the cursor cache entry to which it
points is needed for another SQL statement. This frees memory allocated to the private
SQL area and releases parse locks. However, because a PREPAREd cursor must remain
active, its link is maintained even when HOLD_CURSOR=NO.

When RELEASE_CURSOR=YES, after the server executes the SQL statement and the
cursor is closed, the private SQL area is automatically freed and the parsed statement
lost. This might be necessary if, for example, MAXOPENCURSORS is set low at your
site to conserve memory.

If a data manipulation statement precedes a data definition statement and they
reference the same tables, specify RELEASE_CURSOR=YES for the data manipulation
statement. This avoids a conflict between the parse lock obtained by the data
manipulation statement and the exclusive lock required by the data definition
statement.

When RELEASE_CURSOR=YES, the link between the private SQL area and the cache
entry is immediately removed and the private SQL area freed. Even if you specify
HOLD_CURSOR=YES, the server must still reallocate memory for a private SQL area
and reparse the SQL statement before executing it because RELEASE_CURSOR=YES
overrides HOLD_CURSOR=YES.

However, when RELEASE_CURSOR=YES, the reparse might still require no extra
processing because the server caches the parsed representations of SQL statements and
PL/SQL blocks in its Shared SQL Cache. Even if its cursor is closed, the parsed
representation remains available until it is aged out of the cache.

Frequent Execution
The links between a frequently executed SQL statement and its private SQL area should
be maintained because the private SQL area contains all the information needed to
execute the statement. Maintaining access to this information makes subsequent
execution of the statement much faster.

When HOLD_CURSOR=YES, the link between the cursor and cursor cache is
maintained after the server executes the SQL statement. Thus, the parsed statement
and allocated memory remain available. This is useful for SQL statements that you
want to keep active because it avoids unnecessary reparsing.

When RELEASE_CURSOR=NO (the default), the link between the cache entry and the
private SQL area is maintained after the server executes the SQL statement and is not
reused unless the number of open cursors exceeds the value of MAXOPENCURSORS.
This is useful for SQL statements that are executed often because the parsed statement
and allocated memory remain available.

Using Connection Pooling

Performance Tuning C-9

Embedded PL/SQL Considerations
For the purposes of cursor management, an embedded PL/SQL block is treated just
like a SQL statement. When an embedded PL/SQL block is executed, a parent cursor
is associated with the entire block and a link is created between the cache entry and
the private SQL area in the PGA for the embedded PL/SQL block. Be aware that each
SQL statement inside the embedded block also requires a private SQL area in the PGA.
These SQL statements use child cursors that PL/SQL manages itself. The disposition
of the child cursors is determined through its associated parent cursor. That is, the
private SQL areas used by the child cursors are freed after the private SQL area for its
parent cursor is freed.

Parameter Interactions
Table C–1 shows how HOLD_CURSOR and RELEASE_CURSOR interact. Notice that
HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO and that RELEASE_
CURSOR=YES overrides HOLD_CURSOR=YES.

Avoiding Unnecessary Reparsing
Avoiding unnecessary reparsing involves eliminating errors encountered during the
execute phase of an SQL statement in a loop. When an embedded SQL statement is
executed in a loop, the SQL statement is parsed only once. However, if the execution of
the SQL statement results in an error, the SQL statement is usually reparsed. In this
case, reparsing will occur for all errors encountered, except the following:

■ ORA-1403 (not found)

■ ORA-1405 (truncation)

■ ORA-1406 (null value)

By eliminating all other errors, you can avoid unnecessary reparsing.

Using Connection Pooling
This section describes performance tuning using connection pooling. If an application
is multithreaded and is performing concurrent operations on the same database, users

Note: With prior versions of Oracle, when RELEASE_
CURSOR=NO and HOLD_CURSOR=YES, after the server executes
a SQL statement, its parsed representation remains available. But,
with Oracle8i, when RELEASE_CURSOR=NO and HOLD_
CURSOR=YES, the parsed representation remains available only
until it is aged out of the Shared SQL Cache. Normally, this is not a
problem, but you might get unexpected results if the definition of a
referenced object changes before the SQL statement is reparsed.

Table C–1 HOLD_CURSOR and RELEASE _CURSOR Interactions

HOLD_CURSOR RELEASE_CURSOR Links are ...

NO NO marked as reusable

YES NO maintained

NO YES removed immediately

YES YES removed immediately

Using Connection Pooling

C-10 Pro*C/C++ Programmer’s Guide

can use the connection pooling feature to achieve better performance. Users can tune
an application's performance by choosing the appropriate values for parameters used
with connection pooling, and can achieve up to three times performance increase,
when compared to existing application performance.

See Also:

■ Chapter 11, Multithreaded Applications, Connection Pooling.

■ Oracle Call Interface Programmer's Guide

Syntactic and Semantic Checking D-1

D
Syntactic and Semantic Checking

By checking the syntax and semantics of embedded SQL statements and PL/SQL
blocks, the Pro*C/C++ Precompiler helps you quickly find and fix coding mistakes.
This appendix shows you how to use the SQLCHECK option to control the type and
extent of checking. This appendix contains the following topics:

■ What Is Syntactic and Semantic Checking?

■ Controlling the Type and Extent of Checking

■ Specifying SQLCHECK=SEMANTICS

■ Specifying SQLCHECK=SYNTAX

■ Entering the SQLCHECK Option

What Is Syntactic and Semantic Checking?
Rules of syntax specify how language elements are sequenced to form valid
statements. Thus, syntactic checking verifies that keywords, object names, operators,
delimiters, and so on are placed correctly in your SQL statement. For example, the
following embedded SQL statements contain syntax errors:

EXEC SQL DELETE FROM EMP WHER DEPTNO = 20;
 -- misspelled keyword WHERE

EXEC SQL INSERT INTO EMP COMM, SAL VALUES (NULL, 1500);
 -- missing parentheses around column names COMM and SAL

Rules of semantics specify how valid external references are made. Thus, semantic
checking verifies that references to database objects and host variables are valid and
that host variable datatypes are correct. For example, the following embedded SQL
statements contain semantic errors:

EXEC SQL DELETE FROM empp WHERE deptno = 20;
 -- nonexistent table, EMPP

EXEC SQL SELECT * FROM emp WHERE ename = :emp_name;
 -- undeclared host variable, emp_name

The rules of SQL syntax and semantics are defined in Oracle Database SQL Reference.

Controlling the Type and Extent of Checking
You control the type and extent of checking by specifying the SQLCHECK option on
the command line. With SQLCHECK, the type of checking can be syntactic, semantic,
or both. The extent of checking can include the following:

■ Data definition statements (such as CREATE and GRANT)

Specifying SQLCHECK=SEMANTICS

D-2 Pro*C/C++ Programmer’s Guide

■ Data manipulation statements (such as SELECT and INSERT)

■ PL/SQL blocks

However, SQLCHECK cannot check dynamic SQL statements because they are not
fully defined until run time.

You can specify the following values for SQLCHECK:

■ SEMANTICS or FULL

■ SYNTAX

The default value is SYNTAX.

The use of SQLCHECK does not affect the normal syntax checking done on data
control, cursor control, and dynamic SQL statements.

Specifying SQLCHECK=SEMANTICS
When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of

■ Data manipulation statements (INSERT, UPDATE, and so on)

■ PL/SQL blocks

■ Host variable datatypes

as well as the syntax of

■ Data definition statements (CREATE, ALTER, and so on)

However, only syntactic checking is done on data manipulation statements that use
the AT db_name clause.

When SQLCHECK=SEMANTICS, the precompiler gets information needed for a
semantic check by using embedded DECLARE TABLE statements or if you specify the
USERID option on the command line, by connecting to the Oracle server and accessing
the data dictionary. You need not connect to the Oracle server if every table referenced
in a data manipulation statement or PL/SQL block is defined in a DECLARE TABLE
statement.

If you connect to the Oracle server, but some needed information cannot be found in
the data dictionary, you must use DECLARE TABLE statements to supply the missing
information. A DECLARE TABLE definition overrides a data dictionary definition if
they conflict.

If you embed PL/SQL blocks in a host program, you must specify
SQLCHECK=SEMANTICS.

When checking data manipulation statements, the precompiler uses the syntax rules
found in the Oracle Database SQL Reference, but uses a stricter set of semantic rules. In
particular, stricter datatype checking is done. As a result, existing applications written
for earlier versions of Oracle might not precompile successfully when
SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when you precompile new programs or want
stricter datatype checking.

Enabling a Semantic Check
When SQLCHECK=SEMANTICS, the precompiler can get information needed for a
semantic check in either of the following ways:

Specifying SQLCHECK=SEMANTICS

Syntactic and Semantic Checking D-3

■ Connect to the Oracle server and access the data dictionary.

■ Use embedded DECLARE TABLE and DECLARE TYPE statements.

Connecting to the Oracle server
To do a semantic check, the precompiler can connect to an Oracle database that
maintains definitions of tables, types, and views referenced in your host program.

After connecting to the Oracle server, the precompiler accesses the data dictionary for
needed information. The data dictionary stores table and column names, table and
column constraints, column lengths, column datatypes, and so on.

If some of the needed information cannot be found in the data dictionary (because
your program refers to a table not yet created, for example), you must supply the
missing information using the DECLARE TABLE statement (discussed later in this
appendix).

To connect to the Oracle server, specify the USERID option on the command line,
using the syntax:

USERID=username/password

where username and password comprise a valid Oracle userid. If you omit the
password, you are prompted for it.

If, instead of a username and password, you specify

USERID=/

the precompiler attempts to automatically connect to the Oracle server. The attempt
succeeds only if an existing Oracle username matches your operating system ID
prefixed with "CLUSTER$", or whatever value the parameter OS_AUTHENT_PREFIX
is set to in the INIT.ORA file. For example, if your operating system ID is MBLAKE, an
automatic connect only succeeds if CLUSTER$MBLAKE is a valid Oracle username.

If you omit the USERID option, the precompiler must get needed information from
embedded DECLARE TABLE statements.

If you try connecting to the Oracle server but cannot (because the database is
unavailable, for example), an error message is issued and your program is not
precompiled.

Using DECLARE TABLE
The precompiler can do a semantic check without connecting to the Oracle server. To
do the check, the precompiler must get information about tables and views from
embedded DECLARE TABLE statements. Thus, every table referenced in a data
manipulation statement or PL/SQL block must be defined in a DECLARE TABLE
statement.

The syntax of the DECLARE TABLE statement is:

EXEC SQL DECLARE table_name TABLE
 (col_name col_datatype [DEFAULT expr] [NULL|NOT NULL], ...);

where expr is an integer that can be used as a default column value in the CREATE
TABLE statement.

For user-defined object datatypes, the size is optional because it is not used.

If you use DECLARE TABLE to define a database table that already exists, the
precompiler uses your definition, ignoring the one in the data dictionary.

Specifying SQLCHECK=SYNTAX

D-4 Pro*C/C++ Programmer’s Guide

Using DECLARE TYPE
Similarly, for TYPE, there is a DECLARE TYPE statement whose syntax is:

EXEC SQL DECLARE type TYPE
[AS OBJECT (col_name col_datatype, ...)] |
[AS VARRAY(size) OF element_type]|
[AS TABLE OF object_type] ;

This allows for better type-checking for user-defined types when
SQLCHECK=SEMANTICS at precompile-time. When SQLCHECK=SYNTAX, the
DECLARE TYPE statements serve as documentation only and are commented out and
ignored.

Specifying SQLCHECK=SYNTAX
When SQLCHECK=SYNTAX, the precompiler checks the syntax of SQL statements
documented in Oracle Database SQL Reference:

■ Data manipulation statements

■ Host-variable expressions

No semantic check is done, and the following restrictions apply:

■ No connection to the Oracle server is attempted and USERID becomes an invalid
option. If you specify USERID, a warning message is issued.

■ DECLARE TABLE and DECLARE TYPE statements are ignored; they serve only as
documentation.

■ PL/SQL blocks are not allowed. If the precompiler finds a PL/SQL block, an error
message is issued.

When checking data manipulation statements, the precompiler uses Oracle syntax
rules. These rules are downwardly compatible, so specify SQLCHECK=SYNTAX when
migrating your precompiled programs.

Entering the SQLCHECK Option
You can enter the SQLCHECK option inline or on the command line. However, the
level of checking you specify inline cannot be higher than the level you specify (or
accept by default) on the command line. For example, if you specify
SQLCHECK=SYNTAX on the command line, you cannot specify
SQLCHECK=SEMANTICS inline.

System-Specific References E-1

E
System-Specific References

This appendix groups together in one place all references in this guide to
system-specific information.

This appendix contains this section:

■ System-Specific Information

System-Specific Information
System-specific information is described in the appropriate Oracle system-specific
documentation for your platform.

Location of Standard Header Files
The location of the standard Pro*C/C++ header files—sqlca.h, oraca.h, and
sqlda.h—is system specific. For other your system, see your Oracle system-specific
documentation.

Specifying Location of Included Files for the C Compiler
When you use the Pro*C/C++ command-line option INCLUDE= to specify the
location of a non-standard file to be included, you should also specify the same
location for the C compiler. The way you do this is system specific. See "Include Files"
on page 5-27.

ANSI C Support
Use the CODE= option to make the C code that Pro*C/C++ generates compatible with
your system's C compiler. See "Function Prototyping" on page 2-9.

Struct Component Alignment
C compilers vary in the way they align struct components, usually depending on the
system hardware. Use the sqlvcp() function to determine the padding added to the
.arr component of a VARCHAR struct. See the section "Find the Length of the
VARCHAR Array Component" on page 4-18.

Size of an Integer and ROWID
The size in bytes of integer datatypes and the binary external size of ROWID datatypes
are system dependent. See "INTEGER" on page 4-4 and "ROWID" on page 4-5.

System-Specific Information

E-2 Pro*C/C++ Programmer’s Guide

Byte Ordering
The order of bytes in a word is platform dependent. See the section "UNSIGNED" on
page 4-7.

Connecting to the Oracle Server
Connecting to the Oracle server using the Oracle Net drivers involves system-specific
network protocols. See the section "Interface to OCI Release 8" on page 5-35 for more
details.

Linking in an XA Library
You link in your XA library in a system-dependent way. See the section "Linking" on
page 5-43, and your Oracle installation or user's guides, for more information.

Location of the Pro*C/C++ Executable
The location of the Pro*C/C++ Precompiler is system specific. See the section "The
Precompiler Command" on page 10-1, and your installation or user's guides, for more
information.

System Configuration File
Each precompiler installation has a system configuration file. This file is not shipped
with the precompiler; it must be created by the system administrator. The location
(directory path) which Pro*C/C++ searches for the system configuration file is system
dependent. See the section "What Occurs During Precompilation?" on page 10-4 for
more information.

INCLUDE Option Syntax
The syntax for the value of the INCLUDE command-line option is system specific. See
"INCLUDE" on page 10-19.

Compiling and Linking
Compiling and linking your Pro*C/C++ output to get an executable application is
always system dependent. See the section "Compile and Link" on page 2-13, and the
following sections, for additional information.

User Exits
Compiling and linking Oracle Forms user exits is system specific. See Chapter 20,
"User Exits".

Embedded SQL Statements and Directives F-1

F
Embedded SQL Statements and Directives

This appendix contains descriptions of both the SQL92 embedded statements and
directives, as well as the Oracle embedded SQL extensions.

This appendix contains the following topics:

■ Summary of Precompiler Directives and Embedded SQL Statements

■ About The Statement Descriptions

■ How to Read Syntax Diagrams

■ ALLOCATE (Executable Embedded SQL Extension)

■ ALLOCATE DESCRIPTOR (Executable Embedded SQL)

■ CACHE FREE ALL (Executable Embedded SQL Extension)

■ CALL (Executable Embedded SQL)

■ CLOSE (Executable Embedded SQL)

■ COLLECTION APPEND (Executable Embedded SQL Extension)

■ COLLECTION DESCRIBE (Executable Embedded SQL Extension)

■ COLLECTION GET (Executable Embedded SQL Extension)

■ COLLECTION RESET (Executable Embedded SQL Extension)

■ COLLECTION SET (Executable Embedded SQL Extension)

■ COLLECTION TRIM (Executable Embedded SQL Extension)

■ COMMIT (Executable Embedded SQL)

■ CONNECT (Executable Embedded SQL Extension)

■ CONTEXT ALLOCATE (Executable Embedded SQL Extension)

■ CONTEXT FREE (Executable Embedded SQL Extension)

■ CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)

■ CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext)

■ CONTEXT USE (Oracle Embedded SQL Directive)

Note: Only statements which differ in syntax from non-embedded
SQL are described in this appendix. For details of the
non-embedded SQL statements, see the Oracle Database SQL
Reference.

F-2 Pro*C/C++ Programmer’s Guide

■ DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

■ DECLARE CURSOR (Embedded SQL Directive)

■ DECLARE DATABASE (Oracle Embedded SQL Directive)

■ DECLARE STATEMENT (Embedded SQL Directive)

■ DECLARE TABLE (Oracle Embedded SQL Directive)

■ DECLARE TYPE (Oracle Embedded SQL Directive)

■ DELETE (Executable Embedded SQL)

■ DESCRIBE (Executable Embedded SQL Extension)

■ DESCRIBE DESCRIPTOR (Executable Embedded SQL)

■ ENABLE THREADS (Executable Embedded SQL Extension)

■ EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

■ EXECUTE (Executable Embedded SQL)

■ EXECUTE DESCRIPTOR (Executable Embedded SQL)

■ EXECUTE IMMEDIATE (Executable Embedded SQL)

■ FETCH (Executable Embedded SQL)

■ FETCH DESCRIPTOR (Executable Embedded SQL)

■ FREE (Executable Embedded SQL Extension)

■ GET DESCRIPTOR (Executable Embedded SQL)

■ INSERT (Executable Embedded SQL)

■ LOB APPEND (Executable Embedded SQL Extension)

■ LOB ASSIGN (Executable Embedded SQL Extension)

■ LOB CLOSE (Executable Embedded SQL Extension)

■ LOB COPY (Executable Embedded SQL Extension)

■ LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

■ LOB DESCRIBE (Executable Embedded SQL Extension)

■ LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

■ LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

■ LOB ERASE (Executable Embedded SQL Extension)

■ LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

■ LOB FILE SET (Executable Embedded SQL Extension)

■ LOB FLUSH BUFFER (Executable Embedded SQL Extension)

■ LOB FREE TEMPORARY (Executable Embedded SQL Extension)

■ LOB LOAD (Executable Embedded SQL Extension)

■ LOB OPEN (Executable Embedded SQL Extension)

■ LOB READ (Executable Embedded SQL Extension)

■ LOB TRIM (Executable Embedded SQL Extension)

■ LOB WRITE (Executable Embedded SQL Extension)

Summary of Precompiler Directives and Embedded SQL Statements

Embedded SQL Statements and Directives F-3

■ OBJECT CREATE (Executable Embedded SQL Extension)

■ OBJECT DELETE (Executable Embedded SQL Extension)

■ OBJECT DEREF (Executable Embedded SQL Extension)

■ OBJECT FLUSH (Executable Embedded SQL Extension)

■ OBJECT GET (Executable Embedded SQL Extension)

■ OBJECT RELEASE (Executable Embedded SQL Extension)

■ OBJECT SET (Executable Embedded SQL Extension)

■ OBJECT UPDATE (Executable Embedded SQL Extension)

■ OPEN (Executable Embedded SQL)

■ OPEN DESCRIPTOR (Executable Embedded SQL)

■ PREPARE (Executable Embedded SQL)

■ REGISTER CONNECT (Executable Embedded SQL Extension)

■ ROLLBACK (Executable Embedded SQL)

■ SAVEPOINT (Executable Embedded SQL)

■ SELECT (Executable Embedded SQL)

■ SET DESCRIPTOR (Executable Embedded SQL)

■ TYPE (Oracle Embedded SQL Directive)

■ UPDATE (Executable Embedded SQL)

■ VAR (Oracle Embedded SQL Directive)

■ WHENEVER (Embedded SQL Directive)

Summary of Precompiler Directives and Embedded SQL Statements
Embedded SQL statements place DDL, DML, and Transaction Control statements
within a Pro*C/C++ program. Table F–1 provides a functional summary of the
embedded SQL statements and directives.

The Source/Type column in Table F–2 is displayed in the format:

Table F–1 Functional Summary of the Embedded SQL Statements and Directives

Source/Type Description

Source Is either SQL92 standard SQL (S) or an Oracle extension (O).

Type Is either an executable (E) statement or a directive (D).

Table F–2 Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

ALLOCATE O/E To allocate memory for a cursor variable or an Object type.

ALLOCATE DESCRIPTOR S/E Allocate a descriptor for ANSI dynamic SQL.

CACHE FREE ALL O/E Frees all allocated object cache memory.

CALL S/E Call a stored procedure.

CLOSE S/E To disable a cursor, releasing the resources it holds.

Summary of Precompiler Directives and Embedded SQL Statements

F-4 Pro*C/C++ Programmer’s Guide

COLLECTION APPEND O/E To append elements of one collection to the end of another
collection.

COLLECTION DESCRIBE O/E To obtain information about a collection.

COLLECTION GET O/E To retrieve the elements of a collection.

COLLECTION RESET O/E To reset the collection slice endpoints back to the
beginning of the collection.

COLLECTION SET O/E To update values of a collection.

COLLECTION TRIM O/E To remove elements from the end of a collection.

COMMIT S/E To end the current transaction, making all database change
permanent (optionally frees resources and disconnects
from the database)

CONNECT O/E To log on to an instance.

CONTEXT ALLOCATE O/E To allocate memory for a SQLLIB runtime context.

CONTEXT FREE O/E To free memory for a SQLLIB runtime context.

CONTEXT OBJECT OPTION
GET

O/E To determine how options are set.

CONTEXT OBJECT OPTION
SET

O/E To set options.

CONTEXT USE O/D To specify which SQLLIB runtime context to use for
subsequent executable SQL statements.

DEALLOCATE DESCRIPTOR S/E To deallocate a descriptor area to free memory.

DECLARE CURSOR S/D To declare a cursor, associating it with a query.

DECLARE DATABASE O/D To declare an identifier for a nondefault database to be
accessed in subsequent embedded SQL statements.

DECLARE STATEMENT S/D To assign a SQL variable name to a SQL statement.

DECLARE TABLE O/D To declare the table structure for semantic checking of
embedded SQL statements by Pro*C/C++.

DECLARE TYPE O/D To declare the type structure for semantic checking of
embedded SQL statements by Pro*C/C++.

DELETE S/E To remove rows from a table or from a view's base table.

DESCRIBE S/E To initialize a descriptor, a structure holding host variable
descriptions.

DESCRIBE DESCRIPTOR S/E Obtain information about the variables in an ANSI SQL
statement.

ENABLE THREADS O/E To initialize a process that supports multiple threads.

EXECUTE...END-EXEC O/E To execute an anonymous PL/SQL block.

EXECUTE S/E To execute a prepared dynamic SQL statement.

EXECUTE DESCRIPTOR S/E To execute an ANSI Method 4 dynamic SQL statement.

EXECUTE IMMEDIATE S/E To prepare and execute a SQL statement with no host
variables.

FETCH S/E To retrieve rows selected by a query.

FETCH DESCRIPTOR S/E To retrieve rows selected using ANSI Method 4 Dynamic
SQL.

Table F–2 (Cont.) Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

Summary of Precompiler Directives and Embedded SQL Statements

Embedded SQL Statements and Directives F-5

FREE O/E To free memory allocated in the object cache, or cursor.

GET DESCRIPTOR S/E To move information from an ANSI SQL descriptor area
into host variables.

INSERT S/E To add rows to a table or to a view's base table.

LOB APPEND O/E To append a LOB to the end of another lOB.

LOB ASSIGN O/E To assign a LOB or BFILE locator to another locator.

LOB CLOSE O/E To close an open LOB or BFILE.

LOB COPY O/E To copy all or part of a LOB value into another LOB.

LOB CREATE TEMPORARY O/E To create a temporary LOB.

LOB DESCRIBE O/E To retrieve attributes from a LOB.

LOB DISABLE BUFFERING O/E To disable LOB buffering.

LOB ENABLE BUFFERING O/E To enable LOB buffering.

LOB ERASE O/E To erase a given amount of LOB data starting from a given
offset.

LOB FILE CLOSE ALL O/E To close all open BFILEs.

LOB FILE SET O/E To set DIRECTORY and FILENAME in a BFILE locator.

LOB FLUSH BUFFER O/E To write the LOB buffers to the database server.

LOB FREE TEMPORARY O/E To free temporary space for the LOB locator.

LOB LOAD O/E To copy all or part of a BFILE into an internal LOB.

LOB OPEN O/E To open a LOB or BFILE to read or read/write access.

LOB READ O/E To read all or part of a LOB or BFILE into a buffer.

LOB TRIM O/E To truncate a lob value.

LOB WRITE O/E To write the contents of a buffer to a LOB.

OBJECT CREATE O/E To create a referenceable object in the cache.

OBJECT DELETE O/E To mark an object as deleted.

OBJECT DEREF O/E To dereference an object.

OBJECT FLUSH O/E To transmit persistent objects to server.

OBJECT GET O/E To convert an object attribute to a C type.

OBJECT RELEASE O/E To "unpin" an object in the cache.

OBJECT SET O/E To update object attributes in the cache.

OBJECT UPDATE O/E To mark an object in the cache as updated.

OPEN S/E To execute the query associated with a cursor.

OPEN DESCRIPTOR S/E To execute the query associated with a cursor (ANSI
Dynamic SQL Method 4).

PREPARE S/E To parse a dynamic SQL statement.

REGISTER CONNECT O/E To enable a call to an external procedure.

ROLLBACK S/E To end the current transaction, discard all changes in the
current transaction, and release all locks (optionally release
resources and disconnect from the database).

Table F–2 (Cont.) Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

About The Statement Descriptions

F-6 Pro*C/C++ Programmer’s Guide

About The Statement Descriptions
The directives and statements appear alphabetically. The description of each contains
the following sections:

How to Read Syntax Diagrams
Syntax diagrams are used to illustrate embedded SQL syntax. They are drawings that
depict valid syntax paths.

Trace each diagram from left to right, in the direction shown by the arrows.

Statements and other keywords appear in UPPER CASE inside rectangles. Type them
exactly as shown in the rectangles. Parameters appear in lower case inside ovals.
Substitute variables for the parameters in statements you write. Operators, delimiters,
and terminators appear in circles. Following the conventions defined in the Preface, a
semicolon terminates statements.

If the syntax diagram has more than one path, you can choose any path to travel. If
you have the choice of more than one keyword, operator, or parameter, your options

SAVEPOINT S/E To identify a point in a transaction to which you can later
roll back.

SELECT S/E To retrieve data from one or more tables, views, or
snapshots, assigning the selected values to host variables.

SET DESCRIPTOR S/E To set information in the descriptor area from host
variables.

TYPE O/D To assign an external datatype to a whole class of host
variables by equivalencing the external datatype to a
user-defined datatype.

UPDATE S/E To change existing values in a table or in a view's base
table.

VAR O/D To override the default datatype and assign a specific
external datatype to a host variable.

WHENEVER S/D To specify handling for error and warning conditions.

Directives and
Statements Description

Purpose Describes the basic uses of the statement.

Prerequisites Lists privileges you must have and steps that you must take
before using the statement. Unless otherwise noted, most
statements also require that the database be open by your
instance.

Syntax Shows the keywords and parameters of the statement.

Keywords and
Parameters

Describes the purpose of each keyword and parameter.

Usage Notes Discusses how and when to use the statement.

Examples Shows example statements of the statement.

Related Topics Lists related statements, clauses, and sections of this manual.

Table F–2 (Cont.) Precompiler Directives and Embedded SQL Statements and Clauses

EXEC SQL Statement Source/Type Purpose

How to Read Syntax Diagrams

Embedded SQL Statements and Directives F-7

appear in a vertical list. In the following example, you can travel down the vertical line
as far as you like, then continue along any horizontal line:

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND ...
EXEC SQL WHENEVER SQLERROR ...
EXEC SQL WHENEVER SQLWARNING ...

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of
alternatives. Single required keywords and parameters appear on the main path, that is,
on the horizontal line you are currently traveling. In the following example, cursor is a
required parameter:

If there is a cursor named emp_cursor, then, according to the diagram, the following
statement is valid:

EXEC SQL CLOSE emp_cursor;

If any of the keywords or parameters in a vertical list appears on the main path, one of
them is required. That is, you must choose one of the keywords or parameters, but not
necessarily the one that appears on the main path. In the following example, you must
choose one of the four actions:

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are
optional. In the following example, AT :db_name and WORK are optional:

If there is a database named oracle2, then, according to the diagram, all of the following
statements are valid:

EXEC SQL ROLLBACK;

EXEC SQL WHENEVER

NOT FOUND

SQLERROR

SQLWARNING

EXEC SQL CLOSE cursor

CONTINUE

GOTO label

STOP

DO routine

EXEC SQL
AT db_name

ROLLBACK
WORK

How to Read Syntax Diagrams

F-8 Pro*C/C++ Programmer’s Guide

EXEC SQL ROLLBACK WORK;
EXEC SQL AT oracle2 ROLLBACK;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the
following example, column_name is inside a loop. So, after choosing one column name,
you can go back repeatedly to choose another, separating the column names by a
comma.

If DEBIT, CREDIT, and BALANCE are column names, then, according to the diagram,
all of the following statements are valid:

EXEC SQL SELECT DEBIT INTO ...
EXEC SQL SELECT CREDIT, BALANCE INTO ...
EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end-to-end. The
following example is a two-part diagram:

According to the diagram, the following statement is valid:

EXEC SQL PREPARE statement_name FROM string_literal;

Oracle Names
The names of Oracle database objects, such as tables and columns, must not exceed 30
characters in length. The first character must be a letter, but the rest can be any
combination of letters, numerals, dollar signs ($), pound signs (#), and underscores (_).

However, if a name is enclosed by quotation marks ("), it can contain any combination
of legal characters, including spaces but excluding quotation marks.

Oracle names are not case-sensitive except when enclosed by quotation marks.

Statement Terminator
In all embedded SQL diagrams, each statement is understood to end with the
statement terminator ";".

EXEC SQL SELECT column_name

'

INTO ...

EXEC SQL PREPARE statement_name

FROM
: host_string

string_literal

ALLOCATE (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-9

ALLOCATE (Executable Embedded SQL Extension)

Purpose
To allocate a cursor variable to be referenced in a PL/SQL block, or to allocate space in
the object cache.

Prerequisites
A cursor variable (see Chapter 4, "Datatypes and Host Variables") of type sql_
cursor must be declared before allocating memory for the cursor variable.

Pointers to a host struct and, optionally, an indicator struct must be declared before
allocating memory in the object cache.

An active connection to a database is required.

Syntax

Keywords and Parameters

Usage Notes
While a cursor is static, a cursor variable is dynamic because it is not tied to a specific
query. You can open a cursor variable for any type-compatible query.

For more information on this statement, see PL/SQL User's Guide and Reference and
Oracle Database SQL Reference.

Example
This partial example illustrates the use of the ALLOCATE statement in a Pro*C/C++
program:

EXEC SQL BEGIN DECLARE SECTION;

Keywords and
Parameters Description

db_name A null-terminated string containing the database connection
name, as established previously in a CONNECT statement. If it
is omitted, or if it is an empty string, the default database
connection is assumed.

host_variable A host variable containing the name of the database connection.

cursor_variable A cursor variable to be allocated.

host_ptr A pointer to a host struct generated by OTT for object types, a
context variable of type sql_context, a ROWID variable of
type pointer to OCIRowid, or a LOB locator variable
corresponding to the type of LOB.

ind_ptr An optional pointer to an indicator struct.

EXEC SQL

AT
db_name

: host_variable
ALLOCATE :

cursor_variable

host_ptr

INDICATOR
: ind_ptr

ALLOCATE DESCRIPTOR (Executable Embedded SQL)

F-10 Pro*C/C++ Programmer’s Guide

 SQL_CURSOR emp_cv;
 struct{ ... } emp_rec;
EXEC SQL END DECLARE SECTION;
EXEC SQL ALLOCATE :emp_cv;
EXEC SQL EXECUTE
 BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 END;
END-EXEC;
for (;;)
 {
 EXEC SQL FETCH :emp_cv INTO :emp_rec;
 ...
 }

Related Topics
CACHE FREE ALL (Executable Embedded SQL Extension) on page F-11.

CLOSE (Executable Embedded SQL) on page F-13.

EXECUTE (Executable Embedded SQL) on page F-38.

FETCH (Executable Embedded SQL) on page F-42.

FETCH DESCRIPTOR (Executable Embedded SQL) on page F-44.

FREE (Executable Embedded SQL Extension) on page F-46.

ALLOCATE DESCRIPTOR (Executable Embedded SQL)

Purpose
 An ANSI dynamic SQL statement that allocates a descriptor.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

array_size

integer

Host variable containing number of rows to be processed.

Number of rows to be processed

descriptor_name

descriptor name

Host variable containing the name of the ANSI descriptor.

Name of the ANSI descriptor.

EXEC SQL

FOR
integer

: array_size
ALLOCATE DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

' descriptor name '

WITH MAX integer

CACHE FREE ALL (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-11

Usage Notes
Use DYNAMIC=ANSI precompiler option. For information on using this statement,
see "ALLOCATE DESCRIPTOR" on page 14-10.

Example
EXEC SQL FOR :batch ALLOCATE DESCRIPTOR GLOBAL :binddes WITH MAX 25 ;

Related Topics
DESCRIBE DESCRIPTOR (Executable Embedded SQL) on page F-35.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page F-24

GET DESCRIPTOR (Executable Embedded SQL) on page F-47.

SET DESCRIPTOR (Executable Embedded SQL) on page F-79.

CACHE FREE ALL (Executable Embedded SQL Extension)

Purpose
To free all memory in the object cache.

Prerequisites
An active database connection must exist.

Syntax

Keywords and Parameters

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

WITH MAX integer Maximum number of host variables. The default is 100.

Keywords and
Parameters Description

db_name A null-terminated string containing the database connection
name, as established previously in a CONNECT statement. If it
is omitted, or if it is an empty string, the default database
connection is assumed.

host_variable A host variable containing the name of the database connection.

Keywords and
Parameters Description

EXEC SQL

AT
db_name

: host_variable OBJECT
CACHE FREE ALL

cache eps

CALL (Executable Embedded SQL)

F-12 Pro*C/C++ Programmer’s Guide

Usage Notes
When the connection count drops to zero, SQLLIB automatically frees all object cache
memory. For more information, see "CACHE FREE ALL" on page 17-5.

Example
EXEC SQL AT mydb CACHE FREE ALL ;

Related Topics
ALLOCATE (Executable Embedded SQL Extension) on page F-9.

FREE (Executable Embedded SQL Extension) on page F-46.

CALL (Executable Embedded SQL)

Purpose
To call a stored procedure.

Prerequisites
An active database connection must exist.

Syntax

Keywords and Parameters

Usage Notes
For more about this statement, see "Calling a Stored PL/SQL or Java Subprogram" on
page 7-17.

Keywords and
Parameters Description

schema Is the schema containing the procedure. If you omit schema,
Oracle assumes the procedure is in your own schema.

pkg The package where the procedure is stored.

st_proc The stored procedure to be called.

db_link The complete or partial name of a database link to a remote
database where the procedure is located. For information on
referring to database links, see the Oracle Database SQL Reference.

expr The list of expressions that are the parameters of the procedure.

ret_var The host variable that receives the returned value of a function.

ret_ind The indicator variable for ret_var.

EXEC SQL CALL
schema . pkg .

st_proc
@ db_link

(expr

,

)
INTO : ret_var

INDICATOR
: ret_ind

CLOSE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-13

For a complete discussion of stored procedures, see Oracle Database Application
Developer's Guide - Fundamentals, "External Routines" chapter.

Example
int emp_no;
char emp_name[10];
float salary;
char dept_name[20];
...
emp_no = 1325;
EXEC SQL CALL get_sal(:emp_no, :emp_name, :salary) INTO :dept_name ;
/* Print emp_name, salary, dept_name */
...

Related Topics
None

CLOSE (Executable Embedded SQL)

Purpose
To disable a cursor, freeing the resources acquired by opening the cursor, and releasing
parse locks.

Prerequisites
 The cursor or cursor variable be open if MODE=ANSI.

Syntax

Keywords and Parameters

Usage Notes
Rows cannot be fetched from a closed cursor. A cursor need not be closed to be
reopened. The HOLD_CURSOR and RELEASE_CURSOR precompiler options alter
the effect of the CLOSE statement. For information on these options, see Chapter 10,
"Precompiler Options".

Example
This example illustrates the use of the CLOSE statement:

EXEC SQL CLOSE emp_cursor;

Keywords and
Parameters Description

cursor A cursor to be closed.

cursor_variable A cursor variable to be closed.

EXEC SQL CLOSE
cursor

: cursor_variable

COLLECTION APPEND (Executable Embedded SQL Extension)

F-14 Pro*C/C++ Programmer’s Guide

Related Topics
PREPARE (Executable Embedded SQL) on page F-70.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

OPEN (Executable Embedded SQL) on page F-67.

COLLECTION APPEND (Executable Embedded SQL Extension)

Purpose
To append elements of one collection to the end of another collection.

Prerequisites
You cannot append to a NULL collection, or append beyond the upper bound of a
collection.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COLLECTION
APPEND" on page 18-9.

Related Topics
See the other COLLECTION statements.

COLLECTION DESCRIBE (Executable Embedded SQL Extension)

Purpose
To obtain information about a collection.

Prerequisites
Use the ALLOCATE and OBJECT GET statements to allocate a descriptor and to store
collection attributes in the descriptor.

EXEC_SQL

AT
db_name

: host_variable
FOR

integer

: num

COLLECTION APPEND : src

INDICATOR
: src_ind

TO : collect

INDICATOR
: collect_ind

COLLECTION GET (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-15

Syntax

where attrib is:

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COLLECTION
DESCRIBE" on page 18-10.

Related Topics
See the other COLLECTION statements.

COLLECTION GET (Executable Embedded SQL Extension)

Purpose
To retrieve the elements of a collection.

EXEC SQL

AT
db_name

: host_variable
COLLECTION DESCRIBE

: collect

INDICATOR
: collect_ind

GET attrib

,

INTO : hv

INDICATOR
: hv_ind

,

DATA_SIZE

TYPECODE

DATA_TYPE

NUM_ELEMENTS

PRECISION

SCALE

TYPE_NAME

TYPE_SCHEMA

SIZE

TABLE_SIZE

COLLECTION RESET (Executable Embedded SQL Extension)

F-16 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "Collection
Statements" on page 18-6.

Related Topics
See the other COLLECTION statements.

COLLECTION RESET (Executable Embedded SQL Extension)

Purpose
To reset the collection slice endpoints back to the beginning of the collection.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COLLECTION
RESET" on page 18-8.

Related Topics
See the other COLLECTION statements.

COLLECTION SET (Executable Embedded SQL Extension)

Purpose
To update element values in the current slice of a collection.

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: num
COLLECTION

: collect

INDICATOR
: collect_ind

INTO : hv

INDICATOR

EXEC SQL

AT
db_name

: host_variable
COLLECTION RESET

: collect

INDICATOR
: collect_ind

COMMIT (Executable Embedded SQL)

Embedded SQL Statements and Directives F-17

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COLLECTION
SET" on page 18-7.

Related Topics
See the other COLLECTION statements.

COLLECTION TRIM (Executable Embedded SQL Extension)

Purpose
To remove elements from the end of collection.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COLLECTION
TRIM" on page 18-10.

Related Topics
See the other COLLECTION statements.

COMMIT (Executable Embedded SQL)

Purpose
To end your current transaction, making permanent all its changes to the database and
optionally freeing all resources and disconnecting.

Prerequisites
To commit your current transaction, no privileges are necessary.

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: num
COLLECTION

: collect

INDICATOR
: collect_ind

TO : hv

INDICATOR

EXEC SQL

AT
db_name

: host_variable
COLLECTION TRIM : num

FROM : collect

INDICATOR
: collect_ind

COMMIT (Executable Embedded SQL)

F-18 Pro*C/C++ Programmer’s Guide

To manually commit a distributed in-doubt transaction that you originally committed,
you must have FORCE TRANSACTION system privilege. To manually commit a
distributed in-doubt transaction that was originally committed by another user, you
must have FORCE ANY TRANSACTION system privilege.

Syntax

Keywords and Parameters

Usage Notes
Always explicitly commit or rollback the last transaction in your program by using the
COMMIT or ROLLBACK statement and the RELEASE option. Oracle automatically
rolls back changes if the program terminates abnormally.

The COMMIT statement has no effect on host variables or on the flow of control in the
program. For more information on this statement, see Chapter 3, "Database Concepts".

Keywords and
Parameters Description

AT Identifies the database to which the COMMIT statement is
issued. The database can be identified by either:

db_name: is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: is a host variable whose value is a db_name. If you
omit this clause, Oracle issues the statement to your default
database.

WORK Is supported only for compliance with standard SQL. The
statements COMMIT and COMMIT WORK are equivalent.

COMMENT Specifies a Comment to be associated with the current
transaction. The 'text' is a quoted literal of up to 50 characters
that Oracle stores in the data dictionary view DBA_2PC_
PENDING along with the transaction ID if the transaction
becomes in-doubt.

RELEASE Frees all resources and disconnects the application from the
server.

FORCE Manually commits an in-doubt distributed transaction. The
transaction is identified by the 'text' containing its local or global
transaction ID. To find the IDs of such transactions, query the
data dictionary view DBA_2PC_PENDING. You can also use the
optional integer to explicitly assign the transaction a system
change number (SCN). If you omit the integer, the transaction is
committed using the current SCN.

EXEC SQL

AT
db_name

: host_variable
COMMIT

WORK

COMMENT ' text ' RELEASE

FORCE ' text '
, integer

CONNECT (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-19

Example
This example illustrates the use of the embedded SQL COMMIT statement:

EXEC SQL AT sales_db COMMIT RELEASE;

Related Topics
ROLLBACK (Executable Embedded SQL) on page F-72.

SAVEPOINT (Executable Embedded SQL) on page F-75.

CONNECT (Executable Embedded SQL Extension)

Purpose
To log on to a database.

Prerequisites
You must have CREATE SESSION system privilege in the specified database.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

user password Specifies your username and password separately.

user_password A single host variable containing the username and password
separated by a slash (/).

To allow Oracle to verify your connection through your
operating system, specify "/" as the :user_password value.

AT Identifies the database to which the connection is made. The
database can be identified by either:

db_name: is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: is a host variable whose value is a db_name. If you
omit this clause, Oracle issues the statement to your default
database.

EXEC SQL CONNECT :
user IDENTIFIED BY : password

user_password

AT
db_name

: host_variable USING : dbstring

ALTER AUTHORIZATION : new_password

IN
SYSDBA

SYSOPER
MODE

CONTEXT ALLOCATE (Executable Embedded SQL Extension)

F-20 Pro*C/C++ Programmer’s Guide

Usage Notes
A program can have multiple connections, but can only connect once to your default
database. For more information on this statement, see "Embedded OCI Release 7 Calls"
on page 5-38.

Example
The following example illustrate the use of CONNECT:

EXEC SQL CONNECT :username
 IDENTIFIED BY :password ;

You can also use this statement in which the value of userid is the value of username
and the value of password separated by a "/", such as 'SCOTT/TIGER':

EXEC SQL CONNECT :userid ;

Related Topics
COMMIT (Executable Embedded SQL) on page F-17.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

ROLLBACK (Executable Embedded SQL) on page F-72.

CONTEXT ALLOCATE (Executable Embedded SQL Extension)

Purpose
To initialize a SQLLIB runtime context that is referenced in an EXEC SQL CONTEXT
USE statement.

Prerequisites
The runtime context must be declared of type sql_context.

Syntax

USING Uses the Oracle Net database specification string used to connect
to a nondefault database. If you omit this clause, you are
connected to your default database.

ALTER
AUTHORIZATION

Change password to the following string.

new_password The new password.

IN SYSDBA MODE

IN SYSOPER MODE

Connect with SYSDBA or SYSOPER system privileges. Not
allowed when ALTER AUTHORIZATION is used, or
precompiler option AUTO_CONNECT is set to YES.

Keywords and
Parameters Description

EXEC SQL CONTEXT ALLOCATE : context

CONTEXT FREE (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-21

Keyword and Parameters

Usage Notes
In a multithreaded application, execute this function once for each runtime context.

For more information on this statement, see "SQLLIB Extensions for OCI Release 8
Interoperability" on page 5-34.

Example
This example illustrates the use of a CONTEXT ALLOCATE statement in a Pro*C/C++
program:

EXEC SQL CONTEXT ALLOCATE :ctx1;

Related Topics
CONTEXT FREE (Executable Embedded SQL Extension) on page F-21.

CONTEXT USE (Oracle Embedded SQL Directive) on page F-22.

EENABLE THREADS (Executable Embedded SQL Extension) on page F-36.

CONTEXT FREE (Executable Embedded SQL Extension)

Purpose
To free all memory associated with a runtime context and place a null pointer in the
host program variable.

Prerequisites
The CONTEXT ALLOCATE statement must be used to allocate memory for the
specified runtime context before the CONTEXT FREE statement can free the memory
allocated for it.

Syntax

Keyword and Parameter

Usage Notes
For more information on this statement, see "SQLLIB Extensions for OCI Release 8
Interoperability" on page 5-34.

Keywords and
Parameters Description

context Is the SQLLIB runtime context for which memory is to be
allocated.

Keyword and Parameter Description

:context The allocated runtime context for which the memory is to be
deallocated.

EXEC SQL CONTEXT FREE : context

CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)

F-22 Pro*C/C++ Programmer’s Guide

Example
This example illustrates the use of a CONTEXT FREE statement in a Pro*C/C++
program:

EXEC SQL CONTEXT FREE :ctx1;

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page F-20.

CONTEXT USE (Oracle Embedded SQL Directive) on page F-22.

ENABLE THREADS (Executable Embedded SQL Extension) on page F-36.

CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)

Purpose
To determine the values of options set by CONTEXT OBJECT OPTION SET for the
context in use.

Prerequisites
Precompiler option OBJECTS must be set to YES.

Syntax

Keywords and Parameters

Usage Notes
See "CONTEXT OBJECT OPTION SET" on page 17-15.

Example
char EuroFormat[50];
...
EXEC SQL CONTEXT OBJECT OPTION GET DATEFORMAT INTO :EuroFormat ;
printf("Date format is %s\n", EuroFormat);

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page F-9.

CONTEXT FREE (Executable Embedded SQL Extension) on page F-21.

CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext) on page F-23.

Keywords and
Parameters Description

option Option values are described in Table 17–1, " Valid Choices for
CONTEXT OBJECT OPTION Values".

host_variable Output variable of type STRING, VARCHAR, or CHARZ, in the
same order as the option list.

EXEC SQL CONTEXT OBJECT OPTION GET option

,

INTO : host_variable

,

CONTEXT USE (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-23

CONTEXT USE (Oracle Embedded SQL Directive) on page F-22.

CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext)

Purpose
To set options to specified values of Date attributes: DATEFORMAT, DATELANG for
the context in use.

Prerequisites
Precompiler option OBJECTS must be set to YES.

Syntax

Keywords and Parameters

Usage Notes
See "CONTEXT OBJECT OPTION GET" on page 17-15.

Example
char *new_format = "DD-MM-YYY";
char *new_lang = "French";
...
EXEC SQL CONTEXT OBJECT OPTION SET DATEFORMAT, DATELANG TO :new_format, :new_lang;

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page F-9.

CONTEXT FREE (Executable Embedded SQL Extension) on page F-21.

CONTEXT USE (Oracle Embedded SQL Directive) on page F-22.

CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext) on page F-22

CONTEXT USE (Oracle Embedded SQL Directive)

Purpose
To instruct the precompiler to use the specified SQLLIB runtime context on subsequent
executable SQL statements.

Keywords and
Parameters Description

option Option values are described in Table 17–1, " Valid Choices for
CONTEXT OBJECT OPTION Values".

host_variable Input variable of type STRING, VARCHAR, or CHARZ. In the
same order as the option list.

EXEC SQL CONTEXT OBJECT OPTION SET option

,

TO : host_variable

,

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

F-24 Pro*C/C++ Programmer’s Guide

Prerequisites
The runtime context specified by the CONTEXT USE directive must be previously
declared.

Syntax

Keywords and Parameters

Usage Notes
This statement has no effect on declarative statements such as EXEC SQL INCLUDE or
EXEC ORACLE OPTION. It works similarly to the EXEC SQL WHENEVER directive
in that it affects all executable SQL statements which positionally follow it in a given
source file without regard to standard C scope rules.

For more information on this statement, see "SQLLIB Extensions for OCI Release 8
Interoperability" on page 5-34.

Example
This example illustrates the use of a CONTEXT USE directive in a Pro*C/C++
embedded SQL program:

EXEC SQL CONTEXT USE :ctx1;

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page F-20.

CONTEXT FREE (Executable Embedded SQL Extension) on page F-21.

ENABLE THREADS (Executable Embedded SQL Extension) on page F-36.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

Purpose
An ANSI dynamic SQL statement that deallocates a descriptor area to free memory.

Keywords and
Parameters Description

context The allocated runtime context to use for subsequent executable
SQL statements that follow it. For example, after specifying in
your source code which context to use (multiple contexts can be
allocated), you can connect to the Oracle Server and perform
database operations within the scope of that context. DEFAULT
indicates that the global context that you worked with is to be
used.

 DEFAULT Indicates that the global context is to be used.

EXEC SQL CONTEXT USE
: context

DEFAULT

DECLARE CURSOR (Embedded SQL Directive)

Embedded SQL Statements and Directives F-25

Prerequisites
The descriptor specified by the DEALLOCATE DESCRIPTOR statement must be
previously allocated using the ALLOCATE DESCRIPTOR statement.

Syntax

Keywords and Parameters

Usage Notes
Use DYNAMIC=ANSI precompiler option.

For more information on this statement, see "DEALLOCATE DESCRIPTOR" on
page 14-10.

Example
EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' ;

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page F-10.

DESCRIBE (Executable Embedded SQL Extension) on page F-34.

GET DESCRIPTOR (Executable Embedded SQL) on page F-47.

PREPARE (Executable Embedded SQL) on page F-70.

SET DESCRIPTOR (Executable Embedded SQL) on page F-79.

DECLARE CURSOR (Embedded SQL Directive)

Purpose
To declare a cursor, giving it a name and associating it with a SQL statement or a
PL/SQL block.

Prerequisites
If you associate the cursor with an identifier for a SQL statement or PL/SQL block,
you must have declared this identifier in a previous DECLARE STATEMENT
statement.

Keywords and
Parameters Description

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

descriptor_name

'descriptor name'

Host variable containing the name of the allocated ANSI
descriptor.

Name of the allocated ANSI descriptor.

EXEC SQL DEALLOCATE DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

' descriptor name '

DECLARE CURSOR (Embedded SQL Directive)

F-26 Pro*C/C++ Programmer’s Guide

Syntax

Keywords and Parameters

Usage Notes
You must declare a cursor before referencing it in other embedded SQL statements.
The scope of a cursor declaration is global within its precompilation unit and the name
of each cursor must be unique in its scope. You cannot declare two cursors with the
same name in a single precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or DELETE
statement using the CURRENT OF syntax if the cursor has been opened with an
OPEN statement and positioned on a row with a FETCH statement. For more
information on this statement, see "Cursor Usage in Embedded PL/SQL" on page 7-14.

Example
This example illustrates the use of a DECLARE CURSOR statement:

EXEC SQL DECLARE emp_cursor CURSOR
 FOR SELECT ename, empno, job, sal
 FROM emp
 WHERE deptno = :deptno
 FOR UPDATE OF sal;

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

DECLARE STATEMENT (Embedded SQL Directive) on page F-28.

Keywords and
Parameters Description

AT Identifies the database on which the cursor statement is
declared. The database can be identified by either:

db_name: is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: is a host variable whose value is a db_name. If you
omit this clause, Oracle issues the statement to your default
database.

cursor Is the name of the cursor to be declared.

SELECT statement Is a SELECT statement to be associated with the cursor. The
following statement cannot contain an INTO clause.

statement_name Identifies a SQL statement or PL/SQL block to be associated
with the cursor. The statement_name or block_name must be
previously declared in a DECLARE STATEMENT statement.

EXEC SQL

AT
db_name

: host_variable

DECLARE cursor CURSOR FOR
SELECT command

statement_name

DECLARE DATABASE (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-27

DELETE (Executable Embedded SQL) on page F-31.

FETCH (Executable Embedded SQL) on page F-42.

OPEN DESCRIPTOR (Executable Embedded SQL) on page F-67.

PREPARE (Executable Embedded SQL) on page F-70.

SELECT (Executable Embedded SQL) on page F-76.

UPDATE (Executable Embedded SQL) on page F-82.

DECLARE DATABASE (Oracle Embedded SQL Directive)

Purpose
To declare an identifier for a nondefault database to be accessed in subsequent
embedded SQL statements.

Prerequisites
You must have access to a username on the nondefaultnondefault database.

Syntax

Keywords and Parameters

Usage Notes
You declare a db_name for a nondefault database so that other embedded SQL
statements can refer to that database using the AT clause. Before issuing a CONNECT
statement with an AT clause, you must declare a db_name for the nondefault database
with a DECLARE DATABASE statement.

For more information on this statement, see "Single Explicit Connection" on page 3-6.

Example
This example illustrates the use of a DECLARE DATABASE directive:

EXEC SQL DECLARE oracle3 DATABASE ;

Related Topics
COMMIT (Executable Embedded SQL) on page F-17.

CONNECT (Executable Embedded SQL Extension) on page F-19.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

DECLARE STATEMENT (Embedded SQL Directive) on page F-28.

DELETE (Executable Embedded SQL) on page F-31.

Keyword and Parameter Description

db_name Is the identifier established for the nondefault database.

EXEC SQL DECLARE db_name DATABASE

DECLARE STATEMENT (Embedded SQL Directive)

F-28 Pro*C/C++ Programmer’s Guide

EXECUTE ... END-EXEC (Executable Embedded SQL Extension) on page F-38.

EXECUTE IMMEDIATE (Executable Embedded SQL) on page F-41.

INSERT (Executable Embedded SQL) on page F-49.

SELECT (Executable Embedded SQL) on page F-76.

UPDATE (Executable Embedded SQL) on page F-82.

DECLARE STATEMENT (Embedded SQL Directive)

Purpose
To declare an identifier for a SQL statement or PL/SQL block to be used in other
embedded SQL statements.

Prerequisites
None.

Syntax

Keywords and Parameters

Usage Notes
You must declare an identifier for a SQL statement or PL/SQL block with a DECLARE
STATEMENT statement only if a DECLARE CURSOR statement referencing the
identifier appears physically (not logically) in the embedded SQL program before the
PREPARE statement that parses the statement or block and associates it with its
identifier.

The scope of a statement declaration is global within its precompilation unit, like a
cursor declaration. For more information on this statement, see Chapter 4, "Datatypes
and Host Variables" and Chapter 13, "Oracle Dynamic SQL".

Example I
This example illustrates the use of the DECLARE STATEMENT statement:

Keywords and
Parameters Description

AT Identifies the database on which the SQL statement or PL/SQL
block is declared. The database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a db_name. If you
omit this clause, Oracle declares the SQL statement or PL/SQL
block to your default database.

statement_name Is the declared identifier for the statement.

EXEC SQL

AT
db_name

: host_variable
DECLARE statement_name STATEMENT

DECLARE TABLE (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-29

EXEC SQL AT remote_db DECLARE my_statement STATEMENT;
EXEC SQL PREPARE my_statement FROM :my_string;
EXEC SQL EXECUTE my_statement;

Example II
In this example from a Pro*C/C++ embedded SQL program, the DECLARE
STATEMENT statement is required because the DECLARE CURSOR statement
precedes the PREPARE statement:

EXEC SQL DECLARE my_statement STATEMENT;
EXEC SQL DECLARE emp_cursor CURSOR FOR my_statement;
EXEC SQL PREPARE my_statement FROM :my_string;
...

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

FETCH (Executable Embedded SQL) on page F-42.

OPEN DESCRIPTOR (Executable Embedded SQL) on page F-67.

PREPARE (Executable Embedded SQL) on page F-70.

DECLARE TABLE (Oracle Embedded SQL Directive)

Purpose
To define the structure of a table or view, including each column's datatype, default
value, and NULL or NOT NULL specification for semantic checking by the Oracle
Precompilers.

Prerequisites
None.

Syntax
For relational tables, the syntax is:

For object tables, the syntax is:.

EXEC SQL DECLARE table TABLE

(column datatype
NOT NULL

,

)

EXEC SQL DECLARE table TABLE OF obj_type

DECLARE TYPE (Oracle Embedded SQL Directive)

F-30 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Usage Notes
For information on using this statement, see "Using DECLARE TABLE" on page D-3.

Examples
The following statement declares the PARTS table with the PARTNO, BIN, and QTY
columns:

EXEC SQL DECLARE parts TABLE
 (partno NUMBER NOT NULL,
 bin NUMBER,
 qty NUMBER);

Use of an object type:

EXEC SQL DECLARE person TYPE AS OBJECT (name VARCHAR2(20), age INT);
EXEC SQL DECLARE odjtab1 TABLE OF person;

Related Topics
DECLARE TYPE (Oracle Embedded SQL Directive) on page F-30.

DECLARE TYPE (Oracle Embedded SQL Directive)

Purpose
 To define the attributes of a type for a semantics check by the precompiler.

Prerequisites
None.

Keywords and
Parameters Description

table Is the name of the declared table.

column Is a column of the table.

datatype Is the datatype of a column. For information on datatypes, see
"Oracle Datatypes" on page 4-1.

If the datatype is a user-defined object, a size may be entered in
parentheses. The size cannot be a macro or a complex C
expression. The size can be omitted. See examples.

NOT NULL Specifies that a column cannot contain NULLs.

obj_type Is an object type.

DELETE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-31

Syntax

Keywords and Parameters

Usage Notes
For information on using this statement, see "Using DECLARE TYPE" on page D-4.

Example
EXEC SQL DECLARE project_type TYPE AS OBJECT(
 pno CHAR(5),
 pname CHAR(20),
 budget NUMBER);
EXEC SQL DECLARE project_array TYPE as VARRAY(20) OF project_type ;
EXEC SQL DECLARE employees TYPE AS TABLE OF emp_objects ;

Related Topics
DECLARE TABLE (Oracle Embedded SQL Directive) on page F-29.

DELETE (Executable Embedded SQL)

Purpose
To remove rows from a table or from a view's base table.

Prerequisites
For you to delete rows from a table, the table must be in your own schema or you must
have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema
containing the view must have DELETE privilege on the base table. Also, if the view is
in a schema other than your own, you must be granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also provides the ability to delete rows
from any table or any view's base table.

Keywords and
Parameters Description

column Name of column.

datatype The datatype of the column

size Number of elements in the VARRAY.

element_type Type of element in the VARRAY. It can be an object.

object_type A previously declared object type.

EXEC SQL DECLARE type TYPE AS

OBJECT (column datatype

,

)

VARRAY (size) OF element_type

TABLE OF object_type

DELETE (Executable Embedded SQL)

F-32 Pro*C/C++ Programmer’s Guide

Syntax

Where the DML returning clause is:

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database to which the DELETE statement is issued.
The database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a previously
declared db_name. If you omit this clause, the DELETE statement
is issued to your default database.

FOR :host_integer Limits the number of times the statement is executed if the
WHERE clause contains array host variables. If you omit this
clause, Oracle executes the statement once for each component
of the smallest array.

subquery Is a subquery that returns new values that are assigned to the
corresponding columns. For the syntax of a subquery, see
"SELECT" in Oracle Database SQL Reference.

schema Is the schema containing the table or view. If you omit schema,
Oracle assumes the table or view is in your own schema.

table The name of a table from which the rows are to be deleted.

view The name of a view. Oracle deletes rows from the view's base
table.

EXEC SQL

AT
db_name

: host_variable
FOR

: host_integer

integer

DELETE
FROM

alias
WHERE

condition

CURRENT OF cursor DML.RETURNING.CLAUSE

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

DELETE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-33

Usage Notes
The host variables in the WHERE clause must be either all scalars or all arrays. If they
are scalars, Oracle executes the DELETE statement only once. If they are arrays, Oracle
executes the statement once for each set of array components. Each execution may
delete zero, one, or multiple rows.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle executes the statement is determined by the smaller of the
following values:

■ The size of the smallest array

■ The value of the :host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE returns a
NOT_FOUND condition.

The cumulative number of rows deleted is returned through the SQLCA. If the
WHERE clause contains array host variables, this value reflects the total number of
rows deleted for all components of the array processed by the DELETE statement.

If no rows satisfy the condition, Oracle returns an error through the SQLCODE of the
SQLCA. If you omit the WHERE clause, Oracle raises a warning flag in the fifth
component of SQLWARN in the SQLCA. For more information on this statement and
the SQLCA, see Chapter 9, "Handling Runtime Errors".

You can use Comments in a DELETE statement to pass instructions, or hints, to the
optimizer. The optimizer uses hints to choose an execution plan for the statement. For
more information on hints, see Oracle Database Performance Tuning Guide.

Example
This example illustrates the use of the DELETE statement within a Pro*C/C++
embedded SQL program:

EXEC SQL DELETE FROM emp
 WHERE deptno = :deptno
 AND job = :job;

EXEC SQL DECLARE emp_cursor CURSOR
 FOR SELECT empno, comm
 FROM emp;
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH c1

FOR :host_integer Limits the number of times the statement is executed if the
WHERE clause contains array host variables. If you omit this
clause, Oracle executes the statement once for each component
of the smallest array.

subquery Is a subquery that returns new values that are assigned to the
corresponding columns. For the syntax of a subquery, see
"SELECT" in Oracle Database SQL Reference.

schema Is the schema containing the table or view. If you omit schema,
Oracle assumes the table or view is in your own schema.

table The name of a table from which the rows are to be deleted.

view The name of a view. Oracle deletes rows from the view's base
table.

Keywords and
Parameters Description

DESCRIBE (Executable Embedded SQL Extension)

F-34 Pro*C/C++ Programmer’s Guide

 INTO :emp_number, :commission;
EXEC SQL DELETE FROM emp
 WHERE CURRENT OF emp_cursor;

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

DECLARE STATEMENT (Embedded SQL Directive) on page F-28.

DESCRIBE (Executable Embedded SQL Extension)

Purpose
To populate an Oracle descriptor with information about a dynamic SQL statement or
PL/SQL block.

Prerequisites
You must have prepared the SQL statement or PL/SQL block in a previous embedded
SQL PREPARE statement.

Syntax

Keywords and Parameters

Usage Notes
You must issue a DESCRIBE statement before manipulating the bind or select
descriptor within an embedded SQL program.

You cannot describe both input variables and output variables into the same
descriptor.

The number of variables found by a DESCRIBE statement is the total number of
place-holders in the prepare SQL statement or PL/SQL block, rather than the total

Keywords and
Parameters Description

BIND VARIABLES FOR Initializes the descriptor to hold information about the input
variables for the SQL statement or PL/SQL block.

SELECT LIST FOR Initializes the descriptor to hold information about the select list
of a SELECT statement.

The default is SELECT LIST FOR.

statement_name Identifies a SQL statement or PL/SQL block previously
prepared with a PREPARE statement.

descriptor Is the name of the descriptor to be populated.

EXEC SQL DESCRIBE

BIND VARIABLES FOR

SELECT LIST FOR

statement_name INTO descriptor

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Directives F-35

number of uniquely named place-holders. For more information on this statement, see
Chapter 13, "Oracle Dynamic SQL".

Example
This example illustrates the use of the DESCRIBE statement in a Pro*C/C++
embedded SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;
EXEC SQL DECLARE emp_cursor
 FOR SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = :dept_number;
EXEC SQL DESCRIBE BIND VARIABLES FOR my_statement
 INTO bind_descriptor;
EXEC SQL OPEN emp_cursor
 USING bind_descriptor;
EXEC SQL DESCRIBE SELECT LIST FOR my_statement
 INTO select_descriptor;
EXEC SQL FETCH emp_cursor
 INTO select_descriptor;

Related Topics
PREPARE (Executable Embedded SQL) on page F-70.

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

Purpose
An ANSI dynamic SQL statement used to obtain information about a SQL statement,
and to store it in a descriptor.

Prerequisites
You must have prepared the SQL statement in a previous embedded SQL PREPARE
statement.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

statement_id The name of the previously prepared SQL statement or PL/SQL
block. OUTPUT is the default.

EXEC SQL DESCRIBE

INPUT

OUTPUT
statement_id

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

ENABLE THREADS (Executable Embedded SQL Extension)

F-36 Pro*C/C++ Programmer’s Guide

Usage Notes
Use DYNAMIC=ANSI precompiler option.

Only COUNT and NAME are implemented for the INPUT descriptor.

The number of variables found by a DESCRIBE statement is the total number of
place-holders in the prepare SQL statement or PL/SQL block, rather than the total
number of uniquely named place-holders. For more information on this statement, see
"DESCRIBE INPUT" on page 14-17, and "DESCRIBE OUTPUT" on page 14-17.

Example
EXEC SQL PREPARE s FROM :my_stament;
EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' ;

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page F-10.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page F-24.

GET DESCRIPTOR (Executable Embedded SQL) on page F-47.

PREPARE (Executable Embedded SQL) on page F-70.

SET DESCRIPTOR (Executable Embedded SQL) on page F-79.

ENABLE THREADS (Executable Embedded SQL Extension)

Purpose
To initialize a process that supports multiple threads.

Prerequisites
You must be developing a precompiler application for and compiling it on a platform
that supports multithreaded applications, and THREADS=YES must be specified on
the command line.

Syntax

desc_name Host variable containing the name of the descriptor that will
hold information about the SQL statement.

'descriptor name' The name of the descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

Note: When using XA with the Pro*C/C++ Precompiler, you must
use multithreaded processing provided by XA. Use of
multithreaded processing provided by Pro*C/C++ using the
statement EXEC SQL ENABLE THREADS will result in an error.

Keywords and
Parameters Description

EXEC SQL ENABLE THREADS

EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-37

Keywords and Parameters
None.

Usage Notes
The ENABLE THREADS statement must be executed before any other executable SQL
statement and before spawning any thread. This statement does not require a
host-variable specification.

For more information on this statement, see "SQLLIB Extensions for OCI Release 8
Interoperability" on page 5-34.

Example
This example illustrates the use of the ENABLE THREADS statement in a Pro*C/C++
program:

EXEC SQL ENABLE THREADS;

Related Topics
CONTEXT ALLOCATE (Executable Embedded SQL Extension) on page F-20.

CONTEXT FREE (Executable Embedded SQL Extension) on page F-21.

CONTEXT USE (Oracle Embedded SQL Directive) on page F-22.

EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Purpose
To embed an anonymous PL/SQL block into a Pro*C/C++ program.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database on which the PL/SQL block is executed.
The database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a previously
declared db_name. If you omit this clause, the PL/SQL block is
executed on your default database

EC SQL

AT
db_name

: host_variable
EXECUTE pl/sql_block END-EXEC

EXECUTE (Executable Embedded SQL)

F-38 Pro*C/C++ Programmer’s Guide

Usage Notes
Since the Pro*C/C++ treats an embedded PL/SQL block like a single embedded SQL
statement, you can embed a PL/SQL block anywhere in a program that you can
embed a SQL statement. For more information on embedding PL/SQL blocks in
Oracle Precompiler programs, see Chapter 7, "Embedded PL/SQL".

Example
Placing this EXECUTE statement in a Pro*C/C++ program embeds a PL/SQL block in
the program:

EXEC SQL EXECUTE
 BEGIN
 SELECT ename, job, sal
 INTO :emp_name:ind_name, :job_title, :salary
 FROM emp
 WHERE empno = :emp_number;
 IF :emp_name:ind_name IS NULL
 THEN RAISE name_missing;
 END IF;
 END;
END-EXEC;

Related Topics
EXECUTE IMMEDIATE (Executable Embedded SQL) on page F-41.

EXECUTE (Executable Embedded SQL)

Purpose
In Oracle dynamic SQL, to execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block that has been previously prepared with an embedded SQL PREPARE
statement. For ANSI Dynamic SQL Method 4 see "EXECUTE DESCRIPTOR
(Executable Embedded SQL)" on page F-40.

Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL
PREPARE statement.

pl/sql_block For information on PL/SQL, including how to write PL/SQL
blocks, see the PL/SQL User's Guide and Reference.

END-EXEC This keyword must appear after the embedded PL/SQL block,
regardless of which programming language your Oracle
Precompiler program uses. The keyword END-EXEC must be
followed by the C/C++ statement terminator, ";".

Keywords and
Parameters Description

EXECUTE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-39

Syntax

Keywords and Parameters

Usage Notes
For more information on this statement, see Chapter 13, "Oracle Dynamic SQL" for the
Oracle version.

Example
This example illustrates the use of the EXECUTE statement in a Pro*C/C++ program:

EXEC SQL PREPARE my_statement
 FROM :my_string;
EXEC SQL EXECUTE my_statement
 USING :my_var;

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

Keywords and
Parameters Description

FOR :array_size Host variable containing the number of rows to be processed.

Number of rows to be processed.

FOR integer Limits the number of times the statement is executed when the
USING clause contains array host variables If you omit this
clause, Oracle executes the statement once for each component
of the smallest array.

statement_id A precompiler identifier associated with the SQL statement or
PL/SQL block to be executed. Use the embedded SQL PREPARE
statement to associate the precompiler identifier with the
statement or PL/SQL block.

USING DESCRIPTOR
SQLDA_descriptor

Uses an Oracle descriptor. CANNOT be used together with an
ANSI descriptor (INTO clause).

USING Specifies a list of host variables with optional indicator variables
that Oracle substitutes as input variables into the statement to be
executed. The host and indicator variables must be either all
scalars or all arrays.

host_variable Host variables.

indicator_variable Indicator variables.

EXEC SQL

FOR
integer

: array_size
EXECUTE statement_id

USING

DESCRIPTOR SQLDA_descriptor

: host_variable

INDICATOR
: indicator_variable

,

EXECUTE DESCRIPTOR (Executable Embedded SQL)

F-40 Pro*C/C++ Programmer’s Guide

PREPARE (Executable Embedded SQL) on page F-70.

EXECUTE DESCRIPTOR (Executable Embedded SQL)

Purpose
In ANSI SQL Method 4, to execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block that has been previously prepared with an embedded SQL PREPARE
statement.

Prerequisites
You must first prepare the SQL statement or PL/SQL block with an embedded SQL
PREPARE statement.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

FOR :array_size Host variable containing the number of rows to be processed.

Number of rows to be processed.

FOR integer Limits the number of times the statement is executed. Oracle
executes the statement once for each component of the smallest
array.

statement_id A precompiler identifier associated with the SQL statement or
PL/SQL block to be executed. Use the embedded SQL PREPARE
statement to associate the precompiler identifier with the
statement or PL/SQL block.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

USING An ANSI descriptor.

descriptor_name Host variable containing name of the input descriptor.

EXEC SQL

FOR
integer

: array_size
EXECUTE statement_id

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

EXECUTE IMMEDIATE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-41

Usage Notes
For more information on this statement, see Chapter 14, "ANSI Dynamic SQL".

Examples
The ANSI dynamic SQL Method 4 allows DML Returning clauses in a SELECT to be
supported by the INTO clause in EXECUTE:

EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES' ;

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

PREPARE (Executable Embedded SQL) on page F-70.

EXECUTE IMMEDIATE (Executable Embedded SQL)

Purpose
To prepare and execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block
containing no host variables.

Prerequisites
None.

'descriptor name' Name of the input descriptor.

INTO An ANSI descriptor.

descriptor_name Host variable containing name of the output descriptor.

'descriptor name' Name of the output descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

Keywords and
Parameters Description

EXEC SQL

AT
db_name

: host_variable

EXECUTE IMMEDIATE
: host_string

’ text ’

FETCH (Executable Embedded SQL)

F-42 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Usage Notes
When you issue an EXECUTE IMMEDIATE statement, Oracle parses the specified
SQL statement or PL/SQL block, checking for errors, and executes it. If any errors are
encountered, they are returned in the SQLCODE component of the SQLCA.

For more information on this statement, see Chapter 13, "Oracle Dynamic SQL" and
Chapter 14, "ANSI Dynamic SQL".

Example
This example illustrates the use of the EXECUTE IMMEDIATE statement:

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM emp WHERE empno = 9460' ;

Related Topics
EXECUTE (Executable Embedded SQL) on page F-38.

PREPARE (Executable Embedded SQL) on page F-70.

FETCH (Executable Embedded SQL)

Purpose
In Oracle dynamic SQL, to retrieve one or more rows returned by a query, assigning
the select list values to host variables. For ANSI Dynamic SQL Method 4 see "FETCH
DESCRIPTOR (Executable Embedded SQL)" on page F-44.

Prerequisites
You must first open the cursor with an OPEN statement.

Keywords and
Parameters Description

AT Identifies the database on which the SQL statement or PL/SQL
block is executed. The database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a previously
declared db_name. If you omit this clause, the statement or
block is executed on your default database.

text Is a quoted text literal (or a text literal without quotes)
containing the SQL statement or PL/SQL block to be executed.

The SQL statement can only be a DELETE, INSERT, or UPDATE
statement.

host_string A host variable containing a SQL statement.

FETCH (Executable Embedded SQL)

Embedded SQL Statements and Directives F-43

Syntax

Keywords and Parameters

Usage Notes
The FETCH statement reads the rows of the active set and names the output variables
which contain the results. Indicator values are set to -1 if their associated host variable
is NULL. The first FETCH statement for a cursor also sorts the rows of the active set, if
necessary.

The number of rows retrieved is specified by the size of the output host variables and
the value specified in the FOR clause. The host variables to receive the data must be
either all scalars or all arrays. If they are scalars, Oracle fetches only one row. If they
are arrays, Oracle fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle
fetches is determined by the smaller of the following values:

Keywords and
Parameters Description

FOR :array_size Host variable containing the number of rows to be processed.

Number of rows to be processed.

FOR integer Limits the number of rows fetched if you are using array host
variables. If you omit this clause, Oracle fetches enough rows to
fill the smallest array.

cursor A cursor that is declared by a DECLARE CURSOR statement.
The FETCH statement returns one of the rows selected by the
query associated with the cursor.

cursor_variable A cursor variable is allocated an ALLOCATE statement. The
FETCH statement returns one of the rows selected by the query
associated with the cursor variable.

INTO Specifies a list of host variables and optional indicator variables
into which data is fetched. These host variables and indicator
variables must be declared within the program.

host_variable Host variables to receive data,

indicator_variables Host indicator variables.

USING SQLDA_variable Specifies the Oracle descriptor referenced in a previous
DESCRIBE statement. Only use this clause with dynamic
embedded SQL, method 4. The USING clause does not apply
when a cursor variable is used.

EXEC SQL

FOR
integer

: array_size
FETCH

cursor

: cursor_variable

USING DESCRIPTOR SQLDA_descriptor

INTO : host_variable

INDICATOR
: indicator_variable

,

FETCH DESCRIPTOR (Executable Embedded SQL)

F-44 Pro*C/C++ Programmer’s Guide

■ The size of the smallest array

■ The value of the :array_size in the optional FOR clause

Of course, the number of rows fetched can be further limited by the number of rows
that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is
positioned on the next returned row. When the last row returned by the query has
been retrieved, the next FETCH statement results in an error code returned in the
SQLCODE element of the SQLCA.

The FETCH statement does not contain an AT clause. You must specify the database
accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you
want to revisit any of the previously fetched rows, you must reopen the cursor and
fetch each row in turn. If you want to change the active set, you must assign new
values to the input host variables in the cursor's query and reopen the cursor.

For more information, see "The FETCH Statement" on page 6-11 for the Oracle
descriptor.

Example
This example illustrates the FETCH statement:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT job, sal FROM emp WHERE deptno = 30;
EXEC SQL OPEN emp_cursor;
...
EXEC SQL WHENEVER NOT FOUND GOTO ...
for(;;)
 {
 EXEC SQL FETCH emp_cursor INTO :job_title1, :salary1;
 ...
 }

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

OPEN (Executable Embedded SQL) on page F-67.

PREPARE (Executable Embedded SQL) on page F-70.

FETCH DESCRIPTOR (Executable Embedded SQL)

Purpose
To retrieve one or more rows returned by a query, assigning the select list values to
host variables. Used in ANSI Dynamic SQL Method 4.

Prerequisites
You must first open the cursor with an the OPEN statement.

FETCH DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Directives F-45

Syntax

Keywords and Parameters

Usage Notes
The number of rows retrieved is specified by the size of the output host variables and
the value specified in the FOR clause. The host variables to receive the data must be
either all scalars or all arrays. If they are scalars, Oracle fetches only one row. If they
are arrays, Oracle fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle
fetches is determined by the smaller of the following values:

■ The size of the smallest array.

■ The value of the :array_size in the optional FOR clause.

Of course, the number of rows fetched can be further limited by the number of rows
that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is
positioned on the next returned row. When the last row returned by the query has

Keywords and
Parameters Description

array_size Host variable containing the number of rows to be processed.

Number of rows to be processed.

integer Limits the number of rows fetched if you are using array host
variables. If you omit this clause, Oracle fetches enough rows to
fill the smallest array.

cursor A cursor that has been declared by a DECLARE CURSOR
statement. The FETCH statement returns one of the rows
selected by the query associated with the cursor.

cursor_variable A cursor variable is allocated an ALLOCATE statement. The
FETCH statement returns one of the rows selected by the query
associated with the cursor variable.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

INTO Specifies a list of host variables and optional indicator variables
into which data is fetched. These host variables and indicator
variables must be declared within the program.

descriptor name'

:descriptor_name

Name of the output ANSI descriptor.

Host variable containing the name of the output descriptor.

EXEC SQL

FOR
integer

: array_size
FETCH

cursor

: cursor_variable

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

FREE (Executable Embedded SQL Extension)

F-46 Pro*C/C++ Programmer’s Guide

been retrieved, the next FETCH statement results in an error code returned in the
SQLCODE element of the SQLCA.

The FETCH statement does not contain an AT clause. You must specify the database
accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you
want to revisit any of the previously fetched rows, you must reopen the cursor and
fetch each row in turn. If you want to change the active set, you must assign new
values to the input host variables in the cursor's query and reopen the cursor.

Use DYNAMIC=ANSI precompiler option for the ANSI SQL Method 4 application.
For more information, see "FETCH" on page 14-20 for the ANSI SQL Method 4
application.

Example
...
EXEC SQL ALLOCATE DESCRIPTOR 'output_descriptor' ;
...
EXEC SQL PREPARE S FROM :dyn_statement ;
EXEC SQL DECLARE mycursor CURSOR FOR S ;
...
EXEC SQL FETCH mycursor INTO DESCRIPTOR 'output_descriptor' ;
...

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

OPEN DESCRIPTOR (Executable Embedded SQL) on page F-69.

PREPARE (Executable Embedded SQL) on page F-70.

FREE (Executable Embedded SQL Extension)

Purpose
To free memory in the object cache.

Prerequisites
The memory has to have been already allocated.

An active database connection must exist.

Syntax

EXEC SQL

FOR
integer

: array_size OBJECT
FREE : host_ptr

INDICATOR
: ind_ptr

GET DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Directives F-47

Keywords and Parameters

Usage Notes
Any memory in the object cache will be freed automatically when the connection is
terminated. See "FREE" on page 17-5 for more information.

Example
EXEC SQL FREE :ptr ;

Related Topics
ALLOCATE (Executable Embedded SQL Extension) on page F-9.

CACHE FREE ALL (Executable Embedded SQL Extension) on page F-11.

GET DESCRIPTOR (Executable Embedded SQL)

Purpose
To obtain information about host variables from a SQL descriptor area.

Prerequisites
Use only with value semantics.

Syntax

where item_name can be one of these choices:

Keywords and
Parameters Description

dbname A null-terminated string containing the database connection
name, as established previously in a CONNECT statement. If
omitted, or if an empty string, the default database connection is
assumed.

host_ptr A host-variable pointer that was previously ALLOCATED.

ind_ptr An indicator pointer.

EXEC SQL

FOR
integer

: array_size
GET DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

'descriptor name'

VALUE
: host_integer

integer
: host_var = item_name

,

: host_var = COUNT

GET DESCRIPTOR (Executable Embedded SQL)

F-48 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Keywords and
Parameters Description

array_size Host variable containing the number of rows to be processed.

integer Number of rows to be processed.

descriptor_name

'descriptor name'

Host variable containing the name of the allocated ANSI
descriptor.

Name of the allocated ANSI descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

host_var = COUNT Host variable containing the total number of input or output
variables.

integer Total number of input or output variables.

VALUE :host_integer Host variable containing the position of the referenced input or
output variable.

VALUE integer The position of the referenced input or output variable.

TYPE

LENGTH

OCTET_LENGTH

RETURNED_LENGTH

RETURNED_OCTET_LENGTH

NULLABLE

INDICATOR

DATA

NAME

CHARACTER_SET_NAME

NATIONAL_CHARACTER

INTERNAL_LENGTH

HOST_STRIDE_LENGTH

INDICATOR_STRIDE_LENGTH

RETURNED_LENGTH_STRIDE

USER_DEFINED_TYPE_VERSION

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_NAME_LENGTH

USER_DEFINED_TYPE_SCHEMA

USER_DEFINED_TYPE_SCHEMA_LENGTH

INSERT (Executable Embedded SQL)

Embedded SQL Statements and Directives F-49

Usage Notes
Use DYNAMIC=ANSI precompiler option. The array size clause can be used with
DATA, RETURNED_LENGTH, and INDICATOR item names. See GET DESCRIPTOR
on page 14-11.

Example
EXEC SQL GET DESCRIPTOR GLOBAL 'mydesc' :mydesc_num_vars = COUNT ;

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page F-10.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page F-24.

SET DESCRIPTOR (Executable Embedded SQL) on page F-79.

INSERT (Executable Embedded SQL)

Purpose
To add rows to a table or to a view's base table.

Prerequisites
For you to insert rows into a table, the table must be in your own schema or you must
have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema
containing the view must have INSERT privilege on the base table. Also, if the view is
in a schema other than your own, you must have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also provides the ability to insert rows into
any table or any view's base table.

host_var Host variable which will receive the item's value.

item_name Where item_name is found in Table 14–4, " Definitions of
Descriptor Item Names for GET DESCRIPTOR" on page 14-11,
and Table 14–5, " Oracle Extensions to Definitions of Descriptor
Item Names for GET DESCRIPTOR" on page 14-12.

Keywords and
Parameters Description

INSERT (Executable Embedded SQL)

F-50 Pro*C/C++ Programmer’s Guide

Syntax

Where the DML returning clause is:

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database on which the INSERT statement is
executed. The database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a db_name. If
you omit this clause, the INSERT statement is executed on your
default database.

FOR :host_integer

 integer

Limits the number of times the statement is executed if the
VALUES clause contains array host variables.

If you omit this clause, Oracle executes the statement once for
each component in the smallest array.

schema The schema containing the table or view. If you omit schema,
Oracle assumes the table or view is in your own schema.

table

view

The name of the table into which rows are to be inserted.

If you specify view, Oracle inserts rows into the view's base
table.

EXEC SQL

AT
db_name

: host_variable
FOR

: host_integer

integer

INSERT INTO

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

(column)

,

VALUES (expr

,

)

subquery

DML.RETURNING.CLAUSE

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

INSERT (Executable Embedded SQL)

Embedded SQL Statements and Directives F-51

Usage Notes
Any host variables that appear in the WHERE clause must be either all scalars or all
arrays. If they are scalars, Oracle executes the INSERT statement once. If they are
arrays, Oracle executes the INSERT statement once for each set of array components,
inserting one row each time.

Array host variables in the WHERE clause can have different sizes. In this case, the
number of times Oracle executes the statement is determined by the smaller of the
following values:

■ Size of the smallest array

■ The value of the :host_integer in the optional FOR clause.

For more information on this statement, see "The INSERT Statement" on page 6-7.

Example I
This example illustrates the use of the embedded SQL INSERT statement:

EXEC SQL
 INSERT INTO emp (ename, empno, sal)
 VALUES (:ename, :empno, :sal) ;

Example II
This example shows an embedded SQL INSERT statement with a subquery:

EXEC SQL
 INSERT INTO new_emp (ename, empno, sal)
 SELECT ename, empno, sal FROM emp
 WHERE deptno = :deptno ;

db_link A complete or partial name of a database link to a remote
database where the table or view is located. For information on
referring to database links, see the Oracle Database SQL Reference.

You can only insert rows into a remote table or view if you are
using Oracle with the distributed option.

If you omit dblink, Oracle assumes that the table or view is on
the local database.

part_name Is the name of a partition of the table.

column If you omit one of the table's columns from this list, the column's
value for the inserted row is the column's default value as
specified when the table was created. If you omit the column list
altogether, the VALUES clause or query must specify values for
all columns in the table.

VALUES Specifies a row of values to be inserted into the table or view. See
the syntax description in Oracle Database SQL Reference. The
expressions can be host variables with optional indicator
variables. You must specify an expression in the VALUES clause
for each column in the column list.

subquery Is a subquery that returns rows that are inserted into the table.
The select list of this subquery must have the same number of
columns as the column list of the INSERT statement. For the
syntax description of a subquery, see "SELECT" in Oracle
Database SQL Reference.

DML returning clause See "The DML Returning Clause" on page 6-8.

Keywords and
Parameters Description

LOB APPEND (Executable Embedded SQL Extension)

F-52 Pro*C/C++ Programmer’s Guide

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

LOB APPEND (Executable Embedded SQL Extension)

Purpose
To append a LOB to the end of another LOB.

Prerequisites
LOB buffering must not be enabled.The destination LOB must have been initialized.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "APPEND" on
page 16-9.

Related Topics
See the other LOB statements.

LOB ASSIGN (Executable Embedded SQL Extension)

Purpose
To assign a LOB or BFILE locator to another locator.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "ASSIGN" on
page 16-9.

Related Topics
See the other LOB statements.

EXEC SQL

AT
db_name

: host_variable
LOB APPEND : src TO : dst

EXEC SQL

AT
db_name

: host_variable
LOB ASSIGN : src TO : dst

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-53

LOB CLOSE (Executable Embedded SQL Extension)

Purpose
To close an open LOB or BFILE.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "CLOSE" on
page 16-10.

Related Topics
See the other LOB statements.

LOB COPY (Executable Embedded SQL Extension)

Purpose
To copy all or part of a LOB value into another LOB.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "COPY" on
page 16-10.

Related Topics
See the other LOB statements.

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

Purpose
To create a temporary LOB.

EXEC SQL

AT
db_name

: host_variable
LOB CLOSE : src

EXEC SQL

AT
db_name

: host_variable

LOB COPY : amt FROM : src

AT : src_offset

TO : dst
AT : dst_offset

LOB DESCRIBE (Executable Embedded SQL Extension)

F-54 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "CREATE
TEMPORARY" on page 16-11.

Related Topics
See the other LOB statements.

LOB DESCRIBE (Executable Embedded SQL Extension)

Purpose
To retrieve attributes from a LOB.

Syntax

where attrib is:

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "DESCRIBE" on
page 16-19.

EXEC SQL

AT
db_name

: host_variable
LOB CREATE TEMPORARY : src

EXEC SQL

AT
db_name

: host_variable

LOB DESCRIBE : src

GET attrib

,

INTO : hv

INDICATOR
: hv_ind

,

CHUNKSIZE

DIRECTORY

FILEEXISTS

FILENAME

ISOPEN

ISTEMPORARY

LENGTH

LOB ERASE (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-55

Related Topics
See the other LOB statements.

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

Purpose
To disable LOB buffering.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "DISABLE
BUFFERING" on page 16-12.

Related Topics
See the other LOB statements.

LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

Purpose
To enable LOB buffering.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "ENABLE
BUFFERING" on page 16-12

Related Topics
See the other LOB statements.

LOB ERASE (Executable Embedded SQL Extension)

Purpose
To erase a given amount of LOB data starting from a given offset.

EXEC SQL

AT
db_name

: host_variable
LOB DISABLE BUFFERING : src

EXEC SQL

AT
db_name

: host_variable
LOB ENABLE BUFFERING : src

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

F-56 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "ERASE" on
page 16-12.

Related Topics
See the other LOB statements.

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

Purpose
To close all open BFILEs in the current session.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FILE CLOSE
ALL" on page 16-13.

Related Topics
See the other LOB statements.

LOB FILE SET (Executable Embedded SQL Extension)

Purpose
To set DIRECTORY and FILENAME in a BFILE locator.

Syntax

EXEC SQL

AT
db_name

: host_variable
LOB ERASE : amt

FROM : src
AT : src_offset

EXEC SQL

AT
db_name

: host_variable
LOB FILE CLOSE ALL

EXEC SQL

AT
db_name

: host_variable
LOB FILE SET : file

DIRECTORY = : alias , FILENAME = : filename

LOB FREE TEMPORARY (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-57

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FILE SET" on
page 16-13.

Related Topics
See the other LOB statements.

LOB FLUSH BUFFER (Executable Embedded SQL Extension)

Purpose
To write the LOB buffers to the database server.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FLUSH BUFFER"
on page 16-14.

Related Topics
See the other LOB statements.

LOB FREE TEMPORARY (Executable Embedded SQL Extension)

Purpose
To free temporary space for the LOB locator.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "FREE
TEMPORARY" on page 16-14.

Related Topics
See the other LOB statements.

EXEC SQL

AT
db_name

: host_variable
LOB FLUSH BUFFER : src

FREE

EXEC SQL

AT
db_name

: host_variable
LOB FREE TEMPORARY : src

LOB LOAD (Executable Embedded SQL Extension)

F-58 Pro*C/C++ Programmer’s Guide

LOB LOAD (Executable Embedded SQL Extension)

Purpose
To copy all or part of a BFILE into an internal LOB.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "LOAD FROM
FILE" on page 16-15.

Related Topics
See the other LOB statements.

LOB OPEN (Executable Embedded SQL Extension)

Purpose
To open a LOB or BFILE for read or read/write access.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "OPEN" on
page 16-16.

Related Topics
See the other LOB statements.

LOB READ (Executable Embedded SQL Extension)

Purpose
To read all or part of a LOB or BFILE into a buffer.

EXEC SQL

AT
db_name

: host_variable
LOB LOAD : amt FROM

FILE : file
AT : src_offset

INTO : dst
AT : dst_offset

EXEC SQL

AT
db_name

: host_variable
LOB OPEN : src

READ ONLY

READ WRITE

LOB WRITE (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-59

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "READ" on
page 16-16.

Related Topics
See the other LOB statements.

LOB TRIM (Executable Embedded SQL Extension)

Purpose
To truncate a LOB value.

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "TRIM" on
page 16-18.

Related Topics
See the other LOB statements.

LOB WRITE (Executable Embedded SQL Extension)

Purpose
To write the contents of a buffer to a LOB.

EXEC SQL

AT
db_name

: host_variable
LOB READ : amt FROM : src

AT : src_offset
INTO : buffer

WITH LENGTH : buflen

EXEC SQL

AT
db_name

: host_variable
LOB TRIM : src TO : newlen

OBJECT CREATE (Executable Embedded SQL Extension)

F-60 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords, parameters, and examples, see "WRITE" on
page 16-18.

Related Topics
See the other LOB statements.

OBJECT CREATE (Executable Embedded SQL Extension)

Purpose
To create a referenceable object in the object cache.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

Syntax

where tab is:

EXEC SQL

AT
db_name

: host_variable
LOB WRITE

APPEND

FIRST

NEXT

LAST

ONE
: amt FROM : buffer

WITH LENGTH : buflen
INTO : dst

AT : dst_offset

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: host_integer

OBJECT CREATE : obj
INDICATOR

: obj_ind

TABLE tab RETURNING REF INTO : ref

OBJECT DELETE (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-61

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT CREATE" on
page 17-8.

Example
person *pers_p;
person_ind *pers_ind;
person_ref *pers_ref;
...
EXEC SQL OBJECT CREATE :pers_p:pers_ind TABLE PERSON_TAB
 RETURNING REF INTO :pers_ref ;

Related Topics
See all other OBJECT statements in this appendix.

OBJECT DELETE (Executable Embedded SQL Extension)

Purpose
To mark a persistent object or array of objects as deleted in the object cache.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT DELETE" on
page 17-9.

Example
customer *cust_p;
...
EXEC SQL OBJECT DELETE :cust_p;

Related Topics
See all other OBJECT statements in this Appendix.For persistent objects, this statement
marks an object or array of objects as deleted in the object cache.

: hv

schema .
table

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: host_integer

OBJECT DELETE : obj

OBJECT DEREF (Executable Embedded SQL Extension)

F-62 Pro*C/C++ Programmer’s Guide

OBJECT DEREF (Executable Embedded SQL Extension)

Purpose
To pin an object or array of objects in the object cache.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT DEREF" on
page 17-8.

Example
person *pers_p;
person_ref *pers_ref;
...
/* Pin the person REF, returning a pointer to the person object */
EXEC SQL OBJECT DEREF :pers_ref INTO :pers_p;

Related Topics
See all other OBJECT statements in this Appendix. See "ALLOCATE (Executable
Embedded SQL Extension)" on page F-9.

OBJECT FLUSH (Executable Embedded SQL Extension)

Purpose
To flush persistent objects that have been marked as updated, deleted, or created, to
the server.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: array_size

OBJECT DEREF : ref INTO : obj

INDICATOR
: obj_ind FOR UPDATE

NOWAIT

OBJECT GET (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-63

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT FLUSH" on
page 17-10.

Example
person *pers_p;
...
EXEC SQL OBJECT DELETE :pers_p;
/* Flush the changes, effectively deleting the person object */
EXEC SQL OBJECT FLUSH :pers_p;
/* Finally, free all object cache memory and logoff */
EXEC SQL OBJECT CACHE FREE ALL;
EXEC SQL COMMIT WORK RELEASE;

Related Topics
See all other OBJECT statements in this Appendix.

OBJECT GET (Executable Embedded SQL Extension)

Purpose
To convert attributes of an object type to native C types

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: host_integer

OBJECT FLUSH : obj

OBJECT RELEASE (Executable Embedded SQL Extension)

F-64 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT GET" on
page 17-13.

Example
person *pers_p;
struct { char lname[21], fname[21]; int age; } pers;
...
/* Convert object types to native C types */
EXEC SQL OBJECT GET lastname, firstname, age FROM :pers_p INTO :pers;
printf("Last Name: %s\nFirstName: %s\nAge: %d\n",
 pers.lname, pers.fname, pers.age);

Related Topics
See all other OBJECT statements in this Appendix.

OBJECT RELEASE (Executable Embedded SQL Extension)

Purpose
To unpin an object in the object cache. When an object is not pinned and not updated,
it is eligible for implicit freeing.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

EXEC SQL

AT
db_name

: host_variable
OBJECT GET

attr

,

*
FROM

: obj

INDICATOR
: obj_ind

INTO : hv

INDICATOR
: hv_ind

,

OBJECT SET (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-65

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT RELEASE" on
page 17-9.

Example
person *pers_p;
...
EXEC SQL OBJECT RELEASE :pers_p;

Related Topics
See all other OBJECT statements in this Appendix.

OBJECT SET (Executable Embedded SQL Extension)

Purpose
To update attributes of persistent objects, marking them eligible for writing to the
server when the object is flushed or the cache is flushed.

To update the attributes of a transient object.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

EXEC SQL

AT
db_name

: host_variable
FOR

integer

: host_integer

OBJECT RELEASE : obj

OBJECT UPDATE (Executable Embedded SQL Extension)

F-66 Pro*C/C++ Programmer’s Guide

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT FLUSH" on
page 17-10.

Example
person *pers_p;
struct {int num; char street[61], city[31], state[3], zip[11];} addr1;
...
addr1.num = 500;
strcpy((char *)addr1.street , (char *)"Oracle Parkway");
strcpy((char *)addr1.city, (char *)"Redwood Shores");
strcpy((char *)addr1.state, (char *)"CA");
strcpy((char *)addr1.zip, (char *)"94065");

/* Convert native C types to object types */
EXEC SQL OBJECT SET :pers_p->addr TO :addr1;

Related Topics
See all other OBJECT statements in this Appendix.

OBJECT UPDATE (Executable Embedded SQL Extension)

Purpose
To mark a persistent object or array of objects as updated in the object cache.

Prerequisites
Precompiler option OBJECTS must be set to YES. The INTYPE option must specify the
OTT-generated type files. Include OTT-generated header files in your program.

EXEC SQL

AT
db_name

: host_variable
OBJECT SET

attr

,

*
OF

: obj

INDICATOR
: obj_ind

TO : hv

INDICATOR
: hv_ind

,

OPEN (Executable Embedded SQL)

Embedded SQL Statements and Directives F-67

Syntax

Usage Notes
For usage notes as well as keywords and parameters, see "OBJECT UPDATE" on
page 17-9.

Example
person *pers_p;
...
/* Mark as updated */
EXEC SQL OBJECT UPDATE :pers_p;

Related Topics
See all other OBJECT statements in this Appendix.

OPEN (Executable Embedded SQL)

Purpose
To open a cursor, evaluating the associated query and substituting the host variable
names supplied by the USING clause into the WHERE clause of the query. For the
ANSI Dynamic SQL Method 4 version, see "OPEN DESCRIPTOR (Executable
Embedded SQL)" on page F-69.

Prerequisites
You must declare the cursor with a DECLARE CURSOR embedded SQL statement
before opening it.

Syntax

pwd EXEC SQL

AT
db_name

: host_variable
FOR

integer

: host_integer

OBJECT UPDATE : obj

EXEC SQL

FOR
integer

: array_size
OPEN cursor

USING

DESCRIPTOR SQLDA_descriptor

: host_variable

INDICATOR
: indicator_variable

,

OPEN (Executable Embedded SQL)

F-68 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Usage Notes
The OPEN statement defines the active set of rows and initializes the cursor just before
the first row of the active set. The values of the host variables at the time of the OPEN
are substituted in the statement. This statement does not actually retrieve rows; rows
are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you
reopen the cursor. To change any input host variables and therefore the active set, you
must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or when
they have been explicitly closed using the CLOSE statement.

You can reopen a cursor without first closing it. For more information on this
statement, see "The INSERT Statement" on page 6-7.

Example
This example illustrates the use of the OPEN statement in a Pro*C/C++ program:

EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ename, empno, job, sal
 FROM emp
 WHERE deptno = :deptno;
EXEC SQL OPEN emp_cursor;

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE STATEMENT (Embedded SQL Directive) on page F-25.

FETCH (Executable Embedded SQL) on page F-42.

PREPARE (Executable Embedded SQL) on page F-70.

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

cursor The (previously declared) cursor to be opened.

host_variable Specifies a host variable with an optional indicator variable to be
substituted into the statement associated with the cursor.

CANNOT be used together with an ANSI descriptor (INTO
clause).

DESCRIPTOR SQLDA_
descriptor

Specifies an Oracle descriptor that describes the host variables to
be substituted into the WHERE clause of the associated query.
The descriptor must be initialized in a previous DESCRIBE
statement. The substitution is based on position. The host
variable names specified in this statement can be different from
the variable names in the associated query.

CANNOT be used together with an ANSI descriptor (INTO
clause).

OPEN DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Directives F-69

OPEN DESCRIPTOR (Executable Embedded SQL)

Purpose
To open a cursor (for ANSI Dynamic SQL Method 4), evaluating the associated query
and substituting the input host variable names supplied by the USING clause into the
WHERE clause of the query. The INTO clause denotes the output descriptor.

Prerequisites
You must declare the cursor with a DECLARE CURSOR embedded SQL statement
before opening it.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed.

cursor The (previously declared) cursor to be opened.

USING DESCRIPTOR Specifies an ANSI input descriptor.

descriptor_name The host variable containing the name of the ANSI descriptor,

'descriptor name' The name of the ANSI descriptor.

INTO DESCRIPTOR Specifies an ANSI output descriptor.

descriptor_name The host variable containing the name of the ANSI descriptor,

'descriptor name' The name of the ANSI descriptor.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

EXEC SQL

FOR
integer

: array_size
OPEN cursor

USING
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

INTO
SQL

DESCRIPTOR

GLOBAL

LOCAL : descriptor_name

’ descriptor name ’

PREPARE (Executable Embedded SQL)

F-70 Pro*C/C++ Programmer’s Guide

Usage Notes
Set the precompiler option DYNAMIC to ANSI.

The OPEN statement defines the active set of rows and initializes the cursor just before
the first row of the active set. The values of the host variables at the time of the OPEN
are substituted in the SQL statement. This statement does not actually retrieve rows;
rows are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you
reopen the cursor. To change any input host variables and therefore the active set, you
must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or when
they have been explicitly closed using the CLOSE statement.

You can reopen a cursor without first closing it. For more information on this
statement, see "The INSERT Statement" on page 6-7.

Example
char dyn_statement[1024] ;
...
EXEC SQL ALLOCATE DESCRIPTOR 'input_descriptor' ;
EXEC SQL ALLOCATE DESCRIPTOR 'output descriptor'
...
EXEC SQL PREPARE S FROM :dyn_statement ;
EXEC SQL DECLARE C CURSOR FOR S ;
...
EXEC SQL OPEN C USING DESCRIPTOR 'input_descriptor' ;
...

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

FETCH DESCRIPTOR (Executable Embedded SQL) on page F-44.

PREPARE (Executable Embedded SQL) on page F-70.

PREPARE (Executable Embedded SQL)

Purpose
To parse a SQL statement or PL/SQL block specified by a host variable and associate it
with an identifier.

Prerequisites
None.

Syntax

EXEC SQL

AT
db_name

: host_variable
PREPARE statement_id FROM

: host_string

' text '

select_command

REGISTER CONNECT (Executable Embedded SQL Extension)

Embedded SQL Statements and Directives F-71

Keywords and Parameters

Usage Notes
Any variables that appear in the host_string or text are placeholders. The actual host
variable names are assigned in the USING clause of the OPEN statement (input host
variables) or in the INTO clause of the FETCH statement (output host variables).

A SQL statement is prepared only once, but can be executed any number of times. For
more information, see "PREPARE" on page 13-14.

Example
This example illustrates the use of a PREPARE statement in a Pro*C/C++ embedded
SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;
EXEC SQL EXECUTE my_statement;

Related Topics
CLOSE (Executable Embedded SQL) on page F-13.

DECLARE CURSOR (Embedded SQL Directive) on page F-25.

FETCH (Executable Embedded SQL) on page F-42.

OPEN (Executable Embedded SQL) on page F-67.

REGISTER CONNECT (Executable Embedded SQL Extension)

Purpose
To allow an external C procedure to be called from a Pro*C/C++ application.

Keywords and
Parameters Description

statement_id Is the identifier to be associated with the prepared SQL
statement or PL/SQL block. If this identifier was previously
assigned to another statement or block, the prior assignment is
superseded.

host_string Is a host variable whose value is the text of a SQL statement or
PL/SQL block to be prepared.

If you omit this clause, Oracle issues the statement to your
default database.

text Is a string literal containing a SQL statement or PL/SQL block to
be prepared.

select_command Is a select statement

statement_id Is the identifier to be associated with the prepared SQL
statement or PL/SQL block. If this identifier was previously
assigned to another statement or block, the prior assignment is
superseded.

host_string Is a host variable whose value is the text of a SQL statement or
PL/SQL block to be prepared.

text Is a string literal containing a SQL statement or PL/SQL block to
be prepared. The quotes can be omitted.

select_command Is a select statement

ROLLBACK (Executable Embedded SQL)

F-72 Pro*C/C++ Programmer’s Guide

Prerequisites
None.

Syntax

Keywords and Parameters

Usage Notes
For a complete discussion of how to write an external procedure, and the restrictions
that are in effect, see External Procedures on page 7-22.

Example
void myfunction(epctx)
OCIExtProcContext *epctx;
sql_context context;
...
{
EXEC SQL REGISTER CONNECT USING :epctx ;
EXEC SQL USE :context;
...

Related Topics
None

ROLLBACK (Executable Embedded SQL)

Purpose
To undo work done in the current transaction.

You can also use this statement to manually undo the work done by an in-doubt
distributed transaction.

Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally
committed, you must have FORCE TRANSACTION system privilege. To manually
roll back an in-doubt distributed transaction originally committed by another user,
you must have FORCE ANY TRANSACTION system privilege.

Keywords and
Parameters Description

ext_proc_ctxt The external procedure context passed to the procedure by
PL/SQL. It is of type pointer to OCIExtProcContext.

context The runtime context returned. It is of type sql_context.
Currently, it is the default (global) context

EXEC SQL REGISTER CONNECT USING : ext_proc_ctxt

RETURNING

RETURN
: context

ROLLBACK (Executable Embedded SQL)

Embedded SQL Statements and Directives F-73

Syntax

Keywords and Parameters

Usage Notes
A transaction (or a logical unit of work) is a sequence of SQL statements that Oracle
treats as a single unit. A transaction begins with the first executable SQL statement
after a COMMIT, ROLLBACK or connection to the database. A transaction ends with a
COMMIT statement, a ROLLBACK statement, or disconnection (intentional or
unintentional) from the database. Oracle issues an implicit COMMIT statement before
and after processing any Data Definition Language statement.

Keywords and
Parameters Description

AT Identifies the database on which the savepoint is created. The
database can be identified by either:

db_name: A null-terminated string containing the database
connection name, as established previously in a CONNECT
statement. If it is omitted, or if it is an empty string, the default
database connection is assumed.

host_variable: A host variable containing the name of the
database connection. If you omit this clause, the savepoint is
created on your default database.

WORK Is optional and is provided for ANSI compatibility.

TO Rolls back the current transaction to the specified savepoint. If
you omit this clause, the ROLLBACK statement rolls back the
entire transaction.

FORCE Manually rolls back an in-doubt distributed transaction. The
transaction is identified by the text containing its local or global
transaction ID. To find the IDs of such transactions, query the
data dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are not
supported in PL/SQL.

RELEASE Frees all resources and disconnects the application from the
database. The RELEASE clause is not allowed with SAVEPOINT
and FORCE clauses.

savepoint savepoint to which you roll back

EXEC SQL

AT
db_name

: host_variable

ROLLBACK
WORK

TO
SAVEPOINT

savepoint

FORCE ’ text ’

RELEASE

ROLLBACK (Executable Embedded SQL)

F-74 Pro*C/C++ Programmer’s Guide

Using the ROLLBACK statement without the TO SAVEPOINT clause performs the
following operations:

■ Ends the transaction

■ Undoes all changes in the current transaction

■ Erases all savepoints in the transaction

■ Releases the transaction's locks

Using the ROLLBACK statement with the TO SAVEPOINT clause performs the
following operations:

■ Rolls back just the portion of the transaction after the savepoint.

■ Loses all savepoints created after that savepoint. The named savepoint is retained,
so you can roll back to the same savepoint multiple times. Prior savepoints are
also retained.

■ Releases all table and row locks acquired since the savepoint. Other transactions
that have requested access to rows locked after the savepoint must continue to
wait until the transaction is committed or rolled back. Other transactions that have
not already requested the rows can request and access the rows immediately.

It is recommended that you explicitly end transactions in application programs using
either a COMMIT or ROLLBACK statement. If you do not explicitly commit the
transaction and the program terminates abnormally, Oracle rolls back the last
uncommitted transaction.

Example 1
The following statement rolls back your entire current transaction:

EXEC SQL ROLLBACK;

Example 2
The following statement rolls back your current transaction to savepoint SP5:

EXEC SQL ROLLBACK TO SAVEPOINT sp5;

Distributed Transactions
Oracle with the distributed option provides the ability to perform distributed
transactions, or transactions that modify data on multiple databases. To commit or roll
back a distributed transaction, you need only issue a COMMIT or ROLLBACK
statement as you would any other transaction.

If there is a network failure during the commit process for a distributed transaction,
the state of the transaction may be unknown, or in-doubt. After consultation with the
administrators of the other databases involved in the transaction, you may decide to
manually commit or roll back the transaction on your local database. You can
manually roll back the transaction on your local database by issuing a ROLLBACK
statement with the FORCE clause.

You cannot manually roll back an in-doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the specified
transaction. Such a statement does not affect your current transaction.

Example III
The following statement manually rolls back an in-doubt distributed transaction:

SAVEPOINT (Executable Embedded SQL)

Embedded SQL Statements and Directives F-75

EXEC SQL
 ROLLBACK WORK
 FORCE '25.32.87' ;

Related Topics
COMMIT (Executable Embedded SQL) on page F-17.

SAVEPOINT (Executable Embedded SQL) on page F-75.

SAVEPOINT (Executable Embedded SQL)

Purpose
To identify a point in a transaction to which you can later roll back.

Prerequisites
None.

Syntax

Keywords and Parameters

Usage Notes
For more information on this statement, see "Using the SAVEPOINT Statement" on
page 3-14.

Example
This example illustrates the use of the embedded SQL SAVEPOINT statement:

EXEC SQL SAVEPOINT save3;

Related Topics
COMMIT (Executable Embedded SQL) on page F-17.

ROLLBACK (Executable Embedded SQL) on page F-72.

Keywords and
Parameters Description

AT Identifies the database on which the savepoint is created. The
database can be identified by either:

db_name: Is a database identifier declared in a previous
DECLARE DATABASE statement.

host_variable: Is a host variable whose value is a previously
declared db_name.

If you omit this clause, the savepoint is created on your default
database.

savepoint Is the name of the savepoint to be created.

EXEC SQL

AT
db_name

: host_variable
SAVEPOINT savepoint

SELECT (Executable Embedded SQL)

F-76 Pro*C/C++ Programmer’s Guide

SELECT (Executable Embedded SQL)

Purpose
To retrieve data from one or more tables, views, or snapshots, assigning the selected
values to host variables.

Prerequisites
For you to select data from a table or snapshot, the table or snapshot must be in your
own schema or you must have SELECT privilege on the table or snapshot.

For you to select rows from the base tables of a view, the owner of the schema
containing the view must have SELECT privilege on the base tables. Also, if the view
is in a schema other than your own, you must have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also provides the ability to select data from
any table or any snapshot or any view's base table.

SELECT (Executable Embedded SQL)

Embedded SQL Statements and Directives F-77

Syntax

EXEC SQL

AT
db_name

: host_variable
SELECT select_list

INTO : host_variable

INDICATOR
: indicator_variable

,

FROM table_list

WHERE condition

START WITH condition
CONNECT BY condition

CONNECT BY condition
START WITH condition

GROUP BY expr

,
HAVING condition

WITH READ ONLY

WITH CHECK OPTION

UNION

UNION ALL

INTERSECT

MINUS

SELECT command

ORDER BY
expr

position

ASC

DESC

,

FOR UPDATE
OF

schema .
table .

view .

snapshot
column

,

NOWAIT

SELECT (Executable Embedded SQL)

F-78 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Usage Notes
If no rows meet the WHERE clause condition, no rows are retrieved and Oracle returns
an error code through the SQLCODE component of the SQLCA.

You can use Comments in a SELECT statement to pass instructions, or hints, to the
optimizer. The optimizer uses hints to choose an execution plan for the statement. For
more information on hints, see Oracle Database Performance Tuning Guide.

Example
This example illustrates the use of the embedded SQL SELECT statement:

Keywords and
Parameters Description

AT Identifies the database to which the SELECT statement is issued.
The database can be identified by either:

db_name: A database identifier declared in a previous DECLARE
DATABASE statement.

host_variable: Host variable whose value is a previously declared
db_name. If you omit this clause, the SELECT statement is
issued to your default database.

select_list Identical to the non-embedded SELECT statement except that a
host variables can be used in place of literals.

INTO Specifies output host variables and optional indicator variables
to receive the data returned by the SELECT statement. These
variables must be either all scalars or all arrays, but arrays need
not have the same size.

WHERE Restricts the rows returned to those for which the condition is
TRUE. See the syntax description of condition in Oracle Database
SQL Reference. The condition can contain host variables, but
cannot contain indicator variables. These host variables can be
either scalars or arrays.

All other keywords and parameters are identical to the
non-embedded SQL SELECT statement. ASC, ascending, is the
default for the ORDER BY clause.

ORDER BY
expr

position

ASC

DESC

,

FOR UPDATE
OF

schema .
table .

view .

snapshot
column

,

NOWAIT

SET DESCRIPTOR (Executable Embedded SQL)

Embedded SQL Statements and Directives F-79

EXEC SQL SELECT ename, sal + 100, job
 INTO :ename, :sal, :job
 FROM emp
 WHERE empno = :empno;

Related Topics
DECLARE CURSOR (Embedded SQL Directive) on page F-25.

DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

EXECUTE (Executable Embedded SQL) on page F-38.

FETCH (Executable Embedded SQL) on page F-42.

PREPARE (Executable Embedded SQL) on page F-70.

SET DESCRIPTOR (Executable Embedded SQL)

Purpose
Use this ANSI dynamic SQL statement to set information in the descriptor area from
host variables.

Prerequisites
Use after a DESCRIBE DESCRIPTOR statement.

Syntax

where item_name can be one of these choices:

EXEC SQL

FOR
integer

: array_size
SET DESCRIPTOR

GLOBAL

LOCAL

: descriptor_name

’descriptor name’

VALUE
: host_integer

integer
item_name = : host_var

,

COUNT =
: host_integer

integer

SET DESCRIPTOR (Executable Embedded SQL)

F-80 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Kewords and
Parameters Description

array_size

integer

Host variable containing the number of rows to be processed.

Number of rows to be processed. The array size clause can only
be used with DATA, RETURNED_LENGTH and INDICATOR
item names.

GLOBAL | LOCAL LOCAL (the default) means file scope, as opposed to GLOBAL,
which means application scope.

descriptor_name

'descriptor name'

Host variable containing the name of the allocated ANSI
descriptor.

Name of the allocated ANSI descriptor.

COUNT The number of input or output variables.

VALUE The position of the referenced host variable.

item_name See Table 14–6, " Descriptor Item Names for SET DESCRIPTOR"
on page 14-15, and Table 14–7, " Oracle Extensions to Descriptor
Item Names for SET DESCRIPTOR" on page 14-15 for lists of the
item_names, and their descriptions.

host_integer

integer

The host variables used to set the item or the COUNT or
VALUE.

An integer used to set the COUNT or VALUE.

host_var The host variables used to set the descriptor item.

TYPE

LENGTH

REF
INDICATOR

REF
DATA

CHARACTER_SET_NAME

REF
RETURNED_LENGTH

NATIONAL_CHARACTER

HOST_STRIDE_LENGTH

INDICATOR_STRIDE_LENGTH

RETURNED_LENGTH_STRIDE

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_NAME_LENGTH

USER_DEFINED_TYPE_SCHEMA

USER_DEFINED_TYPE_SCHEMA_LENGTH

TYPE (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-81

Usage Notes
Use DYNAMIC=ANSI precompiler option.

 Set CHARACTER_SET_NAME to UTF16 for client-side Unicode support.

See "SET DESCRIPTOR" on page F-7 for complete details, including tables of
descriptor item names.

Example
EXEC SQL SET DESCRIPTOR GLOBAL :mydescr COUNT = 3 ;

Related Topics
ALLOCATE DESCRIPTOR (Executable Embedded SQL) on page F-10.

DEALLOCATE DESCRIPTOR (Embedded SQL Statement) on page F-24.

DESCRIBE (Executable Embedded SQL Extension) on page F-34.

GET DESCRIPTOR (Executable Embedded SQL) on page F-47.

PREPARE (Executable Embedded SQL) on page F-70.

TYPE (Oracle Embedded SQL Directive)

Purpose
To perform user-defined type equivalencing, or to assign an external datatype to a whole
class of host variables by equivalencing the external datatype to a user-defined
datatype.

Prerequisites
The user-defined datatype must be previously declared in an embedded SQL program.

Syntax

Keywords and Parameters

REF Reference semantics are to be used. Can be used only with
RETURNED_LENGTH, DATA, and INDICATOR item names.

Must be used to set RETURNED_LENGTH.

Keywords and
Parameters Description

type Is the user-defined datatype to be equivalenced with an external
datatype.

Kewords and
Parameters Description

EXEC SQL TYPE type IS datatype
REFERENCE

UPDATE (Executable Embedded SQL)

F-82 Pro*C/C++ Programmer’s Guide

Usage Notes
User-defined type equivalencing is one kind of datatype equivalencing. You can only
perform user-defined type equivalencing with the embedded SQL TYPE statement in a
Pro*C/C++ program. You may want to use datatype equivalencing for one of the
following purposes:

■ To automatically null-terminate a character host variable

■ To store program data as binary data in the database

■ To override default datatype conversion

Pro*C/C++ expects VARCHAR and VARRAW arrays to be word-aligned. When you
equivalence an array type to the VARCHAR or VARRAW datatype, make sure that
length+2 is divisible by 4.

Pro*C/C++ also supports the embedded SQL VAR statement for host variable
equivalencing. For more information, see "User-Defined Type Equivalencing" on
page 5-10.

Example I
This example shows an embedded SQL TYPE statement in a Pro*C/C++ Precompiler
program:

struct screen {
 short len;
 char buff[4002];
};

typedef struct screen graphics;

 EXEC SQL TYPE graphics IS VARRAW(4002);
 graphics crt; -- host variable of type graphics
 ...

Related Topics
VAR (Oracle Embedded SQL Directive) on page F-85.

UPDATE (Executable Embedded SQL)

Purpose
To change existing values in a table or in a view's base table.

datatype Is an external datatype recognized by the precompiler (not an
internal datatype). The datatype may include a length, precision,
or scale. This external datatype is equivalenced to the
user-defined type and assigned to all host variables assigned the
type. For a list of external datatypes, see "Oracle Datatypes" on
page 4-1.

REFERENCE Makes the equivalenced type a pointer type.

Keywords and
Parameters Description

UPDATE (Executable Embedded SQL)

Embedded SQL Statements and Directives F-83

Prerequisites
For you to update values in a table or snapshot, the table must be in your own schema
or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the schema
containing the view must have UPDATE privilege on the base table. Also, if the view
is in a schema other than your own, you must have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also provides the ability to update values
in any table or any view's base table.

Syntax

where the DML returning clause is:

EXEC SQL

AT
dbname

: host_variable
FOR

: host_integer

integer

UPDATE

(subquery)

schema . table

view

@ db_link

PARTITION (part_name)

SET

column =
expr

(subquery_2)

(column

,

) = (subquery_1)

,

WHERE
condition

CURRENT OF cursor DML.RETURNING.CLAUSE

RETURN

RETURNING
expr

,

INTO : host_variable

INDICATOR
: ind_variable

,

UPDATE (Executable Embedded SQL)

F-84 Pro*C/C++ Programmer’s Guide

Keywords and Parameters

Keywords and
Parameters Description

AT Identifies the database to which the UPDATE statement is
issued. The database can be identified by either:

dbname: Is a database identifier declared in a previous DECLARE
DATABASE statement.

host_variable: Is a host variable whose value is a previously
declared db_name.

If you omit this clause, the UPDATE statement is issued to your
default database.

FOR :host_integer

integer

Limits the number of times the UPDATE statement is executed if
the SET and WHERE clauses contain array host variables. If you
omit this clause, Oracle executes the statement once for each
component of the smallest array.

schema Is the schema containing the table or view. If you omit schema,
Oracle assumes the table or view is in your own schema.

table, view Is the name of the table to be updated. If you specify view,
Oracle updates the view's base table.

dblink Is a complete or partial name of a database link to a remote
database where the table or view is located. For information on
referring to database links, see the Oracle Database SQL
ReferenceYou can only use a database link to update a remote
table or view if you are using Oracle with the distributed option.

part_name Name of a partition of the table.

column Is the name of a column of the table or view that is to be
updated. If you omit a column of the table from the SET clause,
that column's value remains unchanged.

expr Is the new value assigned to the corresponding column. This
expression can contain host variables and optional indicator
variables. See the syntax of expr in the Oracle Database SQL
Reference.

subquery_1 Is a subquery that returns new values that are assigned to the
corresponding columns. For the syntax of a subquery, see
"SELECT" in Oracle Database SQL Reference.

subquery_2 Is a subquery that return a new value that is assigned to the
corresponding column. For the syntax of a subquery, see
"SELECT" in the Oracle Database SQL Reference.

WHERE Specifies which rows of the table or view are updated:

condition

CURRENT OF

Updates only rows for which this condition is true. This
condition can contain host variables and optional indicator
variables. See the syntax of condition in the Oracle Database SQL
Reference.

Updates only the row most recently fetched by the cursor. The
cursor cannot be associated with a SELECT statement that
performs a join unless its FOR UPDATE clause explicitly locks
only one table.

If you omit this clause entirely, all rows of the table or view are
updated.

DML returning clause See "The DML Returning Clause" on page 6-8.

VAR (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-85

Usage Notes
Host variables in the SET and WHERE clauses must be either all scalars or all arrays. If
they are scalars, Oracle executes the UPDATE statement only once. If they are arrays,
Oracle executes the statement once for each set of array components. Each execution
may update zero, one, or multiple rows.

Array host variables can have different sizes. In this case, the number of times Oracle
executes the statement is determined by the smaller of the following values:

■ The size of the smallest array

■ The value of the :host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third element of the
SQLERRD component of the SQLCA. When arrays are used as input host variables,
this count reflects the total number of updates for all components of the array
processed in the UPDATE statement. If no rows satisfy the condition, no rows are
updated and Oracle returns an error message through the SQLCODE element of the
SQLCA. If you omit the WHERE clause, all rows are updated and Oracle raises a
warning flag in the fifth component of the SQLWARN element of the SQLCA.

You can use Comments in an UPDATE statement to pass instructions, or hints, to the
optimizer. The optimizer uses hints to choose an execution plan for the statement. For
more information on hints, see Oracle Database Performance Tuning Guide.

For more information on this statement, see Chapter 6, "Embedded SQL", and
Chapter 3, "Database Concepts".

Examples
The following examples illustrate the use of the embedded SQL UPDATE statement:

EXEC SQL UPDATE emp
 SET sal = :sal, comm = :comm INDICATOR :comm_ind
 WHERE ename = :ename;

EXEC SQL UPDATE emp
 SET (sal, comm) =
 (SELECT AVG(sal)*1.1, AVG(comm)*1.1
 FROM emp)
 WHERE ename = 'JONES';

Related Topics
DECLARE DATABASE (Oracle Embedded SQL Directive) on page F-27.

VAR (Oracle Embedded SQL Directive)

Purpose
To perform host variable equivalencing, or to assign a specific external datatype to an
individual host variable, overriding the default datatype assignment. Also has an
optional CONVBUFSZ clause that specifies the size of a buffer for character set
conversion.

Prerequisites
The host variable must be previously declared in the Pro*C/C++ program.

VAR (Oracle Embedded SQL Directive)

F-86 Pro*C/C++ Programmer’s Guide

Syntax

Keywords and Parameters

Keywords and
Parameters Description

host_variable Is an input or output host variable (or host table) declared
earlier.

The VARCHAR and VARRAW external datatypes have a 2-byte
length field followed by an n-byte data field, where n lies in the
range 1 .. 65533. So, if type_name is VARCHAR or VARRAW,
host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes
have a 4-byte length field followed by an n-byte data field,
where n lies in the range 1 .. 2147483643. So, if type_name is
LONG VARCHAR or LONG VARRAW, host_variable must be at
least 5 bytes long.

dtyp Is an external datatype recognized by Pro*C/C++ (not an
internal datatype). The datatype may include a length, precision,
or scale. This external datatype is assigned to the host_variable.
For a list of external datatypes, see "External Datatypes" on
page 4-2.

length Length of the datatype. It is a constant expression or a constant
integer specifying a valid length in bytes. The value of length
must be large enough to accommodate the external datatype.

 When type_name is ROWID or DATE, you cannot specify length
because it is predefined. For other external datatypes, length is
optional. It defaults to the length of host_variable.

When specifying length, if type_name is VARCHAR, VARRAW,
LONG VARCHAR, or LONG VARRAW, use the maximum
length of the data field. Pro*C/C++ accounts for the length field.
If type_name is LONG VARCHAR or LONG VARRAW and the
data field exceeds 65533 bytes, put "-1" in the length field.

EXEC SQL VAR host_variable

IS dtyp

(
length

precision , scale
)

CONVBUFSZ
IS

(size)

CONVBUFSZ
IS

(size)

VAR (Oracle Embedded SQL Directive)

Embedded SQL Statements and Directives F-87

Usage Notes
length, precision, scale and size can be constant expressions.

Host variable equivalencing is one kind of datatype equivalencing. Datatype
equivalencing is useful for any of the following purposes:

■ To automatically null-terminate a character host variable

■ To store program data as binary data in the database

■ To override default datatype conversion

Note that size, length, precision and scale can be any arbitrarily complex C constant
expression whose value is known when the precompiler is run.

For example:

#define LENGTH 10
...
char character set is nchar_cs ename[LENGTH+1];
exec sql var ename is string(LENGTH+1) convbufsz is (LENGTH*2);

Note also that macros are permitted in this statement.

When you have not used the CONVBUFSZ clause, the Oracle runtime automatically
determines a buffer size based on the ratio of the host variable character size
(determined by NLS_LANG) and the character size of the database character set. This
can sometimes result in the creation of a buffer of LONG size. Database tables are
allowed to have only one LONG column. An error is raised if there is more than one
LONG value.

To avoid such errors, you use a length shorter than the size of a LONG. If a character
set conversion results in a value longer than the length specified by CONVBUFSZ,
then an error is returned at runtime. The Pro*C/C++ Precompiler also supports the
precompiler TYPE directive for user-defined type equivalencing. See also "Host
Variable Equivalencing" on page 5-9.

precision and scale Are constant expressions or constants that represent,
respectively, the number of significant digits and the point at
which rounding will occur. For example, a scale of 2 means the
value is rounded to the nearest hundredth (3.456 becomes 3.46);
a scale of -3 means the number is rounded to the nearest
thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99.
However, the maximum precision and scale of a database
column are 38 and 127, respectively. So, if precision exceeds 38,
you cannot insert the value of host_variable into a database
column. On the other hand, if the scale of a column value
exceeds 99, you cannot select or fetch the value into host_variable.

size The size, in bytes, of a buffer used to perform conversion of the
specified host_variable to another character set. A constant or
constant expression.

Is the size in bytes of a buffer in the runtime library used to
perform conversion between character sets of the host_variable

Keywords and
Parameters Description

WHENEVER (Embedded SQL Directive)

F-88 Pro*C/C++ Programmer’s Guide

Example
This example equivalences the host variable DEPT_NAME to the datatype STRING
and the host variable BUFFER to the datatype RAW(200):

EXEC SQL BEGIN DECLARE SECTION;
 ...
 char dept_name[15]; -- default datatype is CHAR
 EXEC SQL VAR dept_name IS STRING; -- reset to STRING
 ...
 char buffer[200]; -- default datatype is CHAR
 EXEC SQL VAR buffer IS RAW(200); -- refer to RAW
 ...
EXEC SQL END DECLARE SECTION;

Related Topics
TYPE (Oracle Embedded SQL Directive) on page F-81.

WHENEVER (Embedded SQL Directive)

Purpose
To specify the action to be taken when an error or warning results from executing an
embedded SQL statement.

Prerequisites
None.

Syntax

Keywords and Parameters

Keywords and
Parameters Description

NOT FOUND Identifies any exception condition that returns an error code of
+1403 to SQLCODE (or a +100 code when MODE=ANSI).

SQLERROR Identifies a condition that results in a negative return code.

SQLWARNING Identifies a non-fatal warning condition.

CONTINUE Indicates that the program should progress to the next
statement.

GOTO label Indicates that the program should branch to the statement
named by label.

EXEC SQL WHENEVER

NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO label

STOP

DO routine

DO BREAK

DO CONTINUE

WHENEVER (Embedded SQL Directive)

Embedded SQL Statements and Directives F-89

Usage Notes
The WHENEVER directive allows your program to transfer control to an error
handling routine in the event an embedded SQ

L statement results in an error or warning.

The scope of a WHENEVER directive is positional, rather than logical. A WHENEVER
statement applies to all embedded SQL statements that textually follow it in the source
file, not in the flow of the program logic. A WHENEVER directive remains in effect
until it is superseded by another WHENEVER directive checking for the same
condition.

For more information on this directive, see "Using the WHENEVER Directive" on
page 9-18.

 Do not confuse the WHENEVER embedded SQL directive with the WHENEVER
SQL*Plus command.

Examples
The following two examples illustrates the uses of the WHENEVER directive in an
embedded SQL program:

Example 1:

EXEC SQL WHENEVER NOT FOUND CONTINUE;
...
EXEC SQL WHENEVER SQLERROR GOTO sql_error;
...
sql_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;
...

Example 2:

EXEC SQL WHENEVER SQLERROR GOTO connect_error;
...
connect_error:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;
 printf("\nInvalid username/password\n");
 exit(1);

Related Topics
None

STOP Stops program execution.

DO routine Indicates that the program should call a function that is named
routine

DO BREAK Performs a break statement from a loop when the condition is
met.

DO CONTINUE Performs a continue statement from a loop when the condition is
met.

Keywords and
Parameters Description

WHENEVER (Embedded SQL Directive)

F-90 Pro*C/C++ Programmer’s Guide

Index-1

Index

Symbols
#include

file inclusion, Pro*C compared to C, 5-22

A
abnormal termination

automatic rollback, F-18
active set

changing, 6-10, 6-11
cursor movement through, 6-11
definition of, 2-5
how identified, 6-9
if empty, 6-11
when fetched from, 6-11
when no longer defined, 6-9

ALLOCATE
allocating a cursor variable, 4-22

ALLOCATE DESCRIPTOR statement, 14-10, F-10
ALLOCATE SQL statement, 17-4
ALLOCATE SQL statements, F-9
allocating

cursor variables, 4-22
cursors, F-9
thread context, 11-6, F-20

ANSI C Support, E-1
ANSI dynamic SQL, A-3

reference semantics, 14-6
See also dynamic SQL (ANSI), 14-1

application development process, 2-6
array of structs, 8-15, A-1
ARRAYLEN statement, 7-12
arrays

batch fetch, 8-4
bulk operations (ANSI dynamic SQL), 14-6
chapter discusses how to use, 8-1
definition of, 4-32
host arrays, 2-5
operations, 2-5
varying length, 18-2

associative interface, 17-4
when to use, 17-4

AT clause
in CONNECT statement, 3-7
in DECLARE CURSOR statement, 3-8

in DECLARE STATEMENT statement, 3-8
in EXECUTE IMMEDIATE statement, 3-8
of COMMIT statement, F-18, F-26
of EXECUTE IMMEDIATE statement, F-42
of EXECUTE statement, F-37
of INSERT statement, F-50
of SAVEPOINT statement, F-75
of SELECT statement, F-78
of SROLLBACK statement, F-73
of UPDATE statement, F-84
restriction on, 3-8
use of, 3-8

attributes of a collection
descriptions, 18-11

AUTO_CONNECT, 10-8
precompiler option, 3-4

AUTO_CONNECT precompiler option, 10-8
automatic connections, 3-3, 3-6

B
batch fetch

advantage of, 8-4
example of, 8-4
number of rows returned by, 8-5

BFILES, 16-2
security, 16-2

bind descriptor, 13-19, 15-4
definition of, 13-19
information in, 13-20

bind SQLDA
purpose of, 15-2

bind variables
input host variables, 13-19

binding
definition of, 13-3

BREAK action
of WHENEVER, F-89

Byte Ordering, E-2

C
C preprocessor

directives supported by Pro*C, 5-21
how used in Pro*C, 5-21

C structs

Index-2

generating for a REF, 17-34
using, 17-33

C types of collection attributes, 18-11
C variable in SQLDA

how value is set, 15-8
purpose of, 15-8

C++, 1-6
C++ applications, 12-1
cache, 17-4
CACHE FREE ALL SQL statement, 17-5
CACHE FREE ALL statement, F-11
CALL SQL statement, F-12
CALL statement, 7-20, A-2

example, 7-21
Calling Java from PL/SQL, A-4
CASE OTT parameter, 19-24
case sensitivity

in precompiler options, 10-2
CHAR datatype, 4-7
CHAR_MAP precompiler option, 5-1, 10-9, A-2
character data, 5-1
character strings

multibyte, 4-41
CHARF datatype, 4-8, 5-11
CHARZ datatype, 4-8
CLOSE CURSOR statement, 14-21
CLOSE SQL statements, F-13
CLOSE statement

dependence on precompiler options, 6-12
example, 6-12, F-13
purpose of, 6-9, 6-12
use in dynamic SQL method 4, 15-30

CLOSE_ON_COMMIT
precompiler option, 10-9, A-4

closing
cursors, F-13

CODE
precompiler option, 12-2

CODE OTT parameter, 19-23
code page, 4-39
CODE precompiler option, 10-10
coding conventions, 2-7
COLLECT GET statement

example, 18-14
COLLECTION APPEND, F-14
COLLECTION APPEND statement, 18-9

SQL statements
COLLECTION APPEND, F-14

COLLECTION DESCRIBE
example, 18-15

COLLECTION DESCRIBE statement, 18-10
SQL statements

COLLECTION DESCRIBE, F-14
COLLECTION GET statement, 18-6

SQL statements
COLLECTION GET, F-15

collection object types
handling, 18-3

COLLECTION RESET statement, 18-8
example, 18-16

SQL statements
COLLECTION RESET, F-16

COLLECTION SET statement, 18-7
example, 18-14
SQL statements

COLLECTION SET, F-16
COLLECTION TRIM statement, 18-10

SQL statements
COLLECTION TRIM, F-17

collection types
structs for, 18-2

collections, A-3
and C, 18-2
autonomous access, 18-3
descriptors, 18-2
element access, 18-3
manipulating, 18-3
nested tables, 18-1
OBJECT GET statement, 18-4
OBJECT SET statement, 18-4
VARRAYs, 18-2

column list
in INSERT statements, 6-7
when permissible to omit, 6-7

COMMENT clause
of COMMIT statement, F-18

Comments
restrictions in PL/SQL block, 13-23

comments
ANSI, 2-7
which allowed, 2-7

commit
automatic, 3-13
explicit versus implicit, 3-13
function of, 3-12

COMMIT SQL statement, F-17
COMMIT statement, 3-13

effect of, 3-13
ending a transaction, F-73
example of, 3-13
examples, F-19
purpose of, 3-13
RELEASE option in, 3-13
using in a PL/SQL block, 3-20
where to place, 3-13

committing
transactions, F-17

communicating over a network, 3-4
COMP_CHARSET precompiler option, 10-11
compiling, 2-13

specifying include file locations, 5-26
concurrency

definition of, 3-11
concurrent connections, 3-5
conditional precompilation, 2-11

defining symbols, 5-32
example, 2-12, 5-33

CONFIG OTT parameter, 19-24
CONFIG precompiler option, 10-11
configuration files, 10-2

Index-3

and the Object Type Translator, 19-3
location, 10-3
system, 10-3
user, 10-3

CONNECT statement, F-19
AT clause in, 3-7
connecting to Oracle with, 3-1
examples, F-20
requirements for, 3-2
USING clause in, 3-7
using to enable a semantic check, D-3

connecting to Oracle, 3-1
automatic connections, 3-3
concurrently, 3-5
example of, 3-2
using Oracle Net, 3-5

connection pooling, 11-15
demo program1, 11-18
demo program2, 11-23
example, 11-25
using, 11-16

connections
concurrent, 3-9
default versus nondefault, 3-6
Explicit connections, 3-6
implicit, 3-10
naming of, 3-6

const
declaring constants, 5-34

CONTEXT ALLOCATE SQL statement, F-20
CONTEXT ALLOCATE statement, 11-6
context block

definition of, 20-3
CONTEXT FREE statement, 11-7, F-21
CONTEXT OBJECT OPTION GET SQL

statement, 17-15
CONTEXT OBJECT OPTION SET SQL

statement, 17-15
CONTEXT USE directive, 11-6
CONTEXT USE SQL directive, F-23
CONTEXT USE SQL statement, 11-6
CONTINUE action

in the WHENEVER statement, 9-19
of WHENEVER directive, F-88, F-89
result of, 9-19

CONVBUFSZ clause, 4-40
CPP_SUFFIX

precompiler option, 12-4
CPP_SUFFIX precompiler option, 10-12
CPP_SUFFIX precompiler options, 10-12
CREATE PROCEDURE statement

embedded, 7-15
creating

savepoints, F-75
creating temporary LOB, 16-11
CURRENT OF clause, 8-3

example of, 6-15
mimicking with ROWID, 3-19, 8-23
purpose of, 6-15
restrictions on, 6-16

current row
definition of, 2-5
using FETCH to retrieve, 6-9

cursor cache
definition of, 9-29
purpose of, C-7

cursor control statements
example of typical sequence, 6-16

cursor operations
overview of, 6-9

cursor variables, 4-21, F-9
allocating, 4-22
declaring, 4-21
restrictions on, 4-26

cursors, 2-12, 4-21
allocating, F-9
allocating a cursor variable, 4-22
analogy for, 2-5
association with queries, 6-9
closing, F-13
declaring, 6-9
definition of, 2-5
explicit versus implicit, 2-5
fetching rows from, F-42, F-44
for multirow queries, 6-9
how handling affects performance, C-5
movement through active set, 6-11
opening, F-67, F-69
purpose of, 6-9
reopening, 6-10, 6-11
restrictions on declaring, 6-10
rules for naming, 6-10
scope of, 6-10
scrollable cursors, 6-12
statements for manipulating, 6-9
types of, 2-5
using more than one, 6-10

D
data definition language

in transactions, 3-13
data integrity, 3-10

definition of, 3-11
data locks, 3-12
database link

creating synonym for, 3-11
defining, 3-10
example using, 3-10
using in INSERT statement, F-51
where stored, 3-10

database types
new, 17-36

databases
naming, 3-6

datatype equivalencing, 2-5
datatypes

ANSI DATE, 4-9
codes used in descriptors, 15-12
coercing NUMBER to VARCHAR2, 15-12

Index-4

conversions, 5-9
dealing with ORACLE internal, 15-11
equivalencing, 5-9
equivalencing, purpose of, 2-5
internal, 4-1
internal versus external, 2-4
INTERVAL DAY TO SECOND, 4-10
INTERVAL YEAR TO MONTH, 4-10
list of internal, 15-9
need to coerce, 15-11
Oracle, 2-4
OTT mappings, 19-7
restrictions on using, 17-38
TIMESTAMP, 4-9
TIMESTAMP WITH LOCAL TIME ZONE, 4-9
TIMESTAMP WITH TIME ZONE, 4-9
user-defined type equivalencing, F-81
when to reset, 15-11

DATE datatype, 4-6
DATE, ANSI

datatype, 4-9
datetime

avoiding unexpected results, 4-10
DBMS interaction with MODE, 10-13
DBMS option, 5-11
DBMS precompiler option, 10-12
deadlock

definition of, 3-12
effect on transactions, 3-16
how broken, 3-16

DEALLOCATE DESCRIPTOR statement, 14-10, F-24
declaration

of cursors, 6-9
of host arrays, 8-1
of pointer variables, 4-36
of SQLCA, 9-12

declarative SQL statements
in transactions, 3-12

DECLARE CURSOR directives
examples, F-26

DECLARE CURSOR statement, 14-19
AT clause in, 3-8
use in dynamic SQL method 4, 15-20

DECLARE DATABASE SQL directives, F-27
Declare Section

allowable statements, 2-8
form, 2-8
purpose, 2-8
required when MODE=ANSI, 10-24
requirements, 2-8
rules for defining, 2-8
when MODE=ANSI, 5-11
when required, 2-8, 4-10

DECLARE statement, 6-10
example of, 6-9
purpose of, 6-9
required placement of, 6-10
scope of, F-28
use in dynamic SQL method 3, 13-15

DECLARE STATEMENT directive, F-28

DECLARE STATEMENT statement
AT clause in, 3-8
example of using, 13-22
using with dynamic SQL, 13-21
when required, 13-22

DECLARE statements
examples, F-28

DECLARE TABLE directive
examples, F-30
using with the SQLCHECK option, D-3

DECLARE TABLE SQL directive, F-29
DECLARE TABLE statement

need for with AT clause, 3-7
DECLARE TYPE directive, F-30
DEF_SQLCODE precompiler option, 10-13
default connections, 3-6
default database, 3-5
default file name extensions, 19-31
DEFINE precompiler option, 10-14

used in application migration, 5-27
defining symbols, 2-11
DELETE SQL statement, F-31
DELETE statement

embedded SQL examples, F-33
example of, 6-8
purpose of, 6-8
using host arrays in, 8-13
WHERE clause in, 6-8

delimiters
C versus SQL, 2-8

DEPT table, 2-13
DESCRIBE BIND VARIABLES statement

use in dynamic SQL method 4, 15-20
DESCRIBE command

use with PREPARE command, F-34
DESCRIBE DESCRIPTOR statement, F-35
DESCRIBE INPUT statement, 14-17
DESCRIBE OUTPUT statement, 14-17
DESCRIBE SELECT LIST statement

use in dynamic SQL method 4, 15-24
DESCRIBE SQL statement, F-34
DESCRIBE statement

examples, F-35
use in dynamic SQL Method 4, 13-19

descriptions of collection attributes, 18-11
descriptors, 15-3

bind descriptor, 13-19
definition of, 13-19
need for, 15-3
select descriptor, 13-19
using the sqlald() function to allocate, 15-4
using the sqlclu() function to deallocate, 15-30

determining current value of precompiler
options, 10-3

distributed processing
support for, 3-5
using Oracle Net for, 3-5

distributed transactions, F-74
DML Returning Clause, A-4
DML returning clauses, 6-8

Index-5

DO action
in the WHENEVER statement, 9-19
of WHENEVER directive, F-89
result of, 9-19

DTP model, 5-42
dummy host variables

placeholders, 13-3
DURATION precompiler option, 10-15, 17-16
dynamic PL/SQL

rules for, 13-22
versus dynamic SQL, 13-22

dynamic SQL
advantages and disadvantages of, 13-2
cannot use cursor variables with, 4-26
choosing the right method, 13-5
definition of, 2-3
guidelines for, 13-4
overview of, 13-1
restriction on, 6-16
restrictions on use of datatypes, 17-38
restrictions on using datatypes in, 17-38
use of PL/SQL with, 7-24
uses for, 13-2
using the AT clause in, 3-8
when to use, 13-2

dynamic SQL (ANSI)
basics, 14-1
bulk operations, 14-6
differences from Oracle dynamic, 14-21
Oracle extensions, 14-5
Overview, 14-2
Precompiler Options, 14-2
precompiler options, 14-8
reference semantics, 14-6
sample program, 14-28
sample programs, 14-22

dynamic SQL method 1
commands used with, 13-4
description of, 13-6
example of, 13-7
how to use, 13-6
requirements for, 13-4
use of EXECUTE IMMEDIATE with, 13-6
use of PL/SQL with, 13-23

dynamic SQL method 2
commands used with, 13-4
description of, 13-10
example of, 13-11
requirements for, 13-4
use of DECLARE STATEMENT with, 13-21
use of EXECUTE with, 13-10
use of PL/SQL with, 13-23
use of PREPARE with, 13-10

dynamic SQL method 3
commands used with, 13-4
compared to method 2, 13-14
example program, 13-16
requirements for, 13-4
sequence of statements used with, 13-14
use of DECLARE STATEMENT with, 13-21

use of DECLARE with, 13-15
use of FETCH with, 13-15
use of OPEN with, 13-15
use of PL/SQL with, 13-23
use of PREPARE with, 13-14

dynamic SQL method 4
need for descriptors with, 15-3
overview of, 13-19
prerequisites for using, 15-9
requirements for, 13-4
requirements of, 15-2
sample program, 15-32
sequence of statements used with, 13-21, 15-15
steps for, 15-15
use of CLOSE statement in, 15-30
use of DECLARE CURSOR statement in, 15-20
use of DECLARE STATEMENT with, 13-21
use of DESCR, 13-19
use of DESCRIBE statement in, 15-20, 15-24
use of descriptors with, 13-19
use of FETCH statement in, 15-27
use of OPEN statement in, 15-23
use of PL/SQL with, 13-23
use of PREPARE statement in, 15-19
use of the SQLDA in, 13-19, 15-3
using host arrays with, 15-30
using the FOR clause with, 13-22, 15-30
when needed, 13-19

dynamic SQL methods
overview of, 13-3

dynamic SQL statements
binding of host variables in, 13-3
definition of, 13-2
requirements for, 13-2
use of placeholders in, 13-3
using host arrays in, 13-22
versus static SQL statements, 13-2

E
embedded PL/SQL

advantages of, 7-1
cursor FOR loop, 7-2
example of, 7-5, 7-6
overview of, 2-4
packages, 7-3
PL/SQL tables, 7-3
procedures and functions, 7-2
requirements for, 7-5
SQLCHECK option, 7-5
support for SQL, 2-4
user-defined records, 7-4
using %TYPE, 7-2
using the VARCHAR pseudotype with, 7-8
using to improve performance, C-2
where allowed, 7-4

embedded SQL
ALLOCATE statement, F-9
CLOSE statement, F-13
CONTEXT ALLOCATE statement, 11-6, F-20

Index-6

CONTEXT FREE statement, 11-7
definition of, 2-1
difference from interactive SQL, 2-3
ENABLE THREADS statement, 11-6
EXEC SQL CACHE FREE ALL, 17-5
EXECUTE statement, F-37
key concepts of, 2-1
mixing with host-language statements, 2-3
OPEN statement, F-67
overview of, 2-1
PREPARE statement, F-70
requirements for, 2-3
SAVEPOINT statement, F-75
SELECT statement, F-76
syntax for, 2-3
testing with SQL*Plus, 1-3
TYPE directive, F-81
UPDATE statement, F-82
using OCI types in, 17-35
using REFs in, 17-34
VAR directive, F-85
when to use, 1-3
WHENEVER directive, F-88

embedded SQL statements
labels for, 9-20
referencing host arrays in, 8-2
referencing host variables in, 4-13
suffixes and prefixes not allowed, 2-8
terminator for, 2-11
use of apostrophes in, 2-8
use of quotation marks in, 2-9

embedding
PL/SQL blocks in precompiler programs, F-37

EMP table, 2-13
ENABLE THREADS SQL statement, F-36
ENABLE THREADS statement, 11-6
enabling

threads, 11-6
encoding scheme (character set or code page), 4-39
enqueues

locking, 3-11
entering options, 5-23, 10-7
equivalencing

host variable equivalencing, F-85
user-defined type equivalencing, F-81

equivalencing of datatypes
datatype equivalencing, 2-5

error detection
error reporting, F-89

error handling, 2-6
alternatives, 9-1
need for, 9-1
overview of, 2-6
SQLCA versus WHENEVER statement, 9-2
use of ROLLBACK statement in, 3-16

error messages
maximum length of, 9-18
use in error reporting, 9-12
using the sqlglm() function to get, 9-17
where available in SQLCA, 9-12

error reporting
key components of, 9-11
use of error messages in, 9-12
use of parse error offset in, 9-11
use of rows-processed count in, 9-11
use of warning flags in, 9-11
WHENEVER directive, F-89

ERRORS precompiler option, 10-15
ERRTYPE

precompiler option, 10-16
ERRTYPE OTT parameter, 19-24
ERRTYPE precompiler option, 17-17
exception, PL/SQL

definition of, 7-10
EXEC ORACLE DEFINE statement, 5-32
EXEC ORACLE ELSE statement, 2-11, 5-32
EXEC ORACLE ENDIF statement, 2-11, 5-32
EXEC ORACLE IFDEF statement, 2-11, 5-32
EXEC ORACLE IFNDEF statement, 2-11, 5-32
EXEC ORACLE OPTION statement

set option values inline, 10-7
EXEC ORACLE statement

scope of, 10-8
syntax for, 10-7
uses for, 10-7

EXEC ORACLE statements, 2-11
EXEC SQL CACHE FREE statement, 17-5
EXEC SQL clause

using to embed SQL, 2-3
EXEC SQL INCLUDE

contrasted with #include, 5-26
EXEC SQL VAR statement

CONVBUFSZ clause, 4-40
EXEC TOOLS

GET CONTEXT statement, 20-12
GET statement, 20-12
MESSAGE statement, 20-13
SET CONTEXT statement, 20-12
SET statement, 20-11

EXEC TOOLS statements, 20-11
executable SQL statements

purpose of, 6-5
uses for, 2-2
where allowed, 2-2

EXECUTE ... END-EXEC SQL statement, F-37
EXECUTE DESCRIPTOR statement

SQL statements
EXECUTE DESCRIPTOR, F-40

EXECUTE IMMEDIATE SQL statement, F-41
EXECUTE IMMEDIATE statement, 14-19

AT clause in, 3-8
examples, F-42
use in dynamic SQL method 1, 13-6

EXECUTE optional keyword of ARRAYLEN
statement, 7-13

EXECUTE SQL statement, F-38
EXECUTE statement, 14-18

examples, F-38, F-39
use in dynamic SQL method 2, 13-10

execution of statements, 13-3

Index-7

execution plan, C-3, C-4
EXPLAIN PLAN statement

function of, C-4
using to improve performance, C-4

explicit connections, 3-6
description of, 3-6
multiple, 3-9
single, 3-6

extensions
default file name, 19-31

external datatypes
definition of, 2-5
FLOAT, 4-4
INTEGER, 4-4
STRING, 4-5

external procedures, A-4
callbacks, 7-22
calling from PL/SQL, 7-22
creating, 7-23
error-handling, 7-24
restrictions, 7-22

F
F variable in SQLDA

how value is set, 15-8
purpose of, 15-8

FAQs, 1-5
features

new, xxxix
features,new, xxxix
FETCH DESCRIPTOR SQL statement, F-44
FETCH SQL statement, F-42
FETCH statement, 14-20

example of, 6-11
examples, F-44
INTO clause in, 6-11
purpose of, 6-9, 6-11
results of, 6-11
use in dynamic SQL method 3, 13-15
use in dynamic SQL method 4, 15-27
used after OPEN command, F-70
used after OPEN statement, F-68

fetching
rows from cursors, F-42, F-44

fetching in batches
batch fetch, 8-4

FIPS flagger
warns of array usage, 8-3
warns of missing Declare Section, 4-10
warns of use of pointers as host variables, 5-5

FIPS precompiler option, 10-16
flags

warning flags, 9-11
FLOAT datatype, 4-4
FOR clause

example of using, 8-14
of embedded SQL EXECUTE DESCRIPTOR

statement, F-40
of embedded SQL EXECUTE statement, F-39

purpose of, 8-14
requirements for, 8-14
restrictions on, 8-14
using in dynamic SQL method 4, 15-30
using with host arrays, 8-14
when variable negative or zero, 8-14

FOR UPDATE OF clause
locking rows with, 3-18
purpose of, 3-18
when to use, 3-18

FORCE clause
of COMMIT statement, F-18
of ROLLBACK statement, F-73

forward references
why not allowed, 6-10

FREE SQL statement, 17-5, F-46
free() function, 15-29

example of using, 15-29
freeing

thread context, 11-7, F-21
Frequently Asked Questions, 1-5
full scan

description of, C-4
function prototype

definition of, 10-10
functions

cannot serve as host variables, 4-13

G
GENXTB form

how to run, 20-9
use with user exits, 20-9

GENXTB utility
how to run, 20-10
use with user exits, 20-10

GET DESCRIPTOR statement, 14-11
Globalization Support, 4-38, A-2
GOTO action

in the WHENEVER statement, 9-20
of WHENEVER directive, F-88
result of, 9-20

guidelines
for dynamic SQL, 13-4
for separate precompilations, 2-12
for the WHENEVER statement, 9-22
for transactions, 3-20
for user exits, 20-10

H
HEADER precompiler option, 5-27, 10-17
heap

definition of, 9-29
HFILE OTT parameter, 19-24
hints

COST, C-4
for the ORACLE SQL statement optimizer, 6-14
in DELETE statements, F-33
in SELECT statements, F-78

Index-8

in UPDATE statements, F-85
HOLD_CURSOR

precompiler option
used to improved performance, C-8
what it affects, C-5

HOLD_CURSOR option
of ORACLE Precompilers, F-13

HOLD_CURSOR precompiler option, 10-17
host arrays

advantages of, 8-1
declaring, 8-1
dimensioning, 8-1
in the DELETE statement, 8-13
in the INSERT statement, 8-11
in the SELECT statement, 8-4
in the UPDATE statement, 8-12
in the WHERE clause, 8-15
matching sizes of, 8-2
referencing, 8-2
restrictions on, 8-3, 8-10, 8-11, 8-12, 8-13
used as input host variables, 8-2
used as output host variables, 8-2
using in dynamic SQL method 4, 15-30
using in dynamic SQL statements, 13-22
using the FOR clause with, 8-14
using to improve performance, C-2
when not allowed, 8-2

host language
definition of, 2-1, 2-2

host program
definition of, 2-1

host structures
arrays in, 4-32
declaring, 4-31

host variables, 6-1
assigning values to, 2-4
declarations, 18-3
declaring, 2-8, 18-3
definition of, 2-4
dummy, 13-3
host variable equivalencing, F-85
in EXECUTE statement, F-39
in OPEN statement, F-68
in user exits, 20-3
input versus output, 6-1
must resolve to an address, 4-13
overview of, 2-4
purpose of, 6-1
restrictions on, 4-13
rules for naming, 2-10
using in PL/SQL, 7-5

I
I variable in SQLDA

how value is set, 15-7
purpose of, 15-7

IAF GET statement
example of using, 20-4
in user exits, 20-3

purpose of, 20-3
specifying block and field names in, 20-4
syntax for, 20-3

IAF PUT statement
example of using, 20-5
in user exits, 20-4
purpose of, 20-4
specifying block and field names in, 20-5
syntax for, 20-4

IAP in SQL*Forms
purpose of, 20-10

identifiers, ORACLE
how to form, F-8

implicit connections, 3-10
multiple, 3-11
single, 3-10

IN OUT parameter mode, 7-3
IN parameter mode, 7-3
INAME precompiler option, 10-18
INCLUDE

precompiler option, use of, 5-26
using to include the SQLCA, 9-12

INCLUDE precompiler option, E-2
indexes

using to improve performance, C-4
indicator arrays, 8-3

example of using, 8-3
uses for, 8-3

INDICATOR keyword, 4-14
indicator variables

assigning values to, 6-2
association with host variables, 6-2
declarations, 18-3
declaring, 4-13, 18-3
definition of, 2-4
function of, 6-2
guidelines, 4-15
interpreting values of, 6-2
naming of, 4-34
referencing, 4-13
requirements for, 6-3
used with multibyte character strings, 4-41
using in PL/SQL, 7-9
using to detect NULLs, 6-3
using to detect truncated values, 6-3
using to insert NULLs, 6-3
using to return NULLs, 6-4
using to test for NULLs, 6-4
with structures, 4-33

in-doubt transaction, 3-19
INITFILE OTT parameter, 19-23
INITFUNC OTT parameter, 19-24
initialization function

calling, 19-18
tasks of, 19-19

input host variables
assigning values to, 6-2
definition of, 6-1
restrictions on, 6-2
uses for, 6-1

Index-9

where allowed, 6-1
INSERT SQL statement, F-49

examples, F-51
INSERT statement

column list in, 6-7
example of, 6-7
INTO clause in, 6-7
purpose of, 6-7
requirements for, 6-7
using host arrays in, 8-11
VALUES clause in, 6-7

inserting
rows into tables and views, F-49

INTEGER datatype, 4-4
interface

native, 5-42
XA, 5-42

internal datatypes
definition of, 2-4

INTERVAL DAY TO SECOND datatype, 4-10
INTERVAL YEAR TO MONTH datatype, 4-10
INTO clause

for output host variables, 6-1
in FETCH statements, 6-11
in INSERT statements, 6-7
in SELECT statements, 6-6
of FETCH DESCRIPTOR statement, F-45
of FETCH statement, F-43
of SELECT statement, F-78
used with FETCH instead of SELECT, 6-10

intype file, 19-26
providing when running OTT, 19-6
structure of, 19-26

INTYPE OTT parameter, 19-23
INTYPE precompiler option, 10-20
invalid use

of precompiler preprocessor, 5-24

J
joins

restriction on, 6-16

L
L variable in SQLDA

how value is set, 15-6
purpose of, 15-6

label name
maximum length of, 9-20

Large Objects (LOBs), A-3
LDA, 5-38

remote and multiple connections, 5-39
setup for OCI version 8, 5-38

lines
continuation, 2-10
maximum length, 2-10

LINES precompiler option, 10-20
link

database link, 3-10

linking, 2-13
on UNIX, 1-7
on VMS, 1-7
two-task, 2-13

Linking in an XA Library, E-2
LNAME precompiler option, 10-21
LNPROC

VMS link script, 1-7
LOB APPEND SQL statement, F-52
LOB APPEND statement, 16-9
LOB ASSIGN SQL statement, F-52
LOB ASSIGN statement, 16-9
LOB CLOSE SQL statement, F-53
LOB CLOSE statement, 16-10
LOB COPY SQL statement, F-53
LOB COPY statement, 16-10
LOB CREATE TEMPORARY SQL statement, F-53
LOB CREATE temporary statement, 16-11
LOB DESCRIBE SQL statement, F-54
LOB DISABLE BUFFERING SQL statement, F-55
LOB DISABLE BUFFERING statement, 16-12
LOB ENABLE BUFFERING SQL statement, F-55
LOB ENABLE BUFFERING statement, 16-12
LOB ERASE SQL statement, F-55
LOB ERASE statement, 16-12
LOB FILE CLOSE ALL SQL statement, F-56
LOB FILE CLOSE ALL statement, 16-13
LOB file close all statement, 16-13
LOB FILE SET SQL statement, F-56
LOB FILE SET statement, 16-13
LOB FLUSH BUFFER SQL statement, F-57
LOB FLUSH BUFFER statement, 16-14
LOB FREE TEMPORARY SQL statement, F-57
LOB FREE TEMPORARY statement, 16-14
LOB LOAD FROM FILE statement, 16-15
LOB LOAD SQL statement, F-58
LOB OPEN SQL statement, F-58
LOB OPEN statement, 16-16
LOB READ SQL statement, F-58
LOB READ statement, 16-16
LOB TRIM SQL statement, F-59
LOB WRITE SQL statement, F-59
LOBs

access methods, 16-4
BFILES, 16-2
buffering system, 16-7
external, 16-2
initializing, 16-6
internal, 16-1
locators, 16-2
locators in C, 16-5
temporary, 16-3

Location of Included Files, E-1
location of the Pro*C/C++ Executable, E-2
location transparency

how provided, 3-11
lock

released by ROLLBACK statement, F-74
LOCK TABLE statement

closes mall cursors, 3-19

Index-10

example of, 3-18
locking tables with, 3-18
NOWAIT parameter in, 3-19
purpose of, 3-18

locking, 3-17
definition of, 3-11
explicit versus implicit, 3-17
modes of, 3-12
overriding default, 3-17
privileges needed to obtain, 3-20
table versus row, 3-18
uses for, 3-17
with FOR UPDATE OF, 3-18
with the LOCK TABLE statement, 3-18

logon, 3-1
Logon Data Area, 5-38
LONG datatype, 4-5
LONG RAW datatype, 4-7
LONG VARCHAR

datatype, 4-7
LONG VARRAW datatype, 4-7
LTYPE precompiler option, 10-21
lvalue, 4-10

M
M variable in SQLDA

how value is set, 15-8
purpose of, 15-8

macro precompiler options, 10-4
malloc()

example of using, 15-25
purpose of, 15-25

MAXLITERAL
default value for, 2-10

MAXLITERAL precompiler option, 10-22
MAXOPENCURSORS

precompiler option
effect on performance, C-8
for multiple cursors, 6-10
specifying for separate precompilation, 2-12
what it affects, C-5

MAXOPENCURSORS precompiler option, 10-22
metadata, 18-12
micro precompiler options, 10-4
migration

error message codes, A-5
include files, 5-27

migration from earlier releases, A-5
MODE interaction with DBMS, 10-13
MODE precompiler option, 10-23
modes, parameter, 7-3
multithreaded applications

sample program, 11-9
user-interface features

embedded SQL statements and
directives, 11-6

N
N variable in SQLDA

how value is set, 15-5
purpose of, 15-5

naming
of cursors, 6-10
of database objects, F-8
of select-list items, 15-4
of SQL*Forms user exits, 20-10

NATIVE
value of DBMS option, 10-12

native interface, 5-42
navigational access sample program, 17-27
nested tables, 18-1

creation, 18-1
network

communicating over, 3-4
protocols, 3-4
reducing traffic, C-3

new features, xxxix
NLS parameters, 4-38

NLS_CURRENCY, 4-38
NLS_DATE_FORMAT, 4-38
NLS_DATE_LANGUAGE, 4-38
NLS_ISO_CURRENCY, 4-38
NLS_LANG, 4-38
NLS_LANGUAGE, 4-38
NLS_NUMERIC_CHARACTERS, 4-38
NLS_TERRITORY, 4-38

NLS_CHAR precompiler option, 10-24
NLS_LOCAL precompiler option, 10-24
node

current, 3-5
definition of, 3-4

NOT FOUND condition
in the WHENEVER statement, 9-19
meaning of, 9-19
of WHENEVER directive, F-88

NOWAIT parameter
effect of, 3-19
in LOCK TABLE statements, 3-19
omitting, 3-19

NULLs
definition of, 2-4
detecting, 6-3
handling in dynamic SQL method 4, 15-14
hardcoding, 6-3
inserting, 6-3
restrictions on, 6-4
returning, 6-4
testing for, 6-4
using the sqlnul() function to test for, 15-14

null-terminated strings, 4-5
NUMBER datatype, 4-4

using the sqlprc() function with, 15-12
numeric expressions

cannot serve as host variables, 4-13

Index-11

O
object cache, 17-4
OBJECT CREATE SQL statement, 17-8, F-60
OBJECT DELETE SQL statement, 17-9, F-61
OBJECT DEREF SQL statement, 17-8, F-62
OBJECT FLUSH SQL statement, F-62
OBJECT FLUSH SQL statements, 17-10
OBJECT GET SQL statement, 17-13, F-63
OBJECT RELEASE SQL statement, F-64
OBJECT SET SQL statement, 17-12, F-65
Object Type Translator (OTT), A-3

command line, 19-4
command line syntax, 19-21
creating types in the database, 19-3
default name mapping, 19-31
outtype file, 19-15
parameters, 19-22 to 19-25
providing an intype file, 19-6
reference, 19-21
restriction, 19-31
using, 19-1
using with Pro*C/C++, 19-19

Object Types, A-2
OBJECT UPDATE SQL statement, 17-9, F-66
objects

accessing with OCI, 19-17
introduction to, 17-1
manipulating with OCI, 19-17
persistent, 17-4
persistent versus transient copies of, 17-4
references to, 17-2
support, 17-1
transient, 17-4
types, 17-2
using object types in Pro*C/C++, 17-3

OBJECTS precompiler option, 10-25, 17-17
OCI applications

using the OTT with, 19-16
OCI calls, 1-6

embedding, 5-38
in an X/A environment, 5-43

OCI onblon() call
not used to connect, 5-38

OCI orlon() call
not used to connect, 5-38

OCI Release 8, 5-34
accessing and manipulating objects, 19-17
embedding in Pro*C/C++, 5-37
interfacing to, 5-35
parameters in the environment handle, 5-35
SQLLIB extensions, 5-34

OCI types
declaring, 17-35
manipulating, 17-35
OCIDate, 17-35
OCINumber, 17-35
OCIRaw, 17-35
OCIString, 17-35
using in embedded SQL, 17-35

OCIDate, 17-35

declaring, 17-35
ocidfn.h, 5-38
OCINumber, 17-35

declaring, 17-35
OCIRaw, 17-35

declaring, 17-35
OCIString, 17-35

declaring, 17-35
ONAME precompiler option, 10-25
OPEN CURSOR statement, 14-20
OPEN DESCRIPTOR SQL statement, F-69
OPEN SQL statement, F-67
OPEN statement, 6-11

dependence on precompiler options, 6-11
effect of, 6-10
example of, 6-10
examples, F-68
purpose of, 6-9, 6-10
use in dynamic SQL method 3, 13-15
use in dynamic SQL method 4, 15-23

opening
a cursor variable, 4-22
cursors, F-67, F-69

operators
C versus SQL, 2-10
restrictions on, 2-10

optimization approach, C-4
optimizer hints, C-3

in C, 6-14
in C++, 6-15, 12-3

ORACA, 9-3
example of using, 9-31
using to gather cursor cache statistics, 9-31

ORACA precompiler option, 10-26
ORACAID component, 9-29
Oracle

datatypes, 2-4
Forms Version 4, 20-11
Open Gateway

using the ROWID datatype with, 4-6
Toolset, 20-11

Oracle Call Interface version 7, 5-38
Oracle Communications Area, 9-26
Oracle names

how to form, F-8
Oracle Net

connecting to Oracle through, 3-5
connection syntax, 3-4
for concurrent connections, 3-5
function of, 3-4

OTT parameter TRANSITIVE, 19-25
OTT parameters

CASE, 19-24
CODE, 19-23
CONFIG, 19-24
ERRTYPE, 19-24
HFILE, 19-24
INITFILE, 19-23
INITFUNC, 19-24
INTYPE, 19-23

Index-12

OUTTYPE, 19-23
SCHEMA_NAMES, 19-25
USERID, 19-22
where they appear, 19-25

OUT parameter mode, 7-3
output host variables

assigning values to, 6-1
definition of, 6-1

outtype file, 19-26
when running OTT, 19-15

OUTTYPE OTT parameter, 19-23
overhead

reducing, C-2

P
PAGELEN

precompiler option, 10-26
parameter modes, 7-3
PARSE

precompiler option, 10-26
parse error offset

how to interpret, 9-11
use in error reporting, 9-11

parsing dynamic statements
PREPARE statement, F-70

password
defining, 3-2

passwords
changing at runtime, A-2

performance
eliminating extra parsing to improve, C-5
optimizing SQL statements to improve, C-3
reasons for poor, C-1
using embedded PL/SQL to improve, C-2
using HOLD_CURSOR to improve, C-8
using host arrays to improve, C-2
using indexes to improve, C-4
using RELEASE_CURSOR to improve, C-8
using row-level locking to improve, C-5

persistent copies of objects, 17-4
persistent objects, 17-4
placeholders

duplicate, 13-11, 13-23
naming, 13-11
proper order of, 13-11
use in dynamic SQL statements, 13-3

PL/SQL, 1-3
anonymous block

used to open a cursor variable, 4-23
cursor FOR loop, 7-2
description of, 1-3
difference from SQL, 1-3
executing a block using the AT clause, 3-7
integration with database server, 7-2
main advantage of, 1-3
packages, 7-3
PL/SQL tables, 7-3
procedures and functions, 7-2
RECORD type

cannot be bound to a C struct, 4-33
relationship with SQL, 1-3
setting SQLCA, 9-17
user-defined records, 7-4

PL/SQL blocks
embedded in precompiler programs, F-37

pointer
definition of, 4-36
to cursor variables

restrictions on, 4-22
pointer variables

declaring, 4-36
determining size of referenced value, 4-37
referencing, 4-36
referencing struct members with, 4-37

precedence of precompiler options, 10-3
precision

definition of, 15-13
using sqlprc() to extract, 15-13
when not specified, 15-13

precompilation
conditional, 2-11
separate, 2-12

precompilation unit, 3-2, 10-5
precompiled header files, 5-27, A-2

C++ restrictions, 5-31
CODE option, 5-31
PARSE option, 5-31

precompiler options
alphabetized list, 10-5, 10-8
AUTO_CONNECT, 10-8
case sensitivity, 10-2
CHAR_MAP, 5-1, 10-9, A-2
CLOSE_ON_COMMIT, 6-13, 10-9
CODE, 10-10
COMP_CHARSET, 10-11
CONFIG, 10-11
configuration files, 10-2
CPP_SUFFIX, 10-12
DBMS, 10-12
DEF_SQLCODE, 10-13
DEFINE, 10-14
determining current value, 10-3
DURATION, 10-15
DYNAMIC, 14-9
entering, 10-7
entering on the command line, 10-7
ERRORS, 10-15
ERRTYPE, 10-16
FIPS, 10-16
HEADER, 10-17
HOLD_CURSOR, 10-17, 10-18
INAME, 10-18
INCLUDE, 10-19
INTYPE, 10-20
LINES, 10-20
list of, 10-8
LNAME, 10-21
LTYPE, 10-21
MAXLITERAL, 2-10, 10-22

Index-13

MAXOPENCURSORS, 10-22
micro and macro, 10-4
MODE, 10-23, 14-8
NLS_CHAR, 10-24
NLS_LOCAL, 10-24
OBJECTS, 10-25
ONAME, 10-25
ORACA, 10-26
PAGELEN, 10-26
PARSE, 10-26
precedence, 10-3
PREFETCH, 10-27
RELEASE_CURSOR, 10-27
scope, 10-5
scope of, 10-5
SELECT_ERROR, 10-28
specifying, 10-7
SQLCHECK, 10-29, 17-17
syntax for, 10-7
SYS_INCLUDE, 10-29
THREADS, 10-30, 11-5
TYPE_CODE, 10-30, 14-9
UNSAFE_NULL, 10-31
USERID, 10-31
using, 10-8 to 10-33
VARCHAR, 10-32
VERSION, 10-33

predefined symbols, 2-11
PREFETCH precompiler option, 6-13, 10-27, A-4
PREPARE SQL statement, F-70
PREPARE statement, 14-16

effect on data definition statements, 13-4
examples, F-71
use in dynamic SQL, 13-10, 13-14
use in dynamic SQL method 4, 15-19

preprocessor
example, 5-33
EXEC ORACLE directives, 5-32

preprocessor directives
directives not supported by Pro*C, 5-22

preprocessor, support of, 4-1
private SQL area

association with cursors, 2-5
definition of, 2-5
opening of, 2-5
purpose of, C-7

Pro*C/C++ Precompiler
common uses for, 1-2
Globalization Support, 4-39
new database types, 17-36
new features, A-1
object support in, 17-1
runtime context, 5-35
use of PL/SQL with, 7-4
using OTT with, 19-19

procedural database extension, 7-3
program termination

normal versus abnormal, 3-16
programming guidelines, 2-7

Q
queries

association with cursors, 6-9
forwarding, 3-11
incorrectly coded, 6-6
kinds of, 6-5
requirements for, 6-5
returning more than one row, 6-5
single-row versus multirow, 6-6

R
RAW datatype, 4-7
READ ONLY parameter

in SET TRANSACTION statement, 3-17
read-only transactions

description of, 3-17
example of, 3-17
how ended, 3-17

record, 7-4
REF

structure for, 17-34
REF (reference to object), 17-2
REFERENCE clause

in TYPE statement, 5-11
reference semantics (ANSI dynamic SQL), 14-6
references to objects (REFs)

declaring, 17-34
using, 17-34
using in embedded SQL, 17-34

referencing
of host arrays, 8-2

REFs
declaring, 17-34
using, 17-34
using in embedded SQL, 17-34

REGISTER CONNECT SQL statement, F-71
RELEASE option, 3-16

if omitted, 3-17
in COMMIT statement, 3-13
in ROLLBACK statement, 3-15
purpose of, 3-13
restriction on, 3-15

RELEASE_CURSOR
precompiler option

what it affects, C-5
RELEASE_CURSOR option

of ORACLE Precompilers, F-13
using to improve performance, C-8

RELEASE_CURSOR precompiler option, 10-27
remote database

declaration of, F-27
reserved namespaces, B-3
reserved words and keywords, B-1
resource manager, 5-41
restrictions

on AT clause, 3-8
on Comments, 13-23
on CURRENT OF clause, 6-16
on declaring cursors, 6-10

Index-14

on FOR clause, 8-14
on host arrays, 8-3, 8-10, 8-11, 8-12, 8-13
on input host variables, 6-2
on NULLs, 6-4
on separate precompilation, 2-12
on SET TRANSACTION statement, 3-17
use of CURRENT OF clause, 8-3

retrieving rows from a table
embedded SQL, F-76

return codes
user exits, 20-6

returning clause
DELETE, 6-8
in INSERT, 6-8
in UPDATE, 6-8

returning clauses, 6-8
roll back

to a savepoint, F-75
to the same savepoint multiple times, F-74

ROLLBACK SQL statement, F-72
ROLLBACK statement, 3-16

effect of, 3-15
ending a transaction, F-73
example of, 3-15
examples, F-74
in error handling routines, 3-16
purpose of, 3-15
RELEASE option in, 3-15
TO SAVEPOINT clause in, 3-15
using in a PL/SQL block, 3-20
where to place, 3-15

rollbacks
automatic, 3-16
function of, 3-12
statement-level, 3-16

row locks
acquiring with FOR UPDATE OF, 3-18
advantage of, C-5
using to improve performance, C-5
when acquired, 3-18
when released, 3-18

ROWID
logical, 4-5, 4-30
pseudocolumn, 3-19

using to mimic CURRENT OF, 3-19, 8-23
pseudocolumns, 4-30
universal, 4-5, 4-6, 4-30, A-4

ROWID datatype, 4-5
rows

fetching from cursors, F-42, F-44
inserting into tables and views, F-49
updating, F-82

rows-processed count
use in error reporting, 9-11

runtime context
establishing, 5-35
terminating, 5-35

runtime type checking, 17-18

S
S variable in SQLDA

how value is set, 15-8
purpose of, 15-8

sample database tables
DEPT table, 2-13
EMP table, 2-13

sample object type code, 17-27
sample programs

ansidyn1.pc, 14-22
ansidyn2.pc, 14-28
calldemo.sql, with sample9.pc, 7-17
coldemo1.pc, 18-18
cppdemo1.pc, 12-4
cppdemo2.pc, 12-7
cppdemo3.pc, 12-10
cursor variable demos, 4-26
cv_demo.pc, 4-26
cv_demo.sql, 4-26
extp1.pc, 7-23
how to precompile, 2-14
lobdemo1.pc, 16-26
navdemo1.pc, 17-27
oraca.pc, 9-31
sample10.pc, 15-32
sample11.pc, 4-26
sample12.pc, 15-32
sample1.pc, 2-14
sample2.pc, 4-34
sample3.pc, 8-6
sample4.pc, 5-11
sample5.pc, 20-7
sample6.pc, 13-7
sample7.pc, 13-11
sample8.pc, 13-16
sample9.pc, 7-17
sqlvcp.pc, 4-18

SAVEPOINT SQL statement, F-75
SAVEPOINT statement, F-75

example of, 3-14
examples, F-75
purpose of, 3-14

savepoints
creating, F-75
definition of, 3-14
uses for, 3-14
when erased, 3-15

Scale
using SQLPRC to extract, F-87

scale
definition of, 15-13, F-87
using sqlprc() to extract, 15-13
when negative, 15-13, F-87

SCHEMA_NAMES OTT parameter, 19-25
usage, 19-29

scope
of a cursor variable, 4-22
of DECLARE STATEMENT directive, F-28
of precompiler options, 10-5
of the EXEC ORACLE statement, 10-8

Index-15

of WHENEVER statement, 9-22
search condition

definition of, 6-8
in the WHERE clause, 6-8

select descriptor, 15-3
information in, 13-20

select list
definition of, 6-6
number of items in, 6-6
using the free() function for, 15-29
using the malloc() function for, 15-25

SELECT SQL statement, F-76
select SQLDA

purpose of, 15-2
SELECT statement, 6-6

clauses available for, 6-6
embedded SQL examples, F-78
example of, 6-6
INTO clause in, 6-6
purpose of, 6-6
testing, 6-7
using host arrays in, 8-4
WHERE clause in, 6-6

SELECT_ERROR
precompiler option, 6-6, 10-28

semantic checking
controlling with the SQLCHECK option, D-1
definition of, D-1
enabling, D-2
with the SQLCHECK option, D-1

separate precompilation
guidelines for, 2-12
referencing cursors for, 2-12
restrictions on, 2-12
specifying MAXOPENCURSORS for, 2-12
using a single SQLCA with, 2-12

server
integration with PL/SQL, 7-2

session
definition of, 3-11

sessions
beginning, F-19

SET clause
in UPDATE statements, 6-8
purpose of, 6-8
use of subqueries in, 6-8

SET DESCRIPTOR statement, 14-14, F-79
SET TRANSACTION statement

example of, 3-17
purpose of, 3-17
READ ONLY parameter in, 3-17
requirements for, 3-17
restrictions on, 3-17

Size of an Integer and ROWID, E-1
SQL

benefits of, 1-3
Embedded SQL, 1-3
nature of, 1-3
need for, 1-3

SQL Communications Area, 9-2

SQLCA, 9-12
SQL Descriptor Area

SQLDA, 13-19, 15-3
SQL directives

CONTEXT USE, 11-6, F-23
DECLARE DATABASE, F-27
DECLARE STATEMENT, F-28
DECLARE TABLE, F-29
DECLARE TYPE, F-30
TYPE, F-81
VAR, F-85
WHENEVER, F-88

SQL statements
ALLOCATE, F-9
ALLOCATE DESCRIPTOR TYPE, F-10
CACHE FREE ALL, F-11
CALL, 7-20, F-12
CLOSE, F-13
COMMIT, F-17
concerns when executing, 6-5
CONNECT, F-19
CONTEXT ALLOCATE, F-20
CONTEXT FREE, F-21
CONTEXT OBJECT OPTION GET, F-22
CONTEXT OBJECT OPTION SET, F-23
DEALLOCATE DESCRIPTOR, F-24
DELETE, F-31
DESCRIBE, F-34
DESCRIBE DESCRIPTOR, F-35
ENABLE THREADS, F-36
executable versus directive, 2-2
EXECUTE, F-38
EXECUTE ... END-EXEC, F-37
EXECUTE IMMEDIATE, F-41
FETCH, F-42
FETCH DESCRIPTOR, F-44
for defining and controlling transactions, 3-12
for manipulating a cursor, 6-6, 6-9
FREE, F-46
INSERT, F-49
LOB APPEND, F-52
LOB ASSIGN, F-52
LOB CLOSE, F-53
LOB COPY, F-53
LOB CREATE, F-53
LOB DESCRIBE, F-54
LOB DISABLE BUFFERING, F-55
LOB ENABLE BUFFERING, F-55
LOB ERASE, F-55
LOB FILE CLOSE, F-56
LOB FILE SET, F-56
LOB FLUSH BUFFER, F-57
LOB FREE TEMPORARY, F-57
LOB LOAD, F-58
LOB OPEN, F-58
LOB READ, F-58
LOB TRIM, F-59
LOB WRITE, F-59
OBJECT CREATE, F-60
OBJECT DELETE, F-61

Index-16

OBJECT DEREF, F-62
OBJECT FLUSH, F-62
OBJECT GET, F-63
OBJECT RELEASE, F-64
OBJECT SET, F-65
OBJECT UPDATE, F-66
OPEN, F-67
OPEN DESCRIPTOR, F-69
optimizing to improve performance, C-3
PREPARE, F-70
REGISTER CONNECT, F-71
ROLLBACK, F-72
rules for executing, C-3
SAVEPOINT, F-75
SELECT, F-76
SET DESCRIPTOR, F-79
summary of, F-3
types of, 2-2
UPDATE, F-82

SQL*Forms
display error screen in, 20-6
IAP constants in, 20-6
returning values to, 20-6
reverse return code switch in, 20-6

SQL*Net
connecting using Version 2, 3-3

SQL*Plus, 1-3
using to test SELECT statements, 6-7
versus embedded SQL, 1-3

SQL, dynamic, 2-3
SQL_CURSOR, F-9
SQL_SINGLE_RCTX

defined constant, 5-39
definition of, 5-36

sqlald() function
example of using, 15-17
purpose of, 15-4
syntax for, 15-4

sqlaldt() function
see SQLSQLDAAlloc, 5-40

SQLCA, 9-2, 9-11
components in, 9-14
components set for a PL/SQL block, 9-17
declaring, 9-12
description of, 9-12
explicit versus implicit checking of, 9-2
including multiple times, 5-26
overview of, 2-6
SQLCABC component in, 9-15
SQLCAID component in, 9-15
sqlerrd, 9-16
sqlerrd[2] component in, 9-16
sqlerrmc component in, 9-15
sqlerrml component in, 9-15
sqlwarn, 9-17
use in separate precompilations, 2-12
using more than one, 9-12
using with SQL*Net, 9-12

sqlca.h
listing of, 9-13

use of SQLCA_STORAGE_CLASS with, 2-12
SQLCAID component, 9-15
SQLCDAFromResultSetCursor(), 5-40
SQLCDAGetCurrent, 5-40
sqlcdat()

see SQLCDAFromResultSetCursor(), 5-40
SQLCHECK option

restrictions on, D-2
usage notes for, 10-29
what it affects, D-2

SQLCHECK precompiler option, 10-29, 17-17, D-3
SQLCHECK support for objects, 17-17
sqlclu() function

example of using, 15-30
purpose of, 15-30
syntax for, 15-30

sqlclut() function
see SQLSQLDAFree(), 5-40

SQLCODE
with MODE=ANSI, 10-24

sqlcode
component in SQLCA, 9-3, 9-11

SQLCODE status variable
declaring, 9-10
when declared with the SQLCA, 9-11
when used, 9-10

sqlcpr.h, 9-18
sqlcurt() function

see SQLDAToResultSetCursor(), 5-40
SQLDA

bind versus select, 13-20
C variable in, 15-8
definition of, 13-20
F variable in, 15-8
I variable in, 15-7
information stored in, 13-20
L variable in, 15-6
M variable in, 15-8
N variable in, 15-5
purpose of, 13-19
S variable in, 15-8
struct, contents of, 15-4
structure of, 15-5
T variable in, 15-7
use in dynamic SQL method 4, 15-3
V variable in, 15-6
X variable in, 15-8
Y variable in, 15-9
Z variable in, 15-9

sqlda.h, 15-2
SQLDAToResultSetCursor(), 5-40
SQLEnvGet function in SQLLIB, 5-36
SQLEnvGet(), 5-41
sqlerrd

component, 9-11, 9-16
sqlerrd[2] component, 9-11, 9-16

returns N or rows fetched, 8-6
use with data manipulation statements, 8-5

sqlerrm
component in the SQLCA, 9-3

Index-17

sqlerrmc component, 9-15
sqlerrml component, 9-15
SQLERROR

WHENEVER directive condition, F-88
SQLERROR condition

in the WHENEVER statement, 9-19
meaning of, 9-19

SQLErrorGetText(), 5-40
SQLExtProcError(), 5-41, 7-24
sqlglm(), 9-18
sqlglm() function, 9-17

example of using, 9-18
parameters of, 9-17

sqlglmt()
see SQLErrorGetText, 5-40

sqlgls() function, 9-24
example of use, 4-18
sample program for, 9-26
see SQLLIB

function SQLStmGetText, 4-18
sqlglst() function

see SQLStmtGetText, 5-40
SQLIEM function

in user exits, 20-6
purpose of, 20-6
syntax for, 20-6

sqlld2() function, 5-43
sqlld2t() function

see SQLLDAGetName, 5-40
SQLLDAGetName, 5-40
sqlldat() function

see SQLCDAGetCurrent, 5-40
SQLLIB

and embedded SQL, 2-3
extensions for OCI interoperability, 5-34
function

SQLCDAFromResultSetCursor, 5-40
function SQLCDAGetCurrent, 5-40
function SQLColumnNullCheck, 5-40
function SQLDAFree, 5-40
function SQLDAToResultSetCursor, 5-40
function SQLEnvGet, 5-36, 5-41
function SQLErrorGetText, 5-40
function SQLExtProcError, 5-41, 7-24
function SQLLDAGetName, 5-40
function SQLNumberPrecV6, 5-41
function SQLNumberPrecV7, 5-41
function SQLRowidGet, 5-41
function SQLStmtGetText(), 5-40
function SQLSvcCtxGet, 5-36, 5-41
function SQLVarcharGetLength, 4-18
new names for functions, A-2
new names for public functions, 5-39

SQLLIB function
SQLSQLDAAlloc, 5-40
SQLVarcharGetLength, 5-41

sqlnul() function
example of using, 15-14
purpose of, 15-14
syntax for, 15-14

use of with T variable, 15-7
sqlnult() function

see SQLColumnNullCheck(), 5-40
SQLNumberPrecV6, 5-41
SQLNumberPrecV7, 5-41
sqlpr2() function, 15-13
sqlpr2t() function

see SQLNumberPrecV7, 5-41
sqlprc() function, 15-12, 15-13
sqlprct() function

see SQLNumberPrecV6, 5-41
SQLRowidGet(), 5-41
SQLSQLDAAlloc, 5-40
SQLSQLDAFree(), 5-40
SQLSTATE

class codes, 9-3
declaring, 9-3
mapping to Oracle errors, 9-5
status codes, 9-5
status variable, 9-2, 9-3
using, 9-10
values, 9-3
with MODE=ANSI, 10-24

SQLStmtGetText, 5-40
SQLSvcCtxGet function in SQLLIB, 5-36
SQLSvcCtxGet(), 5-41
SQLVarcharGetLength, 5-41
sqlvcp() function, see SQLLIB

function SQLVarcharGetLength, 4-18
sqlvcpt() function

see SQLVarcharGetLength, 5-41
sqlwarn

flag, 9-17
SQLWARNING

WHENEVER directive condition, F-88
SQLWARNING condition

in the WHENEVER statement, 9-19
meaning of, 9-19

Standard Header Files, E-1
statement-level rollback

description of, 3-16
to break deadlocks, 3-16

status codes
meaning of, 9-11

status variables, 9-2
STOP action

in the WHENEVER statement, 9-20
of WHENEVER directive, F-89
result of, 9-20

stored procedures
program example, 7-17

stored subprograms
calling, 7-17
creating, 7-15
packaged versus standalone, 7-15
stored versus inline, 7-15

STRING datatype, 4-5
string host variables

declaring, 5-6
Struct Component Alignment, E-1

Index-18

structs
array of, 8-15, A-1
as host variables, 4-31
C, using, 17-33
for collection object types, 18-2
generating C structs for a REF, 17-34
pointers as host variables, 4-37

structs (structures)
cannot be nested, 4-33

structures (structs)
nesting not permitted for host, 4-33

subqueries
definition of, 6-7
example of, 6-7, 6-8
uses for, 6-7
using in the SET clause, 6-8
using in the VALUES clause, 6-7

symbols
defining, 2-11

syntax checking
controlling with the SQLCHECK option, D-1
definition of, D-1

syntax diagram
description of, F-6
how to read, F-6
how to use, F-6
symbols used in, F-6

syntax, embedded SQL, 2-3
SYS_INCLUDE

system header files in C++, 12-4
SYS_INCLUDE precompiler option, 10-29
SYSDBA/SYSOPER Privileges, A-4
System Configuration File, E-2
system configuration file, 10-3
system failure

effect on transactions, 3-13
System Global Area (SGA), 7-15
system header files

specifying the location of, 12-4
system-specific Oracle documentation, 1-7, 2-13, 3-5,

5-23, 5-43, 20-1
system-specific reference, 4-4, 10-2, 10-3, 10-19, 10-30

T
T variable in SQLDA

how value is set, 15-7
purpose of, 15-7

table locks
acquiring with LOCK TABLE, 3-18
effect of, 3-19
row share, 3-18
when released, 3-19

tables
inserting rows into, F-49
nested, 18-1
updating rows in, F-82

terminal
encoding scheme, 4-39

termination, program

normal versus abnormal, 3-16
THREADS

precompiler option, 10-30, 11-5
threads, F-20

allocating context, 11-6, F-20
enabling, 11-6, F-36
freeing context, 11-7, F-21
use context, 11-6

TIMESTAMP datatype, 4-9
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 4-9
TIMESTAMP WITH TIME ZONE datatype, 4-9
TO clause

of ROLLBACK statement, F-73
TO SAVEPOINT clause

in ROLLBACK statement, 3-15
purpose of, 3-15
restriction on, 3-15

Toolset
Oracle, 20-11

trace facility
function of, C-4
using to improve performance, C-4

transaction processing
overview of, 2-5
statements used for, 2-6

transaction processing monitor, 5-41
transactions

committing, F-17
contents of, 2-5, 3-12
definition of, 2-5
description of, 3-12
distributed, F-74
failure during, 3-13
guarding databases with, 3-12
guidelines for, 3-20
how to begin, 3-12
how to end, 3-13
making permanent, 3-13
read-only, 3-17
rolling back, F-72
subdividing with savepoints, 3-14
terminating, 3-13
undoing, 3-15
undoing parts of, 3-14
when rolled back automatically, 3-13, 3-16

transient copies of objects, 17-4
transient objects, 17-4
TRANSITIVE OTT parameter, 19-25
truncated values

detecting, 6-3, 7-10
truncation error

when generated, 6-5
tuning, performance, C-1
two-task

linking, 2-13
type checking at runtime, 17-18
TYPE directive

examples, F-82
type inheritance, 17-2

Index-19

example, 17-20
IS OF type operator, 17-2

example, 17-2, 17-3
TREAT operator, 17-2

example, 17-3
TYPE SQL directive, F-81
TYPE_CODE

precompiler option, 10-30

U
undo a transaction, F-72
Unicode character set, 5-7
Unicode variables, A-3
unions

cannot be nested in host structures, 4-33
not permitted as host structures, 4-33

universal ROWID, 4-6, 4-30, A-4
UNIX

linking a Pro*C application under, 1-7
UNSAFE_NULL precompiler option, 10-31
UNSIGNED datatype, 4-7
UPDATE SQL statement, F-82
UPDATE statement

embedded SQL examples, F-85
example of, 6-7
purpose of, 6-7
SET clause in, 6-8
using host arrays in, 8-12
WHERE clause in, 6-8

updating
rows in tables and views, F-82

use
thread context, 11-6, F-23

user configuration file
to set precompiler options, 10-3

User Exits, E-2
user exits

calling from a SQL*Forms trigger, 20-5
common uses for, 20-2
example of, 20-7
guidelines for, 20-10
kinds of statements allowed in, 20-3
linking into IAP, 20-10
meaning of codes returned by, 20-6
naming, 20-10
passing parameters to, 20-5
requirements for variables in, 20-3
running the GENXTB form, 20-9
running the GENXTB utility for, 20-10
use of IAF GET statements in, 20-4
use of IAF PUT statements in, 20-5
use of WHENEVER statement in, 20-7

user session
definition of, 3-11

user-defined record, 7-4
user-defined stored function

used in WHERE clause, 6-8
user-defined type equivalencing, F-81
USERID option

when required, 10-31
USERID OTT parameter, 19-22
USERID precompiler option, 10-31

using with the SQLCHECK option, D-3
usernames

defining, 3-2
using C structures, 17-33
USING clause

in CONNECT statement, 3-7
in the EXECUTE statement, 13-10
of FETCH statement, F-43
of OPEN statement, F-68
purpose of, 13-10
using indicator variables in, 13-11

using collection types, 17-34
using dbstring

Oracle Net database specification string, F-20
Using REFs in Embedded SQL, 17-34

V
V variable in SQLDA

how value is set, 15-6
purpose of, 15-6

V7
value of DBMS option, 10-12

VALUES clause
in INS, 6-7
of embedded SQL INSERT statement, F-51
of INSERT statement, F-51
use of subqueries in, 6-7

VAR directive
examples, F-88

VAR SQL directive, F-85
VAR statement

syntax for, 5-9, 5-10
VARCHAR

arrays of, 8-2
VARCHAR datatype, 4-5
VARCHAR precompiler option, 10-32
VARCHAR pseudotype

requirements for using with PL/SQL, 7-8
VARCHAR variables

advantages of, 4-16
declaring, 4-15
length member in, 4-16
must be passed to a function by reference, 4-17
specifying the length of, 4-16
structure of, 4-15
using macros to define length of, 5-21
versus character arrays, 5-7

VARCHAR2 datatype, 4-3, 5-11
variables, 2-4

cursor, 4-21
host, 18-3
indicator, 18-3

VARNUM datatype, 4-5
VARRAW datatype, 4-7
varrays

creation, 18-2

Index-20

varying length arrays, 18-2
VERSION precompiler option, 10-33, 17-16
views

inserting rows into, F-49
updating rows in, F-82

VMS
linking a precompiler application, 1-7

W
warning flags

use in error reporting, 9-11
WHENEVER directive

examples, F-89
WHENEVER SQL directive, F-88
WHENEVER statement

automatic checking of SQLCA with, 9-19
CONTINUE action in, 9-19
DO action in, 9-19
DO BREAK action in, 9-19
DO CONTINUE action in, 9-19
examples of, 9-20
GOTO action in, 9-20
guidelines for, 9-22
maintaining addressability for, 9-23
new actions, A-2
NOT FOUND condition in, 9-19
overview of, 2-6
scope of, 9-22
SQLERROR condition in, 9-19
SQLWARNING condition in, 9-19
STOP action in, 9-20
use in user exits, 20-7
using to avoid infinite loops, 9-23
using to handle end-of-data conditions, 9-22
where to place, 9-22

WHERE clause
host arrays in, 8-15
if omitted, 6-8
in DELETE statements, 6-8
in SELECT statements, 6-6
in UPDATE statements, 6-8
purpose of, 6-8
search condition in, 6-8

WHERE CURRENT OF clause
CURRENT OF clause, 6-15

WORK option
of COMMIT statement, F-18
of ROLLBACK statement, F-73

X
X variable in SQLDA

how value is set, 15-8
purpose of, 15-8

XA interface, 5-42
X/Open, 5-42

application development, 5-41

Y
Y variable in SQLDA

how value is set, 15-9
purpose of, 15-9

Z
Z variable in SQLDA

how value is set, 15-9
purpose of, 15-9

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What's New in Pro*C/C++?
	Oracle9i Release 2 (9.2) New Features in Pro*C/C++
	Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
	Oracle8i Release 8.1.5 New Features in Pro*C/C++
	Oracle8i Release 8.1.4 New Features in Pro*C/C++
	Oracle8i Release 8.1.3 New Features in Pro*C/C++

	1 Introduction
	What is an Oracle Precompiler?
	Why Use the Oracle Pro*C/C++ Precompiler
	Why Use SQL
	Why Use PL/SQL
	Pro*C/C++ Precompiler Benefits
	Frequently Asked Questions
	What is a VARCHAR?
	Does Pro*C/C++ Generate Calls to the Oracle Call Interface?
	Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?
	Can I Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?
	Can I Write C++ Code, and Precompile It Using Pro*C/C++?
	Can I Use Bind Variables Anywhere in a SQL Statement?
	I Am Confused By Character Handling in Pro*C/C++.
	Is There Anything Special About Character Pointers?
	Why Does SPOOL Not Work in Pro*C/C++?
	Where Can I Find The On-line Versions of the Example Programs?
	How Can I Compile and Link My Application?
	Does Pro*C/C++ Now Support Using Structures As Host Variables?
	Is It Possible to Have Recursive Functions In Pro*C/C++ If I Use Embedded SQL In the Function?
	Can I Use Any Release of Pro*C/C++ with Any Version of the Oracle Server?
	When My Application Runs Under Oracle9i, I Keep Getting an Ora-1405 Error (Fetched Column Value Is NULL).
	Are All SQLLIB Functions Private?
	How Does Oracle9i Support The New Object Types?
	Compatibility, Upgrading and Migration

	2 Precompiler Concepts
	Key Concepts of Embedded SQL Programming
	Embedded SQL Statements
	Executable Statements and Directives

	Embedded SQL Syntax
	Static Versus Dynamic SQL Statements
	Embedded PL/SQL Blocks
	Host and Indicator Variables
	Oracle Datatypes
	Arrays
	Datatype Equivalencing
	Private SQL Areas, Cursors, and Active Sets
	Transactions
	Errors and Warnings

	Steps in Developing an Embedded SQL Application
	Guidelines for Programming
	Comments
	Constants
	Declare Section
	Delimiters
	File Length
	Function Prototyping
	ANSI_C
	KR_C
	CPP

	Host Variable Names
	Line Continuation
	Line Length
	MAXLITERAL Default Value
	Operators
	Statement Terminator

	Conditional Precompilation
	Symbol Definition
	Example SELECT Statement

	Precompile Separately
	Guidelines
	Referencing Cursors
	Specifying MAXOPENCURSORS
	Use a Single SQLCA

	Compile and Link
	Example Tables
	Example Data

	Example Program: A Simple Query

	3 Database Concepts
	Connect to the Database
	Using the ALTER AUTHORIZATION Clause to Change Passwords
	Standard CONNECT
	Change Password on CONNECT

	Connecting Using Oracle Net
	Automatic Connects
	The AUTO_CONNECT Precompiler Option
	SYSDBA or SYSOPER System Privileges

	Advanced Connection Options
	Some Preliminaries
	Concurrent Logons
	Default Databases and Connections
	Explicit Connections
	Single Explicit Connection
	Multiple Explicit Connections
	Ensuring Data Integrity

	Implicit Connections
	Single Implicit Connections
	Multiple Implicit Connections

	Definitions of Transactions Terms
	How Transactions Guard Your Database
	How to Begin and End Transactions
	Using the COMMIT Statement
	Using the SAVEPOINT Statement
	The ROLLBACK Statement
	Statement-Level Rollbacks

	The RELEASE Option
	The SET TRANSACTION Statement
	Override Default Locking
	Using FOR UPDATE OF
	Restrictions

	Using LOCK TABLE

	Fetch Across COMMITs
	Distributed Transactions Handling
	Guidelines
	Designing Applications
	Obtaining Locks
	Using PL/SQL

	4 Datatypes and Host Variables
	Oracle Datatypes
	Internal Datatypes
	External Datatypes
	VARCHAR2
	NUMBER
	INTEGER
	FLOAT
	STRING
	VARNUM
	LONG
	VARCHAR
	ROWID
	DATE
	RAW
	VARRAW
	LONG RAW
	UNSIGNED
	LONG VARCHAR
	LONG VARRAW
	CHAR
	CHARZ
	CHARF

	Additional External Datatypes
	Datetime and Interval Datatypes
	ANSI DATE
	TIMESTAMP
	TIMESTAMP WITH TIME ZONE
	TIMESTAMP WITH LOCAL TIME ZONE
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO SECOND
	Avoiding Unexpected Results Using Datetime

	Host Variables
	Host Variable Declaration
	Storage-Class Specifiers
	Type Qualifiers

	Host Variable Referencing
	Restrictions

	Indicator Variables
	The INDICATOR Keyword
	Example of INDICATOR Variable Usage
	INDICATOR Variable Guidelines
	Oracle Restrictions

	VARCHAR Variables
	VARCHAR Variable Declaration
	VARCHAR Variable Referencing
	Return NULLs to a VARCHAR Variable
	Insert NULLs Using VARCHAR Variables
	Pass VARCHAR Variables to a Function
	Find the Length of the VARCHAR Array Component
	Example Program: Using sqlvcp()

	Cursor Variables
	Declare a Cursor Variable
	Allocate a Cursor Variable
	Open a Cursor Variable
	Opening in a Standalone Stored Procedure
	Return Types

	Closing and Freeing a Cursor Variable
	Cursor Variables with the OCI (Release 7 Only)
	Restrictions
	Example: cv_demo.sql and sample11.pc
	cv_demo.sql
	sample11.pc

	CONTEXT Variables
	Universal ROWIDs
	SQLRowidGet()

	Host Structures
	Host Structures and Arrays
	PL/SQL Records
	Nested Structures and Unions
	Host Indicator Structures
	Example Program: Cursor and a Host Structure

	Pointer Variables
	Pointer Variable Declaration
	Pointer Variable Referencing
	Structure Pointers

	Globalization Support
	NCHAR Variables
	CHARACTER SET [IS] NCHAR_CS
	Environment Variable NLS_NCHAR
	CONVBUFSZ Clause in VAR
	Character Strings in Embedded SQL
	Strings Restrictions
	Indicator Variables

	5 Advanced Topics
	Character Data
	Precompiler Option CHAR_MAP
	Inline Usage of the CHAR_MAP Option
	Effect of the DBMS and CHAR_MAP Options
	On Input
	On Input
	On Output

	VARCHAR Variables and Pointers
	On Input
	On Output

	Unicode Variables
	Restrictions on Unicode Variable Usage

	Datatype Conversion
	Datatype Equivalencing
	Host Variable Equivalencing
	User-Defined Type Equivalencing
	REFERENCE Clause

	CHARF External Datatype
	The EXEC SQL VAR and TYPE Directives
	Example: Datatype Equivalencing (sample4.pc):

	The C Preprocessor
	How the Pro*C/C++ Preprocessor Works
	Preprocessor Directives
	Directives Ignored

	ORA_PROC Macro
	Location of Header File Specification
	Some Preprocessor Examples
	Using #define
	Other Preprocessor Restrictions

	SQL Statements Not Allowed in #include
	Include the SQLCA, ORACA, and SQLDA
	EXEC SQL INCLUDE and #include Summary
	Defined Macros
	Include Files

	Precompiled Header Files
	Precompiled Header File Creation
	Use of the Precompiled Header Files
	Examples
	Redundant File Inclusion
	Multiple Precompiled Header Files

	Effects of Options
	DEFINE and INCLUDE Options
	CODE and PARSE Options

	Usage Notes

	The Oracle Preprocessor
	Symbol Definition
	An Oracle Preprocessor Example

	Evaluation of Numeric Constants
	Numeric Constants in Pro*C/C++
	Numeric Constant Rules and Examples

	SQLLIB Extensions for OCI Release 8 Interoperability
	Runtime Context in the OCI Release 8 Environment
	Parameters in the OCI Release 8 Environment Handle

	Interface to OCI Release 8
	SQLEnvGet()
	SQLSvcCtxGet()
	Embedded OCI Release 8 Calls

	Embedded OCI Release 7 Calls
	Set Up the LDA
	Remote and Multiple Connections

	New Names for SQLLIB Public Functions
	X/Open Application Development
	Oracle-Specific Issues
	Connecting to Oracle
	Transaction Control
	OCI Calls (Release 7 Only)
	Linking

	6 Embedded SQL
	Host Variables
	Output versus Input Host Variables

	Indicator Variables
	Insert NULLs
	Returned NULLs
	Fetch NULLs
	Test for NULLs
	Truncated Values

	The Basic SQL Statements
	The SELECT Statement
	Available Clauses

	The INSERT Statement
	Using Subqueries

	The UPDATE Statement
	The DELETE Statement
	The WHERE Clause

	The DML Returning Clause
	Cursors
	The DECLARE CURSOR Statement
	The OPEN Statement
	The FETCH Statement
	The CLOSE Statement

	Scrollable Cursors
	Using Scrollable Cursors
	DECLARE SCROLL CURSOR
	OPEN
	FETCH
	CLOSE

	The CLOSE_ON_COMMIT Precompiler Option
	The PREFETCH Precompiler Option

	Optimizer Hints
	Issuing Hints

	The CURRENT OF Clause
	Restrictions

	The Cursor Statements
	A Complete Example Using Non-Scrollable Cursor
	A Complete Example Using Scrollable Cursor
	Positioned Update

	7 Embedded PL/SQL
	Advantages of PL/SQL
	Better Performance
	Integration with Oracle
	Cursor FOR Loops
	Procedures and Functions
	Packages
	PL/SQL Tables
	User-Defined Records

	Embedded PL/SQL Blocks
	Host Variables
	Example: Using Host Variables with PL/SQL
	Complex Example
	VARCHAR Pseudotype
	Restriction

	Indicator Variables
	NULLs Handling
	Truncated Values

	Host Arrays
	ARRAYLEN Statement
	Optional Keyword EXECUTE

	Cursor Usage in Embedded PL/SQL
	Stored PL/SQL and Java Subprograms
	Creating Stored Subprograms
	Calling a Stored PL/SQL or Java Subprogram
	Anonymous PL/SQL Block
	Remote Access
	The CALL Statement
	CALL Example

	Getting Information about Stored Subprograms

	External Procedures
	Restrictions on External Procedures
	Creating the External Procedure
	SQLExtProcError()

	Using Dynamic SQL

	8 Host Arrays
	Why Use Arrays?
	Declaring Host Arrays
	Restrictions
	Maximum Size of Arrays

	Using Arrays in SQL Statements
	Referencing Host Arrays
	Using Indicator Arrays
	Oracle Restrictions
	ANSI Restriction and Requirements

	Selecting into Arrays
	Cursor Fetches
	Using sqlca.sqlerrd[2]
	Number of Rows Fetched
	Scrollable Cursor Fetches
	Sample Program 3: Host Arrays
	Sample Program: Host Arrays Using Scrollable Cursor
	Scroll Demo2.pc

	Host Array Restrictions
	Fetching NULLs
	Fetching Truncated Values

	Inserting with Arrays
	Inserting with Arrays Restrictions

	Updating with Arrays
	Updating with Arrays Restrictions

	Deleting with Arrays
	Deleting with Arrays Restrictions

	Using the FOR Clause
	FOR Clause Restrictions
	In a SELECT Statement
	With the CURRENT OF Clause

	Using the WHERE Clause
	Arrays of Structs
	Arrays of Structs Usage
	Restrictions on Arrays of Structs
	Declaring an Array of Structs
	Variables Guidelines
	Declaring a Pointer to an Array of Structs
	Examples
	Example 1: A Simple Array of Structs of Scalars
	Example 2: Using Mixed Scalar Arrays with An Array of Structs
	Example 3: Using Multiple Arrays of Structs with a Cursor
	Example 4: Individual Array and Struct Member Referencing
	Example 5: Using Indicator Variables, a Special Case
	Example 6: Using a Pointer to an Array of Structs

	Mimicking CURRENT OF

	9 Handling Runtime Errors
	The Need for Error Handling
	Error Handling Alternatives
	Status Variables
	The SQL Communications Area

	The SQLSTATE Status Variable
	Declaring SQLSTATE
	SQLSTATE Values
	Using SQLSTATE
	If You Declare SQLSTATE
	If You Do not Declare SQLSTATE

	Declaring SQLCODE
	Key Components of Error Reporting Using the SQLCA
	Status Codes
	Warning Flags
	Rows-Processed Count
	Parse Error Offsets
	Error Message Text

	Using the SQL Communications Area (SQLCA)
	Declaring the SQLCA
	SQLCA Contents
	SQLCA Structure
	sqlcaid
	sqlcabc
	sqlcode
	sqlerrm
	sqlerrp
	sqlerrd
	sqlwarn
	sqlext

	PL/SQL Considerations

	Getting the Full Text of Error Messages
	Using the WHENEVER Directive
	WHENEVER Conditions
	SQLWARNING
	SQLERROR
	NOT FOUND

	WHENEVER Actions
	CONTINUE
	DO
	DO BREAK
	DO CONTINUE
	GOTO label_name
	STOP

	WHENEVER Examples
	Use of DO BREAK and DO CONTINUE
	Scope of WHENEVER
	Guidelines for WHENEVER
	Placing the Statements
	Handling End-of-Data Conditions
	Avoiding Infinite Loops
	Maintaining Addressability
	Returning After an Error

	Obtaining the Text of SQL Statements
	Restrictions
	Example Program

	Using the Oracle Communications Area (ORACA)
	Declaring the ORACA
	Enabling the ORACA
	ORACA Contents
	Choosing Runtime Options
	Structure of the ORACA
	oracaid
	oracabc
	oracchf
	oradbgf
	orahchf
	orastxtf
	Diagnostics
	orastxt
	orasfnm
	oraslnr
	Cursor Cache Statistics
	orahoc
	oramoc
	oracoc
	oranor
	oranpr
	oranex

	ORACA Example

	10 Precompiler Options
	The Precompiler Command
	Case Sensitivity

	Precompiler Options
	Configuration Files
	Precedence of Option Values
	Macro and Micro Options
	What Occurs During Precompilation?
	Scope of Options

	Quick Reference
	Entering Options
	On the Command Line
	Inline
	Uses for EXEC ORACLE
	Scope of EXEC ORACLE

	Using the Precompiler Options
	AUTO_CONNECT
	CHAR_MAP
	CLOSE_ON_COMMIT
	CODE
	COMP_CHARSET
	CONFIG
	CPP_SUFFIX
	DBMS
	DEF_SQLCODE
	DEFINE
	DURATION
	DYNAMIC
	ERRORS
	ERRTYPE
	FIPS
	HEADER
	HOLD_CURSOR
	INAME
	INCLUDE
	INTYPE
	LINES
	LNAME
	LTYPE
	MAXLITERAL
	MAXOPENCURSORS
	MODE
	NLS_CHAR
	NLS_LOCAL
	OBJECTS
	ONAME
	ORACA
	PAGELEN
	PARSE
	PREFETCH
	RELEASE_CURSOR
	SELECT_ERROR
	SQLCHECK
	SYS_INCLUDE
	THREADS
	TYPE_CODE
	UNSAFE_NULL
	USERID
	UTF16_CHARSET
	VARCHAR
	VERSION

	11 Multithreaded Applications
	What are Threads?
	Runtime Contexts in Pro*C/C++
	Runtime Context Usage Models
	Multiple Threads Sharing a Single Runtime Context
	Multiple Threads Sharing Multiple Runtime Contexts

	User Interface Features for Multithreaded Applications
	THREADS Option
	Embedded SQL Statements and Directives
	EXEC SQL ENABLE THREADS
	EXEC SQL CONTEXT ALLOCATE
	EXEC SQL CONTEXT USE
	EXEC SQL CONTEXT FREE

	CONTEXT USE Examples
	Programming Considerations

	Multithreaded Example
	Connection Pooling
	Using the Connection Pooling Feature
	How to Enable Connection Pooling
	Command Line Options for Connection Pooling
	Example
	Performance Tuning

	Demo Program:1
	Example

	Demo Program:2
	Case 1: By varying CMIN
	Case 2: By varying CMAX
	Example

	12 C++ Applications
	Understanding C++ Support
	No Special Macro Processing

	Precompiling for C++
	Code Generation
	Parsing Code
	Output Filename Extension
	System Header Files

	Example Programs
	cppdemo1.pc
	cppdemo2.pc
	cppdemo3.pc

	13 Oracle Dynamic SQL
	What is Dynamic SQL?
	Advantages and Disadvantages of Dynamic SQL
	When to Use Dynamic SQL
	Requirements for Dynamic SQL Statements
	How Dynamic SQL Statements are Processed
	Methods for Using Dynamic SQL
	Method 1
	Method 2
	Method 3
	Method 4
	Guidelines
	Avoiding Common Errors

	Using Method 1
	Example Program: Dynamic SQL Method 1

	Using Method 2
	The USING Clause
	Example Program: Dynamic SQL Method 2

	Using Method 3
	PREPARE
	DECLARE
	OPEN
	FETCH
	CLOSE
	Example Program: Dynamic SQL Method 3

	Using Method 4
	Need for the SQLDA
	The DESCRIBE Statement
	What is a SQLDA?
	Implementing Oracle Method 4
	Restriction

	Using the DECLARE STATEMENT Statement
	Using Host Arrays

	Using PL/SQL
	With Method 1
	With Method 2
	With Method 3
	With Oracle Method 4

	14 ANSI Dynamic SQL
	Basics of ANSI Dynamic SQL
	Precompiler Options

	Overview of ANSI SQL Statements
	Example Code

	Oracle Extensions
	Reference Semantics
	Using Arrays for Bulk Operations
	Support for Arrays of Structs
	Support for Object Types

	ANSI Dynamic SQL Precompiler Options
	Full Syntax of the Dynamic SQL Statements
	ALLOCATE DESCRIPTOR
	DEALLOCATE DESCRIPTOR
	GET DESCRIPTOR
	SET DESCRIPTOR
	Use of PREPARE
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	EXECUTE
	Use of EXECUTE IMMEDIATE
	Use of DYNAMIC DECLARE CURSOR
	OPEN Cursor
	FETCH
	CLOSE a Dynamic Cursor
	Differences From Oracle Dynamic Method 4
	Restrictions

	Example Programs
	ansidyn1.pc
	ansidyn2.pc

	15 Oracle Dynamic SQL: Method 4
	Meeting the Special Requirements of Method 4
	What Makes Method 4 Special?
	What Information Does Oracle Need?
	Where Is the Information Stored?
	How is the SQLDA Referenced?
	How is the Information Obtained?

	Understanding the SQLDA
	Purpose of the SQLDA
	Multiple SQLDAs
	Declaring a SQLDA
	Allocating a SQLDA

	Using the SQLDA Variables
	The N Variable
	The V Variable
	The L Variable
	The T Variable
	The I Variable
	The F Variable
	The S Variable
	The M Variable
	The C Variable
	The X Variable
	The Y Variable
	The Z Variable

	Some Preliminaries
	Converting Data
	Internal Datatypes
	External Datatypes

	Coercing Datatypes
	Extracting Precision and Scale

	Handling NULL/Not NULL Datatypes

	The Basic Steps
	A Closer Look at Each Step
	Declare a Host String
	Declare the SQLDAs
	Allocate Storage Space for the Descriptors
	Set the Maximum Number to DESCRIBE
	Put the Query Text in the Host String
	PREPARE the Query from the Host String
	DECLARE a Cursor
	DESCRIBE the Bind Variables
	Reset Number of Placeholders
	Get Values and Allocate Storage for Bind Variables
	OPEN the Cursor
	DESCRIBE the Select List
	Reset Number of Select-List Items
	Reset Length/Datatype of Each Select-list Item
	FETCH Rows from the Active Set
	Get and Process Select-List Values
	Deallocate Storage
	CLOSE the Cursor
	Using Host Arrays
	sample12.pc

	Example Program: Dynamic SQL Method 4
	Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

	16 Large Objects (LOBs)
	What are LOBs?
	Internal LOBs
	External LOBs
	Security for BFILEs
	LOBs versus LONG and LONG RAW
	LOB Locators
	Temporary LOBs
	LOB Buffering Subsystem

	How to Use LOBs in Your Program
	Three Ways to Access LOBs
	LOB Locators in Your Application
	Initializing a LOB
	Internal LOBs
	External LOBs
	Temporary LOBs
	Freeing LOBs

	Rules for LOB Statements
	For All LOB Statements
	For the LOB Buffering Subsystem
	For Host Variables

	LOB Statements
	APPEND
	ASSIGN
	CLOSE
	COPY
	CREATE TEMPORARY
	DISABLE BUFFERING
	ENABLE BUFFERING
	ERASE
	FILE CLOSE ALL
	FILE SET
	FLUSH BUFFER
	FREE TEMPORARY
	LOAD FROM FILE
	OPEN
	READ
	TRIM
	WRITE
	DESCRIBE

	LOBs and the Navigational Interface
	Transient Objects
	Persistent Objects
	Navigational Interface Example

	LOB Program Examples
	READ a BLOB, Write a File Example
	Read a File, WRITE a BLOB Example
	lobdemo1.pc

	17 Objects
	Introduction to Objects
	Object Types
	REFs to Object Types
	Type Inheritance

	Using Object Types in Pro*C/C++
	NULL Indicators

	The Object Cache
	Persistent Versus Transient Copies of Objects

	Associative Interface
	When to Use the Associative Interface
	ALLOCATE
	FREE
	CACHE FREE ALL
	Accessing Objects Using the Associative Interface

	Navigational Interface
	When to Use the Navigational Interface
	Rules Used in the Navigational Statements
	OBJECT CREATE
	OBJECT DEREF
	OBJECT RELEASE
	OBJECT DELETE
	OBJECT UPDATE
	OBJECT FLUSH
	Navigational Access to Objects

	Converting Object Attributes and C Types
	OBJECT SET
	OBJECT GET

	Object Options Set/Get
	CONTEXT OBJECT OPTION SET
	CONTEXT OBJECT OPTION GET

	New Precompiler Options for Objects
	VERSION
	DURATION
	OBJECTS
	INTYPE
	ERRTYPE
	SQLCHECK Support for Objects
	Type Checking at Runtime

	An Object Example in Pro*C/C++
	Associative Access
	Navigational Access

	Example Code for Type Inheritance
	Example Code for Navigational Access
	Using C Structures
	Using REFs
	Generating a C Structure for a REF
	Declaring REFs
	Using REFs in Embedded SQL

	Using OCIDate, OCIString, OCINumber, and OCIRaw
	Declaring OCIDate, OCIString, OCINumber, OCIRaw
	Use of the OCI Types in Embedded SQL
	Manipulating the OCI Types

	Summarizing the New Database Types in Pro*C/C++
	Restrictions on Using Oracle Datatypes in Dynamic SQL

	18 Collections
	Collections
	Nested Tables
	Varrays
	C and Collections

	Descriptors for Collections
	Declarations for Host and Indicator Variables
	Manipulating Collections
	Autonomous Collection Access
	Collection Element Access

	Rules for Access
	Autonomous Access
	Element Access

	Indicator Variables
	Autonomous Bindings
	Element Bindings

	OBJECT GET and SET
	Collection Statements
	COLLECTION GET
	COLLECTION SET
	COLLECTION RESET
	COLLECTION APPEND
	COLLECTION TRIM
	COLLECTION DESCRIBE
	Notes on the Table

	Rules for the Use of Collections

	Collection Example Code
	Type and Table Creation
	GET and SET Example
	DESCRIBE Example
	RESET Example
	Example Program:coldemo1.pc

	19 The Object Type Translator
	OTT Overview
	What is the Object Type Translator
	Creating Types in the Database
	Invoking OTT
	Command Line
	Configuration File
	INTYPE File

	The OTT Command Line
	OTT
	Userid
	INTYPE
	OUTTYPE
	CODE
	HFILE
	INITFILE
	INITFUNC

	The INTYPE File
	OTT Datatype Mappings
	Mapping Object Datatypes to C
	OTT Type Mapping Example

	NULL Indicator Structs
	OTT Support for Type Inheritance
	Substitutable Object Attributes

	The OUTTYPE File

	Using OTT with OCI Applications
	Accessing and Manipulating Objects with OCI
	Calling the Initialization Function
	Tasks of the Initialization Function

	Using OTT with Pro*C/C++ Applications
	OTT Reference
	OTT Command Line Syntax
	OTT Parameters
	USERID
	INTYPE
	OUTTYPE
	CODE
	INITFILE
	INITFUNC
	HFILE
	CONFIG
	ERRTYPE
	CASE
	SCHEMA_NAMES
	TRANSITIVE

	Where OTT Parameters Can Appear
	Structure of the INTYPE File
	INTYPE File Type Specifications

	Nested #include File Generation
	SCHEMA_NAMES Usage
	Default Name Mapping
	Restriction
	File Name Comparison

	20 User Exits
	What Is a User Exit?
	Why Write a User Exit?
	Developing a User Exit
	Writing a User Exit
	Requirements for Variables
	The IAF GET Statement
	Using IAF GET

	The IAF PUT Statement
	Using IAF PUT

	Calling a User Exit
	Passing Parameters to a User Exit
	Returning Values to a Form
	The IAP Constants
	Using the SQLIEM Function
	Using WHENEVER

	An Example
	Precompiling and Compiling a User Exit
	Example Program: A User Exit
	Using the GENXTB Utility
	Linking a User Exit into SQL*Forms
	Guidelines
	Naming the Exit
	Connecting to Oracle
	Issuing I/O Calls
	Using Host Variables
	Updating Tables
	Issuing Commands

	EXEC TOOLS Statements
	Writing a Toolset User Exit
	EXEC TOOLS SET
	EXEC TOOLS GET
	EXEC TOOLS SET CONTEXT
	EXEC TOOLS GET CONTEXT
	EXEC TOOLS MESSAGE

	A New Features
	New In This Release
	New External Datatypes

	New In Previous Releases
	Array of Structs
	Precompiled Header Files
	CALL Statement
	Changing Passwords at Runtime
	Support for National Character Sets
	CHAR_MAP Precompiler Option
	New Names for SQLLIB Functions
	New Actions in WHENEVER Statement
	Object Type Support
	Object Type Translator
	LOB Support
	ANSI Dynamic SQ
	Collections

	Miscellaneous Topics
	Unicode Support
	UTF16_CHARSET Option
	PREFETCH Option
	External Procedures
	Calling Java from PL/SQL
	DML Returning Clause
	Universal ROWID
	SYSDBA/SYSOPER Privileges in CONNECT Statements
	CLOSE_ON_COMMIT Precompiler Option
	Character Strings
	Error Message Codes
	LINES Option

	Migration From Earlier Releases

	B Reserved Words, Keywords, and Namespaces
	Reserved Words and Keywords
	Oracle Reserved Namespaces

	C Performance Tuning
	What Causes Poor Performance?
	How Can Performance Be Improved?
	Using Host Arrays
	Using Embedded PL/SQL
	Optimizing SQL Statements
	Optimizer Hints
	Trace Facility

	Using Indexes
	Taking Advantage of Row-Level Locking
	Eliminating Unnecessary Parsing
	Handling Explicit Cursors
	Cursor Control

	Using the Cursor Management Options
	SQL Areas and Cursor Cache
	Resource Use
	Infrequent Execution
	Frequent Execution
	Embedded PL/SQL Considerations
	Parameter Interactions

	Avoiding Unnecessary Reparsing
	Using Connection Pooling

	D Syntactic and Semantic Checking
	What Is Syntactic and Semantic Checking?
	Controlling the Type and Extent of Checking
	Specifying SQLCHECK=SEMANTICS
	Enabling a Semantic Check
	Connecting to the Oracle server
	Using DECLARE TABLE
	Using DECLARE TYPE

	Specifying SQLCHECK=SYNTAX
	Entering the SQLCHECK Option

	E System-Specific References
	System-Specific Information
	Location of Standard Header Files
	Specifying Location of Included Files for the C Compiler
	ANSI C Support
	Struct Component Alignment
	Size of an Integer and ROWID
	Byte Ordering
	Connecting to the Oracle Server
	Linking in an XA Library
	Location of the Pro*C/C++ Executable
	System Configuration File
	INCLUDE Option Syntax
	Compiling and Linking
	User Exits

	F Embedded SQL Statements and Directives
	Summary of Precompiler Directives and Embedded SQL Statements
	About The Statement Descriptions
	How to Read Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams
	Oracle Names
	Statement Terminator

	ALLOCATE (Executable Embedded SQL Extension)
	ALLOCATE DESCRIPTOR (Executable Embedded SQL)
	CACHE FREE ALL (Executable Embedded SQL Extension)
	CALL (Executable Embedded SQL)
	CLOSE (Executable Embedded SQL)
	COLLECTION APPEND (Executable Embedded SQL Extension)
	COLLECTION DESCRIBE (Executable Embedded SQL Extension)
	COLLECTION GET (Executable Embedded SQL Extension)
	COLLECTION RESET (Executable Embedded SQL Extension)
	COLLECTION SET (Executable Embedded SQL Extension)
	COLLECTION TRIM (Executable Embedded SQL Extension)
	COMMIT (Executable Embedded SQL)
	CONNECT (Executable Embedded SQL Extension)
	CONTEXT ALLOCATE (Executable Embedded SQL Extension)
	CONTEXT FREE (Executable Embedded SQL Extension)
	CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension)
	CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext)
	CONTEXT USE (Oracle Embedded SQL Directive)
	DEALLOCATE DESCRIPTOR (Embedded SQL Statement)
	DECLARE CURSOR (Embedded SQL Directive)
	DECLARE DATABASE (Oracle Embedded SQL Directive)
	DECLARE STATEMENT (Embedded SQL Directive)
	DECLARE TABLE (Oracle Embedded SQL Directive)
	DECLARE TYPE (Oracle Embedded SQL Directive)
	DELETE (Executable Embedded SQL)
	DESCRIBE (Executable Embedded SQL Extension)
	DESCRIBE DESCRIPTOR (Executable Embedded SQL)
	ENABLE THREADS (Executable Embedded SQL Extension)
	EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
	EXECUTE (Executable Embedded SQL)
	EXECUTE DESCRIPTOR (Executable Embedded SQL)
	EXECUTE IMMEDIATE (Executable Embedded SQL)
	FETCH (Executable Embedded SQL)
	FETCH DESCRIPTOR (Executable Embedded SQL)
	FREE (Executable Embedded SQL Extension)
	GET DESCRIPTOR (Executable Embedded SQL)
	INSERT (Executable Embedded SQL)
	LOB APPEND (Executable Embedded SQL Extension)
	LOB ASSIGN (Executable Embedded SQL Extension)
	LOB CLOSE (Executable Embedded SQL Extension)
	LOB COPY (Executable Embedded SQL Extension)
	LOB CREATE TEMPORARY (Executable Embedded SQL Extension)
	LOB DESCRIBE (Executable Embedded SQL Extension)
	LOB DISABLE BUFFERING (Executable Embedded SQL Extension)
	LOB ENABLE BUFFERING (Executable Embedded SQL Extension)
	LOB ERASE (Executable Embedded SQL Extension)
	LOB FILE CLOSE ALL (Executable Embedded SQL Extension)
	LOB FILE SET (Executable Embedded SQL Extension)
	LOB FLUSH BUFFER (Executable Embedded SQL Extension)
	LOB FREE TEMPORARY (Executable Embedded SQL Extension)
	LOB LOAD (Executable Embedded SQL Extension)
	LOB OPEN (Executable Embedded SQL Extension)
	LOB READ (Executable Embedded SQL Extension)
	LOB TRIM (Executable Embedded SQL Extension)
	LOB WRITE (Executable Embedded SQL Extension)
	OBJECT CREATE (Executable Embedded SQL Extension)
	OBJECT DELETE (Executable Embedded SQL Extension)
	OBJECT DEREF (Executable Embedded SQL Extension)
	OBJECT FLUSH (Executable Embedded SQL Extension)
	OBJECT GET (Executable Embedded SQL Extension)
	OBJECT RELEASE (Executable Embedded SQL Extension)
	OBJECT SET (Executable Embedded SQL Extension)
	OBJECT UPDATE (Executable Embedded SQL Extension)
	OPEN (Executable Embedded SQL)
	OPEN DESCRIPTOR (Executable Embedded SQL)
	PREPARE (Executable Embedded SQL)
	REGISTER CONNECT (Executable Embedded SQL Extension)
	ROLLBACK (Executable Embedded SQL)
	SAVEPOINT (Executable Embedded SQL)
	SELECT (Executable Embedded SQL)
	SET DESCRIPTOR (Executable Embedded SQL)
	TYPE (Oracle Embedded SQL Directive)
	UPDATE (Executable Embedded SQL)
	VAR (Oracle Embedded SQL Directive)
	WHENEVER (Embedded SQL Directive)

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

