Pro*C/C++
Programmer's Guide
Release 9.2

Part No. A97269-03

December 2003

ORACLE

Pro*C/C++ Programmer’s Guide, Release 9.2

Part No. A97269-03

Copyright © 1996, 2003, Oracle. All rights reserved.

Primary Authors: Syed Mujeeb Ahmed, Jack Melnick, Neelam Singh, Tim Smith
Contributing Authors: ~ Ruth Baylis, Paul Lane

Contributors: Bill Bailey, Subhranshu Banerjee, Julie Basu, Brian Becker, Beethoven Chang, Michael
Chiocca, Pierre Dufour, Nancy Ikeda, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Phil Locke, Valarie Moore,
Vidya Nagaraj, Jacqui Pons, Ajay Popat, Ekkehard Rohwedder, Pamela Rothman, Alan Thiesen, Gael
Stevens

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNA US YOUT COMMEBNTS ...t aessesnans XXIX
PUrEIACE ...ttt XXX
J gkl [<Te NN U s A=) Lol TR RR XXXi
Documentation AcCesSIDILIEYccceuruiiiiiiiiiiiiiiiiiiiicccc s XXXi
o5 b o110 1 o < T TSROt XXX
ReElated DOCUIMEIES ..ottt et e s eae e e e et e e e s et e e saaeeesateeessaeeesaaeesssteessneeeesnnees XXXIV
CONMVEIIEIONS .eoiiieeeiieeeeetteeee e e ettt e e e eeieeeeeeeesaaeeesseseaseteeeesssaseeessasassseessssasseeessssnnseseeessasssseeessssnrseessssnns XXXV
WHaAt'S NEW IN PrOXCICHF7? ..ottt XXXIX
Oracle9i Release 2 (9.2) New Features in Pro*C/CH+ ..ot XXXiX
Oracle9i Release 1 (9.0.1) New Features in Pro*C/CH+ ..oiviniiinininececeieieieeeseeeseeneeeseevenns XXXiX
Oracle8i Release 8.1.5 New Features in Pro*C/ Cat oottt s xl
Oracle8i Release 8.1.4 New Features in PrO¥C/ Cat ot eeeaeeeeaeeessareessaeesenees xl
Oracle8i Release 8.1.3 NewW Feattres i PrOFC/ Cat oottt eeeeeeeeeeeeeeeeeseeeeeeeseeessseesenaes xl

1 Introduction

What is an Oracle Precompiler?............ocoviiiiiiinieiniiincncneneeeeteerecsreee et ee 1-1
Why Use the Oracle Pro*C/C++ Precompiler............ccccooviiiiiiiiiiiiiiiiiiicccn 1-2
WRY USE SQL ..o 1-3
Why Use PL/SQL ..o 1-3
Pro*C/C++ Precompiler Benefitsccccooviiiiiiiiiiiiin 1-3
Frequently Asked QUESHIONSccccoiiiiiiiiiiiiiiiiiiic e 1-5
What is @ VARCHAR?cccoiiiiiii s 1-5
Does Pro*C/C++ Generate Calls to the Oracle Call Interface?cooevvveevveeivceeeeveeeeeeeeeeenen, 1-6
Why Not Code Using SQLLIB Calls and Not Use Pro*C/CH++7.....ccovivvnnnnnnininiiccccnes 1-6
Can I Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?..........cccccceeuvuvueeununnnns 1-6
Can I Write C++ Code, and Precompile It Using Pro*C/C++7 ..o 1-6
Can I Use Bind Variables Anywhere in a SQL Statement?ccccccccevvvvininnnniiinns 1-6
I Am Confused By Character Handling in Pro*C/CH+. ..c.coiiiiiiiiiiccccccecceeceeeeeenes 1-6
Is There Anything Special About Character Pointers? ... 1-7
Why Does SPOOL Not Work in Pro*C/CH47 ..o 1-7
Where Can I Find The On-line Versions of the Example Programs?cccccovvennnnncncncne. 1-7
How Can I Compile and Link My Application?ccooeueieiiiiciiiiiincece s 1-7
Does Pro*C/C++ Now Support Using Structures As Host Variables?.............ccccccevvinnninns 1-7

Is It Possible to Have Recursive Functions In Pro*C/C++ If I Use Embedded SQL In the
Function? 1-8

Can I Use Any Release of Pro*C/C++ with Any Version of the Oracle Server?...................... 1-8

When My Application Runs Under Oracle9i, I Keep Getting an Ora-1405 Error (Fetched
Column Value Is NULL). 1-8

Are All SQLLIB FUNCIONS PLiVAte?ccccoviiieiicieieeieteetesitete st ete et esteseestesaesvessse e essesseessesseenns 1-8
How Does Oracle9i Support The New Object Types?........coooieiiiiiiriiiiiieeccceie 1-9
Compeatibility, Upgrading and Migrationccccceeeiiiiririiiinriccceeeeceeeeeeeeeeenas 1-9
2
Precompiler Concepts

Key Concepts of Embedded SQL Programmingccocovvviviiiiiinniniiennns 2-1
Embedded SQL StateImMeENtSc.ccceceviiieiiiiieiecieie ettt et ste e sreeae s e esaesveessesbeeaseeseenns 2-1
Executable Statements and DirectiVesccccceueuciiiiiiriniciiiiicccrceceeeeeeeeeeees 2-2
Embedded SQL SYNaXccooiiuiieiiiiieieii s 2-3
Static Versus Dynamic SQL Statements ... 2-3
Embedded PL/SQL BIOCKScuoooviitieiieieeeie ettt ettt ettt ettt et eve ettt veeseevsenseessenseereenns 2-4
Host and Indicator Variables ... 2-4
Oracle DatatyPescccciiiuiiiiiiiiii s 2-4
ATTAYS woniiiiiiiici st 2-5
Datatype EQUIVAlENCINGc.ovoiiiiieiii s 2-5
Private SQL Areas, Cursors, and ACHVE SEtSccvocuveevieeriieeeeereeeeeeeeeeee et et eeeene e 2-5
TTaNSACHIONS ...vvviiiiiiic e 2-5
Errors and Warnings............coiiiiicicie s 2-6
Steps in Developing an Embedded SQL Applicationccccoviiinniinnnne, 2-6
Guidelines for Programming ..o 2-7
COMIMENES ... bbbt 2-7
CONSEANES ... bbb e 2-8
DEClare SECHIONc.cueuuiiiiiiciiecceeeee e 2-8
DEMILETS ...oiiiiiiiiicii e 2-8
File Length. ..o 2-9
Function PrototyPing ... 2-9
ANSI_C i s 2-9

KR_C s 2-9

CP PP 2-9

Host Variable INAmMES ... s 2-10
Line ContinUAtIONcccciviiiiiiiiiiiii e 2-10
Line LN ...ooviiiiii s 2-10
MAXLITERAL Default ValUec.cccceueueiiiiieiiiiieieieieieieieieieeieieieieeeieieeae et seseaes 2-10
OPEIALOTS ..t 2-10
Statement Terminatorcccoviiiiiiiii s 2-11
Conditional Precompilation ..o 2-11
Symbol Definitioncccccciiiiiiiiiiiiiiiiiiiii s 2-11
Example SELECT Statement.........c.ccoeuiuiiiiiiiiiiiiiiiiicieieeeceeeeeeeeeeeeee e 2-12
Precompile Separately ... 2-12
GUIAELINES ..ot 2-12
Referencing CUISOTSc.ccvuiiiiiieiiiiicicicicieieieieiceee et 2-12

Specifying MAXOPENCURSORSooooooooseesecceoeeeeeesessssssssoosseeeessssssssssssssseeeesssssssnne 2-12

Use a Single SQLCA ...t 2-12
Compile and LINK ..ottt ettt 2-13
Example Tables ... 2-13

EXample Data ... 2-13
Example Program: A SImple QUETYccooviiiiiiiiiiiiiiiincecrreeeeeee s 2-14

Database Concepts

Connect to the Database..............coooiiiiiiiii s 3-1
Using the ALTER AUTHORIZATION Clause to Change Passwords.........cccccooiicieiiinnnnne 3-2
Standard CONNECTcccooeiiiiiirce s 3-2
Change Password on CONNECTccccoiiiiiicreeeee e 3-3
Connecting Using Oracle Netccoooiiiiii e 3-3
AUtomMatic CONMNECES ..o 3-3
The AUTO_CONNECT Precompiler Optioncccccevueueiiicienininiiicicrieeeeeeeeeeeeeeeeeenas 3-4
SYSDBA or SYSOPER System Privileges ..o 3-4
Advanced Connection OPtiONSccccciiiiiiiiiiiiii e 3-4
Some Preliminaries ... 3-4
Concurrent LOZOMNS ...ttt s 3-5
Default Databases and CONNECLIONSccccuiuiuiiiiiiiiiiiiiiiiiiccenes 3-5
EXPLicit CONNECLIONSooviuuiiiiiiiicieiciciciciciee e 3-6
Single Explicit CONNECHONoiuiiiiiiiictci e 3-6
Multiple Explicit CONNECHONSccceviiiiiiiiiiiiiciiiiiic 3-9
Ensuring Data INtegrityccooiiiiiiiiiiiiiiiccc e 3-10
Implicit CONNECHIONScoieiiiiiiici s 3-10
Single Implicit CONNECHONSccceviviiiiiiiiiiiiiii s 3-10
Multiple Implicit CONNECHIONSc.cviviiiiiiiiiiiiiciciciciccee s 3-11
Definitions of Transactions Termscccccoviiiiiiiiiiiiiiiii s 3-11
How Transactions Guard Your Databasecccccccovviiiiiiiiininiiiis 3-12
How to Begin and End Transactionsccccooiiiiiiiiiiiiinccccnee 3-12
Using the COMMIT Statementccccoooviiiiiiiiiiiiiii s 3-13
Using the SAVEPOINT Statementcccccceviviiiiiiiiinininiiiiises 3-14
The ROLLBACK Statementccccooiioiiiiieiiiee s 3-15
Statement-Level ROIIDACKScccccceiiiiiiiiiiiiiiic s 3-16
The RELEASE OPLIONc.cciiiiiiiiiiiiiiii s 3-16
The SET TRANSACTION Statement ..o 3-17
Override Default LOCKINGccccocoviiiiiiiiiiiiiiii s 3-17
Using FOR UPDATE OFcooiiiiiiiiiiiciceiicee et 3-18
RESEIICHIONS ..ottt s 3-18

Using LOCK TABLE ... 3-18
Fetch Across COMMITScccccoiiiiiiiiiiiiiiii s 3-19
Distributed Transactions Handling ... 3-19
GUIAELINES ... s 3-20
Designing APPLCAtIONScccoceuiiiiiiiiiiiiiiiiiiiii s 3-20
ODbtaining LOCKScocviiiiiiiiiiicieiccc et 3-20
USING PL/SQL ... 3-20

4 Datatypes and Host Variables

Oracle DatatyPes ... 4-1
INternal DatatyPes.cccucuiuiuiuiiiiiicicccccce e 4-1
External DatatyPesccouiueiiiiiiiiici s 4-2

VARCHAR? ...ttt 4-3
INUMBER ..ot 4-4
INTEGER ..ot 4-4
FLOAT e 4-4
STRING oottt 4-5
VARNUM. ..ot s 4-5
LONG e 4-5
VARCHAR oo 4-5
ROWID ..ottt s 4-5
DATE o 4-6
RAW oo 4-7
VARRAW oo 4-7
LONG RAW .o 4-7
UNSIGNED ...t 4-7
LONG VARCHAR ..ot 4-7
LONG VARRAW ittt 4-7
CHAR e 4-7
CHARZ oo 4-8
CHAREF ..o 4-8
Additional External DatatyPes.........cccciiiiiiiiiiiiiicccccceccceceeeeese e 4-8
Datetime and Interval Datatypes.........cocoiiriiieiiiiiiii s 4-8
ANSIDATE ...ttt 4-9
TIMESTAMP ..ot 4-9
TIMESTAMP WITH TIME ZONEccoooiiiiiiiiiiniiisc s 4-9
TIMESTAMP WITH LOCAL TIME ZONEcccoioiiiiiiiiiiicerncsccessee e 4-9
INTERVAL YEAR TO MONTH ..ot 4-10
INTERVAL DAY TO SECONDcoviiiiiiiniiiiiisssssesssssesssnnes 4-10
Avoiding Unexpected Results Using Datetime.............cccooouoiviiiiiiiiiiiiccc 4-10

HOSt Variablescccccoiiiiiiiiiicc et 4-10

Host Variable Declaration ... s 4-10
Storage-Class SPECIfiers ... 4-12
Type QUALITIETScoviiiiiiic s 4-13

Host Variable Referencingcccoevieiiiciiiciniciiccic s 4-13
RESTIICHIONS ..o 4-13

Indicator Variables ... 4-13
The INDICATOR KeyWordocuoiiiiiieiiiciit s 4-14
Example of INDICATOR Variable Usagecccccovuririiiiiiininininiiiiiciiinseces 4-14
INDICATOR Variable GUIAELNEScccoeuiuriiiiiiiiiiiiiiciiciccccceeeeeeeeeeeeeeeeee s 4-15
Oracle ReSEIICHONSc.ciiiiiiiiiiic s 4-15

VARCHAR Variables ..ot 4-15
VARCHAR Variable Declaration ... 4-15
VARCHAR Variable Referencingcccooeeiiueiiniiiniicccc e 4-16
Return NULLs to a VARCHAR Variable ... 4-17

vi

Insert NULLs Using VARCHAR Variables..........ccocouiiiiiiiiiiiccc e 4-17

Pass VARCHAR Variables to @ FUNCHONccuooveiiiiiieiiieiceeeeeee e 4-17
Find the Length of the VARCHAR Array COMPONENtcccceueueueurueueuiuririnieieieeeeeeeeieeeeeeenes 4-18
Example Program: Using SQIVCP()cvoeueveiriiirieiiiicicieiiscte i 4-18
CUISOT VATIADIESoouviiiiiiiiieieceeeeeetete ettt ettt et e ae s beebeeta e beess e beessebeessenseessenseenes 4-21
Declare @ CUIrsSOr Variablecciiiiiiiirierieieieieieeeteteteeee sttt ss et ss e esaesaesessessensas 4-21
Allocate @ CUISOT VAriable.......ccveiieieiiieieieeterie ettt ettt e e se e e ste s e esesseesaesssessensnas 4-22
Open a Cursor Variable.........cccccciiiiiiiii s 4-22
Opening in a Standalone Stored Procedure..............ccccceuviiiiiiiiniiiiniicccceeceeeeees 4-24

Return TYPeS....cceiiieiiiiii s 4-24
Closing and Freeing a Cursor Variable..........c..oooiiiiiiiiccc e, 4-24
Cursor Variables with the OCI (Release 7 ONly)cccccceueueiririiiiinniiiiceeceeeeeeeeeeeees 4-24
RESTTICHIONS ..ttt ettt ettt et e bt e st e st e e st e esbaessbeessaessseessaesssesssaenssesnseesssesseenns 4-26
Example: cv_demo.sql and samplel1.pC ..o 4-26
CV_deIMO.SAL .. 4-26
SAMPLELLLPC ettt 4-26
CONTEXT Variables.........c.ooovoiiiiiiiiciiieeeeieet ettt ettt st te e eaeeta e beessebesssebeesseseeasesseenes 4-29
UNIVErsal ROWIIDSccuoiiiieiieiieieieeeett ettt et te e e te s e et esse et e eseessesseessesssessesnsessesnsessesnsessesnsenseens 4-30
SQLROWIAGEL() c.venvveneeriieierieerieerctrtetrtetste ettt sttt st sttt be s e e eene 4-31
HOSE STIUCLUTES ..ottt et e st e e vt et e e teessaeesbeessbeesseasssaenseesssesnsaasssessseeassensenns 4-31
Host Structures and ATTAYSccccceeiuriiiiiiiireiiceieeeee e eaees 4-32
PL/SQL RECOIAS ..voveenvietieerieteeteeteeeteete et et eete et eeteeeeeteerveeteesseessenseeseenseessenseesseseessesseseenseensenseeneen 4-33
Nested Structures and UNIONS ..oooovieerierienieieieiecete ettt sttt sttt ettt e e s esesseeseeeas 4-33
HOSt INAICAtOr SEIUCEUTESeeoviieieiieiiriecieeieieteteet ettt st ss b e aesaessesaesaesaesessessensas 4-33
Example Program: Cursor and a Host Structure ..., 4-34
POINTEr VAriablesccoooiiiiiiiiiiiiicceeeee ettt ettt et e te e b s te e beers e beessebeessenseensesseenes 4-36
Pointer Variable Declarationccccoceeerierieriesieieieieteeeteesessessesessessessesaessessessessessssessessenss 4-36
Pointer Variable Referencing ..o 4-36
SEUCEUTE POINEETS ..eiiiiiiiiieieee ettt ettt ettt e e te et e et e e sabeebeessbaesbeessseessaassseesseesssaensennns 4-37
GloDAliZAtiON SUPPOLL.....cooovimiiiiiiiiiiiiiecirreet ettt ettt ettt et n e s et ne e 4-38
INCHAR VariabIesccoooiieiiiiieieiieieiecteste ettt se et e s e etesteessesseesessaessesssessesssassesssessesssessesssensenns 4-39
CHARACTER SET [IS] NCHAR _CS ...ttt ese et ss e ssens 4-39
Environment Variable NLS INCHARooooiieeeeee ettt eeeaee st e eeeaeeseeneesssaeesssraessennes 4-40
CONVBUFSZ Clause i VARc.ooeiieieieteeee ettt ettt 4-40
Character Strings in Embedded SQL ..., 4-41
Strings ReStriCONS. ..o 4-41
INAICAtOr VATIADIEScvicviieiiiieiieieieeee ettt ettt ettt e b e e se e b e sreessesseensesrnessenseas 4-41

5 Advanced Topics

(@ T ¢ T 1<) o B - - N USRI 5-1
Precompiler Option CHAR_MARPccccooeiiiiiniiiiiiiiiiiicrsss s 5-1
Inline Usage of the CHAR_MAP OPHON.ccouiiiiiiiiririiicicicierieceiceeieeeeeeeeeeseeeeeeeeeeeeneeeeeennes 5-2
Effect of the DBMS and CHAR_MAP OpPtionsS......cccceviviiiiviiiiiiiiiniiscneenns 5-2

ONINPUL ..o 5-3
ONINPUL ..o 5-4
ON OUEPUL ..o 5-4
VARCHAR Variables and POINEETScccieviiiieiiiiieiecieeiecieeteste et eve e sve e esseesnesseesaenas 5-6

Vii

ON OULPUL .t 5-6
UnICOAE Variablescoiiiiiiiiiiiiccc et 5-7
Restrictions on Unicode Variable Usagecccccouoiriiiiiiiciiiiiccec 5-8
Datatype CONVEeISIiONcccoiiiiiiiiiiiiiccc s 5-9
Datatype EQUivalencing ... 5-9
Host Variable EQUIVAlENCINGcuoiiiiiiiiii s 5-9
User-Defined Type EQUIValencingccccccceviiiiiiniiiiiiiiiniiiiiiiceeees 5-10
REFERENCE CIaUSE ...cvoviiiiiiiiiicicieieieieieieeeeee et 5-10
CHAREF External Datatype ..o 5-11
The EXEC SQL VAR and TYPE DIrectives........c.ccccccuvuriieuniriniiiciniiicesiiceeseseiessescaennns 5-11
Example: Datatype Equivalencing (Sampled.pe):.......cccceerririiiiininininicineeeeiceeeeeeeeeeenees 5-11
The C PreProCessOr..........ccocoviiiiiiiiiiiiiiiiieieieieie et 5-21
How the Pro*C/C++ Preprocessor WOrks ... 5-21
Preprocessor DIrectives ... 5-22
Directives IgNored ... 5-22

(@) VAN & 3O LG F=Tel o TSRS 5-23
Location of Header File Specification..........cccccccciiiiiiiiiiiiiiniiccicccccceeeeceeeeeeeeeees 5-23
Some Preprocessor EXamples ... 5-23
USING #AEFINEcooviiiiiiiiii s 5-24

Other Preprocessor ReStriCtions...........ccoeueiiiiuriririiiiiiininircceeereeee s 5-25

SQL Statements Not Allowed in #INCIUAEcovveviiieiiiieieceeeceee et 5-25
Include the SQLCA, ORACA, and SQLDAcccociiiiiiinriiicincerce e 5-25
EXEC SQL INCLUDE and #include SUmMmATycccccccoceeririeiirnieiceeeeceeeeeeeeeeeeeeeeees 5-26
DefINed MACTOSovviviiiiiiiiii s 5-27
INCIUAE FALES ...t 5-27
Precompiled Header Files.............ccccooiiiiiiiiiiiceceeeeeee et 5-27
Precompiled Header File Creation ... 5-27
Use of the Precompiled Header Filescccccoviiiiiiniiiiiiiiniiiiiiiicccces 5-28
EXQIMIPLES ...t 5-28
Redundant File INCIUSION.........ccovviiiiiiiiiiiiiiiiciic s 5-28
Multiple Precompiled Header Filesccccccoeuviviiiiiiiiiiininiiiiiiiiiiccccccccccs 5-29

E£fects Of OPHONSc.cueuiiiiiiiiicccee e 5-30
DEFINE and INCLUDE OpHONScccoiviiiiiiiiiisssssse s 5-30

CODE and PARSE OPHONScccueiriiiiiiriicieiiniie st sessenns 5-31

USAZE INOLES ... 5-32
The Oracle PrePIrOCESSOLccoviviiiiiiiiiiiiiiiiie s 5-32
Symbol Definitionccccciiiiiiiiiiiiiiiiiiiii s 5-32

An Oracle Preprocessor EXamplecccccociiiiiiiiiiiiccceeeeeeeeeeceeeeeeeeeeeees 5-33
Evaluation of Numeric Constantscccccocovviviiiiiiiiiis 5-33
Numeric Constants IN PIOFC / Cat oottt ettt e et e s e e seaaeessraeeesaaeesaaees 5-33
Numeric Constant Rules and EXamplescccccceririiiiiiiiiiceceeeceeeeeeeeeeeeees 5-34
SQLLIB Extensions for OCI Release 8 Interoperabilityccccccoeniiiiiiiniiii, 5-34
Runtime Context in the OCI Release 8 Environmentcccccceuviriviniiiiiiinnnninnniine, 5-35
Parameters in the OCI Release 8 Environment Handle............ccccccoeeiiiiinniiiniiicne 5-35
Interface to OCI Release § ..o 5-35
SQLENVGEL() ...ttt 5-36

viii

SQLSVCCEXGEE() c-vevenvvereerereererieereeerietrtetsret sttt ettt st sa ettt be s bbb e s b e b eene 5-36

Embedded OCI Release 8 CallSc..ceeeuieeeiiieieciiciecieeeeeieeteie ettt et ve et sveeseereesae e saeennas 5-37
Embedded OCI Release 7 Callscccooeeierieieieieieieieieeeeeese st esse et et ssessessesaessessesassessessenss 5-38
Set Up the LDA ...t 5-38
Remote and Multiple CONNECHIONSc.cvoviiieiiiiicicc e 5-39
New Names for SQLLIB Public FUNCHONS..........cc.ocveiiiiiieiieecieeeeeeecee ettt 5-39
X/Open Application Developmentccccoviiiiiiiiiiiiiiiiii s 5-41
Oracle-Specific ISSUEScccccuviiiiiiiiiiiiiiiii s 5-42
Connecting t0 OTACLEc.couiiiiiiiiiiiiiccce s 5-42
Transaction CONELOLccecciiiieiieieieceee ettt e e b e s re e aessaesaeessesseessessaessansenns 5-43

OCI Calls (Release 7 ONly)......cccvuriiiiiiiininiiiiiniiiiiiiiiissse s 5-43
LINKINIG .ottt 5-43

6
Embedded SQL

HOSE VAriablesooueoiiiieieieeeeeeeeee ettt e ettt e e s e st e e st e e s e essessaessesreessesssessesssensenseens 6-1
Output versus Input Host Variablesccccooiiiiiii 6-1
INAiCAtOr VAriabIescccoooiiriiiiiiieieeeeeet ettt sttt e et e et e sseensesseessesneensesnsensannsens 6-2
TNSEIE INTULLS ettt ettt ettt et s e et e st e e e s st e esbaessbeessaessseensaasssesnsaesnsasnsaesnsenn 6-3
RetUrNEed INULLSoooiiiiiticieeeeeteee ettt ettt ettt ereebe e e e sbeesaesbeessesbeensenseessenseenns 6-4
FEECR INULLS .viviieteieieetetet ettt sttt ettt ettt et esaesaeseeseesasse st e ssessassessassensessessessesessensenss 6-4
TESE FOI INULLS ..ouviviiieiciietietieetett ettt ettt ettt ettt esaesbesaeseessesseseeteebessesbesbesbessessessessessessassessesensas 6-4
TIUNCALEA VAIUES ...ttt ettt ettt et et e e e e be e st e sbeesaesbaessebeensenseenns 6-5
The Basic SQL StatemeEntscccoooiiiiiiiiiicicceeceee ettt et eeeae e e e be e te e e be e aeesase e saessseens 6-5
The SELECT SEAt@IMENL ...c.vecveiieiiciieieeeete ettt etete et esteesesteesesseessesssessesssessesssessesssessesssessesssensesnes 6-6
AVAILADIE CLAUSESveeveeeiieeieiicieeieeeee ettt ettt ettt ettt e e s e s te e b e s beessesseessesseensesssenseessensessnans 6-6

The INSERT SEAtEIMENTcvcveiiieieiiiiiieieiestesteiet ettt eessseesessessesse st e sessessessessessessessessessesenss 6-7
USING SUDQUETIES ..ot e 6-7

The UPDATE StateImMeNt......c..ccveciiiiieiieieeieeeeie ettt ettt ettt e reete e e steeaesveessesvaessesseessesseenns 6-7
The DELETE StateIMentccccceoieiiiiriiiriiresieieteietetetesaeeesseesessessessessessessessessessessessessessessesenses 6-8
The WHERE CLaUSEecviiieiieiicieeieeie ettt ettt ettt e te et e steessesseessessaessessaessesssessesssassesssessesssensennes 6-8
The DML Returning Clause.............cccoouiiiiiiiiiiiiiiiicesesse s 6-8
CUISOTSeeeniieiieeiieie ettt et et e st et e st e et e et e e st eese e seas e e s e eseesseansesseessesseensenssenseassenseansenseensesseensesneensesneensenseens 6-9
The DECLARE CURSOR Statementccceecveeuieiierieierieeiesieesiesteesteseesesseessesseessesseessesssessesssssnes 6-9
The OPEN STAtEIMEINLE ...c.ecoviivieiiiieiieieteeeecte et ettt te et te b steeaesteesbeeseebesreeseeseeseessensessnas 6-10
The FETCH StateImMeNtccccveeieiiieiiisiisieriesieietetet ettt etes e ssessesse e sse s esessessessessessessssessessenss 6-11
The CLOSE StateIMENtc.cccveciiiieiieieiieeesieeeesteete e e te e eaestesssesteessesseessesseessesseessesseessesssessenses 6-12
SCIOIIADIE CUISOLS ...ttt ettt et e e e s ae e b e s beebestsesbeess e beessenbasssensaessenseessenseenns 6-12
Using Scrollable CUTSOTScovviiiiiiiii et 6-12
DECLARE SCROLL CURSORcovititetetieeteriereeieereerieteeteeressessessessessessessessessessesesssssssssssesses 6-12

OPEN ..ot ettt ettt ettt et e teeteeteete et eteete et e te et et et et et et eatensereeteereereeteetn 6-12

FETCH ...ttt ettt ettt ste st b e b e e b e b esbessessessessentessessessaseasansensensensn 6-12

CLOSE. ...ttt ettt ettt et et esseseeteeteebeebe et e ebesbesbesbesbessessessessessessesseseesaesessessenss 6-13

The CLOSE_ON_COMMIT Precompiler Option..........ccccceeieiririiiiiiiniiiniiiiiniiniiiccnccies 6-13
The PREFETCH Precompiler OPpionccccccuciciiieieiririciiieieieieiceieeeeeeceeeeeeseeeeeeeeeeeeeeeees 6-13
Optimizer HINESccooviiiiiiiiii s 6-14
ISSUING HINES .ovviiiicicc s 6-15

The CURRENT OF CIAUSEcooveiriiirieiriiieitieittetneetste ettt see et se e et snesessesessesaene 6-15

RESTIICHIONS ... e 6-15
The Cursor Statements ... 6-16
A Complete Example Using Non-Scrollable Cursorcccccoeveiiiiiiiiiiiicicccces 6-16
A Complete Example Using Scrollable CUrsorccccccoeiviviriiiiiniininiiinnnnccnccs 6-18
Positioned Update............cooovoiiiiiiiiniicccccee ettt 6-19

Embedded PL/SQL

Advantages of PLISQL ..ot 7-1
Better PErfOrmmancec.cccceuiuiiuiiieiiiiieccieieieeeee et e 7-1
Integration With OTaCle ... 7-2
Cursor FOR LOOPScuiiiiiiiiiiiiiciiici s 7-2
Procedures and FUNCHONScccciiiiiiiiiiiiiiiiiiiic e 7-2
PaCKaAGES ...ooviiiiiiiic s 7-3
PL/SQL TADIES ...cvevvitieeeeiecteeete ettt ettt ettt ettt be vt eaeeteebeeaeeebeeaseeseenseessenseessenseeseenseeseenes 7-3
User-Defined RECOTAScceueuiuiuiuiiiiiiicieieicceeeeiceeiete e 7-4

Embedded PL/SQL BIOCKScccooiiiiiiiiiiieieeee ettt sttt sttt ettt ettt et neeneeseenes 7-4

HOSt Variablescccoiiiiiiiiiicccccc e 7-5
Example: Using Host Variables with PL/SQLcccoooiiiiiiiiiiice e 7-5
Complex EXAMPLE ..o 7-6
VARCHAR PSEUAOLYPE .. 7-8
RESTIICHION ...t 7-9

Indicator Variables ...t 7-9
INULLS HandIINg......c.cucueuiuiiiiiiiiicicieieieieeeeeeeeeeteeeeeee s aseees 7-10
Truncated ValUes ... 7-10

HOSE ATTAYS ..ot 7-10
ARRAYLEN Statementccccoeiiiiiiiiiiiiiiiiiiiics s 7-12
Optional Keyword EXECUTEccoiiiiiiiicc i 7-13

Cursor Usage in Embedded PL/SQL...........ccccccooiiiiiiiiiiiiicnnsces 7-14

Stored PL/SQL and Java SUbPIogramscccccccovirirrniniiiiinniicereeeeereeeeeeeeeeeeeseeeeseeeeeeees 7-15
Creating Stored SUDPrOZIrams ...t 7-15
Calling a Stored PL/SQL or Java SUbprogram.............ccccoeeueieiceieiniicieieicce e 7-17

Anonymous PL/SQL BIOCK.......ccccoiiiiiiicccceee s 7-17
RemMOte ACCESSoviiiiiiiiiiiiiiii 7-20
The CALL Statementc.ccoiviruiiiiiriiieiiriiceirictec et 7-20
CALL EXAMPLE ...ttt 7-21
Getting Information about Stored Subprograms............ccoceveieiiiniiiciiicce 7-21

External Procedures.............cccociiiiiiiiiiiiiiiccicct e 7-22
Restrictions on External Procedures..........c.ccceciiiiiiniiiiiiciiiccceeccceeeeeceeeeeee s 7-22
Creating the External Procedure.........oooouiiiiiiiiiiiicc 7-23
SQLEXIPTOCETITOT() .ttt ettt sttt st 7-24

Using Dynamic SQL ... 7-24

Host Arrays

WRY USE ATTAYS? ...ooviviiiiiiniiiicccc st 8-1
Declaring HOSt AITAYSccccoooiiiiiiiiiiiiiiiiiiic s 8-1
RESTIICIONS ...t e 8-2

Maximum SiZe Of ATTAYScovriiiuriiiiicieicie e 8-2

Using Arrays in SQL Statements ... 8-2
Referencing HOSt ATTAYSc.ccuiuiiiiiiiiiiiiieeccccecicceceeeeese e 8-2
Using INAIiCator ATTAYS.......ceuoiiierieiiicicie ettt 8-3
Oracle RESIICHONSc.ociiiiiiiiiiiiccc e 8-3
ANSI Restriction and ReqUITEIMENTSc.cccuiuiiuiiiiiiiciiiccccccceceeeieeie e 8-3

Selecting iNt0 ATTAYScccovviiiiiiiiiiiiiiic 8-4
CUISOT FEECRES ...t 8-4
Using SqQLCa.SQLErTA[2]ooiiiiiiiiii e 8-5
Number of Rows Fetched ... 8-5
Scrollable Cursor FEEChEsc.ocuiiiiiiiiiiiiiciicccc et 8-6
Sample Program 3: HOSt ATTAYSc.cccociiiimiiiiiiiiiicccceeccieeeeee e eenenas 8-6
Sample Program: Host Arrays Using Scrollable CUrSOrccocueviiricieiniiciccce 8-8

SCIOIl DEMO2.PC ...ttt 8-8
Host Array RestrictionS........cccccviiiiiiiiiiiiiiiiiic s 8-10
Fetching INULLSoouiiicc ettt 8-11
Fetching Truncated Values ... 8-11

Inserting With ATTays ..o 8-11
Inserting with Arrays Restrictions...........c.ooceioiiiiicioiiiicc e 8-11

Updating With AITays ..o s 8-12
Updating with Arrays ReStrictions.........cccoviiieirininiiiiiic e 8-12

Deleting With ATTays ... 8-13
Deleting with Arrays Restrictionscccccceviiiiiiiiiiniiiiiiiies 8-13

Using the FOR ClaUtSeccccccociiiiiiiiiiiiiiiicciieiee et aeaees 8-13
FOR Clause ReStrictions.........cccoeuiiiiiiiiiiiiiiiiiiiiicce s 8-14

In a SELECT Statement ..ot 8-14

With the CURRENT OF ClaUusecccoviiiieiiiiiiiiiiiineeccees s 8-14

Using the WHERE Clauseccccccoooiiiiiiiiiiiiiiic s 8-15

ATTays Of SEHUCES ..o 8-15
ATTays Of SErUCES USAGEvvviiiiicicicicicicicececc et 8-16
Restrictions on Arrays of StruCts..........oeuieiiiciiiciiccc s 8-16
Declaring an Array of STIUCEScccceviriiiiiiiiiiiiiii s 8-16
Variables GUIAEIINES............ocviiiiiiiiiiiiiic s 8-18
Declaring a Pointer to an Array of StrUCES........c.ccoeuevriniiinicieccc e 8-18
EXAQMIPLES ...ttt s 8-19

Example 1: A Simple Array of Structs of Scalars..........cccccccceerniiiiiniicciccee 8-19

Example 2: Using Mixed Scalar Arrays with An Array of Structs........c.cccccooveeiniicninnines 8-19

Example 3: Using Multiple Arrays of Structs with a Cursor..........ccccccevvvvivvvviinninnnn, 8-20

Example 4: Individual Array and Struct Member Referencingcccccccccevvuvivcnnnnne 8-21

Example 5: Using Indicator Variables, a Special Case............cooeeuiioiiinieiiiiiiciiicciea 8-21

Example 6: Using a Pointer to an Array of Structs.........ccooeioiiiiniiicniic 8-23

Mimicking CURRENT OFccccccoiiiiiiiiiiceeee et 8-23

Handling Runtime Errors

The Need for Error HaNdIIng ... 9-1
Error Handling AIernatives ..o 9-1
Status Variables ..o 9-2

Xi

Xii

The SQL COMMUNICALIONS ATEAvevveeereerieiieieeteeeeriestesieetesteetesseesesseessesseessesseessesssessesssessessaens 9-2

The SQLSTATE Status Variable ..ottt ettt 9-3
Declaring SQLSTATE ...t 9-3
SQLSTATE VAIUES coeeeiiieieeeeteeteteete sttt stt ettt te st stessa e be et e b e esaassaessesseessesssessesssessesssensessaans 9-3

Using SQLSTATE ..ottt 9-10

If You Declare SQLSTATEoooviouiieieeeeee ettt ettt ettt eev e e v eve v evsereernens 9-10

If You Do not Declare SQLSTATEcvoioiiieieeeeeeeeceeteet ettt vn e eve e e e v 9-10
Declaring SQLCODEc.cccoiiiiiiiiiii s 9-10
Key Components of Error Reporting Using the SQLCA ..o 9-11
SHAtUS COAS ..o s 9-11
Warning FLAgs ... 9-11
ROWS-Processed COUNLccccoeuiiiiiiiiiiiiiiciceeceeeeee e 9-11
Parse EITOr OffSELSc.ceueueuiueieieiiiiiiieieieieicieieeietete ettt saees 9-11
Error Message TeXt ..o 9-12
Using the SQL Communications Area (SQLCA) ..o 9-12
Declaring the SQLCA ..o 9-12
SQLCA CONEENLS ...eeeieeiieeiieeieeeie et eete et e et e et e eteeteesttesstaesstesbeessseeseesssassseesssessseesssessssesssesssesns 9-13
SQLCA SIUCEULE....cevtieieeeiieeieette ettt et e et esveeteestbeesbaesste e seessseeseasssaasssessseessessseessesssenseenes 9-14
SGICAIA ettt 9-15

SQICADC oo 9-15

SGICOAR . 9-15

SGLEITTH ettt 9-15

SLETTP oot 9-15

SGIETTA e 9-16

SGITIATTL ettt ettt 9-16

SGLEXE .ottt 9-17
PL/SQL CONSIAEIAtIONSvecvieurievieiietecetieteeete et eete et eteeeteeteeaeeteeseeteeeseeseeeseeseeeseesseeseesseeseensenseenses 9-17
Getting the Full Text of Error MeSSagescccccovvviiiiiiiiiiiiiiiiiniiiinccsesenenns 9-17
Using the WHENEVER Directive ..o 9-18
WHENEVER CONAItIONS. ..ot e 9-19
SQLWARNINGooviiiiiiiiiniiiii s 9-19
SQLERROR ..ottt bbb 9-19

INOT FOUND ..ottt 9-19
WHENEVER ACHONS......cooviiimiiiiiiiiiic s sssnnis 9-19
CONTINUE ..ottt 9-19

DO et 9-19

DO BREAK ... 9-19

DO CONTINUE ...ttt 9-19

GOTO 1ADEL NMAITIE oottt e ettt e e et e e eeaaeeseaeeeseseeseeaaeesenseessseesessaessanneens 9-20

STOP i 9-20
WHENEVER EXQIMPLES ...coviiiiiiiiiiiiiiiieicc et 9-20
Use of DO BREAK and DO CONTINUE..........cccoooiiiiiiiiiiiiccceecnscsee e 9-21
Scope of WHENEVERcooiiiiiiic e 9-22
Guidelines for WHENEVERccccoiiiiiiiicic et 9-22
Placing the Statementsccccceeiiiiiiiiii s 9-22
Handling End-of-Data Conditionscccoeeiiiiiiiiiciicicce s 9-22
Avoiding Infinite LOOPSccccoeuiiiiiiiiiiiiiiiiic s 9-23

Maintaining Addressability ..o 9-23

Returning After an EITOT ... 9-24
Obtaining the Text of SQL Statementscccococoviiiiiiiiiiiiincrrreeeeee s 9-24
RESETICHIONS ..veenviieiiieiieeitert ettt ettt et e e e st e st e e st e s baesabessseessbeesseesssesssaesssesnseesssesseenns 9-26
Example Programi...........cccccoiiiiiiiiiiiiiiiii s 9-26
Using the Oracle Communications Area (ORACA) ..o 9-26
Declaring the ORACAc.oooiii e 9-27
Enabling the ORACA ... s 9-27
ORACA CONEENES ..ottt et e sttt esteste st st e seessesseessesseessesseensesseessesssensesssessesssensesnees 9-27
Choosing Runtime OptioNnscoiiiiiiiiiic 9-29
Structure of the ORACA ...ttt ettt ettt e e se et e e reeseereebeessenaeennas 9-29
OFACATA ettt ettt ettt b sttt s et e st st e st et et et e b et e b et e b et ebe st e st stenestenestenestenees 9-29
OFACADC oottt etee e te et e ettt e b esb e st e st esseseesaetaebeeseebeebesbessesbasbessessessessessessessesseseeseesessensas 9-29
OFACCHE oeeetitee ettt 9-29
OFAADL oo 9-29
OFARCHS ..ottt 9-30
OFASEXE eeeeteee ettt 9-30
DIAGNOSICS .ouviiiiiiiiciiii e 9-30
OFASEXT weeveeieeeeiteete ettt et e sttt et e st e s bt e st e st e e s et e esbeesstessbeesseesabaessseessaesssaensaenssesnsaenssesssaesssesseenns 9-30
OFASTIIL oevvivteeete ettt 9-30
OFASIIT ottt ettt ettt sttt et et e e bt e b et e b et e bt e st st e st st et stenentenea 9-31
CUrsOr Cache STAtISTICS .oveeveerieiiieieriieeerie ettt ettt e e et e e e ebe e e e ssessaesseessesseessessaessansenns 9-31
OFANOC eveveeeeeeeeteeete ettt et e bt et e et e b e ete e aeeta e beeas e beess e baess e seesseessenseessenseessesseessesseessessaensensenns 9-31
OFTITIOC <ueueueenteuteueeiestt ettt sttt et et ettt et e et e st e bt e bt s bt s et b b e s e et et et et eatemt et este st eneeneebeebesuesaensen 9-31
OF(ICOC wvveuveeaurerereenuessseesteesseesstesseasssessseesssessseesssassaesssessseenseesnseesssesnseesssesnseenssessseenssesseenssesnsesnns 9-31
OFQTIOT weeeueteeeeeeeeeteeeetteeeateesauteeesssteeassseesassaeasssaesassaaeansseeensseesassaeeansbeeansseesassaeessseaesssaesnssaesnsseeens 9-31
OFATIPY oottt R bbb 9-31
OFATIEX «vvvuveeererreeneuesiseesstessseesseesseesssessseesssessseesssesseesssessseenssesnseesssesseesssesnseenssessseenssesnseesssesssesnns 9-31
ORACA EXAIMPLE ..ottt 9-31

10 Precompiler Options

The Precompiler Commandccccoeiiiiiiiiiiiiiiiniiii s 10-1
Case SENSItIVILYccoiuiiiiiiiic s 10-2
Precompiler OPHiONScccoviiiiiiiiiiiiiiiii s 10-2
Configuration Files ... 10-2
Precedence of Option ValUes..........ccccccuiiiiiiiiiiiiiiiiiiiicceeeeee e 10-3
Macro and Micro OPtiONScccurueiiiicieie ettt 10-4
What Occurs During Precompilation? ... 10-4
SCOPE Of OPLIONIS ...ttt 10-5
QUICK REFEICIICEocveiveeeiieieeieeeee ettt ettt et e e st e e st e sre e b e sreesaesseesseessassasssessasssensanssansenssensenses 10-5
Entering OPtions ... 10-7
On the Command LiNe........ccooiiiiiiiiiiiiiiie e 10-7
INLINE ottt 10-7
Uses for EXEC ORACLE ..ottt 10-7

Scope 0f EXEC ORACLE........c.coiiiiiiicccceeetete et 10-8

Using the Precompiler Options ..o 10-8
AUTO_CONNECT ...ttt 10-8

Xiii

CLOSE_ON_COMMITcotiiitiiriierenentestenientestetestet ettt et et saesse s sae st sse st seess et eneeneesesuesaenes 10-9
CODE ...ttt ettt e 10-10
COMP _CHARSET ...ttt ettt et ae ettt bbb e sae e e e 10-11
CONFIG ...ttt ettt sttt ettt et ettt et ettt sa s b b sa et et et e e et et eneeneenesnesaeas 10-11
CPP_SUFEIX ..ottt ettt seene 10-12
DBMS ..ottt ettt b et e e e 10-12
DEF_SQLCODE.......oooiiiiiiiirtnieene sttt ettt ettt st et sbe b bt b s e st et ene et snesaees 10-13
DEFINE ..ot 10-14
DURATION ...ttt tes ettt a et a st a et be b b et b e b e be e s naene 10-15
DYNAMIC ...ttt sttt ettt ettt ettt sa st be sttt e s e et et enteneenesuesaeas 10-15
ERRORS ...ttt et 10-15
ERRTYPE ...ttt ettt ettt bbb e 10-16
FIPS... ettt ettt ettt s b e ettt ettt et besae e 10-16
HEADER.....o ottt et 10-17
HOLD_CURSORoovtrietrietrieinieteieieiteeitstestssestsre st setesete e see st sae st sse s st sesessesessesessesaesensenessene 10-18
IINAME ...ttt ettt ettt st bbbttt et ene bt s b saee 10-18
INCLUDE ...ttt et 10-19
INTYPE ..ottt ettt ettt b et e e se e 10-20
LINES ...ttt ettt ettt ettt st s b b et ettt et ne et besaee 10-20
LINADME. ...ttt e 10-21
LTYPE .ottt ettt ettt bbb e 10-21
MAXLITERAL ..ottt ettt ettt st sttt ettt ene e saesaee 10-22
MAXOPENCURSORSoccoriiiiiiriiieieietreesrete et e e sae e e e 10-22
IMODIE ...ttt ettt ettt e e et 10-23
INLS_CHAR ..ttt ettt ettt ettt sa s st et ettt et ene bt suesaeen 10-24
INLS_LOCAL ..ottt et e 10-24
OBJECTS ...ttt ettt et b e bbb e e 10-25
ONAME ..ottt ettt ettt et ettt sa s b e b sa ettt ettt entene bt ebesaees 10-25
ORACA ..ttt et e 10-26
PAGELEN ..ottt ettt bttt b et e e ne e 10-26
PARSE ...ttt sttt ettt ettt s ettt ettt besae e 10-26
PREFETCH ..ottt ettt et e 10-27
RELEASE _CURSOR......ctretriiirieineieiitetteitrtetste sttt ettt se s be e b sse e sesaenesaene 10-27
SELECT_ERROR ..ottt sttt ettt ettt st be sttt s ettt ene e suesaens 10-28
SQLCHECK ...ttt ettt 10-29
SYS IINCLUDE ..ottt ettt sttt sttt be bbb e seene 10-29
THREADS ...ttt sttt ettt ettt ettt st sa st be et b s ettt ene bt suesaees 10-30
TYPE _CODE ...ttt e e 10-30
UNSAFE _INULL ..ottt ettt ettt sae sttt se bbb e sae s saene 10-31
USERID ...ttt sttt ettt ettt ettt st st st be bt et ettt et et eneebesuesaeen 10-31
UTFL6_CHARSET ...ttt sttt 10-32
VARCHAR ..ottt sttt sttt ettt st s e 10-32
VERSION ...ttt sttt ettt ettt et sttt sa s b bbbt s et et enteneenesuesaeas 10-33

11 Multithreaded Applications
WAt a1 TRICAMS?ooveiiriieeeee ettt e e et e e e teeeaeeeeteeeaseeeseeesesenseeeaseeteeesseenseeans 11-1

Xiv

Runtime Contexts 1N PIOFC/CaH+ ..ottt eet e et esaae s s st e s eteeesaeessnaseessnvesesnes 11-2

Runtime Context Usage Models...............ccooviiiiiiiininiiiiis 11-3
Multiple Threads Sharing a Single Runtime Context............ccccccoeereueiiennneeerceeeeeenes 11-3
Multiple Threads Sharing Multiple Runtime Contexts...........ccooeeiireieiniiceccccee, 11-4

User Interface Features for Multithreaded Applicationscccccocovviinnniiinniiinn, 11-5
THREADS OPHON ...vviiiiiiiiiiici s 11-5
Embedded SQL Statements and DIreCtives..........ccocvevverieerierierienieieeeeieeeesreseesseseessesnessesnnas 11-6

EXEC SQL ENABLE THREADScoooiiiiiiiiiiniieirire ettt 11-6
EXEC SQL CONTEXT ALLOCATEcoiiiiiiiiiieieiiicccn s 11-6
EXEC SQL CONTEXT USEccoiiiiiiiiiiiiiiininiiiicniissss s ssssssessssnenns 11-6
EXEC SQL CONTEXT FREEcccouiiiiiiiiiiciiniiciricecie e 11-7
CONTEXT USE EXQMPLES.....coouiiiiiiiiiiiiiiiiiiciicieiciceeeiee et 11-8
Programming Considerationsccoceueiiiiiiiiiiiiicieiccie e 11-9

Multithreaded Exampleccccccooiiiiiiiiiiiiiiii s 11-9

Connection POOLING...........cccoiiiiiiiiiii s 11-15
Using the Connection Pooling Featureccoooiiiiiiiiiic e, 11-16

How to Enable Connection POOLNGccoucviuiieieiiiiiiccce e 11-16
Command Line Options for Connection POOlNgccccccceueiiiiiiieniiicicccceeee 11-16
EXAMPIE ..ot 11-18
Performance TUNINGccccciiiiiiiiiiiiiiiiiiii s 11-18
Demo Programu:l ... s 11-18
EXAMPIE ..ot e 11-19
Demo PrOZIamu2cciiiiiiiiiieieiccsc st 11-23
Case 1: By varying CMIN ... 11-24
Case 2: By varying CIMAXc.ooiii e 11-25
EXQMIPLE ..ottt s 11-25

12 C++ Applications

Understanding CH+ SUPPOIt.........cccooiiiiiiiiiiiiiii s 12-1
No Special Macro PrOCESSINGc.cccvueuriiiiiiiiiiicieicicieieieieieieteeeeeieee et 12-2
Precompiling for C ..o 12-2
Code GENETAtION.......cucuiiiiiiiiii s 12-2
Parsing Codec.ccuiuiuiiiiiiiiiciceee e 12-3
Output Filename EXteNSIONcccuoviiiiiiiiii e 12-4
System Header FIles ... 12-4
EXamMPle PIOGIAIMNS ..o 12-4
CPPACINOLPC ettt 12-4
CPPAEIMOZ.PC s 12-7
CPPAEIMOB.PC ot 12-10
13
Oracle Dynamic SQL
What is Dynamic SQL?cccccooiiiiiiiiiiiiiii s 13-1
Advantages and Disadvantages of Dynamic SQL............cccccccoviniiiinniii, 13-2
When to Use Dynamic SQL..........ccoooiiiiiiiiiiii s 13-2
Requirements for Dynamic SQL Statements ..o 13-2

XV

14

XVi

How Dynamic SQL Statements are Processedccooovviiiiininiiiiiicicc 13-3

Methods for Using Dynamic SQLccccccoiiiiiiiiiiiiiiiic s 13-3
MEthOd T ..o 13-4
MEhOA 2 .o 13-4
MELNOM 3 ... 13-4
MEthOd 4 ... 13-4
GUIAEINES ...t 13-4

Avoiding Common EITOrS ..o 13-5

UsSiNg Method T ..o 13-6
Example Program: Dynamic SQL Method T........cccooiiiiiiiii e, 13-7

Using Method 2 ..o 13-9
The USING ClaUSEcooviuiiriiiiiiiiicei s 13-10
Example Program: Dynamic SQL Method 2...........c.ccoiiiiii e, 13-11

Using Method 3 ..o 13-14
PREPARE ..ottt 13-14
DECLARE ...t 13-15
OPEN .. 13-15
FETCH oo 13-15
CLOSE ...t 13-16
Example Program: Dynamic SQL Method 3..........cccccciiiiiiiiiicce, 13-16

USING Method 4 ...t 13-19
Need for the SQLIDIAc.o ittt ettt ettt e st st b e b e b e b essessessessesserseseeseesens 13-19
The DESCRIBE StateImentccccviieieiriiiieiniiicieiriicie et 13-20
WHhat 18 @ SQLIDAT? ..ottt ettt ettt et e e teebeebe et e ere et e erbeeteereeete et ereeneas 13-20
Implementing Oracle Method 4c.coooiiiiiii e, 13-21
RESTIICHION.....cuiiiiiiiciiiccc bbb e 13-21

Using the DECLARE STATEMENT Statementccocoiiiiiiinie, 13-21
Using HOSt AITAYS ..c.cooviiiiiiiiiiiiicii e 13-22

USING PL/ISQL ..ot 13-22
With Method 1 ..o s 13-23
With Method 2 ..o 13-23
With Method 3 ... 13-23
With Oracle Method 4 ... 13-23

ANSI Dynamic SQL

Basics of ANSI Dynamic SQLcccooiiiiiiiiiiircrr s 14-1
Precompiler OPtionS.........ciuiiiicieiiici 14-2
Overview of ANSI SOL Statementsc.cceoiiiieiiieiieieieeeeeeee ettt ettt ese e eeas 14-2
EXamMPLe COUE.....oiiiiiiiiiiiiiccce e 14-5
Oracle EXteNSIONSccccoviviiiiiiiiiiiiii s 14-5
Reference SEmantiCs.ot 14-6
Using Arrays for Bulk Operations..........cccooivinininiininininicie e 14-6
Support for Arrays of STIUCEScoveiiieiicic e 14-8
Support for ObJect TYPEScouvviiiiiiiiiiiiiiiiii s 14-8
ANSI Dynamic SQL Precompiler Optionsccccccceuiiiiiiiiiiiininiiiiiiceceeeeeeeeeeeeeees 14-8
Full Syntax of the Dynamic SQL Statementscccccocoviniiiiniiii 14-9
ALLOCATE DESCRIPTOR.......ccoiiiiiiiiiriiiieiiicieiicce st 14-10

DEALLOCATE DESCRIPTORcueoettnieiinieiinieinieinieteietereneereneesestesessesesseessesessesessesaesessenessene 14-10

GET DESCRIPTOR.......coiiiiiiiiiiciiicieie it 14-11
SET DESCRIPTOR........cootiiiiiiiiiiici it 14-14
Use Of PREPAREccoiiiiiiiiii s 14-16
DESCRIBE INPUT ..ottt 14-17
DESCRIBE OUTPUT ..ottt 14-17
EXECUTE ..ot 14-18
Use of EXECUTE IMMEDIATEocccooiiiiiiiiiiieiceerecie et 14-19
Use of DYNAMIC DECLARE CURSOR........coiiiiiiiriiic s 14-19
OPEN CUTISOT ...ovviiiiiiieieieieieieiei ettt 14-20
FETCH ..ot 14-20
CLOSE a DynNamic CUTSOTcciiiiiiiiiiiiiiiiiiiiccscn s s 14-21
Differences From Oracle Dynamic Method 4ccccooviiiiiiiiniiie 14-21
RESTIICIONS ..ot bbb e 14-22
EXample PrOGIAIS.........ccoooiiiiiiiiiiiccc e 14-22
ANSIAYNTLPC 1ottt 14-22
ANSIAYNZ.PC covviiiiii bbb 14-28

Oracle Dynamic SQL: Method 4

Meeting the Special Requirements of Method 4ccccccoiiiiiiniiin 15-1
What Makes Method 4 Special? ... 15-2
What Information Does Oracle NEEA?ccocveveeieieieieiieeerieiese sttt se e eseesne e ereeseese s 15-2
Where Is the INformation StOTed?cceeoieiiiieiiiiceeceeeteee ettt e eanas 15-2
How is the SQLDA Referenced?cooovioieiiiiieieeieceeeteecteete ettt ettt eveete v ereeeae s eaeennes 15-3
How is the Information Obtained?cccocvevievieieieieieiieieece ettt s e e vsereeaas 15-3

Understanding the SQLDAc.ccccccoiiiiiiiiiiiiii s 15-3
Purpose of the SQLDAccciiiiiiiieccceeee e 15-3
Multiple SQLIDAScooviieiietcie e 15-4
Declaring a SQLDAcccooiiiiiiiiii s 15-4
Allocating a SQLDA ..o 15-4

Using the SQLDA Variables ... 15-5
THE IN VATIADIE ..oeoivieiiiieceetceeet ettt ettt ettt e bbb eeae et e saeenseeseeaeersensessnas 15-5
TRE V VATIADIE ...ceveeieeieeieeceeeeee ettt ettt st b e e b e s esaesaeseesaesaesessessensas 15-6
THE L VATIADIE ...c.evieieeieieeeeteeeetteee ettt ettt te et et e b e be et e be et e esa et e ssaessessnessessnessenseas 15-6
TRE T VATIADIEeoieviiiieeceeee ettt ettt ettt ettt e e ae et e ereenseeaeebeersensessnan 15-7
TRE T VATIADIEvevveeieeieieeieteteeette ettt ettt ettt et e s st e b e e s e s essessesaesseseeseesensessessensan 15-7
TIE F VATIADIEc.eoivieeieiieteetee ettt ettt st et e st et e b e be et e s be e st e sseessessaessessnessesseassensens 15-8
TIRE S VATIADIE ...cevietieiiteeietceeeee ettt ettt ettt ettt et be e b e be et e se et e eseenseeseesesrsensesanan 15-8
TRE M VATIADIE ..ottt ettt ettt b e e b e b essesaesseseeseesaesessessensas 15-8
BN TS G2 Vs F-1 o) (TP 15-8
The X VArIiablecovcciiiiieiiieeieeceeteete ettt ettt ettt ettt eeae et e sreenseeseeseessensesanas 15-8
TRE Y VATIADIE ...oeveeieeieeieieeieeeteeee ettt ettt ettt s e e b e s essesseseeseesensessessensan 15-9
N TS Z: Uy F-1 o) (TP 15-9

SOME PreliMINAriescccoooviiiiiiiiiiiiiciecieteee ettt ettt e ae s e ebe s s e beersebeessebeesseseensesseenns 15-9
Converting Data ... 15-9

Internal DatatyPescooeueieiiiiiiec s 15-9
External Datatypes ... 15-10

XVii

Coercing DatatyPesccccueieiiiicieiiicie e 15-11

Extracting Precision and Scalecccooiiiiiiii 15-12
Handling NULL/Not NULL Datatypescccccccoeueurueiimimiieinieicieiceieeeeeneeeeeiereeneeeeenenenenenes 15-14
The Basic StePscccoiiiiiiiiiiiiiiii s 15-15
A Closer Look at Each Stepccccccoiiiiiiiiiiiiiiiiiiiic s 15-15
Declare a HOSt SFNGc.ccuiuiiiiiiiiiiiiicicccceceeee e 15-16
Declare the SQLIDASc.eocuieieiieiecietest ettt et ste et te st e s e et e sesssesseesaesseessesseessessaessesssessenseens 15-17
Allocate Storage Space for the Descriptorscoceuioiiiieiiiiiiccc e, 15-17

Set the Maximum Number to DESCRIBEccccccooviiiiiiiiiiienee, 15-17
Put the Query Text in the HOst StrNg ..o, 15-19
PREPARE the Query from the Host Stringccccoceiiiiiiiiiiiiiiiciccc 15-19
DECLARE @ CUISOT ...ocvotitetiteteteteieieie ettt 15-20
DESCRIBE the Bind Variables ... 15-20
Reset Number of Placeholders ... 15-21
Get Values and Allocate Storage for Bind Variables ... 15-21
OPEN the CUISOLooviiiiiiiiiiiicicc st 15-23
DESCRIBE the Select LiStccccocuiiiiiiiiiiiiiciiiceiiceere e 15-24
Reset Number of Select-List Itemscccocveiiiiiiiiiiiiiiccc e, 15-25
Reset Length/Datatype of Each Select-list [temccoooivmiiiiiiiiic 15-25
FETCH Rows from the ACHVE Setccooiviiuiiiiiiiiiiiriccciccrcceeeee s 15-27
Get and Process Select-List ValUESccooveiviviiiiiiiiiiiiccccc e, 15-28
Deallocate SEOTAZEc.cvvieeieieiiiiicie 15-29
CLOSE the CUTISOTouiiiiiiiiiiciciiecic ettt 15-30
USING HOSt ATTAYS ..oviviviiiiiiiiiiiiicict s 15-30
SAMPLELZ.PC ettt 15-32
Example Program: Dynamic SQL Method 4 ..., 15-32
Sample Program : Dynamic SQL Method 4 using Scrollable Cursorsccccccociiiccnne. 15-43

16 Large Objects (LOBS)

What are LOBS?.........coiiiii s 16-1
INternal LOBS ..o s 16-1
EXEErNal LOBScoiiiiiiiic e 16-2
Security fOr BEILES.......c.cciiiiiiiiiiccccccc e 16-2
LOBs versus LONG and LONG RAW ... 16-2
LOB LOCAOTS.ccoiviiiiiiiiiiiiiiincic bbb 16-2
Temporary LOBS ..o 16-3
LOB Buffering SUbSYStEML............cceuiuiiiiieiiciiciicic e 16-3

How to Use LOBSs in Your Program ... 16-3
Three Ways t0 AcCesS LOBSc.cccuiiiiiiiiiiieeccccceeeee e 16-4
LOB Locators in Your Applicationcouceueiiiiiiieiiicieec s 16-5
Initializing @ LOBccccocoiiiiiiiii s 16-6

INternal LOBS......c.couiiiiciiiiccce et 16-6
EXternal LOBScciiiic e 16-6
Temporary LOBS ... 16-7
Freeing LOBS ..o 16-7

Rules for LOB Statements ... 16-7

For All LOB Statements........cccuviuiuiiiiiiiiiiiiecirie et 16-7

XViii

17

For the LOB Buffering SUbSystemc.ccoooviiiiiiiiiiiicccc e 16-7

FOr HOSt Variables. ...t 16-8
LOB Statementscccoovviiiiiiiiii s 16-9
APPEND ..ot 16-9
ASSIGN ... 16-9
CLOSE ..ottt 16-10
COPY o 16-10
CREATE TEMPORARYcootiiiiiiiiiciiritie ettt 16-11
DISABLE BUFFERINGcocoiiiiiiiiiiicn s 16-12
ENABLE BUFFERING........ccoiiiiiiiiiii s 16-12
ERASE ..ot 16-12
FILE CLOSE ALLooviiiiiiiiiiecie st 16-13
FILE SET ..oviiiiiiircii s 16-13
FLUSH BUFEERcccoiiiiiiiiiiiiiciicete ettt 16-14
FREE TEMPORARYoooiiiiiiiiinticne s 16-14
LOAD FROM FILE ... 16-15
OPEN ..ot 16-16
READ ..ot 16-16
TRIM oo 16-18
WWRITE ..ot bbb 16-18
DESCRIBE ..ottt 16-19
LOBs and the Navigational Interface...............cccccoooiiii 16-21
Transient ODJEctS........cccoiiiiiiiiiiii s 16-21
Persistent ODJECESc.c.cuiuiiiiiiiiiiiciiciciecccc et 16-21
Navigational Interface Example.........cccocoooiiiiiiiiiiiiiiicc e, 16-22
LOB Program EXamples ..o 16-23
READ a BLOB, Write a File Example........cccccccciiiiiiiiiiiicccceeccceeeeeeeeeeeee s 16-23
Read a File, WRITE a BLOB Exampleccccouoiiiiiiiiiic e 16-24
LODAEMOTL.PC. ...ttt s 16-26
Objects
Introduction t0 ODJECtSccovviiiiiiiiiiiiiiii s 17-1
ODJECE TYPES ...ttt ees 17-2
REFS t0 ObJeCt TYPES ..ottt 17-2
Type INNTItancCe........ccccoviiiiiiiiiiiiii s 17-2
Using Object Types in Pro*C/CH+ccooiiiiiiiiiiiiicceceieeeeeeeeeeeeeee e 17-3
INULL INAICAOTS....ccviviiiiiiiiiiiciciicicicei s 17-3
The Object CaCheccccciiiiiiiiii s 17-4
Persistent Versus Transient Copies of ObJects.........ccceeuiuirrririiieininnieiccreccceeeeeeeeeeees 17-4
Associative INterface.............cccooeiiiiiiiiiiii s 17-4
When to Use the Associative Interface...........cccocoveuiviriiiiiiiiininniiiiiiiiccs 17-4
ALLOCATE ...ttt 17-4
FREE ..o 17-5
CACHE FREE ALL w...oiiiiiiiiicic et 17-5
Accessing Objects Using the Associative Interfacecccceceeeeveeiiiinnncicrcccceee 17-5
Navigational Interface.............c.cccocoooviiiiiiiiiiiiiii s 17-6
When to Use the Navigational Interface............cocooeeueiiiiiiiiiiicc e, 17-7

Xix

Rules Used in the Navigational Statements.............cccoooireiiiiiiieiicce e, 17-7

OBJECT CREATE ..ottt 17-8
OBJECT DEREF ...ttt 17-8
OBJECT RELEASEocooiiiiiiiiiiii st 17-9
OBJECT DELETE ...ttt 17-9
OBJECT UPDATE ..ottt 17-9
OBJECT FLUSH......coiiiiiiiiiiiiiii s 17-10
Navigational Access to ODJeCcts ..., 17-10
Converting Object Attributes and C Types.........ccccocoviviiiiiiiiiiiii 17-12
OBJECT SET ..ot s 17-12
OBJECT GET ...ttt 17-13
ODbject OPtIONS SEt/Getoooiiiiiiiiii e 17-14
CONTEXT OBJECT OPTION SET ..ot 17-15
CONTEXT OBJECT OPTION GETcoeuiiiiiiriiiiiiniiceeireticie st 17-15
New Precompiler Options for ODjJects...........ccccoiuiiiiiiiiiiiiiiiiicceccee s 17-16
VERSION ...ttt 17-16
DURATION ..ottt 17-16
OBJECTS ..o 17-17
INTYPE ..o 17-17
ERRTYPE ..ottt 17-17
SQLCHECK Support fOr ODJECESc.cucueuiiiuiiiiiiiiiicicieiiciccicieieceeeeieiee e 17-17
Type Checking at RUNTIMEcooviiiiiii 17-18
An Object Example in Pro*C/CH+ ... 17-18
ASSOCIALIVE ACCESS ..o.vvvrretetetetete et s 17-18
Navigational ACCESS.........ccrueiiiiiicieiiici e 17-19
Example Code for Type Inheritance ..o, 17-20
Example Code for Navigational ACCESS ... 17-27
USING C STIUCIUTES ...t s 17-33
USING REFS.........cooiiiiic s 17-34
Generating a C Structure for a REF ... 17-34
Declaring REFScoooiiiiiecic st 17-34
Using REFs in Embedded SQL..........cccccccciiiiiiiiiiiiiiies 17-34
Using OCIDate, OCIString, OCINumber, and OCIRaw...........ccccccceiviniiininniiiiiccne, 17-35
Declaring OCIDate, OCIString, OCINumber, OCIRAWccccoovuriiiimiiiieiiiiieieeeiereieennens 17-35
Use of the OCI Types in Embedded SQLcccooiiiiiiiiicc e, 17-35
Manipulating the OCT TYPES.....c.c.cucuiuiiiiiiiiiiiiceceee e 17-35
Summarizing the New Database Types in Pro*C/C++ ..o, 17-36
Restrictions on Using Oracle Datatypes in Dynamic SQL ..o, 17-38
18
Collections
COLLECLIONS ... s 18-1
INested Tables.........cociiiiiiiiiiiiiii s 18-1
VaITAYS .ovevieiiictctce ettt 18-2
C and COlIECHONScucvviriiiiiiicie s 18-2
Descriptors for COllections..............ccocuiviiiiiiiiiiiiiii s 18-2
Declarations for Host and Indicator Variablescccccooeiiiiiiiiiiiiniiiee, 18-3

XX

Manipulating ColleCtionsS...........ccueiiiirieiiiiiei e 18-3

AutonomMOUS COlLECHON ACCESScccvievieiieieirieeeiteetesteeetesteesteereesseereesseessesseesesseesesssessesseens 18-3
Collection EIEMENT ACCESSc.vvverierieierienieieteieieesessessessessessessessessessessessessessessessesessessessenses 18-3

RULES fOT ACCESSviuviuieeieeietietiettett ettt ettt ettt et et st e rsesaeseeteesseseeteebesbesbessessessessessessesseseeseesessess 18-4
AULONOIMOUS ACCESS ...veeuvieeiieiieeiteeiieeeteeteesteesteesteesseessteesseassseesseesssassseesssessssesssesssessssessseesns 18-4
ELEIMENT ACCESS ...vvevieeierietiiiietieteietetete et e e te st e ste e s sesse et essessessessessessessessessessessessasensensensensenses 18-4
INAICAtOr VATTIADIEScvivieeiiiieieeteeeeeete ettt ettt ettt et e st e s e esa e b e sseessesseessesrnessenseas 18-4
AUtonomous Bindingsccccceviviiiiiiiniiiiiiiiiis 18-4
Element BINdINGSc.ccceueuriiiiiiiiiriiiiicciiciccee e 18-4
OBJECT GET Qnd SEToouiiiiieiiieiiieiieeietetetetet ettt ettt b se st e e se e st ensesensesensesenseneasenes 18-4
Collection STAteIMENTS.............ccviiiiiiiiiiiecieeet ettt ettt et e s reeaeeteebeste e beessesbeessesbeesseseessesseenes 18-6
COLLECTION GET ...ovteteiteiieiteteietrestestete e steste et estessesassassessessassessassessessessessessessessessssessensenses 18-6
COLLECTION SET ..ottt sttt sttt e sttt saeseeteesssvesvesbesbasbe s essessessessessessessesssssssesas 18-7
COLLECTION RESET ..ottt ettt ettt ettt et eveeteeteeveeae s e s et enseasessensessessessesnenas 18-8
COLLECTION APPENDototitiieire ettt ettt ssae e sssssesse e sse s essessessessessassesessessessenses 18-9
COLLECTION TRIMootitiiietietietieiietietieteste st et estessestessesseseeseeseessesessessessessessessessessessessessesssseesens 18-10
COLLECTION DESCRIBEciitietietietieteeteeteeteeteet ettt et e eveeteeveeveevesesse st esessensensersesseseas 18-10
INOLES ON e TADLEcvieviiieiiieeieeeee ettt ettt b et esaess e e e e esaeseasensens 18-12

Rules for the Use Of COILECHONSccceevieiiiriiiiiieietieiieeeteeteee ettt st st eb e sse s ssessessessereesens 18-12
Collection Example Code...........coooviiiiiiiiiiiiii e 18-12
Type and Table Creation.........c.ccccciiiiiiiiiiice e 18-12
GET and SET EXaMPIEc.cviiiiiiiiiicice ettt 18-14
DESCRIBE EXAIMIPIE.....coiiiiiiiiiiiiiiiiiicieiriie et 18-15
RESET EXAIMPLEoviiiiiiiiiiiicccciceceeee et 18-16
Example Program:coldemol.pe ..ot 18-18

19 The Object Type Translator

OTT OVEIVIEW ..ottt 19-1
What is the Object Type Translator..............cccccocoviiiiiiiiiiniiiiiiiis 19-1
Creating Types in the Databasecccccccceuiiiiiiiiiiiiiccccce s 19-3
INVOKING OTT .ot 19-3
Command LINe......ccccoooiiiiiiiiiiiiiii s 19-4
Configuration Filec.cccooiiiiii s 19-4
INTYPE FIle .ot 19-4

The OTT Command Lineccccccciiiiiiiiiiiiiiiiiiii s 19-4
OTT ot 19-5

USEIIG. ..ottt s 19-5
INTYPE ..ottt 19-5
OUTTYPE ..ottt 19-5

CODE ... 19-5

HFILE ..ottt 19-5
INITEILE.......oiiiiiieiiiceee s 19-6
INITEFUNC ..ot 19-6

The INTYPE FIle ..ottt 19-6
OTT Datatype Mappingscccoveiiviiiiiiiiiiiiiiicccnst s 19-7
Mapping Object Datatypes to C........cooruiiiiriiieiici 19-8

OTT Type Mapping Example.........cccccocviiiiiiiiiiininiiiiiiiiiieinnes 19-10

XXi

INULL INAICAtOT SEEUCES ..vvviiieeeie ettt e et et e et e e eae e s saaessnaeessnsesssnseessnresesnns 19-12

OTT Support for Type Inheritanceccccoviiiiiiiiiiiiiiiiiies 19-13
Substitutable Object AHIIDULESc.ccceuiuiiiiiiiiiccccce s 19-14
The OUTTYPE File ..o 19-15
Using OTT with OCI Applications............cccccoeiviiiiiiiiiiiiiniiiiies 19-16
Accessing and Manipulating Objects with OCL...........ccccccciiiiiiiiiiiccceeeceeee 19-17
Calling the Initialization FUNCHONcccoiiiiii e, 19-18
Tasks of the Initialization FUNCHONccccoiiiiiiiiiiiiiii 19-19
Using OTT with Pro*C/C++ Applications...........ccccccueuiiiiiiiiiiiiiiicceeccceeeceeeeeeeeeeeees 19-19
OTT REfEIEINCE ...t 19-21
OTT Command Line SYNtaXx........ccccccvviiiiiiiiniiiiiiiiii s 19-21
OTT Parameters........ccocvviiiiiiiiiiiiiiiiic s s 19-22
USERID ...t s s 19-22
INTYPE ..o 19-23
OUTTYPE ..ottt 19-23
CODE ... s 19-23
INITEILE......oiiiiiiicerice et 19-23
INITEUNC ..ottt 19-24
HFILE ..o s 19-24
CONTEFIGi...oiiiiiitc e 19-24
ERRTYPE ..ot 19-24
CASE ..o s 19-24
SCHEMA _NAMEScocoiiiiiiiiritcer et 19-25
TRANSITIVE ..ot 19-25
Where OTT Parameters Can APPEArcooururieiiiiicieieiicicie i 19-25
Structure of the INTYPE Filecccoiiiiiiiiiiicicc e 19-26
INTYPE File Type SpecifiCationsc.cccceueuiucueirieiiieieieieicicceieeieieeeeeeeee e 19-26
Nested #include File Generation...........c.cccceviiiiiiiiiniiiniiiiic s 19-27
SCHEMA_NAMES USAGEcovuivriiiiiiriicieiriinicie sttt 19-29
Default Name Mappingcccccccucieiiiiiiiiiiiiiciceeieeeee et enenens 19-31
RESTIICHION ...t 19-31
File Name COMPATISONceueiiiuiieiiiicicie ettt 19-32

20 User Exits

XXii

What Is @ User EXit?ccccocooiiiiiiiiiiiiiii s 20-1
Why Write a User EXit?.........cccoiiiin e 20-2
Developing a User EXit...........cccccoooiiiiiiiiiiiiiiccccc s 20-2
Writing @ User EXit ..o 20-3
Requirements for Variablescccccciiiiiiiiicccce s 20-3
The IAF GET Statement.........cccoooiiiiiiiiiiiiiiiiiiiiiccc s 20-3
USING TAF GET ...ttt 20-4

The TAF PUT Statement.........cccocviuiiiiiiiriiiiiccce s 20-4
USING TAF PUT ..o 20-5
Calling a User EXit.........cccooviiiiiiiiiiiiiiiiiin s 20-5
Passing Parameters to a User EXit...........ccooviiiiiiiiiies 20-5
Returning Values t0 @ FOIM ... 20-6
The TAP CONSEANTES ..ottt 20-6

Using the SQLIEM FUNCHON.........coiiiiriic 20-6

Using WHENEVER ... 20-7
AN EXAIIPLE.....oeiiiiiiiiecc et 20-7
Precompiling and Compiling a User EXit..........ccccccconniiiiiiii 20-7
Example Program: A User EXit..........cccocooviiiiiiis 20-7
Using the GENXTB ULtycccccooiiiiiiiii s 20-9
Linking a User Exit into SQL*FOIms............cccccooiiiiiiiiiiiiccccsessene 20-10
GUIAELINES ... 20-10
Naming the EXit......ccoooiiiiiiiiicceee e 20-10
Connecting t0 Oracle ..o 20-10
Issuing I/ O CallSc.couiiiiiiiiiiiiiiiiici s 20-10
Using HOSt Variables ... e 20-10
Updating Tablesc.oiii 20-10
Issuing COMMANAScvoviuiiiiiicieie i 20-11
EXEC TOOLS Statementscccoooiiiiiiiiiiicccccrs s 20-11
Writing a Toolset USer EXit........ccoooiuiiiiiiiiiiiiccii s 20-11
EXEC TOOLS SET ..ottt 20-11
EXEC TOOLS GET ..ottt 20-12
EXEC TOOLS SET CONTEXTcooviiiiiiiiiiiiiiiiciicni s 20-12
EXEC TOOLS GET CONTEXTcciiiiiiiiiiiiiiciciiiii s 20-12
EXEC TOOLS MESSAGE ...ttt 20-13

A New Features

New In This Rele@secccoouiiiiiiiiiiiiiiiciccee e A-l
New External Datatypescooocuiiiiiiii A-1
New In Previous Releases ... A-1
ATTAY Of SEIUCES. ...t A-l
Precompiled Header Files.........ccoooiiiiiiiiii A-2
CALL Statementccciiiiiiiiiiiiiciic e A-2
Changing Passwords at RUNTIME.........c.cccciiiriiiiiiiicccrceee s A-2
Support for National Character Setsccooveiieiieiiiciiciici s A-2
CHAR_MAP Precompiler OPtioncccccvuiiiiviiiiiiiiiiiiiiiiiiiiisssse s A-2
New Names for SQLLIB FUNCHONSc..coviiuieiieeieieeeeeteeeeeteeteere ettt ere v e eae e ve s ereeneereens A-2
New Actions in WHENEVER Statement...........cccocoviiiiiiiiiiiiiices A-2
ODbject TYPE SUPPOTTvviiiiiiiiiiiiiicct s A-2
ODbject TyPe Translatorc.cccuciiiiiiriririicieeeeee e A-3
LOB SUPPOTL ..ottt bbb A-3
ANSI DyNamic SQc.cuviiuiiiiiiiciiiiciee e A-3
COLLECHIONS ... A-3
Miscellaneous TOPICS.........cccociuiiiiiiiiiiiiiiiiii s A-3
UNIicode SUPPOTLcoovviiiiiiiiiiiiiccc s A-3
UTF16_CHARSET OPHON ...covuiiiiiiiiiiciiecei s A-3
PREFETCH OPHON ..ottt A-4
ExXternal PrOCEAUTIESccciiiiriiiiiiiciciicic e e A-4
Calling Java from PL/SQL....c.ccoiiiiiiiiiiieceereeeee e A-4
DML Returning CIatSec.cuoviurieiiiiitcie ettt A-4
Universal ROWID ..ottt A-4

XXiii

XXV

SYSDBA /SYSOPER Privileges in CONNECT Statements ..o, A-4

CLOSE_ON_COMMIT Precompiler Option........ccccoeviviiiiiiiniiiiiiiiiiniiiiiinnniiescnnsens A-4
Character SETNGSc.ceuiuiiiiiieiiccee e A-4
Error Message COAES ...ttt A-5
LINES OPHON. ...ttt A-5
Migration From Earlier Releases............ccccocooiviiiiiiiiiiiiiiies A-5

Reserved Words, Keywords, and Namespaces

Reserved Words and KeyWords.............ccccooviiiiiiiiiiiiicc s B-1
Oracle Reserved NAmMeSPACESccouviiiiiiiiiiiiiiiiiii s B-3

Performance Tuning

What Causes Poor Performance? ..o C-1
How Can Performance Be Improved?ccocooiiiiiiiiiiiiiniiiis C-2
USING HOSE ATTAYScoiiiiiiiiiiiiiiic e C-2
Using Embedded PL/SQLcccccooiiiiiiiiiiiiiiccee s C-2
Optimizing SQL Statementsc.ccocooiiiiii s C-3
OptMIZET HINES ..o C-3
Trace FaCIlitycooiuiiei C-4
USING INAEXES ...t s C-4
Taking Advantage of Row-Level LocKingcccccccoiiiiiiiiiiiiiiiicccereeeeeeeeeas C-5
Eliminating Unnecessary Parsingcccocovvviiiiiiiiis C-5
Handling EXplicit CUISOTISc.ccoiiiiiiiiiiiiiiiiiiiiiiiiiic s C-5
CUISOT CONEIOL ..ot C-5

Using the Cursor Management OPtions ..ot C-6
SQL Areas and CurSor CaChecc.ocueeiiiiieiiiieeieceeteeeete ettt et reer e vt e ae e veeaeas Cc-7
RESOUICE USE ...ttt s C-7
Infrequent EX@CULIONcoouiviiiiiiiii s C-8
Frequent EXeCUIONcooiiiiiiiiicc s C-8
Embedded PL/SQL CONSIAEIationscc.coeeeeeueerieireeeiireeeeereeeeereeeeereeeeereeereeseesseeasenseennes C-9
Parameter INteractionsccooeeiioiiiiiiiic C-9
Avoiding Unnecessary Reparsing ... C-9
Using Connection POOLING.............ccccocooiiiiiiiiiies C-9

Syntactic and Semantic Checking

What Is Syntactic and Semantic Checking? ... D-1
Controlling the Type and Extent of Checkingcccccooviniiiiiiiiii D-1
Specifying SQLCHECK=SEMANTICScccccceinininiiiiiininss s D-2
Enabling a Semantic Check..........cccciiiiiiccc s D-2
Connecting to the Oracle SerVer...........oooiiiiiic D-3

Using DECLARE TABLEc.cooiiiiiiiicecre e D-3

Using DECLARE TYPE ..o D-4
Specifying SQLCHECK=SYNTAXcccccceviiiiniiiiiiiiinss s D-4
Entering the SQLCHECK OPHIONccoiiiiiiniiiiiiiiiii s D-4

E System-Specific References

System-Specific INfOrmation ..o E-1
Location of Standard Header Filesccccoviiiiiiiiiiiiiiiiccc e, E-1
Specifying Location of Included Files for the C Compiler...........ccccooviviiiiriiinininice E-1
ANSI C SUPPOTIt.eiiiitiiiiiictcc s s e E-1
Struct Component ALGNIMENTcccoruiiiiiiiiiiicereeeeee s E-1
Size of an Integer and ROWID ..o s E-1
Byte Orderingcocvveiiiiiiiiiiiiiiiiiiii s E-2
Connecting to the Oracle SEIVETcccccciiiiiriiiiiiiiiicceereee e E-2
Linking in an XA LIDIary ... E-2
Location of the Pro*C/CH+ EXECULADIEooouviiiiiiieeeeeeeeeeeeeeee ettt E-2
System Configuration Filecccccciiiiiiiiiic s E-2
INCLUDE Option SYNaX.......ccoevrueieiiiicieieieicie ettt E-2
Compiling and LINKINgoovoeriiiiiiiic e E-2
USEE EXItS ..o E-2

F Embedded SQL Statements and Directives

Summary of Precompiler Directives and Embedded SQL Statementsc.ccccoeevvvnnnnne. F-3
About The Statement Descriptions ..o F-6
How to Read Syntax DIiagramsccccocoviiiiiiiiiiiiiiiiiiis s F-6

Required Keywords and Parameterscccccccccevririiiiirininiiiiieeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeas F-7

Optional Keywords and Parameters...........coooouiiriiiiiicicicicc F-7

SYNEAX LOOPS .vveiiiiciiie s F-8

Multipart DIAGTamSc.ccccceuiiriiiiiiiieirieiiecreee e F-8

OTACLE INAITIES. ...ttt ettt h bt ae bt b e s bt st et et et et et et e st e st e st e bt e bt e besbe st ebenee F-8

StatEMENt TOITNINATOT .. .iiiieiiicie ettt et e et eeste e et e e beeesbeessaeesbeessbassseessaesnseenseennses F-8
ALLOCATE (Executable Embedded SQL EXtenSion)cccecceevrvieriiriienensieneeeeeeeieeeeee e F-9
ALLOCATE DESCRIPTOR (Executable Embedded SQL).........ccccooniiiininiiiiiicncceeee F-10
CACHE FREE ALL (Executable Embedded SQL Extension)...........ccccceeererienienieieninenineeeeeene. F-11
CALL (Executable Embedded SQL).........ccoooiiiiiiieeceeeeeteete ettt ve e eva e e F-12
CLOSE (Executable Embedded SQL)ccooiiiiiiiiieeeee ettt F-13
COLLECTION APPEND (Executable Embedded SQL Extension)...........ccccceceeievievininenennenne. F-14
COLLECTION DESCRIBE (Executable Embedded SQL Extension)cccceeveeveevieennnennne. F-14
COLLECTION GET (Executable Embedded SQL Extension)............ccccccoovveierenienienceenreeeennenne F-15
COLLECTION RESET (Executable Embedded SQL Extension)ccccccceeevieieninceninenennenne. F-16
COLLECTION SET (Executable Embedded SQL Extension)...........c.ccccceeueevienieeneenieesieeeneenne F-16
COLLECTION TRIM (Executable Embedded SQL Extension)ccccoeevvevieeienieeienreeeennenne F-17
COMMIT (Executable Embedded SQL)cccoiiiiiiiiiieieeieee ettt F-17
CONNECT (Executable Embedded SQL EXtension)ccccccceeviieiieiiiecieeciiesieeeeecve e F-19
CONTEXT ALLOCATE (Executable Embedded SQL Extension)cccccceeeevenieevenreevennenne. F-20
CONTEXT FREE (Executable Embedded SQL EXtension)ccccoeeverienienieieieieeeceeeeeeenen F-21
CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension).............c.cc.......... F-22
CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext).........ccccceceviiinincnennnnnn. F-23
CONTEXT USE (Oracle Embedded SQL Directive)ccceereriiriinienienieieieeeeeeeeeeeeeeve e F-23
DEALLOCATE DESCRIPTOR (Embedded SQL Statement)cccccoeceevirienencenenenceieeee F-24
DECLARE CURSOR (Embedded SQL Directive)c..cccceveriririinenieieienieteteeeeeeieeeeee e F-25

XXV

XXVi

DECLARE DATABASE (Oracle Embedded SQL Directive).........c.cccoeeeienieeieneeieseeieeeeieeeans F-27

DECLARE STATEMENT (Embedded SQL Directive)ccoocevirierienieieieieieeeeeeeecee e F-28
DECLARE TABLE (Oracle Embedded SQL Directive)ccceoveevieeeerieieeieceececeeveeveeveeve e F-29
DECLARE TYPE (Oracle Embedded SQL Directive).........cccccceeieviieienieienieeieseeieseeveseevenenns F-30
DELETE (Executable Embedded SQL)cccocoiiiiiiiiiiieiest ettt e F-31
DESCRIBE (Executable Embedded SQL EXteNnSion)cccccooevveeiieiieieieeteeeeeteeee v F-34
DESCRIBE DESCRIPTOR (Executable Embedded SQL)c.ccccooiiiiiiiniiiiiiiiceeccneeeeee F-35
ENABLE THREADS (Executable Embedded SQL Extension)..........ccccceoevienieieiecinceninenenenne. F-36
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)cccccooeevveeieveereeeeenenne. F-37
EXECUTE (Executable Embedded SQL).........ccoooiioiieiiiieiiceeeetete ettt F-38
EXECUTE DESCRIPTOR (Executable Embedded SQL)cccccoueveiiieriiieeeeee e F-40
EXECUTE IMMEDIATE (Executable Embedded SQL)ccooovriiririenieeeeeeeeeeeee e F-41
FETCH (Executable Embedded SQL)ccocoooiiiiiiieeeeeeteeeeeeeeere ettt e e essesenens F-42
FETCH DESCRIPTOR (Executable Embedded SQL)cccocooeeieiiiiiniieicieeeee e F-44
FREE (Executable Embedded SQL EXtENSION)cccoeveiiieiiiiiierieieeeeeteeeeere et eve v eveens F-46
GET DESCRIPTOR (Executable Embedded SQL)cccooiiiiiniininineieieieeeeeeeeceie e F-47
INSERT (Executable Embedded SQL)cccoiiiiiiiiiieeieeeeee ettt F-49
LOB APPEND (Executable Embedded SQL EXtension)...........c.ccccceevvieiiieeiieciicnieeceecre e F-52
LOB ASSIGN (Executable Embedded SQL EXtension).............cccoceeveeriieienieeienienieneeiereeve e F-52
LOB CLOSE (Executable Embedded SQL EXtension)c..cccceceviirienienienienienieieeeeeceeeeeeee e F-53
LOB COPY (Executable Embedded SQL EXtension)...........cccccceevieeiieniienieeciie e e F-53
LOB CREATE TEMPORARY (Executable Embedded SQL Extension)............c.cccccveveeveevennnne. F-53
LOB DESCRIBE (Executable Embedded SQL Extension)ccccceveverienienienieienieeeceeee e F-54
LOB DISABLE BUFFERING (Executable Embedded SQL Extension)cccccoccvevvvrveeennne. F-55
LOB ENABLE BUFFERING (Executable Embedded SQL Extension)............cccccceevevenreevennnne. F-55
LOB ERASE (Executable Embedded SQL EXtension)..........c.cccceeviirienienienienienieieeececeeceee e F-55
LOB FILE CLOSE ALL (Executable Embedded SQL Extension)...........ccccecverievienieesieneeeeennnnne F-56
LOB FILE SET (Executable Embedded SQL EXtension)............ccccceceeriirierieeienieecienieeieseeee e F-56
LOB FLUSH BUFFER (Executable Embedded SQL Extension)...........ccccceeevevieieninininenennennn. F-57
LOB FREE TEMPORARY (Executable Embedded SQL Extension)............cccccoeeveevveveereceennnne. F-57
LOB LOAD (Executable Embedded SQL EXtension)...........cccccccevirieriinienieeieieeieseeeesreeee e F-58
LOB OPEN (Executable Embedded SQL EXtension)ccccccoviriirienienienienienieeeeeeeeeeee e F-58
LOB READ (Executable Embedded SQL EXtension)cccccoecvevierierienieenienieieeieeeeee e F-58
LOB TRIM (Executable Embedded SQL EXtension)...........ccccceeuevuirieriinienieeieieeeeseeeesre e F-59
LOB WRITE (Executable Embedded SQL EXtension)ccccecevirienienienienienieieeeeeeeeceeee e F-59
OBJECT CREATE (Executable Embedded SQL Extension)............cccccccoevevenencnnnicncncncncnnennes F-60
OBJECT DELETE (Executable Embedded SQL Extension)c..cccoccveeenuevereneneneeneenieennnes F-61
OBJECT DEREF (Executable Embedded SQL EXtension)...........c..cccoccveeinenineninenieeneeenieennenes F-62
OBJECT FLUSH (Executable Embedded SQL EXtension)ccccccoeeeierieienienieneeeeeeeeeenes F-62
OBJECT GET (Executable Embedded SQL EXtension)c.ccccoeceveeneceneneneneneeneereneereneeennenes F-63
OBJECT RELEASE (Executable Embedded SQL Extension)...........c.cccoeevevnenininneneeeneennenes F-64
OBJECT SET (Executable Embedded SQL EXtension)ccccecoeuivievienienienieieieieeeieesesee e F-65
OBJECT UPDATE (Executable Embedded SQL Extension)c.cccoeevevinennineenerenecnnenes F-66
OPEN (Executable Embedded SQL)cccooiiiiiiiiieeeeteee ettt F-67
OPEN DESCRIPTOR (Executable Embedded SQL)c.ccooieirierieeeeeeeeeeeeeee e F-69
PREPARE (Executable Embedded SQL)ccoooiiiiieiiiieiiceeeetete ettt F-70
REGISTER CONNECT (Executable Embedded SQL Extension)..........cccccceeevieiieiinencnenennenne. F-71

ROLLBACK (Executable Embedded SQL)ccooiiiiiieiiceeecece ettt F-72

SAVEPOINT (Executable Embedded SQL)cccoiiiiiiiiiiiieieee ettt F-75
SELECT (Executable Embedded SQL)coooiiiiiiieeeceeeeee ettt e e F-76
SET DESCRIPTOR (Executable Embedded SQL)........c.ccccoiiiiiniiniininieieieeeeeeeceeeie e F-79
TYPE (Oracle Embedded SQL Directive)ccocieiriiiiininiesiieieiesie ettt F-81
UPDATE (Executable Embedded SQL)ccoooiiiiiiiiiieceece ettt e re v s aee e F-82
VAR (Oracle Embedded SQL Directive)ccccceecviiieiiiieiieieieeeereeeesre et sreeae e eae e esses e essessnens F-85
WHENEVER (Embedded SQL Directive)ccccecevueirieiieinieieiieiieisieesseeeseseeeseeseseeseseesessens F-88
Index

XXVii

XXviii

Send Us Your Comments

Pro*C/C++ Programmer’s Guide, Release 9.2
Part No. A97269-03

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XXiX

XXX

Preface

This document is a comprehensive user's guide and reference to the Pro*C/C++. It
shows you how to use the database language SQL and Oracle's procedural extension,
PL/SQL, in conjunction with Pro*C/C++ to manipulate data in an Oracle database. It
explores a full range of topics, from underlying concepts to advanced programming
techniques, and provides code examples.

This Preface contains these topics:
= Intended Audience

= Documentation Accessibility
= Structure

= Related Documents

« Conventions

Intended Audience

The Pro*C/C++ Programmer’s Guide is intended for programmers, systems analysts,
project managers, and other Oracle users who perform, or are interested in learning
about, the following tasks:

= Design and develop software applications in the Oracle environment.
= Convert existing software applications to run in an Oracle environment.
= Manage the development of software applications.

To use this document, you need a working knowledge of applications programming in
C and C++, and familiarity with the use of the Structured Query Language (SQL).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessibility/

XXXI

Structure

XXX

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

This document contains:

Chapter 1, "Introduction”

This chapter introduces you to Pro*C/C++. You look at its role in developing
application programs that manipulate Oracle data. There is a Frequently Asked
Questions section which is important.

Chapter 2, "Precompiler Concepts"

This chapter explains how embedded SQL programs work. Programming guidelines
follow. Then the sample tables that we work with are shown, along with a sample
query Pro*C/C++ application

Chapter 3, "Database Concepts"

This chapter describes transaction processing. You learn the basic techniques that
safeguard the consistency of your database and how to connect to the database server.

Chapter 4, "Datatypes and Host Variables"

You learn about the Oracle datatypes, host variables, indicator variables, data
conversion, Unicode character strings.

Chapter 5, "Advanced Topics"

This chapter presents advanced topics, such as how to take advantage of datatype
equivalencing, C preprocessor support, new names for SQLLIB functions, and
interfacing to OCL

Chapter 6, "Embedded SQL"

This chapter teaches you the essentials of embedded SQL programming. You learn
how to use host variables, indicator variables, cursors, cursor variables, and the
fundamental SQL commands that insert, update, select, and delete Oracle data.

Chapter 7, "Embedded PL/SQL"

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. You learn how to use PL/SQL with
host variables, indicator variables, cursors, stored procedures, host arrays, and
dynamic SQL.

Chapter 8, "Host Arrays”

This chapter looks at using arrays to improve program performance. You learn how to
manipulate Oracle data using arrays, how to operate on all elements of an array with a
single SQL statement, and how to limit the number of elements processed.

Chapter 9, "Handling Runtime Errors"

This chapter discusses error reporting and recovery. It shows you how to use the
SQLSTATE and SQLCODE status variables with the WHENEVER statement to detect
errors and status changes. It also shows you how to use the SQLCA and ORACA to
detect error conditions and diagnose problems.

Chapter 10, "Precompiler Options"

This chapter details the requirements for running the Oracle Pro*C/C++ Precompiler.
You learn what happens during precompilation, how to issue the precompiler
command, and how to specify the many useful precompiler options.

Chapter 11, "Multithreaded Applications”

Writing multithreaded applications is discussed in this chapter. Your compiler must
also support multithreading.

Chapter 12, "C++ Applications”

This chapter describes how to precompile your C++ application, and lists three sample
C++ programs.

Chapter 13, "Oracle Dynamic SQL"

This chapter shows you how to take advantage of dynamic SQL. You are taught three
methods—from simple to complex—for writing flexible programs that, among other
things, let users build SQL statements interactively at run time.

Chapter 14, "ANSI Dynamic SQL"

The new ANSI dynamic SQL should be used for all new method 4 applications (where
your program accepts or builds SQL statements with a varying number of variables).
ANSI dynamic SQL must be used for applications involving complex types such as
object types, collections, cursor variables, arrays of structs, and LOBs.

Chapter 15, "Oracle Dynamic SQL: Method 4"

This chapter gives you an in-depth explanation of Dynamic SQL Method 4—dynamic
SQL using descriptors. This will tell you how to modify existing applications that were
developed before Oracle release 8.1.

Chapter 16, "Large Objects (LOBSs)"

This chapter presents large object datatypes (BLOBs, CLOBs, NCLOBs, and BFILEs).
The embedded SQL commands that provide functionality comparable to OCI and
PL/SQL are presented and used in sample code.

Chapter 17, "Objects"

This chapter describes object support features: associative and navigational interfaces
(embedded SQL commands), precompiler options for objects, and restrictions on the
use of datatypes in Oracle dynamic SQL.

XXXiii

Chapter 18, "Collections”

Collection types (VARRAYS and nested tables) are described in this chapter.
Embedded SQL statements for using collections are presented, with examples.

Chapter 19, "The Object Type Translator"

This chapter discusses the Object Type Translator (OTT) which maps object types to C
structures that are used in Pro*C/C++ applications. Then it describes the OTT options,
how to use OTT, and the results.

Chapter 20, "User Exits"

This chapter focuses on writing user exits for Oracle Tools applications. You learn
about the commands that are used to interface between a forms application and a
Pro*C/C++ user exit, and how to write and link a forms user exit.

Appendix A, "New Features”

This appendix highlights the improvements and new features introduced with the 9i
release of Pro*C/C++, and where to find them in this guide.

Appendix B, "Reserved Words, Keywords, and Namespaces"

This appendix points you to where to find reserved words and keywords that have a
special meaning to Oracle and namespaces that are reserved for Oracle libraries.

Appendix C, "Performance Tuning"

This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications.

Appendix D, "Syntactic and Semantic Checking”

This appendix shows you how to use the SQLCHECK option to control the type and
extent of syntactic and semantic checking done on embedded SQL statements and
PL/SQL blocks.

Appendix E, "System-Specific References"
This appendix documents the aspects of Pro*C/C++ that can be system-specific.

Appendix F, "Embedded SQL Statements and Directives"

This appendix contains descriptions (syntax diagrams, keyword and parameter
definitions) of precompiler directives, embedded SQL statements, and Oracle's
embedded SQL extensions.

Related Documents

XXXIV

For more information, see these Oracle resources:
= Oracle Database SQL Reference

= Oracle C++ Call Interface Programmer’s Guide

= Oracle Call Interface Programmer's Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore.oracl e.conl

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e. com nmenber shi p/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracl e. com docunent ati on/

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appearina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates ~ You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

| ower case
nonospace
(fixed-wi dth)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nent _i d, depar t ment _nanme, and
| ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization
parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

XXXV

Convention Meaning Example
| ower case Lowercase italic monospace font represents You can specify the par al | el _cl ause.
italic placeholders or variables.

Run ol d_rel . here ol d_r el
monospace unol d_rel ease. SQL where ol d_r el ease

(fixed-w dth)
f ont

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username = 'M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of ~ { ENABLE | DI SABLE}

Other notation

Italics

XXXVI

which is required. Do not enter the braces.

A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to the
example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

{ENABLE | DI SABLE}
[COVPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col2, ... , coln FROM
enpl oyees;

SQL> SELECT NAME FROM V$DATAFI LE;
NAMVE

/fsl/dbs/ths_01. dbf
[fs1/ dbs/tbs_02. dbf

/1511 dbs/ t bs_09. dbf
9 rows sel ected.

acct bal NUMBER(11, 2);
acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB_NAME = dat abase_nane

Convention Meaning Example
UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish SE| ECT * FROM USER TABLES;
them from terms you define. Unless terms prop TABLE hr. enpl Byees;
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.
| ower case Lowercase typeface indicates SELECT | ast _name, enployee_id FROM

programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

enpl oyees;
sql plus hr/hr
CREATE USER nj ones | DENTI FI ED BY ty3MJ»9

XXXVii

XXXViii

What's New in Pro*C/C++?

This section describes new features of Pro*C/C++ releases and provides pointers to
additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*C/C++:
« Oracle9i Release 2 (9.2) New Features in Pro*C/C++

« Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

= Oracle8i Release 8.1.5 New Features in Pro*C/C++

= Oracle8i Release 8.1.4 New Features in Pro*C/C++

= Oracle8i Release 8.1.3 New Features in Pro*C/C++

Oracle9i Release 2 (9.2) New Features in Pro*C/C++

The Oracle9i Release 9.2 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use scrollable cursor and optimize the
performance.

This section contains these topics:
= Supporting Scrollable Cursor in Pro*C/C++

You can use scrollable cursors in your Pro*C/C++ application to fetch data in a non
sequential manner.

= Supporting Connection Pooling in Pro*C/C++

You can use the connection pooling feature with your multithreaded Pro*C/C++
application to increase performance of the application significantly.

Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

The Oracle9i Release 1 (9.0.1) Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use UNICODE and more object features.

This section contains these topics:
=« UNICODE Support

With database "Reliable Unicode Data Type Support" in Oracle 97, Pro*C/C++
UTF16 data can be bound to both CHAR and NCHAR columns.

« Datetime

Datetime support in Pro*C extends to all the Datetime features in Oracle9i.

XXXIX

XA Support for V8OCI

With 9i, interoperability between XA and V8OCI will become standard. Users
should be able to connect through XA, register that connection again SQLLIB and
obtain that same connection back through SQLEnvGet and SQLSvcCtxGet.

Inheritance

As part of the Oracle 9i support for object types, the precompiler object support
now includes support for inheritance.

Multilevel Collections

The collection object types support for release 9i has been enhanced to allow
collections which have multiple levels of nested tables and arrays.

Oracle8i Release 8.1.5 New Features in Pro*C/C++

The Oracle8i Release 8.1.5 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use precompiler header files.

This section contains these topics:

Precompiled Header Capabilities

Starting with release 8.1.5, Pro*C/C++ allows the user to precompile a header file
and store the contents of that precompilation into a special binary file that can be
instantiated in place of actually precompiling the header file when included
through the #include directive during the precompilation of an ordinary
Pro*C/C++ program or another header file.

See Also: "Precompiled Header Files" on page 5-27

Oracle8i Release 8.1.4 New Features in Pro*C/C++

The Oracle8i Release 8.1.4 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to call stored procedures.

This section contains these topics:

Calling Stored Java Procedures

A new Embedded SQL CALL statement has been introduced in Release 8.1.4 of
Pro*C/C++ to provide application developers the ability to invoke stored Java
(and PL/SQL) procedures directly without having to use an Embedded PL/SQL
anonymous block.

Oracle8i Release 8.1.3 New Features in Pro*C/C++

The Oracle8i Release 8.1.3 Pro*C/C++ features and enhancements described in this
section enables the Pro*C/C++ application to use an enhanced set of features for better
application development.

xl

This section contains these topics:

Embedded SQL LOB Interface

A convenient, easy to use Embedded SQL LOB Interface has been provided to give
application developers enhanced support for LOBs that is meant to provide the
same functional support for LOBs as the Oracle OCI API or PL/SQL DBMS_LOB
package.

ANSI Dynamic SQL Interface

Pro*C/C++ now has a new implementation of Dynamic SQL that has been
derived from the ANSI Standard. The ANSI Dynamic SQL Interface has
enhancements over the Oracle Dynamic SQL Method 4 Interface. The ANSI
Dynamic SQL Interface supports all Oracle types including Objects, Arrays of
Structs, Cursor Variables and LOBs.

DML Returning Clause

Pro*C/C++ now supports the use of the DML Returning Clause on the INSERT,
UPDATE and DELETE Embedded SQL DML statements.

Support for Universal ROWID

Pro*C/C++ now provides a mechanism to ALLOCATE and FREE Rowid.
Descriptors are compatible with both Physical Rowids (associated with heap
tables) and Logical Rowids (associated with index organized tables).

Extended Support for Runtime Contexts

Extensions to the Embedded CONTEXT USE statement now allow for a developer
to specify a specific runtime context or to default to a global SQLLIB runtime
context instead.

External Procedure Support

External Procedures written in Pro*C/C++ are now callable from PL/SQL. A

REGISTER CONNECT Embedded SQL statement has been introduced. This new
statement is used instead of a CONNECT statement in the External Procedure to
define the current unnamed connection for the Global SQLLIB Runtime Context.

Support for Pre-Fetching

Oracle supports the notion of Pre-Fetching a number of rows when a query is
executed. This increases performance by eliminating the need for a server
round-trip when the rows are subsequently fetched.

Navigational Interface

The Navigational Interface for release 8.1.3 has been enhanced since its
introduction in 8.0.3 to include the ability to Get and Set LOB and Collection
Attributes of an Object Type as well. The optional FOR UPDATE clause in an
EXEC SQL OBJECT DEREEF statement has also been enhanced with an optional
NOWAIT.

Enhanced Support for Collections

A new Embedded SQL Interface has been provided to allow for the ability to
access, modify and update the individual elements of a Collection. This interface is
intended to provide similar functional support for Collections that the OCI API
currently provides in a convenient, easy to use Embedded SQL style.

xli

xlii

1

Introduction

This chapter introduces you to the Pro*C/C++ Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
enables your applications to do. This chapter contains the following topics:

What is an Oracle Precompiler?

Why Use the Oracle Pro*C/C++ Precompiler
Why Use SQL

Why Use PL/SQL

Pro*C/C++ Precompiler Benefits

Frequently Asked Questions

What is an Oracle Precompiler?

An Oracle Precompiler is a programming tool that enables the user to embed SQL
statements in a high-level source program. As Figure 1-1 shows, the precompiler
accepts the source program as input, translates the embedded SQL statements into
standard Oracle runtime library calls, and generates a modified source program that
you can compile, link, and execute in the usual way.

Introduction 1-1

Why Use the Oracle Pro*C/C++ Precompiler

Figure 1-1 Embedded SQL Program Development

System Editor

Source
Program With embedded SQL statements

Pro*C/C++
Precompiler

Modified
Source With all SQL statements replaced by library calls
Program

Object
Program

Oracle
Runtime
To resolve calls Library
(SQLLIB)
Source
Program

Why Use the Oracle Pro*C/C++ Precompiler

The Oracle Pro*C/C++ Precompiler lets you use the power and flexibility of SQL in
your application programs. A convenient, easy to use interface lets your application
access Oracle directly.

Unlike many application development tools, Pro*C/C++ lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close
monitoring of resource use, SQL statement execution, and various runtime indicators.

1-2 Pro*C/C++ Programmer’s Guide

Pro*C/C++ Precompiler Benefits

With this information, you can change program parameters for maximum
performance.

Although precompiling adds a step to the application development process, it saves
time. The precompiler, not you, translates each embedded SQL statement into calls to
the Oracle runtime library (SQLLIB). The Pro*C/C++ precompiler also analyzes host
variables, defines mappings of structures into columns, and, with SQLCHECK=FULL,
performs semantic analysis of the embedded SQL statements.

Why Use SQL

If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively through SQL*Plus or embedded in an application program depends
on the job at hand. If the job requires the procedural processing power of C or C++, or
must be done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and
easy to learn. Being non-procedural, it lets you specify what you want done without
specifying how to do it. A few English-like statements make it easy to manipulate
Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

= CREATE, ALTER, and DROP database tables dynamically
« SELECT, INSERT, UPDATE, and DELETE rows of data
« COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus. Usually, only minor changes are required to switch from
interactive to embedded SQL.

Why Use PL/SQL

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL provides the ability to group SQL statements logically and send them to
Oracle in a block rather than one by one. This reduces network traffic and processing
overhead.

See Also: Chapter 7, "Embedded PL/SQL" for information about
embedding PL/SQL in Pro*C/C++ programs.

Pro*C/C++ Precompiler Benefits

As Figure 1-2 shows, Pro*C/C++ offers many features and benefits, which help you to
develop effective, reliable applications.

Introduction 1-3

Pro*C/C++ Precompiler Benefits

Figure 1-2 Features and Benefits

Event Runtime Object Types ANSI/ISO SQL
Handling Diagnostics Compliance
National Dynamic
Character Sets SQL
Conditional Threads
Precompilation Support
Pro*C/C++
Precompiler Automatic
Array Datatype
Operations Conversion
Concurrent Support for
Connects PL/SQL
Syntax and
Semantic Separate Datatype Runtime
Checking Precompilation | Equivalencing Options
Pro*C/C++ enables:

Writing applications in C or C++.

Following the ANSI/ISO standards for embedding SQL statements in a high-level
language.

Taking advantage of dynamic SQL, an advanced programming technique that lets
your Program accept or build any valid SQL statement at runtime.

Designing and developing highly customized applications.
Writing shared server process applications.

Automatically converting between Oracle internal datatypes and high-level
language datatypes.

Improved performance by embedding PL/SQL transaction processing blocks in
your application program.

Specifying useful precompiler options inline and on the command line and change
their values during precompilation.

The use of datatype equivalencing to control the way Oracle interprets input data
and formats output data.

Separately precompiling several program modules, then link them into one
executable Program.

1-4 Pro*C/C++ Programmer’s Guide

Frequently Asked Questions

Complete checking of the syntax and semantics of embedded SQL data
manipulation statements and PL/SQL blocks.

Concurrent access to Oracle databases on multiple nodes using Oracle Net.
The use of arrays as input and output program variables.

Conditionally precompiling sections of code in your host program so that it can
run in different environments.

Direct interface with SQL*Forms through the use of user exits written in a
high-level language.

Handling errors and warnings with the SQL Communications Area (SQLCA) and
the WHENEVER or DO statement.

The use of an enhanced set of diagnostics provided by the Oracle Communications
Area (ORACA).

Working with user-defined object types in the database.

The use of collections (varrays and nested tables) in the database.
The use of LOBs (Large Objects) in the database.

The use of National Character Set data stored in the database.

The use of OCI (Oracle Call Interface) functions in your program.

Pro*C/C++ is a full-featured tool that supports a professional approach to embedded
SQL programming.

Frequently Asked Questions

This section presents some questions that are frequently asked about Pro*C/C++, and
about Oracle%i in relation to Pro*C/C++. The answers are more informal than the
documentation in the rest of this Guide, but do provide references to places where you
can find the reference material.

What is a VARCHAR?
Here is a short description of VARCHARs:

VARCHAR Description

VARCHAR?2 A kind of column in the database that contains variable-length

character data. This is what Oracle calls an "internal datatype",
because it is a possible column type.

VARCHAR An Oracle "external datatype" (datatype code 9). You use this
only if you are doing dynamic SQL Method 4, or datatype
equivalencing.

VARCHARIn] This is a Pro*C/C++ "pseudotype" that you can declare as a host

varchar[n]

variable in your Pro*C/C++ program. It is actually generated by
Pro*C/C++ as a struct, with a 2-byte length element, and a
[n]-byte character array.

Introduction 1-5

Frequently Asked Questions

See Also:

= Chapter 4, "Datatypes and Host Variables"

= Chapter 14, "ANSI Dynamic SQL"

= Chapter 15, "Oracle Dynamic SQL: Method 4"

Does Pro*C/C++ Generate Calls to the Oracle Call Interface?

No. Pro*C/C++ generates data structures and calls to its runtime library: SQLLIB.

Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?

SQLLIB is not externally documented, is unsupported, and might change from release
to release. Also, Pro*C/C++ is an ANSI/ISO compliant product, that follows the
standard requirements for embedded SQL.

SQLLIB is not an API. While it has user-callable functions, it is primarily a runtime
library for the precompiler suite of languages.

If you need to do API coding for the database, either use the Oracle Call Interface, the
client side API for the Oracle RDBMS, or mix OCI and Pro*C/C++.

See "SQLLIB Extensions for OCI Release 8 Interoperability" on page 5-34.

Can | Call A PL/SQL Stored Procedure From a Pro*C/C++ Program?

Certainly. See Chapter 7, "Embedded PL/SQL". There is a demo program, "Calling a
Stored PL/SQL or Java Subprogram" on page 7-17.

Can | Write C++ Code, and Precompile It Using Pro*C/C++?
Yes. See Chapter 12, "C++ Applications".

Can | Use Bind Variables Anywhere in a SQL Statement?

For example, I would d like to be able to input the name of a table in my SQL
statements at runtime. But when I use host variables, I get precompiler errors.

In general, you can use host variables at anywhere in a SQL or PL/SQL, statement
where expressions are allowed. See "Host Variable Referencing" on page 4-13.

However, the following SQL statement, where table_name is a host variable, is illegal:
EXEC SQL SELECT enang, sal INTO :nane, :salary FROM :tabl e _nane;
To solve your problem, you need to use dynamic SQL. See Chapter 13, "Oracle

Dynamic SQL". There is a demo program that you can adapt to do this, "Example
Program: Dynamic SQL Method 1" on page 13-7.

| Am Confused By Character Handling in Pro*C/C++.

There are many options, but we can simplify. First of all, if you need compatibility
with previous precompiler releases, and Oracle?, the safest thing to do is use
VARCHAR(In] host variables. See "VARCHAR Variable Declaration" on page 4-15.

The default datatype for all other character variables in Pro*C/C++ is CHARZ; see
"CHARZ" on page 4-8. Briefly, this means that you must null-terminate the string on
input, and it is both blank-padded and null-terminated on output.

1-6 Pro*C/C++ Programmer’s Guide

Frequently Asked Questions

In release 8.0, the CHAR_MAP precompiler option was introduced to specify the
default mapping of char variables. See "Precompiler Option CHAR_MAP" on page 5-1.

If neither VARCHAR nor CHARZ works for your application, and you need total
C-like behavior (null termination, absolutely no blank-padding), use the TYPE
command and the Ct ypedef statement, and use datatype equivalencing to convert
your character host variables to STRING. See "User-Defined Type Equivalencing" on
page 5-10. There is an example program that shows how to use the TYPE command
starting on "Example Program: Using sqlvcp()" on page 4-18.

Is There Anything Special About Character Pointers?

Yes. When Pro*C/C++ binds an input or output host variable, it must know the
length. When you use VARCHAR(n], or declare a host variable of type char[n],
Pro*C/C++ knows the length from your declaration. But when you use a character
pointer as a host variable, and use mal | oc() to define the buffer in your program,
Pro*C/C++ has no way of knowing the length.

On output you must not only allocate the buffer, but pad it out with some non-null
characters, then null-terminate it. On input or output, Pro*C/C++ calls strl en() for
the buffer to get the length. See "Pointer Variables" on page 4-36.

Why Does SPOOL Not Work in Pro*C/C++?

SPOOL is a special command used in SQL*Plus. It is not an embedded SQL command.
See "Key Concepts of Embedded SQL Programming" on page 2-1.

Where Can | Find The On-line Versions of the Example Programs?

Each Oracle installation should have a denp directory. If the directory is not there, or it
does not contain the example programs, see your system or database administrator.

How Can | Compile and Link My Application?

Compiling and linking are very platform specific. Your system-specific Oracle
documentation has instructions on how to link a Pro*C/C++ application. On UNIX
systems, there is a makefile called pr oc. nk in the deno directory. To link, say, the
demo program samplel.pc, you would enter the command line

meke -f proc.nk sanplel
If you need to use special precompiler options, you can run Pro*C/C++ separately,

then do the make. Or, you can create your own custom makefile. For example, if your
program contains embedded PL/SQL code, you can enter

proc cv_denmo userid=scott/tiger sql check=senmantics
meke -f proc.nk cv_deno

On VMS systems, there is a script called LNPROC that you use to link your
Pro*C/C++ applications.

Does Pro*C/C++ Now Support Using Structures As Host Variables?

How does this work with the array interface?

You can use arrays inside a single structure, or an array of structures with the array
interface. See "Host Structures” on page 4-31 and "Pointer Variables" on page 4-36.

Introduction 1-7

Frequently Asked Questions

Is It Possible to Have Recursive Functions In Pro*C/C++ If | Use Embedded SQL In the
Function?

Yes. However, for embedded SQL, you must use cursor variables.

Can | Use Any Release of Pro*C/C++ with Any Version of the Oracle Server?

No. You can use an older version of Pro*C or Pro*C/C++ with a newer version of the
server, but you cannot use a newer version of Pro*C/C++ with an older version of the
server.

For example, you can use release 2.2 of Pro*C/C++ with Oracle8i, but you cannot use
release 8 of Pro*C/C++ with the Oracle? server.

When My Application Runs Under Oracle9i, | Keep Getting an Ora-1405 Error (Fetched
Column Value Is NULL).

You are selecting a NULL into a host variable that does not have an associated
indicator variable. This is not in compliance with the ANSI/ISO standards, and was
changed beginning with Oracle?7.

If possible, rewrite your program using indicator variables, and use indicators in
future development. Indicator variables are described "Indicator Variables" on
page 4-13.

Alternatively, if precompiling with MODE=ORACLE and DBMS=V7 or V8, specify
UNSAFE_NULL=YES on the command line (see "UNSAFE_NULL" on page 10-31 for
more information) to disable the ORA-01405 message.

Are All SQLLIB Functions Private?

No. There are some SQLLIB functions that you can call to get information about your
program, or its data. The SQLLIB public functions are shown here:

SQLLIB Public

Functions Description

SQLSQLDAAlloc() Used to allocate a SQL descriptor array (SQLDA) for dynamic
SQL Method 4. See "How is the SQLDA Referenced?" on
page 15-3.

SQLCDAFromResultSet Used to convert a Pro*C/C++ cursor variable to an OCI cursor

Cursor() data area. See "New Names for SQLLIB Public Functions" on
page 5-39.

SQLSQLDAFree() Used to free a SQLDA allocated using SQLSQLDAAIloc(). See

"New Names for SQLLIB Public Functions" on page 5-39.
SQLCDAToResultSetCur Used to convert an OCI cursor data area to a Pro*C/C++ cursor

sor() variable. See "New Names for SQLLIB Public Functions" on
page 5-39.

SQLErrorGetText() Returns a long error message. See "sqlerrm" on page 9-15.

SQLStmtGetText() Used to return the text of the most recently executed SQL
statement. See "Obtaining the Text of SQL Statements" on
page 9-24.

SQLLDAGetNamed() Used to obtain a valid Logon Data Area for a named connection,
when OCI calls are used in a Pro*C/C++ program. See "New
Names for SQLLIB Public Functions" on page 5-39.

1-8 Pro*C/C++ Programmer’s Guide

Frequently Asked Questions

SQLLIB Public
Functions Description

SQLLDAGetCurrent() Used to obtain a valid Logon Data Area for the most recent
connection, when OCI calls are used in a Pro*C/C++ program.
See "New Names for SQLLIB Public Functions" on page 5-39.

SQLColumnNullCheck() Returns an indication of NULL status for dynamic SQL Method
4. See "Handling NULL/Not NULL Datatypes" on page 15-14.

SQLNumberPrecVé6() Returns precision and scale of numbers. See "Extracting
Precision and Scale" on page 15-12.

SQLNumberPrecV7() A variant of SQLNumberPrecV6(). See "Extracting Precision and
Scale" on page 15-12.

SQLVarcharGetLength() Used for obtaining the padded size of a VARCHAR[n]. See "Find
the Length of the VARCHAR Array Component” on page 4-18.

SQLEnvGet() Returns the OCI environment handle for a given SQLLIB
runtime context. See "SQLEnvGet()" on page 5-36.

SQLSvcCixGet() Returns the OCI service context for the database connection. See
SQLSvcCtxGet() on page 5-36.
SQLRowidGet() Returns the universal ROWID of the last row inserted. See

"SQLRowidGet()" on page 4-31.

SQLExtProcError() Returns control to PL/SQL when an error occurs in an external
C procedure. See "SQLExtProcError()" on page 7-24.

In the preceding list, the functions are thread-safe SQLLIB public functions. Use these
functions in all new applications. The names of the functions were changed for release
8.0, but the old names are still supported in Pro*C/C++. For more information about
these thread-safe public functions (including their old names), see the table " SQLLIB
Public Functions -- New Names" on page 5-40.

How Does Oracle9i Support The New Object Types?

See the chapters Chapter 17, "Objects" and Chapter 19, "The Object Type Translator" for
how to use Object types in Pro*C/C++ applications.

Compatibility, Upgrading and Migration

As of 9.0.1 release, PRO*C/C++ will adopt a similar compatibility rule to OCI8- based
applications. In particular, 9i PRO*C/C++ clients will support 8i Servers (8.1.6.3,
V817x). This is subject to the same limitations that OCI8 imposes on backward
compatibility. Such applications are limited to 8i-supported features. Any application
using Oracle9i Server features will not be backward compatible.

Please report any issues with 9i PRO*C/C++ Client using 8i Server to Oracle support.

Introduction 1-9

Frequently Asked Questions

1-10 Pro*C/C++ Programmer’s Guide

2

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. You examine the
special environment in which they operate and the impact of this environment on the
design of your applications. After covering the key concepts of embedded SQL
programming and the steps you take in developing an application, this chapter uses a
simple program to illustrate the main points.

This chapter contains the following topics:

Key Concepts of Embedded SQL Programming
Steps in Developing an Embedded SQL Application
Guidelines for Programming

Example Tables

Example Program: A Simple Query

Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build. This section
contains these topics:

Embedded SQL Statements

Embedded SQL Syntax

Static Versus Dynamic SQL Statements
Embedded PL/SQL Blocks

Host and Indicator Variables

Oracle Datatypes

Arrays

Datatype Equivalencing

Private SQL Areas, Cursors, and Active Sets
Transactions

Errors and Warnings

Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application
program. Because it houses the SQL statements, the application program is called a
host program, and the language in which it is written is called the host language. For

Precompiler Concepts 2-1

Key Concepts of Embedded SQL Programming

example, Pro*C/C++ provides the ability to embed certain SQL statements in a C or
C++ host program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE modifies
rows, DELETE removes unwanted rows, and SELECT retrieves rows that meet your
search condition.

The powerful SET ROLE statement lets you dynamically manage database privileges.
A role is a named group of related system and object privileges, or a named group of
related system or object privileges granted to users or other roles. Role definitions are
stored in the Oracle data dictionary. Your applications can use the SET ROLE
statement to enable and disable roles as needed.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

Executable Statements and Directives

Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of embedded
SQL statements: executable statements and directives. Executable statements result in
calls to the runtime library SQLLIB. You use them to connect to Oracle, to define,
query, and manipulate Oracle data, to control access to Oracle data, and to process
transactions. They can be placed wherever C or C++ language executable statements
can be placed.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data. You use them to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever C or C++ variable declarations can be placed.

Table 2-1 groups the various embedded SQL statements (not a complete list):

Table 2-1 Embedded SQL Statements

DIRECTIVE PURPOSE

ARRAYLEN* To use host arrays with PL/SQL
BEGIN DECLARE To declare host variables (optional)
SECTION*

END DECLARE

SECTION*

DECLARE* To name Oracle schema objects
INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables
WHENEVER* To handle runtime errors

Table 2-2 Embedded SQL Statements

EXECUTABLE

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER -

ANALYZE -

2-2 Pro*C/C++ Programmer’s Guide

Key Concepts of Embedded SQL Programming

Table 2-2 (Cont.) Embedded SQL Statements

EXECUTABLE
STATEMENT

PURPOSE

DELETE
INSERT

SELECT
UPDATE
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION
DESCRIBE*
EXECUTE*
PREPARE*
ALTER SESSION
SET ROLE

DML

To process transactions

To use dynamic SQL

To control sessions

*Has no interactive counterpart

Embedded SQL Syntax

In your application program, you can freely mix complete SQL statements with
complete C statements and use C variables or structures in SQL statements. The only
special requirement for building SQL statements into your host program is that you
begin them with the keywords EXEC SQL and end them with a semicolon. Pro*C/C++
translates all EXEC SQL statements into calls to the runtime library SQLLIB.

Many embedded SQL statements differ from their interactive counterparts only
through the addition of a new clause or the use of program variables. The following
example compares interactive and embedded ROLLBACK statements:

ROLLBACK WORK:

EXEC SQL ROLLBACK WORK;

- interactive
- enbedded

These statements have the same effect, but you would use the first in an interactive
SQL environment (such as when running SQL*Plus), and the second in a Pro*C/C++

program.

Static Versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before runtime; that is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so on.

However, some applications might be required to accept and process any valid SQL
statement at runtime. So, you might not know until runtime all the SQL commands,
database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.

Precompiler Concepts 2-3

Key Concepts of Embedded SQL Programming

Embedded PL/SQL Blocks

Pro*C/C++ treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands.

See Also: Chapter 7, "Embedded PL/SQL".

Host and Indicator Variables

Host variables are the key to communication between Oracle and your program. A
host variable is a scalar or aggregate variable declared in C and shared with Oracle,
meaning that both your program and Oracle can reference its value.

Your program uses input host variables to pass data to Oracle. Oracle uses output host
variables to pass data and status information to your program. The program assigns
values to input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere a SQL expression can be used. In SQL
statements, host variables must be prefixed with a colon (":") to set them apart from the
SQL keywords.

You can also use a C struct to contain a number of host variables. When you name the
structure in an embedded SQL statement, prefixed with a colon, Oracle uses each of
the components of the struct as a host variable.

You can associate any host variable with an optional indicator variable. An indicator
variable is a short integer variable that "indicates" the value or condition of its host
variable. You use indicator variables to assign NULLs to input host variables and to
detect NULLs or truncated values in output host variables. A NULL is a missing,
unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and
immediately follow its associated host variable. The keyword INDICATOR can be
placed between the host variable and its indicator for additional clarity.

If the host variables are packaged in a struct, and you want to use indicator variables,
you simply create a struct that has an indicator variable for each host variable in the
host structure, and name the indicator struct in the SQL statement, immediately
following the host variable struct, and prefixed with a colon. You can also use the
INDICATOR keyword to separate a host structure and its associated indicator
structure.

Oracle Datatypes

Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database tables and stores output data in
program host variables. To store a data item, Oracle must know its datatype, which
specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudocolumns, which return specific data items but
are not actual columns in a table.

2-4 Pro*C/C++ Programmer’s Guide

Key Concepts of Embedded SQL Programming

Arrays

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the target database
column. When Oracle outputs data to your host program, if necessary, Oracle converts
between the internal datatype of the source database column and the external datatype
of the output host variable.

Pro*C/C++ lets you define array host variables (called host arrays) and arrays of
structures and operate on them with a single SQL statement. Using the array SELECT,
FETCH, DELETE, INSERT, and UPDATE statements, you can query and manipulate
large volumes of data with ease. You can also use host arrays inside a host variable
struct.

Datatype Equivalencing

Pro*C/C++ adds flexibility to your applications by letting you equivalence datatypes.
That means you can customize the way Oracle interprets input data and formats
output data.

On a variable-by-variable basis, you can equivalence supported C datatypes to the
Oracle external datatypes. You can also equivalence user-defined datatypes to Oracle
external datatypes.

Private SQL Areas, Cursors, and Active Sets

Transactions

To process a SQL statement, Oracle opens a work area called a private SQL area. The
private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in its
private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements (queries) that return only one row. However, for queries
that return more than one row, to process beyond the first row, you must explicitly
declare a cursor (or use host arrays).

The set of rows returned is called the active set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, called the current row.

Imagine the set of rows being returned to a terminal screen. A screen cursor can point
to the first row to be processed, then the next row, and so on. In the same way, an
explicit cursor "points" to the current row in the active set. This allows your program
to process the rows one at a time.

A transaction is a series of logically related SQL statements (two UPDATEs that credit
one bank account and debit another, for example) that Oracle treats as a unit, so that
all changes brought about by the statements are made permanent or undone at the
same time.

All the data manipulation statements executed since the last data definition, COMMIT,
or ROLLBACK statement was executed make up the current transaction.

Precompiler Concepts 2-5

Steps in Developing an Embedded SQL Application

To help ensure the consistency of your database, Pro*C/C++ lets you define
transactions using the COMMIT, ROLLBACK, and SAVEPOINT statements.

COMMIT makes permanent any changes made during the current transaction.
ROLLBACK ends the current transaction and undoes any changes made since the
transaction began. SAVEPOINT marks the current point in the processing of a
transaction; used with ROLLBACK, it undoes part of a transaction.

Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*C/C++
provides two error handling mechanisms: the SQL Communications Area (SQLCA)
and the WHENEVER statement.

The SQLCA is a data structure that you include (or hard-code) in your host program. It
defines program variables used by Oracle to pass runtime status information to the
program. With the SQLCA, you can take different actions based on feedback from
Oracle about work just attempted. For example, you can check to see if a DELETE
statement succeeded and, if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions are: continuing with
the next statement, calling a function, branching to a labeled statement, or stopping.

Steps in Developing an Embedded SQL Application

Figure 2-1 shows the embedded SQL application development process.

2-6 Pro*C/C++ Programmer’s Guide

Guidelines for Programming

Figure 2-1 Embedded SQL Application Development Process

Steps Results

Design Specs

Source
Program

.

Modified
Source
Program

Program

Executable
Program

no
Ship to Customer

As you can see, precompiling results in a modified source file that can be compiled
normally. Though precompiling adds a step to the traditional development process,
that step lets you write very flexible applications.

Guidelines for Programming

Comments

This section deals with embedded SQL syntax, coding conventions, and C-specific
features and restrictions. Topics are arranged alphabetically for quick reference.

You can place C-style Comments (/* ... */) in a SQL statement wherever blanks can be
placed (except between the keywords EXEC SQL). Also, you can place ANSI-style
Comments (-- ...) within SQL statements at the end of a line, as the following example
shows:

EXEC SQL SELECT ENAME, SAL

INTO : enp_nane, :salary -- output host variables
FROM EMP
VHERE DEPTNO = : dept _nunber;

You can use C++ style Comments (/ /) in your Pro*C/C++ source if you precompile
using the CODE=CPP precompiler option.

Precompiler Concepts 2-7

Guidelines for Programming

Constants

An L or [suffix specifies a long integer constant, a U or u suffix specifies an unsigned
integer constant, a 0X or Ox prefix specifies a hexadecimal integer constant, and an F or
f suffix specifies a float floating-point constant. These forms are not allowed in SQL
statements.

Declare Section

Delimiters

A Declare Section contains the host variable declarations and is of the form:

EXEC SQL BEG N DECLARE SECTI ON,
/* Declare all host variables inside this section: */
char *uid = "scott/tiger";

EXEC SQL END DECLARE SECTI ON;

A Declare Section begins with the statement:

EXEC SQL BEG N DECLARE SECTI ON,

and ends with the statement:

EXEC SQL END DECLARE SECTI ON;

Between these two statements only the following are allowed:
« Host-variable and indicator-variable declarations

= Non-host C/C++ variables

« EXEC SQL DECLARE statements

« EXEC SQL INCLUDE statements

« EXEC SQL VAR statements

« EXEC SQL TYPE statements

« EXEC ORACLE statements

« C/C++ comments

A Declare Section is required when MODE=ANSI or CODE=CPP (in a C++
application) or PARSE=NONE or PARTIAL. For details of the PARSE option, see also
"Parsing Code" on page 12-3.

More than one Declare Section is allowed. They can be in different code modules.

While C uses single quotes to delimit single characters, as in

ch = getchar();

switch (ch)

{

case 'U: update(); break;
case 'I': insert(); break;

SQL uses single quotes to delimit character strings, as in

EXEC SQL SELECT ENAME, SAL FROM EMP WHERE JOB = ' MANAGER ;

While C uses double quotes to delimit character strings, as in

2-8 Pro*C/C++ Programmer’s Guide

Guidelines for Programming

File Length

printf("\nG Day, mate!");
SQL uses double quotes to delimit identifiers containing special or lowercase
characters, as in

EXEC SQL CREATE TABLE "Enp2" (enpno nunber(4), ...);

Pro*C/C++ cannot process arbitrarily long source files. There is a limit to the number
of lines allowed. The following aspects of the source file are contributing factors to the
file-size constraint:

= Complexity of the embedded SQL statements (for example, the number of bind
and define variables).

= Whether a database name is used (for example, connecting to a database with an
AT clause).

« Number of embedded SQL statements.

To prevent problems related to this limitation, use multiple program units to
sufficiently reduce the size of the source files.

Function Prototyping

The ANSI C standard (X3.159-1989) provides for function prototyping. A function
prototype declares a function and the datatypes of its arguments, so that the C compiler
can detect missing or mismatched arguments.

The CODE option, which you can enter on the command line or in a configuration file,
determines the way that the precompiler generates C or C++ code.

ANSI_C
When you precompile your program with CODE=ANSI_C, the precompiler generates
fully prototyped function declarations. For example:

extern void sqglora(long *, void *);

KR_C

When you precompile with the option CODE=KR_C (KR for "Kernighan and Ritchie"),
the precompiler generates function prototypes in the same way that it does for ANSI_
C, except that function parameter lists are commented out. For example:

extern void sqlora(/*_long *, void * _*/);
So, make sure to set the precompiler option CODE to KR_C if you use a C compiler
that does not support ANSI C. When the CODE option is set to ANSI_C, the

precompiler can also generate other ANSI-specific constructs; for example, the const
type qualifier.

CPP

When you compile with CODE=CPP you will generate C++ compatible function
prototypes. Use this option setting with C++ compilers.

See Also: Chapter 12, "C++ Applications"”, for more information
on using C++.

Precompiler Concepts 2-9

Guidelines for Programming

Host Variable Names

Host variable names can consist of upper or lowercase letters, digits, and underscores,
but must begin with a letter. They can be any length, but only the first 31 characters are
significant to Pro*C/C++. Your C compiler or linker might require a shorter maximum
length, so check your C compiler user's guide.

For SQL92 standards conformance, restrict the length of host variable names to 18 or
fewer characters.

See Also: Appendix B, "Reserved Words, Keywords, and
Namespaces" for a list of words that have restrictions on their use
in applications.

Line Continuation

Line Length

You can continue SQL statements from one line to the next. You must use a backslash
(\) to continue a string literal from one line to the next, as the following example
shows:

EXEC SQL | NSERT I NTO dept (deptno, dname) VALUES (50, 'PURCHAS\
ING);

In this context, the precompiler treats the backslash as a continuation character.

The maximum line length is 1299 for lines consisting of only ASCII characters, or 324
for multibyte characters.

MAXLITERAL Default Value

Operators

The precompiler option MAXLITERAL lets you specify the maximum length of string
literals generated by the precompiler. The MAXLITERAL default value is 1024. Specify
a smaller value if required. For example, if your C compiler cannot handle string
literals longer than 512 characters, you then specify MAXLITERAL=512. Check your C
compiler user's guide.

The logical operators and the "equal to" relational operator are different in C and SQL,
as the following list shows. These C operators are not allowed in SQL statements:

SQL Operator C Operator
NOT !

AND &&

OR Il

The following C operators also nof allowed in SQL statements:

Type C Operator
address &
bitwise & I,N ~

2-10 Pro*C/C++ Programmer’s Guide

Conditional Precompilation

Type C Operator

compound assignment +=,-=, *=, and so on.

conditional 2

decrement --

increment ++

indirection *

modulus %

shift >> <<
Statement Terminator

Embedded SQL statements are always terminated by a semicolon, as the following
example shows:

EXEC SQL DELETE FROM enp WHERE deptno = :dept _nunber;

Conditional Precompilation

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that
can run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code C or C++ statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

EXEC ORACLE DEFI NE synbol ; -- define a synbol

EXEC ORACLE | FDEF synbol ; -- if synbol is defined
EXEC ORACLE | FNDEF synmbol ; -- if synmbol is not defined
EXEC ORACLE ELSE; -- otherw se

EXEC ORACLE ENDI F; -- end this control block

All EXEC ORACLE statements must be terminated with a semi-colon.

Symbol Definition
You can define a symbol in two ways. Either include the statement:
EXEC ORACLE DEFI NE synbol ;

in your host program or define the symbol on the command line using the syntax:

DEFI NE=synbol

where symnbol is not case-sensitive.

Note: The #define preprocessor directive is not the same as the
EXEC ORACLE DEFINE statement.

Precompiler Concepts 2-11

Precompile Separately

Some port-specific symbols are predefined for you when Pro*C/C++ is installed on
your system. For example, predefined operating symbols include CMS, MVS,
MS-DOS, UNIX, and VMS.

Example SELECT Statement

In the following example, the SELECT statement is precompiled only when the symbol
si t 2 is defined:

EXEC ORACLE | FDEF site2;
EXEC SQL SELECT DNAME
I NTO : dept _narme
FROM DEPT
VHERE DEPTNO= : dept _nunber;
EXEC ORACLE ENDI F;

You can "comment out” C, C++, or embedded SQL code by placing it between IFDEF
and ENDIF and not defining the symbol.

Precompile Separately

Guidelines

You can precompile several C or C++ program modules separately, then link them into
one executable program. This supports modular programming, which is required
when the functional components of a program are written and debugged by different
programmers. The individual program modules need not be written in the same
language.

The following guidelines will help you avoid some common problems.

Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
DECLARE a cursor in one file, and OPEN or FETCH from it in another file. So, when
doing a separate precompilation, make sure all definitions and references to a given
cursor are in one file.

Specifying MAXOPENCURSORS

When you precompile the program module that CONNECTSs to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If you
use MAXOPENCURSORS for another program module, one that does not do a
CONNECT, then that value for MAXOPENCURSORS is ignored. Only the value in
effect for the CONNECT is used at runtime.

Use a Single SQLCA

If you want to use just one SQLCA, you must declare it as global in one of the program
modules and as external in the other modules. Use the extern storage class, and the
following define in your code:

#define SQLCA_STORAGE_CLASS extern

which tells the precompiler to look for the SQLCA in another program module. Unless
you declare the SQLCA as external, each program module uses its own local SQLCA.

2-12 Pro*C/C++ Programmer’s Guide

Example Tables

Note: All source files in an application must be uniquely named,
or else an error will be generated.

Compile and Link

To get an executable program, you must compile the output . ¢ source files produced
by the precompiler, then link the resulting object modules with modules needed from
SQLLIB and system-specific Oracle libraries. If you are mixing precompiler code and
OCI calls, be sure to also link in the OCI runtime library (I i boci . a on UNIX
systems).

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third-party software into a
precompiled program. Not all third-party software is compatible with Oracle. So,
linking your program shared might cause an obscure problem. In some cases, linking
standalone or two-task might solve the problem.

Compiling and linking are system dependent. On most platforms, example makefiles or
batch files are supplied that you can use to precompile, compile, and link a Pro*C/C++
application. See your system-specific documentation.

Example Tables

Example Data

Most programming examples in this guide use two example database tables: DEPT
and EMP. Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER(2) NOT NULL,
DNAVE VARCHAR?(14) ,
LoC VARCHAR2(13))

CREATE TABLE EWP

(EMPNO NUMBER(4) NOT NULL,
ENAVE VARCHARZ(10) ,

JoB VARCHAR2(9) ,

MGR NUVBER(4) ,

H REDATE DATE,

SAL NUVBER(7, 2) ,

Cow NUVBER(7, 2) ,

DEPTNO NUMVBER(2))

Respectively, the DEPT and EMP tables contain the following rows
of data:

10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES CHI CAGO
40 COPERATI ONS BOSTON

EMPNO ENAME JOB MER H REDATE SAL COW DEPTNO

7369 SMTH CLERK 7902 17-DEC- 80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

Precompiler Concepts 2-13

Example Program: A Simple Query

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19- APR-87 3000 20
7839 KING PRESI DENT 17-NOv-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03- DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 M LLER CLERK 7782 23-JAN-82 1300 10

Example Program: A Simple Query

One way to get acquainted with Pro*C/C++ and embedded SQL is to study a program
example. The following program is also available on-line in the file sanpl el. pc in
your Pro*C/C++ denp directory.

The program connects to Oracle, then loops, prompting the user for an employee
number. It queries the database for the employee's name, salary, and commission,
displays the information, and then continues the loop. The information is returned to a
host structure. There is also a parallel indicator structure to signal whether any of the
output values SELECTed might be NULL.

Precompile example programs using the precompiler option MODE=ORACLE.

/
sanpl el. pc

Pronmpts the user for an enpl oyee nunber,

then queries the enp table for the enployee's
name, salary and comm ssion. Uses indicator
variables (in an indicator struct) to determne
if the conmission is NULL.

R T

-~

#i ncl ude <stdio. h>
#include <string. h>

/* Define constants for VARCHAR | engths. */
#def i ne UNAME_LEN 20
#def i ne PWD_LEN 40

/* Declare variables.No declare section is needed if MODE=ORACLE. */
VARCHAR user nane[UNAVE_LEN] ;
/* VARCHAR is an Oracle-supplied struct */

var char passwor d[PAD_LEN] ;
/* varchar can be in | ower case also. */
/*
Define a host structure for the output values of a SELECT statenent.
*/
struct {
VARCHAR enp_name[UNAVE_LEN] ;
f1 oat sal ary;
f1 oat conmmi ssi on;
} enprec;
/*

2-14 Pro*C/C++ Programmer’s Guide

Example Program: A Simple Query

Define an indicator struct to correspond to the host output struct. */

struct

{
short enp_nane_i nd,;
short sal _ind;
short comm i nd;

} enprec_ind;

/* Input host variable. */

i nt enp_nunber;

i nt total _queried;

/* Include the SQL Communications Area.
You can use #include or EXEC SQL | NCLUDE. */
#include <sql ca. h>

/* Declare error handling function. */
voi d sql _error();

mai n()

{

char tenmp_char[32];

/* Connect to ORACLE--
* Copy the usernanme into the VARCHAR.

*/

strncpy((char *) usernane.arr, "SCOTT", UNAME_LEN);
/* Set the length conponent of the VARCHAR */
usernane.len = strlen((char *) username.arr);
[* Copy the password. */
strncpy((char *) password.arr, "TIGER', PWD_LEN);
password.len = strlen((char *) password.arr);
/* Register sqgl _error() as the error handler. */
EXEC SQL VWHENEVER SQLERROR DO sql _error("ORACLE error--\n");

/* Connect to ORACLE. Programwill call sql_error()
* if an error occurs when connecting to the default database.

*/

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;

printf("\nConnected to ORACLE as user: %\n", username.arr);
/* Loop, selecting individual enployee's results */

total _queried = 0;

for (57)

{

/* Break out of the inner [oop when a
* 1403 ("No data found") condition occurs.

*/

EXEC SQL WHENEVER NOT FOUND DO br eak;

for (5:)
{

enp_nunber = 0;

printf("\nEnter enployee number (0 to quit):

gets(temp_char);

enp_nunber = atoi (tenp_char);

if (enp_nunber == 0)
break;

EXEC SQL SELECT enane, sal, NvL(conm O0)
I NTO : enprec | NDI CATOR : enprec_i nd
FROM EMP
VWHERE EMPNO = : enp_nunber ;

/[* Print data. */

Dk

Precompiler Concepts 2-15

Example Program: A Simple Query

printf("\n\nEnpl oyee\t Sal ary\t\tCommi ssion\n");

printf("-------- \Vt------ Vevt--eeeeee- \n");
/* Nul'l-termnate the output string data. */
enprec. enp_nane. arr[enprec. enp_nane.len] = '\0";

printf("%8s\ty. 2f\t\t",
enprec. enp_nane. arr, enprec.salary);
if (enprec_ind.commind == -1)
printf("NULL\n");
el se
printf("9.2f\n", enprec.comission);

total _queried++;
} /* end inner for (;;) */
if (enmp_number == 0) break;
printf("\nNot a valid enployee nunber - try again.\n");
} I* end outer for(;;) */

printf("\n\nTotal rows returned was %l.\n", total _queried);
printf("\nG day.\n\n\n");

/* Disconnect from ORACLE. */
EXEC SQL COW T WORK RELEASE;

exit(0);
}
voi d sql _error(nsg)
char *msg;
{
char err_nsg[128];
int buf_len, nsg_len;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%\n", msg);
buf _len = sizeof (err_msg);
sql gl n{err_nmsg, &buf _len, &sg_len);
printf("%*s\n", msg_len, err_nsg);
EXEC SQL ROLLBACK RELEASE;
exit(1);
}

2-16 Pro*C/C++ Programmer’s Guide

3

Database Concepts

This chapter explains some basic database concepts and how to perform transaction
processing. You learn the basic techniques that safeguard the consistency of your
database, including how to control if changes to Oracle data are made permanent or
undone.

This chapter contains the following topics:

Connect to the Database

Advanced Connection Options
Definitions of Transactions Terms
How Transactions Guard Your Database
How to Begin and End Transactions
Using the COMMIT Statement
Using the SAVEPOINT Statement
The ROLLBACK Statement

The RELEASE Option

The SET TRANSACTION Statement
Override Default Locking

Fetch Across COMMITs

Distributed Transactions Handling

Guidelines

Connect to the Database

The complete syntax of the CONNECT statement will be discussed in the next few
sections. Here it is:

EXEC SQL CONNECT { :user |DENTIFIED BY :ol dpswd | :usr_psw }

[[AT { dbnane | :host_variable }] USING :connect_string]

[{ALTER AUTHORI ZATI ON :newpswd | IN{ SYSDBA | SYSOPER } MODE} | :

Your Pro*C/C++ program must connect to the database before querying or
manipulating data. To log on, simply use the CONNECT statement

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password ;

where username and password are char or VARCHAR host variables.

Database Concepts 3-1

Connect to the Database

Or, you can use the statement

EXEC SQL CONNECT : usr_pwd;

where the host variable usr_pwd contains your username and password separated by a
slash character (/).

These are simplified subsets of the CONNECT statement.

See Also: "CONNECT (Executable Embedded SQL Extension)"
on page F-19

The CONNECT statement must be the first SQL statement executed by the program.
That is, other SQL statements can physically but not logically precede the CONNECT
statement in the precompilation unit.

To supply the Oracle username and password separately, you define two host
variables as character strings or VARCHARSs. (If you supply a username containing
both username and password, only one host variable is needed.)

Make sure to set the username and password variables before the CONNECT is
executed, or it will fail. Your program can prompt for the values, or you can hard-code
them as follows:

char *username
char *password

" SCOTT";
"TI GER";

EXEC SQL WHENEVER SQLERRCR ...
EXEC SQL CONNECT :usernane | DENTI FI ED BY : passwor d;

However, you cannot hard-code a username and password into the CONNECT
statement. You also cannot use quoted literals. For example, both of the following
statements are invalid:

EXEC SQL CONNECT SCOTT | DENTI FI ED BY Tl GER;
EXEC SQL CONNECT ' SCOTT' | DENTIFIED BY ' TI GER ;

Using the ALTER AUTHORIZATION Clause to Change Passwords

Pro*C/C++ provides client applications with a convenient way to change a user
password at runtime through a simple extension to the EXEC SQL CONNECT
statement.

This section describes the possible outcomes of different variations of the ALTER
AUTHORIZATION clause.

Standard CONNECT

If an application issues the following statement

EXEC SQL CONNECT . .; /* No ALTER AUTHORI ZATI ON cl ause */

it performs a normal connection attempt. The possible results include the following:
= The application will connect without issue.

= The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow
Logons. At this point, the user is encouraged to change the password before the
account becomes locked.

« The application will fail to connect. Possible causes include the following;:

3-2 Pro*C/C++ Programmer’s Guide

Connect to the Database

= The password is incorrect.

= The account has expired, and is possibly in a locked state.

Change Password on CONNECT
The following CONNECT statement

EXEC SQL CONNECT .. ALTER AUTHORI ZATI ON : newpswd;
indicates that the application wants to change the account password to the value

indicated by newpswd. After the change is made, an attempt is made to connect as
user /newpswd. This can have the following results:

= The application will connect without issue
= The application will fail to connect. This could be due to either of the following:

= Password verification failed for some reason. In this case the password
remains unchanged.

= The account is locked. Changes to the password are not permitted.

Connecting Using Oracle Net

To connect using an Oracle Net driver, substitute a service name, as defined in your
t nsnamnes. or a configuration file or in Oracle Names.

If you are using Oracle Names, the name server obtains the service name from the
network definition database.

Note: SQL*Net V1 does not work with Oracle8.

See Oracle Net Services Administrator’s Guide for more information about Oracle Net.

Automatic Connects
You can automatically connect to Oracle with the username
CLUSTERS$user nane
where username is the current operating system username, and CLUSTER$username is
a valid Oracle database username. (The actual value for CLUSTERS$ is defined in the

INIT.ORA parameter file.) You simply pass to the Pro*C/C++ Precompiler a slash
character, as follows:

char *oracleid ="/";
EXEC SQL CONNECT : oracl ei d;

This automatically connects you as user CLUSTER$username. For example, if your
operating system username is RHILL, and CLUSTER$RHILL is a valid Oracle
username, connecting with '/" automatically logs you on to Oracle as user
CLUSTER$RHILL.

You can also pass a '/' in a string to the precompiler. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

char oracleid[10] ="/ "

Database Concepts 3-3

Advanced Connection Options

EXEC SQ. CONNECT : oracl ei d;

The AUTO_CONNECT Precompiler Option

If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTERS$<user nane>
where username is your current operating system user or task name and

CLUSTERS$username is a valid Oracle userid. The default value of AUTO_CONNECT
is NO.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

SYSDBA or SYSOPER System Privileges

Before the release of Oracle8i you did not have to use a clause such as this one to have
SYSOPER or SYSDBA system privilege, but now you must.

Append the following optional string after all other clauses to log on with either
SYSDBA or SYSOPER system privileges:

[IN{ SYSDBA | SYSOPER} MODE]

For example:

EXEC SQL CONNECT ... IN SYSDBA MOXDE ;

Here are the restrictions that apply to this option:

= This option is not permitted when using the AUTO_CONNECT=YES precompiler
option setting.

= This option is not permitted when using the ALTER AUTHORIZATION keywords
in the CONNECT statement.

See Also: "Using the ALTER AUTHORIZATION Clause to
Change Passwords" on page 3-2

Advanced Connection Options

This section describes the available options for advanced connections.

Some Preliminaries

The communicating points in a network are called nodes. Oracle Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node
to another.

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and
checking errors.

The Oracle Net syntax for connecting to the default database in the local domain is
simply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global
specification (all domains specified). For example:

3-4 Pro*C/C++ Programmer’s Guide

Advanced Connection Options

HR. US. CRACLE. COM

Concurrent Logons

Pro*C/C++ supports distributed processing through Oracle Net. Your application can
concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3-1, an application program
communicates with one local and three remote Oracle databases. ORA2, ORA3, and
ORAA4 are simply logical names used in CONNECT statements.

Figure 3-1 Connecting through Oracle Net

Application Local
Program Oracle
Database

A

v

Oracle Net

\

Remote
Oracle
Database Remote
Oracle
Database

Remote
Oracle
Database

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net provides a distributed processing environment for Oracle tools.
This section shows you how Pro*C/C++ supports distributed processing through
Oracle Net. You learn how your application can

= Directly or indirectly access other databases
= Concurrently access any combination of local and remote databases
= Make multiple connections to the same database

For details on installing Oracle Net and identifying available databases, refer to the
Oracle Net Services Administrator’s Guide and your system-specific Oracle
documentation.

Default Databases and Connections

Each node has a default database. If you specify a database name, but no domain in
your CONNECT statement, you connect to the default database on the named local or
remote node.

A default connection is made by a CONNECT statement that has no AT clause. The
connection can be to any default or nondefault database at any local or remote node.
SQL statements without an AT clause are executed against the default connection.
Conversely, a nondefault connection is made by a CONNECT statement that has an AT

Database Concepts 3-5

Advanced Connection Options

clause. SQL statements with an AT clause are executed against the nondefault
connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

Explicit Connections
Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :usernane | DENTI FI ED BY : passwor d;

You can also use

EXEC SQL CONNECT : usr_pwd;

where usr_pwd contains username/password.
You can automatically connect to Oracle with the userid

CLUSTERS$user name

where username is your current operating system user or task name and
CLUSTERSusername is a valid Oracle userid. You simply pass to the precompiler a
slash (/) character, as follows:

char oracleid ="'/";
EXEC SQL CONNECT : oracl ei d;

This automatically connects you as user CLUSTERS$username.

If you do not specify a database and node, you are connected to the default database at
the current node. If you want to connect to a different database, you must explicitly
identify that database.

With explicit connections, you connect to another database directly, giving the
connection a name that will be referenced in SQL statements. You can connect to
several databases at the same time and to the same database multiple times.

Single Explicit Connection

In the following example, you connect to a single nondefault database at a remote
node:

/* decl are needed host variables */
char usernane[10] = "scott";
char password[10] "tiger";
char db_string[20] " NYNON';

/* give the database connection a unique name */
EXEC SQL DECLARE DB_NAME DATABASE;

/* connect to the nondefault database */
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password
AT DB_NAME USING :db_string;

The identifiers in this example serve the following purposes:

= The host variables username and password identify a valid user.

3-6 Pro*C/C++ Programmer’s Guide

Advanced Connection Options

« The host variable db_string contains the Oracle Net syntax for connecting to a
nondefault database at a remote node.

« The undeclared identifier DB_NAME names a nondefault connection; it is an
identifier used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database associated with DB_
NAME. Later, SQL statements using the AT clause (with DB_NAME) are executed at
the database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

[* decl are needed host variables */

char usernane[10] = "scott";
char password[10] = "tiger";
char db_nane[10] = "oracl el";
char db_string[20] = "NYNON';

/* connect to the nondefault database using db_name */
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password
AT :db_nanme USING :db_string;

If db_name is a host variable, the DECLARE DATABASE statement is not needed. Only
if DB_NAME is an undeclared identifier must you execute a DECLARE DB_NAME
DATABAGSE statement before executing a CONNECT ... AT DB_NAME statement.

SQL Operations If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

EXEC SQL AT DB_NAME SELECT ...
EXEC SQL AT DB_NAME | NSERT ...
EXEC SQL AT DB_NAME UPDATE ...

In the next example, db_name is a host variable:
EXEC SQL AT :db_nane DELETE ...
If db_name is a host variable, all database tables referenced by the SQL statement must

be defined in DECLARE TABLE statements. Otherwise, the precompiler issues a
warning.

See Also:
= "Using DECLARE TABLE" on page D-3

« "DECLARE TABLE (Oracle Embedded SQL Directive)" on
page F-29

PL/SQL Blocks You can execute a PL/SQL block using the AT clause. The following
example shows the syntax:
EXEC SQL AT :db_nanme EXECUTE
begi n
/* PL/SQL block here */
end;
END- EXEC,

Cursor Control

Database Concepts 3-7

Advanced Connection Options

Cursor control statements such as OPEN, FETCH, and CLOSE are exceptions—they
never use an AT clause. If you want to associate a cursor with an explicitly identified
database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQ. AT :db_name DECLARE enp_cursor CURSOR FOR ...
EXEC SQ. OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor ...

EXEC SQL CLOSE enp_cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL
statements that refer to the DECLAREd cursor. For example, if you OPEN the cursor in
one subprogram, then FETCH from it in another subprogram, you must declare db_
name globally.

When OPENing, CLOSing, or FETCHing from the cursor, you do not use the AT
clause. The SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in the
cursor declaration.

The AT :host_variable clause provides the ability to change the connection associated
with a cursor. However, you cannot change the association while the cursor is open.
Consider the following example:

EXEC SQL AT :db_name DECLARE enp_cursor CURSOR FOR ...
strcpy(db_name, "oraclel");

EXEC SQ. OPEN enp_cursor;

EXEC SQL FETCH enp_cursor INTO ...

strcpy(db_nane, "oracle2");

EXEC SQL OPEN enp_cursor; /* illegal, cursor still open */
EXEC SQL FETCH enp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

EXEC SQL CLOSE enp_cursor; -- close cursor first
strcpy(db_nane, "oracle2");

EXEC SQ. OPEN enp_cursor;

EXEC SQL FETCH enp_cursor INTO ...

Dynamic SQL

Dynamic SQL statements are similar to cursor control statements in that some never
use the AT clause.

For dynamic SQL Method 1, you must use the AT clause if you want to execute the
statement at a nondefault connection. An example follows:

EXEC SQL AT :db_name EXECUTE | MVEDI ATE :sgl _stnt;

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other
dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE
never use the AT clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE sql _stnt STATEMENT;
EXEC SQL PREPARE sql _stnt FROM :sql _string;
EXEC SQL EXECUTE sql _stnt;

3-8 Pro*C/C++ Programmer’s Guide

Advanced Connection Options

The following example shows Method 3:

EXEC SQL AT :db_name DECLARE sql _stnt STATEMENT;
EXEC SQL PREPARE sql _stnmt FROM :sql _string;

EXEC SQL DECLARE emp_cursor CURSOR FOR sql _stnt;
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor INTO ...

EXEC SQ CLOSE enp_cursor;

Multiple Explicit Connections

You can use the AT db_name clause for multiple explicit connections, just as you can for
a single explicit connection. In the following example, you connect to two nondefault
databases concurrently:

/* decl are needed host variables */

char usernane[10] = "scott";
char password[10] = "tiger";
char db_stringl[20] = "NYNONL";
char db_string2[20] = "CHI NON';

/* give each database connection a unique name */

EXEC SQL DECLARE DB_NAME1 DATABASE;

EXEC SQL DECLARE DB_NAME2 DATABASE;

/* connect to the two nondefault databases */

EXEC SQL CONNECT : usernane | DENTI FI ED BY : password
AT DB_NAMEL USI NG :db_stringl,;

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password
AT DB_NAME2 USI NG :db_string2;

The identifiers DB_NAME1 and DB_NAME?2 are declared and then used to name the
default databases at the two nondefault nodes so that later SQL statements can refer to
the databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example
shows:

/* decl are needed host variables */

char username[10] "scott";

char password[10] “tiger";

char db_name[20];

char db_string[20];

int n_defs = 3; I'* nunber of connections to make */

for (i =0; i < n_defs; i++)
{
/* get next database name and OracleNet string */
printf("Database name: ");
get s(db_nane);
printf("COracleNet) string: ");
gets(db_string);
/* do the connect */
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password
AT :db_nanme USING :db_string;
}

You can also use this method to make multiple connections to the same database, as
the following example shows:

strepy(db_string, "NYNON');

Database Concepts 3-9

Advanced Connection Options

for (i =0; i < ndefs; i++)
{
/* connect to the nondefault database */
printf("Database name: ");
get s(db_nane);
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password
AT :db_name USING :db_string;

You must use different database names for the connections, even though they use the
same OracleNet string. However, you can connect twice to the same database using
just one database name because that name identifies both the default and nondefault
databases.

Ensuring Data Integrity

Your application program must ensure the integrity of transactions that manipulate
data at two or more remote databases. That is, the program must commit or roll back
all SQL statements in the transactions. This might be impossible if the network fails or
one of the systems crashes.

For example, suppose you are working with two accounting databases. You debit an
account on one database and credit an account on the other database, then issue a
COMMIIT at each database. It is up to your program to ensure that both transactions
are committed or rolled back.

Implicit Connections

Implicit connections are supported through the Oracle distributed query facility,
which does not require explicit connections, but only supports the SELECT statement.
A distributed query allows a single SELECT statement to access data on one or more
nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the embedded
SELECT statement is executed by the specified Oracle Server, which implicitly connects
to the nondefault database(s) to get the required data.

Single Implicit Connections

In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQL CREATE DATABASE LINK db_Iink
CONNECT TO user name | DENTI FI ED BY password
USI NG ' NYNON ;

Then, the program can query the nondefault EMP table using the database link, as
follows:

EXEC SQL SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM enp@lb_l i nk
VWHERE DEPTNO = : dept _nunber;

The database link is not related to the database name used in the AT clause of an
embedded SQL statement. It simply tells Oracle where the nondefault database is
located, the path to it, and what Oracle username and password to use. The database
link is stored in the data dictionary until it is explicitly dropped.

3-10 Pro*C/C++ Programmer’s Guide

Definitions of Transactions Terms

In our example, the default Oracle Server logs on to the nondefault database through
Oracle Net using the database link db_link. The query is submitted to the default
Server, but is "forwarded" to the nondefault database for execution.

To make referencing the database link easier, you can interactively create a synonym as
follows:

EXEC SQL CREATE SYNONYM enp FOR enp@b_| i nk;
Then, your program can query the nondefault EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM enp
VWHERE DEPTNO = : dept _nunber;

This provides location transparency for emp.

Multiple Implicit Connections

In the following example, you connect to two nondefault databases concurrently. First,
you execute the following sequence of statements to define two database links and
create two synonyms:

EXEC SQL CREATE DATABASE LINK db_Iinkl
CONNECT TO usernamel | DENTI FI ED BY passwor dl
USI NG ' NYNON ;
EXEC SQL CREATE DATABASE LI NK db_Iink2
CONNECT TO user name2 | DENTI FI ED BY passwor d2
USI NG ' CHI NON ;
EXEC SQL CREATE SYNONYM enp FOR enp@b_l i nk1;
EXEC SQL CREATE SYNONYM dept FOR dept @lb_I i nk2;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC
FROM enp, dept
VWHERE enp. DEPTNO = dept . DEPTNO AND DEPTNO = : dept _nunber;

Oracle executes the query by performing a join between the nondefault EMP table at
db_link1 and the nondefault DEPT table at db_link2.

Definitions of Transactions Terms

Before delving into the subject of transactions, you should know the terms defined in
this section.

The jobs or tasks that Oracle manages are called sessions. A user session is invoked
when you run an application program or a tool such as SQL*Forms, and connect to the
database.

Oracle allows user sessions to work simultaneously and share computer resources. To
do this, Oracle must control concurrency, the accessing of the same data by many users.
Without adequate concurrency controls, there might be a loss of data integrity. That is,
changes to data or structures might be made in the wrong order.

Oracle uses locks (sometimes called engueues) to control concurrent access to data. A
lock gives you temporary ownership of a database resource such as a table or row of
data. Thus, data cannot be changed by other users until you finish with it.

You need never explicitly lock a resource, because default locking mechanisms protect
Oracle data and structures. However, you can request data locks on tables or rows

Database Concepts 3-11

How Transactions Guard Your Database

when it is to your advantage to override default locking. You can choose from several
modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held by
another user, neither can continue until Oracle breaks the deadlock. Oracle signals an
error to the participating transaction that had completed the least amount of work, and
the "deadlock detected while waiting for resource" Oracle error code is returned to
sqlcode in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
Oracle generates a read-consistent view of the table's data for the query. That is, once a
query begins and as it proceeds, the data read by the query does not change. As
update activity continues, Oracle takes snapshots of the table's data and records
changes in a rollback segment. Oracle uses information in the rollback segment to build
read-consistent query results and to undo changes if necessary.

How Transactions Guard Your Database

Oracle is transaction oriented. That is, Oracle uses transactions to ensure data integrity.
A transaction is a series of one or more logically related SQL statements you define to
accomplish some task. Oracle treats the series of SQL statements as a unit so that all
the changes brought about by the statements are either committed (made permanent) or
rolled back (undone) at the same time. If your application program fails in the middle of
a transaction, the database is automatically restored to its former (pre-transaction)
state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

= Connect to the database.

= Make concurrent connections.

= Begin and end transactions.

= Use the COMMIT statement to make transactions permanent.

= Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions.

= Use the ROLLBACK statement to undo whole transactions.
= Specify the RELEASE option to free resources and log off the database.
= Use the SET TRANSACTION statement to set read-only transactions.

« Use the FOR UPDATE clause or LOCK TABLE statement to override default
locking.

For details about the SQL statements discussed in this chapter, see Oracle Database SQL
Reference.

How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable statement
is part of a transaction. Because they cannot be rolled back and need not be committed,
declarative SQL statements are not considered part of a transaction.

3-12 Pro*C/C++ Programmer’s Guide

Using the COMMIT Statement

You end a transaction in one of the following ways:

« Code a COMMIT or ROLLBACK statement, with or without the RELEASE option.
This explicitly makes permanent or undoes changes to the database.

= Code a data definition statement (ALTER, CREATE, or GRANT, for example),
which issues an automatic COMMIT before and after executing. This implicitly
makes permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.
Oracle rolls back the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls
back the transaction. If your operating system fails, Oracle restores the database to its
former (pre-transaction) state.

Using the COMMIT Statement

If you do not subdivide your program with the COMMIT or ROLLBACK statement,
Oracle treats the whole program as a single transaction (unless the program contains
data definition statements, which issue automatic COMMITS).

You use the COMMIT statement to make changes to the database permanent. Until
changes are COMMITted, other users cannot access the changed data; they see it as it
was before your transaction began. Specifically, the COMMIT statement

= Makes permanent all changes made to the database during the current transaction
= Makes these changes visible to other users

= Erases all savepoints (see the next section)

= Releases all row and table locks, but not parse locks

« Closes cursors referenced in a CURRENT OF clause or, when MODE=ANS]I, closes
all explicit cursors for the connection specified in the COMMIT statement

« Ends the transaction

The COMMIT statement has no effect on the values of host variables or on the flow of
control in your program.

When MODE=ORACLE, explicit cursors that are not referenced in a CURRENT OF
clause remain open across COMMITs. This can boost performance.

See Also: "Fetch Across COMMITs" on page 3-19

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitty COMMIT pending changes. Otherwise, Oracle rolls them back. In the
following example, you commit your transaction and disconnect from Oracle:

EXEC SQL COW T WORK RELEASE;
The optional keyword WORK provides ANSI compatibility. The RELEASE option

frees all Oracle resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic COMMIT before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

Database Concepts 3-13

Using the SAVEPOINT Statement

Using the SAVEPOINT Statement

You use the SAVEPOINT statement to mark and name the current point in the
processing of a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

EXEC SQL SAVEPQO NT start_del ete;

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the
Oracle data to its former state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and
its TO SAVEPOINT clause. In the following example, you access the table MAIL_LIST
to insert new listings, update old listings, and delete (a few) inactive listings. After the
delete, you check the third element of sqlerrd in the SQLCA for the number of rows
deleted. If the number is unexpectedly large, you roll back to the savepoint start_delete,
undoing just the delete.

for (57)
{
printf("Custonmer nunber? ");
gets(tenp);
cust _nunber = atoi(tenp);
printf("Custoner nane? ");
get s(cust _nane) ;
EXEC SQL INSERT INTO mail _list (custno, cnanme, stat)
VALUES (:cust_number, :cust_nane, 'ACTIVE);

for (57)
{
printf("Custoner nunber? ");
gets(tenp);
cust _nunber = atoi(tenp);
printf("New status? ");
get s(new_status);
EXEC SQL UPDATE nmuil _li st
SET stat = :new status
WHERE custno = :cust_nunber;
}
/* mark savepoint */
EXEC SQL SAVEPO NT start _del ete;

EXEC SQL DELETE FROM mail |ist
WHERE stat = ' | NACTI VE' ;
if (sqglca.sqglerrd[2] < 25) [/* check nunber of rows deleted */
printf("Nunber of rows deleted is %\ n", sqlca.sqglerrd[2]);
el se
{
printf("Undoing deletion of % rows\n", sqlca.sqlerrd[2]);
EXEC SQL WHENEVER SQLERROR GOTO sql _error;
EXEC SQL ROLLBACK TO SAVEPO NT start_del ete;

}

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL COW T WORK RELEASE;
exit(0);

3-14 Pro*C/C++ Programmer’s Guide

The ROLLBACK Statement

sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased.

If you give two savepoints the same name, the earlier savepoint is erased. A COMMIT
or ROLLBACK statement erases all savepoints.

See Also: "Using the WHENEVER Directive" on page 9-18

The ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The TO SAVEPOINT clause lets you
roll back to an intermediate statement in the current transaction, so you do not have to
undo all your changes.

If you start a transaction that does not complete (a SQL statement might not execute
successfully, for example), ROLLBACK lets you return to the starting point, so that the
database is not left in an inconsistent state. Specifically, the ROLLBACK statement

= Undoes all changes made to the database during the current transaction
= Erases all savepoints

= Ends the transaction

= Releases all row and table locks, but not parse locks

« Closes cursors referenced in a CURRENT OF clause or, when MODE=ANS], closes
all explicit cursors

The ROLLBACK statement has no effect on the values of host variables or on the flow
of control in your program.

When MODE=ORACLE, explicit cursors not referenced in a CURRENT OF clause
remain open across ROLLBACKs.

Specifically, the ROLLBACK TO SAVEPOINT statement
= Undoes changes made to the database since the specified savepoint was marked
» Erases all savepoints marked after the specified savepoint

= Releases all row and table locks acquired since the specified savepoint was marked

Note: You cannot specify the RELEASE option in a ROLLBACK
TO SAVEPOINT statement.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;
The optional keyword WORK provides ANSI compatibility. The RELEASE option
frees all resources held by your program and disconnects from the database.

Database Concepts 3-15

The RELEASE Option

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine
that includes a ROLLBACK statement, your program might enter an infinite loop if the
ROLLBACK fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement, as shown in the following
example:

EXEC SQL WHENEVER SQLERROR GOTO sql _error;

for (57)
{
printf("Enpl oyee nunber? ");
gets(tenp);
enp_nunber = atoi(tenp);
printf("Enpl oyee nane? ");
get s(enp_nane);
EXEC SQL | NSERT I NTO enp (enpno, enane)
VALUES (:enp_nunber, :enp_nane);

sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Oracle automatically rolls back transactions if your program terminates abnormally.

See Also: "The RELEASE Option" on page 3-16.

Statement-Level Rollbacks

Before executing any SQL statement, Oracle marks an implicit savepoint (not available
to you). Then, if the statement fails, Oracle automatically rolls it back and returns the
applicable error code to sglcode in the SQLCA. For example, if an INSERT statement
causes an error by trying to insert a duplicate value in a unique index, the statement is
rolled back.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is saved. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

The RELEASE Option

Oracle automatically rolls back changes if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect from Oracle using the RELEASE option. Normal
termination occurs when your program runs its course, closes open cursors, explicitly
commits or rolls back work, disconnects from Oracle, and returns control to the user.

3-16 Pro*C/C++ Programmer’s Guide

Override Default Locking

Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COM T WORK RELEASE;

or

EXEC SQL ROLLBACK WORK RELEASE;

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

The SET TRANSACTION Statement

You use the SET TRANSACTION statement to begin a read-only transaction. Because
they allow "repeatable reads," read-only transactions are useful for running multiple

queries against one or more tables while other users update the same tables. An
example of the SET TRANSACTION statement follows:

EXEC SQL SET TRANSACTI ON READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions.

Only the SELECT, COMMIT, and ROLLBACK statements are allowed in a read-only
transaction. For example, including an INSERT, DELETE, or SELECT FOR UPDATE
OF statement causes an error.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to
query or update data as usual.

A COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.
(Recall that data definition statements issue an implicit COMMIT.)

In the following example, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a
summary report. The report is unaffected by other users updating the database during
the transaction.

EXEC SQL SET TRANSACTI ON READ ONLY;

EXEC SQL SELECT sun(sal eant) INTO :daily FROM sal es
VWHERE sal edate = SYSDATE;

EXEC SQL SELECT sum(sal eant) |NTO :weekly FROM sal es
VWHERE sal edate > SYSDATE - 7;

EXEC SQL SELECT sum(sal eant) |INTO :nonthly FROM sal es
WHERE sal edate > SYSDATE - 30;

EXEC SQL COW T WORK;
/* sinply ends the transaction since there are no changes

to make permanent */
[* format and print report */

Override Default Locking

By default, Oracle automatically locks many data structures for you. However, you can
request specific data locks on rows or tables when it is to your advantage to override
default locking. Explicit locking lets you share or deny access to a table for the
duration of a transaction or ensure multitable and multiquery read consistency.

Database Concepts 3-17

Override Default Locking

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of
a table to make sure they do not change before an UPDATE or DELETE is executed.
However, Oracle automatically obtains row-level locks at UPDATE or DELETE time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
UPDATE or DELETE.

You can explicitly lock entire tables using the LOCK TABLE statement.

Using FOR UPDATE OF

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you use the FOR UPDATE OF clause to acquire
exclusive row locks. SELECT FOR UPDATE OF identifies the rows that will be
updated or deleted, then locks each row in the active set. This is useful, for example,
when you want to base an update on the existing values in a row. You must make sure
the row is not changed by another user before your update.

The FOR UPDATE OF clause is optional. For example, instead of coding

EXEC SQ DECLARE enp_cursor CURSOR FOR
SELECT enane, job, sal FROM enp WHERE deptno = 20
FOR UPDATE OF sal ;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, job, sal FROM enp WHERE deptno = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. You use the CURRENT OF clause to refer to the latest row FETCHed from a
Cursor.

See Also: "The CURRENT OF Clause" on page 6-15

Restrictions
If you use the FOR UPDATE OF clause, you cannot reference multiple tables.

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the OPEN, not as they are FETCHed. Row locks are
released when you COMMIT or ROLLBACK (except when you ROLLBACK to a
savepoint). Therefore, you cannot FETCH from a FOR UPDATE cursor after a
COMMIT.

Using LOCK TABLE

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement in the following section, locks the EMP table in row
share mode. Row share locks allow concurrent access to a table; they prevent other
users from locking the entire table for exclusive use.

EXEC SQL LOCK TABLE EMP | N RON SHARE MODE NOWAI T,
The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one user

at a time can acquire an exclusive lock. While one user has an exclusive lock on a table,
no other users can INSERT, UPDATE, or DELETE rows in that table.

For more information about lock modes, see Oracle Database Concepts.

3-18 Pro*C/C++ Programmer’s Guide

Distributed Transactions Handling

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked
by another user. Control is immediately returned to your program, so it can do other
work before trying again to acquire the lock. (You can check sglcode in the SQLCA to
see if the LOCK TABLE failed.) If you omit NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock. So, a query never blocks another query or an update, and an update never
blocks a query. Only if two different transactions try to update the same row will one
transaction wait for the other to complete.

Any LOCK TABLE statement implicitly closes all cursors.
Table locks are released when your transaction issues a COMMIT or ROLLBACK.

Fetch Across COMMITs

If you want to intermix COMMITs and FETCHes, do not use the CURRENT OF clause.
Instead, SELECT the ROWID of each row, then use that value to identify the current
row during the update or delete. An example follows:

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, sal, ROND FROM enp WHERE job = ' CLERK';

EXEC SQ OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for ()

{
EXEC SQL FETCH enp_cursor INTO :enmp_name, :salary, :row.d;
EXEC SQL UPDATE enp SET sal = :new salary
WHERE RON'D = :row. i d;
EXEC SQL COWM T;
}

Note, however, that the FETCHed rows are not locked. So, you might get inconsistent
results if another user modifies a row after you read it but before you update or delete
it.

Distributed Transactions Handling

A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that accesses
a remote node using a database link. A distributed transaction includes at least one
distributed statement that updates data at multiple nodes of a distributed database. If
the update affects only one node, the transaction is non-distributed.

When you issue a COMMIT, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a ROLLBACK, all the changes
are undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if you
have FORCE TRANSACTION system privileges, you can manually commit or roll
back the transaction at your local database by using the FORCE clause. The transaction
must be identified by a quoted literal containing the transaction ID, which can be
found in the data dictionary view DBA_2PC_PENDING. Some examples follow:

EXEC SQL COW T FORCE ' 22. 31. 83" ;

Database Concepts 3-19

Guidelines

Guidelines

EXEC SQL ROLLBACK FORCE ' 25. 33. 86';

FORCE commits or rolls back only the specified transaction and does not affect your
current transaction. You cannot manually roll back in-doubt transactions to a
savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, Oracle
stores the text specified by COMMENT in the data dictionary view DBA_2PC_
PENDING along with the transaction ID. The text must be a quoted literal 50
characters in length. An example follows:

EXEC SQL COMM T COMMENT ' I n-doubt trans; notify Oder Entry';

Note: The COMMENT clause will be deprecated in a future
release. Oracle recommends that you use transaction naming
instead.

For more information about distributed transactions, see Oracle Database Concepts.

The following guidelines will help you avoid some common problems.

Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to accomplish
a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example, a
transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

Obtaining Locks

Using PL/SQL

If your application programs include SQL locking statements, make sure the Oracle
users requesting locks have the privileges needed to obtain the locks. Your DBA can
lock any table. Other users can lock tables they own or tables for which they have a

privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

If a PL/SQL block is part of a transaction, COMMITs and ROLLBACKSs inside the
block affect the whole transaction. In the following example, the ROLLBACK undoes
changes made by the UPDATE and the INSERT:

EXEC SQL | NSERT | NTO EMP ...
EXEC SQL EXECUTE
BEG N
UPDATE enp ...

3-20 Pro*C/C++ Programmer’s Guide

Guidelines

EXCEPTI ON
WHEN DUP_VAL_ON_| NDEX THEN
ROLLBACK;

END;
END- EXEC,

Database Concepts 3-21

Guidelines

3-22 Pro*C/C++ Programmer’s Guide

A

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*C/C++ program.
This chapter contains the following topics:

= Oracle Datatypes

« Host Variables

» Indicator Variables

« VARCHAR Variables
« Cursor Variables

« CONTEXT Variables
« Universal ROWIDs

« Host Structures

« Pointer Variables

= Globalization Support
« NCHAR Variables

This chapter also includes several complete demonstration programs that you can
study. These programs illustrate the techniques described. They are available on-line
in your deno directory, so you can compile and run them, and modify them for your
own uses.

Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores column values in database tables, as well as the formats
used to represent pseudocolumn values such as NULL, SYSDATE, USER, and so on.
External datatypes specify the formats used to store values in input and output host
variables.

For descriptions of the Oracle internal (also called built-in) datatypes, see Oracle
Database SQL Reference.

Internal Datatypes

For values stored in database columns, Oracle uses the internal datatypes shown in
Table 4-1

Datatypes and Host Variables 4-1

Oracle Datatypes

Table 4-1 Oracle Internal Datatypes

Name Description

VARCHAR?2 Variable-length character string, <= 4000 bytes.

NVARCHAR?2 or Variable-length single-byte or National Character string,<= 4000

NCHAR VARYING Dbytes.

NUMBER Numeric value having precision and scale, represented in a base-100
format.

LONG Variable-length character string <=2**31-1 bytes.

ROWID Binary value.

DATE Fixed-length date + time value, 7 bytes.

RAW Variable-length binary data, <=2000 bytes.

LONG RAW Variable-length binary data, <=2**31-1 bytes.

CHAR Fixed-length character string, <=2000 bytes.

NCHAR Fixed-length single-byte or National Character string, <= 2000 bytes.

BFILE External file binary data, <= 4 Gbytes.

BLOB Binary data, <= 4 Gbytes.

CLOB Character data, <= 4 Gbytes.

NCLOB National Character Set data, <= 4 Gbytes.

These internal datatypes can be quite different from C datatypes. For example, C has

no datatype that is equivalent to the Oracle NUMBER datatype. However, NUMBERs
can be converted between C datatypes such as float and double, with some
restrictions. For example, the Oracle NUMBER datatype allows up to 38 decimal digits
of precision, while no current C implementations can represent double with that
degree of precision.

The Oracle NUMBER datatype represents values exactly (within the precision limits),
while floating-point formats cannot represent values such as 10.0 exactly.

Use the LOB datatypes to store unstructured data (text, graphic images, video clips, or

sound waveforms). BFILE data is stored in an operating system file outside the
database. LOB types store locators that specify the location of the data.

See Also:

Chapter 16, "Large Objects (LOBs)"

NCHAR and NVARCHAR? are used to store multibyte character data.

See Also:

"Globalization Support" on page 4-38 for a discussion of

these datatypes

External Datatypes

As shown in Table 4-2, the external datatypes include all the internal datatypes plus
several datatypes that closely match C constructs. For example, the STRING external
datatype refers to a C null-terminated string.

4-2 Pro*C/C++ Programmer’s Guide

Table 4-2 Oracle External Datatypes
Name Description
VARCHAR2 Variable-length character string, <= 65535 bytes.

Oracle Datatypes

Table 4-2 (Cont.)

Oracle External Datatypes

Name Description

NUMBER Decimal number, represented using a base-100 format.

INTEGER Signed integer.

FLOAT Real number.

STRING Null-terminated variable length character string.

VARNUM Decimal number, like NUMBER, but includes representation length
component.

LONG Fixed-length character string, up to 2**31-1 bytes.

VARCHAR Variable-length character string, <= 65533 bytes.

ROWID Binary value, external length is system dependent.

DATE Fixed-length date/time value, 7 bytes.

VARRAW Variable-length binary data, <= 65533 bytes.

RAW Fixed-length binary data, <= 65535 bytes.

LONG RAW Fixed-length binary data, <= 2**31-1 bytes.

UNSIGNED Unsigned integer.

LONG VARCHAR Variable-length character string, <= 2**31-5 bytes.

LONG VARRAW Variable-length binary data, <= 2**31-5 bytes.

CHAR Fixed-length character string, <= 65535 bytes.

CHARZ Fixed-length, null-terminated character string, <= 65534 bytes.

CHARF Used in TYPE or VAR statements to force CHAR to default to CHAR,

instead of VARCHAR?2 or CHARZ.

Brief descriptions of the Oracle datatypes follow.

VARCHAR2

You use the VARCHAR?2 datatype to store variable-length character strings. The
maximum length of a VARCHAR?2 value is 64K bytes.

You specify the maximum length of a VARCHAR?2(n) value in bytes, not characters.
So, if a VARCHAR?2(n) variable stores multibyte characters, its maximum length can be
less than n characters.

When you precompile using the option CHAR_MAP=VARCHAR?2, Oracle assigns the
VARCHAR? datatype to all host variables that you declare as char[n] or char.

On Input Oracle reads the number of bytes specified for the input host variable, strips
any trailing blanks, then stores the input value in the target database column. Be
careful. An uninitialized host variable can contain NULLs. So, always blank-pad a
character input host variable to its declared length, and do not null-terminate it.

If the input value is longer than the defined width of the database column, Oracle

generates an error. If the input value contains nothing but blanks, Oracle treats it like a
NULL.

Oracle can convert a character value to a NUMBER column value if the character value
represents a valid number. Otherwise, Oracle generates an error.

Datatypes and Host Variables 4-3

Oracle Datatypes

On Output Oracle returns the number of bytes specified for the output host variable,
blank-padding if necessary. It then assigns the output value to the target host variable.
If a NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If there is an indicator
variable associated with the host variable, Oracle sets it to the original length of the
output value.

Oracle can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you SELECT the column value
123456789 into a character host variable of length 6, Oracle returns the value '1.2E08'". If
a NULL is selected explicitly, the value in the host variable is indeterminate. The value
of the indicator variable needs to be checked for NULL-ness.

NUMBER

You use the NUMBER datatype to store fixed or floating-point numbers. You can
specify precision and scale. The maximum precision of a NUMBER value is 38. The
magnitude range is 1.0E-130 to 9.99...9E125 (38 nines followed by 88 zeroes). Scale can
range from -84 to 127.

NUMBER values are stored in a variable-length format, starting with an exponent byte
and followed by 19 mantissa bytes. The high-order bit of the exponent byte is a sign
bit, which is set for positive numbers. The low-order 7 bits represent the magnitude.

The mantissa forms a 38-digit number with each byte representing 2 of the digits in a
base-100 format. The sign of the mantissa is specified by the value of the first
(left-most) byte. If greater than 101 then the mantissa is negative and the first digit of
the mantissa is equal to the left-most byte minus 101.

On output, the host variable contains the number as represented internally by Oracle.
To accommodate the largest possible number, the output host variable must be 22
bytes long. Only the bytes used to represent the number are returned. Oracle does not
blank-pad or null-terminate the output value. If you need to know the length of the
returned value, use the VARNUM datatype instead.

There is seldom a need to use this external datatype.

INTEGER

You use the INTEGER datatype to store numbers that have no fractional part. An
integer is a signed, 2-byte or 4-byte binary number. The order of the bytes in a word is
system dependent. You must specify a length for input and output host variables. On
output, if the column value is a real number, Oracle truncates any fractional part.

FLOAT

You use the FLOAT datatype to store numbers that have a fractional part or that
exceed the capacity of the INTEGER datatype. The number is represented using the
floating-point format of your computer and typically requires 4 or 8 bytes of storage.
You must specify a length for input and output host variables.

Oracle can represent numbers with greater precision than most floating-point
implementations because the internal format of Oracle numbers is decimal. This can
cause a loss of precision when fetching into a FLOAT variable.

4-4 Pro*C/C++ Programmer’s Guide

Oracle Datatypes

STRING

The STRING datatype is like the VARCHAR?2 datatype, except that a STRING value is
always null-terminated. When you precompile using the option CHAR_
MAP=STRING, Oracle assigns the STRING datatype to all host variables that you
declare as char[n] or char.

On Input Oracle uses the specified length to limit the scan for the null terminator. If a
null terminator is not found, Oracle generates an error. If you do not specify a length,
Oracle assumes the maximum length of 2000 bytes. The minimum length of a STRING
value is 2 bytes. If the first character is a null terminator and the specified length is 2,
Oracle inserts a null unless the column is defined as NOT NULL. If the column is
defined as NOT NULL, an error occurs. An all-blank value is stored intact.

On Output Oracle appends a null byte to the last character returned. If the string length
exceeds the specified length, Oracle truncates the output value and appends a null
byte. If a NULL is SELECTed, Oracle returns a null byte in the first character position.
If a NULL is selected explicitly, the value in the host variable is indeterminate. The
value of the indicator variable needs to be checked for NULL-ness.

VARNUM

The VARNUM datatype is like the NUMBER datatype, except that the first byte of a
VARNUM variable stores the length of the representation.

On input, you must set the first byte of the host variable to the length of the value. On
output, the host variable contains the length followed by the number as represented
internally by Oracle. To accommodate the largest possible number, the host variable
must be 22 bytes long. After SELECTing a column value into a VARNUM host
variable, you can check the first byte to get the length of the value.

Normally, there is little reason to use this datatype.

LONG
You use the LONG datatype to store fixed-length character strings.

The LONG datatype is like the VARCHAR? datatype, except that the maximum length
of a LONG value is 2147483647 bytes or two gigabytes.

VARCHAR

You use the VARCHAR datatype to store variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a <=65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for
the length field. For longer strings, use the LONG VARCHAR datatype. If a NULL is
selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

ROWID

Before the release of Oracle8, ROWID datatype was used to store the physical address
of each row of each table, as a hexadecimal number. The ROWID contained the
physical address of the row and allowed you to retrieve the row in a single efficient
block access.

With Oracle8, the logical ROWID was introduced. Rows in Index-Organized tables do
not have permanent physical addresses. The logical ROWID is accessed using the

Datatypes and Host Variables 4-5

Oracle Datatypes

same syntax as the physical ROWID. For this reason, the physical ROWID was
expanded in size to include a data object number (schema objects in the same segment).

To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle
tables) the universal ROWID was defined.

You can use character host variables to store rowids in a readable format. When you
SELECT or FETCH a rowid into a character host variable, Oracle converts the binary
value to an 18-byte character string and returns it in the format

BBBBBBBB. RRRR. FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the rowid

0000000E. 000A. 0007
points to the 11th rowin the 15th block in the 7th database file.

See Also: "Universal ROWIDs" on page 4-30 for a further
discussion of how to use the universal ROWID in applications.

Typically, you FETCH a rowid into a character host variable, then compare the host
variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor.

See Also: "Mimicking CURRENT OF" on page 8-23.

Note: If you need full portability or your application
communicates with a non-Oracle database using Oracle Open
Gateway technology, specify a maximum length of 256 (not 18)
bytes when declaring the host variable. Though you can assume
nothing about the host variable's contents, the host variable will
behave normally in SQL statements.

DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As
Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute, and
second are stored in that order from left to right.

Table 4-3 DATE Format

Date Datatype Century Year Month Day Hour Minutes Second
Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13
17-OCT-1994 at

1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The
epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is
88. The hour byte ranges from 1 to 24. The minute and second bytes range from 1 to 60.
The time defaults to midnight (1, 1, 1).

4-6 Pro*C/C++ Programmer’s Guide

Oracle Datatypes

Normally, there is little reason to use the DATE datatype.

RAW

You use the RAW datatype to store binary data or byte strings. The maximum length
of a RAW value is 65535 bytes.

RAW data is like CHARACTER data, except that Oracle assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit RAW
data from one system to another.

VARRAW

You use the VARRAW datatype to store variable-length binary data or byte strings.
The VARRAW datatype is like the RAW datatype, except that VARRAW variables have
a 2-byte length field followed by a data field <= 65533 bytes in length. For longer
strings, use the LONG VARRAW datatype.

When you specify the length of a VARRAW variable, be sure to include 2 bytes for the
length field. The first two bytes of the variable must be interpretable as an integer.

To get the length of a VARRAW variable, simply refer to its length field.

LONG RAW

You use the LONG RAW datatype to store binary data or byte strings. The maximum
length of a LONG RAW value is 2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

UNSIGNED

You use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a
binary number of 2 or 4 bytes. The order of the bytes in a word is system dependent.
You must specify a length for input and output host variables. On output, if the
column value is a floating-point number, Oracle truncates the fractional part.

LONG VARCHAR

You use the LONG VARCHAR datatype to store variable-length character strings.
LONG VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 (2**31 - 5) bytes. When you specify
the length of a LONG VARCHAR for use in a VAR or TYPE statement, do not include
the 4 length bytes.

LONG VARRAW

You use the LONG VARRAW datatype to store variable-length binary data or byte
strings. LONG VARRAW variables have a 4-byte length field followed by a data field.
The maximum length of the data field is 2147483643 bytes. When you specify the
length of a LONG VARRAW for use in a VAR or TYPE statement, do not include the 4
length bytes.

CHAR

You use the CHAR datatype to store fixed-length character strings. The maximum
length of a CHAR value is 65535 bytes.

Datatypes and Host Variables 4-7

Oracle Datatypes

On Input Oracle reads the number of bytes specified for the input host variable, does
not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value is all-blank, Oracle treats it like a character value.

On Output Oracle returns the number of bytes specified for the output host variable,
doing blank-padding if necessary, then assigns the output value to the target host
variable. If a NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle sets it to the original length of the output value. If a NULL is selected
explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

CHARZ

When DBMS=V7 or V8§, Oracle, by default, assigns the CHARZ datatype to all
character host variables in a Pro*C/C++ program. The CHARZ datatype indicates
fixed-length, null-terminated character strings. The maximum length of a CHARZ
value is 65534 bytes.

OnlInput The CHARZ and STRING datatypes work the same way. You must
null-terminate the input value. The null terminator serves only to delimit the string; it
does not become part of the stored data.

On Output CHARZ host variables are blank-padded if necessary, then null-terminated.
The output value is always null-terminated, even if data must be truncated. If a NULL
is selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

CHARF

The CHAREF datatype is used in EXEC SQL TYPE and EXEC SQL VAR statements.
When you precompile with the DBMS option set to V7 or V8, specifying the external
datatype CHAR in a TYPE or VAR statement equivalences the C type or variable to the
fixed-length, null-terminated datatype CHARZ.

However, you might not want either of these type equivalences, but rather an
equivalence to the fixed-length external type CHAR. If you use the external type
CHARE, the C type or variable is always equivalenced to the fixed-length ANSI
datatype CHAR, regardless of the DBMS value. CHARF never allows the C type to be
equivalenced to VARCHAR2 or CHARZ. Alternatively, when you set the option
CHAR_MAP=CHAREF, all host variables declared as char[n] or char are equivalenced
to a CHAR string. If a NULL is selected explicitly, the value in the host variable is
indeterminate. The value of the indicator variable needs to be checked for NULL-ness.

Additional External Datatypes

This section describes additional external datatypes.

Datetime and Interval Datatypes
The datetime and interval datatypes are briefly summarized here.

See Also: For more a more complete discussion, see Oracle
Database SQL Reference

4-8 Pro*C/C++ Programmer’s Guide

Oracle Datatypes

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also
has no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype.
When assigning an ANS|I DATE to a DATE or a timestamp datatype, the time portion of
the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a
timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TI MESTAMP datatype which contains both date
and time.

TIMESTAMP

The TI MESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It has
no time zone. The TI MESTAMP datatype has the form:

TI MESTAMP(fract i onal _seconds_preci si on)

where fracti onal _seconds_pr eci si on (which is optional) specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TI MESTAMP W THTI ME ZONE (TSTZ) is a variant of TI MESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). The TI MESTAMP W THTI ME ZONE datatype
has the form:

TI MESTAMP(fractional _seconds_precision) WTH TI ME ZONE

where fracti onal _seconds_pr eci si on optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

Two TI MESTAMP W THTI ME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TI ME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TI MESTAMP W THLOCAL Tl ME ZONE (TSLTZ) is another variant of TI MESTAMP that
includes a time zone displacement in its value. Storage is in the same format as for
TI MESTAMP. This type differs from TI MESTAMP W TH Tl ME ZONE in that data stored
in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When users retrieve the data,
Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TI MESTAMP W THLOCAL Tl ME ZONE datatype has the form:

TI MESTAMP(f ract i onal _seconds_precision) WTH LOCAL TI ME ZONE
where f racti onal _seconds_pr eci si on optionally specifies the number of digits

in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6.

Datatypes and Host Variables 4-9

Host Variables

INTERVAL YEAR TO MONTH

| NTERVAL YEAR TOMONTH stores a period of time using the YEAR and MONTH
datetime fields. The | NTERVAL YEAR TOMONTH datatype has the form:

| NTERVAL YEAR(year _precision) TO MONTH

where the optional year _pr eci si on is the number of digits in the YEAR datetime
field. The default value of year _pr eci si onis 2.

INTERVAL DAY TO SECOND

| NTERVAL DAY TOSECOND stores a period of time in terms of days, hours, minutes,
and seconds. The | NTERVAL DAY TO SECOND datatype has the form:

| NTERVAL DAY (day_precision) TO SECOND(fractional _seconds_preci sion)

where:

= day_preci si on is the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

fractional _seconds_preci si on is the number of digits in the fractional part of
the SECOND datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTI MEZONE and

SESSI ONTI MEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Host Variables

Host variables are the key to communication between your host program and Oracle.
Typically, a precompiler program inputs data from a host variable to Oracle, and
Oracle outputs data to a host variable in the program. Oracle stores input data in
database columns, and stores output data in program host variables.

A host variable can be any arbitrary C expression that resolves to a scalar type. But, a
host variable must also be an lvalue. Host arrays of most host variables are also
supported.

See Also: "Pointer Variables" on page 4-36

Host Variable Declaration

You declare a host variable according to the rules of the C programming language,
specifying a C datatype supported by the Oracle program interface. The C datatype
must be compatible with that of the source or target database column.

If MODE=ORACLE, you do not have to declare host variables in a special Declare
Section. However, if you do not use a Declare Section, the FIPS flagger warns you
about this, as the Declare Section is part of the ANSI SQL Standard. If CODE=CPP
(you are compiling C++ code) or PARSE=NONE or PARSE=PARTIAL, then you must
have a Declare Section.

4-10 Pro*C/C++ Programmer’s Guide

Host Variables

Table 4-4 shows the C datatypes and the pseudotypes that you can use when
declaring host variables. Only these datatypes can be used for host variables.

Table 4-4

C Datatypes for Host Variables

C Datatype or Pseudotype

Description

char
char[n]
int
short
long

float
double

VARCHAR[n]

single character
n-character array (string)
integer

small integer

large integer

floating-point number (usually single
precision)

floating-point number (always double
precision)

variable-length string

Table 4-5 shows the compatible Oracle internal datatypes.

Table 4-5 Cto Oracle Datatype Compatibility
Internal Type C Type Description
VARCHAR2(Y) char single character
(Note 1)
CHAR(X) char[n] n-byte character array
(Note 1) VARCHARIn] n-byte variable-length character array
int integer
short small integer
long large integer
float floating-point number
double double-precision floating-point
number
NUMBER int integer
NUMBER(P,S) short small integer
(Note 2) int integer
long large integer
float floating-point number
double double-precision floating-point
number
char single character
char[n] n-byte character array
VARCHARIn] n-byte variable-length character array
DATE char[n] n-byte character array
VARCHARIn] n-byte variable-length character array
LONG char[n] n-byte character array
VARCHARIn] n-byte variable-length character array

Datatypes and Host Variables 4-11

Host Variables

Table 4-5 (Cont.) Cto Oracle Datatype Compatibility

Internal Type C Type Description

RAW(X) unsigned char[n] n-byte character array

(Note 1) VARCHAR|n] n-byte variable-length character array
LONG RAW unsigned char[n] n-byte character array

VARCHARIn] n-byte variable-length character array
ROWID unsigned char[n] n-byte character array
VARCHARIn] n-byte variable-length character array

Notes:
1. X ranges from 1 to 2000. 1 is the default value. Y ranges from 1 to 4000.
2. P ranges from 1 to 38. S ranges from -84 to 127.

One-dimensional arrays of simple C types can also serve as host variables. For char[n]
and VARCHAR(In], n specifies the maximum string length, not the number of strings in
the array. Two-dimensional arrays are allowed only for char[m][n] and
VARCHAR[m][n], where m specifies the number of strings in the array and n specifies
the maximum string length.

Pointers to simple C types are supported. Pointers to char[n] and VARCHAR|n]
variables should be declared as pointer to char or VARCHAR (with no length
specification). Arrays of pointers, however, are not supported.

Storage-Class Specifiers

Pro*C/C++ lets you use the auto, extern, and static storage-class specifiers when you
declare host variables. However, you cannot use the register storage-class specifier to
store host variables, since the precompiler takes the address of host variables by
placing an ampersand (&) before them. Following the rules of C, you can use the auto
storage class specifier only within a block.

To comply with the ANSI C standard, the Pro*C/C++ Precompiler provides the ability
to declare an extern char[n] host variable with or without a maximum length, as the
following examples shows:

extern char protocol [15];
extern char msg[];

However, you should always specify the maximum length. In the last example, if msg
is an output host variable declared in one precompilation unit but defined in another,
the precompiler has no way of knowing its maximum length. If you have not allocated
enough storage for msg in the second precompilation unit, you might corrupt memory.
(Usually, "enough" is the number of bytes in the longest column value that might be
SELECTed or FETCHed into the host variable, plus one byte for a possible null
terminator.)

If you neglect to specify the maximum length for an extern char|] host variable, the
precompiler issues a warning message. The precompiler also assumes that the host
variable will store a CHARACTER column value, which cannot exceed 255 characters
in length. So, if you want to SELECT or FETCH a VARCHAR?2 or a LONG column
value of length greater than 255 characters into the host variable, you must specify a
maximum length.

4-12 Pro*C/C++ Programmer’s Guide

Indicator Variables

Type Qualifiers

You can also use the const and volatile type qualifiers when you declare host
variables.

A const host variable must have a constant value, that is, your program cannot change
its initial value. A volatile host variable can have its value changed in ways unknown
to your program (for example, by a device attached to the system).

Host Variable Referencing

You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in C
statements, as the following example shows:

char buf [15];
i nt enp_nunber;
float salary;

get s(buf);
enp_nunber = atoi (buf);

EXEC SQL SELECT sal INTO :salary FROM enp
VHERE enpno = : enp_nunber;

Though it might be confusing, you can give a host variable the same name as an
Oracle table or column, as this example shows:

i nt enpno;
char ename[10] ;
float sal ;

EXEC SQL SELECT enane, sal INTO :enane, :sal FROM enp
VWHERE enpno = : enpno;

Restrictions

A host variable name is a C identifier, hence it must be declared and referenced in the
same upper/lower case format. It cannot substitute for a column, table, or other Oracle
object in a SQL statement, and must not be an Oracle reserved word.

See Also: Appendix B, "Reserved Words, Keywords, and
Namespaces".

A host variable must resolve to an address in the program. For this reason, function
calls and numeric expressions cannot serve as host variables. The following code is
invalid:

#def i ne MAX_EMP_NUM 9000

int get_dept();

EXEC SQL | NSERT I NTO enp (enpno, enane, deptno) VALUES
(: MAX_EMP_NUM + 10, 'CHEN , :get_dept());

Indicator Variables

You can associate every host variable with an optional indicator variable. An indicator
variable must be defined as a 2-byte integer and, in SQL statements, must be prefixed

Datatypes and Host Variables 4-13

Indicator Variables

with a colon and immediately follow its host variable (unless you use the keyword
INDICATOR). If you are using Declare Sections, you must also declare indicator
variables inside the Declare Sections.

This applies to relational columns, not object types.

See Also: Chapter 17, "Objects"

The INDICATOR Keyword

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is:

:host _vari abl e | NDI CATOR :indi cator _variabl e

which is equivalent to

:host _variabl e:indicator_variable

You can use both forms of expression in your host program.

Possible indicator values, and their meanings, are:

Indicator Values Meanings

0 The operation was successful

-1 A NULL was returned, inserted, or updated.

2 Output to a character host variable from a "long" type was
truncated, but the original column length cannot be determined.

>0 The result of a SELECT or FETCH into a character host variable

was truncated. In this case, if the host variable is a multibyte
character variable, the indicator value is the original column
length in characters. If the host variable is not a multibye
character variable, then the indicator length is the original
column length in bytes.

Example of INDICATOR Variable Usage

Typically, you use indicator variables to assign NULLs to input host variables and
detect NULLs or truncated values in output host variables. In the example later, you
declare three host variables and one indicator variable, then use a SELECT statement
to search the database for an employee number matching the value of host variable
emp_number. When a matching row is found, Oracle sets output host variables salary
and commission to the values of columns SAL and COMM in that row and stores a
return code in indicator variable ind_comm. The next statements use ind_comm to select
a course of action.

EXEC SQL BEG N DECLARE SECTI ON,
i nt enp_nunber;
float salary, conm ssion;
short coomind; /* indicator variable */
EXEC SQL END DECLARE SECTI ON,
char tenp[16];
float pay; /* not used in a SQL statement */

printf("Enpl oyee nunber? ");

gets(tenp);
enp_nunber = atof (tenp);

4-14 Pro*C/C++ Programmer’s Guide

VARCHAR Variables

EXEC SQL SELECT SAL, COWM
I NTO : sal ary, :commission:ind_comm

FROM EMP
VHERE EMPNO = : enp_nunber;
i f(ind_comm==-1) /* commission is null */

pay = salary;
el se
pay = salary + conmi ssi on;

See Also: "Indicator Variables" on page 6-2

INDICATOR Variable Guidelines

The following guidelines apply to declaring and referencing indicator variables. An
indicator variable must

= Be declared explicitly (in the Declare Section if present) as a 2-byte integer.
= Be prefixed with a colon () in SQL statements.

= Immediately follow its host variable in SQL statements and PL/SQL blocks
(unless preceded by the keyword INDICATOR).

An indicator variable must not:
= Be prefixed with a colon in host language statements.
= Follow its host variable in host language statements.

« Be an Oracle reserved word.

Oracle Restrictions

When DBMS=V7 or V8, if you SELECT or FETCH a NULL into a host variable that has
no indicator, Oracle issues the following error message:

ORA- 01405: fetched colum value is NULL

When precompiling with MODE=ORACLE and DBMS=V7 or V8 specified, you can
specify UNSAFE_NULL=YES to disable the ORA-01405 message.

See Also: "UNSAFE_NULL" on page 10-31

VARCHAR Variables

You can use the VARCHAR pseudotype to declare variable-length character strings.
When your program deals with strings that are output from, or input to, VARCHAR?2
or LONG columns, you might find it more convenient to use VARCHAR host
variables instead of standard C strings. The datatype name VARCHAR can be
uppercase or lowercase, but it cannot be mixed case. In this Guide, uppercase is used to
emphasize that VARCHAR is not a native C datatype.

VARCHAR Variable Declaration

Think of a VARCHAR as an extended C type or pre-declared struct. For example, the
precompiler expands the VARCHAR declaration

VARCHAR user name[20] ;

into the following struct with array and length members:

Datatypes and Host Variables 4-15

VARCHAR Variables

struct

{

unsi gned short len;
unsi gned char arr[20];
} usernane;

The advantage of using VARCHAR variables is that you can explicitly reference the
length member of the VARCHAR structure after a SELECT or FETCH. Oracle puts the
length of the selected character string in the length member. You can then use this
member to do things such as adding the null ("\0') terminator.

usernane. arr[usernanme.len] ='\0";

or using the length in a strncpy or printf statement; for example:
printf("Username is %*s\n", usernane.len, usernane.arr);
You specify the maximum length of a VARCHAR variable in its declaration. The

length must lie in the range 1.65533. For example, the following declaration is invalid
because no length is specified:

VARCHAR nul |l _string[]; [* invalid */

The length specification holds the current length of the value stored in the array
member.

You can declare multiple VARCHARSs on a single line; for example:

VARCHAR enp_nane[ENAME_LEN], dept _| oc[DEPT_NAME_LEN;

The length specifier for a VARCHAR can be a #defined macro, or any complex
expression that can be resolved to an integer at precompile time.

You can also declare pointers to VARCHAR datatypes. See the section

See Also: "VARCHAR Variables and Pointers" on page 5-6.

Note: Do not attempt to use a typedef statement such as:

typedef VARCHAR buf [64];
This causes errors during C compilation.

VARCHAR Variable Referencing

In SQL statements, you reference VARCHAR variables using the struct name prefixed
with a colon, as the following example shows:

int part _nunber;
VARCHAR part_desc[40];

mai n()
{
EXEC SQL SELECT pdesc INTO :part_desc

FROM parts
VWHERE pnum = : part _number;

4-16 Pro*C/C++ Programmer’s Guide

VARCHAR Variables

After the query is executed, part_desc.len holds the actual length of the character string
retrieved from the database and stored in part_desc.arr.

In C statements, you reference VARCHAR variables using the component names, as
the next example shows:

printf("\n\nEnter part description: ");
gets(part_desc.arr);
/* You nust set the length of the string

before using the VARCHAR in an | NSERT or UPDATE */
part_desc.len = strlen(part_desc.arr);

Return NULLs to a VARCHAR Variable

Oracle automatically sets the length component of a VARCHAR output host variable.
If you SELECT or FETCH a NULL into a VARCHAR, the server does not change the
length or array members.

Note: If you select a NULL into a VARCHAR host variable, and
there is no associated indicator variable, an ORA-01405 error occurs
at run time. Avoid this by coding indicator variables with all host
variables. (As a temporary fix, use the UNSAFE_NULL=YES
precompiler option. See also "DBMS" on page 10-12).

Insert NULLs Using VARCHAR Variables

If you set the length of a VARCHAR variable to zero before performing an UPDATE or
INSERT statement, the column value is set to NULL. If the column has a NOT NULL
constraint, Oracle returns an error.

Pass VARCHAR Variables to a Function

VARCHARSs are structures, and most C compilers permit passing of structures to a
function by value, and returning structures by copy out from functions. However, in
Pro*C/C++ you must pass VARCHARs to functions by reference. The following
example shows the correct way to pass a VARCHAR variable to a function:

VARCHAR enp_nane[20] ;

enp_nane. | en = 20;

SELECT enane | NTO : enp_nane FROM enp

WHERE enpno = 7499;

print_enpl oyee_name(&enp_name); /* pass by pointer */
print_enpl oyee_nane(nane)

VARCHAR *nane;
{

printf("nane is %*s\n", name->len, nane->arr);

Datatypes and Host Variables 4-17

VARCHAR Variables

Find the Length of the VARCHAR Array Component

When the precompiler processes a VARCHAR declaration, the actual length of the
array element in the generated structure can be longer than that declared. For
example, on a Sun Solaris system, the Pro*C/C++ declaration

VARCHAR ny_varchar[12];

is expanded by the precompiler to

struct ny_varchar

{

unsi gned short |en;
unsi gned char arr[12];

b

However, the precompiler or the C compiler on this system pads the length of the
array component to 14 bytes. This alignment requirement pads the total length of the
structure to 16 bytes: 14 for the padded array and 2 bytes for the length.

The SQLVar char Get Lengt h() (replaces the non-threaded sql vep())
function—part of the SQLLIB runtime library—returns the actual (possibly padded)
length of the array member.

You pass the SQLVar char Get Lengt h() function the length of the data for a
VARCHAR host variable or a VARCHAR pointer host variable, and

SQLVar char Get Lengt h() returns the total length of the array component of the
VARCHAR. The total length includes any padding that might be added by your C
compiler.

The syntax of SQLVar char Get Lengt h() is

SQLVar char Get Length (dvoid *context, unsigned |ong *datlen, unsigned |ong
*totlen);

For single-threaded applications, use sql vcp() . Put the length of the VARCHAR in
the dat | en parameter before calling sql vcp() . When the function returns, the

t ot | en parameter contains the total length of the array element. Both parameters are
pointers to unsigned long integers, so must be passed by reference.

See Also: "New Names for SQLLIB Public Functions" on
page 5-39 for a discussion of these and all other SQLLIB public
functions.

Example Program: Using sqlvcp()

The following example program shows how you can use the function in a Pro*C/C++
application. The example also uses the sql gl s() function. The example declares a
VARCHAR pointer, then uses the sgl vep() function to determine the size required
for the VARCHAR buffer. The program FETCHes employee names from the EMP table
and prints them. Finally, the example uses the sgl gl s() function to print out the SQL
statement and its function code and length attributes. This program is available on-line
as sql vcp. pc in your denp directory.

See Also: Chapter 9, "Handling Runtime Errors"

/*

* The sqlvcp. pc program denonstrates how you can use the
* sqglvep() function to deternine the actual size of a

* VARCHAR struct. The size is then used as an offset to

4-18 Pro*C/C++ Programmer’s Guide

VARCHAR Variables

increment a pointer that steps through an array of
VARCHARS.

This program al so denonstrates the use of the sqlgls()
function, to get the text of the last SQL statenent executed.
sqlgls() is described in the "Error Handling" chapter of
The Progranmmer's Quide to the Oracle Pro*C/ C++ Preconpiler.

/

I T T I

#incl ude <stdio. h>
#include <sql ca. h>
#include <sqlcpr.h>

/* Fake a VARCHAR pointer type. */

struct ny_vc_ptr
{
unsi gned short |en;
unsi gned char arr[32767];

b

/* Define a type for the VARCHAR pointer */
typedef struct my_vc_ptr my_vc_ptr;
nmy_vc_ptr *vc_ptr;

EXEC SQL BEG N DECLARE SECTI ON,

VARCHAR *nanes;

i nt limt; /* for use in FETCH FOR cl ause */
char *usernane = "scott/tiger";

EXEC SQL END DECLARE SECTI ON;

void sql _error();

extern void sqlvep(), sqlgls();

mai n()

{
unsi gned int vcplen, function_code, padlen, buflen;
int i;
char stnt_buf[120];

EXEC SQL WHENEVER SQLERRCR DO sql _error();

EXEC SQL CONNECT : user nare;
printf("\nConnected.\n");

/* Find nunber of rows in table. */
EXEC SQL SELECT COUNT(*) INTO :limt FROM enp;

/* Declare a cursor for the FETCH statement. */
EXEC SQL DECLARE enp_nanme_cursor CURSOR FOR
SELECT enane FROM enp;

EXEC SQL FOR :linit OPEN enp_nane_cursor;

[* Set the desired DATA length for the VARCHAR */
vepl en = 10;

/[* Use SQLVCP to help find the length to malloc. */

sql vep(&vepl en, &padl en);
printf("Actual array length of VARCHAR is % d\n", padlen);

Datatypes and Host Variables 4-19

VARCHAR Variables

/* Alocate the names buffer for names.
Set the limt variable for the FOR clause. */
names = (VARCHAR *) malloc((sizeof (short) +
(int) padlen) * linmit);
if (nanes == 0)
{
printf("Mermory allocation error.\n");
exit(1);
}
/[* Set the maximum|engths before the FETCH.
* Note the "trick" to get an effective VARCHAR *.
*/
for (ve_ptr = (ny_vc_ptr *) nanes, i =0; i <limt; i++)
{
vc_ptr->len = (short) padlen;
ve_ptr = (nmy_vc_ptr *)((char *) vc_ptr +
padl en + sizeof (short));
}
/* Execute the FETCH */
EXEC SQL FOR :limt FETCH enp_name_cursor |NTO :nanes;

[* Print the results. */
printf("Enpl oyee nanes--\n");

for (ve_ptr = (ny_vc_ptr *) nanes, i =0; i <limt; i++)
{
printf
("% *s\t(%)\n", vc_ptr->len, vc_ptr->arr, vc_ptr->len);
ve_ptr = (nmy_vc_ptr *)((char *) vc_ptr +
padl en + sizeof (short));

}

/* Get statistics about the nost recent

* SQ statenment using SQLGS. Note that

* the nost recent statement in this exanple

* is not a FETCH but rather "SELECT ENAME FROM EMP"
* (the cursor).

buflen = (long) sizeof (stm_buf);
/* The returned value should be 1, indicating no error. */

sql gl s(stnt_buf, &buflen, &f unction_code);
if (buflen = 0)

{
[* Print out the SQL statenment. */
printf("The SQ statenent was--\n%*s\n", buflen, stnt_buf);
[* Print the returned length. */
printf("The statement length is %d\n", buflen);
[* Print the attributes. */
printf("The function code is %d\n", function_code);
EXEC SQL COW T RELEASE;
exit(0);
}
el se
{

printf("The SQLGS function returned an error.\n");

4-20 Pro*C/C++ Programmer’s Guide

Cursor Variables

EXEC SQL ROLLBACK RELEASE;

exit(l);

}

}

voi d

sql _error()

{
char err_nsg[512];
int buf _len, nsg_len;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
buf _len = sizeof (err_msg);
sql gl m{err_nmsg, &buf _len, &sg_len);
printf("%*s\n", msg_len, err_nsg);
EXEC SQL ROLLBACK RELEASE;
exit(1);

}

Cursor Variables

You can use cursor variables in your Pro*C/C++ program for queries. A cursor variable
is a handle for a cursor that must be defined and opened on the Oracle (release 7.2 or
later) server, using PL/SQL. See the PL/SQL User’s Guide and Reference for complete
information about cursor variables.

The advantages of cursor variables are:
= Ease of maintenance

Queries are centralized, in the stored procedure that opens the cursor variable. If
you need to change the cursor, you only need to make the change in one place: the
stored procedure. There is no need to change each application.

= Convenient security

The user of the application is the username used when the Pro*C/C++ application
connects to the server. The user must have execute permission on the stored
procedure that opens the cursor but not read permission on the tables used in the
query. This capability can be used to limit access to the columns in the table, and
access to other stored procedures.

Declare a Cursor Variable

You declare a cursor variable in your Pro*C/C++ program using the Pro*C/C++
pseudotype SQL_CURSOR. For example:

EXEC SQL BEG N DECLARE SECTI ON,

sql _cursor enp_cursor; /* a cursor variable */
SQ._CURSOR dept _cursor; /* another cursor variable */
sql _cursor *ecp; /* a pointer to a cursor variable */

EXEC SQL END DECLARE SECTI ON;
ecp = &enp_cursor; /* assign a value to the pointer */

You can declare a cursor variable using the type specification SQL_CURSOR, in all
upper case, or sql_cursor, in all lower case; you cannot use mixed case.

Datatypes and Host Variables 4-21

Cursor Variables

A cursor variable is just like any other host variable in the Pro*C/C++ program. It has
scope, following the scope rules of C. You can pass it as a parameter to other functions,
even functions external to the source file in which you declared it. You can also define

functions that return cursor variables, or pointers to cursor variables.

Note: A SQL_CURSOR is implemented as a C struct in the code
that Pro*C/C++ generates. So you can always pass it by pointer to
another function, or return a pointer to a cursor variable from a
function. But you can only pass it or return it by value if your C
compiler supports these operations.

Allocate a Cursor Variable

Before you can use a cursor variable, either to open it or to FETCH it, you must
allocate the cursor. You do this using the new precompiler command ALLOCATE. For
example, to allocate the SQL_CURSOR emp_cursor that was declared in the example
earlier, you write the statement:

EXEC SQL ALLCCATE :enp_cursor;

Allocating a cursor does not require a call to the server, either at precompile time or at
runtime. If the ALLOCATE statement contains an error (for example, an undeclared
host variable), Pro*C/C++ issues a precompile-time error. Allocating a cursor variable
does cause heap memory to be used. For this reason, you can free a cursor variable in a
program loop. Memory allocated for cursor variables is not freed when the cursor is
closed, but only when an explicit CLOSE is executed, or the connection is closed:

EXEC SQ. CLOSE :enp_cursor;

See Also: "Closing and Freeing a Cursor Variable" on page 4-24

Open a Cursor Variable

You must open a cursor variable on the Oracle database server. You cannot use the
embedded SQL OPEN command to open a cursor variable. You can open a cursor
variable either by calling a PL/SQL stored procedure that opens the cursor (and
defines it in the same statement). Or, you can open and define a cursor variable using
an anonymous PL/SQL block in your Pro*C/C++ program.

For example, consider the following PL/SQL package, stored in the database:

CREATE PACKAGE deno_cur_pkg AS
TYPE EnpNanme 1S RECORD (nanme VARCHAR2(10));
TYPE cur _type |'S REF CURSOR RETURN EnpNane;
PROCEDURE open_enp_cur (
curs I'N QUT cur_type,
dept _num IN NUMBER) ;
END;

CREATE PACKAGE BODY demo_cur_pkg AS
CREATE PROCEDURE open_enp_cur (
curs I'N QUT cur_type,
dept _num IN NUMBER) 1S
BEG N
OPEN curs FOR
SELECT enane FROM enp
WHERE deptno = dept _num
ORDER BY enane ASC,

4-22 Pro*C/C++ Programmer’s Guide

Cursor Variables

END,
END;

After this package has been stored, you can open the cursor curs by calling the open_
emp_cur stored procedure from your Pro*C/C++ program, and FETCH from the cursor
in the program. For example:

sql _cursor enmp_cursor;
char enp_nane[11] ;

EXEC SQL ALLOCATE :enp_cursor; /* allocate the cursor variable */

/* Qpen the cursor on the server side. */
EXEC SQL EXECUTE
begi n
demo_cur _pkg. open_enp_cur (: enp_cursor, :dept_num;
end;

EXEC SQL WHENEVER NOT FOUND DO br eak;

for ()

{
EXEC SQL FETCH :enp_cursor |NTO :enp_nane;
printf("%\n", enp_nane);

To open a cursor using a PL/SQL anonymous block in your Pro*C/C++ program, you
define the cursor in the anonymous block. For example:

sql _cursor emp_cursor;
int dept_num = 10;

EXEC SQL EXECUTE
BEG N
OPEN : enp_cursor FOR SELECT ename FROM enp
VWHERE deptno = :dept_num
END;
END- EXEC,

The earlier examples show how to use PL/SQL to open a cursor variable. You can also
open a cursor variable using embedded SQL with the CURSOR clause:

sql _cursor enp_cursor;

EXEC ORACLE OPTI ON(sel ect _error=no);

EXEC SQL
SELECT CURSOR(SELECT enane FROM enp WHERE deptno = :dept_num
I NTO : enp_cursor FROM DUAL;

EXEC ORACLE OPTI ON(sel ect _error=yes);

In the statement earlier, the emp_cursor cursor variable is bound to the first column of
the outermost select. The first column is itself a query, but it is represented in the form
compatible with a sql_cursor host variable since the CURSOR(...) conversion clause is

used.

Before using queries which involve the CURSOR clause, you must set the SELECT_
ERROR option to NO. This will prevent the cancellation of the parent cursor and allow
the program to run without errors.

Datatypes and Host Variables 4-23

Cursor Variables

Opening in a Standalone Stored Procedure

In the example earlier, a reference cursor was defined inside a package, and the cursor
was opened in a procedure in that package. But it is not always necessary to define a
reference cursor inside the package that contains the procedures that open the cursor.

If you need to open a cursor inside a standalone stored procedure, you can define the
cursor in a separate package, and then reference that package in the standalone stored
procedure that opens the cursor. Here is an example:

PACKAGE dumy 1S
TYPE EnpNane |'S RECORD (name VARCHAR2(10));
TYPE enp_cursor_type |'S REF CURSCR RETURN EnpNane;
END;
- and then define a standal one procedure:
PROCEDURE open_enp_curs (
enp_cursor IN OQUT dummy. enp_cursor _type;
dept_num IN NUMBER) 1S
BEG N
OPEN enp_cursor FOR
SELECT ename FROM enp WHERE deptno = dept _num
END;
END;

Return Types

When you define a reference cursor in a PL/SQL stored procedure, you must declare
the type that the cursor returns. See the PL/SQL User’s Guide and Reference for complete
information on the reference cursor type and its return types.

Closing and Freeing a Cursor Variable

Use the CLOSE command to close a cursor variable. For example, to close the emp_
cursor cursor variable that was OPENed in the examples earlier, use the embedded
SQL statement:

EXEC SQ. CLOSE :enp_cursor;

The cursor variable is a host variable, and so you must precede it with a colon.

You can reuse ALLOCATEd cursor variables. You can open, FETCH, and CLOSE as
many times as needed for your application. However, if you disconnect from the
server, then reconnect, you must re-ALLOCATE cursor variables.

Cursors are deallocated by the FREE embedded SQL statement. For example:
EXEC SQL FREE :enp_cursor;

If the cursor is still open, it is closed and the memory allocated for it is released.

Cursor Variables with the OCI (Release 7 Only)

You can share a Pro*C/C++ cursor variable with an OCI function. To do so, you must
use the SQLLIB conversion functions, SQLCDAFr onResul t Set Cur sor () (formerly
known as sql cdat ()) and SQLCDAToResultSetCursor (formerly known as

sql curt ()). These functions convert between OCI cursor data areas and Pro*C/C++
cursor variables.

The SQLCDAFr onResul t Set Cur sor () function translates an allocated cursor
variable to an OCI cursor data area. The syntax is:

voi d SQLCDAFronResul t Set Cur sor (dvoi d *context, Cda_Def *cda, void *cur,

4-24 Pro*C/C++ Programmer’s Guide

Cursor Variables

sword *retval);

where the parameters are:

Parameters Description

context A pointer to the SQLLIB runtime context.

cda A pointer to the destination OCI cursor data area.

cur A pointer to the source Pro*C/C++ cursor variable.
retval 0 if no error, otherwise a SQLLIB (SQL) error number.

Note: In the case of an error, the V2 and rc return code fields in the
CDA also receive the error codes. The rows processed count field in
the CDA is not set.

For non-threaded or default context applications, pass the defined
constant SQL_SINGLE_RCTX as the context.

See Also: "New Names for SQLLIB Public Functions" on
page 5-39

The SQLCDAToResul t Set Cur sor () function translates an OCI cursor data area to a
Pro*C/C++ cursor variable. The syntax is:
voi d SQLCDAToResul t Set Cur sor (dvoi d *context, void *cur, Cda_Def *cda,

int *retval);

where the parameters are:

Parameters Description

context A pointer to the SQLLIB runtime context.

cur A pointer to the destination Pro*C/C++ cursor variable.
cda A pointer to the source OCI cursor data area.

retval 0 if no error, otherwise an error code.

Note: The SQLCA structure is not updated by this routine. The
SQLCA components are only set after a database operation is
performed using the translated cursor.

For non-threaded applications, pass the defined constant SQL_
SINGLE_RCTX as the context.

ANSI and K&R prototypes for these functions are provided in the sql 2oci . h header
file. Memory for both cda and cur must be allocated prior to calling these functions.

See Also: "New Names for SQLLIB Public Functions" on
page 5-39 for more details on the SQLLIB Public Functions, see the
table.

Datatypes and Host Variables 4-25

Cursor Variables

Restrictions

The following restrictions apply to the use of cursor variables:

= If you use the same cursor variable in Pro*C/C++ and OCI V7, then you must use
either SQLLDAGetCurrent() or SQLLDAGetName() immediately after connecting.

= You cannot translate a cursor variable to an OCI release 8 equivalent.
= You cannot use cursor variables with dynamic SQL.

= You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands

« The DECLARE CURSOR command does not apply to cursor variables.
« You cannot FETCH from a CLOSEd cursor variable.
« You cannot FETCH from a non-ALLOCATEAd cursor variable.

= If you precompile with MODE=ANS], it is an error to close a cursor variable that is
already closed.

« You cannot use the AT clause with the ALLOCATE command, nor with the
FETCH and CLOSE commands if they reference a cursor variable.

« Cursor variables cannot be stored in columns in the database.

= A cursor variable itself cannot be declared in a package specification. Only the type
of the cursor variable can be declared in the package specification.

= A cursor variable cannot be a component of a PL/SQL record.

Example: cv_demo.sql and sample11.pc

The following example programs—a PL/SQL script and a Pro*C/C++
program—demonstrate how you can use cursor variables. These sources are available
on-line in your deno directory. Also see another version of the same application, cv_
deno. pc, in the demo directory.

cv_demo.sql

- PL/SQL source for a package that declares and
- opens a ref cursor
CONNECT SCOTT/ Tl GER,;
CREATE OR REPLACE PACKAGE enmp_demp_pkg as
TYPE enp_cur _type |I'S REF CURSOR RETURN enp%ROMYPE;
PROCEDURE open_cur (curs | N OUT enp_cur_type, dno | N NUMBER);
END enp_deno_pkg;

CREATE OR REPLACE PACKACGE BODY enp_denp_pkg AS
PROCEDURE open_cur (curs |N OUT enp_cur_type, dno IN NUMBER) IS
BEG N
OPEN curs FOR SELECT *
FROM enp WHERE deptno = dno
ORDER BY ename ASC,
END;
END enp_deno_pkg;

sample11.pc

/*
* Fetch fromthe EMP table, using a cursor variable.

4-26 Pro*C/C++ Programmer’s Guide

Cursor Variables

* The cursor is opened in the stored PL/SQL procedure
* open_cur, in the EMP_DEMD PKG package.
*
* This package is available on-line in the file
* sanplell.sql, in the demo directory.
*
*/
#include <stdio. h>
#i ncl ude <sql ca. h>
#include <stdlib.h>
#include <sql da. h>
#incl ude <sql cpr. h>
[* Error handling function. */
voi d sql _error(nsg)
char *nsg;
{
size_t clen, fc;
char chuf[128];
clen = sizeof (cbuf);
sql gl s((char *)cbuf, (size_t *)&clen, (size_t *)&fc);
printf("\n%\n", msg);
printf("Statenent is--\n%\n", cbuf);
printf("Function code is %d\n\n", fc);
sql gl m{((char *)cbuf, (size_t *) &clen, (size_t *) &clen);
printf ("\n%*s\n", clen, cbuf);
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
exit (EXI T_FAI LURE);
}
voi d main()
{

char temp[32];

EXEC SQL BEG N DECLARE SECTI ON;
char *uid = "scott/tiger";

SQ._CURSOR enp_cursor;

int dept_num
struct
{

int enp_num

}

char enp_nane[11];

char job[10];

int manager ;

char hire_date[10];

float salary;

float comm ssion;

i nt dept _num
enp_i nf o;

struct

{

short enp_num.ind,;
short enp_nane_ind;

Datatypes and Host Variables 4-27

Cursor Variables

short job_ind;
short manager _i nd,;
short hire_date_ind,
short salary_ind;
short comm ssion_ind;
short dept_num.ind;
} enp_info_ind;
EXEC SQL END DECLARE SECTI ON;

EXEC SQL WHENEVER SQLERROR do sql _error("Oracle error");

/* Connect to Oracle. */
EXEC SQL CONNECT : ui d;

/* Allocate the cursor variable. */
EXEC SQL ALLOCATE : enp_cursor;

[* Exit the inner for (;;) | oop when NO DATA FOUND. */
EXEC SQL WHENEVER NOT FOUND DO br eak;

for (;7)
{
printf("\nEnter department number (0 to exit): ");
gets(tenp);
dept _num = at oi (tenp);
if (dept_num <= 0)
br eak;

EXEC SQL EXECUTE
begi n
enp_deno_pkg. open_cur (: enp_cursor, :dept_num;
end;
END- EXEC,

printf("\nFor departnent %l--\n", dept_nunj;
printf("ENAVE SAL coOW n");
printf("----- --- —ee-\n");

/* Fetch each rowin the EMP table into the data struct.
Note the use of a parallel indicator struct. */
for (i)
{
EXEC SQL FETCH :enp_cursor
I NTO : enp_info | NDI CATOR : enp_i nfo_i nd,;

printf("% ", enp_info.enp_nane);
printf("98.2f ", enp_info.salary);
if (enp_info_ind. commission_ind != 0)
printf(" NULL\ n");
el se
printf("98.2f\n", enp_info.comr ssion);

}

/* Close the cursor. */
EXEC SQL VHENEVER SQLERROR CONTI NUE;
EXEC SQL CLOSE :enp_cursor;

/* Disconnect fromOracle. */

4-28 Pro*C/C++ Programmer’s Guide

CONTEXT Variables

EXEC SQL ROLLBACK WORK RELEASE;
exi t (EXI T_SUCCESS) ;

CONTEXT Variables

A runtime context, usually simply called a context, is a handle to a an area in client
memory which contains zero or more connections, zero or more cursors, their inline
options (such as MODE, HOLD_CURSOR, RELEASE_CURSOR, SELECT_ERROR,
and so on.) and other additional state information.

To define a context host variable use pseudo-type sql_context. For example:

sgl _context ny_context ;

Use the CONTEXT ALLOCATE precompiler directive to allocate and initialize
memory for a context:

EXEC SQL CONTEXT ALLOCATE :context ;

where cont ext is a host variable that is a handle to the context. For example:

EXEC SQL CONTEXT ALLCCATE : ny_context ;

Use the CONTEXT USE precompiler directive to define which context is to be used by
the embedded SQL statements (such as CONNECT, INSERT, DECLARE CURSOR, and
so on.) from that point on in the source file, not in the flow of program logic. That
context is used until another CONTEXT USE statement is encountered. The syntax is:

EXEC SQL CONTEXT USE {:context | DEFAULT} ;

The keyword DEFAULT specifies that the default (also known as global) context is to
be used in all the embedded SQL statements that are executed subsequently, until
another CONTEXT USE directive is encountered. A simple example is:

EXEC SQL CONTEXT USE :ny_context ;

If the context variable my_cont ext has not been defined and allocated already, an
error is returned.

The CONTEXT FREE statement frees the memory used by the context after it is no
longer needed:

EXEC SQL CONTEXT FREE :context ;

An example is:

EXEC SQL CONTEXT FREE :my_context ;

The following example demonstrates the use of a default context in the same
application as a user-defined context:

CONTEXT USE Example

#i ncl ude <sql ca. h>

#incl ude <oci extp. h>

mai n()

{
sgl _context ctxl1;
char *usrl = "scott/tiger";
char *usr2 = "systeni manager";

Datatypes and Host Variables 4-29

Universal ROWIDs

/* Establish connection to SCOIT in global runtime context */
EXEC SQL CONNECT : usrl;

/* Establish connection to SYSTEMin runtinme context ctxl */
EXEC SQL CONTEXT ALLOCATE :ct x1;

EXEC SQL CONTEXT USE :ctx1,;

EXEC SQL CONNECT :usr2;

/* Insert into the enp table fromschema SCOTT */
EXEC SQL CONTEXT USE DEFAULT;
EXEC SQL | NSERT I NTO enp (enpno, enane) VALUES (1234, 'WALKER);

Universal ROWIDs

There are two kinds of table organization used in the database server: heap tables and
index-organized tables.

Heap tables are the default. This is the organization used in all tables before Oracle8.
The physical row address (ROWID) is a permanent property that is used to identify a
row in a heap table. The external character format of the physical ROWID is an 18-byte
character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque structure
that contains the primary key of the table, control information, and an optional
physical "guess". You can use this ROWID in a SQL statement containing a clause such
as "WHERE ROWID = ..." to retrieve values from the table.

The universal ROWID was introduced in the Oracle 8.1 release. Universal ROWID can
be used for both physical ROWID and logical ROWID. You can use universal ROWIDs
to access data in heap tables, or index-organized tables, since the table organization
can change with no effect on applications. The column datatype used for ROWID is
UROWID(length), where | engt h is optional.

Use the universal ROWID in all new applications.

For more information on universal ROWIDs, see Oracle Database Concepts.
Use a universal ROWID variable this way:

= Declare it as type pointer to OCIRowid.

= Allocate memory for the universal ROWID variable.

= Use the universal ROWID as a host bind variable.

= Free the memory when finished.

For example:

OClRowid *ny_urowi d ;

EXEC SQL ALLOCATE :ny_urow d ;

/* Bind my_urowid as type SQLT_RDD -- no inplicit conversion */
EXEC SQL SELECT rowid INTO :my_urowid FROM my_table WHERE ... ;

EXEC SQL UPDATE ny_table SET ... WHERE rowid = :ny_urowid ;
EXEC SQL FREE ny_urpwi d ;

4-30 Pro*C/C++ Programmer’s Guide

Host Structures

You also have the option of using a character host variable of width between 19 (18
bytes plus the null-terminator) and 4001 as the host bind variable for universal
ROWID. Character-based universal ROWIDs are supported for heap tables only for
backward compatibility. Because universal ROWID can be variable length, there can be
truncation.

Use the character variable this way:

/* nis based on table characteristics */
int n=4001 ;
char ny_urowi d_char[n] ;

EXEC SQL ALLOCATE :my_urowi d_char ;

[* Bind my_urow d_char as SQLT_STR */

EXEC SQL SELECT rowi d INTO :my_urowi d_char FROM nmy_table WHERE ... ;
EXEC ORACLE OPTI ON(CHAR_MAP=STRI NG) ;

EXEC SQL UPDATE ny_table SET ... WHERE rowid = :ny_urowid_char ;
EXEC SQL FREE :ny_urowi d_char ;

See Also: "Positioned Update" on page 6-19 for an example of a
positioned update using the universal ROWID.

SQLRowidGet()

A SQLLIB function, SQLRowidGet(), provides the ability to retrieve a pointer to the
universal ROWID of the last row inserted, updated, or selected. The function
prototype and its arguments are:

voi d SQLRowi dGet (dvoid *rctx, OCIRowid **urid) ;

rctx (IN)

is a pointer to a runtime context. For the default context or a non-threaded case, pass
SQL_SINGLE_RCTX.

urid (OUT)

is a pointer to a universal ROWID pointer. When a normal execution finishes, this will
point to a valid ROWID. In case of an error, NULL is returned.

Note: The universal ROWID pointer must have been previously
allocated to call SQLRowidGet(). Use FREE afterward on the
universal ROWID.

Host Structures

You can use a C structure to contain host variables. You reference a structure
containing host variables in the INTO clause of a SELECT or a FETCH statement, and
in the VALUES list of an INSERT statement. Every component of the host structure
must be a legal Pro*C/C++ host variable, as defined in Table 4—4 on page 4-11.

When a structure is used as a host variable, only the name of the structure is used in
the SQL statement. However, each of the members of the structure sends data to
Oracle, or receives data from Oracle on a query. The following example shows a host
structure that is used to add an employee to the EMP table:

typedef struct
{

Datatypes and Host Variables 4-31

Host Structures

char enmp_name[11]; /* one greater than colum length */
i nt enp_nunber;
i nt dept _nunber;
float salary;
} enp_record;

/* define a new structure of type "enp_record" */
enp_record new_enpl oyee;

strcpy(new_enpl oyee. enp_name, "CHEN');
new_enpl oyee. enp_nunber = 9876;
new_enpl oyee. dept _nunber = 20;
new_enpl oyee. sal ary = 4250. 00;

EXEC SQL | NSERT I NTO enp (enane, enpno, deptno, sal)
VALUES (: new_enpl oyee);

The order that the members are declared in the structure must match the order that the
associated columns occur in the SQL statement, or in the database table if the column
list in the INSERT statement is omitted.

For example, the following use of a host structure is invalid, and causes a runtime
error:

struct

{
i nt enpno;
float salary; /* struct conponents in wong order */
char enp_nane[10];

} enp_record;

SELECT enpno, ename, sal
I NTO : enp_record FROM enp;

The example is wrong because the components of the structure are not declared in the
same order as the associated columns in the select list. The correct form of the SELECT
statement is:

SELECT enpno, sal, ename /* reverse order of sal and ename */
I NTO : enp_record FROM enp;

Host Structures and Arrays

An array is a collection of related data items, called elements, associated with a single
variable name. When declared as a host variable, the array is called a host array.
Likewise, an indicator variable declared as an array is called an indicator array. An
indicator array can be associated with any host array.

Host arrays can increase performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays
wherever scalar host variables are allowed. Also, you can associate an indicator array
with any host array.

For a complete discussion of host arrays, see also Chapter 8, "Host Arrays".

You can use host arrays as components of host structures. In the following example, a
structure containing arrays is used to INSERT three new entries into the EMP table:

struct

{

4-32 Pro*C/C++ Programmer’s Guide

Host Structures

char enp_nane[3] [10];
int emp_number[3];
int dept_nunber[3];

} enp_rec;

strcpy(enp_rec. enp_nanme[0], "ANQUETIL");
strcpy(enp_rec. enp_name[1], "MERCKX");
strcpy(enp_rec. enp_nanme[2], "H NAULT");

enp_rec. enp_nunber[0] = 1964; enp_rec.dept_nunber[0] = 5;
enp_rec. emp_nunber[1] = 1974; enp_rec.dept_nunber[1] = 5;
enp_rec. enp_nunber[2] = 1985; enp_rec.dept_nunber[2] = 5;

EXEC SQL | NSERT I NTO enp (enane, enpno, deptno)
VALUES (:enp_rec);

PL/SQL Records
You cannot bind a C struct to a PL/SQL record.

Nested Structures and Unions

You cannot nest host structures. The following example is invalid:

struct
{
int enmp_nunber;
struct
{
float salary;
float conmi ssion;
} sal _info; I* I NVALID */
i nt dept_nunber;
} enp_record;

EXEC SQL SELECT enpno, sal, comm deptno
I NTO : enp_record
FROM enp;

Also, you cannot use a C union as a host structure, nor can you nest a union in a
structure that is to be used as a host structure.

Host Indicator Structures

When you need to use indicator variables, but your host variables are contained in a
host structure, you set up a second structure that contains an indicator variable for
each host variable in the host structure.

For example, suppose you declare a host structure student_record as follows:

struct

{
char s_name[32];
int s_id;
char grad_date[9];
} student_record;

If you want to use the host structure in a query such as

EXEC SQL SELECT student _nane, student _idno, graduation_date
I NTO : student _record

Datatypes and Host Variables 4-33

Host Structures

FROM col | ege_enrol | nent
WHERE st udent i dno = 7200;

and you need to know if the graduation date can be NULL, then you must declare a
separate host indicator structure. You declare this as

struct

{

short s_name_ind; /* indicator variables nust be shorts */
short s_id_ind;
short grad_date_ind,;

} student_record_ind;

Reference the indicator structure in the SQL statement in the same way that you
reference a host indicator variable:

EXEC SQL SELECT student _nane, student _idno, graduation_date
I NTO : student _record | NDI CATOR : student _record_ind
FROM col | ege_enrol | nent
WHERE st udent i dno = 7200;

When the query completes, the NULL/NOT NULL status of each selected component
is available in the host indicator structure.

Note: This Guide conventionally names indicator variables and
indicator structures by appending _ind to the host variable or
structure name. However, the names of indicator variables are
completely arbitrary. You can adopt a different convention, or use
no convention at all.

Example Program: Cursor and a Host Structure

The demonstration program in this section shows a query that uses an explicit cursor,
selecting data into a host structure. This program is available in the file sanpl e2. pc
in your deno directory.

/
sanpl e2. pc

Thi's program connects to ORACLE, declares and opens a cursor,
fetches the nanes, salaries, and conmissions of all
sal espeopl e, displays the results, then closes the cursor.

N

/

#include <stdio. h>
#i ncl ude <sql ca. h>

#define UNAME_LEN 20
#define PWD_LEN 40
/ *

* Use the preconpiler typedef'ing capability to create

* null-termnated strings for the authentication host

* variables. (This isn't really necessary--plain char *'s
* does work as well. This is just for illustration.)

*/

typedef char asciiz[PW_LEN;

EXEC SQL TYPE asciiz |'S STRING PWD_LEN) REFERENCE;

4-34 Pro*C/C++ Programmer’s Guide

Host Structures

asciiz user nane;
asciiz passwor d;

struct enp_info

asciiz enp_nane;
fl oat sal ary;
fl oat conmi ssi on;

b

/* Declare function to handle unrecoverable errors. */
void sql _error();
mai n()

struct enp_info *enp_rec_ptr;

[* Alocate nenory for enp_info struct. */
if ((enp_rec_ptr =

(struct enp_info *) malloc(sizeof(struct enp_info))) == 0)
{

fprintf(stderr, "Menory allocation error.\n");

exit(1);
}

/* Connect to ORACLE. */
strcpy(username, "SCOTT");
strcpy(password, "TIGER');

EXEC SQL WHENEVER SQLERROR DO sql _error("ORACLE error--");

EXEC SQL CONNECT : usernane | DENTI FI ED BY : password;
printf("\nConnected to ORACLE as user: %\n", usernane);

/* Declare the cursor. Al static SQ explicit cursors
* contain SELECT commands. 'sal espeople’ is a SQ identifier,
* not a (C) host variable.
*/
EXEC SQL DECLARE sal espeopl e CURSOR FOR
SELECT ENAME, SAL, COWM
FROM EMP
VHERE JOB LI KE ' SALES% ;

/* QOpen the cursor. */
EXEC SQL OPEN sal espeopl ¢;

[* Get ready to print results. */
printf("\n\nThe conpany's sal espeople are--\n\n");
printf("Sal esperson Salary Conmission\n");
printf("----------c a-ee-- oo \n");

/* Loop, fetching all sal esperson's statistics.
* Cause the programto break the | oop when no nore
* data can be retrieved on the cursor.
*/
EXEC SQL WHENEVER NOT FOUND DO br eak;

for (53)

Datatypes and Host Variables 4-35

Pointer Variables

{
EXEC SQL FETCH sal espeopl e I NTO :enp_rec_ptr;
printf("% 11s9®.2f9%3. 2f\n", enp_rec_ptr->enp_nane,
enp_rec_ptr->salary, enp_rec_ptr->comr ssion);
}

/* Cose the cursor. */
EXEC SQL CLOSE sal espeopl €;

printf("\nArrivederci.\n\n");

EXEC SQL COW T WORK RELEASE;
exit(0);

voi d
sql _error(nsgQ)
char *msg;

{
char err_nsg[512];

int buf_len, nsg_len;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%\n", nsg);

[* Call sqlglm) to get the conplete text of the
* error message.
*/
buf _len = sizeof (err_msg);
sql gl m{err_nmsg, &buf len, &sg_len);
printf("%*s\n", msg_len, err_nsg);

EXEC SQL ROLLBACK RELEASE;
exit(1l);

Pointer Variables

C supports pointers, which "point" to other variables. A pointer holds the address
(storage location) of a variable, not its value.

Pointer Variable Declaration

You define pointers as host variables following the normal C practice, as the next
example shows:

int *int_ptr;
char *char_ptr;

Pointer Variable Referencing
In SQL statements, prefix pointers with a colon, as shown in the following example:

EXEC SQL SELECT intcol INTO :int_ptr FROM...

4-36 Pro*C/C++ Programmer’s Guide

Pointer Variables

Except for pointers to character strings, the size of the referenced value is given by the
size of the base type specified in the declaration. For pointers to character strings, the
referenced value is assumed to be a NULL-terminated string. Its size is determined at
run time by calling the st r| en() function. For details, see also "Globalization
Support" on page 4-38.

You can use pointers to reference the members of a struct. First, declare a pointer host
variable, then set the pointer to the address of the desired member, as shown in the
example later. The datatypes of the struct member and the pointer variable must be
the same. Most compilers will warn you of a mismatch.

struct

{ . .
int i;
char c;

} structvar;

int *i_ptr;

char *c_ptr;

i n()
{

i _ptr = &structvar.i;
c_ptr = &structvar.c;
[* Use i_ptr and c_ptr in SQL statements. */

Structure Pointers

You can use a pointer to a structure as a host variable. The following example
= Declares a structure

= Declares a pointer to the structure

= Allocates memory for the structure

= Uses the struct pointer as a host variable in a query

= Dereferences the struct components to print the results

struct EMP_REC

{
int enmp_nunber;

float salary;
b
char *name = "H NAULT";

struct EMP_REC *sal rec;
sal _rec = (struct EMP_REC *) mall oc(sizeof (struct EMP_REQ));

EXEC SQL SELECT enpno, sal INTO :sal _rec
FROM enp
VWHERE ename = :nane;

printf("Enpl oyee nunber and salary for %: ", nane);
printf("%l, %\n", sal _rec->enp_nunber, sal_rec->salary);

In the SQL statement, pointers to host structures are referred to in exactly the same

way as a host structure. The "address of" notation (&) is not required; in fact, it is an
error to use it.

Datatypes and Host Variables 4-37

Globalization Support

Globalization Support

Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate to
represent the Roman alphabet, some Asian languages, such as Japanese, contain
thousands of characters. These languages can require at least 16 bits (two bytes) to
represent each character. How does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support, which lets you process single-byte and
multibyte character data and convert between character sets. It also lets your
applications run in different language environments. With Globalization Support,
number and date formats adapt automatically to the language conventions specified
for a user session. Thus, Globalization Support allows users around the world to
interact with Oracle in their native languages.

You control the operation of language-dependent features by specifying various
Globalization Support or NLS parameters. Default values for these parameters can be
set in the Oracle initialization file. Table 4-6 shows what each Globalization Support
parameter specifies.

Table 4-6 Globalization Support Parameters

Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions
NLS_TERRITORY territory-dependent conventions
NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names
NLS_NUMERIC_CHARACTERS decimal character and group separator
NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY. NLS_
LANGUAGE specifies the default values for language-dependent features, which
include:

= Language for server messages
= Language for day and month names
= Sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

= Date format

= Decimal character

= Group separator

= Local currency symbol
= ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows:

NLS LANG = <l anguage> <territory>. <character set>

4-38 Pro*C/C++ Programmer’s Guide

NCHAR Variables

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding scheme
used for the terminal. An encoding scheme (usually called a character set or code page)
is a range of numeric codes that corresponds to the set of characters a terminal can
display. It also includes codes that control communication with the terminal.

You define NLS_LANG as an environment variable (or the equivalent on your
system). For example, on UNIX using the C shell, you might define NLS_LANG as
follows:

setenv NLS_LANG French_France. WE8I SO8859P1

During an Oracle database session you can change the values of Globalization Support
parameters. Use the ALTER SESSION statement as follows:

ALTER SESSI ON SET <gl obal i zati on support_paraneter> = <val ue>

Pro*C/C++ fully supports all the Globalization Support features that allow your
applications to process foreign language data stored in an Oracle database. For
example, you can declare foreign language character variables and pass them to string
functions such as INSTRB, LENGTHB, and SUBSTRB. These functions have the same
syntax as the INSTR, LENGTH, and SUBSTR functions, respectively, but operate on a
byte-by-byte basis rather than a character-by-character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and NLS_UPPER to handle
special instances of case conversion. And, you can use the function NLSSORT to
specify WHERE-clause comparisons based on linguistic rather than binary ordering.
You can even pass globalization support parameters to the TO_CHAR, TO_DATE, and
TO_NUMBER functions. For more information about Globalization Support, see
Oracle Database Application Developer’s Guide - Fundamentals.

NCHAR Variables

Three internal database datatypes can store National Character Set data. They are
NCHAR, NCLOB, and NVARCHAR? (also known as NCHAR VARYING). You use these
datatypes only in relational columns. Pro*C/C++ supported multibyte NCHAR host
variables in earlier releases, with slightly different semantics.

When you set the command-line option NLS_LOCAL to YES, multibyte support with
earlier semantics will be provided by SQLLIB (the letter "N" is stripped from the
quoted string), as in Oracle7. SQLLIB provides blank padding and stripping, sets
indicator variables, and so on.

If you set NLS_LOCAL to NO (the default), releases after Oracle7 support multibyte
strings with the new semantics (the letter "N" will be concatenated in front of the
quoted string). The database, rather than SQLLIB, provides blank padding and
stripping, and setting of indicator variables.

Use NLS_LOCAL=NO for all new applications.

CHARACTER SET [IS]NCHAR_CS

To specify which host variables hold National Character Set data, insert the clause
"CHARACTER SET [IS] NCHAR_CS” in character variable declarations. Then you are
able to store National Character Set data in those variables. You can omit the token IS.
NCHAR_CS is the name of the National Character Set.

For example:

char character set is nchar_cs *str = "<Japanese_string>";

Datatypes and Host Variables 4-39

NCHAR Variables

In this example, <Japanese_string> consists of Unicode characters that are in the
National Character Set ALI6UTF16, as defined by the variable NLS_NCHAR.

You can accomplish the same thing by entering NLS_CHAR=str on the command line,
and coding in your application:

char *str = "<Japanese_string>"
Pro*C/C++ treats variables declared this way as of the character set specified by the

environment variable NLS_NCHAR. The variable size of an NCHAR variable is
specified as a byte count, the same way that ordinary C variables are.

To select data into str, use the following simple query:
EXEC SQL

SELECT ENAME INTO :str FROM EMP WHERE DEPT = n' <Japanese_stringl>';
Or, you can use str in the following SELECT:

EXEC SQL
SELECT DEPT | NTO : dept FROM DEPT_TAB WHERE ENAME = :str;

Environment Variable NLS_NCHAR

Pro*C/C++ supports National Character Sets with database support when NLS_
LOCAL=NO. When NLS_LOCAL=NO, and the new environmental variable NLS_
NCHAR is set to a valid National Character Set, the database server supports
NCHAR. See NLS_NCHAR in the Oracle Database Reference.

NLS_NCHAR specifies the character set used for National Character Set data
(NCHAR, NVARCHAR?2, NCLOB). If it is not specified, the character set defined or
indirectly defined by NLS_LANG will be used.

NLS_NCHAR must have a valid National Character Set specification (not a language
name, that is set by NLS_LANG) at both precompile-time and runtime. SQLLIB
performs a runtime check when the first SQL statement is executed. If the
precompile-time and runtime character sets are different, SQLLIB will return an error
code.

CONVBUFSZ Clause in VAR

You can override the default assignments by equivalencing host variables to Oracle
external datatypes, using the EXEC SQL VAR statement, This is called host variable
equivalencing.

The EXEC SQL VAR statement can have an optional clause: CONVBUFSZ (<si ze>).
You specify the size, <si ze>, in bytes, of the buffer in the Oracle runtime library used
to perform conversion of the specified host variable between character sets.

The new syntax is:

EXEC SQL VAR host _variable IS datatype [CONVBUFSZ [IS] (size)] ;

or

EXEC SQL VAR host _variable [CONVBUFSZ [IS] (size)];

where datatype is:

type_nane [({ length | precision, scale })]

4-40 Pro*C/C++ Programmer’s Guide

NCHAR Variables

See Also: "VAR (Oracle Embedded SQL Directive)" on page F-85
for a complete discussion of all keywords, examples, and variables.

Character Strings in Embedded SQL

A multibyte character string in an embedded SQL statement consists of a character
literal that identifies the string as multibyte, immediately followed by the string. The
string is enclosed in the usual single quotes.

For example, an embedded SQL statement such as
EXEC SQ SELECT enpno | NTO : enp_num FROM enp

VHERE ename = N <Japanese_string>';

contains a multibyte character string (<Japanese_string> could actually be Kanji), since
the N character literal preceding the string identifies it as a multibyte string. Since

n__n

Oracle is case-insensitive, you can use "n" or "N" in the example.

Strings Restrictions

You cannot use datatype equivalencing (the TYPE or VAR commands) with multibyte
character strings.

Dynamic SQL method 4 is not available for multibyte character string host variables in
Pro*C/C++.

Indicator Variables

You can use indicator variables with host character variables that are multibyte
characters (as specified using the NLS_CHAR option).

Datatypes and Host Variables 4-41

NCHAR Variables

4-42 Pro*C/C++ Programmer’s Guide

D

Advanced Topics

This chapter discusses advanced techniques in Pro*C/C++ and contains the following
topics:

Character Data

Character Data

Datatype Conversion

Datatype Equivalencing

The C Preprocessor

Precompiled Header Files

The Oracle Preprocessor

Evaluation of Numeric Constants
SQLLIB Extensions for OCI Release 8 Interoperability
Interface to OCI Release 8

Embedded OCI Release 7 Calls

New Names for SQLLIB Public Functions
X/Open Application Development

This section explains how the Pro*C/C++ Precompiler handles character host
variables. There are four host variable character types:

Character arrays
Pointers to strings
VARCHAR variables
Pointers to VARCHARSs

Do not confuse VARCHAR (a host variable data structure supplied by the
precompiler) with VARCHAR? (an Oracle internal datatype for variable-length
character strings).

Precompiler Option CHAR_MAP

The CHAR_MAP precompiler command line option is available to specify the default
mapping of char[n] and char host variables. Oracle maps them to CHARZ. CHARZ
implements the ANSI Fixed Character format. Strings are fixed-length, blank-padded

Advanced Topics 5-1

Character Data

and null-terminated. VARCHAR2 values (including nulls) are always fixed-length and
blank-padded. Table 5-1 shows the possible settings of CHAR_MAP:

Table 5-1 CHAR_MAP Settings

CHAR_MAP Setting Is Default for Description
VARCHAR?2 - All values (including null) are fixed-length
blank-padded.
CHARZ DBMS=V7, Fixed-length blank-padded, then
DBMS=V8 null-terminated. Conforms to the ANSI
Fixed Character type.
STRING New format null-terminated. Conforms to ASCII format
used in C programs.
CHARF Previously, only Fixed-length blank-padded. null is left
through VAR or unpadded.
TYPE declarations.

The default mapping is CHAR_MAP=CHARZ, which was the case in previous
versions of Pro*C/C++.

Use CHAR_MAP=VARCHAR?2 instead of the old DBMS=V6_CHAR, which is
obsolete.

Inline Usage of the CHAR_MAP Option

Unless you declared a char or char[n] variable otherwise, the inline CHAR_MAP
option determines its mapping. The following code fragment illustrates the results of
setting this option inline in Pro*C/C++:

char ch_array[5];

strncpy(ch_array, "12345", 5);

/* char_map=charz is the default in Oracle7 and Oracle8 */
EXEC ORACLE OPTI ON (char_map=charz);

/* Select retrieves a string "AB" fromthe database */
SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;

[* ch_array == { "A", "B, " ", " ", "\0" } */

strncpy (ch_array, "12345", 5);

EXEC ORACLE OPTION (char _map=string) ;

/* Select retrieves a string "AB" fromthe database */
EXEC SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;
/* ch_array == { "A", 'B, "\0', '4", '5 } */

strncpy(ch_array, "12345", 5);

EXEC ORACLE OPTI ON (char_map=charf);

/* Select retrieves a string "AB" fromthe database */
EXEC SQL SELECT ... INTO :ch_array FROM ... WHERE ... ;
[* ch_array == { "A, 'B, " ", "', "}]

Effect of the DBMS and CHAR_MAP Options

The DBMS and CHAR_MAP options determine how Pro*C/C++ treats data in
character arrays and strings. These options allow your program to observe
compatibility with ANSI fixed-length strings, or to maintain compatibility with
previous releases of Oracle and Pro*C/C++ that use variable-length strings. See

5-2 Pro*C/C++ Programmer’s Guide

Character Data

Chapter 10, "Precompiler Options" for a complete description of the DBMS and
CHAR_MAP options.

The DBMS option affects character data both on input (from your host variables to the
Oracle table) and on output (from an Oracle table to your host variables).

Character Array and the CHAR_MAP Option

The mapping of character arrays can also be set by the CHAR_MAP option
independent of the DBMS option. DBMS=V7 or DBMS=V8 both use CHAR_
MAP=CHARZ, which can be overridden by specifying either CHAR_
MAP=VARCHAR?2 or STRING or CHARF.

On Input

Character Array On input, the DBMS option determines the format that a host
variable character array must have in your program. When the CHAR_
MAP=VARCHAR?, host variable character arrays must be blank padded, and should
not be null-terminated. When the DBMS=V7 or V8, character arrays must be
null-terminated ('\0'").

When the CHAR_MAP option is set to VARCHAR? trailing blanks are removed up to
the first non-blank character before the value is sent to the database. An un-initialized
character array can contain null characters. To make sure that the nulls are not inserted
into the table, you must blank-pad the character array to its length. For example, if you
execute the statements:

char enp_nane[10];
strcpy(enp_nane, "MLLER"); /* WRONG Note no bl ank- paddi ng */

EXEC SQL | NSERT I NTO enp (enpno, enane, deptno) VALUES
(1234, :enp_name, 20);

you will find that the string "MILLER" was inserted as "MILLER\O\O\O\Q" (with four
null bytes appended to it). This value does not meet the following search condition:

. WHERE ename = 'M LLER ;
To INSERT the character array when CHAR_MAP is set to VARCHAR2, you should
execute the statements

strncpy(enmp_name, "M LLER ", 10); /* 4 trailing blanks */
EXEC SQL | NSERT I NTO enp (enpno, enane, deptno) VALUES
(1234, :enp_name, 20);

When DBMS=V7 or V8, input data in a character array must be null-terminated. So,
make sure that your data ends with a null.

char enp_nane[11]; /* Note: one greater than colum size of 10 */
strcpy(enp_nane, "MLLER"); /* No bl ank-paddi ng required */

EXEC SQL | NSERT I NTO enp (enpno, enane, deptno) VALUES
(1234, :enp_name, 20);

Character Pointer The pointer must address a null-terminated buffer that is large
enough to hold the input data. Your program must allocate enough memory to do this.

Advanced Topics 5-3

Character Data

On Input

The following example illustrates all possible combinations of the effects of the
CHAR_MAP option settings on the value retrieved from a database into a character
array.

Assume a database

TABLE strdbase (..., strval VARCHAR2(6));

which contains the following strings in the column strval:

wn -- string of length 0

" AB" -- string of length 2
"KING' -- string of length 4
"QUEEN'" -- string of length 5
"MLLER" -- string of length 6

In a Pro*C/C++ program, initialize the 5-character host array str with 'X' characters
and use for the retrieval of all the values in column strval:

char str[5] ={'X, 'X, 'X,'X, "X} ;
short str_ind;

EXEC SQL SELECT strval INTO :str:str_ind WHERE ... ;

with the following results for the array, str, and the indicator variable, str_ind, as
CHAR_MAP is set to VARCHAR2, CHARF, CHARZ and STRING:

strval ="" " AB" "KI'NG' " QUEEN' "M LLER"

VARCHAR2 -1"AB 0 "KING" 0 "QUEEN'" 0 "MLLE" 6
CHARF XXXXX -1 " AB 0 "KING" 0 "QUEEN'" 0 "MLLE" 6
CHARZ ! 0" -1"AB 0" 0 "KIN&" 0 "QUEE0" 5 "MLLO" 6
STRING "OXXXX" -1 "ABOXX" 0 "KING" 0 "QUEEC" 5 "MLLO" 6

where 0 stands for the null character, '\0'.

On Output

Character Array On output, the DBMS and CHAR_MAP options determines the
format that a host variable character array will have in your program. When CHAR_
MAP=VARCHAR?, host variable character arrays are blank padded up to the length
of the array, but never null-terminated. When DBMS=V7 or V8 (or CHAR_
MAP=CHARZ), character arrays are blank padded, then null-terminated in the final
position in the array.

Consider the following example of character output:

CREATE TABLE test _char (C_col CHAR(10), V_col VARCHAR2(10));
I NSERT I NTO test_char VALUES (' MLLER, 'KING);

A precompiler program to select from this table contains the following embedded
SQL:
;:.h;ar nanmel[10] ;

char nane2[10];

EXEC SQL SELECT C col, V_col INTO :nanel, :name2

5-4 Pro*C/C++ Programmer’s Guide

Character Data

FROM t est _char;

If you precompile the program with CHAR_MAP=VARCHAR?2, namel will contain:
"M LLER####"

that is, the name "MILLER" followed by 4 blanks, with no null-termination. (If namel
had been declared with a size of 15, there are 9 blanks following the name.)

name2 will contain:

" KI NG " /* 6 trailing blanks */

If you precompile the program with DBMS=V7 or V8, namel will contain:
"M LLER###\ 0" /* 3 trailing blanks, then a null-termnator */

that is, a string containing the name, blank-padded to the length of the column,
followed by a null terminator. name2 will contain:

" KI NG###HHA 0"

In summary, if CHAR_MAP=VARCHAR?2, the output from either a CHARACTER
column or a VARCHAR?2 column is blank-padded to the length of the host variable
array. If DBMS=V7 or V8, the output string is always null-terminated.

Character Pointer The DBMS and CHAR_MAP options do not affect the way
character data are output to a pointer host variable.

When you output data to a character pointer host variable, the pointer must point to a
buffer large enough to hold the output from the table, plus one extra byte to hold a
null terminator.

The precompiler runtime environment calls st r| en() to determine the size of the
output buffer, so make sure that the buffer does not contain any embedded nulls ('\0").
Fill allocated buffers with some value other than '\0', then null-terminate the buffer,
before fetching the data.

Note: C pointers can be used in a Pro*C/C++ program that is
precompiled with DBMS=V7 or V8 and MODE=ANSI. However,
pointers are not legal host variable types in a SQL standard
compliant program. The FIPS flagger warns you if you use pointers
as host variables.

The following code fragment uses the columns and table defined in the previous
section, and shows how to declare and SELECT into character pointer host variables:

char *p_nanel;
char *p_nane2;

)

)
)
)

p_namel = (char *) malloc(11
p_name2 = (char *) malloc(11
strepy(p_nanel, " "
strecpy(p_name2, "0123456789"

EXEC SQL SELECT C_col, V_col INTO :p_nanel, :p_nane2
FROM test _char;

Advanced Topics 5-5

Character Data

When the SELECT statement mentioned earlier is executed with any DBMS or CHAR_
MAP setting, the value fetched is:

"M LLER####\ 0" [* 4 trailing blanks and a null termnator */

" KI NGH##HHH 0" /* 6 blanks and null */

VARCHAR Variables and Pointers
The following example shows how VARCHAR host variables are declared:

VARCHAR enp_namel[10]; /* VARCHAR variable */
VARCHAR *enp_nane2; I* pointer to VARCHAR */

On Input

VARCHAR Variables When you use a VARCHAR variable as an input host variable,
your program need only place the desired string in the array member of the expanded
VARCHAR declaration (emp_namel.arr in our example) and set the length member
(emp_namel.len). There is no need to blank-pad the array. Exactly emp_namel.len
characters are sent to Oracle, counting any blanks and nulls. In the following example,
you set emp_namel.len to 8:

strepy((char *)enp_namel.arr, "VAN HORN');
enp_namel.len = strlen((char *)enp_nanel.arr);

Pointer to a VARCHAR When you use a pointer to a VARCHAR as an input host
variable, you must allocate enough memory for the expanded VARCHAR declaration.
Then, you must place the desired string in the array member and set the length
member, as shown in the following example:

enp_name2 = mal | oc(sizeof (short) + 10) /* len + arr */
strepy((char *)enp_name2->arr, "MLLER");
enp_name2- >l en = strlen((char *)enp_name2->arr);

Or, to make emp_name?2 point to an existing VARCHAR (emp_namel in this case), you
could code the assignment

enp_name2 = &enp_nanel,;

then use the VARCHAR pointer in the usual way, as in

EXEC SQL | NSERT I NTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (:enp_nunber, :enp_name2, :dept_nunber);

On Output

VARCHAR Variables When you use a VARCHAR variable as an output host variable,
the program interface sets the length member but does not null-terminate the array
member. As with character arrays, your program can null-terminate the arr member of
a VARCHAR variable before passing it to a function such as printf () orstrlen().
An example follows:

enp_namel. arr[enp_nanmel.len] = "\0";
printf("%", enp_namel.arr);

Or, you can use the length member to limit the printing of the string, as in:

5-6 Pro*C/C++ Programmer’s Guide

Character Data

printf("%*s", enp_nanel.len, enp_nanel.arr);

An advantage of VARCHAR variables over character arrays is that the length of the
value returned by Oracle is available immediately. With character arrays, you might
need to strip the trailing blanks yourself to get the actual length of the character string.

VARCHAR Pointers When you use a pointer to a VARCHAR as an output host
variable, the program interface determines the variable's maximum length by checking
the length member (emp_name2->len in our example). So, your program must set this
member before every fetch. The fetch then sets the length member to the actual number
of characters returned, as the following example shows:

enp_name2->len = 10; /* Set maxinumlength of buffer. */
EXEC SQL SELECT ENAME | NTO : enp_name2 WHERE EMPNO = 7934,
printf("% characters returned to enp_nanme2", enp_name2->|en);

Unicode Variables

Pro*C/C++ allows fixed-width Unicode data (character set Unicode Standard Version
3.0, known simply as UCS-16) in host char variables. UCS-16 uses 2 bytes for each
character, so it is an unsigned 2-byte datatype. SQL statement text in UCS-16 is not
supported yet.

In the following example code a host variable, enpl oyee, of the Unicode type utext is
declared to be 20 Unicode characters long. A table enp is created containing the
column enarne, which is 60 bytes long, so that database character sets in Asian
languages, where multibyte characters are up to three bytes long, will be supported.

utext enpl oyee[20] ; /* Unicode host variable */
EXEC SQL CREATE TABLE enmp (ename CHAR(60));

/* ename is in the current database character set */

EXEC SQL | NSERT I NTO enp (enane) VALUES ('test') ;

/* "test' in NLS_LANG encoding converted to database character set */

EXEC SQL SELECT * INTO : enpl oyee FROM enp ;

/* Database character set converted to Unicode */

A public header file, sqlucs2.h, must be included in your application code. It does the
following:

« Contains the statement:

#incl ude <oratypes. h>

« Defines a "Unicode varchar", uvarchar, as:

struct uvarchar

{

ub2 1en;
utext arr[1] ;

h

typedef struct uvarchar uvarchar ;

= Defines a "Unicode long varchar", ulong_varchar, as:

struct ul ong_varchar

{
ub4 len ;

utext arr[1] ;

}

typedef struct ul ong_varchar ul ong_varchar ;

Advanced Topics 5-7

Character Data

The default datatype of utext is the same as the default for any character variables,
CHARZ, which is blank-padded and null-terminated.

Use the CHAR_MAP precompiler option to change the default datatype, as follows:
#include <sql ca. h>

#include <sql ucs2. h>

mai n()
{
ut ext enpl oyeel[20] ;

/* Change to STRING dat at ype: */
EXEC ORACLE OPTI ON (CHAR MAP=STRING) ;
utext enpl oyee2[20] ;

EXEC SQL CREATE TABLE enp (ename CHAR(60)) :

/******‘k**‘k****************‘k**‘k****************‘k**‘k*********

Initializing enpl oyeel or enployee2 i s conpiler-dependent.

**/

EXEC SQL | NSERT I NTO enp (enane) VALUES (:enpl oyeel) ;

EXEC SQL SELECT enane | NTO : enpl oyee2 FROM enp;
/* enpl oyee2 is now not bl ank-padded and is null-ternminated */

Restrictions on Unicode Variable Usage

= Static and dynamic SQL cannot contain Unicode in the SQL statement text. The
following is not permitted:

#include oratypes.h
utext sqglstnt[100] ;

[* If sqlstnmt contains a SQL statenment: */
EXEC SQL PREPARE s1 FROM :sqglstnt ;
EXEC SQL EXECUTE | MEDI ATE :sgl stnt ;

= You cannot use type equivalencing for utext variables. The following code is not
permitted:

typedef utext utext_5 ;
EXEC SQL TYPE utext_5 1S STRING ;

=« CONVBUFSZ cannot be used as a conversion buffer size. Use the CHAR_MAP
option instead.

= Oracle dynamic SQL method 4 does not support Unicode.
= Object types do not support Unicode.

See Also:
"CONVBUEFSZ Clause in VAR" on page 4-40

= Chapter 14, "ANSI Dynamic SQL" describes the ANSI dynamic
SQL method 4

= Chapter 17, "Objects" describes object types

5-8 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

Datatype Conversion

At precompile time, a default external datatype is assigned to each host variable. For
example, the precompiler assigns the INTEGER external datatype to host variables of
type short int and int.

At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external
datatypes.

Before assigning a SELECTed column (or pseudocolumn) value to an output host
variable, Oracle must convert the internal datatype of the source column to the
datatype of the host variable. Likewise, before assigning or comparing the value of an
input host variable to a column, Oracle must convert the external datatype of the host
variable to the internal datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of "1234" to a C short value. You
cannot convert a CHAR value of "65543" (number too large) or "10F" (number not
decimal) to a C short value. Likewise, you cannot convert a char [n] value that
contains any alphabetic characters to a NUMBER value.

Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle interprets input data, and the
way Oracle formats output data. It provides the ability to override the default external
datatypes that the precompiler assigns. On a variable-by-variable basis, you can map
(or make equivalent) supported C host variable datatypes to Oracle external
datatypes. You can also map user-defined datatypes to Oracle external datatypes.

Host Variable Equivalencing

By default, the Pro*C/C++ Precompiler assigns a specific external datatype to every
host variable.

Table 5-2 lists the default assignments:

Table 5-2 Default Type Assignments

C Type, or Pseudotype Oracle External Type Notes

char VARCHAR2 (CHAR_MAP=VARCHAR?)

char[n] CHARZ (DBMS=V7, V8 default)

char* STRING (CHAR_MAP=STRING)
CHARF (CHAR_MAP=CHARF)

int, int* INTEGER -

short, short* INTEGER -

long, long* INTEGER -

float, float* FLOAT -

double, double* FLOAT -

VARCHAR*, VARCHAR|n] VARCHAR -

With the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes. The syntax you use is

Advanced Topics 5-9

Datatype Equivalencing

EXEC SQ. VAR host _variable IS type_nane [(length)];

where host_variable is an input or output host variable (or host array) declared earlier,
type_name is the name of a valid external datatype, and length is an integer literal
specifying a valid length in bytes.

Host variable equivalencing is useful in several ways. For example, suppose you want
to SELECT employee names from the EMP table, then pass them to a routine that
expects null-terminated strings. You need not explicitly null-terminate the names.
Simply equivalence a host variable to the STRING external datatype, as follows:

char enp_nane[11];
EXEC SQL VAR enp_name |'S STRING(11);

The length of the ENAME column in the EMP table is 10 characters, so you allot the
new emp_name 11 characters to accommodate the null terminator. When you SELECT a
value from the ENAME column into emp_name, the program interface null-terminates
the value for you.

You can use any external datatypes except NUMBER (for example, VARNUM).

See Also: " Oracle External Datatypes" on page 4-2

User-Defined Type Equivalencing

You can also map (or make equivalent) user-defined datatypes to Oracle external
datatypes. First, define a new datatype structured like the external datatype that suits
your needs. Then, map your new datatype to the external datatype using the TYPE
statement.

With the TYPE statement, you can assign an Oracle external datatype to a whole class
of host variables. The syntax you use is:

EXEC SQL TYPE user _type IS type_name [(length)] [REFERENCE];

Suppose you need a variable-length string datatype to hold graphics characters. First,
declare a struct with a short length component followed by a 65533-byte data
component. Second, use typedef to define a new datatype based on the struct. Then,
equivalence your new user-defined datatype to the VARRAW external datatype, as
shown in the following example:

struct screen

{

short len;
char buff[4000];
b

typedef struct screen graphics;

EXEC SQL TYPE graphics |'S VARRAW 4000) :
graphics crt; —host variable of type graphics

You specify a length of 4000 bytes for the new graphics type because that is the
maximum length of the data component in your struct. The precompiler allows for the
len component (and any padding) when it sends the length to the Oracle server.

REFERENCE Clause

You can declare a user-defined type to be a pointer, either explicitly, as a pointer to a
scalar or struct type, or implicitly, as an array, and use this type in an EXEC SQL TYPE

5-10 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

statement. In this case, you must use the REFERENCE clause at the end of the
statement, as shown in the following example:

typedef unsigned char *my_raw

EXEC SQL TYPE ny_raw | S VARRAW 4000) REFERENCE;
m_raw graphi cs_buffer;

graphi cs_buffer = (ny_raw) malloc(4004);

In this example, you allocated additional memory over the type length (4000). This is
necessary because the precompiler also returns the length (the size of a short), and can
add padding after the length due to word alignment restrictions on your system. If
you do not know the alignment practices on your system, make sure to allocate
sufficient extra bytes for the length and padding (9 should usually be sufficient).

See Also: "Example Program: Using sqlvcp()" on page 4-18

CHARF External Datatype

CHAREF is a fixed-length character string. You can use this datatype in VAR and TYPE
statements to equivalence C datatypes to the fixed-length SQL standard datatype
CHAR, regardless of the setting of the DBMS or CHAR_MAP option.

When DBMS=V7 or V8, specifying the external datatype CHARACTER in a VAR or
TYPE statement equivalences the C datatype to the fixed-length datatype CHAR
(datatype code 96). However, when CHAR_MAP=VARCHAR?2, the C datatype is
equivalenced to the variable-length datatype VARCHAR2 (code 1).

Now, you can always equivalence C datatypes to the fixed-length SQL standard type
CHARACTER by using the CHARF datatype in the VAR or TYPE statement. When
you use CHARE, the equivalence is always made to the fixed-length character type,
regardless of the setting of the DBMS or CHAR_MAP option.

The EXEC SQL VAR and TYPE Directives

You can code an EXEC SQL VAR ... or EXEC SQL TYPE ... statement anywhere in your
program. These statements are treated as executable statements that change the
datatype of any variable affected by them from the point that the TYPE or VAR
statement was made to the end of the scope of the variable. If you precompile with
MODE=ANSI, you must use Declare Sections. In this case, the TYPE or VAR statement
must be in a Declare Section.

See Also:

= "TYPE (Oracle Embedded SQL Directive)" on page F-81
= "VAR (Oracle Embedded SQL Directive)" on page F-85

Example: Datatype Equivalencing (sample4.pc):

The demonstration program in this section shows you how you can use datatype
equivalencing in your Pro*C/C++ programs. This program is available as

sanpl e4. pc in the denp directory.It demonstrates the use of type equivalencing
using the LONG VARRAW external datatype. In order to provide a useful example
that is portable across different systems, the program inserts binary files into and
retrieves them from the database.

This program uses LOB embedded SQL statements. See also Chapter 16, "Large
Objects (LOBs)".

Advanced Topics 5-11

Datatype Equivalencing

Please read the introductory comments for an explanation of the program's purpose.
/***

sanpl e4. pc

This program denonstrates the use of type equival encing using the
LONG VARRAW ext ernal datatype. In order to provide a useful exanple
that is portable across different systenms, the programinserts
binary files into and retrieves themfromthe database. For

exanpl e, suppose you have a file called '"hello" in the current
directory. You can create this file by conpiling the follow ng
source code:

#include <stdio. h>

int main()
{
printf("Hello Wrld\n");

}

VWWen this programis run, we get:

$hell o
Hel 1o Worl d!

Here is some sanple output froma run of sanple4:

$sanpl ed

Connect ed.

Do you want to create (or re-create) the EXECUTABLES table (y/n)? y
EXECUTABLES tabl e successfully dropped. Now creating new table...
EXECUTABLES t abl e created.

Sample 4 Menu. Wuld you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executahles stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: |

Execut abl es Length (bytes)

Total Executables: 0

Sample 4 Menu. Would you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: i

Enter the key under which you will insert this executable: hello
Enter the filename to insert under key 'hello'.

If the file is not in the current directory, enter the full

path: hello
Inserting file "hello' under key "hello'...
Inserted.

5-12 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

Sample 4 Menu. Wuld you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executahles stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: |
Execut abl es Length (bytes)
hell o 5508

Total Executables: 1

Sample 4 Menu. Would you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: r

Enter the key for the executable you wish to retrieve: hello

Enter the file to wite the executable stored under key hello into. |If you
don't want the file in the current directory, enter the

full path: hl

Retrieving executable stored under key 'hello' to file 'hl'...

Retrieved.

Sanmple 4 Menu. Wuld you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executahles stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: ¢
W now have the binary file 'hl" created, and we can run it:

$hi
Hel l o Worl d!

***/

#include <oci . h>
#include <string.h>
#include <stdio. h>
#include <sql ca. h>
#include <stdlib.h>
#incl ude <sql cpr. h>

/* Oracle error code for 'table or view does not exist'. */
#define NON_EXI STENT -942
#def i ne NOT_FOUND 1403

[* This is the definition of the long varraw structure.
* Note that the first field, len, is along instead

* of a short. This is becuase the first 4

* bytes contain the length, not the first 2 bytes.

Advanced Topics 5-13

Datatype Equivalencing

*/
typedef struct |ong_varraw {
ub4 len;

text buf[1];
} long_varraw,

/* Type Equival ence long_varraw to LONG VARRAW

* Al variables of type long_varraw fromthis point
*oninthe file will have external type 95 (LONG VARRAW
* associated with them

*/

EXEC SQL TYPE long_varraw | S LONG VARRAW REFERENCE;

[* This progranmis functions declared. */
#if defined(__STDC)
voi d do_connect (void);
voi d create_table(void);
voi d sql _error(char *);
voi d |ist_executabl es(void);
voi d print_menu(void);
voi d do_insert(varchar *, char *);
void do_retrieve(varchar *, char *);
voi d do_del ete(varchar *);
ub4 read_file(char *, OCl Bl obLocator *);
void wite file(char *, OClBlobLocator *);
#el se
voi d do_connect (/*_ void _*/);
void create_table(/*_ void _*/);
void sql _error(/*_ char * _*/);
void |ist_executables(/*_ void _*/);
void print_menu(/*_void _*/);
voi d do_insert(/*_ varchar *, char * _*/);
void do_retrieve(/*_ varchar *, char * _*/);
void do_del ete(/*_ varchar * _*/);
ub4 read_file(/*_ char *, OCIBlobLocator * _*/)
void wite_file(/*_ char *, OClBlobLocator * _*/
#endi f

)

voi d main()

{
char reply[20], filenanme[100];
varchar key[20];
short ok = 1,

/* Connect to the database. */
do_connect ();

printf("Do you want to create (or re-create) the EXECUTABLES table (y/n)? ");
gets(reply);

if ((reply[0] =="y") [| (reply[0] =="Y"))
create_table();

/* Print the nenu, and read in the user's selection. */
print_nenu();
gets(reply);

while (ok)

5-14 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

{
switch(reply[0]) {
case 'I": case 'i'
/* User selected insert - get the key and file nane. */
printf("Enter the key under which you will insert this executable: ");

key.len = strlen(gets((char *)key.arr));
printf("Enter the filename to insert under key '%*s'.\n",
key.len, key.arr);
printf("If the fileis not in the current directory, enter the full\n");
printf("path: ");
gets(filenane);
do_i nsert((varchar *)é&key, filenane);
br eak;
case 'R: case 'r':
/* User selected retrieve - get the key and file name. */
printf("Enter the key for the executable you wish to retrieve: ");
key.len = strlen(gets((char *)key.arr));
printf("Enter the file to wite the executable stored under key ");
printf("%*s into. |If you\n", key.len, key.arr);
printf("don't want the file in the current directory, enter the\n");
printf("full path: ");
gets(filename);
do_retrieve((varchar *)&key, filename);
break;
case 'L': case 'l'
/* User selected list - just call the list routine. */
|ist_executables();
br eak;
case 'D: case 'd":
/* User selected delete - get the key for the executable to delete. */
printf("Enter the key for the executable you wish to delete: ");
key.len = strlen(gets((char *)key.arr));
do_del ete((varchar *)&key);
br eak;
case 'Q: case '(q':
/* User selected quit - just end the loop. */
ok = 0;
br eak;
defaul t:
/* Invalid selection. */
printf("lnvalid selection.\n");
break;

}

if (ok)
{

/* Print the menu again. */
print_menu();
gets(reply);

}

EXEC SQL COW T WORK RELEASE;
}

/* Connect to the database. */
voi d do_connect ()

{

/* Note this declaration: uid is a char * pointer, so Oracle

Advanced Topics 5-15

Datatype Equivalencing

will do a strlen() onit at runtime to deternine the |ength.
*|
char *uid = "scott/tiger";

EXEC SQL WHENEVER SQLERROR DO sql _error("do_connect (): CONNECT");
EXEC SQL CONNECT : ui d;

printf("Connected.\n");

/* Creates the executables table. */

voi d create_table()

{
/* We are going to check for errors ourselves for this statenent. */
EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL DRCP TABLE EXECUTABLES;
if (sqglca.sqlcode == 0)
{
printf("EXECUTABLES table successfully dropped. ");
printf("Now creating new table...\n");
}
else if (sqlca.sql code == NON_EXI STENT)
{
printf("EXECUTABLES tabl e does not exist. ");
printf("Now creating new table...\n");

}

el se
sql _error("create_table()");

/* Reset error handler. */
EXEC SQL WHENEVER SQLERROR DO sql _error("create_tabl e(): CREATE TABLE");

EXEC SQL CREATE TABLE EXECUTABLES
(name VARCHAR2(30), |ength NUMBER(10), binary BLOB) ;

printf("EXECUTABLES table created.\n");
}

/* QOpens the binary file identified by 'filename' for reading, and wites
it intointo a Binary LOB. Returns the actual length of the file read.
*/
ub4 read_file(filename, blob)
char *filenang;
CCl Bl obLocat or *bl ob;

{
ong_varraw *| vr;
ub4 buf si ze;
ub4 ant ;
ub4 filelen, remainder, nbytes;
ub4 of fset = 1,
bool ean |ast = FALSE;
FI LE *in_fd,

/* Qpen the file for reading. */
infd = fopen(filename, "r");
if (in_fd == (FILE *)0)

return (ub4)o0;

5-16 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

/* Determine Total File Length - Total Ampunt to Wite to BLOB */
(void) fseek(in_fd, OL, SEEK END);
ant = filelen = (ub4)ftell(in_fd);

/* Determine the Buffer Size and Allocate the LONG VARRAW Chj ect */
buf si ze = 2048;
Ivr = (long_varraw *) nal | oc(si zeof (ub4) + bufsize);

nbytes = (filelen > bufsize) ? bufsize : filelen;

/* Reset the File Pointer and Performthe Initial Read */

(void) fseek(in_fd, OL, SEEK_SET);

lvr->len = fread((void *)lvr->buf, (size_t)1, (size_t)nbytes, in_fd);
remai nder = filelen - nbytes;

EXEC SQL WHENEVER SQLERROR DO sql _error("read_file(): WRITE");

if (remainder == 0)
{
/* Wite the BLOB in a Single Piece */
EXEC SQL LOB WRI TE ONE : ant
FROM : I vr W TH LENGTH : nbytes I NTO :blob AT :offset;

/* Wite the BLOB in Miltiple Pieces using Standard Polling */
EXEC SQL LOB WRI TE FI RST : ant
FROM : I vr W TH LENGTH : nbytes I NTO : bl ob AT :offset;

do {

if (remainder > bufsize)
nbytes = bufsi ze;

el se
{
nbytes = renai nder;
| ast = TRUE;
}

if ((Ivr->len = fread(
(void *)lvr->buf, (size_t)1, (size_t)nbytes, in_fd)) != nbytes)
last = TRUE

if (last)
{
/* Wite the Final Piece */
EXEC SQL LOB WRI TE LAST : ant
FROM : | vr W TH LENGTH : nbytes | NTO : bl ob;
}
el se
{
/* Wite an InterimPiece - Still Mre to Wite */
EXEC SQL LOB WRI TE NEXT : ant
FROM : | vr W TH LENGTH : nbytes | NTO : bl ob;
}

remai nder -= nbytes;

} while (!last && !feof (in_fd));

Advanced Topics 5-17

Datatype Equivalencing

/* Close the file, and return the total file size. */
fclose(in_fd);

free(lvr);

return filelen;

/* Generic error handler. The 'routine' parameter should contain the name
of the routine executing when the error occured. This would be specified
in the 'EXEC SQL WHENEVER SQLERROR DO sql _error()' statenent.

*/

void sql _error(routine)

char *routine;

{
char nessage_buffer[512];
size_t buffer_size;
size_t message_| ength;
[* Turn off the call to sql_error() to avoid a possible infinite |oop */
EXEC SQ WHENEVER SQLERROR CONTI NUE;
printf("\nOracle error while executing %!\n", routine);
/* Use sglglm) to get the full text of the error nessage. */
buffer_size = sizeof (nessage_buffer);
sql gl m(message_buffer, &buffer_size, &ressage |ength);
printf("%*s\n", message_| ength, nessage_buffer);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

/* Opens the binary file identified by 'filename' for witing, and copies
the contents of the Binary LOB into it.

*/

void wite_file(filenane, blob)

char *fil enane;

CCl Bl obLocat or *bl ob;

{
FI LE *out _fd; /* File descriptor for the output file */
ub4 ant ;
ub4 buf si ze;

| ong_varraw *| vr;

/* Determine the Buffer Size and Allocate the LONG VARRAW Chj ect */
buf si ze = 2048;
Ivr = (long_varraw *) nal | oc(si zeof (ub4) + bufsize);

/* Qpen the output file for Witing */
out_fd = fopen(filename, "wW');
if (out_fd == (FILE *)0)

return;
ant = 0; [* Initialize for Standard Polling (Possibly) */
Ivr->len = bufsi ze; /* Set the Buffer Length */

EXEC SQL WHENEVER SQLERROR DO sql _error("wite_file(): READ");

5-18 Pro*C/C++ Programmer’s Guide

Datatype Equivalencing

/* READ the BLOB using a Standard Pol ling Loop */
EXEC SQ. WHENEVER NOT FOUND DO br eak;
whi l e (TRUE)
{
EXEC SQL LOB READ :ant FROM :blob INTO :Ivr WTH LENGTH : buf si ze;
(void) fwite((void *)lvr->buf, (size_t)1, (size_t)lvr->len, out_fd);

}

EXEC SQL VWHENEVER NOT FOUND CONTI NUE;

/* Wite the Final Piece (or First and Only Piece if not Polling) */
(void) fwite((void *)Ivr->buf, (size_t)lvr->len, (size_t)1, out_fd);

/* Cose the Qutput File and Return */
fclose(out_fd);

free(lvr);

return;

/* Inserts the binary file identified by file into the
* executables table identified by key.
*/
voi d do_insert(key, file)
var char *key;
char *file;
{
CCl Bl obLocat or *bl ob;
ub4 loblen, fillen;

EXEC SQ ALLOCATE : bl ob;
EXEC SQL WHENEVER SQLERROR DO sql _error("do_insert(): | NSERT/ SELECT");
EXEC SQL SAVEPO NT PREI NSERT;
EXEC SQ | NSERT
I NTO execut abl es (name, length, binary) VALUES (:key, 0, enpty_blob());

EXEC SQL SELECT binary INTO : bl ob
FROM execut abl es WHERE name = :key FOR UPDATE;

printf(
“Inserting file '%' under key '%*s'...\n", file, key->len, key->arr);

fillen = read_file(file, blob);
EXEC SQL LOB DESCRIBE : bl ob GET LENGTH I NTO : | obl en;

if ((fillen == 0) || (fillen != loblen))

{
printf("Problemreading file "'%'\n", file);
EXEC SQL ROLLBACK TO SAVEPQO NT PREI NSERT;
EXEC SQ. FREE : bl ob;
return;

}

EXEC SQL WHENEVER SQLERROR DO sql _error("do_insert(): UPDATE");
EXEC SQL UPDATE execut abl es
SET length = :loblen, binary = :blob WHERE nane = :Kkey;

Advanced Topics 5-19

Datatype Equivalencing

EXEC SQL COWM T WORK;

EXEC SQL FREE : bl ob;
EXEC SQL COW T;
printf("Inserted.\n");

/* Retrieves the executable identified by key into file */
void do_retrieve(key, file)

var char *key;

char *file;

{
OCl Bl obLocator *bl ob;

printf("Retrieving executable stored under key '%*s' to file "'%'...\n",
key->len, key->arr, file);

EXEC SQL ALLCCATE : bl ob;

EXEC SQL WHENEVER NOT FOUND conti nue;
EXEC SQL SELECT binary INTO : bl ob FROM execut abl es WHERE nane = : key;

if (sqglca.sqlcode == NOT_FOUND)
printf("Key '%*s' not found!'\n", key->len, key->arr);
el se
{
wite file(file, blob);
printf("Retrieved.\n");
}

EXEC SQL FREE : bl ob;

/* Delete an executable fromthe database */
voi d do_del et e(key)
varchar *key;

{
EXEC SQL WHENEVER SQLERROR DO sql _error("do_del ete(): DELETE");
EXEC SQL DELETE FROM execut abl es WHERE nane = : key;
if (sqglca.sqlcode == NOT_FOUND)
printf("Key '%*s" not found!'\n", key->len, key->arr);
el se
printf("Deleted.\n");
}

/* List all executables currently stored in the database */
void |ist_executables()

{
char key[21];
ub4 length;
EXEC SQL WHENEVER SQLERROR DO sql _error("list_executabl es");

EXEC SQL DECLARE key_cursor CURSOR FOR
SELECT nane, |ength FROM execut abl es;

5-20 Pro*C/C++ Programmer’s Guide

The C Preprocessor

EXEC SQL OPEN key_cursor;

printf("\nExecutabl es Length (bytes)\n");
printf(-----mmmmmmiiiiee e \n");
EXEC SQL WHENEVER NOT FOUND DO br eak;
while (1)
{
EXEC SQL FETCH key_cursor INTO :key, :length;
printf("% 9%0d\n", key, length);
}

EXEC SQL WHENEVER NOT FOUND CONTI NUE;
EXEC SQL CLOSE key_cursor;

printf("\nTotal Executables: %\n", sqglca.sqlerrd2]);

/* Prints the nenu selections. */
voi d print_menu()
{
printf
printf("(l)nsert a new executable into the database\n");

nSanpl e 4 Menu. Wuld you like to:\n");

("\

("(
printf("(Ryetrieve an executable fromthe database\n");
printf("(L)ist the executables stored in the database\n");
printf("(D)elete an executable fromthe database\n");
printf("(Quit the programn\n");
printf("Enter i, r, I, or g ");

The C Preprocessor

Pro*C/C++ supports most C preprocessor directives. Some of the things that you can
do using the Pro*C/C++ preprocessor are:

= Define constants and macros using the #define directive, and use the defined
entities to parameterize Pro*C/C++ datatype declarations, such as VARCHAR

= Read files required by the precompiler, such as sql ca. h, using the #include
directive

= Define constants and macros in a separate file, and have the precompiler read this
file using the #include directive

How the Pro*C/C++ Preprocessor Works

The Pro*C/C++ preprocessor recognizes most C preprocessor commands, and
effectively performs the required macro substitutions, file inclusions, and conditional
source text inclusions or exclusions. The Pro*C/C++ preprocessor uses the values
obtained from preprocessing, and alters the source output text (the generated . ¢
output file).

An example should clarify this point. Consider the following program fragment:

#include "ny_header. h"

VARCHAR nane[VC_LEN]; /* a Pro*C-supplied datatype */
char anot her _nane[VC_LEN] ; /* a pure C datatype */

Advanced Topics 5-21

The C Preprocessor

Suppose the file my_header . h in the current directory contains, among other things,
the line

#define VC LEN 20

The precompiler reads the file my_header . h, and uses the defined value of VC_LEN
(20), declares the structure of name as VARCHAR][20].

char is a native type. The precompiler does not substitute 20 in the declaration of
another_name[VC_LEN].

This does not matter, since the precompiler does not need to process declarations of C
datatypes, even when they are used as host variables. It is left up to the C compiler's
preprocessor to actually include the file ny _header . h, and perform the substitution
of 20 for VC_LEN in the declaration of another_name.

Preprocessor Directives

The preprocessor directives that Pro*C/C++ supports are:
= #define, to create macros for use by the precompiler and the C or C++ compiler
= #include, to read other source files for use by the precompiler

= #if, to precompile and compile source text based on evaluation of a constant
expression to 0

« #ifdef, to precompile and compile source text conditionally, depending on the
existence of a defined constant

« #ifndef, to exclude source text conditionally
« #endif, to end an #if or #ifdef or #ifndef command

= #else, to select an alternative body of source text to be precompiled and compiled,
in case an #if or #ifdef or #ifndef condition is not satisfied

= #elif, to select an alternative body of source text to be precompiled and compiled,
depending on the value of a constant or a macro argument

Directives Ignored

Some C preprocessor directives are not used by the Pro*C/C++ preprocessor. Most of
these directives are not relevant for the precompiler. For example, #pragma is a
directive for the C compiler—the precompiler does not process it. The C preprocessor
directives not processed by the precompiler are:

= #, to convert a preprocessor macro parameter to a string constant

= ##, to merge two preprocessor tokens in a macro definition

= #error, to produce a compile-time error message

= #pragma, to pass implementation-dependent information to the C compiler
= #line, to supply a line number for C compiler messages

While your C compiler preprocessor may support these directives, Pro*C/C++ does
not use them. Most of these directives are not used by the precompiler. You can use
these directives in your Pro*C/C++ program if your compiler supports them, but only
in C or C++ code, not in embedded SQL statements or declarations of variables using
datatypes supplied by the precompiler, such as VARCHAR.

5-22 Pro*C/C++ Programmer’s Guide

The C Preprocessor

ORA_PROC Macro

Pro*C/C++ predefines a C preprocessor macro called ORA_PROC that you can use to
avoid having the precompiler process unnecessary or irrelevant sections of code. Some
applications include large header files, which provide information that is unnecessary
when precompiling. By conditionally excluding such header files based on the ORA_
PROC macro, the precompiler never reads the file.

The following example uses the ORA_PROC macro to exclude thei rrel evant . h
file:

#ifndef ORA_PRCC
#include <irrel evant. h>
#endi f

Because ORA_PROC is defined during precompilation, the i rr el evant . h file is
never included.

The ORA_PROC macro is available only for C preprocessor directives, such as #ifdef
or #ifndef. The EXEC ORACLE conditional statements do not share the same
namespaces as the C preprocessor macros. Therefore, the condition in the following
example does not use the predefined ORA_PROC macro:

EXEC ORACLE | FNDEF ORA_PRCC,
<section of code to be ignored>
EXEC ORACLE ENDI F;

ORA_PROC, in this case, must be set using either the DEFINE option or an EXEC
ORACLE DEFINE statement for this conditional code fragment to work properly.

Location of Header File Specification

The Pro*C/C++ Precompiler for each system assumes a standard location for header
files to be read by the preprocessor, such as sql ca. h, or aca. h, and sql da. h. For
example, on most UNIX systems, the standard location is $ORACLE_

HOVE/ pr econp/ publ i c. For the default location on your system, see your
system-specific Oracle documentation. If header files that you need to include are not
in the default location, you must use the INCLUDE= option, on the command line or
as an EXEC ORACLE option.

To specify the location of system header files, such as st di 0. h ori ostream h,
where the location might be different from that hard-coded into Pro*C/C++ use the
SYS_INCLUDE precompiler option.

See Also: Chapter 10, "Precompiler Options" for information on
the precompiler options, and about the EXEC ORACLE options.

Some Preprocessor Examples

You can use the #define command to create named constants, and use them in place of
"magic numbers" in your source code. You can use #defined constants for declarations
that the precompiler requires, such as VARCHAR[const]. For example, instead of code
with bugs, such as:

VARCHAR enp_nane[10];
VARCHAR dept | oc[14];

/* much later in the code ... */

Advanced Topics 5-23

The C Preprocessor

f42()

/* did you remenber the correct size? */
VARCHAR new_dept _| oc[10];

}

you can code:

#def i ne ENAME LEN 10
#define LOCATION LEN 14
VARCHAR new_enp_nane[ENAME_LEN] ;

/* much later in the code ... */
f42()

{
VARCHAR new_dept _| oc[LOCATI ON_LEN] ;

}

You can use preprocessor macros with arguments for objects that the precompiler must
process, just as you can for C objects. For example:

#define ENAME LEN 10
#define LOCATI ON_LEN 14
#define MX(A B) ((A) > (B) ? (A : (B)

£43()
{

/* need to declare a tenporary variable to hold either an
enpl oyee nane or a departnment |ocation */
VARCHAR narme_| oc_t enp[MAX(ENAME_LEN, LOCATI ON_LEN)];

}

You can use the #include, #ifdef and #endif preprocessor directives to conditionally
include a file that the precompiler requires. For example:

#i f def ORACLE_MODE
#include <sql ca. h>
#el se

| ong SQLCODE;
#endi f

Using #define

There are restrictions on the use of the #define preprocessor directive in Pro*C/C++
You cannot use the #define directive to create symbolic constants for use in executable
SQL statements. The following invalid example demonstrates this:

#define RESEARCH DEPT 40

EXEC SQL SELECT enpno, sal
I NTO : enp_nunber, :salary /* host arrays */
FROM enp
WHERE dept no = RESEARCH DEPT; /* INVALID */

The only declarative SQL statements where you can legally use a #defined macro are
TYPE and VAR statements. So, for example, the following uses of a macro are legal in
Pro*C/C++

5-24 Pro*C/C++ Programmer’s Guide

The C Preprocessor

#define STR_LEN 40
typedef char asciiz[STR LEN ;
EXEC SQL TYPE asciiz IS STRING STR_LEN) REFERENCE;

EXEC SQL VAR password |'S STRING(STR LEN);

Other Preprocessor Restrictions

The preprocessor ignores directives # and ## to create tokens that the precompiler
must recognize. You can use these commands (if your compiler supports them) in pure
C code that the precompiler does not have to process. Using the preprocessor
command ## is not valid in this example:

#def i ne MAKE_COL_NAME(A) col ## A

EXEC SQL SELECT MAKE_COL_NAME(1), MAKE_COL_NAME(2)
INTO : %, :y
FROM t abl el;

The example is incorrect because the precompiler ignores ##.

SQL Statements Not Allowed in #include

Because of the way the Pro*C/C++ preprocessor handles the #include directive, as
described in the previous section, you cannot use the #include directive to include
files that contain embedded SQL statements. You use #include to include files that
contain purely declarative statements and directives; for example, #defines, and
declarations of variables and structures required by the precompiler, such as in

sqgl ca. h.

Include the SQLCA, ORACA, and SQLDA

You can include the sqgl ca. h, or aca. h, and sql da. h declaration header files in
your Pro*C/C++ program using either the C/C++ preprocessor #include command,
or the precompiler EXEC SQL INCLUDE command. For example, you use the
following statement to include the SQL Communications Area structure (SQLCA) in
your program with the EXEC SQL option:

EXEC SQL | NCLUDE sql ca;
To include the SQLCA using the C/C++ preprocessor directive, add the following
code:

#include <sql ca. h>

See Also: Chapter 9, "Handling Runtime Errors" for complete
information on the content of the sql ca. h, or aca. h, and the
sgl da. h header files.

When you use the preprocessor #include directive, you must specify the file extension
(such as . h).

Advanced Topics 5-25

The C Preprocessor

Note: If you need to include the SQLCA in multiple places, using
the #include directive, you should precede the #include with the
directive #undef SQLCA. This is because sql ca. h starts with the
lines

#i fndef SQLCA
#define SQLCA 1

and then declares the SQLCA struct only in the case that SQLCA is
not defined.

When you precompile a file that contains a #include directive or an EXEC SQL
INCLUDE statement, you have to tell the precompiler the location of all files to be
included. You can use the INCLUDE= option, either in the command line, or in the
system configuration file, or in the user configuration file.

See Also: Chapter 10, "Precompiler Options" for more
information about the INCLUDE precompiler option, the
precedence of searches for included files, and configuration files.

The default location for standard preprocessor header files, such as sql ca. h,

oraca. h, and sgl da. h, is preset in the precompiler. The location varies from system
to system. See your system-specific Oracle documentation for the default location on
your system.

When you compile the . ¢ output file that Pro*C/C++ generates, you must use the
option provided by your compiler and operating system to identify the location of
included files.

For example, on most UNIX systems, you can compile the generated C source file
using the command

cc -0 prognane -|$ORACLE_HOMVE/ sql lib/public ... filenane.c ...

On VAX/OPENVMS systems, you pre-pend the include directory path to the value in
the logical VAXC$INCLUDE.

EXEC SQL INCLUDE and #include Summary

When you use an EXEC SQL INCLUDE statement in your program, the precompiler
includes the source text in the output (. c) file. Therefore, you can have declarative and
executable embedded SQL statements in a file that is included using EXEC SQL
INCLUDE.

When you include a file using #include, the precompiler merely reads the file, and
keeps track of #defined macros.

Caution: VARCHAR declarations and SQL statements are not
allowed in included (#i ncl ude) files. For this reason, you cannot
use SQL statements in files included using the Pro*C/C++
preprocessor #i ncl ude directive.

5-26 Pro*C/C++ Programmer’s Guide

Precompiled Header Files

Defined Macros

Include Files

If you define macros on the C compiler's command line, you might also have to define
these macros on the precompiler command line, depending on the requirements of
your application. For example, if you compile with a UNIX command line such as

cc -DDEBLG ...

you should precompile using the DEFINE= option, namely
proc DEFI NE=DEBUG . ..

The location of all included files that need to be precompiled must be specified on the
command line, or in a configuration file.

For example, if you are developing under UNIX, and your application includes files in
the directory / home/ pr oj ect 42/ i ncl ude, you must specify this directory both on
the Pro*C/C++ command line and on the cc command line. You use commands like
these:

proc inane=ny_app. pc i ncl ude=/ home/ proj ect42/include ...
cc -1/ hone/ projectd2/include ... ny_app.c

or you include the appropriate macros in a makefile. For complete information about
compiling and linking your Pro*C/C++ application, see your system-specific Oracle
documentation.

See Also: "INCLUDE" on page 10-19, for complete information
about precompiler options and configuration files.

Precompiled Header Files

Precompiled header files save time and resources by precompiling header files that
contain many #i ncl ude statements. The two steps in using this feature are:

« The precompiled header file is created first,

= The precompiled header is then automatically used in subsequent precompilation
of your application.

Use this capability with large applications that have many modules.
The precompiler option, HEADER=hdr , specifies

= That precompiled headers are to be used,

= That the file extension for the output file to be generated is hdr .

This option can only be entered in a configuration file or on the command line. There
is no default value for HEADER, but the input header must have a . h extension.

Precompiled Header File Creation

Assume that you have a header file called t op. h. Then you can precompile it,
specifying that HEADER=hdTr :

proc HEADER=hdr | NAME=t op. h

Advanced Topics 5-27

Precompiled Header Files

Note: You must provide the "h' extension. You cannot use an

[

absolute path element or relative path elements such as '/, "..", and
so on., in the INAME value.

Pro*C/C++ precompiles the given input file, t op. h, and generates a new precompiled
header file, t op. hdr, in the same directory. The output file, t op. hdr, can be moved
to a directory that the #i ncl ude statement will cause to be searched.

Note: Do not use the ONAME option to name the output file; it is
ignored when used with HEADER.

Use of the Precompiled Header Files

Examples

Use the same value of the HEADER option with an application file that is to be
precompiled. If simple.pc contains:

#include <top. h>

and top.h contains:

#include <a. h>
#i ncl ude <b. h>
#i ncl ude <c. h>

then precompile this way:
proc HEADER=hdr | NAME=si npl e. pc
When Pro*C/C++ reads the #i ncl ude t op. h statement, it will search for a

corresponding 'top.hdr' file and instantiate the data from that file instead of
precompiling 'top.h' again.

Note: A precompiled header file will always be used instead of its
input header file even if the input (. h) file appears first in the
standard search hierarchy of the include directories.

This section includes examples demonstrating several different cases.

Redundant File Inclusion
The following two cases illustrate two possibilities for reduntant file inclusion.

Case 1: Top-Level Header File Inclusion

A precompiled header file will only be instantiated once regardless of how many times
the file is included using a #include directive.

Suppose we precompile a top-level header file, top.h, with the value of HEADER set to
'hdr' as before. Next, we code multiple #include directives for that header file in a
program:

#include <top. h>
#include <top. h>

5-28 Pro*C/C++ Programmer’s Guide

Precompiled Header Files

mei n() {}

When the first #include for top.h is encountered, the precompiled header file, top.hdr,
will be instantiated. The second inclusion of that same header file will be redundant
and thus, will be ignored.

Case 2: Nested Header File Inclusion
Suppose the file a.h contains the following statement:

#include <b. h>

and that we precompile that header file specifying HEADER as before. Pro*C/C++
will precompile both a.h and b.h generating a.hdr as a result.

Now suppose we precompile this Pro*C/C++ program:

#include <a. h>
#include <b. h>

mei n() {}

When the #include for a.h is encountered, the a.hdr precompiled header file will be
instantiated instead of precompiling a.h again. This instantiation will also contain the
entire contents of b.h.

Now, because b.h was included in the precompilation of a.h, and a.hdr was
instantiated, the subsequent #include of b.h in our program is redundant and thus,
will be ignored.

Multiple Precompiled Header Files

Pro*C/C++ is capable of instantiating more than one different precompiled header file
in a single precompilation. However, one pitfall to avoid occurs when two or more
precompiled header files share common header files.

For example, suppose topA.h contains the following lines:
#include <a. h>

nclude <c.h>

and that topB.h contains the following lines:

#include <b. h>

#include <c. h>

Notice how topA.h and topB.h both include the same common header file, c.h.
Precompiling topA.h and topB.h with the same HEADER value will yield topA.hdr
and topB.hdr. Both, however, will contain the entire contents of c.h.

Now suppose we have a Pro*C/C++ program:

#include <topA. h>
#i ncl ude <topB. h>

mai n() {}

Both precompiled header files, topA.hdr and topB.hdr will be instantiated as before.
However, because each shares the common header file, c.h, the contents of that file will
be instantiated twice.

Pro*C/C++ cannot determine when such commonality is occurring among
precompiled header files. Try to have each precompiled header file contain a unique
set of included headers. Sharing headers should be avoided as much as possible

Advanced Topics 5-29

Precompiled Header Files

because it will ultimately slow down precompilation and utilize more memory, thus
undermining the basic intent of using precompiled header files.

Effects of Options

The following precompiler options are used with the precompilation of the
application.

DEFINE and INCLUDE Options

During any precompilation using precompiled headers, you must use the same values
for DEFINE and INCLUDE as when you created the precompiled header files. If the
values of DEFINE or INCLUDE change, you must re-create the precompiled header
files.

If development environments change, you must also re-create the precompiled header
files.

Single User Scenario

Consider a single user. If the values of either the DEFINE or the INCLUDE options
were to change, then the contents of the precompiled header files may no longer be
suitable for use in subsequent Pro*C/C++ precompilations.

Because the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options have
changed, the contents of the precompiled header file may no longer be consistent with
what a standard precompilation would result in had the corresponding .h file in the
#include directive been processed normally.

In short, if the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options
change, any precompiled header files must be re-created and Pro*C/C++ programs
which use them re-precompiled.

See Also:

= "DEFINE" on page 10-14
=« "INCLUDE" on page 10-19

Multiple User Scenario

Consider two users, A and B, who develop in totally separate environments, thus
having completely different values for their DEFINE and INCLUDE options.

User A precompiles a common header file, common.h, creating a precompiled header
file common.hdrA. User B also precompiles the same header file creating
common.hdrB. However, given that the two environments are different, specifically
with respect to the values of the DEFINE and INCLUDE options used by both users, it
is not guaranteed that both user A's and B's versions of common.hdr will be the same.

To summarize

A> proc HEADER=hdr A DEFI NE=<A macro0s> | NCLUDE=<A dirs> common. h
B> proc HEADER=hdr B DEFI NE=<B macros> | NCLUDE=<B dirs> common. h

The generated precompiled header files common.hdrA may not equal common.hdrB
because of the different environments in which they where created. This means that
neither user A nor user B would be guaranteed that using the common.hdr created by
the other user would result in correct precompilation of the Pro*C/C++ programs in
their respective development environments.

5-30 Pro*C/C++ Programmer’s Guide

Precompiled Header Files

Therefore, care should be taken when sharing or exchanging precompiled header files
between different users and different users' development environments.

CODE and PARSE Options

Pro*C/C++ does not search for C++ header files with extensions such as hpp or h++.
So do not use CODE=CPP when precompiling header files. You may use the CPP
value when precompiling the application, as long as the source code only includes . h
header files.

You can only use the values FULL or PARTIAL for the option PARSE when creating
the precompiled header files, or when precompiling the modules. The value FULL is
considered to be of higher value than PARTIAL. The value of PARSE used should be
the same or lower when precompiling modules as when you created the precompiled
header files.

Note: Precompiling the precompiled header file with
PARSE=FULL and then precompiling modules with
PARSE=PARTIAL requires that the host variables be declared
inside a Declare Section. C++ code will only be understood when
PARSE=PARTIAL.

Suppose we precompile a header file with PARSE set to PARTIAL as follows:
proc HEADER=hdr PARSE=PARTIAL file.h

and then try to precompile a program that includes that header file using PARSE set to
FULL:

proc HEADER=hdr PARSE=FULL program pc

Because file.h was precompiled using a PARTIAL setting for the PARSE option, not all
of the header file would have been processed. It would therefore be possible for an
error to occur during the precompilation of the Pro*C/C++ program if a reference was
made to something in the unprocessed portion.

To illustrate, suppose that file.h contained the following code:

#define LENGTH 10
typedef int nyint;

and that our program.pc contained the following short program:

#include <file.h>
mai n()
{
VARCHAR ename[LENGTH] ;
myint enmpno = ...;
EXEC SQL SELECT enane | NTO : enane WHERE JOB = : enpno;
}

Because PARSE was set to PARTIAL when precompiling file.h, only the LENGTH
macro would have been processed leaving the typedef unseen.

The VARCHAR declaration and subsequent use as a host variable would succeed.
However, the use of the empno host variable would not because the nyi nt type
declaration would never have been processed by Pro*C/C++.

Advanced Topics 5-31

The Oracle Preprocessor

Usage Notes

Precompiling the header file with the PARSE option set to FULL and then
precompiling the program with PARSE set to PARTIAL would work. However, the
host variables would have to be declared inside an explicit DECLARE SECTION.

See Also:

= "CODE" on page 10-10

« 'Parsing Code" on page 12-3
= "PARSE" on page 10-26

The file format of the generated output file of a precompiled header is not guaranteed
to remain fixed from one release to the next. Pro*C/C++ has no way of determining
which version of the precompiler was used to generate the precompiled header file
output.

Because of this, it is strongly recommended that, in order to avoid the possibility of
errors or other strange behavior during a precompilation that uses precompiled
header files, those files be regenerated by re-precompiling the corresponding header
files when upgrading to newer releases of Pro*C/C++.

The generated output from the precompilation of a header file is completely
non-portable. This means that you cannot transfer the output file from the
precompilation of a header file from one platform to another and use that file during
the subsequent precompilation of another header file or Pro*C/C++ program.

The Oracle Preprocessor

Conditional sections of code are marked by EXEC ORACLE directives that define the
environment and actions to take. You can code C statements as well as embedded SQL
statements and directives in these sections. The following EXEC ORACLE directives
let you exercise conditional control over precompilation:

EXEC ORACLE DEFI NE symbol ; -- define a synbol

EXEC ORACLE | FDEF symbol ; -- if synbol is defined
EXEC ORACLE | FNDEF synhol ; -- if synbol is not defined
EXEC ORACLE ELSE; -- otherw se

EXEC ORACLE ENDI F; -- end this block

All EXEC ORACLE statements must be terminated with a semi-colon.

Symbol Definition

You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFI NE synbol ;

in your host program or define the symbol on the command line using the syntax

. INAME=fil enane ... DEFI NE=synhol

where symbol is not case-sensitive.

Note: The #def i ne preprocessor directive is not the same as the
EXEC ORACLE DEFINE command.

5-32 Pro*C/C++ Programmer’s Guide

Evaluation of Numeric Constants

Some port-specific symbols are predefined for you when the Pro*C/C++ precompiler
is installed on your system.

An Oracle Preprocessor Example

In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE | FDEF site2;
EXEC SQL SELECT DNAVE
I NTO : dept _nane
FROM DEPT
WHERE DEPTNO = :dept _nunber;
EXEC ORACLE ENDI F;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE | FDEF outer;
EXEC ORACLE | FDEF i nner;

EXEC CRACLE ENDI F;
EXEC ORACLE ENDI F;

You can "Comment out" C or embedded SQL code by placing it between IFDEF and
ENDIF and not defining the symbol.

Evaluation of Numeric Constants

Previously, Pro*C/C++ allowed only numeric literals and simple constant expressions
involving numeric literals to be used when declaring the sizes of host variables (such
as char or VARCHAR), as in the following examples:

#define LENGTH 10
VARCHAR V[LENGTH] ;
char c[LENGTH + 1];

You can now also use numeric constant declarations such as:

const int length = 10;
VARCHAR v[| engt h];
char c[length + 1];

This is highly desirable, especially for programmers who use ANSI or C++ compilers
that support such constant declarations.

Pro*C/C++ has always determined the values of constant expressions that can be
evaluated, but it has never allowed the use of a numeric constant declaration in any
constant expression.

Pro*C/C++ supports the use of numeric constant declarations anywhere that an
ordinary numeric literal or macro is used, given the macro expands to some numeric
literal.

This is used primarily for declaring the sizes of arrays for bind variables to be used in
a SQL statement.

Numeric Constants in Pro*C/C++

In Pro*C/C++, normal C scoping rules are used to find and locate the declaration of a
numeric constant declaration.

Advanced Topics 5-33

SQLLIB Extensions for OCI Release 8 Interoperability

const int g = 30; /* G obal declaration to both function_1()
and function_2() */
voi d function_1()

{
const int a = 10; /* Local declaration only to function_1() */
char x[a];
exec sqgl select ename into :x fromenp where job = ' PRESI DENT' ;
}
voi d function_2()
{
const int a =20; /* Local declaration only to function_2() */
VARCHAR v[a] ;
exec sqgl select ename into :v fromenp where job = ' PRESI DENT';
}
voi d main()
{
char nlg]; /* The global g */
exec sqgl select ename into :mfromenp where job = ' PRESI DENT';
}

Numeric Constant Rules and Examples

Variables which are of specific static types need to be defined with static and
initialized. The following rules must be kept in mind when declaring numeric
constants in Pro*C/C++:

= The const qualifier must be used when declaring the constant

« Aninitializer must be used to initialize the value of the constant. This initializer
must be precompile-time evaluable.

Any attempt to use an identifier that does not resolve to a constant declaration with a
valid initializer is considered an error.

The following shows examples of what is not permitted and why:

int a;

int b= 10;

vol atile c;
volatile d = 10;
const e;

const f = b;

VARCHAR v1[a]; /* No const qualifier, nmissing initializer */

VARCHAR v2[b]; /* No const qualifier */
VARCHAR v3[c]; /* Not a constant, missing initializer */
VARCHAR v4[d]; /* Not a constant */
VARCHAR v5[€] ; /* Mssing initializer */

VARCHAR v6[f]; /* Bad initializer.. b is not a constant */

SQLLIB Extensions for OCI Release 8 Interoperability

An OCI environment handle will be tied to the Pro*C/C++ runtime context, which is
of the sql_context type. That is, one Pro*C/C++ runtime context maintained by SQLLIB
during application execution will be associated with at most one OCI environment
handle. Multiple database connections are allowed for each Pro*C/C++ runtime
context, which will be associated to the OCI environment handle for the runtime
context.

5-34 Pro*C/C++ Programmer’s Guide

Interface to OCI Release 8

Runtime Context in the OCI Release 8 Environment

An EXEC SQL CONTEXT USE statement specifies a runtime context to be used in a
Pro*C/C++ program. This context applies to all executable SQL statements that
positionally follow it in a given Pro*C/C++ file until another EXEC SQL CONTEXT
USE statement occurs. If no EXEC SQL CONTEXT USE appears in a source file, the
default "global" context is assumed. Thus, the current runtime context, and therefore
the current OCI environment handle, is known at any point in the program.

The runtime context and its associated OCI environment handle are initialized when a
database logon is performed using EXEC SQL CONNECT in Pro*C/C++.

When a Pro*C/C++ runtime context is freed using the EXEC SQL CONTEXT FREE
statement, the associated OCI environment handle is terminated and all of its
resources, such as space allocated for the various OCI handles and LOB locators, are
de-allocated. This command releases all other memory associated with the Pro*C/C++
runtime context. An OCI environment handle that is established for the default
"global" runtime remains allocated until the Pro*C/C++ program terminates.

Parameters in the OCI Release 8 Environment Handle

An OCI environment established through Pro*C/C++ will use the following
parameters:

« The callback functions used by the environment for allocating memory, freeing
memory, writing to a text file, and flushing the output buffer will be trivial
functions that call malloc(), free(), fprintf(stderr, ...), and fflush(stderr) respectively.

» The language will be obtained from the Globalization Support variable NLS_
LANG.

= The error message buffer will be allocated in thread-specific storage.

Interface to OCI Release 8

SQLLIB library provides routines to obtain the OCI environment and service context
handles for database connections established through a Pro*C/C++ program. Once the
OCI handles are obtained, the user can call various OCI routines, for example, to
perform client-side DATE arithmetic, execute navigational operations on objects and
so on. These SQLLIB functions are described later, and their prototypes are available in
the public header file sql 2oci . h.

A Pro*C/C++ user who mixes embedded SQL and calls in the other Oracle
programmatic interfaces must exercise reasonable care. For example, if a user
terminates a connection directly using the OCI interface, SQLLIB state is out-of-sync;
the behavior for subsequent SQL statements in the Pro*C/C++ program is undefined
in such cases.

Note: Pro*C/C++, the Oracle Call Interface (OCI) release 8, and
XA are not compatible. The combined use of Pro*C/C++, OCI
release 8, and XA is only recommended in Oracle9:i.

Starting with release 8.0, the new SQLLIB functions that provide interoperability with
the Oracle OCI are declared in header file sql 2oci . h:

= SQLEnvGet (), to return a pointer to an OCI environment handle associated with
a given SQLLIB runtime context. Used for both single and shared server
environments.

Advanced Topics 5-35

Interface to OCI Release 8

» SQSvcC xCet (), to return an OCI service context handle for a Pro*C/C++
database connection. Used for both single and shared server environments.

= Pass the constant SQL_SI NGLE_RCTX, defined as (dvoi d *) 0, when you include
sql2oci.h, as the first parameter in either function, when using single threaded

runtime contexts.

See Also:

SQLEnvGet()

Chapter 17, "Objects"

The SQLLIB library function SQLEnvGet () (SQLLIB OCI Environment Get) returns
the pointer to the OCI environment handle associated with a given SQLLIB runtime
context. The prototype for this function is:

sword SQLEnvGet (dvoid *rctx, OCl Env **oeh);

where:
Terms Description
Description Sets oeh to the OCIEnv corresponding to the runtime context
Parameters rctx (IN) pointer to a SQLLIB runtime context
oeh (OUT) pointer to OCIEnv
Returns SQL_SUCCESS on success
SQL_ERROR on failure
Notes The usual error status variables in Pro*C/C++ such as SQLCA
and SQLSTATE will not be affected by a call to this function
SQLSvcCtxGet()

The SQLLIB library function SQLSvcCt xGet () (SQLLIB OCI Service Context Get)
returns the OCI service context for the Pro*C/C++ database connection. The OCI
service context can then be used in direct calls to OCI functions. The prototype for this

function is:

sword SQLSvcCtxGet (dvoid *rctx, text *dbnane,
sh4 dbnanel en, OCl SvcCtx **svc);

where:

Terms Description

Description Sets svc to the OCI Service Context corresponding to the runtime
context

Parameters rctx (IN) = pointer to a SQLLIB runtime context
dbname (IN) = buffer containing the "logical" name for this
connection
dbnamelen (IN) = length of the dbname buffer
svc (OUT) = address of an OCISvcCtx pointer

Returns SQL_SUCCESS on success

5-36 Pro*C/C++ Programmer’s Guide

SQL_ERROR on failure

Interface to OCI Release 8

Terms Description

Notes 1. The usual error status variables in Pro*C/C++ such as SQLCA
and SQLSTATE will not be affected by a call to this function

2. dbname is the same identifier used in an AT clause in an
embedded SQL statement.

3. If dbname is a null pointer or dbnamelen is 0, then the default
database connection is assumed, as in a SQL statement with no
AT clause.

4. A value of -1 for dbnamelen is used to indicate that dbname is a
zero-terminated string.

Embedded OCI Release 8 Calls
To embed OCl release 8 calls in your Pro*C/C++ program:
1. Include the public header sql2oci.h
2. Declare an environment handle (type OCIEnv *) in your Pro*C/C++ program:
QCl Env *oeh;
3. Optionally, declare a service context handle (type OCISvcCtx *) in your

Pro*C/C++ program if the OCI function you wish to call requires the Service Context
handle.

QOCl SveCtx *svc;

4. Declare an error handle (type OCIError *) in your Pro*C/C++ program:

OCl Error *err;

5. Connect to Oracle using the embedded SQL statement CONNECT. Do not connect
using OCL.

EXEC SQL CONNECT ...

6. Obtain the OCI Environment handle that is associated with the desired runtime
context using the SQLEnvGet function.

For single threaded applications:

retcode = SQLEnvGet (SQL_SI NGLE_RCTX, &oeh);

or for shared server applications:

sql _context ctxl1;

EXEC SQL CONTEXT ALLOCATE : ctx1;
EXEC SQL CONTEXT USE : ctx1;

EXEC SQL CONNECT :uid | DENTIFI ED BY : pwd;
retcode = SQLEnvGet (ctx1, &oeh);

7. Allocate an OCI error handle using the retrieved environment handle:

retcode = OCl Handl eAl l oc((dvoid *)oeh, (dvoid **)&err,
(ub4) OCl _HTYPE_ERROR, (ub4)0, (dvoid **)0);

8. Optionally, if needed by the OCI call you use, obtain the OCIServiceContext handle
using the SQLSvcCtxGet call:

Advanced Topics 5-37

Embedded OCI Release 7 Calls

For single threaded applications:

retcode = SQLSvcCt xGet (SQL_SI NGLE_RCTX, (text *)dbname, (ub4)dbnlen, &svc);

or, for shared server environment applications:

sql _context ctxl;

EXEC SQL ALLOCATE : ctx1,
EXEC SQL CONTEXT USE :ctx1,

EXEC SQL CONNECT :uid | DENTIFI ED BY : pwd AT :dbnane
USI NG : hst;

retcode = SQLSvcCt xGet (ctx1, (text *)dbnane, (ub4)strlen(dbnane), &svc);

Note: A null pointer may be passed as the dbname if the
Pro*C/C++ connection is not named with an AT clause.

Embedded OCI Release 7 Calls

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

To embed OCl release 7 calls in your Pro*C/C++ program, take the following steps:

= Declare an OCI Logon Data Area (LDA) in your Pro*C/C++ program (outside the
Declare Section if you precompile with MODE=ANSI). The LDA is a structure
defined in the OCI header file oci . h. For details, see the Oracle Call Interface
programmer's Guide for Release 7.

= Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
orlon() oronbl on() calls.

= Call the SQLLIB runtime library function sql | da() to set up the LDA.SQLLIB
function

That way, the Pro*C/C++ Precompiler and the OCI "know" that they are working
together. However, there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the
Oracle runtime library manages connections and maintains the HDA for you.

Set Up the LDA
You set up the LDA by issuing the OCI call
sql l da(& da);

where Ida identifies the LDA data structure.
If the setup fails, the Ida_rc field in the Ida is set to 1012 to indicate the error.

5-38 Pro*C/C++ Programmer’s Guide

New Names for SQLLIB Public Functions

Remote and Multiple Connections

A calltosql | da() sets up an LDA for the connection used by the most recently
executed SQL statement. To set up the different LDAs needed for additional
connections, you must call sql | da() with a different LDA immediately after each
CONNECT. In the following example, you connect to two nondefault databases
concurrently:

#i ncl ude <oci df n. h>
Lda_Def Idail;
Lda_Def |da2;

char username[10], password[10], db_stringl[20], dbstring2[20];

strcpy(usernane, "scott");

strcpy(password, “tiger");

strepy(db_stringl, "NYNON');

strcpy(db_string2, "CH NON');

/* give each database connection a unique nane */

EXEC SQL DECLARE DB _NAME1 DATABASE;

EXEC SQL DECLARE DB_NAME2 DATABASE;

/* connect to first nondefault database */

EXEC SQL CONNECT :usernane | DENTI FI ED BY : passwor d;
AT DB_NAMEL1 USING :db_stringl,;

/* set up first LDA */

sql | da(& dal);

/* connect to second nondefault database */

EXEC SQL CONNECT :usernane | DENTI FI ED BY : passwor d;
AT DB_NAME2 USING :db_string2;

/* set up second LDA */

sql | da(& da2);

DB_NAME1 and DB_NAME?2 are not C variables; they are SQL identifiers. You use
them only to name the default databases at the two nondefault nodes, so that later
SQL statements can refer to the databases by name.

New Names for SQLLIB Public Functions

The names of SQLLIB functions are listed in Table 5-3. You can use these SQLLIB
functions for both threaded and nonthreaded applications. Previously, for example,
sgl gl m() was documented as the nonthreaded or default context version of this
function, while sql gl nt () was the threaded or nondefault context version, with
context as the first argument. The names sql gl n() and sql gl mt () are still
available. The new function SQLEr r or Get Text () requires the same arguments as
sql gl nt () . For nonthreaded or default context applications, pass the defined
constant SQL_SINGLE_RCTX as the context.

Each standard SQLLIB public function is thread-safe and accepts the runtime context
as the first argument. For example, the syntax for SQLEr r or Get Text () is:

voi d SQLErrorGet Text (dvoi d *context, char *message_buffer,
size_t *buffer_size,
size_t *message_| ength);

In summary, the old function names will continue to work in your existing

applications. You can use the new function names in the new applications that you
will write.

Advanced Topics 5-39

New Names for SQLLIB Public Functions

Table 5-3 lists all the SQLLIB public functions and their corresponding syntax.
Cross-references to the nonthreaded or default-context usages are provided to help
you find more complete descriptions.

Table 5-3 SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference
sql al dt () struct SQLDA *SQLSQLDAAI | oc(dvoid See also "Allocating a SQLDA" on
*cont ext, page 15-4 .
unsi gned int mexi mim_
vari abl es,
unsi gned int maxi mum name_
| engt h,
unsi gned int maxi mum i nd_name_
| ength);
sql cdat () voi d See also "Cursor Variables with the OCI
SQLCDAFr onResul t Set Cur sor (dvoi d (Release 7 Only)" on page 4-24.
*cont ext,
Cda_Def *cda,
voi d *cur sor,
sword *return_val ue);
sql clut () voi d SQLSQLDAFree(dvoid *context, See also'Deallocate Storage" on
struct SQLDA page 15-29 .
*descriptor_nane);
sql curt () voi d SQLCDAToResul t Set Cur sor (dvoi d See also "Cursor Variables with the OCI
*cont ext, (Release 7 Only)" on page 4-24 .
voi d *cursor,
Cda_Def *cda,
sword *return_val ue)
sql gl nt() voi d SQLErrorGet Text (dvoid See also "Getting the Full Text of Error
*cont ext, Messages" on page 9-17.
char *message_buffer,
size_t *buffer_size,
size_t *message_|ength);
sql gl st () voi d SQLSt nt Get Text (dvoid See also "Obtaining the Text of SQL
*cont ext, Statements" on page 9-24.
char *statement buffer,
size_t *statement |ength,
size_t *sqlfc);
sql 1 d2t () voi d SQLLDAGet Nane(dvoi d See also "OCI Calls (Release 7 Only)" on
*cont ext page 5-43
Lda_Def *Ida,
t ext *cnane,
i nt *cnane_l ength);
sql I dat () voi d SQLLDAGet Current (dvoi d See also "Remote and Multiple
*cont ext, Connections" on page 5-39.
Lda_Def *lda);
sql nul t () voi d SQLCol utmNul | Check(dvoi d See also "Handling NULL/Not NULL

*cont ext,

unsi gned short *val ue_type,
unsi gned short *type_code,

i nt *nul | _status);

5-40 Pro*C/C++ Programmer’s Guide

Datatypes" on page 15-14.

X/Open Application Development

Table 5-3 (Cont.) SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference
sql pret () voi d SQLNunber PrecV6(dvoi d See also "Extracting Precision and Scale"
*cont ext, on page 15-12.
unsigned long *length,
int *preci sion,
i nt *scal e);
sql pr2t () voi d SQLNunber PrecV7(dvoid See also "Extracting Precision and Scale"
*cont ext, on page 15-12.
unsi gned long *length,
int *preci sion,
i nt *scal e);
sql vept () voi d SQLVar char Get Lengt h(dvoid See also "Find the Length of the
*cont ext, VARCHAR Array Component" on
unsigned long *data_l ength, page 4-18.
unsigned long *total |ength);
N A sword SQLEnvGet (dvoid *context, See "SQLEnvGet()" on page 5-36.
QCl Env **oeh);
N A sword SQLSvcCtxGet (dvoid *context, See "SQLSvcCtxGet()" on page 5-36.
t ext *dbnane,
int dbnanel en,
QOCl SveCt x **syc);
N A voi d SQLRowi dGet (dvoi d *cont ext, See "SQLRowidGet()" on page 4-31.
OCl Rowi d **urid);
N A voi d SQLExt ProcError(dvoid See "SQLExtProcError()" on page 24 for

*cont ext,
char *msg,
size_t msgl en);

a discussion of its use in external
procedures.

Note: For the specific datatypes used in the argument lists for
these functions, refer to your platform-specific version of the

sql cpr. h header file.

See Also: "Interface to OCI Release 8" on page 5-35

X/Open Application Development

X/Open applications run in a distributed transaction processing (DTP) environment.
In an abstract model, an X/Open application calls on resource managers (RMs) to
provide a variety of services. For example, a database resource manager provides
access to data in a database. Resource managers interact with a transaction manager
(TM), which controls all transactions for the application.

Advanced Topics 5-41

X/Open Application Development

Figure 5-1 Hypothetical DTP Model

TX Interface o
Application Program
I A
XA Interface Resource
Transaction Manager
Manager
v
P XA Interface _ Resource
< > Manager
v
Oracle Server Other
Resources

Figure 5-1 shows one way that components of the DTP model can interact to provide
efficient access to data in an Oracle database. The DTP model specifies the XA interface
between resource managers and the transaction manager. Oracle supplies an
XA-compliant library, which you must link to your X/Open application. Also, you
must specify the native interface between your application program and the resource
managers.

The DTP model that specifies how a transaction manager and resource managers
interact with an application program is described in the X/Open guide Distributed
Transaction Processing Reference Model and related publications, which you can obtain
by writing to

The Open Group
1010 El Camino Real, Suite 380
Menlo Park, CA 94025-4345 USA

http://ww. opennc. or g/

For instructions on using the XA interface, see your Transaction Processing (TP)
Monitor user's guide.

Oracle-Specific Issues

You can use the precompiler to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

Connecting to Oracle

The X/Open application does not establish and maintain connections to a database.
Instead, the transaction manager and the XA interface, which is supplied by Oracle,
handle database connections and disconnections transparently. So, normally an
X/Open-compliant application does not execute CONNECT statements.

5-42 Pro*C/C++ Programmer’s Guide

X/Open Application Development

Transaction Control

The X/Open application must not execute statements such as COMMIT, ROLLBACK,
SAVEPOINT, and SET TRANSACTION that affect the state of global transactions. For
example, the application must not execute the COMMIT statement because the
transaction manager handles commits. Also, the application must not execute SQL
data definition statements such as CREATE, ALTER, and RENAME because they issue
an implicit COMMIT.

The application can execute an internal ROLLBACK statement if it detects an error
that prevents further SQL operations. However, this might change in later releases of
the XA interface.

OCI Calls (Release 7 Only)

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

If you want your X/Open application to issue OCI calls, you must use the runtime
library routine sql | d2() , which sets up an LDA for a specified connection
established through the XA interface. For a description of the sql | d2() call, see the
Oracle Call Interface Programmer's Guide for Release 7.

The following OCI calls cannot be issued by an X/Open application: OCOM, OCON,
OCOEF, ONBLON, ORLON, OLON, OLOGOE

For a discussion of how to use OCI Release 8 calls in Pro*C/C++, see also "Interface to
OCI Release 8" on page 5-35.

Linking

To get XA functionality, you must link the XA library to your X/Open application
object modules. For instructions, see your system-specific Oracle documentation.

Advanced Topics 5-43

X/Open Application Development

5-44 Pro*C/C++ Programmer’s Guide

6

Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded
SQL programming. This chapter contains the following topics:

= Host Variables

« Indicator Variables

« The Basic SQL Statements

= The DML Returning Clause

= Cursors

= Optimizer Hints

= The CURRENT OF Clause

= The Cursor Statements

= A Complete Example Using Non-Scrollable Cursor
= A Complete Example Using Scrollable Cursor

Host Variables

Oracle uses host variables to pass data and status information to your program; your
program uses host variables to pass data to Oracle.

Output versus Input Host Variables

Depending on how they are used, host variables are called output or input host
variables.

Host variables in the INTO clause of a SELECT or FETCH statement are called output
host variables because they hold column values output by Oracle. Oracle assigns the
column values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because your
program inputs their values to Oracle. For example, you use input host variables in the
VALUES clause of an INSERT statement and in the SET clause of an UPDATE
statement. They are also used in the WHERE, HAVING, and FOR clauses. Input host
variables can appear in a SQL statement wherever a value or expression is allowed.

Embedded SQL 6-1

Indicator Variables

Attention: In an ORDER BY clause, you can use a host variable,
but it is treated as a constant or literal, and hence the contents of the
host variable have no effect. For example, the SQL statement

EXEC SQL SELECT enane, enpno | NTO : nane, : nunber FROM enp ORDER
BY :ord;

appears to contain an input host variable :ord. However, the host
variable in this case is treated as a constant, and regardless of the
value of :ord, no ordering is done.

You cannot use input host variables to supply SQL keywords or the names of database
objects. Thus, you cannot use input host variables in data definition statements such as
ALTER, CREATE, and DROP. In the following example, the DROP TABLE statement is
invalid:

char tabl e_nane[30];

printf("Table name? ");
gets(tabl e_nane);

EXEC SQL DROP TABLE :table_name; -- host variable not allowed

If you need to change database object names at runtime, use dynamic SQL. See also
Chapter 13, "Oracle Dynamic SQL".

Before Oracle executes a SQL statement containing input host variables, your program
must assign values to them. An example follows:

i nt enp_nunber;
char tenp[20] ;
VARCHAR enp_nane|[20] ;

/* get values for input host variables */
printf("Enpl oyee nunber? ");

gets(tenp);

enp_nunber = atoi (tenp);

printf("Enpl oyee nane? ");

gets(enp_nane. arr);

enp_nane.len = strlen(enp_nanme.arr);

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME)
VALUES (:enp_nunber, :enp_nane);

Notice that the input host variables in the VALUES clause of the INSERT statement are
prefixed with colons.

Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

Note: You cannot use multiple indicator variables with a single
host variable within PL/SQL blocks. Doing so results in a "not all
variables bound" error.

6-2 Pro*C/C++ Programmer’s Guide

Indicator Variables

Insert NULLs

You use indicator variables in the VALUES or SET clauses to assign NULLs to input
host variables. Use indicator variables in the INTO clause to detect NULLs or
truncated values in output host variables.

On Input

The values your program can assign to an indicator variable have the following
meanings:

Variable Description

-1 Oracle will assign a NULL to the column, ignoring the value of
the host variable.

>=0 Oracle will assign the value of the host variable to the column.

On Output

The values Oracle can assign to an indicator variable have the following meanings:

Variable Description
-1 The column value is NULL, so the value of the host variable is
indeterminate.
0 Oracle assigned an intact column value to the host variable.
>0 Oracle assigned a truncated column value to the host variable.

The integer returned by the indicator variable is the original
length of the column value, and SQLCODE in SQLCA is set to
zero.

-2 Oracle assigned a truncated column variable to the host variable,
but the original column value could not be determined (a LONG
column, for example).

Remember, an indicator variable must be defined as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and must immediately follow its host
variable.

You can use indicator variables to INSERT NULLs. Before the INSERT, for each
column you want to be NULL, set the appropriate indicator variable to -1, as shown in
the following example:

set ind_comm= -1,

EXEC SQL | NSERT I NTO enp (enpno, comm
VALUES (: enp_nunber, :conmission:ind_conm;

The indicator variable ind_comm specifies that a NULL is to be stored in the COMM
column.
You can hard code the NULL instead, as follows:

EXEC SQL | NSERT I NTO enp (enpno, conmm
VALUES (:enp_nunber, NULL);

While this is less flexible, it might be more readable. Typically, you insert NULLs
conditionally, as the next example shows:

Embedded SQL 6-3

Indicator Variables

printf("Enter enployee number or 0 if not available: ");
scanf ("o%d", &enp_nunber);

if (enp_nunber == 0)
i nd_enpnum = -1,
el se
i nd_enmpnum = 0;

EXEC SQL | NSERT I NTO enp (enpno, sal)
VALUES (: enp_nunber:ind_enpnum :salary);

Returned NULLs

You can also use indicator variables to manipulate returned NULLSs, as the following
example shows:

EXEC SQL SELECT enane, sal, comm
INTO : enp_nane, :salary, :commission:ind_comm

FROM enp
VHERE enpno = :enp_nunber;
if (ind_conm==-1)
pay = salary; /* commssion is NULL; ignore it */
el se

pay = salary + commi ssi on;

Fetch NULLs

When DBMS=V7 or DBMS=VS, if you SELECT or FETCH NULLSs into a host variable
not associated with an indicator variable, Oracle issues the following error message:

ORA-01405: fetched colum value is NULL

See Also: "DBMS" on page 10-12

Test for NULLs

You can use indicator variables in the WHERE clause to test for NULLSs, as the
following example shows:

EXEC SQ. SELECT enane, sal

I NTO : enp_nane, :salary

FROM enp

VHERE : cormi ssion | NDI CATOR :ind_comm|S NULL ...

However, you cannot use a relational operator to compare NULLs with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLs:

EXEC SQ. SELECT ename, sal
I NTO : enp_nane, :salary
FROM enp

WHERE conm = : conmi ssi on;

The next example shows how to compare values for equality when some of them
might be NULLSs:

EXEC SQL SELECT enane, sal
I NTO : enp_nane, :salary
FROM enp
VHERE (conm = :conmission) OR ((comm|S NULL) AND

6-4 Pro*C/C++ Programmer’s Guide

The Basic SQL Statements

(:comission | NDI CATOR :ind_comm |S NULL));

Truncated Values

When DBMS=V7 or V8, if you SELECT or FETCH a truncated column value into a
host variable not associated with an indicator variable, a warning is generated instead
of an error.

The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on the statements that query and manipulate data.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, your only concern, besides setting the values of any input host variables, is
whether the statement succeeds or fails. To find out, you simply check the SQLCA.
(Executing any SQL statement sets the SQLCA variables.) You can check in the
following two ways:

= Implicit checking with the WHENEVER statement
= Explicit checking of SQLCA variables

See Also: Chapter 9, "Handling Runtime Errors" for more
information about the SQLCA and the WHENEVER statement

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

= Queries that return no rows (that is, merely check for existence)

= Queries that return only one row

« Queries that return more than one row

Queries that return more than one row require explicitly declared cursors or the use of
host arrays (host variables declared as arrays).

Note: Host arrays let you process "batches" of rows.

See Also: Chapter 8, "Host Arrays"

This chapter assumes the use of scalar host variables.

The following embedded SQL statements let you query and manipulate Oracle data:

Embedded SQL

Statements Description

SELECT Returns rows from one or more tables.
INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes unwanted rows from a table.

Embedded SQL 6-5

The Basic SQL Statements

The following embedded SQL statements let you define and manipulate an explicit
cursor:

Embedded SQL

Statements Description

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined).

The following sections, you first learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements.

See Also:

= Chapter F, "Embedded SQL Statements and Directives" for a
detailed discussion of each statement and its clauses.

= Oracle Database SQL Reference.

The SELECT Statement

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT enane, job, sal + 2000
INTO : enp_name, :job_title, :salary
FROM enp

VWHERE enpno = : enp_nunber;

The column names and expressions following the keyword SELECT make up the select
list. The select list in our example contains three items. Under the conditions specified
in the WHERE clause (and following clauses, if present), Oracle returns column values
to the host variables in the INTO clause.

The number of items in the select list should equal the number of host variables in the
INTO clause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example. However, if a query can return more than one row, you must FETCH the
rows using a cursor or SELECT them into a host-variable array. Cursors and the
FETCH statement are discussed later in this chapter. See also "Host Arrays" on

page 8-1for information on array processing.

If a query is written to return only one row but might actually return several rows, the
result of the SELECT is indeterminate. Whether this causes an error depends on how
you specify the SELECT_ERROR option. The default value, YES, generates an error if
more than one row is returned.

Available Clauses
You can use all of the following standard SQL clauses in your

SELECT statements:
« INTO
« FROM

6-6 Pro*C/C++ Programmer’s Guide

The Basic SQL Statements

« WHERE
« CONNECT BY
« START WITH

« GROUP BY
« HAVING
« ORDERBY

« FOR UPDATE OF

Except for the INTO clause, the text of embedded SELECT statements can be executed
and tested interactively using SQL*Plus. In SQL*Plus, you use substitution variables or
constants instead of input host variables.

The INSERT Statement

Use the INSERT statement to add rows to a table or view. In the following example,
you add a row to the EMP table:

EXEC SQL | NSERT I NTO enp (enpno, enane, sal, deptno)
VALUES (: enp_nunber, :enp_name, :salary, :dept_nunber);

Each column you specify in the column list must belong to the table named in the INTO
clause. The VALUES clause specifies the row of values to be inserted. The values can
be those of constants, host variables, SQL expressions, SQL functions such as USER
and SYSDATE, or user-defined PL/SQL functions.

The number of values in the VALUES clause must equal the number of names in the
column list. However, you can omit the column list if the VALUES clause contains a
value for each column in the table, in the order that they are defined in the table.

See Also: "INSERT (Executable Embedded SQL)" on page F-49

Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multipart
searches. They can be used to

= Supply values for comparison in the WHERE, HAVING, and START WITH
clauses of SELECT, UPDATE, and DELETE statements

= Define the set of rows to be inserted by a CREATE TABLE or INSERT statement
= Define values for the SET clause of an UPDATE statement

The following example uses a subquery in an INSERT statement to copy rows from
one table to another:

EXEC SQL | NSERT I NTO enp2 (enpno, enane, sal, deptno)
SELECT enpno, enane, sal, deptno FROM enp
VWHERE job= :job_title ;

This INSERT statement uses the subquery to obtain intermediate results.

The UPDATE Statement

Use the UPDATE statement to change the values of specified columns in a table or
view. In the following example, we update the SAL and COMMcolumns in the EMP
table:

Embedded SQL 6-7

The DML Returning Clause

EXEC SQL UPDATE enp
SET sal = :salary, conm = :comm ssion
VWHERE enpno = : enp_nunber;

Use the optional WHERE clause to specify the conditions under which rows are
updated. See also "The WHERE Clause" on page 6-8.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example shows:

EXEC SQL UPDATE enp
SET sal = (SELECT AV@(sal)*1.1 FROM enp WHERE deptno = 20)
WHERE enpno = :enp_nunber;

The UPDATE statement has an optional r et ur ni ng cl ause, like the INSERT and
DELETE statements. It is only allowed after the optional WHERE condition.

For more details, see also "UPDATE (Executable Embedded SQL)" on page F-82.

The DELETE Statement

Use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM enp
WHERE deptno = :dept _nunber ;

We have used the optional WHERE clause to specify the condition under which rows
are deleted.

The r et ur ni ng cl ause option can be used in DELETE statements also. It is allowed
after the optional WHERE condition. In the earlier example, it is good practice to
record the field values of each employee that is deleted.

See Also: "DELETE (Executable Embedded SQL)" on page F-31

The WHERE Clause

Use the WHERE clause to SELECT, UPDATE, or DELETE only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a Boolean
expression, which can include scalar host variables, host arrays (not in SELECT
statements), subqueries, and user-defined stored functions.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit
the WHERE clause in an UPDATE or DELETE statement, Oracle sets sql war n[4] in
the SQLCA to 'W' to warn that all rows were processed.

The DML Returning Clause

The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The DML returning clause looks like this:

{RETURNING | RETURN} {expr [,expr]}
INTO {:hv [[INDI CATOR]:iv] [, :hv [[INDICATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The

6-8 Pro*C/C++ Programmer’s Guide

Cursors

Cursors

returning cl ause eliminates inefficient network round trips, extra processing, and
server memory.

Oracle Dynamic SQL Method 4 does not support the DML returning clause; but ANSI
Dynamic SQL Method 4 does.

See Also: Chapter 14, "ANSI Dynamic SQL"

When a query returns multiple rows, you can explicitly define a cursor to
= Process beyond the first row returned by the query
= Keep track of which row is currently being processed

Or, you can use host arrays.

See Also: Chapter 8, "Host Arrays"

A cursor identifies the current row in the set of rows returned by the query. This
allows your program to process the rows one at a time. The following statements let
you define and manipulate a cursor:

« DECLARE CURSOR

« OPEN
« FETCH
« CLOSE

First you use the DECLARE CURSOR statement to name the cursor and associate it
with a query.

The OPEN statement executes the query and identifies all the rows that meet the query
search condition. These rows form a set called the active set of the cursor. After
OPENing the cursor, you can use it to retrieve the rows returned by its associated

query.
Rows of the active set are retrieved one by one (unless you use host arrays). You use a

FETCH statement to retrieve the current row in the active set. You can execute FETCH
repeatedly until all rows have been retrieved.

When done FETCHing rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

The following sections show you how to use these cursor control statements in your
application program.

The DECLARE CURSOR Statement

You use the DECLARE CURSOR statement to define a cursor by giving it a name and
associating it with a query, as the following example shows:

EXEC SQ. DECLARE enp_cursor CURSOR FOR
SELECT enane, enpno, sal
FROM enp
VWHERE deptno = :dept _nunber;

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be defined in the Declare Section. Cursor names cannot be

Embedded SQL 6-9

Cursors

hyphenated. They can be any length, but only the first 31 characters are significant. For
ANSI compatibility, use cursor names no longer than 18 characters.

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE CURSOR statement must physically (not just
logically) precede all other SQL statements referencing the cursor. That is, forward
references to the cursor are not allowed. In the following example, the OPEN
statement is misplaced:

EXEC SQ. OPEN enp_cursor;

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, enpno, sal

FROM enp

WHERE enane = :enp_nane;

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot DECLARE a cursor in file
A, then OPEN it in file B.

Your host program can DECLARE as many cursors as it needs. However, in a given
file, every DECLARE statement must be unique. That is, you cannot DECLARE two
cursors with the same name in one precompilation unit, even across blocks or
procedures, because the scope of a cursor is global within a file.

If you will be using many cursors, you might want to specify the
MAXOPENCURSORS option.

See Also:
= "Precompiler Options" on page 10-2

= Chapter C, "Performance Tuning"

The OPEN Statement

You use the OPEN statement to execute the query and identify the active set. In the
following example, you OPEN a cursor named emp_cursor:

EXEC SQ OPEN enp_cursor;

OPEN zeroes the rows-processed count kept by the third element of SQLERRD in the
SQLCA. However, none of the rows are visible to the application at this point. That is
handled by the FETCH statement.

OPEN positions the cursor just before the first row of the active set. It also zeroes the
rows-processed count kept by the third element of SQLERRD in the SQLCA. However,
none of the rows is actually retrieved at this point. That will be done by the FETCH
statement.

Once you OPEN a cursor, the query's input host variables are not re-examined until
you reOPEN the cursor. Thus, the active set does not change. To change the active set,
you must reOPEN the cursor.

Generally, you should CLOSE a cursor before reOPENing it. However, if you specify
MODE=0ORACLE (the default), you need not CLOSE a cursor before reOPENing it.
This can increase performance.

6-10 Pro*C/C++ Programmer’s Guide

Cursors

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS.

See Also: "Using the Precompiler Options" on page 10-8.

The FETCH Statement

You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause
and list of output host variables are part of the FETCH statement. In the following
example, you FETCH INTO three host variables:

EXEC SQL FETCH enp_cursor
I NTO : enp_nane, :enmp_nunmber, :salary;

The cursor must have been previously DECLAREd and OPENed. The first time you
execute FETCH, the cursor moves from before the first row in the active set to the first
row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been FETCHed, you must reOPEN the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reOPEN the cursor. When
MODE=ANS]I, you must CLOSE the cursor before reOPENing it.

As the next example shows, you can FETCH from the same cursor using different sets
of output host variables. However, corresponding host variables in the INTO clause of
each FETCH statement must have the same datatype.

EXEC SQ. DECLARE enp_cursor CURSOR FOR
SELECT ename, sal FROM enp WHERE deptno = 20;

EXEC SQ. OPEN enp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...
for (33)

{
EXEC SQL FETCH enp_cursor |NTO :enp_nanel, :salaryl;
EXEC SQL FETCH enp_cursor |NTO :enp_nane2, :salary2;
EXEC SQL FETCH enp_cursor |NTO :enp_nane3, :salary3;
}

If the active set is empty or contains no more rows, FETCH returns the "no data found"
error code to sglcode in the SQLCA, or to the SQLCODE or SQLSTATE status variables.
The status of the output host variables is indeterminate. (In a typical program, the
WHENEVER NOT FOUND statement detects this error.) To reuse the cursor, you must
reOPEN it.

It is an error to FETCH on a cursor under the following conditions:
= Before OPENing the cursor
= After a "no data found" condition

= After CLOSEing it

Embedded SQL 6-11

Scrollable Cursors

The CLOSE Statement

When done FETCHing rows from the active set, you CLOSE the cursor to free the
resources, such as storage, acquired by OPENing the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specity the
HOLD_CURSOR and RELEASE_CURSOR options. In the following example, you
CLOSE the cursor named emp_cursor:

EXEC SQ CLOSE enp_cursor;

You cannot FETCH from a closed cursor because its active set becomes undefined. If
necessary, you can reOPEN a cursor (with new values for the input host variables, for
example).

When MODE=ORACLE, issuing a COMMIT or ROLLBACK closes cursors referenced
in a CURRENT OF clause. Other cursors are unaffected by COMMIT or ROLLBACK
and if open, remain open. However, when MODE=ANS], issuing a COMMIT or
ROLLBACK closes all explicit cursors.

See Also: Chapter 3, "Database Concepts" for more information
about COMMIT and ROLLBACK

Scrollable Cursors

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.

When a cursor is executed, the results of the query are placed into a a set of rows
called the result set. The result set can be fetched either sequentially or
non-sequentially. Non-sequential result sets are called scrollable cursors.

A scrollable cursor enables users to access the rows of a database result set in a
forward, backward, and random manner. This enables the program to fetch any row in
the result set. See Oracle Call Interface Programmer’s Guide, Release 9.2.0.

Using Scrollable Cursors

The following statements let you define and manipulate a scrollable cursor.

DECLARE SCROLL CURSOR

You can use the DECLARE <cursor name> SCROLL CURSOR statement to name the
scrollable cursor and associate it with a query.

OPEN

You can use the OPEN statement in the same way as in the case of a non-scrollable
cursor.

FETCH

You can use the FETCH statement to fetch required rows in a random manner. An
application can fetch rows up or down, first or last row directly, or fetch any single
row in a random manner.

The following options are available with the FETCH statement.
1. FETCH FIRST

Fetches the first row from the result set.

6-12 Pro*C/C++ Programmer’s Guide

Scrollable Cursors

2. FETCH PRIOR
Fetches the row prior to the current row.
3. FETCH NEXT

Fetches the next row from the current position. This is same as the
non-scrollable cursor FETCH.

4. FETCH LAST
Fetches the last row from the result set.
5. FETCH CURRENT
Fetches the current row.
6. FETCH RELATIVE n
Fetches the nth row relative to the current row, where 7 is the offset.
7. FETCH ABSOLUTE n
Fetches the nth row, where 7 is the offset from the start of the result set.
The following example describes how to FETCH the last record from a result set.

EXEC SQ. DECLARE enp_cursor SCROLL CURSOR FOR
SELECT enanme, sal FROM enp WHERE dept no=20;

EXEC SQL OPEN enp_cursor;
EXEC SQL FETCH LAST enp_cursor |INTO :enp_nane, :sal;
EXEC SQL CLOSE enp_cursor;

CLOSE

You can use the CLOSE statement in the same way as in the case of a non-scrollable
cursor.

Note: You cannot use scrollable cursors for REF cursors.

The CLOSE_ON_COMMIT Precompiler Option

The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose
whether or not to close all cursors when a COMMIT is executed and the macro option
MODE=ANSI. When MODE=ANSI, CLOSE_ON_COMMIT has the default value YES.
Explicitly setting CLOSE_ON_COMMIT=NO results in better performance because
cursors will not be closed when a COMMIT is executed, removing the need to re-open
the cursors and incur extra parsing.

See Also:

= "Macro and Micro Options" on page 10-4 for a discussion of
how micro options affect macro options.

« "CLOSE_ON_COMMIT" on page 10-9 for a complete
discussion of this option.

The PREFETCH Precompiler Option

The precompiler option PREFETCH allows for more efficient queries by pre-fetching a
given number of rows. This decreases the number of server round trips needed and
reduces overall memory usage. The number of rows set by the PREFETCH option

Embedded SQL 6-13

Optimizer Hints

value is used for all queries involving explicit cursors, subject to the standard
precedence rules. When used inline, the PREFETCH option must precede any of these
cursor statements:

« EXEC SQL OPEN cursor
« EXEC SQL OPEN cursor USING host_var_list
« EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-fetching)
to 65535. The default value is 1.

Note: The default value of the PREFETCH option is 1 - return a
single row for each round-trip. If you choose not to use the
PREFETCH option, using the command line, you must explicitly
disable it by setting the PREFETCH option to 0.

PREFETCH is automatically disabled when LONG or LOB columns
are being retrieved.

Note: PREFETCH is used primarily to enhance the performance
of single row fetches. PREFETCH has no effect when array fetches
are used.

Note: The PREFETCH option should be used wisely, and on a
case-by-case basis. Select an appropriate prefetch value that will
optimize performance of a specific FETCH statement. To
accomplish this, use the inline prefetch option instead of the
command line prefetch option.

Note: The performance of many large applications can be
improved simply by using indicator variables with host variables in
FETCH statements.

To enable precompiler applications to obtain the maximum
advantage from the use of the PREFETCH option on single row
fetches, it is strongly recommended that you use indicator
variables.

Optimizer Hints

The Pro*C/C++ Precompiler supports optimizer hints in SQL statements. An optimizer
hint is a suggestion to the Oracle SQL optimizer that can override the optimization
approach that would normally be taken. You can use hints to specify the

= Optimization approach for a SQL statement
= Access path for each referenced table
= Join order for a join

= Method used to join tables

6-14 Pro*C/C++ Programmer’s Guide

The CURRENT OF Clause

Issuing Hints

Hints allow you to choose between rule-based and cost-based optimization. With
cost-based optimization, you can use further hints to maximize throughput or
response time.

You can issue an optimizer hint inside a C or C++ style comment, immediately after a
SELECT, DELETE, or UPDATE command. You indicate that the comment contains one
or more hints by following the comment opener with a plus sign, leaving no space
between the opener and the '+'. For example, the following statement uses the ALL_
ROWS hint to let the cost-based approach optimize the statement for the goal of best
throughput:

EXEC SQL SELECT /*+ ALL_ROWS (cost-based) */ enpno, ename, sal, job
INTO : enp_rec FROM enp
VHERE deptno = :dept _nunber;

As shown in this statement, the comment can contain optimizer hints as well as other
comments.

For more information about the cost-based optimizer, and optimizer hints, see Oracle
Database Application Developer’s Guide - Fundamentals.

The CURRENT OF Clause

Restrictions

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement to
refer to the latest row FETCHed from the named cursor. The cursor must be open and
positioned on a row. If no FETCH has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you DECLARE a cursor that is
referenced in the CURRENT OF clause of an UPDATE or DELETE statement. The
CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary.

In the following example, you use the CURRENT OF clause to refer to the latest row
FETCHed from a cursor named emp_cursor:

EXEC SQ. DECLARE enp_cursor CURSOR FOR
SELECT enane, sal FROM enp WHERE job = ' CLERK
FOR UPDATE OF sal ;

EXEC SQ. OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (5;) {
EXEC SQL FETCH enp_cursor |INTO :enp_nane, :salary;

EXEC SQL UPDATE enp SET sal = :new salary
VWHERE CURRENT OF enp_cursor;

See Also: "Using FOR UPDATE OF" on page 3-18 for more
information

You cannot use CURRENT OF clause on an index-organized table.

Embedded SQL 6-15

The Cursor Statements

Explicit FOR UPDATE OF clauses or implicit FOR UPDATE clauses acquire exclusive
row locks. All rows are locked at the OPEN, not as they are FETCHed, and are released
when you COMMIT or ROLLBACK. Therefore, you cannot FETCH from a FOR
UPDATE cursor after a COMMIT. If you try to do this, Oracle returns a 1002 error
code.

Also, you cannot use host arrays with the CURRENT OF clause. For an alternative, see
also "Mimicking CURRENT OF" on page 8-23.

Furthermore, you cannot reference multiple tables in an associated FOR UPDATE OF
clause, which means that you cannot do joins with the CURRENT OF clause.

Finally, you cannot use dynamic SQL with the CURRENT OF clause.

The Cursor Statements

The following example shows the typical sequence of cursor control statements in an
application program:

/* define a cursor */
EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, job
FROM enp
VWHERE enpno = :enp_nunber
FOR UPDATE OF | ob;

/* open the cursor and identify the active set */
EXEC SQ. OPEN enp_cursor;

/* break if the last row was already fetched */
EXEC SQL WHENEVER NOT FOUND DO br eak;

/* fetch and process data in a | oop */
for (57)
{
EXEC SQL FETCH enp_cursor INTO :enmp_name, :job_title;

/* optional host-language statements that operate on
the FETCHed data */

EXEC SQL UPDATE enp
SET job = :new_job_title
WHERE CURRENT OF enp_cursor;
}

/* disable the cursor */
EXEC SQ CLOSE enp_cursor;
EXEC SQL COMWM T WORK RELEASE;

A Complete Example Using Non-Scrollable Cursor

The following complete program illustrates the use of a cursor and the FETCH
statement. The program prompts for a department number, then displays the names of
all employees in that department.

All FETCHes except the final one return a row and, if no errors were detected during
the FETCH, a success status code. The final FETCH fails and returns the "no data

6-16 Pro*C/C++ Programmer’s Guide

A Complete Example Using Non-Scrollable Cursor

found" Oracle error code to sglca.sqlcode. The cumulative number of rows actually
FETCHed is found in sql errd[2] in the SQLCA.

#i ncl ude <stdio. h>

/* declare host variables */
char userid[12] = "SCOTT/ TI GER';
char enp_nane[10];

int enp_nunber;

int dept_number;

char tenp[32];

void sql _error();

/* include the SQL Communications Area */
#include <sql ca. h>

mai n()
{ enp_nunber = 7499;
/* handle errors */
EXEC SQL WHENEVER SQLERROR do sql _error("Oracle error");

/* connect to Oracle */
EXEC SQL CONNECT : userid;
printf("Connected.\n");

/* declare a cursor */
EXEC SQ. DECLARE enp_cursor CURSOR FOR
SELECT ename
FROM enp
WHERE deptno = :dept_nunber;

printf("Department nunber? ");

gets(tenp);
dept _nunber = atoi(tenp);

/* open the cursor and identify the active set */
EXEC SQL OPEN enp_cursor;

printf("Enpl oyee Nane\n");
printf("------------- \n");
[* fetch and process data in a | oop
exit when no nore data */
EXEC SQL WHENEVER NOT FOUND DO br eak;
while (1)
{
EXEC SQL FETCH enp_cursor |NTO :enp_nane;
printf("%\n", enp_nane);
}
EXEC SQL CLOSE enp_cursor;
EXEC SQL COW T WORK RELEASE;
exit(0);
}
voi d
sql _error(nsgQ)
char *nsg;

char buf[500];
int buflen, msglen;

EXEC SQL WHENEVER SQLERROR CONTI NUE;

Embedded SQL 6-17

A Complete Example Using Scrollable Cursor

EXEC SQL ROLLBACK WORK RELEASE;
buflen = sizeof (buf);

sql gl m{(buf, &buflen, &nsglen);
printf("%\n", msg);
printf("%.s\n", nmsglen, buf);
exit(1);

A Complete Example Using Scrollable Cursor

The following program illustrates the use of scrollable cursor and the various options
used by the FETCH statement.

#include <stdio. h>

/* decl are host variables */
char userid[12] =" SCOTT/ Tl GER";
char enp_name[10];

void sql _error();

/* include the SQ Conmunications Area */
#i ncl ude<sql ca. h>

mai n()
{
/* handle errors */
EXEC SQL WHENEVER SQLERRCR do sql _error("Oracle error");

/* connect to Oracle */
EXEC SQL CONNECT : userid;
printf("Connected.\n");

/* declare a scrollable cursor */
EXEC SQL DECLARE enp_cursor SCROLL CURSOR FOR
SELECT enane FROM enp;

/* open the cursor and identify the active set */
EXEC SQL OPEN enp_cursor;

/* Fetch the last row */
EXEC SQL FETCH LAST enp_cursor |NTO : enp_name;

/* Fetch row nunber 5 */
EXEC SQL FETCH ABSOLUTE 5 enp_cursor | NTO : enp_nane;

[* Fetch row number 10 */
EXEC SQL FETCH RELATIVE 5 enp_cursor | NTO : enp_nane;

/* Fetch row nunber 7 */
EXEC SQ FETCH RELATIVE -3 enp_cursor |NTO : enp_nane;

/* Fetch the first row */
EXEC SQL FETCH FI RST enp_cursor |NTO : enp_nane;

/* Fetch row number 2*/
EXEC SQL FETCH my_cursor | NTO : enp_namne;

[* Fetch row nunber 3 */
EXEC SQL FETCH NEXT ny_cursor | NTO : enp_nane,

6-18 Pro*C/C++ Programmer’s Guide

Positioned Update

/* Fetch row nunber 3 */
EXEC SQL FETCH CURRENT ny_cursor | NTO : enp_nane;

/* Fetch row nunber 2 */
EXEC SQL FETCH PRI OR ny_cursor | NTO : enp_name;

}

voi d

sql _error(nsg)

char *nsg;

{
char buf[500];
int buflen , nmeglen;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK TRANSACTI ON,
bufl en = sizeof (buf);
sql gl m(buf, &buflen, &resglen);
printf("%\n", nsg);
printf("9%.s\n", nsglen, buf);
exit(1);

}

Positioned Update

The following skeletal example demonstrates positioned update using the universal
ROWID. See also "Universal ROWIDs" on page 4-30:

#i ncl ude <oci. h>
OCl Rowi d *ur owi d;

EXEC SQL ALLOCATE : urowi d;
EXEC SQ. DECLARE cur CURSOR FOR

SELECT rowid, ... FROM ny_table FOR UPDATE COF ...;
EXEC SQ. OPEN cur;
EXEC SQL FETCH cur [NTO : urow d,
/* Process data */

EXEC SQL UPDATE ny_table SET ... WHERE CURRENT CF cur;

EXEC SQ. CLOSE cur;
EXEC SQL FREE : urowi d;

Embedded SQL 6-19

Positioned Update

6-20 Pro*C/C++ Programmer’s Guide

v

Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter contains the following
topics:

Advantages of PL/SQL

Embedded PL/SQL Blocks

Host Variables

Indicator Variables

Host Arrays

Cursor Usage in Embedded PL/SQL
Stored PL/SQL and Java Subprograms
External Procedures

Using Dynamic SQL

Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as:

Better Performance
Integration with Oracle
Cursor FOR Loops
Procedures and Functions
Packages

PL/SQL Tables
User-Defined Records

For more information about PL/SQL, see PL/SQL User’s Guide and Reference.

Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle must process SQL statements one
at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements to
the Server. This minimizes communication between your application and Oracle.

Embedded PL/SQL 7-1

Advantages of PL/SQL

Integration with Oracle

PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL
datatypes are native to the Oracle data dictionary. Furthermore, you can use the
%TYPE attribute to base variable declarations on column definitions stored in the data
dictionary, as the following example shows:

job_title enp.job%lYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR loop,
which implicitly declares its loop index as a record, opens the cursor associated with a
given query, repeatedly fetches data from the cursor into the record, then closes the
cursor. An example follows:

DECLARE

BEG N
FOR enprec I N (SELECT enpno, sal, conm FROM enp) LOCP
| F emprec. comm/ enprec.sal > 0.25 THEN ...

END LCOP;
END;

Notice that you use dot notation to reference components in the record.

Procedures and Functions

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, just write your own as follows:

PROCEDURE cr eat e_dept

(new_dname | N CHAR(14),

new | oc IN CHAR(13),

new_deptno OUT NUMBER(2)) IS
BEG N

SELECT dept no_seq. NEXTVAL | NTO new_dept no FROM dual ;

I NSERT | NTO dept VALUES (new_deptno, new dnane, new_| oc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the
next value in a department-number database sequence, inserts the new number, name,
and location into the dept table, then returns the new number to the caller.

You use parameter modes to define the behavior of formal parameters. There are three
parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you pass
values to the subprogram being called. An OUT parameter lets you return values to

7-2 Pro*C/C++ Programmer’s Guide

Advantages of PL/SQL

Packages

PL/SQL Tables

the caller of a subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 7-1 on page 7-12 shows the legal conversions
between datatypes.

PL/SQL lets you bundle logically related types, program objects, and subprograms
into a package. With the Procedural Database Extension, packages can be compiled and
stored in an Oracle database, where their contents can be shared by many applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms; it implements the specification. In the following example, you "package"
two employment procedures:

PACKAGE enp_actions IS -- package specification
PROCEDURE hi re_enpl oyee (enpno NUMBER, ename CHAR, ...);

PROCEDURE fire_enpl oyee (enp_id NUMBER);
END enp_acti ons;

PACKAGE BODY enp_actions IS -- package body
PROCEDURE hi re_enpl oyee (enpno NUMBER, ename CHAR, ...) IS
BEG N
I NSERT | NTO enp VALUES (enpno, enane, ...);
END hi re_enpl oyee;

PROCEDURE fire_enpl oyee (enp_id NUMBER) IS
BEG N
DELETE FROM enp WHERE enpno = enp_i d;
END fire_enpl oyee;
END enp_acti ons;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and inaccessible.

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER, PLS_
INTEGER or VARCHAR2.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. In the following example, you declare a TABLE type called
NumTabTyp:

DECLARE
TYPE NunifabTyp |'S TABLE OF NUMBER
I NDEX BY BI NARY_| NTEGER;

BEG N

Embedded PL/SQL 7-3

Embedded PL/SQL Blocks

END;

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

numtab NunTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named num_
tab as follows:

numtab(9) ...

User-Defined Records

You can use the % ROWTYPE attribute to declare a record that represents a row in a
table or a row fetched by a cursor. However, you cannot specify the datatypes of
components in the record or define components of your own. The composite datatype
RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named components, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary, hire
date, and so on. This data is dissimilar in type but logically related. A record that
contains such components as the name, salary, and hire date of an employee would let
you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE

TYPE Dept RecTyp |'S RECORD
(deptno NUMBER(4) NOT NULL, -- default is NULL allowed
dnane CHAR(9),
| oc CHAR(14));

Notice that the component declarations are like variable declarations. Each component
has a unique name and specific datatype. You can add the NOT NULL option to any
component declaration and so prevent the assigning of NULLs to that component.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept _rec Dept RecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual components in a record. For example, you
reference the dname component in the dept_rec record as follows:

dept _rec.dname ...

Embedded PL/SQL Blocks

The Pro*C/C++ Precompiler treats a PL/SQL block like a single embedded SQL
statement. So, you can place a PL/SQL block anywhere in a program that you can
place a SQL statement.

7-4 Pro*C/C++ Programmer’s Guide

Host Variables

To embed a PL/SQL block in your Pro*C/C++ program, simply bracket the PL/SQL
block with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEG N
END;
END- EXEC,

The keyword END-EXEC must be followed by a semicolon.
After writing your program, you precompile the source file in the usual way.

When the program contains embedded PL/SQL, you must use the
SQLCHECK=SEMANTICS command-line option, since the PL/SQL must be parsed
by the Oracle Server. SQLCHECK=SEMANTICS requires the USERID option also, to
connect to a server.

See Also: "Using the Precompiler Options" on page 10-8.

Host Variables

Host variables are the key to communication between a host language and a PL/SQL
block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and
reference host variables.

For example, you can prompt a user for information and use host variables to pass that
information to a PL/SQL block. Then, PL/SQL can access the database and use host
variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

Note: To use VARCHAR, CHARZ, or STRING types as output
host variables in PL/SQL blocks, you must initialize the length
before entering the block. Set the length to the declared (maximum)
length of the VARCHAR, CHARZ, or STRING.

Example: Using Host Variables with PL/SQL

The following example illustrates the use of host variables with PL/SQL. The program
prompts the user for an employee number, then displays the job title, hire date, and
salary of that employee.

char usernane[100], password[20];

char job_title[20], hire_date[9], tenp[32];
int enp_nunber;

float salary;

#i ncl ude <sql ca. h>
printf("Username? \n");
get s(usernane);

printf("Password? \n");
get s(password);

Embedded PL/SQL 7-5

Host Variables

EXEC SQL WHENEVER SQLERROR GOTO sql _error;

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
printf("Connected to Oracle\n");
for (57)
{
printf("Enpl oyee Nunber (0 to end)? ");
gets(tenp);
enp_nunber = atoi (tenp);

if (enp_nunber == 0)

{
EXEC SQL COW T WORK RELEASE;
printf("Exiting programn");
br eak;

A e begin PL/SQL block ---------umvmnnn- */
EXEC SQL EXECUTE
BEG N
SELECT job, hiredate, sal
INTO :job_title, :hire_date, :salary
FROM enp
VWHERE enpno = : enp_nunber;
END;
END- EXEC,
A LR end PL/SQL block -----------m-um-- */

printf("Nunber Job Title Hire Date Salary\n");
Printf (e \n");
printf("9%d 98.8s 9.9s 9%.2f\n",
enmp_nunber, job_title, hire_date, salary);

1

exit (0):

sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Notice that the host variable emp_number is set before the PL/SQL block is entered,
and the host variables job_title, hire_date, and salary are set inside the block.

Complex Example

In the example later, you prompt the user for a bank account number, transaction type,
and transaction amount, then debit or credit the account. If the account does not exist,
you raise an exception. When the transaction is complete, you display its status.

#incl ude <stdio. h>
#include <sql ca. h>

char usernane[20];
char password[20];
char status[80];
char tenp[32];

int acct_num
doubl e trans_ant;

7-6 Pro*C/C++ Programmer’s Guide

Host Variables

void sql _error();

mai n()

{

char trans_type;

strcpy(password, "TIGER');
strcpy(usernane, "SCOTT");

EXEC SQL WHENEVER SQLERROR DO sql _error();
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
printf("Connected to Oracle\n");

for ()

{
printf("Account Number (O to end)? ");
gets(tenp);
acct_num = atoi (tenp);

i f(acct _num == 0)

{
EXEC SQL COW T WORK RELEASE;
printf("Exiting programn");
br eak;

}

printf("Transaction Type - Dyebit or Qredit? ");

gets(tenp);
trans_type = tenp[0];

printf("Transaction Anmount? ");

gets(tenp);
trans_ant = atof (tenp);

----------------- begin PL/SQ block ---------mmmmnmn-¥/
EXEC SQL EXECUTE
DECLARE
ol d_bal NUMBER(9, 2) ;
err_nmsg CHAR(70) ;
nonexi stent EXCEPTI ON,

BEG N
;trans_type := UPPER(:trans_type);
IF :trans_type = 'C THEN -- credit the account
UPDATE accts SET bal = bal + :trans_ant
VWHERE acctid = :acct_num
| F SQLYRONCOUNT = 0 THEN -- no rows affected
RAI SE nonexi stent;
ELSE
cstatus := "Credit applied ;
END | F;
ELSIF :trans_type = 'D THEN -- debit the account
SELECT bal INTO ol d_bal FROM accts
WHERE acctid = :acct_num
IF old bal >= :trans_amt THEN -- enough funds
UPDATE accts SET bal = bal - :trans_ant
VWHERE acctid = :acct_num
:status := 'Debit applied;

Embedded PL/SQL 7-7

Host Variables

ELSE
:status := 'Insufficient funds';
END | F;
ELSE
;status := "Invalid type: ' || :trans_type;
END | F;
COWM T;
EXCEPTI ON
WHEN NO DATA FOUND OR nonexi stent THEN
:status := 'Nonexistent account';

WHEN OTHERS THEN
err_msg := SUBSTR(SQLERRM 1, 70);
:status := "Error: ' || err_nsg;

END;
END- EXEC,
R R end PL/SQL block --------------mmmmnnmn-- */
printf("\nStatus: %\n", status);
}
exit(0);
}
voi d
sql _error()
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);
}
VARCHAR Pseudotype

You can use the VARCHAR datatype to declare variable-length character strings. If the
VARCHAR is an input host variable, you must tell Oracle what length to expect.
Therefore, set the length component to the actual length of the value stored in the
string component.

If the VARCHAR is an output host variable, Oracle automatically sets the length
component. However, to use a VARCHAR (as well as CHARZ and STRING) output
host variable in your PL/SQL block, you must initialize the length component before
entering the block. So, set the length component to the declared (maximum) length of
the VARCHAR, as shown here:

i nt enp_nunber;

varchar enp_nane[10] ;

float salary;

enp_nane. | en = 10; /* initialize length conmponent */

EXEC SQL EXECUTE

BEG N
SELECT enane, sal INTO :enp_name, :salary
FROM enp
WHERE enpno = :enp_nunber;
END;
END- EXEC,

7-8 Pro*C/C++ Programmer’s Guide

Indicator Variables

Restriction

Do not use C pointer or array syntax in PL/SQL blocks. The PL/SQL compiler does
not understand C host-variable expressions and is, therefore, unable to parse them. For
example, the following is invalid:

EXEC SQL EXECUTE
BEG N
:x[5]. name :="'SCOIT ;

END,
END- EXEC,

To avoid syntax errors, use a place-holder (a temporary variable), to hold the address
of the structure field to populate structures as shown in the following valid example:

name = x[5].nane ;
EXEC SQL EXECUTE
BEG N
‘name ;= ...;

END,
END- EXEC,

Indicator Variables

PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLSs, as
follows:

|F variable I'S NULL THEN ...

And, you can use the assignment operator (:=) to assign NULLSs, as follows:
variabl e := NULL;
However, a host language such as C needs indicator variables because it cannot

manipulate NULLs. Embedded PL/SQL meets this need by letting you use indicator
variables to

= Accept NULLs input from a host program
= Output NULLSs or truncated values to a host program
When used in a PL/SQL block, indicator variables are subject to the following rules:

= You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

= If you refer to a host variable with its indicator variable, you must always refer to
it that way in the same block.

In the following example, the indicator variable ind_comm appears with its host
variable commission in the SELECT statement, so it must appear that way in the IF
statement:

EXEC SQL EXECUTE
BEG N
SELECT enane, comm

Embedded PL/SQL 7-9

Host Arrays

I NTO : enp_nane, :conm ssion :ind_comm
FROM enp
WHERE enpno = : enp_nunber;

IF :conmission :ind_comm|S NULL THEN ...

END;
END- EXEC,

Notice that PL/SQL treats :commission :ind_comm like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

NULLs Handling

When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a NULL to the host variable. When exiting the block, if a host
variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable.
In the next example, if ind_sal had a value of -1 before the PL/SQL block was entered,
the salary_missing exception is raised. An exception is a named error condition.

EXEC SQL EXECUTE

BEG N
IF :salary :ind_sal IS NULL THEN
RAI SE sal ary_ni ssi ng;

END I F;

END;

END- EXEC,

Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string. In the following example, the host program will be able to tell, by
checking the value of ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE
DECLARE

new_name CHAR(10);
BEG N

:enp_nane:ind_nane := new_nane;

END;
END- EXEC,

Host Arrays

You can pass input host arrays and indicator arrays to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER;
VARCHAR? key types are not permitted. Normally, the entire host array is passed to
PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a
smaller array dimension.

7-10 Pro*C/C++ Programmer’s Guide

Host Arrays

Furthermore, you can use a procedure call to assign all the values in a host array to
rows in a PL/SQL table. Given that the array subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. n - m + 1. For example, if the
array subscript range is 5 .. 10, the corresponding PL/SQL table index rangeis 1 .. (10 -
5+1)orl..6.

In the following example, you pass an array named salary to a PL/SQL block, which
uses the array in a function call. The function is named median because it finds the
middle value in a series of numbers. Its formal parameters include a PL/SQL table
named num_tab. The function call assigns all the values in the actual parameter salary
to rows in the formal parameter num_tab.

float salary[100];
/* popul ate the host array */

EXEC SQL EXECUTE
DECLARE
TYPE NuniTabTyp |'S TABLE OF REAL
| NDEX BY BI NARY_| NTEGER,
medi an_sal ary REAL;
n Bl NARY_| NTECER;

FUNCTI ON nedi an (num_tab NunmfabTyp, n | NTEGER)

RETURN REAL 1S
BEG N

- conpute nedi an
END;
BEG N

n := 100;

medi an_sal ary := median(:salary, n);

END;
END- EXEC,

Note: In dynamic SQL Method 4, you cannot bind a host array to
a PL/SQL procedure with a parameter of type "table." See
also"Using Method 4" on page 13-19.

You can also use a procedure call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

See Also: "Stored PL/SQL and Java Subprograms" on page 7-15
for an example.

Table 7-1 shows the legal conversions between row values in a PL/SQL table and
elements in a host array. For example, a host array of type LONG is compatible with a
PL/SQL table of type VARCHAR?2, LONG, RAW, or LONG RAW. Notably, it is not
compatible with a PL/SQL table of type CHAR.

Embedded PL/SQL 7-11

Host Arrays

Table 7-1 Legal Datatype Conversions

PL/SQL
Table->

LONG NUMBE VARCHA
Host Array CHAR DATE LONG RAW R RAW ROWID R2

CHARF X - - - - - - -
CHARZ X - - - - - - -
DATE - X - - - - - -

DECIMAL - - - -
DISPLAY - - - -
FLOAT - - - -
INTEGER - - - -
LONG

LONG - - X X - X - X
VARCHAR

LONG - - - X - X - -
VARRAW

NUMBER
RAW - - - X - X - -
ROWID
STRING

UNSIGNE
D

VARCHAR - - X X - X - X

VARCHAR
2

VARNUM - - - - X - - -
VARRAW - - - X - X - -

X XXX

>
<

<

<

<
>
<
<

>

<
>
<
<

Note: The Pro*C/C++ Precompiler does not check your usage of
host arrays. For instance, no index range-checking is done.

ARRAYLEN Statement

Suppose you must pass an input host array to a PL/SQL block for processing. By
default, when binding such a host array, the Pro*C/C++ Precompiler uses its declared
dimension. However, you might not want to process the entire array. In that case, you
can use the ARRAYLEN statement to specify a smaller array dimension. ARRAYLEN
associates the host array with a host variable, which stores the smaller dimension. The
statement syntax is

EXEC SQL ARRAYLEN host _array (dimension) [EXECUTE];

where dimension is a 4-byte integer host variable, not a literal or expression.

EXECUTE is an optional keyword.

7-12 Pro*C/C++ Programmer’s Guide

Host Arrays

The ARRAYLEN statement must appear along with, but somewhere after, the
declarations of host_array and dimension. You cannot specify an offset into the host
array. However, you might be able to use C features for that purpose. The following
example uses ARRAYLEN to override the default dimension of a C host array named
bonus:

fl oat bonus[100];

int di nension;

EXEC SQL ARRAYLEN bonus (di nension);
/* popul ate the host array */

dinmension = 25; /* set snaller array dinension */
EXEC SQL EXECUTE
DECLARE
TYPE NunffabTyp |'S TABLE OF REAL
I NDEX BY Bl NARY_| NTEGER;
medi an_bonus REAL;
FUNCTI ON nedi an (num_tab NunifabTyp, n | NTECER)
RETURN REAL IS
BEG N
- conpute nedi an
END;
BEG N
medi an_bonus : = nedi an(: bonus, :dinension);

END,
END- EXEC,

Only 25 array elements are passed to the PL/SQL block because ARRAYLEN reduces
the array from 100 to 25 elements. As a result, when the PL/SQL block is sent to Oracle
for execution, a much smaller host array is sent along. This saves time and, in a
networked environment, reduces network traffic.

Optional Keyword EXECUTE

Host arrays used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may
have two different interpretations based on the presence or absence of the optional
keyword EXECUTE.

See Also: "Using Method 2" on page 13-9

By default (if the EXECUTE keyword is absent on an ARRAYLEN statement):

= The host array is considered when determining the number of times a PL/SQL
block will be executed. (The minimum array dimension is used.)

= The host array must not be bound to a PL/SQL index table.
If the keyword EXECUTE is present:
= The host array must be bound to an index table.
« The PL/SQL block will be executed one time.
= All host variables specified in the EXEC SQL EXECUTE statement must either
= Be specified in an ARRAYLEN ... EXECUTE statement
= Bescalar.
For example, given the following PL/SQL procedure:
CREATE OR REPLACE PACKAGE pkg AS

Embedded PL/SQL 7-13

Cursor Usage in Embedded PL/SQL

TYPE tab |'S TABLE OF NUMBER(5) | NDEX BY BI NARY_| NTEGER,
PROCEDURE procl (parml tab, parn2 NUMBER parnB tab);
END;

The following Pro*C/C++ function demonstrates how host arrays can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be executed 3 times resulting in 3 new rows in the enp table.

funcl()
{
int empno_arr[5] = {1111, 2222, 3333, 4444, 5555};
char *ename_arr[3] = {"MCKEY", "M NNIE", "GOOFY"};
char *stnt1l = "BEG N I NSERT | NTO enp(enpno, enane) VALUES :bl, :b2; END;";

EXEC SQL PREPARE s1 FROM :stntl;
EXEC SQL EXECUTE s1 USING :enpno_arr, :enanme_arr;

}

The following Pro*C/C++ function demonstrates how to bind a host array to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL

EXECUTE statement.
func2()
{
int ii =2;
int int_tab[3] ={1,2,3};
int dim= 3;

EXEC SQL ARRAYLEN int_tab (dim EXECUTE
char *stnt2 = "begin pkg.procl(:vl, :v2, :v3); end; "

EXEC SQL PREPARE s2 FROM :stnt2;
EXEC SQL EXECUTE s2 USING :int_tab, :ii, :int_tab;
}

However the following Pro*C/C++ function will result in a precompile-time warning
because there is no ARRAYLEN...EXECUTE statement for i nt _arr.

func3()
{

int int_arr[3];

int int_tab[3] = {1,2,3};

int dim= 3;

EXEC SQ. ARRAYLEN int_tab (dim EXECUTE;

char *stm3 = "begin pkg.procl(:vl, :v2, :v3); end; ";

EXEC SQL PREPARE s3 FROM :stnt 3;
EXEC SQL EXECUTE s3 USING :int_tab, :int_arr, :int_tab;

See Also: Chapter 8, "Host Arrays" for a complete discussion of
using arrays.

Cursor Usage in Embedded PL/SQL

The maximum number of cursors your program can use simultaneously is determined
by the database initialization parameter OPEN_CURSORS. While executing an

7-14 Pro*C/C++ Programmer’s Guide

Stored PL/SQL and Java Subprograms

embedded PL/SQL block, one cursor. the parent cursor, is associated with the entire
block and one cursor, the child cursor, is associated with each SQL statement in the
embedded PL/SQL block. Both parent and child cursors count toward the OPEN_
CURSCRS limit.

The following calculation shows how to determine the maximum number of cursors
used. The sum of the cursors used must not exceed OPEN_CURSORS.

SQ. statenent cursors

PL/ SQL parent cursors

PL/ SQL child cursors
+ 6 cursors for overhead

Sum of cursors in use

If your program exceeds the limit imposed by OPEN_CURSORS, Oracle gives you an
error.

See Also: "Embedded PL/SQL Considerations" on page C-9

Stored PL/SQL and Java Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in an Oracle database, and invoked.

For more information about creating Java methods, see Oracle Database Java Developer’s
Guide

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary, it is a database
object, which can be re-executed without being recompiled.

When a subprogram within a PL/SQL block or stored procedure is sent to Oracle by
your application, it is called an inline subprogram. Oracle compiles the inline
subprogram and caches it in the System Global Area (SGA) but does not store the
source or object code in the data dictionary.

Subprograms defined within a package are considered part of the package, and thus
are called packaged subprograms. Stored subprograms not defined within a package are
called standalone subprograms.

Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a host program, as the following example shows:

EXEC SQL CREATE
FUNCTI ON sal _ok (salary REAL, title CHAR)
RETURN BOOLEAN AS
mn_sal REAL;
max_sal REAL;
BEG N
SELECT losal, hisal INTO mn_sal, nmax_sal
FROM sal s
WHERE job = title;
RETURN (salary >= min_sal) AND
(salary <= max_sal);
END sal _ok;
END- EXEC,

Embedded PL/SQL 7-15

Stored PL/SQL and Java Subprograms

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example later, you create a package that contains a procedure named get_
employees, which fetches a batch of rows from the EMP table. The batch size is
determined by the caller of the procedure, which might be another stored subprogram
or a client application.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches a
batch of employee data into the PL/SQL tables. The matching actual parameters are
host arrays. When the procedure finishes, it automatically assigns all row values in the
PL/SQL tables to corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE enp_actions AS
TYPE Char ArrayTyp 1S TABLE OF VARCHAR2(10)
| NDEX BY BI NARY_| NTEGER,
TYPE NumArrayTyp |'S TABLE OF FLOAT
I NDEX BY Bl NARY_| NTEGER;
PROCEDURE get _enpl oyees(

dept _number IN | NTEGER,
batch size IN | NTEGER,
found N OQUT | NTEGER

done_fetch QUT | NTEGER,
enp_nane aur Char ArrayTyp,
job_title QUT Char ArrayTyp,

sal ary Ut NumAr rayTyp) ;
END enp_acti ons;
END- EXEC,

EXEC SQL CREATE OR REPLACE PACKAGE BCODY enp_actions AS
CURSOR get _enp (dept _nunber IN INTEGER) |S
SELECT enane, job, sal FROM enp
WHERE deptno = dept _nunber;

PROCEDURE get _enpl oyees(

dept _nunber IN | NTEGER,
batch_size IN | NTEGER,
found IN QUT | NTEGER

done _fetch QUT | NTEGER,
enp_nane aur Char ArrayTyp,
job_title QUT Char ArrayTyp,
sal ary aur NumArrayTyp) IS

BEG N
I'F NOT get_enp% SOPEN THEN
OPEN get _enp(dept _nunber);

END | F;
done_fetch : = 0;
found : = 0;

FOR i IN 1..batch_size LOOP
FETCH get _enp | NTO enp_nane(i),
job_title(i), salary(i);
| F get _enpY%NOTFOUND THEN
CLOSE get _enp;
done_fetch := 1,
EXIT,
ELSE
found : = found + 1;
END | F;

7-16 Pro*C/C++ Programmer’s Guide

Stored PL/SQL and Java Subprograms

END LOCP;
END get _enpl oyees;
END enp_acti ons;
END- EXEC,

You specify the REPLACE clause in the CREATE statement to redefine an existing
package without having to drop the package, re-create it, and re-grant privileges on it.
For the full syntax of the CREATE statement see Oracle Database SQL Reference.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE]} statement fails,
Oracle generates a warning, not an error.

Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block, or the CALL embedded SQL statement.

Anonymous PL/SQL Block

In the following example, you call a standalone procedure named raise_salary:

EXEC SQL EXECUTE
BEG N
raise_salary(:enp_id, :increase);
END;
END- EXEC,

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are C host variables.

In the next example, the procedure raise_salary is stored in a package named emp_
actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEG N
enp_actions.raise_salary(:enmp_id, :increase);
END;
END- EXEC,

An actual IN parameter can be a literal, scalar host variable, host array, PL/SQL
constant or variable, PL/SQL table, PL/SQL user-defined record, procedure call, or
expression. However, an actual OUT parameter cannot be a literal, procedure call, or
expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

In the following example, three of the formal parameters are PL/SQL tables, and the
corresponding actual parameters are host arrays. The program calls the stored
procedure get_employees repeatedly, displaying each batch of employee data, until no
more data is found. This program is available on-line in the deno directory, in the file
sanpl e9. pc. A SQL script to create the CALLDEMO stored package is available in
the file cal | deno. sql .

See Also: "Creating Stored Subprograms" on page 7-15

/***

Sample Program9: Calling a stored procedure

This program connects to ORACLE using the SCOTT/ Tl GER
account. The programdeclares several host arrays, then

Embedded PL/SQL 7-17

Stored PL/SQL and Java Subprograms

calls a PL/SQ stored procedure (GET_EMPLOYEES in the
CALLDEMO package) that fills the table OUT parameters. The
PL/ SQL procedure returns up to ASIZE val ues.

Sanpl e9 keeps cal | ing GET_EMPLOYEES, getting ASIZE arrays
each time, and printing the values, until all rows have been
retrieved. GET_EMPLOYEES sets the done_flag to indicate "no

"
nore data.
***/

#incl ude <stdio. h>
#include <string.h>

EXEC SQL | NCLUDE sql ca. h;

typedef char asciz[20];
typedef char vc2_arr[11];

EXEC SQL BEG N DECLARE SECTI O\
[* User-defined type for null-termnated strings */
EXEC SQL TYPE asciz 1S STRING20) REFERENCE;

/* User-defined type for a VARCHAR array el enent. */
EXEC SQL TYPE vc2_arr |'S VARCHAR2(11) REFERENCE;

asci z user name;

asci z passwor d;

i nt dept _no; /* which departnment to query? */
vc2_arr enp_name[10]; [* array of returned names */
vc2_arr job[10];

fl oat sal ary[10];

i nt done_f 1 ag;

i nt array_si ze;

i nt numret; /* nunber of rows returned */

EXEC SQL END DECLARE SECTI ON;

| ong SQLCODE;
void print_rows(); /* produces program out put */
void sql _error(); /* handl es unrecoverable errors */
mai n()
{

int i;

char tenp_buf[32];

/* Connect to ORACLE. */
EXEC SQL WHENEVER SQLERROR DO sql _error();
strcpy(usernane, "scott");
strcpy(password, “tiger");
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
printf("\nConnected to ORACLE as user: %\n\n", usernane);
printf("Enter departnment number: ");
gets(tenp_buf);
dept _no = atoi(tenp_buf);/* Print colum headers. */
printf("\n\n");

7-18 Pro*C/C++ Programmer’s Guide

Stored PL/SQL and Java Subprograms

printf("% 10.10s% 10.10s%\n", "Enpl oyee", "Job", "Salary");

printf("% 10.10s% 10. 10s%\n", "-------- R T ")
/* Set the array size. */

array_size = 10;

done_flag = 0;
numret = 0;

/* Array fetch | oop.

* The loop continues until the OUT paraneter done_flag is set.
* Pass in the departnment nunber, and the array size--

* get names, jobs, and salaries back.

for ()
{
EXEC SQL EXECUTE
BEG N cal | demp. get _enpl oyees
(:dept_no, :array_size, :numret, :done_flag,
senp_name, :job, :salary);
END;
END- EXEC,

print_rows(numret);

if (done_flag)
break;

}

/* Disconnect fromthe database. */
EXEC SQL COMWM T WORK RELEASE;
exit(0);

}

voi d

print_rows(n)

int n;

{

int i;

if (n==0)

{
printf("No rows retrieved.\n");
return;

}

for (i =0; i <n; i++)
printf("940.10s%0.10s%. 2f\n",
enp_nane[i], job[i], salary[i]);
}

/* Handle errors. Exit on any error. */
voi d
sql _error()

{
char nsg[512];

int buf_len, nsg_|len;

EXEC SQL WHENEVER SQLERROR CONTI NUE;

Embedded PL/SQL 7-19

Stored PL/SQL and Java Subprograms

buf | en = sizeof (msg);
sql gl m(meg, &buf _|en, &nrsg_len);

printf("\nORACLE error detected:");
printf("\n%*s \n", nmsg_l en, nsg);

EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

Remember, the datatype of each actual parameter must be convertible to the datatype
of its corresponding formal parameter. Also, before a stored procedure is exited, all
OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

SQLCHECK=SEMANTICS is required when using an anonymous PL/SQL block.

Remote Access

PL/SQL lets you access remote databases using database links. Typically, database links
are established by your DBA and stored in the Oracle data dictionary. A database link
tells Oracle where the remote database is located, the path to it, and what Oracle
username and password to use. In the following example, you use the database link
dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEG N
rai se_sal ary@al | as(:enp_id, :increase);
END;
END- EXEC,

You can create synonyms to provide location transparency for remote subprograms, as
the following example shows:

CREATE PUBLI C SYNONYM rai se_sal ary
FOR rai se_sal ary@al | as;

The CALL Statement

The concepts presented earlier for the embedded PL/SQL block also hold true for the
CALL statement. The CALL embedded SQL statement has the form:

EXEC SQL
CALL [schema.] [package.]stored_proc[@b_link](argl, ...)
[INTO :ret_var [[INDI CATOR]:ret_ind]] ;

where

schema

the schema containing the procedure

package

the package containing the procedure

stored_proc

is the Java or PL/SQL stored procedure to be called
db_link

is the optional remote database link

7-20 Pro*C/C++ Programmer’s Guide

Stored PL/SQL and Java Subprograms

argl...

is the list of arguments (variables, literals, or expressions) passed,
ret_var

is the optional host variable which receives the result

ind_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SEMANTICS with the CALL statement.

CALL Example

If you have created a PL/SQL function f act (stored in the package mat hpkg) that
takes an integer as input and returns its factorial in an integer:

EXEC SQL CREATE OR REPLACE PACKAGE BODY mat hpkg as
function fact(n IN INTEGER) RETURN | NTEGER AS
BEG N
IF (n <= 0) then return 1;
ELSE return n * fact(n - 1);
END | F;
END fact;
END mat hpkge;
END- EXEC.

then touse fact in a Pro*C/C++ application using the CALL statement:

int num fact;

EXEC SQL CALL mat hpkge.fact(:nunm) INTO :fact ;

See Also:

=« "CALL (Executable Embedded SQL)" on page F-12 for more
information about the CALL statement.

= Oracle Database Application Developer’s Guide - Fundamentals, for
a complete explanation of passing arguments and other issues.

Getting Information about Stored Subprograms

Note: The Logon Data Area (LDA) is no longer supported in
Oracle9i. The ability to embed OCI Release 7 calls in your
Pro*C/C++ program will be phased out by the next major Oracle
release.

Chapter 4, "Datatypes and Host Variables" described how to embed OCI calls in your
host program. After calling the library routine SQLLDA to set up the LDA, use the
OCI call odessp to get useful information about a stored subprogram. When you call
odessp, you must pass it a valid LDA and the name of the subprogram. For packaged
subprograms, you must also pass the name of the package. odessp returns information
about each subprogram parameter such as its datatype, size, position, and so on. For
details, see Oracle Call Interface Programmer’s Guide.

Embedded PL/SQL 7-21

External Procedures

You can also use the DESCRIBE_PROCEDURE stored procedure, in the DBMS_
DESCRIBE package. See Oracle Database Application Developer’s Guide - Fundamentals for
more information about this procedure.

External Procedures

PL/SQL can call C functions which are external procedures. External procedures (also
known as external procedures) are stored in dynamic link libraries (DLL) or, for
example, in .so libraries under Solaris.

If the external procedure executes on the server-side, it can call back into the server to
execute SQL and PL/SQL in the same transaction. External procedures on the server
execute faster than on the client and can interface the database server with external
systems and data sources.

In order to execute a server-side external C function, the REGISTER CONNECT
embedded SQL statement must be used inside that function. The syntax of the
statement is:

EXEC SQL REGQ STER CONNECT USI NG :epctx [RETURNI NG : host _context] ;

where epct x is the external procedure context (of type pointer to
OCl Ext Pr ocCont ext). epct x is passed to the procedure by PL/SQL.

host _cont ext is a runtime context returned by the external procedure. Currently, it
is the default (global) context.

The REGISTER CONNECT statement will return the set of OCI handles (OCIEnv,
OCISvcCtx, and OClIError) that are associated with the current Oracle connection and
transaction. These handles are then used to define the Pro*C/C++ default unnamed
connection for the global SQLLIB runtime context. The REGISTER CONNECT
statement is therefore used instead of a CONNECT statement.

Subsequent embedded SQL statements will use this set of OCI handles. They execute
against the global SQLLIB runtime context and the unnamed connection, even those
that are in separately precompiled units. Uncommitted changes are not seen. In the
future, a (nondefault) runtime context can be returned in the optional RETURNING
clause.

There cannot already be any active default connection for the global runtime context.
A runtime error is returned if you try to use REGISTER CONNECT when a connection
already exists.

See Also: Oracle Call Interface Programmer’s Guide for more
information about OCI functions.

In real-world cases, the external procedure should be one that you can reuse from
many different applications.

Restrictions on External Procedures

Follow these rules for external procedures:
= External procedures can only be in C. C++ external procedures are not supported.

=« When you are connected to the external procedure context, any additional
connection is not permitted and results in a runtime error.

= Multithreaded external procedures are not supported. Executing an EXEC SQL
ENABLE THREADS statement is not permitted and will return a runtime error.

7-22 Pro*C/C++ Programmer’s Guide

External Procedures

Pro*C/C++ does support multithreading in an application not using the external
procedure method we are describing.

= You cannot use DDL statements. They result in runtime errors.

« You cannot use transaction control statements, such as EXEC SQL COMMIT, and
EXEC SQL ROLLBACK.

= You cannot use object navigation statements such as EXEC SQL OBJECT
= You cannot use polling EXEC SQL LOB statements.

= You cannot use EXEC TOOLS statements. They will result in runtime errors.

Creating the External Procedure

Here is a simple example to create the external procedure ext p1.

To store an external C procedure, compile and link the code to a library such as a DLL
on NT.

Then use the following SQL command once to register the external procedure ext p1:

CREATE OR REPLACE PROCEDURE ext pl
AS EXTERNAL NAME "ext pl"

LI BRARY nylib

W TH CONTEXT

PARAVETERS(CONTEXT)

Where mylib is the name of the library storing procedure extpl. WITH CONTEXT
means to implicitly call this procedure with argument of type

OClI Ext Pr ocCont ext *. The context is omitted in your call, but is passed to the
procedure anyway. The keyword CONTEXT appears in the CREATE statement,
however, as a place marker.

This context parameter is the one referenced in the EXEC SQL REGISTER CONNECT
statement inside ext p1.

For more background on calling external procedures, see PL/SQL User’s Guide and
Reference

The external procedure is called from SQL*Plus this way:

SQL>

BEG N
I NSERT | NTO enp VALUES(9999, ' JOHNSON , ' SALESMAN , 7782, sysdate, 1200, 150, 10);
extpl;

END;

Here is the listing of ext p1. pc:

voi d extpl (epctx)

OCl Ext ProcCont ext *epct x;

{

char nane[15] ;
EXEC SQL REG STER CONNECT USI NG : epct x;
EXEC SQL WHENEVER SQLERROR goto err;
EXEC SQL SELECT ename | NTO : name FROM enp WHERE enmpno = 9999;
return;

err: SQLExtProcError(SQ._SINGLE_

RCTX, sql ca. sql errm sqgl errnc, sql ca. sqlerrmsqglerrni);
return;

}

Embedded PL/SQL 7-23

Using Dynamic SQL

SQLExtProcError()

The SQLLIB function SQLEXt Pr ocError () provides the ability to return control to
PL/SQL when an error occurs in an external C procedure. The function and its
arguments are:

SQLExtProcError (ctx, msg, msglen)
where:
ctx (IN) sql_context *

This is the target SQLLIB runtime context of the REGISTER CONNECT statement,
which has to be executed before this function is invoked. Only the global runtime
context is supported now.

msg (OUT) char*

The text of the error message.
msglen (OUT) size_t

The length in bytes of the message.

SQLLIB calls the OCI service function OCIExtProcRaiseExcpWithMsg when this
function is executed.

The message is from the structure sql er r min the SQLCA. For a discussion of the
structure of the SQLCA and sql er r m see "SQLCA Structure" on page 9-14.

Here is an example showing use of SQLExt ProcError ():

void extpl (epctx)
QOCl Ext ProcCont ext *epct x;

{
char nane[15] ;
EXEC SQL REG STER CONNECT USI NG : epct X;
EXEC SQL WHENEVER SQLERRCR goto err;
EXEC SQ. SELECT ename | NTO : name FROM enp WHERE smpno = 9999;
return;

err:
SQLExt ProcError (SQL_SINGLE_RCTX, sqlca.sqlerrmsqglerrnc,
sql ca.sqlerrmsqglerrm);

printf("\n%s\n", sqlca.sqlerrmsqglerrm, sqglca.sqlerrmsqglerrnc);
return;

}

Using Dynamic SQL

Recall that the precompiler treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to EXECUTE the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to PREPARE and EXECUTE the PL/SQL string. If the
block contains an unknown number of host variables, you must use dynamic SQL
Method 4.

See Also:

= Chapter 13, "Oracle Dynamic SQL"

« Chapter 14, "ANSI Dynamic SQL"

= Chapter 15, "Oracle Dynamic SQL: Method 4"

7-24 Pro*C/C++ Programmer’s Guide

Using Dynamic SQL

Note: In dynamic SQL Method 4, you cannot bind a host array to
a PL/SQL procedure with a parameter of type "table." See also
"Using Method 4" on page 13-19.

Embedded PL/SQL 7-25

Using Dynamic SQL

7-26 Pro*C/C++ Programmer’s Guide

38

Host Arrays

This chapter looks at using arrays to simplify coding and improve program
performance. You will learn how to manipulate Oracle data using arrays, how to
operate on all the elements of an array with a single SQL statement, and how to limit
the number of array elements processed. The chapter contains the following topics:

= Why Use Arrays?

= Declaring Host Arrays

= Using Arrays in SQL Statements
= Selecting into Arrays

= Inserting with Arrays

« Updating with Arrays

= Deleting with Arrays

= Using the FOR Clause

= Using the WHERE Clause
= Arrays of Structs

= Mimicking CURRENT OF
= Using sqlca.sqlerrd[2]

Why Use Arrays?
Arrays reduce programming time and result in improved performance.

With arrays, you manipulate an entire array with a single SQL statement. Thus, Oracle
communication overhead is reduced markedly, especially in a networked
environment. A major portion of runtime is spent on network round trips between the
client program and the server database. Arrays reduce the round trips.

For example, suppose you want to insert information about 300 employees into the
EMP table. Without arrays your program must do 300 individual INSERTs—one for
each employee. With arrays, only one INSERT needs to be done.

Declaring Host Arrays

The following example declares three host arrays, each with a maximum of 50
elements:

char enp_name[50][10];
int enmp_nunber[50];

Host Arrays 8-1

Using Arrays in SQL Statements

float salary[50];

Arrays of VARCHARs are also allowed. The following declaration is a valid host
language declaration:

VARCHAR v_array[10][30];

Restrictions

You cannot declare host arrays of pointers, except for object types.

Except for character arrays (strings), host arrays that might be referenced in a SQL
statement are limited to one dimension. So, the two-dimensional array declared in the
following example is invalid:

int hi_lo_scores[25][25]; /* not allowed */

Maximum Size of Arrays

The maximum number of array elements in a SQL statement that is accessible in one
fetch is 32K (or possibly greater, depending on the platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of array elements accessible is limited to 32512 divided by the size
of the datatype.

Using Arrays in SQL Statements

You can use host arrays as input variables in the INSERT, UPDATE, and DELETE
statements and as output variables in the INTO clause of SELECT and FETCH
statements.

The embedded SQL syntax used for host arrays and simple host variables is nearly the
same. One difference is the optional FOR clause, which lets you control array
processing. Also, there are restrictions on mixing host arrays and simple host variables
in a SQL statement.

The following sections illustrate the use of host arrays in data manipulation
statements.

Referencing Host Arrays

If you use multiple host arrays in a single SQL statement, their number of elements
should be the same. Otherwise, an "array size mismatch" warning message is issued at
precompile time. If you ignore this warning, the precompiler uses the smallest number
of elements for the SQL operation.

In this example, only 25 rows are Inserted

i nt enp_nunber [50] ;

char enp_nane[50][10];

i nt dept _nunber[25];

/* Popul ate host arrays here. */

EXEC SQL | NSERT I NTO enp (enpno, enane, deptno)
VALUES (:enp_nunber, :enp_nane, :dept_nunber);

8-2 Pro*C/C++ Programmer’s Guide

Using Arrays in SQL Statements

It is possible to subscript host arrays in SQL statements, and use them in a loop to
INSERT or fetch data. For example, you could INSERT every fifth element in an array
using a loop such as:
for (i =0; i <50; i +=5)
EXEC SQL I NSERT I NTO enp (enpno, deptno)
VALUES (:enp_nunber[i], :dept_nunber[i]);

However, if the array elements that you need to process are contiguous, you should
not process host arrays in a loop. Simply use the non-scripted array names in your
SQL statement. Oracle treats a SQL statement containing host arrays of element
number # like the same statement executed n times with n different scalar variables.

Using Indicator Arrays

You can use indicator arrays to assign NULLSs to input host arrays, and to detect NULL
or truncated values (character columns only) in output host arrays. The following
example shows how to INSERT with indicator arrays:

i nt enp_nunber [50] ;

i nt dept _nunber [50] ;

float conm ssion[50];

short comm.ind[50]; /* indicator array */

/* Popul ate the host and indicator arrays. To insert a null
into the commcolum, assign -1 to the appropriate
element in the indicator array. */

EXEC SQL I NSERT I NTO enp (enpno, deptno, conmm
VALUES (: enp_nunber, :dept_nunber,
: comi ssion | NDI CATOR : comm.i nd) ;

Oracle Restrictions
Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in an UPDATE or DELETE
statement.

ANSI Restriction and Requirements

The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are
still allowed. The use of arrays can be flagged using the FIPS flagger precompiler
option, if desired.

When doing array SELECTs and FETCHes, always use indicator arrays. That way, you
can test for NULLSs in the associated output host array.

When you precompile with the precompiler option DBMS=V7 or V8, if a NULL is
selected or fetched into a host variable that has no associated indicator variable, Oracle
stops processing, sets sql ca. sql errd[2] to the number of rows processed, and
returns an error.

When DBMS=V7 or V8, Oracle does not consider truncation to be an error.

Host Arrays 8-3

Selecting into Arrays

Selecting into Arrays

You can use host arrays as output variables in the SELECT statement. If you know the
maximum number of rows the SELECT will return, simply declare the host arrays
with that number of elements. In the following example, you select directly into three
host arrays. Knowing the SELECT will return no more than 50 rows, you declare the
arrays with 50 elements:

char enp_nane[50][20];
i nt enp_nunber [50] ;
float salary[50];

EXEC SQL SELECT ENAME, EMPNO SAL
INTO : enp_nane, :enp_nunber, :salary
FROM EMP
WHERE SAL > 1000;

In the preceding example, the SELECT statement returns up to 50 rows. If there are
fewer than 50 eligible rows or you want to retrieve only 50 rows, this method will
suffice. However, if there are more than 50 eligible rows, you cannot retrieve all of
them this way. If you reexecute the SELECT statement, it just returns the first 50 rows
again, even if more are eligible. You must either declare a larger array or declare a
cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you
declared, Oracle issues an error message unless you specify SELECT_ERROR=NO.

See Also: "Precompiler Options" on page 10-2 for more
information about the SELECT_ERROR option, see the section

Cursor Fetches

If you do not know the maximum number of rows a SELECT will return, you can
declare and open a cursor, then fetch from it in "batches."

Batch fetches within a loop let you retrieve a large number of rows with ease. Each
FETCH returns the next batch of rows from the current active set. In the following
example, you fetch in 20-row batches:

int enmp_nunber[20];
float salary[20];

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enpno, sal FROM enp;

EXEC SQ. OPEN enp_cursor;

EXEC SQL WHENEVER NOT FOUND do br eak;
for (33)

{
EXEC SQL FETCH enp_cursor
I NTO : enp_nunber, :salary;
/* process batch of rows */

Do not forget to check how many rows were actually returned in the last fetch, and
process them.

8-4 Pro*C/C++ Programmer’s Guide

Selecting into Arrays

See Also: "Number of Rows Fetched" on page 8-5

Using sqlca.sqlerrd[2]

For INSERT, UPDATE, DELETE, and SELECT INTO statements, sql ca. sql errd[2]
records the number of rows processed. For FETCH statements, it records the
cumulative sum of rows processed.

When using host arrays with FETCH, to find the number of rows returned by the most
recent iteration, subtract the current value of sqgl ca. sqgl errd[2] from its previous
value (stored in another variable). In the following example, you determine the
number of rows returned by the most recent fetch:

int enp_nunber[100];
char enp_name[100] [20] ;

int rows_to_fetch, rows_before, rows_this_tine;
EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enpno, ename
FROM enp
VHERE deptno = 30;
EXEC SQ. OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND CONTI NUE;
[* initialize loop variables */
rows_to_fetch = 20; [* nunber of rows in each "batch" */
rows_before = 0; /* previous value of sqglerrd[2] */
rows_this time = 20;

while (rows_this_tine == rows_to_fetch)

{
EXEC SQL FOR :rows_to_fetch
FETCH enp_cursor
I NTO : enp_nunber, :enp_nane;
rows_this_time = sqlca.sqlerrd[2] - rows_bhefore;
rows_before = sqglca.sqlerrd[2];

sgl ca. sql errd[2] is also useful when an error occurs during an array operation.
Processing stops at the row that caused the error, so sql err d[2] gives the number of
rows processed successfully.

Number of Rows Fetched

Each FETCH returns, at most, the total number of rows in the array. Fewer rows are
returned in the following cases:

= The end of the active set is reached. The "no data found" Oracle error code is
returned to SQLCODE in the SQLCA. For example, this happens if you fetch into
an array of number of elements 100 but only 20 rows are returned.

= Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into an array of 20 number elements because after the third
FETCH, only 10 rows remain to be fetched.

= Anerror is detected while processing a row. The FETCH fails and the applicable
Oracle error code is returned to SQLCODE.

Host Arrays 8-5

Selecting into Arrays

The cumulative number of rows returned can be found in the third element of sqlerrd
in the SQLCA, called sql er r d[2] in this guide. This applies to each open cursor. In
the following example, notice how the status of each cursor is maintained separately:

EXEC SQ. OPEN cursorl;

EXEC SQ. OPEN cursor2;

EXEC SQL FETCH cursorl INTO :array_of 20;

[* now running total in sqlerrd[2] is 20 */

EXEC SQL FETCH cursor2 INTO :array_of _30;

/* now running total in sqlerrd(2] is 30, not 50 */
EXEC SQL FETCH cursorl I NTO :array_of _20;

[* now running total in sqlerrd[2] is 40 (20 + 20) */
EXEC SQL FETCH cursor2 INTO :array_of 30;

/* now running total in sqlerrd[2] is 60 (30 + 30) */

Scrollable Cursor Fetches

You can also use host arrays with scrollable cursors. With scrollable cursors

sqgl ca. sql errd[2] represents the maximum (absolute) row number processed.
Since an application can arbitarily position the fetches in scrollable mode, it need not
be the total number of rows processed.

While using host arrays with the FETCH statement in scrollable mode, you cannot
subtract the current value of sql ca. sql errd[2] from its previous value to find the
number of rows returned by the most recent iteration. The application program
determines the total number of rows in the result set by executing a FETCH LAST. The
value of sql ca. sql errd[2] provides the total number of rows in the result set.
Refer to "Sample Program: Host Arrays Using Scrollable Cursor" on page 8-8 for an
example illustrating the use of host arrays with scrollable cursors

Sample Program 3: Host Arrays

The demonstration program in this section shows how you can use host arrays when
writing a query in Pro*C/C++. Pay particular attention to the use of the "rows
processed count" in the SQLCA (sql ca. sql errd[2]). This program is available
on-line in the file sanpl e3. pc in your deno directory.

See Also: "Handling Runtime Errors" on page 9-1 for more
information about the SQLCA

sanpl e3. pc
Host Arrays

Thi's program connects to ORACLE, declares and opens a cursor,
fetches in batches using arrays, and prints the results using
the function print_rows().

/

T I

#include <stdio. h>
#include <string. h>

#include <sql ca. h>

#define NAME LENGTH 20
#define ARRAY LENGTH 5
/* Another way to connect. */
char *username = "SCOIT";
char *password = "TI CGER';

8-6 Pro*C/C++ Programmer’s Guide

Selecting into Arrays

/* Declare a host structure tag. */
struct
{
int enp_nunber [ARRAY_LENGTH] ;
char enp_nane[ARRAY_LENGTH| [NAME_LENGTH] ;
float sal ary[ARRAY_LENGTH ;
} enp_rec;
/* Declare this programts functions. */
void print_rows(); /* produces program output */
voi d sql _error(); /* handl es unrecoverable errors */
mai n()
{
int numret; [* nunmber of rows returned */
/* Connect to ORACLE. */
EXEC SQL VHENEVER SQLERROR DO sql _error("Connect error:");
EXEC SQL CONNECT : usernane | DENTI FI ED BY : password;
printf("\nConnected to ORACLE as user: %\n", usernane);
EXEC SQL VHENEVER SQLERROR DO sql _error("Cracle error:");
/* Declare a cursor for the FETCH */
EXEC SQL DECLARE c1 CURSCR FOR
SELECT enpno, enanme, sal FROM enp;
EXEC SQ OPEN cl;
[* Initialize the nunber of rows. */
numret = 0;
[* Array fetch loop - ends when NOT FOUND becones true. */
EXEC SQL WHENEVER NOT FOUND DO br eak;
for (57)
{
EXEC SQL FETCH c1 INTO :enp_rec;
[* Print however many rows were returned. */
print_rows(sqglca.sqglerrd[2] - numret);
numret = sqlca.sqglerrd[2]; /* Reset the nunber. */
}
[* Print remaining rows fromlast fetch, if any. */
if ((sqlca.sqglerrd[2] - numret) > 0)
print_rows(sqglca.sqglerrd[2] - numret);
EXEC SQ CLOSE cl;
printf("\nAu revoir.\n\n\n");
/* Disconnect fromthe database. */
EXEC SQL COW T WORK RELEASE;
exit(0);
}
voi d

Host Arrays 8-7

Selecting into Arrays

print_rows(n)

int n;
{
inti;
printf("\nNumber Enpl oyee Sal ary");
printf("\n------ ---e---o il \n");
for (i =0; i <n; i++)
printf("% 9d% 15. 15s%®. 2f\n", enp_rec. enp_nunber[i],
enp_rec.enp_nanme[i], enmp_rec.salary[i]);
}
voi d
sql _error(nsg)
char *nmsg;
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%", nsg);
printf("\n%.70s \n", sqlca.sqglerrmsqglerrnt);
EXEC SQL ROLLBACK WORK RELEASE;
exit(l);
}

Sample Program: Host Arrays Using Scrollable Cursor

This program describes how to use host arrays with scrollable cursors. This program is
available on-line in the file scr ol | denp2. pc in your demo directory.

Note: Note that we do a FETCH LAST to determine the number
of rows in the result set.

Scroll Demo2.pc

/*

* A Sanple programto denonstrate the use of scrollable
cursors with host arrays.

This program uses the hr/hr schena. Make sure
that this schema exists before executing this program

* %k Ok k%

#include <stdio. h>
#incl ude <string. h>
#include <stdlib.h>
#i ncl ude <sql ca. h>

#define ARRAY_LENGTH 4
/* user and passwd */
char *usernane = "hr";

char *password = "hr";

/* Declare a host structure tag. */

8-8 Pro*C/C++ Programmer’s Guide

Selecting into Arrays

struct enp_rec_array

{
i nt enp_nunber;

char enp_nane[20];
float salary;
} enp_rec[ARRAY_LENGTH;

[* Print the result of the query */

voi d print_rows()

{
int i;
for (i=0; i<ARRAY LENGTH, i++)
printf("% % 9B.2f\n", enp_rec[i].enp_nunber,
enp_rec[i].enmp_name, enmp_rec[i].salary);
}

/* Oacle error handler */

voi d sql _error(char *nsg)

{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%", nsg);
printf("\n%.70s \n", sqlca.sqglerrmsqglerrnt);
EXEC SQL ROLLBACK WORK RELEASE;
exit (EXI T_FAI LURE) ;

}

voi d main()

{

int noOfRows; /* Number of rows in the result set */

[* Error handler */
EXEC SQL VHENEVER SQLERROR DO sql _error("Connect error:");

/* Connect to the data base */
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;

[* Error handle */
EXEC SQL VHENEVER SQLERROR DO sql _error("Oracle error:");

/* declare the cursor in scrollable mode */
EXEC SQL DECLARE c1 SCROLL CURSOR FOR
SELECT enpl oyee_id, first_nane, salary FROM enpl oyees;
EXEC SQ OPEN cl;
EXEC SQL WHENEVER SQLERROR DO sql _error("Fetch Error:");
/* This is a dummy fetch to find out the nunber of rows
inthe result set */

EXEC SQL FETCH LAST cl1 INTO :enp_rec;

/* The nunmber of rows in the result set is given by
the val ue of sqlca.sqlerrd[2] */

Host Arrays 8-9

Selecting into Arrays

noOf Rows = sqglca. sqlerrd[2];
printf("Total nunber of rows in the result set %l:\n",
noCf Rows) ;

/* Fetch the first ARRAY_LENGTH nunber of rows */
EXEC SQL FETCH FIRST c1 INTO :enp_rec;

pl’l ntf("******************** EFAULT \n")
print_rows();

/* Fetch the next set of ARRAY_LENGTH rows */
EXEC SQL FETCH NEXT cl I NTO : enp_rec;
printf("******************** NEXT \n")’
print_rows();

/* Fetch a set of ARRAY_LENGTH rows fromthe 3rd row onwards */
EXEC SQL FETCH ABSOLUTE 3 cl1 INTO :enp_rec;

prl ntf("******************** ABSO_UTE 3 \n")’

print_rows();

/* Fetch the current ARRAY LENGTH set of rows */
EXEC SQL FETCH CURRENT cl1 INTO :enp_rec;

prl ntf("******************** CLJRRENT \n"),
print_rows();

/* Fetch a set of ARRAY LENGTH rows fromthe 2nd of f set
fromthe current cursor position */

EXEC SQL FETCH RELATIVE 2 cl1 INTO :enp_rec;

prl ntf("******************** RELATI VE 2 \n")’

print_rows();

/* Again Fetch the first ARRAY_LENGTH nunber of rows */
EXEC SQL FETCH ABSOLUTE 0 cl1 INTO :enp_rec;

pl’l ntf("******************** ABSO_UTE 0 \n"),
print_rows();

/* close the cursor */
EXEC SQL CLOSE ci;

/* Disconnect fromthe database. */
EXEC SQL COW T WORK RELEASE;
exi t (EXI T_SUCCESS) ;

Host Array Restrictions

Using host arrays in the WHERE clause of a SELECT statement is not allowed except
in a subquery. For an example, see "Using the WHERE Clause" on page 8-15.

Also, you cannot mix simple host variables with host arrays in the INTO clause of a
SELECT or FETCH statement. If any of the host variables is an array, all must be
arrays.

Table 8-1 shows which uses of host arrays are valid in a SELECT INTO statement:

Table 8-1 Valid Host Arrays for SELECT INTO
INTO Clause WHERE Clause Valid?

array array no

8-10 Pro*C/C++ Programmer’s Guide

Inserting with Arrays

Table 8-1 (Cont.) Valid Host Arrays for SELECT INTO

INTO Clause WHERE Clause Valid?

scalar scalar yes

array scalar yes

scalar array no
Fetching NULLs

When doing array SELECTs and FETCHes, always use indicator arrays. That way, you
can test for NULLSs in the associated output host array.

When DBMS = V7, if you SELECT or FETCH a NULL column value into a host array
not associated with an indicator array, Oracle stops processing, sets sql err d[2] to
the number of rows processed, and issues an error message:

Fetching Truncated Values

When DBMS=V7, truncation results in a warning message, but Oracle continues
processing.

Again, when doing array SELECTs and FETCHes, always use indicator arrays. That
way, if Oracle assigns one or more truncated column values to an output host array,
you can find the original lengths of the column values in the associated indicator array.

Inserting with Arrays

You can use host arrays as input variables in an INSERT statement. Just make sure
your program populates the arrays with data before executing the INSERT statement.

If some elements in the arrays are irrelevant, you can use the FOR clause to control the
number of rows inserted. See also "Using the FOR Clause" on page 8-13.

An example of inserting with host arrays follows:

char enp_nane[50] [20];

i nt enp_nunber [50] ;

float salary[50];

/* popul ate the host arrays */

EXEC SQL | NSERT | NTO EMP (ENAME, EMPNO, SAL)
VALUES (:enp_nane, :enp_number, :salary);

The cumulative number of rows inserted can be found in the rows-processed count,
sqgl ca.sqglerrd[2] .

In the following example, the INSERT is done one row at a time. This is much less
efficient than the previous example, since a call to the server must be made for each
row inserted.

for (i =0; i < array_size; i++)
EXEC SQL I NSERT I NTO enp (enane, enpno, sal)
VALUES (:enp_nane[i], :enp_nunber[i], :salary[i]);

Inserting with Arrays Restrictions

You cannot use an array of pointers in the VALUES clause of an INSERT statement; all
array elements must be data items.

Host Arrays 8-11

Updating with Arrays

Mixing scalar host variables with host arrays in the VALUES clause of an INSERT
statement is not allowed. If any of the host variables is an array, all must be arrays.

Updating with Arrays

You can also use host arrays as input variables in an UPDATE statement, as the
following example shows:
int enmp_nunber[50];
float salary[50];
/* popul ate the host arrays */
EXEC SQL UPDATE enp SET sal = :salary
VHERE EMPNO = : enp_nunber;

The cumulative number of rows updated can be found in sql er r d[2] . This number
does not include rows processed by an update cascade.

If some elements in the arrays are irrelevant, you can use the embedded SQL FOR
clause to limit the number of rows updated.

The last example showed a typical update using a unique key (EMP_NUMBER). Each
array element qualified just one row for updating. In the following example, each
array element qualifies multiple rows:

char job_title [10][20];
float commi ssion[10];

EXEC SQL UPDATE enp SET comm = :conmi Ssi on
VHERE job = :job_title;

Updating with Arrays Restrictions

Mixing simple host variables with host arrays in the SET or WHERE clause of an
UPDATE statement is not recommended. If any of the host variables is an array, all
should be arrays. Furthermore, if you use a host array in the SET clause, use one of
equal number of elements in the WHERE clause.

You cannot use host arrays with the CURRENT OF clause in an UPDATE statement.

See Also: "Mimicking CURRENT OF" on page 8-23 for an
alternative.

Table 8-2 shows which uses of host arrays are valid in an UPDATE statement:

Table 8-2 Host Arrays Valid in an UPDATE

SET Clause WHERE Clause Valid?
array array yes
scalar scalar yes
array scalar no
scalar array no

8-12 Pro*C/C++ Programmer’s Guide

Using the FOR Clause

Deleting with Arrays

You can also use host arrays as input variables in a DELETE statement. It is like
executing the DELETE statement repeatedly using successive elements of the host
array in the WHERE clause. Thus, each execution might delete zero, one, or more rows
from the table.

An example of deleting with host arrays follows:

int enp_nunber[50];
/* popul ate the host array */

EXEC SQL DELETE FROM enp
VHERE enpno = : enp_nunber;

The cumulative number of rows deleted can be found in sql er r d[2] . The number
does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP_NUMBER). Each
array element qualified just one row for deletion. In the following example, each array
element qualifies multiple rows:

char job_title[10][20];
/* popul ate the host array */

EXEC SQL DELETE FROM enp
VHERE job = :job_title;

Deleting with Arrays Restrictions

Mixing simple host variables with host arrays in the WHERE clause of a DELETE
statement is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in a DELETE statement.

See Also: "Mimicking CURRENT OF" on page 8-23 for an
alternative.

Using the FOR Clause

You can use the optional embedded SQL FOR clause to set the number of array
elements processed by any of the following SQL statements:

« DELETE

« EXECUTE
« FETCH

« INSERT

« OPEN

« UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire array. The FOR clause lets

Host Arrays 8-13

Using the FOR Clause

you limit the elements used to just the number you need, as the following example
shows:

char enp_name[100] [20] ;
float salary[100];
int rows_to_insert;

[* popul ate the host arrays */
rows_to_insert = 25; /* set FOR-clause variable */
EXEC SQL FOR :rows_to_insert /* will process only 25 rows */
I NSERT | NTO enp (ename, sal)
VALUES (:enp_nane, :salary);

The FOR clause can use an integer host variable to count array elements, or an integer
literal. A complex C expression that resolves to an integer cannot be used. For example,
the following statement that uses an integer expression is illegal:

EXEC SQL FOR :rows_to_insert + 5 [* illegal */
I NSERT | NTO enp (ename, enpno, sal)
VALUES (:enp_nane, :enmp_nunber, :salary);

The FOR clause variable specifies the number of array elements to be processed. Make
sure the number does not exceed the smallest array dimension. Internally, the value is
treated as an unsigned quantity. An attempt to pass a negative value through the use
of a signed host variable will result in unpredictable behavior.

FOR Clause Restrictions

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in a
SELECT statement or with the CURRENT OF clause.

In a SELECT Statement

If you use the FOR clause in a SELECT statement, you get an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear.
Does it mean "execute this SELECT statement n times"? Or, does it mean "execute this
SELECT statement once, but return n rows"? The problem in the former case is that
each execution might return multiple rows. In the latter case, it is better to declare a
cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :limt FETCH enp_cursor INTO...

With the CURRENT OF Clause

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to
the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, sal FROM enp WHERE enpno = :enp_nunber;

EXEC SQ. OPEN enp_cursor;
EXEC SQL FETCH enp_cursor INTO :enp_name, :salary;

EXEC SQL UPDATE enp SET sal = :new salary
WHERE CURRENT OF enp_cursor;

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of limit is 1 (you can
only update or delete the current row once):

8-14 Pro*C/C++ Programmer’s Guide

Arrays of Structs

EXEC SQL FOR :linit UPDATE enp SET sal = :new salary
WHERE CURRENT OF enp_cursor;

EXEC SQL FOR :linit DELETE FROM enp
WHERE CURRENT OF enp_cursor;

Using the WHERE Clause

Oracle treats a SQL statement containing host arrays of number of elements 7 like the
same SQL statement executed n times with n different scalar variables (the individual
array elements). The precompiler issues an error message only when such treatment
would be ambiguous.

For example, assuming the declarations

int nmgr_nunber[50];
char job_title[50][20];

it would be ambiguous if the statement

EXEC SQL SELECT ngr | NTO : ngr_nunber FROM enp
WHERE job = :job_title;
were treated like the imaginary statement
for (i =0; i <50; i++4)
SELECT mgr | NTO :mgr_nunber[i] FROM enp
VHERE job = :job_title[i];

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL UPDATE enp SET ngr = :ngr_nunber
VWHERE enpno IN (SELECT enpno FROM enp
WHERE job = :job_title);

were treated like the imaginary statement
for (i =0; i <50; i++)
UPDATE enp SET mgr = :ngr_nunber[i]

WHERE enpno | N (SELECT enpno FROM enp
WHERE job = :job_title[i]);

because there is a mgr_number in the SET clause for each row matching job_title in the
WHERE clause, even if each job_title matches multiple rows. All rows matching each
job_title can be SET to the same mgr_number. Therefore, no error message is issued.

Arrays of Structs

Using arrays of scalars, you can perform multirow operations involving a single
column only. Using structs of scalars allows users to perform single row operations
involving multiple columns.

In order to perform multirow operations involving multiple columns, however, you
previously needed to allocate several parallel arrays of scalars either separately or
encapsulated within a single struct. In many cases, it is easier to reorganize this data
structure more conveniently as a single array of structs instead.

Pro*C/C++ supports the use of arrays of structs which enable an application
programmer to perform multirow, multicolumn operations using an array of C structs.

Host Arrays 8-15

Arrays of Structs

With this enhancement, Pro*C/C++ can handle simple arrays of structs of scalars as
bind variables in embedded SQL statements for easier processing of user data. This
makes programming more intuitive, and allows users greater flexibility in organizing
their data.

In addition to supporting arrays of structs as bind variables, Pro*C/C++ also supports
arrays of indicator structs when used in conjunction with an array of structs
declaration.

Note: Binding structs to PL/SQL records and binding arrays of
structs to PL/SQL tables of records are not part of this new
functionality. Arrays of structs may also not be used within an
embedded PL/SQL block. See also "Restrictions on Arrays of
Structs" on page 8-16.

Since arrays of structs are intended to be used when performing multirow operations
involving multiple columns, it is generally anticipated that they will be used in the
following ways.

= Asoutput bind variables in SELECT statements or FETCH statements.
= Asinput bind variables in the VALUES clause of an INSERT statement.

Arrays of Structs Usage

The notion of an array of structs is not new to C programmers. It does, however,
present a conceptual difference for data storage when it is compared to a struct of
parallel arrays.

In a struct of parallel arrays, the data for the individual columns is stored
contiguously. In an array of structs, on the other hand, the column data is interleaved,
whereby each occurrence of a column in the array is separated by the space required
by the other columns in the struct. This space is known as a stride.

Restrictions on Arrays of Structs

The following restrictions apply to the use of arrays of structs in Pro*C/C++:

= Arrays of structs (just as with ordinary structs) are not permitted inside an
embedded PL/SQL block.

= Use of arrays of structs in WHERE or FROM clauses is prohibited.

= Arrays of structs are not permitted with Oracle Dynamic SQL Method 4. They are
permitted with ANSI Dynamic SQL. See also "ANSI Dynamic SQL" on page 14-1.

= Arrays of structs are not permitted in the SET clause of an UPDATE statement.

The syntax for declaring an array of structs does not change. There are, however, a few
things to keep in mind when using an array of structs.

Declaring an Array of Structs

When declaring an array of structs which will be used in a Pro*C/C++ application, the
programmer must keep in mind the following important points:

= The struct must have a structure tag. For example, in the following code segment

struct person {
char name[15];

8-16 Pro*C/C++ Programmer’s Guide

Arrays of Structs

int age;
} peopl e[10];

the per son variable is the structure tag. This is so the precompiler can use the name of
the struct to compute the size of the stride.

= The members of the struct must not be arrays. The only exception to this rule is for
character types such as char or VARCHAR since array syntax is used when
declaring variables of these types.

= char and VARCHAR members may not be two-dimensional.

= Nested structs are not permitted as members of an array of structs. This is not a
new restriction, since nested structs have not been supported by previous releases
of Pro*C/C++.

= The size of just the struct may not exceed the maximum value that a signed 4-byte
quantity may represent. This is typically two gigabytes.

Given these restrictions regarding the use of arrays of structs, the following
declaration is legal in Pro*C/C++

struct departnent {
int deptno;
char dnane[15];
char loc[14];

} dept[4];

while the following declaration is illegal.

struct { /* the struct is nmissing a structure tag */
int enpno[15] ; /* struct menbers may not be arrays */
char enane[15][10]; /* character types may not be 2-dinensional */
struct nested {
int salary; /* nested struct not pernmitted in array of structs */
} sal _struct;
} bad[15];

It is also important to note that you cannot apply datatype equivalencing to either the
array of structs itself or to any of the individual fields within the struct. For example,
assuming enpno is not declared as an array in the earlier illegal struct, the following is
illegal:

exec sql var bad[3].enpno is integer(4);
The precompiler has no way to keep track of individual structure elements within the

array of structs. One could do the following, on the other hand, to achieve the desired
effect.

typedef int nyint;
exec sgl type nyint is integer(4);

struct equiv {
myint enpno; /* now legal ly considered an integer(4) datatype */

} ok 15];

This should come as no surprise since equivalencing individual array items has not
been supported by previous releases of Pro*C/C++. For example, the following scalar
array declarations illustrate what is legal and what is not.

int enpno[15];
exec sql var enmpno[3] is integer(4); /* illegal */

Host Arrays 8-17

Arrays of Structs

nyint empno[15]; /* legal */

In summary, you may not equivalence any individual array item.

Variables Guidelines

Indicator variables for an array of structs declaration work in much the same way as a
normal struct declaration. An indicator array of structs declaration must abide by the
rules for an array of structs as follows:

= The number of fields in the indicator struct must be less than or equal to the
number of fields in the corresponding array of structs.

= The order of the fields must match the order of the corresponding members of the
array of structs.

= The datatype for all elements in the indicator struct must be short.

= The size of the indicator array must be at least the same size as the host variable
declaration. It may be larger, but it may not be smaller.

See Also: "Declaring an Array of Structs” on page 8-16

These rules generally reflect the rules for using structs as implemented in prior
releases of Pro*C/C++. The array restriction is also the same as that previously used
for arrays of scalars.

Given these rules, assume the following struct declaration:

struct departnent {
int deptno;
char dnane[15];
char loc[14];

} dept[4];

The following is a legal indicator variable struct declaration:

struct departnent_ind {
short deptno_ind;
short dname_i nd;
short loc_ind;

} dept_ind[4];

while the following is illegal as an indicator variable

struct{ /* mssing indicator structure tag */
int deptno_ind; /* indicator variable not of type short */
short dname_ind[15];/* array el ement forbidden in indicator struct */
short loc_ind[14]; /* array element forbidden in indicator struct */
} bad_ind[2]; /* indicator array size is smaller than host array */

Declaring a Pointer to an Array of Structs

In some cases, it may be desirable to declare a pointer to an array of structs. This
allows pointers to arrays of structs to be passed to other functions or used directly in
an embedded SQL statement.

8-18 Pro*C/C++ Programmer’s Guide

Arrays of Structs

Examples

Note: The length of the array referenced by a pointer to an array
of structs cannot be known during precompilation. For this reason,
an explicit FOR clause must be used when a bind variable whose
type is a pointer to an array of structs is used in any embedded SQL
statement.

Remember that FOR clauses may not be used in an embedded SQL SELECT statement.
Therefore, to retrieve data into a pointer to an array of structs, an explicit cursor and
FETCH statement must be used with the FOR clause.

The following examples demonstrate different uses of the array of structs functionality
in Pro*C/C++.

Example 1: A Simple Array of Structs of Scalars
Given the following structure declaration,

struct departnent {
int deptno;
char dnane[15];
char |oc[14];

} ny_dept[4];
a user could then select the dept data into ny_dept as follows:

exec sql select * into :nmy_dept fromdept;

or the user could populate my_dept first and then bulk insert it into the dept table:

exec sgl insert into dept values (:ny_dept);
To use an indicator variable, a parallel indicator array of structs could be declared.

struct deptartment_ind {
short deptno_ind;
short dname_i nd;
short |oc_ind;

} ny_dept _ind[4];
Data is then be selected using the same query except for the addition of the indicator
variable:

exec sql select * into :nmy_dept indicator :ny_dept_ind from dept;

Similarly, the indicator could be used when inserting the data as well:

exec sql insert into dept values (:ny_dept indicator :my_dept_ind);

Example 2: Using Mixed Scalar Arrays with An Array of Structs

As in prior releases of Pro*C/C++, when using multiple arrays for bulk handling of
user data, the size of the arrays must be the same. If they are not, the smallest array
size is chosen leaving the remaining portions of the arrays unaffected.

Given the following declarations,

struct enployee {
int enpno;
char enane[11];

Host Arrays 8-19

Arrays of Structs

} enp[14];

float sal[14];
float commi14];

it is possible to select multiple rows for all columns in one simple query:

exec sql select enpno, ename, sal, comminto :enp, :sal, :conmfrom enp;

We also want to know whether the column values for the commissions are NULL or
not. A single indicator array could be used given the following declaration:

short comm.ind[14];

exec sql select enpno, ename, sal, comm
into :enp, :sal, :commindicator :conmind from enp;

You cannot declare a single indicator array of structs that encapsulate all indicator
information from the query. Therefore:

struct enployee_ind { /* exanple of illegal usage */
short enpno_i nd;
short ename_i nd;
short sal _ind;
short comm.ind;
} illegal _ind[15];

exec sgl select enpno, ename, sal, conmm
into :enmp, :sal, :commindicator :illegal_ind from enp;

is illegal (as well as undesirable). The earlier statement associates the indicator array
with the conmmcolumn only, not the entire SELECT...INTO list.

Assuming the array of structs and the sal , conmand conm i nd arrays were
populated with the desired data, insertion is straightforward:

exec sql insert into enp (enpno, enane, sal, comm
values (:enp, :sal, :commindicator :comm.ind);

Example 3: Using Multiple Arrays of Structs with a Cursor
For this example, we make the following declarations:

struct enpl oyee {
int enpno;
char enane[11];
char job[10];
} enp[14];

struct conpensation {
int sal;
int comm

} wage[14];

struct conpensation_ind {
short sal _ind;
short comm.i nd;

} wage_ind[14];

Our program could then make use of these arrays of structs as follows:

exec sql declare c cursor for
sel ect enpno, enane, job, sal, commfrom enp;

8-20 Pro*C/C++ Programmer’s Guide

Arrays of Structs

exec sgl open c;

exec sgl whenever not found do break;
whi le(1)
{

exec sgl fetch c into :enp, :wage indicator :wage_ind;
process batch rows returned by the fetch ...
}

printf("% rows selected.\n", sqlca.sqlerrd[2]);

exec sqgl close c;

Using the FOR clause Alternatively, we could have used the FOR clause to instruct the
fetch on how many rows to retrieve. Recall that the FOR clause is prohibited when
using the SELECT statement, but not the INSERT or FETCH statements.

We add the following to our original declarations
int limt = 10;
and code our example accordingly.

exec sql for :limt
fetch c into :enp, :wage indicator :wage_ind;

Example 4: Individual Array and Struct Member Referencing

Prior releases of Pro*C/C++ allowed array references to single structures in an array of
structs. The following is therefore legal since the bind expression resolves to a simple
struct of scalars.

exec sql select * into :dept[3] from enp;

Users can reference an individual scalar member of a specific struct in an array of
structs as the following example shows.

exec sgl select dname into :dept[3].dname fromdept where ...;

Naturally, this requires that the query be a single row query so only one row is
selected into the variable represented by this bind expression.

Example 5: Using Indicator Variables, a Special Case

Prior releases of Pro*C/C++ required that an indicator struct have the same number of
fields as its associated bind struct. This restriction has been relaxed when using structs
in general. By following the previously mentioned guidelines for indicator arrays of
structs it is possible to construct the following example.

struct enpl oyee {
float comm
float sal;
int enpno;
char enange[10];

} enp[14];

struct enployee_ind {
short comm

} enp_ind[14];

exec sgl select conm sal, enpno, ename

Host Arrays 8-21

Arrays of Structs

into :enp indicator :enp_ind from enp;

The mapping of indicator variables to bind values is one-to-one. They map in
associative sequential order starting with the first field.

Be aware, however, that if any of the other fields has a fetched value of NULL and no
indicator is provided, the following error is raised:

ORA-1405: fetched colum value is NULL

As an example, such is the case if sal was nullable because there is no indicator for
sal .

Suppose we change the array of structs as follows,

struct enpl oyee {
int enpno;
char enane[10];
float sal;
float comm

} enp[15];

but still used the same indicator array of structs.

Because the indicators map in associative sequential order, the conmindicator maps to
the enpno field leaving the conmbind variable without an indicator once again
leading to the ORA-1405 error.

To avoid the ORA-1405 when using indicator structs that have fewer fields than their
associative bind variable structs, the nullable attributes should appear first and in
sequential order.

We could easily change this into a single-row fetch involving multiple columns by
using non-array structs and expect it to work as though the indicator struct was
declared as follows.

struct enployee_ind {
short comm
short sal;
short enpno;
short enane;

} enp_ind;

Because Pro*C/C++ no longer requires that the indicator struct have the same number
of fields as its associated value struct, the earlier example is now legal in Pro*C/C++
whereas previously it was not.

Our indicator struct could now look like the following simple struct.

struct enployee_ind {
short comm
} enp_ind;
Using the non-array enp and enp_i nd structs we are able to perform a single row
fetch as follows.
exec sql fetch conm sal, enpno, enane

into :enp indicator :enp_ind from enp;

Note once again how the commindicator maps to the conmbind variable in this case as
well.

8-22 Pro*C/C++ Programmer’s Guide

Mimicking CURRENT OF

Example 6: Using a Pointer to an Array of Structs
This example demonstrates how to use a pointer to an array of structs.

Given the following type declaration:

typedef struct dept {
int deptno;
char dnane[15];
char loc[14];

} dept;

we can perform a variety of things, manipulating a pointer to an array of structs of
that type. For example, we can pass pointers to arrays of structs to other functions.

voi d insert_data(d, n)

dept *d;
int n;
{
exec sql for :n insert into dept values (:d);
}
void fetch_data(d, n)
dept *d;
int n;
{

exec sgl declare c cursor for select deptno, dnane, |oc from dept;
exec sgl open c;

exec sql for :n fetch ¢ into :d;

exec sql close c;

}

Such functions are invoked by passing the address of the array of structs as these
examples indicate.

dept d[4];
dept *dptr = &d[0];
const int n = 4;

fetch_data(dptr, n);
insert_data(d, n); /* W are treating '&J[0]' as being equal to 'd */

Or we can simply use such pointers to arrays of structs directly in some embedded
SQL statement.

exec sgl for :ninsert into dept values (:dptr);

The most important thing to remember is the use of the FOR clause.

Mimicking CURRENT OF

You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer to
the latest row FETCHed from the cursor. However, you cannot use CURRENT OF with
host arrays. Instead, select the ROWID of each row, then use that value to identify the
current row during the update or delete.

See Also: "The CURRENT OF Clause" on page 6-15

For example:

char enp_nane[20] [10];

Host Arrays 8-23

Mimicking CURRENT OF

char job_title[20][10];
char old_title[20][10];
char row.id[20][19];

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, job, rowid FROM enp;

EXEC SQ. OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND do break;
for (;7)

{
EXEC SQL FETCH enp_cursor
INTO : enp_nane, :job_title, :row.d;
EXEC SQL DELETE FROM enp
WHERE job = :old_title AND rowid = :row.id;
EXEC SQL COWM T WORK;
}

However, the fetched rows are not locked because no FOR UPDATE OF clause is used.
(You cannot use FOR UPDATE OF without CURRENT OF.) So, you might get
inconsistent results if another user changes a row after you read it but before you
delete it.

8-24 Pro*C/C++ Programmer’s Guide

9

Handling Runtime Errors

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle errors and status changes using the SQLSTATE status
variable, as well as the SQL Communications Area (SQLCA) and the WHENEVER
directive. You also learn how to diagnose problems using the Oracle Communications
Area (ORACA). This chapter contains the following topics:

= The Need for Error Handling

= Error Handling Alternatives

« The SQLSTATE Status Variable

= Declaring SQLCODE

= Key Components of Error Reporting Using the SQLCA
= Using the SQL Communications Area (SQLCA)

= Getting the Full Text of Error Messages

= Using the WHENEVER Directive

= Obtaining the Text of SQL Statements

= Using the Oracle Communications Area (ORACA)

The Need for Error Handling

A significant part of every application program must be devoted to error handling.
The main reason for error handling is that it allows your program to continue
operating in the presence of errors. Errors arise from design faults, coding mistakes,
hardware failures, invalid user input, and many other sources.

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors that are meaningful to your program. For the Pro*C/C++ Precompiler, error
handling means detecting and recovering from SQL statement execution errors. You
can also prepare to handle warnings such as "value truncated" and status changes such
as "end of data." It is especially important to check for error and warning conditions
after every SQL data manipulation statement, because an INSERT, UPDATE, or
DELETE statement might fail before processing all eligible rows in a table.

Error Handling Alternatives

There are several alternatives that you can use to detect errors and status changes in
the application. This chapter describes these alternatives, however, no specific

Handling Runtime Errors 9-1

Error Handling Alternatives

recommendations are made about what method you should use. The method is, after
all, dictated by the design of the application program or tool that you are building.

Status Variables

You can declare a separate status variable, SQLSTATE or SQLCODE, examine its value
after each executable SQL statement, and take appropriate action. The action might be
calling an error-reporting function, then exiting the program if the error is
unrecoverable. Or, you might be able to adjust data or control variables and retry the
action.

See Also: «"The SQLSTATE Status Variable" on page 9-3 and
"Declaring SQLCODE" on page 9-10 for complete information
about these status variables.

The SQL Communications Area

Another alternative that you can use is to include the SQL Communications Area
structure (sqlca) in your program. This structure contains components that are filled in
at runtime after the SQL statement is processed by Oracle.

Note: In this guide, the sglca structure is commonly referred to
using the acronym for SQL Communications Area (SQLCA). When
this guide refers to a specific component in the C struct, the
structure name (sqlca) is used.

The SQLCA is defined in the header file sql ca. h, which you include in your program
using either of the following statements:

« EXEC SQL INCLUDE SQLCA;
= #include <sqlca.h>

Oracle updates the SQLCA after every executable SQL statement. (SQLCA values are
unchanged after a declarative statement.) By checking Oracle return codes stored in
the SQLCA, your program can determine the outcome of a SQL statement. This can be
done in the following two ways:

= Implicit checking with the WHENEVER directive
= Explicit checking of SQLCA components

You can use WHENEVER directives, code explicit checks on SQLCA components, or
do both.

The most frequently-used components in the SQLCA are the status variable
(sglca.sqlcode), and the text associated with the error code (sqlca.sqlerrm.sqlerrmc). Other
components contain warning flags and miscellaneous information about the
processing of the SQL statement.

Note: SQLCODE (upper case) always refers to a separate status
variable, not a component of the SQLCA. SQLCODE is declared as
a integer. When referring to the component of the SQLCA named
sqlcode, the fully-qualified name sglca.sqlcode is always used.

When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA. The ORACA is a C struct that handles Oracle

9-2 Pro*C/C++ Programmer’s Guide

The SQLSTATE Status Variable

communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

See Also:

= "Using the SQL Communications Area (SQLCA)" on page 9-12
for complete information about the SQLCA structure.

= "Using the Oracle Communications Area (ORACA)" on
page 9-26 for complete information about the ORACA.

The SQLSTATE Status Variable

The precompiler command line option MODE governs ANSI/ISO compliance. When
MODE=ANSI, declaring the SQLCA data structure is optional. However, you must
declare a separate status variable named SQLCODE. SQL92 specifies a similar status
variable named SQLSTATE, which you can use with or without SQLCODE.

After executing a SQL statement, the Oracle Server returns a status code to the
SQLSTATE variable currently in scope. The status code indicates whether the SQL
statement executed successfully or raised an exception (error or warning condition). To
promote interoperability (the ability of systems to exchange information easily), SQL92
predefines all the common SQL exceptions.

Unlike SQLCODE, which stores only error codes, SOLSTATE stores error and warning
codes. Furthermore, the SQLSTATE reporting mechanism uses a standardized coding
scheme. Thus, SQLSTATE is the preferred status variable. Under SQL92, SQLCODE is
a "deprecated feature" retained only for compatibility with SQL89 and likely to be
removed from future versions of the standard.

Declaring SQLSTATE

When MODE=ANS]I, you must declare SQLSTATE or SQLCODE. Declaring the
SQLCA is optional. When MODE=ORACILE, if you declare SQLSTATE, it is not used.

Unlike SQLCODE, which stores signed integers and can be declared outside the
Declare Section, SQLSTATE stores 5-character null-terminated strings and must be
declared inside the Declare Section. You declare SQLSTATE as

char SQLSTATE[6]; /* Upper case is required. */

Note: SQLSTATE must be declared with a dimension of exactly 6
characters.

SQLSTATE Values

SQLSTATE status codes consist of a 2-character class code immediately followed by a
3-character subclass code. Aside from class code 00 ("successful completion"”,) the class
code denotes a category of exceptions. And, aside from subclass code 000 ("not
applicable",) the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value 22012’ consists of class code 22 ("data exception") and
subclass code 012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin
letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range
A..H are reserved for predefined conditions (those defined in SQL92). All other class
codes are reserved for implementation-defined conditions. Within predefined classes,

Handling Runtime Errors 9-3

The SQLSTATE Status Variable

subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are
reserved for predefined subconditions. All other subclass codes are reserved for
implementation-defined subconditions. Figure 9-1 shows the coding scheme.

Figure 9-1 SQLSTATE Coding Scheme

First Char in Class Code
0..4 5..9 A..H l1..Z

First Char in
Subclass Code
>
T

- Predefined D Implementation—defined

Table 9-1 shows the classes predefined by SQL92.

Table 9-1 Predefined Class Codes

Class Condition

00 success completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 coordinately violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification
2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist
2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

9-4 Pro*C/C++ Programmer’s Guide

The SQLSTATE Status Variable

Table 9-1 (Cont.) Predefined Class Codes

Class Condition

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation
3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation
44 with check option violation

HZ remote database access

Note:

The class code HZ is reserved for conditions defined in
International Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 9-2 shows how SQLSTATE status codes and conditions are mapped to Oracle
errors. Status codes in the range 60000 to 99999 are implementation-defined.

Table 9-2 SQLSTATE Status Codes

Code Condition Oracle Error(s)

00000 successful completion ORA-00000

01000 warning -

01001 cursor operation conflict -

01002 disconnect error -

01003 NULL value eliminated in set function -

01004 string data-right truncation --

01005 insufficient item descriptor areas -

01006 privilege not revoked --

01007 privilege not granted --

01008 implicit zero-bit padding -

01009 search condition too long for info schema -

0100A query expression too long for info schema -

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error -

07001 using clause does not match parameter specs --

07002 using clause does not match target specs -

07003 cursor specification cannot be executed -

Handling Runtime Errors 9-5

The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code

Condition

Oracle Error(s)

07004

07005
07006
07007

07008
07009
08000
08001

08002
08003
08004
08006
08007
0A000
0A001
21000

22000
22001
22002
22003
22005
22007
22008
22009
22011
22012
22015
22018
22019
22021
22022
22023

22024

using clause required for dynamic
parameters

prepared statement not a cursor specification

restricted datatype attribute violation

using clause required for result components

invalid descriptor count
invalid descriptor count
invalid descriptor index
connection exception

SQL-client unable to establish
SQL-connection

connection name is use

connection does not exist
SQL-server rejected SQL-connection
connection failure

transaction resolution unknown
feature not supported

multiple server transactions

cardinality violation

data exception

string data - right truncation

NULL value-no indicator parameter
numeric value out of range

error in assignment

invalid datetime format

datetime field overflow

invalid time zone displacement value
substring error

division by zero

interval field overflow

invalid character value for cast
invalid escape character

character not in repertoire

indicator overflow

invalid parameter value

unterminated C string

9-6 Pro*C/C++ Programmer’s Guide

ORA-03000..03099

ORA-01427
SQL-02112

ORA-01406
SQL-02124
ORA-01426

ORA-01800..01899
ORA-01476
ORA-00911
ORA-01411
ORA-01025
ORA-04000..04019
ORA-01479
ORA-01480

The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

22025 invalid escape sequence ORA-01424
ORA-01425

22026 string data-length mismatch ORA-01401

22027 trim error -

23000 integrity constraint violation ORA-02290..02299

24000 invalid cursor state ORA-001002
ORA-001003
SQL-02114
SQL-02117

25000 invalid transaction state SQL-02118

26000 invalid SQL statement name -

27000 triggered data change violation -

28000 invalid authorization specification --

2A000 direct SQL syntax error or access rule -

violation

2B000 dependent privilege descriptors still exist -

2C000 invalid character set name --

2D000 invalid transaction termination -

2E000 invalid connection name --

33000 invalid SQL descriptor name -

34000 invalid cursor name -

35000 invalid condition number -

37000 dynamic SQL syntax error or access rule -
violation

3C000 ambiguous cursor name -

3D000 invalid catalog name --

3F000 invalid schema name --

40000 transaction rollback ORA-02091
ORA-02092

40001 serialization failure --

40002 integrity constraint violation -

40003 statement completion unknown -

Handling Runtime Errors 9-7

The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code

Condition

Oracle Error(s)

42000

44000
60000

61000

62000

63000

64000

65000
66000

67000
69000

syntax error or access rule violation

with check option violation

system error

shared server and detached process errors

shared server and detached process errors

Oracle*XA and two-task interface errors

control file, database file, and redo file errors;
archival and media recovery errors

PL/SQL errors

Oracle Net driver errors

licensing errors

SQL*Connect errors

9-8 Pro*C/C++ Programmer’s Guide

ORA-00022
ORA-00251

ORA-00900..

ORA-01031

ORA-01490..
ORA-01700..
ORA-01900..
ORA-02140..
ORA-02420..
ORA-02450..
ORA-03276..
ORA-04040..
ORA-04070..

ORA-01402

ORA-00370..
ORA-00600..
ORA-06430..
ORA-07200..
ORA-09700..
ORA-00018..
ORA-00050..
ORA-02376..
ORA-04020..
ORA-00100..
ORA-00440..
ORA-00150..
ORA-02700..
ORA-03100..
ORA-06200..

SQL-02128

ORA-00200..
ORA-01100..
ORA-06500..
ORA-06000..
ORA-06250..
ORA-06600..
ORA-12100..
ORA-12500..
ORA-00430..
ORA-00570..
ORA-07000..

00999

01493
01799
02099
02289
02424
02499
03299
04059
04099

00429
00899
06449
07999
09999
00035
00068
02399
04039
00120
00569
00159
02899
03199
06249

00369
01250
06599
06149
06429
06999
12299
12599
00439
00599
07199

The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

72000 SQL execute phase errors ORA-00001
ORA-01000..01099
ORA-01400..01489
ORA-(01495..01499
ORA-01500..01699
ORA-02400..02419
ORA-02425..02449
ORA-04060..04069
ORA-08000..08190
ORA-12000..12019
ORA-12300..12499
ORA-12700..21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache (UCE/CUC SQL-02101
mismatch)

82102 inconsistent cursor cache (no CUC entry for =~ SQL-02102
UCE)

82103 inconsistent cursor cache (out-or-range CUC SQL-02103
ref)

82104 inconsistent cursor cache (no CUC available) SQL-02104
82105 inconsistent cursor cache (no CUC entry in ~ SQL-02105

cache)

82106 inconsistent cursor cache (invalid cursor SQL-02106
number)

82107 program too old for runtime library; SQL-02107

re-precompile
82108 invalid descriptor passed to runtime library =~ SQL-02108
82109 inconsistent host cache (out-or-range SIT ref) SQL-02109
82110 inconsistent host cache (invalid SQL type) SQL-02110

82111 heap consistency error SQL-02111

82113 code generation internal consistency failed =~ SQL-02115

82114 reentrant code generator gave invalid SQL-02116
context

82117 invalid QPEN or PREPARE for this SQL-02122
connection

82118 application context not found SQL-02123

82119 unable to obtain error message text SQL-02125

82120 Precompiler/SQLLIB version mismatch SQL-02127

82121 NCHAR error; fetched number of bytes is SQL-02129
odd

82122 EXEC TOOLS interface not available SQL-02130

82123 runtime context in use SQL-02131

Handling Runtime Errors 9-9

Declaring SQLCODE

Table 9-2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)
82124 unable to allocate runtime context SQL-02132
82125 unable to initialize process for use with SQL-02133
threads
82126 invalid runtime context SQL-02134
HZ000 remote database access --
Using SQLSTATE

The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when
you precompile with the option setting MODE=ANSI. SQLSTATE must be declared
inside a Declare Section; otherwise, it is ignored.

If You Declare SQLSTATE

= Declaring SQLCODE is optional. If you declare SQLCODE inside the Declare
Section, the Oracle Server returns status codes to SQLSTATE and SQLCODE after
every SQL operation. However, if you declare SQLCODE outside of the Declare
Section, Oracle returns a status code only to SQLSTATE.

» Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLSTATE and the SQLCA. In this case, to avoid compilation errors, do
not declare SQLCODE.

If You Do not Declare SQLSTATE

« You must declare SQLCODE inside or outside the Declare Section. The Oracle
Server returns a status code to SQLCODE after every SQL operation.

= Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLCODE and the SQLCA.

You can learn the outcome of the most recent executable SQL statement by checking
SQLSTATE explicitly with your own code or implicitly with the WHENEVER
SQLERROR directive. Check SQLSTATE only after executable SQL statements and
PL/SQL statements.

Declaring SQLCODE

When MODE=ANS], and you have not declared a SQLSTATE status variable, you
must declare a long integer variable named SQLCODE inside or outside the Declare
Section. An example follows:

/* declare host variables */
EXEC SQL BEG N DECLARE SECTI ON,
int enp_nunber, dept_nunber;
char enp_name[20];

EXEC SQL END DECLARE SECTI ON;

/* declare status variabl e--nust be upper case */
| ong SQLCODE;

When MODE=ORACLE, if you declare SQLCODIE, it is not used.

You can declare more than one SQLCODE. Access to a local SQLCODE is limited by its
scope within your program.

9-10 Pro*C/C++ Programmer’s Guide

Key Components of Error Reporting Using the SQLCA

After every SQL operation, Oracle returns a status code to the SQLCODE currently in
scope. So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER directive.

When you declare SQLCODE instead of the SQLCA in a particular compilation unit,
the precompiler allocates an internal SQLCA for that unit. Your host program cannot
access the internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle returns
the same status code to both after every SQL operation.

Key Components of Error Reporting Using the SQLCA

Status Codes

Warning Flags

Error reporting depends on variables in the SQLCA. This section highlights the key
components of error reporting. The next section takes a close look at the SQLCA.

Every executable SQL statement returns a status code to the SQLCA variable sqlcode,
which you can check implicitly with the WHENEVER directive or explicitly with your
own code.

A zero status code means that Oracle executed the statement without detecting an
error or exception. A positive status code means that Oracle executed the statement
but detected an exception. A negative status code means that Oracle did not execute
the SQL statement because of an error.

Warning flags are returned in the SQLCA variables sql war n[0] through

sqgl war n[7], which you can check implicitly or explicitly. These warning flags are
useful for runtime conditions not considered errors by Oracle. If no indicator variable
is available, Oracle issues an error message.

Rows-Processed Count

The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable sql ca. sql errd[2] , which you can check explicitly.

Strictly speaking, this variable is not for error reporting, but it can help you avoid
mistakes. For example, suppose you expect to delete about ten rows from a table. After
the deletion, you check sql ca. sql errd[2] and find that 75 rows were processed. To
be safe, you might want to roll back the deletion and examine your WHERE-clause
search condition.

Parse Error Offsets

Before executing a SQL statement, Oracle must parse it to make sure it follows syntax
rules and refers to valid database objects. If Oracle finds an error, an offset is stored in
the SQLCA variable sql ca. sql er r d[4] , which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins.
As in a normal C string, the first character occupies position zero. For example, if the
offset is 9, the parse error begins at the 10th character.

The parse error offset is used for situations where a separate prepare/parse is
performed. This is typical for dynamic SQL statements.

Parse errors may arise from missing, misplaced, or misspelled keywords, invalid
options, and the like. For example, the dynamic SQL statement:

Handling Runtime Errors 9-11

Using the SQL Communications Area (SQLCA)

"UPDATE enmp SET jib = :job_title WHERE enpno = :enp_nunber"

causes the parse error

ORA-00904: invalid colum nane

because the column name JOB is misspelled. The value of sql ca. sql errd[4] is 15
because the erroneous column name JIB begins at the 16th character.

If your SQL statement does not cause a parse error, Oracle sets sql ca. sql er r d[4]
to zero. Oracle also sets sgl ca. sql errd[4] to zero if a parse error begins at the first
character (which occupies position zero). So, check sql ca. sql errd[4] only if
sqlca.sqlcode is negative, which means that an error has occurred.

Error Message Text

The error code and message for Oracle errors are available in the SQLCA variable
SQLERRMC. At most, the first 70 characters of text are stored. To get the full text of
messages longer than 70 characters, you use the sql gl n() function.

See Also: "Getting the Full Text of Error Messages" on page 9-17

Using the SQL Communications Area (SQLCA)

The SQLCA is a data structure. Its components contain error, warning, and status
information updated by Oracle whenever a SQL statement is executed. Thus, the
SQLCA always reflects the outcome of the most recent SQL operation. To determine
the outcome, you can check variables in the SQLCA.

Your program can have more than one SQLCA. For example, it might have one global
SQLCA and several local ones. Access to a local SQLCA is limited by its scope within
the program. Oracle returns information only to the SQLCA that is in scope.

Note: When your application uses Oracle Net to access a
combination of local and remote databases concurrently, all the
databases write to one SQLCA. There is not a different SQLCA for
each database.

See Also: "Advanced Connection Options" on page 3-4

Declaring the SQLCA

When MODE=ORACLE, declaring the SQLCA is required. To declare the SQLCA, you
should copy it into your program with the INCLUDE or #include statement, as
follows:

EXEC SQL | NCLUDE SQLCA;

or

#include <sql ca. h>

If you use a Declare Section, the SQLCA must be declared outside the Declare Section.
Not declaring the SQLCA results in compile-time errors.

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle to communicate with the program.

9-12 Pro*C/C++ Programmer’s Guide

Using the SQL Communications Area (SQLCA)

When MODE=ANS]I, declaring the SQLCA is optional. But in this case you must
declare a SQLCODE or SQLSTATE status variable. The type of SQLCODE (upper case
is required) is int. If you declare SQLCODE or SQLSTATE instead of the SQLCA in a
particular compilation unit, the precompiler allocates an internal SQLCA for that unit.
Your Pro*C/C++ program cannot access the internal SQLCA. If you declare the
SQLCA and SQLCODE, Oracle returns the same status code to both after every SQL
operation.

Note: Declaring the SQLCA is optional when MODE=ANS], but
you cannot use the WHENEVER SQLWARNING directive without
the SQLCA. So, if you want to use the WHENEVER
SQLWARNING directive, you must declare the SQLCA.

This Guide uses SQLCODE when referring to the SQLCODE status
variable, and sqlca.sqlcode when explicitly referring to the
component of the SQLCA structure.

SQLCA Contents

The SQLCA contains the following runtime information about the outcome of SQL
statements:

» Oracle error codes

= Warning flags

» Eventinformation

= Rows-processed count
= Diagnostics

The sql ca. h header file is:

/*

NAME
SQ.CA : SQ. Communications Area.

FUNCTI ON
Contains no code. Oracle fills in the SQLCAwith status info
during the execution of a SQ stnt.

NOTES

EEEEEEEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

* k% * k%

*** This file is SOSD. Porters nust change the data types ***
*** appropriately on their platform See notes/pcport.doc ***

*** for nore informtion. i
* k% * k%

R EEEEEEEEEEEEEEEEEEEEEEEEEEREREEEEREEEEEEEEEEREEEEEEEEEEEEEEES

If the synbol SQLCA STORAGE_CLASS is defined, then the SQLCA
will be defined to have this storage class. For exanple:

#define SQLCA STORAGE_CLASS extern
will define the SQLCA as an extern.
If the synbol SQLCA INIT is defined, then the SQLCA will be
statically initialized. Athough this is not necessary in order
to use the SQLCA, it is a good prograning practice not to have

unitialized variables. However, some C conpilers/operating systens
don't allow automatic variables to be initialized in this nmanner.

Handling Runtime Errors 9-13

Using the SQL Communications Area (SQLCA)

Therefore, if you are INCLUDE ing the SQLCA in a place where it
woul d be an automatic AND your C conpiler/operating system doesn't
allowthis style of initialization, then SQLCA INT should be left
undefined -- all others can define SQLCAINIT if they wish.

If the synbol SQLCA NONE is defined, then the SQLCA
variable will not be defined at all. The synbol SQ.CA NONE
shoul d not be defined in source nodul es that have enbedded SQL.
However, source nodul es that have no enbedded SQ., but need to
mani pul ate a sqglca struct passed in as a parameter, can set the
SQLCA_NONE synbol to avoid creation of an extraneous sqglca
vari abl e.
*/
#i fndef SQLCA
#define SQLCA 1
struct sqglca
{
[* ubl */ char sql cai d[8];
/* b4 */ long sql abc;
/* b4 */ long sql code;

struct
{
[* ub2 */ unsigned short sglerrni;
[* ubl */ char sqlerrnc[70];
} sglerrm

[* ubl */ char sqlerrp[8];
/* b4 */ long sql errd[6];
[* ubl */ char sql war n[8] ;
[* ubl */ char sqlext[8];
¥

#i fndef SQLCA_NONE

#ifdef SQLCA STORAGE_CLASS

SQLCA STORAGE_CLASS struct sqlca sqlca

#el se
struct sqlca sqlca
#endi f
#ifdef SQCAINT
={
{'s, 'Q, ', 'c, A, ",)
si zeof (struct sqlca),
0,
{ 0, {0}},
{N, 'O, 'T, """, 'S, 'E,'T, "'},
{o, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, O, 0O}
1
#endi f
#endi f
#endi f
SQLCA Structure
This section describes the structure of the SQLCA, its components, and the values they
can store.

9-14 Pro*C/C++ Programmer’s Guide

Using the SQL Communications Area (SQLCA)

sqlcaid
This string component is initialized to "SQLCA" to identify the SQL Communications
Area.

sqlcabc
This integer component holds the length, in bytes, of the SQLCA structure.

sqlcode

This integer component holds the status code of the most recently executed SQL
statement. The status code, which indicates the outcome of the SQL operation, can be
any of the following numbers:

Status Codes Description

0 Means that Oracle executed the statement without detecting an
error or exception.

>0 Means that Oracle executed the statement but detected an
exception. This occurs when Oracle cannot find a row that meets
your WHERE-clause search condition or when a SELECT INTO
or FETCH returns no rows.

When MODE=ANS]I, +100 is returned to sglcode after an INSERT of no rows. This can
happen when a subquery returns no rows to process.

« <0 -Means that Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal. When they occur,
the current transaction should, in most cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle Database Error
Messages

sqlerrm
This embedded struct contains the following two components:

Components Description

sqlerrml This integer component holds the length of the message text
stored in sqlerrmec.

sqlerrmc This string component holds the message text corresponding to
the error code stored in sqlcode. The string is not null
terminated. Use the sqlerrml component to determine the
length.

This component can store up to 70 characters. To get the full text of messages longer
than 70 characters, you must use the sql gl m() function (discussed later).

Make sure sqlcode is negative before you reference sglerrmc. If you reference sqlerrmc
when sglcode is zero, you get the message text associated with a prior SQL statement.

sqlerrp

This string component is reserved for future use.

Handling Runtime Errors 9-15

Using the SQL Communications Area (SQLCA)

sqlerrd

This array of binary integers has six elements. Descriptions of the components in
sqlerrd follow:

Components Description

sqlerrd[0] This component is reserved for future use.

sqlerrd[1] This component is reserved for future use.

sqlerrd[2] This component holds the number of rows processed by the

most recently executed SQL statement. However, if the SQL
statement failed, the value of sqlca.sqlerrd[2] is undefined, with
one exception. If the error occurred during an array operation,
processing stops at the row that caused the error, so
sqlca.sqlerrd[2] gives the number of rows processed successfully.

The rows-processed count is zeroed after an OPEN statement and incremented after a
FETCH statement. For the EXECUTE, INSERT, UPDATE, DELETE, and SELECT INTO
statements, the count reflects the number of rows processed successfully. The count
does not include rows processed by an UPDATE or DELETE CASCADE. For example,
if 20 rows are deleted because they meet WHERE-clause criteria, and 5 more rows are
deleted because they now (after the primary delete) violate column constraints, the
count is 20 not 25.

Components Description
sqlerrd[3] This component is reserved for future use.
sqlerrd[4] This component holds an offset that specifies the character

position at which a parse error begins in the most recently
executed SQL statement. The first character occupies position
Zero.

sqlerrd[5] This component is reserved for future use.

sqlwarn

This array of single characters has eight elements. They are used as warning flags.
Oracle sets a flag by assigning it a "W" (for warning) character value.

The flags warn of exceptional conditions. For example, a warning flag is set when
Oracle assigns a truncated column value to an output host variable.

Descriptions of the components in sqlwarn follow:

Components Description
sqlwarn[0] This flag is set if another warning flag is set.
sqlwarn[1] This flag is set if a truncated column value was assigned to an

output host variable. This applies only to character data. Oracle
truncates certain numeric data without setting a warning or
returning a negative sqlcode.

To find out if a column value was truncated and by how much, check the indicator
variable associated with the output host variable. The (positive) integer returned by an
indicator variable is the original length of the column value. You can increase the
length of the host variable accordingly.

9-16 Pro*C/C++ Programmer’s Guide

Getting the Full Text of Error Messages

Components Description

sqlwarn[2] This flag is set if a NULL column is not used in the result of a
SQL group function, such as AVG() or SUM().

sqlwarn[3] This flag is set if the number of columns in a query select list
does not equal the number of host variables in the INTO clause
of the SELECT or FETCH statement. The number of items
returned is the lesser of the two.

sqlwarn[4] This flag is no longer in use.

sqlwarn[5] This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY] statement fails
because of a PL/SQL compilation error.

sqlwarn[6] This flag is no longer in use.
sqlwarn[7] This flag is no longer in use.
sqlext

This string component is reserved for future use.

PL/SQL Considerations

When the precompiler application executes an embedded PL/SQL block, not all
components of the SQLCA are set. For example, if the block fetches several rows, the
rows-processed count (sql errd[2]) is set to only 1. You should depend only on the
sqlcode and sqlerrm components of the SQLCA after execution of a PL/SQL block.

Getting the Full Text of Error Messages

The SQLCA can accommodate error messages up to 70 characters long. To get the full
text of longer (or nested) error messages, you need to use the sql gl m() function. The
syntax is

void sqgl gl m{char *message_buffer,
size_t *buffer_size,
size_t *message_| ength);

where:

Syntax Description

message_buffer Is the text buffer in which you want Oracle to store the error
message (Oracle blank-pads to the end of this buffer).

buffer_size Is a scalar variable that specifies the maximum size of the buffer
in bytes.

message_length Is a scalar variable in which Oracle stores the actual length of the

error message, if not truncated.

Handling Runtime Errors 9-17

Using the WHENEVER Directive

Note: The types of the last two arguments for the sql gl n()
function are shown here generically as si ze_t pointers. However
on your platform they might have a different type. For example, on
many UNIX workstation ports, they are unsi gned int *.

You should check the file sql cpr. h, which is in the standard
include directory on your system, to determine the datatype of
these parameters.

The maximum length of an Oracle error message is 512 characters including the error
code, nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by sql gl () depends on the value
you specify for buffer_size.

The following example calls sql gl () to get an error message of up to 200 characters
in length:

EXEC SQL WHENEVER SQLERROR DO sql _error();
/* other statenments */

sql _error()
{
char nsg[200];
size_t buf _len, nsg_|len;

buf I en = sizeof (msg);
sql gl m(nsg, &buf len, &rsg_len); /* note use of pointers */
printf("%*s\n\n", nsg_len, nsg);
exit(1);
}

Notice that sql gl n() is called only when a SQL error has occurred. Always make
sure SQLCODE (or sglca.sqlcode) is nonzero before calling sqlglm. If you call sql gl m()
when SQLCODE is zero, you get the message text associated with a prior SQL
statement.

Note: In cases where multiple runtime contexts are used, use the
version of sqlglmt() that takes a context to get the correct error
message.

See Also: Chapter 11, "Multithreaded Applications"

Using the WHENEVER Directive

By default, precompiled programs ignore Oracle error and warning conditions and
continue processing if possible. To do automatic condition checking and error
handling, you need the WHENEVER directive.

With the WHENEVER directive you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, calling a routine, branching to a labeled statement,
or stopping.

You code the WHENEVER directive using the following syntax:

9-18 Pro*C/C++ Programmer’s Guide

Using the WHENEVER Directive

EXEC SQ. WHENEVER <condi ti on> <action>;

WHENEVER Conditions

You can have Oracle automatically check the SQLCA for any of the following
conditions.

SQLWARNING

sqgl war n[0] is set because Oracle returned a warning (one of the warning flags,
sqgl war n[1] through sql war n[7], is also set) or SQLCODE has a positive value
other than +1403. For example, sql war n[0] is set when Oracle assigns a truncated
column value to an output host variable.

Declaring the SQLCA is optional when MODE=ANSI. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

SQLERROR

SQLCODE has a negative value because Oracle returned an error.

NOT FOUND

SQLCODE has a value of +1403 (+100 when MODE=ANSI) because Oracle could not
find a row that meets your WHERE-clause search condition, or a SELECT INTO or
FETCH returned no rows.

When MODE=ANSI, +100 is returned to SQLCODE after an INSERT of no rows.

WHENEVER Actions

When Oracle detects one of the preceding conditions, you can have your program take
any of the following actions.

CONTINUE

Your program continues to run with the next statement if possible. This is the default
action, equivalent to not using the WHENEVER directive. You can use it to turn off
condition checking.

DO

Your program transfers control to an error handling function in the program. When
the end of the routine is reached, control transfers to the statement that follows the
failed SQL statement.

The usual rules for entering and exiting a function apply. You can pass parameters to
the error handler invoked by an EXEC SQL WHENEVER ... DO ... directive, and the
function can return a value.

DO BREAK

An actual "break" statement is placed in your program. Use this action in loops. When
the WHENEVER condition is met, your program exits the loop it is inside.

DO CONTINUE

An actual "continue" statement is placed in your program. Use this action in loops.
When the WHENEVER condition is met, your program continues with the next
iteration of the loop it is inside.

Handling Runtime Errors 9-19

Using the WHENEVER Directive

GOTO label_name

Your program branches to a labeled statement. Label names can be any length, but
only the first 31 characters are significant. Your C compiler might require a different
maximum length. Check your C compiler user's guide.

STOP

Your program stops running and uncommitted work is rolled back.

STOP in effect just generates an exi t () call whenever the condition occurs. Be
careful. The STOP action displays no messages before disconnecting from Oracle.

WHENEVER Examples

If you want your program to

= Go to close_cursor if a "no data found" condition occurs
= Continue with the next statement if a warning occurs

« Go to error_handler if an error occurs

you must code the following WHENEVER directives before the first executable SQL
statement:

EXEC SQL WHENEVER NOT FOUND GOTO cl ose_cursor;
EXEC SQL WHENEVER SQLWARNI NG CONTI NUE;
EXEC SQL WHENEVER SQLERROR GOTO error_handl er;

In the following example, you use WHENEVER...DO directives to handle specific
errors:

EXEC SQL WHENEVER SQLERRCR DO handl e_insert _error ("1 NSERT error");
EXEC SQL | NSERT I NTO enp (enpno, enane, deptno)

VALUES (:enp_nunber, :enp_nane, :dept_nunber);
EXEC SQL WHENEVER SQLERROR DO handl e_del ete_error (" DELETE error");
EXEC SQL DELETE FROM dept WHERE deptno = :dept_nunber;

handl e_i nsert _error(char *stnt)
{ swi t ch(sql ca. sql code)
{
case -1:
I* duplicate key value */
break;
case -1401:
/* value too large */
break;
defaul t:
/* do sonething here too */

break;

}
}
handl e_del ete_error(char *stnt)
{
printf("%\n\n", stnt);
if (sqglca.sqlerrd[2] == 0)
{

9-20 Pro*C/C++ Programmer’s Guide

Using the WHENEVER Directive

/* no rows deleted */

Notice how the procedures check variables in the SQLCA to determine a course of
action.

Use of DO BREAK and DO CONTINUE

This example illustrates how to display employee name, salary, and commission for
only those employees who receive commissions:

#include <sql ca. h>
#include <stdio. h>

mai n()

{

char *uid = "scott/tiger";
struct { char enane[12]; float sal; float conm } enp;

/* Trap any connection error that mght occur. */
EXEC SQL WHENEVER SQLERROR GOTO whoops;
EXEC SQL CONNECT : ui d;

EXEC SQL DECLARE ¢ CURSCR FOR
SELECT enane, sal, conm FROM EMP CRDER BY ENAME ASC,

EXEC SQ. OPEN c;
/* Set up 'BREAK' condition to exit the loop. */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
/* The DO CONTI NUE nmakes the loop start at the next iteration when an error

occurs. */

EXEC SQL WHENEVER SQLERROR DO CONTI NUE;

while (1)
{
EXEC SQL FETCH ¢ INTO : enp;
/* An ORA-1405 woul d cause the 'continue' to occur. So only enployees with */
/* non-NULL conmissions will be displayed. */
printf("% 9%.2f 9. 2f\n", enp.enanme, enp.sal, enp.con;
}

[* This ' CONTINUE shuts off the ' DO CONTINUE allow ng the programto

proceed if any further errors do occur, specifically, with the CLOSE */
EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL CLOSE c;

exi t (EXI T_SUCCESS) ;

whoops:

printf("%*s\n", sqglca.sqglerrmsqglerrn, sqglca.sqlerrmsglerrnt);
exi t (EXI T_FAI LURE) ;

Handling Runtime Errors 9-21

Using the WHENEVER Directive

Scope of WHENEVER

Because WHENEVER is a declarative statement, its scope is positional, not logical.
That is, it tests all executable SQL statements that physically follow it in the source file,
not in the flow of program logic. So, code the WHENEVER directive before the first
executable SQL statement you want to test.

A WHENEVER directive stays in effect until superseded by another WHENEVER
directive checking for the same condition.

In the following example, the first WHENEVER SQLERROR directive is superseded
by a second, and so applies only to the CONNECT statement. The second
WHENEVER SQLERROR directive applies to both the UPDATE and DROP
statements, despite the flow of control from step1 to step3.

stepl:
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;

goto step3;

step2:
EXEC SQL VHENEVER SQLERROR CONTI NUE;
EXEC SQL UPDATE enp SET sal = sal * 1.10;

step3:
EXEC SQL DROP | NDEX enp_i ndex;

Guidelines for WHENEVER

The following guidelines will help you avoid some common pitfalls.

Placing the Statements

In general, code a WHENEVER directive before the first executable SQL statement in
your program. This ensures that all ensuing errors are trapped because WHENEVER
directives stay in effect to the end of a file.

Handling End-of-Data Conditions

Your program should be prepared to handle an end-of-data condition when using a
cursor to fetch rows. If a FETCH returns no data, the program should exit the fetch
loop, as follows:

EXEC SQL WHENEVER NOT FOUND DO break;
for (;;)

EXEC SQL FETCH...

}
EXEC SQL CLOSE ny_cursor;

An INSERT can return NOT FOUND if no rows have been inserted. If you do not want
to catch that condition, use the EXEC SQL WHENEVER NOT FOUND CONTINUE
statement before the INSERT:

EXEC SQL WHENEVER NOT FOUND DO br eak;
for(;;)
{
EXEC SQL FETCH ...
EXEC SQL WHENEVER NOT FOUND CONTI NUE;
EXEC SQL I NSERT INTO ...

9-22 Pro*C/C++ Programmer’s Guide

Using the WHENEVER Directive

}
EXEC SQ CLOSE ny_cursor;

Avoiding Infinite Loops

If a WHENEVER SQLERROR GOTO directive branches to an error handling routine
that includes an executable SQL statement, your program might enter an infinite loop
if the SQL statement fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the SQL statement, as shown in the following
example:

EXEC SQL WHENEVER SQLERROR GOTO sql _error;
sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;

Without the WHENEVER SQLERROR CONTINUE statement, a ROLLBACK error
would invoke the routine again, starting an infinite loop.

Careless use of WHENEVER can cause problems. For example, the following code
enters an infinite loop if the DELETE statement sets NOT FOUND because no rows
meet the search condition:

[* inproper use of WHENEVER */

EXEC SQL WHENEVER NOT FOUND GOTO no_nor e;
for (37)

{

EXEC SQL FETCH enp_cursor |INTO :enp_nane, :salary;
}
no_nore:

EXEC SQL DELETE FROM enp WHERE enpno = :enp_nunber;

The next example handles the NOT FOUND condition properly by resetting the
GOTO target:

[* proper use of WHENEVER */

EXEC SQL WHENEVER NOT FOUND GOTO no_nor e;
for (37)

{

EXEC SQL FETCH enp_cursor |INTO :enp_nane, :salary;
}
no_nore:

EXEC SQL VHENEVER NOT FOUND GOTO no_nmat ch;

EXEC SQL DELETE FROM enp WHERE enpno = :enp_nunber;
no_mat ch:

Maintaining Addressability

Make sure all SQL statements governed by a WHENEVER GOTO directive can branch
to the GOTO label. The following code results in a compile-time error because labelA in
funcl is not within the scope of the INSERT statement in func2:

Handling Runtime Errors 9-23

Obtaining the Text of SQL Statements

funcl()
{

EXEC SQL WHENEVER SQLERROR GOTO | abel A;
EXEC SQL DELETE FROM enp WHERE deptno = :dept _number;

| abel A

func2()

{

EXEC SQL I NSERT I NTO enp (job) VALUES (:job_title);

}

The label to which a WHENEVER GOTO directive branches must be in the same
precompilation file as the statement.

Returning After an Error

If your program must return after handling an error, use the DO routine_call action.
Alternatively, you can test the value of sqlcode, as shown in the following example:

EXEC SQL UPDATE enp SET sal = sal * 1.10;
if (sqglca.sqlcode < 0)
{ [/* handle error */

EXEC SQL DRCP | NDEX enp_i ndex;

Just make sure no WHENEVER GOTO or WHENEVER STOP directive is active.

Obtaining the Text of SQL Statements

In many precompiler applications it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT) that it
contains. This is especially true for applications that use dynamic SQL.

The SQLSt nt Get Text () function (old name:sql gl s() function)—part of the
SQLLIB runtime library—returns the following information:

= The text of the most recently parsed SQL statement
= The effective length of the statement
« A function code for the SQL command used in the statement

SQLSt mt Get Text () is thread-safe. You can call SQLSt nt Get Text () after issuing a
static SQL statement. For dynamic SQL Method 1, call SQLSt nt Get Text () after the
SQL statement is executed. For dynamic SQL Methods 2, 3, and 4, you can call

SQLSt nt Get Text () as soon as the statement has been PREPAREd.

For the new names of all the SQLLIB functions, see also "New Names for SQLLIB
Public Functions" on page 5-39.

The prototype for SQLSt mt Get Text () is

voi d SQLSt nt Get Text (dvoid *context, char *sglstm size t *stmen, size_t *sqglfc);

The context parameter is the runtime context. For definition and use of contexts, see
"CONTEXT Variables" on page 4-29.

9-24 Pro*C/C++ Programmer’s Guide

Obtaining the Text of SQL Statements

The sqlstm parameter is a character buffer that holds the returned text of the SQL
statement. Your program must statically declare the buffer or dynamically allocate
memory for the buffer.

The stmlen parameter is a size_t variable. Before calling SQLSt nt Get Text (), set this
parameter to the actual size, in bytes, of the sqlstm buffer. When SQLSt nt Get Text ()
returns, the sqlstm buffer contains the SQL statement text, blank padded to the length
of the buffer. The stmlen parameter returns the actual number of bytes in the returned
statement text, not counting blank padding. The maximum value of stmlen is
port-specific and generally will be the maximum integer size.

The sqlfc parameter is a size_t variable that returns the SQL function code for the SQL
command in the statement. Table 9-3 shows the SQL function codes for the
commands.

Table 9-3 SQL Function Codes

Code SQL Function Code SQL Function Code SQL Function
01 CREATE TABLE 26 ALTER TABLE 51 DROP TABLESPACE
02 SET ROLE 27 EXPLAIN 52 ALTER SESSION
03 INSERT 28 GRANT 53 ALTER USER
04 SELECT 29 REVOKE 54 COMMIT
05 UPDATE 30 CREATE SYNONYM 55 ROLLBACK
06 DROP ROLE 31 DROP SYNONYM 56 SAVEPOINT
07 DROP VIEW 32 ALTER SYSTEM 57 CREATE CONTROL FILE
SWITCH LOG
08 DROP TABLE 33 SET TRANSACTION 58 ALTER TRACING
09 DELETE 34 PL/SQL EXECUTE 59 CREATE TRIGGER
10 CREATE VIEW 35 LOCK TABLE 60 ALTER TRIGGER
11 DROP USER 36 (NOT USED) 61 DROP TRIGGER
12 CREATE ROLE 37 RENAME 62 ANALYZE TABLE
13 CREATE 38 COMMENT 63 ANALYZE INDEX
SEQUENCE
14 ALTER 39 AUDIT 64 ANALYZE CLUSTER
SEQUENCE
15 (NOT USED) 40 NOAUDIT 65 CREATE PROFILE
16 DROP 41 ALTER INDEX 66 DROP PROFILE
SEQUENCE
17 CREATE 42 CREATE EXTERNAL 67 ALTER PROFILE
SCHEMA DATABASE
18 CREATE 43 DROP EXTERNAL 68 DROP PROCEDURE
CLUSTER DATABASE
19 CREATE USER 44 CREATE DATABASE 69 (NOT USED)
20 CREATE INDEX 45 ALTER DATABASE 70 ALTER RESOURCE COST
21 DROP INDEX 46 CREATE ROLLBACK 71 CREATE SNAPSHOT LOG
SEGMENT
22 DROP CLUSTER 47 ALTER ROLLBACK 72 ALTER SNAPSHOT LOG
SEGMENT

Handling Runtime Errors 9-25

Using the Oracle Communications Area (ORACA)

Table 9-3 (Cont.) SQL Function Codes

Code SQL Function Code SQL Function Code SQL Function

23 VALIDATE 48 DROP ROLLBACK 73 DROP SNAPSHOT LOG
INDEX SEGMENT

24 CREATE 49 CREATE TABLESPACE 74 CREATE SNAPSHOT
PROCEDURE

25 ALTER 50 ALTER TABLESPACE 75 ALTER SNAPSHOT
PROCEDURE

-- -- -- -- 76 DROP

SNAPSHOT

Restrictions

The length parameter (stmlen) returns a zero if an error occurred. Possible error
conditions are:

= No SQL statement has been parsed.
= You passed an invalid parameter (for example, a negative length parameter).

= Aninternal exception occurred in SQLLIB.

SQLSt nt Get Text () does not return the text for statements that contain the following
commands:

= CONNECT
= COMMIT

= ROLLBACK
« FETCH

There are no SQL function codes for these commands.

Example Program

The example program sql vcp. pc, is available in the deno directory. It demonstrates
how you can use the sql gl s() function.

See Also: Chapter 4, "Datatypes and Host Variables"

Using the Oracle Communications Area (ORACA)

The SQLCA handles standard SQL communications The ORACA handles Oracle
communications. When you need more information about runtime errors and status
changes than the SQLCA provides, use the ORACA. It contains an extended set of
diagnostic tools. However, use of the ORACA is optional because it adds to runtime
overhead.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of Oracle resources such as the SQL Statement Executor and the cursor
cache.

Your program can have more than one ORACA. For example, it might have one global
ORACA and several local ones. Access to a local ORACA is limited by its scope within
the program. Oracle returns information only to the ORACA that is in scope.

9-26 Pro*C/C++ Programmer’s Guide

Using the Oracle Communications Area (ORACA)

Declaring the ORACA

To declare the ORACA, copy it into your program with the INCLUDE statement or the
#include preprocessor directive, as follows:

EXEC SQL | NCLUDE ORACA;

or

#i ncl ude <oraca. h>

If your ORACA must be of the extern storage class, define ORACA_STORAGE_
CLASS in your program as follows:

#defi ne ORACA_STORAGE_CLASS extern

If the program uses a Declare Section, the ORACA must be defined outside it.

Enabling the ORACA

To enable the ORACA, you must specify the ORACA option, either on the command
line with

ORACA=YES

or inline with

EXEC ORACLE OPTI ON (ORACA=YES);

Then, you must choose appropriate runtime options by setting flags in the ORACA.

ORACA Contents

The ORACA contains option settings, system statistics, and extended diagnostics such
as

= SQL statement text (you can specify when to save the text)

= The name of the file in which an error occurred (useful when using subroutines)
« Location of the error in a file

» Cursor cache errors and statistics

A partial listing of or aca. h is

[*

NAVE
ORACA : Oracle Communications Area.

If the synbol ORACA NONE is defined, then there will be no ORACA
variable, although there will still be a struct defined. This
macro shoul d not normally be defined in application code.

If the synbol ORACA INIT is defined, then the ORACA will be
statically initialized. Athough this is not necessary in order
to use the ORACA it is a good pgming practice not to have
unitialized variables. However, some C conpilers/operating systens
don't allow automatic variables to be init'd in this manner. Therefore,
if you are INCLUDE ing the ORACA in a place where it woul d be
an automatic AND your C conpiler/operating systemdoesn't allowthis style
of initialization, then ORACA INIT should be |eft undefined --
all others can define ORACAINIT if they wish.
*/

Handling Runtime Errors 9-27

Using the Oracle Communications Area (ORACA)

#i f ndef
#def i ne

struct

{

CRACA
ORACA

oraca

char oracaid[8];
| ong oracabc;

/*
/*

Reserved x|
Reserved */

/* Fl ags which are setable by User. */

| ong
| ong
| ong
| ong
#def i ne
#define
#define
#def i ne

oracchf;
or adbgf ;
or ahchf;
orastxtf;
ORASTFNON 0
ORASTFERR 1
ORASTFWRN 2
ORASTFANY 3

struct

{

/*
/*
/*
/*
/*
/*
/*

<> 0 if "check cur cache consistncy"*/
<> 0 if "do DEBUG node checking" */
<> 0 if "do Heap consistency check" */
SQL stnt text flag */

don't save text of SQL stnt */
only save on SQLERROR */
only save on SQLWARNI NG SQLERROR */
* = always save */

=~ nunoanon

unsi gned short orastxtl;

char

orastxtc[70];

} orastxt;
struct

{

/* text of last SQL stn */

unsi gned short orasfnni;

/

char orasfnnt[70];
} orasfnm

long oraslnr;

long orahoc;

long oranoc;

long oracoc;

long oranor;

long oranpr;

long oranex;

b

#i f ndef ORACA_NONE

* name of file containing SQ stnt */

[* line nr-within-file of SQ stnt

/* highest max open OraCurs requested
/* max open OraCursors required

/* current OraCursors open */
[* nr of OraCursor re-assignnents

[* nr of parses */

I* nr of executes */

#i f def ORACA_STORAGE_CLASS
ORACA_STORACE_CLASS struct oraca oraca

#el se

struct oraca oraca

#endi f

#ifdef ORACA INIT

{
{'"O,)R,"A,'C,"A," "7 """},
si zeof (struct oraca),
0,0,0,0,
{0,{0}},
{0,{0}},
0,
0,0,0,0,0,0
}

#endi f

#endi f

9-28 Pro*C/C++ Programmer’s Guide

*l
*/
*/

*/

Using the Oracle Communications Area (ORACA)

#endi f
/* end oraca.h */

Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them
nonzero values provides the ability to

« Save the text of SQL statements
« Enable DEBUG operations

« Check cursor cache consistency (the cursor cache is a continuously updated area of
memory used for cursor management)

= Check heap consistency (the heap is an area of memory reserved for dynamic
variables)

« Gather cursor statistics

The following descriptions will help you choose the options you need.

Structure of the ORACA

This section describes the structure of the ORACA, its components, and the values
they can store.

oracaid

This string component is initialized to "ORACA" to identify the Oracle
Communications Area.

oracabc
This integer component holds the length, in bytes, of the ORACA data structure.

oracchf

If the master DEBUG flag (oradbgf) is set, this flag enables the gathering of cursor cache
statistics and lets you check the cursor cache for consistency before every cursor
operation.

The Oracle runtime library does the consistency checking and might issue error
messages, which are listed in the manual Oracle Database Error Messages. They are
returned to the SQLCA just like Oracle error messages.

This flag has the following settings:
= Disable cache consistency checking (the default).

= Enable cache consistency checking.

oradbgf
This master flag lets you choose all the DEBUG options. It has the following settings:

Disable all DEBUG operations (the default).
Enable all DEBUG operations.

Handling Runtime Errors 9-29

Using the Oracle Communications Area (ORACA)

orahchf

If the master DEBUG flag (oradbgf) is set, this flag tells the Oracle runtime library to
check the heap for consistency every time the precompiler dynamically allocates or
frees memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot
be cleared; subsequent change requests are ignored. It has the following settings:

= Disable heap consistency checking (the default).

= Enable heap consistency checking.

orastxtf

This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

« Never save the SQL statement text (the default).

= Save the SQL statement text on SQLERROR only.

« Save the SQL statement text on SQLERROR or SQLWARNING.

= Always save the SQL statement text.

The SQL statement text is saved in the ORACA embedded struct named orastxt.

Diagnostics
The ORACA provides an enhanced set of diagnostics; the following variables help you
to locate errors quickly:

orastxt

This embedded struct helps you find faulty SQL statements. It lets you save the text of
the last SQL statement parsed by Oracle. It contains the following two components:

Components Description

orastxtl This integer component holds the length of the current SQL
statement.

orastxtc This string component holds the text of the current SQL

statement. At most, the first 70 characters of text are saved. The
string is not null terminated. Use the oratxtl length component
when printing the string.

Statements parsed by the precompiler, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

orasfnm

This embedded struct identifies the file containing the current SQL statement and so
helps you find errors when multiple files are precompiled for one application. It
contains the following two components:

Components Description

orasfnml This integer component holds the length of the filename stored
in orasfnmc.

orasfnmc This string component holds the filename. At most, the first 70
characters are stored.

9-30 Pro*C/C++ Programmer’s Guide

Using the Oracle Communications Area (ORACA)

orasinr

This integer component identifies the line at (or near) which the current SQL statement
can be found.

Cursor Cache Statistics

If the master DEBUG flag (oradbgf) and the cursor cache flag (oracchf) are set, the
following variables let you gather cursor cache statistics. They are automatically set by
every COMMIT or ROLLBACK command your program issues.

Internally, there is a set of these variables for each CONNECTed database. The current
values in the ORACA pertain to the database against which the last COMMIT or
ROLLBACK was executed:

orahoc

This integer component records the highest value to which MAXOPENCURSORS was
set during program execution.

oramoc

This integer component records the maximum number of open Oracle cursors
required by your program. This number can be higher than orahoc if
MAXOPENCURSORS was set too low, which forced the precompiler to extend the
cursor cache.

oracoc

This integer component records the current number of open Oracle cursors required
by your program.

oranor

This integer component records the number of cursor cache reassignments required by
your program. This number shows the degree of "thrashing" in the cursor cache and
should be kept as low as possible.

oranpr

This integer component records the number of SQL statement parses required by your
program.

oranex

This integer component records the number of SQL statement executions required by
your program. The ratio of this number to the oranpr number should be kept as high as
possible. In other words, avoid unnecessary re-parsing.

See Also: Appendix C, "Performance Tuning"

ORACA Example

The following program prompts for a department number, inserts the name and salary
of each employee in that department into one of two tables, then displays diagnostic
information from the ORACA. This program is available online in the denp directory,
as or aca. pc.

/* oraca. pc
* This sanple program denmonstrates how to

Handling Runtime Errors 9-31

Using the Oracle Communications Area (ORACA)

* use the ORACA to determine various performnce
* paraneters at runtine.
*/

#incl ude <stdio. h>

#include <string.h>

#include <sql ca. h>

#i ncl ude <oraca. h>

EXEC SQL BEG N DECLARE SECTI ON,
char *userid = "SCOIT/ TI GER';
char enp_nane[21];

int dept_nunber;

float salary;

char SQLSTATE[6] ;

EXEC SQL END DECLARE SECTI ON,

void sql _error();
mai n()
{
char tenp_buf[32];

EXEC SQL WHENEVER SQLERROR DO sql _error("Oracle error");
EXEC SQL CONNECT : useri d;

EXEC ORACLE OPTI ON (ORACA=YES);

oraca. oradhgf = 1; /* enabl e debug operations */
oraca.oracchf = 1; /* gather cursor cache statistics */
oraca.orastxtf = 3; /* always save the SQ statement */

printf("Enter department nunber: ");
gets(tenmp_buf);
dept _nunber = atoi (tenp_buf);

EXEC SQL DECLARE enp_cursor CURSOR FCR
SELECT enanme, sal + NVL(comm 0) AS sal _comm
FROM enp
WHERE deptno = : dept _nunber
ORDER BY sal _conm DESC,
EXEC SQ. OPEN enp_cursor;
EXEC SQL VWHENEVER NOT FOUND DO sql _error("End of data");

for (53)

{
EXEC SQL FETCH enp_cursor |NTO :enp_nane, :salary;
printf("% 10s\n", enp_nane);
if (salary < 2500)
EXEC SQL | NSERT I NTO payl VALUES (:enp_nane, :salary);
el se
EXEC SQL | NSERT I NTO pay2 VALUES (:enp_nane, :salary);
}
}
voi d

sql _error(errnsg)
char *errnsg;

{
char buf[6];

9-32 Pro*C/C++ Programmer’s Guide

Using the Oracle Communications Area (ORACA)

strcpy(buf, SQLSTATE);
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL COW T WORK RELEASE;

if (strncnp(errmsg, "Oracle error", 12) == 0)
printf("\n%, sqlstate is %\n\n", errnsg, buf);
el se
printf("\n%\n\n", errnsg);

printf("Last SQL statement: % *s\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf("\nAt or near line nunber %l\n", oraca.oraslnr);

printf

("\'nCursor Cache Statistics\n----------cemcmcmmcmnao- \n");
printf

(" Maxi mum val ue of MAXOPENCURSORS: %\ n", oraca.orahoc);
printf

(" Maxi num open cursors required: %\ n", oraca.oranoc);
printf

("Current nunmber of open cursors: %\ n", oraca.oracoc);
printf

("Number of cache reassignnents: %\ n", oraca.oranor);
printf

("Number of SQL statenent parses: %\ n", oraca.oranpr);
printf

("Number of SQL statenent executions: %\ n", oraca.oranex);
exit(1);

}

Handling Runtime Errors 9-33

Using the Oracle Communications Area (ORACA)

9-34 Pro*C/C++ Programmer’s Guide

10

Precompiler Options

This chapter tells you how to run the Pro*C/C++ precompiler, and describes the
extensive set of precompiler options in detail. This chapter contains the following
topics:

= The Precompiler Command

= Precompiler Options

» Quick Reference

= Entering Options

= Using the Precompiler Options

The Precompiler Command

The location of the precompiler differs from system to system. The system or database
administrator usually defines logicals or aliases, or uses other system-specific means to
make the Pro*C/C++ executable accessible.

To run the Pro*C/C++ precompiler, you issue the following command:

proc option=val ue...

Note: The option value is always separated from the option name
by an equals sign, with no whitespace around the equals sign.

For example, the command

proc | NAME=t est _proc

precompiles the file t est _pr oc. pc in the current directory, since the precompiler
assumes that the filename extension is pc. The INAME=argument specifies the source

file to be precompiled. The INAME option does not have to be the first option on the
command line, but if it is, you can omit the option specification. So, the command

proc nyfile

is equivalent to

proc | NAME=nyfile

Precompiler Options 10-1

Precompiler Options

Note: The option names, and option values that do not name
specific operating system objects, such as filenames, are not
case-sensitive. In the examples in this guide, option names are
written in upper case, and option values are usually in lower case.
When you enter filenames, including the name of the Pro*C/C++
precompiler executable itself, always follow the case conventions
used by your operating system.

Some platforms, such as UNIX, require "escape characters" before
certain characters in value strings. Consult your platform-specific
documentation.

Case Sensitivity

In general, you can use either uppercase or lowercase for precompiler option names
and values. However, if your operating system is case sensitive, like UNIX, you must
specify filename values, including the name of the Pro*C/C++ executable, using the
correct combination of uppercase and lowercase letters.

Precompiler Options

Precompiler options enable you to control how resources are used, how errors are
reported, how input and output are formatted, and how cursors are managed.

The value of an option is a literal, which represents text or numeric values. For
example, for the option

| NAME=ny _t est

the value is a string literal that specifies a filename.
For the option MAXOPENCURSORS
.. . MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, and you can represent these with the strings yes or
no, true or false, or with the integer literals 1 or 0 respectively. For example, the option

SELECT_ERROR=yes

is equivalent to

SELECT_ERROR=t r ue

or

SELECT_ERROR=1

all of which mean that SELECT errors should be flagged at run time.

Configuration Files

A configuration file is a text file that contains precompiler options. Each record (line) in
the file contains only one option, with its associated value or values. Any options
entered on a line after the first option are ignored. For example, the following configuration
file contains the lines:

FI PS=YES

10-2 Pro*C/C++ Programmer’s Guide

Precompiler Options

MODE=ANSI
CODE=ANSI _C
to set defaults for the FIPS, MODE, and CODE options.

There is a single system configuration file for each installation. The name of the system
configuration file is pcscf g. cf g. The location of the file is system specific.

Each Pro*C/C++ user can have one or more private configuration files. The name of
the configuration file must be specified using the CONFIG= precompiler option.

See Also: "Using the Precompiler Options" on page 10-8

Note: You cannot nest configuration files. This means that
CONFIG= is not a valid option inside a configuration file.

Precedence of Option Values

The value of an option is determined, in increasing precedence, by:
= Avalue built in to the precompiler

= Avalue set in the Pro*C/C++ system configuration file

= Avalue setin a Pro*C/C++ user configuration file

= Avalue set in the command line

= Avalue setinline

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in precompiler default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file, the
default now becomes 32. The user configuration file could set it to yet another value,
which then overrides the system configuration value. Finally, an inline specification
takes precedence over all preceding defaults.

Some options, such as USERID, do not have a precompiler default value. The built-in
default values for options that do have them are listed in Table 10-2 on page 10-5.

Note: Check your system-specific documentation for the
precompiler default values; they may have been changed from the
values in this chapter for your platform.

See Also:

= "What Occurs During Precompilation?" on page 10-4 for more
information about configuration files.

= "Using the Precompiler Options" on page 10-8.

Determining Current Values

You can interactively determine the current value for one or more options by using a
question mark on the command line. For example, if you issue the command

proc ?

the complete set of options, along with their current values, is printed to your
terminal. (On a UNIX system running the C shell, escape the '?' with a backslash.) In

Precompiler Options 10-3

Precompiler Options

this case, the values are those built into the precompiler, overridden by any values in
the system configuration file. But if you issue the command

proc config=ny_config_file.h ?
and there is a file named ny_confi g_fi | e. h in the current directory, all options are
listed. Values in the user configuration file supply missing values, and supersede

values built-in to the Pro*C/C++ precompiler, or values specified in the system
configuration file.

You can also determine the current value of a single option, by simply specifying that
option name, followed by =?. For example:

proc maxopencur sor s=?

prints the current default value for the MAXOPENCURSORS option.
Entering:

proc

will give a short summary that resembles " Precompiler Options" on page 10-5.

Macro and Micro Options

The option MODE controls several options at once. MODE is known as a macro option.
Some newer options such as CLOSE_ON_COMMIT, DYNAMIC and TYPE_CODE
control only one function and are known as micro options. A macro option has
precedence over micro options only if the macro option is at a higher level of
precedence. See "Precedence of Option Values" on page 10-3.

The following table lists the values of micro options set by the macro option values:

Table 10-1 How Macro Option Values Set Micro Option Values

Macro Option Micro Option

MODE=ANSI | ISO CLOSE_ON_COMMIT=YES
DYNAMIC=ANSI
TYPE_CODE=ANSI

MODE=ORACLE CLOSE_ON_COMMIT=NO
DYNAMIC=ORACLE
TYPE_CODE=ORACLE

If you specify both MODE=ANSI and CLOSE_ON_COMMIT=NO in the user
configuration file, then cursors will not be closed after a COMMIT. If you specify
MODE=0ORACLE in your configuration file and CLOSE_ON_COMMIT=YES on the
command line, then the cursors will be closed.

What Occurs During Precompilation?

During precompilation, Pro*C/C++ generates C or C++ code that replaces the SQL
statements embedded in your host program. The generated code contains data
structures that indicate the datatype, length, and address of host variables, as well as
other information required by the runtime library, SQLLIB. The generated code also
contains the calls to SQLLIB routines that perform the embedded SQL operations.

10-4 Pro*C/C++ Programmer’s Guide

Quick Reference

Note:

Interface (OCI) routines.

The precompiler does not generate calls to Oracle Call

Table 10-2 on page 10-5 is a quick reference to the major precompiler options. The
options that are accepted, but do not have any affect, are not included in this table.

See Also:

= Oracle Database Error Messages for messages.

= "Using the Precompiler Options" on page 10-8.

Scope of Options

A precompilation unit is a file containing C code and one or more embedded SQL
statements. The options specified for a given precompilation unit affect only that unit;
they have no effect on other units. For example, if you specify HOLD_CURSOR=YES
and RELEASE_CURSOR=YES for unit A, but not for unit B, SQL statements in unit A
run with these HOLD_CURSOR and RELEASE_CURSOR values, but SQL statements
in unit B run with the default values.

Quick Reference

Table 10-2 on page 10-5 is a quick reference to the Pro*C/C++ options. Options

marked with an asterisk can be entered inline.

Table 10-2 Precompiler Options

Syntax Default Specifics

AUTO_CONNECT={YES | NO} NO Automatic CLUSTER$ account
connection before the first executable
statement.

CHAR_MAP={VARCHAR?2 | CHARZ | CHARZ Mapping of character arrays and strings.

STRING | CHARF} *

CLOSE_ON_COMMIT={YES | NO} NO Close all cursors on COMMIT.

CODE={ANSI_C | KR_C | CPP} KR_C Kind of C code generated.

COMP_CHARSET={MULTI_BYTE | MULTI_BYTE The character set type the C/C++

SINGLE_BYTE} compiler supports.

CONFIG=filename none User's private configuration file.

CPP_SUFFIX=extension none Specify the default filename extension
for C++ output files.

DBMS={V7 | NATIVE | V8} NATIVE Compatibility (Oracle?7, Oracle8,
Oracle8i, Oracle9i, or the database
version to which you are connected at
precompile time).

DEF_SQLCODE={YES | NO} NO Generate a macro to #define SQLCODE.

DEFINE=name * none Define a name for use by the
Pro*C/C++ precompiler.

DURATION={TRANSACTION | SESSION} TRANSACTION Set pin duration for objects in the cache.

DYNAMIC={ANSI | ORACLE} ORACLE Specifies Oracle or ANSI SQL semantics.

Precompiler Options 10-5

Quick Reference

Table 10-2 (Cont.) Precompiler Options

Syntax Default Specifics

ERRORS={YES | NO} YES Where to direct error messages (NO
means only to listing file, and not to
terminal).

ERRTYPE=filename none Name of the listing file for intype file
error messages.

FIPS={NO | SQL89 | SQL2 | YES}* none Whether to flag ANSI/ISO
non-compliance.

HEADER=extension none Specify file extension for precompiled
header files.

HOLD_CURSOR={YES | NO} * NO How cursor cache handles SQL
statement.

INAME=]filename none Name of the input file.

INCLUDE=pathname * none Directory path for EXEC SQL INCLUDE
or #include statements.

INTYPE=filename none Name of the input file for type
information.

LINES={YES | NO} NO Whether #line directives are generated.

LNAME=filename none Name of listing file.

LTYPE={NONE | SHORT | LONG} none Type of listing file to be generated, if
any.

MAXLITERAL=10..1024 1024 Maximum length (bytes) of string
literals in generated C code.

MAXOPENCURSORS=5..255 * 10 Maximum number of concurrent cached
open cursors.

MODE={ANSI | ISO | ORACLE} ORACLE ANSI/ISO or Oracle behavior.

NLS_CHAR=(var1, ..., varn) none Specify multibyte character variables.

NLS_LOCAL={YES | NO} NO Control multibyte character semantics.

OBJECTS={YES | NO} YES Support of object types.

ONAME=|filename iname.c Name of the output (code) file.

ORACA={YES | NO} * NO Whether to use the ORACA.

PAGELEN=30..256 80 Page length of the listing file.

PARSE={NONE | PARTIAL | FULL} FULL Whether Pro*C/C++ parses (with a C
parser) the.pc source.

PREFETCH=0..65535 1 Speed up queries by pre-fetching a
given number of rows.

RELEASE_CURSOR={YES | NO} * NO Control release of cursors from cursor
cache.

SELECT_ERROR={YES | NO} * YES Flagging of SELECT errors.

SQLCHECK={SEMANTICS | SYNTAX} * SYNTAX Amount of precompile time SQL
checking.

SYS_INCLUDE=pathname none Directory where system header files,
such as iostream.h, are found.

THREADS={YES | NO} NO Indicates a shared server application.

10-6 Pro*C/C++ Programmer’s Guide

Entering Options

Table 10-2 (Cont.) Precompiler Options

Syntax Default Specifics

TYPE_CODE={ORACLE | ANSI} ORACLE Use of Oracle or ANSI type codes for
dynamic SQL.

UNSAFE_NULL=(YES | NO} NO UNSAFE_NULL=YES disables the
ORA-01405 message.

USERID=username / password|[@dbname] none Username/password[@dbname]
connect string.

UTF16_CHARSET={NCHAR_CHARSET | NCHAR_CHARSET Specify the character set form used by

DB_CHARSET} UNICODE(UTF16).

VARCHAR={YES | NO} NO Allow the use of implicit VARCHAR
structures.

VERSION={ANY | LATEST | RECENT} * RECENT Which version of an object is to be
returned.

Entering Options

You can enter any precompiler option in the command line. Many can also be entered
inline in the precompiler program source file, using the EXEC ORACLE OPTION
statement.

On the Command Line

Inline

You enter precompiler options in the command line using the following syntax:

... [OPTI ON_NAME=val ue] [OPTI ON_NAME=val ue] ...

Separate each option=value specification with one or more spaces. For example, you
might enter the following:

. CODE=ANSI _C MODE=ANSI

You enter options inline by coding EXEC ORACLE statements, using the following
syntax:

EXEC ORACLE OPTI ON (CPTI ON_NAME=val ue);

For example, you might code the following:

EXEC ORACLE OPTI ON (RELEASE_CURSOR=yes) ;

Uses for EXEC ORACLE

The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change HOLD_CURSOR and
RELEASE_CURSOR on a statement-by-statement basis.

See Also: Appendix C, "Performance Tuning" shows you how to
optimize runtime performance using inline options.

Specifying options inline or in a configuration file is also helpful if your operating
system limits the number of characters you can enter on the command line.

Precompiler Options 10-7

Using the Precompiler Options

Scope of EXEC ORACLE

An EXEC ORACLE statement stays in effect until textually superseded by another
EXEC ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD_CURSOR=YES:

char enp_nane[20];
int enp_nunber, dept_nunber;
float salary;

EXEC SQL WHENEVER NOT FOUND DO br eak;
EXEC ORACLE OPTI ON (HOLD_CURSOR=NO) ;

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enpno, deptno FROM enp;

EXEC SQ OPEN enp_cursor;

printf(

"Enpl oyee Nunber Department\n-----------comcmmmmanaann- \n");

for (:3)

{
EXEC SQL FETCH enp_cursor |NTO :enp_number, :dept_nunber;
printf("%l\t%\n", enp_nunber, dept_nunber);

}

EXEC SQL WHENEVER NOT FOUND CONTI NUE;
for (:})
{
printf("Enpl oyee nunber: ");
scanf ("%", &enp_nunber);
if (enp_nunber == 0)
br eak;
EXEC ORACLE OPTI ON (HOLD_CURSOR=YES);
EXEC SQ. SELECT ename, sal
I NTO : enp_nane, :salary
FROM enp WHERE enpno = : enp_nunber;
printf("Salary for % is %.2f.\n", enp_name, salary);

Using the Precompiler Options

This section is organized for easy reference. It lists the precompiler options
alphabetically, and for each option gives its purpose, syntax, and default value. Usage
notes that help you understand how the option works are also provided.

AUTO_CONNECT

Purpose
Allows automatic connection to the CLUSTER$ account.

Syntax
AUTO_CONNECT={YES | NO}

Default
NO

10-8 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

CHAR_MAP

Usage Notes
Can be entered only on the command line or in a configuration file.
If AUTO_CONNECT=YES, and the application is not already connected to a database

when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTER$user nane

where username is your current operating system user or task name and
CLUSTERSusername is a valid Oracle userid.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

Purpose

Specifies the default mapping of C host variables of type char or char[n], and pointers
to them, into SQL.

Syntax
CHAR_MAP={VARCHAR?2 | CHARZ | STRING | CHARF}

Default
CHARZ

Usage Note

Before release 8.0, you had to declare char or char[n] host variables as CHAR, using
the SQL DECLARE statement. The external datatypes VARCHAR2 and CHARZ were
the default character mappings of Oracle?7.

See Also:

= "VARCHAR Variables" on page 4-15 for a table of CHAR_MAP
settings, descriptions of the datatype, and where they are the
default.

= "Inline Usage of the CHAR_MAP Option" on page 5-2 for an
example of usage of CHAR_MAP in Pro*C/C++.

CLOSE_ON_COMMIT

Purpose
Specifies whether or not to close all cursors on a commit statement.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Precompiler Options 10-9

Using the Precompiler Options

CODE

Usage Notes
Can be used only on the command line or in a configuration file.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and CLOSE_ON_
COMMIT=NO. If the user specifies MODE=ANSI on the command line, then any
cursors will be closed on commit.

Issuing a COMMIT or ROLLBACK closes all explicit cursors. (When
MODE=0ORACLE, a commit or rollback closes only cursors referenced in a CURRENT
OF clause.)

See Also:

= "Scrollable Cursors" on page 6-12

= "Macro and Micro Options" on page 10-4 for a further
discussion of the precedence of this option.

Purpose

Specifies the format of C function prototypes generated by the Pro*C/C++
precompiler. (A function prototype declares a function and the datatypes of its
arguments.) The precompiler generates function prototypes for SQL library routines,
so that your C compiler can resolve external references. The CODE option lets you
control the prototyping.

Syntax
CODE={ANSI_C | KR_C | CPP}

Default
KR_C

Usage Notes
Can be entered on the command line, but not inline.

ANSI C standard X3.159-1989 provides for function prototyping. When CODE=ANSI_
C, Pro*C/C++ generates full function prototypes, which conform to the ANSI C
standard. An example follows:

extern void sqglora(long *, void *);
The precompiler can also generate other ANSI-approved constructs such as the const
type qualifier.

When CODE=KR_C (the default), the precompiler comments out the argument lists of
generated function prototypes, as shown here:

extern void sqlora(/*_long *, void * _*/);

Specify CODE=KR_C if your C compiler is not compliant with the X3.159 standard.
When CODE=CPP, the precompiler generates C++ compatible code.

See Also: "Code Generation" on page 12-2 for all of the
consequences of using this option value.

10-10 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

COMP_CHARSET

CONFIG

Purpose

Indicates to the Pro*C/C++ Precompiler whether multibyte character sets are (or are
not) supported by the compiler to be used. It is intended for use by developers
working in a multibyte client-side environment (for example, when NLS_LANG is set
to a multibyte character set).

Syntax
COMP_CHARSET={MULTI_BYTE | SINGLE_BYTE}

Default
MULTI BYTE

Usage Notes
Can be entered only on the command line.

With COMP_CHARSET=MULTI_BYTE (default), Pro*C/C++ generates C code that is
to be compiled by a compiler that supports multibyte character sets.

With COMP_CHARSET=SINGLE_BYTE, Pro*C/C++ generates C code for single-byte
compilers that addresses a complication that may arise from the ASCII equivalent of a
backslash (\) character in the second byte of a double-byte character in a multibyte
string. In this case, the backslash (\) character is "escaped” with another backslash
character preceding it.

Note: The need for this feature is common when developing in a
Shift-JIS environment with older C compilers.

This option has no effect when NLS_LANG is set to a single-byte character set.

Purpose
Specifies the name of a user configuration file.

Syntax
CONFIG=filename

Default
None

Usage Notes
Can be entered only on the command line.

This option is the only way you can inform Pro*C/C++ of the name and location of
user configuration files.

Precompiler Options 10-11

Using the Precompiler Options

CPP_SUFFIX

DBMS

Purpose

The CPP_SUFFIX option provides the ability to specify the filename extension that the
precompiler appends to the C++ output file generated when the CODE=CPP option is
specified.

Syntax
CPP_SUFFIX=filename_extension

Default
System-specific.

Usage Notes

Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX option
provides the ability to specify the filename extension that the precompiler generates.
The value of this option is a string, without the quotes or the period. For example,
CPP_SUFFIX=cc, or CPP_SUFFIX=C.

Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle9i, Oracle8;,
Oracle8, Oracle?, or the native version of Oracle (that is, the version to which the
application is connected).

Syntax
DBMS={NATIVE | V7 | V8}

Default
NATIVE

Usage Notes
Can be entered only on the command line, or in a configuration file.

The DBMS option lets you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
database version to which the application is connected.

When DBMS=VS, or DBMS=V7, Oracle follows the respective rules for Oracle9:
(which remain the same as for Oracle7, Oracle8, and Oracle8i).

V6_CHAR is not supported in Oracle9i and its functionality is provided by the
precompiler option CHAR_MAP.

See Also: "CHAR_MAP" on page 10-9

10-12 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

Table 10-3 DBMS and MODE Interaction

DBMS=V7 | V8 DBMS=V7 | V8
Situation MODE=ANSI MODE=ORACLE
"no data found" warning code +100 +1403
fetch NULLs without using indicator error -1405 error -1405

variables

fetch truncated values without using
indicator variables

cursors closed by COMMIT or ROLLBACK

open an already OPENed cursor
close an already CLOSEd cursor
SQL group function ignores NULLs

when SQL group function in multirow query

is called
declare SQLCA structure

declare SQLCODE or SQLSTATE status
variable

integrity constraints
PCTINCREASE for rollback segments
MAXEXTENTS storage parameters

no error but sqlwarn[1] is
set

all explicit
error -2117
error -2114
no warning

FETCH time

optional

required

enabled
not allowed

not allowed

no error but sqlwarn[1]) is set

CURRENT OF only
no error

no error

no warning

FETCH time

required

optional, but Oracle ignores

enabled
not allowed

not allowed

DEF_SQLCODE

Purpose

Controls whether the Pro*C/C++ precompiler generates #define's for SQLCODE.

Syntax

DEF_SQLCODE={NO | YES}

Default
NO

Usage Notes

Can be used only on the command line or in a configuration file.

When DEF_SQLCODE=YES, the precompiler defines SQLCODE in the generated

source code as follows:

#define SQLCODE sql ca. sql code

You can then use SQLCODE to check the results of executable SQL statement. The
DEF_SQLCODE option is supplied for compliance with standards that require the use

of SQLCODE.

In addition, you must also include the SQLCA using one of the following entries in

your source code:

#include <sql ca. h>

Precompiler Options 10-13

Using the Precompiler Options

DEFINE

or

EXEC SQL | NCLUDE SQLCA;

If the SQLCA is not included, using this option causes a precompile time error.

Purpose

Defines a name that can be used in #ifdef and #ifndef Pro*C/C++ precompiler
directives. The defined name can also be used by the EXEC ORACLE IFDEF and EXEC
ORACLE IENDEEF statements.

Syntax
DEFINE=name

Default
None

Usage Notes

Can be entered on the command line or inline. You can only use DEFINE to define a
name—you cannot define macros with it. For example, the following use of define is
not valid:

proc ny_prog DEFI NEELEN=20

Using DEFINE in the correct way, you could do
proc my_prog DEFI NE=XYZZY

And then in my_prog.pc, code
#ifdef Xyzzy

el se

#rendi 1

Or, you could just as well code
EXEC ORACLE | FDEF XYZZY,

EXEC CRACLE ELSE;

EXEC CRACLE ENDI F;

The following example is invalid:

#def i ne XYzZzY
EXEC ORACLE | FDEF XYZZY
EXEC ORACLE ENDI F;

EXEC ORACLE conditional statements are valid only if the macro is defined using
EXEC ORACLE DEFINE or the DEFINE option.

10-14 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

DURATION

DYNAMIC

ERRORS

If you define a name using DEFINE=, and then conditionally include (or exclude) a
code section using the Pro*C/C++ precompiler #ifdef (or #ifndef) directives, you
must also make sure that the name is defined when you run the C compiler. For
example, for UNIX cc, you must use the -D option to define the name.

Purpose

Sets the pin duration used by subsequent EXEC SQL OBJECT CREATE and EXEC SQL
OBJECT DEREF statements. Objects in the cache are implicitly unpinned at the end of
the duration.

Syntax
DURATION={TRANSACTION | SESSION}

Default
TRANSACTION

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

TRANSACTION means that objects are implicitly unpinned when the transaction
completes.

SESSION means that objects are implicitly unpinned when the connection is
terminated.

Purpose

This micro option specifies the descriptor behavior in dynamic SQL Method 4. The
setting of MODE determines the setting of DYNAMIC.

Syntax
DYNAMIC={ORACLE | ANSI}

Default
ORACLE

Usage Notes
Cannot be entered inline by use of the EXEC ORACLE OPTION statement.

See the DYNAMIC option settings in Table 14-2 on page 14-9.

Purpose

Specifies whether error messages are sent to the terminal as well as the listing file
(YES), or just to the listing file (NO).

Precompiler Options 10-15

Using the Precompiler Options

ERRTYPE

FIPS

Syntax
ERRORS={YES | NO}

Default
YES

Usage Notes
Can be entered only on the command line, or in a configuration file.

Purpose

Specifies an output file in which errors generated in processing type files are written. If
omitted, errors are output to the screen. See also "INTYPE" on page 10-20.

Syntax
ERRTYPE=filename

Default
None

Usage Notes

Only one error file will be produced. If multiple values are entered, the last one is used
by the precompiler.

Purpose

Specifies whether extensions to ANSI SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI format or syntax rules, except
privilege enforcement rules.

Syntax
FIPS={SQL89 | SQL2 | YES | NO}

Default
None

Usage Notes
Can be entered inline or on the command line.

When FIPS=YES, the FIPS Flagger is enabled, and warning (not error) messages are
issued if you use an Oracle extension to ANSI SQL, or use an ANSI SQL feature in a
nonconforming manner. Extensions to ANSI SQL that are flagged at precompile time
include the following:

= Array interface including the FOR clause
« SQLCA, ORACA, and SQLDA data structures
= Dynamic SQL including the DESCRIBE statement

10-16 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

HEADER

« Embedded PL/SQL blocks
= Automatic datatype conversion

= DATE, NUMBER, RAW, LONGRAW, VARRAW, ROWID, VARCHAR?2, and
VARCHAR datatypes

« Pointer host variables

= Oracle OPTION statement for specifying runtime options

= IAF statements in user exits

« CONNECT statement

= TYPE and VAR datatype equivalence statements

« AT db_name clause

« DECLARE..DATABASE, ...STATEMENT, and ...TABLE statements
« SQLWARNING condition in WHENEVER statement

« DO function_name() and "do break" and "do continue"actions in WHENEVER
statement

« COMMENT and FORCE TRANSACTION clauses in COMMIT statement
« FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement
= RELEASE parameter in COMMIT and ROLLBACK statements

= Optional colon-prefixing of WHENEVER...GOTO labels, and of host variables in
the INTO clause

Purpose

Permits precompiled header files. Specifies the file extension for precompiled header
files.

Syntax
HEADER=extension

Default
NONE

Usage Notes

When precompiling a header file, this option is required and is used to specify the file
extension for the output file that is created by precompiling that header file.

When precompiling an ordinary Pro*C/C++ program this option is optional. When
given, it enables the use of the precompiled header mechanism during the
precompilation of that Pro*C/C++ program.

In both cases, this option also specifies the file extension to use when processing a
#include directive. If an #include file exists with the specified extension, Pro*C/C++
assumes the file is a precompiled header file previously generated by Pro*C/C++.
Pro*C/C++ will then instantiate the data from that file rather than process the
#include directive and precompile the included header file.

Precompiler Options 10-17

Using the Precompiler Options

This option is only allowed on the command line or in a configuration file. It is not
allowed inline. When using this option, specify the file extension only. Do not include
any file separators. For example, do not include a period '." in the extension.

See Also: "Precompiled Header Files" on page 5-27

HOLD_CURSOR

INAME

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
HOLD_CURSOR={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.

You can use HOLD_CURSOR to improve the performance of your program. See also
Appendix C, "Performance Tuning"

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement. HOLD_
CURSOR controls what happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement and the cursor
is closed, the precompiler marks the link as reusable. The link is reused as soon as the
cursor cache entry to which it points is needed for another SQL statement. This frees
memory allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES, the link is maintained; the precompiler does not reuse it.
This is useful for SQL statements that are often executed because it speeds up
subsequent executions and there is no need to re-parse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD_CURSOR before CLOSEing
the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES and HOLD_CURSOR=NO
overrides RELEASE_CURSOR=NO. For information showing how these two options
interact, see Table C-1 on page C-9.

Purpose
Specifies the name of the input file.

Syntax
INAME=path_and_filename

10-18 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

INCLUDE

Default
None

Usage Notes
Can be entered only on the command line.

All input file names must be unique at precompilation time.

You can omit the filename extension if it is . pc. If the input filename is the first option
on the command line, you can omit the INAME= part of the option. For example:

proc sanpl el MODE=ansi

to precompile the file sanpl el. pc, using ANSI mode. This command is the same as
proc | NAME=sanpl el MODE=ansi

Purpose

Specifies a directory path for files included using the #include or EXEC SQL
INCLUDE directives.

Syntax
INCLUDE=pathname or INCLUDE=(path_1,path_2,...,path_n)

Default
Current directory and paths built into Pro*C/C++.

Usage Notes
Can be entered inline or on the command line.

You use INCLUDE to specify a directory path for included files. The precompiler
searches directories in the following order:

1. the current directory

2. the system directory specified in a SYS_INCLUDE precompiler option

3. the directories specified by the INCLUDE option, in the order they are entered
4. the built-in directories for standard header files

You normally do not need to specify a directory path for Oracle-specific header files
such as sql ca. h and sql da. h.

Note: If you specify an Oracle-specific filename without an
extension for inclusion, Pro*C/C++ assumes an extension of . h. So,
included files should have an extension, even if it is not . h.

For all other header files, the precompiler does not assume a . h extension.

You must still use INCLUDE to specify directory paths for non-standard files, unless
they are stored in the current directory. You can specify more than one path on the
command line, as follows:

. INCLUDE=path_1 I NCLUDE=path 2 ...

Precompiler Options 10-19

Using the Precompiler Options

Note: If the file you want to include resides in another directory,
make sure that there is no file with the same name in the current
directory.

The syntax for specifying a directory path using the INCLUDE option is system
specific. Follow the conventions used for your operating system

INTYPE

Purpose

Specifies one or more OTT-generated type files (only needed if Object types are used in
the application).

Syntax
INTYPE=(file_1 file_2,... file_n)

Default
None

Usage Notes
There will be one type file for each Object type in the Pro*C/C++ code.

LINES

Purpose

Specifies whether the Pro*C/C++ precompiler adds #line preprocessor directives to its
output file.

Syntax
LINES={YES | NO}

Default
NO

Usage Notes
Can be entered only on the command line.

The LINES option helps with debugging.

When LINES=YES, the Pro*C/C++ precompiler adds #line preprocessor directives to
its output file.

Normally, your C compiler increments its line count after each input line is processed.
The #line directives force the compiler to reset its input line counter so that lines of
precompiler-generated code are not counted. Moreover, when the name of the input
file changes, the next #line directive specifies the new filename.

The C compiler uses the line numbers and filenames to show the location of errors.
Thus, error messages issued by the C compiler always refer to your original source

10-20 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

LNAME

LTYPE

files, not the modified (precompiled) source file. This also enables stepping through
the original source code using most debuggers.

When LINES=NO (the default), the precompiler adds no #line directives to its output
file.

Note: The Pro*C/C++ precompiler does not support the #line
directive. This means that you cannot directly code #line directives
in the precompiler source. But you can still use the LINES= option
to have the precompiler insert #line directives for you. See also
"Directives Ignored" on page 5-22.

Purpose
Specifies the name of the listing file.

Syntax
LNAME-=filename

Default
None

Usage Notes
Can be entered only on the command line.

The default filename extension for the listing fileis . | i s.

Purpose
Specifies the type of listing file generated.

Syntax
LTYPE={NONE | SHORT | LONG}

Default
SHORT

Usage Notes
Can be entered on the command line or in a configuration file.
When a listing file is generated, the LONG format is the default. With LTYPE=LONG

specified, all of the source code is listed as it is parsed and messages listed as they are
generated. In addition, the Pro*C/C++ options currently in effect are listed.

With LTYPE=SHORT specified, only the generated messages are listed—no source
code—with line references to the source file to help you locate the code that generated
the message condition.

Precompiler Options 10-21

Using the Precompiler Options

MAXLITERAL

With LTYPE=NONE specified, no list file is produced unless the LNAME option
explicitly specifies a name for a list file. Under the latter condition, the list file is
generated with LTYPE=LONG assumed.

Purpose

Specifies the maximum length of string literals generated by the precompiler, so that
compiler limits are not exceeded.

Syntax
MAXLITERAL=integer, range is 10 to 1024

Default
1024

Usage Notes
Cannot be entered inline.

The maximum value of MAXLITERAL is compiler dependent. For example, some C
compilers cannot handle string literals longer than 512 characters, so you would
specify MAXLITERAL=512.

Strings that exceed the length specified by MAXLITERAL are divided during
precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value only once, and
the EXEC ORACLE statement must precede the first EXEC SQL statement. Otherwise,
Pro*C/C++ issues a warning message, ignores the extra or misplaced EXEC ORACLE
statement, and continues processing.

MAXOPENCURSORS

Purpose

Specifies the number of concurrently open cursors that the precompiler tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes
Can be entered inline or on the command line.
You can use MAXOPENCURSORS to improve the performance of your program.

When precompiling separately, use MAXOPENCURSORS. MAXOPENCURSORS
specifies the initial size of the SQLLIB cursor cache.

10-22 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

MODE

See Also:
= Appendix C, "Performance Tuning"

= "Guidelines for Programming" on page 2-7

When an implicit statement is executed and HOLD_CURSOR=NO, or an explicit
cursor is closed, the cursor entry is marked as reusable. If this statement is issued
again and the cursor entry has not been used for another statement, it is reused.

If a new cursor is needed and the number of cursors allocated is less than
MAXOPENCURSORS, then the next one in the cache is allocated. Once
MAXOPENCCURSORS has been exceeded Oracle first tries to reuse a previous entry.
If there are no free entries, then an additional cache entry will be allocated. Oracle will
continue to do this until the program runs out of memory or the database parameter
OPEN_CURSORS is exceeded.

During normal processing, when using HOLD_CURSOR=NO and RELEASE_
CURSOR=NO (the default), it is advisable to set MAXOPENCURSORS to no more
than 6 less than the database parameter OPEN_CURSORS to allow for the cursors
used by the data dictionary to process statements.

As your program's need for concurrently open cursors grows, you might want to
respecify MAXOPENCURSORS to match the need. A value of 45 to 50 is not
uncommon, but remember that each cursor requires another private SQL area in the
user process memory space. The default value of 10 is adequate for most programs.

Purpose

Specifies whether your program observes Oracle practices or complies with the
current ANSI/ISO SQL standards.

Syntax
MODE={ANSI | ISO | ORACLE}

Default
ORACLE

Usage Notes
Can be entered only on the command line or in a configuration file.

In the context of this option ISO is equivalent to ANSL

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices. For example, a Declare Section is optional, and blanks are stripped.

When MODE=ANS]I, your program complies fully with the ANSI SQL standard, and
the following changes go into effect:

= Issuing a COMMIT or ROLLBACK closes all explicit cursors.

= You cannot OPEN an already open cursor or CLOSE an already closed cursor.
(When MODE=ORACLE, you can reOPEN an open cursor to avoid re-parsing.)

= You must declare a either a long variable named SQLCODE or a char
SQLSTATE][6] variable (uppercase is required for both variables) that is in the

Precompiler Options 10-23

Using the Precompiler Options

NLS_CHAR

NLS_LOCAL

scope of every EXEC SQL statement. The same SQLCODE or SQLSTATE variable
need not be used in each case; that is, the variable need not be global.

= Declaring the SQLCA is optional. You need not include the SQLCA.

= The "no data found" Oracle warning code returned to SQLCODE becomes +100
instead of +1403. The message text does not change.

« You must have a Declare Section for host variables.

Purpose

Specifies which C host character variables are treated by the precompiler as multibyte
character variables.

Syntax
NLS_CHAR=varname or NLS_CHAR=(var_1,var_2,...,var_n)

Default
None.

Usage Notes
Can be entered only on the command line, or in a configuration file.
This option provides the ability to specify at precompile time a list of the names of one

or more host variables that the precompiler must treat as multibyte character variables.
You can specify only C char variables or Pro*C/C++ VARCHARs using this option.

If you specify in the option list a variable that is not declared in your program, then
the precompiler generates no error.

Purpose

Determines whether multibyte character set conversions are performed by the
precompiler runtime library, SQLLIB, or by the database server.

Syntax
NLS_LOCAL={NO | YES}

Default
NO

Usage Notes

When set to YES, local multibyte support is provided by Pro*C/C++ and the SQLLIB
library. The option NLS_CHAR must be used to indicate which C host variables are
multibyte.

When set to NO, Pro*C/C++ will use the database server support for multibyte
objects. Set NLS_LOCAL to NO for all new applications.

Environment variable NLS_NCHAR must be set to a valid fixed-width National
Character Set. Variable-width National Character Sets are not supported.

10-24 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

OBJECTS

ONAME

Can be entered only on the command line, or in a configuration file.

Purpose
Requests support for object types.

Syntax
OBJECTS={YES | NO}

Default
YES

Usage Notes
Can only be entered in the command line.

Purpose

Specifies the name of the output file. The output file is the C code file that the
precompiler generates.

Syntax
ONAME=path_and_filename

Default
INAME with a .c extension.

Usage Notes

Can be entered only on the command line. Use this option to specify the full path
name of the output file, where the path name differs from that of the input (. pc) file.
For example, if you issue the command:

proc inane=ny_test
the default output filename is ny_t est . c. If you want the output filename to be nmy _
test 1. c,issue the command

proc inane=ny_test oname=ny_test_1.c

You should add the . ¢ extension to files specified using ONAME because one is not
added by default.

Note: Oracle recommends that you not let the output filename
default, but rather name it explicitly using ONAME. If you specify
an ONAME value without an extension, the name of the generated
file will not have one.

Precompiler Options 10-25

Using the Precompiler Options

ORACA

Purpose
Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax
ORACA={YES | NO}

Default
NO

Usage Notes
Can be entered inline or on the command line.

When ORACA=YES, you must place either the EXEC SQL INCLUDE ORACA or
#include or aca. h statement in your program.

PAGELEN

Purpose
Specifies the number of lines for each physical page of the listing file.

Syntax
PAGELEN=integer

Default
80

Usage Notes
Cannot be entered inline. The value range allowed is 30..256..

PARSE

Purpose
Specifies the way that the Pro*C/C++ precompiler parses the source file.

Syntax
PARSE={FULL | PARTIAL | NONE}

Default
FULL

Usage Notes

To generate C++ compatible code, the PARSE option must be either NONE or
PARTIAL.

If PARSE=NONE or PARSE=PARTIAL, all host variables must be declared inside a
Declare Section. See

10-26 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

PREFETCH

The variable SQLCODE must also be declared inside a declare section, or it cannot be
relied on to detect errors. Check the default value of PARSE for your platform.

If PARSE=FULL, the C parser is used, and it does not understand C++ constructs, such
as classes, in your code.

With PARSE=FULL or PARSE=PARTIAL Pro*C/C++ fully supports C preprocessor
directives, such as #define, #ifdef, and so on. However, with PARSE=NONE
conditional preprocessing is supported by EXEC ORACLE statements.

Note: Some platforms have the default value of PARSE as other
than FULL. See your system-dependent documentation.

See Also:

= '"Parsing Code" on page 12-3 for more information on the
PARSE option.

= "Declare Section" on page 2-8

= "Conditional Precompilation” on page 2-11

Purpose
Use this option to speed up queries by pre-fetching a number of rows.

Syntax
PREFETCH-=integer

Default
1

Usage Notes

Can be used in a configuration file or on the command-line. The value of the integer is
used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used in-line it must placed before OPEN statements with explicit cursors. Then
the number of rows pre-fetched when that OPEN is done is determined by the last
in-line PREFETCH option in effect.

The value range allowed is 0.. 65535.

RELEASE_CURSOR

Purpose
Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
RELEASE_CURSOR={YES | NO}

Precompiler Options 10-27

Using the Precompiler Options

Default
NO

Usage Notes
Can be entered inline or on the command line.

You can use RELEASE_CURSOR to improve the performance of your program.

See Also: Appendix C, "Performance Tuning"

When a SQL data manipulation statement is executed, its associated cursor is linked to
an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache and
private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, the precompiler immediately removes the link. This frees memory
allocated to the private SQL area and releases parse locks. To make sure that associated
resources are freed when you CLOSE a cursor, you must specify RELEASE_
CURSOR=YES.

When RELEASE_CURSOR=NO, the link is maintained. The precompiler does not
reuse the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are often executed
because it speeds up subsequent executions. There is no need to re-parse the statement
or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set RELEASE_CURSOR before
CLOSEing the cursor.

RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES. For a table showing how
these two options interact, see Appendix C, "Performance Tuning".

SELECT_ERROR

Purpose

Specifies whether your program generates an error when a SELECT statement returns
more than one row, or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={YES | NO}

Default
YES

Usage Notes
Can be entered inline or on the command line.

When SELECT_ERROR=YES, an error is generated when a single-row SELECT returns
too many rows, or when an array SELECT returns more rows than the host array can
accommodate. The result of the SELECT is indeterminate.

10-28 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

When SELECT_ERROR=NO, no error is generated when a single-row SELECT returns
too many rows, or when an array SELECT returns more rows than the host array can
accommodate.

Whether you specify YES or NO, a random row is selected from the table. The only
way to ensure a specific ordering of rows is to use the ORDER BY clause in your
SELECT statement. When SELECT_ERROR=NO and you use ORDER BY, Oracle
returns the first row, or the first n rows when you are SELECTing into an array. When
SELECT_ERROR=YES, whether or not you use ORDER BY, an error is generated when
too many rows are returned.

SQLCHECK

Purpose
Specifies the type and extent of syntactic and semantic checking.

Syntax
SQLCHECK={SEMANTICS | FULL | SYNTAX}

Default
SYNTAX

Usage Notes
SEMANTICS is the same as FULL.

Can be entered inline or on the command line.

See Also: "What Is Syntactic and Semantic Checking?" on
page D-1 for complete details.

SYS_INCLUDE

Purpose
Specifies the location of system header files.

Syntax
SYS_INCLUDE=pathname | (pathl, ..., pathn)

Default
System-specific.

Usage Notes

Pro*C/C++ searches for standard system header files, such as st di 0. h, in standard
locations that are platform specific. For example, on almost all UNIX systems, the file
st di 0. h has the full path name / usr/ i ncl ude/ st di o. h.

But C++ compilers can have system header files, such as st di 0. h, that are not in the
standard system locations. You can use the SYS_INCLUDE command line option to
specify a list of directory paths that Pro*C/C++ searches to look for system header
files. For example:

SYS_I NCLUDE=(/usr/ | ang/ SC2. 0. 1/i ncl ude, /usr/ | ang/ SC2. 1. 1/i ncl ude)

Precompiler Options 10-29

Using the Precompiler Options

THREADS

TYPE_CODE

The search path that you specify using SYS_INCLUDE overrides the default header
location.

If PARSE=NONE, the value specified in SYS_INCLUDE is irrelevant for the
precompilation, since there is no need for Pro*C/C++ to include system header files in
the precompilation. (You must, of course, still include Oracle-specific headers, such as
sgl ca. h. and system header files, with #include directives for pre-processing by the
compiler.)

The precompiler searches directories in the following order:

1. The current directory

2. The system directory specified in the SYS_INCLUDE precompiler option
3. The directories specified by the INCLUDE option, in the order entered

4. The built-in directory for standard header files

Because of step 3, you normally do not need to specify a directory path for standard
header files such as sql ca. h and sql da. h.

Purpose
When THREADS=YES, the precompiler searches for context declarations.

Syntax
THREADS={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This precompiler option is required for any program that requires multithreading
support.

With THREADS=YES, the precompiler generates an error if no EXEC SQL CONTEXT
USE directive is encountered before the first context is visible and an executable SQL
statement is found.

See Also: Chapter 11, "Multithreaded Applications"

Purpose

This micro option specifies whether ANSI or Oracle datatype codes are used in
dynamic SQL Method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default
ORACLE

10-30 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

Usage Notes
Cannot be entered inline.

See the possible option settings in Table 14-3

UNSAFE_NULL

Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when
fetching NULLs without using indicator variables.

Syntax
UNSAFE_NULL=({YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=ORACLE.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL
block. You must use indicator variables to avoid ORA-01405 errors.

USERID

Purpose
Specifies an Oracle username and password.

Syntax
USERID=username / password[@dbname]

Default
None

Usage Notes
Can be entered only on the command line.
Do not specify this option when using the automatic connect feature, which accepts

your Oracle username prefixed with CLUSTER$. The actual value of the "CLUSTER$"
string is set as a parameter in the INIT.ORA file.

When SQLCHECK=SEMANTICS, if you want the precompiler to get needed
information by connecting to Oracle and accessing the data dictionary, you must also
specify USERID.

Precompiler Options 10-31

Using the Precompiler Options

UTF16_CHARSET

VARCHAR

Purpose
Specify the character set form used by UNICODE(UTF16) variables.

Syntax
UTF16_CHARSET={ NCHAR_CHARSET | DB_CHARSET}

Default
NCHAR CHARSET

Usage Notes
Can be used only on the command line or in a configuration file, but not inline.
If UTF16_CHARSET=NCHAR_CHARSET (the default), the UNICODE(UTF16) bind /

define buffer is converted according to the server side National Character Set. There
may be a performance impact when the target column is CHAR.

If UTF16_CHAR=DB_CHARSET, the UNICODE(UTF16) bind / define buffer is
converted according to the database character set.

Caution: There may be data loss when the target column is
NCHAR.

Purpose
Instructs the Pro*C/C++ precompiler to interpret some structs as VARCHAR host
variables.

Syntax
VARCHAR={NO | YES}

Default
NO

Usage Notes
Can be entered only on the command line.

When VARCHAR=YES, a C struct that you code as

struct {

short Ien;
char arr[n];
} nane;

is interpreted by the precompiler as a VARCHARIn] host variable.

VARCHAR can be used in conjunction with the NLS_CHAR option to designate a
multibyte character variable.

10-32 Pro*C/C++ Programmer’s Guide

Using the Precompiler Options

VERSION

Purpose

Determines which version of the object will be returned by the EXEC SQL OBJECT
DEREEF statement.

Syntax
VERSION={RECENT | LATEST | ANY}

Default
RECENT

Usage Notes
Can be entered inline by use of the EXEC ORACLE OPTION statement.

RECENT means that if the object has been selected into the object cache in the current
transaction, then that object is returned. For transactions running in serializable mode,
this option has the same effect as LATEST without incurring as many network round
trips. Most applications should use RECENT.

LATEST means that if the object does not reside in the object cache, it is retrieved from
the database. If It does reside in the object cache, it is refreshed from the server. Use
LATEST with caution because it incurs the greatest number of network round trips.
Use LATEST only when it is imperative that the object cache is kept as coherent as
possible with the server buffer cache

ANY means that if the object already resides in the object cache, return that object. If
not, retrieve the object from the server. ANY incurs the fewest network round trips.
Use in applications that access read-only objects or when a user will have exclusive
access to the objects.

Precompiler Options 10-33

Using the Precompiler Options

10-34 Pro*C/C++ Programmer’s Guide

11

Multithreaded Applications

If your development platform does not support threads, ignore this chapter. This
chapter contains the following topics:

« What are Threads?

« Runtime Contexts in Pro*C/C++

= Runtime Context Usage Models

= User Interface Features for Multithreaded Applications
= Multithreaded Example

= Connection Pooling

Note: When using XA with the Pro*C/C++ Precompiler, you must
use multithreading provided by XA. Use of multithreading
provided by Pro*C/C++ using the statement

EXEC SQL ENABLE THREADS

will result in an error.

What are Threads?

Multithreaded applications have multiple threads executing in a shared address space.
Threads are "lightweight" subprocesses that execute within a process. They share code
and data segments, but have their own program counters, machine registers and stack.
Global and static variables are common to all threads, and a mutual exclusivity
mechanism is often required to manage access to these variables from multiple threads
within an application. Mutexes are the synchronization mechanism to insure that data
integrity is preserved.

For further discussion of mutexes, see texts on multithreading. For more detailed
information about multithreaded applications, see the documentation of your threads
functions.

Pro*C/C++ supports development of multithreaded Oracle Server applications (on
platforms that support multithreaded applications) using the following:

= A command-line option to generate thread-safe code
« Embedded SQL statements and directives to support multithreading
« Thread-safe SQLLIB and other client-side Oracle libraries

Multithreaded Applications 11-1

Runtime Contexts in Pro*C/C++

Note: While your platform may support a particular thread
package, see your platform-specific Oracle documentation to
determine whether Oracle supports it.

The chapter's topics discuss how to use the preceding features to develop
multithreaded Pro*C/C++ applications:

= Runtime contexts for multithreaded applications
= Two models for using runtime contexts
= User-interface features for multithreaded applications

= Programming considerations for writing multithreaded applications with
Pro*C/C++

= Anexample multithreaded Pro*C/C++ application

Runtime Contexts in Pro*C/C++

To loosely couple a thread and a connection, Pro*C/C++ introduces the notion of a
runtime context. The runtime context includes the following resources and their
current states:

« Zero or more connections to one or more Oracle Servers
« Zero or more cursors used for the server connections

= Inline options, such as MODE, HOLD_CURSOR, RELEASE_CURSOR, and
SELECT_ERROR

Rather than simply supporting a loose coupling between threads and connections,
Pro*C/C++ provides the ability to loosely couple threads with runtime contexts.
Pro*C/C++ allows your application to define a handle to a runtime context, and pass
that handle from one thread to another.

For example, an interactive application spawns a thread, T1, to execute a query and
return the first 10 rows to the application. T1 then terminates. After obtaining the
necessary user input, another thread, T2, is spawned (or an existing thread is used)
and the runtime context for T1 is passed to T2 so it can fetch the next 10 rows by
processing the same cursor. See Figure 11-1, "Loosely Coupling Connections and
Threads".

11-2 Pro*C/C++ Programmer’s Guide

Runtime Context Usage Models

Figure 11-1 Loosely Coupling Connections and Threads

Application
Main Program
ENABLE THREADS
ALLCOCATE : ct x
Connect. ..
FREE : ctx
m Shared runtime Execution
Thread context is Time
passed from
USE : ctx one thread to
Fetch. .. t he next
\ 4
Thread
USE : ctx —_ . . .
Fetch. .. l
. Thread
USE :ctx
Fetch. ..

=

Server

Runtime Context Usage Models

Two possible models for using runtime contexts in multithreaded Pro*C/C++
applications are shown here:

= Multiple threads sharing a single runtime context
= Multiple threads using separate runtime contexts

Regardless of the model you use for runtime contexts, you cannot share a runtime
context between multiple threads at the same time. If two or more threads attempt to
use the same runtime context simultaneously, a runtime error occurs.

Multiple Threads Sharing a Single Runtime Context

Figure 11-2 shows an application running in a multithreaded environment. The
various threads share a single runtime context to process one or more SQL statements.
Again, runtime contexts cannot be shared by multiple threads at the same time. The
mutexes in Figure 11-2 show how to prevent concurrent usage.

Multithreaded Applications 11-3

Runtime Context Usage Models

Figure 11-2 Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE : ct x

USE : ctx

Connect. . .

Spawni ng Threads. ..
FREE : ct x

Thread Thread Thread

USE :ctx USE :ctx
Mut ex Mut ex

Sel ect. .. Update. . .
UnMut ex UnMWut ex

i

Server

Multiple Threads Sharing Multiple Runtime Contexts

Figure 11-3 shows an application that executes multiple threads using multiple
runtime contexts. In this situation, the application does not require mutexes, because
each thread has a dedicated runtime context.

11-4 Pro*C/C++ Programmer’s Guide

User Interface Features for Multithreaded Applications

Figure 11-3 No Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE : ct x1
ALLOCATE : ct x2
ALLOCATE : ct xn

Sbéwni ng Threads. ..

FREE : ctx1
FREE : ct x2
FREE : ctxn
Thread Thread Thread
USE :ctx1 USE : ct x2 T 7 7 | USE :ctxn
Connect. . . Connect. . . Connect. ..
Sel ect. .. Update. .. Sel ect. ..

-

Server

User Interface Features for Multithreaded Applications

The Pro*C/C++ Precompiler provides the following user-interface features to support
multithreaded applications:

» Command-line option, THREADS=YES |NO
« Embedded SQL statements and directives
» Thread-safe SQLLIB public functions

THREADS Option

With THREADS=YES specified on the command line, the Pro*C/C++ Precompiler
ensures that the generated code is thread-safe, given that you follow the guidelines.
With THREADS=YES specified, Pro*C/C++ verifies that all SQL statements execute
within the scope of a user-defined runtime context. If your program does not meet this
requirement, a precompiler error is returned.

See Also: "Programming Considerations" on page 11-9 for
guidelines regarding the THREADS option

Multithreaded Applications 11-5

User Interface Features for Multithreaded Applications

Embedded SQL Statements and Directives

The following embedded SQL statements and directives support the definition and
usage of runtime contexts and threads:

« EXEC SQL ENABLE THREADS;

« EXEC SQL CONTEXT ALLOCATE :context_uvar;

« EXEC SQL CONTEXT USE { :context_var | DEFAULT};
« EXEC SQL CONTEXT EREE :context_uvar;

For these EXEC SQL statements, context_uvar is the handle to the runtime context and
must be declared of type sql_context as follows:

sgl _context <context_variabl e>;
Using DEFAULT means that the default (global) runtime context will be used in all

embedded SQL statements that lexically follow until another CONTEXT USE
statement overrides it.

EXEC SQL ENABLE THREADS

This executable SQL statement initializes a process that supports multiple threads.
This must be the first executable SQL statement in your multithreaded application.

Note: When using XA with the Pro*C/C++ Precompiler, you must
use multithreading provided by XA. Use of multithreading
provided by Pro*C using the statement

EXEC SQL ENABLE THREADS

will result in an error.

See Also: "ENABLE THREADS (Executable Embedded SQL
Extension)" on page F-36

EXEC SQL CONTEXT ALLOCATE

This executable SQL statement allocates and initializes memory for the specified
runtime context; the runtime-context variable must be declared of type sql_context.

See Also: "CONTEXT ALLOCATE (Executable Embedded SQL
Extension)" on page F-20

EXEC SQL CONTEXT USE

This directive instructs the precompiler to use the specified runtime context for
subsequent executable SQL statements. The runtime context specified must be
previously allocated using an EXEC SQL CONTEXT ALLOCATE statement.

The EXEC SQL CONTEXT USE directive works similarly to the EXEC SQL
WHENEVER directive in that it affects all executable SQL statements which
positionally follow it in a given source file without regard to standard C scope rules. In
the following example, the UPDATE statement in f unct i on2() uses the global
runtime context, ctx1:

sgl _context ctxl; /* declare global context ctxl */

functionl()

11-6 Pro*C/C++ Programmer’s Guide

User Interface Features for Multithreaded Applications

sgl _context :ctx1; /* declare |local context ctxl */
EXEC SQL CONTEXT ALLQOCATE : ct x1;
EXEC SQL CONTEXT USE :ctx1,;

EXEC SQL INSERT INTO ... [/* local ctxl used for this stnt */
}
function2()
{ EXEC SQL UPDATE ... /* global ctxl used for this stnt */
}

To use the global context after using a local context, add this code to function1():

functionl()

{
sql _context :ctxl,; /* declare local context ctxl */
EXEC SQL CONTEXT ALLOCATE : ctx1;
EXEC SQL CONTEXT USE : ctx1;
EXEC SQ INSERT INTO ... /[* local ctxl used for this stnt */
EXEC SQL CONTEXT USE DEFAULT;
EXEC SQL INSERT INTO ... /* global ctxl used for this stnt */

}

In the next example, there is no global runtime context. The precompiler refers to the
ctx1 runtime context in the generated code for the UPDATE statement. However, there
is no context variable in scope for f uncti on2(), so errors are generated at compile
time.

functionl()

{
sql _context ctxl; /* local context variable declared */
EXEC SQL CONTEXT ALLQCATE : ctx1;
EXEC SQL CONTEXT USE :ctx1,

EXEC SQL I NSERT INTO ... /* ctxl used for this statenment */
}
function2()
{
EXEC SQL UPDATE ... /* Error! No context variable in scope */
}
See Also:
« "CONTEXT OBJECT OPTION GET (Executable Embedded SQL
Extension)" on page F-22
« "CONTEXT ALLOCATE (Executable Embedded SQL
Extension)" on page F-20
EXEC SQL CONTEXT FREE

This executable SQL statement frees the memory associated with the specified runtime
context and places a null pointer in the host program variable.

See Also: "CONTEXT FREE (Executable Embedded SQL
Extension)" on page F-21

Multithreaded Applications 11-7

User Interface Features for Multithreaded Applications

CONTEXT USE Examples

The following code fragments show how to use embedded SQL statements and
precompiler directives for two typical programming models; they use thread_create() to
create threads.

The first example showing multiple threads using multiple runtime contexts:

mai n()
{
sgl _context ctx1,ctx2; /* declare runtime contexts */
EXEC SQL ENABLE THREADS;
EXEC SQL CONTEXT ALLOCATE : ctx1,;
EXEC SQL CONTEXT ALLOCATE : ctx2;

/* spawn thread, execute functionl (in the thread) passing ctxl */

thread_create(..., functionl, ctxl);
/* spawn thread, execute function2 (in the thread) passing ctx2 */
thread_create(..., function2, ctx2);

EXEC SQL CONTEXT FREE :ctx1;
EXEC SQL CONTEXT FREE :ctx2;

}

voi d functionl(sql _context ctx)

{
EXEC SQL CONTEXT USE : ctx;

/* execute executable SQL statenents on runtinme context ctxl!!! */

}

voi d function2(sql _context ctx)

{
EXEC SQL CONTEXT USE : ctx;

/* execute executable SQL statements on runtine context ctx2!!! */

}

The next example shows how to use multiple threads that share a common runtime
context. Because the SQL statements executed in f uncti onl() and functi on2()
potentially execute at the same time, you must place mutexes around every executable
EXEC SQL statement to ensure serial, therefore safe, manipulation of the data.

mai n()

{

sql _context ctx; /* declare runtime context */
EXEC SQL CONTEXT ALLOCATE :ctx;

/* spawn thread, execute functionl (in the thread) passing ctx */

thread_create(..., functionl, ctx);
/* spawn thread, execute function2 (in the thread) passing ctx */
thread _create(..., function2, ctx);

}

voi d functionl(sql _context ctx)

EXEC SQL CONTEXT USE :ctx;
/* Execute SQL statenments on runtinme context ctx. */

11-8 Pro*C/C++ Programmer’s Guide

Multithreaded Example

}

voi d function2(sqgl _context ctx)

{
EXEC SQL CONTEXT USE : ctx;

/* Execute SQ. statenents on runtime context ctx. */

}

Programming Considerations

While Oracle ensures that the SQLLIB code is thread-safe, you are responsible for
ensuring that your Pro*C/C++ source code is designed to work properly with threads;
for example, carefully consider your use of static and global variables.

In addition, multithreaded applications require design decisions regarding the
following:

= Declaring the SQLCA as a thread-safe struct, typically an auto variable and one for
each runtime context

= Declaring the SQLDA as a thread-safe struct, like the SQLCA, typically an auto
variable and one for each runtime context

= Declaring host variables in a thread-safe fashion, in other words, carefully
consider your use of static and global host variables.

= Avoiding simultaneous use of a runtime context in multiple threads

= Whether or not to use default database connections or to explicitly define them
using the AT clause

Also, no more than one executable embedded SQL statement, for example, EXEC SQL
UPDATE, may be outstanding on a runtime context at a given time.

Existing requirements for precompiled applications also apply. For example, all
references to a given cursor must appear in the same source file.

Multithreaded Example

The following program is one approach to writing a multithreaded embedded SQL
application. The program creates as many sessions as there are threads. Each thread
executes zero or more transactions, that are specified in a transient structure called
"records."

Note: This program was developed specifically for a Sun
workstation running Solaris. Either the DCE or Solaris threads
package is usable with this program. See your platform-specific
documentation for the availability of threads packages.

Nane: Thread_exanpl el. pc

Description: This programillustrates how to use threading in
conjunction with preconpilers. The programcreates as many
sessions as there are threads. Each thread executes zero or
more transactions, that are specified in a transient
structure called 'records'.

Requi renent s:

. N I I

Multithreaded Applications 11-9

Multithreaded Example

The programrequires a table ' ACCOUNTS to be in the schema
scott/tiger. The description of ACCOUNTS is:
SQL> desc accounts

ACCOUNT NUVBER(36)
NUNBER(36, 2)

For proper execution, the table should be filled with the accounts

10001 to 10008.

I T T R R R
2
%

/

#incl ude <stdio. h>
#include <stdlib. h>
#include <string.h>
#include <sql ca. h>

#def i ne _EXC 0S_ _EXC__UNI X
#def i ne _CVA Os_ _CVMA__UNIX

#i f def DCE_THREADS
#incl ude <pthread. h>
#el se
#include <thread. h>
#endi f

/* Function prototypes */
void err_report();

#i f def DCE_THREADS

void do_transaction();
#el se

void *do_transaction();
#endi f

void get_transaction();
void logon();

void logoff();

#define CONNINFO "scott/tiger"
#define THREADS 3

struct paranmeters

{ sqgl _context * ctx;
int thread_id,;

¥

typedef struct paraneters paraneters;

struct record_| og
{ char action;

unsi gned int fromaccount;

unsi gned int to_account;

float anount;
¥
typedef struct record_log record_| og;
record_log records[]={ { "M, 10001, 10002, 12.50 },
{ "M, 10001, 10003, 25.00 },
{ "M, 10001, 10003, 123.00 },
{ "M, 10001, 10003, 125.00 }

1

11-10 Pro*C/C++ Programmer’s Guide

Multithreaded Example

, 10002, 10006, 12.23 },
, 10007, 10008, 225.23 },
, 10002, 10008, 0.70 }
, 10001, 10003, 11.30
, 10003, 10002, 47.50
, 10002, 10006, 125.0
, 10007, 10008, 225.0
10002, 10008, 0.70
, 10001, 10003, 11.0
, 10003, 10002, 47.5
, 10002, 10006, 125.
, 10007, 10008, 225.
, 10002, 10008, 0.70
, 10001, 10003, 11.00 },

, 10003, 10002, 47.50 },

, 10008, 10001, 1034.54}};

=TT EEEIEITEZIEEIEEEEZ

static unsigned int trx_nr=0;
#i f def DCE_THREADS

pt hread_nut ex_t nutex;

#el se

mit ex_t nmutex;

#endi f

/***
* Main
**/
mai n()
{

sql _context ctx[THREADS] ;
#i f def DCE_THREADS

pthread_t thread_i d[THREADS];

pt hread_addr _t status;
#el se

thread_t thread_i d[THREADS];

int status;
#endi f

paraneters parans|[THREADS] ;

int i;

EXEC SQL ENABLE THREADS,
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);

/* Create THREADS sessions by connecting THREADS times */
for(i=0;i <THREADS; i ++)
{
printf("Start Session %l....",i);
EXEC SQL CONTEXT ALLOCATE :ctx[i];
[ogon(ctx[i], CONNI NFO ;
}

/[*Create mutex for transaction retrieval */
#i f def DCE_THREADS

if (pthread_mutex_init(&mwutex, pthread nutexattr_default))
#el se

if (mutex_init(&mutex, USYNC THREAD, NULL))
#endi f

Multithreaded Applications 11-11

Multithreaded Example

printf("Can't initialize muitex\n");
exit(1);
}

[*Spawn t hreads*/
for(i=0;i<THREADS; i ++)
{
parans[i].ctx=ctx[i];
parans[i].thread_id=i;

printf("Thread %... ",i);
#i f def DCE_THREADS
if (pthread_create(&hread_id[i],pthread_attr_default,
(pthread_startroutine_t)do_transaction,
(pthread_addr _t) ¶ns[i]))
#el se
if (status = thr_create
(NULL, O, do_transaction, ¶ns[i], 0, &hread_id[i]))
#endi f
printf("Cant create thread %\ n",i);
el se
printf("Created\n");

/* Logoff sessions....*/

for(i=0;i<THREADS; i ++)

{
[*wait for thread to end */
printf("Thread %",i);

#i f def DCE_THREADS

if (pthread_join(thread_ id[i], &status))
printf("Error when waiting for thread %to terninate\n", i);
el se
printf("stopped\in");

printf("Detach thread...");
if (pthread_detach(&hread_id[i]))
printf("Error detaching thread!' \n");
el se
printf("Detached!\n");
#el se
if (thr_join(thread_id[i], NULL, NULL))
printf("Error waiting for thread to termnate\n");
#endi f
printf("Stop Session %l....",i);
I ogoff(ctx[i]);
EXEC SQL CONTEXT FREE :ctx[i];

[*Destroys mutex*/
#i f def DCE_THREADS

i f (pthread_nutex_destroy(&mtex))
#el se

if (mutex_destroy(&nutex))
#endi f

{
printf("Can't destroy mutex\n");

11-12 Pro*C/C++ Programmer’s Guide

Multithreaded Example

}

exit(l);
}

/***

*

*

*

*

*

*

*

*

Function: do_transaction
Description: This functions executes one transaction out of the

records array. The records array is 'managed' by
the get _transaction function.

***/

#i f def DCE_THREADS
voi d do_transaction(parans)

#el se
voi d *do_transaction(parans)
#endi f
paraneters *parans;
{
struct sqlca sqlca;
record_log *trx;
sql _context ctx=parans->ctx;
/* Done all transactions ? */
while (trx_nr < (sizeof(records)/sizeof(record_|log)))
{
get _transaction(&rx);
EXEC SQL WHENEVER SQLERROR DO err_report (sqlca);
EXEC SQL CONTEXT USE :ctx;
printf("Thread % executing transaction\n", params->thread_id);
swi tch(trx->action)
{
case "M: EXEC SQL UPDATE ACCOUNTS
SET BALANCE=BALANCE+: t r x- >anount
WHERE ACCOUNT=:trx->to_account;
EXEC SQL UPDATE ACCOUNTS
SET BALANCE=BALANCE- : t r x- >anmount
WHERE ACCOUNT=:trx->from account;
br eak;
default: break;
}
EXEC SQL COW T;
}
}

/***

*

*

*

*

*

Function: err_report

Description: This routine prints out the nost recent error

EEEEEEEEE S SR EREREEREREREEEEEEEREREREREEESESEEEEEREREREERESSESEEEEEEER] */

voi d err_report(sqlca)
struct sqlca sqlca;

{

if (sglca.sqglcode < 0)
printf("\n%*s\n\n",sqlca.sqglerrmsqglerrm,sqlca.sql errmsqglerrnt);

Multithreaded Applications 11-13

Multithreaded Example

exit(1);
}

/***

* Function: |ogon

*
* Description: Logs on to the database as USERNAVE/ PASSWORD
*

***/

voi d | ogon(ct x, connect _i nf o)
sql _context ctx;
char * connect _info;

{
EXEC SQL VWHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE : ctx;
EXEC SQL CONNECT : connect _info;
printf("Connected!\n");

}

/**

* Function: |ogoff

*

* Description: This routine logs off the database

*

**/

voi d | ogof f (ct x)
sql _context ctx;
{

EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;

EXEC SQL COW T WORK RELEASE;

printf("Logged of f!\n");

/**

* Function: get_transaction
*

* Description: This routine returns the next transaction to process
*

**/

voi d get_transaction(trx)
record_log ** trx;
{
#i f def DCE_THREADS

if (pthread_mutex_| ock(&utex))
#el se

if (mutex_| ock(&nmutex))
#endi f

printf("Can't lock mitex\n");

*trx=&records[trx_nr];
trx_nr++;
#i f def DCE_THREADS
i f (pthread_nutex_unl ock(&utex))

#el se
if (mutex_unlock(&mtex))

11-14 Pro*C/C++ Programmer’s Guide

Connection Pooling

#endi f
printf("Can't unlock nutex\n");

}

Connection Pooling

Connection pool is a group of physical connections to a database that can be re-used
by several named connections. The objective of the connection pooling feature is to
improve performance, and reduce resource use by avoiding usage of dedicated
connections by each named connection.

Figure 114 illustrates functionality of the connection pooling feature. In this example,
four threads of the application are interacting with the database using the connection

pool. The connection pool has two physical connections. The connection pool handle is
used by four threads using different runtime contexts.

Figure 11-4 Connection Pooling

Application Virtual Connection Pool
Gonnechions
Physical
T™ TG Connections
DB

T2 TG2 G4

T3 TC3 G2

T4 TG4

threadl()

{
EXEC SQL CONTEXT ALLOCATE : ctx1;

EXEC SQL CONNECT :uid AT :TCL USING :db_string;

}

thread2()

{
EXEC SQL CONTEXT ALLCCATE : ct x2;

EXEC SQL CONNECT :uid AT :TC2 USING :db_string;

}
thread3()

{
EXEC SQL CONTEXT ALLOCATE : ct x3;

EXEC SQL CONNECT :uid AT :TC3 USING :db_string;
EXEC SQL AT :TC3 SELECT count(*) into :count FROM enp;

}

t hread4()

Multithreaded Applications 11-15

Connection Pooling

{
EXEC SQL CONTEXT ALLOCATE : ct x4,

EXEC SQL CONNECT :uid AT :TC4 USING :db_string;

}

In this example, four named connections TC1, TC2, TC3, and TC4 are virtual
connections created by threads T1, T2, T3, and T4 respectively. Named connections
TC1, TC2, TC3, and TC4 from different runtime contexts share the same connection
pool, and share physical database connections available in the connection pool. Two
physical connections, C1 and C2, serve four named connections and connect to the
same database.

When the first connect request TC1 from thread T1 is received, SQLLIB creates a
connection pool with one physical connection C1 to the database. When another
connect request TC2 from thread T2 is sent to the same database, C1 serves the TC2
request to the database, if it is free. Otherwise, a new physical connection C2 is created
to serve the request. If another connect request from thread T3 named TC3 comes in,
TC3 either waits for a specified time or returns an error message, if both physical
connections C1 and C2 are busy.

When thread T2 needs to select data using the TC2 named connection, it acquires any
free physical connection, C1 or C2. After the request is served, the chosen connection
will again be available in the connection pool, so that another named or virtual
connection can utilize the same physical connection.

Using the Connection Pooling Feature

This section comprises the following topics:

= How to Enable Connection Pooling

= Command Line Options for Connection Pooling
= Example

= Performance Tuning

How to Enable Connection Pooling

To enable connection pooling while precompiling an application, user must set the
command line option CPOOL=YES. Based on CPOOL=YES/ NO, the connection pool
feature is enabled or disabled.

Note: By default, CPOOL is set to NO and hence the connection
pool feature is disabled. This feature cannot be enabled or disabled
inline.

Command Line Options for Connection Pooling
Table 11-1 lists the command line options for connection pooling:

11-16 Pro*C/C++ Programmer’s Guide

Connection Pooling

Table 11-1 Command Line Options for Connection Pooling

Valid
Option Value Default Remarks
CPOOL YES/NO NO Based on this option, the precompiler generates the appropriate code
that directs SQLLIB to enable or disable the connection pool feature.
Note: If this option is set to NO, other options will be ignored by the
precompiler.

CMAX Valid 100 Specifies the maximum number of physical connections that can be
values are opened for the database. CMAX value should be at least
1and CMIN+CINCR.
above Note: Once this value is reached, more physical connections cannot

be opened.
In a typical application, running 100 concurrent database operations
is more than sufficient. The user can set an appropriate value.

CMIN Valid - Specifies the minimum number of physical connections in the
values are connection pool. Initially, all physical connections as specified
1and through CMIN are opened to the server. Subsequently, physical
above connections are opened only when necessary. Users should set the

total number of planned or expected concurrent statements to be run
by the application to get optimum performance. The default value is
set to 2, as it is expected that users writing multithreaded
applications would create at least two threads.

CINCR Valid 1 Allows the application to set the next increment for physical
values are connections to be opened to the database, if the current number of
1 and physical connections is less than CMAX. To avoid creating
above unnecessary extra connections, the default value is set to 1.

CTIMEOUT Valid Will notbe Physical connections that are idle for more than the specified time (in
values are set;hence seconds) are terminated to maintain an optimum number of open
more than will not physical connections. If this attribute is not set, the physical
1 time out. connections are never timed out. Hence, physical connections will

not be closed until the connection pool is terminated.
Note: Creating a new physical connection will cost a round trip to
the server.

CNOWAIT Valid Will notbe This attribute determines if the application must repeatedly try for a
values are set;hence physical connection when all other physical connections in the pool
1and waits fora are found busy, and the total number of physical connections has
above free already reached its maximum. If physical connections are not

connection. available and no more physical connections can be opened, an error
is thrown when this attribute is set. Otherwise, the call waits until it
acquires another connection. By default, this is not to be set because a
thread can wait until it acquires a free connection, instead of
returning an error.

A typical multithreaded application creates a pool of 'n' server handles. The 'n' value
needs to be specified by providing the CMIN value during precompilation. A
minimum number of physical connections (CMIN) to the database are created initially.
For new incoming requests, the mapping from a virtual connection (named
connection) to a physical connection is carried out as described in the following
section:

Case 1: If a physical connection is available (among the already opened connections), a
new request will be served by this connection.

Case 2: If all physical connections are in use then,

Multithreaded Applications 11-17

Connection Pooling

Case 2a: If the number of opened connections has not reached the maximum limit
(CMAX), new CINCR connections are created, and one of these connections is used to
serve the request.

Case 2b: If the number of opened connections has reached the maximum limit
(CMAX) without the CNOWAIT being set, the request waits until it acquires a
connection. Otherwise, the application displays an error message that all physical
connections are busy and no more physical connections can be opened.

Example
Refer Figure 11-4 for an illustration of the following example.

Let

CM N be 1,
CVAX be 2, and
CINCR be 1.

Consider the following scenario. When the first request TC1 comes in, SQLLIB creates
the connection pool with one physical connection C1. When another request TC2
comes in, the application checks if C1 is free. As C1 is used to serve the first request
(Case 1), a new physical connection C2 is created to serve the request (Case 2a). If
another request TC3 comes in, and if both C1 and C2 are busy, then TC3 either waits
for a specified time or returns with an error message (Case 2b).

Performance Tuning

Users can set the connection pooling parameters to get better performance, based on
the application. The Performance Graph in Figure 11-5 on page 11-19 illustrates
performance gain by changing the CMIN value for the Pro*C/C++ Demo Program:1
on page 11-18. Demo Program:2 on page 11-23 illustrates performance gain by
changing the CMAX parameter.

Demo Program:1

The following connection pool parameters are used while precompiling the Demo
Program:1.

CMAX = 40
CINCR = 3
CMN=1..40

CTIMEQUT - Do not set
(indicates that physical connection never times out)

CNOMIT - Do not set
(indicates that the thread waits until it gets a free connection; see Table 11-1,
" Command Line Options for Connection Pooling" on page 11-17, for more details)

Other command line options to precompile are based on the example provided in the
following section:

userid = hr/hr
sql check = full
dbns = v8
threads = yes

Note: In this example, No. of threads = 40, and database
operations are done against the local database.

11-18 Pro*C/C++ Programmer’s Guide

Connection Pooling

It was observed that with CPOOL=NO (without connection pool), time taken by the
application was 6.1 seconds. Whereas, with CPOOL=YES (with connection pool),
minimum time taken by the application was 1.3 seconds, with CMIN=2.

In both cases, the time taken for database query operation may remain same. The
connection pool does not reduce for database query operations except for CONNECT
statements. The overall time taken for total connection operations when CPOOL=YES
will be less compared to the case when CPOOL=NO. In the earlier example, when
CPOOL=NO, the application will create 40 dedicated connections. When
CPOOL=YES, it will create 2 connections initially and only if 2 threads access the
connections concurrently, it will create more connections. Otherwise, all threads will
share those 2 connections. So the application avoids 38 connections which in turn
avoids 38 round trips to the server to establish connections. This is where the
application gains performance by three times.

Note: The earlier result was observed with a Sparc Ultra60 single
CPU, 256 MB RAM machine, running one Oracle9i server on Solaris
2.6 operating system; the server and client were running on the
same machine.

Figure 11-5 Performance Graph

PERFORMANCE GRAPH

74
o CPOOL=NO /

54
a4
3—!
2 CPOOL=YES
1_

Time Taken by Application in Seconds

CMIN

The CPOOL=YES curve represents the time taken by the application when connection
pool is enabled. The CPOOL=NO curve represents the time taken by the application
when connection pool is disabled.

Example
/*
* cpdenol. pc

Descri pti on:
The program creates as many sessions as there are threads.
Each thread connects to the default database, calls COWM T and
executes a sinple SELECT statenment. Each thread have its own
runtime contexts.

L

—

Multithreaded Applications 11-19

Connection Pooling

#incl ude <stdio. h>
#include <stdlib.h>
#include <string. h>
#i ncl ude <sql ca. h>

#def i ne _EXC Cs_ _EXC_UNIX
#define _CVA COS_ _CMA_UNIX
#def i ne MAX ROWS 256
#define BUFF_LEN 21

#i f def DCE_THREADS
#include <pthread. h>
#el se

#incl ude <thread. h>
#endi f

/* Function prototypes */
void err_report();

#i f def DCE_THREADS

void do_transaction();
#el se

void *do_transaction();
#endi f

void get_transaction();
void logon();

void logoff();

#define CONNI NFO "hr/hr"
#def i ne THREADS 40

struct parameters
{
sql _context * ctx;
int thread_id;
¥

typedef struct parameters parameters;

struct timeval tpl;
struct timeval tp2;

/***************************************

* Main

***************************************/

mai n()

{
sql _context ctx[THREADS] ;

#i f def DCE_THREADS
pthread_t thread_i d[THREADS];
pt hread_addr _t status;

#el se
thread_t thread_i d[THREADS];
int status;

#endi f
paranet ers params[THREADS] ;
int i;

EXEC SQL ENABLE THREADS,
EXEC SQL WHENEVER SQLERROR DO err_report (sql ca);

11-20 Pro*C/C++ Programmer’s Guide

Connection Pooling

i f(gettineofday(&pl) == -1)
{
perror("First: ");
exit(0);
}

/* Create THREADS sessions by connecting THREADS times */
for(i=0;i<THREADS; i ++)
{
printf("Start Session %l....",i);
EXEC SQL CONTEXT ALLOCATE :ctx[i];
[ogon(ctx[i], CONNI NFO);
}

[*Spawn t hreads*/
for(i=0;i <THREADS; i ++)
{
parans[i].ctx=ctx[i];
parans[i].thread_id=i;

#i f def DCE_THREADS
if (pthread_create(&hread_id[i],pthread_attr_default,
(pthread_startroutine_t)do_transaction,
(pthread_addr _t) ¶ns[i]))
#el se
if (status = thr_create
(NULL, 0, do_transaction, ¶ns[i], 0, &hread_id[i]))
#endi f
printf("Cant create thread %\ n",i);
el se
printf("Created Thread %\ n", i);

}

/* Logoff sessions....*/
for(i=0;i<THREADS; i ++)
{
[*wait for thread to end */
#i f def DCE_THREADS
if (pthread_join(thread_ id[i], &status))

printf("Error when waiting for thread %to ternmnate\n", i);

el se
printf("stopped\in");

printf("Detach thread...");
if (pthread_detach(&hread_ id[i]))
printf("Error detaching thread! \n");
el se
printf("Detached!\n");
#el se
if (thr_join(thread_id[i], NULL, NULL))
printf("Error waiting for thread to termnate\n");
#endi f
I ogof f(ctx[i]);
EXEC SQL CONTEXT FREE :ctx[i];

}
i f(gettineofday(&tp2) == -1)
{
perror("Second: ");
exit(0);

Multithreaded Applications 11-21

Connection Pooling

printf(" \n\nTHE TOTAL TI ME TAKEN FOR THE PROGRAM EXECUTION = % \n\n",
(float)(tp2.tv_sec - tpl.tv_sec) + ((float)(tp2.tv_usec - tpl.tv_
usec)/1000000.0));

}

/***

* Function: do_transaction
* Description: This function calls CMMT and execute a sinple SELECT
* statement.
***/
#i f def DCE_THREADS
voi d do_transacti on(parans)
#el se
voi d *do_transaction(parans)
#endi f
paraneters *parans;
{
struct sqlca sqlca;
char enpNane[MAX_ROWS] [BUFF_LEN];
int src_count;
sql _cont ext ctx=parans->ctx;

EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);

EXEC SQL CONTEXT USE : ctx;

printf("Thread %l executing transaction\n", paranms->thread_id);

EXEC SQL COWM T;

EXEC SQL SELECT FIRST_NAME into empNane from EMPLOYEES where JOB_| D=
(select JOB ID from EMPLOYEES where EMPLOYEE_| D=205);

}

/**

* Function: err_report

* Description: This routine prints out the nost recent error
**/

voi d err_report(sqlca)
struct sqlca sqlca;
{

if (sglca.sqglcode < 0)
printf("\n%*s\n\n",sqlca.sqlerrmsqglerrm,sqglca.sqlerrmsqglerrnt);
exit(1l);
}

/**

* Function: |ogon
* Description: Logs on to the database as USERNAVE/ PASSWORD
**l
voi d | ogon(ct x, connect _i nf o)
sql _context ctx;
char * connect _info;
{
EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE :ctx;
EXEC SQL CONNECT : connect _i nfo;
printf("Connected!'\n");

11-22 Pro*C/C++ Programmer’s Guide

Connection Pooling

/***

* Function: |ogoff
* Description: This routine |ogs off the database

***/

voi d [ogof f (ctx)
sql _context ctx;
{

EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
EXEC SQL CONTEXT USE : ctx;
EXEC SQL COW T WORK RELEASE;

}

Demo Program:2

The following connection pool parameters are used while precompiling the Demo
Program:2.

CMAX =5..40

CINCR =3

CMIN =1..40

CTIMEOUT - Do not set

(indiactes that physical connection never times out)
CNOWAIT - Do not set

(indicates that thread waits until it gets a free connection; see Table 11-1, " Command
Line Options for Connection Pooling" on page 11-17, for more details)

Other command line options to precompile are based on the example provided in the
following section:

userid = hr/hr
sqlcheck = full
dbms = v8
threads = yes

The following figure illustrates the performance graph for cpdemo2.

Note: In this example, No. of threads = 40, and database
operations are done against the local database.

In this example, the demo program does UPDATE operation along with SELECT
operation. The best performance is observed when CMIN=5 and CMAX=14. The
performance improvement in this demo is around 2.3 times when CPOOL=YES is
used over the use of CPOOL=NO option.

The "cpdemol" shows more than 3 times performance improvement, whereas
"cpdemo2" shows only 2.3 times performance improvement. The reason being
"cpdemol"” uses simple SELECT statement whereas "cpdemo2" uses UPDATE and
SELECT statements. "cpdemol” spends more time in creating connections than the
database operations. When connection pool is enabled, it saves time as lesser number
of connections are created. So, overall performance becomes better. Since "cpdemo2"
spends less time in creating connections compared to the database operations, the
overall performance gain is less.

Multithreaded Applications 11-23

Connection Pooling

In the following graphs, the CPOOL=YES curve represents the time taken by the
application when connection pool is enabled. The CPOOL=NO curve represents the
time taken by the application when connection pool is disabled. The demo program
"cpdemo?2"” creates 40 threads. With CPOOL=NO option, each thread establishes its
own dedicated connection to the server. Hence 40 connections are created. The same
demo program when built with CPOOL=YES option, and with CMAX set to 14, a
maximum of 14 connections are created. So, at most it creates 14 connections and these
14 connections will be shared across 40 threads which will avoid another 26 dedicated
connections, thereby the program avoids 26 round-trips to the server.

The following two graphs are drawn one with varying CMIN and other with varying
CMAX respectively.

Case 1: By varying CMIN

Figure 11-6 Performance Graph Case 1

PERFORMANCE

CPOOL=NO

CPOOL=YES

TIME(SECONDS)
O =W s O~

The application takes around 7.5 seconds for execution with CPOOL=NO. With
CPOOL=YES, and CMIN=8 and CMAX=14, the execution time reduces to 4.5 seconds.
So, the improvement of performance is about 1.7 times. The difference in performance
is because of different database operations (SELECT vs UPDATE) which is purely a
server side activity and beyond the scope of connection pool feature which is a client
side feature.

11-24 Pro*C/C++ Programmer’s Guide

Connection Pooling

Case 2: By varying CMAX

Figure 11-7 Performance Graph Case 2

PERFORMANCE

CPOOL=NO

CPOOL=YES

TIME (SECOHDS)
O = kW s th m o~ m

CMAX

For the preceding graph the demo program was run with CMIN=15 ,CINCR=3 and
the best performance was observed at CMAX=14. It takes around 7.4 seconds for the
execution when CPOOL=NO. With CPOOL=YES, when CMAX=14 the execution time
reduces to around 3.1 seconds resulting in 2.3 times performance gain.

The performance improvement for cpdemo2 was more when CMAX was varied. So, to
get the best performance for a given application, the user is expected to vary CMIN
(case 1) and CMAX(case 2) suitably till the best performance is achieved.

Example
/ *

*

Programto show the perfornmance inprovenent when cpool option is used

* Run this programwi th cpool =no. Record the tinme taken for the programto
* execute

*

* Conpare the execution time

*

* This program al so denonstrates the inpact of properly tuned CMAX

* paranmeter on the performance

*

* Run the programwi th the follow ng parameter values for best performance
*

* CM N=5

* CI NCR=2

* CMAX=14

*

*/

#include <stdio. h>
#include <sql ca. h>

#i f def DCE_THREADS
#incl ude <pthread. h>
#el se

#include <thread. h>
#endi f

Multithreaded Applications 11-25

Connection Pooling

#define CONNI NFO "hr/hr"

#def i ne THREADS 40

#def i ne MAX_RONS 256
#def i ne BUFF_LEN 21

/***** prototypes khkkkkkkhkkkkkk*k */
#i f def DCE_THREADS

voi d sel ect Function();

voi d updat eFunction();

#el se

voi d *sel ect Function();

voi d *updat eFunction();

#endi f

void err_report(struct sqlca sqglca);

/* EEEE SRR EEEEEEEEEEEE SRR SRS */

[***** parameter to the function sel ect Function, updateFunction */
struct parameters
{

sql _context ctx;

char connNange[20];

char dbName[20] ;

int thread_id,;
¥
typedef struct paraneters paraneters;
/***/

paranet ers paranms[THREADS] ;

struct timeval tpl;
struct timeval tp2;

int main()
{
int i, status;
thread_t thread_i d[THREADS];

i nt thrNos[THREADS] ;

for(i=0; i<THREADS; i++)
thrNos[i] =1i;

EXEC SQL ENABLE THREADS,

/* Time before executing the program*/
i f(gettineofday(&pl) == -1){
perror("First: ");
exit(0);
}

EXEC SQL WHENEVER SQLERROR DO err_report(sqlca);
/* connect THREADS times to the data base */
for(i=0; i<THREADS; i++)
{
strcpy(params[i].dbName, "instl");
sprintf(parans[i].connNane, "conn%", i);
parans[i].thread_id = i;

/* logon to the data base */

11-26 Pro*C/C++ Programmer’s Guide

Connection Pooling

EXEC SQL CONTEXT ALLOCATE : parans[i].ctx;
EXEC SQL CONTEXT USE :parans[i].ctx;
EXEC SQL CONNECT : CONNI NFO
AT :parans[i].connName USI NG : parans[i]. dbNang;

/* create THREADS nunber of threads */
for(i=0;i<THREADS; i ++)
{
printf("Creating thread % \n", i);
if(i%R)
{
/* do a select operation if the thread id is odd */
#i f def DCE_THREADS
if(pthread_create(&hread_id[i],pthread_attr_default,
(pthread_startroutine_t)sel ectFunction,
(pthread_addr_t) ¶ns[i]))
#el se
if(thr_create(NULL, 0, selectFunction,
¶ns[i], 0, &hread_ id[i]))
#endi f
printf("Cant create thread % \n", i);
}

el se
{
/* othewi se do an update operation */
#i f def DCE_THREADS
if(pthread_create(&hread_id[i],pthread_attr_default,
(pthread_startroutine_t)updateFunction,
(pthread_addr_t) ¶ns[i]))

#el se
if(thr_create(NULL, 0, updateFunction,
¶ns[i], 0, &hread_id[i]))
#endi f
printf("Cant create thread % \n", i);
}

}

for(i=0; i<THREADS; i++)

{

#i f def DCE_THREADS
if(pthread_join(thread_id[i], &tatus))
printf("Error when waiting for thread %to termnate\n", i);

i f(pthread_detach(& hread_id[i]))
printf("Error detaching thread! \n");
#el se
if(thr_join(thread_id[i], NULL, NULL))
printf("Error waiting for thread i (%) to termnate\n", i);

#endi f
}
i f(gettinmeofday(&tp2) == -1){
perror("Second: ");
exit(0);
}

printf(" \n\nTHE TOTAL TI ME TAKEN FOR THE PROGRAM EXECUTION = % \n\n",

Multithreaded Applications 11-27

Connection Pooling

(float)(tp2.tv_sec - tpl.tv_sec) + ((float)(tp2.tv_usec -
tpl.tv_usec)/1000000.0));

/* free the context */
for(i=0; i<THREADS; i++)
{
EXEC SQL CONTEXT USE :parans[i].ctx;
EXEC SQL AT :parans[i].connName COVWM T WORK RELEASE;

EXEC SQL CONTEXT FREE : parans[i].ctx;
}

return 0;

}

#i f def DCE_THREADS
voi d sel ect Functi on(paraneters *parans)
#el se
voi d *sel ect Function(paraneters *parans)
#endi f
{
char enpName[MAX_ROWS] [BUFF_LEN] ;
printf("Thread % selecting \n

, parans->thread_id);

EXEC SQL CONTEXT USE : par ams- >ct x;
EXEC SQL AT : parans->connNane

SELECT FI RST_NAME into enpNane from EMPLOYEES;
printf("Thread % selected\n", params->thread_id);
return 0;

}

#i f def DCE_THREADS

voi d updat eFuncti on(paraneters *parans)
#el se

voi d *updat eFunction(paraneters *parans)
#endi f

{
printf(" Thread %l Updating ... \n", parans->thread_id);

EXEC SQL CONTEXT USE : par anms- >Ct X;
EXEC SQL AT : parans->connName update EMPLOYEES
set SALARY = 4000 where DEPARTMENT ID = 10;

/* commt the changes */
EXEC SQL AT : parans->connName COW T;

printf(" Thread % Updated ... \n", params->thread_id);
return 0;

/*********** Oracle error ***********/
void err_report(struct sglca sqlca)

{
if (sqglca.sqlcode < 0)
printf("\n%*s\n\n",sqlca.sqglerrmsqglerrm,sqlca.sql errmsqglerrnt);
exit(0);
}

11-28 Pro*C/C++ Programmer’s Guide

Connection Pooling

Multithreaded Applications 11-29

Connection Pooling

11-30 Pro*C/C++ Programmer’s Guide

12

C++ Applications

This chapter describes how you can use the Pro*C/C++ Precompiler to precompile
your C++ embedded SQL application, and how Pro*C/C++ generates C++ compatible
code. This chapter contains the following topics:

= Understanding C++ Support
= Precompiling for C++

= Example Programs

Understanding C++ Support

To understand how Pro*C/C++ supports C++, you must understand the basic
functional capabilities of Pro*C/C++. In particular, you must be aware of how
Pro*C/C++ differs from Pro*C Version 1.

The basic capabilities of Pro*C/C++ are:

= Full C preprocessor support. You can use #def i ne, #i ncl ude, #i f def , and
other preprocessor directives in your Pro*C/C++ program, to handle constructs
that the precompiler itself must process.

= Use of native C structures as host variables, including the ability to pass structs (or
pointers to structs) as host variables to functions, and write functions that return
host structures or struct pointers.

To support its C preprocessor capabilities and to enable host variables to be declared
outside a special Declare Section, Pro*C/C++ incorporates a complete C parser. The
Pro*C/C++ parser is a C parser; it cannot parse C++ code.

This means that for C++ support, you must be able to disable the C parser, or at least
partially disable it. To disable the C parser, the Pro*C/C++ Precompiler includes
command-line options to give you control over the extent of C parsing that
Pro*C/C++ performs on your source code.

See Also:
= "Oracle Datatypes" on page 4-1
= "Structure Pointers" on page 4-37

= "Precompiling for C++" on page 12-2

C++ Applications 12-1

Precompiling for C++

No Special Macro Processing

Using C++ with Pro*C/C++ does not require any special preprocessing or special
macro processors that are external to Pro*C/C++. There is no need to run a macro
processor on the output of the precompiler to achieve C++ compatibility.

If you are a user of a release of Pro*C/C++ Precompiler before this one, and you did
use macro processors on the precompiler output, you should be able to precompile
your C++ applications using Pro*C/C++ with no changes to your code.

Precompiling for C++
To control precompilation so that it accommodates C++, there are four considerations:
= Code emission by the precompiler
= Parsing capability
= The output filename extension

= The location of system header files

Code Generation

You must be able to specify what kind of code, C compatible code or C++ compatible
code, the precompiler generates. Pro*C/C++ by default generates C code. C++ is not a
perfect superset of C. Some changes are required in generated code so that it can be
compiled by a C++ compiler.

For example, in addition to emitting your application code, the precompiler interposes
calls to its runtime library, SQLLIB. The functions in SQLLIB are C functions. There is
no special C++ version of SQLLIB. For this reason, if you want to compile the
generated code using a C++ compiler, Pro*C/C++ must declare the functions called in
SQLLIB as C functions.

For C output, the precompiler would generate a prototype such as

voi d sqglora(unsigned long *, void *);

But for C++ compatible code, the precompiler must generate
extern "C' {
voi d sql ora(unsigned long *, void *);

b

You control the kind of code Pro*C/C++ generates using the precompiler option
CODE. There are three values for this option: CPP, KR_C, and ANSI_C. The differences
between these options can be illustrated by considering how the declaration of the
SQLLIB function sglora differs among the three values for the CODE option:

void sqlora(/*_ unsigned long *, void * _*/); [* K&R C */

voi d sql ora(unsigned long *, void *); [* ANSI C */
extern "C' { [* CPP */
voi d sql ora(unsigned long *, void *);

¥

When you specify CODE=CPP, the precompiler

= Generates C++ compilable code.

12-2 Pro*C/C++ Programmer’s Guide

Precompiling for C++

Parsing Code

= Gives the output file a platform-specific file extension (suffix), such as ".C" or ".cc”,
rather than the standard ".c" extension. (You can override this by using the CPP_
SUFFIX option.)

= Causes the value of the PARSE option to default to PARTIAL. You can also specify
PARSE=NONE. If you specify PARSE=FULL, an error is issued at precompile
time.

= Allows the use of the C++ style // Comments in your code. This style of
Commenting is also permitted inside SQL statements and PL/SQL blocks when
CODE=CPP.

« Pro*C/C++ recognizes SQL optimizer hints that begin with //+.

= Requires that header files generated by OTT (Object Type Translator) must be
included inside a declare section.

See Also: "CODE" on page 10-10 for information about the KR_C
and ANSI_C values for the CODE option.

You must be able to control the effect of the Pro*C/C++ C parser on your code. You do
this by using the PARSE precompiler option, which controls how the precompiler's C
parser treats your code.

The values and effects of the PARSE option are:

Table 12-1 Values and Effects of the PARSE Option

Values Effects

PARSE=NONE The value NONE has the following effects:

« Cpreprocessor directives are understood only inside a
declare section.

« You must declare all host variables inside a Declare
Section.

. Precompiler release 1.x behavior

PARSE=PARTIAL The value PARTIAL has the following effects:
= All preprocessor directives are understood

« You must declare all host variables inside a Declare
Section

This option value is the default if CODE=CPP
PARSE=FULL The value FULL has the following effects:

= The precompiler C parser runs on your code.
= All Preprocessor directives are understood.

= You can declare host variables at any place that they can
be declared legally in C.

This option value is the default if the value of the CODE option is anything other than
CPP. It is an error to specify PARSE=FULL when CODE=CPP.

To generate C++ compatible code, the PARSE option must be either NONE or
PARTIAL. If PARSE=FULL, the C parser runs, and it does not understand C++
constructs in your code, such as classes.

C++ Applications 12-3

Example Programs

Output Filename Extension

Most C compilers expect a default extension of ".c" for their input files. Different C++
compilers, however, can expect different filename extensions. The CPP_SUFFIX option
provides the ability to specify the filename extension that the precompiler generates.
The value of this option is a string, without the quotes or the period. For example,
CPP_SUFFIX=cc, or CPP_SUFFIX=C.

System Header Files

Pro*C/C++ searches for standard system header files, such as st di 0. h, in standard
locations that are platform specific. Pro*C/C++ does not search for header files with
extensions such as hpp or h++. For example, on almost all UNIX systems, the file

st di 0. h has the full path name / usr /i ncl ude/ st di o. h.

But a C++ compiler has its own version of st di 0. h that is not in the standard system
location. When you are precompiling for C++, you must use the SYS_INCLUDE
precompiler option to specify the directory paths that Pro*C/C++ searches to look for
system header files. For example:

SYS_| NCLUDE=(/usr/ | ang/ SC2. 0. 1/i ncl ude, /usr/ | ang/ SC2. 1. 1/ i ncl ude)

Use the INCLUDE precompiler option to specify the location of non-system header
files. The directories specified by the SYS_INCLUDE option are searched before
directories specified by the INCLUDE option. See also: "INCLUDE" on page 10-19.

If PARSE=NONIE, the values specified in SYS_INCLUDE and INCLUDE for system
files are not relevant, since there is no need for Pro*C/C++ to include system header
files. (You can, of course, still include Pro*C/C++-specific headers, such sql ca. h,
using the EXEC SQL INCLUDE statement.)

Example Programs

cppdemoi.pc

This section includes three example Pro*C/C++ programs that include C++ constructs.
Each of these programs is available on-line, in your deno directory.

[* cppdenol. pc

*

* Pronpts the user for an enpl oyee nunber, then queries the
* enp table for the enployee's name, salary and commi ssion.
* Uses indicator variables (in an indicator struct) to

* determine if the conmission is NULL.

*/

#i ncl ude <i ostream h>
#include <stdio. h>
#include <string.h>

/1 Parse=partial by default when code=cpp,

/'l so preprocessor directives are recognized and parsed fully.
#define UNAME_LEN 20

#define PWD_LEN 40

/] Declare section is required when CODE=CPP and/ or
/1 PARSE={ PARTI AL| NONE}
EXEC SQL BEG N DECLARE SECTI ON;

12-4 Pro*C/C++ Programmer’s Guide

Example Programs

VARCHAR username[UNAME_LEN]; // VARCHAR is an ORACLE pseudotype
var char password[PAD_LEN] ; /1 can be in |ower case also

/] Define a host structure for the output val ues
/1 of a SELECT statement
struct enpdat {

VARCHAR enp_name[UNAME_LEN] ;

f1 oat sal ary;
fl oat commi ssi on;
} enprec;

/1 Define an indicator struct to correspond to the
/] host output struct
struct enpind {

short enp_nane_i nd;
short sal _ind;
short comm.i nd;

} enprec_ind;

/'l Input host variables
int enp_nunber;
int total _queried;
EXEC SQL END DECLARE SECTI ON;

/] Define a C++ class object to match the desired
Il struct fromthe above declare section.
class enp {
char ename[UNAME_LEN] ;
float salary;
fl oat conmi ssion;
public:
/] Define a constructor for this C++ object that
/] takes ordinary C objects.
enp(enpdat & enpi nd&);
friend ostream& operator<<(ostreamt, enp&);

b
enp: : enp(enpdat & dat, enpi nd& ind)

strncpy(ename, (char *)dat.enp_nane.arr, dat.enp_nane.len);
enane[dat. enp_nane.len] = '\0";

this->salary = dat.salary;

thi s->commi ssion = (ind.commind < 0) ? 0 : dat.comn ssion;

}

ostream& operat or<<(ostream& s, enp& e)
{
return s << e.enane << " earns " << e.salary <<
" plus " << e.commission << " conmission.”
<< endl << endl;

}

[l Include the SQL Communi cations Area

/1 You can use #include or EXEC SQL | NCLUDE
#include <sql ca. h>

/I Declare error handling function
voi d sql _error(char *msg);

C++ Applications 12-5

Example Programs

mai n()

{
char tenmp_char[32];

/'l Register sql _error() as the error handler
EXEC SQL WHENEVER SQLERRCR DO sql _error ("CRACLE error:"),

/] Connect to ORACLE. Programcalls sql_error()

[l if an error occurs

/1 when connecting to the default database.

Il Note the (char *) cast when

/] copying into the VARCHAR array buffer.

usernane.len = strlen(strcpy((char *)usernane.arr, "SCOTT"));
password.len = strlen(strcpy((char *)password.arr, "TIGER"));

EXEC SQL CONNECT : usernane | DENTI FI ED BY : password;

Il Here again, note the (char *) cast when using VARCHARs
cout << "\nConnected to ORACLE as user: "
<< (char *)username.arr << endl << endl;

/1 Loop, selecting individual enployee's results
total _queried = 0;
while (1)
{
enp_nunber = 0;
printf("Enter enployee number (0 to quit): ");
gets(tenp_char);
enp_nunber = atoi (tenp_char);
if (enp_nunber == 0)
break;

/1 Branch to the notfound | abel when the
/1 1403 ("No data found") condition occurs
EXEC SQL WHENEVER NOT FOUND GOTO not f ound;

EXEC SQL SELECT enarme, sal, comm
I NTO : enprec | NDI CATOR :enprec_ind // You can al so use
Il C++ style
FROM EMP /1 Comrents in SQL statentents.
WHERE EMPNO = : enp_nunber;

/] Basic idea is to pass C objects to

/1 C++ constructors thus

/'l creating equival ent C++ objects used in the
[l usual C++ way

enp e(enprec, enprec_ind);

cout << e;

}

total _queried++;
conti nue;
not f ound:
cout << "Not a valid enployee nunber - try again."
<< endl << endl;
} 11 end while(1)
cout << endl << "Total rows returned was "
<< total _queried << endl;

12-6 Pro*C/C++ Programmer’s Guide

Example Programs

cout << "Have a nice day!" << endl << endl;
/1 Disconnect from ORACLE

EXEC SQL COW T WORK RELEASE;
exit(0);

voi d sql _error(char *nsg)

{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
cout << endl << msg << endl;
cout << sglca.sqglerrmsqglerrnc << endl;
EXEC SQL ROLLBACK RELEASE;
exit(1);

}

cppdemo2.pc

The next application is a simple modular example. First, execute the following SQL
script, cppdeno?2. sql , in SQL*Plus:

Rem This is the SQ script that acconpanies the cppdenn2 C++ Denp
Rem Program Run this prior to Preconpiling the enpclass.pc file.
/
CONNECT SCOTT/ Tl GER
/
CREATE OR REPLACE VI EWenp_vi ew AS SELECT ename, enmpno FROM EMP
/
CREATE OR REPLACE PACKACGE enp_package AS
TYPE enmp_cursor_type |I'S REF CURSOR RETURN enp_vi ewdROMYPE;
PROCEDURE open_cursor(curs | N OUT enp_cursor_type);
END enp_package;
/
CREATE OR REPLACE PACKAGE BCDY enmp_package AS
PROCEDURE open_cursor(curs IN OUT enp_cursor_type) IS
BEG N
OPEN curs FOR SELECT enane, enpno FROM enp_vi ew ORDER BY enane ASC;
END;
END enp_package;
/
EXIT
/

The header file enpcl ass. h defines the class enp:

/1 This class definition may be included in a Pro*C/ C++ application
/1 programusing the EXEC SQL I NCLUDE directive only. Because it

/1 contains EXEC SQL syntax, it may not be included using a #include
/] directive. Any programthat includes this header nust be

/'l preconpiled with the CODE=CPP option. This enp class definition
/'l is used when building the cppdenp2 C++ Denp Program

class enp

{
public:
enp(); // Constructor: ALLOCATE Cursor Variable
~enp(); // Desctructor: FREE Cursor Variable

C++ Applications 12-7

Example Programs

voi d open(); /'l Open Cursor
void fetch() throw (int); // Fetch (throw NOT FOUND condition)
voi d close(); /'l Cose Cursor

void enmp_error(); Il Error Handl er

EXEC SQL BEG N DECLARE SECTI ON,
/1 Wen included using EXEC SQL | NCLUDE, class variables have
/1 global scope and are thus basically treated as ordinary
/'l global variables by Pro*C/ C++ during preconpilation.
char enane[10];
int enpno;
EXEC SQL END DECLARE SECTI ON;

private:
EXEC SQL BEG N DECLARE SECTI ON,
/I Pro*C/C++ treats this as a sinple global variable also.
SQ._CURSOR enp_cursor;
EXEC SQL END DECLARE SECTI ON;

b

The code in enpcl ass. pc contains the enp methods:

#include <stdio. h>
#include <stdlib. h>

[l This exanple uses a single (global) SQLCA that is shared by the
[l enp class inplementation as well as the main programfor this
/'l application.

#define SQLCA_STORAGE_CLASS extern

#include <sql ca. h>

[l Include the enp class specification in the inplementation of the
/] class body as well as the application programthat makes use of it.
EXEC SQL | NCLUDE enpcl ass. h;

{errp: senp()
/] The scope of this WHENEVER statenent spans the entire nodul e.
/1 Note that the error handler function is really a menber function
/] of the emp class.
EXEC SQL WHENEVER SQLERROR DO enp_error();
EXEC SQL ALLOCATE :enp_cursor; [/ Constructor - ALLOCATE Cursor.

}

?mo: 1 ~enp()

}

EXEC SQL FREE :enp_cursor; /] Destructor - FREE Cursor.

voi d enp: : open()
{
EXEC SQL EXECUTE
BEG N
enp_package. open_cursor (: enp_cursor);
END;
END- EXEC,

}

voi d emp::close()

{

12-8 Pro*C/C++ Programmer’s Guide

Example Programs

EXEC SQL CLOSE :enp_cursor;
}

void enp::fetch() throw (int)

{
EXEC SQL FETCH :enp_cursor |INTO :enane, :enpno;
if (sqglca.sqlcode == 1403)

t hrow sql ca. sql code; /1 Like a WHENEVER NOT FOUND st at enent .
}
voi d enp::enp_error()
{

printf("%*s\n", sqlca.sqlerrmsqglerrm, sqglca.sqlerrmsqglerrnt);
EXEC SQ WHENEVER SQLERROR CONTI NUE;
EXEC SQ. ROLLBACK WORK RELEASE;
exit(1);
}

The main program, cppdeno?2. pc, uses the cursor variable:

[l Pro*C C++ sanpl e program denonstrating a sinple use of Cursor Variables
[l inplemented within a C++ class framework. Build this programas fol |l ows
1

Il 1. Execute the cppdemn2.sql script within SQ*Plus

[l 2. Preconpile the enpclass.pc programas foll ows

Il > proc code=cpp sql check=full user=scott/tiger |ines=yes enpclass
[l 3. Preconpile the cppdem2. pc program as foll ows

Il > proc code=cpp |ines=yes cppdenn2

/1 4. Conpile and Link

1

/1 Note that you nay have to specify various include directories using the
/1 include option when preconpiling.

#i ncl ude <stdio. h>
#include <stdlib.h>
#i ncl ude <sql ca. h>

static void sql _error()

{

printf("%*s\n", sqlca.sqlerrmsqglerrm, sqglca.sqlerrmsqglerrnt);
EXEC SQ. WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

/'l Physically include the enp class definition in this nmodul e.
EXEC SQL | NCLUDE empcl ass. h;

int main()

{
EXEC SQL BEG N DECLARE SECTI ON,

char *uid = "scott/tiger";
EXEC SQL END DECLARE SECTI ON,

EXEC SQL WHENEVER SQLERROR DO sql _error();
EXEC SQL CONNECT : ui d;

enp *e = new enp(); // Invoke Constructor - ALLOCATE Cursor Variable.

e->open(); /1 Open the Cursor.

C++ Applications 12-9

Example Programs

while (1)
{
Il Fetch fromthe Cursor, catching the NOT FOUND condition
[l thrown by the fetch() menber function.
try { e->fetch(); } catch (int code)
{ if (code == 1403) break; }
printf("Enployee: %[%l]\n", e->enane, e->enpno);

}

e->cl ose(); /] Cose the Cursor.
del ete e; /1 Invoke Destructor - FREE Cursor Variable.

EXEC SQL ROLLBACK WORK RELEASE;

return (0);
}
cppdemo3.pc
/*
* cppdenp3.pc : An exanple of C++ Inheritance
*
* This programfinds all salesnan and prints their names
* fol l owed by how nuch they earn in total (ie; including
* any conmi ssions).
*

/

#include <iostream h>
#include <stdio. h>
#include <sql ca. h>
#include <string.h>

#define NAMELEN 10

class enpl oyee { /] Base class is a sinple enployee
public:

char enane[NAVELEN ;

int sal;

enpl oyee(char *, int);

1

enpl oyee: : enpl oyee(char *enanme, int sal)
{

strcpy(this->enanme, enane);

this->sal = sal;

}

/1 A salesman is a kind of enployee
class sal esman : public enpl oyee

{

int comm
public:

sal esman(char *, int, int);

friend ostream& operator<<(ostream, salesnang);
¥

/I Inherits enployee attributes
sal esman: : sal esman(char *enanme, int sal, int conm

. enpl oyee(enane, sal), comr(comm) {}

12-10 Pro*C/C++ Programmer’s Guide

Example Programs

ostream& operat or<<(ostream& s, sal esman& m

{
return s << menane << msal + mcomm << endl;
}
void print(char *ename, int sal, int conm
{
sal esman nman(enane, sal, com);
cout << man;
}
mai n()
{

EXEC SQL BEG N DECLARE SECTI ON,
char *uid = "scott/tiger";
char ename[NAVELEN] ;

i nt sal, comm
short comm.i nd,;
EXEC SQL END DECLARE SECTI ON;

EXEC SQL WHENEVER SQLERROR GOTO error;

EXEC SQL CONNECT : ui d;
EXEC SQL DECLARE ¢ CURSCR FOR
SELECT enane, sal, comm FROM enp WHERE job = ' SALESMAN
ORDER BY enane;
EXEC SQL OPEN c;

cout << "Nane Salary" << endl << "------ oo " << endl;

EXEC SQL WHENEVER NOT FOUND DO br eak;

whi | e(1)

{
EXEC SQL FETCH c INTO :enane, :sal, :comm comm.ind;
print(ename, sal, (commind <0) ? 0: com;

}

EXEC SQ CLCSE c;

exit(0);

error:
cout << endl << sglca.sqlerrmsglerrnc << endl;
exit(1);

}

C++ Applications 12-11

Example Programs

12-12 Pro*C/C++ Programmer’s Guide

13

Oracle Dynamic SQL

This chapter shows you how to use Oracle Dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. You will learn
four methods for writing programs that accept and process SQL statements at run
time. This chapter contains the following topics:

Note: Oracle Dynamic SQL does not support object types, cursor
variables, arrays of structs, DML returning clauses, Unicode
variables, and LOBs. Use ANSI Dynamic SQL method 4 instead.

= What is Dynamic SQL?

= Advantages and Disadvantages of Dynamic SQL
= When to Use Dynamic SQL

= Requirements for Dynamic SQL Statements

= How Dynamic SQL Statements are Processed
= Methods for Using Dynamic SQL

= Using Method 1

= Using Method 2

= Using Method 3

= Using Method 4

= Using the DECLARE STATEMENT Statement
« Using PL/SQL

What is Dynamic SQL?

Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the
statement's makeup is unknown until run time. Such statements can, and probably

Oracle Dynamic SQL 13-1

Advantages and Disadvantages of Dynamic SQL

will, change from execution to execution. They are aptly called dynamic SQL
statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic
SQL only if you need its open-ended flexibility. Its use is suggested when one of the
following items is unknown at precompile time:

» Text of the SQL statement (commands, clauses, and so on)
« The number of host variables
= The datatypes of host variables

= References to database objects such as columns, indexes, sequences, tables,
usernames, and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain the text of a
valid SQL statement, but not contain the EXEC SQL clause, or the statement
terminator, or any of the following embedded SQL commands:

« ALLOCATE
« CLOSE

« DECLARE

« DESCRIBE

« EXECUTE

« FETCH

« FREE

« GET

« INCLUDE

13-2 Pro*C/C++ Programmer’s Guide

Methods for Using Dynamic SQL

« OPEN
« PREPARE
« SET

« WHENEVER

In most cases, the character string can contain dummy host variables. They hold places
in the SQL statement for actual host variables. Because dummy host variables are just
placeholders, you do not declare them and can name them anything you like. For
example, Oracle makes no distinction between the following two strings:

' DELETE FROM EMP WHERE MGR = :ngr_nunber AND JOB = :job_title'
' DELETE FROM EMP WHERE MGR = :m AND JOB = :j'

How Dynamic SQL Statements are Processed

Typically, an application program prompts the user for the text of a SQL statement and
the values of host variables used in the statement. Oracle then parses the SQL
statement to ensure it meets syntax rules.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the
addresses of the host variables so that it can read or write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL statement
requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

Methods for Using Dynamic SQL

This section introduces four methods you can use to define dynamic SQL statements.
It briefly describes the capabilities and limitations of each method, then offers
guidelines for choosing the right method. Later sections show you how to use the
methods, and include example programs that you can study.

The four methods are increasingly general. That is, Method 2 encompasses Method 1,
Method 3 encompasses Methods 1 and 2, and so on. However, each method is most
useful for handling a certain kind of SQL statement, as Table 13-1 shows:

Table 13-1 Methods for Using Dynamic SQL

Method Kind of SQL Statement

1 non-query without host variables

2 non-query with known number of input host variables

3 query with known number of select-list items and input host
variables

4 query with unknown number of select-list items or input host
variables

Note: The term select-list item includes column names and
expressions such as SAL * 1.10 and MAX(SAL).

Oracle Dynamic SQL 13-3

Methods for Using Dynamic SQL

Method 1

Method 2

Method 3

Method 4

Guidelines

This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any
placeholders for input host variables. For example, the following host strings qualify:

' DELETE FROM EMP WHERE DEPTNO = 20'
" GRANT SELECT ON EMP TO scott'

With Method 1, the SQL statement is parsed every time it is executed.

This method lets your program accept or build a dynamic SQL statement, then process
it using the PREPARE and EXECUTE commands. The SQL statement must not be a
query. The number of placeholders for input host variables and the datatypes of the
input host variables must be known at precompile time. For example, the following
host strings fall into this category:

"I NSERT | NTO EMP (ENAME, JOB) VALUES (:enp_nane, :job_title)'
' DELETE FROM EMP WHERE EMPNO = : enp_nunber'

With Method 2, the SQL statement is parsed just once, but can be executed many times
with different values for the host variables. SQL data definition statements such as
CREATE and GRANT are executed when they are PREPAREd.

This method lets your program accept or build a dynamic query, then process it using
the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor
commands. The number of select-list items, the number of placeholders for input host
variables, and the datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

" SELECT DEPTNO, M N(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO
" SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept _nunber’

This method lets your program accept or build a dynamic SQL statement, then process
it using descriptors. The number of select-list items, the number of placeholders for
input host variables, and the datatypes of the input host variables can be unknown
until run time. For example, the following host strings fall into this category:

"I NSERT | NTO EMP (<unknown>) VALUES (<unknown>)'
" SELECT <unknown> FROM EMP WHERE DEPTNO = 20

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or input host variables.

See Also: "Using Method 4" on page 13-19

With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the ';' statement terminator.

13-4 Pro*C/C++ Programmer’s Guide

Methods for Using Dynamic SQL

With Methods 2 and 3, the number of placeholders for input host variables and the
datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more
difficult to code. As a rule, use the simplest method you can. However, if a dynamic
SQL statement will be executed repeatedly by Method 1, use Method 2 instead to
avoid reparsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding and a full
understanding of dynamic SQL concepts. In general, use Method 4 only if you cannot
use Methods 1, 2, or 3.

The decision logic in Figure 13-1 will help you choose the right method.

Avoiding Common Errors

If you precompile using the command-line option DBMS=V6_CHAR, blank-pad the
array before storing the SQL statement. That way, you clear extraneous characters.
This is especially important when you reuse the array for different SQL statements. As
a rule, always initialize (or re-initialize) the host string before storing the SQL
statement. Do not null-terminate the host string. Oracle does not recognize the null
terminator as an end-of-string sentinel. Instead, Oracle treats it as part of the SQL
statement.

If you precompile with the command-line option DBMS=V8, make sure that the string
is null terminated before you execute the PREPARE or EXECUTE IMMEDIATE
statement.

Regardless of the value of DBMS, if you use a VARCHAR variable to store the
dynamic SQL statement, make sure the length of the VARCHAR is set (or reset)
correctly before you execute the PREPARE or EXECUTE IMMEDIATE statement.

Oracle Dynamic SQL 13-5

Using Method 1

Figure 13-1 Choosing the Right Method

About the SQL statement...

Does its select list
contain an unknown
number of items?

yes

Is it a query?

Does it
contain an
unknown number of
input host
variables?

Does it contain
input host
variables?

yes

no

Does it
contain an unknown
number of input
host variables?

yes

v

Will it be executed
repeatedly?

v v v
Method 1 Method 2 Method 3 Method 4

Using Method 1

The simplest kind of dynamic SQL statement results only in "success" or "failure" and
uses no host variables. Some examples follow:

' DELETE FROM t abl e_name WHERE col umm_nane = constant'
' CREATE TABLE table_nanme ...'

' DROP | NDEX i ndex_nane'

" UPDATE tabl e_name SET col umm_name = constant'

" GRANT SELECT ON tabl e_name TO usernane'

" REVOKE RESOURCE FROM user nane'

Method 1 parses, then immediately executes the SQL statement using the EXECUTE
IMMEDIATE command. The command is followed by a character string (host variable
or literal) containing the SQL statement to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:
EXEC SQL EXECUTE | MVEDI ATE { :host_string | string_literal };

13-6 Pro*C/C++ Programmer’s Guide

Using Method 1

In the following example, you use the host variable dyn_stmt to store SQL statements
input by the user:

char dyn_stnt[132];

1"'0.r(;;)

{
printf("Enter SQ. statenent: ");
gets(dyn_stnt);
if (*dyn_stnt =="'\0")
break;
/* dyn_stnt now contains the text of a SQL statement */
EXEC SQL EXECUTE | MVEDI ATE : dyn_stnt;

You can also use string literals, as the following example shows:

EXEC SQL EXECUTE | MVEDI ATE ' REVOKE RESOURCE FROM M LLER';

Because EXECUTE IMMEDIATE parses the input SQL statement before every
execution, Method 1 is best for statements that are executed only once. Data definition
language statements usually fall into this category.

Example Program: Dynamic SQL Method 1

The following program uses dynamic SQL Method 1 to create a table, insert a row,
commit the insert, then drop the table. This program is available on-line in your demo
directory in the file sanpl e6. pc.

/*

* sanple6.pc: Dynamic SQ Method 1

*

* This programuses dynanic SQL Method 1 to create a table,
* insert arow, commit the insert, then drop the table.

*/

#incl ude <stdio. h>
#incl ude <string. h>

[* Include the SQL Communications Area, a structure through

* whi ch ORACLE nakes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program

*/

#include <sql ca. h>

/* Include the ORACLE Communi cations Area, a structure through
* whi ch ORACLE nakes additional runtinme status information

* available to the program

*/

#i ncl ude <oraca. h>

/* The ORACA=YES option nust be specified to enable you
* to use the ORACA.

*/

EXEC ORACLE OPTI ON (ORACA=YES);

/* Specifying the RELEASE_CURSOR=YES option instructs Pro*C

Oracle Dynamic SQL 13-7

Using Method 1

to rel ease resources associated with embedded SQL
statenents after they are executed. This ensures that
ORACLE does not keep parse |locks on tables after data

mani pul ation operations, so that subsequent data definition
operations on those tables do not result in a parse-lock
error.

/

I

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES);

void dyn_error();

mai n()
{
/* Declare the program host variables. */
char *usernane = "SCOTT";
char *password = "TI GER';
char *dynstnt 1;
char dynstnt 2[10] ;
VARCHAR dynstnt 3[80];

[* Call routine dyn_error() if an ORACLE error occurs. */
EXEC SQL WHENEVER SQLERROR DO dyn_error("Cracle error:");

/* Save text of current SQL statement in the ORACAif an
* error occurs.
*/

oraca. orast xtf = ORASTFERR;

/* Connect to Oracle. */

EXEC SQL CONNECT : usernane | DENTI FI ED BY : password;
puts("\nConnected to ORACLE.\n");

/* Execute a string literal to create the table. This
* usage is actually not dynam c because the program does
* not determne the SQL statement at run tine.
*/
put s(" CREATE TABLE dynl (col 1 VARCHAR2(4))");

EXEC SQL EXECUTE | MVEDI ATE
" CREATE TABLE dynl (col 1 VARCHARZ(4))":

/* Execute a string to insert a row. The string nust
* be null-termnated. This usage is dynami c because the
* SQ statement is a string variable whose contents the
* program can deternine at run tinme.
*/

dynstnt1l = "I NSERT | NTO DYNL val ues (' TEST')";

put s(dynstntl);

EXEC SQL EXECUTE | MVEDI ATE : dynstnt 1;

/* Execute a SQL statenent in a string to conmt the insert.
* Pad the unused trailing portion of the array with spaces.
* Do NOT null-terminate it.

*/
strncpy(dynstnt2, "COM T ", 10);

13-8 Pro*C/C++ Programmer’s Guide

Using Method 2

printf("%10s\n", dynstnt2);
EXEC SQL EXECUTE | MVEDI ATE : dynst nt 2;

/* Execute a VARCHAR to drop the table. Set the .len field
* to the length of the .arr field.
*/

strecpy(dynstnt3.arr, "DROP TABLE DYNL");

dynstnt3.len = strlen(dynstnt3.arr);

puts((char *) dynstnt3.arr);

EXEC SQL EXECUTE | MVEDI ATE : dynst it 3;

/* Commit any outstanding changes and di sconnect from Oracle. */
EXEC SQL COW T RELEASE;

puts("\nHave a good day!\n");

return 0;

voi d
dyn_error(msg)
char *nsg;
{
/* This is the Oracle error handler.
* Print diagnostic text containing the error nessage,
* current SQL statement, and |ocation of error.
*/
printf("\n%*s\n",
sql ca.sqlerrmsqlerrm, sqlca.sqlerrmsglerrnt);
printf("in\"%*s...\"\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf("on line % of %*s.\n\n",
oraca. orasl nr, oraca.orasfnmorasfnm,
oraca. or asf nm orasf nnt) ;

/* Disable Oracle error checking to avoid an infinite | oop
* should another error occur within this routine as a
* result of the rollback.
*/
EXEC SQL WHENEVER SQLERROR CONTI NUE;

/* Roll back any pendi ng changes and disconnect from Gracle. */
EXEC SQL ROLLBACK RELEASE;

exit(1);

Using Method 2

What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement,
which cannot be a query, is first PREPAREd (named and parsed), then EXECUTEd.

With Method 2, the SQL statement can contain placeholders for input host variables
and indicator variables. You can PREPARE the SQL statement once, then EXECUTE it
repeatedly using different values of the host variables. Furthermore, you need not

Oracle Dynamic SQL 13-9

Using Method 2

rePREPARE the SQL statement after a COMMIT or ROLLBACK (unless you log off
and reconnect).

You can use EXECUTE for non-queries with Method 4.
The syntax of the PREPARE statement follows:

EXEC SQL PREPARE st at enent _nane
FROM { :host_string | string_literal };

PREPARE parses the SQL statement and gives it a name.

The statement_name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in the Declare Section. It simply designates the
PREPAREd statement you want to EXECUTE.

The syntax of the EXECUTE statement is
EXEC SQL EXECUTE statenment _nane [USI NG host _variable_|ist];

where host_variable_list stands for the following syntax:

thost _variablel[:indicatorl] [, host_variable2[:indicator2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable.

In the following example, the input SQL statement contains the placeholder n:

int enp_nunber | NTEGER;
char delete_stnt[120], search_cond[40];;

strcpy(del ete_stnt, "DELETE FROM EMP WHERE EMPNO = :n AND ");
printf("Conplete the following statenent's search condition--\n");
printf("%\n", delete_stnt);

get s(search_cond);

strcat(del ete_stnt, search_cond);

EXEC SQL PREPARE sql _stnt FROM :delete_stnt;
for (:})
{

printf("Enter enployee nunber: ");
gets(tenp);
enp_nunber = atoi(tenp);
if (emp_number == 0)
break;
EXEC SQL EXECUTE sql _stnt USI NG : enp_nunber;

With Method 2, you must know the datatypes of input host variables at precompile
time. In the last example, emp_number was declared as an int. It could also have been
declared as type float, or even a char, because Oracle supports all these datatype
conversions to the internal Oracle NUMBER datatype.

The USING Clause

When the SQL statement is EXECUTEd, input host variables in the USING clause
replace corresponding placeholders in the PREPAREd dynamic SQL statement.

13-10 Pro*C/C++ Programmer’s Guide

Using Method 2

Every placeholder in the PREPAREd dynamic SQL statement must correspond to a
different host variable in the USING clause. So, if the same placeholder appears two or
more times in the PREPAREd statement, each appearance must correspond to a host
variable in the USING clause.

The names of the placeholders need not match the names of the host variables.
However, the order of the placeholders in the PREPAREd dynamic SQL statement
must match the order of corresponding host variables in the USING clause.

If one of the host variables in the USING clause is an array, all must be arrays.

To specify NULLS, you can associate indicator variables with host variables in the
USING clause.

See Also: "Indicator Variables" on page 6-2.

Example Program: Dynamic SQL Method 2

The following program uses dynamic SQL Method 2 to insert two rows into the EMP
table, then delete them. This program is available on-line in your demo directory, in
the file sanpl e7. pc.

/*

* sanple7.pc: Dynamic SQL Method 2

*

* This program uses dynam c SQL Method 2 to insert two rows into
* the EMP table, then delete them

*/

#incl ude <stdio. h>
#incl ude <string. h>

#defi ne USERNAME " SCOTT"
#define PASSWORD " Tl GER'

/* Include the SQL Conmunications Area, a structure through

* whi ch ORACLE nmakes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program

*/

#include <sql ca. h>

/* Include the ORACLE Communi cations Area, a structure through
* whi ch ORACLE makes additional runtine status infornation
* available to the program
*
/
#i ncl ude <oraca. h>

/* The ORACA=YES option nust be specified to enable use of
* the ORACA.

*/

EXEC ORACLE OPTI ON (ORACA=YES);

char *usernane = USERNAME;
char *password = PASSWORD;
VARCHAR dynstnt[80];

i nt empno = 1234,

i nt deptnol = 97;

i nt deptno2 = 99;

Oracle Dynamic SQL 13-11

Using Method 2

/* Handle SQL runtime errors. */
void dyn_error();

mai n()
{
[* Call dyn_error() whenever an error occurs
* processing an enbedded SQL statement.
*/
EXEC SQL WHENEVER SQLERROR DO dyn_error("COracle error");

/* Save text of current SQL statement in the ORACA if an
* error occurs.
*/

oraca. orast xtf = ORASTFERR;

/* Connect to Oracle. */

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
puts("\nConnected to Oracle.\n");

/* Assign a SQL statement to the VARCHAR dynstnt. Both
* the array and the length parts nust be set properly.
* Note that the statement contains two host-variable
* placehol ders, v1 and v2, for which actual input
* host variabl es nust be supplied at EXECUTE ti ne.
*/
strcpy(dynstnt.arr,
"I NSERT | NTO EMP (EMPNO, DEPTNO) VALUES (:v1, :v2)");
dynstnt.len = strlen(dynstnt.arr);

/* Display the SQL statement and its current input host
* variabl es.
*/

puts((char *) dynstnt.arr);

printf(" vl =%, v2=9%\n", enpno, deptnol);

/* The PREPARE statenent associates a statenment nane with

* a string containing a SQL statement. The statenent name
* is a SQ identifier, not a host variable, and therefore
* does not appear in the Declare Section.

* A single statement name can be PREPAREd nore than once,
* optionally FROM a different string variable.
*|

EXEC SQL PREPARE S FROM : dynstnt;

The EXECUTE statenent executes a PREPAREd SQL statenent
USI NG the specified input host variables, which are
substituted positionally for placeholders in the
PREPAREd statement. For each occurrence of a

pl acehol der in the statement there must be a variable
inthe USING clause. That is, if a placehol der occurs
multiple times in the statenment, the corresponding
variabl e nust appear multiple times in the USING cl ause.
The USING cl ause can be onitted only if the statenent
contains no placehol ders.

A singl e PREPAREd statement can be EXECUTEd nore
than once, optionally USING different input host

T U R

13-12 Pro*C/C++ Programmer’s Guide

Using Method 2

* vari abl es.
*/
EXEC SQL EXECUTE S USI NG : enpno, :deptnol;

/* Increment enpno and display new input host variables. */

enpno++;
printf(" vl =209%, v2 = %\n", enpno, deptno2);

/* ReEXECUTE S to insert the new value of enpno and a
* different input host variable, deptno2.
* A rePREPARE i s unnecessary.
*/
EXEC SQL EXECUTE S USI NG : enpno, :deptno2;

/* Assign a new value to dynstnt. */

strcpy(dynstnt.arr,
"DELETE FROM EMP WHERE DEPTNO = :v1 OR DEPTNO = :v2");
dynstnt.len = strlen(dynstnt.arr);

/* Display the new SQL statement and its current input host
* vari abl es.
*/

puts((char *) dynstnt.arr);

printf(" vl = %, v2 = %\ n", deptnol, deptno2);

/* RePREPARE S FROM the new dynstmt. */
EXEC SQL PREPARE S FROM :dynstnt;

/* EXECUTE the new S to delete the two rows previously
* inserted.
*/

EXEC SQL EXECUTE S USI NG : dept nol, :deptno2;

[* Commit any pending changes and di sconnect from Oracle. */

EXEC SQL COW T RELEASE;
puts("\nHave a good day!\n");
exit(0);

voi d
dyn_error(nsg)
char *nsg;
{
[* This is the ORACLE error handler.
* Print diagnostic text containing error message,
* current SQL statement, and |ocation of error.
*/
printf("\n%", nsg);
printf("\n%*s\n",
sql ca.sqlerrmsqlerrm, sqlca.sglerrmsglerrnc);
printf("in\"%*s...\"\n",
oraca.orastxt.orastxtl, oraca.orastxt.orastxtc);
printf("on line % of %*s.\n\n",
oraca. orasl nr, oraca.orasfnmorasfnm,
oraca. orasf nm orasf nnt) ;

Oracle Dynamic SQL 13-13

Using Method 3

/* Disabl e ORACLE error checking to avoid an infinite | oop
* shoul d another error occur within this routine.
*/

EXEC SQL WHENEVER SQLERROR CONTI NUE;

/* Roll back any pending changes and
* disconnect from Oracle.
*/
EXEC SQL ROLLBACK RELEASE;
exit(1);

Using Method 3

PREPARE

Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you must
use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of
placeholders for input host variables must be known at precompile time. However, the
names of database objects such as tables and columns need not be specified until run
time. Names of database objects cannot be host variables. Clauses that limit, group,
and sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be
specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

PREPARE st atenent _name FROM { :host_string | string_literal };
DECLARE cursor_name CURSOR FOR st at ement _nane;

OPEN cursor_name [USING host _variable_list];

FETCH cursor _name | NTO host _variable_list;

CLOSE cursor _nane;

Scrollable Cursors can also be used with Method 3. The following sequence of
embedded SQL statements must be used for scrollable cursors.

PREPARE st atenent _name FROM { :host_string | string_literal };
DECLARE cursor_name SCROLL CURSOR FOR st at ement _nane;
OPEN cursor_name [USING host _variable_list];
FETCH [FIRST| PRI OR| NEXT| LAST| CURRENT | RELATI VE fetch_of f set
| ABSOLUTE fetch_offset] cursor_name |INTO host_variable_|ist;
CLCSE cursor_narre;

Now we look at what each statement does.

PREPARE parses the dynamic SQL statement and gives it a name. In the following
example, PREPARE parses the query stored in the character string select_stmt and
gives it the name sql_stmt:

char select_stnt[132] =
"SELECT MGR, JOB FROM EMP WHERE SAL < :salary";
EXEC SQL PREPARE sql _stnt FROM :sel ect_stnt;

Commonly, the query WHERE clause is input from a terminal at run time or is
generated by the application.

13-14 Pro*C/C++ Programmer’s Guide

Using Method 3

DECLARE

OPEN

FETCH

The identifier sql_stmt is not a host or program variable, but must be unique. It
designates a particular dynamic SQL statement.

The following statement is correct also:

EXEC SQL PREPARE sql _stnt FROM SELECT MR, JOB FROM EMP WHERE SAL < :salary;

The following prepare statement, which uses the '%' wildcard, is correct also:

EXEC SQL PREPARE S FROM sel ect enane FROM test WHERE enane LIKE 'SM T% ;

DECLARE defines a cursor by giving it a name and associating it with a specific query.
Continuing our example, DECLARE defines a cursor named emp_cursor and associates
it with sql_stmt, as follows:

EXEC SQL DECLARE enmp_cursor CURSOR FOR sql _stnt;

The identifiers sql_stmt and emp_cursor are not host or program variables, but must be
unique. If you declare two cursors using the same statement name, the precompiler
considers the two cursor names synonymous.

We can define a scrollable cursor named emp_cursor and associate it with sql_stmt as
follows:

EXEC SQL DECLARE enp_cursor SCROLL CURSOR FOR sql _stnt;

For example, if you execute the statements

EXEC SQL PREPARE sql _stnt FROM :sel ect_stnt;
EXEC SQL DECLARE enp_cursor FOR sql _stnt;
EXEC SQL PREPARE sql _stnmt FROM :del ete_stnt;
EXEC SQL DECLARE dept _cursor FOR sql _stnt;

when you OPEN emp_cursor, you will process the dynamic SQL statement stored in
delete_stmt, not the one stored in select_stmt.

OPEN allocates an Oracle cursor, binds input host variables, and executes the query,
identifying its active set. OPEN also positions the cursor on the first row in the active
set and zeroes the rows-processed count kept by the third element of sqlerrd in the
SQLCA. Input host variables in the USING clause replace corresponding placeholders
in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates emp_cursor and assigns the host variable salary to the
WHERE clause, as follows:

EXEC SQL OPEN enp_cursor USING :sal ary;

FETCH returns a row from the active set, assigns column values in the select list to
corresponding host variables in the INTO clause, and advances the cursor to the next
row. If there are no more rows, FETCH returns the "no data found" Oracle error code
to sglca.sqlcode.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables mgr_number and job_title, as follows:

Oracle Dynamic SQL 13-15

Using Method 3

EXEC SQL FETCH enp_cursor |INTO :ngr_number, :job_title;

If the cursor is declared in SCROLL mode, you can then use the various FETCH
orientation modes to randomly access the result set.

CLOSE

CLOSE disables the cursor. Once you CLOSE a cursor, you can no longer FETCH from
it.

In our example, CLOSE disables emp_cursor, as follows:

EXEC SQ. CLOSE enp_cursor;

Example Program: Dynamic SQL Method 3

The following program uses dynamic SQL Method 3 to retrieve the names of all
employees in a given department from the EMP table. This program is available
on-line in your demo directory, in the file sanpl 8. pc

/*

* sanple8.pc: Dynamic SQ Method 3

*

* This program uses dynamic SQL Method 3 to retrieve the names
* of all enployees in a given departnent fromthe EMP table.
*/

#incl ude <stdio. h>
#incl ude <string. h>

#defi ne USERNAME " SCOTT"
#define PASSWORD " Tl CER'

[* Include the SQL Communi cations Area, a structure through

* whi ch ORACLE makes runtime status information such as error
* codes, warning flags, and diagnostic text available to the
* program Also include the ORACA.

*/

#include <sql ca. h>

#i ncl ude <oraca. h>

/* The ORACA=YES option nust be specified to enable use of
* the ORACA

*/

EXEC ORACLE OPTI ON (ORACA=YES);

char *user name = USERNAME;
char *password = PASSWORD;
VARCHAR dynst nt[80];

VARCHAR enane[10] ;

i nt deptno = 10;

void dyn_error();

mai n()

{

[* Call dyn_error() function on any error in
* an enbedded SQL statenent.

13-16 Pro*C/C++ Programmer’s Guide

Using Method 3

*/
EXEC SQL VWHENEVER SQLERROR DO dyn_error("Cracle error™);

/* Save text of SQL current statement in the ORACAif an
* error occurs.
*/

oraca.orastxtf = ORASTFERR

/* Connect to Oracle. */

EXEC SQL CONNECT : usernane | DENTI FI ED BY : password;
puts("\nConnected to Oracle.\n");

/* Assign a SQL query to the VARCHAR dynstnt. Both the

* array and the length parts nust be set properly. Note
* that the query contains one host-variable placehol der,
* v1, for which an actual input host variable nust be

* supplied at OPEN tine.

strecpy(dynstnt.arr,
"SELECT ename FROM enp WHERE deptno = :v1");
dynstnt.len = strlen(dynstnt.arr);

/* Display the SQL statement and its current input host
* variabl e.
*/

puts((char *) dynstnt.arr);

printf(" vl = %l\n", deptno);

printf("\nEnpl oyee\n");

printf("-------- \n");

/* The PREPARE statenent associates a statenment nanme with
* a string containing a SELECT statenent. The statenent
* name is a SQL identifier, not a host variable, and
* therefore does not appear in the Declare Section.

* A single statement name can be PREPAREd nore than once,
* optionally FROM a different string variable.
*|

EXEC SQL PREPARE S FROM : dynstnt;

/* The DECLARE statenent associates a cursor with a
* PREPAREd statenment. The cursor nane, |ike the statenent
* name, does not appear in the Declare Section.

* A single cursor nane cannot be DECLAREd nore than once.
*/
EXEC SQL DECLARE C CURSR FCR S;

The OPEN statement eval uates the active set of the
PREPAREd query USING the specified input host variables,
which are substituted positionally for placeholders in
the PREPAREd query. For each occurrence of a

pl acehol der in the statement there nmust be a variable
in the USING clause. That is, if a placehol der occurs
multiple times in the statement, the corresponding
variabl e nust appear multiple tinmes in the USING cl ause.

R T R

* The USING cl ause can be onitted only if the statenent
* contains no placehol ders. OPEN places the cursor at the

Oracle Dynamic SQL 13-17

Using Method 3

* first row of the active set in preparation for a FETCH

* A single DECLAREd cursor can be OPENed more than once,
* optionally USING different input host variables.
*/

EXEC SQL OPEN C USI NG : dept no;

/* Break the | oop when all data have been retrieved. */
EXEC SQL WHENEVER NOT FOUND DO br eak;
/* Loop until the NOT FOUND condition is detected. */

for (57)

{
/* The FETCH statenent places the select list of the
* current rowinto the variables specified by the | NTO
* clause, then advances the cursor to the next row If
* there are nore select-list fields than output host
* variables, the extra fields will not be returned.
* Specifying nore output host variables than select-list
* fields results in an ORACLE error.
*/

EXEC SQL FETCH C I NTO : enarne;

/* Null-terminate the array before output. */
enane.arr[enane.len] = '\0";
puts((char *) ename.arr);

}

[* Print the cumul ative number of rows processed by the
* current SQL statenent.
*/
printf("\nQuery returned % row¥s.\n\n", sqglca.sqlerrd[2],
(sqlca.sqglerrd[2] ==1) 2 "" : "s");

/* The CLOSE statenment releases resources associated with
* the cursor.
*|

EXEC SQL CLCSE C;

/* Commt any pending changes and di sconnect from Oracle. */
EXEC SQL COW T RELEASE;
put s(" Sayonara.\n");

exit(0);

}

voi d

dyn_error(nsg)

char *msg;

{
printf("\n%", nsg);
sgl ca.sqlerrmsqlerrnc[sql ca.sqlerrmsglerrm] = "\0";
oraca. orastxt.orastxtc[oraca.orastxt.orastxtl] ='\0";
oraca. orasfnm orasfnnc[oraca. orasfnmorasfnm] = '\0";

printf("\n%\n", sqlca.sqglerrmsqglerrnc);

printf("in\"%...\"\n", oraca.orastxt.orastxtc);

printf("on line % of 9%.\n\n", oraca.oraslnr,
oraca. orasfnm orasfnnt);

13-18 Pro*C/C++ Programmer’s Guide

Using Method 4

/* Disabl e ORACLE error checking to avoid an infinite | oop
* should another error occur within this routine.
*/

EXEC SQL VWHENEVER SQLERROR CONTI NUE;

/* Rel ease resources associated with the cursor. */
EXEC SQ. CLCSE G

/* Roll back any pending changes and di sconnect from Oracle. */
EXEC SQL ROLLBACK RELEASE;
exit(1);

Using Method 4

This section gives an overview of Oracle Dynamic SQL Method 4. Oracle Dynamic
SQL Method 4 does not support object types, results sets, arrays of structs, or LOBs.

ANSI SQL does support all datatypes. Use ANSI SQL for all new applications.

There is a kind of dynamic SQL statement that your program cannot process using
Method 3. When the number of select-list items or placeholders for input host
variables is unknown until run time, your program must use a descriptor. A descriptor
is an area of memory used by your program and Oracle to hold a complete description
of the variables in a dynamic SQL statement.

Recall that for a multirow query, you FETCH selected column values INTO a list of
declared output host variables. If the select list is unknown, the host-variable list
cannot be established at precompile time by the INTO clause. For example, you know
the following query returns two column values:

SELECT enane, enpno FROM enp WHERE deptno = :dept_nunber;

However, if you let the user define the select list, you might not know how many
column values the query will return.

See Also:
= Chapter 15, "Oracle Dynamic SQL: Method 4"
= Chapter 14, "ANSI Dynamic SQL"

Need for the SQLDA

To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor Area
(SQLDA). Because it holds descriptions of columns in the query select list, this
structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of placeholders
for input host variables, the host-variable list cannot be established at precompile time
by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE BIND
VARIABLES command and declare another kind of SQLDA called a bind descriptor to
hold descriptions of the placeholders for input host variables. (Input host variables are
also called bind variables.)

If your program has more than one active SQL statement (it might have OPENed two
or more cursors, for example), each statement must have its own SQLDA(s). However,

Oracle Dynamic SQL 13-19

Using Method 4

non-concurrent cursors can reuse SQLDASs. There is no set limit on the number of
SQLDAs in a program.

The DESCRIBE Statement

DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a PREPAREd dynamic query to determine its name, datatype,
constraints, length, scale, and precision. It then stores this information in the select
descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines
each placeholder in a PREPAREd dynamic SQL statement to determine its name,
length, and the datatype of its associated input host variable. It then stores this
information in the bind descriptor for your use. For example, you might use
placeholder names to prompt the user for the values of input host variables.

What is a SQLDA?

A SQLDA is a host-program data structure that holds descriptions of select-list items
or input host variables.

SQLDA variables are not defined in the Declare Section.
The select SQLDA contains the following information about a query select list:
» Maximum number of columns that can be DESCRIBEd
= Actual number of columns found by DESCRIBE

= Addresses of buffers to store column values

= Lengths of column values

= Datatypes of column values

« Addresses of indicator-variable values

= Addresses of buffers to store column names

« Sizes of buffers to store column names

« Current lengths of column names

The bind SQLDA contains the following information about the input host variables in
a SQL statement:

« Maximum number of placeholders that can be DESCRIBEd
= Actual number of placeholders found by DESCRIBE

= Addresses of input host variables

= Lengths of input host variables

« Datatypes of input host variables

« Addresses of indicator variables

= Addresses of buffers to store placeholder names

= Sizes of buffers to store placeholder names

« Current lengths of placeholder names

13-20 Pro*C/C++ Programmer’s Guide

Using the DECLARE STATEMENT Statement

« Addresses of buffers to store indicator-variable names
« Sizes of buffers to store indicator-variable names

= Current lengths of indicator-variable names

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4" for
information on the SQLDA structure and variable names.

Implementing Oracle Method 4

Restriction

With Oracle Method 4, you generally use the following sequence of embedded SQL
statements:

EXEC SQL PREPARE st at enent _nane
FROM { :host_string | string_literal };
EXEC SQL DECLARE cursor_nanme CURSOR FOR st at ement _nane;
EXEC SQL DESCRI BE BI ND VARI ABLES FOR st at enent _nane
I NTO bi nd_descri ptor _nane;
EXEC SQL OPEN cursor_nane
[USI NG DESCRI PTOR bi nd_descri pt or _nane] ;
EXEC SQL DESCRI BE [SELECT LI ST FOR] statenment_nane
I NTO sel ect _descri ptor_nane;
EXEC SQL FETCH cursor _name
USI NG DESCRI PTOR sel ect _descri pt or _nane;
EXEC SQ. CLOSE cursor _namne;

However, select and bind descriptors need not work in tandem. So, if the number of
columns in a query select list is known, but the number of placeholders for input host
variables is unknown, you can use the Method 4 OPEN statement with the following
Method 3 FETCH statement:

EXEC SQL FETCH enp_cursor | NTO host _variable_list;

Conversely, if the number of placeholders for input host variables is known, but the
number of columns in the select list is unknown, you can use the Method 3 OPEN
statement

EXEC SQL OPEN cursor _name [USI NG host _variable_list];

with the Method 4 FETCH statement.
EXECUTE can be used for nonqueries with Method 4.

In Dynamic SQL Method 4, you cannot bind a host array to a PL/SQL procedure with
a parameter of type "table."

Using the DECLARE STATEMENT Statement

With Methods 2, 3, and 4, you might need to use the statement

EXEC SQL [AT db_name] DECLARE statement_name STATEMENT;

where db_name and statement_name are identifiers used by the precompiler, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and

Oracle Dynamic SQL 13-21

Using PL/SQL

DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
nondefault database. An example using Method 2 follows:

EXEC SQL AT renote_db DECLARE sql _stmt STATEMENT;

EXEC SQL PREPARE sql _stmt FROM :dyn_string;

EXEC SQL EXECUTE sql _stnt;

In the example, remote_db tells Oracle where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

EXEC SQL DECLARE sql _stmt STATEMENT;

EXEC SQL DECLARE enp_cursor CURSOR FOR sql _stnt;
EXEC SQL PREPARE sql _stnt FROM :dyn_string;

The usual sequence of statements is

EXEC SQL PREPARE sql _stnmt FROM:dyn_string;
EXEC SQL DECLARE enmp_cursor CURSOR FOR sql _stnt;

Using Host Arrays

The use of host arrays in static SQL and dynamic SQL is similar. For example, to use
input host arrays with dynamic SQL Method 2, simply use the syntax

EXEC SQL EXECUTE st at enent _nane USI NG host _array_list;

where host_array_list contains one or more host arrays.
Similarly, to use input host arrays with Method 3, use the following syntax:

OPEN cursor _name USING host _array_| i st;

To use output host arrays with Method 3, use the following syntax:
FETCH cursor_name | NTO host _array_list;

With Method 4, you must use the optional FOR clause to tell Oracle the size of your
input or output host array.

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4"

Using PL/SQL

The Pro*C/C++ Precompiler treats a PL/SQL block like a single SQL statement. So,
like a SQL statement, a PL/SQL block can be stored in a string host variable or literal.
When you store the PL/SQL block in the string, omit the keywords EXEC SQL
EXECUTE, the keyword END-EXEC, and the ';' statement terminator.

However, there are two differences in the way the precompiler handles SQL and
PL/SQL:

= The precompiler treats all PL/SQL host variables as input host variables whether
they serve as input or output host variables (or both) inside the PL/SQL block.

= You cannot FETCH from a PL/SQL block because it might contain any number of
SQL statements.

13-22 Pro*C/C++ Programmer’s Guide

Using PL/SQL

With Method 1

If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE
the PL/SQL string in the usual way.

With Method 2

If the PL/SQL block contains a known number of input and output host variables, you
can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. When the PL/SQL string is
EXECUTEGJ, host variables in the USING clause replace corresponding placeholders in
the PREPAREd string. Though the precompiler treats all PL/SQL host variables as
input host variables, values are assigned correctly. Input (program) values are
assigned to input host variables, and output (column) values are assigned to output
host variables.

Every placeholder in the PREPAREd PL/SQL string must correspond to a host
variable in the USING clause. So, if the same placeholder appears two or more times in
the PREPAREd string, each appearance must correspond to a host variable in the
USING clause.

With Method 3

Methods 2 and 3 are the same except that Method 3 allows FETCHing. Since you
cannot FETCH from a PL/SQL block, just use Method 2 instead.

With Oracle Method 4

If the PL/SQL block contains an unknown number of input or output host variables,
you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input and
output host variables in the bind descriptor. Because the precompiler treats all
PL/SQL host variables as input host variables, executing DESCRIBE SELECT LIST has
no effect.

Caution: In dynamic SQL Method 4, you cannot bind a host
array to a PL/SQL procedure with a parameter of type "table."

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4" for
information on the use of bind descriptors with method 4.

Caution: Do not use ANSI-style Comments (- -) in a PL/SQL
block that will be processed dynamically because end-of-line
characters are ignored. As a result, ANSI-style Comments extend
to the end of the block, not just to the end of a line. Instead, use
C-style Comments (/* ... */).

Oracle Dynamic SQL 13-23

Using PL/SQL

13-24 Pro*C/C++ Programmer’s Guide

14

ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (also known as
SQL92 dynamic SQL) which should be used for new Method 4 applications. It has
enhancements over the older Oracle dynamic SQL Method 4, described in the previous
chapter.

The ANSI Method 4 supports all Oracle types, while the older Oracle Method 4 does
not support object types, cursor variables, arrays of structs, DML returning clauses,
Unicode variables, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the
older Oracle dynamic SQL Method 4, descriptors are defined in the user's Pro*C/C++
program. In both cases, Method 4 means that your Pro*C/C++ program accepts or
builds SQL statements that contain a varying number of host variables.

This chapter contains the following topics:

= Basics of ANSI Dynamic SQL

« Overview of ANSI SQL Statements

= Oracle Extensions

= ANSI Dynamic SQL Precompiler Options

= Full Syntax of the Dynamic SQL Statements

= Example Programs

Basics of ANSI Dynamic SQL

Consider the SQL statement:
SELECT ename, enpno FROM enp WHERE deptno = :deptno_data

The steps you follow to use ANSI dynamic SQL are:

= Declare variables, including a string to hold the statement to be executed.
= Allocate descriptors for input and output variables.

= Prepare the statement.

= Describe input for the input descriptor.

= Set the input descriptor (in our example the one input host bind variable,
dept no_dat a) .

= Declare and open a dynamic cursor.

ANSI Dynamic SQL 14-1

Overview of ANSI SQL Statements

= Set the output descriptors (in our example, the output host variables enanme and
enpno) .

= Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and enpno
data fields from each row.

= Do something with the data retrieved (output it, for instance).

= Close the dynamic cursor and deallocate the input and output descriptors.

Precompiler Options

Set the micro precompiler option DYNAMIC to ANS], or set the macro option MODE
to ANSI, which causes the default value of DYNAMIC to be ANSI. The other setting of
DYNAMIC is ORACLE.

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to
ANS], or set the macro option MODE to ANSI which makes the default setting of
TYPE_CODE to ANSI. To set TYPE_CODE to ANSI, DYNAMIC must also be ANSI.

Oracle's implementation of the ANSI SQL types in Table 14-1, " ANSI SQL Datatypes"
does not exactly match the ANSI standard. For example, a describe of a column
declared as INTEGER will return the code for NUMERIC. As Oracle moves closer to
the ANSI standard, small changes in behavior may be required. Use the ANSI types
with precompiler option TYPE_CODE set to ANSI if you want your application to be
portable across database platforms and as ANSI compliant as possible. Do not use
TYPE_CODE set to ANSI if such changes are not acceptable.

Overview of ANSI SQL Statements

Allocate a descriptor area first before using it in a dynamic SQL statement.

The ALLOCATE DESCRIPTOR statement syntax is:

EXEC SQL ALLOCATE DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
[WTH MAX {:occurrences | nuneric_literal}];

A global descriptor can be used in any module in the program. A local descriptor can
be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam can be a literal in single quotes or a character value
stored in a host variable.

occur r ences is the maximum number of bind variables or columns that the
descriptor can hold. This must be a numeric literal. The default is 100.

When a descriptor is no longer needed, deallocate it to conserve memory. Otherwise,
deallocation is done automatically when there are no more active database
connections.

The deallocate statement is:

EXEC SQL DEALLOCATE DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal};
Use the DESCRIBE statement to obtain information on a prepared SQL statement.
DESCRIBE INPUT describes bind variables for the dynamic statement that has been

prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of
the output columns. The simplified syntax is:

EXEC SQL DESCRI BE [INPUT | QUTPUT] sql _statenent
USI NG [SQ.] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal};

14-2 Pro*C/C++ Programmer’s Guide

Overview of ANSI SQL Statements

If your SQL statement has input and output values, you must allocate two descriptors:
one for input and one for output values. If there are no input values, for example:

SELECT enane, enpno FROM enp ;

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS, UPDATES,
DELETES and the WHERE clauses of SELECT statements. Use SET DESCRIPTOR to
set the number of input bind variables (stored in COUNT) when you have not done a
DESCRIBE into your input descriptor:

EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
COUNT = {:kount | numeric_literal};
kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR
statement for each host variable, giving at least the data source of the variable:
EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE item nunber DATA = :hv3;

You can also set the type and length of the input host variable:

Note: When TYPE_CODE=ORACLE, if you do not set TYPE and
LENGTH, either explicitly using the SET statement or implicitly by
doing a DESCRIBE OUTPUT, the precompiler will use values for
them derived from the host variable itself. When TYPE_
CODE=ANS]I, you must set TYPE using the values in Table 14-1,

" ANSI SQL Datatypes". You should also set LENGTH because the
ANSI default lengths may not match those of your host variables.

EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE item nunber TYPE = :hvl, LENGTH = :hv2, DATA = :hv3;

We use the identifiers hvl, hv2, and hv3 to remind us that the values must be
supplied by host variables. itern_number is the position of the input variable in the SQL
statement.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to
ANSI:

Table 14-1 ANSI SQL Datatypes

Datatype Type Code
CHARACTER 1
CHARACTER VARYING 12

DATE

DECIMAL

DOUBLE PRECISION
FLOAT

INTEGER

NUMERIC

REAL

NN B O 0 WOV

ANSI Dynamic SQL 14-3

Overview of ANSI SQL Statements

Table 14-1 (Cont.) ANSI SQL Datatypes

Datatype Type Code
SMALLINT 5

See Also: Figure 15-2, " Oracle External Datatypes and Datatype
Codes" for the Oracle type codes

DATA is the value of the host variable that is to be input

You can also set other input values such as indicator, precision and scale.

See Also: "SET DESCRIPTOR" on page 14-14 for a complete
discussion of all the possible descriptor item names

The numeric values in the SET DESCRIPTOR statement must be declared as either i nt
orshort int, except for indicator and returned length values which you must
declare as short int.

For example, in the following example, when you want to retrieve an enpno, set these
values: VALUE = 2, because enpno is the second output host variable in the dynamic
SQL statement. The host variable enpno_t yp is set to 3 (Oracle Type for integer). The
length of a host integer, enpno_l en, is set to 4, which is the size of the host variable.
The DATA is equated to the host variable enpno_dat a which will receive the value
from the database table. The code fragment is as follows:

char *dyn_statenent = "SELECT enane, enpno FROM enp
WHERE deptno = :deptno_nunber" ;

int enpno_data ;

int enpno_typ = 3 ;

int empno_len = 4 ;

EXEC SQL SET DESCRI PTOR 'out' VALUE 2 TYPE = :enpno_typ, LENGTH = :enpno_| en,
DATA = :enpno_data ;

After setting the input values, execute or open your statement using the input
descriptor. If there are output values in your statement, set them before doing a
FETCH. If you have performed a DESCRIBE OUTPUT, you may have to test the actual
type and length of your host variables. The DESCRIBE execution produces internal
types and lengths that differ from your host variable external types and length.

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the
returned data. Again we show a simplified syntax with details later in this chapter:

EXEC SQL GET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE i tem nunber :hvl = DATA, :hv2 = INDI CATOR, :hv3 = RETURNED LENGTH ;

desc_namand it em nunber can be literals or host variables. A descriptor name can
be a literal such as 'out'. An item number can be a numeric literal such as 2.

hvl, hv2, and hv3 are host variables. They must be host variables, not literals.
Only three are shown in the example.

Use either long, int or short for all numeric values, except for indicator and returned
length variables, which must be short.

See Also: Table 14-4 on page 14-11 for a list of all possible items
of returned data that you can get

14-4 Pro*C/C++ Programmer’s Guide

Oracle Extensions

Example Code

The following example demonstrates the use of ANSI Dynamic SQL. It allocates an
input descriptor ('in') and an output descriptor (‘out’) to execute a SELECT statement.
Input values are set using the SET DESCRIPTOR statement. The cursor is opened and
fetched from and the resulting output values are retrieved using a GET DESCRIPTOR
statement.

char* dyn_statenent = "SELECT enane, enpno FROM enp WHERE deptno = :deptno_data" ;
int deptno_type = 3, deptno_len = 2, deptno_data = 10 ;

int ename_type = 97, enane_len = 30 ;

char enane_dat a[31] ;

int enpno_type = 3, enpno_len =4 ;

int enpno_data ;

I ong SQLCODE = 0 ;

main ()
{

/* Place prelininary code, including connection, here. */

EXEC SQL ALLOCATE DESCRIPTOR 'in' ;

EXEC SQL ALLOCATE DESCRI PTOR 'out' ;

EXEC SQL PREPARE s FROM :dyn_statenent ;

EXEC SQL DESCRI BE | NPUT s USI NG DESCRIPTOR 'in'

EXEC SQL SET DESCRIPTCR 'in' VALUE 1 TYPE = :deptno_type,
LENGTH = :deptno_| en, DATA = :deptno_data ;

EXEC SQL DECLARE ¢ CURSCR FCR s ;

EXEC SQL OPEN ¢ USI NG DESCRIPTOR 'in' ;

EXEC SQL DESCRI BE QUTPUT s USI NG DESCRI PTOR ' out'

EXEC SQL SET DESCRI PTOR 'out' VALUE 1 TYPE = :enane_type,
LENGTH = :enanme_l en, DATA = :enane_data ;

EXEC SQL SET DESCRI PTOR 'out' VALUE 2 TYPE = :enpno_type,
LENGTH = :enpno_|l en, DATA = :enpno_data ;

EXEC SQL WHENEVER NOT FOUND DO BREAK ;
whil e (SQLCODE == 0)

{
EXEC SQL FETCH c | NTO DESCRI PTCR 'out' ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :enane_data = DATA ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 2 :enpno_data = DATA ;
printf("\nEnane = % Enpno = %", enane_data, enpno_data) ;
}

EXEC SQL CLCSE ¢
EXEC SQL DEALLOCATE DESCRIPTCR 'in' ;
EXEC SQL DEALLOCATE DESCRI PTOR 'out' ;

Scrollable cursors can also be used with ANSI Dynamic SQL. In order to use ANSI
dynamic SQL with scrollable cursors, we DECLARE the cursor in SCROLL mode. Use
the various fetch orientation modes with the FETCH statement to access the result set.

Oracle Extensions

These extensions are described next:
« Reference semantics for data items in SET statements.

= Arrays for bulk operations.

ANSI Dynamic SQL 14-5

Oracle Extensions

= Support for object types, NCHAR columns, and LOBs.

Reference Semantics

The ANSI standard specifies value semantics. To improve performance, Oracle has
extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses
the addresses of your host variables, avoiding a copy. Thus, reference semantics can
provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

EXEC SQL SET DESCRI PTOR 'out' VALUE 1 TYPE = :enane_type,
LENGTH = :ename_| en, REF DATA = :ename_data ;

EXEC SQL DESCRI PTOR 'out' VALUE 2 TYPE = :enpno_type,
LENGTH = :enpno_l en, REF DATA = :enpno_data ;

Then the host variables receive the results of the retrieves. The GET statement is not
needed. The retrieved data is written directly into ename_dat a and enpno_dat a
after each FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and RETURNED_
LENGTH items (which can vary with each row fetched) as in this fragment of code:

int indi, returnLen ;

EXEC SQ. SET DESCRI PTCR 'out' VALUE 1 TYPE = :ename_type,
LENGTH = :ename_|l en, REF DATA = :enane_data,
REF | NDI CATOR = :indi, REF RETURNED LENGTH = :returnLen ;

After each fetch, r et ur nLen holds the actual retrieved length of the enane field,
which is useful for CHAR or VARCHAR2 data.

ename_| en will not receive the returned length. It will not be changed by the FETCH
statement. Use a DESCRIBE statement, followed by a GET statement to find out the
maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed
them up. With reference semantics, the host variable is used rather than a value copied
into the descriptor area. The host variable data at the time of execution of the SQL
statement is used, not its data at the time of the SET. Here is an example:

int x =1;

EXEC SQL SET DESCRI PTOR 'val ue' VALUE 1 DATA = :X ;

EXEC SQL SET DESCRI PTOR 'reference’ VALUE 1 REF DATA = :x ;

X =2,

EXEC SQL EXECUTE s USING DESCRI PTCR 'val ue' ; [* WIIl use x =1*/

EXEC SQL EXECUTE s USI NG DESCRI PTOR 'reference' ; /* WII use x = 2 */

See Also: "SET DESCRIPTOR" on page 14-14 for many more
details on the differences

Using Arrays for Bulk Operations

Oracle extends the SQL92 ANSI dynamic standard by providing bulk operations. To
use bulk operations, use the FOR clause with an array size to specify the amount of
input data or the number of rows you want to process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of
data or number of rows. For example, to use a maximum array size of 100:

14-6 Pro*C/C++ Programmer’s Guide

Oracle Extensions

EXEC SQL FOR 100 ALLOCATE DESCRI PTOR 'out' ;

or:

int array_size = 100 ;
EXEC SQL FOR :array_si ze ALLOCATE DESCRI PTOR 'out' ;

The FOR clause is then used in subsequent statements that access the descriptor. In an
output descriptor the FETCH statement must have an array size equal to or less than
the array size already used in the ALLOCATE statement:

EXEC SQL FOR 20 FETCH cl1 USI NG DESCRI PTCR 'out' ;

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or
RETURNED_LENGTH values, must use the same array size as the FETCH statement.

int val _data[?20] ;
short val _indi[20] ;

EXEC SQL FOR 20 GET DESCRI PTOR 'out' VALUE 1 :val _data = DATA,
:val _indi = I NDI CATCR ;

However, GET statements that reference other items which do not vary from row to
row, such as LENGTH, TYPE and COUNT, must not use the FOR clause:

int cnt, len ;

EXEC SQL GET DESCRIPTOR 'out' :cnt = COUNT ;
EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :len = LENGTH ;

The same holds true for SET statements with reference semantics. SET statements
which precede the FETCH and employ reference semantics for DATA, INDICATOR, or
RETURNED_LENGTH must have the same array size as the FETCH:

int ref_data[20] ;
short ref_indi[20] ;

EXEC SQL FOR 20 SET DESCRI PTOR 'out' VALUE 1 REF DATA = :ref _data,
REF | NDI CATOR = :ref _indi ;

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance,
the EXECUTE or OPEN statement must use an array size equal to or less than the size
used in the ALLOCATE statement. The SET statement, for both value and reference
semantics, that accesses DATA, INDICATOR, or RETURNED_LENGTH must use the
same array size as in the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

The following code example illustrates a bulk operation with no output descriptor
(there is no output, only input to be inserted into the table enp). The value of COUNT is
2 (there are two host variables, enanme_arr and enpno_ar r, in the INSERT
statement). The data array ename_ar r holds three character strings: "Tom", "Dick"
and "Harry", in that order. The indicator array enane_i nd has a value of -1 for the
second element; so a NULL will be inserted instead of "Dick". The data array enpno_
arr contains three employee numbers. A DML returning clause could be used to
confirm the actual names inserted.

char* dyn_statenent = "INSERT INTO enp (ename) VALUES (:enane_arr)" ;
char enane_arr[3][6] = {Tont, "Dick","Harry"} ;
short ename_ind[3] = {0,-1,0} ;

ANSI Dynamic SQL 14-7

ANSI Dynamic SQL Precompiler Options

int ename_len = 6, enanme_type = 97, cnt = 2 ;
int enpno_arr[3] = {8001, 8002, 8003} ;
int enpno_len =4 ;
int enpno_type = 3 ;
int array_size = 3 ;
EXEC SQL FOR :array_size ALLOCATE DESCRIPTCR 'in' ;
EXEC SQL SET DESCRIPTOR 'in' COUNT = :cnt ;
EXEC SQL SET DESCRIPTOR 'in" VALUE 1 TYPE = :enane_type, LENGIH
EXEC SQL SET DESCRIPTOR 'in" VALUE 2 TYPE = :enpno_type, LENGTH
EXEC SQL FOR :array_size SET DESCRIPTOR 'in" VALUE 1
DATA = :enane_arr, |NDICATOR = :enanme_ind ;
EXEC SQL FOR :array_size SET DESCRIPTOR 'in' VALUE 2
DATA = :enpno_arr ;
EXEC SQL PREPARE s FROM :dyn_statenent ;
EXEC SQL FOR :array_size EXECUTE s USI NG DESCRIPTOR "in' ;

.ename_len ;
cenpno_len ;

The preceding code will insert these values:

EMPNO ENAME
8001 Tom
8002
8003 Harry
See Also:

« "The DML Returning Clause" on page 6-8

= "Using the FOR Clause" on page 8-13 for a discussion of
restrictions and cautions

Support for Arrays of Structs

You must set the HOST_STRIDE_LENGTH to the size of the struct, and the
INDICATOR_STRIDE_LENGTH to the size of the indicator struct, and the
RETURNED_LENGTH_STRIDE to the size of your returned length struct.

Arrays of structs are supported by ANSI dynamic SQL, but are not supported by the
older Oracle dynamic SQL.

See Also: Table 14-5, " Oracle Extensions to Definitions of
Descriptor Item Names for GET DESCRIPTOR" on page 14-12

Support for Object Types

For the object types that you have defined yourself, use Oracle TYPE equal to 108. For
an object type column, use a DESCRIBE statement to obtain USER_DEFINED_TYPE _
VERSION, USER_DEFINED_TYPE_NAME, USER_DEFINED_TYPE_NAME _
LENGTH, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_
SCHEMA_LENGTH.

If you do not employ the DESCRIBE statement to retrieve these values, you have to set
them yourself through the SET DESCRIPTOR statement.

ANSI Dynamic SQL Precompiler Options

The macro option MODE sets ANSI compatibility characteristics and controls a
number of functions. It can have the values ANSI or ORACLE. For individual
functions there are micro options that override the MODE setting. See also "MODE" on
page 10-23.

14-8 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic
SQL. The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle
datatype codes are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes
ANSI automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.
This table describes functionality and how the DYNAMIC setting affects them.

Table 14-2 DYNAMIC Option Settings

Function

DYNAMIC = ANSI

DYNAMIC = ORACLE

Descriptor creation.

Descriptor
destruction.

Retrieving data.

Setting input data.

Descriptor
representation.

Data types available.

Must use ALLOCATE
statement.

May use DEALLOCATE
statement.

May use both FETCH and GET

statements.

May use DESCRIBE INPUT
statement. Must use SET
statement.

Single quoted literal or host
identifier which contains the
descriptor name.

All ANSI types except BIT and
all Oracle types.

Must use function
SQLSQLDAAIlloc(). See"New
Names for SQLLIB Public
Functions" on page 5-39.

May use function
SQLLDAFree(). See "New
Names for SQLLIB Public
Functions" on page 5-39.

Must use only FETCH
statement.

Must set descriptor values in
code. Must use DESCRIBE
BIND VARIABLES statement.

Host variable, a pointer to
SQLDA.

Oracle types except objects,
LOBs, arrays of structs and
cursor variables.

The micro option TYPE_CODE is set by the precompiler to the same setting as the
macro option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

Here is the functionality corresponding to the TYPE_CODE settings:

Table 14-3 TYPE_CODE Option Settings

Function

TYPE_CODE = ANSI

TYPE_CODE = ORACLE

Data type code
numbers input and
returned in dynamic
SQL.

Use ANSI code numbers when
ANSI type exists. Otherwise,
use the negative of the Oracle
code number.

Only valid when DYNAMIC =
ANSI.

Use Oracle code numbers.

May be used regardless of the
setting of DYNAMIC.

See Also:

Full Syntax of the Dynamic SQL Statements

Chapter F, "Embedded SQL Statements and Directives"
for more details on all these statements

ANSI Dynamic SQL 14-9

Full Syntax of the Dynamic SQL Statements

ALLOCATE DESCRIPTOR

Purpose

Use this statement to allocate a SQL descriptor area. Supply a descriptor and the
maximum number of occurrences of host bind items, and an array size. This statement
is only for the ANSI dynamic SQL.

Syntax

EXEC SQL [FOR [:]array_size] ALLOCATE DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal} [WTH MAX occurrences] ;

Variables
array_size

This is in an optional clause (it is an Oracle extension) that supports array processing.
It tells the precompiler that the descriptor is usable for array processing.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name. Local descriptors must be unique in the module. A runtime error is
generated if the descriptor has been allocated, but not deallocated, previously. A global
descriptor must be unique for the application, or a runtime error results.

occurrences

The maximum number of host variables possible in the descriptor. It must be an
integer constant between 0 and 64K, or an error is returned. Default is 100. The clause
is optional. A precompiler error results if it does not conform to these rules.

Examples
EXEC SQ. ALLOCATE DESCRI PTCR ' SELDES W TH MAX 50 ;

EXEC SQL FOR :batch ALLOCATE DESCRI PTOR GLOBAL : bi nddes W TH MAX 25 ;

DEALLOCATE DESCRIPTOR

Purpose

Use this statement to deallocate a SQL descriptor area that has been previously
allocated, to free memory. This statement is only used for the ANSI dynamic SQL.

Syntax
EXEC SQL DEALLOCATE DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal} ;

Variable
GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

14-10 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

desc_nam

A runtime error results when a descriptor with the same name and scope has not been
allocated, or has been allocated and deallocated already.

Examples
EXEC SQU DEALLOCATE DESCRI PTOR GLOBAL ' SELDES' ;

EXEC SQL DEALLOCATE DESCRI PTOR : bi nddes ;

GET DESCRIPTOR

Purpose
Use to obtain information from a SQL descriptor area.

Syntax

EXEC SQL [FOR [:]array_size] CGET DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal}

{ :hv0 = COUNT | VALUE item nunber
chvl = itemnanel [{, :hvN = itemnaneN] } ;
Variables
array_size

The FOR array_si ze is an optional Oracle extension. ar r ay_si ze has to be equal
to the field ar r ay_si ze in the FETCH statement.

COUNT

The total number of bind variables.
desc_nam

Descriptor name.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

VALUE item_number

The position of the item in the SQL statement. i t em nurber can be a variable or a
constant. If it em numnber is greater than COUNT, the "no data found" condition is
returned. i t em _nunber must be greater than 0.

hvl..hvN

These are host variables to which values are transferred.

item_namel .. item_nameN

The descriptor item names corresponding to the host variables. The possible ANSI

descriptor item names are:

Table 14-4 Definitions of Descriptor Item Names for GET DESCRIPTOR

Descriptor Item Name Meaning

TYPE Use the negative value of Oracle type code if the ANSI
datatype is not in the table and TYPE_CODE=ANSI.

ANSI Dynamic SQL 14-11

Full Syntax of the Dynamic SQL Statements

Table 14-4 (Cont.) Definitions of Descriptor Item Names for GET DESCRIPTOR

Descriptor Item Name

Meaning

LENGTH

OCTET_LENGTH
RETURNED_LENGTH

RETURNED OCTET_LENGTH

PRECI SI ON
SCALE

NULLABLE

| NDI CATOR

DATA

NAVE

CHARACTER SET_NAME

Length of data in the column: in characters for NCHAR; in
bytes otherwise. Set by the DESCRIBE OUTPUT.

Length of data in bytes.

The actual data length after a FETCH.
Length of the returned data in bytes.
The number of digits.

For exact numeric types, the number of digits to the right of
the decimal point.

If 1, the column can have NULL values. If 0,the column cannot
have NULL values.

The associated indicator value.
The data value.
Column name.

Column's character set.

See Also:

= Table 14-1, " ANSI SQL Datatypes" on page 14-3 for the ANSI

type codes

= " Oracle External Datatypes and Datatype Codes" on
page 15-11 for the Oracle type codes

The Oracle additional descriptor item names are:

Table 14-5 Oracle Extensions to Definitions of Descriptor Item Names for GET

DESCRIPTOR

Descriptor Item Name

Meaning

NATI ONAL_CHARACTER

| NTERNAL_LENGTH
HOST_STRI DE_LENGTH

| NDI CATOR_STRI DE_
LENGTH

RETURNED LENGTH_
STRI DE

USER_DEFI NED_TYPE_
VERS| ON

USER_DEFI NED_TYPE_
NANVE

USER_DEFI NED_TYPE_
NAVE_LENGTH

USER_DEFI NED_TYPE_
SCHEMA

USER_DEFI NED_TYPE_
SCHEMA LENGTH

14-12 Pro*C/C++ Programmer’s Guide

If 2, NCHAR or NVARCHAR?2. If 1, character. If 0,
non-character.

The internal length, in bytes.
The size of the host struct in bytes.

The size of the indicator struct in bytes.

The size of the returned-length struct in bytes.

Used for character representation of object type version.
Name of object type.

Length of name of object type.

Used for character representation of the object's schema.

Length of USER_DEFI NED_TYPE_SCHEMA.

Full Syntax of the Dynamic SQL Statements

Table 14-5 (Cont.) Oracle Extensions to Definitions of Descriptor Item Names for GET
DESCRIPTOR

Descriptor Item Name Meaning

NATI ONAL_CHARACTER If 2, NCHAR or NVARCHAR?2. If 1, character. If 0,
non-character.

Usage Notes

Use the FOR clause in GET DESCRIPTOR statements which contain DATA,
INDICATOR, and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input
and output, you must set the type to be the external type of your host variable.

TYPE is the ANSI SQL Datatype code. Use the negative value of the Oracle type code
if the ANSI type is not in the table.
See Also:
= Table 14-1, " ANSI SQL Datatypes" on page 14-3
= " Oracle External Datatypes and Datatype Codes" on
page 15-11

LENGTH contains the column length in characters for fields that have fixed-width
National Character Sets. It is in bytes for other character columns. It is set in
DESCRIBE OUTPUT.

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in
bytes or characters as described for LENGTH. The fields OCTET_LENGTH and
RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it
cannot.

CHARACTER_SET_NAME only has meaning for character columns. For other types,
it is undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If
data = NULL, but the indicator was not requested, an error is generated at runtime
("DATA EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").
Oracle-Specific Descriptor Item Names

NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR?2 column.
If the column is a character (but not National Character) column, this item is set to 1. If
a non-character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the
same value as the length member of the Oracle SQL descriptor area.

See Also: Chapter 15, "Oracle Dynamic SQL: Method 4"

The following three items are not returned by a DESCRIBE OUTPUT statement.
« HOST_STRIDE_LENGTH is the size of the struct of host variables.
« INDICATOR_STRIDE_LENGTH is the size of the struct of indicator variables.

« RETURNED_LENGTH_STRIDE is the size of the struct of returned-length
variables

ANSI Dynamic SQL 14-13

Full Syntax of the Dynamic SQL Statements

The following items apply only to object types when the precompiler option OBJECTS
has been set to YES.

« USER_DEFINED_TYPE_VERSION contains the character representation of the
type version.

« USER_DEFINED_TYPE_NAME is the character representation of the name of the
type.
« USER_DEFINED_TYPE_NAME_LENGTH is the length of the type name in bytes.

« USER_DEFINED_TYPE_SCHEMA is the character representation of the schema
name of the type.

« USER_DEFINED_TYPE_SCHEMA_LENGTH is the length in characters of the
type's schema name.

Examples
EXEC SQL GET DESCRI PTOR : bi nddes :n = COUNT ;

EXEC SQL GET DESCRIPTOR 'SELDES' VALUE 1 :t = TYPE, :| = LENGIH ;

EXEC SQ. FOR :batch GET DESCRI PTOR LOCAL ' SELDES'
VALUE :sel _itemno :i = INDICATOR :v = DATA ;

SET DESCRIPTOR

Purpose

Use this statement to set information in the descriptor area from host variables. The
SET DESCRIPTOR statement supports only host variables for the item names.

Syntax

EXEC SQL [FOR array_size] SET DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal} {COUNT = :hvO |
VALUE it em number
[REF] itemnnanmel = :hvl
[{, [REF] itemnameN = :hvN}]} ;

Variables
array_size

This optional Oracle clause permits using arrays when setting the descriptor items
DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in a
SET DESCRIPTOR that contains the FOR clause. All host variable array sizes must
match. Use the same array size for the SET statement that you use for the FETCH
statement.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam
The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.
COUNT

The number of bind (input) or define (output) variables.

14-14 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

VALUE item_number

Position in the dynamic SQL statement of a host variable.
hvl .. hvN

The host variables (not constants) that you set.
item_namel

In a similar way to the GET DESCRIPTOR syntax desc_i t em_nane can take on these
values.

See Also: "GET DESCRIPTOR" on page 14-11

Table 14-6 Descriptor Iltem Names for SET DESCRIPTOR

Descriptor Item Name Meaning

TYPE Use negative value of the Oracle type if there is no
corresponding ANSI type.

LENGTH Maximum length of data in the column.

I NDI CATOR The associated indicator value. Set for reference semantics.

DATA Value of the data to be set. Set for reference semantics.

CHARACTER_SET_NAME Column's character set.

TYPE Use negative value of the Oracle type if there is no
corresponding ANSI type.
See Also:
« Table 14-1," ANSI SQL Datatypes" on page 14-3 for the ANSI
type codes

= " Oracle External Datatypes and Datatype Codes" on
page 15-11 for the Oracle type codes

The Oracle extensions to the descriptor item names are:

Table 14-7 Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

RETURNED_LENGTH Length returned after a FETCH. Set if reference semantics is
being used.

NATI ONAL_CHARACTER Set to 2 when the input host variable is an NCHAR or
NVARCHAR? type.

HOST_STRI DE_LENGTH Size of the host variable struct in bytes.

| NDI CATOR_STRI DE_ Size of the indicator variable in bytes.

LENGTH

RETURNED_LENGTH_ Size of the returned-length struct in bytes.

STRI DE

USER_DEFI NED_TYPE _ Name of object type.
NAME

USER DEFI NED TYPE_ Length of name of object type.
NAMVE_LENGTH

ANSI Dynamic SQL 14-15

Full Syntax of the Dynamic SQL Statements

Table 14-7 (Cont.) Oracle Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning
USER _DEFI NED _TYPE _ Used for character representation of the object's schema.
SCHEMVA

USER_DEFI NED_TYPE_ Length of USER_DEFI NED_TYPE_SCHEMA.
SCHEVA_LENGTH

Usage Notes

Reference semantics is another optional Oracle extension that speeds performance.
Use the keyword REF before these descriptor items names only: DATA, INDICATOR,
RETURNED_LENGTH. When you use the REF keyword you do not need to use a
GET statement. Complex data types (object and collection types, arrays of structs, and
the DML returning clause) all require the REF form of SET DESCRIPTOR.

See Also: "The DML Returning Clause" on page 6-8

When REF is used the associated host variable itself is used in the SET. The GET is not
needed in this case. The RETURNED_LENGTH can only be set when you use the REF
semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.
Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

When setting an object type's characteristics, you must set USER_DEFINED_TYPE
NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED TYPE_SCHEMA and USER_DEFINED TYPE_
SCHEMA_LENGTH default to the current connection.

Set CHARACTER_SET_NAME to UTF16 for client-side Unicode support.

Example

int bindno = 2 ;

short indi = -1 ;

char data = "ignore" ;
int batch =1 ;

EXEC SQL FOR :batch ALLOCATE DESCRI PTOR ' bi nddes'
EXEC SQL SET DESCRI PTOR GLOBAL : bi nddes COUNT = 3 ;
EXEC SQ. FOR :batch SET DESCRI PTOR : bi ndes

VALUE : bindno | NDI CATOR = :indi, DATA = :data ;

See Also: "Using Arrays for Bulk Operations" on page 14-6 for
examples of bulk arrays

Use of PREPARE

Purpose

The PREPARE statement used in this method is the same as the PREPARE statement
used in the other dynamic SQL methods. An Oracle extension allows a quoted string
for the SQL statement, as well as a variable.

14-16 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

Syntax
EXEC SQL PREPARE statenent _id FROM :sql _statement ;

Variables
statement_id

This must not be declared; it is a undeclared SQL identifier.
sql_statement

A character string (a constant or a variable) holding the embedded SQL statement.

Example

char* statement = "SELECT ENAME FROM enp WHERE deptno = :d"
EXEC SQL PREPARE S1 FROM :statenent ;

DESCRIBE INPUT

Purpose
This statement returns information about the bind variables.

Syntax

EXEC SQL DESCRI BE | NPUT statenent_id USING [SQL] DESCRI PTOR
[GLOBAL | LOCAL] {:desc_nam| string_literal} ;

Variables
statement_id

The same as used in PREPARE and DESCRIBE OUTPUT. This must not be declared; it
is an undeclared SQL identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes
DESCRIBE INPUT only sets COUNT and NAME items.

Examples

EXEC SQL DESCRI BE I NPUT S1 USING SQL DESCRI PTOR GLOBAL : bi nddes ;
EXEC SQL DESCRI BE | NPUT S2 USI NG DESCRI PTOR 'input' ;

DESCRIBE OUTPUT

Purpose

Use this statement to obtain information about the output columns in a PREPAREd
statement. The ANSI syntax differs from the older Oracle syntax. The information

ANSI Dynamic SQL 14-17

Full Syntax of the Dynamic SQL Statements

EXECUTE

which is stored in the SQL descriptor area is the number of values returned and
associated information such as type, length, and name.

Syntax

EXEC SQL DESCRI BE [QUTPUT] statement_id USING [SQL] DESCRI PTOR
[GLOBAL | LOCAL] {:desc_nam| string_literal} ;

Variables
statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam
The descriptor name.

OUTPUT is the default and can be omitted.

Examples

char* desname = "SELDES" ;
EXEC SQL DESCRIBE S1 USING SQL DESCRI PTOR ' SELDES' ; /* O, */
EXEC SQL DESCRI BE QUTPUT S1 USI NG DESCRI PTCR : desnane ;

Purpose

EXECUTE matches input and output variables in a prepared SQL statement and then
executes the statement. This ANSI version of EXECUTE differs from the older
EXECUTE statement by allowing two descriptors in one statement to support DML
returning clause.

Syntax

EXEC SQL [FCR :array_size] EXECUTE statenent_id
[USING [SQL] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}]
[INTO [SQ.] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}] ;

Variables

array_size

The number of rows the statement will process.
statement_id

The same as used in PREPARE. This must not be declared; it is an undeclared SQL
identifier. It can be a literal.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

14-18 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

desc_nam

The descriptor name.

Usage Notes

The INTO clause implements the DML returning clause for INSERT, UPDATE and
DELETE.

See Also: "The DML Returning Clause" on page 6-8

Examples
EXEC SQUL EXECUTE S1 USING SQL DESCRI PTOR GLOBAL : bi nddes ;

EXEC SQL EXECUTE S2 USI NG DESCRI PTCR : bvl | NTO DESCRI PTOR ' SELDES

1

Use of EXECUTE IMMEDIATE

Purpose

Executes a literal or host variable character string containing the SQL statement.The
ANSI SQL form of this statement is the same as in the older Oracle dynamic SQL:

Syntax
EXEC SQL EXECUTE | MVEDI ATE {:sql _statement | string_literal}

Variable
sql_statement

The SQL statement or PL/SQL block in a character string.

Example
EXEC SQL EXECUTE | MVEDI ATE : stat enent ;

Use of DYNAMIC DECLARE CURSOR

Purpose

Declares a cursor that is associated with a statement which is a query. This is a form of
the generic Declare Cursor statement.

Syntax
EXEC SQL DECLARE cursor_name CURSOR FOR statenent _id;

Variables
cursor_name

A cursor variable (a SQL identifier, not a host variable).
statement_id

An undeclared SQL identifier.

Example
EXEC SQU DECLARE CL CURSCR FCR S ;

ANSI Dynamic SQL 14-19

Full Syntax of the Dynamic SQL Statements

OPEN Cursor

FETCH

Purpose

The OPEN statement associates input parameters with a cursor and then opens the
cursor.

Syntax

EXEC SQL [FOR :array_size] OPEN dyn_cursor
[[USING [SQ.] DESCRIPTOR [GLOBAL | LOCAL] {:desc_naml | string_literal}]
[INTO [SQ.] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nan? | string_literal}]] ;

Variables
array_size

This limit is less than or equal to number specified when the descriptor was allocated.
dyn_cursor

The cursor variable.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The descriptor name.

Usage Notes

If the prepared statement associated with the cursor contains colons or question
marks, a USING clause must be specified, or an error results at runtime. The DML
returning clause is supported.

See Also: "The DML Returning Clause" on page 6-8

Examples
EXEC SQ. OPEN Cl USING SQL DESCRI PTCR : bi nddes ;

EXEC SQL FOR :limit OPEN C2 USING DESCRI PTCR :bl, :b2
I NTO SQL DESCRI PTOR : sel des ;

Purpose
Fetches a row for a cursor declared with a dynamic DECLARE statement.

Syntax

EXEC SQL [FOR :array_size] FETCH cursor |NTO [SQ.] DESCRI PTOR
[GLOBAL | LOCAL] {:desc_nam| string_literal} ;

Variables
array_size

The number of rows the statement will process.

14-20 Pro*C/C++ Programmer’s Guide

Full Syntax of the Dynamic SQL Statements

cursor
The dynamic cursor that was previously declared.
GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

Descriptor name.

Usage Notes

The optional ar r ay_si ze in the FOR clause must be less than or equal to the
number specified in the ALLOCATE DESCRIPTOR statement.

Examples
EXEC SQL FETCH FROM CL | NTO DESCRI PTCR ' SELDES' ;

EXEC SQL FOR :arsz FETCH C2 | NTO DESCRI PTCR : desc ;

CLOSE a Dynamic Cursor

Purpose
Closes a dynamic cursor. Syntax has not changed from the older Oracle Method 4:

Syntax
EXEC SQL CLOSE cursor ;

Variable
cursor

The dynamic cursor that was previously declared.

Example
EXEC SQU CLCSE Cl ;

Differences From Oracle Dynamic Method 4

The ANSI dynamic SQL interface supports all the datatypes supported by the Oracle
dynamic Method 4, with these additions:

= All datatypes, including object types, result sets, and LOB types are supported by
ANSI Dynamic SQL.

= The ANSI mode uses an internal SQL descriptor area which is an expansion of the
external SQLDA used in Oracle older dynamic Method 4 to store its input and
output information.

« New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET
DESCRIPTOR.

« The DESCRIBE statement does not return the names of indicator variables in ANSI
Dynamic SQL.

ANSI Dynamic SQL 14-21

Example Programs

Restrictions

= ANSI Dynamic SQL does not allow you to specify the maximum size of the
returned column name or expression. The default size is set at 128.

» The descriptor name must be either an identifier in single-quotes or a host variable
preceded by a colon.

= For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced by
the optional keyword OUTPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

= For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be
replaced by the keyword INPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

« The optional keyword SQL can come before the keyword DESCRIPTOR in the
USING clause of the EXECUTE, FETCH and OPEN statements.

Restrictions in effect on ANSI dynamic SQL are:
= You cannot mix ANSI and Oracle dynamic SQL methods in the same module.

« The precompiler option DYNAMIC must be set to ANSI. The precompiler option
TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSIL.

= The SET statement supports only host variables as item names.

Example Programs

ansidyni.pc

The following two programs are in the demo directory.

This program demonstrates using ANSI Dynamic SQL to process SQL statements
which are not known until runtime. It is intended to demonstrate the simplest (though
not the most efficient) approach to using ANSI Dynamic SQL. It uses ANSI compatible
value semantics and ANSI type codes. ANSI SQLSTATE is used for error numbers.
Descriptor names are literals. All input and output is through ANSI varying character

type.
The program connects you to ORACLE using your username and password, then
prompts you for a SQL statement. Enter legal SQL or PL/SQL statements using

regular, not embedded, SQL syntax and terminate each statement with a semicolon.
Your statement will be processed. If it is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters. There is a limit on the
size of the variables, MAX_VAR_LEN, defined as 255. This program processes up to 40
bind variables and 40 select-list items. DML returning clauses and user defined types
are not supported with value semantics.

Precompile the program with mode = ansi, for example:

proc node=ansi ansi dynl

Using nbde=ansi will set dynamic and t ype code to ansi.
y _
/***

ANSI Dynanmic Demp 1: ANSI Dynamic SQ with val ue semantics,
literal descriptor nanes
and ANSI type codes

14-22 Pro*C/C++ Programmer’s Guide

Example Programs

Thi's program denonstates using ANSI Dynanic SQL to process SQL
statenents which are not known until runtime. It is intended to
denonstrate the sinplest (though not the nost efficient) approach

to using ANSI Dynamic SQL. It uses ANSI conpatible val ue semantics

and ANSI type codes. ANSI Sglstate is used for error nunbers.
Descriptor nanes are literals. Al input and output is through ANSI the
varying character type.

The program connects you to ORACLE using your usernanme and password,
then pronpts you for a SQL statenment. Enter legal SQ or PL/SQL
statenents using regular, not enbedded, SQ. syntax and termnate each
statement with a seincolon. Your statement will be processed. If it
is a query, the fetched rows are displayed.

You can enter nultiline statements. The limt is 1023 characters.

There is a limt on the size of the variables, MAX VAR LEN, defined as 255.
This program processes up to 40 bind variables and 40 select-list itens.
DML returning statnments and user defined types are not supported with

val ue semantics.

Preconpile the programw th node=ansi, for exanple:
proc node=ansi ansidynl

Usi ng node=ansi will set dynam c and type_code to ansi.

*******‘k**‘k****************‘k**‘k****************‘k**‘k****************/

#include <stdio. h>

#include <string.h>
#incl ude <setjnp. h>
#include <stdlib.h>
#i ncl ude <sql cpr. h>

#def i ne MAX_OCCURENCES 40
#define MAX VAR LEN 255
#define MAX NAME LEN 31

#i fndef NULL
#define NULL 0
#endi f

/* Prototypes */
#if defined(__STDC_)
voi d sql _error(void);
int oracle_connect(void);
int get_dyn_statenent(void);
int process_input(void);
int process_output(void);
voi d hel p(void);
#el se
void sql _error(/*_ void _*/);
int oracle_connect(/*_ void _*/);
int get_dyn_statenment(/* void _*/);
int process_input(/*_ void _*/)
int process_output(/*_void _*/
void hel p(/*_ void _*/);
#endi f

)

ANSI Dynamic SQL 14-23

Example Programs

EXEC SQL | NCLUDE sql ca;
char SQLSTATE[6] ;

/* gl obal variables */

EXEC SQL BEG N DECLARE SECTI ON,
char dyn_statement [1024] ;
char SQLSTATE[6] ;

EXEC SQL END DECLARE SECTI ON,

/* Define a buffer to hold longjnp state info. */
j mp_buf jnp_conti nue;

/* A global flag for the error routine. */

int parse_flag = 0;

/* Aglobal flag to indicate statenment is a select */
int select found;

voi d main()
{
/* Connect to the database. */
if (oracle_connect() !'= 0)
exit(1);

EXEC SQL WHENEVER SQLERROR DO sql _error();

/* Allocate the input and output descriptors. */
EXEC SQL ALLOCATE DESCRI PTCR 'input _descriptor';
EXEC SQL ALLOCATE DESCRI PTCR ' out put _descriptor';

/* Process SQL statements. */
for (57)
{

(void) setjnp(jnmp_continue);

/* CGet the statement. Break on "exit". */
if (get_dyn_statenment() != 0)
break;

/* Prepare the statenent and declare a cursor. */

parse flag = 1; /* Set a flag for sql _error(). */
EXEC SQL PREPARE S FROM :dyn_statenent;
parse_flag = 0; /* Unset the flag. */

EXEC SQL DECLARE C CURSCR FQR S;

[* Call the function that processes the input. */
if (process_input())
exit(1);

/* QOpen the cursor and execute the statenment. */
EXEC SQL OPEN C USI NG DESCRI PTOR ' i nput _descri ptor';

[* Call the function that processes the output. */
if (process_output())
exit(1);

14-24 Pro*C/C++ Programmer’s Guide

Example Programs

/* Close the cursor. */
EXEC SQL CLCSE C;

} I* end of for(;;) statenent-processing |oop */

/* Deal l ocate the descriptors */
EXEC SQL DEALLOCATE DESCRI PTOR ' i nput _descriptor';
EXEC SQL DEALLOCATE DESCRI PTCR ' out put _descriptor';

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL COWM T WORK;
put s("\nHave a good day!\n");

EXEC SQL VWHENEVER SQLERROR DO sql _error();
return;

int get_dyn_statenent()

char *cp, |inebuf[256];
int iter, plsql;

for (plsql =0, iter =1; ;)
{
if (iter == 1)
{
printf("\nSQ> ");
dyn_statement[0] = '\0";
sel ect _found = 0;

}

fgets(linebuf, sizeof |inebuf, stdin);

cp = strrchr(linebuf, "\n");

if (cp & cp !'= linebuf)
*Cp :' L

else if (cp == linebuf)
conti nue;

if ((strncmp(linebuf, "SELECT", 6) == 0) ||
(strncnp(linebuf, "select", 6) == 0))
{

}

if ((strncmp(linebuf, "EXIT", 4) == 0) ||
(strncnp(linebuf, "exit", 4) == 0))

sel ect _found=1;;

{
return -1,

}

else if (linebuf[0] =="'7" ||
(strncnp(linebuf, "HELP', 4) == 0) ||
(strncnp(linebuf, "help", 4) == 0))

{

hel p();

ANSI Dynamic SQL 14-25

Example Programs

i nt

int

iter = 1;
continue;

}

if (strstr(linebuf, "BEGN') ||
(strstr(linebuf, "begin")))

{
plsql = 1;
}
strcat (dyn_statenent, |inebuf);

if ((plsgl && (cp = strrchr(dyn_statement, '/"))) |
('plsgl && (cp = strrchr(dyn_statement, ';"))))

{
*cp = '\0';
br eak;
}
el se
{
iter++
printf("9@d ", iter);
}
}
return 0;

process_i nput ()

int i;

EXEC SQL BEG N DECLARE SECTI ON;
char nane[31];
int input_count, input_len, occurs, ANSI _varchar_type;
char input_buf [MAX_VAR_LEN ;

EXEC SQL END DECLARE SECTI ON;

EXEC SQL DESCRI BE I NPUT S USI NG DESCRI PTOR ' i nput _descri ptor';
EXEC SQL GET DESCRIPTCR 'input_descriptor' :input_count = COUNT;

ANS| _var char _t ype=12;
for (i=0; i < input_count; i++)

{
occurs =i +1; /* occurence is 1 based */
EXEC SQL GET DESCRI PTCR 'input _descriptor’
VALUE :occurs :name = NAME;
printf ("\nEnter value for input variable %.*s: ", 10,31, nane);
foets(input_buf, sizeof(input_buf), stdin);
input_len = strlen(input_buf) - 1; /* get rid of new line */
input _buf[input_len] ="\0"; I* null termnate */
EXEC SQL SET DESCRI PTCR 'input _descriptor’
VALUE :occurs TYPE = : ANSI _varchar _type,
LENGTH = :input_l en,
DATA = :input_buf;
}

return(sql ca.sql code);

process_out put ()

14-26 Pro*C/C++ Programmer’s Guide

Example Programs

int i, j;
EXEC SQL BEG N DECLARE SECTI ON,
int output_count, occurs, type, len, col _len;
short indi;
char data[MAX_VAR LEN], nane[MAX_NAME_LEN] ;
EXEC SQL END DECLARE SECTI ON;
if (!select_found)
return(0);

EXEC SQL DESCRI BE QUTPUT S USI NG DESCRI PTCR ' out put _descriptor';

EXEC SQL GET DESCRI PTCR ' out put _descriptor' :output_count = COUNT;

printf ("\n");
type = 12; /* ANSI VARYI NG character type */
len = MAX_VAR_LEN /* use the max allocated length */
for (i =0; i < output_count; i++)
{
occurs =i + 1;
EXEC SQL GET DESCRI PTCR 'out put _descriptor' VALUE :occurs
‘name = NAME
printf("%*.*s ", 9,9, nane);
EXEC SQL SET DESCRI PTCR 'out put _descriptor' VALUE :occurs
TYPE = :type, LENGIH = :len;

}
printf("\n");

/* FETCH each row sel ected and print the colum val ues. */
EXEC SQL VHENEVER NOT FOUND GOTO end_sel ect _| oop;

for (57)
{
EXEC SQL FETCH C I NTO DESCRI PTCR ' out put _descriptor';
for (i=0; i < output_count; i++)
{
occurs =i + 1;
EXEC SQL GET DESCRI PTCR 'output _descriptor' VALUE :occurs
:data = DATA, :indi = | NDI CATOR;
if (indi ==-1)
printf("%*.*s ", 9,9, "NULL");
el se
printf("%*.*s ", 9,9, data); /* sinplified output formatting */
/* truncation will occur, but colums will line up */
}
printf ("\n");
}
end_sel ect _| oop:
return(0);

}

voi d hel p()

{

"\n\nEnter a SQL statenent or a PL/SQ. block at the SQ.> pronpt.");
"Statements can be continued over several |ines, except");

"within string literals.");

"Termnate a SQL statement with a semicolon.");

puts
puts
puts
puts

—~ o~ o~ —

ANSI Dynamic SQL 14-27

Example Programs

puts("Termnate a PL/SQL bl ock (which can contain enbedded semicol ons)");
puts("with a slash (/).");

puts("Typing \"exit\" (no sem col on needed) exits the program");
puts("You typed \"?\" or \"help\" to get this message.\n\n");

voi d sql _error()
{
/* ORACLE error handler */
printf("\n\nANSlI sqlstate: %: ", SQSTATE);
printf ("\n\n% 70s\n", sql ca.sqlerrmsqglerrnt);
if (parse_flag)
printf
("Parse error at character offset %l in SQ statenent.\n",
sql ca.sqlerrd[4]);

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK;

[ongj np(j np_continue, 1);

int oracle_connect ()

EXEC SQL BEG N DECLARE SECTI ON;
VARCHAR user nane[128] ;
VARCHAR passwor d[32] ;

EXEC SQL END DECLARE SECTI ON;

printf("\nusername: ");

fgets((char *) usernane.arr, sizeof usernane.arr, stdin);
usernane. arr[strlen((char *) usernane.arr)-1] = '\0';
usernane. |l en = (unsigned short)strlen((char *) usernane.arr);

printf("password: ");
fgets((char *) password.arr, sizeof password.arr, stdin);
password. arr[strlen((char *) password.arr) - 1] = "'\0';
password. | en = (unsigned short)strlen((char *) password.arr);
EXEC SQL WHENEVER SQLERROR GOTO connect _error;
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
printf("\nConnected to ORACLE as user %.\n", username.arr);
return O;

connect _error:

fprintf(stderr, "Cannot connect to ORACLE as user %\n", usernane.arr);
return -1;

ansidyn2.pc

This program demonstrates using ANSI Dynamic SQL to process SQL statements
which are not known until runtime. It uses the Oracle extensions for batch processing
and reference semantics.

14-28 Pro*C/C++ Programmer’s Guide

Example Programs

The program connects you to ORACLE using your username and password, then
prompts you for a SQL statement. Enter legal SQL or PL/SQL statement using
interactive, not embedded, SQL syntax, terminating the statement with a semicolon.
Your statement will be processed. If it is a query, the fetched rows are displayed.

You can enter multiline statements. The limit is 1023 characters. There is a limit on the
size of the variables, MAX_VAR_LEN, defined as 255. This program processes up to 40
bind variables and 40 select-list items.

Precompile the program with dynami ¢ = ansi , for example:
proc dynam c=ansi ansidyn2

/*********‘k*******************‘k****************‘k**‘k*****************

ANSI Dynanmic Denmp 2: ANSI Dynamic SQL with reference semantics,
batch processing and gl obal descri ptor
names in host variables

Thi's program denonstates using ANSI Dynanmic SQL to process SQL
statenments which are not known until runtime. It uses the Oracle
extensions for batch processing and reference semantics.

The program connects you to ORACLE using your usernanme and password,
then pronpts you for a SQ statenment. Enter legal SQL or PL/SQL
statenent using interactive, not embedded, SQ syntax, termnating the
statenent with a seintolon. Your statement will be processed. If it
is a query, the fetched rows are displayed.

If your statenment has input bind variables (other than in a where clause),
the programwill ask for an input array size and then allow you to enter
that nunber of input values. If your statment has output, the programwill
ask you for an output array size and will do array fetchng using that val ue.
It will also output the rows fetched in one batch together, so using a snall
value for the output array size will inprove the | ook of the output.

For exanple, connected as scott/tiger, try select enpno, ename from enp
with an output array size of 4;

You can enter nultiline statements. The limt is 1023 characters.
There is a limt on the size of the variables, MAX VAR LEN, defined as 255.
This program processes up to 40 bind variables and 40 select-list itens.

Preconpile with programwith dynam c=ansi, for exanple:

proc dynam c=ansi ansidyn2

***/

#include <stdio. h>

#incl ude <string. h>
#incl ude <setjnp. h>
#include <stdlib. h>
#include <sqlcpr.h>

#def i ne MAX_OCCURENCES 40
#defi ne MAX_ARRSZ 100
#define MAX VAR LEN 255
#define MAX_NAME LEN 31

#i fndef NULL
#define NULL O

ANSI Dynamic SQL 14-29

Example Programs

#endi f

/* Prototypes */

#if defined(__STDC)
void sql _error(void);
int oracle_connect(void);
int get_dyn_statenent(void);
int process_input(void);
int process_output(void);
voi d rows_processed(void);
voi d hel p(void);

#el se
void sql _error(/*_ void _*/);
int oracle_connect(/*_void */);
int get_dyn_statenent(/* void _*/);
int process_input(/*_void _*/);
int process_output(/*_ void _*/);
voi d rows_processed(/*_ void _*/);
void hel p(/*_ void _*/);

#endi f

EXEC SQL | NCLUDE sql ca;
/* gl obal variables */

char dyn_stat ement [1024] ; /* statement variable */
EXEC SQL VAR dyn_statement |S STRI NG 1024);

char indesc[]="input_descriptor"; /* descriptor names */

char outdesc[]="output_descriptor";

char i nput [MAX_OCCURENCES] [MAX_ARRSZ] [MAX_VAR LEN +1], /* data areas */
out put [MAX_OCCURENCES] [MAX_ARRSZ] [MAX_VAR LEN + 1];

short outi ndi [MAX_OCCURENCES] [MAX_ARRSZ] ; /* output indicators */

short *iptr;

i nt in_array_size; [* size of input batch, i.e., nunber of rows */

i nt out _array_si ze; /* size of input batch, i.e., nunber of rows */

i nt max_array_si ze=MAX_ARRSZ; /* maxi num arrays size used for allocates */

char *dm _commands[] = {"SELECT", "select", "INSERT", "insert",
"UPDATE", "update", "DELETE', "delete"};

int select_found, cursor_open = 0;

/* Define a buffer to hold longjnp state info. */
j mp_buf j np_conti nue;

/* A global flag for the error routine. */
int parse_flag = 0;

voi d main()
{
/* Connect to the database. */
if (oracle_connect() !'=0)
exit(1);

EXEC SQL WHENEVER SQLERROR DO sql _error();

14-30 Pro*C/C++ Programmer’s Guide

Example Programs

/* Allocate the input and output descriptors. */
EXEC SQL FOR :nax_array_size

ALLCCATE DESCRI PTOR GLOBAL :i ndesc;
EXEC SQL FOR :nmx_array_size

ALLCCATE DESCRI PTOR GLOBAL : out desc;

/* Process SQL statements. */
for (57)
{

(void) setjnp(jnmp_continue);

/* Get the statement. Break on "exit". */
if (get_dyn_statenment() != 0)
br eak;

/* Prepare the statenent and declare a cursor. */

parse_flag = 1, /* Set a flag for sql _error(
EXEC SQL PREPARE S FROM : dyn_st atenent;
parse_flag = 0; /* Unset the flag. */

EXEC SQL DECLARE C CURSCR FCR §;

).

/* Call the function that processes the input. */

if (process_input())
exit(1);

/* Qpen the cursor and execute the statenent. */
EXEC SQL FOR :in_array_size

OPEN C USI NG DESCRI PTOR GLOBAL : i ndesc;
cursor_open = 1,

[* Call the function that processes the output.
if (process_output())
exit(l);

/* Tell user how many rows were processed. */
rows_processed();

} I* end of for(;;) statenent-processing |oop */

/* Cose the cursor. */
if (cursor_open)
EXEC SQL CLCSE G

/* Deallocate the descriptors */
EXEC SQL DEALLOCATE DESCRI PTOR GLOBAL : i ndesc;
EXEC SQL DEALLOCATE DESCRI PTOR GLOBAL : out desc;

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL COW T WORK RELEASE;
puts("\nHave a good day!\n");

EXEC SQL WHENEVER SQLERROR DO sql _error();
return;

int get_dyn_statenent()

*/

ANSI Dynamic SQL 14-31

Example Programs

char *cp, |inebuf[256];
int iter, plsql;

for (plsql =0, iter =1; ;)
{
if (iter == 1)
{
printf("\nSQ> ");
dyn_statenment[0] = '\0';
sel ect _found = 0;

}

fgets(linebuf, sizeof |inebuf, stdin);

cp = strrchr(linebuf, "\n");

if (cp & cp !'= linebuf)
sep =

else if (cp == linebuf)
continue;

if ((strncmp(linebuf, "SELECT", 6) == 0) ||
(strncnp(linebuf, "select", 6) == 0))
{

}

if ((strncmp(linebuf, "EXIT", 4) == 0) ||
(strncnp(linebuf, "exit", 4) == 0))

sel ect _found=1;;

{
return -1;
}
else if (linebuf[0] =="'72" ||
(strncnp(linebuf, "HELP', 4) == 0) ||
(strncnp(linebuf, "help", 4) == 0))
{
hel p();
iter = 1;
conti nue;
}

if (strstr(linebuf, "BEGN") ||
(strstr(linebuf, "begin")))

{
plsql = 1;
}
strcat (dyn_statenent, |inebuf);

if ((plsql && (cp = strrchr(dyn_statement, '/')))

(!'plsqgl && (cp = strrchr(dyn_statenent, ';')))
{
*cp = "\0";
br eak;
}
el se
{
iter++;
printf("9%d ", iter);

14-32 Pro*C/C++ Programmer’s Guide

Example Programs

}
}

return 0;

int process_input()

int i, j;

char name[31];

int input_count, input_len= MAX_VAR LEN,
int occurs, string_type = 5;

int string_len;

char arr_size[3];

EXEC SQL DESCRI BE | NPUT S USI NG DESCRI PTOR GLOBAL : i ndesc;
EXEC SQL GET DESCRI PTOR GLOBAL :indesc :input_count = COUNT;

if (input_count > 0 & !select_found)
{ /* get input array size */
printf ("\nEnter value for input array size (mx is %) : ",
max_array_size);
fgets(arr_size, 4, stdin);
in_array_size = atoi(arr_size);
}
el se
{
in_array_size = 1;
}
for (i=0; i < input_count; i++)
{
occurs =i +1; /* occurence is 1 based */
EXEC SQL GET DESCRI PTOR GLOBAL :indesc
VALUE :occurs :nane = NAME;

for (j=0; j < in_array_size; j++)
{
if (in_array_size == 1)
printf ("\nEnter value for input variable %.*s: ",10,31, nange);
el se
printf ("\nEnter %% value for input variable %.*s: ",
i 1, ((j==0) ? "st" : (j==1) ? "nd" : (j==2) ? "rd" :"th"),
10, 31, nane);
fgets(input[i][j], sizeof(input[i][j]), stdin);
string_len = strlien(input[i][j]);
input[i][j][string_len - 1] ="\0"; /* change \n to \0 */
}
EXEC SQL SET DESCRI PTOR GLOBAL :indesc
VALUE :occurs TYPE = :string_type, LENGTH = :input_|en;
EXEC SQL FOR :in_array_size
SET DESCRI PTOR GLOBAL :indesc
VALUE :occurs REF DATA = :input[i];

}

return(sql ca.sql code);

int process_output()

{

ANSI Dynamic SQL 14-33

Example Programs

int i, j;
int output_count, occurs;
int type, output_|len= MAX VAR LEN
char nanme[MAX_OCCURENCES] [MAX_NAME_LEN] ;
int rows_this_fetch=0, cumulative_rows=0;
char arr_size[3];
if (!select_found)
return(0);
EXEC SQL DESCRI BE QUTPUT S USI NG DESCRI PTOR GLOBAL : out desc;

EXEC SQL GET DESCRI PTOR GLOBAL :outdesc :output_count = COUNT;

if (output_count > 0)
{
printf ("\nEnter value for output array size (mx is %) : ",
max_array_size);
fgets(arr_size, 4, stdin);
out _array_size = atoi(arr_size);
1
if (out_array_size < 1) /* must have at |east one */
out_array_size = 1;

printf ("\n");
for (i =0; i < output_count; i++)
{

occurs =i + 1;

EXEC SQL GET DESCRI PTOR GLOBAL :outdesc VALUE :occurs

;type = TYPE, :name[i] = NAME
occurs =i + 1, /* occurence is one based */
type = 5; /* force all data to be null termnated character */
EXEC SQL SET DESCRI PTOR GLOBAL :outdesc VALUE :occurs

TYPE = :type, LENGTH = :output_|en;

iptr = (short *)&outindi[i]; /* no nult-dinension non-char host vars */
EXEC SQL FOR :out_array_size

SET DESCRI PTOR GLOBAL : out desc VALUE :occurs

REF DATA = :output[i], REF INDI CATOR = :iptr;

EXEC SQL VWHENEVER NOT FOUND GOTO end_sel ect _| oop;

[* print the colum headi ngs */
for (j=0; j < out_array_size; j++)
for (i=0; i < output_count; i++)
printf("%*.*s ", 9,9, name[i]);
printf("\n");

/* FETCH each row sel ected and print the colum values. */
for (57)
{
EXEC SQL FOR :out_array_size
FETCH C | NTO DESCRI PTOR GLOBAL : out desc;
rows_this_fetch = sglca.sqglerrd[2] - cunulative_rows;
cunul ative_rows = sqglca.sqlerrd[2];
if (rows_this_fetch)
for (j=0; j < out_array_size & j < rows_this_fetch; j++)
{ /* output by colums using sinplified formatting */

14-34 Pro*C/C++ Programmer’s Guide

Example Programs

for (i=0; i < output_count; i++)

{
if (outindi[i][j] == -1)
printf("%*.*s ", 9, 9, "NULL");
el se
printf("%*.*s ", 9, 9, output[i][j]); /* sinplified */
/* output formatting may cause truncation */
/* but colums will line up */
}
}
printf ("\n");

}

end_sel ect _| oop:
[* print any unprinted rows */
rows_this_fetch = sqglca.sqlerrd[2] - cunulative_rows;
cunul ative_rows = sqglca.sqlerrd[2];
if (rows_this_fetch)
for (j=0; j < out_array_size & j < rows_this_fetch; j++)

{ /* output by colums using sinplified formatting */
for (i=0; i < output_count; i++)
{
if (outindi[i][j] ==-1)
printf("%*.*s ", 9, 9, "NULL");
el se
printf("%*.*s ", 9, 9, output[i][j]);
}
}
return(0);
}
voi d rows_processed()
{
int i;
for (i =0; i <8; i+4)
{
if (strncnp(dyn_statenent, dm _conmmands[i], 6) == 0)
{
printf("\n\n% row¥e processed.\n", sqglca.sqlerrd[2],
sglca.sglerrd[2] ==1?" "' : 's");
break;
}
}
return;
}
voi d hel p()
{
puts("\n\nEnter a SQL statement or a PL/SQL block at the SQL> pronmpt.");
puts("Statenments can be continued over several |ines, except");
puts("within string literals.");
puts("Termnate a SQL statement with a semicolon.");
puts("Terminate a PL/SQL bl ock (which can contain enbedded semicol ons)");
puts("with a slash (/).");
puts("Typing \"exit\" (no senicol on needed) exits the program"”);
puts("You typed \"?\" or \"help\" to get this message.\n\n");
}

ANSI Dynamic SQL 14-35

Example Programs

void sql _error()
{
/* ORACLE error handler */
printf ("\n\n%70s\n",sqlca.sqglerrmsqglerrnc);
if (parse_flag)
printf
("Parse error at character offset %l in SQ statenent.\n",
sgl ca.sqlerrd[4]);

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WCRK;

[ongj np(j mp_continue, 1);

int oracle_connect()

EXEC SQL BEG N DECLARE SECTI ON,
VARCHAR usernane[128] ;
VARCHAR passwor d[32] ;

EXEC SQL END DECLARE SECTI ON,

printf("\nusernane: ");
fgets((char *) usernane.arr, sizeof usernane.arr, stdin);
usernane.arr[strlen((char *) usernane.arr)-1] = '\0';
usernane.len = (unsigned short)strlen((char *) usernane.arr);
printf("password: ");
fgets((char *) password.arr, sizeof password.arr, stdin);
password. arr[strlen((char *) password.arr) - 1] = "'\0';
password. |l en = (unsigned short)strlen((char *) password.arr);
EXEC SQL WHENEVER SQLERROR GOTO connect _error;
EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;
printf("\nConnected to ORACLE as user %.\n", username.arr);
return 0;

connect _error:

fprintf(stderr, "Cannot connect to ORACLE as user %\n", usernane.arr);
return -1;

14-36 Pro*C/C++ Programmer’s Guide

15

Oracle Dynamic SQL: Method 4

This chapter shows you how to implement Oracle dynamic SQL Method 4, which lets
your program accept or build dynamic SQL statements that contain a varying number
of host variables. Use this to support existing applications. Use ANSI Dynamic SQL
Method 4 for all new applications.

Oracle Dynamic SQL Method 4 does not support object types, cursor variables, arrays
of structs, DML returning clauses, Unicode variables, and LOBs. Use ANSI Dynamic
SQL Method 4 instead. This chapter contains the following topics:

= Meeting the Special Requirements of Method 4

= Understanding the SQLDA

= Using the SQLDA Variables

=« Some Preliminaries

= The Basic Steps

=« A Closer Look at Each Step

= Example Program: Dynamic SQL Method 4

= Sample Program : Dynamic SQL Method 4 using Scrollable Cursors

See Also:

= Chapter 13, "Oracle Dynamic SQL" for a discussion of dynamic
SQL Methods 1, 2, and 3, and an overview of Method 4

= Chapter 14, "ANSI Dynamic SQL"

Meeting the Special Requirements of Method 4

Before looking into the requirements of Method 4, you should feel comfortable with
the terms select-list item and placeholder. Select-list items are the columns or
expressions following the keyword SELECT in a query. For example, the following
dynamic query contains three select-list items:

SELECT enane, job, sal + comm FROM enp WHERE deptno = 20
Placeholders are dummy bind variables that hold places in a SQL statement for actual
bind variables. You do not declare placeholders, and can name them anything you like.

Placeholders for bind variables are most often used in the SET, VALUES, and WHERE
clauses. For example, the following dynamic SQL statements each contain two
placeholders:

I NSERT I NTO enp (empno, deptno) VALUES (:e, :d)

Oracle Dynamic SQL: Method 4 15-1

Meeting the Special Requirements of Method 4

DELETE FROM dept WHERE deptno = :num OR loc = :loc

What Makes Method 4 Special?
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

= Accept or build dynamic SQL statements that contain an unknown number of
select-list items or placeholders, and

= Take explicit control over datatype conversion between Oracle and C types

To add this flexibility to your program, you must give the Oracle runtime library
additional information.

What Information Does Oracle Need?

The Pro*C/C++ Precompiler generates calls to Oracle for all executable dynamic SQL
statements. If a dynamic SQL statement contains no select-list items or placeholders,
Oracle needs no additional information to execute the statement. The following
DELETE statement falls into this category:

DELETE FROM enp WHERE deptno = 30

However, most dynamic SQL statements contain select-list items or placeholders for
bind variables, as does the following

UPDATE statement:

UPDATE enp SET conm = : ¢ WHERE enmpno = :e

To execute a dynamic SQL statement that contains placeholders for bind variables or
select-list items, Oracle needs information about the program variables that hold the

input (bind) values, and that will hold the FETCHed values when a query is executed.
The information needed by Oracle is:

« The number of bind variables and select-list items
= The length of each bind variable and select-list item
= The datatype of each bind variable and select-list item

« The address of each bind variable, and of the output variable that will receive each
select-list item

Where Is the Information Stored?

All the information Oracle needs about select-list items or placeholders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA). The SQLDA struct is defined in the sql da. h header file.

Descriptions of select-list items are stored in a select descriptor, and descriptions of
placeholders for bind variables are stored in a bind descriptor.

The values of select-list items are stored in output variables; the values of bind
variables are stored in input variables. You store the addresses of these variables in the
select or bind SQLDA so that Oracle knows where to write output values and read
input values.

How do values get stored in these data variables? Output values are FETCHed using a
cursor, and input values are typically filled in by the program, usually from
information entered interactively by the user.

15-2 Pro*C/C++ Programmer’s Guide

Understanding the SQLDA

How is the SQLDA Referenced?

The bind and select descriptors are usually referenced by pointer. A dynamic SQL
program should declare a pointer to at least one bind descriptor, and a pointer to at
least one select descriptor, in the following way:

#incl ude <sql da. h>

SQLDA *bi nd_dp;
SQLDA *sel ect _dp;

You can then use the SQLSQLDAAI | oc() function to allocate the descriptor, as
follows:

bind_dp = SQLSQLDAAI | oc(runtime_context, size, name_length, ind_name_|ength);

SQLSQLDA Alloc() was known as sqlaldt() before Oracle8.

The constant SQL_SI NGLE_RCTX is defined as (dvoi d*) 0. Use it for runtime_context
when your application is single-threaded.

See Also:

« Table 15-3, " Precision and Scale Values for SQL Datatypes" on
page 15-13, for information on this and other SQLLIB functions

= "Allocating a SQLDA" on page 15-4 for detailed information
about SQLSQLDAAI | oc() and its parameters

How is the Information Obtained?
You use the DESCRIBE statement to help obtain the information Oracle needs.

The DESCRIBE SELECT LIST statement examines each select-list item to determine its
name and name length. It then stores this information in the select SQLDA for your
use. For example, you might use select-list names as column headings in a printout.
The total number of select-list items is also stored in the SQLDA by DESCRIBE.

The DESCRIBE BIND VARIABLES statement examines each placeholder to determine
its name and length, then stores this information in an input buffer and bind SQLDA
for your use. For example, you might use placeholder names to prompt the user for
the values of bind variables.

Understanding the SQLDA

This section describes the SQLDA data structure in detail. You learn how to declare it,
what variables it contains, how to initialize them, and how to use them in your
program.

Purpose of the SQLDA

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or placeholders for bind variables. To process this kind of dynamic
SQL statement, your program must explicitly declare SQLDAs, also called descriptors.
Each descriptor is a struct which you must copy or code into your program.

A select descriptor holds descriptions of select-list items, and the addresses of output
buffers where the names and values of select-list items are stored.

Oracle Dynamic SQL: Method 4 15-3

Understanding the SQLDA

Note: The "name" of a select-list item can be a column name, a
column alias, or the text of an expression such as sal + comm.

A bind descriptor holds descriptions of bind variables and indicator variables, and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

Multiple SQLDAs

If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA(s). You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named sel_desc1, sel_
desc2, and sel_desc3, so that you can FETCH from three concurrently OPEN cursors.
However, non-concurrent cursors can reuse SQLDAs.

Declaring a SQLDA

To declare a SQLDA, include the sql da. h header file. The contents of the SQLDA are:

struct SQLDA

{
| ong N, /* Descriptor size in nunber of entries */
char **V; Ptr to Arr of addresses of main variables */
long *L; /* Ptr to Arr of lengths of buffers */
short *T, /* Ptr to Arr of types of buffers */
short **[; * Ptr to Arr of addresses of indicator vars */
| ong F; /* Nunber of variables found by DESCRI BE */
char **S§; /* Ptr to Arr of variable nane pointers */
short *M /* Ptr to Arr of max |engths of var. nanes */
short *C, * Ptr to Arr of current lengths of var. nanes */
char **X [* Ptr to Arr of ind. var. nane pointers */

short *Y; /* Ptr to Arr of max lengths of ind. var. nanes */
short *z; /* Ptr to Arr of cur lengths of ind. var. names */

Allocating a SQLDA

After declaring a SQLDA, you allocate storage space for it with the
SQLSQLDAAI | oc() library function (known as sql al dt () before Oracle8), using the

syntax:

descriptor_name = SQLSQLDAAI | oc (runtime_context, max_vars, max_name, max_ind_

nane);

where:

Syntax Description

runtime_context pointer to runtime context

max_vars Is the maximum number of select-list items or placeholders that
the descriptor can describe.

max_name Is the maximum length of select-list or placeholder names.

15-4 Pro*C/C++ Programmer’s Guide

Using the SQLDA Variables

Syntax

Description

max_ind_name

Is the maximum length of indicator variable names, which are
optionally appended to placeholder names. This parameter
applies to bind descriptors only, so set it to zero when allocating

a select descriptor.

Besides the descriptor, SQLSQLDAAI | oc() allocates data buffers to which descriptor

variables point.

See Also:

= "Using the SQLDA Variables" on page 15-5 for information

about SQLSQLDAAI | oc()

= "Allocate Storage Space for the Descriptors" on page 15-17

Figure 15-1 shows whether variables are set by SQLSQLDAAI | oc() calls, DESCRIBE
commands, FETCH commands, or program assignments.

Figure 15-1

How Variables Are Set

SELECT ENAME FROM EMP WHERE EMPNO=NUM

Set by:
SQLSQLDAAIlloc

Program
DESCRIBE
DESCRIBE

SQLSQLDAAlloc

Program

Program

DESCRIBE
FETCH

T

select-list item (SLI)

Select SQLDA

Address of SLI name buffer
Address of SLI value buffer
Length of SLI name
Datatype of select-list item
Length of SLI name buffer
Length of SLI value buffer
Datatype of SLI value buffer

Output Buffers

Name of select-list item

Value of select-list item

Using the SQLDA Variables

This section explains the purpose and use of each variable in the SQLDA.

The N Variable

T

placeholder (P) for
bind variable (BV)

Select SQLDA
Address of P name buffer
Address of BV value buffer

Length of P name

Length of P name buffer
Length of BV valuebuffer
Datatype of BV value buffer

Input Buffers

Name of placeholders

Value of bind variables

N specifies the maximum number of select-list items or placeholders that can be
DESCRIBEd. Thus, N determines the number of elements in the descriptor arrays.

Oracle Dynamic SQL: Method 4 15-5

Using the SQLDA Variables

Before issuing the optional DESCRIBE command, you must set N to the dimension of
the descriptor arrays using the SQLSQLDAAI | oc() library function. After the
DESCRIBE, you must reset N to the actual number of variables DESCRIBEd, which is
stored in the F variable.

The V Variable

V is a pointer to an array of addresses of data buffers that store select-list or
bind-variable values.

When you allocate the descriptor, SQLSQLDAAI | oc() zeros the elements V[0]
through V[N - 1] in the array of addresses.

For select descriptors, you must allocate data buffers and set this array before issuing
the FETCH command. The statement

EXEC SQL FETCH ... USI NG DESCRI PTCR . ..

directs Oracle to store FETCHed select-list values in the data buffers to which V[0]
through V[N - 1] point. Oracle stores the ith select-list value in the data buffer to
which V[i] points.

For bind descriptors, you must set this array before issuing the OPEN command. The
statement

EXEC SQL OPEN ... USI NG DESCRI PTCR ...

directs Oracle to execute the dynamic SQL statement using the bind-variable values to
which V[0] through V[N - 1] point. Oracle finds the ith bind-variable value in the
data buffer to which V[i] points.

The L Variable

L is a pointer to an array of lengths of select-list or bind-variable values stored in data
buffers.

For select descriptors, DESCRIBE SELECT LIST sets the array of lengths to the
maximum expected for each select-list item. However, you might want to reset some
lengths before issuing a FETCH command. FETCH returns at most # characters, where
n is the value of L[i{] before the FETCH.

The format of the length differs among Oracle datatypes. For CHAR or VARCHAR?2
select-list items, DESCRIBE SELECT LIST sets L[i] to the maximum length of the
select-list item. For NUMBER select-list items, scale and precision are returned
respectively in the low and next-higher bytes of the variable. You can use the library
function SQLNunber PrecV6() to extract precision and scale values from L[i] . See
also "Extracting Precision and Scale" on page 15-12.

You must reset L[7] to the required length of the data buffer before the FETCH. For
example, when coercing a NUMBER to a C char string, set L[i] to the precision of the
number plus two for the sign and decimal point. When coercing a NUMBER to a C
float, set L[i] to the length of floats on your system. For more information about the
lengths of coerced datatypes, see also "Converting Data" on page 15-9.

For bind descriptors, you must set the array of lengths before issuing the OPEN
command. For example, you can use st rl en() to get the lengths of bind-variable
character strings entered by the user, then set the appropriate array elements.

Because Oracle accesses a data buffer indirectly, using the address stored in V[1] , it
does not know the length of the value in that buffer. If you want to change the length

15-6 Pro*C/C++ Programmer’s Guide

Using the SQLDA Variables

The T Variable

The I Variable

Oracle uses for the ith select-list or bind-variable value, reset L[i] to the length you
need. Each input or output buffer can have a different length.

T is a pointer to an array of datatype codes of select-list or bind-variable values. These
codes determine how Oracle data is converted when stored in the data buffers
addressed by elements of the V array.

See Also: "Converting Data" on page 15-9

For select descriptors, DESCRIBE SELECT LIST sets the array of datatype codes to the
internal datatype (CHAR, NUMBER, or DATE, for example) of the items in the select
list.

Before FETCHing, you might want to reset some datatypes because the internal format
of Oracle datatypes can be difficult to handle. For display purposes, it is usually a
good idea to coerce the datatype of select-list values to VARCHAR?2 or STRING. For
calculations, you might want to coerce numbers from Oracle to C format.

See Also: "Coercing Datatypes" on page 15-11

The high bit of T[7] is set to indicate the NULL/not NULL status of the ith select-list
item. You must always clear this bit before issuing an OPEN or FETCH command. You
use the library function SQLCol utmNul | Check() to retrieve the datatype code and
clear the NULL/not NULL bit.

See Also: "Handling NULL/Not NULL Datatypes" on page 15-14

You should change the Oracle NUMBER internal datatype to an external datatype
compatible with that of the C data buffer to which V[i] points.

For bind descriptors, DESCRIBE BIND VARIABLES sets the array of datatype codes
to zeros. You must set the datatype code stored in each element before issuing the
OPEN command. The code represents the external (C) datatype of the data buffer to
which V[7] points. Often, bind-variable values are stored in character strings, so the
datatype array elements are set to 1 (the VARCHAR?2 datatype code). You can also use
datatype code 5 (STRING).

To change the datatype of the ith select-list or bind-variable value, reset T[7] to the
datatype you want.

I'is a pointer to an array of addresses of data buffers that store indicator-variable
values.

You must set the elements | [0] through| [N - 1] in the array of addresses.

For select descriptors, you must set the array of addresses before issuing the FETCH
command. When Oracle executes the statement

EXEC SQL FETCH ... USI NG DESCRI PTOR ...
if the ith returned select-list value is NULL, the indicator-variable value to which | []

points is set to -1. Otherwise, it is set to zero (the value is not NULL) or a positive
integer (the value was truncated).

Oracle Dynamic SQL: Method 4 15-7

Using the SQLDA Variables

The F Variable

The S Variable

The M Variable

The C Variable

The X Variable

For bind descriptors, you must set the array of addresses and associated indicator
variables before issuing the OPEN command. When Oracle executes the statement

EXEC SQL OPEN ... USING DESCRI PTCR ...

the data buffer to which | [7] points determines whether the ith bind variable has a
NULL value. If the value of an indicator variable is -1, the value of its associated bind
variable is NULL.

F is the actual number of select-list items or placeholders found by DESCRIBE.

F is set by DESCRIBE. If F is less than zero, DESCRIBE has found too many select-list
items or placeholders for the allocated size of the descriptor. For example, if you set N
to 10 but DESCRIBE finds 11 select-list items or placeholders, F is set to -11. This
feature lets you dynamically reallocate a larger storage area for select-list items or
placeholders if necessary.

S is a pointer to an array of addresses of data buffers that store select-list or
placeholder names as they appear in dynamic SQL statements.

You use SQLSQ.DAAI | oc() to allocate the data buffers and store their addresses in
the S array.

DESCRIBE directs Oracle to store the name of the ith select-list item or placeholder in
the data buffer to which S[7] points.

M is a pointer to an array of maximum lengths of data buffers that store select-list or
placeholder names. The buffers are addressed by elements of the S array.

When you allocate the descriptor, SQLSQLDAAI | oc() sets the elements M 0] through
M N - 1] in the array of maximum lengths. When stored in the data buffer to which
S[i] points, the ith name is truncated to the length in M 7] if necessary.

C is a pointer to an array of current lengths of select-list or placeholder names.

DESCRIBE sets the elements C[0] through C[N - 1] in the array of current lengths.
After a DESCRIBE, the array contains the number of characters in each select-list or
placeholder name.

X is a pointer to an array of addresses of data buffers that store indicator-variable
names. You can associate indicator-variable values with select-list items and bind
variables. However, you can associate indicator-variable names only with bind
variables. So, X applies only to bind descriptors.

Use SQLSQLDAAI | oc() to allocate the data buffers and store their addresses in the X
array.

DESCRIBE BIND VARIABLES directs Oracle to store the name of the ith indicator
variable in the data buffer to which X[7] points.

15-8 Pro*C/C++ Programmer’s Guide

Some Preliminaries

The Y Variable

Y is a pointer to an array of maximum lengths of data buffers that store
indicator-variable names. Like X, Y applies only to bind descriptors.

You use SQLSQLDAAI | oc() to set the elements Y[O] through Y[N - 1] in the array
of maximum lengths. When stored in the data buffer to which X[7] points, the ith
name is truncated to the length in Y[7] if necessary.

The Z Variable

Z is a pointer to an array of current lengths of indicator-variable names. Like X and Y,
Z applies only to bind descriptors.

DESCRIBE BIND VARIABLES sets the elements Z[0] through Z[N - 1] in the array
of current lengths. After a DESCRIBE, the array contains the number of characters in
each indicator-variable name.

Some Preliminaries

You need a working knowledge of the following subjects to implement dynamic SQL
Method 4:

= Converting Data
= Coercing Datatypes
= Handling NULL/Not NULL Datatypes

Converting Data

This section provides more detail about the T (datatype) descriptor array. In host
programs that use neither datatype equivalencing nor dynamic SQL Method 4, the
conversion between Oracle internal and external datatypes is determined at
precompile time. By default, the precompiler assigns a specific external datatype to
each host variable in the Declare Section. For example, the precompiler assigns the
INTEGER external datatype to host variables of type int.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the T descriptor array.

Internal Datatypes

Internal datatypes specify the formats used by Oracle to store column values in
database tables, as well as the formats used to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle returns the internal
datatype code for each select-list item to the T descriptor array. For example, the
datatype code for the ith select-list item is returned to T[7] .

Table 15-1 shows the Oracle internal datatypes and their codes:

Oracle Dynamic SQL: Method 4 15-9

Some Preliminaries

Table 15-1 Oracle Internal Datatypes

Oracle Internal Datatype

Code

VARCHAR?2

NUMBER

LONG

ROWID

DATE

RAW

LONG RAW
CHARACTER (or CHAR)

11
12
23
24
96

External Datatypes

External datatypes specify the formats used to store values in input and output host

variables.

The DESCRIBE BIND VARIABLES command sets the T array of datatype codes to
zeros. So, you must reset the codes before issuing the OPEN command. The codes tell
Oracle which external datatypes to expect for the various bind variables. For the ith
bind variable, reset T[7] to the external datatype you want.

Table 15-2 shows the Oracle external datatypes and their codes, as well as the C
datatype normally used with each external datatype.

15-10 Pro*C/C++ Programmer’s Guide

Some Preliminaries

Table 15-2 Oracle External Datatypes and Datatype Codes

External Datatype Code C Datatype
VARCHAR2 1 char[n]
NUMBER 2 char[n] (n <=22)
INTEGER 3 int
FLOAT 4 float
STRING 5 char[n+1]
VARNUM 6 char[n] (n <=22)
DECIMAL 7 float
LONG 8 char[n]
VARCHAR 9 char[n+2]
ROWID 11 char[n]
DATE 12 char[n]
VARRAW 15 char[n]
RAW 23 unsigned char[n]
LONG RAW 24 unsigned char[n]
UNSIGNED 68 unsigned int
DISPLAY 91 char[n]
LONG VARCHAR 94 char[n+4]
LONG VARRAW 95 unsigned char[n+4]
CHAR 96 char[n]
CHARF 96 char[n]
CHARZ 97 char[n+1]

See Also:

= Chapter, "Oracle Datatypes"
= Oracle Database SQL Reference.

Coercing Datatypes

For a select descriptor, DESCRIBE SELECT LIST can return any of the Oracle internal
datatypes. Often, as in the case of character data, the internal datatype corresponds
exactly to the external datatype you want to use. However, a few internal datatypes
map to external datatypes that can be difficult to handle. So, you might want to reset
some elements in the T descriptor array. For example, you might want to reset
NUMBER values to FLOAT values, which correspond to float values in C. Oracle does
any necessary conversion between internal and external datatypes at FETCH time. So,
be sure to reset the datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does notf return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the T
array of datatype codes to tell Oracle the external datatype of each bind variable.
Oracle does any necessary conversion between external and internal datatypes at
OPEN time.

Oracle Dynamic SQL: Method 4 15-11

Some Preliminaries

When you reset datatype codes in the T descriptor array, you are "coercing datatypes."
For example, to coerce the ith select-list value to STRING, you use the following
statement:

[* Coerce select-list value to STRING */
sel ect _des->T[i] = 5;

When coercing a NUMBER select-list value to STRING for display purposes, you must
also extract the precision and scale bytes of the value and use them to compute a
maximum display length. Then, before the FETCH, you must reset the appropriate
element of the L (length) descriptor array to tell Oracle the buffer length to use.

See Also: "Extracting Precision and Scale" on page 15-12

For example, if DESCRIBE SELECT LIST finds that the ith select-list item is of type
NUMBER, and you want to store the returned value in a C variable declared as float,
simply set T[i]] to4and L[i] to the length of floats on your system.

Caution: In some cases, the internal datatypes that DESCRIBE
SELECT LIST returns might not suit your purposes. Two
examples of this are DATE and NUMBER. When you DESCRIBE
a DATE select-list item, Oracle returns the datatype code 12 to the
T descriptor array. Unless you reset the code before the FETCH,
the date value is returned in its 7-byte internal format. To get the
date in character format (DD-MON-YY), you can change the
datatype code from 12 to 1 (VARCHAR?2) or 5 (STRING), and
increase the L value from 7 to 9 or 10.

Similarly, when you DESCRIBE a NUMBER select-list item,
Oracle returns the datatype code 2 to the T array. Unless you reset
the code before the FETCH, the numeric value is returned in its
internal format, which is probably not what you want. So, change
the code from 2 to 1 (VARCHAR?2), 3 INTEGER), 4 (FLOAT), 5
(STRING) or some other appropriate datatype.

Extracting Precision and Scale

The library function SQLNurrber Pr ecV6() (previously known as sqgl prc())
extracts precision and scale. Normally, it is used after the DESCRIBE SELECT LIST,
and its first argument is L[7] . You call SQLNunber Pr ecV6() using the following
syntax:

Note: See your platform-specific SQLNunber Pr ecV6 header file
for the correct prototype for your platform.

SQLNunber PrecV6(dvoi d *runtime_context, int *length, int *precision,

int *scale);
where:
Syntax Description
runtime_context Is the pointer to the runtime context

15-12 Pro*C/C++ Programmer’s Guide

Some Preliminaries

Syntax Description

length Is a pointer to a long integer variable that stores the length of an
Oracle NUMBER value; the length is stored in L[i]. The scale and
precision of the value are stored respectively in the low and
next-higher bytes.

precision Is a pointer to an integer variable that returns the precision of
the NUMBER value. Precision is the number of significant digits.
It is set to zero if the select-list item refers to a NUMBER of
unspecified size. In this case, because the size is unspecified, you
might want to assume the maximum precision (38).

scale Is a pointer to an integer variable that returns the scale of the
NUMBER value. Scale specifies where rounding will occur. For
example, a scale of 2 means the value is rounded to the nearest
hundredth (3.456 becomes 3.46); a scale of -3 means the number
is rounded to the nearest thousand (3456 becomes 3000).

When the scale is negative, add its absolute value to the length. For example, a
precision of 3 and scale of -2 allow for numbers as large as 99900.

The following example shows how SQLNurrber Pr ecV6() is used to compute
maximum display lengths for NUMBER values that will be coerced to STRING:

/* Declare variables for the function call. */

sqgl da *sel ect _des; /* pointer to select descriptor */
i nt prec; [* precision */
i nt scal ; /* scale */

extern void SQLNumberPrecV6(); /* Declare library function. */
/* Extract precision and scale. */
SQLNunber PrecV6(SQL_SI NGLE_RCTX, &(sel ect_des->L[i]), &prec, &scal);
[* Alow for maxi mum size of NUMBER */
if (prec == 0)
prec = 38;
[* Allow for possible deciml point and sign. */
sel ect _des->L[i] = prec + 2;
/* Allow for negative scale. */
if (scal <0)
sel ect _des->L[i] += -scal;

Notice that the first argument in this function call points to the ith element in the array
of lengths, and that all three parameters are addresses.

The SQLNumber PrecV6() function returns zero as the precision and scale values for
certain SQL datatypes. The SQLNurber Pr ecV7() function is similar, having the same
argument list, and returning the same values, except in the cases of these SQL
datatypes:

Table 15-3 Precision and Scale Values for SQL Datatypes

SQL Datatype Binary Precision Scale
FLOAT 126 -127
FLOAT(N) N (range is 1 to 126) -127
REAL 63 -127
DOUBLE PRECISION 126 -127

Oracle Dynamic SQL: Method 4 15-13

Some Preliminaries

Handling NULL/Not NULL Datatypes

For every select-list column (not expression), DESCRIBE SELECT LIST returns a
NULL/not NULL indication in the datatype array T of the select descriptor. If the ith
select-list column is constrained to be not NULL, the high-order bit of T[i] is clear;
otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the NULL /not NULL
bit is set, you must clear it. (Never set the bit.)

You can use the library function SQLCol urmNul | Check() (previously was called
sql nul ()) to find out if a column allows NULLSs, and to clear the datatype's
NULL/not NULL bit. You call SQLCol urmNul | Check() using the syntax:

SQLCol umtmNul | Check(dvoid *context, unsigned short *val ue_type,
unsi gned short *type_code, int *null_status);

where:

Syntax Description

context Is a pointer to the runtime context

value_type Is a pointer to an unsigned short integer variable that stores the
datatype code of a select-list column; the datatype is stored in
TI[i].

type_code Is a pointer to an unsigned short integer variable that returns the
datatype code of the select-list column with the high-order bit
cleared.

null_status Is a pointer to an integer variable that returns the null status of
the select-list column. 1 means the column allows nulls; 0 means
it does not.

The following example shows how to use SQLCol urmNul | Check() :

/* Declare variables for the function call. */

sglda *sel ect_des; /* pointer to select descriptor */
unsigned short dtype; /* datatype without null bit */
int nullok; /[* 1 =null, 0=not null */
extern void SQ.Col utmNul | Check(); [* Declare library function. */

/* Find out whether colum is not null. */

SQLCol urmNUI | Check(SQL_SI NGLE_RCTX, (unsigned short *)&(sel ect _des->T[i]), &dtype,
&nul | ok) ;

if (nullok)

{

/* Nulls are allowed. */

/* Clear the null/not null bit. */
SQLCol urmNul | Check(SQL_SI NGLE_RCTX, &(sel ect_des->T[i]), &(select_des->T[i]),
&nul | ok) ;
}

Notice that the first and second arguments in the second call to the
SQLCol umNul | Check() function point to the ith element in the array of datatypes,
and that all three parameters are addresses.

15-14 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

The Basic Steps

Method 4 can be used to process any dynamic SQL statement. In the coming example,
a query is processed so you can see how both input and output host variables are
handled.

To process the dynamic query, our example program takes the following steps:

1.

2
3.
4

© ® N o o

11.
12.
13.
14.
15.

16.
17.

18.

Declare a host string in the Declare Section to hold the query text.
Declare select and bind SQLDAs.
Allocate storage space for the select and bind descriptors.

Set the maximum number of select-list items and placeholders that can be
DESCRIBEd.

Put the query text in the host string.

PREPARE the query from the host string.

DECLARE a cursor FOR the query.

DESCRIBE the bind variables INTO the bind descriptor.

Reset the number of placeholders to the number actually found by DESCRIBE.

. Get values and allocate storage for the bind variables found by DESCRIBE.

OPEN the cursor USING the bind descriptor.

DESCRIBE the select list INTO the select descriptor.

Reset the number of select-list items to the number actually found by DESCRIBE.
Reset the length and datatype of each select-list item for display purposes.

FETCH a row from the database INTO the allocated data buffers pointed to by the
select descriptor.

Process the select-list values returned by FETCH.

Deallocate storage space used for the select-list items, placeholders, indicator
variables, and descriptors.

CLOSE the cursor.

Note: Some of these steps are unnecessary if the dynamic SQL
statement contains a known number of select-list items or
placeholders.

A Closer Look at Each Step

This section discusses each step in detail. At the end of this chapter is a Commented,
full-length program illustrating Method 4.

With Method 4, you use the following sequence of embedded SQL statements:

EXEC SQL PREPARE statenent nane

FROM { :host_string | string_literal };

EXEC SQL DECLARE cursor_name CURSOR FOR st at enent _nane;
EXEC SQL DESCRI BE BI ND VARI ABLES FOR st at enent _nane

I NTO bi nd_descri ptor _nane;

EXEC SQ. OPEN cursor_nane

[USI NG DESCRI PTOR bi nd_descri pt or _nane];

EXEC SQL DESCRI BE [SELECT LI ST FOR] statenent_name

Oracle Dynamic SQL: Method 4 15-15

A Closer Look at Each Step

I NTO sel ect _descri ptor_nane;
EXEC SQ. FETCH cursor _name

USI NG DESCRI PTOR sel ect _descri pt or _nane;
EXEC SQ. CLOSE cursor _namne;

Scrollable cursors can also be used with Method 4. The following sequence of
embedded SQL statements must be used for scrollable cursors.

EXEC SQL PREPARE st at enent _nane
FROM { :host_string | string_literal };
EXEC SQL DECLARE cursor_nane SCROLL CURSOR FOR st at ement _nane;
EXEC SQL DESCRI BE BI ND VARI ABLES FOR st atement _nane
I NTO bi nd_descri ptor_nane;
EXEC SQL OPEN cusor _nane
[USI NG DESCRI PTOR bi nd_descri pt or _nane];
EXEC SQL DESCRIBE [SELECT LIST FOR] statenent_nane
I NTO sel ect _descri pt or _nane;
EXEC SQL FETCH [FIRST| PRI OR| NEXT| LAST| CURRENT | RELATIVE fetch_offset
| ABSOLUTE fetch_offset] cursor_nane USING DESCRI PTOR
sel ect _descri pt or_nane;
EXEC SQL CLOSE cursor _nane;

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH cursor_nane | NTO host variable |ist;

Or, if the number of placeholders for bind variables in a dynamic SQL statement is

known, you can omit DESCRIBE BIND VARIABLES and use the following Method 3
OPEN statement:

EXEC SQL OPEN cursor _name [USI NG host _variable_list];

Next, you see how these statements allow your host program to accept and process a
dynamic SQL statement using descriptors.

Note: Several figures accompany the following discussion. To
avoid cluttering the figures, it was necessary to do the following;:

= Confine descriptor arrays to 3 elements
= Limit the maximum length of names to 5 characters

= Limit the maximum length of values to 10 characters

Declare a Host String

Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (select_stmt in our example) must be declared as a character string.

int enp_nunber;
VARCHAR enp_nane[10] ;
VARCHAR sel ect _stnt[120];
f1 oat bonus;

15-16 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Declare the SQLDAs

In our example, instead of hardcoding the SQLDA data structure, you use INCLUDE
to copy it into your program, as follows:

#incl ude <sql da. h>

Then, because the query might contain an unknown number of select-list items or
placeholders for bind variables, you declare pointers to select and bind descriptors, as
follows:

sgl da *sel ect_des;
sgl da *bi nd_des;

Allocate Storage Space for the Descriptors

Recall that you allocate storage space for a descriptor with the SQLSQLDAAI | oc()
library function. The syntax, using ANSI C notation, is:

SQLDA *SQLSQLDAAI | oc(dvoi d *context, unsigned int max_vars, unsigned int max_nane,
unsi gned int max_i nd_nane);

The SQLSQLDAAI | oc() function allocates the descriptor structure and the arrays
addressed by the pointer variables V, L, T, and I.

If max_name is nonzero, arrays addressed by the pointer variables S, M, and C are
allocated. If max_ind_name is nonzero, arrays addressed by the pointer variables X, Y,
and Z are allocated. No space is allocated if max_name and max_ind_name are zero.

If SQLSQLDAAI | oc() succeeds, it returns a pointer to the structure. If
SQLSQLDAAI | oc() fails, it returns a zero.

In our example, you allocate select and bind descriptors, as follows:

sel ect _des = SQLSQLDAAI | oc(SQL_SI NGLE_RCTX, 3, (size_t) 5, (size_t
5,

_ _t) 0);
bi nd_des = SQLSQLDAAI | oc(SQL_SI NGLE_RCTX, 3, (size_t) (size_t) 4);

For select descriptors, always set max_ind_name to zero so that no space is allocated for
the array addressed by X.

Set the Maximum Number to DESCRIBE

Next, you set the maximum number of select-list items or placeholders that can be
DESCRIBEJ, as follows:

sel ect _des->N = 3;
bi nd_des->N = 3;

Figure 15-2 and Figure 15-3 represent the resulting descriptors.

Note: In the select descriptor (Figure 15-2), the section for
indicator-variable names is crossed out to show that it is not used.

Oracle Dynamic SQL: Method 4 15-17

A Closer Look at Each Step

Initialized Select Descriptor

Figure 15-2

For names of placeholders:

Data Buffers

A A A A A A A A

»
n

—
n

:| set by sqlald()

CEE L DC e (EE e e Tl T L Ao IR [o =]

O 4 N O 4 N O « «N O 1 N O =« N O 1 N O « «N O 1 N /O 1 N\O 1 «

hoh b dhb b b

set by sqlald()

N
\
L
T
|
E
S
M
C
X
Y
Z

15-18 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Data Buffers

vyVYyey

vVvyy

For names of placeholders:

Figure 15-3 Initialized Bind Descriptor
N set by sqlald()
N
v E—» 1:
2_
o]
L E—b 1_
2_
o[]
T E—b 1_
2_
0[]
| E—» 17
2_
F o[+
N
S E—b 1| 4
2[5
0fs]
M E—» 1|5 set by sqlald()
2 5]
o
E
2_
0[]
X E—b 1_
2_
o [4]
v [[e]
2[4]
o]
z [1[]
2

0123 4

For names of indicators:

Put the Query Text in the Host String

Continuing our example, you prompt the user for a SQL statement, then store the
input string in select_stmt, as follows:

printf("\n\nEnter SQL statenent:

gets(select_stnt.arr);
select_stnt.len = strlen(select_stnt.arr);

"),

0123

We assume the user entered the following string:

" SELECT ename, enpno, comm FROM enp WHERE comm < : bonus"

PREPARE the Query from the Host String

PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string select_stmt and gives it the name sql_stmt, as follows:

EXEC SQL PREPARE sql _stnt FROM :sel ect_stnt;

Oracle Dynamic SQL: Method 4 15-19

A Closer Look at Each Step

DECLARE a Cursor

DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, you use the following syntax:
EXEC SQ. DECLARE cursor_name CURSOR FOR SELECT ...
To declare a cursor for dynamic queries, the statement name given to the dynamic

query by PREPARE is substituted for the static query. In our example, DECLARE
CURSOR defines a cursor named emp_cursor and associates it with sql_stmt, as follows:

EXEC SQL DECLARE enp_cursor CURSOR FCR sql _stnt;

Note: You can declare a cursor for all dynamic SQL statements,
not just queries. With non-queries, OPENing the cursor executes
the dynamic SQL statement.

DESCRIBE the Bind Variables

DESCRIBE BIND VARIABLES puts descriptions of placeholders into a bind descriptor.
In our example, DESCRIBE readies bind_des, as follows:

EXEC SQL DESCRI BE BI ND VARI ABLES FOR sql _stnt | NTO bind_des;

Note that bind_des must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but
precede the OPEN statement.

Figure 15-4 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set F to the actual number of placeholders found in the processed SQL
statement.

15-20 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Figure 15-4 Bind Descriptor after the DESCRIBE

N ' Data Buffers !

0 >

v [F 1[- — :
2 > .
of] : !

L[1] : ;
2_ X :
0[] ! Z

T E—> 1]0 set by DESCRIBE X
2|0

o

—_

L [
2 —J
F set by DESCRIBE

vy vVvew

For names of placeholders:

0 —$B [O[NJUTS
s[4 1 i !
2 r .
ofs] L 01234 :
N ! ;
2[5 : :
0[] 5 :
¢ [F> 1[o] |setbybescree | :
2| 0] » For names of indicators: X
o[- ' :
x [4> 1 . |
2 : !
0[4] t0123 :
Y [J 1[s I .
2[4 X :
0[0] ! !
z E—» 1[0] | setby DESCRIBE ;
2[0 ;

Reset Number of Placeholders

Next, you must reset the maximum number of placeholders to the number actually
found by DESCRIBE, as follows:

bi nd_des->N = bi nd_des- >F;

Get Values and Allocate Storage for Bind Variables

Your program must get values for the bind variables found in the SQL statement, and
allocate memory for them. How the program gets the values is up to you. For example,
they can be hardcoded, read from a file, or entered interactively.

In our example, a value must be assigned to the bind variable that replaces the
placeholder bonus in the query WHERE clause. So, you choose to prompt the user for
the value, then process it as follows:

for (i =0; i < bind_des->F; i++)

{

printf("\nEnter value of bind variable %*s:\n? ",

Oracle Dynamic SQL: Method 4 15-21

A Closer Look at Each Step

(int) bind_des->C[i], bind_des->S[i]);
get s(hostval);
/* Set length of value. */
bi nd_des->L[i] = strlen(hostval);
/* Allocate storage for value and null terninator. */
bi nd_des->V[i] = malloc(bind_des->L[i] + 1);
/* Allocate storage for indicator value. */
bind_des->I[i] = (unsigned short *) malloc(sizeof(short));
/* Store value in bind descriptor. */
strcpy(bind_des->V[i], hostval);
/* Set value of indicator variable. */
(bind_des->I[i]) =0; / or -1if "null" is the value */
/* Set datatype to STRING */
bi nd_des->T[i] = 5;
}

Assuming that the user supplied a value of 625 for bonus, Figure 15-5 shows the
resulting bind descriptor. Notice that the value is null-terminated.

15-22 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Figure 15-5 Bind Descriptor after Assigning Values

N reset by program : Data Buffers :
0 : — 65 set by program '
\Y E|—> 1 —> :
2 > I
0[3] setby program ¢ 01 23 :
B ; :
2 - :
o[1] ! :
T E—> 1| 0| reset by program ' X
2| 0] 1 For values of placeholders: :
of 4 : E set by program :
B = — :
2 > :
F , For names of placeholders: :
o3 B [O[NJU[S :
s [:
2 :
ols] : 01 2 3 4 :
Mo G 15 ' |
2|5 | :
o[5] ! :
c [F—= 1|0 ' :
2|0] ' For names of indicators: :
o 4 : :
x [.
2 :
ola] 012 3 !
v [1]a ' :
2|4 ' :
of[o] ' :
z [F=> 1]0 - :
20 : '

OPEN the Cursor

The OPEN statement used for dynamic queries is like that used for static queries
except that the cursor is associated with a bind descriptor. Values determined at run
time and stored in buffers addressed by elements of the bind descriptor arrays are
used to evaluate the SQL statement. With queries, the values are also used to identify
the active set.

In our example, OPEN associates emp_cursor with bind_des, as follows:

EXEC SQL OPEN enp_cursor USI NG DESCRI PTOR bi nd_des;

Remember, bind_des must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the active
set and positions the cursor at the first row.

Oracle Dynamic SQL: Method 4 15-23

A Closer Look at Each Step

DESCRIBE the Select List

If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement must
follow the OPEN statement but precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items in a select descriptor. In
our example, DESCRIBE readies select_des, as follows:

EXEC SQL DESCRI BE SELECT LI ST FOR sqgl _stnt |NTO sel ect _des;
Accessing the Oracle data dictionary, DESCRIBE sets the length and datatype of each
select-list value.

Figure 15-6 shows the select descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set F to the actual number of items found in the query select list. If
the SQL statement is not a query, F is set to zero.

Also notice that the NUMBER lengths are not usable yet. For columns defined as
NUMBER, you must use the library function SQLNunber PrecV6() to extract
precision and scale.

See Also: "Coercing Datatypes" on page 15-11

15-24 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Figure 15-6 Select Descriptor after the DESCRIBE

N . Data Buffers
= ——
\% 3—> 1 : >
2 >
of10] | ;
L |E|—> 1|# set by DESCRIBE :
2 |# , -
—— —— #=internal number :
0|1 !
T |E|—> 1|2 set by DESCRIBE !
2102 !
o4 —
[J— 1 >

1 set by DESCRIBE

Tn

For names of placeholders:

For names of indicators:

o[—pE[N[AIM[E
s [F= 1[4 —rE [M[P[N

2| 3 clo|m[m

0[5] ' 01234
Mo [F=> 1[5 :

2[5 :

o[s] ;
c [1[5 set by DESCRIBE !

2[4 -

01 2 3

<
N P O\N —» O/ N - O
o

1
0| set by DESCRIBE .
1
1
1

Reset Number of Select-List Items

Next, you must reset the maximum number of select-list items to the number actually
found by DESCRIBE, as follows:

sel ect _des->N = sel ect _des- >F;

Reset Length/Datatype of Each Select-list ltem

In our example, before FETCHing the select-list values, you allocate storage space for
them using the library function mal | oc() . You also reset some elements in the length
and datatype arrays for display purposes.

for (i=0; i<select_des->F; i++)

Oracle Dynamic SQL: Method 4 15-25

A Closer Look at Each Step

{
/* Clear null bit. */
SQLCol urmNul | Check(SQL_SI NGLE_RCTX, (unsigned short *)&(sel ect_des->T[i]),
(unsigned short *)&(select_des->T[i]), &nullok);
/* Reset length if necessary. */
swi tch(sel ect _des->T[i])
{
case 1. break;
case 2: SQLNumberPrecV6(SQ._SINGLE RCTX, (unsigned |ong *)
&(sel ect_des->L[i]), &prec, é&scal);
if (prec == 0) prec = 40;
sel ect _des->L[i] = prec + 2;
if (scal < 0) select_des->L[i] += -scal;
break;
case 8: select_des->L[i] = 240;
br eak;
case 11: select_des->L[i] = 18;
br eak;
case 12: select_des->L[i] = 9;
break;
case 23: break;
case 24: select_des->L[i] = 240;
br eak;
}
/* Allocate storage for select-list value. */
sel ect _des->\[i] = malloc(select_des->L[i]+1);
/* Allocate storage for indicator value. */
sel ect _des->I[i] = (short *)malloc(sizeof(short *));
/* Coerce all datatypes except LONG RAWto STRING */
if (select_des->T[i] != 24) select_des->T[i] = 5;
}

Figure 15-7 shows the resulting select descriptor. Notice that the NUMBER lengths are
now usable and that all the datatypes are STRING. The lengths in L[1] and L[2] are
6 and 9 because we increased the DESCRIBEd lengths of 4 and 7 by 2 to allow for a
possible sign and decimal point.

15-26 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Figure 15-7 Select Descriptor before the FETCH

N 3| reset by program . Data Buffers
ﬂ 9 , For names of slect-lis
0
v [F— 1[F 1
2_ |
o[10] ' 01 2 3 45 6 7 8
L [1f6 !
— reset by program '
219 |
— |
o5 :
T E—’ 1| 2 reset by program '
~ 1 1
2 i ' For values of indicators:
o b o—
4 1[5 — |
2| 1 : a
F : For names of select-list items:
o[3 —FE[N|A|M[E
S E—> 1| 7 —»E [M|[P[N|[O
2| T —#C|O|M M
o[5] ' 0 1 2 3 4
— 1
Mo [1fs |
215 1
— |
o5 !
¢ [F— 1[5] |
2| 4 :
—— '
0 >
X 1 —
2| — —>
0 :
v G 1[0 ;
2 |
1
0| 0| :
z 1[0] |
2[0] :

FETCH Rows from the Active Set

FETCH returns a row from the active set, stores select-list values in the data buffers,
and advances the cursor to the next row in the active set. If there are no more rows,
FETCH sets sqlca.sqlcode to the "no data found" Oracle error code. In our example,
FETCH returns the values of columns ENAME, EMPNO, and COMM to select_des, as
follows:

EXEC SQL FETCH enp_cursor USI NG DESCRI PTOR sel ect _des;
Figure 15-8 shows the select descriptor in our example after the FETCH. Notice that

Oracle has stored the select-list and indicator values in the data buffers addressed by
the elements of V and L.

Oracle Dynamic SQL: Method 4 15-27

A Closer Look at Each Step

For output buffers of datatype 1, Oracle, using the lengths stored in the L array,
left-justifies CHAR or VARCHAR?2 data and right-justifies NUMBER data. For output
buffer of type 5 (STRING), Oracle left-justifies and null terminates CHAR,
VARCHAR?2, and NUMBER data.

The value ' MARTIN' was retrieved from a VARCHAR2(10) column in the EMP table.
Using the length in L[0] , Oracle left-justifies the value in a 10-byte field, filling the
buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced to '7654'.
However, the length in L[1] was increased by 2 to allow for a possible sign and
decimal point. So, Oracle left-justifies and null terminates the value in a 6-byte field.

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to '482.50'.
Again, the length in L[2] was increased by 2. So, Oracle left-justifies and null
terminates the value in a 9-byte field.

Get and Process Select-List Values

After the FETCH, your program can process the returned values. In our example,
values for columns ENAME, EMPNO, and COMM are processed.

15-28 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

Figure 15-8 Selected Descriptor after the FETCH

!

N ' Data Buffers . .
— ' For names of select-list items:

o[4 —eM[A[R]T] 1 [N]\O !

v [F— 1 | —7 6540 :
2 | 1 —pals|2] [sJofw] T] -

0 [10] V01234567829 .

L [1[6] - set by FETCH '
219 .)

o [5] : '

T 3 i[5 | ;
2 15| " For values of indicators: .

o[ey :
[t E 0 | set by FETCH X
0 :

F \ For names of select-list items: '
e —FE [N[A[M[E !

s [1 E —%E M| P|[N|O :
2 [4 —$C[o[Mm[m '

o 3] . 01234 :

v G s - :
2[5 : '

0[5] ! X

c [F=> 1[5 ' ;
2 |4 . :

o [4 — '

X 1 > '
2 > .

0 X

0 X

0 1

oo X

z 1o X
2 (0 !

Deallocate Storage

You use the f r ee() library function to deallocate the storage space allocated by
mal | oc() . The syntax is as follows:

free(char *pointer);

In our example, you deallocate storage space for the values of the select-list items, bind
variables, and indicator variables, as follows:

for (i =0; i < select_des->F; i++) [* for select descriptor */

{
free(sel ect_des->V[i]);
free(select_des->I[i]);

}

for (i =0; i < bind_des->F, i++) [* for bind descriptor */

Oracle Dynamic SQL: Method 4 15-29

A Closer Look at Each Step

free(bind_des->V[i]);
free(bind_des->I[i]);
}

You deallocate storage space for the descriptors themselves with the
SQLSQLDAFr ee() library function, using the following syntax:

SQLSQLDAFr ee(cont ext, descriptor_nane);

The descriptor must have been allocated using SQLSQLDAAI | oc() . Otherwise, the
results are unpredictable.

In our example, you deallocate storage space for the select and bind descriptors as
follows:

SQLSQLDAFr ee(SQL_SI NGLE_RCTX, sel ect _des);
SQLSQLDAFr ee(SQL_SI NGLE_RCTX, bind_des);

CLOSE the Cursor

CLOSE disables the cursor. In our example, CLOSE disables emp_cursor as follows:
EXEC SQL CLOSE enp_cursor;

Using Host Arrays

To use input or output host arrays with Method 4, you must use the optional FOR
clause to tell Oracle the size of your host array.

See Also: Chapter 8, "Host Arrays" for more information on the
FOR clause

You must set descriptor entries for the ith select-list item or bind variable using the
syntax

V[i] = array_address;
L[i] = el ement_si ze;

where array_address is the address of the host array, and element_size is the size of one
array element.

Then, you must use a FOR clause in the EXECUTE or FETCH statement (whichever is
appropriate) to tell Oracle the number of array elements you want to process. This
procedure is necessary because Oracle has no other way of knowing the size of your
host array.

In the complete program example later, three input host arrays are used to INSERT
rows into the EMP table. EXECUTE can be used for Data Manipulation Language
statements other than queries with Method 4.

#include <stdio. h>
#i ncl ude <sql cpr. h>
#include <sql da. h>
#include <sql ca. h>

#define NAMVE_SIZE 10
#define INAME_SIZE 10
#define ARRAY_SI ZE 5

[* connect string */

15-30 Pro*C/C++ Programmer’s Guide

A Closer Look at Each Step

char *username = "scott/tiger";

char *sqgl _

stnt

"I NSERT I NTO enp (empno, enane, deptno) VALUES (:e, :n, :d)";
int array_size = ARRAY_SIZE, /* nust have a host variable too */

SQLDA *binda;

char nanes[ARRAY_SI ZE] [NAME_SI ZF] ;
i nt nunber s[ARRAY_SI ZE], dept s[ARRAY_SI ZE] ;

/* Declare and initialize indicator vars. for enpno and deptno col ums */
short i nd_enpno[ARRAY_SI ZE] = {0,0,0,0, 0};
short i nd_dept [ARRAY_SI ZE] = {0,0,0,0, 0};

mai n()

{

EXEC SQL WHENEVER SQLERROR GOTO sql _error;

/* Connect */
EXEC SQL CONNECT : user nane;
printf("Connected.\n");

/* Allocate the descriptors and set the N conponent.
This nust be done before the DESCRI BE. */

bi nda

bi nda-

= SQLSQLDAAI | oc(SQL_SI NGLE_RCTX, 3, NAME_SIZE, |NAVE_SI ZE);
>N = 3;

/* Prepare and describe the SQ statenent. */
EXEC SQL PREPARE stnt FROM :sql _stnt;
EXEC SQL DESCRI BE BI ND VARI ABLES FOR stnt | NTO bi nda;

/* Initialize the descriptors. */

bi nda-
bi nda-
bi nda-
bi nda-

bi nda-
bi nda-
bi nda-
bi nda-

bi nda-
bi nda-
bi nda-
bi nda-

>V[0] = (char *) nunbers;

>L[0] = (long) sizeof (int);
>T[0] = 3;

>[[0] = ind_enpno;

>V[1] = (char *) nanes;
>L[1] = (long) NAME_SI ZE;
>T[1] = 1;

>[[1] = (short *)O0;

>V[2] = (char *) depts;
>L[2] = (long) sizeof (int);
>T[2] = 3;

>[[2] = ind_dept;

[* Initialize the data buffers. */
strcpy(&nanes[0] [0], "ALLISON');
nunbers[0] = 1014;
depts[0] = 30;

strcpy(&nanmes[1] [0], "TRUSDALE");
nunbers[1] = 1015;
depts[1] = 30;

strcpy(&nanes[2] [0], "FRAZIER');
nunbers[2] = 1016;
depts[2] = 30;

Oracle Dynamic SQL: Method 4 15-31

Example Program: Dynamic SQL Method 4

sample12.pc

strcpy(&nanes[3] [0], "CARUSO');

nunbers[3] = 1017;

ind_dept[3] = -1; /* set indicator to -1 to insert NULL */
depts[3] = 30; [* value in depts[3] is ignored */

strcpy(&nanmes[4] [0], "WESTON');
nunbers[4] = 1018;
depts[4] = 30;

/* Do the INSERT. */
printf("Adding to the Sales force...\n");

EXEC SQL FOR :array_size
EXECUTE stnt USI NG DESCRI PTCR bi nda;

/* Print rows-processed count. */
printf("% rows inserted.\n\n", sqlca.sglerrd[2]);
EXEC SQL COW T RELEASE;
exit(0);

sql _error:
[* Print Oracle error nessage. */
printf("\n% 70s", sqlca.sqlerrmsqglerrnt);
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK RELEASE;
exit(1);

A simple dynamic SQL example using array fetches is shown in file sanpl e12. pc in
the demo directory.

Example Program: Dynamic SQL Method 4

This program shows the basic steps required to use dynamic SQL with Method 4.
After connecting to Oracle, the program:

= Allocates memory for the descriptors using SQLSQLDA Alloc()
= Prompts the user for a SQL statement

« PREPAREs the statement

= DECLARES a cursor

= Checks for any bind variables using DESCRIBE BIND

= OPENS the cursor

= DESCRIBEs any select-list items.

If the input SQL statement is a query, the program FETCHes each row of data, then
CLOSEs the cursor. This program is available on-line in the deno directory, in the file
sanpl e10. pc.

/***

Sampl e Program 10: Dynamic SQL Method 4

Thi's program connects you to ORACLE using your username and
password, then pronpts you for a SQL statement. You can enter

15-32 Pro*C/C++ Programmer’s Guide

Example Program: Dynamic SQL Method 4

any legal SQ statement. Use regular SQ syntax, not enbedded SQL.
Your statenment will be processed. |If it is a query, the rows
fetched are displayed.

You can enter nultiline statements. The linmt is 1023 characters.
This sanpl e programonly processes up to MAX_| TEMS bind variabl es and
MAX_| TEMS sel ect-list items. MAX_ITEMS is #defined to be 40.

***/

#include <stdio. h>
#include <string. h>
#include <setjnp.h>
#include <sql da. h>
#include <stdlib.h>
#incl ude <sql cpr. h>

/* Maxi num nunber of select-list items or bind variables. */
#define MAX_| TEMB 40

/* Maxi mum | engths of the _names_ of the
select-list itens or indicator variables. */

#defi ne MAX_VNAME LEN 30

#define MAX_| NAME_LEN 30

#i fndef NULL
#define NULL O
#endi f

/* Prototypes */
#if defined(__STDC)
void sql _error(void);
int oracle_connect(void);
int alloc_descriptors(int, int, int);
int get_dyn_statenent(void);
voi d set_hind_variabl es(void);
voi d process_sel ect _list(void);
voi d hel p(void);
#el se
void sql _error(/*_ void _*/);
int oracle_connect(/*_void */);
int alloc_descriptors(/*_int, int, int _*/);
int get_dyn_statenent(/* void _*/);
voi d set_bind_variables(/*_ void -*/)
/

)

voi d process_select_list(/*_ void _*
void hel p(/*_ void _*/);
#endi f
char *dm _conmands[] = {"SELECT", "select", "INSERT", "insert",

"UPDATE", "update", "DELETE', "delete"};

EXEC SQL | NCLUDE sql da;
EXEC SQL | NCLUDE sql ca;

EXEC SQL BEG N DECLARE SECTI ON;

char dyn_st at enent [1024] ;

EXEC SQL VAR dyn_statement |'S STRI NG 1024);
EXEC SQL END DECLARE SECTI ON,

SQLDA *hi nd_dp;
SQLDA *sel ect _dp;

Oracle Dynamic SQL: Method 4 15-33

Example Program: Dynamic SQL Method 4

/* Define a buffer to hold longjnp state info. */
j mp_buf j np_conti nue;

/* A global flag for the error routine. */
int parse_flag = 0;

voi d main()

{

int i;

/* Connect to the database. */
if (oracle_connect() !'=0)
exit(1);

/* Allocate menory for the select and bind descriptors. */
if (alloc_descriptors(MAX_ | TEMS, MAX VNAME LEN, MAX | NAME_LEN) !'= 0)

exit(1);
/* Process SQL statements. */
for (57)
{

(void) setjnp(jnmp_continue);

/* CGet the statement. Break on "exit". */
if (get_dyn_statement() != 0)
br eak;

/* Prepare the statenent and declare a cursor. */
EXEC SQL WHENEVER SQLERROR DO sql _error();

parse_flag = 1; /* Set a flag for sql _error(). */
EXEC SQL PREPARE S FROM :dyn_st at enent;
parse _flag = 0; /* Unset the flag. */

EXEC SQL DECLARE C CURSCR FCR S;

/* Set the bind variables for any placeholders in the
SQL statement. */
set _bind_variables();

/* QOpen the cursor and execute the statenent.

* |f the statement is not a query (SELECT), the
* statement processing is conpleted after the

* OPEN.

*/

EXEC SQL OPEN C USI NG DESCRI PTCR bi nd_dp;

[* Call the function that processes the select-list.
* |f the statement is not a query, this function

* just returns, doing nothing.

*/

process_select _list();

/* Tell user how many rows processed. */
for (i =0; i <8; i++)
{
if (strncnp(dyn_statenent, dml _conmands[i], 6) == 0)

{
printf("\n\n% rowde processed.\n", sqglca.sqlerrd[2],

15-34 Pro*C/C++ Programmer’s Guide

Example Program: Dynamic SQL Method 4

sglca.sqglerrd[2] ==1? "\0" : 's');
br eak;

} /* end of for(;;) statement-processing |oop */
/* \Wen done, free the menory allocated for

pointers in the bind and sel ect descriptors. */
for (i =0; i < MAXITENS; i++)

{
if (bind_dp->V[i] != (char *) 0)
free(bind_dp->V[i]);
free(bind_dp->I[i]); /* MAX_ITEMS were allocated. */
if (select_dp->V[i] != (char *) 0)
free(select_dp->V[i]);
free(select_dp->I[i]); /* MAX_|TEMS were allocated. */
}

/* Free space used by the descriptors themselves. */
SQLSQLDAFree(SQL_SI NGLE_RCTX, bind_dp);
SQLSQLDAFree(SQL_SINGLE_RCTX, select _dp);

EXEC SQL WHENEVER SQLERROR CONTI NUE;
/* Cose the cursor. */
EXEC SQ. CLCSE G

EXEC SQL COW T WORK RELEASE;
puts("\nHave a good day!\n");

EXEC SQL WHENEVER SQLERROR DO sql _error();
return;

int oracle_connect()

EXEC SQL BEG N DECLARE SECTI ON;
VARCHAR usernane[128];
VARCHAR passwor d[32];

EXEC SQL END DECLARE SECTI ON,

printf("\nusernane: ");

fgets((char *) usernane.arr, sizeof usernane.arr, stdin);
usernane.arr[strlen((char *) usernane.arr)-1] = '\0";
usernane. |l en = (unsigned short)strlen((char *) usernane.arr);
printf("password: ");

fgets((char *) password.arr, sizeof password.arr, stdin);
password. arr[strlen((char *) password.arr) - 1] = "'\0';
password. |l en = (unsigned short)strlen((char *) password.arr);
EXEC SQL WHENEVER SQLERROR GOTO connect _error;

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password;

printf("\nConnected to ORACLE as user %.\n", username.arr);

return 0;

Oracle Dynamic SQL: Method 4 15-35

Example Program: Dynamic SQL Method 4

connect _error:
fprintf(stderr, "Cannot connect to ORACLE as user %\n", usernane.arr);
return -1;

* Allocate the BIND and SELECT descriptors using SQLSQLDAAI I oc().
* Aso allocate the pointers to indicator variables

* in each descriptor. The pointers to the actual bind

* variables and the select-list items are realloc'ed in

* the set_bind_variables() or process_select _list()

* routines. This routine allocates 1 byte for select_dp->V[i]

* and bind_dp->V[i], so the realloc will work correctly.

al l oc_descriptors(size, max_vnanme_| en, max_i name_| en)
int size;

int max_vnane_| en;

int max_iname_|en;

{

int i;

/*
* The first SQLSQLDAAI |l oc paraneter is the runtime context.

* The second paraneter deternines the maxi num nunber of
* array elements in each variable in the descriptor. In
* other words, it determnes the maxi num nunber of bind
* variables or select-list items in the SQL statenent.

* The third parameter deternines the maxi mumlength of

* strings used to hold the names of select-list itens

* or placeholders. The maxi mumlength of colum

* names in ORACLE is 30, but you can allocate nore or |ess
* as needed.

* The fourth paraneter determines the maxi numlength of
* strings used to hold the nanes of any indicator

* variables. To follow ORACLE standards, the maxi num
* length of these should be 30. But, you can allocate
* more or |ess as needed.

*/

if ((bind_dp =
SQLSQLDAAI | oc(SQL_SI NGLE_RCTX, size, max_vnane_|l en, max_iname_|len)) ==
(SQLDA *) 0)

fprintf(stderr,
"Cannot allocate menmory for bind descriptor.”);
return -1; /* Have to exit in this case. */

}

if ((select_dp =
SQLSQLDAAI | oc (SQL_SI NGLE_RCTX, size, max_vnane_| en, max_inane_|en)) ==
(SQLDA *) 0)

fprintf(stderr,

"Cannot allocate menory for select descriptor.");
return -1;

15-36 Pro*C/C++ Programmer’s Guide

Example Program: Dynamic SQL Method 4

}
sel ect _dp->N = MAX_I TEMS;

/* Allocate the pointers to the indicator variables, and the
actual data. */
for (i =0; i < MAX_ITEMS, i++) {
bind_dp->I[i] = (short *) malloc(sizeof (short));
select _dp->I[i] = (short *) malloc(sizeof(short));
bi nd_dp->V[i] = (char *) malloc(1);
sel ect _dp->V[i] = (char *) malloc(1);
}

return 0;

int get_dyn_statenent()

char *cp, |inebuf[256];
int iter, plsql;

for (plsql =0, iter =1; ;)

{
if (iter == 1)
{
printf("\nSQ> ");
dyn_statenent[0] = "\0';
}

fgets(linebuf, sizeof |inebuf, stdin);

cp = strrchr(linebuf, "\n");

if (cp & cp !'= linebuf)
sep =

else if (cp == linebuf)
conti nue;

if ((strncnp(linebuf, "EXIT", 4) ==0) ||
(strncnp(linebuf, "exit", 4) == 0))

{
return -1,
}
else if (linebuf[0] =="7?" ||
(strncnp(linebuf, "HELP', 4) == 0) ||
(strncnp(linebuf, "help", 4) == 0))
{
hel p();
iter = 1;
conti nue;
}

if (strstr(linebuf, "BEGN') ||
(strstr(linebuf, "begin")))

{
plsql = 1;
}
strcat (dyn_statenment, |inebuf);

Oracle Dynamic SQL: Method 4 15-37

Example Program: Dynamic SQL Method 4

if ((plsqgl && (cp = strrchr(dyn_statement, '/"))) |
('plsgl && (cp = strrchr(dyn_statenent, ';'))))

{
*cp = "\0';
break;
}
el se
{
iter++
printf("93d ", iter);
}
}
return 0;

voi d set _bind_vari abl es()
{

int i, n;

char bind_var[64];

/* Describe any bind variables (input host variables) */
EXEC SQL VHENEVER SQLERROR DO sql _error();

bind_dp->N = MAX_ITEMS; /* Initialize count of array elements. */
EXEC SQL DESCRI BE BI ND VARI ABLES FOR S | NTO bi nd_dp;

I* If Fis negative, there were nore bind variabl es
than originally allocated by SQLSQLDAA loc(). */
i f (bind_dp->F < 0)
{
printf ("\nToo many bind variables (%), maximumis %\n.",
-bi nd_dp->F, MAX_| TEMS);
return;

}

/* Set the maxi mum nunber of array elements in the
descriptor to the nunber found. */

bi nd_dp->N = bi nd_dp- >F;

/* Get the value of each bind variable as a

character string.

di] contains the length of the bhind variable
nane used in the SQ statenent.

S[i] contains the actual name of the bind variable
used in the SQ. statenent.

L[i] will contain the length of the data val ue
entered.

V[i] will contain the address of the data val ue
ent er ed.

T[i] is always set to 1 because in this sanple program
data values for all bind variables are entered
as character strings.
ORACLE converts to the table value from CHAR

* * X * * * * * % * * * * * * * * *

15-38 Pro*C/C++ Programmer’s Guide

Example Program: Dynamic SQL Method 4

*

* |[i] will point to the indicator value, which is

* set to -1 when the bind variable value is "null".
*/

for (i =0; i < bind_dp->F; i++)

{

printf ("\nEnter value for bind variable %*s: ",
(int)bind_dp->Ci], bind_dp->§[i]);
fgets(bind_var, sizeof bind_var, stdin);

/* Get length and renove the new |ine character. */
n = strlen(bind_var) - 1;

/* Set it in the descriptor. */
bind_dp->L[i] = n;

/* (re-)allocate the buffer for the val ue.
SQLSQLDAAI | oc() reserves a pointer |ocation for
V[i] but does not allocate the full space for
the pointer. */

bi nd_dp->V[i] = (char *) realloc(bind_dp->V[i],
(bind_dp->L[i] + 1));

[* And copy it in. */
strncpy(bind_dp->V[i], bind_var, n);

/* Set the indicator variable's value. */
if ((strncnp(bind_dp->V[i], "NULL", 4) == 0) ||
(strncnp(bind_dp->V[i], "null", 4) == 0))
*bind_dp->I[i] = -1;
el se
*bind_dp->I[i] = 0;

/* Set the bind datatype to 1 for CHAR */
bi nd_dp->T[i] = 1;
}

return;

}

voi d process_sel ect _list()

{

int i, null_ok, precision, scale;

if ((strncnp(dyn_statement, "SELECT", 6) != 0) &&
(strncnp(dyn_statenent, "select", 6) !=0))

{
sel ect _dp->F = 0;
return;

}

/* If the SQL statement is a SELECT, describe the
select-list items. The DESCRI BE function returns
their names, datatypes, |engths (including precision
and scale), and NULL/NOT NULL statuses. */

sel ect _dp->N = MAX_| TEMS;

Oracle Dynamic SQL: Method 4 15-39

Example Program: Dynamic SQL Method 4

EXEC SQL DESCRI BE SELECT LI ST FOR S I NTO sel ect _dp;

/* 1f Fis negative, there were nore select-list
items than originally allocated by SQLSQDAA loc(). */
if (select_dp->F < 0)
{
printf ("\nToo many select-list items (%), maximumis %\ n",
-(sel ect _dp->F), MAX_ITEMS);
return;

}

/* Set the maxi num nunber of array elements in the
descriptor to the nunber found. */
sel ect _dp->N = sel ect _dp->F;

/* Allocate storage for each select-list item

SQLNunber PrecV6() is used to