
Oracle® Application Development Framework
Case Manual

10g Release 2 (10.1.2)

B19163-01

July 2005

Oracle Application Development Framework Case Manual, 10g Release 2 (10.1.2)

B19163-01

Copyright © 2005, Oracle. All rights reserved.

Primary Author: Ralph Gordon

Contributor: Steve Muench, Odile Sullivan-Tarazi, Orlando Cordero

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Part I Oracle ADF Toy Store Application: Getting Started

1 Introduction to the Oracle ADF Toy Store Application Case Study

1.1 Introduction ... 1-1
1.2 For More Information .. 1-2

2 Setting Up the Oracle ADF Toy Store Application

2.1 Introduction ... 2-1
2.2 Downloading and Extracting the Oracle ADF Toy Store Application................................ 2-1
2.3 Setting Up the Oracle ADF Toy Store Database Users.. 2-2
2.4 Creating the Oracle ADF Toy Store Database Tables .. 2-2
2.5 Creating the Oracle JDeveloper Data Connections.. 2-2
2.6 Installing the Oracle JDeveloper JUnit Extension .. 2-3

3 Quick Tour of the Oracle ADF Toy Store Application

3.1 Introduction ... 3-1
3.2 Browsing Products and Adding Them to Your Cart ... 3-1
3.3 Checking Out and Signing In.. 3-2
3.4 Registering a New User and Editing an Existing User's Profile .. 3-4
3.5 Trying Out the Toy Store Web Application in Another Language 3-5

Part II The Oracle ADF Toy Store Web Application: Lessons

4 Lesson One: Designing the Home Page

4.1 Introduction ... 4-1
4.2 Planning the Design of the Home Page ... 4-1
4.3 Getting Started with the Struts Page Flow Diagram .. 4-2
4.4 Laying Out the Home Page ... 4-4
4.5 Hands-On for Lesson 1... 4-5

5 Lesson Two: Drilling Down Into the Products

5.1 Introduction ... 5-1
5.2 Analyzing the Products Display Page Flow ... 5-1
5.3 Storing JSP Files Under the WEB-INF Directory.. 5-2

iv

5.4 Integrating the Model and Controller Layers... 5-3
5.5 Laying Out the Query Results Page ... 5-5
5.6 Conditionalizing the Display .. 5-7
5.7 Hands-On for Lesson 2... 5-8

6 Lesson Three: Assembling the Shopping Cart

6.1 Introduction ... 6-1
6.2 Analyzing the Shopping Cart Page Flow ... 6-1
6.3 Managing the State of the Shopping Cart ... 6-2
6.4 Handling the Product Pages' Add-to-Cart Event... 6-3
6.5 Handling the Shopping Cart Page's Add/Remove Events .. 6-3
6.6 Handling the Shopping Cart Page's Review-Checkout Event ... 6-4
6.7 Working with Operations in Forms .. 6-5
6.8 Hands-On for Lesson 3... 6-6

7 Lesson Four: Processing the Shopping Cart Order

7.1 Introduction ... 7-1
7.2 Analyzing the Proceed to Checkout Flow... 7-1
7.3 Laying Out the Review Checkout Page... 7-2
7.4 Laying Out the Confirm Shipping Information Page.. 7-4
7.5 Hands-On for Lesson 4 .. 7-6

8 Lesson Five: Requiring the User to Sign Into an Account

8.1 Introduction ... 8-1
8.2 Analyzing the Sign-In Page Flow ... 8-1
8.3 Laying Out the Sign-In Page ... 8-3
8.4 Laying Out the Register New User Page... 8-4
8.5 Laying Out the Generic Form Control Page ... 8-4
8.6 Laying Out the Account Created Page .. 8-7
8.7 Hands-On for Lesson 5... 8-7

9 Lesson Six: Allowing the User to Edit Their Account

9.1 Introduction ... 9-1
9.2 Setting Up the Model Layer Data ... 9-1
9.3 Laying Out the Edit Account Page... 9-2
9.4 Analyzing the Binding Container for the Edit Account Page .. 9-2
9.5 Showing Read-Only Data in a Form .. 9-3
9.6 Creating Input Fields in the Form .. 9-3
9.7 Using EL to Work with Labels, Tooltips, and Other Metadata.. 9-4
9.8 Including a Databound Poplist Control .. 9-5
9.9 Alternative to a Databound Poplist Using Custom Renderer.. 9-7
9.10 Hands-On for Lesson 6... 9-9

10 Summary of the Oracle ADF Toy Store Application

10.1 Related Documentation... 10-1

v

Preface

This manual shows developers how to combine Java 2 Platform, Enterprise Edition
(J2EE) and JDeveloper technologies to suit particular application needs. The
recommendations in this manual focus on ease of development and recognized best
practices that exploit the design-time features of the JDeveloper IDE.

This preface contains the following sections:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
This manual is intended for enterprise application developers who want to use
JDeveloper to implement enterprise business solutions.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

vi

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information:

■ For JDeveloper IDE features that support team development, testing, and
production deployment to the J2EE platform, see the JDeveloper help system.
These topics are beyond the scope of the present document.

■ For a list of J2EE-related learning resources, see Section 10.1, "Related
Documentation".

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Oracle ADF Toy Store Application: Getting

Started

Part 1 of the Case Manual contains information to help you set up and become
acquainted with the Oracle Toy Store application.

Part 1 contains the following chapters:

■ Chapter 1, "Introduction to the Oracle ADF Toy Store Application Case Study"

■ Chapter 2, "Setting Up the Oracle ADF Toy Store Application"

■ Chapter 3, "Quick Tour of the Oracle ADF Toy Store Application"

Introduction to the Oracle ADF Toy Store Application Case Study 1-1

1
Introduction to the Oracle ADF Toy Store

Application Case Study

This chapter contains the following sections:

■ Section 1.1, "Introduction"

■ Section 1.2, "For More Information"

1.1 Introduction
The Oracle ADF Toy Store application is a realistic web store application which
consists of over twenty web pages to enable the end user to browse and purchase from
a catalog of toys online. Like any web store application, the Oracle ADF Toy Store
application includes functionality to manage user accounts, display product details,
search the database, manage the shopping cart, and transact purchases. Technically,
the application design adheres to the Model/View/Controller (MVC) design
pattern and is implemented using these existing J2EE application frameworks:

■ Apache Struts

■ Oracle Application Development Framework (Oracle ADF)

■ JavaServer Pages (JSP) technology

As with all MVC-style web applications, Oracle ADF Toy Store has the basic
architecture illustrated in Figure 1–1, "The Model-View-Control Architecture".

http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://jakarta.apache.org/struts/
http://www.oracle.com/technology/products/jdev/htdocs/905/adffaq_otn.html
http://java.sun.com/products/jsp/

For More Information

1-2 Oracle Application Development Framework Case Manual

Figure 1–1 The Model-View-Control Architecture

■ The model layer represents the business information needed by the application.

■ The controller layer handles user input, interacts with the model layer, and picks
the presentation.

■ The view layer presents the model data to the end user.

The goal of this case study is to show in detail the framework-based implementation
of the Oracle ADF Toy Store sample application. We will focus primarily on the
controller and view layer technologies. We will explore the Struts and Oracle ADF
frameworks in tandem to understand how they simplify implementing the view and
controller layers. In the process, we'll also examine ways to use Oracle JDeveloper 10g
productively to build these kinds of MVC-style business applications.

1.2 For More Information
Business logic developers responsible for coding the business object layer will want to
refer to the Oracle ADF Toy Store technical whitepaper that is a companion document
to this case study. The model layer consists of one or more business services that expose
application functionality and access to model data through a business service interface.
These business services, in turn, rely on query components to retrieve that data and on
business objects to validate and persist any new or modified data.

In the Oracle ADF Toy Store application, business objects are implemented with Oracle
ADF Business Components, a framework within Oracle ADF that supports business
logic development. In this case study, we encounter examples of the interaction
between the model and controller layers, but an in-depth discussion of the benefits of
working with Oracle ADF Business Components is beyond the scope of this study.

To view the technical whitepaper, see the Welcome to the Oracle ADF Toy
Store Application page on Oracle Technology Network. In particular, the section
"Implementing the Model Layer Using Oracle ADF Business Components" will be of
interest. The whitepaper provides in-depth descriptions of the benefits of ADF
Business Components. The whitepaper also describes in detail parts of the Oracle ADF
Toy Store application not addressed by this case study.

http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore.html

For More Information

Introduction to the Oracle ADF Toy Store Application Case Study 1-3

Before diving into the explanation of the application, let's make sure you can open and
run the application in JDeveloper 10g. The next chapter details the steps to get the Toy
Store application set up correctly on your system.

Note: In contrast to the companion technical whitepaper, this case
study provides detailed descriptions of individual Toy Store
application web pages and describes how page flow is managed. We
will see exactly how Oracle ADF integrates with the view and
controller layers, and how web page designers benefit from Oracle
ADF data binding technology and Struts to produce clean,
easy-to-understand JSP pages, free of complex business logic and
unnecessary scriptlet code.

For More Information

1-4 Oracle Application Development Framework Case Manual

Setting Up the Oracle ADF Toy Store Application 2-1

2
Setting Up the Oracle ADF Toy Store

Application

This chapter contains the following sections:

■ Section 2.1, "Introduction"

■ Section 2.2, "Downloading and Extracting the Oracle ADF Toy Store Application"

■ Section 2.3, "Setting Up the Oracle ADF Toy Store Database Users"

■ Section 2.4, "Creating the Oracle ADF Toy Store Database Tables"

■ Section 2.5, "Creating the Oracle JDeveloper Data Connections"

■ Section 2.6, "Installing the Oracle JDeveloper JUnit Extension"

2.1 Introduction
These instructions assume that you are running Oracle JDeveloper 10g
production, version 10.1.2.0.2. Although the Oracle ADF Toy Store application will
work with JDeveloper 10.1.2.0.1 or 9.0.5.x, we recommend using the specified
production version to follow along with the case study. The application will not work
with earlier versions of JDeveloper.

We also assume that you have access to an Oracle database, and privileges to create
new user accounts to set up the sample data.

Note: Oracle ADF is designed to work with any relational database, and has been
tested with Oracle, Oracle Lite, DB2, and SQLServer. The Using Oracle ADF with
Foreign Datasources whitepaper covers the details. However, for the purposes of
this case study we assume that you will use the Oracle database, version 8.1.7 or later.

2.2 Downloading and Extracting the Oracle ADF Toy Store Application
Download the adftoystore_10_1_2.zip file if you haven't already.

Extract the contents of the adftoystore_10_1_2.zip file with the standard JDK jar
utility into a convenient directory:

jar -xvf adftoystore_10_1_2.zip

The above command will create a directory adftoystore and subdirectories. (For
these instructions, we assume that you have extracted the adftoystore_10_1_
2.zip file into the root directory C:\, thus creating a "root" directory of
C:\adftoystore.)

http://otn.oracle.com/products/jdev/tips/muench/adftoystore_10_1_2.zip
http://www.oracle.com/technology/products/jdev/index.html
http://www.oracle.com/technology/products/jdev/howtos/bc4j/bc_foreign_db_intro.html
http://www.oracle.com/technology/products/jdev/howtos/bc4j/bc_foreign_db_intro.html

Setting Up the Oracle ADF Toy Store Database Users

2-2 Oracle Application Development Framework Case Manual

Note: If the jar command does not work on your system, double-check that you have
included the <JDKHOME>/bin subdirectory in your system path. If you downloaded
the full version of Oracle JDeveloper 10g, then you will have a 1.4.2 JDK in the
<JDEVHOME>/jdk directory.

2.3 Setting Up the Oracle ADF Toy Store Database Users
Using the SQL script provided, create the TOYSTORE and TOYSTORE_STATEMGMT
user accounts in the database.

Run the create user accounts SQL script like this:

cd C:\adftoystore\DatabaseSetup
sqlplus /nolog @CreateToyStoreUsers.sql

After you enter your SYS account's password, the script will create the TOYSTORE and
TOYSTORE_STATEMGMT user accounts. The TOYSTORE schema will contain the Oracle
ADF Toy Store application tables, while the TOYSTORE_STATEMGMT schema will be
used by the Oracle ADF state management facility to store pending data across web
pages.

2.4 Creating the Oracle ADF Toy Store Database Tables
Run the database setup SQL script
./adftoystore/DatabaseSetup/ToyStore.sql like this:

sqlplus toystore/toystore @ToyStore.sql

Note: If you have a version of the Oracle database prior to Oracle Database 10g, the
command purge recyclebin at the end of this script will yield an error, which you
can safely ignore.

2.5 Creating the Oracle JDeveloper Data Connections
In JDeveloper 10g, create two database connections to correspond to the two database
accounts created above.

Define two connections in JDeveloper 10g:

■ toystore, corresponding to the TOYSTORE user (password TOYSTORE)

■ toystore_statemgmt, corresponding to the TOYSTORE_STATEMGMT user
(password TOYSTORE)

Note: The two connection names are case-sensitive and should be typed in lowercase, as
shown.

To save some typing, you can import these two connections from the supplied jdev_
toystore_connections.xml file in the ./adftoystore/DatabaseSetup
directory. To do so, select the Database category folder in the Connection Navigator
and choose Import Connections from the context menu. Supply the jdev_
toystore_connections.xml filename as the file to import from. After importing
the two named connections, you should test each connection by selecting it,
double-clicking to bring up the Edit Database Connection dialog, and selecting the
Test tab. If clicking the Test Connection button does not yield a "Success!" message,
then correct the connection details on the Connection page to work for the database
you want to connect to. By default, the connections are defined against a database on
your local machine, listening on port 1521, with a SID of ORCL.

Installing the Oracle JDeveloper JUnit Extension

Setting Up the Oracle ADF Toy Store Application 2-3

2.6 Installing the Oracle JDeveloper JUnit Extension
Optionally, ensure that the JUnit Extension for JDeveloper is installed.

JUnit is the standard tool for building regression tests for Java applications. Oracle
JDeveloper 10g features native support for creating and running JUnit tests, but this
feature is installed as a separately downloadable IDE extension. You can tell if you
already have the JUnit extension installed by choosing File > New from the
JDeveloper main menu and verifying that you have a Unit Tests (JUnit) category
under the General top-level category in the New Gallery.

If you do not already have the JUnit extension installed, then download it now.
You'll find it along with all the other extensions available for JDeveloper in the
JDeveloper Extension Exchange on OTN. To complete the installation of the
extension, first exit JDeveloper if you are currently running it. With JDeveloper not
running, extract the contents of the downloaded ZIP file into the ./jdev/lib/ext
subdirectory under your JDeveloper installation home directory. Then restart
JDeveloper.

Finally, you should verify that the junit3.8.1 subdirectory exists in your
JDeveloper installation home. This directory will be automatically created the first
time you run any JUnit wizard from the Unit Tests (JUnit) category of the New
Gallery. However, even if you are not ready to create any JUnit tests, you may wish to
perform the following steps to ensure the directory is set up correctly.

Assuming that your current directory is the JDeveloper installation home directory,
run these two commands:

jar -xvf jdev/lib/ext/junit_addin.jar junit3.8.1.zip

The first command extracts the junit3.8.1.zip file from the junit_addin.jar
archive. The ZIP file contains the distribution of JUnit that JDeveloper has been tested
with.

jar -xvf junit3.8.1.zip

The second command extracts the contents of the junit3.8.1.zip file into the JDeveloper
installation home directory.

Open the ./adftoystore/ADFToyStore.jws workspace in JDeveloper 10g.

Run the application in JDeveloper 10g by selecting index.jsp in the
ToyStoreViewController project and choosing Run, as shown in Figure 2–1, "Running
the Oracle ADF Toy Store Application Inside JDeveloper".

http://www.junit.org/index.htm
http://www.oracle.com/technology/software/products/jdev/htdocs/junit10g/ibmcpl.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/index.html

Installing the Oracle JDeveloper JUnit Extension

2-4 Oracle Application Development Framework Case Manual

Figure 2–1 Running the Oracle ADF Toy Store Application Inside JDeveloper

Running the index.jsp page from inside JDeveloper will start the embedded Oracle
Application Server 10g Oracle Containers for J2EE (OC4J) server, launch your default
browser, and cause it to request the following URL:

http://yourmachine:8988/ADFToyStore/index.jsp

If everything is working correctly, you will see the home page of the Oracle ADF Toy
Store application, as shown in Figure 2–2, "Oracle ADF Toy Store Application Home
Page".

Note: Since index.jsp is configured as the default run target on
the Runner page of the Project Properties dialog for the
ToyStoreViewController project, you can also simply click the Run
icon in the JDeveloper toolbar when this project is active, or right-click
the project and choose Run. To see the project’s properties, select the
project in the navigator, right-click, and choose Property Properties.

Installing the Oracle JDeveloper JUnit Extension

Setting Up the Oracle ADF Toy Store Application 2-5

Figure 2–2 Oracle ADF Toy Store Application Home Page

The next chapter provides a quick tour of the application and helps you to become
familiar with the web pages that are the subject of this case study.

Installing the Oracle JDeveloper JUnit Extension

2-6 Oracle Application Development Framework Case Manual

Quick Tour of the Oracle ADF Toy Store Application 3-1

3
Quick Tour of the Oracle ADF Toy Store

Application

This chapter contains the following sections:

■ Section 3.1, "Introduction"

■ Section 3.2, "Browsing Products and Adding Them to Your Cart"

■ Section 3.3, "Checking Out and Signing In"

■ Section 3.4, "Registering a New User and Editing an Existing User's Profile"

■ Section 3.5, "Trying Out the Toy Store Web Application in Another Language"

3.1 Introduction
Before examining the individual web pages and their source code in depth, you may
find it helpful to become familiar with the functionality of this web store application.

3.2 Browsing Products and Adding Them to Your Cart
The Oracle ADF Toy Store is a realistic online store that sells toys. The products for
sale are organized into five categories: accessories, games, party supplies, toys, and
models. From the home page, you can browse products in the store in two ways:

■ Selecting a category name to see the products in that category

OR

■ Using the What are you looking for? search box in the banner to find products by
name, regardless of what category they belong to

If the list contains more than three products, products appear a page at a time. You can
use the Next or Previous links above the item list to browse through the complete list.

Click on the name of a product to view a list of the different product items for sale. For
example, click Piñata to see a list of the different kinds of piñatas that are available, as
shown in Figure 3–1, "Browsing a Product Catalog".

Checking Out and Signing In

3-2 Oracle Application Development Framework Case Manual

Figure 3–1 Browsing a Product Catalog

On any page where the

button appears, you can click the button to add one of those items to your shopping
cart.

To see a detailed description and a picture of any product, just click on its name.

You can see the items you have in your shopping cart at any time by clicking the

button, which shows a page listing the items and quantities you have selected so far, as
shown in Figure 3–2, "Shopping Cart Display".

Figure 3–2 Shopping Cart Display

To adjust the quantities of the items in the cart, just type over the current value in the
Quantity field and click the Update Totals button. The recalculated shopping cart total
is displayed. You can remove an item from your cart either by clicking the Remove
button or by adjusting the item to have a zero quantity.

3.3 Checking Out and Signing In
From the Shopping Cart page, click the Proceed to Checkout button to proceed to the
Review Checkout page. From there, you can review your purchase and, if you are
happy with it, click the Continue button to continue.

If you have not already signed into the web store site as a registered user, you will be
prompted to sign in at this point to continue with the checkout process. Your sign-in

Checking Out and Signing In

Quick Tour of the Oracle ADF Toy Store Application 3-3

page will resemble Figure 3–3, "Sign-In Page". The user named j2ee is already
registered, with a password of j2ee, so you can provide these credentials to continue.

Figure 3–3 Sign-In Page

After you successfully sign in, proceed to the page where you can confirm your
shipping and payment details. This part of the appliation lets you try out some of the
application validation logic that has been implemented. You can try:

■ Entering an invalid state abbreviation of ZA for the country USA

■ Entering a credit card number that does not comprise 16 digits

and clicking the Continue button. You should see multiple validation errors, as shown
in Figure 3–4, "Validation Errors on Submitted Form".

Figure 3–4 Validation Errors on Submitted Form

After fixing those errors by entering a valid state abbreviation like CA, and filling out
a full 16-digit credit card number, try causing some additional validation errors by:

■ Entering a date in the past for the expiration date of your credit card

■ Blanking out a required field like Last Name

When you click the Continue button again, you will see the validation errors that need
to be corrected, as shown in Figure 3–5, "Additional Shipping Validation Error
Information".

Note: If instead you want to register as a new user, click the Register
as New User link. See the next section for details.

Registering a New User and Editing an Existing User's Profile

3-4 Oracle Application Development Framework Case Manual

Figure 3–5 Additional Shipping Validation Error Information

After you correct these final validation problems and resubmit your order, the order
will be placed, and you'll see the final Thank You page, with an order reference
number listed. Clicking on the hyperlinked order reference number takes you to an
order summary page, which is implemented using the XML/XSLT-based Oracle XSQL
Pages publishing framework instead of JSP pages, to illustrate that multiple
view-rendering technologies are possible. (Note that this Order Summary web page is
not described in this case study but is covered by the Oracle ADF Toy Store technical
whitepaper.)

3.4 Registering a New User and Editing an Existing User's Profile
If you are not currently logged in as a registered user of the web store, you can create a
new account by clicking the

button, which brings you to the Sign-In page, as shown in Figure 3–3, "Sign-In Page".
From there, you can register as a new user by clicking on the Register as a New User
link. This link takes you to a form where you can enter the necessary registration
details.

This user registration page is another place in the application where it's easy to
observe how business rules are enforced by the Oracle ADF framework. For example,
if while filling out the form you:

■ Enter a user name that has already been chosen by another user

■ Forget to provide a password

■ Enter an email address that is not properly formed

then when you submit the form, you'll see the full set of errors related to your
registration, as shown in Figure 3–6, "New User Registration Validation Information".

Trying Out the Toy Store Web Application in Another Language

Quick Tour of the Oracle ADF Toy Store Application 3-5

Figure 3–6 New User Registration Validation Information

Of course, since we're working with the same underlying business object that
represents user accounts here in this Update Account form, the same validation will be
enforced as with the new user account. Figure 3–7, "Editing Account Details", shows
the information that is to be validated when customers update their accounts.

Figure 3–7 Editing Account Details

3.5 Trying Out the Toy Store Web Application in Another Language
The application is built using the internationalization features supported by Struts and
Oracle ADF Business Components, and it ships with support for three languages:
English (the default), Italian, and German. The Struts and Oracle ADF frameworks
determine the language to be displayed, based on your browser settings. You can see
what the web pages look like in Italian by setting your browser language preferences
appropriately.

Trying Out the Toy Store Web Application in Another Language

3-6 Oracle Application Development Framework Case Manual

In Mozilla Firefox 0.9, you select your preferred languages on the General page
of the Tools > Options menu by clicking the Languages button, as shown in
Figure 3–8, "Setting Preferred Languages in Mozilla Firefox". You can add Italian [it]
and then click Move Up to move it to the top of the list.

Figure 3–8 Setting Preferred Languages in Mozilla Firefox

In Internet Explorer, you can do the same thing by choosing Tools > Internet Options
and by clicking on the Languages button in the General page of the dialog.

Since Apache Struts caches the browser user's preferred language at the servlet session
level, you will need to close the current browser window and open a new one before
you'll see the application change to Italian. A quick way to relaunch your preferred
browser with the right URL for the application is to find and click the target URL in
the JDeveloper 10g Log window, as shown in Figure 3–9, "Relaunching the Browser
Window".

Figure 3–9 Relaunching the Browser Window

Clicking on the Log URL will start the Oracle ADF Toy Store application again, but
this time in Italian. After you add the same items to your shopping cart, your page will
resemble what you see in Figure 3–10, "The Shopping Cart Home Page in Italian".

http://www.mozilla.org/products/firefox/

Trying Out the Toy Store Web Application in Another Language

Quick Tour of the Oracle ADF Toy Store Application 3-7

Figure 3–10 The Shopping Cart Home Page in Italian

You can set your browser's preferred language back to English, and close and relaunch
the browser window to proceed in English again.

The next chapter begins the first lesson of the case study, where you will investigate
designing databound JSP pages in JDeveloper.

Trying Out the Toy Store Web Application in Another Language

3-8 Oracle Application Development Framework Case Manual

Part II
The Oracle ADF Toy Store Web Application:

Lessons

Part 2 of the Case Manual decomposes the Struts page flow of the Oracle ADF Toy
Store application. Each chapter explores the concepts of Oracle ADF as they would be
employed in a typical web store application and concludes with a hands-on tutorial
that you may complete.

Part 2 contains the following chapters:

■ Chapter 4, "Lesson One: Designing the Home Page"

■ Chapter 5, "Lesson Two: Drilling Down Into the Products"

■ Chapter 6, "Lesson Three: Assembling the Shopping Cart"

■ Chapter 7, "Lesson Four: Processing the Shopping Cart Order"

■ Chapter 8, "Lesson Five: Requiring the User to Sign Into an Account"

■ Chapter 9, "Lesson Six: Allowing the User to Edit Their Account"

■ Chapter 10, "Summary of the Oracle ADF Toy Store Application"

Lesson One: Designing the Home Page 4-1

4
Lesson One: Designing the Home Page

This chapter contains the following sections:

■ Section 4.1, "Introduction"

■ Section 4.2, "Planning the Design of the Home Page"

■ Section 4.3, "Getting Started with the Struts Page Flow Diagram"

■ Section 4.4, "Laying Out the Home Page"

■ Section 4.5, "Hands-On for Lesson 1"

4.1 Introduction
The home page represents our store front. It is the first thing the user sees when
entering our Toy Store site. The home page must both attract potential customers and
serve returning customers. To accomplish these aims, the web store home page
typically:

■ Allows the customer to browse products within specific categories (ours are
Accessories, Games, Party Supplies, and so on)

■ Allows the customer to quickly locate specific products by typing keywords in a
search field

■ Allows the customer to view and edit the contents of their shopping cart

■ And, of course, allows customers to register/sign in and edit their personal
account information

4.2 Planning the Design of the Home Page
Our web store home page is a good place to begin planning our application. In
JDeveloper, it is tempting to open the HTML/JSP Visual Editor and begin laying out
the pages. But initially we need to address some basic questions about the underlying
technology:

■ What model layer objects will the home page require?

■ Do some of the model layer objects represent common operations that we can
access across the application's pages?

■ Do we anticipate localizing the application?

In the initial planning phase, it makes sense to focus on the home page. While the
home page of our web store application does not represent 100 percent of the required
application business objects, we can identify important objects, including the

Getting Started with the Struts Page Flow Diagram

4-2 Oracle Application Development Framework Case Manual

ProductList, Accounts, and ShoppingCart objects. Although the finished
application will utilize additional business objects, creating the model layer can be
iterative, meaning that we can expose those business objects as we require them.

Next, the home page forces us to think about the controller layer, because we can begin
to see how the page flow is organized. With Struts as our controller layer, we'll identify
"action forwards" like showcategory.do and search.do to specify targets for the
home page links and operations.

To invite users to browse the store, we want our application to have a well-considered
site navigation. For example, we don't want users to have to return to the home page
just to log in, view their cart, and search products. Instead, these operations should
appear across the application. Our first page design decision springs from the need to
reuse these home page operations: we will create a header.jsp banner with the
common operations displayed and utilize the JSP include directive to insert the banner
into the desired pages. This best practice allows us to reduce the number of pages and
simplify site navigation.

Finally, since we are committed to hosting our site internationally, we will utilize the
Struts Bean tags to retreive translated strings from locale-specific message resource
files that we will create. In the hands-on for this lesson, we'll see exactly how easy it is
to utilize this capablity of Struts in JDeveloper.

4.3 Getting Started with the Struts Page Flow Diagram
The Struts page flow diagram in JDeveloper is your workbench for creating pages,
accessing the page action's implementing action class (or Oracle ADF data action
classes, in some cases), visualizing the action forwards and page links of the page flow,
running the application by initiating a Struts action .do request (we never run JSP
pages directly in a Struts-based web application), and even creating and opening
HTML or JSP pages for editing in the visual editor. That's a lot of activities to be aware
of, but through the course of this project, we'll utilize them all.

Each lesson focuses on a small portion of the complete page flow diagram. In Lesson 1,
we limit the discussion to the component labeled /home. Figure 4–1, "The Home Data
Page Icon Represents the Postback Pattern", illustrates this component’s position in the
overall page flow.

Getting Started with the Struts Page Flow Diagram

Lesson One: Designing the Home Page 4-3

Figure 4–1 The Home Data Page Icon Represents the Postback Pattern

Absent from the page flow diagram are any JSP pages. This is because our JSP pages
are databound and therefore represent a combination of components. The icon shown
for the home page is typical of the majority of the Struts page flow components: it is
the symbol for a data page and is available from the Struts Page Flow Component
Palette.

Each data page in the page flow represents Oracle ADF's integration with Struts action
classes. For developing page flows with databound JSP pages, the data page is very
convenient because it combines a Struts action class (DataForwardAction or
subclass), a Struts action forward, and a target web page in a single icon. Alternatively,
the page flow could display several icons to represent the postback. Figure 4–2, "The
Postback Pattern Implemented Without a Data Page", depicts the same postback as it
would appear in the page flow diagram using the Oracle ADF data action (labeled
/Home), a success forward, and, finally, the target index.jsp page.

Figure 4–2 The Postback Pattern Implemented Without a Data Page

The single data page icon effectively represents the typical use case where a web page
posts back to the action that initially set up the page's data. The postback pattern
allows the action to handle page events before initiating the page flow action forward.
The underlying Oracle ADF element, data action, is also available on the Component
Palette and may be used in a page flow when finer granularity is required or when the
postback pattern is not required.

As we'll see in the next lesson, the page flow developer implements a data action
(corresponding to the data page visualized in the page flow) to perform specific work
on the model and to customize the Oracle ADF request-handling lifecycle. Because the
Oracle ADF lifecycle prepares the Oracle ADF binding context for databound web
pages, it is specifically this integration between Struts and Oracle ADF that provides
the glue between the presentation layer and the model layer where the data lies.

Laying Out the Home Page

4-4 Oracle Application Development Framework Case Manual

4.4 Laying Out the Home Page
With a minimum of information, including a useful page name, a starting page flow,
and a nice way to include common operations into our page, we are ready to begin.

In the Struts page flow diagram, double-click /home to open the index.jsp page in
the visual editor design view. Overall the page design is very clean with a minimum of
tags. The include directive appears at the top of the page to include our reusable page.
Below that appears the body of our home page: a two-column table element, with
another table embedded in the first column to provide the product category links. We
also see the message tag displayed with the key to reference in the application resource
.properties file. The message tag, available from the Component Palette Struts
Bean list, serves our internationalization requirement.

Notice that there are no text links displayed in the page. This is because the home
pages utilizes images as links. It is worth noting that we utilize the URL rewriting
capability of the JSTL <c:url> tag to construct the URLs for each link in the home
page. The <c:url> tag builds the URL by adding a session ID (for cases where
browser cookies are disabled) to maintain session information as the user navigates
the site. In this example, the fully encoded URL is then used as the href attribute value
in the HTML link element:

<a id="accessories" href="<c:url value='showcategory.do&id=A'/>">
 <img src="<bean:message key='images.sidebar.A'/>" border="0"/>

We will make use of the above constuction throughout the application pages. The
<c:url> tag's value attribute specifies the Struts action to invoke and passes the id
argument to the associated action handler class. We will examine the action handler in
the next lesson.

Complete the following hands-on task before proceeding to the next lesson if you
would like to explore concepts described in this lesson.

Note: The home page follows the naming convention, index.jsp,
which means that site users don't need to type the full home page
URL. For example, the web server would automatically redirect the
URL http://www.toystore.com to the application start page at
http://www.toystore.com/index.html. Your web server
configuration file determines the actual default start page names. In
the Oracle ADF Toy Store application, we use a second index.jsp
page at the root of WEB-INF to trigger a corresponding Struts action
(through a <jsp:forward> tag to the home.do action). The Struts
controller then executes a data page related to the actual databound
page /WEB-INF/jsp/index.jsp.

Troubleshooting Tip: When you run your web application in a
browser with cookies disabled, the error
javax.servlet.jsp.JspException: Missing message for
key "XYZ" may appear when you click a link. If you want to allow
anonymous users to browse your application, you must use the URL
rewriting capability of the <c:url> tag when constructing your
application page's links. When executed, the tag rewrites the URL
with the JSESSIONID cookie in the page.

Hands-On for Lesson 1

Lesson One: Designing the Home Page 4-5

4.5 Hands-On for Lesson 1
The following hands-on shows how to quickly create and use a new translatable
message resource within any JSP page.

1. In the Application Navigator, expand toystore.view in ToyStoreViewController
and double-click ToyStoreResources.properties.

2. In the open file, locate the index.P resource string and insert the text:

index.Z=The high-tech variety

3. Close the file and save the new resource with it.

4. Open the index.jsp home page in the design view of the visual editor.

5. Right-click inside the last table row of the single-column table (displays message
index M) and choose Table-Insert Rows or Columns.

6. In the dialog, make the necessary selections to insert a single new row below the
current row.

7. Click in the newly inserted row and display Struts Bean tags in the Component
Palette.

8. Click the message tag from the Component Palette to insert the tag into the empty
table cell.

9. To display the tag editor, double-click the inserted tag icon in the open page. Scroll
the editor to locate the key attribute, click the dropdown icon, and choose index.Z
from the list. The icon will be updated with the key name.

10. From the Struts page flow diagram, right-click the home.do action and choose
Run to launch the application. Your new page will display the newly created
message resource.

You may want to return to JDeveloper to copy the full link text from one of the table
cells and paste it in the same table cell as the newly created message resource. Because
the link is constructed with embedded JSTL tags within the HTML link tag, it is not
possible to work exclusively with the Component Palette to build the link. In this case,
we recommend using the source editor to modify the source directly.

The next lesson describes how to expand the Struts page flow with additional
databound JSP pages.

Note: Completing a hands-on task is optional. If you choose not to
complete a particular hands-on, you can still continue with
subsequent lessons and hands-on tasks.

Hands-On for Lesson 1

4-6 Oracle Application Development Framework Case Manual

Lesson Two: Drilling Down Into the Products 5-1

5
Lesson Two: Drilling Down Into the Products

This chapter contains the following sections:

■ Section 5.1, "Introduction"

■ Section 5.2, "Analyzing the Products Display Page Flow"

■ Section 5.3, "Storing JSP Files Under the WEB-INF Directory"

■ Section 5.4, "Integrating the Model and Controller Layers"

■ Section 5.5, "Laying Out the Query Results Page"

■ Section 5.6, "Conditionalizing the Display"

■ Section 5.7, "Hands-On for Lesson 2"

5.1 Introduction
We began our decomposition of the Oracle ADF Toy Store web store application with
its home page. In Lesson 1, we decided users should be able to immediately initiate
product searches and begin browsing the catalog without needing to log in or accept
application cookies. Now we are ready to create JSP pages to support the product
search and category display home page operations. To accomplish this, we will need to
perform several tasks:

■ Extend the Struts page flow to display products of interest and allow the user to
drill down for individual product details.

■ Ensure that the business model supports drilling down to display the product
details.

■ Look at common design patterns for displaying categories, products, and product
details.

Let's begin by returning to the application workbench, the Struts page flow diagram,
to extend our page flow based on these requirements.

5.2 Analyzing the Products Display Page Flow
The page flow from the home page contains two branches: search and
showcategory. As we would expect, separate action forwards correspond to
separate JSP pages:

■ The search.jsp page as the target of the search forward must iterate over
matching products and display feedback when no product name matches the
supplied query string.

Storing JSP Files Under the WEB-INF Directory

5-2 Oracle Application Development Framework Case Manual

■ The category.jsp page as the target of the showcategory forward needs only
to iterate over the list of products that match the supplied category id.

Following these two pages, we'll want to display the drilldown page where the user
can view actual product details before deciding whether to update their cart with a
product selection. The new page flow, with the drilldown data page
/showproductdetail, is shown in Figure 5–1, "Product Display Page Flow".

Figure 5–1 Product Display Page Flow

We continue to use the Oracle ADF data page construct to post back to data actions
from mapped JSP pages. The data page's underlying data action ensures that the
Oracle ADF model layer is updated before the controller displays the target databound
JSP page.

5.3 Storing JSP Files Under the WEB-INF Directory
To protect your JSP pages from the user typing a URL to directly access or view any
page, store your pages in a subfolder below the web application's WEB-INF directory.
Based on the servlet specification, WEB-INF is not part of the public document tree of
the web application. Therefore, no resource within the WEB-INF directory, or its
subfolders, may be served directly to a client. If you were to save the files under the
public tree, at the web application root level, the user could bypass the Struts
controller by invoking a JSP directly, which would mean being served pages with no
data binding.

Integrating the Model and Controller Layers

Lesson Two: Drilling Down Into the Products 5-3

Once the JSPs appear below the WEB-INF directory, you must use "WEB-INF" as part
of the URL when referencing the pages. For example, in our Struts configuration file,
the action mapping for showcategory specifies the showcategory.jsp parameter
by its complete path:

<action path="/showcategory" ...attributes not shown....
 parameter="/WEB-INF/jsp/showcategory.jsp" unknown="false">

To take advantage of hiding the JSP pages under WEB-INF, you must always invoke
your JSP pages with a Struts .do action request, even if the action is a very basic JSP.
Additionally, be aware when storing your JSP pages below WEB-INF that not all web
containers support this feature. Be sure to check your specific container.

5.4 Integrating the Model and Controller Layers
We already know that different pages will be required to handle the search, category
list, and product details, and we know that the query parameters used to find matches
are different (product names for searches, and category-unique IDs for category and
product links), but underlying all three pages is the need to prepare a query object
with the supplied bind parameter and to iterate over the result set. Iterating over the
result set is something we'll look at in the page descriptions below. However, in an
MVC web application that uses Struts and Oracle ADF to access the model layer, we
separate the code needed to prepare the query and create a result set from the
presentation layer.

The task of accessing the model layer is initiated in the Oracle ADF data action class,
which we described in Lesson 1. Thus, the presentation layer need not have any
awareness of how the data is accessed. The data action gets executed like any other
Struts action class, except that it provides methods you can use to operate on the
model layer. Take a look at these action mappings from the Struts configuration file:

<action-mappings>
 <action path="/showcategory"
 className="oracle.adf.controller.struts.actions.DataActionMapping"
 type="toystore.controller.strutsactions.ShowCategoryAction"
 name="DataForm" parameter="/WEB-INF/jsp/showcategory.jsp"
 unknown="false">
 <set-property property="modelReference"
 value="WEB_INF_jsp_showcategoryUIModel"/>
 <forward name="showproduct" path="/showproduct.do" />
 </action>
 <action path="/showproduct"
 className="oracle.adf.controller.struts.actions.DataActionMapping"
 type="toystore.controller.strutsactions.ShowProductAction"
 name="DataForm" parameter="/WEB-INF/jsp/showproduct.jsp"
 unknown="false">
 <set-property property="modelReference"
 value="WEB_INF_jsp_showproductUIModel"/>
 <forward name="addToCart" path="/yourcart.do" />
 <forward name="showProductDetails" path="/showproductdetails.do"/>
 </action>
...
 <action path="/showproductdetails"
 className="oracle.adf.controller.struts.actions.DataActionMapping"
 type="toystore.controller.strutsactions.ShowProductDetailsAction"
 name="DataForm" parameter="/WEB-INF/jsp/showproductdetails.jsp"
 unknown="false">
 <set-property property="modelReference"
 value="WEB_INF_jsp_ showproductdetailsUIModel"/>

Integrating the Model and Controller Layers

5-4 Oracle Application Development Framework Case Manual

 <forward name="addToCart" path="/yourcart.do"/>
 </action>
...
</action-mappings>

The type attribute informs each of our three actions about which class will be
executed on the action request. To view the implementation of the data action, return
to the page flow diagram, right-click the /showcategory data page and choose Go to
Code. Our action classes, like the one shown in the source editor, allow the application
to do some specific work before the Oracle ADF lifecycle prepares the data bindings
for the model layer. In our case, we want to create a query object by setting bind
variables passed from the invoking JSP page.

We come upon another important design decision at this stage: we can either
implement logic to set up the queries on business object data within each data action,
or we can invoke service method on our business objects. The latter approach is
recommended as a best practice, because it allows the business objects to encapsulate
the implementation details of the service, it keeps the controller layer very thin, and it
permits the developer to create simple JUnit tests to test the business objects. The data
action only implements a custom method initializeModelForPage() to retrieve
the user-supplied parameters from the HttpServletRequest. This custom method,
in turn, passes the parameter as an argument to the
prepareToShowProductDetails() method on our ToyStoreService business
service interface. The prepareToShowXxx() service methods, in turn, execute the
query with the correct binding values before the Struts controller serves the JSP page.

Troubleshooting Tip: Bind variables must be set before the Oracle
ADF lifecycle's prepareModel() phase is initiated. Otherwise,
exception JBO-27122: SQL error during statement
preparation will be caused, because the query will not be
completed. To avoid this error for this common use case (setting bind
variables supplied by the user), it is recommended that you override
the prepareModel() phase of the Oracle ADF lifecycle to include
the custom method initializeModelForPage(). For an extended
discussion of how to customize the Oracle ADF lifecycle for this
purpose, see the section "A Page Showing Results of a Query with
Bind Variables" in the Building a Web Store with Apache
Struts and Oracle ADF Frameworks whitepaper.

http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore/readme.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore/readme.html

Laying Out the Query Results Page

Lesson Two: Drilling Down Into the Products 5-5

The above wizard and the built-in JDeveloper refactoring tools were used to create the
Oracle ADF Toy Store application packages containing the test runner, the unit test
cases, and the test fixture as separate packages. These packages were created to
exercise the toystore.model.services.ToyStoreService application module
component. In the JDeveloper Application Navigator, expand the Testing project node
and the ADFToyStore application node to view the supplied test suite.

5.5 Laying Out the Query Results Page
At runtime, the action mapping for the home page action specifies one of two
outcomes: a /search data page (search.do) or a /showcategory data page
(showcategories.do). As has already been described, the data action for each
prepares the model before the web page is displayed in the browser.

The task of rendering the databound page is left to the four tag libraries:

■ The Struts Bean tag library, whose tags are prefixed by bean:

■ The Struts HTML tag library, whose tags are prefixed by html:

■ The JSTL Core tag library, whose tags are prefixed by c:

■ The Oracle ADF tag library, whose tags are prefixed by adf:

Again, we use the Struts Bean tag library <bean:message> tag to include translatable
text strings into our pages, based on string keys like category.productid,
category.productname, or the scriptlet-derived <%=
request.getParameter("id") %>, where id corresponds to the category name
set up by the URL selection in the home page.

We see the <html:errors> tag from the Struts HTML tag library, which makes it
easy to display any errors that occur during runtime processing at the top of the page
in a standard way.

However, the real work of pulling the data from the bindings in the Oracle ADF model
layer is done with the aid of the JSTL Core tag library. The HTML table element
provides the formatting for the displayed rows of data generated by the JSTL tags.
This common presentation layer use case looks like this in the showcategory.jsp
page:

Best Practice Tip: Business services developers will want to
investigate further the benefits of exposing service methods on the
application's business objects. By defining these methods outside of
Struts and the web container context, it is possible to take advantage
of the JUnit testing framework support in JDeveloper (available as a
small, separate download, as explained in Section 2.6, "Installing the
Oracle JDeveloper JUnit Extension"). One of the wizards available in
the Unit Tests (JUnit) category of the New Gallery allows you to
create a skeleton Business Components test suite. This wizard allows
you to pick an application module component, and a particular
configuration that you'd like to use for testing, and then to generate:

■ A JUnit test fixture that encapsulates getting an instance of the
desired application module

■ A sample JUnit test case class which uses this fixture and asserts
that all expected view object instances exist in the application
module's model data map

■ A JUnit test class that runs all of the test cases (initially just one)

Laying Out the Query Results Page

5-6 Oracle Application Development Framework Case Manual

<table id="categorydata" border="0" bgcolor="#003399">
<tr>
<th><bean:message key="category.productid"/>

 </th>

<th><bean:message key="category.productname"/>

 </th>

</tr>
<c:forEach var="Row" items="${bindings.ProductsInCategory.rangeSet}" >

<tr bgcolor="#f3f3f3">
<td><c:out value="${Row.Productid}" /></td>
<td>

<a href="<c:url
 value='showcategory.do?event=showproduct&id=${Row.Productid}'/>">

<c:out value="${Row.Name}" />

</td>
</tr>

</c:forEach>
</table>

Specifically, the <c:forEach> tag iterates over our data collections and the <c:out>
tags display values for their attributes in the page. Embedded within the <c:out>
tags is the first use of tag attribute expressions to access objects in the Oracle ADF data
binding context. These expressions begin with a variable "Row", which is defined by
the evaluated expression ${bindings.ProductsInCategory.rangeset}. The
namespace identifier bindings locates the Oracle ADF binding context and its
objects, ProductsInCategory is the name of the table bindings, and rangeSet
refers to a property of the table binding which supplies access to the individual rows
of the bound business object.

To review, Oracle ADF bindings are lightweight objects that decouple back-end data
and front-end UI display:

■ An iterator binding lets your pages work with a collection of business objects
supplied by the Oracle ADF model layer.

In the showcategory.jsp page, the iterator ProductsInCategoryIterator
serves this purpose. The iterator binding itself is not referenced in the page, but is
part of the definition for the control bindings specified in the UIModel.xml file
for the page.

■ Control bindings provide a standard interface for display components in the page
to interact with an iterator's data or to invoke "action" methods for preparing
model data and handling events.

In the showcategory.jsp page, we see an Oracle ADF table binding referenced
by bindings.ProductsInCategory, which defines which attributes to display.
The binding container for this JSP page also contains two action bindings [next
and previous (but, as we'll see, these are actually invoked through a JSP page we
will include [pagingControl.jsp).

The important point to consider is that this common presentation layer use case
(iterating over your data and formatting the output using standard tags) is done
without scriplet code to manipulate the model layer directly in the JSP page. For
example, in the Oracle ADF Toy Store application, using just JSTL tags and HTML
elements, we see the same pattern repeated in the search.jsp,
showcategory.jsp, and showproduct.jsp pages.

Conditionalizing the Display

Lesson Two: Drilling Down Into the Products 5-7

Let's examine another example of how Oracle ADF control bindings access the model
layer. Open the showproductdetails.jsp page in the JDeveloper source editor. In
the source for that page, notice that we do not use the previously described Oracle
ADF table binding and <c:forEach> loop because the HTML table displays only a
single row (information for a single product). Instead, the page source contains a series
of <c:out> tags and attribute expressions that directly specify the namespace
identifier bindings to locate the Oracle ADF binding context and its objects:

...
<c:out value="${bindings.Name}"/>
...

The reference following bindings in these expressions is the name of the Oracle ADF
attribute binding which identifies the bound attribute of the business object. Even
without the <c:forEach> loop and the Row variable assignment previously seen in
the source for showcategory.jsp, the attribute bindings of
showproductdetails.jsp can still obtain the attribute value corresponding to the
current row of the underlying business object. This works in
showproductdetails.jsp because control bindings are always bound to the
current row of the business object through an iterator binding. So, retrieving the values
on these attribute bindings will automatically retrieve the values on the business object
row with the current focus. In this way, coordination between the presentation layer
and the model layer is managed for you through the Oracle ADF iterator and control
bindings.

In the hands-on for this lesson, we'll see exactly how easy it is to add databound
controls to your JSP in JDeveloper.

5.6 Conditionalizing the Display
The page search.jsp relies on another set of tags from the JSTL Core tag library
worth examining: <c:choose> , <c:when> , and <c:otherwise>. The search page
uses these tags like an if / then / else statement to conditionalize the display based on
whether the search result contains matching products or not. Here is an excerpt from
search.jsp:

<c:choose>
<c:when test="${not empty bindings.FindProducts.rangeSet}">
<table border="0" bgcolor="#003399" >

<tr>
<!-- displays table header columns here -->

</tr>
<c:forEach var="row" items="${bindings.FindProducts.rangeSet}" >

<tr>
 <!-- displays table body here -->

</tr>
</c:forEach>

</table>
</c:when>
<c:otherwise>

<bean:message key="search.nomatchingproducts"/>

</c:otherwise>
</c:choose>

You may notice the <adf:render> tag from the Oracle ADF tag library (omitted in
the above excerpt), which appears in the third column definition of the product items
table. This tag displays and formats attribute data based on language-sensitive format
masks that you can define in your Oracle ADF Business Components project.

Hands-On for Lesson 2

5-8 Oracle Application Development Framework Case Manual

You can optionally complete the following hands-on to explore concepts presented in
this lesson.

5.7 Hands-On for Lesson 2
The following hands-on shows how you can easily modify Oracle ADF bindings in
your JSP page.

1. In the Application Navigator, expand the Web Content/WEB-INF/jsp folder of the
ToyStoreViewController project and double-click the showproduct.jsp file.

2. In the design view of the open file, right-click inside the table cell with the JSTL
element for ${Row.Name} and choose Table > Split Cell.

3. In the Split Cells dialog, enter the value 2 for the number of columns to create and
click OK. You should see a new empty cell to the right of the JSTL ${Row.Name}
table cell.

4. Click the Source tab of the visual editor and locate the inserted
<td> </td> for the new table cell.

5. Replace with the JSTL tag <c:out value="${Row.InStock}". Be sure
to use the correct case when naming the binding (InStock) since binding names
are case-sensitive.

6. In the header section of the HTML table element, insert the header for the new
column: <th><bean:message
key="cart.availability"/></th>. The new header should appear
after the header defined by the binding
${bindings.ItemsForSale.labels.Name}.

7. With the showproduct.jsp page displayed, open the Structure window and
select the UI Model tab to view the list of bindings used by this page. (Note that
the current 10.1.2 Toy Store project contains extra unused bindings: Name and
Listprice. These two bindings may be safely deleted by choosing Delete from their
context menus.)

8. Double-click the ItemsForSale table binding to display the binding editor.

9. In the binding editor, move the attribute InStock from the list of Available
Attributes to the list of Display Attributes and click OK.

Troubleshooting Tip: Each Oracle ADF Toy Store web page includes
an <html:errors> tag at the top. By default, the Oracle ADF data
action bundles up all exceptions that occur during the request
processing lifecycle and translates them at the end of the request
(during the lifecycle's reportErrors() phase) to the Struts layer as
Struts ActionError objects. This means that business validation
errors that occur during the processing of the lifecycle neatly appear
on the page, wherever we've placed the <html:errors> tag(s).
However, a failure to include any <html:errors> tag in your page
will result in errors being reported to the Struts layer, but never
displayed. This means that the possible unexpected error will show
up only if you explicitly render the Struts errors using the
<html:errors> tag. When you work with the Data Control Palette
in JDeveloper, pages you create will include the <html:errors> tag.
However, in the event that you create a page entirely in the source
code editor, be aware of the need for this tag.

Hands-On for Lesson 2

Lesson Two: Drilling Down Into the Products 5-9

10. From the Struts page flow diagram, right-click the home.do action and choose
Run to launch the application. Click on any category in the home page. The
Availability column you added appears in the products in the category page.

The following hands-on shows how you can easily create a new Oracle ADF binding
in your JSP page.

1. In the Application Navigator, expand the Web Content/WEB-INF/jsp folder of the
ToyStoreViewController project and double-click the showproductdetails.jsp file.

2. In the design view of the open file, right-click inside the table cell with the JSTL
element for ${bindings.Name} and choose Table > Split Cell.

3. In the Split Cells dialog, enter the value 2 for the number of columns to create and
click OK. You should see a new empty cell to the right of the JSTL
${bindings.Name} table cell.

4. With the showproductdetails.jsp page displayed, open the Data Control
Palette and expand the ToyStoreService data control to display ProductList and
ItemsForSale.

5. Locate the Productid attribute node under ItemsForSale and drag the attribute
node into the new table cell.

6. Return to the UI Model tab displayed in the page's Structure window and view
the new Productid attribute binding.

Note: As an alternative to using the Data Control Palette, you can also work with
the UI Model tab to create bindings (using the right-click context menu) and then
reference these bindings using JSTL tags in the page source. However, when you
work with the Data Control Palette, the IDE performs these steps for you.

7. Display the source view of the showproductdetails.jsp page and examine
the new table cell definition: <c:out value="${bindings.Productid}"/>.

8. From the Struts page flow diagram, right-click the home.do action and choose
Run to launch the application. Click any category in the home page. Select any
product link. The product ID you added appears in the products information
page.

The next lesson describes available Oracle ADF binding metadata that allow you to
customize the behavior of bindings.

Hands-On for Lesson 2

5-10 Oracle Application Development Framework Case Manual

Lesson Three: Assembling the Shopping Cart 6-1

6
Lesson Three: Assembling the Shopping

Cart

This chapter contains the following sections:

■ Section 6.1, "Introduction"

■ Section 6.2, "Analyzing the Shopping Cart Page Flow"

■ Section 6.3, "Managing the State of the Shopping Cart"

■ Section 6.4, "Handling the Product Pages' Add-to-Cart Event"

■ Section 6.5, "Handling the Shopping Cart Page's Add/Remove Events"

■ Section 6.6, "Handling the Shopping Cart Page's Review-Checkout Event"

■ Section 6.7, "Working with Operations in Forms"

■ Section 6.8, "Hands-On for Lesson 3"

6.1 Introduction
In Lesson 2, we examined the initial pages of the Oracle ADF Toy Store application
that permit the user to browse the product catalog. However, we have not yet
addressed how the application will assemble the user's shopping cart prior to
processing an order. In this lesson, we'll examine how to:

■ Extend the Struts page flow to manage the shopping cart and process an order

■ Handle updates to the shopping cart when the user removes an item or changes
item quantities

■ Capture the shopping cart changes in the business model

Let's begin by returning to the application workbench, the Struts page flow diagram,
to extend our page flow based on these requirements.

6.2 Analyzing the Shopping Cart Page Flow
The page flow proceeds with the action forward addToCart from two data pages:
/showproduct and /showproductdetails. The forward destination is the
/yourcart data page. The /yourcart data page will respond to adding and
removing products by updating the cart.

Following the /yourcart data page, we display the actual order before completing
checkout. The page flow now includes a new data page for each task and is shown in
Figure 6–1, "Shopping Cart Page Flow".

Managing the State of the Shopping Cart

6-2 Oracle Application Development Framework Case Manual

Figure 6–1 Shopping Cart Page Flow

We continue to use the Oracle ADF data page construct to post back to data actions
from mapped JSP pages. The data page's underlying data action ensures that the
Oracle ADF model layer is updated before the controller displays the target databound
JSP page.

6.3 Managing the State of the Shopping Cart
The goal of managing the contents of the shopping cart is to populate the rows of the
cart programmatically as the user adds and removes items from the cart. In the
/yourcart data page, there is no database query involved in rendering the page.
Instead, the shopping cart is implemented as an Oracle ADF view object named
toystore.model.dataaccess.ShoppingCart in the ToyStoreModel project. This
view object has all transient attributes (and no SQL query).

As we'll see in the following sections, the YourCartAction action class calls the
ToyStoreService business service method
adjustQuantitiesInCartAsStringArrays() to add, change, or remove items
from the cart. Since the application relies on the Oracle ADF Business Components
stateful mode, the application code does not have to worry about how to store the
pending shopping cart data. Examine the Tuning page of the View Object Editor for
the ShoppingCart view object. There we indicate declaratively that all transient
attributes of this view object will be passivated by the framework's state management
mechanism. Just checking the checkbox there is the only work required to leverage this
feature.

On each subsequent request, our actions can access the ShoppingCart object and
programmatically adjust the contents of its default rowset.

Handling the Shopping Cart Page's Add/Remove Events

Lesson Three: Assembling the Shopping Cart 6-3

6.4 Handling the Product Pages' Add-to-Cart Event
In the previous pages, we saw how to pass the id of the product on the request object
using an HTML link and the <c:url> tag to specify a named event. The addToCart
action is another such event, and it is triggered with this syntax from the
showproductdetails.jsp and the showproduct.jsp pages:

<a href="<c:url
 value='showproductdetails.do?event=addToCart&id=${bindings.ItemId}'/>"
 ><img src="<bean:message key='images.buttons.addtocart'/>" border="0"
 alt="<bean:message key="cart.addItem"/>">

While the previous pages' actions handled no events, we want the product pages’
actions to update the quantity attribute of the cart business object. Whenever the user
clicks the Add to Cart image displayed by the above link, the controller executes the
product page's corresponding data action and its onAddToCart event handler:

public void onAddToCart(DataActionContext ctx) {
 String[] id = new String[] { ctx.getHttpServletRequest().getParameter("id") };
 String[] qty = new String[] { "1" };
 getToyStoreService(ctx).adjustQuantitiesInCartAsStringArrays(id, qty);
}

Again, we see the use of a service method to encapsulate business logic, where the
adjustQuantitiesInCartAsStringArrays() method is implemented. We'll use
this same method to handle removing items and updating quantities in the displayed
shopping cart page, as described next.

6.5 Handling the Shopping Cart Page's Add/Remove Events
The Struts controller displays the shopping cart page (yourcart.do) anytime the
user clicks the Add to Cart link for a specific product. The shopping cart page
comprises the same product list table with the <c:forEach> loop used in the product
by category page. However, this time we render the table as the body of an HTML
<form> element in order to accept the user's quantities on individual items in the cart:

<form action="<c:url value='yourcart.do'/>" method="post">

The form posts back three pieces of information on the response object, where it can be
retrieved by the /yourcart action for processing:

■ The event_updateCart named event, specified by the Update Totals input

■ The Itemid of the current product being iterated on by the <c:forEach> loop,
specified by a hidden input element

■ The Quantity to assign to the current product of the <c:forEach> loop,
specified by a text edit input element

To trigger the quantities update, the user presses the Update Totals button. The event
is submitted on the name attribute of the input element:

<input type="image" src="<bean:message key='images.buttons.updatecart'/>"
 name="event_updateCart">

Open the file YourCartAction.java, which implements the data action (in the page
flow diagram, right-click /yourcart and choose Go to Code), and find the
onUpdateCart() event handler. First, the event handler obtains the product id of
the current row and the product quantity entered by the user:

String[] id = ctx.getHttpServletRequest().getParameterValues("id");

Handling the Shopping Cart Page's Review-Checkout Event

6-4 Oracle Application Development Framework Case Manual

String[] qty = ctx.getHttpServletRequest().getParameterValues("qty");

Next, the update cart event handler calls the
adjustQuantitiesInCartAsStringArrays() service method to modify the cart
quantities.

A similar event handler (onRemoveItem) exists to reset the cart quantity to zero when
the user clicks the Remove button. In this case, the event is submitted with a URL and
no form input is submitted:

<a href="<c:url value=’yourcart.do?event=removeItem&id=&{Row.Itemid}’/>">
 <img src="<bean:message key=’images.buttons.removefromcart’/>" border="0" >

After the data action executes the onUpdateCart or onRemoveItem event handler,
the invokeCustomMethod() method is executed to prepare the cart total for display
by yourcart.jsp. Unlike the shopping cart's ExtendedTotal attribute (which is
calculated based on item quantities), the cart total is not a business service attribute to
be accessed by the Oracle ADF shopping cart table binding. In order to make the result
of the getCartTotal() method available to the JSTL tags in the shopping cart page,
the invokeCustomMethod() adds the cart total as a request attribute:

protected void invokeCustomMethod(DataActionContext ctx) {
 Double cartTotal = getToyStoreService(ctx).getCartTotal();
 ctx.getHttpServletRequest().setAttribute("CartTotal", cartTotal);
}

The action mapping for the /yourcart action completes the postback pattern by
invoking the yourcart.jsp page to render the form with the prepared data. You can
confirm the target page by examining the struts-config.xml file or by mousing
over the /yourcart action in the page flow diagram.

Note that the yourcart.jsp page does not use the Struts <html:form> and
<html:input> elements to render the quantity input fields. In this example of form
input, a programmatic approach was taken that simplifies handling the multiple form
inputs provided by the user. Currently, Oracle ADF data binding provides no built-in
support for easily handling multi-row input forms. By creating a String array with the
product IDs and quantities, the adjustQuantitiesInCartAsStringArray()
business service method (see ToyStoreServiceImpl.java in the
toystore.model.services package) encapsulates the task to greatly simplify the
onUpdateCart event handler. In Lesson 5, we'll see the use of a Struts form to display
and modify the customer's account.

6.6 Handling the Shopping Cart Page's Review-Checkout Event
Once the user is satisfied with the cart, they can initiate their purchase by triggering
the reviewcheckout forward from the shopping cart page. The Proceed to
Checkout button sends the event reviewcheckout:

<a href="<c:url value='yourcart.do?event=reviewcheckout'/>">
 <img src="<bean:message key='images.buttons.checkout'/>"
 alt="Proceed To Checkout" border="0">

Notice that the action forward reviewcheckout (shown in the page flow diagram)
and the event share the same name. By default, after the Oracle ADF data action
executes, the next phase of the Oracle ADF lifecycle will return the name of the action
forward to use. If this check returns null, meaning that the developer has not
previously programmatically set the action forward, then as a useful fallback behavior,
the Oracle ADF lifecycle will try to find a forward with the same name as the current

Working with Operations in Forms

Lesson Three: Assembling the Shopping Cart 6-5

event being handled. If such a forward with a matching name exists, the default
findForward() implementation will set that action forward to be used.

This explains why, without writing any custom controller code, the user can click the
Proceed to Checkout button and see the reviewcheckout.jsp page. The HTML
form submits the reviewcheckout operation and the Oracle ADF lifecycle uses the
matching reviewcheckout forward to perform declarative navigation.

6.7 Working with Operations in Forms
The Oracle ADF named events let you handle multiple operations initiated from
HTML form inputs by writing event handlers in the Oracle ADF data action. The
result is a more declarative implementation of the Struts ForwardAction class. The
naming conventions for operations (named events) differ from those Struts uses for the
dispatch parameter in the DispatchAction or LookupDispatchAction objects. In
a Struts-only application, the dispatch parameter (used to identify the operation
corresponding to an HTML form submit element) can have any desired name.
However, in ADF, the operation submitted by the input element's name attribute is
usually specified as event_[operationName]. The following discussion provides
examples.

You can use the HTML image input element and set the name attribute to specify the
operation like this:

<input type="image" src="<bean:message key='resource key'/>"
 name="event_[operationName]">

Or, you can use the HTML submit button similarly:

<input type="submit" name="event_[operationName]" value="message resource key"/>

Or, you can use a URL, with the event parameter and operation name:

<a href="<c:url value=actionName.do?event=[operationName]/>">link text or image
source

Finally, in the data action, the method to handle a given operation is named like this:

public void on[operationName] (DataActionContext actionContext)

As long as the [operationName] parts match, the event and a handler will be bound
together at runtime. It is important to remember that the operation name must match
the action forward name and that it is case-sensitive. Additionally, the event method
handler must also match. For example:

event="foo"

name="event_foo"

will match an action forward named foo but not Foo or FOO.

The method to fire must be named onFoo(), with the convention that the term after
"on" is always initial capped regardless of the event name (thus onfoo() is not valid
and the events foo and Foo both fire the same method onFoo() in the data action).

Best Practice Tip: Since the event handler method does not
distinguish between foo and Foo operation names, it is best to avoid
names that differ only by letter capping. Otherwise, more than one
operation name would fire a single event handler method.

Hands-On for Lesson 3

6-6 Oracle Application Development Framework Case Manual

Note: To learn more about how Oracle ADF event handling integrates with Struts, see
the Oracle ADF Data Binding Primer and ADF/Struts Overview
whitepaper on OTN.

You can optionally complete the following hands-on to explore concepts presented in
this lesson.

6.8 Hands-On for Lesson 3
The following hands-on demonstrates a practical example of the Oracle ADF
framework's state management and failover support for transient view objects in ADF
Business Components. You can run the Oracle ADF Toy Store application inside
JDeveloper’s embedded OC4J container and try the following, but you must first
enable failover for the ADF Business Components:

To enable failover mode for the Oracle ADF Toy Store application, select
ToyStoreService in the Application Navigator and choose Configurations from the
context menu. In the dialog, select the ToyStoreServiceLocal configuration and click
the (Edit) button. In the Pooling and Scalability page, select the Failover Transaction
State Upon Managed Release property.

Now that you have enabled failover, return to the Toy Store application:

1. Add several items to your shopping cart.

2. Without closing your browser window, terminate the OC4J application server to
simulate a hardware failure on your application server machine.

To do this, choose View > Run Manager to display the Run Manager. Find the
Embedded OC4J Server process in the list, and select it. Finally, choose Terminate
from the context menu.

3. Rerun the Oracle ADF Toy Store application.

After you restart the application server — in this example, we've restarted the
embedded OC4J application server in JDeveloper — the browser window you left

Best Practice Tip: In the case of submit buttons, the value attribute
can alternatively be used to name the operation, but this attribute
could change depending on the locale and translation string. Oracle
ADF data action provides a simple approach: instead of using the
value attribute of the HTML element to represent the operation name
to submit, alternatively use the "event_" prefix in the name of the
button.

That is, rather than writing:

<input type="submit"
 name="event"
 value="<bean:message key='button.add.one'/>"/>

to submit an operation whose name is given in the value of the button
(the label "Add One"), write instead:

<input type="submit"
 name="event_Increment"
 value="<bean:message key='button.add.one'/>"/>

changing the name="event" to name="event_Increment". This
way, regardless of the value of the button (or whether that value
contains spaces in the name), you’ll have a reliable way to submit the
event without running into issues.

http://www.oracle.com/technology/products/jdev/collateral/papers/10g/ADFBindingPrimer/index.html

Hands-On for Lesson 3

Lesson Three: Assembling the Shopping Cart 6-7

open in step 2 above will be able to continue where it left off, with all shopping cart
items intact.

If you're still curious, try disabling failover support for the ShoppingCart
component in JDeveloper:

1. In the Application Navigator, expand the toystore.model.dataaccess package of
the ToyStoreModel project and double-click the ShoppingCart view object.

2. In the View Object Editor, select the Tuning page.

3. In the Tuning page, deselect Including All Transient Values.

4. Terminate the embedded OC4J process and rerun the application.

5. Return to the shopping cart page and receive the exception
javax.servlet.jsp.JspException: Missing message for key
"cart.instock.".

The page fails to render the message because <c:set> fails to evaluate the value
expression before rendering inStockMsgKey from the resource bundle:

<c:set var="inStockMsgKey"
 value="cart.instock.${Row.InStock}"/>
<bean:message name="inStockMsgKey"/>

Failover support works because the Oracle ADF framework offers automatic
database-backed state management for pending data in your application when you
use ADF Business Components. In the Oracle ADF Toy Store application, the pending
shopping cart information is not stored in the HTTP session state as it is in most
applications. Instead, with a declarative checkbox on the ShoppingCart component
at design time, we indicate that we'd like this component's pending data to be
managed for us. And the framework takes care of the rest.

Hands-On for Lesson 3

6-8 Oracle Application Development Framework Case Manual

Lesson Four: Processing the Shopping Cart Order 7-1

7
Lesson Four: Processing the Shopping Cart

Order

This chapter contains the following sections:

■ Section 7.1, "Introduction"

■ Section 7.2, "Analyzing the Proceed to Checkout Flow"

■ Section 7.3, "Laying Out the Review Checkout Page"

■ Section 7.4, "Laying Out the Confirm Shipping Information Page"

■ Section 7.5, "Hands-On for Lesson 4"

7.1 Introduction
With the ability to add products to the cart, as described in Lesson 3, we're ready to
extend our page flow to take the customer's shipping information and provide
confirmation of their order. To accomplish this, we will examine the structure of two
more JSP pages:

■ reviewcheckout.jsp, to display the customer's order for confirmation

■ confirmshippinginfo.jsp, to let the customer enter the shipping information
and payment method

In this lesson, we'll examine the layout of these two new JSP pages.

7.2 Analyzing the Proceed to Checkout Flow
The page flow proceeds with the action forward reviewcheckout from the
/yourcart data page. The forward destination is the /reviewcheckout data page.
The /reviewcheckout data page's only function is to let customers preview their
final order. The only event possible from this page is confirmshippinginfo, which
maps to the next forward and causes the confirmshippinginfo.jsp page to be
displayed. The page flow now includes a new data page for each task and is shown in
Figure 7–1, "Proceed to Checkout Page Flow".

Laying Out the Review Checkout Page

7-2 Oracle Application Development Framework Case Manual

Figure 7–1 Proceed to Checkout Page Flow

We'll reserve the action mapping discussion for the confirmshippinginfo.do
action until the next lesson, when we also describe the target pages in the flow
diagram.

Using the page flow modeler, in actual practice, proceeds roughly as follows:

1. Identify the pages and actions of your flow.

2. Identify the events (and action forwards) of your flow.

3. Using the Component Palette, drop the page source and target into the diagram
area of the Struts Page Flow Modeler.

4. Using the Component Palette, drop an action forward element (or page link) to
connect the source and target elements.

7.3 Laying Out the Review Checkout Page
At runtime, the reviewcheckout forward initiated from the yourcart.jsp page
executes the mapping for the /reviewcheckout data page. In this case, the data
action corresponding to this page performs no model initialization. Unlike the
previous pages, where model initialization was necessary to prepare data for the page
to display, the reviewcheckout.jsp page will only access existing model objects.
The purpose of this page is merely to pull data from the existing ShoppingCart
object and present it in a concise, readable table.

Specifically, the reviewcheckout.jsp page uses the <c:forEach> tag to iterate
over the Oracle ADF table binding bound to the ShoppingCart object through the
ShoppingCartIterator binding. Data for the table rows is displayed using a
variety of tags that take input from the table binding's current Row:

Laying Out the Review Checkout Page

Lesson Four: Processing the Shopping Cart Order 7-3

When the attribute to be displayed for the current row does not use a formatter to
render the data, we use the standard <c:out> tag:

<td><c:out value="${Row.Itemid}" /></td>
<td><c:out value="${Row.Name}" /></td>
...
<td align="center"><c:out value="${Row.Quantity}" /></td>

When the attribute to be displayed relies on language-sensitive format masks that
were defined in the business components, we use the Oracle ADF tag <adf:render>:

<td align="right"><adf:render model="Row.Listprice" /></td>
<td align="right"><adf:render model="Row.ExtendedTotal" /></td>

Finally, when we want to render a translatable string based on single-character flag
values, such as "Y" or "N" for the InStock attribute, we use the Struts tag
<bean:message>:

<td>
 <c:set var="inStockMsgKey" value="cart.instock.${Row.InStock}"/>
 <bean:message name="inStockMsgKey"/>
</td>

The ShoppingCart object contains a simple transient field named InStock, which
takes the value either Y (yes, in stock) or N (no, not in stock) to indicate whether the
item is available. When the reviewcheckout.jsp page displays the InStock
information, rather than showing the raw Y or N value, we use the Y or N as part of
the string key name for a translatable string in the Struts message resource file. The
above code first uses the JSTL <c:set> tag to set a local page variable named
inStockMsgKey to the value of cart.instock concatenated to the value of the
InStock field in the current Row of the <c:forEach> loop, and then it uses
<bean:message> to display the translated string based on either the
cart.instock.Y or cart.instock.N message key value in that inStockMsgKey
object. This way, the user can see a meaningful indicator of availability in the language
specified by the browser preference setting. For instance, the Y can display as In
Stock in English or In Magazzino in Italian.

The last row of the table displays a double-valued attribute, CartTotal, using the
<bean:write format="$0.00"> tag:

<bean:write format="$0.00" name="CartTotal"/>

Note: The decimal formats $0.00 and #,##0.00 are equivalent, and either may be
used to represent the currency value.

The value of CartTotal is made available to the page when
invokeCustomMethod() is executed on the data action:

protected void invokeCustomMethod(DataActionContext ctx) {
 Double cartTotal = getToyStoreService(ctx).getCartTotal();
 ctx.getHttpServletRequest().setAttribute("CartTotal", cartTotal);
}

This use of the <bean:write> tag with format attribute illustrates an alternative to
the <adf:render> approach described for the Listprice and ExtendedTotal
attribute values. With <adf:render>, format masks are provided as hints on the
Oracle ADF business object's attributes in the model layer. With <bean:write>, the
format masks are hard-coded into the pages (or with the <bean:write> formatKey
attribute, they can be specified as translatable message keys).

Laying Out the Confirm Shipping Information Page

7-4 Oracle Application Development Framework Case Manual

Once the customer is satisfied with the order, they check out by triggering the
confirmshippinginfo forward. The Continue button sends the event
confirmshippinginfo:

<a href="<c:url value='reviewcheckout.do?event=confirmshippinginfo'/>"
 ><img src="<bean:message key='images.buttons.continue'/>"
 alt="Continue" border="0">

As we saw in Lesson 3, again the action forward confirmshippinginfo (shown in
the page flow diagram) and the event share the same name. Although the data action
doesn't explicitly set the action forward, the Oracle ADF lifecycle will automatically
seek a matching forward and find confirmshippinginfo to perform declarative
navigation.

7.4 Laying Out the Confirm Shipping Information Page
The main design feature of the confirmshippinginfo.jsp page is the use of a
Struts form (<html:form> tag) to populate the form and accept user input. The fields
of the form are also Struts HTML elements, which access the properties of the form
bean:

■ <html:text>, where the property attribute is the name of the Oracle ADF
attribute binding that accesses the desired business object

■ <html:select>, where the property attribute is the name of the Oracle ADF
list binding that accesses the desired business object and
<html:optionsCollection> populates a poplist

The <html:select> and <html:optionsCollection> tags work with Oracle
ADF list bindings to populate the poplist in the page. The <html:select> tag is
bound to a property of the form bean, which shares the same name as the list binding
object (Cardtype and ExprYear). The <html:optionsCollection> tags get their
data from the nested, list-valued displayData property of the Oracle ADF list
binding. The beans in these display data collections each have a prompt and an
index property, so we indicate to use those as the label and value (respectively) for
each option in the list. In this sample, we show the selection list for the charge card
type (corresponding to the Cardtype bean and binding object):

<html:select property="Cardtype" >
 <html:optionsCollection label="prompt" value="index"
 property="Cardtype.displayData" />
</html:select>

In Oracle ADF, the HTML form is tied to the associated action, which is tied to the data
form bean. At runtime, the HTML form relies on the data form bean to resolve the
properties corresponding to the Oracle ADF binding objects and thereby to display
available form attribute values:

Note: For bandwidth optimization, the Oracle ADF binding layer
expects the nonvisible values of the Oracle ADF list binding to be the
zero-based index number in their displayData collection. The
Oracle ADF list binding handles translating the underlying list of
values (like IT for a country code) into index positions (like 86) on
both read and write of the binding value.

Laying Out the Confirm Shipping Information Page

Lesson Four: Processing the Shopping Cart Order 7-5

1. First, the data form bean asks the Oracle ADF binding container
(BindingContainerActionForm) whether it has a binding with a name
matching the form attribute.

2. Next the Oracle ADF binding container returns the binding if it exists; and, finally,
the data form bean populates the HTML form attributes with that binding's value.

Similarly, when the user clicks the Continue button to submit the form with its data,
thereby submitting the placeOrder event, the Oracle ADF binding container collects
the form attribute values that Struts has set on it; then, during the
processUpdateModel() phase of the lifecycle, the binding container uses those
values to update the Oracle ADF binding objects with matching names.

However, if the user submits the form and validation errors in the model layer are
thrown, when this page is rendered again, the <html:errors> tag will ensure that
errors related to the attributes will show up next to the fields.

The form includes the standard hidden field that the Oracle ADF controller layer uses
to detect whether the user has tried to submit the same form multiple times in rapid
succession:

<input type="hidden" name="<c:out value='${bindings.statetokenid}'/>
 "value="<c:out value='${bindings.statetoken}'/>"/>

The token prevents the data action from processing the same request multiple times
should the user page back and forward.

You can optionally complete the following hands-on to explore concepts presented in
this lesson.

Note: The Oracle ADF business object that represents a user account
in the model layer is declaratively enforcing mandatory attributes,
reusing a custom business rule to validate the country and state
combination, using a built-in validation rule to enforce uniqueness of
the primary key attribute, and validating the correct formatting of
email addresses using a custom Email datatype. All of the custom
error messages are localized to the current browser user's locale
(based on language + territory). None of this behavior requires
developer-written code to coordinate.

Best Practice Tip: By default, the Oracle ADF data actions bundle all
exceptions that occur during the request processing lifecycle and
translate them at the end of the request (during the lifecycle's
reportErrors() phase) to the Struts layer as Struts ActionError
objects. This means that business validation errors that occur during
the processing of the lifecycle neatly appear on the page, wherever
you've placed the <html:errors> tags. However, a failure to
include any <html:errors> tag in your page will result in the errors
being reported to the Struts layer, but never displayed. This means
that even an unexpected error will show up only if you explicitly
render the Struts errors using the <html:errors> tag. When you
work with the JDeveloper Data Control Palette, you will see
<html:errors> tags in your page, but if you develop your pages in
a more manual way, be aware that you must add these tags yourself.

Hands-On for Lesson 4

7-6 Oracle Application Development Framework Case Manual

7.5 Hands-On for Lesson 4
The following hands-on shows how Oracle ADF Business Components supports the
use of validation domains to specify an attribute datatype to perform custom
validation on the databound attribute.

1. In the Application Navigator, locate toystore.model.datatypes, right-click, and
choose New Domain.

2. In the Create Domain wizard, click Next and enter the name Phone for the
domain name. Leave all other options unchanged and click Finish.

3. In the Application Navigator, right-click the new domain PhoneNumber and
choose Go to Domain Class to open the Phone.java template you will modify.

4. In the open source for Phone.java, replace the stub validate() method with
the following validation code:

protected void validate() {
 if (!isEightCharacters()) {
 throw new DataCreationException(ErrorMessages.class,
 ErrorMessages.INVALID_PHONENUMBER, null, null);
 }
 }
 private boolean isEightCharacters() {
 if (mData != null) {
 if (mData.length() != 8) {
 return false;
 } else {
 return true;
 }
 }
 return false;
 }

5. Add the following import statement to the list of imports:

import oracle.jbo.domain.DataCreationException;

6. Make no other changes to the file and choose File > Save.

7. In the Application Navigator, expand toystore.model.datatypes.common and
double-click ErrorMessages.java to add the error message for INVALID_
PHONENUMBER specified in Phone.java.

8. In the open source for ErrorMessages.java, add this declaration to the list of
constants:

public static final String INVALID_PHONENUMBER = "20005";

9. To the list of error messages add:

{ INVALID_PHONENUMBER, "Phone number must be eight characters including dash."
},

10. In the Application Navigator, expand toystore.model.dataaccess, right-click
Accounts, and choose Edit Accounts.

11. In the View Object Editor, select Attributes to display the list of available and
selected attributes. Select Phone in the Selected Attributes list and click the
Remove arrow button to return it to the Available Attributes list. This step is
necessary to remove the dependency of the view object on this attribute before we
can apply the new domain type. Click OK to save the changes.

Hands-On for Lesson 4

Lesson Four: Processing the Shopping Cart Order 7-7

12. In the Application Navigator, expand toystore.model.businessobjects, right-click
Account, and choose Edit Account.

13. In the Entity Object Editor, expand Attributes and select Phone from the list.

14. In the Entity Attribute tab, display the Type dropdown list and choose
toystore.model.datatypes.common.Phone. If the new datatype is not displayed,
you can also select Import Domain from the list to locate the domain. Click OK to
save the changes and exit the editor.

15. In the Application Navigator, expand toystore.model.dataaccess, right-click
Accounts and choose Edit Accounts.

16. In the View Object Editor, select Attributes to display the list of available and
selected attributes. Select Phone in the Available Attributes list and click the Add
arrow button to return it to the Selected Attributes list. Click OK to save the
changes and exit the editor.

17. Right-click the home.do action and choose Run to launch the application. Click
any category in the home page. Select any product link and add it to your cart.
Proceed to checkout. When asked to sign in, click the Register as a New User link
instead. Complete the form and enter an intentionally short phone number. Then
click Submit. The data action redisplays the page with the validation error you
created for the phone number field.

Validation domains add business logic to every attribute that uses a validation domain
as its type. Domain validation occurs when an object of that domain type is created.
The data object can then be passed between the tiers without the need for
reconstruction or revalidation. To implement domain-level validation, you create a
new domain type and add code to the validate() method. Once the domain has
been created, you can assign it as the type of an attribute.

Hands-On for Lesson 4

7-8 Oracle Application Development Framework Case Manual

Lesson Five: Requiring the User to Sign Into an Account 8-1

8
Lesson Five: Requiring the User to Sign Into

an Account

This chapter contains the following sections:

■ Section 8.1, "Introduction"

■ Section 8.2, "Analyzing the Sign-In Page Flow"

■ Section 8.3, "Laying Out the Sign-In Page"

■ Section 8.4, "Laying Out the Register New User Page"

■ Section 8.5, "Laying Out the Generic Form Control Page"

■ Section 8.6, "Laying Out the Account Created Page"

■ Section 8.7, "Hands-On for Lesson 5"

8.1 Introduction
The pages discussed in Lesson 4 demonstrate how to process the customer order. In
this lesson, we examine how to require the customer to sign in to an existing account,
and, in the case of a new customer, how to create an account. To accomplish this, we
will examine the structure of these JSP pages:

■ registernewuser.jsp, to take a new customer's account information

■ signin.jsp, to accept an existing customer's user ID and password

■ accountcreated.jsp, to confirm the new customer's account creation

In this lesson, we'll examine the layout of these new JSP pages and describe how the
application returns the customer to the previous page after sig- in is verified.

8.2 Analyzing the Sign-In Page Flow
The page flow proceeds with the action forward requireslogin from the
/confirmshippinginfo data page. The forward destination is the /signin data
page. In this application, we have choosen to require sign-in before taking the
customer's shipping information. Although this task could have been performed
earlier, we prefer not to interfere with the customer's ability to browse the catalog until
they proceed to checkout. To ensure that the customer does sign in, the
initializeModelForPage() method in the confirmshippinginfo data action
performs this test:

protected void initializeModelForPage(DataActionContext ctx) {
 HttpServletRequest request = ctx.getHttpServletRequest();

Analyzing the Sign-In Page Flow

8-2 Oracle Application Development Framework Case Manual

 if (!AppUserInfo.isSignedOn(request)) {
 ctx.setActionForward("requireslogin");
 } else {
 getToyStoreService(ctx).createNewOrder(AppUserInfo.signedInUser(request));
 }
}

If the user has signed in already, the order is created by the service method
createNewOrder() and the application displays the confirmshippinginfo.jsp
page, as described in Lesson 4. However, assuming that the customer has not signed
in, the Struts method setActionForward() is invoked with the forward
requireslogin to initiate the action mapping and display the signin.jsp page.

After programmatically invoking the action forward and displaying the signin.jsp
page, the user must be able either to sign in or to register as a new customer for the
first time. The page flow diagram represents the transition from signin.jsp to
registernewuser.jsp as a dashed line to distinguish an ordinary page link from
an action forward (represented by a solid line). The difference is that the page link
does not map to an associated data action and therefore a link cannot cause the
application to attach the binding container to the target page. As we will see, the
register new user page is an empty form with no data displayed.

The last task of the sign-in page flow is to provide confirmation to the user once they
have registered a new account. The account confirmation task is represented in the
page flow diagram by the save action forward with the target /accountcreated page
forward icon. The final diagram with the sign-in page flow is shown in Figure 8–1,
"Sign-In Page Flow".

Figure 8–1 Sign-In Page Flow

The page forward has not yet been used in the Struts page flow of this application, but
it is conceptually similar to a page link: in either case the target page requires no data
binding. In the case of a page forward, the icon is a representation of a Struts action
that always forwards to a specified destination web page.

Laying Out the Sign-In Page

Lesson Five: Requiring the User to Sign Into an Account 8-3

We'll reserve the action mapping discussion for the confirmshippinginfo.do
action until the next lesson, when we also describe the target pages in the flow
diagram.

8.3 Laying Out the Sign-In Page
The main design feature of the signin.jsp page is the use of a Struts form
(<html:form> tag) to accept user input. The fields of the form are also Struts HTML
elements that access the properties of the form bean:

■ <html:text>, where the property attribute is the name of the Oracle ADF
attribute binding that accesses the desired business object

■ <html:password>, where the property attribute is the name of the Oracle ADF
attribute binding that accesses the desired business object

When the user clicks to submit the form, with these additional attributes set, at
runtime the Oracle ADF binding container populates the bindings with the values of
the username and password HTML form fields. Those values are accessible by the
onVerifySignin() event-handler method of the SignInAction class, which will
handle the sign-in form's postback when the user submits the form.

The onVerifySignin() method in the data action first verifies that neither the
username nor password properties is blank, and then calls the validSignon()
method on the ToyStoreService business service interface to verify whether the
username/password combination represents a valid web store user. If any validation
check fails, onVerifySignin() adds a Struts ActionError object to the
ActionErrors collection so that the view layer can present appropriate error
messages to the user and so that the user is returned to the sign-in page to try again. If
the sign-in validation check succeeds, then the onVerifySignin() method calls a
helper method (signIn() method of the AppUserInfo class) to flag the current user
as signed in, and returns the appropriate page to forward the request to.

Since several different actions in the application can require the user to log in, the
setForwardAction() method in this data action uses the target parameter to
return the correct "next" page in the flow, based on which action required the user to
log in.

Best Practice Tip: Although the Struts page flow diagram allows
you to insert JSP page icons into the diagram, in most cases you will
use the Page Forward icon instead of a JSP icon to represent the target
web page. This standard practice ensures that all web pages are
represented in the Struts configuration file and therefore permits the
Struts controller to handle page navigation.

Best Practice Tip: With the addition of a secondary resource
message file for global errors identified by the key GlobalErrors,
you can ensure that error strings like those represented by the
INVALIDLOGIN constant are translated into user-readable messages.
You make Struts aware of the names of your message resource files in
struts-config.xml, where the <message-resources> element
with the key attribute defines the location of the secondary message
resource:

<message-resources key="GlobalErrors"
 parameter="toystore.view.GlobalErrors"/>

Laying Out the Register New User Page

8-4 Oracle Application Development Framework Case Manual

8.4 Laying Out the Register New User Page
The registernewuser.jsp page (used by the /register data page) renders the
data entry form that allows users to register on the site for the first time. Because the
results produced in the browser of this page are nearly identical to the
editexistingaccount.jsp page, we decided to render the entire form by the
single <jsp:include page="formControl.jsp"> tag. This tag works like a
reusable component, including the contents of the formControl.jsp page. The
nested <jsp:param> tags pass three parameters to the reusable component page:

■ dataPage — the name of the current data page

■ saveButtonLabelKey — the message bundle key to the label to be displayed on
the Save button

■ saveButtonEvent — the name of the event to be associated with the clicking of
the Save button.

So the actual work being done lies in the formControl.jsp component page. The
page builds a data entry form with one databound control for each control value
binding in the current binding container.

8.5 Laying Out the Generic Form Control Page
The form control page begins with some examples of using the <c:choose>, <c:if>,
and <c:set> tags. The following excerpt uses these tags to conditionally set up the
values of local page variables named eventName, buttonLabel, and
buttonLabelKey, based on whether and which of the expected input parameters
were provided. We'll use these variables later in the page as part of constructing the
Save button at the bottom of the generated form.

<c:choose>
 <c:when test="${not empty param.saveButtonEvent}">
 <c:set var="eventName" value="${param.saveButtonEvent}"/>

 </c:when>
 <c:otherwise>
 <c:set var="eventName" value="Commit"/>

 </c:otherwise>
</c:choose>
<c:if test="${not empty param.saveButtonLabel}">
 <c:set var="buttonLabel" value="${param.saveButtonLabel}"/>

</c:if>
<c:if test="${not empty param.saveButtonLabelKey}">
 <c:set var="buttonLabelKey" value="${param.saveButtonLabelKey}"/>

</c:if>

Note: The following discussion represents a generic,
metadata-driven way of rendering the binding data in contrast to the
more traditional approach of specifying each binding in the page
source. In contrast to this generic technique explained below, the Toy
Store application also includes the register new user page to render a
data entry form in the traditional way. Both forms render the same set
of controls for account data, so you can compare the two approaches
and pick the one that will suit your application needs best. See Lesson
6 for a discussion of the register new user page.

Laying Out the Generic Form Control Page

Lesson Five: Requiring the User to Sign Into an Account 8-5

The formControl.jsp page goes on to use the <html:errors> tag as part of a
"global errors" section of the input form, where any errors that are not
attribute-specific will show up:

<center>
 <table border="0">
 <tr>
 <td><html:errors bundle="GlobalErrors"

 property="<%= ActionErrors.GLOBAL_ERROR %>"/></td>
 </tr>

 </table>
</center>

Next, the form uses the value of the dataPage parameter passed in by the
<jsp:include> tag as part of opening the <html:form> tag. Notice that since we
cannot use EL expressions directly in the <html:form> tag's action attribute, we
first use <c:set> to set a local page variable named name with the EL-expression
value we want, and then we use a JSP scriptlet to pass the value of this name variable
to the action attribute:

<c:set var="name" value="${param.dataPage}.do"/>
<html:form action='<%= pageContext.getAttribute("name")%>'>

 <!-- etc. -->
</html:form>

The form includes the standard hidden field that the Oracle ADF controller layer uses
to detect whether the user has tried to submit the same form multiple times in rapid
succession:

<input type="hidden" name="<c:out value='${bindings.statetokenid}'/>"
 value="<c:out value='${bindings.statetoken}'/>"/>

Next we begin the loop that will create an HTML form field for each control value
binding in the binding container. Inside the <table> tag, we have the following
<c:forEach> iteration:

<c:forEach var="curBinding" items="${bindings.ctrlBindingList}">
 <% JUControlBinding cb =

 (JUControlBinding)pageContext.getAttribute("curBinding");
 if (cb instanceof JUCtrlValueBinding &&
 !(cb instanceof JUCtrlRangeBinding) &&
 !(cb instanceof JUCtrlHierNodeBinding)) { %>

 <!-- Build control for current control value binding in here -->
 <% } %>
</c:forEach>

The <c:forEach> loop iterates over the list of control value bindings from the
binding container. Since this list might include control action bindings, we need to skip
over these when rendering the input controls. Since we want to keep things simple,
we'll also skip over RangeBindings and TreeBindings too. The EL expression
language doesn't have a built-in instanceof operator, so we're using a JSP scriptlet
to insert a regular Java-language if statement to perform the combination of
instanceof checks.

Laying Out the Generic Form Control Page

8-6 Oracle Application Development Framework Case Manual

Since we specified the var="curBinding" attribute on the <c:forEach> tag, inside
the loop we can refer to this curBinding loop variable to access the current control
value binding as part of our generic form input control generation. In the following
excerpt, notice how we're making use of the binding properties in our EL expressions
like tooltip, mandatory, and label to access this metadata from the current
control binding.

<c:forEach var="curBinding" items="${bindings.ctrlBindingList}">
 <% JUControlBinding cb =

 (JUControlBinding)pageContext.getAttribute("curBinding");
 if (cb instanceof JUCtrlValueBinding &&
 !(cb instanceof JUCtrlRangeBinding) &&
 !(cb instanceof JUCtrlHierNodeBinding)) { %>

 <tr>
 <th align="right" title="<c:out value='${curBinding.tooltip}'/>">
 <c:if test="${curBinding.mandatory}">* </c:if>
 <c:out value="${curBinding.label}"/>

 </th>
 <td>

 <c:set var="name" value="bindings.${curBinding.name}"/>
 <adf:inputrender model='<%= pageContext.getAttribute("name")%>'/>

 </td>
 <c:set var="name" value="${curBinding.name}"/>
 <td>
 <html:errors property='<%= pageContext.getAttribute("name") %>'/>

 </td>
 </tr>

 <% } %>
</c:forEach>

To actually render the HTML form control, we use the <adf:inputrender> tag,
which is set up to render an appropriate tag based on the datatype of the current
binding's attribute value (the use of Business Components metadata to invoke a
custom renderer will be discussed in Lesson 6). We repeat our trick of using <c:set>
to set a local page variable named name to the concatenation of the string "bindings."
with the name of the current binding, which is what the <adf:inputrender> tag
expects as the value of its model attribute. We use the <html:errors> tag to show
any attribute-level validation errors that might occur next to the control to which they
are relevant. We again use the <c:set> trick to make the value of the
<html:errors> tag's property attribute match the name of the current binding.

Finally, as the following excerpt shows, we use a <c:choose> tag to put the
appropriately labeled Save button at the bottom of the form. Based on whether the
user specified a button label or a button label key, we either use the literal label string
or employ the <bean:message> tag to look up the label key for us. We're using our
local page variable eventName that we set up at the top of the page to fill in the right
name for the button to generate that event when the user clicks it.

<c:choose>
 <c:when test="${not empty buttonLabel}">
 <input name="event_<c:out value="${eventName}"/>" type="submit"

Note: We could have decided to generically render a set of buttons
for any of the action bindings found in the binding container, which
would be of type JUCtrlActionBinding in the
oracle.jbo.uicli.binding package; instead, the application
just renders a single Save button on the form.

Hands-On for Lesson 5

Lesson Five: Requiring the User to Sign Into an Account 8-7

 value='<c:out value="${buttonLabel}"/>'/>
 </c:when>
 <c:when test="${not empty buttonLabelKey}">
 <input name="event_<c:out value="${eventName}"/>" type="submit"

 value='<bean:message name="buttonLabelKey"/>'>
 </c:when>
 <c:otherwise>

 <input name="event_<c:out value="${eventName}"/>" type="submit"
 value='Submit'/>

 </c:otherwise>
</c:choose>

8.6 Laying Out the Account Created Page
As previously explained, the Struts page flow uses a page forward to represent the
accountcreated.jsp page. No data action is necessary to render this page because
no bindings are used to display information. The page contains a single link that
allows the user to return to the home page after creating their account:

<a href="<c:url value='home.do'/>">
 <bean:message key="accountcreated.gotomainpage"/>

In the following hands-on, you can optionally explore adding a databound text field to
display the customer name in the page. This single change will necessitate changing
the page forward to a data page element in the Struts diagram.

8.7 Hands-On for Lesson 5
The following hands-on shows how you can easily change a Struts page forward
(/accountcreated) that displays no data bindings into an Oracle ADF data page
capable of displaying the customer name in the page.

1. From the Struts page flow diagram, locate the /accountcreated page forward icon
and double-click to open the accountcreated.jsp page in design view.

2. With the accountcreated.jsp page displayed, open the Data Control Palette
and expand the ToyStoreService data control, Accounts.

3. Locate the Firstname attribute node under Accounts and drag the attribute node
into the open page so that it appears before the message
accountcreated.header.

4. In the Selected Page Flow Data Binding Option dialog, select Convert the selected
page to a data page to convert the selected page to a data page and click OK.

5. Select the Source tab and locate the new value binding. The binding should
appear before the <bean:message> tag. Type an extra space to separate the two:

<h2><c:out value="${bindings.Firstname}"/> <bean:message
 key="accountcreated.header"/>
</h2>

6. Return to the Struts page flow diagram and observe the new /accountcreated data
page substituted for the original page forward. Select the Source tab and observe
the modified action mapping:

<action path="/accountcreated"
 className="oracle.adf.controller.struts.actions.DataActionMapping"
 type="oracle.adf.controller.struts.actions.DataForwardAction"
 name="DataForm" parameter="/WEB-INF/jsp/accountcreated.jsp">

Hands-On for Lesson 5

8-8 Oracle Application Development Framework Case Manual

 <set-property property="modelReference"
 value="WEB_INF_jsp_accountcreatedUIModel"/>
</action>

7. In the Application Navigator, expand toystore.view and double-click WEB_INF_
jsp_accountcreatedUIModel.xml to open the newly created UI model definition
file and observe the Oracle ADF data control definitions.

The UIModel.xml definition file is created in JDeveloper the first time you drop a
databound control from the Data Control Palette into your open JSP page.

8. In the Application Navigator, select WEB_INF_jsp_accountcreatedUIModel.xml
so that it appears highlighted, and open the Structure window. Observe the
AccountIterator iterator and Firstname value binding. You may double-click these
items to edit the contents of the UI model definition file.

9. Right-click the home.do action and choose Run to launch the application. Click
any category in the home page. Select any product link and add it to your cart.
Proceed to checkout. When asked to sign in, click the Register as a New User link
instead. Complete the form and supply a fictitious customer name and account
information (be sure to observe validation errors for the entered data). Then click
Submit. The customer's first name that you just created should appear in the
account created page.

The data page manages the model data binding for the page. Oracle ADF provides the
data page (oracle.adf.controller.struts.actions.DataForwardAction)
to prepare the binding context for databound web pages and to execute custom
business service methods exposed through the model. In this case, no business
methods are required, and the standard DataForwardAction class will suffice to
prepare the binding context before posting back to the page to be displayed.

Note that the binding displays the name in all lowercase. It is possible to create a
service method to convert the username attribute to initial caps and to execute that
method in a custom DataForwardAction class, similar to the ones described in
previous lessons.

Lesson Six: Allowing the User to Edit Their Account 9-1

9
Lesson Six: Allowing the User to Edit Their

Account

This chapter contains the following sections:

■ Section 9.1, "Introduction"

■ Section 9.2, "Setting Up the Model Layer Data"

■ Section 9.3, "Laying Out the Edit Account Page"

■ Section 9.4, "Analyzing the Binding Container for the Edit Account Page"

■ Section 9.5, "Showing Read-Only Data in a Form"

■ Section 9.6, "Creating Input Fields in the Form"

■ Section 9.7, "Using EL to Work with Labels, Tooltips, and Other Metadata"

■ Section 9.8, "Including a Databound Poplist Control"

■ Section 9.9, "Alternative to a Databound Poplist Using Custom Renderer"

■ Section 9.10, "Hands-On for Lesson 6"

9.1 Introduction
In the previous lesson, we created the account object for a new user by generating a
data entry form, using a generic, metadata-driven approach. In Lesson 6, we examine
another way to display a data entry form, this time to edit user account information:
the editexistingaccount.jsp page uses the traditional JSP page layout approach
of placing each control inside an HTML form.

9.2 Setting Up the Model Layer Data
The /EditAccountAction data action sets up the model layer in its
initializeModelForPage() method. It calls the custom service method
prepareToEditAccountInfoFor() on the ToyStoreService interface, passing
in the name of the current user as an argument. The implementation of this method in
the ToyStoreServiceImpl class looks like this:

/* From: toystore.model.services.ToyStoreServiceImpl */
 public boolean prepareToEditAccountInfoFor(String username) {
 Key k = new Key(new Object[] { username });
 ViewObject vo = getAccounts();
 /*
 * We don't want the view object to execute any other query
 * than the one row we will be finding by key, so we mark

Laying Out the Edit Account Page

9-2 Oracle Application Development Framework Case Manual

 * its max fetch size to zero.
 */
 vo.setMaxFetchSize(0);
 Row[] r = vo.findByKey(k, 1);
 if (r.length < 1) {
 return false;

 }
 Row rowFound = r[0];
 /*
 * Set the row we found as the current row in the VO
 */
 vo.setCurrentRow(rowFound);
 return true;

 }

The above service method performs the following three basic steps:

1. It creates an oracle.jbo.Key object based on the current user's name passed in.

2. It looks up an existing row in the Accounts view object by passing this key to the
findByKey() method on the view object.

3. It sets that row as the current row in the view object.

9.3 Laying Out the Edit Account Page
In the corresponding JSP page, named editexistingaccount.jsp, we use the
<html:form> tag from the Struts HTML tag library to implement the postback
pattern by having its action post back to the data page like this:

<html:form action="editaccount.do" method="post">

At runtime, the Struts <html:form> tag sees the action attribute value of
/updateaccount.do and uses it, along with its action mapping information, to
determine that the form bean named DataForm is the one that should be used to
render this form. The DataForm form bean is defined in struts-config.xml to use
our Oracle ADF BindingContainerActionForm class.

Since we're rendering the data entry form for just a single "row" of user account
information, we don't need to use the JSTL <c:forEach> tag in this page and we
don't need a range binding in our binding container. We simply format the individual
fields in the form, using normal HTML table tags to get the prompts and controls to
line up nicely. As this page shows off several different techniques in use, the following
section will highlight each of the important ones.

9.4 Analyzing the Binding Container for the Edit Account Page
Figure 9–1, "The UI Model Tab Shows the Binding Container for the Edit Account
Page", shows the binding container for the edit account page. Notice that we have
basic attribute bindings for all of the Accounts object attributes except for Country,
which is a list binding (its icon represents a poplist). We have two iterator bindings:
AccountsIterator for the main account information we're editing, and
CountryListIterator to supply a poplist with the valid country names from
which the user can choose for the Country attribute.

Creating Input Fields in the Form

Lesson Six: Allowing the User to Edit Their Account 9-3

Figure 9–1 The UI Model Tab Shows the Binding Container for the Edit Account Page

We also have an action binding named save that is bound to the built-in Commit
operation on the ToyStoreService data control.

9.5 Showing Read-Only Data in a Form
The following sample shows the tags used by the page to output the HTML table row
containing the prompt and data for the username field.

<%-- Username field --%>
<tr>
 <th align="right" title="<bean:message key="account.username.tooltip"/>">
 <bean:message key="account.username.label"/>

 </th>
 <td title="<bean:message key="account.username.tooltip"/>">
 <c:out value="${bindings.Username}"/>

 </td>
</tr>

Since username in this application is not updateable once it has been created, we
don't need to render an HTML form control for the data. Using the <c:out> tag, we
just output the value of the field for display using its corresponding binding object.
The <bean:message> tags handle outputting translatable strings from the default
ToyStoreResources.properties file to display the tooltip and label for the
username.

9.6 Creating Input Fields in the Form
When data needs to be entered or edited, you can use a number of other tags in the
Struts HTML library to render databound controls. The following code uses the
<html:password> tag to show the Password property:

<%-- Password field --%>
<tr>
 <th align="right" title="<bean:message key="account.password.tooltip"/>">

Using EL to Work with Labels, Tooltips, and Other Metadata

9-4 Oracle Application Development Framework Case Manual

 <bean:message key="dataentryform.mandatory"/>
 <bean:message key="account.password.label"/>

 </th>
 <td title="<bean:message key="account.password.tooltip"/>">
 <html:password property="Password" size="25" maxlength="30"/>

 </td>
 <td><html:errors property="Password"/></td>

</tr>

Recall that the Oracle ADF BindingContainerActionForm presents Struts (in this
case, tags from the Struts HTML tag library) with a DynaActionForm bean having
properties that are named for, and wired to, the bindings in your current binding
container. So, when the <html:password> tag gets and sets the value of the
Password property on this form bean, behind the scenes Oracle ADF is coordinating
the properties of that form bean with the corresponding binding objects.

The above sample also illustrates using the Struts HTML tag <html:errors> to
display any validation errors that are specific to the Password attribute. Of course,
when the form is first rendered there won't be any validation errors, so this table cell
will be empty. However, if the user submits the form and the model layer throws
validation errors in, when this page is rendered again any errors related to the
password will show up next to the password field on the screen.

Also, since the password field is mandatory, we've included a <bean:write> tag to
show the string corresponding to the key dataentryform.mandatory as a visual
marker for the user that the field is required. By default, we render an asterisk.

9.7 Using EL to Work with Labels, Tooltips, and Other Metadata
Oracle ADF entity object and view object components have a number of built-in
features that allow developers to define control hints like locale-sensitive labels,
tooltips, and format masks. The Oracle ADF binding layer exposes this metadata
directly on the binding objects for convenient access by your view layer pages. The
<c:out> tags shown below illustrate the EL expressions for the tooltip and label
information that have been associated with the business object attributes or the view
object attributes. If an entity object has defined a tooltip for one of its attributes named
Firstname, for example, then this tooltip is inherited by any view objects that include
Firstname. Of course, the view object can also override these control hints if
necessary.

<%-- Firstname field --%>
<tr>
 <th align="right" title="<c:out value='${bindings.Firstname.tooltip}'/>">
 <c:if test="${bindings.Firstname.mandatory}">
 <bean:message key="dataentryform.mandatory"/>

 </c:if>
 <c:out value="${bindings.Firstname.label}"/>

 </th>
 <td>
 <html:text property="Firstname" size="30" maxlength="35"/>

 </td>
 <td><html:errors property="Firstname"/></td>

</tr>

Each binding object exposes runtime metadata about the objects to which it is bound
that you can access at runtime using EL expressions. For example, the control value
binding for an attribute exposes information about the underlying attribute in the
model layer. The above sample shows an example of using this metadata to detect at

Including a Databound Poplist Control

Lesson Six: Allowing the User to Edit Their Account 9-5

runtime whether a given attribute, like Firstname, is mandatory or not. We can use
this information, combined with the JSTL <c:if> tag, to conditionally output the
mandatory marker on a required field.

<c:if test="${bindings.Firstname.mandatory}">
 <bean:message key="dataentryform.mandatory"/>

</c:if>

9.8 Including a Databound Poplist Control
Finally, we look at an example of a more sophisticated databound form control, such
as a poplist showing the country of residence for a user. There are two dimensions to
the poplist control:

■ The value of the underlying Country binding, reflected by the selection in the list

■ The list of all available country names to chose from

Figure 9–2, "The Poplist Displays the Current Value and Valid Values List", illustrates
the poplist.

Figure 9–2 The Poplist Displays the Current Value and Valid Values List

Oracle ADF provides more sophisticated binding objects to handle controls like this
one, which have multiple facets to their data binding requirements. The Oracle ADF
list binding caters specifically to poplist-type controls that need to manage both a
current bound attribute value and a list of valid choices to present to the user. Oracle
ADF also supplies a tree binding object that is useful for displaying hierarchical data.

JDeveloper Tip: To get a quick review of all the available properties
on a binding object, just click on the binding in the UI Model tab of
the Structure window and press the F1 key. The online help topic for
the appropriate binding object appears in an IDE window for your
reference.

Including a Databound Poplist Control

9-6 Oracle Application Development Framework Case Manual

When you click the UI Model tab of the Structure window with
editexistingaccount.jsp selected in the Application Navigator, you'll see the bindings
described above. Now, select CountryListIterator and open the Property Inspector:
you'll see that the RangeSize property has a value of -1. This value indicates that you
want the range of the iterator to include all rows in the list of countries, rather than
only a partial set.

Right-click the Country binding and choose Edit from the context menu. You will see
the List Binding Editor shown in the screenshot below. The editor allows you to see the
binding metadata required to support the Country poplist:

■ CountryListIterator, the datasource for the list of available choices.

■ AccountsIterator, the iterator whose current row will be used both to
determine the current value of the binding and to update the binding when the
user selects a new item from the list.

■ Code and Country, the source LOV and target attribute pairs, show that the
value of the Code property from the selected row in CountryList will be set on
the Country property on the current row of the target AccountsIterator.

If you click the LOV Display Attributes tab, you can observe that the Description
attribute from the CountryListIterator is indicated as the value to be displayed
to the user in the list. Figure 9–3, "The List Binding Editor for the Country List
Binding", shows the editor.

Figure 9–3 The List Binding Editor for the Country List Binding

The example below shows how to use <html:select> and
<html:optionsCollection> to leverage the Country list binding and display the
poplist in our page. The <html:select> element is bound to the Country property
of the form bean, which corresponds to our list binding object. The

Best Practice Tip: The iterator binding range size defaults to 10. For
iterators driving the list of choices in a list binding, you will nearly
always want to set the range size to be -1 as we've done here.

Alternative to a Databound Poplist Using Custom Renderer

Lesson Six: Allowing the User to Edit Their Account 9-7

<html:optionsCollection> element gets its data from the nested, list-valued
displayData property of that same Country binding. The beans in this display data
collection each have a prompt and an index property, so in the following code we use
those as the label and value (respectively) for each option in the list:

<%-- Country field --%>
<tr>
 <th align="right" title="<c:out value='${bindings.Country.tooltip}'/>">
 <c:if test="${bindings.Country.mandatory}">
 <bean:message key="dataentryform.mandatory"/>

 </c:if>
 <c:out value="${bindings.Country.label}"/>

 </th>
 <td>
 <html:select property="Country" >
 <html:optionsCollection label="prompt"
 value="index"
 property="Country.displayData" />

 </html:select>
 </td>
 <td><html:errors property="Country"/></td>

</tr>

9.9 Alternative to a Databound Poplist Using Custom Renderer
In contrast to the above approach, which relied on the control to render the poplist in
the form, we can accomplish the same thing in a more generic, metadata-driven way
by performing these steps:

1. Create a custom renderer class to determine how to handle the country list.

2. Set a custom property on the attribute of the Oracle ADF Business Components to
specify the custom renderer.

3. Work with the <adf:inputrender> tag in the JSP page to apply the custom
renderer.

This use of the custom renderer is demonstrated by the formControl.jsp page
introduced in Lesson 5, and described in more detail below.

In the case of the formControl.jsp page, we've specified the class name
toystore.fwk.view.ListBindingPoplistRenderer, which implements a
customized poplist renderer for Oracle ADF list bindings. This custom field renderer
extends the default oracle.jdeveloper.html.StaticPickList renderer to
populate some of its properties based on information it can retrieve from the list

Note: For bandwidth optimization, the Oracle ADF binding layer
expects the nonvisible values of a list binding to be the zero-based
index number in their displayData collection. The Oracle ADF list
binding handles translating the underlying Country value (like IT, for
example) into an index position (like 86) in the list of values on both
read and write of the binding value.

Note: The <adf:inputrender> tag implementation consults the
value of the EditRenderer attribute property to determine whether
the attribute has specified a custom renderer. If none is specified,
Oracle ADF picks an appropriate control to render the data.

Alternative to a Databound Poplist Using Custom Renderer

9-8 Oracle Application Development Framework Case Manual

binding object. The source code for the custom renderer (from the FwkExtensions
project) is shown below:

package toystore.fwk.view;
import java.util.List;
import java.util.Map;
import oracle.jbo.Row;
import oracle.jbo.html.BindingContainerDataSource;
import oracle.jbo.uicli.binding.JUControlBinding;
import oracle.jbo.uicli.binding.JUCtrlListBinding;
import oracle.jdeveloper.html.StaticPickList;
/**
 * Extends the oracle.jdeveloper.html.StaticPickList renderer to drive
 * off of a list binding.
 */
public class ListBindingPoplistRenderer extends StaticPickList {
 /**
 * Overrides renderToString() in StaticPickList
 */
 public String renderToString(Row row) {
 BindingContainerDataSource ds = (BindingContainerDataSource)getDatasource();
 JUControlBinding b = ds.getControlBinding();
 String[] labels = null;
 String[] values = null;
 if (b instanceof JUCtrlListBinding) {
 JUCtrlListBinding listBinding = (JUCtrlListBinding)b;
 List valueList = listBinding.getDisplayData();
 int size = valueList.size();
 values = new String[size];
 labels = new String[size];
 for (int z = 0; z < size; z++) {
 labels[z] = (String)((Map)valueList.get(z)).get("prompt");
 values[z] = Integer.toString(z);

 }
 setValue(Integer.toString(listBinding.getSelectedIndex()));

 }
 setDataSource(labels,values);
 return super.renderToString(row);

 }
}

You can see that the code accesses the JUControlBinding object from the
datasource, that it checks to be sure the object is a JUCtrlListBinding object, and
that it calls the getDisplayData() method on the list binding to access the list
display data. In order to populate the String[] variables for the labels and the
values, it iterates over the display data collection and adds the prompt attribute from
each bean in the collection to the label array. Since the Oracle ADF binding layer will
expect the value returned from the page to be the numerical row number, we populate
the values array by converting the loop variable z to a string on each iteration. The
net effect is that when our generic formControl.jsp "component" page renders an
HTML form for the bindings in the current binding container, the Country binding
will be rendered as a databound poplist populated from the display data collection
named CountryList.

If you adopt a generic data form rendering technique like the one employed by the
formControl.jsp page in your applications, you can more easily ensure that all
data entry forms in your application look and act similarly.

Hands-On for Lesson 6

Lesson Six: Allowing the User to Edit Their Account 9-9

9.10 Hands-On for Lesson 6
The following hands-on shows how changing the iterator rangesize property
controls the display range.

1. In the Application Navigator, locate editexistingaccount.jsp in the WEB-INF/jsp
folder and select it so that it appears highlighted.

2. Open the Structure window and select the UI Model tab to view the list of binding
definitions in the WEB_INF_jsp_editexistingaccountUIModel definition file.

3. In the Structure window, double-click CountryListIterator and observe that
CountryListIterator is bound to the CountryList data collection. Click Cancel to
exit the editor.

4. With CountryListIterator selected, open the Property Inspector and locate the
RangeSize property with the value -1.

5. In the Property Inspector, change the RangeSize property value to 10 and press
Enter. This will limit the display list to just ten objects from the bound data
collection.

6. Right-click the home.do action and choose Run to launch the application. Click
the Login icon and enter the J2EE/J2EE username and password. Click the Edit
Account icon and display the dropdown list for the Country field. The list should
be limited to just ten rows.

The iterator binding is a runtime object that your application creates to access the
Oracle ADF binding context. The iterator binding holds references to the bound data
collection, it accesses the collection, and it iterates over its data objects. You can set the
number of data objects to be fetched from the bound data collection, such that only the
number is displayed on the page. The range you specify defines a window you can use
to access a subset of the data objects in the collection. By default, the range size is set to
just ten data objects.

Hands-On for Lesson 6

9-10 Oracle Application Development Framework Case Manual

Summary of the Oracle ADF Toy Store Application 10-1

10
Summary of the Oracle ADF Toy Store

Application

The Oracle ADF Toy Store application, built using Oracle ADF and Apache Struts, was
created to show a realistic, functional Oracle ADF-based web application. We've seen
that the Java coding needed is minimal and that, when required, it is code that is
focused directly on the business application problem at hand. Additionally, both Struts
and Oracle ADF make extensive use of XML-based configuration information for their
framework components, which further simplifies the design of the web pages by
driving a lot of framework behavior from this metadata, rather than from a heavy code
generation.

In the lessons of this case study, we analyzed many of the key aspects of the Oracle
ADF Toy Store application to better understand how a web application like this can
adhere to an MVC architecture. Along the way, we noted numerous Oracle JDeveloper
10g features for simplifying the development of our model, view, and controller layer
components.

JDeveloper offers integrated support for:

■ Binding your user interfaces to any kind of business service data, using a
consistent, visual, and declarative approach

■ Creating, configuring, and evolving every aspect of your web application through
synchronized design time tools like the Application Navigator, the Structure
window, the Property Inspector, wizards, and object editors

■ Visually editing your Struts page flow, so as to more easily understand and modify
all of the configuration information in your struts-config.xml file

■ Visually designing your JSP pages, so as to more easily create web pages

10.1 Related Documentation
■ Oracle Application Development Framework FAQ, a brief overview

posted on the Oracle Technology Network (OTN)

■ Building a Web Store with Apache Struts and Oracle ADF
Frameworks, a technical whitepaper on OTN

■ Oracle ADF Data Binding Primer and Struts Integration
Overview, a technical whitepaper on OTN

■ Oracle Application Development Framework Development
Guidelines Manual, a PDF document available from the JDeveloper page on
OTN

http://www.oracle.com/technology/documentation/jdev/adf_guidelines_manual.pdf
http://www.oracle.com/technology/documentation/jdev/adf_guidelines_manual.pdf
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore/readme.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/adftoystore/readme.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/ADFFAQ/index.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/ADFBindingPrimer/index.html
http://www.oracle.com/technology/products/jdev/collateral/papers/10g/ADFBindingPrimer/index.html

Related Documentation

10-2 Oracle Application Development Framework Case Manual

	Contents
	Preface
	Part I Oracle ADF Toy Store Application: Getting Started
	1 Introduction to the Oracle ADF Toy Store Application Case Study
	1.1 Introduction
	1.2 For More Information

	2 Setting Up the Oracle ADF Toy Store Application
	2.1 Introduction
	2.2 Downloading and Extracting the Oracle ADF Toy Store Application
	2.3 Setting Up the Oracle ADF Toy Store Database Users
	2.4 Creating the Oracle ADF Toy Store Database Tables
	2.5 Creating the Oracle JDeveloper Data Connections
	2.6 Installing the Oracle JDeveloper JUnit Extension

	3 Quick Tour of the Oracle ADF Toy Store Application
	3.1 Introduction
	3.2 Browsing Products and Adding Them to Your Cart
	3.3 Checking Out and Signing In
	3.4 Registering a New User and Editing an Existing User's Profile
	3.5 Trying Out the Toy Store Web Application in Another Language

	Part II The Oracle ADF Toy Store Web Application: Lessons
	4 Lesson One: Designing the Home Page
	4.1 Introduction
	4.2 Planning the Design of the Home Page
	4.3 Getting Started with the Struts Page Flow Diagram
	4.4 Laying Out the Home Page
	4.5 Hands-On for Lesson 1

	5 Lesson Two: Drilling Down Into the Products
	5.1 Introduction
	5.2 Analyzing the Products Display Page Flow
	5.3 Storing JSP Files Under the WEB-INF Directory
	5.4 Integrating the Model and Controller Layers
	5.5 Laying Out the Query Results Page
	5.6 Conditionalizing the Display
	5.7 Hands-On for Lesson 2

	6 Lesson Three: Assembling the Shopping Cart
	6.1 Introduction
	6.2 Analyzing the Shopping Cart Page Flow
	6.3 Managing the State of the Shopping Cart
	6.4 Handling the Product Pages' Add-to-Cart Event
	6.5 Handling the Shopping Cart Page's Add/Remove Events
	6.6 Handling the Shopping Cart Page's Review-Checkout Event
	6.7 Working with Operations in Forms
	6.8 Hands-On for Lesson 3

	7 Lesson Four: Processing the Shopping Cart Order
	7.1 Introduction
	7.2 Analyzing the Proceed to Checkout Flow
	7.3 Laying Out the Review Checkout Page
	7.4 Laying Out the Confirm Shipping Information Page
	7.5 Hands-On for Lesson 4

	8 Lesson Five: Requiring the User to Sign Into an Account
	8.1 Introduction
	8.2 Analyzing the Sign-In Page Flow
	8.3 Laying Out the Sign-In Page
	8.4 Laying Out the Register New User Page
	8.5 Laying Out the Generic Form Control Page
	8.6 Laying Out the Account Created Page
	8.7 Hands-On for Lesson 5

	9 Lesson Six: Allowing the User to Edit Their Account
	9.1 Introduction
	9.2 Setting Up the Model Layer Data
	9.3 Laying Out the Edit Account Page
	9.4 Analyzing the Binding Container for the Edit Account Page
	9.5 Showing Read-Only Data in a Form
	9.6 Creating Input Fields in the Form
	9.7 Using EL to Work with Labels, Tooltips, and Other Metadata
	9.8 Including a Databound Poplist Control
	9.9 Alternative to a Databound Poplist Using Custom Renderer
	9.10 Hands-On for Lesson 6

	10 Summary of the Oracle ADF Toy Store Application
	10.1 Related Documentation

