ORACLE

Oracle® Identity Management
Application Developer's Guide

10g Release 2 (10.1.2)
B14087-02

July 2005

Oracle Identity Management Application Developer’s Guide, 10g Release 2 (10.1.2)
B14087-02

Copyright © 1999, 2005, Oracle. All rights reserved.

Primary Author: Ellen Desmond

Contributing Author: Richard Smith

Contributors: Vasuki Ashok , William Bathurst, Tridip Bhattacharya, Kamalendu Biswas, Ramakrishna
Bollu, Saheli Dey, Bruce Ernst, Rajinder Gupta, Ganesh Kirti, Ashish Kolli, Stephen Lee, David Lin, Radhika
Moolky, Nithya Mulalidharan, Samit Roy, David Saslav, David Su

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English."

™
E m m RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle

Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

Oracle Directory Manager requires the JavaTM Runtime Environment. The JavaTM Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain
View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

This product contains SSLPIus Integration SuiteTM version 1.2, from Consensus Development Corporation.

iPlanet is a registered trademark of Sun Microsystems, Inc.

Contents

PIEIACE ... XXi
Y E o [1T o (ot OSSOSO USSR PRSP XXi
Documentation ACCESSIDITITYcoiviiiiiieie bbb XXi
REIALEA DOCUIMENTS ...ttt b et bbbtttk ettt sttt ettt et XXii
(70 01V 7=T o1 1 o] o LSOO S USRS XXiii

What's NEW 1N The SDK? ...t XXV
New Features in the Release 10.1.2 SDK ...t XXV
New Features in the Release 9.0.4 SDK ..ottt srene e XXV

Part1 Programming for Oracle Identity Management

1 Developing Applications for Oracle Identity Management
Benefits of Integrating with Oracle Identity Management ... 1-1
Oracle Identity Management Services Available for Application Integration............cccccccvvvnine 1-2
Integrating Existing Applications with Oracle Identity Management..........cc.cccceoeieieiiinccenne, 1-2
Integrating New Applications with Oracle Identity Managementcccccocovvieiniiieiniesiesnnn, 1-3
Oracle Internet Directory Programming: AN OVEIVIEWcccviieiieiiiiieiiee e seesesie e saesiaeae e s 1-4

Programming Languages Supported by the Oracle Internet Directory SDKcccccccveeneene. 1-4
Oracle Internet Directory SDK COMPONENTScccciiiiiiiiriiieiese sttt 1-4
Application Development in the Oracle Internet Directory Environment.............cccccocevvvenene 1-4
Architecture of a Directory-Enabled Applicationc.ccociiiiiiiiniicice e 1-4
Oracle Internet Directory Interactions During the Application Life Cycle..........c.c.ccoo..... 1-5
Services and APIs for Integrating Applications with Oracle Internet Directory............... 1-6
Integrating Existing Applications with Oracle Internet Directoryccccccoevrieininenncns 1-8
Integrating New Applications with Oracle Internet DireCtory........ccoceovevvivvcvivnienienenennn, 1-8
Other Components of Oracle INterNet DIreCLOrYcccovoviiieie i 1-9

2 Developing Applications with Standard LDAP APIs
Y= 1 0] 0] LT O o o L= TSP 2-1
HISTOIY OF LDAP ...ttt e bttt h bbbt bt b bt bbb e et et et eb e et e e beebe et 2-1
(D AN o |V oo 1= RS STRSPRTSSSPRPRN 2-2

(N F= 0 a1 o 1Y/ o o L= SR 2-2
INFOrMALION IMOAEL ...t bbb et be st sne 2-3

vi

(O Toa £ To] g F= LI 1Y/ (o T [RS 2-3

SECUTTLY IMOAEL......ee bbbttt ettt b e b bbb e e eene b e b e 2-4
AUTNENTICALION ...t bbb bbbt b e nrne 2-4

Access Control and AUNONIZAtioN ... 2-5

(D e W 1 (10| 41 YT ORURURURUR 2-6

[1 ez W o V7103 Y 2SR 2-6
PASSWOIA POHICIES. ...ttt ettt eb bbb e e b e 2-6

About the StanNdard LDAP APIS.. ...ttt bbb e bbb e 2-7
Y o IO LT Vo =01V, o o - S PSPSPRSRN 2-7
Getting Started With the C AP ... e 2-7
Getting Started with the DBMS_LDAP PaCKagecccooeiiiiiriiiere e e 2-8
Getting Started With the JAVA APL..........ci i 2-8
INItIAliZING AN LDAP SESSIONoiiiiii ettt et saeste e aeste e e nreenbenneenes 2-8
Initializing the Session by USING the C AP ... e 2-8
Initializing the Session by USINg DBMS _LDAPccccviiiiieeeee e enen 2-9
Initializing the Session BY USING INDI........ccco it 2-9
Authenticating an LDAP SESSTON.........coiiiiiiiie ettt et be b 2-10
Authenticating an LDAP Session by Using the C APl ... 2-10
Authenticating an LDAP Session by Using DBMS_LDAP ..o 2-11
SEArCNING The DIFECLOIY ...ceiiiiiee ettt bbb bbb et be e bt sbesbesbe b 2-11
Program Flow for Search OPErations..........ccccveviviieiinieieiiiceeeee s e 2-12

1T Ul T o0 o 1= TSR RSRPR 2-13
1L =] T OSSR ORI 2-14
Searching the Directory by Using the C APL........cocooiiiicecsn e 2-15
Searching the Directory by UsSing DBMS_LDAWP ..ottt 2-16
TerminNating the SESSTON......c..ciii et bbb ettt eb e b e be b e sbe b b e be e 2-17
Terminating the Session by USiNg the C APL........coiiiieicee e 2-17
Terminating the Session by Using DBMS _LDAP ... 2-17

Developing Applications with Oracle Extensions to the Standard APIs

Y= 1 0] 0] LT O o o L= TSP 3-1
Using Oracle Extensions to the Standard APIS ... e 3-1
Creating an Application Identity in the DIreCtoryccccovoeieicisise e 3-2
Creating an ApPlication TAENTILYccoiiiiieie e 3-2
Assigning Privileges to an Application Identity ... 3-3
YT a T Vo [o LT USRS 3-3
AV F= T F= Vo 1T o T T o 1 o LSRR 3-3
MaANAGING REAIMS ... bbbttt ettt b bt nn et enes 3-3
DiSCOVENNG @ DIFECLONY SEIVETuiiiiiiiieieietieeee sttt st et se e sestestesbesbeste st et e ee e ensenenseanearenren 3-4
Benefits of Oracle Internet Directory Discovery INterfaces..........cccooveveviviveie e iiesie e 3-4
Usage Model for DiSCOVErY INtEITACESccoiiiiiiiiei e 3-5
Determining Server Name and Port Number From DNS........c.ccovvvicicineisn e 3-5
Mapping the DN of the Naming CONteXt...........ccoviviiiiiiiie i 3-6

Search by Domain Component of Local Machine............cccccooiiiiinininincsc s 3-6

Search by Default SRV ReCOrd iN DNS ..ot 3-6
Environment Variables for DNS Server DISCOVEIYcocvveiiiieieii e ste et 3-7
Programming Interfaces for DNS Server DISCOVEIYccoiiiiinienneninens et 3-7

Y AN I AN U 1 g =Y 1 ATo7=1 A 0] 3-7

SASL Authentication by Using the DIGEST-MD5 Mechanism.........ccccocveiiiiiiiniincneee 3-7
Steps Involved in SASL Authentication by Using DIGEST-MD5.........cccccocvivvevevicveeenenn, 3-8

SASL Authentication by Using External MechaniSmccccccooeiiiieiiicicecc e 3-8
Proxying on Behalf 0f ENA USEIS ...t 3-8
Creating Dynamic PassWord VEIITIEIS ...ttt 3-10
Request Control for Dynamic Password Verifiers ... 3-10
Syntax for DynamicVerifierRequestCoNtrol ... 3-10
Parameters Required by the Hashing AIQOrithms.........cccccceveieccisie e 3-11
Configuring the Authentication APIScocv i 3-11
Parameters Passed If Idap_search 1S USed ... 3-11
Parameters Passed If I[dap_compare 1S USEdc.coeieiiiiiiinin s 3-12
Response Control for Dynamic Password VEerifiers ... 3-12
Obtaining Privileges for the Dynamic Verifier Framework ..o 3-12

Using the Java API Extensions to JNDI

SAIMPIE COUR. ...ttt bbb e s e et R e b e e b e e Rt ebeebeseeee e e b e seeseeneabeebeebeebeebenbennens 4-1
INstalling the Java EXIENSIONS........cociiiiiii et et re e snenrenns 4-1
Using the oracle.java.util Package to Model LDAP ODBJeCtS.......ccccccvveiiiiieiiiiecccce e 4-2
The Classes PropertySetCollection, PropertySet, and Property..........cccoeoeieneieinininniese e 4-2
YT a T Vo [o L T SOOI 4-3
g E L1 g et oY Ao U g o LU L= SR 4-3
CrEALING USEIS ...ttt ettt b ettt b bbb e st e e R e e b e e bt e Rt eb e eb e sEeseeebenee st eneebeebeebeebeereaneanea 4-4
Y LAV Lo O 1] @] o [0t £SO 4-4
Retrieving Objects from REaAIMS ..o 4-5
DiSCOVEING 8 DIFECLONY SEIVETciiiiieiei ettt ettt b bbb bbbt e e se b ebesneebeneas 4-5
Examples: Java APl for Discovering a DIreCtOry SEIVENcocvcveiiiviiesiesiesesese e eessese e s 4-6
Using DIGEST-MDS5 to Perform SASL AUuthenticationccccccovviieiiiieii e 4-7

Using the API Extensions in PL/SQL

Y= 1 0] 0] LT O o o L= TSR 5-1
Installing the PL/SQL EXIENSIONSc.ciiiiiiiieicie ettt e 5-1
Using Handles to ACCeSS DIreCtory Data.........cccvviiivrireiiinicceseeeese s e e e sne s 5-1
AV F= T F= Vo T o T LY== PSSRSO 5-2
AUTNENTICATING USEIS ...ttt bbb bbbttt bbbt 5-2
Dependencies and Limitations of the PL/SQL LDAP APl ... 5-2

Developing Provisioning-Integrated Applications

Developing Directory Plug-ins

o 8o T T o o (=T (=To (8T (=TSSP 7-1
L 10 T R T T == 1= USSR 7-1
What IS the PIUug-iN FrameWOTrK? ..ottt 7-2
Operation-Based Plug-ins Supported by the DIreCtory........ccccoviviieiieievie s 7-2
(e (=R @ o T=T U o] o I o U T T o F USRS 7-2
POSE-OPEration PIUG-INScci ittt 7-3

Vii

viii

When-Operation PIUG-iNS ...ttt sr e st e et aenre e b e nne s 7-3

Designing, Creating, and USING PIUQ-INS ..o s 7-3
[1CES] o [T LT [o 10 o T SRS 7-4
Types Of PIUQ-IN OPEIatiONS.........cccoviiiieiiie ettt e e steera e re s 7-4
NAMING PIUG-INS .ttt bbb bbb bbbt 7-4
(@14 T: L[T N = 11 T T S 7-4
Package Specifications for Plug-in Module Interfacesccccovvvieivvieiisci v, 7-4
COMPITING PIUG-INS ..ttt bbbttt b e bbbttt b b e 7-6

(157 o =T T =] o7 TSRS 7-6
ReCOMPIIING PIUG-INS it ne e nresneenees 7-6
REGISTEIING PIUG-INS ...ttt ettt b bbbt be bt 7-6
The orclPluginConfig OBJECt ClaSS.......coviuiiiriiiiiiirerese et enens 7-6
Adding a Plug-in Configuration Entry by Using Command-Line Tools............c..ccceevenins 7-8
D= 0 0] o] L= RSOOSR 7-8
ez 10 0T o 2 TSR 7-9

1Y/ F= T = o T g To I = 10 T F T o SRS 7-9
MOITYING PIUG-INS ..ttt b e bbb ettt e 7-9

(1= 18T o [T o T d 18 T T 0TSSR 7-9
Enabling and Disabling PIUQ-iNScvciiiiiiic s 7-9
EXCEPLION HANAIINGeiiiiiiie ettt sbe bt 7-10
T o] gl o F-T aTo | 1T oo RSP 7-10
Program Control Handling between Oracle Internet Directory and Plug-ins................ 7-10

PIUG-IN LDAP AP .ottt e et e bbb abe et e abe e sberen 7-11

[[0 To R T aTS= g o R =T o] 1T L o] o S 7-11
Plug-in and Database TOOIS.........cvciiiee e 7-11
SEOUTTLY .ttt ettt b bttt bbbt e e e s e s e Re e b £ e b £ b e e bt eb e benb e e b e be b et e nteRe e R e e Rt ebeebenre et 7-12

(g T8 Lo R T D=1 o 18 T [| Vo SRS 7-12
Plug-in LDAP API SPECITICAtIONSccocciiieii st 7-12
Database LIMITATIONSccoiiiiiiiiie ettt s bbbt et b e b b e 7-13
ST] o (=330l 2d U o T o R 7-13
Example 1: Search QUENY LOQGING ...ocviiiiieii ettt st st 7-13
Example 2: Synchronizing TWO DITS ..ottt 7-15
Binary Support in the Plug-in FrameWorK ... 7-18
Binary Operations With Idapmodify ... 7-18
Binary Operations With 1dapadd ... 7-20
Binary Operations With [dapCOMPAre..........ccccviiviiiiiiini e 7-22
Database Object TYPeS DEefiNEd ..o e e 7-25
Specifications fOr PIUG-iN PrOCEAUIES ..ot 7-26

Integrating with Oracle Delegated Administration Services

What Is Oracle Delegated Administration SErVICES? ... 8-1
How Applications Benefit from Oracle Delegated Administration Services............cccoevvevrvnnne. 8-2
Integrating Applications with the Delegated Administration Services..........cccccecvvvevivvrcrennnnn, 8-2
INTEGratioN PrOFIlE ..ottt 8-2
Integration Methodology and CoNSIAErationsccceverierieiecie e 8-2
Java APIS USEd 10 ACCESS URLS ..ottt 8-4

10

Developing Applications for Single Sign-On

VAV o L 3 g oo Jo ToT=To OSSP 9-1
Protecting Applications Using mod_0ss0: TWo Methods ... 9-2
Protecting URLS StAtICAIYcociieeee ettt 9-2
Protecting URLS With DYNamicC DIr€CIVEScccooiiiriiiiieieicinese e e 9-2
Developing Applications USiNG MOGO_0SS0.......cccciviriirerereinieieieseeesesesseseseeseesessesaessesessessessesses 9-3
Developing Statically Protected PL/SQL Applicationsccccccvvvviiviieve i 9-3
Developing Statically Protected Java ApPPliCAtIONS..........ccovciiiiiiiiieninee e 9-5
Developing Java Applications That Use Dynamic DireCtiVeS.........ccocvvvvivviererieneneniersie e e 9-6
Java Example #1: Simple Authentication ... 9-6

Java Example #2: Single Sign-Off ... s 9-8

Java Example #3; Forced AUthentiCatioN..........ccccceiieicicieccecce e e 9-8

A Word About NON-GET AULNENTICATIONcceiiiiiiiiiiie s 9-9
Global Inactivity Timeout and DyNamic DIFeCHIVEScccevireiiiiiiiiinee e 9-9
SECUITLY ISSUBS .oeviiiiiiieitisie ettt et e sttt e e e et e s e s e e seebesbe s be s eesbe st se et e st e e eneeneeteaneenenreneenrens 9-10
Single Sign-Off and Application LOGOULccocviiiiici e 9-10
Application Login: Code EXaAmMPIES.........ccoiiiiiiiiiiee s 9-10
Application Logout: Recommended COdE..........ccoovvvirierieieeeciesie s seeseeeee e snens 9-12

Secure Transmission Of MOd_0SSO COOKIES.........cccccviiiieiiiiiee e seereens 9-12

Integrating J2EE Applications and Oracle Internet Directory

Standard J2EE SECUTILY APIS ...ttt sttt e s te e e nre s e 10-1
O CAJ SECUNILY APLS ..t b e bt bbb et eat e Rt et be b e sbeebeebesbe e e e 10-2
JAAS Policy ManagemMent APISooiiiiiccice ettt sresnesae e 10-4
A AN o] I Y o g F- To =T o =T o | USSP 10-5
Retrieving User Policies and Permissions using Standard JAAS APISccccoovininiencnene 10-5

Part Il Oracle Internet Directory Programming Reference

11

C API Reference

About the Oracle INnternet DIreCtory C AP ... 11-1
Oracle Internet Directory SDK C APl SSL EXTENSIONS.....cc.civiveieiririesiseseseesiereereseesnsseseeseens 11-1
SSL INEEITACE CallS ... et 11-2
WAITEE SUPPOIT. ...ttt ettt b ettt b et ebe e srenea 11-2
FUNCLIONS TN TNE C AP .o bbbttt ettt et 11-2
The FUNCLIONS @t 8 GIANCE ...t 11-3
INItIAliZING 8N LDAP SESSIONeuiitiiiiiiciiiiie ettt 11-5
(o VoI Ta T aF=1a o I [F-1 o T o] o 1=1 o 1SS 11-5
LDAP Session Handle OPLiONScccveieiieiiiie sttt 11-6
Idap_get_option and 1dap_Set_OPtioNccciiiiiiiiieii e 11-6
Authenticating to the DIrECLOIYcvccv it re s 11-10
Idap_sasl_bind, Idap_sasl_bind_s, Idap_simple_bind, and Idap_simple_bind_s........ 11-10
SASL Authentication Using Oracle EXTENSIONSccvieiriiriieieineeee e 11-12

ora_ldap_create cred_hdl, ora_ldap_set_cred_props, ora_ldap_get cred props,
and ora_ldap_free_cred_Ndl..........cocooiiiiiiiii s 11-12
SASL AULNENTICATION ...ttt bbb bbb 11-13

12

(o= W [- Vo T L T A A PSPPSR 11-14

WOrKING WiIth CONTIOISceiiiiiiiiiie ettt bbb et ene 11-14
(04 [0 TSy T To TRt LTSI o o T 11-16
Idap_unbind, Idap_unbind_ext, and Idap_unbind_S........c.ccccccooiiiiiiiiiiiicccee e, 11-16
Performing LDAP OPEratiONS.ccoiiiiiieieeieiieieie sttt sttt be st sae e sae e ane s 11-16
Idap_search_ext, Idap_search_ext_s, Idap_search, and Idap_search_s.........c.cccccovevnnne 11-17
R eT= Vo [T aTo = I = o) Y SRR 11-19
Listing the Children of @n ENTIY ... 11-20
Idap_compare_ext, Idap_compare_ext_s, Idap_compare, and Idap_compare _s......... 11-20
Idap_modify_ext, Idap_modify_ext_s, Idap_modify, and Idap_modify_s................... 11-21
Idap_rename and 1dap_FENAME_Scoiiiiiiiie et 11-23
Idap_add_ext, Idap_add_ext_s, Idap_add, and Idap_add_S.........ccccceevvirinivrinicicniennns 11-25
Idap_delete_ext, Idap_delete_ext_s, Idap_delete, and ldap_delete_s.......c.cccovevenenen. 11-26
Idap_extended_operation and Idap_extended_operation_S..........ccccoceeeiiieiinnnicnicnnens 11-28
AN oT=TaTo (o] a T aTo Ir-Ta T @] o =T =1 1 To] o ISP 11-29
Idap_abandon_ext and Idap_abandon ... 11-29
Obtaining Results and Peeking INnside LDAP MESSAQEScccvvrirererierienieieeeeeeese e 11-30
Idap_result, Idap_msgtype, and ldap_mSgidccccoevveiiiinicicisiece e 11-30
Handling Errors and Parsing RESUILS.ocviiiiiiii et 11-32
Idap_parse_result, Idap_parse_sasl_bind_result, Idap_parse_extended_result, and
[0 Fo o =T o 2] d T o To SO SEUPOUTOUPTUSPRURON 11-32
Stepping Through @ LiSt OF RESUILScoviiiiieiiee e 11-34
Idap_first_message and ldap_Next MESSAEccccervereeririeiieiieisre e 11-34
Parsing SEArch RESUITS.c.iiiiiiie et et 11-35
Idap_first_entry, Idap_next_entry, Idap_first_reference, Idap_next_reference,
Idap_count_entries, and ldap_count_referenCes.........ccocoveivvieiiiniesieie s 11-35
Idap_first_attribute and Idap_next_attribute..........cccccoveiiiicce i, 11-36
Idap_get_values, Idap_get_values_len, Idap_count_values, Idap_count_values_len,
Idap_value _free, and Idap_value _free 1en ... 11-37
Idap_get_dn, Idap_explode_dn, Idap_explode_rdn, and Idap_dn2ufn 11-38
Idap_get_entry CONTIOISoo.oiiiiii e 11-39
AP _PAIrSE _FEFEIENCE ... ittt st e s eneerennennen 11-39
SAMPIE C APTUSAGEecvieeie ettt sttt ettt st b bbb 11-40
C APLUSAGE WITH SSL ...ocviciiice ettt et et 11-40
C APILUSAGE WITNOUL SSL.....c.oiiiiiiciicee et 11-41
C API Usage for SASL-Based DIGEST-MD5 Authentication.........cc.cccccoevvivvevineiciecceceee 11-42
Required Header Files and Libraries for the C APl ... 11-44
Dependencies and Limitations of the C AP ... 11-45

DBMS_LDAP PL/SQL Reference

SUMMANY OF SUDPIOGIAMS........cuiiiiiieieriee ettt ettt en s 12-1
(o= o Ao @ TS0 o] o - Y2 12-3
Data TYPE SUIMIMAIY ...oiiiiiiiiiiiieetie sttt sttt b et st e et e e s be e e s bt e st e e sabe e s be e s abeebeesrbeenbeenbbe e e 12-5
SUBDPIOGIAMS ... bbbttt bbbt b et r bbbt abene e 12-5
FUNCTION INTT ..ottt 12-5
FUNCTION SIMPIE_DINGA_S ...viiiiiicie sttt st a e nne s 12-6
FUNCTION DINGA_S ittt ettt st se s etessesnesee st nes 12-7

FUNCTION UNDING_S ..o sne e 12-8

FUNCTION COMPAIE_S....iiiiiitieiiitieiteste ettt sttt st sttt be bt e b e sbe st sbe et e sbeabesbeessesbeesbesbeesbesbeenbesaeenes 12-9
[N L@ I (@ T NI U o] o 1RSSR 12-10
FUNCTION SEAICN_ST....uiiiiiie ittt st e ra e e sneenaeeneenreaneas 12-12
FUNCTION FIFST_BNTEY .ottt bbb e et et ene s 12-13
FUNCTION NEXE BNEIY .oiieiieii ettt et ste s e te e steasaesteesaesteeseeseeneesseeneenseanens 12-14
FUNCTION COUNT_BNTIIES ...otiiiiieieie ettt se e ste et te st steesae e aestaesbestaeneesneeneesneenees 12-15
FUNCTION First_attribULE.......cviiiii et sae s 12-16
FUNCTION NeXt_attriDULEocveiicccciceee e st ene s 12-17
FUNCTION GEL AN .ottt sttt bbbttt sb e b nenns 12-18
FUNCTION gEL VAIUBS ...ttt et 12-19
FUNCTION get_ValUBS _IEN....cciiiiiieiiciieeeee s ettt eneenn 12-20
FUNCTION GEIETE_S...oviiiiiiiiieiiieisieese ettt st st sttt st re s 12-21
FUNCTION MOAION2_S.uiiiiiiieieiieiiiietsiee ettt sttt st et ss sttt s ettt ssatessasessns 12-22
[N L@ I (@ T NI 4 s d g T T RS 12-23
FUNCTION Create MO _AITAYcccveiviieiieie e see e e este et te e steesae e sae e enae e esesneensesneennas 12-24
PROCEDURE populate_mod_array (String Version)cccccoeeirienienieniene e 12-25
PROCEDURE populate_mod_array (Binary VErsion)cccccocevveieiesvsiesinseseseeseseeseeseesennes 12-25
PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)c.......... 12-26
FUNCTION get_values_DIoDccooii s 12-27
FUNCTION count_values _blob.........cccoiiiiiicicce e 12-28
FUNCTION value_free _blobD..........ooi et 12-29
FUNCTION MOGITY_S 1.iiiiiiiiieitiiiseise ettt sttt sttt st b s snns 12-29
FUNCTION GA_S .tttk st s be e 12-30
PROCEDURE free_ MO _arTaycccocoviiiiie e siee sttt ste et na e sne e sne s 12-31
FUNCTION COUNE VAIUES ..ottt sttt te et e beene e sreennesaeennas 12-32
FUNCTION COUNE_VAIUES BNviiiiiiciieececeeese st ettt s eneens 12-32
FUNGCTION FBNAIMIE _S.itiiiiiiiieitie sttt ettt ettt be et e st sbe e ss e sbe e sbeenbe e s beenbeeseb e e nbeesaresnees 12-33
FUNCTION eXPlOAe AN ...ttt bbb e et e 12-34
[N L@ I 1@ TN o oY= o] USRS 12-35
FUNCTION MSOIIEeiiiicicie ettt ae et e rs e e eneenaeenaenreaneas 12-36
FUNCTION DEF_TIEE ...ttt bttt ettt et 12-37
FUNCTION Nls_CONVEIt 10 ULF8.......ccociiiieic e 12-38
FUNCTION nIs_convert_t0 ULF8..........ccoiiieicese et 12-38
FUNCTION nls_convert_from_ULF8..........ccooiiiiiiiiiieee e 12-39
FUNCTION nls_convert_from_Utf8.........ccccooi v 12-40
FUNCTION nls_get_dbcharset_ NamEcccocveiiiicese et 12-41

13 Java APl Reference

14 DBMS_LDAP_UTL PL/SQL Reference

SUMMArY Of SUDPIOGIAMS.....c.ooiiiiccie ettt st e te e e te e este e e e staeneennas 14-1
SUBDPIOGIAMS ...t b bbbt b ettt e ekt sb bbb sr et b et arene 14-2
User-Related SUBPIrOgramIS.......oiiieie et e e renne s 14-3
FUNCLION AULNENTICALE _USEIocviceiicice et sreeneens 14-3
Function create_user_handle ... 14-5

xi

15

16

Xii

Function set_user_handle_Properti€s........c.ccciiieiiiieeie s see e sre e e 14-5

FUNCLION gEL_USEI _PrOPEITIES. ...ttt bbb bt 14-6
FUNCLION SEt _USEr _PrOPEITIES ..ovviviciieiecie et ste ettt sttt e e ereene e 14-7
Function get_user_extended_Propertiescccciiiieiieiieiieeie s se e se e e 14-9
FUNCLION QB _USEI AN ..ottt bbb et ene 14-10
Function check_group_membership ... 14-11
Function locate_sSubSCribDer_fOor_USEr ... 14-12
Function get_group_membBbership ... 14-13
(€1¢0]0] o B RT=1 F- 1010 ISTU1 o] o] o o | =T n 13 14-13
Function create_group_handle ..o 14-14
Function set_group_handle_Properties. ... 14-15
FUNCtion get_group _PrOPEITIEScccceiivieierieiereeie et se et esa e ne e sre st sre st seeeeneas 14-16

(S U aTe1 (o gl o = Ao | £o18] o 1o I o ISR 14-17
Subscriber-Related SUDPIrOgIramSoooiiiiiiiiie e e 14-18
Function create_subscriber_handle ... 14-19
Function get_subscriber_Properti€s ... 14-19
Function get_SUDSCHIDEr AN ... 14-21
Function get_subscriber_ext Properties........ccoccveieiiieiiesie e seseeseee s 14-22
Property-Related SUDPIOGIAMSocciiiii e 14-23
MiSCEIANEOUS SUDPIOGIAIMS. .. .cuitiiiiieieieeieieie sttt ettt ebe st bbbt s s esesneanea 14-24
Function normalize_dn_With _CaSE.........cccceiviiiiiiiiiiiin e 14-24
FUNCLION get_Property NAMESccveiveeiiece st ste e e et e e sre e ste e see e naesreenee e 14-24
Function get_property_VaAIUES ...t 14-25
Function get_property Values I8N ... 14-26
Procedure free_propertyset_COHECLIONccoiviie i 14-27
Function create_mMod_ProPertySel........cooo it 14-28
Function populate_mMod_PropertySetcccoceiiieireiesie e seeeee e neenens 14-29
Procedure free_MOd_PropertySerl.... ... iiiiiiie i 14-29
Procedure free NanAIe ... e 14-30
Function check iNterface VErsSiONccccviiiieieiece st 14-30
Function get_property_values _DIob ..o 14-31
Procedure property_value_free_DIob ... 14-32
Function RetUrn COdE SUMMIAIYcoeiiiiiieieiisesesiese et eere e sre st e e ee e eseesessesneses 14-32
Data TYPE SUIMIMAIY ...oiiiiiiiiiiiieeite sttt bbbt et s b e e s bt e e s bt e s beessbe e sbeesabeebeesrbeebeenebe s 14-34

DAS_URL Interface Reference
Directory Entries for the Service UNItS ... 15-1
Service Units and Corresponding URL Parametersccooeviinniennenneneense s 15-2
DAS URL API Parameter DESCIIPLIONS.......cccvveiieiceeiese e e st se e seessessesesse e e ssesse e seessesseseenes 15-5
Search-and-Select Service Units fOr USErs 0r GrOUPS.......cccoiveiieienecieese e ee e see e 15-6
Invoking Search-and-Select Service Units for USers or GroupsS........coeovevrennenseneensenens 15-6
Receiving Data from the User or Group Search-and-Select Service Unitsccccceeeveenenn 15-7
Centralized User Provisioning Java APl Reference

AN oJ o] ITox-Va o] a I @] a o [UT =14 To] o S 16-1
Application Registration and Provisioning Configuration..........c..cccocevvvivienivncnnseese e, 16-1
APPLICAtion REGISTFALIONc.oiviiiiiiiiiee e 16-2

17

Provisioning ConfigUIatioNcccovei i 16-4

Application Configuration ClaSSES.........coiiiiiiiiiieiieie et bbb 16-12
[T oT Yo g =T [T g T o SR 16-13
L1 =T Lo = LT SRR 16-13
MOITYING 8 USEI ..ottt b et b e bbb b et e e e e eneebesbesae 16-14
(1= T = O £ TSSO 16-14
(o To] 1T 0o LU] o I T O £ SRR 16-14

(121 18 To [0 |1 0o [P O U S O TOTSO USRS PR SRR 16-14
7=] 01 [= 3O o o -SSR 16-15

Provisioning Integration PL/SQL API Reference

Versioning of Provisioning Files and INterfaces ..o 17-1
Extensible Event Definition Configurationccoci i 17-1
Inbound and OULDOUNA BEVENTS........ccoiiiiii e 17-3
PL/SQL Bidirectional Interface (Mersion 3.0)ccooviviiiiiriininie e s 17-4
PL/SQL Bidirectional Interface (Version 2.0)ccccccveiiiiiiiiiiese et 17-8
Provisioning Event Interface (Version 1.1) ... 17-9
Predefined EVENT TYPES .ottt sttt ettt e ae e e eneeneanenneneas 17-11

F N o LUy (= 1Y/ o LSRR 17-11
Attribute ModifiCatioN TYPE......oiiiiiiiie bbb e eae 17-11
Event DiSpoSitioNs CONSLANTS........c.coveiiiieieese sttt se e e e nesneneas 17-11
CAIIDACKS. ...ttt b bbbt R b e b b et h bbb bt 17-11

LT VAN o] o] V=T o) IS TSSOSO 17-12

U1 VAN o] o A £= 1 65 v= 1 11 £) SRS 17-12
PULOIDEVENT() 1ottt sttt sttt sttt st sb e sb et s et et et e ebe e ebeneene e 17-12

Part Il Appendixes

A

Java Plug-ins for User Provisioning

Plug-in Types and THEIT PUIMPOSEc.coviieieiie ittt ettt ste sttt ste s e sbaenaesreensenas A-1
PIUG-IN REGUITEIMENTS. ..ottt bbbt bbbttt A-2
(DT - T Y [T o SR A-2

Pre—Data-ENtry PIUG-iNcooi ottt a et e et e saeeneesaesnee e A-4

POSt—DAta-ENLry PIUG-INcoociiiiiiiitiiiiei ettt b e anas A-5
(Do o B Aol ot X R o 1 T o S A-5
V=T o L D LT F =T YA o [T T T o SRS A-7
PIUG-TN RETUIN STALUS ..ottt et A-10
(O%e] o) To [T -t [0 TN =10 0] 0] F=1 = R A-10
Y- 1 0] o] [T 0o o L= TS A-11

DSML Syntax

LOF To T Lo T L LA T=TST o) 9 25T AV, | SRS B-1
BENETITS OF DSIML ...ttt et st e ettt beebesbesbeseeseenbesee e nneeneas B-1
[0 1] Y Y - PSS B-1
TOP-LEVE] SLIUCTUIE ...ttt s b e et e e e s te et e s teen e steensens B-2
DIFECIONY ENEIIES ...ttt ettt etttk st sttt bbbt b ettt ettt B-2

Xiii

Schema Entries............

Tools Enabled for DSML

Glossary

Index

Xiv

List of Figures

1-1 A Directory-Enabled APPLICAtIONo s 1-5
1-2 An Application Leveraging APIS @and SEIVICESccoceiiririiirieeieiresesie e 1-7
2-1 A Directory INfOrmation TrEE ... e 2-2
2-2 Attributes of the Entry for Anne Smith ... 2-3
2-3 Steps in Typical DBMS _LDAP USAQEccouaiiiriiiiiieite ettt e se e 2-7
2-4 Flow of Search-Related OPerations...........cooiiiiiiiiiiniieieee e e e 2-13
2-5 The THree SCOPE OPLIONS ...ttt sb b et sbe b sbe b 2-14
3-1 Programmatic FIOW for APT EXTENSIONScoiiiiiiiiiiiesieeee et 3-2
8-1 Overview of Delegated AdMINIStration SErVICES.........ccooeieiiiiciieiirie e 8-1
16-1 The Directory Information Tree for Provisioning Configuration Datac.ccce..... 16-5

XV

List of Tables

XVi

|
NFEPNPOORMWNRPPRPONPOO~NOORRWNERMAWNLPE

HHH(.O(.OOOOO\I\I\l\l\l\l-b(erwNNNNNNNNNHHHH

Interactions During Application LIifeCyCle ... 1-5
Services and APIs for Integrating with Oracle Internet Directoryccccccoevevveveveiieeinnns 1-6
Services for Modifying Existing APPliCatiONS.........cccccviiiiieiie i 1-8
Application INtegration POINTS. ..ot see e 1-9
LDAP FUNCHIONS ...ttt ettt b bbb bt bbb b b e 2-4
SSL AULNENTICAtION IMOTESoouiiiiiii et eneas 2-5
Parameters for [dap_iNit() . ..o s 2-9
Arguments for Idap_simple_bind_S().......ccocviiieiiiiiiiie e 2-11
Options for search_s() or search_st() FUNCLIONScccccoveieiiciini e 2-13
SANCN FIITEIS ... bbb et b et b e b b en s 2-14
=ToTo] (=T g M@ o 1=T =1 (o] SRS 2-15
Arguments for [dap_SEarch_S()......cccuieiiiiiii s 2-16
Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st().........cc.cceeeerennns 2-16
Environment Variables fOr DNS DiSCOVEIYocoviiiiiiiiiie it sne s 3-7
Parameters in DynamicVerifierRequestControl............ccccooveiiiiieii s 3-11
Parameters Required by the Hashing Algorithms...........ccccceoe i, 3-11
Methods for Directory SErver DISCOVEIY ...ttt 4-5
PIUug-in Module INTEITACEccv it 7-4
Operation-Based and Attribute-Based Plug-in Procedure Signatures..............ccccocevveeenene 7-5
Plug-in Attribute Names and ValUEs...........cccoveiiiicii it 7-7
Valid Values for the plug-in RetUrn COAeccoviieiiiiiiecseee e 7-10
Program Control Handling when a Plug-in Exception OCCUISc.cccceeevveceiveceesinenn, 7-10
Program Control Handling when an LDAP Operation Fails...........ccccceeevviieniviceennnn, 7-11
Integration CONSIAEIAtIONSccvciiiiciece e e sre e sre e 8-2
URL Parameters for Oracle Delegated Administration Services.........cccccovevvvvevesvenene. 8-3
User Attributes Passed to Partner Applications............ccocvevivi v 9-1
Commonly Requested DyNamic DIreCUIVES.........ccccvvveviiieircec e 9-3
Arguments for SSL INterface CallS ... 11-2
Functions and Procedures in the C APL........coo e 11-3
Parameters for Initializing an LDAP SESSION.........ccccoeiiiiiiiiieie e steeie s esee s see e 11-5
Parameters for LDAP Session Handle OPtioNnS..........cccccvvveveieeicveeic e 11-7
LO70] 011 21 01 KT TR P O TSP P PRSPPSO 11-7
Parameters for Authenticating to the DireCtoryccccvvveveiieiic s 11-11
Parameters for Managing SASL CredentialScccccvoveviiieni i 11-13
Parameters for Managing SASL CredentialScccccviveiiiiiie i 11-14
Fields in Idapcontrol StFUCTUIEcoov i 11-14
Parameters for CloSing the SESSIONcccccvve i 11-16
Parameters for Search OpPerations..........cccocveiiiie i 11-18
Parameters for Compare OPErationsSccccccviveieiieieiiee e se e 11-21
Parameters for Modify Operations...........ccveiiiireiisece e 11-22
Fields in LDAPMOO STFUCTUIE..........coiiiiiiitcie sttt e 11-23
Parameters for Rename OPErationscccoveiviiieiisieie e see e 11-25
Parameters for Add OPerationS.........ccccoceeiiiieiiiie s 11-26
Parameters for Delete OPerationsccccccvveiriieiiiie s 11-27
Parameters for Extended OpPerations..........ccccoveieiieie i 11-29
Parameters for Abandoning an OPeration............ccccocvviveiiiicie s 11-30
Parameters for Obtaining Results and Peeking Inside LDAP Messages.............c........ 11-31
Parameters for Handling Errors and Parsing Resultscccccooe v, 11-33
Parameters for Stepping Through a List of ReSUItScccce e 11-34

Parameters for Retrieving Entries and Continuation References from a Search Result
Chain, and for Counting Entries Returned 11-35

Parameters for Stepping Through Attribute Types Returned with an Entry 11-36
Parameters for Retrieving and Counting Attribute Values..........cccccoocevivvieivccincnnn, 11-37

11-26 Parameters for Retrieving, Exploding, and Converting Entry Names............c.ccco....... 11-38

11-27 Parameters for Extracting LDAP Controls from an Entryccccooovvviiveicciececnn, 11-39
11-28 Parameters for Extracting Referrals and Controls from a SearchResultReference Message ..
11-40
12-1 DBMS_LDAP API SUDPIOGIamScciiiiiiiieie ettt ste ettt ensenne e snesneenneas 12-1
12-2 DBMS_LDAP EXCEPLION SUMMIATY ...cveeiiiieieitieiesteesiesteesiesee e see e staeste e essesssessesneeseesnens 12-3
12-3 DBMS_LDAP Data TYPE SUIMIMAIYccoiiiiiiiiiesiiinieesiiesieesiesssessieesssssssesssnsssesssessssesssesses 12-5
12—4 INIT FUNCHON PArQMETETScuiiiiiiiitiieieicee sttt bbb et 12-5
12-5 INIT FUNCLION RETUIN VAIUESoiiiiiiiieiiiii et e e 12-6
126 INIT FUNCLION EXCEPLIONSiiiiiiieeie ettt sttt ae e saenneas 12-6
12—7 SIMPLE_BIND_S FUNCLION Parameters.........ccoeiviiine e 12-7
12-8 SIMPLE_BIND_S Function RetUrn ValUes..........c.ccccoeieiie s 12-7
12-9 SIMPLE_BIND_S FUNCLION EXCEPLIONS.......civiciiirciecie e 12-7
12-10 BIND_S FUNCLION PArameterscccoeiieiiiicie sttt ne e 12-7
12-11 BIND_S FUNCLioN REIUIN VAIUEScooiiiieiccee e 12-8
12-12 BIND_S FUNCLION EXCEPLIONSviiiiieiice ettt nne s 12-8
12-13 UNBIND_S FUNCLION PAramMeterscccciuiiieiieiiie e se et see e ste et te s eve e sae e seesneas 12-8
12-14 UNBIND_S FUNCLION REtUrN ValUES........ccveiiciiciecee e 12-9
12—-15 UNBIND_S FUNCLION EXCEPLIONS.cciviiieiiiieiecteesie ettt e e sneanee e 12-9
12-16 COMPARE_S FUNCLION PAramMELEISccviivieieiiiciiciiese et ee st sne e 12-9
12-17 COMPARE_S FUNCtioNn REtUIN ValUES.........cccoeviiciciee st 12-10
12-18 COMPARE_S FUNCLION EXCEPLIONSueiiiiiiie ettt 12-10
12-19 SEARCH_S FUNCLION PArameterscocviieie ettt st 12-10
12-20 SEARCH_S FUNCtion REtUIN ValUE..........ccoie i 12-11
12-21 SEARCH_S FUNCLION EXCEPLIONS.......oiviieiieie ettt et 12-11
12-22 SEARCH_ST FUNCLION ParameEterS........cccoiiieiieiieeieiieie e ie st enae s 12-12
12-23 SEARCH_ST FUNCtion REtUIN VAIUEScccoeiiiiiicesc e 12-13
12-24 SEARCH_ST FUNCLION EXCEPLIONSccvvieiieee ettt e 12-13
12-25 FIRST_ENTRY FUNCLION PArametersccooeieeiieiieie e 12-13
12-26 FIRST_ENTRY RetUIN ValUES.......ccoiiiiiiiieisinee et 12-14
12-27 FIRST_ENTRY EXCEPLIONScciitiitiiiiiieecietis ettt 12-14
12-28 NEXT_ENTRY FUNCLION Parameterscccooe e 12-14
12-29 NEXT_ENTRY Function RetUrN ValUEs...........cccoevviieiiciiiecc e 12-15
12-30 NEXT_ENTRY FUNCLION EXCEPLIONSccviiieeii e 12-15
12-31 COUNT_ENTRY FUNCLION PArameterscccccvvveiiiiieie et 12-15
12-32 COUNT_ENTRY Function RetUrn ValUES..........c.ccvvieiiiecii e 12-16
12-33 COUNT_ENTRY FUNCLiON EXCEPLIONSccviieiiciieir et 12-16
12-34 FIRST_ATTRIBUTE FUNCLION Parameters..........ccoviieiiie e 12-16
12-35 FIRST_ATTRIBUTE Function RetUrn Valuesccccoveeiieiiin e 12-17
12-36 FIRST_ATTRIBUTE FUNCLION EXCEPLIONSocveeiiiiee e 12-17
12-37 NEXT_ATTRIBUTE FUNCLION PArameterscccccveieiieiirie s cecse e 12-17
12-38 NEXT_ATTRIBUTE Function Return ValUes............cccocviveiiiiiiie e 12-18
12-39 NEXT_ATTRIBUTE FUNCLiON EXCEPLIONSc..cvveiiiiciesic e 12-18
12-40 GET_DN FUNCLION PAramMELEISccceeiiiieiiiie ettt ste ettt nnenne s 12-18
12-41 GET_DN FUNCtion REtUIN ValUEScccooiiiie et 12-19
1242 GET_DN FUNCtION EXCEPLIONSccveiviciieie ettt st ena e 12-19
12-43 GET_VALUES FUNCLION ParametersS........cccoieieiieiesie e ste e se st 12-19
12-44 GET_VALUES Function RetUrN VAIUEScccccveiiiiiiiceccc e 12-20
12-45 GET_VALUES FUNCLION EXCEPLIONSocveiiiiic e 12-20
12-46 GET_VALUES_LEN FUNCtiON Parameters..........ccccviieviiieeieiiese e 12-20
12-47 GET_VALUES_LEN Function Return ValUescccvveieiiiiiii e 12-21
12-48 GET_VALUES_LEN FUNCtion EXCEPLIONSccevveiiiieii e 12-21
12-49 DELETE_S FUNCLION PArameterscccvoiiiiiie ettt 12-21
12-50 DELETE_S FUNCtion REtUIN ValUES.........cccociviiiiii et 12-22
12-51 DELETE_S FUNCLION EXCEPLIONSocviiiiiic ettt et 12-22

XVii

XViii

12-52
12-53
12-54
12-55
12-56
12-57
12-58
12-59
12-60
12-61
12-62
12-63
12-64
12-65
12-66
12-67
12-68
12-69
12-70
12-71
12-72
12-73
12-74
12-75
12-76
12-77
12-78
12-79
12-80
12-81
12-82
12-83
12-84
12-85
12-86
12-87
12-88
12-89
12-90
12-91
12-92
12-93
12-94
12-95
12-96
12-97
12-98
12-99
12-100
12-101
12-102
14-1
14-2
14-3
14-4

MODRDN2_S FUNCLION PArameEters.........cccvviveiiiiieiieiesie e sie e e e e sae e e e saesraenae e 12-22

MODRDNZ2_S FUNction RetUrN ValUESccovvieiiiicece e 12-23
MODRDN2_S FUNCLION EXCEPLIONSocveeieciie ettt 12-23
ERR2STRING FUNCLION PAFAMELEISccueiiiiiiieieeeeieeee e 12-23
ERR2STRING Function Return ValUES...........ccooviiiiiiiiiiieese s 12-24
CREATE_MOD_ARRAY FUNCLION Parameters..........ccccveieiieeieseeieseesie e esseseesseseeneens 12-24
CREATE_MOD_ARRAY Function Return Valuescccccvvveviiiiniiiecce e 12-24
POPULATE_MOD_ARRAY (String Version) Procedure Parametersccccceve.e. 12-25
POPULATE_MOD_ARRAY (String Version) Procedure Exceptions...........cccccccuveneee. 12-25
POPULATE_MOD_ARRAY (Binary Version) Procedure Parameterscc.c........ 12-26
POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions..........c.ccccccvevu..e. 12-26
POPULATE_MOD_ARRAY (Binary) Parameterscccccoovevverieiveesenie e e seeeesie s 12-27
POPULATE_MOD_ARRAY (Binary) EXCeptionS.......ccccccvvveiiiiere e 12-27
GET_VALUES_BLOB ParametersS........cccoviiiiiiiiiiniesiiesie e sieesies s sessnessinssnsesssnsans 12-27
get_values_blob REtUIN ValUES..........c.ccviieiicice et 12-28
get_values_blob EXCEPLIONS........cci it sre s 12-28
COUNT_VALUES_BLOB Parameterscccccveiiiiiiniiieiieesieesnessiee e ssinessssssessnssssesssesans 12-28
COUNT_VALUES_BLOB Return ValUES.........cceiuiiiiiiriinieiinie e 12-29
VALUE_FREE_BLOB PArameterscoocviiiieiiiiiie et 12-29
MODIFY_S FUNCLION PAFaMELEIScccviiiiiieeie ettt sttt sn e st ae e 12-30
MODIFY_S FUNCLION REtUIN ValUESc.ooieeie e 12-30
MODIFY_S FUNCLION EXCEPLIONSooiieiieiiiie ettt st 12-30
ADD_S FUNCLION PAr@MEtErsSc..ccviiiiie ettt e sttt sne et sae st ane e 12-31
ADD_S FUNCLION RETUIN VAlUESocuviie ettt 12-31
ADD_S FUNCLION EXCEPLIONSvicviiiiceiecie ettt st te e saeane e 12-31
FREE_MOD_ARRAY Procedure Parametersccccevviviveieeie e se e e esie e 12-32
COUNT_VALUES FUNCLION Parameters.........cccvoiiiieiieie e see e e 12-32
COUNT_VALUES Function RetUrN ValUESccccoveiiiiiiiiiie e ste e se e 12-32
COUNT_VALUES_LEN FUuNCtion Parameters.........cccovcveieieeiieseeieneeseeste e sessne e 12-33
COUNT_VALUES_LEN Function Return ValUesccccviiiveiieie s 12-33
RENAME_S FUNCLION PArameEtersS.......cccccoiiiiieieiieseeie st ste e se e sre e ste e sae e 12-33
RENAME_S FUNCLION REtUIN ValUES.........ccoce it 12-34
RENAME_S FUNCLION EXCEPLIONS......cccviiiiiie ettt sttt 12-34
EXPLODE_DN FUNCLION Parameters.........ccooiviieeieiieieseesiesieesie e see e se e see e e 12-34
EXPLODE_DN Function REtUrN VaAIUEScccoeiieiiiiee e 12-35
EXPLODE_DN FUNCtioN EXCEPLIONSccvviveie ettt 12-35
OPEN_SSL FUNCLION ParamELerS........cccvciuiiieie e st ste e ee et eie e seesreesae e e snesneennens 12-35
OPEN_SSL FUNCtiON REtUIN VAIUESccooiieiececc sttt 12-36
OPEN_SSL FUNCLION EXCEPLIONS.cviiticiiitieiecie st e e ste et sae e sre e 12-36
MSGFREE FUNCLION PAFGMELEISciiiiiiiiieiiceeietre sttt 12-36
MSGFREE REIUIN VAIUES ..ot 12-37
BER_FREE FUNCLION PAramELErScccveiviieecie ettt sttt 12-37
Parameters for nls_convert to Utf8 ... 12-38
Return Values for nls_convert_to_Utf8..........cccco oo 12-38
Parameters for nls_convert to Utf8 ... 12-39
Return Values for nls_convert_to_Utf8..........ccccc oo 12-39
Parameter for nls_convert_from_Utf8...........c.ccooiveiiii i 12-39
Return Value for nls_convert_from_Utf8.............c.ccooieii i 12-39
Parameter for nls_convert_from_Utf8...........c.cco v 12-40
Return Value for nls_convert_from_Utf8.............c.ccoovieiiiiie e 12-40
Return Value for nls_get_dbcharset_name..........ccccooovvieiiicie e 12-41
DBMS_LDAP_UTL User-Related SUDPrograms..........cccoocvevviieeie s seesesesve e 14-1
DBMS_LDAP_UTL Group-Related SUDPrograms..........cccceevveeveiieniesiee e siese e 14-2
DBMS_LDAP_UTL Subscriber-Related SUbprograms..........ccccocevveviviieneseeseseese e 14-2
DBMS_LDAP_UTL Miscellaneous SUbDPrograms...........ccceccevieiveiieeiiiiese s 14-2

14-5

14-6

14-7

14-8

14-9

14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39
14-40
14-41
14-42
14-43
14-44
14-45
14-46
14-47
14-48
14-49
14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59

authenticate_user FUNCLION Parameters ... ieieiiie e 14-4

authenticate_user FUNCLION REtUIN ValUEScccveviiiiie et 14-4
CREATE_USER_HANDLE Function Parameters..........cccccvovevviiienescee e 14-5
CREATE_USER_HANDLE Function Return Valuesccccccevveiiveve e 14-5
SET_USER_HANDLE_PROPERTIES Function Parameters...........cccoceeverivsieeinneenesnnenns 14-6
SET_USER_HANDLE_PROPERTIES Function Return Valuesc.ccoceveieiiininnnne. 14-6
GET_USER_PROPERTIES FUNCLION PArameterscccveveiveiieie e seeee e esee e 14-6
GET_USER_PROPERTIES Function Return Valuesc.cccvviviiie e v 14-7
SET_USER_PROPERTIES FUNCLiON Parameterscccccovvieevieiie e e 14-8
SET_USER_PROPERTIES Function Return Values...........cccccvovvieiinnieinsiene e 14-8
GET_USER_EXTENDED_PROPERTIES Function Parameterscccoevevveviveriernennenn 14-9
GET_USER_EXTENDED_PROPERTIES Function Return Values............ccccccoevninnnncns 14-9
GET_USER_DN FUNCLION PArametersccceiviieeieiieiesie e siesie e ste e sresae e aaeseennaens 14-10
GET_USER_DN Function Return ValUES..........cccccvioiiiiiiis e 14-10
CHECK_GROUP_MEMBERSHIP Function Parametersc.ccccocevviveeveiievesiee s 14-11
CHECK_GROUP_MEMBERSHIP Function Return Values............ccccooneiiicnccienenn 14-11
LOCATE_SUBSCRIBER_FOR_USER Function Parameters.........ccccccocervvvervenveriennnenn, 14-12
LOCATE SUBSCRIBER FOR USER Function Return Valuescccccooeveveinieinnne. 14-12
GET_GROUP_MEMBERSHIP FuNnction Parameters...........ccocvvveieiieneseeneseeneseeinens 14-13
GET_GROUP_MEMBERSHIP Function Return Valuesccccocvevviieieiieeieiee e, 14-13
CREATE_GROUP_HANDLE Function Parameters..........ccoccevvvveienivene i cie e esee e 14-15
CREATE_GROUP_HANDLE Function Return Valuesccccocevveveiviie e 14-15
SET_GROUP_HANDLE_PROPERTIES Function Parameters..............ccceevevvevveiveneann. 14-15
SET_GROUP_HANDLE_PROPERTIES Function Return Values...........c.ccccoceenenennne 14-16
GET_GROUP_PROPERTIES FuNction Parameterscccccevvvevienvene i siee e see e 14-16
GET_GROUP_PROPERTIES Function Return Values...........cccccocvvveiiiieeveiiee e 14-17
GET_GROUP_DN FUNCLION PArameters.........cccooeiieevieiieeie s esieseeie e esee e e e snesseaneens 14-18
GET_GROUP_DN Function Return ValUES.........cccceviiieieiie i 14-18
CREATE_SUBSCRIBER_HANDLE Function Parameters..........cccccovvvevveveiieesesieesnnnens 14-19
CREATE_SUBSCRIBER_HANDLE Function Return Values...........c.ccocoveiiiiiieininnnn 14-19
GET_SUBSCRIBER_PROPERTIES Function Parameters...........cccocvevviveeveiieeinsieesennens 14-20
GET_SUBSCRIBER_PROPERTIES Function Return Valuescc.ccooeveeiiiniinnenn 14-20
GET_SUBSCRIBER_DN FUNCtion Parametersccccccvieieiieeieieee e se e seseen 14-21
GET_SUBSCRIBER_DN Function Return ValUes...........c.cccooveveiiecienn e 14-21
GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters...........c.ccooeeneneieennnnn 14-22
GET_USER_EXTENDED_PROPERTIES Function Return Values...........c.cccceeevennnnne 14-22
NORMALIZE_DN_WITH_CASE Function Parameters..........c.cccccovvvvierivniennsivesnnnnenns 14-24
NORMALIZE_DN_WITH_CASE Function Return Valuesccccooeveniieinincnene, 14-24
GET_PROPERTY_NAMES FUNCtioNn Parametersccccvevevieieieene e see e e saeseesenens 14-25
GET_PROPERTY_NAMES Function Return ValUEs...........ccccovevvivieie i 14-25
GET_PROPERTY_VALUES FUuNCtion Parameters........cccccviveveiveiiese e se e e sseesnsnens 14-25
GET_PROPERTY_VALUES Function Return Values..............cccccvvviveiieeieiie e 14-26
GET_PROPERTY_VALUES_LEN Function Parameters.........c.ccccoveviviveevesieniesieesnsnens 14-26
GET_PROPERTY_VALUES_LEN Function Return Valuesc.ccocveviniiininnenn 14-27
FREE_PROPERTYSET_COLLECTION Procedure Parameters............cccccevvvveresinennnn 14-28
CREATE_MOD_PROPERTYSET Function Parameters..........cccccvvvveveiieevesieeseseesnsinens 14-28
CREATE_MOD_PROPERTYSET Function Return Values............ccccoccneneniiiiiinnenn 14-28
POPULATE_MOD_PROPERTYSET Function Parameterscccccceevevevveveneeniennnenns 14-29
POPULATE_MOD_PROPERTYSET Function Return Values............c.ccooeveieieniienne. 14-29
FREE_MOD_PROPERTYSET Procedure Parameters...........ccccovvvieeievieeinsneieseese s 14-30
FREE_HANDLE Procedure Parameters.......c.cccocveiiiieii i 14-30
CHECK_INTERFACE_VERSION Function Parameters.........c.ccccovvevviveenesieesesiee e 14-30
CHECK_VERSION_INTERFACE Function Return Valuesc.ccoconiciiiiinnenn 14-31
GET_PROPERTY_VALUES BLOB Function Parameterscccccevvveveiveieiineiesieninens 14-31
GET_PROPERTY_VALUES BLOB Return Values...........cccocoiiiiininiienee e 14-31

Xix

XX

14-60
14-61
14-62
15-1
15-2
15-3
15-4
15-5
16-1
16-2
16-3
16-4
16-5
17-1
17-2

PROPERTY_VALUE_FREE_BLOB Function Parameters..........ccccccoevvvevivnieieeivnsesnenns 14-32

FUNCLION REIUIN COOES ...ttt bbb bt 14-32
DBMS _LDAP_UTL Data TYPES ...ccuecuiiiirieiiiniinie sttt bt 14-34
Service Units and Corresponding ENTIIESccccoieiieiiiieicceec e 15-1
Service Units and Corresponding URL Parametersccccocvevvvieneieeiesies e 15-2
DAS URL Parameter DeSCIIPLIONSccccveiieiiiieie sttt e e v sne e 15-5
USer SEarch and SEIECT..........ooiiiiiie e e 15-7
Group Search and SEIECTccv e 15-7
Some USeful PriVIIEge GIOUPS.......ccoiiviieiiiie ittt ste et te et te e sre s e nne s 16-3
Interfaces and Their CoNfigUIatioN ..o 16-7
Information Formats Supported by the PLSQL Interface.........cccocvvvievivicvivc s 16-8
Properties Stored as Attributes in the Attribute Configuration Entry...........ccccccvvennen. 16-9
Event propagation PAramMEters..........ccccveieiieeieiee e seesie e sie e e e sre e ste e s ae e sneenee s 16-11
Predefined EVeNnt DefiNItiONSccooiiiiiiiiiie e 17-2
Attributes of the Provisioning Subscription Profile.........c..ccoooiiiiiice e, 17-4

Audience

Preface

Oracle Identity Management Application Developer's Guide explains how to modify
applications to work with the Oracle Identity Management infrastructure. For the
purposes of this book, this infrastructure consists of Oracle Application Server Single
Sign-On, Oracle Internet Directory, Oracle Delegated Administration Services, and the
Directory Integration Platform.

This preface contains these topics:
« Audience

« Documentation Accessibility
» Related Documents

= Conventions

The following readers can benefit from this book:

« Developers who want to integrate applications with the Oracle Identity
Management infrastructure. This process involves storing and updating
information in an Oracle Internet Directory server. It also involves modifying
applications to work with mod_osso, an authentication module on the Oracle
HTTP Server.

= Anyone who wants to learn about the LDAP APIs and Oracle extensions to these
APls.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://ww. oracl e. com accessibility/

XXi

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XXii

For more information, see these Oracle resources:

« Oracle Identity Management Concepts and Deployment Planning Guide
« Oracle Internet Directory Administrator’s Guide

« Oracle Identity Management Integration Guide

« Oracle Identity Management Guide to Delegated Administration

« Oracle Application Server Single Sign-On Administrator’s Guide

« PL/SQL User's Guide and Reference

« Oracle Database Application Developer's Guide - Fundamentals

For additional information, see:

« Chadwick, David. Understanding X.500—The Directory. Thomson Computer Press,
1996.

« Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

« Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

« Internet Assigned Numbers Authority home page, htt p: // ww. i ana. or g, for
information about object identifiers

« Internet Engineering Task Force (IETF) documentation available at:
http://ww. i etf.org,especially:

« The LDAPEXT charter and LDAP drafts
« The LDUP charter and drafts
« RFC 2254, "The String Representation of LDAP Search Filters"
« RFC 1823, "The LDAP Application Program Interface"
« The OpenLDAP Community, htt p: / / www. openl dap. org

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

XXiii

XXV

What's New in the SDK?

This document acquaints you with new features in the Oracle Internet Directory
Software Developer's Kit—both in the present release and in the last release. Use the
links provided to learn more about each feature.

New Features in the Release 10.1.2 SDK

The release 10.1.2 SDK adds:

Centralized user provisioning.

This feature enables you to provision application users into the Oracle Identity
Management infrastructure. To learn more, see Chapter 16, "Centralized User
Provisioning Java API Reference".

Dynamic password verifiers

This feature addresses the needs of applications that provide parameters for
password verifiers only at runtime. To learn more, see "Creating Dynamic
Password Verifiers" in Chapter 3.

Binary support for | dapnodi fy, | dapadd, and | dapconpar e plug-ins

Directory plug-ins can now access binary attributes in the directory database. To
learn more, see "Binary Support in the Plug-in Framework" in Chapter 7.

Plug-in support for the Oracle Directory Integration and Provisioning Server

These Java hooks enable an enterprise to incorporate its own business rules and to
tailor footprint creation to its needs. To learn more, see Appendix A.

New Features in the Release 9.0.4 SDK

The following features made their debut in the release 9.0.4 SDK:

URL API for Oracle Delegated Administration Services

This API enables you to build administrative and self-service consoles that
delegated administrators can use to perform directory operations. To learn more,
see Chapter 8.

PL/SQL APl Enhancements:

« New functions in the LDAP v3 standard. Previously available only in the C
API, these functions are now available in PL/SQL.

« Functions that enable proxied access to middle-tier applications.

XXV

XXVi

« Functions that create and manage provisioning profiles in the directory
integration and provisioning platform.

To learn more, see Chapter 6.
Plug-in support for external authentication

This feature enables administrators to use Microsoft Active Directory to store and
manage security credentials for Oracle components. To learn more, see Chapter 7.

Server discovery using DNS

This feature enables directory clients to discover the host name and port number
of a directory server. It reduces the cost of maintaining directory clients in large
deployments. To learn more, see "Discovering a Directory Server" in Chapter .

XML support for the directory SDK and directory tools

This feature enables LDAP tools to process XML as well as LDIF notation.
Directory APIs can manipulate data in a DSML 1.0 format.

Caching for client-side referrals

This feature enables clients to cache referral information, speeding up referral
processing. To learn more, see "LDAP Session Handle Options" in Chapter 8.

Part |

Programming for Oracle Identity
Management

Part I shows you how to modify your applications to work with the different
components of Oracle Identity Management. This section begins with an introduction
to the Oracle Internet Directory SDK and to LDAP programming concepts. You then
learn how to use the three LDAP APIs and their extensions to enable applications for
Oracle Internet Directory. The section ends with the tasks required to enable an
application for single sign-on.

Part | contains these chapters:

« Chapter 1, "Developing Applications for Oracle Identity Management"

« Chapter 2, "Developing Applications with Standard LDAP APIs"

« Chapter 3, "Developing Applications with Oracle Extensions to the Standard APIs"
« Chapter 6, "Developing Provisioning-Integrated Applications"

« Chapter 7, "Developing Directory Plug-ins"

« Chapter 8, "Integrating with Oracle Delegated Administration Services"

« Chapter 9, "Developing Applications for Single Sign-On"

« Chapter 10, "Integrating J2EE Applications and Oracle Internet Directory"

1

Developing Applications for Oracle Identity

Management

Oracle Identity Management provides a shared infrastructure for all Oracle
applications. It also provides services and interfaces that facilitate third-party
enterprise application development. These interfaces are useful for application
developers who need to incorporate identity management into their applications.

This chapter discusses these interfaces and recommends application development best
practices in the Oracle Identity Management environment.

There are two types of applications that can be integrated with Oracle Identity
Management:

Existing applications already used in the enterprise. The enterprise might have
already invested in such applications and would benefit from their integration
with the Oracle Identity Management infrastructure.

New applications being developed by corporate IT departments or ISVs that are
based on the Oracle technology stack

This chapter contains the following topics:

Benefits of Integrating with Oracle Identity Management

Oracle Identity Management Services Available for Application Integration
Integrating Existing Applications with Oracle Identity Management
Integrating New Applications with Oracle Identity Management

Oracle Internet Directory Programming: An Overview

Benefits of Integrating with Oracle Identity Management

Enterprise applications integrating with the Oracle Identity Management
infrastructure receive the following benefits:

Integration facilitates faster application deployment with lower costs:
Enterprises (primarily Oracle customers) already using an existing Oracle Identity
Management infrastructure can deploy new applications using the self-service
console of Oracle Delegated Administration Services. Delegating application
administration to users reduces the deployment cost of the application.

Seamless integration with Oracle applications: Because all Oracle applications
rely on the Oracle Identity Management infrastructure, new enterprise
applications can use all the features Oracle Identity Management offers.

Developing Applications for Oracle Identity Management 1-1

Oracle Identity Management Services Available for Application Integration

Seamless integration with third-party identity management solutions: Because
the Oracle Identity Management infrastructure already has built-in capabilities for
integrating with third-party identity management solutions, application
developers can take advantage of the identity management features.

Oracle Identity Management Services Available for Application Integration

Custom applications can use Oracle Identity Management through a set of
documented and supported services and APIs. For example:

Oracle Internet Directory provides LDAP APIs for C, Java, and PL/SQL, and is
compatible with other LDAP SDKs.

Oracle Delegated Administration Services provides a core self-service console that
can be customized to support third-party applications. In addition, they provide a
number of services for building customized administration interfaces that
manipulate directory data.

Oracle Directory Integration Services facilitate the development and deployment
of custom solutions for synchronizing Oracle Internet Directory with third-party
directories and other user repositories.

Oracle Provisioning Integration Services provide a mechanism for provisioning
third-party applications, as well as a means of integrating the Oracle environment
with other provisioning systems.

OracleAS Single Sign-On provides APIs for developing and deploying partner
applications that share a single sign-on session with other Oracle Web
applications.

JAZN is the Oracle implementation of the Java Authentication and Authorization
Service (JAAS) Support standard. JAZN allows applications developed for the
Web using the Oracle J2EE environment to use the identity management
infrastructure for authentication and authorization.

Integrating Existing Applications with Oracle Identity Management

An enterprise may have already deployed certain applications to perform critical
business functions. The Oracle Identity Management infrastructure provides the
following services that can be leveraged by the deployment to modify existing
applications:

Automated User Provisioning: The deployment can develop a custom
provisioning agent that automates the provisioning of users in the existing
application in response to provisioning events in the Oracle Identity Management
infrastructure. This agent must be developed using the interfaces of Oracle
Provisioning Integration Service.

See Also: Oracle Internet Directory Administrator’s Guide for more
information about developing automated user provisioning

User Authentication Services: If the user interface of the existing application is
based on HTTP, integrating it with Oracle HTTP Server and protecting its URL
using nod_osso will authenticate all incoming user requests using the OracleAS
Single Sign-On service.

Centralized User Profile Management: If the user interface of the existing
application is based on HTTP, and it is integrated with OracleAS Single Sign-On
for authentication, the application can use the self-service console of Oracle

1-2 Oracle Identity Management Application Developer’s Guide

Integrating New Applications with Oracle Identity Management

Delegated Administration Services to enable centralized user profile management.
The self-service console can be customized by the deployment to address the
specific needs of the application.

Integrating New Applications with Oracle Identity Management

Application developers can use the services provided by the Oracle Identity
Management infrastructure more extensively if they are developing a new application
or planning a new release of an existing application. Application developers should
consider the following integration points:

« User Authentication Services: The application developer has the following
options:

If the application is based on J2EE, it can use the services provided by the
Oracle Application Server Java Authentication and Authorization Service
(JAAS) Provider interface.

If the application relies on Oracle Application Server Containers for J2EE
(OC4)), it can use the services provided by nod_osso to authenticate users
and obtain important information about the user in the HTTP headers.

If the application is a standalone Web-based application, it can use OracleAS
Single Sign-On as a partner application using the OracleAS Single Sign-On
APIs.

If the application provides an interface that is not Web-based, it can use the
Oracle Internet Directory LDAP APIs (available in C, PL/SQL and Java) to
authenticate users.

« Centralized Profile Management: The application developer has the following
options available:

The application developer can model application-specific profiles and user
preferences as attributes in Oracle Internet Directory.

If the user interface of the application is based on HTTP, and it is integrated
with OracleAS Single Sign-On for authentication, the application can leverage
the self-service console of Oracle Delegated Administration Services to enable
centralized user profile management. The self-service console can be
customized by the deployment to address the specific needs of the application.

The application can also retrieve user profiles at run time using the Oracle
Internet Directory LDAP APIs (available in C, PL/SQL and Java).

« Automated User Provisioning: Application developers should consider the
following options:

If the user interface of the application is based on HTTP and it is integrated
with OracleAS Single Sign-On for authentication, then the application
developer can implement automated user provisioning the first time a user
accesses the application

The application can also be integrated with the Oracle Internet Directory
Provisioning Integration Service, which enables it to automatically provision
or de-provision user accounts in response to administrative actions, such as
adding an identity, modifying the properties of an existing identity, or deleting
an existing identity in the Oracle Identity Management infrastructure

See Also: Oracle Identity Management Integration Guide

Developing Applications for Oracle Identity Management 1-3

Oracle Internet Directory Programming: An Overview

Oracle Internet Directory Programming: An Overview

This section introduces you to the Oracle Internet Directory Software Developer's Kit.
It provides an overview of how an application can use the kit to integrate with the
directory. You are also acquainted with the rest of the directory product suite.

The section contains these topics:

Programming Languages Supported by the Oracle Internet Directory SDK
Oracle Internet Directory SDK Components
Application Development in the Oracle Internet Directory Environment

Other Components of Oracle Internet Directory

Programming Languages Supported by the Oracle Internet Directory SDK

The SDK is for application developers who use C, C++, and PL/SQL. Java developers
must use the JNDI provider from Sun Microsystems to integrate with the directory.

Oracle Internet Directory SDK Components

Oracle Internet Directory Software Developer's Kit 10g Release 2 (10.1.2) consists of the
following:

A C API compliant with LDAP Version 3

A PL/SQL API contained in a PL/SQL package called DBVS_LDAP
Sample programs

Oracle Identity Management Application Developer's Guide (this document)

Command-line tools

Application Development in the Oracle Internet Directory Environment
This section contains these topics:

Architecture of a Directory-Enabled Application

Oracle Internet Directory Interactions During the Application Life Cycle
Services and APIs for Integrating Applications with Oracle Internet Directory
Integrating Existing Applications with Oracle Internet Directory

Integrating New Applications with Oracle Internet Directory

Architecture of a Directory-Enabled Application

Most directory-enabled applications are backend programs that simultaneously
handle multiple requests from multiple users. Figure 1-1 shows how a directory is
used by such applications.

1-4 Oracle Identity Management Application Developer’s Guide

Oracle Internet Directory Programming: An Overview

Figure 1-1 A Directory-Enabled Application

User 1
° ._
‘ q‘ —
User 2
[4
B
| I Multiple
—_ Connections Few
Connections
LDAP-Enabled Oracle
Application Internet
User 3 Directory
e B
i — User, Group,
Subscriber and
—_ Application Data
User N

il

As Figure 1-1 shows, when a user request involves an LDAP-enabled operation, the
application processes the request using a smaller set of pre-created directory
connections.

Oracle Internet Directory Interactions During the Application Life Cycle

Table 1-1 on page 1-5 walks you through the directory operations that an application
typically performs during its lifecycle.

Table 1-1 Interactions During Application Lifecycle
Point in Application Lifecycle Logic
Application Installation 1. Create an application identity in the directory.

The application uses this identity to perform
most of its LDAP operations.

2. Give the application identity LDAP
authorizations by making it part of the correct
LDAP groups. These authorizations enable the
application to accept user credentials and
authenticate them against the directory. The
directory can also use application authorizations
to proxy for the user when LDAP operations
must be performed on the user's behalf.

Application Startup and Bootstrap The application must retrieve credentials that enable

it to authenticate itself to the directory.

If the application stores configuration metadata in
Oracle Internet Directory, it can retrieve that
metadata and initialize other parts of the application.

The application can then establish a pool of
connections to serve user requests.

Developing Applications for Oracle Identity Management 1-5

Oracle Internet Directory Programming: An Overview

Table 1-1 (Cont.) Interactions During Application Lifecycle

Point in Application Lifecycle Logi

C

Application Runtime For every end-user request that needs an LDAP
operation, the application can:

Pick a connection from the pool of LDAP
connections.

Switch the user to the end-user identity if the
LDAP operation needs to be performed with the
effective rights of the end-user.

Perform the LDAP operation by using either the
regular API or the APl enhancements described
in this chapter.

Ensure that the effective user is now the
application identity once the LDAP operation is
complete.

Return the LDAP connection back to the pool of
connections.

Application Shutdown Abandon any outstanding LDAP operations and
close all LDAP connections.

Application Deinstallation Rem
auth

ove the application identity and the LDAP
orizations granted to it.

Services and APIs for Integrating Applications with Oracle Internet Directory
Application developers can integrate with Oracle Internet Directory by using the

services and APIs listed and described in

Table 1-2 on page 1-6.

Table 1-2 Services and APIs for Integrating with Oracle Internet Directory

Service/API Description

More Information

Standard LDAP APIsin C, PL/SQL These provide basic LDAP

Chapter 2, "Developing Applications

and Java operations. The standard LDAP APl with Standard LDAP APIs"
used in Java is the INDI API with the

LDAP service provider fro
Microsystems.

m Sun

Oracle Extensions to Standard C, These APIs provide programmatic Chapter 3, "Developing Applications
PL/SQL and Java APls interfaces that model various with Oracle Extensions to the
concepts related to identity Standard APIs"
management.

1-6 Oracle Identity Management Application Developer’s Guide

Oracle Internet Directory Programming: An Overview

Table 1-2 (Cont.) Services and APIs for Integrating with Oracle Internet Directory

Service/API

Description

More Information

Oracle Delegated Administration
Services

Oracle Directory Provisioning
Integration Service

Oracle Internet Directory Plug-ins

Oracle Delegated Administration
Services consists of a self-service
console and administrative
interfaces. You can modify the
administrative interfaces to support
third-party applications.

You can use the Oracle Provisioning
Integration System to provision
third-party applications and

integrate other provisioning systems.

You can use plug-ins to customize
directory behavior in certain
deployments.

« Chapter 8, "Integrating with
Oracle Delegated
Administration Services"

« The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

« Chapter 6, "Developing
Provisioning-Integrated
Applications"

. Oracle Identity Management
Integration Guide

« Chapter 7, "Developing
Directory Plug-ins"

« The chapter about plug-ins in
Oracle Internet Directory
Administrator’s Guide

« Appendix A, "Java Plug-ins for
User Provisioning”

Figure 1-2 shows an application leveraging some of the services illustrated in
Table 1-2 on page 1-6.

Figure 1-2 An Application Leveraging APIs and Services

DAS
URL
Application APIs DAS
=
Provisoning C, PL/SQL,
APIs Java APIs
Directory Oracle
Integration Internet
Platform Directory

As Figure 1-2 shows, the application integrates with Oracle Internet Directory as

follows:

« Using PL/SQL, C, or Java APIs, it performs LDAP operations directly against the

directory.

« Insome cases, it directs users to self-service features of Oracle Delegated
Administration Services.

« lItis notified of changes to entries for users or groups in Oracle Internet Directory.
The Oracle Directory Provisioning Integration Service provides this notification.

Developing Applications for Oracle Identity Management

1-7

Oracle Internet Directory Programming: An Overview

Integrating Existing Applications with Oracle Internet Directory

Your enterprise may already have deployed applications that you may have wanted to
integrate with the Oracle identity management infrastructure. You can still integrate
these applications using the services presented in Table 1-3.

Table 1-3 Services for Modifying Existing Applications

Service Description More Information

Automated User Provisioning You can develop an agent that Chapter 6, "Developing
automatically provisions users when Provisioning-Integrated
provisioning events occur in the Applications"

Oracle identity management
infrastructure. You use interfaces of
the Oracle Directory Provisioning
Integration Service to develop this
agent.

User Authentication Services If your user interface is based on Oracle Application Server Single
HTTP, you can integrate it with the Sign-On Administrator’s Guide
Oracle HTTP Server. This enables
you to use mod_osso and OracleAS
Single Sign-On to protect the
application URL.

Centralized User Profile If your user interface is based on « Chapter 8, "Integrating with
Management HTTP and is integrated with Oracle Delegated
OracleAS Single Sign-On, you can Administration Services"

use the Oracle Internet Directory
Self-Service Console to manage user
profiles centrally. You can tailor the
console to the needs of your
application.

The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Integrating New Applications with Oracle Internet Directory

If you are developing a new application or planning a new release of an existing
application, you have many directory integration options at your disposal. Table 1-4
on page 1-9 lists and describes these.

1-8 Oracle Identity Management Application Developer’s Guide

Oracle Internet Directory Programming: An Overview

Table 1-4 Application Integration Points

Integration Point

Available Options

More Information

User Authentication Services

User Authorization Services

Centralized Profile
Management

Automated User
Provisioning

If your application is based on J2EE, it can use .
the JAZN interface to authenticate users. If it
relies on OC4J, it can use mod_osso for the same
purpose. The second option enables the
application to obtain information about the user
from HTTP headers.

If your application is Web based and standalone,
it can still integrate with OracleAS Single
Sign-On, then it can still leverage Oracle
Application Server Single Sign-On by becoming a
partner application using the single sign-on APIs.

Finally, if the application provides a non-Web
user interface, it can use the Oracle Internet
Directory LDAP APIs to integrate users.

If your application is based on J2EE, it can use .
the JAZN interface to implement and enforce
user authorizations for application resources. The
application can define authorizations as groups
in Oracle Internet Directory and can then check
the authorizations of a user by checking his or
her group membership. It can use the Oracle
Internet Directory LDAP APIs for this purpose.

You can define application-specific profilesand
user preferences as attributes in Oracle Internet
Directory.

If your user interface is based on HTTP and is
integrated with OracleAS Single Sign-On, you .
can use the Oracle Internet Directory Self-Service
Console to manage user profiles centrally. You
can tailor the console to the needs of your
application.

Additionally, you can use the Oracle Internet
Directory LDAP APIs to retrieve user profiles at
runtime.

If your user interface is based on HTTP and it is
integrated with OracleAS Single Sign-On, you
can implement automated user provisioning the
very first time a user accesses the application.

You use the Oracle Directory Provisioning
Integration Service to integrate the application
with the Oracle identity management
infrastructure. Once integrated, the application
can provision or deprovision user accounts
automatically when an administrator adds,
modifies, or deletes an identity.

Oracle Application Server
Containers for J2EE User’s
Guide

Oracle Application Server
Single Sign-On
Administrator’s Guide

Part I, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

Oracle Application Server
Containers for J2EE User’s
Guide

Part 11, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

The chapter about
deployment considerations
in Oracle Internet Directory
Administrator’s Guide

Chapter 8, "Integrating with
Oracle Delegated
Administration Services"

Oracle Identity Management
Guide to Delegated
Administration

Part Il of this guide, which
is devoted to the various
LDAP APIs

Chapter 6, "Developing
Provisioning-Integrated
Applications"

Other Components of Oracle Internet Directory
The SDK is just one component in the directory suite. Here are the others:

« Oracle directory server, LDAP Version 3

« Oracle directory replication server

« Oracle Directory Manager, a Java-based graphical user interface

Developing Applications for Oracle Identity Management

1-9

Oracle Internet Directory Programming: An Overview

« Oracle Internet Directory bulk tools

« Oracle Internet Directory Administrator’s Guide

1-10 Oracle Identity Management Application Developer’s Guide

2

Developing Applications with Standard LDAP
APlIs

This chapter takes a high-level look at the operations that the standard LDAP API
enables. It explains how to integrate your applications with the API. Before presenting
these topics, the chapter revisits the Lightweight Directory Access Protocol (LDAP).

This chapter contains these topics:

« Sample Code

« History of LDAP

« LDAP Models

« About the Standard LDAP APIs
« Initializing an LDAP Session

« Authenticating an LDAP Session
« Searching the Directory

« Terminating the Session

Sample Code
Sample code is available at this URL:
http://ww. oracl e. conf t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

History of LDAP

LDAP began as a lightweight front end to the X.500 Directory Access Protocol. LDAP
simplifies the X.500 Directory Access Protocol in the following ways:

« Ituses TCP/IP connections. These are lightweight compared to the OSI
communication stack required by X.500 implementations

« Iteliminates little-used and redundant features of the X.500 Directory Access
Protocol

« Ituses simple formats to represent data elements. These formats are easier to
process than the complicated and highly structured representations in X.500.

Developing Applications with Standard LDAP APIs 2-1

LDAP Models

« Itusesasimplified version of the X.500 encoding rules used to transport data over
networks.

LDAP Models
LDAP uses four basic models to define its operations:
« Naming Model
« Information Model
= Functional Model

« Security Model

Naming Model

The LDAP naming model enables directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The DN tells you exactly where an entry resides in the directory hierarchy. A
directory information tree (DIT) is used to represent this hierarchy.

Figure 2-1 illustrates the relationship between a distinguished name and a directory
information tree.
Figure 2-1 A Directory Information Tree

root

ou=Sales ou=Server Development

cn=Anne Smith

cn=Anne Smith

The DIT in Figure 2-1 shows entries for two employees of Acme Corporation who are
both named Anne Smith. It is structured along geographical and organizational lines.
The Anne Smith represented by the left branch works in the Sales division in the
United States. Her counterpart works in the Server Development division in the
United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of United Kingdom of Great Britain and Northern Ireland (uk), in the
organization (0) Acme. The DN for this Anne Smith entry looks like this:

cn=Anne Snmith, ou=Server Devel opnent, c=uk, o=acme
Note that the conventional format for a distinguished name places the lowest DIT
component at the left. The next highest component follows, on up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). In the DN just presented, the RDN is cn=Anne Sni t h.
The RDN for the entry immediately above Anne Smith's RDN is ou=Ser ver

Devel oprent . And the RDN for the entry immediately above ou=Ser ver

2-2 Oracle Identity Management Application Developer’s Guide

LDAP Models

Devel opnent is c=uk, and so on. A DN is thus a sequence of RDNs separated by
commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. To avoid confusion
between the two Anne Smiths in the global organization depicted in Figure 2-1, you
use the full DN for each. If there are two employees with the same name in the same
organizational unit, you can use other mechanisms. You may, for example, use a
unique identification number to identify these employees.

Information Model

The LDAP information model determines the form and character of information in the
directory. This model uses the concept of entries as its defining characteristic. In a
directory, an entry is a collection of information about an object. A telephone directory,
for example, contains entries for people. A library card catalog contains entries for
books. An online directory may contain entries for employees, conference rooms,
e-commerce partners, or shared network resources such as printers.

In a typical telephone directory, a person entry contains an address and a phone
number. In an online directory, each of these pieces of information is called an
attribute. A typical employee entry contains attributes for a job title, an e-mail address,
and a phone number.

In Figure 2-2, the entry for Anne Smith in Great Britain (uk) has several attributes.
Each provides specific information about her. Those listed in the balloon to the right of
the tree are enuni | addr s, pri nt er nane, j pegPhot o, and app pr ef er ences. Note
that the rest of the bullets in Figure 2-2 are also entries with attributes, although these
attributes are not shown.

Figure 2-2 Attributes of the Entry for Anne Smith

ch=fnne Smith

emailaddrs=
— printemame=

ipeqPhoto=
app Preferen.:is=/

ou=5erver Dewvelopment

cn=Anne Smith

ch=2nne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—j obTi t | e, for
instance. The attribute value is the actual information. The value for the j obTi tl e
attribute, for example, might be nanager .

Functional Model

The LDAP functional model determines what operations can be performed on
directory entries. Table 2-1 on page 2-4 lists and describes the three types of functions:

Developing Applications with Standard LDAP APIs 2-3

LDAP Models

Table 2-1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose

name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations that modify the

directory:

« Modify—change existing entries. You can add and delete
values.

« Add—insert entries into the directory
« Delete—remove entries from the directory
« Modify RDN—change the name of an entry

Authenticate This category defines a bind operation. A bind enables a client

to initiate a session and prove its identity to the directory.
Oracle Internet Directory supports several authentication
methods, from simple clear-text passwords to public keys. The
unbind operation is used to terminate a directory session.

Security Model

The LDAP security model enables directory information to be secured. This model has
several parts:

Authentication
Ensuring that the identities of users, hosts, and clients are correctly validated
Access Control and Authorization

Ensuring that a user reads or updates only the information for which that user has
privileges

Data Integrity: Ensuring that data is not modified during transmission
Data Privacy

Ensuring that data is not disclosed during transmission

Password Policies

Setting rules that govern how passwords are used

Authentication

Authentication is the process by which the directory server establishes the identity of
the user connecting to the directory. Directory authentication occurs when an LDAP
bind operation establishes an LDAP session. Every session has an associated user
identity, also referred to as an authorization ID.

Oracle Internet Directory provides three authentication options: anonymous, simple,
and SSL.

2-4 Oracle Identity Management Application Developer’s Guide

LDAP Models

Anonymous Authentication If your directory is available to everyone, users may log in
anonymously. In anonymous authentication, users leave the user name and password
fields blank when they log in. They then exercise whatever privileges are specified for
anonymous Users.

Simple Authentication In simple authentication, the client uses an unencrypted DN and
password to identify itself to the server. The server verifies that the client's DN and
password match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Sockets Layer (SSL) is an
industry standard protocol for securing network connections. It uses a certificate
exchange to authenticate users. These certificates are verified by trusted certificate
authorities. A certificate ensures that an entity's identity information is correct. An
entity can be an end user, a database, an administrator, a client, or a server. A
Certificate Authority (CA) is an application that creates public key certificates that are
given a high level of trust by all parties involved.

You can use SSL in one of the three authentication modes presented in Table 2-2.

Table 2-2 SSL Authentication Modes
SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption and decryption are used.

One-way authentication Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other,
exchanging certificates.

In an Oracle Internet Directory environment, SSL authentication between a client and a
directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on an
SSL port. The default SSL port is 636.

2. SSL performs the handshake between the client and the directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

See Also: Oracle Advanced Security Administrator's Guide for more
information about SSL

Access Control and Authorization

The authorization process ensures that a user reads or updates only the information
for which he or she has privileges. The directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform a given directory operation. Absent these permissions, the
operation is disallowed.

The mechanism that the directory server uses to ensure that the proper authorizations
are in place is called access control. And an access control item (ACI) is the directory
metadata that captures the administrative policies relating to access control.

An ACl is stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically a whole list of these ACI attribute values is associated with a directory object.

Developing Applications with Standard LDAP APIs 2-5

LDAP Models

This list is called an access control list (ACL). The attribute values on that list govern
the access policies for the directory object.

ACls are stored as text strings in the directory. These strings must conform to a
well-defined format. Each valid value of an ACI attribute represents a distinct access
control policy. These individual policy components are referred to as ACI Directives or
ACIs and their format is called the ACI Directive format.

Access control policies can be prescriptive: their security directives can be set to apply
downward to all entries at lower positions in the directory information tree (DIT).
The point from which an access control policy applies is called an access control
policy point (ACP).

Data Integrity

Oracle Internet Directory uses SSL to ensure that data is not modified, deleted, or
replayed during transmission. This feature uses cryptographic checksums to generate
a secure message digest. The checksums are created using either the M D5 algorithm or
the Secure Hash Algorithm (SHA). The message digest is included in each network
packet.

Data Privacy

Oracle Internet Directory uses public key encryption over SSL to ensure that data is
not disclosed during transmission. In public-key encryption, the sender of a message
encrypts the message with the public key of the recipient. Upon delivery, the recipient
decrypts the message using his or her private key. The directory supports two levels of
encryption:

« DES40

The DES40 algorithm, available internationally, is a DES variant in which the
secret key is preprocessed to provide forty effective key bits. It is designed for use
by customers outside the USA and Canada who want to use a DES-based
encryption algorithm.

. RC4_40

Oracle is licensed to export the RC4 data encryption algorithm with a 40-bit key
size to virtually all destinations where Oracle products are available. This makes it
possible for international corporations to safeguard their entire operations with
fast cryptography.

Password Policies

A password policy is a set of rules that govern how passwords are used. When a user
attempts to bind to the directory, the directory server uses the password policy to
ensure that the password provided meets the various requirements set in that policy.

When you establish a password policy, you set the following types of rules, to mention
just a few:

« The maximum length of time a given password is valid
« The minimum number of characters a password must contain

« The ability of users to change their passwords

2-6 Oracle Identity Management Application Developer’s Guide

About the Standard LDAP APIs

About the Standard LDAP APIs

The standard LDAP APIs enable you to perform the fundamental LDAP operations
described in "LDAP Models". These APIs are available in C, PL/SQL, and Java. The
first two are part of the directory SDK. The last is part of the INDI package provided
by Sun Microsystems. All three use TCP/IP connections. They are based on LDAP
Version 3, and they support SSL connections to Oracle Internet Directory.

This section contains these topics:

API Usage Model

API Usage Model

Getting Started with the C API

Getting Started with the Java API

Getting Started with the DBMS_LDAP Package

Typically, an application uses the functions in the API in four steps:

1.
2.
3.
4.

Initialize the library and obtain an LDAP session handle.
Authenticate to the LDAP server if necessary.
Perform some LDAP operations and obtain results and errors, if any.

Close the session.

Figure 2-3 illustrates these steps.

Figure 2-3 Steps in Typical DBMS_LDAP Usage

Initialize Session

v

Authenticate Session

v

Perform LDAP
Operations

v

Terminate Session

Getting Started with the C API

When you build applications with the C API, you must include the header file
| dap. h, located at $ORACLE_HOME/ | dap/ publ i c. In addition, you must
dynamically link to the library located at $ORACLE

HOVE/ |'i b/ 11 bcl ntsh. so. 10. 1.

See Also: "Sample C APl Usage" on page 11-40 to learn how to use
the SSL and non-SSL modes

Developing Applications with Standard LDAP APIs 2-7

Initializing an LDAP Session

Getting Started with the DBMS_LDAP Package

The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The names and syntax of the function calls are similar
to those of the C API. These functions comply with current recommendations of the
Internet Engineering Task Force (IETF) for the C API. Note though that the PL/SQL
API contains only a subset of the functions available in the C API. Most notably, only
synchronous calls to the LDAP server are available in the PL/SQL API.

To begin using the PL/SQL LDAP API, use this command sequence to load DBMS _
LDAP into the database:

1. Log in to the database, using SQL*Plus. Run the tool in the Oracle home in which
your database is present. Connect as SYSDBA.

SQL> CONNECT / AS SYSDBA

2. Load the API into the database, using this command:
SQL> @/ rdbns/ adni n/ cat| adap. sql

Getting Started with the Java API

Java developers can use the Java Naming and Directory Interface (JNDI) from Sun
Microsystems to gain access to information in Oracle Internet Directory. The JNDI is
found at this link:

http://java. sun. conl product s/ j ndi
Although no Java APIs are provided in this chapter, the section immediately

following, "Initializing the Session by Using JNDI", shows you how to use wrapper
methods for the Sun JNDI to establish a basic connection.

Initializing an LDAP Session

All LDAP operations based on the C API require clients to establish an LDAP session
with the LDAP server. For LDAP operations based on the PL/SQL API, a database
session must first initialize and open an LDAP session. Most Java operations require a
Java Naming and Directory Interface (JNDI) connection. The
oracle.ldap.util.jndi package, provided here, simplifies the work involved in
achieving this connection.

The section contains the following topics:

« Initializing the Session by Using the C API

« Initializing the Session by Using DBMS_LDAP
« Initializing the Session by Using JNDI

Initializing the Session by Using the C API

The C function | dap_i ni t () initializes a session with an LDAP server. The server is
not actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization.

| dap_i ni t has the following syntax:

LDAP *| dap_init

(

const char *host nane,
i nt portno

2-8 Oracle Identity Management Application Developer’s Guide

Initializing an LDAP Session

);
Table 2-3 lists and defines the function parameters.

Table 2-3 Parameters for Idap_init()

Parameter Description

host nane Contains a space-separated list of directory host names or IP addresses
represented by dotted strings. You can pair each host name with a port
number as long as you use a colon to separate the two.

The hosts are tried in the order listed until a successful connection is
made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number of the directory you would like to connect
to. The default LDAP port of 389 can be obtained by supplying the
constant LDAP_PORT. If a host includes a port number, this parameter is
ignored.

I dap_init() andl dap_open() both return a session handle, or pointer, to an
opaque structure that must be passed to subsequent calls to the session. These routines
return NULL if the session cannot be initialized. You can check the error reporting
mechanism for your operating system to determine why the call failed.

Initializing the Session by Using DBMS_LDAP

In the PL/SQL API, the function DBMS_LDAP. i ni t () initiates an LDAP session. This
function has the following syntax:

FUNCTION init (hostname I N VARCHAR2, portnum |N PLS | NTEGER)
RETURN SESSI ON;

The functioni ni t requires a valid host name and port number to establish an LDAP
session. It allocates a data structure for this purpose and returns a handle of the type
DBMS_LDAP. SESSI ONto the caller. The handle returned from the call should be used
in all subsequent LDAP operations defined by DBMS_LDAP for the session. The API
uses these session handles to maintain state about open connections, outstanding
requests, and other information.

A single database session can obtain as many LDAP sessions as required, although the
number of simultaneous active connections is limited to 64. One database session
typically has multiple LDAP sessions when data must be obtained from multiple
servers simultaneously or when open sessions that use multiple LDAP identities are
required.

Note: The handles returned from calls to DBMS_LDAP. i nit () are
dynamic constructs. They do not persist across multiple database
sessions. Attempting to store their values in a persistent form, and to
reuse stored values at a later stage, can yield unpredictable results.

Initializing the Session by Using JNDI

Theoracle.l dap. util.jndi package supports basic connections by providing
wrapper methods for the JNDI implementation from Sun Microsystems. If you want to
use the JNDI to establish a connection, see the following link:

Developing Applications with Standard LDAP APIs 2-9

Authenticating an LDAP Session

http://java. sun. conl product s/ j ndi

Here is an implementation of or acl e. | dap. uti |l . j ndi that establishes a non-SSL
connection:

inport oracle.ldap.util.jndi

i nport javax.nam ng.*;

public static void main(String args[])

{
try{

Initial DirContext ctx = ConnectionUtil.getDefaultDirCix(args[0], // host
args[1], [/ port
args[2], // DN
args[3]; [/ password)

/1 Do work

}
cat ch(Nani ngExcepti on ne)
{
/'l javax.nam ng. Nam ngException is thrown when an error occurs
}
}
Note:

« DNand passwor d represent the bind DN and password. For

anonymous binds, set theseto " " .

« Youcanuse ConnectionUtil.getSSLD rCtx() toestablish a
no-authentication SSL connection.

Authenticating an LDAP Session

Individuals or applications seeking to perform operations against an LDAP server
must first be authenticated. If the dn and passwd parameters of these entities are null,
the LDAP server assigns a special identity, called anonymous, to these users. Typically,
the anonymous user is the least privileged user of the directory.

Once a bind operation is complete, the directory server remembers the new identity
until another bind occurs or the LDAP session terminates (unbi nd_s). The LDAP
server uses the identity to enforce the security model specified by the enterprise in
which it is deployed. The identity helps the LDAP server determine whether the user
or application identified has sufficient privileges to perform search, update, or
compare operations in the directory.

Note that the password for the bind operation is sent over the network in clear text. If
your network is not secure, consider using SSL for authentication and other LDAP
operations that involve data transfer.

This section contains these topics:
« Authenticating an LDAP Session by Using the C API
« Authenticating an LDAP Session by Using DBMS_LDAP

Authenticating an LDAP Session by Using the C API

The C function | dap_si npl e_bi nd_s() enables users and applications to
authenticate to the directory server using a DN and password.

2-10 Oracle Identity Management Application Developer's Guide

Searching the Directory

The function | dap_si npl e_bi nd_s() has this syntax:

int |dap_sinple_bind_s

(
LDAP* 1d,

char* dn,
char* passwd

);
Table 2-4 lists and describes the parameters for this function.

Table 2-4 Arguments for Idap_simple_bind_s()

Argument Description

Id A valid LDAP session handle
dn The identity that the application uses for authentication
passwd The password for the authentication identity

If the dn and passwd parameters for are NULL, the LDAP server assigns a special
identity, called anonymous, to the user or application.

Authenticating an LDAP Session by Using DBMS_LDAP

The PL/SQL function si npl e_bi nd_s enables users and applications to use a DN
and password to authenticate to the directory. si npl e_bi nd_s has this syntax:

FUNCTI ON sinpl e_bind_s (Id IN SESSION, dn IN VARCHAR?, passwd | N VARCHAR)
RETURN PLS_| NTEGER;

Note that this function requires as its first parameter the LDAP session handle
obtained fromi nit .

The following PL/SQL code snippet shows how the PL/SQL initialization and
authentication functions just described might be implemented.

DECLARE
retval PLS_| NTEGER;
my_sessi onDBVS_LDAP. sessi on;

BEG N
retval ;= -1;

- Initialize the LDAP session
my_sessi on: = DBVS_LDAP. i nit (' yow. acne. coni, 389);
--Authenticate to the directory

retval : =DBVMS_LDAP. si npl e_bi nd_s(ny_sessi on, ' cn=orcl adm n',
"wel cone');

In the previous example, an LDAP session is initialized on the LDAP server

yow. acne. com This server listens for requests at TCP/IP port number 389. The
identity cn=or cl adm n, whose password is wel con®, is then authenticated. Once
authentication is complete, regular LDAP operations can begin.

Searching the Directory

Searches are the most common LDAP operations. Applications can use complex search
criteria to select and retrieve entries from the directory.

This section contains these topics:

Developing Applications with Standard LDAP APIs 2-11

Searching the Directory

Program Flow for Search Operations

Search Scope

Filters

Searching the Directory by Using the C API
Searching the Directory by Using DBMS_LDAP

Note: This release of the DBVS_LDAP API provides only
synchronous search capability. This means that the caller of the search
functions is blocked until the LDAP server returns the entire result set.

Program Flow for Search Operations

The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1.
2
3
4.
5

6.
7.

Decide what attributes must be returned; then place them into an array.
Initiate the search, using the scope options and filters of your choice.
Obtain an entry from result set.

Obtain an attribute from the entry obtained in step 3.

Obtain the values of the attributes obtained in step 4; then copy these values into
local variables.

Repeat step 4 until all attributes of the entry are examined.

Repeat Step 3 until there are no more entries

Figure 2-4 on page 2-13 uses a flow chart to represent these steps.

2-12 Oracle Identity Management Application Developer’s Guide

Searching the Directory

Figure 2-4 Flow of Search-Related Operations

Collect Required Attributes
Issue Search

v

No

Entry Count > 0

—}T Get First / Next Entry

v

Entry Valid

No

Yes

T Get First / Next Attribute <=

Attribute Valid

vy

T Get Attribute Values 1o End of Search

Search Scope

The scope of a search determines how many entries the directory server examines
relative to the search base. You can choose one of the three options described in
Table 2-5 and illustrated in Figure 2-5 on page 2-14.

Table 2-5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the search base.

The directory server confines its search to the entries that are
SOOPE_ONELEVEL the immediate children of the search base entry.
The directory server looks at the search base entry and the

SOOPE_SUBTREE entire subtree beneath it.

Developing Applications with Standard LDAP APIs 2-13

Searching the Directory

Filters

Figure 2-5 The Three Scope Options

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

In Figure 2-5, the search base is the shaded circle. The shaded rectangle identifies the
entries that are searched.

Base of
Search

A search filter is an expression that enables you to confine your search to certain types
of entries. The search filter required by the sear ch_s() and sear ch_st () functions
follows the string format defined in RFC 1960 of the Internet Engineering Task Force
(IETF). As Table 2-6 shows, there are six kinds of search filters. These are entered in
the formatattri but e operator val ue.

Table 2-6 Search Filters

Filter Type Format Example Matches

Equality (att=val ue) (sn=Keat on) Surnames exactly equal
to Keat on.

Approximate (att~=val ue) (sn~=Ket an) Surnames
approximately equal to
Ket an.

Substring (attr=[leading]*[any] *[tr (sn=*keaton*) Surnames containing

ailing] the string keat on.

Surnames starting with

sn=keat on*
() keat on.

Surnames ending with
(sn=*keat on) keat on.

Surnames starting with
(sn=ke*at *on) ke, containing at and
ending with on.

Greater than or attr>=val ue ('sn>=Keat on) Surnames

equal lexicographically
greater than or equal to
Keat on.

Less than or (attr<=val ue) ('sn<=Keat on) Surnames

equal lexicographically less
than or equal to
Keat on.

Presence (attr=*) (sn=*) All entries having the

sn attribute.

You can use boolean operators and prefix notation to combine these filters to form
more complex filters. Table 2-7 on page 2-15 provides examples. In these examples, the

2-14 Oracle Identity Management Application Developer’s Guide

Searching the Directory

& character represents AND, the | character represents OR, and the ! character
represents NOT.

Table 2-7 Boolean Operators

Filter Type Format Example Matches
AND (&filterl)(filter2 (& sn=keaton)(objec Entrieswith surname
)). . .) tcl ass=i net OrgPerso of Keat on and object
n)) class of
I net Or gPer son.
OR (J(filter1l)(filter2 (](sn~=ketan)(cn=*k Entrieswith surname
). .) eaton)) approximately equal

to ket an or common
name ending in
keat on.

NOT (M(filter)) (M (mail=*)) Entries without a mail
attribute.

The complex filters in Table 2-7 can themselves be combined to create even more
complex, nested filters.

Searching the Directory by Using the C API

The C function | dap_sear ch_s() performs a synchronous search of the directory.
The syntax for | dap_sear ch_s() looks like this:

int |dap_search_s

(

LDAP* I d,

char* base,

i nt scope,
char* filter

i nt attrsonly,

LDAPMessage** res
)

| dap_sear ch_s works with several supporting functions to refine the search. The
steps that follow show how all of these C functions fit into the program flow of a
search operation. Chapter 11, "C API Reference”, examines all of these functions in
depth.

1. Decide what attributes must be returned; then place them into an array of strings.
The array must be null terminated.

2. Initiate the search, using | dap_sear ch_s() . Refine your search with scope
options and filters.

3. Obtain an entry from the result set, using either the | dap_first_entry()
function or the | dap_next _entry() function.

4. Obtain an attribute from the entry obtained in step 3. Use either the | dap_first _
attri but e() function or thel dap_next _attri but e() function for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use the | dap_get _val ues() function or the | dap_get _
val ues_| en() function for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

Developing Applications with Standard LDAP APIs 2-15

Searching the Directory

7. Repeat step 3 until there are no more entries.

Table 2-8 Arguments for Idap_search_s()

Argument Description

I d A valid LDAP session handle

base The DN of the search base.

scope The breadth and depth of the DIT to be searched.
filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.
attrso If set to 1, only returns attributes.

res This argument returns the search results.

Searching the Directory by Using DBMS_LDAP

You use the function DBMS_LDAP. sear ch_s() to performs directory searches if you
use the PL/SQL API.

Here is the syntax for DBM5_LDAP. search_s():

FUNCTI ON search_s

(

Id IN SESSION,

base IN VARCHAR2,

scope IN PLS_I NTEGER,
filter |IN VARCHARZ,

attrs IN STRI NG COLLECTI ON,
attronly IN PLS_| NTEGER

res QUT MESSACGE

)
RETURN PLS_| NTEGER,

The function takes the arguments listed and described in Table 2-9 on page 2-16.

Table 2-9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument Description

Id A valid session handle

The DN of the base entry in the LDAP server where search should start

base

scope The breadth and depth of the DIT that needs to be searched
filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An OUT parameter that returns the result set for further processing

sear ch_s works with several supporting functions to refine the search. The steps that
follow show how all of these PL/SQL functions fit into the program flow of a search
operation.

1. Decide what attributes need to be returned; then place them into the DBVS_
LDAP. STRI NG_COLLECTI ON data-type.

2-16 Oracle Identity Management Application Developer’s Guide

Terminating the Session

2. Perform the search, using either DBM5_LDAP. sear ch_s() or DBVS_
LDAP. sear ch_st () . Refine your search with scope options and filters.

3. Obtain an entry from the result set, using eitherDBMS_LDAP. first_entry() or
DBMS_LDAP. next _entry().

4. Obtain an attribute from the entry obtained in step 3. Use either DBMS
LDAP.first _attribute() or DBMS LDAP. next _attri bute() for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use either DBMS_LDAP. get _val ues() or DBMS_LDAP. get _
val ues_| en() for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Terminating the Session
This section contains these topics:
« Terminating the Session by Using the C API
« Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API

Once an LDAP session handle is obtained and all directory-related work is complete,
the LDAP session must be destroyed. In the C API, the | dap_unbi nd_s() function is
used for this purpose.

| dap_unbi nd_s() has this syntax:

int |dap_unbind_s

(
LDAP* | d

)i

A successful call to | dap_unbi nd_s() closes the TCP/IP connection to the directory.
It de-allocates system resources consumed by the LDAP session. Finally it returns the
integer LDAP_SUCCESS to its callers. Once | dap_unbi nd_s() is invoked, no other
LDAP operations are possible. A new session must be started with | dap_init ().

Terminating the Session by Using DBMS_LDAP

The DBM5_LDAP. unbi nd_s() function destroys an LDAP session if the PL/SQL API
is used. unbi nd_s has the following syntax:

FUNCTI ON unbind_s (Id IN SESSION) RETURN PLS_| NTEGER;
unbi nd_s closes the TCP/IP connection to the directory. It de-allocates system
resources consumed by the LDAP session. Finally it returns the integer DBMS_

LDAP. SUCCESS to its callers. Once the unbi nd_s is invoked, no other LDAP
operations are possible. A new session must be initiated with the i ni t function.

Developing Applications with Standard LDAP APIs 2-17

Terminating the Session

2-18 Oracle Identity Management Application Developer’s Guide

3

Developing Applications with Oracle
Extensions to the Standard APIs

This chapter introduces the Oracle extensions to the Java and PL/SQL LDAP APIs.
Chapter 4 explains how the Java extensions are used. Chapter 5 is about the PL/SQL
extensions. Oracle does not support extensions to the C API.

This chapter contains these topics:

« Sample Code

« Using Oracle Extensions to the Standard APIs

« Creating an Application Identity in the Directory
« Managing Users

« Managing Groups

» Managing Realms

« Discovering a Directory Server

« SASL Authentication

« Proxying on Behalf of End Users

« Creating Dynamic Password Verifiers

Sample Code
Sample code is available at this URL:

http://ww. oracl e. conf t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

Using Oracle Extensions to the Standard APIs
The APIs that Oracle has added to the existing APIs fulfill these functions:
« User management
Applications can set or retrieve various user properties
« Group management
Applications can query group properties

« Realm management

Developing Applications with Oracle Extensions to the Standard APIs 3-1

Creating an Application Identity in the Directory

Applications can set or retrieve properties about identity management realms
« Server discovery management

Applications can locate a directory server in the Domain Name System (DNS)
« SASL management

Applications can authenticate to the directory using SASL Digest-MD5

Subsequent sections examine each of these functions in detail. Note that applications
must use the underlying APIs for such common tasks as establishing and closing
connections and looking up directory entries not searchable with the API extensions.

Figure 3-1 shows what program flow looks like when the API extensions are used.

Figure 3-1 Programmatic Flow for APl Extensions

Established Connection
to Oracle Internet
Directory

v

Use Regular p=———p| Use Oracle
API FUNCHONS | g EXtension API

v

Close Oracle Internet
Directory Connection

Connected State

As Figure 3-1 shows, an application first establishes a connection to Oracle Internet
Directory. It can then use the standard API functions and the API extensions
interchangeably.

Creating an Application Identity in the Directory

Before an application can use the LDAP APIs and their extensions, it must establish an
LDAP connection. Once it establishes a connection, it must have permission to
perform operations. But neither task can be completed if the application lacks an
identity in the directory.

Creating an Application Identity

Creating an application identity in the directory is relatively simple. Such an entry
requires only two object classes: or cl Appl i cati onEntity andt op. You can use
either Oracle Directory Manager or an LDIF file to create the entry. In LDIF notation,
the entry looks like this:

dn: orclapplicationcommnname=appl i cati on_nane
changet ype: add

obj ect cl ass: top

obj ectclass: orcl ApplicationEntity

user password: password

The value provided for user passwor d is the value that the application uses to bind
to the directory.

3-2 Oracle Identity Management Application Developer’s Guide

Managing Realms

Assigning Privileges to an Application Identity

To learn about the privileges available to an application, see the chapter about
delegating privileges for an Oracle technology deployment in Oracle Internet Directory
Administrator’s Guide. After identifying the right set of privileges, add the application
entity DN to the appropriate directory groups. The link just provided explains how to
perform this task using either Oracle Directory Manager or the | dapnodi f y
command.

Managing Users
This section describes user management features of the LDAP APIs.
Directory-enabled applications need to perform the following operations:
« Retrieve properties of user entries

These properties are stored as attributes of the user entry itself—in the same way,
for example, that a surname or a home address is stored.

« Retrieve extended user preferences

These preferences apply to a user but are stored in a DIT different from the DIT
containing user entries. Extended user preferences are either user properties
common to all applications or user properties specific to an application. Those of
the first type are stored in a common location in the Oracle Context. Those of the
second type are stored in the application-specific DIT.

« Query the group membership of a user
« Authenticate a user given a simple name and credential

Typically an application uses a fully qualified DN, GUID, or simple user name to
identify a user. In a hosted environment, the application may use both a user name
and a realm name for identification.

Managing Groups

Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications must access Oracle Internet Directory to obtain
the properties of a group and to verify that a given user is a member of that group.

A group is typically identified by one of the following:
« Afully qualified LDAP distinguished name
« Agglobal unigque identifier

« Asimple group name along with a subscriber name

Managing Realms

An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications must
access Oracle Internet Directory to obtain realm properties such as user search base or
password policy.

A realm is typically identified by one of the following:
« A fully qualified LDAP distinguished name

« A global unique identifier

Developing Applications with Oracle Extensions to the Standard APIls 3-3

Discovering a Directory Server

« Asimple enterprise name

Discovering a Directory Server

Directory server discovery (DSD) enables automatic discovery of the Oracle directory
server by directory clients. It enables deployments to manage the directory host name
and port number information in the central DNS server. All directory clients perform a
DNS query at runtime and connect to the directory server. Directory server location
information is stored in a DNS service location record (SRV).

An SRV contains:
« The DNS name of the server providing LDAP service
« The port number of the corresponding port

« Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
| dap. or a file itself.

This section contains these topics:

« Benefits of Oracle Internet Directory Discovery Interfaces
« Usage Model for Discovery Interfaces

« Determining Server Name and Port Number From DNS
« Environment Variables for DNS Server Discovery

« Programming Interfaces for DNS Server Discovery

See Also:

« "Discovering LDAP Services with DNS" by Michael P. Armijo at
this URL:

http://wwietf.org/

« "A DNS RR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at the same URL.

Benefits of Oracle Internet Directory Discovery Interfaces

Typically, the LDAP host name and port information is provided statically in a file
called | dap. or a which is located on the client in $ORACLE_HOVE/ net wor k/ adni n.
For large deployments with many clients, this information becomes very cumbersome
to manage. For example, each time the host name or port number of a directory server
is changed, the | dap. or a file on each client must be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the | dap. or a file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without regard
to the mechanism or standard used to obtain it. Currently, Oracle directory server
information can be obtained either from DNS or from | dap. or a using a single
interface.

3-4 Oracle Identity Management Application Developer’s Guide

Discovering a Directory Server

Usage Model for Discovery Interfaces

The first step in discovering host name information is to create a discovery handle. A
discovery handle specifies the source from which host name information will be
discovered. In case of the Java API, the discovery handle is created by creating an
instance of the oracl e. | dap. uti | . di scovery. Di scover yHel per class.

Di scover yHel per disco = new Di scoveryHel per (Di scoveryHel per. DNS_DI SCOVER) ;
The argument Di scover yHel per. DNS_DI SCOVER specifies the source. In this case
the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In the case of DNS these inputs are:

« domain name
« discover method
« SSL mode

Detailed explanation of these options is given in "Determining Server Name and Port
Number From DNS".

/] Set the property for the DNS_DN
di sco. set Property(Di scoveryHel per. DNS_DN, "dc=us, dc=fiction, dc=com');
Il Set the property for the DNS_DI SCOVER_METHCOD
di sco. set Property(Di scoveryHel per. DNS_DI SCOVER_METHCD
, Di scover yHel per . USE_| NPUT_DN_METHOD) ;
/] Set the property for the SSLMODE
di sco. set Property(Di scoveryHel per. SSLMODE, "0");

Now the information can be discovered.

/1 Call the discover method
di sco. di scover (reshdl);

The discovered information is returned in a result handle (r eshdl). Now the results
can be extracted from the result handle.

ArraylList result =
(ArraylList)reshdl . get (Di scoveryHel per. Dl R_SERVERS);

if (result !'=null)
{
if (result.size() ==0) return;
Systemout . println("The hostnames are :-");
for (int i =0; i<result.size();i++)
{

String host = (String)result.get(i);
Systemout. println((i+1)+".""+host+""");

Determining Server Name and Port Number From DNS

Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there is
more than one SRV resource record, they are sorted by weight and priority. The SRV
resource records contain host names and port numbers required for connection. This
information is retrieved from the resourcerecords and returned to the user.

There are three approaches for determining the domain name required for lookup:

Developing Applications with Oracle Extensions to the Standard APIs 3-5

Discovering a Directory Server

« Mapping the distinguished name (DN) of the naming context
« Using the domain component of local machine
« Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context

The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

« It consists of a single attribute type and value
« The attribute type is dc
« The attribute value is non-null

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot be
converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe, ou=account i ng, dc=exanpl e, dc=net, the client
converts the dc components into the DNS name exanpl e. net .

Search by Domain Component of Local Machine

Sometimes a DN cannot be mapped to a domain name. For example, the DN

0=0Or acl e | DC, Bangal or e cannot be mapped to a domain name. In this case, the
second approach uses the domain component of the local machine on which the client
is running. For example, if the client machine domain name is nc1. acne. com the
domain name for the lookup is acrre. com

Search by Default SRV Record in DNS

The third approach looks for a default SRV record in the DNS. This record points to the
default server in the deployment. The domain component for this default record is _
defaul t.

Once the domain name has been determined, it is used to send a query to DNS. The
DN is queried for SRV records specified in Oracle Internet Directory-specific format.
For example, if the domain name obtained is exanpl e. net , the query for non-SSL
LDAP servers is for SRV resource records having the owner name _I| dap. _tcp. _
oi d. exanpl e. net .

It is possible that no SRV resource records are returned from the DNS. In such a case
the DNS lookup is performed for the SRV resource records specified in standard
format. For example, the owner name would be _| dap. _t cp. exanpl e. net .

See Also: The chapter about directory administration in Oracle
Internet Directory Administrator’s Guide

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the user.

3-6 Oracle Identity Management Application Developer’s Guide

SASL Authentication

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful. Try
the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the approaches
are tried again, but this time DNS is queried for SRV records in
standard format.

Environment Variables for DNS Server Discovery

The following environment variables override default behavior for discovering a DNS
server.

Table 3-1 Environment Variables for DNS Discovery

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is obtained
from the host machine.

ORA_LDAP_DNSPCORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOVAI N Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

Programming Interfaces for DNS Server Discovery

The programming interface provided is a single interface to discover directory server
information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used to
discover host name information from the DNS.

See Also: For detailed reference information and class descriptions,
refer to the Javadoc located on the product CD.

SASL Authentication

Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

« SASL Authentication by Using the DIGEST-MD5 Mechanism
« SASL Authentication by Using External Mechanism

SASL Authentication by Using the DIGEST-MD5 Mechanism

SASL Digest-MD5 authentication is the required authentication mechanism for LDAP
Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD5.

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering Task
Force. It is based on the HTTP Digest Authentication (RFC 2617).

See Also: Internet Engineering Task Force Web site, at
http://ww. ietf.org

Developing Applications with Oracle Extensions to the Standard APIs 3-7

Proxying on Behalf of End Users

This section contains these topics:

« Steps Involved in SASL Authentication by Using DIGEST-MD5
« JAVA APIs for SASL Authentication by Using DIGEST-MD5

« C APIs for SASL authentication using DIGEST-MD5

« SASL Authentication by Using External Mechanism

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options that it
supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client's response.

To use the Digest-MD?5 authentication mechanism, you can use either the Java API or
the C API to set up the authentication.

SASL Authentication by Using External Mechanism

The following is from section 7.4 of RFC 2222 of the Internet Engineering Task Force.

The mechanism name associated with external authentication is "EXTERNAL". The
client sends an initial response with the authorization identity. The server uses
information, external to SASL, to determine whether the client is authorized to
authenticate as the authorization identity. If the client is so authorized, the server
indicates successful completion of the authentication exchange; otherwise the server
indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus requesting the
authorization identity be derived from the client's authentication credentials), the
authorization identity is to be derived from authentication credentials that exist in the
system which is providing the external authentication.

Oracle Internet Directory provides the SASL external mechanism over an SSL mutual
connection. The authorization identity (DN) is derived from the client certificate
during the SSL network negotiation.

Proxying on Behalf of End Users

Often applications must perform operations that require impersonating an end user.
An application may, for example, want to retrieve resource access descriptors for an
end user. (Resource access descriptors are discussed in the concepts chapter of Oracle
Internet Directory Administrator’s Guide.)

A proxy switch occurs at run time on the JNDI context. An LDAP v3 feature, proxying
can only be performed using | ni ti al LdapCont ext, a subclass of

I nitial Di rContext.Ifyou use the Oracle extension
oracle.ldap.util.jndi.ConnectionUtil toestablish a connection (the
example following), | ni ti al LdapCont ext is always returned. If you use JNDI to
establish the connection, make sure that it returns | ni ti al LdapCont ext .

3-8 Oracle Identity Management Application Developer’s Guide

Proxying on Behalf of End Users

To perform the proxy switch to an end user, the user DN must be available. To learn
how to obtain the DN, see the sample implementation of the
oracle.ldap.util. User class at this URL:

http://ww. oracl e. conf t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

This code shows how the proxy switch occurs:

inport oracle.ldap.util.jndi.*;
i nport javax.nam ng.directory.*;
inport javax.nam ng.|dap.*;

i nport javax.nam ng.*;

public static void main(String args[])

{
try{

Initial LdapContext appCtx=ConnectionUtil.getDefaultDirCx(args[0], // host
args[1], /I port
args[2], // DN
args[3]; /I pass)

/] Do work as application
...
String user DN=nul | ;
/] assum ng userDN has the end user DN val ue
/1 Now switch to end user
ct x. addToEnvi r onnent (Cont ext . SECURI TY_PRI NCl PAL, userDN);
ctx. addToEnvi ronnent (" ava. nani ng. security.credential s", "");
Control ctls[] ={
new ProxyControl ()
¥
((LdapCont ext)ctx).reconnect(ctls);
/1 Do work on behal f of end user
1.
}
cat ch(Nami ngException ne)
{
/'l javax.nam ng. Nam ngException is thrown when an error occurs
}
}

The Pr oxyCont r ol class in the code immediately preceding implements a

j avax. nam ng. | dap. Cont r ol . To learn more about LDAP controls, see the LDAP
control section of Oracle Identity Management User Reference. Here is an example of
what the Pr oxyCont r ol class might look like:

i nport javax.nam ng.*;
i nport javax. nam ng. | dap. Control ;
inport java.lang.*;

public class ProxyControl inplements Control {

public byte[] getEncodedVal ue() {
return null;

}

public String getlD() {
return "2.16.840.1.113894.1.8.1";

}

Developing Applications with Oracle Extensions to the Standard APIs 3-9

Creating Dynamic Password Verifiers

public boolean isCritical () {
return fal se;

}
}

Creating Dynamic Password Verifiers

You can modify the LDAP authentication APIs to generate application passwords
dynamically—that is, when users log in to an application. This feature has been
designed to meet the needs of applications that provide parameters for password
verifiers only at runtime.

This section contains the following topics:

« Request Control for Dynamic Password Verifiers

« Syntax for DynamicVerifierRequestControl

« Parameters Required by the Hashing Algorithms
« Configuring the Authentication APIs

« Response Control for Dynamic Password Verifiers

« Obtaining Privileges for the Dynamic Verifier Framework

Request Control for Dynamic Password Verifiers

Creating a password verifier dynamically involves modifying the LDAP
authentication APIs| dap_sear ch or| dap_nodi f y to include parameters for
password verifiers. An LDAP control called Dynami cVeri fi er Request Control is
the mechanism for transmitting these parameters. It takes the place of the password
verifier profile used to create password verifiers statically. Nevertheless, dynamic
verifiers, like static verifiers, require that the directory attributes or cl r evpwd
(synchronized case) and or cl unsyncr evpwd (unsynchronized case) be present and
that these attributes be populated.

Note that the or cl pwdencr ypt i onenabl e attribute of the password policy entry in
the user's realm must be set to 1 if or cl r evpwd is to be generated. If you fail to set
this attribute, an exception is thrown when the user tries to authenticate. To generate
or cl unsyncr evpwd, you must add the crypto type 3DES to the entry

cn=def aul t Shar edPI NPr of i | eEnt ry, cn=common, cn=pr oduct s, cn=or acl ec
ont ext .

Syntax for DynamicVerifierRequestControl
The request control looks like this;

Dynani cVeri fi er Request Cont r ol

control O d: 2.16.840.1.113894.1.8. 14

criticality: FALSE

control Val ue: an OCTET STRI NG whose val ue is the BER encoding of the follow ng
type:

Control Val ue ::= SEQUENCE {

version [0]

crypto [1] CHO CE OPTI ONAL {
SASL/MD5 [0] LDAPString,
SyncM.1.0 [1] LDAPString,

3-10 Oracle Identity Management Application Developer’s Guide

Creating Dynamic Password Verifiers

SyncM.1.1 [2] LDAPString,
CRAMMD5 [3] LDAPString },
usernane [1] OPTIONAL LDAPStri ng,
real m [2] OPTIONAL LDAPStri ng,
nonce [3] OPTIONAL LDAPStri ng,

}

Note that the parameters in the control structure must be passed in the order in which
they appear. Table 3-2 defines these parameters.

Table 3-2 Parameters in DynamicVerifierRequestControl

Parameter

Description

controlO D
crypto

user name

realm

nonce

The string that uniquely identifies the control structure.

The hashing algorithm. Choose one of the four identified in the
control structure.

The distinguished name (DN) of the user. This value must
always be included.

A randomly chosen realm. It may be the identity management
realm that the user belongs to. It may even be an application
realm. Required only by the SASL/MD?5 algorithm.

An arbitrary, randomly chosen value. Required by SYNCML1.0
and SYNCML1.1.

Parameters Required by the Hashing Algorithms

Table 3-3 lists the four hashing algorithms that are used to create dynamic password
verifiers. The table also lists the parameters that each algorithm uses as building
blocks. Note that, although all algorithms use the user name and password
parameters, they differ in their use of the r eal mand nonce parameters.

Table 3-3 Parameters Required by the Hashing Algorithms

Algorithm

Parameters Required

SASL/MD5

SYNCML1.0
SYNCML1.1
CRAM-MD5

user nane, r eal m password
user nane, passwor d, nonce
user nane, passwor d, nonce

user nane, passwor d

Configuring the Authentication APIs

Applications that require password verifiers to be generated dynamically must include
Dynam cVeri fi er Request Cont r ol in their authentication APIs. Either | dap_
sear ch or| dap_conpar e must incorporate the cont r ol O Dand the control values
as parameters. They must BER-encode the control values as shown in "Syntax for
DynamicVerifierRequestControl"; then they must send both cont r ol O Dand the
control values to the directory server.

Parameters Passed If [dap_search Is Used

If you want the application to authenticate the user, use | dap_sear ch to pass the
control structure. If | dap_sear ch is used, the directory passes the password verifier
that it creates to the client.

Developing Applications with Oracle Extensions to the Standard APIs 3-11

Creating Dynamic Password Verifiers

| dap_sear ch must include the DN of the user, the cont r ol O D, and the control
values. If the user's password is a single sign-on password, the attribute passed is
aut hpasswor d. If the password is a numeric pin or another type of unsynchronized
password, the attribute passed is or cl passwor dveri fi er; orcl cormonpi n.

Parameters Passed If [dap_compare Is Used

If you want Oracle Internet Directory to authenticate the user, use | dap_conpar e to
pass the control structure. In this case, the directory retains the verifier and
authenticates the user itself.

Like | dap_search, | dap_conpar e must include the DN of the user, the

cont r ol A D, the control values, and the user's password attribute. For | dap_
compar e, the password attribute is or cl passwor dveri fi er; orcl cormonpi n
(unsynchronized case).

Response Control for Dynamic Password Verifiers

When it encounters an error, the directory sends the LDAP control

Dynami cVeri fi er ResponseContr ol to the client. This response control contains
the error code. To learn about the error codes that the response control sends, see the
troubleshooting chapter in Oracle Internet Directory Administrator’s Guide.

Obtaining Privileges for the Dynamic Verifier Framework

If you want the directory to create password verifiers dynamically, you must add your
application identity to the VerifierServices group of directory administrators. If you
fail to perform this task, the directory returns an LDAP_I NSUFFI Cl ENT_ACCESS
error.

3-12 Oracle Identity Management Application Developer’s Guide

A

Using the Java API Extensions to JNDI

This chapter explains how to use Java extensions to the standard directory APIs to
perform many of the operations introduced in Chapter 3. The chapter presents use
cases. The Oracle extensions to the standard APIs are documented in full in Oracle
Internet Directory APl Reference.

The chapter contains the following topics:

Sample Code

Sample Code

Installing the Java Extensions

Using the oracle.java.util Package to Model LDAP Objects
The Classes PropertySetCollection, PropertySet, and Property
Managing Users

Authenticating Users

Creating Users

Retrieving User Objects

Retrieving Objects from Realms

Discovering a Directory Server

Examples: Java API for Discovering a Directory Server

Using DIGEST-MDS5 to Perform SASL Authentication

Sample code is available at this URL.:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

Installing the Java Extensions

The Java extensions are installed along with the standard Java APIs when the LDAP
client is installed. The APIs and their extensions are found at $ORACLE
HOVE/ j Ii b/ | dapj cl nt 10.j ar.

Using the Java API Extensions to JNDI 4-1

Using the oracle.java.util Package to Model LDAP Objects

Using the oracle.java.util Package to Model LDAP Objects

In Java, LDAP entities—users, groups, realms, and applications—are modeled as Java
objects instead of as handles. This modeling is done in the or acl e. j ava. uti |
package. All other utility functionality is modeled either as individual objects—as, for
example, GUI D—or as static member functions of a utility class.

For example, to authenticate a user, an application must follow these steps:
1. Createoracl e. |l dap. util . user object, given the user DN.

2. Create aDi r Cont ext JNDI object with all of the required properties, or get one
from a pool of Di r Cont ext objects.

3. Invoke the User.authenticate function, passing in a reference to the Di r Cont ext
object and the user credentials.

4. Ifthe D r Cont ext object was retrieved from a pool of existing Di r Cont ext
objects, return it to that pool.

Unlike their C and PL/SQL counterparts, Java programmers do not have to explicitly
free objects. The Java garbage collection mechanism performs this task.

The Classes PropertySetCollection, PropertySet, and Property

Many of the methods in the user, subscriber, and group classes return a
PropertySet Col | ecti on object. The object represents a collection of one or more
LDAP entries. Each of these entries is represented by a Pr oper t ySet object,
identified by a DN. A property set can contain attributes, each represented as a
property. A property is a collection of one or more values for the particular attribute it
represents. An example of the use of these classes follows:

PropertySet Col I ection psc = Wil.get G oupMenbership(ctx,
myuser,
nul I,
true);
/1 for loop to go through each PropertySet
for (int i =0; i < psc.size(); i++) {

PropertySet ps = psc.getPropertySet(i);

[l Print the DN of each PropertySet
Systemout.printin("dn: " + ps .getDN());

Il CGet the values for the "objectclass" Property
Property objectclass = ps.getProperty("objectclass");

/1 for loop to go through each value of Property "objectclass"
for (int j =0; j< objectclass.size(); j++) {

[l Print each "objectclass" val ue
Systemout. println("objectclass: " + objectclass.getValue(j));

}
}

The entity nyuser is a user object. The psc object contains all the nested groups that
myuser belongs to. The code loops through the resulting entries and prints out all the
object class values of each entry.

4-2 Oracle Identity Management Application Developer’'s Guide

Authenticating Users

Managing Users

All user-related functionality is abstracted in a Java class called
oracl e.l dap. util. User. The process works like this:

1. Constructaoracle. |l dap.util.User object based ona DN, GUID, or simple
name.

2. Invoke User . aut henti cat e(Di r Cont ext, Credenti al s) toauthenticate
the user if necessary.

3. Invoke User. get Properti es(Di r Cont ext) to get the attributes of the user
entry.

4. Invoke User. get Ext endedPr operti es(Dir Context, PropCategory,
PropType) to get the extended properties of the user. Pr opCat egor y is either
shared or application-specific. Pr opType is the object that represents the type of
property desired. If Pr opType is null, all properties in a given category are
retrieved.

5. Invoke PropertyType. get Defi niti on(DirCont ext) to get the metadata
required to parse the properties returned in step 4.

6. Parse the extended properties and continue with application-specific logic. This
parsing is also performed by application-specific logic.

Authenticating Users

User authentication is a common LDAP operation that compares the credentials that a
user provides at login with the user's credentials in the directory. Oracle Internet
Directory supports the following:

« Arbitrary attributes can be used during authentication

« Appropriate password policy exceptions are returned by the authentication
method. Note, however, that the password policy applies only to the
user passwor d attribute.

The following code fragment shows how the API is used to authenticate a user:

Il User userl - is a valid User (bject
try
{

user1. aut henti cat eUser (ctx,
User . CREDTYPE_PASSWD, "wel cone");

Il or
/] userl.authenticateUser(ctx, <any
attribute> <attribute value>);

}
catch (Uil Exception ue)
{
/1 Handl e the password policy error
accordingly
if (ue instanceof PasswordExpiredException)
/1 do somet hing
else if (ue instanceof G acelLogi nException)
/1 do sonething
}

Using the Java API Extensions to JNDI 4-3

Creating Users

Creating Users

The subscriber class uses the cr eat eUser () method to programmatically create
users. The object classes required by a user entry are configurable through Oracle
Delegated Administration Services. The cr eat eUser () method assumes that the
client understands the requirement and supplies the values for the mandatory
attributes during user creation. If the programmer does not supply the required
information the server will return an error.

The following snippet of sample code demonstrates the usage.

/1 Subscriber sub is a valid Subscriber object
/I DirContext ctx is a valid DirContext

/] Create ModPropertySet object to define all the attributes and their val ues.
ModPropertySet nps = new MbdPropertySet();

nps. addPropert y(LDl F. ATTRI BUTE_CHANGE_TYPE_ADD, "cn", "Anika");

nps. addPr opert y(LDl F. ATTRI BUTE_CHANGE_TYPE_ADD, "sn", "Anika");

mps. addPr operty(LDI F. ATTRI BUTE_CHANGE_TYPE_ADD, "nai | ",

" Ani ka@r acl e. cont') ;

Il Create user by specifying the nickname and the MbdPropertySet just defined
User newUser = sub.createUser(ctx, nps);

[l Print the newy created user DN
Systemout. println(newdser.getDN(ctx));

/] Performother operations with this new user

Retrieving User Objects

The subscriber class offers the get User () method to replace the public constructors
of the User class. A user object is returned based on the specified information.

The following is a piece of sample code demonstrating the usage:

/1 DirContext ctx is contains a valid directory connection with
sufficient privilege to performthe operations

/1 Creating RootOracl eContext object
Root Or acl eContext roc = new Root O acl eCont ext (ctx);

/] Obtain a Subscriber object representing the default
subscri ber

Subscriber sub = roc. get Subscri ber(ctx,

Util. I DTYPE_DEFAULT, null, null);

/1 Obtain a User object representing the user whose

ni cknane is "Anika"

User userl = sub.getUser(ctx, Util.IDTYPE_SIMPLE, "Anika",
null);

// Do work with this user

The getUser() method can retrieve users based on DN, GUD
and sinple nane. A getUsers() nethod is also available to
performa filtered search to return nore than one user at a
time. The returned object is an array of User objects.

For exanpl e,

/] Qbtain an array of User object where the user's nicknanme
starts with "Ani"

4-4 Oracle Identity Management Application Developer’'s Guide

Discovering a Directory Server

User[] userArr = sub.getUsers(ctx, Util.IDTYPE_SI MPLE,
“Ani", null);
/1 Do work with the User array

Retrieving Objects from Realms

This section describes how the Java API can be used to retrieve objects in identity
management realms.

The Root Or acl eCont ext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the root
Oracle Context. The Root Or acl eCont ext class offers the get Subscri ber ()
method. It replaces the public constructors of the subscriber class and returns an
identity management realm object based on the specified information.

The following is a piece of sample code demonstrating the usage:

/1 DirContext ctx contains a valid directory
/] connection with sufficient privilege to performthe
/'l operations

/1 Creating RootOracl eContext object
Root Oracl eContext roc = new Root O acl eCont ext (ctx);

/] Obtain a Subscriber object representing the
/1 Subscriber with sinmple name "Oracle”
Subscriber sub = roc. get Subscri ber(ctx,
Uil.IDTYPE_SI MPLE, "Oracle", null);

/1 Do work with the Subscriber object

Discovering a Directory Server
A new Java class, the public class, has been introduced:

public class oracle.ldap.util.discovery.DiscoveryHel per

This class provides a method for discovering specific information from the specified
source.

Table 4-1 Methods for Directory Server Discovery

Method Description

di scover Discovers the specific information from a given source
set Property Sets the properties required for discovery

get Property Accesses the value of properties

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionlUtil:

« getDefaul t Di r & x: This overloaded function determines the host name and
port information of non-SSL Idap servers by making an internal call to
oracle.ldap.util.discovery. D scoveryHel per. di scover ().

« get SSLDi r Ct x: This overloaded function determines the host name and port
information of SSL Idap servers by making an internal call to
oracle.ldap.util.discovery. D scoveryHel per. di scover ().

Using the Java API Extensions to JNDI 4-5

Examples: Java API for Discovering a Directory Server

Examples: Java API for Discovering a Directory Server
The following is a sample Java program for directory server discovery:

inport java.util.*;

inport java.lang.*;

inport oracle.ldap.util.discovery.*;
inport oracle.ldap.util.jndi.*;

public class dsdtest
{
public static void main(String s[]) throws Exception
{
HashMap reshdl = new HashMap();
String result = new String();
(oj ect resultOoj = new (oject();
Di scoveryHel per disco = new
Di scover yHel per (Di scover yHel per. DNS_DI SCOVER) ;

/] Set the property for the DNS_DN
di sco. set Property(Di scoveryHel per. DNS_DN, "dc=us, dc=fi ction, dc=coni')

Il Set the property for the DNS_DI SCOVER_METHCOD
di sco. set Property(Di scoveryHel per. DNS_DI SCOVER_METHOD,
Di scover yHel per. USE_| NPUT_DN_METHOD) ;

/] Set the property for the SSLMODE
di sco. set Property(Di scoveryHel per. SSLMODE, "0");

/1 Call the discover nethod
int res=disco.discover(reshdl);
if (res!=0)
Systemout.printin("Error Code returned by the discover method is :"+res) ;

/1 Print the results
printReshdl (reshdl);

}
public static void printReshdl (HashMap reshdl)
{
ArrayList result = (ArrayList)reshdl . get(Di scoveryHel per. D R_SERVERS);
if (result !'= null)
{
if (result.size() == 0) return;
Systemout. println("The hostnanmes are :-");
for (int i =0; i<result.size();i++)
{
String host = (String)result.get(i);
Systemout. println((i+1)+".
"+host+""'");
}
}
}
}

4-6 Oracle Identity Management Application Developer’'s Guide

Using DIGEST-MD5 to Perform SASL Authentication

Using DIGEST-MD?5 to Perform SASL Authentication

When using JNDI to create a SASL connection, you must set these
j avax. nam ng. Cont ext properties:

« Context.SECURI TY_AUTHENTI CATI ON = " DI GEST- MD5"
« Context.SECURI TY_PRI NCl PAL

The latter sets the principal name. This name is a server-specific format. It can be either
of the following:

« The DN—that is, dn: —followed by the fully qualified DN of the entity being
authenticated

« Thestringu: followed by the user identifier.

The Oracle directory server accepts just a fully qualified DN such as
cn=user, ou=ny departnent, o=ny conpany.

Note: The SASL DN must be normalized before it is passed to the
API that calls the SASL bind. To generate SASL verifiers, Oracle
Internet Directory supports only normalized DNs.

Using the Java API Extensions to JNDI 4-7

Using DIGEST-MD5 to Perform SASL Authentication

4-8 Oracle Identity Management Application Developer’'s Guide

5

Using the API Extensions in PL/SQL

This chapter explains how to use PL/SQL extensions to the standard directory APIs to
manage and authenticate users. Note that the Oracle extensions do not include
PL/SQL APIs that create users. The Oracle extensions to the standard APIs are
documented in full in Chapter 14.

This chapter contains these topics:

« Sample Code

« Installing the PL/SQL Extensions

« Using Handles to Access Directory Data
« Managing Users

« Authenticating Users

« Dependencies and Limitations of the PL/SQL LDAP API

Sample Code
Sample code is available at this URL:
http://ww. oracl e. com t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

Installing the PL/SQL Extensions

The PL/SQL extensions are installed with the DBVMS_LDAP package when the Oracle
database is installed. You must run the script $ORACLE
HOVE/ r dbns/ admi n/ cat | dap. sql .

Using Handles to Access Directory Data

Most of the extensions described in this chapter are helper functions. They access data
about specific LDAP entities such as users, groups, realms, and applications. In many
cases, these functions must pass a reference to one of these entities to the standard API
functions. To do this, the API extensions use opaque data structures called handles.
The steps that follow show an extension creating a user handle:

1. Establish an LDAP connection or get one from a pool of connections.

2. Create a user handle from user input. This could be a DN, a GUID, or a single
sign-on user ID.

Using the API Extensions in PL/SQL 5-1

Managing Users

Authenticate the user with the LDAP connection handle, user handle, or
credentials.

Free the user handle.

Close the LDAP connection, or return the connection back to the connection pool.

Managing Users

The steps that follow show how the DBMS_LDAP_UTL package is used to create and
use a handle that retrieves user properties from the directory.

1.

Invoke DBMS_LDAP_UTL. creat e_user _handl e(user _hd, user _type,
user _i d) to create a user handle from user input. The input can be a DN, a
GUID, or a single sign-on user ID.

Invoke DBMS _LDAP_UTL. set _user handl e_properties(user _hd,
property type, property) toassociate a realm with the user handle.

Invoke DBMS _LDAP_UTL. get _user properties(ld, user_handl e,
attrs, ptype, ret_pset coll) to place the attributes of a user entry into a
result handle.

Invoke DBMS_LDAP_UTL. get _property _nanes(pset, property_nanes)
and DBMS_LDAP_UTL. get _property_val ues(pset, property_ nane,
property_val ues) to extract user attributes from the result handle that you
obtained in step 3.

Authenticating Users

Use DBMS_LDAP_UTL. aut henti cat e_user (sessi on, user_handl e, auth_
type, cred, binary_cred) toauthenticate a user to the directory. This function
compares the password provided by the user with the password attribute in the user's
directory entry.

Dependencies and Limitations of the PL/SQL LDAP API

The PL/SQL LDAP API for this release has the following limitations:

The LDAP session handles obtained from the API are valid only for the duration
of the database session. The LDAP session handles cannot be written to a table and
reused in other database sessions.

Only synchronous versions of LDAP API functions are supported in this release.

The PL/SQL LDAP API requires a database connection to work. It cannot be used
in client-side PL/SQL engines (like Oracle Forms) without a valid database
connection.

5-2 Oracle Identity Management Application Developer’s Guide

6

Developing Provisioning-Integrated
Applications

As of 10g Release 2 (10.1.2), new APIs are available for developing
provisioning-integrated applications. Please refer to:

« The Oracle Provisioning Service Concepts chapter in Oracle Identity Management
Integration Guide

« The Deploying Provisioning-Integrated Applications chapter in Oracle Identity
Management Integration Guide

Developing Provisioning-Integrated Applications 6-1

6-2 Oracle Identity Management Application Developer’s Guide

v

Developing Directory Plug-ins

This chapter explains how to use the plug-in framework for Oracle Internet Directory
to extend LDAP operations.

This chapter contains these topics:

Plug-in Prerequisites

Plug-in Benefits

What Is the Plug-in Framework?

Operation-Based Plug-ins Supported by the Directory
Designing, Creating, and Using Plug-ins

Examples of Plug-ins

Binary Support in the Plug-in Framework

Database Object Types Defined

Specifications for Plug-in Procedures

Plug-in Prerequisites

To develop Oracle Internet Directory plug-ins, you should be familiar with the
following:

Generic LDAP concepts

Oracle Internet Directory

Oracle Internet Directory integration with Oracle Application Server
SQL, PL/SQL, and database RPCs

Plug-in Benefits

To extend the capabilities of the Oracle Internet Directory server, you can write your
own server plug-in. A server plug-in is a PL/SQL package, shared object or library, or
a dynamic link library on Windows that contains your own functions. Oracle supports
only PL/SQL plug-ins.

You can extend LDAP operations in the following ways:

You can validate data before the server performs an LDAP operation on the data

You can perform actions (that you define) after the server successfully completes
an LDAP operation

Developing Directory Plug-ins 7-1

What Is the Plug-in Framework?

« You can define extended operations
« You can be authenticated through external credential stores
« You can replace an existing server module by defining your own server module

For the last one, you may, for example, implement your own password value checking
and place it into the Oracle Internet Directory server.

On startup, the directory server loads your plug-in configuration and library. It calls
your plug-in functions while processing various LDAP requests.

See Also: The chapter about the password policy plug-in in Oracle
Internet Directory Administrator’s Guide. The chapter contains an
example of how to implement your own password value checking
and place it into the Oracle Internet Directory server.

What Is the Plug-in Framework?

The plug-in framework is the environment in which the plug-in user can develop,
configure, and apply the plug-ins. Each individual plug-in instance is called a plug-in
module.

The plug-in framework includes the following:

« Plug-in configuration tools

« Plug-in module interface

« Plug-in LDAP API (ODS. LDAP_PLUGQ N package)
Follow these steps to use the server plug-in framework:

1. Write a user-defined plug-in procedure. This plug-in module must be written in
PL/SQL.

2. Compile the plug-in module against the same database that serves as the Oracle
Internet Directory backend database.

3. Register the plug-in module through the configuration entry interface.

Operation-Based Plug-ins Supported by the Directory

For operation-based plug-ins, there are pre-operation, post-operation, and
when-operation plug-ins.

Pre-Operation Plug-ins

The server calls pre-operation plug-in modules before performing the LDAP
operation. The main purpose of this type of plug-in is to validate data before the data
can be used in the LDAP operation.

When an exception occurs in the pre-operation plug-in, one of the following occurs:

« When the return error code indicates warning status, the associated LDAP request
proceeds.

« When the return code indicates failure status, the request does not proceed.

If the associated LDAP request fails later on, the directory does not roll back the
committed code in the plug-in modules.

7-2 Oracle Identity Management Application Developer’s Guide

Designing, Creating, and Using Plug-ins

Post-Operation Plug-ins

The Oracle Internet Directory server calls post-operation plug-in modules after
performing an LDAP operation. The main purpose of this type of plug-in is to invoke
a function after a particular LDAP operation is executed. For example, logging and
notification are post-operation plug-in functions.

When an exception occurs in the post-operation plug-in, the associated LDAP
operation is not rolled back.

If the associated LDAP request fails, the post plug-in is still executed.

When-Operation Plug-ins

The directory calls when-operation plug-in modules while performing standard LDAP
operations. The main purpose of this type of plug-in is to augment existing operations
within the same LDAP transaction. If either the LDAP request or the plug-in program

fails, all the changes are rolled back.

There are different types of When-operation plug-ins.
« Add-on
« Replace

You can, for example, use both add-on and replace plug-ins with the Idapcompare
operation. If you use the first type, the directory executes its server compare code and
executes the plug-in module defined by the plug-in developer. If you use the second
type, the directory does not execute its compare code. Instead it relies on the plug-in
module to perform the comparison.

Replace plug-ins are supported only in | dapadd, | dapconpar e, | dapdel et e,
| dapnodi fy, and | dapbi nd. Add-on plug-ins are supported in | dapadd,
| dapdel et e, and | dapnodi fy.

Designing, Creating, and Using Plug-ins
This section contains these topics:
« Designing Plug-ins
« Creating Plug-ins
« Compiling Plug-ins
« Registering Plug-ins
« Managing Plug-ins
« Enabling and Disabling Plug-ins
« Exception Handling
» Plug-in LDAP API
« Plug-ins and Replication
« Plug-in and Database Tools
« Security
« Plug-in Debugging
« Plug-in LDAP API Specifications

« Database Limitations

Developing Directory Plug-ins 7-3

Designing, Creating, and Using Plug-ins

Designing Plug-ins
Use the following guidelines when designing plug-ins:

« Use plug-ins to guarantee that when a specific LDAP operation is performed,
related actions are also performed.

« Use plug-ins only for centralized, global operations that should be invoked for the
program body statement, regardless of which user or LDAP application issues the
statement.

« Do not create recursive plug-ins. For example, creating a PRE_LDAP_BI ND plug-in
that itself issues an | dapbi nd (through the DBMS_LDAP PL/SQL API) statement,
causes the plug-in to execute recursively until it has run out of resources.

Note: Use plug-ins on the LDAP PL/SQL API judiciously. They are
executed for every LDAP request every time the event occurs on
which the plug-in is created.

Types of Plug-in Operations

A plug-in can be associated with | dapbi nd, | dapadd, | daprodi fy, | dapconpar e,
| dapsear ch, and | dapdel et e operations.

Naming Plug-ins

Plug-in names (PL/SQL package names) must be unique if they share the same
database schema with other plug-ins or stored procedures. But plug-ins can share
names with other database schema objects such as tables and views. This kind of
sharing is not, however, recommended.

Creating Plug-ins

Creating a plug-in module is like creating a PL/SQL package. Both have a
specification part and a body part. The directory, not the plug-in, defines the plug-in
specification because the specification serves as the interface between Oracle Internet
Directory and the custom plug-in.

For security reasons and for the integrity of the LDAP server, you can compile plug-ins
only in the ODS database schema. You must compile them in the database that serves
as the backend database of Oracle Internet Directory.

Package Specifications for Plug-in Module Interfaces

Different plug-ins have different package specifications. As Table 7-1 shows, you can
name the plug-in package. You must, however, follow the signatures defined for each
type of plug-in procedure. See "Specifications for Plug-in Procedures" for details.

Table 7-1 Plug-in Module Interface

Oracle Internet
Plug-in Item User Defined Directory-Defined

Plug-in Package Name X
Plug-in Procedure Name

Plug-in Procedure Signature

7-4 Oracle Identity Management Application Developer’s Guide

Designing, Creating, and Using Plug-ins

Table 7-2 names the different plug-in procedures. In addition, it lists and describes the
parameters that these procedures use.

Table 7-2 Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters

Before | dapbi nd PRE_BI ND Idapcontext, Bind DN, return code, error
Password message

With | dapbi nd but WHEN_BI ND_REPLACE Idapcontext, bind bind result,

replacing the default result, DN, return code, error

server behavior userpassword message

After | dapbi nd PCST_BI ND Idapcontext, Bind return code, error
result, Bind DN, message
Password

Before | dapnodi fy PRE_MODI FY Idapcontext, DN, Mod return code, error
structure message

With | dapnodi fy VHEN_MODI FY Idapcontext, DN, Mod return code, error
structure message

With | dapnodi fy but WHEN_MODI FY_REPLACE Idapcontext, DN, Mod return code, error

replacing the default structure message

server behavior

After | dapnodi fy PCST_MODI FY Idapcontext, Modify return code, error
result, DN, Mod message
structure

Before | dapconpar e PRE_COWPARE Idapcontext, DN, return code, error
attribute, value message

With | dapconpar e VWHEN_COVPARE _ Idapcontext, Compare compare result,

but replacing the REPLACE result, DN, attribute, return code, error

default server behavior value message

After | dapconpar e PCST_COVPARE Idapcontext, Compare return code, error
result, DN, attribute, message
value

Before | dapadd PRE_ADD Idapcontext, DN, return code, error
Entry message

With | dapadd VWHEN_ADD Idapcontext, DN, return code, error
Entry message

With | dapadd but WHEN_ADD REPLACE Idapcontext, DN, return code, error

replacing the default Entry message

server behavior

After | dapadd POST_ADD ldapcontext, Add return code, error
result, DN, Entry message

Before | dapdel et e PRE_DELETE Idapcontext, DN return code, error

message
With | dapdel et e WHEN DELETE Idapcontext, DN return code, error
message

With | dapdel et e but WHEN_DELETE Idapcontext, DN return code, error

replacing the default message

server behavior

After | dapdel ete PCST_DELETE Idapcontext, Delete return code, error
result, DN message

Before | dapsear ch PRE_SEARCH Idapcontext, Base DN, return code, error
scope, filter message

Developing Directory Plug-ins 7-5

Designing, Creating, and Using Plug-ins

Table 7-2 (Cont.) Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters
After | dapsearch POST_SEARCH Ldap context, Search return code, error
result, Base DN, message
scope, filter
See Also:

« "Error Handling" on page 7-10 for valid values for the return code
and error message

« "Specifications for Plug-in Procedures" on page 7-26 for complete
supported procedure signatures

Compiling Plug-ins

Plug-ins are exactly the same as PL/SQL stored procedures. A PL/SQL anonymous
block is compiled each time it is loaded into memory. Compilation consists of these
stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.
2. Semantic checking: Type checking and further processing on the parse tree.
3. Code generation: The pcode is generated.

If errors occur during the compilation of a plug-in, the plug-in is not created. You can
use the SHOW ERRORS statement in SQL*Plus or Enterprise Manager to see any
compilation errors when you create a plug-in, or you can SELECT the errors from the
USER_ERRORS view.

All plug-in modules must be compiled in the ODS database schema.

Dependencies

Compiled plug-ins have dependencies. They become invalid if an object depended
upon, such as a stored procedure or function called from the plug-in body, is modified.
Plug-ins that are invalidated for dependency reasons must be recompiled before the
next invocation.

Recompiling Plug-ins
Use the ALTER PACKAGE statement to manually recompile a plug-in. For example, the
following statement recompiles the my_plugin plug-in:

ALTER PACKAGE ny_pl ugi n COVPI LE PACKAGE;

Registering Plug-ins

To enable the directory server to call a plug-in at the right moment, you must register
the plug-in with the directory server. Do this by creating an entry for the plug-in under
cn=pl ugi n, cn=subconfi gsubentry.

The orclPluginConfig Object Class

A plug-in must have or cl Pl ugi nConf i g as one of its object classes. This is a
structural object class, and its super class ist op. Table 7-3 lists and describes its
attributes.

7-6 Oracle Identity Management Application Developer’s Guide

Designing, Creating, and Using Plug-ins

Table 7-3 Plug-in Attribute Names and Values

Attribute Name

Attribute Value

Mandatory?

cn

orcl Plugi nAttri but eLi st

orcl Pl ugi nEnabl e

orcl Pl ugi nEnt ryProperties

orcl Pl ugi nl sRepl ace

orcl Pl ugi nKi nd
orcl Pl ugi nLDAPQper ati on

orcl Pl ugi nName

orcl Pl ugi nRequest G- oup

orcl Pl ugi nRequest NegG oup

Plug-in entry name

A semicolon-separated list of attribute names
that controls whether the plug-in takes effect. If
the target attribute is included in the list, then
the plug-in is invoked. Only for | dapconpar e
and | dapnodi fy plug-ins.

0 = disable (default)
1 =enable

An | dapsear ch filter type value must be
specified. For example, if we specify

orcl Pl ugi nEntryProperti es:

(&(obj ect cl ass=i net or gper son) (sn=Ce
zanne)), the plug-in is not invoked if the
target entry has obj ect cl ass equal to

i net or gper son and sn equal to Cezanne.

0 = disable (default)
1 =enable
For WHEN timing plug-in only

PL/SQL

One of the following values:

| dapconpare
| dapnodi fy
| dapbi nd

| dapadd

| dapdel et e
| dapsear ch

Plug-in package name

A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who can actually invoke the plug-in.

For example, if you specify

orcl pl ugi nrequest group: cn=security,
ch=gr oups, dc=or acl e, dc=comwhen you
register the plug-in, the plug-in will not be
invoked unless the Idap request comes from the
person who belongs to the group
cn=security, cn=groups, dc=or acl e, dc=
com

A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who cannot invoke the plug-in. For
example, if you specify

or cl pl ugi nrequest gr oup:

ch=security, cn=groups, dc=or acl e, dc=
com when you register the plug-in, the plug-in
is not invoked if the LDAP request comes from
the person who belongs to the group
cn=security, cn=groups, dc=or acl e,
dc=com

Yes

No

No

No

No
Yes

Yes
No

No

Developing Directory Plug-ins 7-7

Designing, Creating, and Using Plug-ins

Table 7-3 (Cont.) Plug-in Attribute Names and Values

Attribute Name Attribute Value Mandatory?
orcl Pl ugi nResul t Code An integer value to specify the Idap result code. No
If this value is specified, then plug-in will be
invoked only if the LDAP operation is in that
result code scenario.
This is only for the post plug-in type.
orcl Pl ugi nShar eLi bLocation File location of the dynamic linking library. If No
this value is not present, then Oracle Internet
Directory server assumes the plug-in language
is PL/SQL.
orcl Pl ugi nSubscri ber DNLi st A semicolon separated DN list that controls if No
the plug-in takes effect. If the target DN of an
LDAP operation is included in the list, then the
plug-in is invoked.
orcl Pl ugi nTi m ng One of the following values: No
pre
when
post
orcl Pl ugi nType One of the following values: Yes
oper at i onal
attribute
passwor d_pol i cy
synt ax
mat chi ngrul e
See Also: "Operation-Based Plug-ins Supported
by the Directory" on page 7-2
orcl Pl ugi nVer si on Supported plug-in version number No

Adding a Plug-in Configuration Entry by Using Command-Line Tools

Plug-ins must be added to Oracle Internet Directory server so that the server is aware
of additional operations that must be performed at the correct time.

When the plug-in successfully compiles against the Oracle Internet Directory backend
database, create a new entry and place it under
cn=pl ugi n, cn=subconfi gsubentry.

In the following examples, an entry is created for an operation-based plug-in called
my_pl ugi nl. The LDIF file, my_I dif _file.ldif,isasfollows:

Example 1

The following is an example LDIF file to create such an object:

cn=when_conp, cn=pl ugi n, cn=subconfi gsubent ry

obj ect cl ass=orcl Pl ugi nConfi g
obj ect cl ass=t op

orcl Pl ugi nName=ny_pl ugi n1
orcl Pl ugi nType=oper ati onal
orcl Pl ugi nTi m ng=when

orcl Pl ugi nLDAPQper at i on=Il dapconpar e

orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0. 1
orcl Pl ugi nl sRepl ace=1
cn=when_conp

or ¢l Pl ugi nKi nd=PLSQ.

7-8 Oracle Identity Management Application Developer’s Guide

Designing, Creating, and Using Plug-ins

Managing Plug

orcl Pl ugi nSubscri ber DNLi st =dc=COM c=us; dc=us, dc=or acl e, dc=com dc=or g, dc=us; o=l MC
, c=US
orcl Pl ugi nAttri but eLi st =user password

Example 2

cn=post _nod_pl ugi n, cn=pl ugi n, cn=subconfi gsubentry
obj ect cl ass=or cl Pl ugi nConfig

obj ect cl ass=t op

orcl Pl ugi nName=ny_pl ugi nl1

orcl Pl ugi nType=oper at i onal

orcl Pl ugi nTi mi ng=post

orcl Pl ugi nLDAPQper at i on=I| dapnodi fy
orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0. 1

cn=post _nod_pl ugi n

orcl Pl ugi nKi nd=PLSQL

Add this file to the directory with the following command:
| dapadd -p 389 -h nyhost -D binddn -w password -f ny_Idif file.ldif

Note: The plug-in configuration entry is not replicated. Replicating it
would create an inconsistent state.

-ins
This section explains how to modify and debug plug-ins.

Modifying Plug-ins
Like a stored procedure, a plug-in cannot be explicitly altered. It must be replaced with
a new definition.

When replacing a plug-in, you must include the OR REPLACE option in the CREATE
PACKAGE statement. The OR REPLACE option enables a new version of an existing
plug-in to replace an older version without having an effect on grants made for the
original version of the plug-in.

Alternatively, the plug-in can be dropped using the DROP PACKACE statement, and
you can rerun the CREATE PACKACE statement.

If the plug-in name (the package name) is changed, you must register the new plug-in
again.

Debugging Plug-ins
You can debug a plug-in using the same facilities available for PL/SQL stored
procedures.

Enabling and Disabling Plug-ins

To turn the plug-in on or off, modify the value of or cl Pl ugi nEnabl e in the plug-in
configuration object. For example, modify the value of or cl Pl ugi nEnabl e in
cn=post _nod_pl ugi n, cn=pl ugi ns, cn=subconfi gsubentry tobe 1 orO0.

Developing Directory Plug-ins 7-9

Designing, Creating, and Using Plug-ins

Exception Handling

Each of the procedures in a PL/SQL plug-in must have an exception handling block
that handles errors intelligently and, if possible, recovers from them.

Error Handling

Oracle Internet Directory requires that the return code (r ¢) and error message
(er r msg) be set correctly in the plug-in procedures.

Table 7-4 provides the values that are valid for the return code.

Table 7-4 Valid Values for the plug-in Return Code

Error Code Description
0 Success
Any number greater Failure

than zero

-1 Warning

The er r n6g parameter is a string value that can pass a user's custom error message
back to Oracle Internet Directory server. The size limit for er r nsg is 1024 bytes. Each
time Oracle Internet Directory runs the plug-in program, it examines the return code
to determine if it must display the error message.

If, for example, the value for the return code is 0, the error message value is ignored. If
the value of the return code is - 1 or greater than zero, the following message is either
logged in the log file or displayed in standard output if the request came from LDAP
command-line tools:

| dap addition info: custom zed error

Program Control Handling between Oracle Internet Directory and Plug-ins
Table 7-5 shows where plug-in exceptions occur and how the directory handles them.

Table 7-5 Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

PRE_BI ND, PRE_MODI FY, Depends on return code. If the return code is:
PRE_ADD, PRE_SEARCH,
PRE_COVPARE, PRE_
DELETE

= Greater than zero (error), then no LDAP operation is
performed

« -1 (warning), then proceed with the LDAP operation

POST_BI ND, POST_ LDAP operation is completed. There is no rollback.
MODI FY, POST_ADD,

POST_SEARCH, WHEN _

DELETE

WHEN_MODI FY, WHEN_ Rollback the LDAP operation
ADD, WHEN_DELETE

Table 7-6 shows how the directory responds when an LDAP operation fails.

7-10 Oracle Identity Management Application Developer’s Guide

Designing, Creating, and Using Plug-ins

Table 7-6 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

PRE_BI ND, PRE_MODI FY, Pre-operation plug-in is completed. There is no rollback.
PRE_ADD, PRE_SEARCH,

VWHEN_DELETE

POST_BI ND, POST_ Proceed with post-operation plug-in. The LDAP operation
MODI FY, POST_ADD, result is one of the | N parameters.

POST _SEARCH, WHEN

DELETE

VWHEN_MODI FY, WHEN_ When types of plug-in changes are rolled back.

ADD, WHEN_DELETE
WHEN Changes made in the plug-in program body are rolled back.

Plug-in LDAP API

There are different methods for providing API access:

« Enable a user to utilize the standard LDAP PL/SQL APIs. Note though that, if
program logic is not carefully planned, an infinite loop in plug-in execution can
result.

« Oracle Internet Directory provides the Plug-in LDAP API. This plug-in does not
cause a series of plug-in actions in the directory server if there are plug-ins
configured and associated with the LDAP request.

In the Plug-in LDAP API, the directory provides APIs for connecting back to the
directory server designated in the plug-in module. You must use this API if you want
to connect to the server that is executing the plug-in. If you want to connect to an
external server, you can use the DBMS_LDAP API.

Within each plug-in module, an | dapcont ext is passed from the Oracle directory
server. When the Plug-in LDAP APl is called, | dapcont ext is passed for security and
binding purposes. When binding with this | dapcont ext , Oracle Internet Directory
recognizes that the LDAP request is coming from a plug-in module. For this type of
plug-in bind, the directory does not trigger any subsequent plug-ins. It handles the
plug-in bind as a super-user bind. Use this plug-in bind with discretion.

See Also: "Plug-in LDAP API Specifications" on page 7-12

Plug-ins and Replication
These cases can cause an inconsistent state in a replication environment:

« Plug-in metadata replicated to other nodes
« Changes to directory entries by plug-in programs or other LDAP operations
« Plug-in installation on only some of the participating nodes

« Implementation in the plug-in of extra checking that depends on the directory
data

Plug-in and Database Tools
Bulk tools do not support server plug-ins.

Developing Directory Plug-ins 7-11

Designing, Creating, and Using Plug-ins

Security

Some Oracle Internet Directory server plug-ins require that you supply the code that
preserves tight security. For example, if you replace the directory's | dapconpar e or
| dapbi nd operation with your own plug-in module, you must ensure that your
implementation of this operation does not omit any functionality on which security
relies.

To ensure tight security, the following must be done:
« Create the plug-in packages
« Only the LDAP administrator can restrict the database user

« Use the access control list (ACL) to set the plug-in configuration entries to be
accessed only by the LDAP administrator

« Be aware of the program relationship between different plug-ins

Plug-in Debugging

Use the plug-in debugging mechanism for Oracle Internet Directory to examine the
process and content of plug-ins.The following commands control the operation of the
server debugging process.

« Toset up plug-in debugging, run this command:

% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdsu. pl s

« Toenable plug-in debugging, run this command:

% sql pl us ods/ password @ORACLE | dap/ admi n/ oi dspdon. pl s

« After enabling plug-in debugging, you can use this command in the plug-in
module code:

pl g_debug(' debuggi ngnessage') ;

The resulting debug message is stored in the plug-in debugging table.
« Todisable debugging, run this command:
% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdof . pl s
« Todisplay the debug messages that you put in the plug-in module, run this
command:
% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdsh. pl s

« To delete all of the debug messages from the debug table, run this command:
% sql pl us ods/ password @ORACLE/ | dap/ admi n/ oi dspdde. pl s

Plug-in LDAP API Specifications

Here is the package specification that Oracle Internet Directory provides for the
Plug-in LDAP API:

CREATE OR REPLACE PACKAGE LDAP_PLUG N AS
SUBTYPE SESSI ON | S RAW 32);

- Initializes the LDAP library and return a session handl er
- for use in subsequent calls.
FUNCTION i nit (| dappluginctx I N CDS. plugi ncont ext)

7-12 Oracle ldentity Management Application Developer’s Guide

Examples of Plug-ins

RETURN SESSI ON;

- Synchronously authenticates to the directory server using
- a Distinguished Name and password.
FUNCTI ON si npl e_bind_s (I dappl ugi nctx IN ODS. pl ugi ncont ext,
Id I N SESSI ON)
RETURN PLS | NTEGER;

- Get requester info fromthe plug-in context
FUNCTI ON get _requester (I dappluginctx IN ODS. pl ugi ncont ext)
RETURN VARCHAR?;
END LDAP_PLUG N,

Database Limitations

Oracle Internet Directory10g Release 2 (10.1.2) can use several different versions of the
Oracle Database for storing directory data. These include Oracle9i Database Server
Release 2, v9.2.0.6 or later and Oracle Database 10g, v10.1.0.4 or later.

In Oracle Application Server 10g Release 2 (10.1.2), the following plug-in features are
not supported in the directory server running against Oracle9i Database Server
Release 2:

« Windows Domain external authentication plug-in.

« Thesinmple_bind_s() function of the LDAP_PLUGIN package provided as the
Oracle Internet Directory PL/SQL PLUGIN API for connecting back to the
directory server as part of plug-in definitions.

Examples of Plug-ins

This section presents two sample plug-ins. One logs all | dapsear ch commands. The
other synchronizes two directory information trees (DITs).

Example 1: Search Query Logging

Situation: A user wants to know if it is possible to log all of the | dapsear ch
commands.

Solution: Yes. The user can use the post | dapsear ch operational plug-in for this
purpose. They can either log all of the requests or only those that occur under the DNs
being searched.

To log all the | dapsear ch commands:

1. Log all of the | dapsear ch results into a database table. This log table has these
columns:

« timestamp

« baseDN

« search scope

« search filter

« required attribute

« search result

Use this SQL script to create the table:

drop table search_l og;

Developing Directory Plug-ins 7-13

Examples of Plug-ins

create table search_| og

(timestanp varchar2(50),

basedn varchar 2(256),

sear chscope nunber (1) ;

searchfilter varchar2(256);
searchresult nunber(1));

drop table sinple_tab;

create table sinple_tab (id NUMBER(7), dunp varchar2(256));
DROP sequence seq;

CREATE sequence seq START W TH 10000;
commi t;

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUG N_EXAMPLEL AS
PROCEDURE post _search
(1 dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t IN | NTEGER,
baseDN IN VARCHARZ,
scope IN | NTEGER,
filterStr IN VARCHAR?2,
requiredAttr IN ODS.strCollection,
rc QUT | NTEGER,

errormsg QUT VARCHAR2
)
END LDAP_PLUG N_EXAMPLEL;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BCDY LDAP_PLUG N_EXAMPLE1 AS
PROCEDURE post _search
(1 dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,
baseDN IN VARCHAR?2,
scope IN | NTEGER,
filterStr IN VARCHAR?2,
requiredAttr IN ODS.strCollection,
re QUT | NTEGER,

errormsg QUT VARCHAR2
)

BEG N

I NSERT | NTO si npl e_tab VALUES
(to_char(sysdate, 'Month DD, YYYY HH24: M :SS'), baseDN, scope, filterStr,
result);

-- The following code segment denpnstrate howto iterate

-- the ODS.strCol | ection

FOR | _counterl IN 1..requiredAttr. COUNT LOOP

I NSERT | NTO sinpl e_tab
val ues (seq.NEXTVAL, 'req attr ' || | _counterl || ' =" ||
requiredAttr (Il _counterl));

IS

END LOOP;
rc :=0;
errornsg : = 'no post_search plug-in error nsg';
COWM T,
EXCEPTI ON
VWHEN ot hers THEN
rc :=1;
errornsg : = 'exception: post_search plug-in';
END;

7-14 Oracle ldentity Management Application Developer’s Guide

Examples of Plug-ins

END LDAP_PLUG N_EXAMPLEL,
/

4. Register the plug-in entry in Oracle Internet Directory.

cn=post _sear ch, cn=pl ugi n, cn=subconfi gsubentry
obj ect cl ass=or cl Pl ugi nConfig

obj ect cl ass=t op

orcl Pl ugi nName=I dap_pl ugi n_exanpl el
orcl Pl ugi nType=oper at i onal

orcl Pl ugi nTi mi ng=post

orcl Pl ugi nLDAPQper at i on=I| dapsear ch
orcl Pl ugi nEnabl e=1

orcl Pl ugi nVersion=1.0. 1

cn=post _search

orcl Pl ugi nKi nd=PLSQL

Using the | dapadd command-line tool to add this entry:

% | dapadd —p port_nunber —h host _name -D bind_dn -w passwd -v \
—f register_post_search.ldif

Example 2: Synchronizing Two DITs

Situation: There are two interdependent products under cn=Pr oduct s,

cn=or acl econt ext . This interdependency extends down to the users in these
products' containers. If a user in the first DIT (product 1) is deleted, the corresponding
user in the other DIT (product 2) must be deleted.

Is it possible to set a trigger that, when the user in the first DIT is deleted, calls or
passes a trigger to delete the user in the second DIT?

Solution: Yes, we can use the post | dapdel et e operation plug-in to handle the
second deletion occurring in the second DIT.

If the first DIT has the naming context of

cn=Dl T1, cn=pr oduct s, cn=or acl econt ext and the second DIT has the naming
context of cn=Dl T2, cn=pr oduct s, cn=or acl econt ext, the two users share the
same ID attribute. Inside of the post | dapdel et e plug-in module, we can use LDAP_
PLUGQ Nand DBMS_LDAP APIs to delete the user in the second DIT.

We must set or cl Pl ugi nSubscri ber DNLi st to

cn=DI T1, cn=pr oduct s, cn=or acl econt ext, so that whenever we delete entries
under cn=DI T1, cn=pr oduct s, cn=or acl econt ext , the plug-in module is
invoked.

Developing Directory Plug-ins 7-15

Examples of Plug-ins

Note: When you use a post | dapnodi fy plug-in to synchronize
changes between two Oracle Internet Directory nodes, you cannot
push all the attributes from one node to the other. This is because the
changes (mod structure) captured in the plug-in module include
operational attributes. These operational attributes are generated on
each node and cannot be modified by using the standard LDAP
methods.

When writing your plug-in program, exclude the following
operational attributes from synchronization: aut hPasswor d,
creat orsnane, creat eti mest anp, nodi fi er snane,

nodi fyti nest anp, pwdchangedt i me, pwdf ai | ureti e,
pwdaccount | ockedti ne, pwdexpi r ati onwar ned, pwdr eset ,
pwdhi st ory, pwdgr aceuseti ne.

The following attributes are used the most in the deployment
environment and should be excluded from synchronization first:
pwdchangedt i me, pwdf ai | ur et i me, aut hpasswor d,
pwdaccount | ockedt i ne.

1. Assume that the entries under both DITs have been added to the directory. For
example, the entry i d=12345, cn=DI T1, cn=pr oduct s, cn=or acl econt ext is
inDI T1,and i d=12345, cn=DI T2, cn=pr oduct s, ch=or acl econt ext isin
DI T2.

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUG N_EXAMPLE2 AS
PROCEDURE post _del ete

(1 dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,

rc QUT | NTECGER,

errormsg OUT VARCHAR2

)
END LDAP_PLUG N_EXAMPLEZ;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUG N_EXAMPLE2 AS
PROCEDURE post _del ete

(1 dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHARZ,

re QUT | NTECER,

errormsg OUT VARCHAR2

)

IS
ret val PLS | NTEGER;
my_session DBMS_LDAP. sessi on;
newDN VARCHAR2(256) ;
BEG N
retval = -1

my_session := LDAP_PLUG N.init (I dappl ugi ncont ext);
- bind to the directory

retval := LDAP_PLUG N. si npl e_bi nd_s(| dappl ugi ncont ext, ny_session);
- if retval is not 0, then raise exception

newbN : = REPLACE(dn,' DIT1','DIT2");

7-16 Oracle Identity Management Application Developer’s Guide

Examples of Plug-ins

retval := DBMS_LDAP. del ete_s(ny_session, newDN);
-- if retval is not O, then raise exception

rc:=0;
errornsg := 'no post_delete plug-in error nsg';
EXCEPTI ON
WHEN ot hers THEN
rc :=1;
errornsg : = 'exception: post_delete plug-in';
END;

END LDAP_PLUG N_EXAVPLE2;

/

(1 dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t IN | NTEGER,

dn IN VARCHARZ,

rc QUT | NTEGER

errormsg OUT VARCHAR2

)

I'S
ret val PLS | NTEGER;
my_session DBMS_LDAP. sessi on;
newDN VARCHAR2(256) ;
BEG N
retval = -1

my_session : = LDAP_PLUG N.ini t (I dappl ugi ncontext);

-- bind to the directory

retval := LDAP_PLUG N. si npl e_bi nd_s(| dappl ugi ncont ext, ny_session);
-- if retval is not O, then raise exception

newbN : = REPLACE(dn,' DIT1','DIT2");

retval := DBMS_LDAP. del ete_s(ny_session, newDN);

-- if retval is not 0, then raise exception

rc :=0;
errornsg := 'no post_delete plug-in error nsg';
EXCEPTI ON
VHEN ot hers THEN
rc .=1;
errornsg : = 'exception: post_delete plug-in';
END;

END LDAP_PLUG N_EXAMPLEZ;
/

Register the plug-in entry with Oracle Internet Directory.
Construct the LDIF filer egi st er _post _del ete. | dif:

cn=post _del et e, cn=pl ugi n, cn=subconfi gsubentry
obj ect cl ass=or cl Pl ugi nConfig

obj ect cl ass=t op

or cl Pl ugi nName=I dap_pl ugi n_exanpl e2

orcl Pl ugi nType=oper at i onal

orcl Pl ugi nTi m ng=post

or ¢l Pl ugi nLDAPQper at i on=I| dapdel ete

orcl Pl ugi nEnabl e=1

orcl Pl ugi nSubscri ber DNLi st =cn=Dl T1, cn=or acl econt ext, cn=pr oduct s
orcl Pl ugi nVersion=1.0. 1

cn=post _del ete

orcl Pl ugi nKi nd=PLSQL

Use the | dapadd command-line tool to add this entry:

% | dapadd —p port_nunber —h host_name -D bind_dn -w passwd -v —f register_
post _del ete.ldif

Developing Directory Plug-ins 7-17

Binary Support in the Plug-in Framework

Binary Support in the Plug-in Framework

Starting with release 10.1.2, object definitions in the Plug-in LDAP API enable

| daprodi fy, | dapadd, and | dapconpar e plug-ins to access binary attributes in the
directory database. Formerly, only attributes of type VARCHARZ could be accessed.
These object definitions do not invalidate plug-in code that precedes release 10.1.2. No
change to this code is required. The new definitions appear in the section "Database
Object Types Defined".

The section that you are reading now examines binary operations involving the three
types of plug-ins. It includes examples of these plug-ins. The new object definitions
apply to pre, post, and when versions of all three.

Note that the three examples use RAW functions and variables in place of LOBs.

Binary Operations with Idapmodify

The nodobj object that the plug-in framework passes to an | dapnodi f y plug-in now
holds the values of binary attributes as bi nval s. This variable is a table of
bi nval obj objects.

The plug-in determines whether a binary operation is being performed by examining
the oper at i on field of nodobj . It checks whether any of the values DBMS

LDAP. MOD_ADD, DBVS_LDAP. MOD_DELETE, and DBVS_LDAP. MOD_REPLACE are
paired with DBMS_LDAP. MOD_BVALUES. The pairing DBMS_LDAP. MOD_ADD+DBMS_
LDAP. MOD_BVALUES, for example, signifies a binary add in the modify operation.

The example that follows shows a post | dapnodi fy plug-in modifying an entry in
another directory. The plug-in is invoked after | dapnodi f y applies the same change
to the same entry in the plug-in directory. The entry in the other directory appears
under the DIT cn=user s, dc=us, dc=acne, dc=com

create or replace package noduser as
procedure post _modi fy(| dappl ugi ncontext | N CDS. pl ugi ncont ext,

result INinteger,
dn I'N varchar2,
nods | N ODS. nodl i st,
rc QUT integer,
errornsg QUT varchar2);

end noduser;

/

show error

CREATE OR REPLACE PACKAGE BCDY noduser AS
procedure post_nodi fy(l dappl ugi ncontext N QDS. pl ugi ncont ext,
result INinteger,
dn I'N varchar2,
nods | N ODS. nodl i st,
rc QUT integer,
errornsg QUT varchar2)

counterl pls_integer;

counter2 pls_integer;

retval pls_integer := -1;

user _session DBMS_LDAP. sessi on;

user_dn varchar (256);

user _array DBVS_LDAP. nod_array;

user_val s DBVS_LDAP. string_col | ection;
user _binval s DBVS_LDAP. bl ob_col | ecti on;
| dap_host varchar(256);

7-18 Oracle Identity Management Application Developer’s Guide

Binary Support in the Plug-in Framework

I d
I d
I d
begin
I d
I d
I d
I d

pl

ap_port varchar(256);
ap_user varchar (256);
ap_passwd var char (256);

ap_host :='"backup. us. oracle.con;
ap_port :='"4000";

ap_user :='cn=orcladmn';
ap_passwd : =" wel cone';

g_debug(' START MODI FYI NG THE ENTRY');

Cet a session
user_session := dbms_| dap.init(ldap_host, |dap_port);

Bind to the directory
retval := dbns_| dap. si npl e_bi nd_s(user_session, |dap_user,
| dap_passwd) ;

Create a nod_array
user _array := dbns_| dap. create_nod_array(nods. count);

Create a user_dn
user_dn := substr(dn,1,instr(dn,',",1,1))||"' cn=users, dc=us, dc=acne,
dc=com ;

pl g_debug(' THE CREATED DN I S'| | user_dn);

Iterate through the nodli st
for counterl in 1..nods.count |oop

Log the attribute name and operation
if (mods(counterl).operation > DBVS_LDAP. MOD BVALUES) then

pl g_debug(' THE NAVE OF THE BI NARY ATTR IS || mods(counterl).type);
el se

pl g_debug(' THE NAVE OF THE NORMAL ATTR | S || mods(counterl).type);
end if;

pl g_debug(' THE OPERATION | S' | | mods(count er1). operation);

Add the attribute values to the collection
for counter2 in 1..mods(counterl).vals.count |oop

user _val s(counter2) := nmods(counterl).vals(counter2).val;
end | oop;

Add the attribute values to the collection
for counter2 in 1..mods(counterl).binvals.count |oop

pl g_debug(' THE NO. OF BYTES OF THE BI NARY ATTR. VALUE IS

| | mods(count erl). binval s(counter2).length);

user _bhi nval s(counter2) := nods(counterl).binval s(counter?2).binval;
end | oop;

Popul ate the nod_array accordingly with binary/normal attributes

if (mods(counterl).operation >= DBVS_LDAP. MOD BVALUES) then
dbrs_| dap. popul ate_nod_array(user _array, nods(counterl).operation -
DBVS_LDAP. MOD_BVALUES, nods(count er 1) . t ype, user _bi nval s);
user _binval s. del et e;

el se
dbrs_| dap. popul ate_nod_array(user _array, nods(counter1). operation,
mods(counterl).type, user_vals);
user _val s. del et e;

end if;

Developing Directory Plug-ins 7-19

Binary Support in the Plug-in Framework

end | oop;

- Mdify the entry

retval := dbns_| dap. modi fy_s(user_session, user_dn, user_array);
if retval = 0 then

rc :=0;

errormsg: =" No error occured while nodifying the entry';
el se

rc :=retval;

errornsg :="Error code'||rc||' while modifying the entry';
end if;

- Free the nod_array
dbrs_| dap. free_nod_array(user_array);

pl g_debug(' FI NI SHED MODI FYI NG THE ENTRY');

exception
WHEN ot hers THEN
pl g_debug (SQLERRM;
end;
end noduser;
/
show error

exit;

Binary Operations with Idapadd

The ent r yobj object that the plug-in framework passes to an | dapadd plug-in now
holds binary attributes as bi nat t r. This variable is a table of bi nat t r obj objects.
The example that follows shows a post-add plug-in propagating a change (an added
user) in the plug-in directory to another directory. In the latter directory, the entry
appears under the DIT cn=user s, dc=us, dc=acne, dc=com

create or replace package adduser as
procedure post_add(! dappl ugi ncontext | N QDS. pl ugi ncont ext,

result INinteger,
dn I'N varchar2,
entry IN ODS. entryobj,
rc QUT integer,
errornsg QUT varchar2);

end adduser;

/

show error

CREATE OR REPLACE PACKAGE BCODY adduser AS
procedure post_add(| dappl ugi ncontext | N QDS. pl ugi ncont ext,
result INinteger,
dn I'N varchar2,
entry IN ODS. entryobj,
rc QUT integer,
errormsg OUT varchar 2)

counterl pls_integer;

counter2 pls_integer;

retval pls_integer := -1,

S integer;

user_session DBVS_LDAP. sessi on;

7-20 Oracle Identity Management Application Developer’s Guide

Binary Support in the Plug-in Framework

user _dn varchar(256);

user _array DBMS_LDAP. nod_array;
user_vals DBV5S_LDAP. string_col | ection;
user _binval s DBVS_LDAP. bl ob_col | ecti on;
| dap_host varchar (256);

| dap_port varchar(256);

| dap_user varchar(256);

| dap_passwd var char (256) ;

begin
| dap_host : ='backup. us. oracle. coni;
| dap_port :='4000";
| dap_user :='cn=orcladnmin';

| dap_passwd : =" wel cone';
pl g_debug(' START ADDI NG THE ENTRY');

-- Get a session
user_session := dbms_| dap.init(ldap_host, |dap_port);

-- Bind to the directory
retval := dbns_| dap. si npl e_bi nd_s(user_session, |dap_user, |dap_passwd);

-- Create a nmod_array
user _array := dbns_| dap. create_nod_array(entry.binattr.count +
entry.attr.count);

-- Create a user_dn
user_dn : = substr(dn,1,instr(dn,',"',1,1))||" cn=users, dc=us, dc=acne,
dc=coni ;
pl g_debug(' THE CREATED DN I S'| | user_dn);

-- Populate the nod_array with binary attributes
for counterl in 1..entry.binattr.count |oop
for counter2 in 1..entry.binattr(counterl).binattrval.count |oop
pl g_debug(' THE NAME OF THE BI NARY ATTR. |IS'||
entry. binattr(counterl).binattrname);
s := dbms_| ob. getl ength(entry. binattr(counterl).
bi nattrval (counter2));
pl g_debug(' THE NO. OF BYTES OF THE BINARY ATTR VALUE IS ||s);
user _binval s(counter2) := entry.binattr(counterl).
bi nattrval (counter?2);
end | oop;
dbms_| dap. popul at e_nmod_array(user_array, DBMS_LDAP. MOD_ADD,
entry. binattr(counterl).binattrnane, user_binval s);
user _binval s. del ete;
end | oop;

-- Populate the nod_array with attributes
for counterl in 1..entry.attr.count |oop
for counter2 in 1..entry.attr(counterl).attrval.count |oop
pl g_debug(' THE NORVAL ATTRIBUTE' | |entry.attr(counterl).attrname||’
HAS THE VALUE' | |entry.attr(counterl).attrval (counter2));
user _val s(counter2) := entry.attr(counterl).attrval (counter2);
end | oop;
dbms_| dap. popul at e_nod_array(user_array, DBMS_LDAP. MOD_ADD,
entry.attr(counterl).attrname, user_vals);
user _val s. del ete;
end | oop;

-- Add the entry

Developing Directory Plug-ins 7-21

Binary Support in the Plug-in Framework

retval := dbms_| dap. add_s(user_sessi on, user _dn, user_array);
pl g_debug(' THE RETURN VALUE IS ||retval);
if retval = 0 then

rc :=0;

errornsg: =" No error occured while adding the entry';
el se

rc :=retval;

errormsg : = Error code'||rc||' while adding the entry';
end if;

- Free the nod_array
dbrs_| dap. free_nod_array(user_array);
retval := dbns_| dap. unbi nd_s(user_session);

pl g_debug(' FI NI SHED ADDI NG THE ENTRY') ;

exception
VWHEN ot hers THEN
pl g_debug (SQLERRM);
end;
end adduser;
/
show error

exit;

Binary Operations with Idapcompare

The | dapconpar e plug-in can use three new overloaded module interfaces to
compare binary attributes. If you want to use these interfaces to develop a plug-in
package that handles both binary and nonbinary attributes, you must include two
separate procedures in the package. The package name for both procedures is the same
because only one or cl Pl ugi nNane can be registered in the plug-in entry.

After updating an existing plug-in package to include a procedure that compares
binary attributes, reinstall the package. Recompile packages that depend on the
plug-in package.

The three new interfaces look like this:

PROCEDURE pre_conpare (| dappl ugi ncontext I'N ODS. pl ugi ncont ext,

dn I N VARCHAR2,
attrnanme I N VARCHARZ,
attrval I'N BLOB,

re QUT | NTEGER,

errornsg QUT VARCHAR?);

PROCEDURE when_conpare_repl ace (I dappl ugi ncontext I N CDS. pl ugi ncont ext,

resul t QUT | NTEGER,
dn I N VARCHAR?,
attrnane I'N VARCHAR2,
attrval I N BLOB,

rc QUT | NTEGER,

errornsg QUT VARCHAR?);

PROCEDURE post _conpare (| dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t I N | NTEGER,
dn I N VARCHAR2,
attrnane I' N VARCHAR?,
attrval I N BLCB,

rc QUT | NTEGER,

7-22 Oracle ldentity Management Application Developer’s Guide

Binary Support in the Plug-in Framework

errormsg QUT VARCHAR?);

The example that follows compares a binary attribute of an entry in the plug-in
directory with a binary attribute of an entry in another directory. This package replaces
the compare code of the server with the compare code of the plug-in. The package
handles both binary and nonbinary attributes. As such it contains two separate
procedures.

create or replace package conpareattr as
procedure when_conpare_repl ace(| dappl ugi ncont ext I N ODS. pl ugi ncont ext,
result QOUT integer,
dn IN varchar2,
attrnane | N VARCHAR?,
attrval | N BLOB,
rc QUT integer,
errornsg QUT varchar2);
procedure when_conpare_repl ace(| dappl ugi ncont ext I N CDS. pl ugi ncont ext,
result QOUT integer,
dn I'N varchar2,
attrnane | N VARCHAR?,
attrval IN varchar2,
rc QUT integer,
errornmsg OUT varchar2);
end conpareattr;
/
show error

CREATE OR REPLACE PACKAGE BCDY conpareattr AS
procedure when_conpare_repl ace(| dappl ugi ncont ext I N CDS. pl ugi ncont ext,
result QOUT integer,
dn I'N varchar2,
attrnane | N VARCHAR?,
attrval IN varchar2,
rc QUT integer,
errornsg OUT varchar2)
is
pos I NTEGER : = 2147483647,
begin
pl g_debug(' START');
pl g_debug(' THE ATTRNAME | S'||attrnane||' AND THE VALUE IS'||attrval);
pl g_debug(' END);
rc :=0;
errormsg :="No error!!!";
exception
VWHEN ot hers THEN
pl g_debug (' Unknown UTL_FILE Error');
end,

procedure when_conpare_repl ace(| dappl ugi ncont ext I N CDS. pl ugi ncont ext,
result OUT integer,
dn I'N varchar2,
attrname |N VARCHAR?,
attrval |N BLOB,
rc OUT integer,
errormsg OUT varchar2)

is
counter pls_integer;
retval pls_integer := -1;
cnp_result integer;
s integer;

Developing Directory Plug-ins 7-23

Binary Support in the Plug-in Framework

user_sessi on DBMS_LDAP. sessi on;

user _entry DBMS_LDAP. message;

user _nmessage DBVS_LDAP. nessage;

user _dn varchar(256);

user_attrs DBMS_LDAP. string_col |l ection;
user _attr_name VARCHAR2(256);
user_ber_el nt DBMS_LDAP. ber _el ement ;
user _val s DBVS LDAP. bl ob_col | ecti on;
| dap_host varchar(256);

| dap_port varchar(256);

| dap_user varchar(256);

| dap_passwd var char (256) ;

| dap_base varchar(256);

begin
| dap_host : =" backup. us. oracl e. coni;
| dap_port :='4000";
| dap_user :='cn=orcladnmin';
| dap_passwd : =" wel cone';
| dap_base : = dn;

pl g_debug(' STARTI NG COVPARI SON | N WHEN REPLACE PLUG I N);

s := dbms_| ob. getl ength(attrval);
pl g_debug(' THE NUMBER OF BYTES OF ATTRVAL' || s);

-- Get a session
user _session := dbms_| dap.init(ldap_host, |dap_port);

-- Bind to the directory
retval := dbns_| dap. si npl e_bi nd_s(user_session, |dap_user, |dap_passwd);

-- issue the search
user_attrs(1l) := attrnane;
retval := DBMS_LDAP. search_s(user_session, |dap_base,
DBVS_LDAP. SCOPE_BASE,
' obj ectclass=*",
user_attrs,
0,
user _message);

-- Get the entry in the other QD server
user_entry := DBVS_LDAP.first_entry(user_session, user_nessage);

-- Log the DN and the Attribute nane
user _dn := DBMS_LDAP. get _dn(user_session, user_entry);
pl g_debug(' THE DN I S' || user_dn);
user_attr_name : = DBVS_LDAP.first_attribute(user_session,user_entry,
user _ber _elnt);

-- CGet the values of the attribute
user __val s : = DBMS_LDAP. get _val ues_bl ob(user_session, user_entry,
user _attr_nane);

-- Start the binary conparison between the ATTRVAL and the attribute
-- val ues
if user_vals.count > 0 then
for counter in user_vals.first..user_vals.last |oop
cnp_result := dbns_| ob. conpar e(user _val s(counter),attrval,
dbns_| ob. getl engt h(user _val s(counter)),1,1);
if cnp_result =0 then

7-24 Oracle ldentity Management Application Developer’s Guide

Database Object Types Defined

rc :=0;
- Return LDAP_COWPARE_TRUE
result := 6;
pl g_debug(' THE LENGTH OF THE ATTR ' ||user_attr_nanme||' IN THE
ENTRY | S'| | dbns_| ob. get | engt h(user _val s(counter)));
errormsg :="NO ERROR. THE COMPARI SON HAS SUCCEEDED. ' ;
pl g_debug(errornsg);
pl g_debug(' FI Nl SHED COVPARI SON) ;
return;
end if;
end | oop;
end if;

rc .= 1;
- Return LDAP_COWPARE_FALSE

result :=5;
errormsg : ="' ERROR THE COWVPARI SON HAS FAI LED. ' ;
pl g_debug(' THE LENGTH OF THE ATTR.'||user_attr_nane||' |IN THE ENTRY IS
| | dbms_| ob. get | engt h(user_val s(user_val s.last)));
pl g_debug(errornsg);
pl g_debug(' FI Nl SHED COVPARI SON);

- Free user_vals
dbrs_| dap. val ue_free_bl ob(user_val s);
exception
VHEN ot hers THEN
pl g_debug (SQLERRV) ;
end;
end conpareattr;
/
show error

exit;

Database Object Types Defined

This section defines the object types introduced in the Plug-in LDAP API. All of these
definitions are in Oracle Directory Server database schema. Note that the API includes
object types that enable plug-ins to extract binary data from the database.

create or replace type strCollection as TABLE of VARCHAR2(512);
/

create or replace type pluginContext as TABLE of VARCHAR2(512);
/

create or replace type attrval Type as TABLE OF VARCHAR2(4000);
/

create or replace type attrobj as object (

attrname var char 2(2000) ,

attrval attrval Type

);

/

create or replace type attrlist as table of attrobj;

/

create or replace type binattrval Type as TABLE OF BLOB;

/

create or replace type binattrobj as object (

bi nattrname var char 2(2000),

bi nattrval bi nattrval Type

)

/

Developing Directory Plug-ins 7-25

Specifications for Plug-in Procedures

create or replace type binattrlist as table of binattrobj;
/
create or replace type entryobj as object (

entryname var char 2(2000),
attr attrlist,
binattr binattrlist

)i
/
create or replace type entrylist as table of entryobj;
/

create or replace type bval obj as object (

| ength i nt eger,

val var char 2(4000)

)

/

create or replace type bvallist as table of bvalobj;
/

create or replace type binval obj as object (

| ength i nt eger,

bi nval bl ob

)

/

create or replace type binvallist as table of binvalobj;
/

create or replace type nodobj as object (

operation i nt eger,

type var char 2(256),
val s bval Ii st,

bi nval s bi nval i st

)
/
create or replace type nodlist as table of nodobj;

Specifications for Plug-in Procedures

When you use the plug-ins, you must adhere to the signature defined for each of them.
Each signature is provided here.

PROCEDURE pre_add (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHARZ,
entry IN ODS. entryobj,
rc QUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE when_add (| dappl ugi ncontext IN CDS. pl ugi ncont ext,

dn IN VARCHARZ,
entry IN ODS. entryobj,
re QUT | NTECGER,
errormsg QUT VARCHAR?) ;

PROCEDURE when_add_repl ace (| dappl ugi ncontext IN CDS. pl ugi ncont ext,

dn IN VARCHAR?,
entry IN ODS. entryobj,
re QUT | NTECER,
errornsg QUT VARCHAR2) ;

7-26 Oracle Identity Management Application Developer’s Guide

Specifications for Plug-in Procedures

PROCEDURE post _add (| dappl ugi ncontext IN CDS. pl ugi ncont ext,

resul t IN | NTEGER,

dn IN VARCHAR?,
entry IN ODS. entryobj,
rc QUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE pre_nodi fy (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHARZ,
mods IN ODS. nmodlist,
rc QUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE when_nodi fy (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHAR?,
mods IN ODS. nmodlist,
rc QUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE when_nodi fy_repl ace (| dappl ugi ncontext IN CDS. pl ugi ncont ext,
dn IN VARCHAR2,

nods IN ODS. nodlist,
rc QUT | NTEGER,
errornsg QUT VARCHAR?) ;

PROCEDURE post _nodi fy (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER

dn IN VARCHAR?,
nods IN ODS. nodlist,
re QUT | NTECGER,
errornsg QUT VARCHAR2) ;
PROCEDURE pre_conpare (| dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHAR?,
attrnanme IN VARCHAR?,
attrval IN VARCHARZ,

rc QUT | NTEGER,
errornsg QUT VARCHAR2

)

PROCEDURE pre_conpare (| dappl ugi ncontext I'N ODS. pl ugi ncont ext,

dn I'N VARCHARZ,
attrname I'N VARCHAR2,
attrval I'N BLOB,

rc QUT | NTEGER,
errornsg QUT VARCHAR?);

PROCEDURE when_conpare_repl ace (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
result QUT | NTEGER,

dn IN VARCHARZ,
attrname IN VARCHAR?,
attrval IN VARCHAR?2,
rc QUT | NTEGER,

errormsg QUT VARCHAR2

)

Developing Directory Plug-ins 7-27

Specifications for Plug-in Procedures

PROCEDURE when_conpar e_repl ace (I dappl ugi ncontext I N CDS. pl ugi ncont ext,

resul t QUT | NTEGER,

dn I'N VARCHAR2,
attrname I'N VARCHAR2,
attrval I'N BLOB,

re QUT | NTECER,
errornsg QUT VARCHAR?);
PROCEDURE post _conpare (I dappl ugi ncontext IN QDS. pl ugi ncont ext,
resul t I'N | NTEGER,

dn IN VARCHAR?,
attrname IN VARCHAR?,
attrval IN VARCHAR?2,
re QUT | NTECER,
errormsg QUT VARCHAR2

)

PROCEDURE post _conpare (I dappl ugi ncontext I N ODS. pl ugi ncont ext,

resul t I N | NTEGER,

dn I'N VARCHARZ,

attrnanme I'N VARCHAR2,

attrval I'N BLCB,

rc QUT | NTEGER,

errornsg QUT VARCHARZ);

PROCEDURE pre_del ete (I dappl ugi ncontext IN ODS. pl ugi ncont ext,
dn IN VARCHAR?,

re QUT | NTECGER,

errornsg QUT VARCHAR2

)

PROCEDURE when_del ete (| dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHARZ,

re QUT | NTECGER,

errornsg QUT VARCHAR2

)

PROCEDURE when_del et e_repl ace (| dappl ugi ncontext IN CDS. pl ugi ncont ext,
dn IN VARCHARZ,

rc QUT | NTEGER,

errormsg QUT VARCHAR2

)

PROCEDURE post _del ete (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

resul t IN | NTEGER,
dn IN VARCHAR?,
rc QUT | NTEGER,
errornsg QUT VARCHAR?2

)

PROCEDURE pre_search (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

baseDN IN VARCHARZ,
scope IN | NTECER,
filterStr IN VARCHARZ,
requiredAttr IN ODS.strCollection,
rc QUT | NTEGER,
errormsg QUT VARCHAR2

K

PROCEDURE post _search (| dappl ugi ncontext IN ODS. pl ugi ncont ext,
resul t IN | NTEGER

7-28 Oracle Identity Management Application Developer’s Guide

Specifications for Plug-in Procedures

baseDN IN VARCHAR?2,
scope IN | NTECER,
filterStr IN VARCHAR?,
requiredAttr IN ODS.strCollection,
rc QUT | NTEGER,
errormsg QUT VARCHAR2

)

PROCEDURE pre_bi nd (I dappl ugi ncontext IN ODS. pl ugi ncont ext,

dn IN VARCHAR?,
passwd IN VARCHAR?,
rc QUT | NTEGER,
errormsg QUT VARCHAR2

K

PROCEDURE when_bi nd_repl ace (I dappl ugi ncontext I N CDS. pl ugi ncont ext,
resul t QUT | NTEGER,

dn IN VARCHAR?,
passwd IN VARCHAR?2,
re QUT | NTECER,
errormsg QUT VARCHAR2

)

PROCEDURE post _bi nd (I dappl ugi ncontext | N CDS. pl ugi ncont ext,

resul t IN | NTEGER,
dn IN VARCHAR?,
passwd IN VARCHAR?2,
rc QUT | NTEGER,
errornsg QUT VARCHAR?2

)

Developing Directory Plug-ins 7-29

Specifications for Plug-in Procedures

7-30 Oracle Identity Management Application Developer’s Guide

8

Integrating with Oracle Delegated
Administration Services

This chapter explains how to integrate applications with Oracle Delegated
Administration Services. This Web tool enables you to more easily develop tools for
administering application data in the directory.

It contains the following sections:

« What Is Oracle Delegated Administration Services?

« Integrating Applications with the Delegated Administration Services
« Java APIs Used to Access URLs

What Is Oracle Delegated Administration Services?

Oracle Delegated Administration Services consists of a set of pre-defined, Web-based
service units for performing directory operations on behalf of users. These units enable
directory users to update their own information.

The delegated administration services provide most of the functionality that
directory-enabled applications require. You can use the service units to create user and
group entries, search for entries, and change user passwords.

You can embed delegated administration service units in your applications. If, for
example, you are building a Web portal, you can add service units that enable users to
change application passwords stored in the directory. Each service unit has a
corresponding URL stored in the directory. At runtime, an application can find the
URL by querying the directory.

Figure 8-1 Overview of Delegated Administration Services

P = DAS-Integrated | Authentication Single
— bt >
5 l | Application Sign-on
— . »
Url Authgntication
i i *
v Redirection ,U i v
ser / Grou
DAS Services Information P Oracle
Units <—> Internet
Directory

Integrating with Oracle Delegated Administration Services 8-1

Integrating Applications with the Delegated Administration Services

How Applications Benefit from Oracle Delegated Administration Services

An application based on Oracle Delegated Administration Services is more advanced
than one based on earlier types of APIs. First, an application developed using the
service units is language independent because the units are Web based. This means
that the application can handle input and requests from any type of user or
application, eliminating the need for a costly custom solution or configuration. Second,
Oracle Delegated Administration Services comes with the Oracle Internet Directory
Self-Service Console, a GUI development tool that automates many of the
directory-oriented application requirements (such as Create, Edit, and Delete). Third,
Oracle Delegated Administration Services is integrated with Oracle Application Server
Single Sign-On. The application is automatically authenticated by the single sign-on
server. This means that the application can query the directory on a user's behalf.

Integrating Applications with the Delegated Administration Services

This section contains these topics:
« Integration Profile

« Integration Methodology and Considerations

Integration Profile

An application integrated with Oracle Delegated Administration Services has the
following characteristics:

« ItisaWeb-based GUI.
« ltisintegrated with Oracle Application Server Single Sign-On through mod_osso.

« It has operations that it must perform by way of a signed-on user. It can perform
these operations using Oracle Delegated Administration Services.

« It has users or groups stored in Oracle Internet Directory and can use Oracle
Delegated Administration Services for user and group management.

« Itrunson the Oracle Application Server infrastructure or middle-tier. The
discovery mechanism for the service URLSs is inaccessible otherwise.

Integration Methodology and Considerations

Table 8-1 on page 8-2 identifies the tasks that are required to integrate an application
with Oracle Delegated Administration Services.

Table 8-1 Integration Considerations

Point in Application
Lifecycle Considerations

Application design time Examine the various services that Oracle Delegated
Administration Services provides. Identify integration points
within the application GUI.

Make code changes to pass parameters to the Oracle Delegated
Administration Services self-service units and to process return
parameters from Oracle Delegated Administration Services.

Introduce code in the bootstrap and installation logic to
dynamically discover the location of Oracle Delegated
Administration Services units from configuration information
in Oracle Internet Directory. To do this, use Oracle Internet
Directory Service Discovery APIs.

8-2 Oracle Identity Management Application Developer’s Guide

Integrating Applications with the Delegated Administration Services

Table 8-1 (Cont.) Integration Considerations

Point in Application

Lifecycle Considerations

Application installation Determine the location of Oracle Delegated Administration
time Services units and store them in local repository.
Application runtime Display Oracle Delegated Administration Services URLs in

application GUI shown to users.

Pass the appropriate parameters to the Oracle Delegated
Administration Services by using URL encoding.

Process return codes from Oracle Delegated Administration
Services through the URL return.

Ongoing administrative Provide the capability to refresh the location of Oracle

activities Delegated Administration Services and its URLs in the
administrator screens. Do this in case the deployment moves
the location of Oracle Delegated Administration Services after
the application has been installed.

Use Case 1: Create User

This use case shows how to integrate the Create User unit with a custom application.
In the custom application page, Create User is shown as a link.

1. Identify the base URL for Oracle Delegated Administration Services by using this
Java API string:

baseUrl = UWil.get DASUrl (ct x, DASURL_BASE)

This API returns the base URL in this form: ht t p: / / host _nane: port/
2. Getthe URL for the Cr eat e User unit by using this string:
relUrl = Wil.getDASWUr| (ctx , DASURL_CREATE USER)

The return value is the relative URL to access the Create User unit.

The specific URL is the information needed to generate the link dynamically for
the application.

You can customize the parameters in Table 8-2 on page 8-3 for this unit.

Table 8-2 URL Parameters for Oracle Delegated Administration Services

Parameter Description

homeURL The URL that is linked to the global button Home in the Oracle Delegated
Administration Services unit. When the calling application specifies this value, you
can click Home to redirect the Oracle Delegated Administration Services unit to the
URL specified by this parameter.

doneURL This URL is used by Oracle Delegated Administration Services to redirect the
Oracle Delegated Administration Services page at the end of each operation. In the
case of Create User, once the user is created, clicking OK redirects the URL to this
location.

cancel URL This URL is linked with all the Cancel buttons shown in Oracle Delegated
Administration Services units. Any time the user clicks Cancel, the page is
redirected to the URL specified by this parameter.

enabl ePA This parameter takes a Boolean value of true or false. This will enable the Assign
Privileges section in a User or Group operation. If enabl ePA is passed with value
of true in the Create User page, then the Assign Privileges to User section will also
appear on the Create User Page.

Integrating with Oracle Delegated Administration Services 8-3

Java APIs Used to Access URLs

3. Build the link with the parameters set to the following values:

baseUr| = http://acne. mydomai n.com 7777/

rel Url = oiddas/ui/oracl e/l dap/das/adm n/ AppCreat eUser | nf oAdni n
homeURL = http://acne. mydonai n. coni myapp

cancel URL = http://acne. nydomai n. conl nyapp

doneURL = http://acme. mydonai n. conf myapp

enabl ePA = true

The complete URL looks like this:

http://acne. mydomai n. com 7777/ oi ddas/ ui / or acl e/ | dap/ das/ admi n/
AppCr eat eUser | nf oAdnmi n?honeURL=ht t p: / / acne. nydomai n. com nyapp&
cancel URL=htt p: // acne. mydonai n. conf myappé&

doneURL=ht t p: / / acrre. nydomai n. cont nyappé&

enabl ePA=true

4. You can now embed this URL in the application.

Use Case 2: User LOV

List of Values (LOV) is implemented using JavaScript to invoke and pass values
between the LOV calling window and the LOV page. The application invoking the
LOV needs to open a popup window using JavaScript. Because Java scripts have
security restrictions, no data may cross domains. Due to this limitation, only pages in
the same domain can access the LOV units.

Base and relative URLs can be invoked the same way as they are for Create User.
Sample files are located at:

$ORACLE_HOWE/ | dap/ das/ sanpl es/ | ov

The samples illustrate how the LOV can be invoked and data can be passed between
the calling application and the Oracle Delegated Administration Services unit. A
Complete illustration of the LOV invocation is beyond the scope of this chapter.

Java APIs Used to Access URLSsS

Java APIls can be used to discover URLs for Oracle Delegated Administration Services.
More details about these APIs are provided in Chapter 3, "Developing Applications
with Oracle Extensions to the Standard APIs" and in Chapter 15, "DAS_URL Interface
Reference". The API functions that address URL discovery are

get DASUr | (Di rContext ctx, String url TypeDN) and

get Al | DASUr | (Di r Cont ext ctx).

8-4 Oracle Identity Management Application Developer’s Guide

9

Developing Applications for Single Sign-On

This chapter explains how to develop applications to work with mod_osso. The
chapter contains the following topics:

« What Is mod_o0sso?
« Protecting Applications Using mod_osso: Two Methods
« Developing Applications Using mod_o0sso

« Security Issues

What Is mod_0ss0?

In OracleAS release 10.1.2, you use mod_o0sso, an authentication module on the Oracle
HTTP Server, to enable applications for single sign-on. mod_osso is a simple
alternative to the single sign-on SDK, used in earlier releases to integrate partner
applications. mod_osso simplifies the authentication process by serving as the sole
partner application to the single sign-on server. By doing so, it renders authentication
transparent for OracleAS applications.

After authenticating users, mod_osso transmits the simple header values that
applications need to validate them. These include the following:

« User name
« User GUID
« Language and territory

Table 9-1 lists all of the user attributes that mod_osso passes to applications. The table
also recommends attributes to use as keys, or handles, to retrieve additional user
attributes from Oracle Internet Directory.

Table 9-1 User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?
Csso- User-Qui d Single sign-on user's Single sign-on user's Recommended.

globally unique user ID globally unique user ID

(GUID). (GUID).
Csso- Subscri ber-Qui d Realm GUID. Realm entry in Oracle Recommended.

Internet Directory.

Developing Applications for Single Sign-On 9-1

Protecting Applications Using mod_osso: Two Methods

Table 9-1 (Cont.) User Attributes Passed to Partner Applications

HTTP Header Name

Description

Source

Use as Key or Handle?

Renot e- User

Osso- Subscri ber

User nickname as entered
by user on the login page.

User-friendly name for a
realm.

Single sign-on login page.

Realm entry in Oracle
Internet Directory.

Recommended for
pre-9.0.4 applications only.

Not recommended. Use
GUID headers to perform

Accept - Language

user searches in Oracle
Internet Directory.

Language and territory in Not applicable.

1SO format.

Single sign-on server.

mod_osso interoperates only with the Oracle HTTP listener. You can use OracleAS
SSO Plug-in to protect applications that work with third-party listeners such as Sun
One and IIS. To learn how to use OracleAS SSO Plug-in, see the appendix about this
tool in Oracle HTTP Server Administrator’s Guide.

Protecting Applications Using mod_osso: Two Methods

mod_osso redirects the user to the single sign-on server only if the URL you request is
configured to be protected. You can secure URLs in one of two ways: statically or
dynamically. Static directives simply protect the application, ceding control over user
interaction to mod_osso. Dynamic directives not only protect the application, they also
enable it to regulate user access.

This section contains the following topics:
« Protecting URLs Statically

« Protecting URLs with Dynamic Directives

Protecting URLs Statically

You can statically protect URLs with mod_osso by applying directives to the nod_
osso. conf file. This file is found at $ORACLE_HOME/ Apache/ Apache/ conf . In the
example that follows, a directory named / pri vat e, located just below the Oracle
HTTP Server document root, is protected by this directive:

<| f Modul e mod_osso. ¢>

<Location /private>
Aut hType Basic
require valid-user
</ Locati on>

</ | f Modul e>

After making the entry, restart the Oracle HTTP Server:
$ORACLE_HOVE/ opmm/ bi n/ oprmcet | restartproc type=ohs

Finally, populate the directory with pages and then test them. For example:

http://host:port/private/helloworld. htm

Protecting URLs with Dynamic Directives

Dynamic directives are HTTP response headers that have special error codes that
enable an application to request granular functionality from the single sign-on system

9-2 Oracle Identity Management Application Developer’s Guide

Developing Applications Using mod_osso

without having to implement the intricacies of the single sign-on protocol. Upon
receiving a directive as part of a simple HTTP response from the application, mod_
0SS0 creates the appropriate single sign-on protocol message and communicates it to
the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not
currently support dynamic directives for PL/SQL applications.

Table 9-2 lists commonly requested dynamic directives.

Table 9-2 Commonly Requested Dynamic Directives

Directive Status Code Headers
Request Authentication 401, 499 -
Request Forced 499 Osso-Paranoi d: true

Authentication

Single Sign-Off 470 Osso- Ret ur n- URL

This is the URL to return to after single
sign-off is complete

Developing Applications Using mod_0sso

This section explains how to write and enable applications using mod_osso. The
section contains the following topics:

« Developing Statically Protected PL/SQL Applications

« Developing Statically Protected Java Applications

« Developing Java Applications That Use Dynamic Directives
= A Word About Non-GET Authentication

Developing Statically Protected PL/SQL Applications

What follows is an example of a simple mod_osso-protected application. This
application logs the user in to the single sign-on server, displays user information, and
then logs the user out of both the application and the single sign-on server.

Use the following steps to write and enable a PL/SQL application using mod_osso.
1. Create the schema where application procedure will be loaded.

sql pl us sys/sys_password as sysdba
create user schema_nane identified by schema_password;
grant connect, resource to schema_nane;

2. Load the following procedure into the schema and grant the public access to the

procedure:
create or replace procedure show user_info
is
begi n
begi n
htp.init;
exception
when ot hers then null;
end;
ht p. ht m Open;

ht p. bodyQpen;
htp. print('<h2>Wlcome to Oracle Single Sign-On</h2>");

Developing Applications for Single Sign-On 9-3

Developing Applications Using mod_osso

htp.print('<pre>');
htp.print(' Remote user:'

|| owa_util.get_cgi_env(' REMOTE_USER));
htp.print('User DN’

|| owa_util.get_cgi_env(' Gsso-User-Dn'));
htp.print(' User GQuid:'

|| owa_util.get_cgi_env(' Gsso-User-@uid));
htp. print (' Subscriber:’

|| owa_util.get_cgi_env(' Gsso-Subscriber'));
htp.print (' Subscriber DN

|| owa_util.get_cgi_env(' Gsso-Subscriber-Dn'));
htp. print('Subscriber Guid:'

|| owa_util.get_cgi_env(' Gsso-Subscriber-Guid));
htp.print('</pre>);
htp.print('<a href=/osso_| ogout?'

||" p_done_url =http://ny.oracl e. conbLogout </ a>');

ht p. bodyd ose;
ht p. ht m C ose;
end show user _info;
/
show errors;

grant execute on show user_info to public;

3. Create a database access descriptor (DAD) for the application in the dads. conf
file, located at $ORACLE_HOVE/ Apache/ nodpl sql / conf:

<Location /pl s/ DAD_nane>
Set Handl er pl s_handl er
Order deny, al | ow
Al Il owOverri de None
Pl sql Dat abaseConnect String host nane: port: SI D

Pl sql Dat abasePassword schema_password

Pl sql Dat abaseUser nane schema_narme

Pl sql Def aul t Page schenma_nane. show user _info

Pl sql Docunent Tabl enane schema_narme. wwdoc_docurnent

Pl sql Docunment Pat h docs

Pl sql Docunent Procedur e schema_name. wwdocC_process. process_
downl oad

Pl sql Aut henti cati onMbde Basi ¢

Pl sql Pat hAl i as url

Pl sql Pat hAl i asProcedure schema_name. wwpt h_api _al i as. process_
downl oad

Pl sql Sessi onCooki eName schenma_nane

Pl sql Cd Envi ronnent Li st OSSO USER- DN

Pl sql CA Envi ronment Li st OSSO USER- GUI D

Pl sql Cd Envi ronment Li st OSSO SUBSCRI BER

Pl sql Cd Envi ronnent Li st (OSSO SUBSCRI BER- DN

Pl sql Cd Envi ronnent Li st OSSO SUBSCRI BER- GUI D

</ Locati on>

4. Protect the application DAD by entering the following lines in the nod_
0sso. conf file:

<Location /pl s/ DAD_nane>
require valid-user
aut hType Basic

</ Locati on>

9-4 Oracle Identity Management Application Developer’s Guide

Developing Applications Using mod_osso

Note: The assumption here is that mod_osso is already configured
for single sign-on. This step is performed when OracleAS is installed.

Restart the Oracle HTTP Server:

http://host:port/private/helloworld. htm

To test whether the newly created functions and procedures are protected by mod_
0ss0, try to access them from a browser:

http://host: port/pl s/ DAD schema_nane. show_user _i nfo

Selecting the URL should invoke the single sign-on login page if mod_osso. conf

has been configured properly and mod_osso is registered with the single sign-on
server.

Developing Statically Protected Java Applications

Use the following steps to write and enable a servlet or JSP application using mod_
0SS0:

1.

Write the JSP or servlet. Like the PL/SQL application example immediately
preceding, the simple servlet that follows logs the user in, displays user
information, and then logs the user out.

inport java.io.?*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**

* Exanpl e servlet showi ng howto get the SSO User information
*/

public class SSOProtected extends HtpServlet
{

public void service(HtpServl et Request request,
Ht t pSer vl et Response response)
throws | CException, ServletException

response. set Cont ent Type("text/htm");

/'l Show aut henticated user informationsingle sign-on
PrintWiter out = response.getWiter();
out. println("<h2>Wl come to Oracle Single Sign-On</h2>");
out.println("<pre>");
out.println("Renote user: "

+ request . get Renot eUser ());
out.println("Csso-User-Dn: "

+ request. get Header (" Gsso- User-Dn"));
out.println("Csso-User-Quid: "

+ request. get Header (" Gsso- User-@uid"));
out. println("Csso-Subscriber: "

+ request. get Header (" Osso- Subscri ber"));
out.println("Csso-User-Dn: "

+ request. get Header (" Gsso- User-Dn"));
out. println("Osso-Subscriber-Dn: "

+ request. get Header (" Gsso- Subscri ber-Dn"));
out. println("Csso-Subscriber-cuid: "

Developing Applications for Single Sign-On 9-5

Developing Applications Using mod_osso

+ request. get Header (" Osso- Subscri ber-Guid"));
out.println("Lang/ Territory: "

+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
out.println("<a href=/o0sso_| ogout ?"

+"p_done_url =http://my.oracl e. conrLogout </ a>") ;

2. Protect the servlet by entering the following lines in the nod_osso. conf file:

<Location /servlet>
require valid-user
aut hType Basic

</ Locati on>

3. Deploy the servlet. If you need help, see the overview chapter in Oracle Application
Server Containers for J2EE Servlet Developer’s Guide. This chapter provides an
example of a servlet and shows how to deploy it.

4. Restart the Oracle HTTP Server and OC4J:

$ORACLE_HOVE/ opmm/ bi n/ oprmct | restartproc type=ohs
$ORACLE_HOVE/ opmm/ bi n/ oprmct | st opproc type=oc4j
$ORACLE_HOVE/ opmm/ bi n/ oprmct | start proc type=océj

5. Test the servlet by trying to access it from the browser. Selecting the URL should
invoke the login page.

The process is this: when you try to access the servlet from the browser, you are
redirected to the single sign-on server for authentication. Next you are redirected
back to the servlet, which displays user information. You may then select the
logout link to log out of the application as well as the single sign-on server.

Developing Java Applications That Use Dynamic Directives

Applications that use dynamic directives require no entry in nrod_osso. conf because
mod_o0sso protection is written directly into the application as one or more dynamic
directives. The servlets that follow show how such directives are incorporated. Like
their "static" counterparts, these sample "dynamic" applications generate user
information.

This section covers the following topics:
« Java Example #1: Simple Authentication
« Java Example #2: Single Sign-Off

« Java Example #3: Forced Authentication

Java Example #1: Simple Authentication

This servlet uses the r equest . get Renot eUser () method to check the mod_osso
cookie for the user name. If the user name is absent, the servlet issues dynamic
directive 499, a request for simple authentication. The key lines are in boldface.

inport java.io.?*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**

* Exanpl e servlet showing how to use
* Dynamic Directive for login
*/

9-6 Oracle Identity Management Application Developer’s Guide

Developing Applications Using mod_osso

public class SSODynLogi n extends HttpServl et
{

public void service(HtpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException

{
String | _user =null;
Il Try to get the authenticate user nane
try
{
| _user = request. get RenoteUser();
}
catch(Exception e)
{
| _user = null;
}
Il If user is not authenticated then generate
/1 dynamic directive for authentication
if((l_user ==null) || (I_user.length() <= 0))
{
response. sendError (499, "Oracle SSO');
}
el se
{
Il Show aut henti cated user information
response. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();
out. println("<h2>Wl come to Oracle Single Sign-On</h2>");
out.println("<pre>");
out.println("Renote user: "
+ request . get Remot eUser ()) ;
out.println("Osso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out.println("Csso-User-Quid: "
+ request. get Header (" Osso- User-Guid"));
out.println("COsso-Subscriber: "
+ request. get Header (" Gsso- Subscriber"));
out.println("Osso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out. println("Csso-Subscriber-Dn: "
+ request. get Header (" Osso- Subscri ber-Dn"));
out.println("Csso-Subscriber-Quid: "
+ request. get Header (" Gsso- Subscri ber-Quid"));
out.println("Lang/ Territory: "
+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
}
}

Note: If Oracle JAAS Provider is used, the directive code 401 may be
substituted for 499.

Developing Applications for Single Sign-On 9-7

Developing Applications Using mod_osso

Java Example #2: Single Sign-Off

This servlet is invoked when users select the login link within an application. The
application sets the URL to return to when sign-off is complete; then it issues a
directive that sends users to the single sign-off page. The key lines are in boldface.

inport java.io.?*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**
* Exanpl e servlet showing how to use

* Dynamic Directive for |ogout
*/

public class SSODynLogout extends HtpServl et
{
public void service (HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, |CException

Il Set the return URL

response. set Header (" Gsso-Return-Url ",
"http://ny.oracle.cont);

/1 Send Dynamc Directive for |ogout

response. sendError (470, "Oracle SSO');

Note: Alternatively, you can redirect to the osso_| ogout URL on
that computer.

Java Example #3: Forced Authentication

If logged-in users have exceeded a timeout, an application can force them to
reauthenticate. The directive for reauthentication is written into the servlet that
follows. The key lines are in boldface.

inport java.io.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

/**
* Exanpl e servlet show ng how to use

* Dynamic Directive for forced login
*/

public class SSODynForcedLogi n extends HttpServlet
{

public void service(HtpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException

String | _user = null;

Il Try to get the authenticate user nane
try

{

}

| _user = request. get RenoteUser();

9-8 Oracle Identity Management Application Developer’s Guide

Developing Applications Using mod_osso

cat ch(Exception e)
{

}

| _user = null;

[l If the user is authenticated then show
/1 user information; otherw se generate Dynamic
Il Directive for forced login
if(l_user I'=null)
{
Il Show aut henti cated user information
PrintWiter out = response.getWiter();
response. set Cont ent Type("text/htm");
out. println("<h2>\Wel come to Oracle Single Sign-On.</h2>");
out.println("<pre>");
out.println("Renote user: "
+ request . get Remot eUser ()) ;
out.println("Osso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out.println("Csso-User-Quid: "
+ request. get Header (" Osso- User-Guid"));
out.println("Csso-Subscriber: "
+ request. get Header (" Gsso- Subscri ber"));
out.println("Osso-User-Dn: "
+ request. get Header (" Osso- User-Dn"));
out. println("Csso-Subscriber-Dn: "
+ request. get Header (" Osso- Subscri ber-Dn"));
out.println("Csso-Subscriber-Quid: "
+ request. get Header (" Gsso- Subscri ber-Quid"));
out.println("Lang/ Territory: "
+ request . get Header (" Accept - Language")) ;
out.println("</pre>");
}
el se
{
response. set Header ("Csso- Paranoi d", "true");
response. sendError (499, "Oracle SSO');

A Word About Non-GET Authentication

The first page of a mod_osso-protected application must be a URL that uses the GET
authentication method. If the POST method is used, the data that the user provides
when logging in is lost during redirection to the single sign-on server. When deciding
whether to enable the global user inactivity timeout, please note that users are
redirected after timing out and logging in again.

Global Inactivity Timeout and Dynamic Directives

If you are using Global Inactivity Timeout and Dynamic Directive for enabling Single
Sign-On for your applications, then you can use the

Gsso- 1 dl e- Ti neout - Exceeded HTTP header in your application to determine the
timeout status. This header value is set to t r ue if timeout has occurred, otherwise it is
settof al se.

The following example shows how you can use the
Osso- | dl e- Ti meout - Exceeded HTTP header:

Developing Applications for Single Sign-On 9-9

Security Issues

/] Get the timeout status
String timeoutStatus = request.get Header (" Gsso- | dl e- Ti meout - Exceeded")
/1 Check if user has timedout
if ((timeoutStatus != null) && tineout Status.equal sl gnoreCase("true"))
{

response. set Header ("QGsso- Paranoi d", "true");

response. sendError (499, "Oracle SSO');
}

el se

/| Display page content here

}

Security Issues

This section describes security considerations when developing applications for
OracleAS Single Sign-On. It contains these topics:

« Single Sign-Off and Application Logout

« Secure Transmission of mod_osso Cookies

Single Sign-Off and Application Logout

If you build custom applications using OracleAS, note the following: when global
logout, or single sign-off, is invoked, only the single sign-on and mod_osso cookies are
cleared. This means that an OracleAS application must be coded to store single sign-on
user and realm names in either the OC4J session or in the application session. The
application must then compare these values to those passed by mod_osso. If a match
occurs, the application must show personalized content. If no match occurs, which
means that the mod_osso cookie is absent, the application must clear the application
session and force the user to log in.

This section covers the following topics:
« Application Login: Code Examples

« Application Logout: Recommended Code

Application Login: Code Examples

The first two code examples in this section do not incorporate the logic prescribed in
the section immediately preceding. The third example does incorporate this logic.
Although these are Java examples, they could be examples written in other languages
such as Perl, PL/SQL, and CGI.

Bad Code Example #1

/1 Get user name from application session. This session was
/'l established by the application cookie or OCAJ session cookie
String username = request.get Session().getAttribute(' USER_NAME);

/] Get subscriber name from application session. This session was
/1 established by the application cookie or OC4J session cookie.
String subscriber = request.getSession().getAttribute(' SUBSCRI BER_NAME');

[l Get user security information fromapplication session. This session was
established by the application cookie or OCAJ session cookie
String user_sec_info = request.get Session().getAttribute(' USER APP_SEC);

if((username !'= null) && (subscriber!= null))

9-10 Oracle Identity Management Application Developer’s Guide

Security Issues

{

/'l Show personal i zed user content
show _personal i zed_page(usernane, subscriber, user_sec_info);

}

el se

/1 Send Dynamic Directive for login
response. sendError(499, "Oracle SSO');

Bad Code Example #2

/1 Get SSO username from http header
String username = request.get Remot eUser ();

/] Get subscriber nanme from SSO http header
String subscriber = request.getHeader (' CSSO SUBSCRI BER);

/1 Get user security information fromapplication session.
[l This session was established by the application or OC4J session.
String user_sec_info =request.getSession().getAttribute(' USER APP_SEC);

i f((ssousernanme != null)&& subscriber!= null))
{
/'l Show personal ized user content
show_per sonal i zed_page(usernane, subscriber, user_sec_info);

}

el se

/1 Send Dynanmic Directive for login
response. sendError(499, "Oracle SSO');

}

Recommended Code

/1 Get user name from application session. This session was
/'l established by the application or OC4J session
String usernane = request.get Session().getAttribute(' USER_NAME);

/] Get subscriber name from application session. This session was
/] established by the application or OC4J session
String subscriber = request.getSession().getAttribute(' SUBSCRI BER_NAME);

/1 Get user security information fromapplication session.
/1 This session was established by the application or OC4J session.
String user_sec_info = request.get Session().getAttribute(' USER APP_SEC);

/1 Get usernane and subscriber name from JAZN APl */

JAZNUser Adapt or jaznuser = (JAZNUser Adaptor)requset. get User Principal ();
String ssousernane = jaznuser. get Nane();
String ssosubscriber = jaznuser.getReal n{).get Narme();

/1 1f you are not using JAZN api then you can al so get the username and
/1 subscriber name from nod_osso headers

String ssousernane = request. get RenoteUser();

String ssosubscriber = request. get Header (' OSSO SUBSCRI BER) ;

/] Check for application session. Create it if necessary.
if((username == null) || (subscriber == null))

{

...Code to create application session. Get the user information from
JAZN api (or nod_osso headers if you are not using JAZN api) and popul ate the

Developing Applications for Single Sign-On 9-11

Security Issues

application session with user, subscriber, and user security info.

}
i f((username !'= null)&& subscriber !'= null)
&&(ssousername != null)&&(ssosubscriber !'= null)
&&(user name. equal sl gnor eCase(ssousername) == 0)
&&(subscri ber. equal sl gnor eCase(ssosubscriber) == 0))

{

/'l Show personal i zed user content
show_per sonal i zed_page(usernane, subscriber, user_sec_info);

}

el se

{

...Code to Wpe-out application session, followed by...

/1 Send Dynanic Directive for login
/1 1f you are using JAZN then you shoul d use fol |l owi ng code
/'l response. sendError(401);

[l If you are not using JAZN api then you shoul d use follow ng code
/'l response. sendError(499, "Oracle SSO');
}

Application Logout: Recommended Code

Most applications that authenticate users have a logout link. In a
single-sign-on-enabled application, the user invokes the dynamic directive for logout
in addition to other code in the logout handler of the application. Invoking the logout
directive initiates single sign-off, or global logout. The example that follows shows
what single sign-off code should look like in Java:

/1 Clear application session, if any

String | _return_url :=return url to your application
response. set Header ("Osso-Return-Url", | _return_url);
response. sendError(470, "Oracle SSO');

Secure Transmission of mod_osso Cookies

You can add the GssoSecur eCooki es directive to set the Secur e flag on all cookies
created by mod_osso. This tells the browser to only transmit those cookies on
connections secured by HTTPS.

An example of this directive, in the mod_osso configuration file located in $ORACLE _
HOVE/ Apache/ Apache/ conf/ nmod_osso. conf, is as follows:

<| f Modul e nmod_osso. ¢>
Cssol pCheck of f
Cssol dl eTi meout of f
CssoSecur eCooki es on
CssoConfi gFi | e 0sso/ osso. conf

<Location /j2eel/ webapp>
require valid-user
Aut hType Basic

</ Location>

</| f Modul e>

9-12 Oracle Identity Management Application Developer’s Guide

10

Integrating J2EE Applications and Oracle
Internet Directory

This chapter is designed to provide a short overview of APIs you can use in J2EE
applications to get information about user permissions, groups, and policies from
Oracle Internet Directory.

Oracle Application Server Containers for J2EE (OC4J) is a J2EE certified server
implementation. OC4J supports the standard J2EE security APIs.

In addition to the standard security APls, OC4J provides a set of security features
collectively known as JAZN. JAZN includes the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider, the JAZN User Manager,
the JAAS Policy Management API, and the Realm API. OC4J is fully integrated with
Oracle Application Server Single Sign-On and Oracle Internet Directory. JAZN
security APIs provide features not found in standard J2EE security APIs.

The OracleAS JAAS Provider is an implementation of Java Authentication and
Authorization Services (JAAS) that stores security policies in either XML files or in
Oracle Internet Directory. OC4J applications can use JAAS Policy Management APIs
for fine-grained authorization.

This document discusses the following topics:
« Standard J2EE Security APIs

« OC4] Security APIs

« JAAS Policy Management APIs

Standard J2EE Security APIs

The J2EE standard implementation includes security APIs that can be used by Java
Servlets and Enterprise JavaBeans (EJBs) to get information about users and roles.
These APIs work independently from Oracle Internet Directory. They retrieve
information about users who have already been authenticated, regardless of whether
the application is integrated with Oracle Identity Management.

Thej avax. servl et . htt p package, which is part of the Java Servlet specification,
includes the following methods for obtaining information about users:

« javax.servlet.http. HtpServl et Request. get User Princi pal ()
« javax.servlet.http. HtpServl et Request.isUserl nRol e()
« javax.servlet.http. HtpServl et Request. get Renot eUser ()

To learn more about the j avax. servl et . htt p package, see:

Integrating J2EE Applications and Oracle Internet Directory 10-1

0C4J Security APIs

http://java. sun. conl product s/ servl et/ 2. 2/ javadoc/i ndex. ht m

Similarly, the j avax. ej b package, which is part of the Enterprise JavaBeans
specification, includes the following methods for obtaining information about users:
« javax.ejb.EJBContext.getCallerPrincipal ()

« javax.ejb.EJBContext.isCallerlnRole()

To learn more about the j avax. ej b package, see:

http://java. sun.conij2eel/ 1. 4/ docs/ api / j avax/ ej b/ package-tree. ht m

OC4J Security APIs

JAZN security APIs are based on the package com ever mi nd. securi ty. This class
specifies a user manager to authenticate and authorize users and groups that attempt
to access a J2EE application. The default JAZN user manager is JAZNUser Manager ,
which supports LDAP-based providers and is integrated with Oracle Application
Server Single Sign-On and Oracle Internet Directory.

To access Oracle Internet Directory information using JAZNUser Manager , you must
configure JAZN to use the LDAP-based provider, j azn- | dap, as described in the
Oracle Application Server Containers for J2EE Security Guide.

JAZN supports the following com ever m nd. securi ty. User methods to retrieve
user attributes from Oracle Internet Directory:

« getDescription() returnsashort description of this user or null if no
description is present.

« get Groups() returns the groups that this user belongs to, if known and
supported.

« get Nane() returns the username of this user.

« hasPerm ssion() checks whether this user has the named permission.

« i sMember O () checks whether this user is a member of the specified group.
See JAAS Provider API Reference for more information.

Applications that need additional user attributes, such as email address or Oracle
Internet Directory-specific attributes, must use the Oracle Internet Directory APIs.
These are found in Oracle Internet Directory APl Reference and discussed in Chapter 2
and Chapter 4.

JAZN APIs do not support user creation. Use either the Oracle Internet Directory APIs
or Oracle Delegated Administration Services to create users.

Sample Code

The sample code that follows shows both standard J2EE and JAZN APIs being used to
retrieve user information after authentication has occurred.

package oracle.security.jazn.sanples. http;

inport java.io.|CException;
inport java.util.Date;
inport java.util.Properties;
inport javax.nam ng.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

10-2 Oracle Identity Management Application Developer’s Guide

0OC4J Security APIs

/**

* A sinple denp that exercises the Servlet security APIs.

*

*/

public class Callerlnfo extends HtpServlet {

public Callerlnfo()

{

super();

}

public void init(ServletConfig config)
throws Servl et Exception

{

super.init(config);

}

public void doGet (Ht tpServl et Request request, HttpServletResponse
response)

throws Servl et Exception,

| CException

Servl et Qut put Stream out = response. get Qut put Strean();

response. set Cont ent Type("text/htm™");
out. println("<HTM.><BCODY bgcol or =" #FFFFFF' >");

/] Standard J2EE APl s

out.

out.

out.

out.

out.

println("request
request
println("request
request
println("request
request
println("request
request
println("request
request

/| JAZN- LDAP API's
[/ Get the User principal fromrequest
com evernind. security. User user =

(comeverm nd. security. User)request.getUserPrincipal ();
[/ getDescription APl Test

try {

java.lang. St

.getRenotelUser = " +

. get Renot eUser () + "
");
.isUserInRole('FOO) =" +
.isUserinRole("FQD') + "
");
.isUserlnRol e('ar_manager') =" +
.isUserlnRol e("ar_manager") + "
");
.isUserlnRol e('ar_developer') =" +
.isUserlnRol e("ar_devel oper") + "
");
.getUserPrincipal =" +
.getUserPrincipal () + "
");

ring s = user.getDescription();

out. println("getDescription APl Result: ["

+s+ "]
");

}catch(Throwabl e €) {
out.println("getDescription APl FAILED. " +

}

/] get G oups APl Test
try {

e.toString() + "
");

java.util.Set s = user.getGoups();
out. println("get Goups APl Result: [" +s+

Integrating J2EE Applications and Oracle Internet Directory 10-3

JAAS Policy Management APIs

"]
");
}catch(Throwabl e e) {
out. println("get G oups APl FAILED. " +
e.toString() + "
");
}

/] get Nane APl Test
try {
java.lang. String s = user.getNane();
out. println("get Nane APl Result: [" +s+
"]
");
}catch(Throwabl e e) {
out. println("get Name APl FAILED. " +
e.toString() + "
");
}

[/ hasPermission APl Test
try {
com ever nind. server.rni.RM Permi ssion p = new
com ever m nd. server.rn . RM Perm ssion("l ogin");
bool ean b = user. hasPerm ssion(p);
out. println("hasPerm ssion APl Result: [" + b
+ "]
");
}catch(Throwabl e e) {
out. println("hasPerm ssion APl FAILED: " +
e.toString() + "
");

}
/1isMember OF APl Test
try {

java.util.Set s = user.getGoups();
java.util.lterator itr = s.iterator();
bool ean b = fal se;

if(itr.hasNext())

{
b =
user.i sMenber O ((com evermi nd. security. Goup)itr.next());
}
out. println(" sMenberCf APl Result: [" +b+

"]
");
}catch(Throwabl e e) {
out. println(" sMenberOf APl FAILED: " +
e.toString() + "
");

out.println("</BODY>"),
out.println("</HTM.>");

JAAS Policy Management APIs

OC4J includes a highly scalable Java Authentication and Authorization Service (JAAS)
provider, OracleAS JAAS Provider. J2EE applications integrated with Oracle Internet
Directory can take advantage of the JAAS provider for enforcing fine-grained access
control over protected resources.

10-4 Oracle Identity Management Application Developer’s Guide

JAAS Policy Management APIs

OracleAS JAAS Provider supports using Oracle Internet Directory as the JAAS
permissions and policies repository. OracleAS JAAS Provider is integrated with Oracle
Internet Directory and OracleAS Single Sign-On to enhance application security.

This section includes the following topics
« JAAS Policy Management

« Retrieving User Policies and Permissions using Standard JAAS APIs

JAAS Policy Management

Permissions may be granted or revoked either by using the JAZN Admintool from the
command line or programmatically, by using JAZN APIs.

The Admintool j azn. j ar is found in the infrastructure installation under $ORACLE _
HOME/ | 2ee/ hormre. Set the ORACLE_HOVE and J2EE_HOVE environment variables
before using it.

The following command line grants user scot t permissions to read the file f 0o. t xt .
The realm name scot t sReal mis defined in Oracle Internet Directory and the user
name scot t exists in Oracle Internet Directory:

java -jar jazn.jar -grantpermscottsReal m-user scott java.io.FilePermssion
foo.txt, read

For more details on using the Admintool for User Management, see Oracle Application
Server Containers for J2EE Security Guide Appendix B, "Using the JAZN Admintool".

To programmatically grant users permissions, you can use the JAZN's API as follows:

/1get JAZNConfiguration related info
JAZNConfig jc = JAZNConfi g. get JAZNConfi g();

[Icreate a Grantee for "scott"”

Real mvanager real nmgr = j c. get Real mvanager ();
Real mreal m = real mvyr. get Real n{"scottsReal ni');
User Manager user Myr = real m get User Manager () ;
final Real mUser user = userMyr.getUser("scott");

/lgrant scott file pernission
JAZNPol i cy policy = jc.getPolicy();

if (policy '=null) {

Gantee gtee = new Grantee((Principal) user);

java.io.FilePermssion fileperm= new java.io.FilePernission("foo.txt",
"read");

policy.grant(gtee, fileperm;
}

For further details, see the JAAS Provider API Reference and the Oracle Application Server
Containers for J2EE Security Guide.

Retrieving User Policies and Permissions using Standard JAAS APIs

Servlets may be run in either doaspri vi | eged or runasmode. This causes them to
be run in Subj ect . doAsPri vi | eged or Subj ect . doAs blocks, respectively. When
servlets are run in either of these modes, you can check permissions by using either of
two standard APIs: Policy APIs or AccessController. To retrieve policies, configure
your servlet to use doaspri vi | eged mode. For more information on how to

Integrating J2EE Applications and Oracle Internet Directory 10-5

JAAS Policy Management APIs

configure doaspri vi | eged orr unas mode, see "Configuring J2EE Authorization" in
Oracle Application Server Containers for J2EE Security Guide.

The following code snippets show how to check permissions if user scott has
permission to read f 0o. t xt .

Checking or Listing Permissions Using javax.security.auth.Policy.

This approach allows you not only to check permissions, but also to list all the
permissions granted to a user or group. If you only need to check the permissions
granted to the user or group, and not code-based permissions, this approach is faster.

/I create Pernission

Fi | ePerm ssion perm = new Fi | ePerm ssion("/hone/scott/foo.txt","read");

{

javax.security.auth. Policy currPolicy =
javax.security.auth. Policy.getPolicy();

/1 Query policy now

Systemout. printin("Policy permssions for this subject are " +
currPolicy. get Perm ssi ons(Subj ect . get Subj ect (acc), null));

/| Check Perni ssions

Systemout.printin("Policy.inpiles permssion: "+ perm+" ? " +
currPolicy. get Perm ssi ons(Subj ect . get Subj ect (acc), null).inplies(perm);

}

Checking Permissions Using AccessController

Irrespective of whether the Security Manager is turned on or off, this code will check
to see whether the subject or user executing this has permissions.

Note: If this snippet is executed in a servlet configured for
r unas mode, the code base also might require permission.

//create Permssion
Fi | ePerm ssion perm= new Fil ePerm ssion("/hone/scott/foo.txt", "read");

{

//get current AccessControl Cont ext
AccessCont rol Context acc = AccessControl | er. get Context();
AccessControl | er. checkPer mi ssi on(perm;

}

For information about policy APIs provided by the OracleAS JAAS Provider, please
see Oracle Application Server Containers for J2EE Security Guide Appendix A, "OracleAS
JAAS Provider and Sample" and Oracle Application Server Containers for J2EE Security
Guide Appendix B, "Using the JAZN Admintool"

For information about the Oracle Internet Directory Java APIs, see Oracle Internet
Directory API Reference and Chapter 4, "Using the Java API Extensions to JNDI".

10-6 Oracle Identity Management Application Developer’s Guide

Part Il

Oracle Internet Directory Programming

Reference

Part 1l presents the standard APIs and the Oracle extensions to these APlIs. It contains
these chapters:

Chapter 11,
Chapter 12, "

Chapter 13,

Chapter 14, "
Chapter 15, "
Chapter 16, "
Chapter 17, "

'C API Reference"

DBMS_LDAP PL/SQL Reference"

"Java API Reference"

DBMS_LDAP_UTL PL/SQL Reference"
DAS_URL Interface Reference”
Centralized User Provisioning Java APl Reference"

Provisioning Integration PL/SQL API Reference"

11

C API Reference

This chapter introduces the Oracle Internet Directory C APl and provides examples of
how to use it.

The chapter contains these topics:

« About the Oracle Internet Directory C API

« Functions in the C API

« Sample C API Usage

« Required Header Files and Libraries for the C API
« Dependencies and Limitations of the C API

About the Oracle Internet Directory C API

The Oracle Internet Directory SDK C API is based on LDAP Version 3 C APl and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 10g Release 2 (10.1.2) in the following
modes:

« SSL—AIl communication secured by using SSL
« Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence of
the SSL calls in the API usage. You can easily switch between SSL and non-SSL modes.

See Also: "Sample C APl Usage" on page 11-40 for more details on
how to use the two modes

This section contains these topics:

« Oracle Internet Directory SDK C API SSL Extensions

« The Functions at a Glance

Oracle Internet Directory SDK C API SSL Extensions

Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The SSL
extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

C API Reference 11-1

Functions in the C API

None—Neither client nor server is authenticated, and only SSL encryption is used
One-way—Only the server is authenticated by the client

Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

SSL Interface Calls
There is only one call required to enable SSL.:

int |dap_init_SSL(Sockbuf *sb, text *sslwallet, text *sslwalletpasswd, int
ssl aut hnode)

The | dap_i ni t _SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Table 11-1 Arguments for SSL Interface Calls

Argument Description

sb Socket buffer handle returned by the | dap_open call as part of LDAP
handle.

sslwal | et Location of the user wallet.

ssl wal | et passwd Password required to use the wallet.

ssl aut hrmode SSL authentication mode user wants to use. Possible values are:

« GSLC_SSL_NO _AUTH—NOo authentication required
« GSLC_SSL_ONEWAY_AUTH—Only server authentication required.

« GSLC _SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A nonzero return value
indicates an error. The error code can be decoded by using the
function| dap_err 2string.

See Also: "Sample C APl Usage" on page 11-40

Wallet Support

depending on which authentication mode is being used, both the server and the client
may require wallets to use the SSL feature. 10g Release 2 (10.1.2) of the API supports
only the Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

Functions in the C API

This section examines each of the functions and procedures in the C API. It explains
their purpose and syntax. It also provides tips for using them.

The section contains the following topics:

The Functions at a Glance
Initializing an LDAP Session
LDAP Session Handle Options
Authenticating to the Directory

11-2 Oracle Identity Management Application Developer’s Guide

Functions in the C API

« SASL Authentication Using Oracle Extensions

=« SASL Authentication

« Working With Controls

« Closing the Session

« Performing LDAP Operations

« Abandoning an Operation

« Obtaining Results and Peeking Inside LDAP Messages
« Handling Errors and Parsing Results

« Stepping Through a List of Results

« Parsing Search Results

The Functions at a Glance

Table 11-2 lists all of the functions and procedures in the C API and briefly explains

their purpose.

Table 11-2 Functions and Procedures in the C API

Function or Procedure Description

ber _free Free the memory allocated for a BerElement structure
| dap_abandon_ext Cancel an asynchronous operation

| dap_abandon

| dap_add_ext Add a new entry to the directory

| dap_add_ext _s

| dap_add

| dap_add_s

| dap_conpar e_ext Compare entries in the directory

| dap_conpare_ext_s

| dap_conpar e

| dap_conpare_s

| dap_count _entries Count the number of entries in a chain of search results
| dap_count _val ues Count the string values of an attribute

| dap_count _val ues_|I en Count the binary values of an attribute

ora_ldap_create_clientctx Create a client context and returns a handle to it.

ora_|l dap_create_cred_hdl Create a credential handle.

| dap_del et e_ext Delete an entry from the directory
| dap_del ete_ext _s

| dap_del ete

| dap_del ete_s

ora_l dap_destroy_clientctx Destroy the client context.

ora_l dap_free_cred_hdl Destroy the credential handle.

| dap_dn2uf n Converts the name into a more user friendly format
| dap_err2string Get the error message for a specific error code

| dap_expl ode_dn Split up a distinguished name into its components

| dap_expl ode_rdn

C API Reference

11-3

Functions in the C API

Table 11-2 (Cont.) Functions and Procedures in the C API

Function or Procedure

Description

| dap_first_attribute

Get the name of the first attribute in an entry

| dap_first_entry

Get the first entry in a chain of search results

ora_l dap_get cred_props

Retrieve properties associated with credential handle.

| dap_get _dn

Get the distinguished name for an entry

| dap_get _option

Access the current value of various session-wide
parameters

| dap_get _val ues

Get the string values of an attribute

| dap_get _val ues_len

Get the binary values of an attribute

| dap_init
| dap_open

Open a connection to an LDAP server

ora_|l dap_init_SASL

Perform SASL authentication

| dap_nenfree

Free memory allocated by an LDAP API function call

| dap_nodi fy_ext

| dap_rodi fy_ext _s
| dap_nodi fy

| dap_nodi fy_s

Modify an entry in the directory

| dap_nsgfree

Free the memory allocated for search results or other
LDAP operation results

| dap_first_attribute
| dap_next _attribute

Get the name of the next attribute in an entry

| dap_next _entry

Get the next entry in a chain of search results

| dap_perror Prints the message supplied in message.
(Deprecated)
| dap_r ename Modify the RDN of an entry in the directory

| dap_rename_s

| dap_resul t 2error
(Deprecated)

Return the error code from result message.

| dap_resul t

| dap_nsgfree
| dap_msgt ype
| dap_nmsgi d

Check the results of an asynchronous operation

| dap_sasl _bind
| dap_sasl _bind_s

General authentication to an LDAP server

| dap_sear ch_ext

| dap_search_ext _s
| dap_search

| dap_search_s

Search the directory

| dap_search_st

Search the directory with a timeout value

| dap_get _option
| dap_set _option

Set the value of these parameters

ora_l dap_set _clientctx

Add properties to the client context handle.

ora_| dap_set _cred_props

Add properties to credential handle.

11-4 Oracle Identity Management Application Developer’s Guide

Functions in the C API

Table 11-2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

| dap_si npl e_bi nd Simple authentication to an LDAP server

| dap_sinpl e_bind_s

| dap_sasl _bi nd

| dap_sasl _bind_s

| dap_unbi nd_ext End an LDAP session

| dap_unbi nd

| dap_unbi nd_s

| dap_val ue_free Free the memory allocated for the string values of an
attribute

| dap_val ue_free Free the memory allocated for the binary values of an

| dap_val ue_free_len attribute

This section lists all the calls available in the LDAP C API found in RFC 1823.

See Also: The following URL for a more detailed explanation of
these calls:

http://ww.ietf.org

Initializing an LDAP Session
The calls in this section initialize a session with an LDAP server.

Idap_init and Idap_open

| dap_i ni t () initializes a session with an LDAP server, but does not open a
connection. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization. | dap_open()
initializes a session and opens a connection. The two fulfill the same purpose and have
the same syntax, but the first is preferred.

Syntax

LDAP *| dap_init

(
const char *host nane,
int portno

)

Parameters

Table 11-3 Parameters for Initializing an LDAP Session

Parameter Description

host nane Contains a space-separated list of host names or dotted strings representing
the IP address of hosts running an LDAP server to connect to. Each host
name in the list may include a port number. The two must be separated by a
colon. The hosts are tried in the order listed until a successful connection
occurs.

Note: A suitable representation for including a literal IPv6[10] address in the
host name parameter is desired, but has not yet been determined or
implemented in practice.

C APl Reference 11-5

Functions in the C API

Table 11-3 (Cont.) Parameters for Initializing an LDAP Session

Parameter Description

portno Contains the TCP port number to connect to. The default LDAP port of 389
can be obtained by supplying the constant LDAP_PORT. If host nanme
includes a port number, por t no is ignored.

Usage Notes

[dap_init() and! dap_open() both return a session handle. This is a pointer to an
opaque structure that must be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized. If the session cannot be
initialized, check the error reporting mechanism for the operating system to see why
the call failed.

Note that if you connect to an LDAPV2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other operations
are performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options

The LDAP session handle returned by | dap_i ni t () is a pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control aspects
of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions, described
in this section.

Idap_get_option and Idap_set_option

| dap_get _option() is used to access the current value of various session-wide
parameters. | dap_set _opti on() is used to set the value of these parameters. Note
that some options are read only and cannot be set; it is an error to call | dap_set _
opti on() and attempt to set a read only option.

Note that if automatic referral following is enabled (the default), any connections
created during the course of following referrals will inherit the options associated with
the session that sent the original request that caused the referrals to be returned.

Syntax

int |dap_get_option

(

LDAP *| d,

i nt option,
voi d *out val ue

)

int |dap_set_option

(

LDAP *1 d,
i nt option,
const void *inval ue

11-6 Oracle Identity Management Application Developer’s Guide

Functions in the C API

#define LDAP_OPT_ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters

Table 11-4 lists and describes the parameters for LDAP session handle options.

Table 11-4 Parameters for LDAP Session Handle Options

Parameters

Description

I d

option

out val ue

i nval ue

The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with | dap_i ni t () or| dap_open()
inherit their characteristics from these global defaults.

The name of the option being accessed or set. This parameter should be one
of the constants listed and described in Table 11-5 on page 11-7. The
hexadecimal value of the constant is listed in parentheses after the
constant.

The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPCont rol **, acopy of the data that is associated
with the LDAP session | d is returned. Callers should dispose of the
memory by calling | dap_nenfree() orl dap_controls_free(),
depending on the type of data returned.

A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the APl implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to | dap_set _opti on() . If a value passed for
invalue is invalid or cannot be accepted by the implementation, | dap_
set _option() should return - 1 to indicate an error.

Constants

Table 11-5 on page 11-7 lists and describes the constants for LDAP session handle

options.

Table 11-5 Constants

Type for invalue Type for outvalue

Constant parameter parameter Description
LDAP_OPT_API _ Not applicable. LDAPAPI | nf o* Used to retrieve some basic information
| NFQ(0x00) Option is read about the LDAP API implementation at
only. execution time. Applications need to be
able to determine information about the
particular APl implementation they are
using both at compile time and during
execution. This option is read only and
cannot be set.
ORA LDAP_OPT_RFRL_ void* (LDAP_OPT_ int * This option determines whether referral
CACHE N cache is enabled or not. If this option is set
voi d* (LDAP_OPT to LDAP_OPT_ON, the cache is enabled,;
OFF) . otherwise, the cache is disabled.

ORA LDAP_OPT RFRL_ int *
CACHE_SZ

int * This option sets the size of referral cache.
The size is maximum size in terms of
number of bytes the cache can grow to. It is
set to 1MB by default.

C API Reference 11-7

Functions in the C API

Table 11-5 (Cont.) Constants

Type for invalue Type for outvalue
Constant parameter parameter

Description

LDAP_CPT_ int * int *
DEREF(0x02)

LDAP_CPT_ int * int *
SI ZELI M T(0x03)

LDAP_CPT_ int * int *
TI MELI M T(0x04)

LDAP_CPT_ voi d *(LDAP_OPT_ int *
REFERRALS(0x08))
voi d *(LDAP_OPT_

OFF)
LDAP_CPT_ void * (LDAP_ int *
RESTART(0X09) oPT_ON)

void * (LDAP_

OPT_CFF)

11-8 Oracle Identity Management Application Developer’s Guide

Determines how aliases are handled
during search. It should have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHI NG
(0x01), LDAP_DEREF_FI NDI NG
(0x02) , or LDAP_DEREF_ALWAYS
(0x03) . The LDAP_DEREF_SEARCHI NG
value means aliases are dereferenced
during the search but not when locating
the base object of the search. The LDAP_
DEREF_FI NDI NGvalue means aliases are
dereferenced when locating the base object
but not during the search. The default
value for this option is LDAP_DEREF _
NEVER

A limit on the number of entries to return
fromasearch. Avalue of LDAP_NO LIM T
(0) means no limit. The default value for
this option is LDAP_NO LIM T.

A limit on the number of seconds to spend
on a search. A value of LDAP_NO LIM T
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to | dap_search_ext _s() or

| dap_r esul t () —both of which are
described later in this document—can be
used to specify both a local and server side
time limit. The default value for this option
iSLDAP_NO LIMT.

Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It may be set to one
of the constants LDAP_OPT_ON or LDAP_
OPT_CFF. Any non-null pointer value
passed to| dap_set _opti on() enables
this option. When the current setting is
read using | dap_get _opti on(), azero
value means off and any nonzero value
means on. By default, this option is turned
on.

Determines whether LDAP input and
output operations are automatically
restarted if they stop prematurely. It may
be set to either LDAP_OPT_ONor LDAP_
OPT_OFF. Any non-null pointer value
passed to| dap_set _opti on() enables
this option. When the current setting is
read using | dap_get _opti on(), azero
value means off and any nonzero value
means on. This option is useful if an input
or output operation can be interrupted
prematurely—by a timer going off, for
example. By default, this option is turned
off.

Functions in the C API

Table 11-5 (Cont.) Constants

Constant

Type for invalue
parameter

Type for outvalue

parameter Description

LDAP_OPT_PROTOCOL_

VERSI ON(0x11)

LDAP_CPT_SERVER
CONTROLS(0x12)

LDAP_CPT_CLI ENT_
CONTROLS(0x13)

LDAP_OPT_API _

FEATURE_| NFQ[0x15)

LDAP_CPT_HOST_
NAVE(0x30)

LDAP_CPT_ERRCR_
NUMBER(0x31)

LDAP_CPT_ERRCR_
STRI NG(0x32)

LDAP_OPT_MATCHED_

DN(0x33)

int * int * This option indicates the version of the

LDAP protocol used when communicating
with the primary LDAP server. The option
should be either LDAP_VERSI ON2 (2) or
LDAP_VERSI ON3 (3) . If no version is set,

the default is LDAP_VERSI ON2 (2) .

LDAPCont r ol ** LDAPCont r ol *** A default list of LDAP server controls to be

sent with each request.

See Also: "Working With Controls" on
page 11-14

LDAPCont r ol ** LDAPCont r ol *** A default list of client controls that affect

the LDAP session.

See Also: "Working With Controls" on
page 11-14

LDAPAPI Feat urel nfo * Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This

option is read only. It cannot be set.

Not applicable.
Option is read
only.

char * char ** The host name (or list of hosts) for the
primary LDAP server. See the definition of
the host name parameter for | dap_

i nit() todetermine the syntax.

The code of the most recent LDAP error
during this session.

int * int *

char * - The message returned with the most recent

LDAP error during this session.

The matched DN value returned with the
most recent LDAP error during this
session.

char * char **

Usage Notes

Both | dap_get _option() and| dap_set _opti on() return O if successful and - 1
if an error occurs. If - 1 is returned by either function, a specific error code may be
retrieved by calling | dap_get _opti on() with an option value of LDAP_OPT _
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code if a
callto| dap_get _opti on() with an option value of LDAP_OPT_ERRCR_NUMBER
fails.

When acalltol dap_get opti on() succeeds, the APl implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
callto| dap_get _opti on() fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When acalltol dap_set _opti on() fails, it must not change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects the
behavior of future LDAP API calls.

C API Reference 11-9

Functions in the C API

Standards track documents that extend this specification and specify new options
should use values for option macros that are between 0x1000 and 0x3FFF inclusive.
Private and experimental extensions should use values for the option macros that are
between 0x4000 and 0x7FFF inclusive. All values less than 0x1000 and greater than
OX7FFF that are not defined in this document are reserved and should not be used. The
following macro must be defined by C LDAP API implementations to aid extension
implementers:

#define LDAP_OPT_PRI VATE_EXTENSI ON_BASE 0x4000 /* to Ox7FFF inclusive */

Authenticating to the Directory

The functions in this section are used to authenticate an LDAP client to an LDAP
directory server.

Idap_sasl_bind, Idap_sasl_bind_s, Idap_simple_bind, and Idap_simple_bind_s
Thel dap_sasl _bi nd() and| dap_sasl _bi nd_s() functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the DN to bind as, the method
to use, as a dotted-string representation of an object identifier (OID) identifying the
method, and a st ruct ber val holding the credentials. The special constant value
LDAP_SASL_SI MPLE (NULL) can be passed to request simple authentication, or the
simplified routines | dap_si npl e_bi nd() orl dap_si npl e_bi nd_s() can be

used.

Syntax

int |dap_sasl _bind

(

LDAP *|d,

const char *dn,

const char *mechani sm
const struct berval *cred,
LDAPCont r ol **gserverctrls,
LDAPCont r ol **clientctrls,
int *nmsgi dp

)

int |dap_sasl_bind_s(

LDAP *| d,

const char *dn,

const char *mechani sm
const struct berval *cred,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
struct berval **server credp

)

int | dap_sinpl e_bind(

LDAP *1d,
const char *dn,
const char *passwd

)

int |dap_sinple_bind_s(
LDAP *|d,
const char *dn,

11-10 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

const char *passwd

);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

« int Idap_bind(LDAP *1d, const char *dn, const char *cred,
int method);

« int Idap_bind_s(LDAP *Id, const char *dn, const char *cred,
int method);

« int |dap_kerberos_bind(LDAP *Id, const char *dn);
« int |dap_kerberos_bind _s(LDAP *Id, const char *dn);

Parameters
Table 11-6 lists and describes the parameters for authenticating to the directory.

Table 11-6 Parameters for Authenticating to the Directory

Parameter Description

Id The session handle

dn The name of the entry to bind as

mechani sm Either LDAP_SASL_SI MPLE (NULL) to get simple authentication, or

a text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For | dap_si npl e_bi nd(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

megi dp This result parameter will be set to the message id of the request if the

| dap_sasl _bi nd() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated ber val
structure is returned that should be disposed of by calling
ber _bvfree().NULL should be passed to ignore this field.

Usage Notes

Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The | dap_sasl _bi nd() function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_sasl _bi nd() places the message id of
the request in * msgi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the bind.

The | dap_si npl e_bi nd() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to | dap_
resul t (), described in, can be used to obtain the result of the bind. In case of error,
| dap_si npl e_bi nd() will return - 1, setting the session error parameters in the
LDAP structure appropriately.

C API Reference 11-11

Functions in the C API

The synchronous | dap_sasl| _bi nd_s() and | dap_si npl e_bi nd_s() functions
both return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPV2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to | dap_
sasl _bind() orl dap_sasl _bind_s().

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

SASL Authentication Using Oracle Extensions

The function ora_l dap_i ni t _SASL() can be used for SASL based authentication. It
accepts these arguments:

« DN of the entity to be authenticated.

« SASL credential handle for the entity. (This handle can be managed using ora_
| dap_create_cred_hdl (),ora_l dap_set _cred_props() andora_I| dap_
free_cred_hdl () functions).

« SASL mechanism to be used.

This function encapsulates the SASL handshake between the client and the directory
server for various standard SASL mechanisms thereby reducing the coding effort
involved in establishing a SASL-based connection to the directory server.

Supported SASL mechanisms:
« DIGEST-MD5

The SASL API supports the authentication-only mode of DIGEST-MD5. The other
two authentication modes addressing data privacy and data integrity are yet to be
supported.

While authenticating against Oracle Internet Directory, the DN of the user has to
be normalized before it is sent across to the server. This can be done either outside
the SASL APl using the ora_| dap_normal i ze_dn() function before the DN is
passed on to the SASL API or with the SASL API by setting the ORA_LDAP_CRED _
SASL_NORM_AUTHDN option in SASL credentials handle using or a_| dap_set _
cred_handl e() .

« EXTERNAL:

The SASL APl and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requires that the SSL connection (mutual authentication
mode) be established to the directory server by using theora_l dap_init _
SSL() function. Theora_l dap_i nit _SASL() function can then be invoked
with the mechani smargument as EXTERNAL. The directory server would then
authenticate the user based on the user credentials in SSL connection.

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl

Use these functions to create and manage SASL credential handles. Theora_| dap_
create_cred_hdl function should be used to create a SASL credential handle of

11-12 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

certain type based on the type of mechanism used for SASL authentication. The ora_
| dap_set _cred_props() function can be used to add relevant credentials to the
handle needed for SASL authentication. Theora_| dap_get _cred_props()
function can be used for retrieving the properties stored in the credential handle, and
theora_l dap_free_cred_hdl () function should be used to destroy the handle
after its use.

Syntax

OraLdapHandl e ora_| dap_create_cred_hdl

(
OraLdapdientCtx * clientCx,

int credType
)

OraLdapHandl e ora_|l dap_set_cred_props

(
OraldaplientCx * clientCx,

OraLdapHandl e cred,
int String[],
voi d * inProperty

)
OraLdapHandl e ora_| dap_get _cred_props

(
OraldaplientCtx * clientCx,

OraLdapHandl e cred,
int String[],
voi d * outProperty

)

O alLdapHandl e ora_| dap_free_cred_hdl

(
OraLdapdientCtx * clientCtx,

OraLdapHandle cred
)
Parameters

Table 11-7 Parameters for Managing SASL Credentials

Parameter Description

clientCx C API Client context. This can be managed using or a_| dap_
init_clientctx() andora_l dap_free_clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

String[] Type of credential, which needs to be added to credential
handle.

i nProperty One of the SASL Credentials to be stored in credential handle.

out Property One of the SASL credentials stored in credential handle.

SASL Authentication

ora_l dap_i nit _SASL, the lone function in this section, performs SASL
authentication.

C API Reference 11-13

Functions in the C API

ora_ldap_init_SASL
ora_| dap_i ni t _SASL performs authentication based on the mechanism specified as
one of its input arguments.

Syntax

int ora_|ldap_init_SASL

(

OraLdapCientCx * clientCx,
LDAP* 1 d,

char* dn,

char* mechani sm

OraLdapHandl e cred,

LDAPCont rol **serverctrl s,
LDAPControl **clientctrls

K

Parameters

Table 11-8 Parameters for Managing SASL Credentials

Parameter Description
clientCtx C API Client context. This can be managed usingora_| dap_i nit_clientctx()
andora_|l dap_free_clientctx() functions.
Id Ldap session handle.
dn User DN that requires authentication.
mechani sm SASL mechanism.
cred Credentials needed for SASL authentication.
serverctrls List of LDAP server controls
clientctrls List of client controls
Working With Controls

LDAPvV3 operations can be extended through the use of controls. Controls can be sent
to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are never
sent to a server. A common data structure is used to represent both types of controls:

typedef struct |dapcontrol

{

char *[dct| _oi d;
struct berval I dctl _val ue;

char I dctl _iscritical;
} LDAPControl;

The fields in the | dapcont r ol structure are described in Table 11-9.

Table 11-9 Fields in Idapcontrol Structure

Field Description

I dctl _oid The control type, represented as a string.

11-14 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 11-9 (Cont.) Fields in Idapcontrol Structure

Field Description

| dctl _val ue The data associated with the control (if any). To specify a zero-length
value, set| dct | _val ue. bv_| entozeroand | dct| _val ue. bv_val
to a zero-length string. To indicate that no data is associated with the
control, setl dct| _val ue. bv_val to NULL.

I detl _iscritical Indicates whether the control is critical of not. If this field is nonzero, the
operation will only be carried out if the control is recognized by the
server or the client. Note that the LDAP unbind and abandon operations
have no server response. Clients should not mark server controls critical
when used with these two operations.

Some LDAP API calls allocate an | dapcont r ol structure or a NULL-terminated array
of | dapcont r ol structures. The following routines can be used to dispose of a single
control or an array of controls:

voi d | dap_control _free(LDAPControl *ctrl);
voi d | dap_controls_free(LDAPControl **ctrls);

Ifthectrl orctrl s parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the | dap_set _

opti on() function described in "ldap_get option and Idap_set_option" on page 11-6.
A list of controls can also be passed directly to some LDAP API calls such as| dap_
sear ch_ext (), in which case any controls set for the session through the use of

| dap_set _option() areignored. Control lists are represented as a NULL-terminated
array of pointers to | dapcont r ol structures.

Server controls are defined by LDAPvV3 protocol extension documents; for example, a
control has been proposed to support server-side sorting of search results.

One client control is defined in this document (described in the following section).
Other client controls may be defined in future revisions of this document or in
documents that extend this API.

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 11-6, applications can enable and disable automatic chasing
of referrals on a session-wide basic by using the | dap_set _opti on() function with
the LDAP_OPT_REFERRAL S option. It is also useful to govern automatic referral
chasing on per-request basis. A client control with an object identifier (OID) of
1.2.840. 113556. 1. 4. 616 exists to provide this functionality.

/* ODfor referrals client control */
#defi ne LDAP_CONTROL_REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP_CHASE SUBORDI NATE_REFERRALS 0x00000020U
#define LDAP_CHASE EXTERNAL_REFERRALS 0x00000040U

To create a referrals client control, the | dct | _oi d field of an LDAPCont r ol structure
must be set to LDAP_CONTROL_REFERRALS (" 1. 2. 840. 113556. 1. 4. 616") and
the I dct | _val ue field must be set to a four-octet value that contains a set of flags.
Thel dct | _val ue. bv_I en field must always be setto 4. The | dct | _val ue. bv_
val field must point to a four-octet integer flags value. This flags value can be set to
zero to disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_CHASE SUBORDI NATE _
REFERRALS (0x00000020U) to indicate that only LDAPV3 search continuation

C API Reference 11-15

Functions in the C API

references are to be automatically chased by the APl implementation, to the value
LDAP_CHASE EXTERNAL_REFERRALS (0x00000040U) to indicate that only
LDAPvV3 referrals are to be automatically chased, or the logical OR of the two flag
values (0x00000060U) to indicate that both referrals and references are to be
automatically chased.

See Also: "Directory Schema Administration” in Oracle Internet
Directory Administrator’s Guide for more information about object
identifiers

Closing the Session

Use the functions in this section to unbind from the directory, to close open
connections, and to dispose of the session handle.

Idap_unbind, Idap_unbind_ext, and Idap_unbind_s

| dap_unbi nd_ext (), | dap_unbi nd(),and | dap_unbi nd_s() all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all
resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request cannot be
sent to the LDAP server). After a call to one of the unbind functions, the session
handle | d is invalid and it is illegal to make any further LDAP API calls using | d.

The | dap_unbi nd() and | dap_unbi nd_s() functions behave identically. The

| dap_unbi nd_ext () function allows server and client controls to be included
explicitly, but note that since there is no server response to an unbind request there is
no way to receive a response to a server control sent with an unbind request.

Syntax

int |dap_unbind_ext(LDAP *Id, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int |dap_unbind(LDAP *Id);

int |dap_unbind_s(LDAP *Id);

Parameters

Table 11-10 Parameters for Closing the Session

Parameter Description

Id The session handle
serverctrls List of LDAP server controls
clientctrls List of client controls
clientctrls

Performing LDAP Operations

Use the functions in this section to search the LDAP directory and to return a
requested set of attributes for each entry matched.

11-16 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Idap_search_ext, ldap_search_ext_s, Idap_search, and Idap_search_s

The |l dap_sear ch_ext () function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_sear ch_ext () places the message id of
the request in * msgi dp. A subsequent call to | dap_resul t () can be used to obtain
the results from the search. These results can be parsed using the result parsing
routines described in detail later.

Similar to | dap_search_ext (), thel dap_sear ch() function initiates an
asynchronous search operation and returns the message id of the operation initiated.
As for | dap_search_ext (), asubsequentcall tol dap_resul t () can be used to
obtain the result of the bind. In case of error, | dap_sear ch() will return - 1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous | dap_search_ext _s(),l dap_search_s(),and| dap_search_
st () functions all return the result of the operation, either the constant LDAP_
SUCCESS if the operation was successful, or another LDAP error code if it was not.
Entries returned from the search, if any, are contained in the r es parameter. This
parameter is opaque to the caller. Entries, attributes, values, and so on, can be
extracted by calling the parsing routines described in this section. The results
contained in r es should be freed when no longer in use by calling | dap_nsgfree(),
which is described later.

Thel dap_search_ext () and| dap_search_ext _s() functions support LDAPV3
server controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The | dap_sear ch_st () function is identical to

| dap_sear ch_s() except that it takes an additional parameter specifying a local
timeout for the search. The local search timeout is used to limit the amount of time the
API implementation will wait for a search to complete. After the local search timeout
expires, the APl implementation will send an abandon operation to stop the search
operation.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int |dap_search_ext

(

LDAP *1 d,

const char *hase,

i nt scope,

const char *filter,

char **attrs,

i nt attrsonly,
LDAPCont r ol **serverctrl s,
LDAPCont r ol **clientctrls,
struct tinmeval *tineout,

int sizelimt,

i nt *megi dp

K

int |dap_search_ext_s

(

LDAP *1 d,
const char *base,

i nt scope,
const char *filter,
char **attrs,

C API Reference 11-17

Functions in the C API

i nt attrsonly,
LDAPCont r ol **gserverctrl s,
LDAPCont r ol **clientctrls,
struct tinmeval *tineout,
int sizelimt,

LDAPMessage **res
)

int |dap_search

(

LDAP *1 d,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly

)

int |dap_search_s

(

LDAP *| d,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly,

LDAPMessage **res
)

int | dap_search_st

)

LDAP *| d,

const char *hase,

i nt scope,
const char *filter,
char **attrs,

i nt attrsonly,

struct timeval *timeout,
LDAPMessage **res

)i

Parameters
Table 11-11 lists and describes the parameters for search operations.

Table 11-11 Parameters for Search Operations

Parameter Description

I d The session handle.

base The DN of the entry at which to start the search.

scope One of LDAP_SCOPE_BASE (0x00) , LDAP_SCOPE_ONELEVEL (0x01),or

LDAP_SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be passed to
indicate that the filter " (obj ect cl ass=*)" which matches all entries is to be
used. Note that if the caller of the API is using LDAPvV2, only a subset of the filter
functionality can be successfully used.

11-18 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 11-11 (Cont.) Parameters for Search Operations

Parameter

Description

attrs

attrsonly

timeout

sizelimt

res

serverctrls
clientctrls

negi dp

A NULL-terminated array of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available user
attributes to be retrieved. The special constant string LDAP_NO _ATTRS ("1.1")
may be used as the only string in the array to indicate that no attribute types are to
be returned by the server. The special constant string LDAP_ALL_USER_ATTRS
("*") can be used in the at t r s array along with the names of some operational
attributes to indicate that all user attributes plus the listed operational attributes
are to be returned.

A boolean value that must be zero if both attribute types and values are to be
returned, and nonzero if only types are wanted.

For the | dap_sear ch_st () function, this specifies the local search timeout value
(if it is NULL, the timeout is infinite). If a zero timeout (wheret v_sec andtv_
usec ar e both zero) is passed, APl implementations should return LDAP_
PARAM ERROCR. For the | dap_search_ext () and | dap_sear ch_ext _s()
functions, the timeout parameter specifies both the local search timeout value and
the operation time limit that is sent to the server within the search request. Passing
a NULL value for timeout causes the global default timeout stored in the LDAP
session handle (set by using | dap_set _opti on() with the LDAP_OPT_

TI MELI M T parameter) to be sent to the server with the request but an infinite
local search timeout to be used. If a zero timeout (wheret v_sec andt v_usec are
both zero) is passed in, APl implementations should return LDAP_PARAM ERROR.
If a zero value fort v_sec is used but t v_usec is nonzero, an operation time
limit of 1 should be passed to the LDAP server as the operation time limit. For
other values of t v_sec, the t v_sec value itself should be passed to the LDAP
server.

For the | dap_search_ext () and | dap_sear ch_ext _s() calls, thisis a limit
on the number of entries to return from the search. A value of LDAP_NO LIM T
(0) means no limit.

For the synchronous calls, this is a result parameter which will contain the results
of the search upon completion of the call. If no results are returned, *r es is set to
NULL.

List of LDAP server controls.
List of client controls.

This result parameter will be set to the message id of the request if the | dap_
sear ch_ext () call succeeds.There are three options in the session handle | d
which potentially affect how the search is performed. They are:

« LDAP_OPT_SI ZELI M T—A limit on the number of entries to return from the
search. A value of LDAP_NO LI M T (0) means no limit. Note that the value
from the session handle is ignored when using the | dap_sear ch_ext () or
| dap_search_ext _s() functions.

« LDAP_OPT_TI MELI M T—A limit on the number of seconds to spend on the
search. A value of LDAP_NO LI M T (0) means no limit. Note that the value
from the session handle is ignored when using the | dap_search_ext () or
| dap_search_ext _s() functions.

« LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_
SEARCHI NG (0x01), LDAP_DEREF_FI NDI NG (0x02), or LDAP_DEREF_
ALVWAYS (0x03), specifying how aliases are handled during the search. The
LDAP_DEREF_SEARCHI NGvalue means aliases are dereferenced during the
search but not when locating the base object of the search. The LDAP_DEREF _
FI NDI NGvalue means aliases are dereferenced when locating the base object
but not during the search.

Reading an Entry

LDAP does not support a read operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to read, scope set to LDAP_SCOPE _

C API Reference 11-19

Functions in the C API

BASE, and filter setto " (obj ect cl ass=*)" or NULL. The at t r s parameter contains
the list of attributes to return.

Listing the Children of an Entry

LDAP does not support a list operation directly. Instead, this operation is emulated by
a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter setto " (obj ect cl ass=*)" or NULL. The parameterattrs
contains the list of attributes to return for each child entry.

Idap_compare_ext, Idap_compare_ext_s, Idap_compare, and Idap_compare_s
Use these routines to compare an attribute value assertion against an LDAP entry.

The | dap_conpar e_ext () function initiates an asynchronous compare operation
and returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, | dap_conpar e_ext () places the
message id of the request in * msgi dp. A subsequent call to | dap_resul t () can be
used to obtain the result of the compare.

Similar to | dap_conpar e_ext (), thel dap_conpar e() function initiates an
asynchronous compare operation and returns the message id of the operation initiated.
As for | dap_conpar e_ext (), asubsequentcalltol dap_resul t () can be used to
obtain the result of the bind. In case of error, | dap_conpar e() will return - 1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous | dap_conpar e_ext _s() and| dap_conpar e_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The | dap_conpare_ext () and| dap_conpar e_ext _s() functions support
LDAPvV3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int | dap_conpare_ext

(

LDAP *| d,

const char *dn,

const char *attr,

const struct berval *pval ue,
LDAPCont r ol **gserverctrls,
LDAPCont r ol **clientctrls,
int *nmsgi dp

)

int | dap_conpare_ext_s

(

LDAP *|d,

const char *dn,

const char *attr,

const struct berval *pval ue,
LDAPCont r ol **gserverctrls,

LDAPCont r ol **clientctrls
)

int |dap_conpare

(

11-20 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

LDAP *|d,
const char *dn,
const char *attr,
const char *val ue

)
int |dap_conpare_s

(

LDAP *|d,
const char *dn,
const char *attr,
const char *val ue
);

Parameters

Table 11-12 lists and describes the parameters for compare operations.

Table 11-12 Parameters for Compare Operations

Parameter Description

I d The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bval ue The attribute value to compare against those found in the given entry. This

parameter is used in the extended routines and is a pointer to a st r uct
berval soitis possible to compare binary values.

val ue A string attribute value to compare against, used by the | dap_conpar e()
and | dap_conpar e_s() functions. Use | dap_conpare_ext () or
| dap_conpar e_ext _s() if you need to compare binary values.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
negi dp This result parameter will be set to the message id of the request if the

| dap_conpar e_ext () call succeeds.

Idap_modify_ext, Idap_modify_ext s, [dap_modify, and Idap_modify s

Use these routines to modify an existing LDAP entry.

The | dap_nodi fy_ext () function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_nodi fy_ext () places the message id of
the request in * msgi dp. A subsequent call to | dap_r esul t () can be used to obtain
the result of the modify.

Similar to | dap_nodi fy_ext (), thel dap_nodi f y() function initiates an
asynchronous modify operation and returns the message id of the operation initiated.
As for | dap_nodi fy_ext (), asubsequentcall tol dap_resul t () can be used to
obtain the result of the modify. In case of error, | dap_nodi fy() will return -1,
setting the session error parameters in the LDAP structure appropriately.

The synchronous | dap_nodi fy_ext _s() and| dap_nodi fy_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

Thel dap_nodi fy_ext () and| dap_nodi fy_ext _s() functions support LDAPV3
server controls and client controls.

C API Reference 11-21

Functions in the C API

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax
typedef struct |dapmod
{
int mod_op;
char *mod_t ype;
uni on nod_val s_u
{
char **npdv_strval s;
struct berval **modv_bval s;
} nod_vals;
} LDAPMod;
#def i ne nod_val ues mod_val s. modv_strval s
#def i ne mod_bval ues mod_val s. modv_bval s

int |dap_nodify_ext
(

LDAP *1 d,

const char *dn,

LDAPMd **mods,
LDAPCont r ol **gserverctrl s,
LDAPCont r ol **clientctrls,
i nt *megi dp

)

int |dap_nodify_ext_s

(

LDAP *| d,

const char *dn,

LDAPMd **nods,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls
);

int |dap_nodify

(

LDAP *| d,

const char *dn,

LDAPMbd **ods
)

int |dap_nodify_s
(

LDAP *d,
const char *dn,
LDAPMbd **npds
)

Parameters

Table 11-13 lists and describes the parameters for modify operations.

Table 11-13 Parameters for Modify Operations

Parameter Description
Id The session handle
dn The name of the entry to modify

11-22 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Table 11-13 (Cont.) Parameters for Modify Operations

Parameter Description

mods A NULL-terminated array of modifications to make to the entry
serverctrls Listof LDAP server controls
clientctrls Listof client controls

msgi dp This result parameter will be set to the message id of the request if the
| dap_nodi fy_ext () call succeeds

Table 11-14 lists and describes the fields in the LDAPMod structure.

Table 11-14 Fields in LDAPMod Structure

Field Description

mod_op The modification operation to perform. It must be one of LDAP_MOD_ADD
(0x00), LDAP_MOD_DELETE (0x01), or LDAP_MOD_REPLACE (0x02). This
field also indicates the type of values included in the mod_vals union. It is
logically ORed with LDAP_MOD_BVALUES (0x80) to select the
nod_bval ues form. Otherwise, the nod_val ues form is used.

mod_t ype The type of the attribute to modify.

mod_val s The values (if any) to add, delete, or replace. Only one of the nod_val ues or
nod_bval ues variants can be used, selected by ORing the nod_op field with
the constant LDAP_MOD BVALUES. nod_val ues is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a NULL-terminated array of
ber val structures that can be used to pass binary values such as images.

Usage Notes

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after
the modification, having been created if necessary, or removed if the nod_val s field is
NULL. All modifications are performed in the order in which they are listed.

Idap_rename and |dap_rename_s
Use these routines to change the name of an entry.

The | dap_r enamne() function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_r enane() places the DN message id of
the request in * nsgi dp. A subsequent call tol dap_r esul t () can be used to obtain
the result of the rename.

The synchronous | dap_r enamne_s() returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code
if it was not.

Thel dap_renane() and| dap_r enane_s() functions both support LDAPV3 server
controls and client controls.

C API Reference 11-23

Functions in the C API

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int |dap_rename

(

LDAP *| d,

const char *dn,

const char *newr dn,

const char *newpar ent ,

i nt del et eol drdn,
LDAPCont r ol **serverctrl s,
LDAPCont r ol **clientctrls,
i nt *megi dp

)

int |dap_rename_s

(

LDAP *| d,

const char *dn,

const char *newr dn,

const char *newpar ent ,

i nt del et eol drdn,
LDAPCont r ol **serverctrl s,

LDAPCont r ol **clientctrls
);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

int | dap_nodrdn

(

LDAP *| d,
const char *dn,
const char *new dn

)

int |dap_nodrdn_s

(

LDAP *| d,
const char *dn,
const char *new dn

)

int |dap_nodrdn2
(

LDAP *1 d,

const char *dn,

const char *newr dn,

int del et eol drdn

)

int |dap_nodrdn2_s
(

LDAP *1 d,

const char *dn,

const char *new dn,

int del et eol drdn

)

11-24 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Parameters
Table 11-15 lists and describes the parameters for rename operations.

Table 11-15 Parameters for Rename Operations

Parameter Description

Id The session handle.

dn The name of the entry whose DN is to be changed.

newr dn The new RDN to give the entry.

newpar ent The new parent, or superior entry. If this parameter is NULL, only the RDN of
the entry is changed. The root DN should be specified by passing a zero
length string, " " . The newparent parameter should always be NULL when
using version 2 of the LDAP protocol; otherwise the server's behavior is
undefined.

del et eol drdn This parameter only has meaning on the rename routines if newrdn is
different than the old RDN. It is a boolean value, if nonzero indicating that
the old RDN value is to be removed, if zero indicating that the old RDN
value is to be retained as non-distinguished values of the entry.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
negi dp This result parameter will be set to the message id of the request if the | dap_

rename() call succeeds.

Idap_add_ext, Idap_add_ext_s, I[dap_add, and Idap_add_s
Use these functions to add entries to the LDAP directory.

The | dap_add_ext () function initiates an asynchronous add operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, | dap_add_ext () places the message id of the request
in*nsgi dp. A subsequent callto| dap_resul t () can be used to obtain the result of
the add.

Similar to| dap_add_ext (), thel dap_add() function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for | dap_
add_ext (), asubsequentcall tol dap_resul t () can be used to obtain the result of
the add. In case of error, | dap_add() will return - 1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous | dap_add_ext _s() and| dap_add_s() functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

Thel dap_add_ext () and | dap_add_ext _s() functions support LDAPV3 server
controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int | dap_add_ext

(

LDAP *| d,

const char *dn,

LDAPMd **attrs,
LDAPCont r ol **serverctrls,

C API Reference 11-25

Functions in the C API

LDAPCont r ol **clientctrls,
i nt *megi dp
);

int |dap_add_ext_s

(

LDAP *1 d,

const char *dn,

LDAPMbd **attrs,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls
);

int |dap_add

(

LDAP *| d,

const char *dn,

LDAPMbd **attrs

);

int |dap_add_s

(

LDAP *|d,

const char *dn,

LDAPMbd **attrs

);

Parameters

Table 11-16 lists and describes the parameters for add operations.

Table 11-16 Parameters for Add Operations

Parameter Description

Id The session handle.

dn The name of the entry to add.

attrs The entry attributes, specified using the LDAPMbd structure defined for | dap_

nodi fy() . The mod_type and nod_val s fields must be filled in. The nod_op
field is ignored unless ORed with the constant LDAP_MOD_BVALUES, used to
select the nod_bval ues case of the nod_val s union.

serverctrls List of LDAP server controls.
clientctrls List of client controls.

nmegi dp This result parameter will be set to the message id of the request if the | dap_
add_ext () call succeeds.

Usage Notes

Note that the parent of the entry being added must already exist or the parent must be
empty—that is, equal to the root DN—for an add to succeed.

Idap_delete_ext, Idap_delete_ext_s, Idap_delete, and Idap_delete_s
Use these functions to delete a leaf entry from the LDAP directory.

The |l dap_del et e_ext () function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, | dap_del et e_ext () places the message id of

11-26 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

the request in * nsgi dp. A subsequent call tol dap_r esul t () can be used to obtain
the result of the delete.

Similarto | dap_del et e_ext (), thel dap_del et e() function initiates an
asynchronous delete operation and returns the message id of the operation initiated.
As for | dap_del et e_ext (), asubsequentcall tol dap_resul t () can be used to
obtain the result of the delete. In case of error, | dap_del et e() will return - 1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous | dap_del ete_ext _s() and| dap_del et e_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

Thel dap_del ete_ext () and | dap_del et e_ext _s() functions support LDAPvV3
server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int | dap_del ete_ext

(

LDAP *| d,

const char *dn,

LDAPCont r ol **gserverctrl s,
LDAPCont r ol **clientctrls,
int *msgi dp

)

int |dap_delete_ext_s

(

LDAP *d,
const char *dn,
LDAPCont r ol **serverctrls,

LDAPCont r ol **clientctrls
);

int Idap_delete

(
LDAP *1d,

const char *dn

)

int |dap_delete_s

(

LDAP *d,
const char *dn
)

Parameters

Table 11-17 lists and describes the parameters for delete operations.

Table 11-17 Parameters for Delete Operations

Parameter Description
Id The session handle.
dn The name of the entry to delete.

C API Reference 11-27

Functions in the C API

Table 11-17 (Cont.) Parameters for Delete Operations

Parameter Description

serverctrls List of LDAP server controls.
clientctrls Listofclient controls.

megi dp This result parameter will be set to the message id of the request if the | dap_
del et e_ext () call succeeds.

Usage Notes

Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

Idap_extended_operation and Idap_extended_operation_s

These routines enable extended LDAP operations to be passed to the server, providing
a general protocol extensibility mechanism.

The | dap_ext ended_oper ati on() function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, | dap_ext ended_

oper ation() places the message id of the request in * nsgi dp. A subsequent call to

| dap_resul t () can be used to obtain the result of the extended operation which can
be passed to | dap_par se_ext ended_r esul t () to obtain the object identifier (OID)
and data contained in the response.

The synchronous | dap_ext ended_oper ati on_s() function returns the result of
the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. Ther et oi d and r et dat a parameters are
filled in with the OID and data from the response. If no OID or data was returned,
these parameters are set to NULL.

The | dap_ext ended_operation() and| dap_ext ended_operati on_s()
functions both support LDAPvV3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Syntax

int | dap_extended_operation

(

LDAP *| d,

const char *request oi d,
const struct berval *request dat a,
LDAPCont r ol **gerverctrls,
LDAPCont r ol **clientctrls,
i nt *megi dp

)

int | dap_extended_operation_s

(

LDAP *| d,

const char *request oi d,
const struct berval *request dat a,
LDAPCont r ol **serverctrls,
LDAPCont r ol **clientctrls,
char **retoidp,
struct berval **retdat ap

11-28 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

)

Parameters
Table 11-18 lists and describes the parameters for extended operations.

Table 11-18 Parameters for Extended Operations

Parameter Description

I d The session handle

requestoid The dotted-OID text string naming the request

request dat a The arbitrary data needed by the operation (if NULL, no data is sent to the
server)

serverctrls List of LDAP server controls

clientctrls List of client controls

megi dp This result parameter will be set to the message id of the request if the | dap_

ext ended_oper ati on() call succeeds.

retoidp Pointer to a character string that will be set to an allocated, dotted-OID text
string returned by the server. This string should be disposed of using the
| dap_nenf ree() function. If no OID was returned, *r et oi dp is set to
NULL.

ret dat ap Pointer to a ber val structure pointer that will be set an allocated copy of the
data returned by the server. This st ruct ber val should be disposed of
using ber _bvfree().If nodatais returned, *r et dat ap is set to NULL.

Abandoning an Operation
Use the functions in this section to abandon an operation in progress:

Idap_abandon_ext and Idap_abandon

| dap_abandon_ext () abandons the operation with message id nsgi d and returns
the constant LDAP_SUCCESS if the abandon was successful or another LDAP error
code if not.

| dap_abandon() isidentical to| dap_abandon_ext () except that it does not
accept client or server controls and it returns zero if the abandon was successful, - 1
otherwise.

After a successful call to| dap_abandon() or| dap_abandon_ext (), results with
the given message id are never returned from a subsequent call tol dap_resul t ().
There is no server response to LDAP abandon operations.

Syntax

int | dap_abandon_ext

(

LDAP *1 d,

i nt msgi d,
LDAPCont r ol **gserverctrl s,

LDAPCont r ol **clientctrls
)

int | dap_abandon

(
LDAP *1d,

i nt megi d

)

C API Reference 11-29

Functions in the C API

Parameters
Table 11-19 lists and describes the parameters for abandoning an operation.

Table 11-19 Parameters for Abandoning an Operation

Parameter Description
Id The session handle.
negi d The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them

Obtaining Results and Peeking Inside LDAP Messages

Use the functions in this section to return the result of an operation initiated
asynchronously. They identify messages by type and by ID.

Idap_result, [dap_msgtype, and Idap_msgid

| dap_resul t () is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, | dap_r esul t () can actually
return a list or "chain" of result messages. The | dap_resul t () function only returns
messages for a single request, so for all LDAP operations other than search only one
result message is expected; that is, the only time the "result chain” can contain more
than one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of messages
returned by calling | dap_r esul t () or by calling a synchronous search routine will
never be affected by subsequent LDAP API calls (except for | dap_nsgfree() which
is used to dispose of a chain of messages).

| dap_nsgfree() frees the result messages (possibly an entire chain of messages)
obtained from a previous call to | dap_resul t () or from a call to a synchronous
search routine.

| dap_nsgt ype() returns the type of an LDAP message. | dap_nsgi d() returns the
message ID of an LDAP message.

Syntax

int |dap_result

(

LDAP *| d,

i nt megi d,
i nt all,

struct timeval *timeout,
LDAPMessage **res

)
int |dap_nsgfree(LDAPMessage *res);
int |dap_nsgtype(LDAPMessage *res);
int |dap_nsgid(LDAPMessage *res);

11-30 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Parameters

Table 11-20 on page 11-31 lists and describes the parameters for obtaining results and
peeling inside LDAP messages.

Table 11-20 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description
Id The session handle.
megi d The message id of the operation whose results are to be returned, the constant

LDAP_RES UNSOLI CI TED (0) if an unsolicited result is desired, or the
constant LDAP_RES _ANY (- 1) if any result is desired.

all Specifies how many messages will be retrieved in a single call to | dap_
resul t (). This parameter only has meaning for search results. Pass the
constant LDAP_MSG_ONE (0x00) to retrieve one message at a time. Pass
LDAP_MSG ALL (0x01) to request that all results of a search be received
before returning all results in a single chain. Pass LDAP_MSG_RECEI VED
(0x02) to indicate that all messages retrieved so far are to be returned in the
result chain.

ti meout A timeout specifying how long to wait for results to be returned. A NULL value
causes | dap_resul t () to block until results are available. A timeout value of
zero seconds specifies a polling behavior.

res For | dap_resul t (), aresult parameter that will contain the result of the
operation. If no results are returned, *r es is set to NULL. For | dap_
nmsgf ree(), the result chain to be freed, obtained from a previous call to
| dap_result(),ldap_search_s(),orl dap_search_st().Ifres is
NULL, nothing is done and | dap_mnsgf r ee() returns zero.

Usage Notes

Upon successful completion, | dap_resul t () returns the type of the first result
returned in the r es parameter. This will be one of the following constants.

LDAP_RES BI ND (0x61)

LDAP_RES SEARCH ENTRY (0x64)
LDAP_RES SEARCH REFERENCE (0x73) -- new in LDAPV3
LDAP_RES SEARCH RESULT (0x65)

LDAP_RES MODI FY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES COMPARE (Ox6F)

LDAP_RES EXTENDED (0x78) -- new in LDAPv3

| dap_resul t () returns O if the timeout expired and - 1 if an error occurs, in which
case the error parameters of the LDAP session handle will be set accordingly.

| dap_nsgf ree() frees each message in the result chain pointed to by r es and
returns the type of the last message in the chain. If r es is NULL, then nothing is done
and the value zero is returned.

| dap_nsgt ype() returns the type of the LDAP message it is passed as a parameter.
The type will be one of the types listed previously, or - 1 on error.

C API Reference 11-31

Functions in the C API

| dap_nsgi d() returns the message ID associated with the LDAP message passed as
a parameter, or - 1 on error.

Handling Errors and Parsing Results

Use the functions in this section to extract information from results and to handle
errors returned by other LDAP API routines.

Idap_parse_result, Idap_parse_sasl_bind_result, Idap_parse_extended_result, and
Idap_err2string

Note that | dap_par se_sasl _bi nd_resul t () and| dap_par se_ext ended_
resul t () musttypically be used in addition to | dap_par se_resul t () to retrieve
all the result information from SASL Bind and Extended Operations respectively.

Thel dap_parse_result(),l dap_parse_sasl _bind result(),and! dap_
par se_ext ended_resul t () functions all skip over messages of type LDAP_RES _
SEARCH_ENTRY and LDAP_RES SEARCH REFERENCE when looking for a result
message to parse. They return the constant LDAP_SUCCESS if the result was
successfully parsed and another LDAP error code if not. Note that the LDAP error
code that indicates the outcome of the operation performed by the server is placed in
the errcodep | dap_par se_resul t () parameter. If a chain of messages that contains
more than one result message is passed to these routines they always operate on the
first result in the chain.

| dap_err2string() isused toconvertanumeric LDAP error code, as returned by
| dap_parse_result(),l dap_parse_sasl _bind_result(),| dap_parse_
ext ended_resul t () or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a
pointer to static data.

Syntax

int |dap_parse_result

(

LDAP *| d,
LDAPMessage *res,

i nt *errcodep,
char **mat cheddnp,
char **errnsgp,
char ***referral sp,
LDAPCont r ol ***serverctrlsp,
i nt freeit

)

int |dap_parse_sasl_bind_result
(

LDAP *| d,
LDAPMessage *res,

struct berval **servercredp,

i nt freeit

)

int |dap_parse_extended_result

(

LDAP *1 d,
LDAPMessage *res,
char **retoidp,

11-32 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

struct berval **r et dat ap,

int freeit

);

#defi ne LDAP_NOTI CE_OF_DI SCONNECTI ON "1.3.6.1.4.1.1466.20036"
char *ldap_err2string(int err);

The routines immediately following are deprecated. To learn more about them, see
RFC 1823.

int |dap_result2error

(

LDAP *| d,
LDAPMessage *res,
int freeit

)
voi d | dap_perror(LDAP *Id, const char *msg);

Parameters
Table 11-21 lists and describes parameters for handling errors and parsing results.

Table 11-21 Parameters for Handling Errors and Parsing Results

Parameter Description
I d The session handle.
res The result of an LDAP operation as returned by | dap_r esul t () or one of the

synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error code field from the
LDAPMessage message. This is the indication from the server of the outcome
of the operation. NULL should be passed to ignore this field.

mat cheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result parameter will
be filled in with a DN indicating how much of the name in the request was
recognized. NULL should be passed to ignore this field. The matched DN string
should be freed by calling | dap_menf r ee() which is described later in this
document.

errmsgp This result parameter will be filled in with the contents of the error message
field from the LDAPMessage message. The error message string should be
freed by calling | dap_menf r ee() which is described later in this document.
NULL should be passed to ignore this field.

referral sp This result parameter will be filled in with the contents of the referrals field
from the LDAPMessage message, indicating zero or more alternate LDAP
servers where the request is to be retried. The referrals array should be freed
by calling | dap_val ue_free() which is described later in this document.
NULL should be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of controls copied
out of the LDAPMessage message. The control array should be freed by calling
| dap_control s_free() which was described earlier.

freeit A Boolean that determines whether the r es parameter is disposed of or not.
Pass any nonzero value to have these routines free r es after extracting the
requested information. This is provided as a convenience; you can also use
| dap_nsgfree() to free the result later. If f r eei t is nonzero, the entire
chain of messages represented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in with the
credentials passed back by the server for mutual authentication, if given. An
allocated ber val structure is returned that should be disposed of by calling
ber _bvfree().NULL should be passed to ignore this field.

C API Reference 11-33

Functions in the C API

Table 11-21 (Cont.) Parameters for Handling Errors and Parsing Results

Parameter Description

retoidp For extended results, this result parameter will be filled in with the dotted-OID
text representation of the name of the extended operation response. This string
should be disposed of by calling | dap_nenf r ee() . NULL should be passed to
ignore this field. The LDAP_NOTI CE_OF_DI SCONNECTI ONmacro is defined as
a convenience for clients that wish to check an OID to see if it matches the one
used for the unsolicited Notice of Disconnection (defined in RFC 2251[2]
section 4.4.1).

retdat ap For extended results, this result parameter will be filled in with a pointer to a
struct berval containing the data in the extended operation response. It
should be disposed of by calling ber _bvf r ee() . NULL should be passed to
ignore this field.

err For | dap_err2string(),an LDAP error code, as returned by | dap_
parse_resul t () oranother LDAP API call.

Usage Notes
See RFC 1823 for a description of parameters peculiar to the deprecated routines.

Stepping Through a List of Results

Use the routines in this section to step through the list of messages in a result chain
returned by | dap_resul t ().

Idap_first_message and Idap_next_message
The result chain for search operations can include referral messages, entry messages,
and result messages.

| dap_count _messages() is used to count the number of messages returned. The
| dap_nsgt ype() function, described previously, can be used to distinguish between
the different message types.

LDAPMessage *|dap_first_message(LDAP *|d, LDAPMessage *res);
LDAPMessage *| dap_next _message(LDAP *|d, LDAPMessage *nsg);
int |dap_count_messages(LDAP *Id, LDAPMessage *res);

Parameters
Table 11-22 lists and describes the parameters for stepping through a list of results.

Table 11-22 Parameters for Stepping Through a List of Results

Parameter Description
I d The session handle.
res The result chain, as obtained by a call to one of the synchronous search

routines or | dap_resul t ().

nmsg The message returned by a previous call to | dap_first_nessage() or
| dap_next _nmessage() .

Usage Notes

| dap_first_message() and| dap_next nessage() will return NULL when no
more messages exist in the result set to be returned. NULL is also returned if an error
occurs while stepping through the entries, in which case the error parameters in the

session handle Id will be set to indicate the error.

11-34 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

If successful, | dap_count _nmessages() returns the number of messages contained
in a chain of results; if an error occurs such as the res parameter being invalid, - 1 is
returned. The | dap_count _nessages() call can also be used to count the number
of messages that remain in a chain if called with a message, entry, or reference
returned by | dap_first_nessage(),| dap_next _rmnessage(), | dap_first__
entry(),l dap_next _entry(),ldap_first_reference(),| dap_next _
reference().

Parsing Search Results

Use the functions in this section to parse the entries and references returned by | dap_
sear ch functions. These results are returned in an opaque structure that may be
accessed by calling the routines described in this section. Routines are provided to step
through the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given attribute
in an entry.

Idap_first_entry, ldap_next_entry, Idap_first_reference, Idap_next_reference, ldap_
count_entries, and Idap_count_references

Thel dap_first_entry() andl dap_next _entry() routines are used to step
through and retrieve the list of entries from a search result chain. The | dap_first _
ref erence() and| dap_next _reference() routines are used to step through
and retrieve the list of continuation references from a search result chain. | dap_
count _entries() isused to count the number of entries returned. | dap_count _
ref erences() is used to count the number of references returned.

LDAPMessage *ldap_first_entry(LDAP *Id, LDAPMessage *res);
LDAPMessage *|dap_next _entry(LDAP *|d, LDAPMessage *entry);
LDAPMessage *|dap_first_reference(LDAP *|d, LDAPMessage *res);
LDAPMessage *| dap_next_reference(LDAP *|d, LDAPMessage *ref);
int |dap_count_entries(LDAP *|d, LDAPMessage *res);

int |dap_count_references(LDAP *|d, LDAPMessage *res);

Parameters

Table 11-23 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Table 11-23 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description
Id The session handle.
res The search result, as obtained by a call to one of the synchronous search

routines or | dap_resul t ().

entry The entry returned by a previous call tol dap_first_entry() orl dap_
next _entry().

ref The reference returned by a previous call to | dap_first_reference() or
| dap_next _reference().

Usage Notes

I dap_first_entry(),l dap_next_entry(),ldap first_reference(),and
| dap_next _reference() all return NULL when no more entries or references exist
in the result set to be returned. NULL is also returned if an error occurs while stepping

C API Reference 11-35

Functions in the C API

through the entries or references, in which case the error parameters in the session
handle I d will be set to indicate the error.

| dap_count _entri es() returns the number of entries contained in a chain of
entries; if an error occurs such as the r es parameter being invalid, - 1 is returned. The
| dap_count _entri es() call can also be used to count the number of entries that
remain in a chain if called with a message, entry or reference returned by | dap_
first_nessage(),| dap_next _nessage(),ldap_first _entry(),ldap_
next _entry(),ldap_first_reference(),| dap_next _reference().

| dap_count _references() returns the number of references contained in a chain
of search results; if an error occurs such as the r es parameter being invalid, - 1 is
returned. The | dap_count _ref erences() call can also be used to count the
number of references that remain in a chain.

Idap_first_attribute and ldap_next_attribute

Use the functions in this section to step through the list of attribute types returned
with an entry.

Syntax

char *ldap_first_attribute
(

LDAP *| d,
LDAPMessage *entry,

Ber El ement **ptr

)

char *ldap_next_attribute

(

LDAP *1d,
LDAPMessage *entry,
Ber El ement *ptr

)

voi d | dap_nenfree(char *nem);

Parameters

Table 11-24 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 11-24 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

| d The session handle.

entry The entry whose attributes are to be stepped through, as returned by | dap_
first_entry() or | dap_next_entry().

ptr Inl dap_first_attribute(),theaddress of a pointer used internally to
keep track of the current position in the entry. In| dap_next _attri bute(),
the pointer returned by a previous call tol dap_first_attribute().The
Ber El errent type itself is an opaque structure.

mem A pointer to memory allocated by the LDAP library, such as the attribute type
names returned by | dap_first_attri bute() andl dap_next _attri bute,
or the DN returned by | dap_get _dn() . If nemis NULL, the | dap_nenf r ee()
call does nothing.

11-36 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Usage Notes

| dap_first_attribute() andl dap_next _attri bute() returns NULL when
the end of the attributes is reached, or if there is an error. In the latter case, the error
parameters in the session handle | d are set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This should be freed when no longer in use by calling | dap_nenfree().

| dap_first_attribute() willallocate and return in pt r a pointer to a

Ber El ement used to keep track of the current position. This pointer may be passed in
subsequent callsto | dap_next _attri but e() to step through the entry's attributes.
Afterasetofcallstol dap_first_attribute() andl dap_next_attribute(),if
pt r is non-null, it should be freed by calling ber _free(ptr, 0).Notethatitisvery
important to pass the second parameter as 0 (zero) in this call, since the buffer
associated with the Ber El ement does not point to separately allocated memory.

The attribute type names returned are suitable for passing ina call to| dap_get _
val ues() and friends to retrieve the associated values.

Idap_get_values, Idap_get values_len, Idap_count_values, Idap_count_values_len,
Idap_value_free, and Idap_value_free len

| dap_get val ues() and | dap_get val ues_| en() are used to retrieve the
values of a given attribute from an entry. | dap_count val ues() and | dap_count _
val ues_| en() are used to count the returned values.

| dap_val ue_free() and| dap_val ue_free_| en() are used to free the values.

Syntax

char **| dap_get val ues
(

LDAP *| d,
LDAPMessage *entry,
const char *attr

)

struct berval **|dap_get_values_len

(

LDAP *|d,
LDAPMessage *entry,
const char *attr

)

int |dap_count_val ues(char **vals);
int |dap_count_values_len(struct berval **vals);
voi d | dap_val ue_free(char **vals);
voi d | dap_value_free_len(struct berval **vals);

Parameters

Table 11-25 lists and describes the parameters for retrieving and counting attribute
values.

Table 11-25 Parameters for Retrieving and Counting Attribute Values

Parameter Description

| d The session handle.

entry The entry from which to retrieve values, as returned by | dap_first _
entry() orl dap_next_entry().

C API Reference 11-37

Functions in the C API

Table 11-25 (Cont.) Parameters for Retrieving and Counting Attribute Values

Parameter Description

attr The attribute whose values are to be retrieved, as returned by | dap_first _
attribute() orl dap_next_attribute(), oracaller-supplied string (for
example, "mail").

val s The values returned by a previous call to | dap_get _val ues() orl dap_
get _values_len().

Usage Notes

Two forms of the various calls are provided. The first form is only suitable for use with
non-binary character string data. The second _| en form is used with any kind of data.

| dap_get val ues() and| dap_get val ues_I| en() return NULL if no values are
found for at t r or if an error occurs.

| dap_count _val ues() and| dap_count val ues_I en() return-1 if an error
occurs such as the val s parameter being invalid.

If a NULL val s parameter is passed to | dap_val ue_free() orl dap_val ue_free_
I en(), nothing is done.

Note that the values returned are dynamically allocated and should be freed by calling
either | dap_val ue_free() orl dap_val ue_free_I| en() when no longer in use.

Idap_get_dn, Idap_explode_dn, Idap_explode_rdn, and ldap_dn2ufn

| dap_get _dn() is used to retrieve the name of an entry. | dap_expl ode_dn() and
| dap_expl ode_rdn() are used to break up a name into its component parts. | dap__
dn2uf n() is used to convert the name into a more user friendly format.

Syntax

char *ldap_get _dn(LDAP *Id, LDAPMessage *entry);

char **| dap_expl ode_dn(const char *dn, int notypes);
char **| dap_expl ode_rdn(const char *rdn, int notypes);
char *ldap_dn2ufn(const char *dn);

Parameters

Table 11-26 lists and describes the parameters for retrieving, exploding, and
converting entry names.

Table 11-26 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

Id The session handle.

entry The entry whose name is to be retrieved, as returned by | dap_first _
entry() orl dap_next_entry().

dn The DN to explode, such as returned by | dap_get _dn().

rdn The RDN to explode, such as returned in the components of the array

returned by | dap_expl ode_dn().

not ypes A Boolean parameter, if nonzero indicating that the DN or RDN components
are to have their type information stripped off: cn=Babs would become Babs.

11-38 Oracle Identity Management Application Developer’'s Guide

Functions in the C API

Usage Notes

| dap_get _dn() returns NULL if a DN parsing error occurs. The function sets error
parameters in the session handle | d to indicate the error. It returns a pointer to newly
allocated space that the caller should free by calling | dap_nenf r ee() when itis no
longer in use.

| dap_expl ode_dn() returns a NULL-terminated char * array containing the RDN
components of the DN supplied, with or without types as indicated by the not ypes
parameter. The components are returned in the order they appear in the DN. The array
returned should be freed when it is no longer in use by calling | dap_val ue_free().

| dap_expl ode_rdn() returns a NULL-terminated char * array containing the

components of the RDN supplied, with or without types as indicated by the not ypes
parameter. The components are returned in the order they appear in the rdn. The array
returned should be freed when it is no longer in use by calling | dap_val ue_free().

| dap_dn2uf n() converts the DN into a user friendly format. The UFN returned is
newly allocated space that should be freed by a call to| dap_menf ree() when no
longer in use.

Idap_get_entry_controls
| dap_get _entry_control s() is used to extract LDAP controls from an entry.

Syntax

int |dap_get_entry controls

(

LDAP *1 d,
LDAPMessage *entry,

LDAPCont r ol ***serverctrlsp
);

Parameters

Table 11-27 lists and describes the parameters for extracting LDAP control from an
entry.

Table 11-27 Parameters for Extracting LDAP Controls from an Entry

Parameters Description
Id The session handle.
entry The entry to extract controls from, as returned by | dap_first_entry() or

| dap_next _entry().

serverctrlsp This result parameter will be filled in with an allocated array of controls
copied out of entry. The control array should be freed by calling | dap_
controls_free().Ifserverctrl spisNULL, no controls are returned.

Usage Notes

| dap_get _entry_control s() returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Idap_parse_reference

Use | dap_parse_ref erence() to extract referrals and controls from a
Sear chResul t Ref er ence message.

C API Reference 11-39

Sample C APl Usage

Syntax

int |dap_parse_reference

(

LDAP *| d,

LDAPMessage *ref,

char ***referral sp,
LDAPCont r ol ***serverctrlsp,
int freeit

);

Parameters

Table 11-28 lists and describes parameters for extracting referrals and controls from a
Sear chResul t Ref er ence message.

Table 11-28 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description
I d The session handle.
ref The reference to parse, as returned by | dap_resul t (),l dap_first_

reference(),orl dap_next_reference().

referral sp This result parameter will be filled in with an allocated array of character
strings. The elements of the array are the referrals (typically LDAP URLS)
contained in ref. The array should be freed when no longer in used by calling
| dap_val ue_free().Ifreferral spisNULL, the referral URLSs are not
returned.

serverctrlsp This result parameter will be filled in with an allocated array of controls
copied out of r ef . The control array shouldbe freed by calling | dap_
control s_free().Ifserverctrl spisNULL, no controls are returned.

freeit A Boolean that determines whether the r ef parameter is disposed of or not.
Pass any nonzero value to have this routine free r ef after extracting the
requested information. This is provided as a convenience. You can also use
| dap_mnsgfree() to free the result later.

Usage Notes

| dap_par se_reference() returns an LDAP error code that indicates whether the
reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C API Usage

The following examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The sample
code for the command-line tool to perform an LDAP search also demonstrates use of
the API in both the SSL and the non-SSL mode.

This section contains these topics:

« C API Usage with SSL

« C API Usage Without SSL

« C API Usage for SASL-Based DIGEST-MD5 Authentication

C API Usage with SSL

#incl ude <stdio. h>
#incl ude <l dap. h>

11-40 Oracle Identity Management Application Developer’'s Guide

Sample C API Usage

mai n()

{

LDAP *| d;

i nt ret =0;

/* open a connection */
if ((Id = Idap_open("MHost", 636)) == NULL)
exit(1);

[* SSL initialization */
ret = ldap_init_SSL(& d->ld_sb, "file:/sslwallet", "welcome",
GSLC_SSL_ONEWAY_AUTH) ;

if(ret 1=0)

{

printf(" % \n", ldap_err2string(ret));
exit(1);

}

/* authenticate as nobody */

if (Idap_bind_s(Id, NULL, NULL) !'= LDAP_SUCCESS) {
| dap_perror(Id, "lIdap_bind_s");
exit(1);

}
Because the user is making the | dap_i ni t _SSL call, the client/server
communication in the previous example is secured by using SSL.

C API Usage Without SSL

#incl ude <stdio. h>
#incl ude <l dap. h>

mai n()

{

LDAP *| d;

i nt ret = 0;

/* open a connection */
if ((ld=1dap_open("M/Host", LDAP_PORT
)) == NULL)

exit(1);

/* authenticate as nobody */

if (Idap_bind_s(Id, NULL, NULL) != LDAP_SUCCESS) {
| dap_perror(Id, "lIdap_bind_s");
exit(1);

C API Reference 11-41

Sample C APl Usage

In the previous example, the user is not making the | dap_i ni t _SSL call, and the
client-to-server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication

This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MD5 authentication to a directory server.

/*
EXPORT FUNCTI ON(S)
NONE
| NTERNAL FUNCTI ON\(S)
NONE
STATI C FUNCTI ON(S)
NONE
NOTES
Usage:
saslbind -h I dap_host -p I dap_port -D authentication_identity dn \
-w passwor d
options
-h LDAP host
-p LDAP port
-D DN of the identity for authentication
-p Password
Default SASL authentication paraneters used by the denp program
SASL Security Property : Currently only "auth" security property
is supported by the C-API. This deno
programuses this security property.
SASL Mechani sm : Supported mechani sns by O D
"Dl GEST-MD5" - This denmp program
illustrates it's usage.
"EXTERNAL" - SSL authentication is used.
(This deno program does
not illustrate it's usage.)
Aut hori zation identity : This deno program does not use any
authorization identity.
MODI FIED (MM DD/ YY)
e 06/ 12/ 03 - Creation
*|
L ¥ e e
PRI VATE TYPES AND CONSTANTS
___ */
¥ e e e e
STATI C FUNCTI ON DECLARATI ONS
___ */

#incl ude <stdio. h>
#include <stdlib. h>
#incl ude <l dap. h>

static int |dap_version = LDAP_VERSI ON3;

11-42 Oracle Identity Management Application Developer’'s Guide

Sample C API Usage

main (int argc, char **argv)

{
LDAP* I d;
extern char* optarg;
char* | dap_host = NULL;
char* [dap_bi nd_dn = NULL;
char* | dap_bi nd_pw = NULL;
i nt aut hmet hod = 0;
char | dap_l ocal _host[256] = "l ocal host";
i nt | dap_port = 389;
char* authcid = (char *)NULL;
char* mech = "Dl GEST-MD5"; /* SASL mechani sm */
char* authzid = (char *)NULL;
char* sasl _secprops = "auth";
char* real m= (char *)NULL;
i nt status = LDAP_SUCCESS;

OraLdapHandl e sasl _cred = (OralLdapHandl e) NULL;
OraLdapCientCtx *cctx = (OraLdapCient Ctx *)NULL;
i nt i =0;

while ((i = getopt(argc, argv,
"Dh:ppwEP.UVWORXY:Z"
)) = EGF) {

switch(i) {

case 'h':/* Idap host */
| dap_host = (char *)strdup(optarg);
break;

case 'D:/* bind DN */
authcid = (char *)strdup(optarg);
br eak;

case 'p':/* ldap port */
| dap_port = atoi(optarg);
br eak;
case 'W :/* Password */
| dap_bind_pw = (char *)strdup(optarg);
br eak;

defaul t:
printf("lnvalid Arguments passed\n");

}

/* Get the connection to the LDAP server */
if (1dap_host == NULL)
| dap_host = | dap_| ocal _host;

if ((Id = Ildap_open (Idap_host, |dap_port)) == NULL)
{

| dap_perror (1d, "ldap_init");

exit (1);
}

/* Create the client context needed by LDAP C-API Oracle Extension functions*/
status = ora_ldap_init_clientctx(&cctx);

C API Reference 11-43

Required Header Files and Libraries for the C API

i f (LDAP_SUCCESS ! = status) {
printf("Failed during creation of client context \n");
exit(l);

}

/* Create SASL credentials */
sasl _cred = ora_l dap_create_cred_hdl (cctx, ORA LDAP_CRED HANDLE SASL_MD5);

ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_REALM
(void *)realm;

ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_AUTH_ PASSWORD,
(void *)Idap_bind_pw;

ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_AUTHORI ZATI ON_I D,
(void *)authzid);

ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_SECURI TY_PROPERTI ES,
(void *)sasl _secprops);

/* If connecting to the directory using SASL Dl GEST-MD5, the Authentication ID
has to be normalized before it's sent to the server,
the LDAP C- APl does this nornmalization based on the following flag set in
SASL credential properties */
ora_| dap_set _cred_props(cctx, sasl_cred, ORA LDAP_CRED SASL_NORM AUTHDN, (void
*)NULL) ;

/* SASL Authetication to LDAP Server */
status = (int)ora_ldap_init_SASL(cctx, |d, (char *)authcid, (char *)ORA LDAP_
SASL_MECH DI GEST_MD5,
sasl _cred, NULL, NULL);

i f (LDAP_SUCCESS == status) {
printf("SASL bind successful \n");
}else {
printf("SASL bind failed with status : %\ n", status);

}

I* Free SASL Credentials */
ora_l dap_free_cred_hdl (cctx, sasl_cred);

status = ora_l dap_free_clientctx(cctx);

/* Unbind from LDAP server */
[dap_unbind (1d);

return (0);

/* end of file saslbind.c */

Required Header Files and Libraries for the C API
To build applications with the C API, you need to:
« Include the header file located at $ORACLE_HOWE/ | dap/ publ i c/ | dap. h.
« Dynamically link to the library located at
— $ORACLE_HOVE/ l'i b/ l'i bel ntsh. so. 10. 1 on UNIX operating systems

- %ORACLE _HOVE% bi n\ or al dapcl nt 10. dl | on Windows operating
systems

11-44 Oracle Identity Management Application Developer’'s Guide

Dependencies and Limitations of the C API

Dependencies and Limitations of the C API

This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core libraries.

To use the different authentication modes in SSL, the directory server requires
corresponding configuration settings.

See Also: Oracle Internet Directory Administrator’s Guide for details
about how to set the directory server in various SSL authentication
modes

Oracle Wallet Manager is required for creating wallets if you are using the C APl in
SSL mode.

TCP/IP Socket Library is required.

The following Oracle libraries are required:

» Oracle SSL-related libraries

« Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP SDK
specifications (RFC 1823).

C API Reference 11-45

Dependencies and Limitations of the C API

11-46 Oracle Identity Management Application Developer’'s Guide

12

DBMS LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures that enable PL/SQL programmers
to access data from LDAP servers. This chapter examines all of the API functions in

detail.

The chapter contains these topics:

« Summary of Subprograms

« Exception Summary
« Data Type Summary

« Subprograms

Note: Sample code for the DBMS_LDAP package is available at this

URL:

http://ww. oracl e. conf t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample
Applications—-Oracle Application Server.

Summary of Subprograms

Table 12-1 DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION init

FUNCTION simple_bind_s

FUNCTION bind_s

FUNCTION unbind_s

FUNCTION compare_s

FUNCTION search_s

i nit() initializes a session with an LDAP server. This actually
establishes a connection with the LDAP server.

The function si npl e_bi nd_s() can be used to perform
simple user name and password authentication to the directory
server.

The function bi nd_s() can be used to perform complex
authentication to the directory server.

The function unbi nd_s() is used for closing an active LDAP
session.

The function conpar e_s() can be used to test if a particular
attribute in a particular entry has a particular value.

The function sear ch_s() performs a synchronous search in
the LDAP server. It returns control to the PL/SQL environment
only after all of the search results have been sent by the server
or if the search request is ‘timed-out by the server.

DBMS_LDAP PL/SQL Reference 12-1

Summary of Subprograms

Table 12-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

FUNCTION search_st The function sear ch_st () performs a synchronous search in
the LDAP server with a client side time out. It returns control
to the PL/SQL environment only after all of the search results
have been sent by the server or if the search request is
‘timed-out' by the client or the server.

FUNCTION first_entry The function first_entry is used to retrieve the first entry in the
result set returned by either sear ch_s() or search_st.

FUNCTION next_entry The function next _entry() is used to iterate to the next entry
in the result set of a search operation.

FUNCTION count_entries This function is used to count the number of entries in the
result set. It can also be used to count the number of entries
remaining during a traversal of the result set using a
combination of the functionsfi rst _entry() and next _

entry.

FUNCTION first_attribute The functionfirst_attri bute() fetches the first attribute
of a given entry in the result set.

FUNCTION next_attribute The function next _at t ri but e() fetches the next attribute of
a given entry in the result set.

FUNCTION get_dn The function get _dn() retrieves the X.500 distinguished name
of a given entry in the result set.

FUNCTION get_values The function get _val ues() can be used to retrieve all of the
values associated with a given attribute in a given entry.

FUNCTION get_values_len The function get _val ues_I en() can be used to retrieve
values of attributes that have a 'Binary' syntax.

FUNCTION delete_s This function can be used to remove a leaf entry in the LDAP
Directory Information Tree.

FUNCTION modrdn2_s The function nodr dn2_s() can be used to rename the relative
distinguished name of an entry.

FUNCTION err2string The function err 2st ri ng() can be used to convert an LDAP
error code to a string in the local language in which the APl is
operating.

FUNCTION create_mod_array The function cr eat e_nod_array() allocates memory for
array modification entries that will be applied to an entry using
the nodi fy_s() functions.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (String Version) operations. This procedure call has to happen after DBVS_
LDAP. creat e_nod_array() iscalled.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (Binary \ersion) operations. This procedure call has to occur after DBVS_
LDAP. creat e_nod_array() iscalled.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (Binary Version. Uses operations. This procedure call has to happen after DBMVS_
BLOB Data Type) LDAP. creat e_nod_array() iscalled.

FUNCTION get_values_blob The function get _val ues_bl ob() can be used to retrieve
larger values of attributes that have a binary syntax.

FUNCTION count_values_blob Counts the number of values returned by DBVS_LDAP. get _
val ues_bl ob().

FUNCTION value_free_blob Frees the memory associated with the BLOB_COLLECTI ON
returned by DBMS_LDAP. get _val ues_bl ob().

12-2 Oracle Identity Management Application Developer’s Guide

Exception Summary

Table 12-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION modify_s

FUNCTION add_s

PROCEDURE free_mod_array

FUNCTION count_values

FUNCTION count_values_len

FUNCTION rename_s
FUNCTION explode_dn
FUNCTION open_ssl

FUNCTION msgfree

FUNCTION ber_free

FUNCTION nls_convert_to_
utf8

FUNCTION nls_convert_from_
utf8

FUNCTION nls_get_
dbcharset_name

Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, you must call DBMS_
LDAP. creat _nod_array() and DBMS_LDAP. popul ate_
nod_array().

Adds a new entry to the LDAP directory synchronously. Before
calling add_s, you must call DBMS_LDAP. cr eat _nod_
array() and DBMS_LDAP. popul ate_nod_array() .

Frees the memory allocated by DBMS_LDAP. cr eat e_nod_
array().

Counts the number of values returned by DBMS_LDAP. get _
val ues().

Counts the number of values returned by DBMS_LDAP. get _
values_len ().

Renames an LDAP entry synchronously.
Breaks a DN up into its components.

Establishes an SSL (Secure Sockets Layer) connection over an
existing LDAP connection.

This function frees the chain of messages associated with the
message handle returned by synchronous search functions.

This function frees the memory associated with a handle to
BER_ELEMENT.

Thenl s_convert _t o_ut f 8 function converts the input
string containing database character set data to UTF8 character
set data and returns it.

Thenl s_convert _from ut f 8 function converts the input
string containing UTF8 character set data to database character
set data and returns it.

The nl s_get _dbchar set _nane function returns a string
containing the database character set name.

See Also:

» "Searching the Directory" in Chapter 3 for more about DBMS_
LDAP. sear ch_s() and DBM5_LDAP. search_st ()

« "Terminating the Session by Using DBMS_LDAP" in Chapter 3 for
more about DBMS_LDAP. unbi nd_s()

Exception Summary
DBMS_LDAP can generate the exceptions described in Table 12-2 on page 12-3.

Table 12-2 DBMS_LDAP Exception Summary
Oracle
Error
Exception Name Number Cause of Exception
general _error 31202 Raised anytime an error is encountered that does not

have a specific PL/SQL exception associated with it.
The error string contains the description of the problem
in the user's language.

DBMS_LDAP PL/SQL Reference 12-3

Exception Summary

Table 12-2 (Cont.) DBMS_LDAP Exception Summary

Oracle
Error

Exception Name Number Cause of Exception

init_failed 31203 Raised by DBMS_LDAP. i ni t () if there are problems.

inval id_session 31204 Raised by all functions and procedures in the DBMS_
LDAP package if they are passed an invalid session
handle.

i nval i d_aut h_net hod 31205 Raised by DBMS_LDAP. bi nd_s() if the authentication
method requested is not supported.

inval i d_search_scope 31206 Raised by all search functions if the scope of the search
is invalid.

invalid_search_time_val 31207 Raised by DBMS_LDAP. sear ch_st () if it is given an
invalid value for a time limit.

inval i d_nessage 31208 Raised by all functions that iterate through a result-set
for getting entries from a search operation if the
message handle given to them is invalid.

count _entry_error 31209 Raised by DBMS_LDAP. count _entri es if it cannot
count the entries in a given result set.

get _dn_error 31210 Raised by DBMS_LDAP. get _dn if the DN of the entry
it is retrieving is NULL.

invalid_entry_dn 31211 Raised by all functions that modify, add, or rename an
entry if they are presented with an invalid entry DN.

inval i d_nod_array 31212 Raised by all functions that take a modification array as
an argument if they are given an invalid modification
array.

inval i d_nod_option 31213 Raised by DBMS_LDAP. popul at e_nod_arr ay if the
modification option given is anything other than MOD _
ADD, MOD_DELETE or MOD_REPLACE.

invalid_nod_type 31214 Raised by DBMS_LDAP. popul at e_nod_arr ay if the
attribute type that is being modified is NULL.

i nval i d_nod_val ue 31215 Raised by DBMS_LDAP. popul at e_nod_arr ay if the
modification value parameter for a given attribute is
NULL.

invalid_rdn 31216 Raised by all functions and procedures that expect a
valid RDN and are provided with an invalid one.

i nval i d_newpar ent 31217 Raised by DBMS_LDAP. r enane_s if the new parent of
an entry being renamed is NULL.

i nval i d_del et eol drdn 31218 Raised by DBMS_LDAP. r enane_s if the
del et eol dr dn parameter is invalid.

i nval i d_not ypes 31219 Raised by DBMS_LDAP. expl ode_dn if the not ypes
parameter is invalid.

invalid_ssl_wallet_loc 31220 Raised by DBMS_LDAP. open_ssl if the wallet
location is NULL but the SSL authentication mode
requires a valid wallet.

invalid_ssl_wallet_ 31221 Raised by DBMS_LDAP. open_ssl if the wallet

password password given is NULL.

i nval id_ssl _auth_node 31222 Raised by DBMS_LDAP. open_ssl if the SSL

authentication mode is not 1, 2 or 3.

12-4 Oracle Identity Management Application Developer’s Guide

Subprograms

Data Type Summary

The DBM5_LDAP package uses the data types described in Table 12-3.

Table 12-3 DBMS_LDAP Data Type Summary

Data-Type Purpose

SESSI ON Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

VESSAGE Used to hold a handle to the message retrieved from the result set. This
is used by all functions that work with entry attributes and values.

MOD_ARRAY Used to hold a handle to the array of modifications being passed to
either nodi fy_s() oradd_s().

TI MEVAL Used to pass time limit information to the LDAP API functions that
require a time limit.

BER _ELEMENT Used to hold a handle to a BER structure used for decoding incoming
messages.

STRI NG_COLLECTI ON Used to hold a list of VARCHAR? strings that can be passed on to the
LDAP server.

Bl NVAL_COLLECTI ON Used to hold a list of RAWdata, which represent binary data.

BERVAL_COLLECTI ON Used to hold a list of BERVAL values that are used for populating a
modification array.

BLOB_COLLECTI ON Used to hold a list of BLOB data, which represent binary data.

Subprograms
This section takes a closer look at each of the DBV5S_LDAP subprograms.

FUNCTION init

i nit() initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

Syntax
FUNCTI ON i ni t

(
host name | N VARCHAR2,

portnum | N PLS_| NTEGER

)
RETURN SESSI ON;

Parameters

Table 12—4 INIT Function Parameters

Parameter Description

host nane Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each host name in the list may include a port
number, which is separated from the host by a colon. The hosts
are tried in the order listed, stopping with the first one to
which a successful connection is made.

DBMS_LDAP PL/SQL Reference 12-5

Subprograms

Table 12-4 (Cont.) INIT Function Parameters

Parameter Description

portnum Contains the TCP port number to connect to. If the port
number is included with the host name, this parameter is
ignored. If the parameter is not specified, and the host name
does not contain the port number, a default port number of
389 is assumed.

Return Values

Table 12-5 INIT Function Return Values

Value Description

SESSI ON A handle to an LDAP session that can be used for further calls
to the API.

Exceptions

Table 12—6 INIT Function Exceptions

Exception Description
init_failed Raised when there is a problem contacting the LDAP server.
general _error For all other errors. The error string associated with the

exception describes the error in detail.

Usage Notes

DBVS_LDAP. i nit () isthe first function that should be called because it establishes a
session with the LDAP server. Function DBMS_LDAP. i ni t () returns a session
handle, a pointer to an opaque structure that must be passed to subsequent calls
pertaining to the session. This routine will return NULL and raise the | NI T_FAI LED
exception if the session cannot be initialized. Afteri nit () has been called, the
connection has to be authenticated using DBM5_LDAP. bi nd_s or DBNVS_

LDAP. si npl e_bi nd_s().

See Also
DBMVS_LDAP. si npl e_bi nd_s(), DBMS_LDAP. bi nd_s() .

FUNCTION simple_bind_s

The function si npl e_bi nd_s can be used to perform simple user name and
password authentication to the directory server.

Syntax

FUNCTI ON si npl e_bi nd_s
(

I d IN SESSI ON,

dn I N VARCHAR2,
passwd | N VARCHAR2

)
RETURN PLS_| NTEGER,

12-6 Oracle Identity Management Application Developer’s Guide

Subprograms

Parameters

Table 12—-7 SIMPLE_BIND_S Function Parameters

Parameter Description

I d A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Return Values

Table 12-8 SIMPLE_BIND_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS on a successful completion. If there was
a problem, one of the following exceptions will be raised.

Exceptions

Table 12-9 SIMPLE_BIND_S Function Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAP. si nmpl e_bi nd_s() can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBVMS_LDAP. i nit ().

FUNCTION bind_s

The function bi nd_s can be used to perform complex authentication to the directory
server.

Syntax

FUNCTION bind_s

(

| d I N SESSI QN,
dn | N VARCHAR?,
cred | N VARCHAR?,
meth I N PLS | NTEGER

)
RETURN PLS_| NTEGER

Parameters

Table 12-10 BIND_S Function Parameters

Parameter Description
Id A valid LDAP session handle.
dn The distinguished name of the user.

DBMS_LDAP PL/SQL Reference 12-7

Subprograms

Table 12-10 (Cont.) BIND_S Function Parameters

Parameter Description
cred A text string containing the credentials used for authentication.
met h The authentication method.

Return Values

Table 12-11 BIND_S Function Return Values

Value Description

PLS_I NTEGER DBMS_LDAP. SUCCESS upon successful completion. One of the
following exceptions is raised if there is a problem.

Exceptions

Table 12-12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle | d is invalid.

i nval i d_aut h_net hod Raised if the authentication method requested is not
supported.

general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

DBMS_LDAP. bi nd_s() can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBVMS_LDAP. i nit ().

See Also
DBVS_LDAP. i nit (), DBVS_LDAP. si npl e_bi nd_s().

FUNCTION unbind_s

The function unbi nd_s is used for closing an active LDAP session.

Syntax
FUNCTI ON unbi nd_s

(
I'd IN OUT SESSI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 12-13 UNBIND_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

12-8 Oracle Identity Management Application Developer’s Guide

Subprograms

Return Values

Table 12-14 UNBIND_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Exceptions

Table 12-15 UNBIND_S Function Exceptions

Exception Description
inval i d_session Raised if the sessions handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The unbi nd_s() function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources associated
with the session handle before returning. After a call to this function, the session
handle | d is invalid.

See Also
DBVMS_LDAP. bi nd_s(), DBVS_LDAP. si npl e_bi nd_s().

FUNCTION compare_s

The function conpar e_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax

FUNCTI ON conpare_s
(

I d I N SESSI QN,
dn I N VARCHAR?,
attr | N VARCHAR?,
val ue I'N VARCHAR2

)
RETURN PLS_| NTEGER

Parameters

Table 12-16 COMPARE_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

dn The name of the entry to compare against.
attr The attribute to compare against.

val ue A string attribute value to compare against.

DBMS_LDAP PL/SQL Reference 12-9

Subprograms

Return Values

Table 12-17 COMPARE_S Function Return Values

Value Description

PLS | NTEGER COVPARE_TRUE if the given attribute has a matching value.

COVPARE_FALSE if the given attribute does not have a
matching value.

Exceptions

Table 12-18 COMPARE_S Function Exceptions

Exception Description
inval id_session Raised if the session handle | d is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function conpar e_s can be used to assert that an attribute in the directory has a
certain value. This operation can be performed only on attributes whose syntax
enables them to be compared. The conpar e_s function can be called only after a valid
LDAP session handle has been obtained from thei ni t () function and authenticated
by the bi nd_s() orsi npl e_bi nd_s() functions.

See Also
DBMS_LDAP. bi nd_s()

FUNCTION search_s

The function sear ch_s performs a synchronous search in the directory. It returns
control to the PL/SQL environment only after all of the search results have been sent
by the server or if the search request is timed out by the server.

Syntax

FUNCTI ON search_s

(

Id IN SESSION,
base IN VARCHAR2,

scope IN PLS_I NTEGER,
filter IN VARCHAR?,

attrs IN STRI NG COLLECTI ON,
attronly IN PLS_ | NTEGER

res QUT MESSAGE

)
RETURN PLS_| NTEGER,

Parameters

Table 12-19 SEARCH_S Function Parameters

Parameter Description
Id A valid LDAP session handle.
base The DN of the entry at which to start the search.

12-10 Oracle Identity Management Application Developer’'s Guide

Subprograms

Table 12-19 (Cont.) SEARCH_S Function Parameters

Parameter Description

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01),or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be
passed to indicate that the filter " (obj ect cl ass=*)", which
matches all entries, is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") may be used as the only string in the array to indicate that
no attribute types are to be returned by the server. The special constant
string ALL_USER _ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values
are to be returned, and nonzero if only types are wanted.

res This is a result parameter that contains the results of the search upon
completion of the call. If no results are returned, *r es is set to NULL.

Return Values

Table 12-20 SEARCH_S Function Return Value

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 12-21 SEARCH_S Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.

i nval i d_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

general _error For all other errors. The error string associated with this
exception will explain the error in detail.

Usage Notes

The function sear ch_s() issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the r es parameter. This parameter is
opaque to the caller. Entries, attributes, and values can be extracted by calling the
parsing routines described in this chapter.

See Also

DBVS _LDAP. search_st (), DBVS_LDAP. first _entry(), DBVS_LDAP. next _
entry.

DBMS_LDAP PL/SQL Reference 12-11

Subprograms

FUNCTION search_st

The function sear ch_st () performs a synchronous search in the LDAP server with a
client-side time out. It returns control to the PL/SQL environment only after all of the
search results have been sent by the server or if the search request is timed out by the
client or the server.

Syntax

FUNCTI ON sear ch_st

(

Id IN SESSION,
base IN VARCHAR2,

scope IN PLS_I NTEGER,
filter IN VARCHAR?,

attrs IN STRI NG COLLECTI ON,
attronly IN PLS_ | NTEGER

tv IN TI MEVAL,

res QUT MESSAGE

)
RETURN PLS_| NTEGER,

Parameters

Table 12-22 SEARCH_ST Function Parameters

Parameter Description

Id A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00) , SCOPE_ONELEVEL (0x01),or

SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(obj ectcl ass=*)", which matches all entries, is to be
used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special constant
string NO_ATTRS ("1.1") may be used as the only string in
the array to indicate that no attribute types are to be returned
by the server. The special constant string ALL_USER _ATTRS
("*") can be used in the attrs array along with the names of
some operational attributes to indicate that all user attributes
plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

tv The time out value, expressed in seconds and microseconds,

that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res issetto NULL.

12-12 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-23 SEARCH_ST Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 12-24 SEARCH_ST Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.

i nval i d_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_tinme_ Raised if the time value specified for the time out is invalid.
val ue
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

This function is very similar to DBMS_LDAP. sear ch_s() except that it requires a
time out value to be given.

See Also
DBVS_LDAP. search_s(),DBML_LDAP. first_entry(), DBVS_LDAP. next _
entry.

FUNCTION first_entry

The functionfirst _entry() isused to retrieve the first entry in the result set
returned by either search_s() orsearch_st ().

Syntax
FUNCTION first_entry

(
I'd IN SESSION,

msg | N MESSAGE

)
RETURN MESSAGE;

Parameters

Table 12-25 FIRST_ENTRY Function Parameters

Parameter Description
Id A valid LDAP session handle.
nmsg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 12-13

Subprograms

Return Values

Table 12-26 FIRST_ENTRY Return Values

Value Description

VESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Exceptions

Table 12-27 FIRST_ENTRY Exceptions

Exception Description
invalid_session Raised if the session handle | d is invalid.
inval i d_nessage Raised if the incoming nsg handle is invalid.

Usage Notes

The functionfirst_entry() should always be the first function used to retrieve the
results from a search operation.

See Also
DBVS_LDAP. next _entry(), DBVMS_LDAP. search_s(), DBVMS_LDAP. search_
st ()

FUNCTION next_entry

The function next _entry() is used to iterate to the next entry in the result set of a
search operation.

Syntax
FUNCTI ON next _entry

(
I'd IN SESSION,

msg | N MESSAGE

)
RETURN MESSAGE;

Parameters

Table 12-28 NEXT_ENTRY Function Parameters

Parameter Description
Id A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

12-14 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-29 NEXT_ENTRY Function Return Values

Value Description

VESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Exceptions

Table 12-30 NEXT_ENTRY Function Exceptions

Exception Description
invalid_session Raised if the session handle, | d is invalid.
inval i d_nessage Raised if the incoming nsg handle is invalid.

Usage Notes

The function next _ent ry() should always be called after a call to the function
first_entry().Also, the return value of a successful call to next _entry() should
be used as msg argument used in a subsequent call to the function next _entry() to
fetch the next entry in the list.

See Also
DBVS_LDAP. first_entry(), DBVS_LDAP. search_s(), DBVS_LDAP. search_
st ()

FUNCTION count_entries

This function is used to count the number of entries in the result set. It can also be used
to count the number of entries remaining during a traversal of the result set using a
combination of the functionsfi rst _entry() and next _entry().

Syntax
FUNCTI ON count _entries

(
I'd IN SESSION,

msg | N MESSAGE

)
RETURN PLS_| NTEGER,

Parameters

Table 12-31 COUNT_ENTRY Function Parameters

Parameter Description
Id A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 12-15

Subprograms

Return Values

Table 12-32 COUNT_ENTRY Function Return Values

Value Description

PLS | NTEGER Nonzero if there are entries in the result set. - 1 if there was a
problem.

Exceptions

Table 12-33 COUNT_ENTRY Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.

i nval i d_nessage Raised if the incoming nmsg handle is invalid.

count _entry_error Raised if there was a problem in counting the entries.

Usage Notes

count _entri es() returns the number of entries contained in a chain of entries; if an
error occurs such as the r es parameter being invalid, - 1 is returned. The count _

ent ri es() call can also be used to count the number of entries that remain in a chain
if called with a message, entry, or reference returned by fi r st _nmessage(), next _
message(),first_entry(),next_entry(),first_reference(),next_
reference().

See Also
DBVS LDAP. first_entry(),DBMS _LDAP. next _entry().

FUNCTION first_attribute

The functionfirst _attri bute() fetches the first attribute of a given entry in the
result set.

Syntax
FUNCTION first_attribute

(

I d IN SESSION,

| dapentry IN MESSAGE

ber _elem QUT BER _ELEMENT

)
RETURN VARCHAR?;

Parameters

Table 12-34 FIRST_ATTRIBUTE Function Parameters

Parameter Description
Id A valid LDAP session handle.
| dapentry The entry whose attributes are to be stepped through, as

returned by first_entry() ornext_entry().

ber _elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have already been read.

12-16 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP. next _attri bute() to iterate
over all of the attributes

Exceptions

Table 12-36 FIRST_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle | d is invalid.
inval i d_message Raised if the incoming msg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parametertofirst _
attri but e() should be used in the next call tonext _attri bute() to iterate
through the various attributes of an entry. The name of the attribute returned from a
calltofirst _attribute() caninturn be used in calls to the functions get _

val ues() orget val ues_| en() to get the values of that particular attribute.

See Also

DBMS_LDAP. next _attri bute(), DBVS_LDAP. get _val ues(), DBMS_LDAP. get _
val ues_len(),DBMS_LDAP.first_entry(),DBMS_LDAP. next _entry().

FUNCTION next_attribute

The function next _at tri but e() retrieves the next attribute of a given entry in the
result set.

Syntax
FUNCTI ON next _attribute

(

I d I N SESSI ON,

| dapentry I N MESSAGE,
ber_el em N BER_ELEMENT

)
RETURN VARCHARZ;

Parameters

Table 12-37 NEXT_ATTRIBUTE Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentry The entry whose attributes are to be stepped through, as
returned by first_entry() ornext_entry().

ber_elem A handle to a BER_ELEMENT that is used to keep track of

attributes in the entry that have been read.

DBMS_LDAP PL/SQL Reference 12-17

Subprograms

Return Values

Table 12-38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.
(function return)

Exceptions

Table 12-39 NEXT_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle | d is invalid.
inval i d_nessage Raised if the incoming nsg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parametertofi rst _
attri but e() should be used in the next call tonext _attri bute() toiterate
through the various attributes of an entry. The name of the attribute returned from a
calltonext _attri bute() caninturn be used in calls to the functions get _

val ues() orget val ues_I en() to get the values of that particular attribute.

See Also

DBVS_LDAP. first_attribute(), DBVB_LDAP. get _val ues(), DBMS_

LDAP. get _val ues_l en(),DBVS_LDAP. first_entry(), DBVMS_LDAP. next _
entry().

FUNCTION get_dn

The function get _dn() retrieves the X.500 distinguished name of given entry in the
result set.

Syntax
FUNCTI ON get _dn

(
I'd IN SESSION,

| dapentrynsg | N MESSAGE

)
RETURN VARCHAR?;

Parameters

Table 12-40 GET_DN Function Parameters

Parameter Description
Id A valid LDAP session handle.
| dapentry The entry whose DN is to be returned.

12-18 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-41 GET_DN Function Return Values

Value Description

VARCHAR2 The X.500 Distinguished name of the entry as a PL/SQL string.
NULL if there was a problem.

Exceptions

Table 12-42 GET_DN Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.

i nval i d_nessage Raised if the incoming nsg handle is invalid.

get _dn_error Raised if there was a problem in determining the DN.

Usage Notes

The function get _dn() can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
expl ode_dn() to retrieve the individual components of the DN.

See Also
DBVS_LDAP. expl ode_dn().

FUNCTION get_values

The function get _val ues() can be used to retrieve all of the values associated with a
given attribute in a given entry.

Syntax
FUNCTI ON get _val ues

(

Id IN SESSION

| dapentry I N MESSAGE,
attr IN VARCHAR2

)
RETURN STRI NG_COLLECTI ON;

Parameters

Table 12-43 GET_VALUES Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentry A valid handle to an entry returned from a search result.
attr The name of the attribute for which values are being sought.

DBMS_LDAP PL/SQL Reference 12-19

Subprograms

Return Values

Table 12-44 GET_VALUES Function Return Values

Value Description

STRI NG_COLLECTI ON A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 12-45 GET_VALUES Function Exceptions

Exception Description
inval id_session Raised if the session handle | d is invalid.
inval i d_nessage Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues() can only be called after the handle to entry has been first
retrieved by call to eitherfirst _entry() ornext _entry().The name of the
attribute may be known beforehand or can be determined by acall tofi rst _
attribute() ornext _attribute().Thefunctionget val ues() always assumes
that the data type of the attribute it is retrieving is a string. For retrieving binary data
types, get _val ues_| en() should be used.

See Also

DBMS_LDAP.first_entry(), DBMS_LDAP. next _entry(), DBMS_LDAP. count _
val ues(), DBM5_LDAP. get _val ues_Il en().

FUNCTION get_values_len

The function get _val ues_I| en() can be used to retrieve values of attributes that
have a binary syntax.

Syntax
FUNCTI ON get _val ues_l en

(

Id IN SESSION,

| dapentry I N MESSAGE,
attr I N VARCHAR2

)
RETURN BI NVAL_COLLECTI ON,

Parameters

Table 12-46 GET_VALUES_LEN Function Parameters

Parameter Description

Id A valid LDAP session handle.

| dapentrynsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

12-20 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-47 GET_VALUES_LEN Function Return Values

Value Description

Bl NVAL_COLLECTI ON A PL/SQL 'Raw' collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 12-48 GET_VALUES_LEN Function Exceptions

Exception Description
invalid_session Raised if the session handle | d is invalid.
inval i d_nessage Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues_I| en() can only be called after the handle to an entry has
been retrieved by a call to either fi rst _entry() ornext _entry().The name of the
attribute may be known beforehand or can also be determined by acall tofirst
attribute() ornext _attribute().This function can be used to retrieve both
binary and non-binary attribute values.

See Also

DBMS_LDAP. first_entry(), DBMS_LDAP. next _entry(), DBMS_LDAP. count _
val ues_| en(), DBMS_LDAP. get _val ues().

FUNCTION delete s

The function del et e_s() can be used to remove a leaf entry in the DIT.

Syntax
FUNCTI ON del ete_s

(
Id IN SESSI ON,

entrydn IN VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 12-49 DELETE_S Function Parameters

Parameter Name Description
Id A valid LDAP session.
entrydn The X.500 distinguished name of the entry to delete.

DBMS_LDAP PL/SQL Reference 12-21

Subprograms

Return Values

Table 12-50 DELETE_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the delete operation was successful.
An exception is raised otherwise.

Exceptions

Table 12-51 DELETE_S Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function del et e_s() can be used to remove only leaf entries in the DIT. A leaf
entry is an entry that does not have any entries under it. This function cannot be used
to delete non-leaf entries.

See Also
DBMS_LDAP. nodr dn2_s() .

FUNCTION modrdn2_s

The function nodr dn2_s() can be used to rename the relative distinguished name of
an entry.

Syntax

FUNCTI ON nodr dn2_s

(

Id I'N SESSI ON,

entrydn in VARCHAR2

new dn in VARCHAR2

del eteol drdn I N PLS_I NTEGER

)
RETURN PLS_| NTEGER

Parameters

Table 12-52 MODRDNZ2_S Function Parameters

Parameter Description

Id A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newr dn The new relative distinguished name of the entry.

del et eol drdn A boolean value that, if nonzero, indicates that the attribute

values from the old name should be removed from the entry.

12-22 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-53 MODRDNZ2_S Function Return Values

Value Description

PLS | NTEGER DBMS_LDAP. SUCCESS if the operation was successful. An
exception is raised otherwise.

Exceptions

Table 12-54 MODRDNZ2_S Function Exceptions

Exception Description

inval i d_session Raised if the session handle | d is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
invalid rdn Invalid LDAP RDN.

i nval i d_del et eol drdn Invalid LDAP deleteoldrdn.

general _error For all other errors. The error string associated with this

exception will explain the error in detail.

Usage Notes

The function nodr dn2_s() can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use r enanme_s(), which
fulfills the same purpose.

See Also
DBMS_LDAP. rename_s() .

FUNCTION err2string

The function err 2st ri ng() can be used to convert an LDAP error code to a string in
the local language in which the APl is operating.

Syntax
FUNCTI ON err2string

(
| dap_err IN PLS_| NTEGER

)
RETURN VARCHARZ;

Parameters

Table 12-55 ERR2STRING Function Parameters

Parameter Description

| dap_err An error number returned from one of the API calls.

DBMS_LDAP PL/SQL Reference 12-23

Subprograms

Return Values

Table 12-56 ERR2STRING Function Return Values

Value Description

VARCHAR2 A character string translated to the local language. The string
describes the error in detail.

Exceptions
err2string() raises no exceptions.

Usage Notes

In this release, the exception handling mechanism automatically invokes this function
if any of the API calls encounter an error.

FUNCTION create_mod_array

The function cr eat e_nod_array() allocates memory for array modification entries
that are applied to an entry using the nodi fy_s() oradd_s() functions.

Syntax
FUNCTI ON create_nod_ar ray

(
num I N PLS_| NTEGER

)
RETURN MOD_ARRAY;

Parameters

Table 12-57 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add or modify.

Return Values

Table 12-58 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.
Returns NULL if there was a problem.

Exceptions
create_nod_array() raises no exceptions.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP. add_s and DBVS
LDAP. nodi fy_s. Itcalls DBMS_LDAP. free_nod_ar r ay to free memory after the
calls to add_s or nodi fy_s have completed.

See Also

DBVMS_LDAP. popul at e_nod_array(), DBM5_LDAP. modi fy_s(), DBMS
LDAP. add_s(),and DBMS_LDAP. free_nod_array() .

12-24 Oracle Identity Management Application Developer’'s Guide

Subprograms

PROCEDURE populate_mod_array (String Version)

Populates one set of attribute information for add or modify operations.

Syntax
PROCEDURE popul at e_nod_ar ray

(

modptr | N DBVS_LDAP. MOD_ARRAY,

mod_op | N PLS_| NTEGER,

mod_type | N VARCHARZ,

modval I N DBVS_LDAP. STRI NG_COLLECTI ON

K
Parameters

Table 12-59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

modpt r The data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the

modification applies.

nodval This field specifies the attribute values to add, delete, or
replace. It is for string values only.

Exceptions

Table 12-60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description

inval i d_nod_array Invalid LDAP mod array
inval i d_nod_option Invalid LDAP mod option
inval i d_nod_type Invalid LDAP mod type
invalid nod_val ue Invalid LDAP mod value

Usage Notes

This function is one of the preparation steps for DBMS_LDAP. add_s and DBMS
LDAP. nodi fy_s. It has to happen after DBVS_LDAP. cr eat e_nod_ar r ay is called.

See Also

DBVS_LDAP. create_nod_array(), DBVS_LDAP. modi fy_s(), DBVS_LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

PROCEDURE populate_mod_array (Binary Version)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP. creat e_nod_array() is called.

Syntax
PROCEDURE popul at e_nod_array

(
nodptr | N DBMVS_LDAP. MOD_ARRAY,

mod_op |IN PLS | NTEGER

DBMS_LDAP PL/SQL Reference 12-25

Subprograms

mod_type | N VARCHAR2,

nodbval | N DBVS_LDAP. BERVAL COLLECTI ON
)

Parameters

Table 12-61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

modpt r This data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the

modification applies.

nodbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

Exceptions

Table 12-62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description
invalid_nod_array Invalid LDAP mod array.
inval i d_nmod_option Invalid LDAP mod option.
inval i d_nod_type Invalid LDAP mod type.
invalid_nod_val ue Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBM5S_LDAP. add_s and DBMS_
LDAP. nodi fy_s. Itis invoked after DBMS_LDAP. cr eat e_nod_ar r ay is called.

See Also

DBMVS_LDAP. create_nod_array(), DBVS_LDAP. modi fy_s(), DBVS_LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP. cr eat e_nod_array() is called.

Syntax

PROCEDURE popul at e_nod_array

(

modptr | N DBVS_LDAP. MOD_ARRAY,
mod_op | N PLS | NTEGER,

mod_type |N VARCHARZ,

nmodbval | N DBVS_LDAP. BLOB_COLLECTI ON

)

12-26 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 12-63 POPULATE_MOD_ARRAY (Binary) Parameters

Parameter Description

modpt r This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_t ype This field indicates the name of the attribute type to which the
modification applies.

nodbval This field specifies the binary attribute values to add, delete, or
replace.

Exceptions

Table 12-64 POPULATE_MOD_ARRAY (Binary) Exceptions

Exception Description

inval i d_nod_array Invalid LDAP mod array.
inval i d_nod_option Invalid LDAP mod option.
inval i d_nod_type Invalid LDAP mod type.
invalid nod_val ue Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP. add_s and DBMS
LDAP. nodi fy_s. Itis invoked after DBMS_LDAP. cr eat e_nod_ar r ay is called.

See Also

DBMVS_LDAP. create_nod_array(), DBVS_LDAP. modi fy_s(), DBVS_LDAP. add_
s(),and DBMS_LDAP. free_nod_array().

FUNCTION get_values_blob

The function get _val ues_bl ob() can be used to retrieve larger values of attributes
that have a binary syntax.

Syntax

Synt ax

FUNCTI ON get _val ues_bl ob
(

|d N SESSI ON,

| dapentry I N MESSAGE,
attr | N VARCHAR2

)
RETURN BLOB_COLLECTI ON;

Parameters

Table 12-65 GET_VALUES_BLOB Parameters

Parameter Description
Id A valid LDAP session handle.
| dapentrynsg A valid handle to an entry returned from a search result.

DBMS_LDAP PL/SQL Reference 12-27

Subprograms

Table 12-65 (Cont.) GET_VALUES_BLOB Parameters

Parameter Description
attr The string name of the attribute for which values are being
sought.

Return Values

Table 12-66 get_values_blob Return Values

Value Description

BLOB_COLLECTI ON A PL/SQL BLOB collection containing all the values of the given
attribute.

NULL No values are associated with the given attribute.

Exceptions

Table 12-67 get_values_blob Exceptions

Exception Description
inval i d_session Raised if the session handle | d is invalid.
invalid nessage Raised if the incoming entry handle is invalid.

Usage Notes

The function get _val ues_bl ob() can only be called after the handle to an entry has
been retrieved by a call to either fi r st _entry() ornext _entry().The name of
the attribute may be known beforehand or can also be determined by acall tofirst _
attribute() ornext _attribute().Thisfunction can be used to retrieve both
binary and nonbinary attribute values.

See Also

DBMS _LDAP. first_entry(),DBVMS _LDAP. next _entry(), DBMS_LDAP. count _
val ues_bl ob(), DBM5_LDAP. get _val ues().

FUNCTION count_values_blob

Counts the number of values returned by DBMS_LDAP. get _val ues_bl ob().

Syntax
FUNCTI ON count _val ues_bl ob

(
val ues | N DBMVS_LDAP. BLOB_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 12-68 COUNT_VALUES_BLOB Parameters

Parameter Description

val ues The collection of large binary values.

12-28 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-69 COUNT_VALUES_BLOB Return Values

Values Description
PLS | NTEGER Indicates the success or failure of the operation.
Exceptions

The function count _val ues_bl ob() raises no exceptions.

See Also
DBMS_LDAP. count _val ues(), DBVS_LDAP. get _val ues_bl ob() .

FUNCTION value_free blob

Frees the memory associated with BLOB_COLLECTI ONreturned by DBMS _LDAP. get _
val ues_bl ob().

Syntax
PROCEDURE val ue_free_bl ob
(

vals IN OUT DBVS_LDAP. BLOB_COLLECTI ON
)
Parameters

Table 12-70 VALUE_FREE_BLOB Parameters

Parameter Description

val s The collection of large binary values returned by DBMS_
LDAP. get _val ues_bl ob().

Exceptions
val ue_free_ bl ob() raises no exceptions.

See Also
DBVS_LDAP. get _val ues_bl ob().

FUNCTION modify s

Performs a synchronous modification of an existing LDAP directory entry.

Syntax

FUNCTI ON nodi fy_s

(

Id I'N DBMS_LDAP. SESSI ON,
entrydn | N VARCHARZ,

modptr | N DBVS_LDAP. MOD_ARRAY

)
RETURN PLS_| NTEGER,

DBMS_LDAP PL/SQL Reference 12-29

Subprograms

Parameters

Table 12-71 MODIFY_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP. i ni t ().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modpt r This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP. creat e_nod_
array().

Return Values

Table 12-72 MODIFY_S Function Return Values

Value Description
PLS | NTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 12-73 MODIFY_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
inval i d_nod_array Invalid LDAP mod array.

Usage Notes

This function call has to follow successful calls of DBMS_LDAP. cr eat e_nod_
array() and DBVS_LDAP. popul ate_nod_array().

See Also

DBMS_LDAP. creat e_nod_array() ,DBVS_LDAP. popul ate_nod_array(),
DBMVS_LDAP. add_s(),and DBMS_LDAP. free_nod_array() .

FUNCTION add_s

Adds a new entry to the LDAP directory synchronously. Before calling add_s, DBMS _
LDAP. creat e_nod_array() and DBMS_LDAP. popul at e_nod_ar ray() must be
called.

Syntax
FUNCTI ON add_s

(

Id I N DBVS_LDAP. SESSI ON,
entrydn | N VARCHARZ,

modptr | N DBMS_LDAP. MOD_ARRAY

)
RETURN PLS_| NTEGER,

12-30 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 12-74 ADD_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP. i nit ().

entrydn This parameter specifies the name of the directory entry to be
created.

modpt r This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP. creat e_nod_
array().

Return Values

Table 12-75 ADD_S Function Return Values

Value Description
PLS | NTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 12-76 ADD_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
inval i d_nod_array Invalid LDAP mod array.

Usage Notes

The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls to DBMS_LDAP. creat e_nod_array()
and DBM5S_LDAP. popul ate_nod_array() .

See Also

DBMS_LDAP. creat e_nod_array(), DBMS_LDAP. popul ate_nod_array(),
DBVS_LDAP. nodi fy_s(),and DBMS_LDAP. free_nod_array().

PROCEDURE free_mod_array
Frees the memory allocated by DBMS_LDAP. creat e_nod_array() .

Syntax
PROCEDURE free_nod_array

(
nodptr | N DBVS_LDAP. MOD_ARRAY

)

DBMS_LDAP PL/SQL Reference 12-31

Subprograms

Parameters

Table 12-77 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modpt r This parameter is the handle to an LDAP mod structure
returned by a successful call to DBVMS_LDAP. cr eat e_nod_
array().

Exceptions

free_nod_array raises no exceptions.

See Also

DBVS_LDAP. popul ate_nod_array(), DBMS_LDAP. nodi fy_s(), DBVS_
LDAP. add_s(),and DBMS_LDAP. create_nod_array().

FUNCTION count_values
Counts the number of values returned by DBM5_LDAP. get _val ues().

Syntax
FUNCTI ON count _val ues

(
val ues | N DBVS_LDAP. STRI NG COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 12-78 COUNT_VALUES Function Parameters

Parameter Description

val ues The collection of string values.

Return Values

Table 12-79 COUNT_VALUES Function Return Values

Value Description
PLS | NTEGER Indicates the success or failure of the operation.
Exceptions

count _val ues raises no exceptions.

See Also
DBMS_LDAP. count _val ues_l en(), DBM5S_LDAP. get _val ues().

FUNCTION count_values_len
Counts the number of values returned by DBVS_LDAP. get _val ues_I en().

Syntax
FUNCTI ON count _val ues_| en
(

12-32 Oracle Identity Management Application Developer’'s Guide

Subprograms

val ues | N DBMS_LDAP. Bl NVAL_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 12-80 COUNT_VALUES LEN Function Parameters

Parameter Description

val ues The collection of binary values.

Return Values

Table 12-81 COUNT_VALUES_LEN Function Return Values

Value Description
PLS_I NTEGER Indicates the success or failure of the operation.
Exceptions

count _val ues_| en raises no exceptions.

See Also
DBMS_LDAP. count _val ues(), DBMS_LDAP. get _val ues_l en().

FUNCTION rename_s

Renames an LDAP entry synchronously.

Syntax

FUNCTI ON renane_s

(

Id I N SESSI ON,
dn I N VARCHARZ,
new dn I N VARCHAR2,
newpar ent I'N VARCHAR?,

del eteol drdn I N PLS_| NTEGER,
serverctrls | N LDAPCONTRQOL,
clientctrls | N LDAPCONTROL

)
RETURN PLS_| NTEGER

Parameters

Table 12-82 RENAME_S Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP. i nit ().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newr dn This parameter specifies the new RDN.

newpar ent This parameter specifies the DN of the new parent.

del et eol drdn This parameter specifies whether the old RDN should be

retained. If this value is 1, the old RDN is removed.

DBMS_LDAP PL/SQL Reference 12-33

Subprograms

Table 12-82 (Cont.) RENAME_S Function Parameters

Parameter Description
serverctrls Currently not supported.
clientctrls Currently not supported.

Return Values

Table 12-83 RENAME_S Function Return Values

Value Description
PLS_I NTEGER The indication of the success or failure of the operation.
Exceptions

Table 12-84 RENAME_S Function Exceptions

Exception Description

inval i d_session Invalid LDAP Session.
invalid_entry_dn Invalid LDAP DN.
invalid_rdn Invalid LDAP RDN.

i nval i d_newpar ent Invalid LDAP newparent.

i nval i d_del et eol drdn Invalid LDAP deleteoldrdn.
See Also

DBVS_LDAP. nodrdn2_s().

FUNCTION explode_dn

Breaks a DN up into its components.

Syntax
FUNCTI ON expl ode_dn

(
dn I'N VARCHAR?,

notypes I N PLS | NTEGER

)
RETURN STRI NG_COLLECTI ON;

Parameters

Table 12-85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

not ypes This parameter specifies whether the attribute tags will be

returned. If this value is not 0, no attribute tags are returned.

12-34 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-86 EXPLODE_DN Function Return Values

Value Description

STRI NG_COLLECTI ON An array of strings. If the DN cannot be broken up, NULL will
be returned.

Exceptions

Table 12-87 EXPLODE_DN Function Exceptions

Exception Description
invalid_entry_dn Invalid LDAP DN.

i nval i d_not ypes Invalid LDAP notypes value.
See Also

DBVS_LDAP. get _dn().

FUNCTION open_ssl

Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP

connection.

Syntax

FUNCTI ON open_ssl

(

Id IN SESSI ON,
sslwrl I N VARCHARZ,
sslwal | et passwd | N VARCHAR?,
sslauth IN PLS_| NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 12-88 OPEN_SSL Function Parameters

Parameter Description

Id This parameter is a handle to an LDAP session that is returned
by a successful call to DBMS_LDAP. i nit ().

sslwl This parameter specifies the wallet location. Required for
one-way or two-way SSL connections.

ssl wal | et passwd This parameter specifies the wallet password. Required for
one-way or two-way SSL connections.

sslauth This parameter specifies the SSL Authentication Mode. (1 for no
authentication, 2 for one-way authentication required, 3 for
two-way authentication).

DBMS_LDAP PL/SQL Reference 12-35

Subprograms

Return Values

Table 12-89 OPEN_SSL Function Return Values

Value Description

PLS | NTEGER Indicates the success or failure of the operation.
Exceptions

Table 12-90 OPEN_SSL Function Exceptions

Exception Description

inval i d_session Invalid LDAP Session.

invalid_ssl_wallet_|oc Invalid LDAP SSL wallet location.

invalid_ssl_wallet_ Invalid LDAP SSL wallet password.

passwd

invalid_ssl _auth _node Invalid LDAP SSL authentication mode.

Usage Notes

Need to call DBMS_LDAP. i ni t () first to acquire a valid Idap session.

See Also

DBVS_LDAP. i nit ().

FUNCTION msgfree

This function frees the chain of messages associated with the message handle returned

by synchronous search functions.

Syntax

FUNCTI ON nsgfree

(

res

)

IN MESSAGE

RETURN PLS_| NTEGER;

Parameters

Table 12-91

MSGFREE Function Parameters

Parameter

Description

res

The message handle obtained by a call to one of the synchronous
search routines.

12-36 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 12-92 MSGFREE Return Values

Value Description

PLS | NTEGER Indicates the type of the last message in the chain.

The function might return any of the following values:

DBVS_LDAP

DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.
DBVS_LDAP.

. LDAP_RES_BI ND
LDAP_RES_SEARCH_ENTRY
LDAP_RES SEARCH REFERENCE
LDAP_RES SEARCH RESULT
LDAP_RES_MODI FY
LDAP_RES_ADD
LDAP_RES_DELETE
LDAP_RES_MODDN
LDAP_RES_COVPARE
LDAP_RES_EXTENDED

Exceptions

nsgf r ee raises no exceptions.

See Also

DBVS_LDAP. search_s(),DBMs_LDAP. search_st ().

FUNCTION ber_free

This function frees the memory associated with a handle to BER ELEMENT.

Syntax
FUNCTI ON ber free

(
ber _el em I N BER_ELEMENT,

freebuf IN PLS_I NTEGER
)

Parameters

Table 12-93 BER_FREE Function Parameters

Parameter Description
ber_elem A handle to BER ELEMENT.
freebuf The value of this flag should be 0 while the BER ELEMENT

returned from DBVS_LDAP. first _attri bute() isbeing
freed. For any other case, the value of this flag should be 1.

The default value of this parameter is zero.

Return Values

ber free returns no values.

Exceptions

ber free raises no exceptions.

DBMS_LDAP PL/SQL Reference 12-37

Subprograms

See Also
DBMS _LDAP. first_attribute(),DBM5S _LDAP. next _attribute().

FUNCTION nls_convert_to_utf8

Thenl s_convert _to_utf8() function converts the input string containing
database character set data to UTF8 character set data and returns it.

Syntax
Function nls_convert_to_utf8

(
data_l ocal IN VARCHAR2

)
RETURN VARCHAR2;

Parameters

Table 12-94 Parameters for nls_convert_to_utf8

Parameter Description

dat a_l ocal Contains the database character set data.

Return Values

Table 12-95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR2 UTF8 character set data string.

Usage Notes

The functions in DBMS_L DAP package expect the input data to be UTF8 character set
data if the UTF8_CONVERSI ON package variable is set to FALSE. The nl s_convert _
t o_ut f 8() function converts database character set data to UTF8 character set data.

If the UTF8__CONVERSI ON package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_L DAP package expect input data to be database character set
data.

See Also

DBMS_LDAP. nl s_convert_from utf8(), DBM5_LDAP. nl s_get _dbcharset _
name() .

FUNCTION nls_convert_to_utf8

Thenl s_convert _to_utf8() function converts the input string collection
containing database character set data to UTF8 character set data. It then returns the
converted data.

Syntax
Function nls_convert to utf8

(
data_l ocal I N STRI NG COLLECTI ON

)
RETURN STRI NG_COLLECTI ON,

12-38 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 12-96 Parameters for nls_convert_to_utf8

Parameter Description

dat a_l ocal Collection of strings containing database character set data.

Return Values

Table 12-97 Return Values for nls_convert_to_utf8

Value Description

STRI NG_COLLECTI ON Collection of strings containing UTF8 character set data.

Usage Notes

The functions in the DBM5_LDAP package expect the input data to be in the UTF8
character set if the UTF8_CONVERSI ON package variable is set to FALSE. Thenl s_
convert to_utf8() function converts the input data from the database character
set to the UTF8 character set.

If the UTF8_CONVERSI ON package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect the input data to be in the database
character set.

See Also
DBMS _LDAP. nl s_convert fromutf8(),DBMS LDAP. nl s_get dbcharset _
name() .

FUNCTION nls_convert_from_utf8

Thenls_convert _from utf8() function converts the input string containing
UTF8 character set to database character set data. It then returns this data.

Syntax
Function nls_convert_fromutf8

(
data_utf8 IN VARCHAR?

)
RETURN VARCHAR?;

Parameters

Table 12-98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains UTF8 character set data.

Return Values

Table 12-99 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Data string in the database character set.

DBMS_LDAP PL/SQL Reference 12-39

Subprograms

Usage Notes

The functions in the DBM5S_LDAP package return UTF8 character set data if the UTF8_
CONVERSI ON package variable is set to FALSE. The nl s_convert _from utf8()
function converts the output data from the UTF8 character set to the database
character set.

If the UTF8__CONVERSI ON package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_L DAP package return database character set data.

See Also

DBMS_LDAP. nl's_convert _to_utf8(),DBMS_LDAP. nl s_get _dbcharset _
name() .

FUNCTION nls_convert_from_utf8

Thenl s_convert _from utf8() function converts the input string collection
containing UTF8 character set data to database character set data. It then returns this
data.

Syntax
Function nls_convert_fromutf8

(
data_utf8 IN STRING COLLECTI ON

)
RETURN STRI NG_COLLECTI ON,

Parameters

Table 12-100 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Collection of strings containing UTF8 character set data.

Return Values

Table 12-101 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Usage Notes

The functions in the DBM5S_LDAP package return UTF8 character set data if the UTF8_
CONVERSI ON package variable is setto FALSE. nls_convert _from utf8()
converts the output data from the UTF8 character set to the database character set. If
the UTF8_CONVERSI ON package variable of the DBMS_|L DAP package is set to TRUE,
functions in the DBMS_L DAP package return database character set data.

See Also

DBMS_LDAP. nl's_convert _to_utf8(), DBMS_LDAP. nl s_get _dbcharset _
nane() .

12-40 Oracle Identity Management Application Developer’'s Guide

Subprograms

FUNCTION nls_get dbcharset name

Thenl s_get _dbcharset _nane() function returns a string containing the database
character set name.

Syntax
Function nl s_get _dbcharset _name

RETURN VARCHARZ;

Parameters
None.

Return Values

Table 12-102 Return Value for nls_get_dbcharset_name

Value Description

VARCHAR2 String containing the database character set name.

See Also

DBMS_LDAP. nl s_convert _to_utf8(),DBMS_LDAP. nl s_convert _from_
utf8().

DBMS_LDAP PL/SQL Reference 12-41

Subprograms

12-42 Oracle Identity Management Application Developer’'s Guide

13

Java APl Reference

The standard Java APIs for Oracle Internet Directory are available as the Java Naming
and Directory Interface (JNDI) from Sun Microsystems. The JNDI is found at this link:

http://java. sun. conl product s/ j ndi

The Oracle extensions to the standard APIs are found in Oracle Internet Directory API
Reference.

Sample code for the Java APIs is available at this URL:

http://ww. oracl e. com t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample Applications—Oracle
Application Server.

Java API| Reference 13-1

13-2 Oracle Identity Management Application Developer’s Guide

14

DBMS LDAP_UTL PL/SQL Reference

This chapter contains reference material for the DBVMS_LDAP_UTL package, which
contains Oracle Extension utility functions. The chapter contains these topics:

« Summary of Subprograms

« Subprograms

« Function Return Code Summary

« Data Type Summary

Note: Sample code for the DBMS_LDAP_UTL package is available at

this URL:

http://ww. oracl e. conf t echnol ogy/ sanpl e_code/

Look for the Oracle Identity Management link under Sample
Applications—-Oracle Application Server.

Summary of Subprograms

Table 14-1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure

Purpose

Function authenticate_user

Function create_user_handle

Function set_user_handle_properties
Function get_user_properties

Function set_user_properties

Function get_user_extended_properties
Function get_user_dn

Function check_group_membership
Function locate_subscriber_for_user

Function get_group_membership

Authenticates a user against an LDAP server.
Creates a user handle.

Associates the given properties to the user handle.
Retrieves user properties from an LDAP server.
Modifies the properties of a user.

Retrieves user extended properties.

Retrieves a user DN.

Checks whether a user is member of a given group.
Retrieves the subscriber for the given user.

Retrieves a list of groups of which the user is a
member.

DBMS_LDAP_UTL PL/SQL Reference 14-1

Subprograms

Table 14-2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure

Purpose

Function create_group_handle
Function set_group_handle_properties
Function get_group_properties

Function get_group_dn

Creates a group handle.
Associates the given properties with the group handle.
Retrieves group properties from an LDAP server.

Retrieves a group DN.

Table 14-3

DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure

Purpose

Function create_subscriber_handle

Function get_subscriber_properties

Function get_subscriber_dn

Creates a subscriber handle.

Retrieves subscriber properties from an LDAP
server.

Retrieves a subscriber DN.

Table 14-4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure

Purpose

Function normalize_dn_with_case
Function get_property_names
Function get_property_values

Function get_property_values_blob

Procedure property_value_free_blob

Function get_property_values_len
Procedure free_propertyset_collection
Function create_mod_propertyset
Function populate_mod_propertyset
Procedure free_mod_propertyset
Procedure free_handle

Function check_interface_version

Normalizes the DN string.
Retrieves a list of property names in a PROPERTY_SET.
Retrieves a list of values for a property name.

Retrieves a list of large binary values for a property
name.

Frees the memory associated with BLOB_CCOLLECTI ON
returned by DBMS_LDAP_UTL. get _property_
val ues_bl ob().

Retrieves a list of binary values for a property name.
Frees PROPERTY_SET_COLLECTI ON.

Creates a MOD_PROPERTY_SET.

Populates a MOD_PROPERTY_SET structure.

Frees a MOD_PROPERTY_SET.

Frees handles.

Checks for support of the interface version.

Subprograms

This section contains the following topics:

« User-Related Subprograms

« Group-Related Subprograms

« Subscriber-Related Subprograms
« Property-Related Subprograms

« Miscellaneous Subprograms

14-2 Oracle Identity Management Application Developer’s Guide

Subprograms

User-Related Subprograms

A user is represented by the DBMS_LDAP_UTL. HANDLE data type. You can create a
user handle by using a DN, GUID, or simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the root
Oracle Context and the subscriber Oracle Context is used to identify the user. This
example shows a user handle being created:

retval := DBMS_LDAP_UTL. create_user_handl e(
user _handl e,

DBVS_LDAP_UTL. TYPE_DN,

"cn=user 1, cn=users, o=acne, dc=con{

)i

This user handle must be associated with an appropriate subscriber handle. If, for
example, subscri ber _handl e is o=acne, dc=com the subscriber handle can be
associated in the following way:

retval := DBMS_LDAP_UTL. set _user_handl e_properti es(
user _handl e,

DBVS_LDAP_UTL. SUBSCRI BER_HANDLE,

subscri ber _handl e

)

Common uses of user handles include setting and getting user properties and
authenticating the user. Here is a handle that authenticates a user:

retval := DBMS_LDAP_UTL. aut henti cat e_user (
ny_session

user _handl e

DBVS_LDAP_UTL. AUTH_SI MPLE,

"wel come”

NULL

)

In this example, the user is authenticated using a clear text password wel cone.
Here is a handle that retrieves a user's telephone number;

--ny_attrs is of type DBVMS_LDAP. STRI NG COLLECTI ON
my_attrs(1) :="tel ephonenunber’;

retval := DBMS_LDAP_UTL. get _user_properties(
nmy_sessi on,

my_attrs,

DBVS_LDAP_UTL. ENTRY_PROPERTI ES,

ny_pset _col |

)

Function authenticate_user

The function aut hent i cat e_user () authenticates the user against Oracle Internet
Directory.

Syntax

FUNCTI ON aut henti cat e_user
(

|d N SESSI ON,

user _handl e I N HANDLE,
auth_type I N PLS | NTEGER,
credentials I N VARCHAR2,
binary_credentials IN RAW

DBMS_LDAP_UTL PL/SQL Reference 14-3

Subprograms

)

RETURN PLS_| NTEGER;

Parameters

Table 14-5

authenticate_user Function Parameters

Parameter Name

Parameter Type

Parameter Description

I d
user _handl e

auth_type

credentials

binary_credential s

SESSI ON
HANDLE
PLS_I NTEGER

VARCHAR2
RAW

A valid LDAP session handle.
The user handle.

Type of authentication. The only valid value is
DBMS_LDAP_UTL. AUTH_SI MPLE

The user credentials.

The binary credentials. This parameter is optional.
It can be NULL by default.

Return Values

Table 14-6 authenticate_user Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR Authentication failed.
DBVS_LDAP_UTL. NO_SUCH_USER User does not exist.
DBVS_LDAP_UTL. MULTI PLE_USER ENTRIES The user has multiple DN entries.
DBVS_LDAP_UTL. | NVALI D_SUBSCRI BER_ Invalid Subscriber Oracle Context.
ORCL_CTX

DBVS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn't exist.
DBVS_LDAP_UTL. MULTI PLE_SUBSCRI BER The subscriber has multiple DN entries.
ENTRI ES

DBVS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBVS_LDAP_UTL. ACCT_TOTALLY_LOCKED_ User account is locked.

EXCP

DBVS_LDAP_UTL. AUTH_PASSWD_CHANGE_WARN This return value is deprecated.
DBVS_LDAP_UTL. AUTH FAI LURE EXCP Authentication failed.
DBVS_LDAP_UTL. PWD_EXPI RED_EXCP User password has expired.
DBVS_LDAP_UTL. PAD_GRACELOG N_WARN Grace login for user.

DBMS_LDAP error codes

Return proper DBMS_LDAP error codes for
unconditional failures that occurred when LDAP
operations were carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

See Also

DBVS_LDAP. i nit (), DBMS_LDAP_UTL. create_user _handl e().

14-4 Oracle Identity Management Application Developer’s Guide

Subprograms

Function create_user_handle
The function cr eat e_user _handl e() creates a user handle.

Syntax
FUNCTI ON create_user_handl e

(
user _hd OUT HANDLE,

user_type I N PLS | NTEGER,
user _id I N VARCHAR?,

)
RETURN PLS_| NTEGER,

Parameters

Table 14-7 CREATE_USER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user _hd HANDLE A pointer to a handle to a user.

user_type PLS | NTEGER The type of user ID that is passed. Valid values for this
argument are as follows:

. DBMS_LDAP_UTL. TYPE DN
. DBVS_LDAP_UTL. TYPE_GU D
. DBMS_LDAP_UTL. TYPE_NI CKNANE

user_id VARCHAR2 The user ID representing the user entry.

Return Values

Table 14-8 CREATE_USER_HANDLE Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBVS_LDAP_UTL. GENERAL_ERROR ~ Other error.

See Also

DBVS _LDAP_UTL. get _user _properties(),DBMS LDAP_UTL. set _user _
handl e_properties().

Function set_user_handle_properties

The function set _user _handl e_properti es() configures the user handle
properties.

Syntax

FUNCTI ON set _user _handl e_properties
(

user _hd I N HANDLE,

property_type I N PLS_| NTEGER,
property I'N HANDLE

)
RETURN PLS_| NTEGER,

DBMS_LDAP_UTL PL/SQL Reference 14-5

Subprograms

Parameters

Table 14-9 SET_USER_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

user _hd HANDLE A pointer to a handle to a user.

property_type PLS | NTEGER The type of property that is passed. Valid values for
this argument are as follows: - DBMS_LDAP_
UTL. SUBSCRI BER_HANDLE.

property HANDLE The property describing the user entry.

Return Values

Table 14-10 SET_USER_HANDLE_PROPERTIES Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.

DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBMVS_LDAP_UTL. RESET_HANDLE When a caller tries to reset the existing handle properties.
DBVS_LDAP_UTL. GENERAL_ERROR Other error.

Usage Notes

The subscriber handle does not have to be set in User Handle Properties if the user
handle is created with TYPE_DNor TYPE_GUI D as the user type.

See Also
DBMS_LDAP_UTL. get _user _properties().

Function get_user_properties
The function get _user _properti es() retrieves the user properties.

Syntax

FUNCTI ON get _user_properties

(

Id IN SESSI ON,

user _handl e I N HANDLE,

attrs I'N STRI NG_COLLECTI ON,

ptype IN PLS | NTEGER,

ret_pset_col | QUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-11 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

attrs STRI NG_COLLECTI ON The list of user attributes to retrieve.

14-6 Oracle Identity Management Application Developer’s Guide

Subprograms

Table 14-11 (Cont.) GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
ptype PLS | NTEGER Type of properties to return. These are
valid values:
« DBMS_LDAP_UTL. ENTRY_
PROPERTI ES
« DBMS_LDAP_UTL. NI CKNAME
PROPERTY

ret-pset_collection PROPERTY_SET COLLECTION User details contained in attributes
requested by the caller.

Return Values

Table 14-12 GET_USER_PROPERTIES Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBVS_LDAP_UTL. MULTI PLE_USER ENTRIES ~ The user has multiple DN entries.
DBMS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERRCOR Other error.

DBMS_LDAP error codes Return proper DBVS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Usage Notes
This function requires the following:

« Avalid LDAP session handle, which must be obtained from the DBVS
LDAP. i ni t () function.

« Avalid subscriber handle to be set in the group handle properties if the user type
is of DBMS_LDAP_UTL. TYPE_NI CKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL. cr eat e_subscri ber _
handl e(), where a NULL subscri ber _i d is passed as an argument.

If the group type is either DBMS_LDAP_UTL. TYPE_GUI Dor DBVMS_LDAP_UTL. TYPE
DN, the subscriber handle need not be set in the user handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS _LDAP.init(),DBMS_LDAP_UTL. create_user _handl e().

Function set_user_properties
The function set _user _properti es() modifies the properties of a user.

Syntax

FUNCTI ON set _user_properties
(

DBMS_LDAP_UTL PL/SQL Reference 14-7

Subprograms

Id I'N SESSI ON,

user _handl e I N HANDLE,
pset _type I N PLS | NTEGER,
mod_pset | N PROPERTY_SET,
mod_op I'N PLS_| NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 14-13 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

pset _type PLS | NTEGER The type of property set being modified. A valid

value is ENTRY_PROPERTI ES.

mod_pset PROPERTY_SET Data structure containing modify operations to
perform on the property set.

mod_op PLS | NTEGER The type of modify operation to be performed on
the property set. Here are valid values:

« ADD PROPERTYSET
« MODI FY_PROPERTYSET
« DELETE_PROPERTYSET

Return Values

Table 14-14 SET_USER_PROPERTIES Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBVS_LDAP_UTL. MULTI PLE_USER_ENTRI ES The user has multiple DN entries.
DBMVS_LDAP_UTL. | NVALI D_ROOT_CORCL_CTX Invalid root Oracle Context.
DBVS_LDAP_UTL. PAD M N_LENGTH ERROR Password length is less than the minimum required

length.
DBVS_LDAP_UTL. PAD_NUMERI C_ERRCR Password must contain numeric characters.
DBVS_LDAP_UTL. PAD_NULL_ERROR Password cannot be NULL.
DBVS_LDAP_UTL. PD_| NHI STORY_ERROR Password cannot be the same as the one that is being
replaced.
DBVS_LDAP_UTL. PVD_| LLEGALVALUE_ERROR Password contains illegal characters.
DBMVS_LDAP_UTL. GENERAL_ERRCR Other error.
DBMS_LDAP error codes Return proper DBVS_LDAP error codes for

unconditional failures while carrying out LDAP
operations by the LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

14-8 Oracle Identity Management Application Developer’s Guide

Subprograms

See Also
DBVS _LDAP.init(),DBMS_LDAP_UTL. get _user _properties().

Function get_user_extended_properties

The function get _user _ext ended_pr operti es() retrieves user extended
properties.

Syntax

FUNCTI ON get _user_ext ended_properties

(

Id IN SESSI ON,

user _handl e I N HANDLE,

attrs IN STRING COLLECTI ON

ptype I N PLS_| NTEGER,

filter I N VARCHAR?,

rep_pset_col | QUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-15 GET_USER_EXTENDED_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

attrs STRI NG_COLLECTI ON A list of attributes to fetch for the
user.

ptype PLS | NTEGER The type of properties to return.

Here is a valid value: - DBMS_
LDAP_UTL. EXTPROPTYPE_RAD

filter VARCHAR2 An LDAP filter to further refine the
user properties returned by the
function.

ret_pset_coll ection PROPERTY_SET_COLLECTI ON The user details containing the
attributes requested by the caller.

Return Values

Table 14-16 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBVS_LDAP_UTL. MULTI PLE_USER ENTRI ES The user has multiple DN entries.
USER_PROPERTY_NOT_FOUND User extended property does not exist.
DBVS_LDAP_UTL. | NVALI D_ROOT_CORCL_CTX Invalid root Oracle Context.
DBVS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP_UTL PL/SQL Reference 14-9

Subprograms

Table 14-16 (Cont.) GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBVS_LDAP. i nit(),DBVS_LDAP_UTL. get _user _properties().

Function get_user_dn
Thefunction get_user _dn() returns the user DN.

Syntax
FUNCTI ON get _user _dn

(

I'd I N SESSI ON,

user _handl e I N HANDLE,
dn OQUT VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 14-17 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session handle.
user _handl e HANDLE The user handle.

dn VARCHAR2 The user DN.

Return Values

Table 14-18 GET_USER_DN Function Return Values

Value Description
DBMVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR Authentication failed.
DBVS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBVS_LDAP_UTL. MULTI PLE_USER ENTRIES The user has multiple DN entries.
DBVS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBVS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

14-10 Oracle Identity Management Application Developer’'s Guide

Subprograms

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBVS _LDAP.init().

Function check_group_membership

The function check_gr oup_nenber shi p() checks whether the user belongs to a
group.

Syntax

FUNCTI ON check_gr oup_menber shi p
(

Id I'N SESSI ON,

user _handl e I N HANDLE,
group_handl e | N HANDLE,

nested IN PLS | NTEGER

)
RETURN PLS_| NTEGER,

Parameters

Table 14-19 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

group_handl e HANDLE The group handle.

nest ed PLS | NTEGER The type of membership the user holds in groups.

Here are valid values:
. DBVS_LDAP_UTL. NESTED MEMBERSHI P
. DBVS_LDAP_UTL. DI RECT_MEMBERSHI P

Return Values

Table 14-20 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS If user is a member.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBMVS_LDAP_UTL. GROUP_MEMBERSHI P If user is not a member.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMVS_LDAP. i nit().

See Also
DBMS_LDAP. get _group_nenber shi p() .

DBMS_LDAP_UTL PL/SQL Reference 14-11

Subprograms

Function locate_subscriber_for_user

The function | ocat e_subscri ber _for_user () retrieves the subscriber for the
given user and returns a handle to it.

Syntax
FUNCTI ON | ocat e_subscri ber _for_user

(

Id I'N SESSI ON,

user _handl e I N HANDLE,
subscri ber_handl e QUT HANDLE

)
RETURN PLS_| NTEGER,

Parameters

Table 14-21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
user _handl e HANDLE The user handle.

subscri ber _handl e HANDLE The subscriber handle.

Return Values

Table 14-22 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn't exist.

DBVS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRIES ~ Multiple number of subscriber DN entries
exist in the directory for the given subscriber.

DBVS_LDAP_UTL. NO SUCH USER User doesn't exist.

DBVS_LDAP_UTL. MULTI PLE_USER_ENTRI ES Multiple number of user DN entries exist in
the directory for the given user.

DBMVS_LDAP_UTL. SUBSCRI BER_NOT_FOUND Unable to locate subscriber for the given user.

DBVS_LDAP_UTL. I NVALI D ROOT_ORCL_CTX Invalid Root Oracle Context.

DBVS_LDAP_UTL. ACCT _TOTALLY LOCKED EXCP User account is locked.

DBVS_LDAP_UTL. GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for

unconditional failures while carrying out
LDAP operations by the LDAP server.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBVS_LDAP. i nit (), DBMS_LDAP_UTL. create_user _handl e().

14-12 Oracle Identity Management Application Developer’'s Guide

Subprograms

Function get_group_membership

The function get _gr oup_menber shi p() returns the list of groups to which the user
is a member.

Syntax

FUNCTI ON get _gr oup_nenber shi p

(

user _handl e I N HANDLE,

nested I'N PLS | NTEGER,

attr_list IN STRING COLLECTI ON,
ret_groups OUT PROPERTY_SET COLLECTI ON

)
RETURN PLS_| NTEGER

Parameters

Table 14-23 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

user _handl e HANDLE The user handle.

nest ed PLS | NTEGER The type of membership the user holds

in groups. Here are valid values:
. DBV5_LDAP_UTL. NESTED _

MVEVBERSHI P
. DBVS_LDAP_UTL. DI RECT_
VEVBERSHI P
attr_list STRI NG_COLLECTI ON A list of attributes to be returned.
ret_groups PROPERTY_SET_COLLECTI ON A pointer to a pointer to an array of

group entries.

Return Values

Table 14-24 GET_GROUP_MEMBERSHIP Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR Other error.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS _LDAP.init().

Group-Related Subprograms

A group is represented using by using the DBMS_LDAP_UTL. HANDLE data type. A
group handle represents a valid group entry. You can create a group handle by using a
DN, GUID or a simple name, along with the appropriate subscriber handle. When a

DBMS_LDAP_UTL PL/SQL Reference 14-13

Subprograms

simple name is used, additional information from the Root Oracle Context and the
Subscriber Oracle Context is used to identify the group. Here is an example of a group
handle creation:

retval := DBMS_LDAP_UTL. create_group_handl e(
group_handl e,

DBVS_LDAP_UTL. TYPE_DN,

"cn=groupl, cn=G oups, o=acne, dc=conf

)i

This group handle has to be associated with an appropriate subscriber handle. For
example, given a subscriber handle: subscri ber _handl e representing
o=acme, dc=com the subscriber handle can be associated in the following way:

retval := DBMS_LDAP_UTL. set _group_handl e_properties(
group_handl e,

DBVS_LDAP_UTL. SUBSCRI BER_HANDLE,

subscri ber_handl e

)
A sample use of group handle is getting group properties. Here is an example:

nmy_attrs is of type DBMS_LDAP. STRI NG COLLECTI ON
ny_attrs(1) :="uni quenenber’;

retval := DBMS_LDAP_UTL. get _group_properties(
nmy_sessi on,

my_attrs,

DBVS_LDAP_UTL. ENTRY_PROPERTI ES,

ny_pset _col |

K

The group-related subprograms also support membership-related functionality. Given
a user handle, you can find out if it is a direct or a nested member of a group by using
the DBM5_LDAP_UTL. check_group_nenber shi p() function. Here is an example:

retval := DBMS_LDAP_UTL. check_group_menber shi p(
sessi on,

user _handl e,

group_handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSH P

You can also obtain a list of groups that a particular group belongs to, using the DBMS_
LDAP_UTL. get _group_nenber shi p() function. For example:

my_attrs is of type DBMS_LDAP. STRI NG COLLECTI ON
my_attrs(l) :='cn';

retval : = DBMS_LDAP_UTL. get _group_menber shi p(
ny_sessi on,

user _handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSHI P,

nmy_attrs

my_pset _col |

)

Function create_group_handle
The function cr eat e_gr oup_handl| e() creates a group handle.

Syntax

FUNCTI ON creat e_group_handl e
(

14-14 Oracle Identity Management Application Developer’'s Guide

Subprograms

group_hd OUT HANDLE,
group_type I N PLS | NTEGER,
group_id I N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 14-25 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
group_hd HANDLE A pointer to a handle to a group.
group_type PLS | NTEGER The type of group ID that is passed. Valid

values for this argument are as follows:

« DBMS_LDAP_UTL. TYPE_DN

« DBMS_LDAP_UTL. TYPE _GUI D

« DBMS_LDAP_UTL. TYPE_NI CKNAMVE

group_id VARCHAR2 The group ID representing the group entry.

Return Values

Table 14-26 CREATE_GROUP_HANDLE Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBVS_LDAP_UTL. GENERAL_ERROR Other error.

See Also

DBVS _LDAP_UTL. get _group_properties(),DBVs LDAP_UTL. set _group_
handl e_properties().

Function set_group_handle_properties

The function set _gr oup_handl e_properti es() configures the group handle
properties.

Syntax

FUNCTI ON set _group_handl e_properties

(
group_hd I'N HANDLE,

property_type I N PLS_| NTEGER,
property I'N HANDLE

)
RETURN PLS_| NTEGER,

Parameters

Table 14-27 SET_GROUP_HANDLE_ PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

DBMS_LDAP_UTL PL/SQL Reference 14-15

Subprograms

Table 14-27 (Cont.) SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

property_type PLS | NTEGER The type of property that is passed. Valid values
for this argument are as follows: DBMS_LDAP_
UTL. GROUP_HANDLE

property HANDLE The property describing the group entry.

Return Values

Table 14-28 SET_GROUP_HANDLE_PROPERTIES Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.

DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBVS_LDAP_UTL. RESET_HANDLE When a caller tries to reset the existing handle properties.

DBMS_LDAP_UTL. GENERAL_ERROR Other error.

Usage Notes

The subscriber handle doesn't need to be set in Group Handle Properties if the group
handle is created with TYPE_DN or TYPE_GUI D as the group type.

See Also
DBMS_LDAP_UTL. get _group_properties().

Function get_group_properties
Thefunction get_group_properties() retrieves the group properties.

Syntax
FUNCTI ON get _group_properties

(

Id I'N SESSION,

group_handl e | N HANDLE,

attrs IN STRING_COLLECTI ON,

ptype IN PLS | NTEGER,

ret_pset_col|l QUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-29 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.

group_handl e HANDLE The group handle.

attrs STRI NG_COLLECTI ON A list of attributes that must be fetched for
the group.

ptype PLS | NTEGER The type of properties to be returned. The
valid value is DBMS_LDAP_UTL. ENTRY_
PROPERTI ES

14-16 Oracle Identity Management Application Developer’'s Guide

Subprograms

Table 14-29 (Cont.) GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ret_pset_coll PROPERTY_SET_COLLECTI ON The group details containing the attributes
requested by the caller.

Return Values

Table 14-30 GET_GROUP_PROPERTIES Function Return Values

Value Description
DBMVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. NO SUCH GROUP Group doesn't exist.

DBVS_LDAP_UTL. MULTI PLE_GROUP_ENTRIES ~ Multiple number of group DN entries exist in the
directory for the given group.

DBMS_LDAP_UTL. | NVALI D_ROOT_CORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERRCOR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures while carrying out LDAP
operations by the LDAP server.

Usage Notes
This function requires the following:

« Avalid LDAP session handle which must be obtained from the DBVS_
LDAP. i ni t () function.

« Avalid subscriber handle to be set in the group handle properties if the group
type is of: DBMS_LDAP_UTL. TYPE_NI CKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL. cr eat e_subscri ber _
handl e(), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL. TYPE_GUI Dor DBMS_LDAP_UTL. TYPE_
DN, the subscriber handle does not have to be set in the group handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS _LDAP.init(),DBMS_LDAP_UTL. creat e_group_handl e().

Function get_group_dn
The function get _gr oup_dn() returns the group DN.

Syntax

FUNCTI ON get _group_dn
(

Id I'N SESSION,
group_handl e | N HANDLE
dn OUT VARCHAR2

)
RETURN PLS_| NTEGER

DBMS_LDAP_UTL PL/SQL Reference 14-17

Subprograms

Parameters

Table 14-31 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session handle.
group_handl e HANDLE The group handle.

dn VARCHAR2 The group DN.

Return Values

Table 14-32 GET_GROUP_DN Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. NO SUCH GROUP Group doesn't exist.
DBVS_LDAP_UTL. MULTI PLE_GROUP_ENTRI ES Multiple number of group DN

entries exist in the directory for
the given group.

DBVS_LDAP_UTL. I NVALI D ROOT_ORCL_CTX Invalid Root Oracle Context.
DBVS_LDAP_UTL. GENERAL_ERROR Other error.
DBMS_LDAP error codes Return proper DBMS_LDAP error

codes for unconditional failures
that are encountered when LDAP
operations are carried out.

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBVS _LDAP.init().

Subscriber-Related Subprograms

A subscriber is represented by using dbns_| dap_ut | . handl e data type. You can
create a subscriber handle by using a DN, GUID or simple name. When a simple name
is used, additional information from the root Oracle Context is used to identify the
subscriber. This example shows a subscriber handle being created:

retval := DBMS_LDAP_UTL. create_subscri ber _handl e(
subscri ber _handl e,

DBVS_LDAP_UTL. TYPE_DN,

"o=acne, dc=conf

);
subscri ber _handl e is created by it's DN: o=or acl e, dc=com

Getting subscriber properties is one common use of a subscriber handle. Here is an
example:

my_attrs is of type DBMS_LDAP. STRING COLLECTI ON
my_attrs(1) :='orclguid;

14-18 Oracle Identity Management Application Developer’'s Guide

Subprograms

retval := DBVS_LDAP_UTL. get _subscriber _properties(
ny_sessi on,
ny_attrs,
DBVS_LDAP_UTL. ENTRY_PROPERTI ES,
my_pset _col |

)

Function create_subscriber_handle
The function cr eat e_subscri ber _handl e() creates a subscriber handle.

Syntax
FUNCTI ON create_subscri ber_handl e

(

subscri ber_hd QUT HANDLE,
subscriber_type IN PLS_| NTEGER,
subscriber_id IN VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 14-33 CREATE_SUBSCRIBER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
subscri ber_hd HANDLE A pointer to a handle to a subscriber.
subscri ber_type PLS | NTEGER The type of subscriber ID that is passed. Valid

values for this argument are:

« DBMS_LDAP_UTL. TYPE DN

« DBMS_LDAP_UTL. TYPE GUI D

« DBMS_LDAP_UTL. TYPE_NI CKNANMVE
« DBMS_LDAP_UTL. TYPE _DEFAULT

subscriber_id VARCHAR2 The subscriber ID representing the subscriber
entry. This can be NULL if subscri ber _
t ype is DBVS_LDAP_UTL. TYPE_DEFAULT.
In this case, the default subscriber is retrieved
from the root Oracle Context.

Return Values

Table 14-34 CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMS_LDAP_UTL. GENERAL_ERRCOR Other error.

See Also

DBVMS _LDAP_UTL. get _subscri ber _properties().

Function get_subscriber_properties

The function get _subscri ber _properti es() retrieves the subscriber properties
for the given subscriber handle.

DBMS_LDAP_UTL PL/SQL Reference 14-19

Subprograms

Syntax

FUNCTI ON get _subscri ber _properties

(

|d I'N SESSI ON,

subscri ber _handl e I N HANDLE,

attrs IN STRI NG _COLLECTI ON,

ptype I N PLS_I NTEGER,

ret_pset_coll OUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-35 GET_SUBSCRIBER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
Id SESSI ON A valid LDAP session handle.
subscri ber _handl e HANDLE The subscriber handle.
attrs STRI NG_COLLECTI ON A list of attributes that must be
retrieved for the subscriber.
ptype PLS | NTEGER Properties of the subscriber's Oracle
Context to return. These are valid
values:
« DBMS_LDAP_UTL. ENTRY_
PROPERTI ES
« DBMS_LDAP_UTL. COMMON _
PROPERTI ES
ret_pset_coll PROPERTY_SET_COLLECTION The subscriber details containing the

attributes requested by the caller.

Return Values

Table 14-36 GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description

DBMVS_LDAP_UTL. SUCCESS On a successful completion.

DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBVS_LDAP_UTL. NO_SUCH _SUBSCRI BER Subscriber doesn't exist.

DBVS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRI ES Subscriber has a multiple
number of DN entries.

DBMVS_LDAP_UTL. | NVALI D_ROOT_CORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL. GENERAL_ERRCOR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error

codes for unconditional failures
encountered while LDAP
operations are carried out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBVS_LDAP.init().

14-20 Oracle Identity Management Application Developer’'s Guide

Subprograms

See Also
DBMS _LDAP.init(),DBMS_LDAP_UTL. creat e_subscri ber _handl e().

Function get_subscriber_dn
The function get _subscri ber _dn() returns the subscriber DN.

Syntax
FUNCTI ON get _subscri ber _dn

(

Id I'N SESSI ON,

subscri ber_handl e I N HANDLE,
dn QUT VARCHAR2

)
RETURN PLS_| NTEGER

Parameters

Table 14-37 GET_SUBSCRIBER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

Id SESSI ON A valid LDAP session handle.
subscri ber _handl e HANDLE The subscriber handle.

dn VARCHAR2 The subscriber DN.

Return Values

Table 14-38 GET_SUBSCRIBER_DN Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBMVS_LDAP_UTL. NO_SUCH_SUBSCRI BER Subscriber doesn't exist.

DBVS_LDAP_UTL. MULTI PLE_SUBSCRI BER_ENTRI ES Multiple number of subscriber DN
entries exist in the directory for the
given subscriber.

DBMS_LDAP_UTL. | NVALI D_ROOT_CORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL. GENERAL_ERRCOR Other error.
DBMS_LDAP error codes Return proper DBMS_LDAP error codes

for unconditional failures encountered
when LDAP operations are carried
out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBVS _LDAP.init().

DBMS_LDAP_UTL PL/SQL Reference 14-21

Subprograms

Function get_subscriber_ext_properties

The function get _subscri ber _ext _properties() retrievesthe subscriber
extended properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax

FUNCTI ON get _subscri ber _ext _properties

(

|d I'N SESSI ON,

subscri ber _handl e I N HANDLE,

attrs IN STRI NG _COLLECTI ON,

ptype I N PLS_I NTEGER,

filter I N VARCHAR?,

rep_pset_col |l QUT PROPERTY_SET_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

I d SESSI ON A valid LDAP session
handle.

subscri ber _handl e HANDLE The subscriber handle.

attrs STRI NG_COLLECTI ON A list of subscriber attributes
to retrieve.

ptype PLS | NTEGER The type of properties to
return. A valid value is
DBMS_LDAP_
UTL. DEFAULT_RAD_
PROPERTI ES

filter VARCHAR2 An LDAP filter to further

refine the subscriber
properties returned by the
function.

ret_pset_col |l ection PROPERTY_SET COLLECTI ON The subscriber details
containing the attributes
requested by the caller.

Return Values

Table 14-40 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.

DBVS_LDAP_UTL. NO_SUCH_USER User does not exist.

DBVS_LDAP_UTL. | NVALI D_ROOT_ORCL_CTX Invalid root Oracle Context.
DBVS_LDAP_UTL. GENERAL_ERRCR Other error.

DBMS_LDAP error codes Return proper DBVS_LDAP error codes for

unconditional failures encountered when
LDAP operations are carried out.

14-22 Oracle Identity Management Application Developer’'s Guide

Subprograms

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also DBMS_LDAP. i nit (), DBMS_LDAP_UTL. get _subscri ber _
properties().

Property-Related Subprograms

Many of the user-related, subscriber-related, and group-related subprograms return
DBMS LDAP_UTL. PROPERTY_SET_ COLLECTI ON, which is a collection of one or more
LDAP entries representing results. Each of these entries is represented by a DBVS
LDAP_UTL. PROPERTY_SET. A PROPERTY_SET may contain attributes—that is,
properties—and its values. Here is an example that illustrates the retrieval of
properties from DBVS_LDAP_UTL. PROPERTY_SET_COLLECTI ON:

my_attrs is of type DBMS_LDAP. STRI NG COLLECTI ON
nmy_attrs(l) :='cn';

retval := DBMS_LDAP_UTL. get _group_menber shi p(
my_sessi on,

user _handl e,

DBVS_LDAP_UTL. DI RECT_MEMBERSHI P,

ny_attrs,

ny_pset _col |

K

I F my_pset _coll.count > 0 THEN
FORi in ny_pset_coll.first .. ny_pset_coll.last LOOP
my_property _nanes is of type DBVS_LDAP. STRI NG COLLECTI ON
retval := DBVS_LDAP_UTL. get _property_nanmes(
pset _col I (i),
property_nanes
| F ny_property_nanes. count > 0 THEN
FOR | in ny_property_names.first .. ny_property_nanes.|ast LOOP
retval := DBMS_LDAP_UTL. get _property_val ues(
pset _col I (i),
property_nanes(j),
property_val ues
if ny_property_val ues. COUNT > 0 then
FOR k in ny_property_val ues. FI RST.. ny_property_val ues. LAST LOOP
DBVS_OUTPUT. PUT_LI NE(my_property_nanes(j) || ':'
[y _
property_val ues(k));
END LOOP; -- For each val ue

el se
DBVS_QUTPUT. PUT_LI NE(" NO VALUES FOR || ny_property_names(j));
end if;
END LOOP; -- For each property name
END IF, -- IF ny_property_nanes.count > 0
END LOOP; -- For each propertyset
END IF; -- If ny_pset_coll.count >0

use_handl e is a user handle. my_pset _col | contains all the nested groups that
user _handl e belongs to. The code loops through the resulting entries and prints out
the cn of each entry.

DBMS_LDAP_UTL PL/SQL Reference 14-23

Subprograms

Miscellaneous Subprograms

The miscellaneous subprograms in the DBMS_LDAP_UTL package perform a variety of
different functions.

Function normalize_dn_with_case

The function normal i ze_dn_wi t h_case() removes unnecessary white space
characters from a DN and converts all characters to lower case based on a flag.

Syntax
FUNCTI ON normal i ze_dn_with_case

(

dn I'N VARCHAR?,

| ower _case |'N PLS_| NTEGER,
normdn QUT VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 14-41 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description
dn VARCHAR2 The DN.
| ower _case PLS | NTEGER If set to 1: The normalized DN returns in

lower case. If set to 0: The case is preserved in
the normalized DN string.

norm dn VARCHAR2 The normalized DN.

Return Values

Table 14-42 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERRCR On failure.

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names

The function get _property_nanes() retrieves the list of property names in the
property set.

Syntax

FUNCTI ON get _property_nanes

(

pset | N PROPERTY_SET,

property_names OUT STRI NG COLLECTI ON

)
RETURN PLS_| NTEGER,

14-24 Oracle Identity Management Application Developer’'s Guide

Subprograms

Parameters

Table 14-43 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection returned from any of the
following functions:

« DBMVS_LDAP_UTL. get _group_
nmenber shi p()

. DBMS_LDAP_UTL. get _
subscri ber _properties()

. DBVS_LDAP_UTL. get _user _
properties()

« DBMS_LDAP_UTL. get _group_
properties()

property_nanes STRI NG_COLLECTI ON A list of property names associated
with the property set.

Return Values

Table 14-44 GET_PROPERTY_NAMES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERROR On error.

See Also

DBMS_LDAP_UTL. get _property val ues().

Function get_property values

The function get _property_val ues() retrieves the property values (the strings)
for a given property name and property.

Syntax

FUNCTI ON get _property_val ues

(

pset | N PROPERTY_SET,

property_nanme | N VARCHARZ,
property_val ues OUT STRI NG COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-45 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 The property name.

DBMS_LDAP_UTL PL/SQL Reference 14-25

Subprograms

Table 14-45 (Cont.) GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection obtained from any of the
following function returns:

« DBMVS_LDAP_UTL. get _group_
nmenber shi p()

. DBVS_LDAP_UTL. get _
subscri ber _properties()

. DBVS_LDAP_UTL. get _user _
properties()

« DBMS_LDAP_UTL. get _group_
properties()

property_val ues STRI NG_COLLECTI ON A list of property values (strings).

Return Values

Table 14-46 GET_PROPERTY_VALUES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERRCR On failure.

See Also

DBMS _LDAP_UTL. get _property_val ues_len().

Function get_property_values_len

The function get _property_val ues_I en() retrieves the binary property values
for a given property name and property.

Syntax

FUNCTI ON get _property_val ues_| en

(

pset | N PROPERTY_SET,

property_name | N VARCHARZ,

auth_type I N PLS_| NTEGER,

property_val ues OUT BI NVAL_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-47 GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 A property name.

14-26 Oracle Identity Management Application Developer’'s Guide

Subprograms

Table 14-47 (Cont.) GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

« DBVS_LDAP_UTL. get _group_
menber shi p()

« DBMS_LDAP_UTL. get _subscri ber _
properties()

. DBVS_LDAP_UTL. get _user _
properties()

« DBMs_LDAP_UTL. get _group_
properties()

property_val ues Bl NVAL_COLLECTI ON A list of binary property values.

Return Values

Table 14-48 GET_PROPERTY_VALUES_LEN Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.

DBMS_LDAP_UTL. PARAM_ Invalid input parameters.
ERROR

DBVS_LDAP_UTL. GENERAL_ On failure.
ERROR

See Also
DBMS_LDAP_UTL. get _property_val ues().

Procedure free_propertyset_collection

The procedure free_propertyset _col |l ecti on() frees the memory associated
with property set collection.

Syntax

PROCEDURE free_propertyset_col | ection

(
pset _col | ection I N OUT PROPERTY_SET_COLLECTI ON

)

DBMS_LDAP_UTL PL/SQL Reference 14-27

Subprograms

Parameters

Table 14-49 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description
pset _col |l ection PROPERTY_SET The property set collection returned from one
COLLECTI ON of the following functions:
. DBVS_LDAP_UTL. get _group_
nmenber shi p()

« DBMS_LDAP_UTL. get _subscri ber _
properties()

« DBMS_LDAP_UTL. get _user _
properties()

« DBMS_LDAP_UTL. get _group_
properties()

See Also

DBMS_LDAP_UTL. get _gr oup_nenber shi p(), DBMS_LDAP_UTL. get _
subscriber _properties(),DBMS LDAP_UTL. get _user _properties(),
DBVS _LDAP_UTL. get _group_properties().

Function create_mod_propertyset

The function cr eat e_nod_propertyset () createsa MOD_PROPERTY_SET data
structure.

Syntax

FUNCTI ON creat e_nmod_pr opertyset
(

pset _type I N PLS | NTEGER,

pset _name | N VARCHARZ,

mod_pset OQUT MOD_PROPERTY_SET

)
RETURN PLS_| NTEGER,

Parameters

Table 14-50 CREATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset _type PLS | NTEGER The type of property set being modified. Here is
a valid value: ENTRY_PROPERTI ES

pset _name VARCHAR2 The name of the property set. This can be NULL
if ENTRY_PROPERTI ES are being modified.

mod_pset MCD_PROPERTY_SET The data structure to contain modify operations
to be performed on the property set.

Return Values

Table 14-51 CREATE_MOD_PROPERTYSET Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS On a successful completion.
DBMVS_LDAP_UTL. GENERAL_ERRCR Other error.

14-28 Oracle Identity Management Application Developer’'s Guide

Subprograms

See Also
DBVS _LDAP_UTL. popul at e_nod_propertyset ().

Function populate_mod_propertyset

The function popul at e_nod_pr opertyset () populates the MOD PROPERTY_SET
data structure.

Syntax

FUNCTI ON popul at e_nod_pr opert yset

(

mod_pset | N MOD_PROPERTY_SET,
property_nmod_op | N PLS | NTEGER,
property_name | N VARCHARZ,
property_val ues I N STRING COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-52 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description
mod_pset MCD_PROPERTY_SET Mod-PropertySet data structure.
property_nod_op PLS | NTEGER The type of modify operation to perform on

a property. These are valid values:

« ADD PROPERTY

. REPLACE_PROPERTY

. DELETE PROPERTY
property_nane VARCHAR2 The name of the property

property_val ues STRI NG_COLLECTI ON Values associated with the property.

Return Values

Table 14-53 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. GENERAL_ERROR Authentication failed.
DBVS_LDAP_UTL. PAD GRACELOG N_WARN Grace login for user.

See Also

DBMS _LDAP_UTL. creat e_nod_propertyset ().

Procedure free_mod_propertyset

The procedure f r ee_nod_propertyset () frees the MOD PROPERTY_SET data
structure.

Syntax
PROCEDURE free_nmod_propertyset

(
nod_pset | N MOD_PROPERTY_SET

DBMS_LDAP_UTL PL/SQL Reference 14-29

Subprograms

)
Parameters

Table 14-54 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description
mod_pset PROPERTY_SET Mod_Pr opert ySet data structure.
See Also

DBMS _LDAP_UTL. creat e_nod_propertyset ().

Procedure free_handle
The procedure f r ee_handl e() frees the memory associated with the handle.

Syntax
PROCEDURE free_handl e
(

handl e I N OQUT HANDLE
)
Parameters

Table 14-55 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handl e HANDLE A pointer to a handle.

See Also

DBVS _LDAP_UTL. creat e_user _handl e(), DBMS_LDAP_UTL. create_
subscri ber _handl e(), DBMS_LDAP_UTL. creat e_group_handl e().

Function check_interface_version
The function check_i nt erface_ver si on() checks the interface version.

Syntax
FUNCTI ON check_i nterface_version

(
interface_version I N VARCHAR2

)
RETURN PLS_| NTEGER,

Parameters

Table 14-56 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface _version VARCHAR2 Version of the interface.

14-30 Oracle Identity Management Application Developer’'s Guide

Subprograms

Return Values

Table 14-57 CHECK_VERSION_INTERFACE Function Return Values

Value Description
DBVS_LDAP_UTL. SUCCESS Interface version is supported.
DBVS_LDAP_UTL. GENERAL_ERROR Interface version is not supported.

Function get_property _values_blob

The function get _property_val ues_bl ob() retrieves large binary property values
for a given property name and property.

Syntax

FUNCTI ON get _property_val ues_bl ob

(

pset | N PROPERTY_SET,

property_nanme | N VARCHARZ,
auth_type I N PLS_| NTEGER,
property_val ues OUT BLOB_COLLECTI ON

)
RETURN PLS_| NTEGER,

Parameters

Table 14-58 GET_PROPERTY_VALUES BLOB Function Parameters

Parameters Parameter Type Description

property_name VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

« DBMS_LDAP_UTL. get _group_
menber shi p()

. DBVMS_LDAP_UTL. get _subscri ber _
properties()

« DBMS_LDAP_UTL. get _user _
properties()

. DBVS_LDAP_UTL. get _group_
properties()

property_val ues BLOB_COLLECTI ON A list of binary property values.

Return Values

Table 14-59 GET_PROPERTY_VALUES_BLOB Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBVS_LDAP_UTL. PARAM ERROR Invalid input parameters.
DBVS_LDAP_UTL. GENERAL_ERRCR On failure.

See Also

DBMS_LDAP_UTL. get _property_val ues().

DBMS_LDAP_UTL PL/SQL Reference 14-31

Function Return Code Summary

Procedure property value_free_blob
Frees the memory associated with BLOB_COLLECTI ONreturned by DBMS_LDAP. get _

property val ues_bl ob().

Syntax
Synt ax

PROCEDURE property_val ue_free_bl ob

(

val's IN QUT DBMS_LDAP. BLOB_COLLECTI ON

)

Parameters

Table 14-60 PROPERTY_VALUE_FREE_BLOB Function Parameters

Parameter Description

val s The collection of large binary values returned by DBVS
LDAP. get _property_val ues_bl ob().

See Also

DBVS _LDAP. get _property_val ues_bl ob().

Function Return Code Summary

The DBMS_LDAP_UTL functions can return the values in the following table

Table 14-61 Function Return Codes
Return

Name Code Description

SUCCESS 0 Operation successful.

GENERAL_ERRCR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERRCR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_MEMBERSH! P -3 Returned by user-related functions and group
functions when the user is not a member of a group.

NO_SUCH SUBSCRI BER -4 Returned by subscriber-related functions when the
subscriber does not exist in the directory.

NO_SUCH_USER -5 Returned by user-related functions when the user
does not exist in the directory.

NO ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context does not exist in the directory.

MULTI PLE_SUBSCRI BER ENTRIES -7 Returned by subscriber-related functions when
multiple subscriber entries are found for the given
subscriber nickname.

| NVALI D_ROOT_ORCL_CTX -8 Root Oracle Context does not contain all the required
information needed by the function.

NO_SUBSCRI BER_ORCL_CTX -9 Oracle Context does not exist for the subscriber.

| NVALI D_SUBSCRI BER_ ORCL_CTX -10 Oracle Context for the subscriber is invalid.

MULTI PLE_USER ENTRI ES -11 Returned by user-related functions when multiple

user entries exist for the given user nickname.

14-32 Oracle Identity Management Application Developer’'s Guide

Function Return Code Summary

Table 14-61 (Cont.) Function Return Codes

Return
Name Code Description
NO_SUCH_GROUP -12 Returned by group related functions when a group

MULTI PLE_GROUP_ENTRI ES -13

ACCT_TOTALLY_LOCKED_EXCEPTI ON - 14

AUTH_PASSVWD_CHANGE_WARN -15
AUTH_FAI LURE_EXCEPTI ON -16
PVD_EXPI RED_EXCEPTI ON -17
RESET_HANDLE -18
SUBSCRI BER_NOT_FOUND -19
PVD_EXPI RE_WARN -20
PVWD_M NLENGTH_ERROR -21
PVD_NUMERI C_ERROR -22
PVD_NULL_ERRCR -23
PVD_| NH STORY_ERROR -24
PVD_| LLEGALVALUE_ERROR -25
PVD_GRACELOG N_VARN - 26

does not exist in the directory.

Multiple group entries exist for the given group
nickname in the directory.

Returned by DBVS_LDAP_UTL. aut henti cat e_
user () function when a user account is locked. This
error is based on the password policy set in the
subscriber oracle context.

This return code is deprecated.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function when user authentication fails.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function when the user password has
expired. This is a password policy error.

Returned when entity handle properties are being
reset by the caller.

Returned by DBVS_LDAP- UTL. | ocat e_
subscri ber _for_user () function when itis
unable to locate the subscriber.

Returned by DBVS_LDAP_UTL. aut henti cat e_
user () function when the user password is about to
expire. This is a password policy error.

Returned by DBMS_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password is less than the
minimum required length. This is a password policy
error.

Returned by DBMS_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password does not
contain at least one numeric character. This is a
password policy error.

Returned by DBMS_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password is an empty
password. This is a password policy error.

Returned by DBMS_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password is the same as
the previous password. This is a password policy
error.

Returned by DBMS_LDAP_UTL. set _user _
properties() function while changing the user
password and the new user password has an illegal
character. This is a password policy error.

Returned by DBMS_LDAP_UTL. aut henti cat e_
user () function to indicate that the user password
has expired and the user has been given a grace login.
This is a password policy error.

DBMS_LDAP_UTL PL/SQL Reference 14-33

Data Type Summary

Table 14-61 (Cont.) Function Return Codes

Return
Name Code Description
PWD_MUSTCHANGE_ERROR -27 Returned by DBMS_LDAP_UTL. aut henti cat e_

user () function when user password needs to be
changed. This is a password policy error.

USER_ACCT_DI SABLED ERROR -29 Returned by DBMS_LDAP_UTL. aut henti cate_
user () function when user account has been
disabled. This is a password policy error.

PROPERTY_NOT_FCQUND -30 Returned by user-related functions while searching
for a user property in the directory.

Data Type Summary

The DBMS_LDAP_UTL package uses the data types in the following table

Table 14-62 DBMS_LDAP_UTL Data Types

Data Type Purpose

HANDLE Used to hold the entity.

PROPERTY_SET Used to hold the properties of an entity.
PROPERTY_SET_COLLECTI ON List of PROPERTY_SET structures.
MOD_PROPERTY_SET Structure to hold modify operations on an entity.

14-34 Oracle Identity Management Application Developer’'s Guide

15

DAS URL Interface Reference

This chapter describes the Oracle extensions to the DAS_URL Service Interface. It
contains these sections:

Directory Entries for the Service Units
Service Units and Corresponding URL Parameters
DAS URL API Parameter Descriptions

Search-and-Select Service Units for Users or Groups

Directory Entries for the Service Units

Table 15-1 lists the Oracle Delegated Administration Services units and the directory
entries that store relative URLSs for these units.

Table 15-1

Service Units and Corresponding Entries

Service Unit

Entry

Create User

cn=Creat e User, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s, cn=Cr acl eCont ext

Edit User

cn=Edit User, cn=Cperati onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext

Edit User when
GUID is passed as a
parameter

cn=Edit User G venGUl D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Delete User

cn=Del et eUser, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext

Delete User when
GUID of the user to
be deleted is passed
as a parameter

cn=Del et eUser G ven@U D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Create Group

cn=Creat e G oup, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Edit Group

cn=Edit G oup, cn=0per ati onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ext

Edit the group
whose GUID is
passed through a
parameter

cn=Edit G oupG ven@UJ D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Delete Group

cn=Del et eGr oup, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Delete group with
the GUID passed
through a parameter

cn=Del et eG oupG venGU D, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

DAS_URL Interface Reference 15-1

Service Units and Corresponding URL Parameters

Table 15-1 (Cont.) Service Units and Corresponding Entries

Service Unit

Entry

Assign privileges to
auser

cn=User Privilege, cn=CperationURLs, cn=DAS, cn=Product s,
cn=0r acl eCont ext

Assign privileges to
a user with the
GUID passed
through a parameter

cn=User Privilege Gven GUJ D cn=CperationURLs, cn=DAS, cn=Product s,
cn=0r acl eCont ext

Assign privilege to a
group

cn=Goup Privilege, cn=Cperati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Assign privilege to a
group with the given
GUID

cn=Goup Privilege Gven QU D, cn=CperationURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

View User account
information/Profile

cn=Account I nfo, cn=Cperati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Edit User account
Information/Profile

cn=Edit My Profile,cn=CperationURLs, cn=DAS, cn=Products,
cn=0r acl eCont ext

Change Password

cn=Password Change, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search User

cn=User Search, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search Group

cn=G oup Sear ch, cn=Cper at i onURLS, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search User LOV

cn=User LOV, cn=Cperati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Search Group LOV

cn=Goup LOV, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

EUS Console

cn=EUS Consol e, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=Cr acl eCont ext "

Delegation Console

cn=Del egati on Consol e, cn=Cper ati onURLs, cn=DAS, cn=Pr oduct s,
cn=0r acl eCont ext

Password Reset

cn=Reset Password, cn=Cper at i onURLs, cn=DAS, cn=Pr oduct s, cn=0r acl eCont ex

View User Profile

cn=Vi ew User Profile, cn=CperationURLs, cn=DAS, cn=Product s, cn=0r acl eCont ext

Service Units and Corresponding URL Parameters

Table 15-2 lists the service units and the URL parameters that can be passed to these
units.

Table 15-2 Service Units and Corresponding URL Parameters

Service Unit

Parameter Return Values

Create User

doneURL
homeURL
cancel URL
enabl ePA
enabl eHomeURL
enabl eHel pURL

returnGJ D

15-2 Oracle Identity Management Application Developer’s Guide

Service Units and Corresponding URL Parameters

Table 15-2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit

Parameter

Return Values

Edit User

Edit UserGivenGUID

Edit My Profile

Delegation Console

DeleteUser

DeleteUserGivenGUID

User Privilege

User Privilege Given
GUID

Create Group

home URL
doneURL

cancel URL
enabl ePA
enabl eHomeURL
enabl eHel pURL

honeURL
doneURL
cancel URL
enabl ePA
userGU D
enabl eHomeURL
enabl eHel pURL

home URL
doneURL
cancel URL
enabl eHomeURL
enabl eHel pURL

home URL
doneURL
cancel URL
enabl eHomeURL
enabl eHel pURL

honeURL
doneURL
cancel URL
userGJ D
enabl eHomeURL
enabl eHel pURL

honeURL
doneURL
cancel URL
enabl eHoneURL
enabl eHel pURL

honeURL
doneURL
cancel URL
userGU D
enabl eHoneURL
enabl eHel pURL

honeURL
doneURL
cancel URL
enabl ePA

par ent DN
enabl eHomeURL
enabl eHel pURL

returnGJ D

DAS_URL Interface Reference 15-3

Service Units and Corresponding URL Parameters

Table 15-2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit Parameter Return Values

Edit Group home URL -
doneURL
cancel URL
enabl ePA
enabl eHomeURL
enabl eHel pURL

Edit GroupGivenGUID honeURL -
doneURL
cancel URL
enabl ePA
groupGU D
enabl eHomeURL
enabl eHel pURL

DeleteGroup home URL -
doneURL
cancel URL
enabl eHomeURL
enabl eHel pURL

DeleteGroupGivenGUID honmeURL -
doneURL
cancel URL
groupGUJ D
enabl eHomeURL
enabl eHel pURL

Group Privilege homeURL -
doneURL
cancel URL
enabl eHomeURL
enabl eHel pURL

Group Privilege Given homeURL -
GUID doneURL

cancel URL

groupGJ D

enabl eHomeURL

enabl eHel pURL

Account Info honeURL -
doneURL
cancel URL
enabl eHoneURL
enabl eHel pURL

Password Change homeURL -
doneURL
cancel URL
enabl eHomeURL
enabl eHel pURL

User Search homeURL -
doneURLm
cancel URL
enabl eHomeURL
enabl eHel pURL

15-4 Oracle Identity Management Application Developer’s Guide

DAS URL API Parameter Descriptions

Table 15-2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit

Parameter Return Values

Group Search

Password Reset

View User Profile

User LOV

Group LOV

home URL -
doneURL

cancel URL

enabl eHomeURL
enabl eHel pURL

cancel URL -
doneURL

enabl eHoneURL
enabl eHel pURL

user Qui d -
doneURL

honeURL

nabl eHomeURL

enabl eHel pURL

userDn

user Qui d
user Narre
ni ckName
user Emai |

base
cfilter
title
dasdonai n
cal | backURL

gr oupDN

groupQui d

gr oupNane
groupDescri ption

otype

base
cfilter
title
dasdonai n
cal | backURL

DAS URL API Parameter Descriptions

The parameters described in Table 15-3 are used with DAS units.

Table 15-3 DAS URL Parameter Descriptions

Parameter

Description

homeURL

doneURL

cal | backURL

cancel URL

enabl ePA

user QU D

The URL that is linked to the global button Home. When the calling
application specifies this value, clicking Home redirects the DAS unit to
the URL specified by this parameter.

This URL is used by DAS to redirect the DAS page at the end of each
operation. In the case of Create User, once the user is created, clicking
OK redirects the URL to this location.

DAS uses this URL to send return values to the invoking application.
For UserLOV and GroupLOV units, the return values are submitted as
HTML form parameters through the HTTP POST method.

This URL is linked with all the Cancel buttons shown in the DAS units.
Any time the user clicks Cancel, the page is redirected to the URL
specified by this parameter.

This parameter takes a Boolean value of true or false. Set to true, the

parameter enables the Assign Privileges in User or Group operation. If
the enabl ePA is passed with value of true in the Create User page, the
Assign Privileges to User section also appears in the Create User page.

This is the GUID of the user to be edited or deleted. This corresponds to
the orclguid attribute. Specifying the GUID causes the search for the
user step in either editUser or deleteUser units to be skipped.

DAS_URL Interface Reference 15-5

Search-and-Select Service Units for Users or Groups

Table 15-3 (Cont.) DAS URL Parameter Descriptions

Parameter Description

G oup@I D This is the GUID of the group to be edited or deleted. This corresponds
to the orclguid attribute. Specifying the GUID causes the search for the
group step in either editGroup or deleteGroup units to be skipped.

par ent DN When this parameter is specified in CreateGroup, the group is created
under this container. If the parameter is not specified, group creation
defaults to the group search base.

base This parameter represents the search base in the case of search
operations.

cfilter This parameter represents the filter to be used for the search. This filter
is LDAP compliant.

title This parameter represents the title to be shown in the Search and Select
LOV page.

otype This parameter represents the object type used for search. Values

supported are Sel ect , Edi t, and Assi gn.

returnGD This parameter is appended to the done URL in case of a create
operation. The value will be the orclguid of the new object.

dasdonai n This parameter is needed only when the browser is Internet Explorer
and the calling URL and the DAS URL are on different hosts and in the
same domain. An example value is us.oracle.com. Note the calling
application also needs to set the docunent . domai n parameter on the
formload. For more details, refer to Microsoft support at:

http://support.mcrosoft.con

enabl eHoneUR When this parameter is passed with a value of false, the service unit will
be rendered without the home button and home link. By default, the
parameter is set to true.

enabl eHel pURL When this parameter is passed with a value of false, the service unit will
be rendered without the help button and help link. By default, the
parameter is set to true.

Search-and-Select Service Units for Users or Groups

DAS provides service units for searching and selecting users or groups. These service
units are sometimes referred to as user or group List Of Values (LOV).

Invoking Search-and-Select Service Units for Users or Groups

A custom application can open a popup window and populate its contents by
supplying a search-and-select URL for a user or group by using a URL of the form:

http://das_host: das_port/oi ddas/ ui/oracl e/ | dap/ das/ sear ch/ LOVUser Sear ch
?title=Useré&cal | backurl=http://app_host:app_port/custapp/ Cal | back

or

http://das_host:das_port/oi ddas/ ui/oracl e/l dap/ das/ sear ch/ LOVG oupSear ch
?title=User&cal | backurl =http://app_host:app_port/custapp/ Cal | back

respectively. For example;

http://server02. exanpl e. com 7777/ oi ddas/ ui / oracl e/ | dap/ das/ sear ch/ LOVUser Sear ch?
Mary. Smi t h=User &cal | backur | =htt p: // server 04. exanpl e. com 7778/ cust app/ Cal | back

15-6 Oracle Identity Management Application Developer’s Guide

Search-and-Select Service Units for Users or Groups

In this example, server 02. exanpl e. com 7777 is the host name and port of the
Oracle Internet Directory DAS application server. ser ver 04. exanpl e. com 7778 is
the host name and port of the custom application server. Mary.Smith is a string that
appears in the title of the Search and Select page.

http://server04. exanpl e. com 7778/ cust app/ Cal | back is a URL of the
custom application server that receives the selected parameters for users or groups.

Note:

To avoid popup blocking, the custom application may open

the popup window with a URL on the local custom application server
and immediately redirect to the Oracle Internet Directory DAS User or
Group Search-and-Select URL.

Receiving Data from the User or Group Search-and-Select Service Units

After a User or Group has been selected via the Oracle Internet Directory DAS User or

Group Search-and-Select Service Unit, an HTTP form will be submitted to the
callbackurl page using the POST method. The parameters defined in Table 15-4 and
Table 15-5 are available to the callbackurl page:

Table 154

User Search and Select

Parameter

Description

user Dn

userQuid
user Nane
ni ckNane

user Emai |

User's distinguished name.
User's global unique ID.
User's name.

User's nickname

User's email.

Table 15-5

Group Search and Select

Parameter

Description

groupDn

groupQui d

gr oupNanme
groupDescri ption

Group's distinguished name.
Group's global unique ID.
Group's name.

Group's description.

The callbackurl page in the popup window may transfer the form parameters to the
invoking page in the opener window using JavaScript. It may then close the popup

window.

Note:

To avoid JavaScript security problems, the custom application

may supply the callbackurl page on the same server as the invoking
page. This enables the callbackurl page in the popup window and the
invoking page in the opener window to communicate directly through
JavaScript.

DAS_URL Interface Reference 15-7

Search-and-Select Service Units for Users or Groups

15-8 Oracle Identity Management Application Developer’s Guide

16

Centralized User Provisioning Java API
Reference

As of 10g Release 2 (10.1.2.0.2), the Oracle Internet Directory SDK includes a
centralized user provisioning API, which enables you to manage users and their
application properties in the Oracle Identity Management infrastructure. This chapter
describes the main features of the API and explains how to use them.

Reorder App first, then user.

This chapter contains the following sections:
« Application Configuration

« User Management

« Debugging

« Sample Code

Application Configuration

Applications must register with the provisioning system in order to be recognized as
provisionable. They must also create their own configuration in Oracle Internet
Directory using the command-line interface. Java classes exist for viewing application
configurations.

This section contains the following topics:
« Application Registration and Provisioning Configuration

« Application Configuration Classes

Application Registration and Provisioning Configuration

In order to register with the provisioning system, an application must create a
provisioning configuration. Once the provisioning configuration exists, the
provisioning system identifies the application as directory-enabled and provisionable.

The application must perform the following steps to create a provisioning
configuration:

1. Application Registration

2. Provisioning Configuration

Centralized User Provisioning Java APl Reference 16-1

Application Configuration

Application Registration

Oracle applications typically register themselves by using the repository APIs in the
reposi tory.jar file under SORACLE HOVE/ j | i b. This file is provided during
installation specifically for application registration. In addition to creating an
application entry in Oracle Internet Directory, repository APls can be used to add the
application to privileged groups.

Applications written by customers, however, cannot use ther eposi tory. j ar APIs
to perform application registration. So application developers must use LDIF
templates and create application entries in Oracle Internet Directory using LDAP
commands.

An application must create a container for itself under one of these containers:

« "cn=Products, cn=0r acl eCont ext " —for applications that service users in
multiple realms

« "cn=Products, cn=0r acl eCont ext, Real mDN'—for applications that service
users in a specific realm

If an application is configured for a specific realm, then that application cannot
manage users in other realms. In most cases, you should create the application outside
any identity management realm so that the application is not tied to a specific realm in
Oracle Internet Directory.

Whenever a new instance of the application installs, a separate entry for the
application instance is created under the application's container. Some of the
provisioning configuration is common to all the instances of a particular type and
some is specific to the instance. When multiple instances of an application are
deployed in an enterprise, each instance is independent of the others. Each instance is
defined as a separate provisionable application. Users can be provisioned for one or
more instances of this application, so that the user can get access to one or more
instances of this application.

The examples in this section are for a sample application similar to Oracle Files. When
the first instance of this application installs, specific entries must be created in Oracle
Internet Directory. In the following example, the name of this application, chosen at
run time, is Fi | es- App1 and the type of the application is FI LES. The application
can have LDIF templates that can be instantiated if required and then uploaded to
Oracle Internet Directory. In this example, the application identity is outside any
realm. That is, it is under the " cn=Pr oduct s, cn=0r acl eCont ext " container.

dn: cn=FI LES, cn=Product s, cn=Cr acl eCont ext
changet ype: add
obj ectcl ass: orcl Cont ai ner

dn: orcl Appl i cati onConmonName=Fi | es- App1, cn=FI LES, cn=Pr oduct s, cn=Cr acl eCont ext

changet ype: add

orclappfull nane: Files Application Instance 1

user password: wel conel23

description: This is a test Appliction instance.

protocol I nformation: Xxxxxx

orcl Version: 1.0

orclaci: access to entry by group="cn=odi sgroup, cn=Dl PAdnmi ns,
cn=Directory Integration Platformcn=Products,
cn=Cracl eContext" (browse, proxy) by group="cn=User Provisioning Adm ns,
cn=G oups, cn=Cr acl eContext " (browse, proxy)

orclaci: access to attr=(*) by group="cn=odi sgroup, cn=DI PAdni ns,
cn=Directory Integration Platformcn=Products,
cn=Cracl eContext" (search,read, wite, conpare)

16-2 Oracle Identity Management Application Developer’s Guide

Application Configuration

by group="cn=User Provisioning Adm ns,
cn=G oups, cn=Cr acl eCont ext" (search,read, wite, conpare)

The ACLs shown in the example are discussed in the "Application User Data Location"
section.

The application is expected to grant certain privileges to some provisioning services as
well as provisioning administrators.

When the second instance of this application installs, the following entries must be
created in Oracle Directory Integration and Provisioning, assuming the name of this
application, decided at run time, is Fi | es- App2.

dn: orcl Appl i cati onConmonNane=Fi | es- App2, cn=FI LES, cn=Pr oduct s, cn=Cr acl eCont ext
changet ype: add
orclappful I name: Files Application Instance 2
user password: wel conel23
description: This is a test Appliction instance.
orcl Version: 1.0
orclaci: access to entry by group="cn=odi sgroup,
cn=Dl PAdni ns, cn=Directory Integration Platform cn=Products,
cn=Cracl eContext" (browse, proxy) by group="cn=User Provisioning Adm ns,
cn=G oups, cn=Cr acl eCont ext " ('browse, proxy)
orclaci: access to attr=(*) by group="cn=odi sgroup, cn=DI PAdni ns,
cn=Directory Integration Platformcn=Products,
cn=Cracl eContext" (search,read,wite, conpare) by
group="cn=User Provisioning Adm ns, cn=G oups, cn=0r acl eCont ext "
(search, read, wite, conpare)

Once the application creates its entries successfully, the application's identity is
registered in Oracle Internet Directory. At this point, the application can add itself to
certain privileged groups in Oracle Internet Directory, if it needs specific privileges.
Table 16-1, " Some Useful Privilege Groups" shows some of the privileged groups that
an application can add itself to. Each of these groups exists in every realm and also in
the RootOracleContext. The RootOracleContext Group is a member of the group in all
the realms

Table 16-1 Some Useful Privilege Groups

Group Name Privilege
OracleDASCreateUser Create a public user
OracleDASEditUser Edit a public user
OracleDASDeleteUser Delete a public user
OracleDASCreateGroup Create a new public group
OracleDASEditGroup Edit a public group

OracleDASDeleteGroup Delete a public group

For example, the following LDIF file adds the Fi | es- App1 application to
cn=0r acl eCr eat eUser , which gives it the privilege to create users in all realms.

dn: cn=0r acl eCr eat eUser, cn=G oups, cn=Cr acl eCont ext

changetype: nodify

add: uni quenenber

uni quenenber:

orcl Appl i cati onComronNane=Fi | es- Appl, cn=FI LES, cn=Pr oduct s, cn=Cr acl eCont ext

Centralized User Provisioning Java API Reference 16-3

Application Configuration

Provisioning Configuration

An application’s provisioning configuration is maintained in its provisioning profile.
The provisioning system supports three different provisioning profile versions:
Versions 1.1, 2.0 and 3.0. The provisioning service provides different service for the
different profile version. Some generic configuration details are common to all
applications, regardless of version.

Differences Between Provisioning Configuration Versions

The differences between the Version 3.0 profile and the Version 2.0 and Version 1.1
profiles are as follows:

« The new provisioning framework recognizes only Version 3.0 applications.
Therefore, only applications with provisioning profile Version 3.0 show up as
target applications to be provisioned in Oracle Provisioning Console. Applications
with Version 2.0 and Version 1.1 profiles do not show them up as applications to
be provisioned in the Provisioning Console. Still, the applications are notified
about the events that the applications have configured for.

« Creating the provisioning configuration of an application is a multi step process
for Version 3.0 profiles. For the earlier version profiles, provisioning registration
requires only a single step, running the oi dpr ovt ool command.

« Applications can subscribe for provisioning events using different interfaces. Two
of the interfaces, Java and OID-LDAP, are available only for interface Version 3.0,
which is coupled with provisioning configuration Version 3.0. See Table 16-2,

" Interfaces and Their Configuration".

« An application can specify its application-specific user attributes configuration in
an LDIF file. This is supported only for interface Version 3.0, which is coupled
with provisioning configuration Version 3.0. See "Application User Attribute and
Defaults Configuration” on page 16-9

« The provisioning status of the user, discussed in the Oracle Identity Management
Integration Guide, is maintained only for Version 3.0 applications. It is not
maintained for applications having profiles earlier than \ersion 3.0.

« Event propagation configuration parameters vary from one version to another. See
Table 16-5, " Event propagation parameters".

Version 3.0-Specific Provisioning Configuration

Unless otherwise stated, the remainder of this section describes the Version 3.0-specific
provisioning configuration. Figure 16-1 shows the DIT in Oracle Internet Directory
used to store the provisioning configuration. All the provisioning configuration
information is located under the following container:

cn=Provi sioni ng, cn=Di rectory Integration Platform cn=Products, cn=Cr acl eCont ext

Common provisioning configuration information is stored in entries under the
container:

cn=Profiles, cn=Provisioning,cn=Directory Integration Platform
cn=Product s, cn=0r acl eCont ext

The rest of the provisioning configuration for an application is located under:

cn=Appl i cationType, cn=Appl i cati ons, cn=Pr ovi si oni ng,
cn=Directory Integration Platformcn=Products, cn=0r acl eCont ext

16-4 Oracle Identity Management Application Developer’s Guide

Application Configuration

All the instances of a specific application type share the configuration under this
container. That is, whenever a second instance of an existing application type creates a
provisioning profile, all the configuration information under the
"cn=ApplicationType" container is shared.

Figure 16-1 The Directory Information Tree for Provisioning Configuration Data

@ Root

@ cn=OracleContext

@ cn=Products

@ cn=Directory Integration Platform

cn=Provisioning cn=Plug Ins

cn=Applications cn=Profiles

cn=EMAIL EMAIL Provisioning
Profile

cn=Attribute Provisioning Profile
Configuration (per application)
Managed by
oidprovtool

cn=Plug Ins

cn=

_ i .
PRE_DATA_ENTRY cn=User Configuration

cn= DATA_

POST_DATA_ ACCESS
ENTRY

cn=Attributes

entry for Entry for
orclmailstore orlmailquota

Configuration Common to all applications of the same type.
This includes Plug Ins and Attribute Configurations.

The Pr of i | es container contains the following types of configuration information:
« Application Identity Information

« Application Identity Realm Information

« Application Provisioning and Default Policy

« Application User Data Location

« Event Interface Configuration

« Application User Attribute and Defaults Configuration

« Application Provisioning Plug-in Configuration

« Application Propagation Configuration

« Application Event Propagation Run Time Status

Centralized User Provisioning Java API Reference 16-5

Application Configuration

Whenever an instance of an application creates a profile, the new profile is stored as a
separate entry under the Pr of i | es container in the following naming format:

orcl ODI PProfil eName=GUI D of the_Real m Entry_GUI D of _the_Application_ldentity, ..

An application must specify the following information when creating a provisioning
configuration;

Application Identity Information An instance of an application is uniquely identified by
the following parameters:

« Application DN—A unique DN in the Oracle Internet Directory representing the
application. This is a mandatory parameter.

« Application Type— A parameter that is common to all instances of the same
application. Multiple instances of a particular type can share some configuration.
This is a mandatory parameter.

« Application Name—This can be separately specified. If not specified, it is
extracted from the DN. This is an optional parameter.

« Application Display Name—A user-friendly name for the application. This shows
up on the Provisioning Console as a target provisionable application. This is an
optional parameter.

You provide these application identity parameters while creating the provisioning
profile by using the following arguments to the $ORACLE_HOVE/ bi n/ oi dpr ovt ool
command line utility, respectively:

« application_type
« application_dn
« application_nane

« application_display_nane

See Also: The oi dpr ovt ool command-line tool reference in Oracle
Identity Management User Reference

Application Identity Realm Information An application registers for a specific realm in
order to provide services to the users of that realm only. An application must create a
separate provisioning profile for each of the realms it provides services for. In a multi
realm scenario, such as a hosted OracleAS Portal scenario, applications must register
for individual realms.

Whenever a provisioning administrator for a realm accesses the Provisioning Console,
only the applications that are registered for that realm are shown as provisionable
target applications.

The application specifies realm information while creating the provisioning profile by
using the $ORACLE_HOWE/ bi n/ oi dpr ovt ool command line utility with the
argument or gani zati on_dn.

See Also: The oi dpr ovt ool command-line tool reference in Oracle
Identity Management User Reference.

Application Provisioning and Default Policy While creating a provisioning profile, an
application can specify whether the Provisioning Console should manage provisioning
to that application or not. If not, the application does not show up on the Provisioning

16-6 Oracle Identity Management Application Developer’s Guide

Application Configuration

Console as an application to be provisioned. However, Oracle Directory Integration
and Provisioning still processes this profile and propagates the events as expected.

An application specifies this information while creating the provisioning profile by
using the appl i cati on_i sdasvi si bl e argument to the $ORACLE _
HOME/ bi n/ oi dpr ovt ool command line utility. The default value is TRUE.

An application can configure a default policy determining whether all the users in that
realm should be provisioned for that application by default or no users should be
provisioned by default. The valid values are

« PROVI SI ONI NG_REQUI RED—all users will be provisioned by default
« PROVI SI ONI NG_NOT_REQUI RED—no users will be provisioned by default
The default is set to PROVI SI ONI NG_REQUI RED

You can override the default policy with application-provided policy plug-ins at run
time. In addition, an administrator can override both the default policy and the
decision of the policy plug-in.

An application provides the default policy information by using the def aul t _
provi si oni ng_pol i cy argument to the $ORACLE_HOVE/ bi n/ oi dpr ovt ool
command line utility.

Application User Data Location Application-specific user information is stored in the
application-specific containers. If this data is to be managed by the provisioning
system, the application must specify the location of these containers during
provisioning registration. An application specifies its user data location by using the
user _dat a_l ocati on argument to the $ORACLE_HOVE/ bi n/ oi dpr ovt ool
command line utility. The application must ensure that the ACLs on this container
allow Oracle Delegated Administration Services and Oracle Directory Integration and
Provisioning to manage the information in this container.

Event Interface Configuration Applications can subscribe for provisioning events using
different interfaces: PLSQL, Java, and OID-LDAP. Table 16-2, " Interfaces and Their
Configuration” lists the supported interfaces and their associated configuration. Note
that | NTERFACE_VERSI ONis coupled with provisioning profile version.

Table 16-2 Interfaces and Their Configuration

Configuration

Parameter PLSQL Java OID-LDAP
INTERFACE_VERSION 1.1,2.0,3.0 3.0 3.0
INTERFACE_NAME The name of the PLSQL ~ Not used Not used

package that implements
the Interface

INTERFACE_ The Database Connect Not used Not used
CONNECT_INFO String. Multiple formats
supported for all
versions.
INTERFACE_ Not used Not used Not used
ADDITIONAL_INFO
Plugin types PRE_DATA_ENTRY, PRE_DATA_ENTRY, PRE_DATA_ENTRY,
POST_DATA_ENTRY, POST_DATA_ENTRY, POST_DATA_ENTRY,
DATA_ACCESS DATA_ACCESS, DATA_ACCESS
EVENT_DELIVERY
(MUST)

Centralized User Provisioning Java API Reference 16-7

Application Configuration

Table 16—2 (Cont.) Interfaces and Their Configuration

Configuration

Parameter PLSQL Java OID-LDAP
Description Mainly for applications If the Interface Type is Mainly used in cases
that have an Oracle JAVA, an event where the application is
Database backend. The delivering plug-in must very tightly bound to
DIP Server pushes the be configured or the Oracle Internet Directory
event to the remote server will give errors. and event delivery
Database by invoking the The plug-in through the PLSQL
PLSQL procedure. configuration determines interface or the JAVA
the rest of the Event Delivery Plug-in is
configuration. See unnecessary. This
Application Provisioning interface will be
Plug-in Configuration. deprecated in future.

Please use the JAVA
Interface instead.

Applications can use the following arguments to $ORACLE _
HOVE/ bi n/ oi dpr ovt ool when specifying an event interface configuration:

« interface_type (Defaultis PLSQL)
« interface_version (Defaultis2.0)
« interface_nane

« interface connect _info

« interface additional info

Table 16-3, " Information Formats Supported by the PLSQL Interface" lists the
interface connection information formats that the PL/SQL interface supports when it
connects to a remote database. All the formats are supported for all interface versions.

Table 16-3 Information Formats Supported by the PLSQL Interface

Format

Description

dbHost:dbPort:dbSID:username:password

dbHost:dbPort:dbServiceName:username:password

DBSVC=DB_TNS_Connect_Sring_
Alias:username:password

DBURL=Ildap://LDAP_host:LDAP_
port/ServiceName,cn=0OracleContext

Old format, not recommended. Oracle Directory
Integration and Provisioning passes this to the thin JDBC
Driver.

Newer format. Not Recommended for High Availability
implementations, as the database host and port might
change in such scenarios. DIP passes this to the thin JDBC
Driver.

Used by JDBC thick OCI Driver. The local
t nsnanes. or a file must contain this alias on the node
where DIP is running.

Recommended format, as it takes care of High
Availability requirements. DIP passes this to the thin
JDBC Driver and the driver looks up the Database
Registration entry in Oracle Internet Directory to get the
actual Database connection information.

Some examples of supported formats are:

| ocal host: 1521: i asdb: scott:tiger
| ocal host: 1521: i asdbsvc: scott: tiger

DBSVC=TNSALI AS: scott: tiger

16-8 Oracle Identity Management Application Developer’s Guide

Application Configuration

DBURL=I dap: / / acne. com 389/ sanpl egdbname: scott:ti ger

Application User Attribute and Defaults Configuration An application can specify its
application-specific user attributes configuration in an LDIF file. This is supported
only for interface version 3.0.

As shown in Figure 16-1, "The Directory Information Tree for Provisioning
Configuration Data", the configuration for a particular attribute is stored as a separate
entry under the container:

"cn=Attributes, cn=User Configuration,cn=Attribute configuration,
cn=Appl i cation_Type, cn=Appl i cati ons, cn=Provi si oni ng,
cn=Directory Integration Platformcn=Products, cn=0racl eCont ext"

There is no argument to oi dpr ovt ool for uploading this information. The
application must use an LDAP file and command-line tools to upload its attribute
configuration information to Oracle Internet Directory.

Each application-specific attribute is represented as a separate entry. The following
example is for the attribute or cl Fi | esDonai n:

dn: cn=orcl Fi | esDomai n, cn=Attri butes, cn=User configuration,cn=Attribute
configuration, ...

changet ype: add

orcl dasadmi nnodi fiable: 1

orcl dasvi ewabl e: 1

di spl ayname: Files Donain

orcl dasi smandatory: 1

orcl dasui type: LOV

orcl dasl ov: us. oracl e. com

orcl dasl ov: oracl ecorp. com

orcl DASAttrisU Field: 1

orcl DASAttrlsFiel dForCreate: 1

orcl DASAttriIsFieldForEdit: 1

orcl DASAt t r ToDi spl ayByDefaul t: 1

orcl DASSel f Modi fiable: 1

orcl DASAttrDi spl ayOrder: 1

orcl DASAt t r Def aul t Val ue: oracl ecorp. com
orcl DASAtt r Cbj ect G ass: orcl FI LESUser
obj ectcl ass: orcl DASConfi gAttr

Table 16-4, " Properties Stored as Attributes in the Attribute Configuration Entry"
explains the significance of each of the properties that are stored as attributes in the
attribute configuration entry.

Table 16—4 Properties Stored as Attributes in the Attribute Configuration Entry

Property Name Description Comments

orcIDASIsUIField Whether this property is to be shown Not Used in 10g Release 2 (10.1.2).
in the DAS Console or not All attributes are shown.

orcIDASUIType The Type of the Ul Field: singletext, Used by Oracle Internet Directory
multitext, LOV, DATE, Number, Self-Service Console only
password

orcIDASAdminModifiable Whether the field is modifiable by Not Used in 10g Release 2 (10.1.2).
the administrator or not All attributes are modifiable by

administrator.

Centralized User Provisioning Java API Reference 16-9

Application Configuration

Table 16-4 (Cont.) Properties Stored as Attributes in the Attribute Configuration Entry

Property Name Description Comments

orcIDASViewAble Whether this attribute is a read-only Not Used in 10g Release 2 (10.1.2)
attribute in the Oracle Internet
Directory Self-Service Console

displayName The Localized Name of the attribute
as it shows on the Oracle Internet
Directory Self-Service Console

orcIDASIsMandatory Whether this attribute is mandatory If a mandatory attribute is not
or not populated, the Oracle Internet
Directory Self-Service Console

complains

orcIDASAttrIsFieldForCreate Whether to expose this attribute only Not Used in 10g Release 2 (10.1.2)
during user creation

orcIDASALttriIsFieldForEdit Whether to expose this attribute only Not Used in 10g Release 2 (10.1.2)
during user editing

orcIDASAttrToDisplayByDef Whether to hide the attribute by Not Used in 10g Release 2 (10.1.2)

ault default under a collapsed section

orcIDASSelfModifiable Whether this attribute is modifiable Not Used in 10g Release 2 (10.1.2), as
by the user or not Oracle Internet Directory Self-Service

Console is only for
application-specific attributes. Users
cannot change their user preferences
from the Oracle Internet Directory
Self-Service Console.

OrcIDASAttrDisplayOrder The order is which the attribute isto Not Used in 10g Release 2 (10.1.2)
be displayed in the
application-specific section

OrcIDASAttrDefaultValue The initial default value for the Can be changed using the Oracle
attribute that is used by the Internet Directory Self-Service
provisioning components: Oracle Console Application Management
Internet Directory Self-Service Page. The Plug-ins or the
Console, Oracle Directory administrator can override the initial

Integration and Provisioning, Bulk default values.
Provisioning Tool

OrcIDASALttrObjectClass The LDAP object class that the Used to create the
attribute belongs to. application-specific user entries that
the provisioning system maintains.

If an application has application-specific attributes, you can specify that the
provisioning system manage its attributes defaults. You do that by using the manage
appl i cati on_def aul t s argument to $SORACLE_HOVE/ bi n/ oi dpr ovt ool . This
argument is TRUE by default.

Application Provisioning Plug-in Configuration Application provisioning plug-ins are
discussed in

Appendix A, "Java Plug-ins for User Provisioning".

Application Propagation Configuration Event propagation configuration parameters vary

from one profile version to another. Table 16-5, " Event propagation parameters" lists
and describes configuration parameters for event propagation.

16-10 Oracle Identity Management Application Developer’'s Guide

Application Configuration

Table 16-5 Event propagation parameters

Parameter

Supported
Provisioning
Profile Version

Description

profile_mode

Schedule

enable_bootstrap

enable_upgrade

lastchangenumber

max_prov_failure_
limit

max_events_per_
invocation

max_events_per_
schedule

event_subscription

2.0,3.0

1.1,2.0,3.0

3.0

3.0

3.0

3.0

2.0,30

2.0

1.1,2.0,30

Whether the application is to receive outbound
provisioning events from Oracle Internet Directory, to send
inbound events, or both. Values are OUTBOUND (default),
INBOUND, and BOTH.

The scheduling interval after which pending events are
propagated

Enables events for application bootstrapping. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the application created
its provisioning profile.

Enables events for application user upgrade. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the upgrade. If the
application was present before the upgrade, users might
already exist in the application. For such users, Oracle
Directory Integration and Provisioning sends an Upgrade
Event to the application so that the user is handled
differently from a normal new user.

The change number in Oracle Internet Directoryfrom which
the events need to be sent to the application.

The maximum number of retries that the Oracle Directory
Integration and Provisioning server attempts when
provisioning a user for that application.

For bulk event propagation, this specifies the maximum
number of events that can be packaged and sent during one
invocation of the event interface.

Maximum number of events that Oracle Directory
Integration and Provisioning sends to an application in one
execution of the profile. The default is 25. In deployments
with many profiles and applications, this enables Oracle
Directory Integration and Provisioning, which is
multithreaded, to execute threads for multiple profiles.

Defines the types of OUTBOUND events an application is
to receive from the event propagation service. The format
is:

oj ect _Type: Donai n: Qperation(Attributes, .)

For example:

USER: cn=user s, dc=acne, dc=com ADD(*)

specifies that USER_ADD event should be sent if the user
that was created is under the specified domain and that all
attributes should also be sent.

USER: ch=user s, dc=acne, dc=com MODI FY(cn, sn. nmai | , tel e
phonenunber)

specifies that USER_MODIFY event should be sent if the
user that was modified is under the specified domain and
any of the listed attributes were modified

USER: cn=user s, dc=acnme, dc=com DELETE

specifies that USER_DELETE event should be sent if a user
under the specified domain was deleted

Centralized User Provisioning Java API Reference 16-11

Application Configuration

Table 16-5 (Cont.) Event propagation parameters

Supported
Provisioning
Parameter Profile Version Description

event_permitted_ 2.0 Defines the types of INBOUND events an application is
operations privileged to send to the Oracle Directory Integration and
Provisioning server. The format is:

nj ect _Type: Donai n: Operation(Attributes, .)
For example:
| DENTI TY: cn=user s, dc=acne, dc=com ADD(*)

specifies that IDENTITY_ADD event is allowed for the
specified domain and all attributes are also allowed. This
means that the application is allowed to create users in
Oracle Internet Directory.

| DENTI TY: cn=user s, dc=acme, dc=com MODI FY(cn, sn. mai |,
t el ephonenunber)

Specifies that IDENTITY_MODIFY is allowed for only the
attributes in the list. Other attributes are silently ignored.
This means that the application is allowed to modify the
listed attributes of the users in Oracle Internet Directory.

| DENTI TY: cn=user s, dc=acne, dc=com DELETE
Specifies that the application is allowed to delete users in
Oracle Internet Directory

event_mapping_ 2.0 For INBOUND profiles, this specifies the type of object
rules received from an application and a qualifying filter
condition to determine the domain of interest for this event.
Multiple rules are allowed. The format is:
oj ect _Type: Filter_condition: Domain_O _Interest
For example:
EMP: : cn=user s, dc=acne, dc=com
specifies that if the object type received is EMP, the event is
meant for the domain " cn=user s, dc=acne, dc=coni'.
EMP: | =AVERI CA: | =AMVER, cn=user s, dc=acne, dc=com

specifies that if the object type received is EMP, and the
event has the attribute | (locality) and its value is
AMERI CA, the event is meant for the domain

"| =AMER, cn=user s, dc=acne, dc=coni' .

Application Event Propagation Run Time Status The Oracle Provisioning Service records a
user's provisioning status in Oracle Internet Directory for each provisioning-integrated
application. This is described in the Deploying and Configuring Provisioning chapter
of Oracle Identity Management Integration Guide.

Application Configuration Classes

Theoracl e.i dm user. provi si oni ng. confi gurati on. Confi gurati on class
enables you to obtain provisioning schema information. The

oracl e.idm user. provi sioni ng. configuration. Appl i cati on class enables
you to obtain metadata for registered applications. These classes are documented
under the package or acl e. i dm provi si oni ng. confi gurati on.

The Conf i gur at i on class provides access to application configurations. To construct,
a Confi gur at i on object, you must specify the realm. For example:

16-12 Oracle Identity Management Application Developer’'s Guide

User Management

Configuration cfg = new Configuration ("us");
Then you use Conf i gur at i on class methods to get one or all application
configurations in a realm. You must supply the LDAP context of the realm.

The Confi gur ati on object is a fairly heavy weight object, as its creation requires
access to the Oracle Internet Directory metadata. Best practice is to create a

Conf i gur at i on object once during initialization of an application, then to reuse it for
all operations that require it.

The Appl i cat i on object represents an application instance. Its methods provide
metadata about a registered application in the infrastructure.

User Management

When Oracle Directory Integration and Provisioning or Oracle Delegated
Administration Services invokes a provisioning plugin, it passes information about the
user being provisioned. A deployed application can use the user object to modify the
user.

The user management provisioning classes provide the following operations:
« Create, modify, and delete a base user

« Create, modify, and delete application-specific user information

« Search base users

« Retrieve user provisioning status for applications

This section includes the following topics:

« Creating a User

« Modifying a User

« Deleting a User

« Looking Up a User

Creating a User

Creating a user in the Oracle Identity Management repository consists of two steps:

1. Creating basic user information in the specified realm. This information is referred
to as the base user.

2. Creating the application-specific user attributes, or footprint. This information is
referred to as the application user.

The combination of the base user and application user in the repository is referred to
as the Oracle Identity Management user. Some methods create only the base user and
other create both components of the Oracle Identity Management user.

The minimum information required to create a user is a set of attributes representing
the base user. The attributes are in the form of name-value pairs. These user attributes
are represented as Java objects using the class
oracle.ldap.util.MdPropertySet.

Some user creation methods require you to specify the DN of the entry that you want
to create in the Oracle Identity Management user repository. Other methods do not
require the DN. Instead, they construct the Oracle Identity Management user using the
metadata configuration information from the Realm in which the user is created.

Centralized User Provisioning Java APl Reference 16-13

Debugging

If the creation of the base user and application user succeeds, then the creation method
returns an | dnJser object. You use this object to manage the attributes of the base
user and application user.

Modifying a User
Modifying a base user in the Oracle Identity Management repository results in
« Modifying the base user information
« Creating or modifying application user information

You must supply the following information in order to modify an Oracle Identity
Management user:

1. Theuser's DN, GUID, or | dnilJser object reference

2. The desired changes to the base user attributes, represented as an
oracle.ldap.util.MdPropertySet

Some user modification methods modify only the base user attributes. Others modify
the application user attributes as well.

Deleting a User

Deleting a base user in the Oracle Identity Management repository produces the
following results:

« Deleting the base user information
« Deleting the application user information

To modify an Oracle Identity Management user, you must supply the DN, GUID, or
IdmUser object reference.

As result of this operation, the base user and the application user attributes are
deleted.

Looking Up a User

The lookup methods provide two lookup options:
« Look up a specific Oracle Identity Management user using GUID or DN
« Look up a set of Oracle Identity Management users using a search filter

In order to look up Oracle Identity Management users, you must provide the DN or
GUID.

The output of a lookup method is one of the following:
« Asingle IdmUser object
« Alist of IdmUser objects

Debugging
Set Ut i | Debug. MODE_PROVI SI ONI NG_API mode to enable debugging and trace

information. If you do not specify an output stream for the log messages, they are
written to standard output.

The following snippet shows how to set Ut i | Debug. MODE_PROVI SI ONI NG_API
mode and specify an output stream:

16-14 Oracle Identity Management Application Developer’'s Guide

Sample Code

Inport oracle.ldap.util. Uil Debug;
Fi | eCut put Stream | ogSt ream = new Fi | eQut put St rean{" ProvAPI . | 0g")

Ui | Debug. set Debughbde(Ut i | Debug. MODE_PROVI SI ONI NG_API) ;
Uil Debug. set PrintStream(| ogStrean);

Sample Code

The following code example shows how to create, modify, and look up a user and how
to get user provisioning status for an application.

Ui | Debug. set Debughvbde(Ut i | Debug. MODE_PROVI SI ONI NG_AP!) ;

Configuration cfg = new Configuration(realn;
try {
debug(" Connecting...");
Initial LdapContext ctx =
ConnectionUtil . getDefaul t Di rCt x(host Name, port, bindDn, passwd);
debug(" Connected...");
UserFactory factory = UserFactoryBuil der.createUserFactory(ctx, cfg);

Il Create

ModPropertySet nmpSet = new MbdPropertySet();
mpSet . addProperty("cn", "Heman");

mpSet . addProperty("sn","The Master");

mpSet . addProperty("uid", "Heman");

| dmlser idmJser = factory. createUser(nmpSet);

Il Modify

mpSet = new MbdPropertySet();

npSet . addPr opert y(LDl F. ATTRI BUTE_CHANGE_TYPE_REPLACE, "sn",
"Heman The Master");

mpSet . addProperty("gi venName", "Mast er of the Universe");

factory. modi fyUser (i dmlser, npSet);

/'l Lookup
List users = factory.searchUsers(Uil.|DTYPE_SIMPLE, "Hema*", null);

/] Get user provisioning status for an application.
Application app = cfg.getApplication(lCtx, "Files", "Fileslnstace");
String status = idmJser.getProvisioningStatus(app);

/1 Another way to get user provisioning status
String userDn = idnlser.get DNn();
String status = ProvUil.getUserProvisioningStatus(dirctx,
Util.IDTYPE_ DN, userDn, app.getType(), app.getName());
} catch (Exception ex) {
ex. printStackTrace();
11

Centralized User Provisioning Java API Reference 16-15

Sample Code

16-16 Oracle Identity Management Application Developer’'s Guide

17

Provisioning Integration PL/SQL API
Reference

This chapter examines the registration API for the Oracle Directory Provisioning
Integration Service. It contains the following sections:

Versioning of Provisioning Files and Interfaces
Extensible Event Definition Configuration
Inbound and Outbound Events

PL/SQL Bidirectional Interface (Version 3.0)
PL/SQL Bidirectional Interface (Version 2.0)

Provisioning Event Interface (Version 1.1)

Versioning of Provisioning Files and Interfaces

In release 9.0.2, the default interface version was version 1.1. In releases 9.0.4 and
10.1.2.0.0, the interface version defaults to version 2.0. Release 10.1.2.0.1 adds yet a
third version. The administrator can use any one of these.

Extensible Event Definition Configuration

This feature is only for outbound events. It addresses the ability to define a new event
at run time so that the provisioning integration service can interpret a change in Oracle
Internet Directory and determine whether an appropriate event is to be generated and
propagated to an application. The following events will be the only configured events
at installation time.

An event definition (entry) consists of the following attributes.

Event object type (or cl ODI PPr ovEvent Cbj ect Type): This specifies the type of
object the event is associated with. For example, the object could be a USER,
GROUP, or | DENTI TY.

LDAP change type (or cl ODI PPr ovEvent ChangeType): This indicates that all
kinds of LDAP operations can generate an event for this type of object. (e.g ADD,
MODI FY, DELETE)

Event criteria (or cl ODI PPr ovEvent Cri t eri a): The additional selection criteria
that qualify an LDAP entry to be of a specific object type. For example,

nj ect cl ass=or cl User V2 means that any LDAP entry that satisfies this
criteria can be qualified as this Object Type and any change to this entry can
generate appropriate events.

Provisioning Integration PL/SQL API Reference 17-1

Extensible Event Definition Configuration

The object class that holds these attributes is or c| ODI PPr ovEvent TypeConfi g. The
container cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi , cn=or acl e i nt er net
di rect ory is used to store all the event type configurations.

Table 17-1 lists the event definitions predefined as a part of the installation.

Table 17-1 Predefined Event Definitions

Event Object Type LDAP Change Type Event Criteria

ENTRY ADD obj ect cl ass=*
MODI FY
DELETE

USER ADD obj ect cl ass=i nt er or gper son
MODI FY obj ect cl ass=or cl userv2
DELETE

| DENTI TY ADD obj ect cl ass=i nt er or gper son
MODI FY obj ect cl ass=orcl userv2
DELETE

GROUP ADD obj ect cl ass=or cl gr oup
MODI FY obj ect cl ass=gr oupof uni quenanes
DELETE

SUBSCRPTI ON ADD obj ect cl ass=or cl servi cerecepi ent
MODI FY
DELETE

SUBSCRI BER ADD obj ect cl ass=or cl subscri ber
MODI FY
DELETE

The container cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi , cn=or acl e
i nternet directory isused to store all the event definition configurations. LDAP
configuration of the predefined event definitions is as follows:

dn: orcl ODl PProvEvent Cbj ect Type=ENTRY, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi,
cn=oracle internet directory

or cl QDI PProvEvent Obj ect Type: ENTRY

or cl QDI PPr ovEvent LDAPChangeType: Add

or ¢l CDI PPr ovEvent LDAPChangeType: Modi fy

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=*

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

dn:

or cl ODI PProvEvent Obj ect Type=USER, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi , cn=or acl e
internet directory

orcl ODI PProvEvent Obj ect Type: USER

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl QDI PProvEvent LDAPChangeType: Modify

or cl QDI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=lnet O gPerson

orcl ODI PProvEventCriteria: objectclass=orcluserv2

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

dn: orcl ODl PProvEvent Cbj ect Type=I DENTI TY, cn=Pr ovi si oni ngEvent TypeConf i g, cn=odi ,
cn=oracle internet directory

or cl CDI PProvEvent Qbj ect Type: | DENTI TY

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl ODI PProvEvent LDAPChangeType: Modify

17-2 Oracle Identity Management Application Developer’s Guide

Inbound and Outbound Events

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=inetorgperson
orcl QDI PProvEventCriteria: objectclass=orcluserv2
obj ectcl ass: orcl QDI PProvEvent TypeConfi g

dn: orcl ODl PProvEvent Cbj ect Type=GROUP, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi,
cn=oracle internet directory

or cl ODI PProvEvent Obj ect Type: GROUP

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl QDI PProvEvent LDAPChangeType: Modify

orcl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=orclgroup

orcl ODI PProvEventCriteria: objectcl ass=groupof uni quenames

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

dn:

or cl ODI PProvEvent Obj ect Type=SUBSCRI PTI ON, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

orcl ODI PProvEvent Obj ect Type: SUBSCRI PTI ON

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl ODI PProvEvent LDAPChangeType: Modify

or cl QDI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEvent Criteria: objectclass=orclservicerecepi ent

obj ect cl ass: orcl ODI PProvEvent TypeConfi g

dn: orcl ODl PProvEvent Cbj ect Type=SUBSCRI BER, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or cl QDI PProvEvent Obj ect Type: SUBSCRI BER

or cl ODI PProvEvent LDAPChangeType: Add

or ¢l CDI PPr ovEvent LDAPChangeType: Modify

or cl ODI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=orclsubscriber

obj ectcl ass: orcl ODI PProvEvent TypeConfi g

To define a new event of Object type XYZ (which is qualified with the object class

obj XYZ), create the following entry in Oracle Internet Directory. The DIP server
recognizes this new event definition and propagates events if necessary to applications
that subscribe to this event.

dn: orcl ODI PProvEvent Qbj ect Type=XYZ, cn=Pr ovi si oni ngEvent TypeConfi g, cn=odi ,
cn=oracle internet directory

or cl ODI PProvEvent Qbj ect Type: XYZ

or cl ODI PPr ovEvent LDAPChangeType: Add

or cl ODI PProvEvent LDAPChangeType: Modify

or cl QDI PProvEvent LDAPChangeType: Del ete

orcl ODI PProvEventCriteria: objectclass=obj XYZ

obj ect cl ass: orcl ODI PProvEvent TypeConfi g

This means that if an LDAP entry with the object class obj XYZ is added, modified, or
deleted, DIP will propagate the XYZ_ADD, XYZ_MODI FY, or XYZ_DELETE event to any
application concerned.

Inbound and Outbound Events

An application can register as a supplier as well as a consumer of events. The
provisioning subscription profile has the attributes described in Table 17-2 on
page 17-4.

Provisioning Integration PL/SQL API Reference 17-3

PL/SQL Bidirectional Interface (Version 3.0)

Table 17-2 Attributes of the Provisioning Subscription Profile

Attribute

Description

Event Subscri pti ons

Mappi ngRul es

pernittedQOperations

Outbound events only (multivalued).

Events for which DIP should send notification to this application. The format of
this string is [USER] GROUP] : [domai n_of _

interest]: [DELETE| ADD| MODI FY(list_of _attributes_separated_by_
conma) |

Multiple values may be specified by listing the string multiple times, each time
with different values. If parameters are not specified, the following defaults are
assumed: USER: or gani zat i on_DN: DELETEGROUP: or gani zati on_

DN: DELETE—that is, send user and group delete notifications under the
organization DN.

Inbound events Only (multivalued).

This attribute is used to map the type of object received from an application and a
qualifying filter condition to determine the domain of interest for this event. The
mapping takes this form:

OBJECT_TYPE: Filter_condition: domain_of _interest

Multiple rules are allowed. In the mapping EMP: cn=user s, dc=acne, dc=com
the object type received is EMP. The event is meant for the domain

cn=user s, dc=acne, dc=com In the mapping

EMP: | =AMERI CA: | =AMER, cn=user s, dc=acne, dc=com the object type
received is EMP. The event is meant for the domain

| =AMER, cn=user s, dc=acne, dc=com

Inbound events only (multi valued).

This attribute is used to define the types of events an application is privileged to
send to the provisioning integration service. The mapping takes this form:

Event _(bject: affected_donamin:operation(attributes, . . .)

In the mapping | DENTI TY: cn=user s, dc=acne, dc=com ADD(*) the

| DENTI TY_ADD event is allowed for the specified domain and all attributes are
also allowed. In the mapping

| DENTI TY: cn=user s, dc=acmne, dc=com MODI FY(cn, sn. mai | , t el ephonen
urber), the | DENTI TY_MODI FY event is allowed only for the attributes in the
list. Any extra attributes are silently ignored.

PL/SQL Bidirectional Interface (Version 3.0)

Before attempting to use Version 3.0 of the PL/SQL interface, please refer to:

Appendix A, "Java Plug-ins for User Provisioning"

The Oracle Provisioning Service Concepts chapter in Oracle Identity Management
Integration Guide

The Deploying Provisioning-Integrated Applications chapter in Oracle Identity
Management Integration Guide

The PL/SQL callback interface requires you to develop a PL/SQL package that Oracle
Directory Provisioning Integration Service invokes in the application specific database.
Choose any name for the package, but be sure to use the same name when you register
the package at subscription time. Implement the package by using the following
PL/SQL package specification:

DROP TYPE LDAP_EVENT LI ST V3;
DROP TYPE LDAP_EVENT V3;

DROP TYPE LDAP_EVENT STATUS_LI ST _V3;
DROP TYPE LDAP_ATTR LI ST _V3;

DROP TYPE LDAP_ATTR V3;

17-4 Oracle Identity Management Application Developer’s Guide

PL/SQL Bidirectional Interface (Version 3.0)

DROP TYPE LDAP_ATTR VALUE LI ST V3;
DROP TYPE LDAP_ATTR VALUE V3;

-- Nane: LDAP_ATTR VALUE V3

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains values of an attribute. Alist of one or
more of this object is passed in any event.

CREATE TYPE LDAP_ATTR_VALUES_V3 AS OBJECT (
attr_val ue VARCHAR2(4000) ,
attr_bval ue RAW 2048) ,
attr_value len | NTECER,

)
GRANT EXECUTE ON LDAP_ATTR VALUE_V3 to public;

CREATE TYPE LDAP_ATTR VALUE LI ST V3 AS TABLE OF LDAP_ATTR VALUE V3;
/
GRANT EXECUTE ON LDAP_ATTR VALUE_LI ST V3 to public;

-- Name: LDAP_ATTR V3

-- Data Type: OBJECT

-- DESCRIPTION. This structure contains details regarding an attribute. A list of
one or more of this object is passed in any event.

CREATE TYPE LDAP_ATTR_V3 AS OBJECT (

attr_name VARCHAR2(256) ,
attr_type I NTEGER ,
attr_nod_op | NTECER,

attr_val ues LDAP_ATTR_VALUE_LI ST

)
GRANT EXECUTE ON LDAP_ATTR V3 to public;

CREATE TYPE LDAP_ATTR LI ST V3 AS TABLE OF LDAP_ATTR V3;
/
GRANT EXECUTE ON LDAP_ATTR LIST V3 to public;

-- Name: LDAP_EVENT V3
-- Data Type: OBJECT
-- DESCRIPTION. This structure contains event information plus the attribute List.

CREATE TYPE LDAP_EVENT_V3 AS OBJECT (
event _type VARCHAR2(32),
event _id VARCHAR2(32) ,

event_src VARCHAR2 1024),
event _tinme 2),
obj ect _name V. 1024),

obj ect _guid VARCHAR2(32),
obj ect _dn VARCHAR2(1024),

(3

(

ARCHAR2(3

ARCHAR2(
obj ect _type VARCHAR2(32),

(3

(
profile_id VARCHAR2(1024),

Provisioning Integration PL/SQL API Reference 17-5

PL/SQL Bidirectional Interface (Version 3.0)

attr_list LDAP ATTRLIST V3) ;
/

GRANT EXECUTE ON LDAP_EVENT V3 to public;

CREATE TYPE LDAP_EVENT LI ST V3 AS TABLE OF LDAP_EVENT V3;
/

GRANT EXECUTE ON LDAP_EVENT LIST V3 to public;

-- Nane: LDAP_EVENT_STATUS V3

-- Data Type: OBJECT

-- DESCRIPTION. This structure contains information that is sent by the consuner
of an event to the supplier in response to the actual event.

CREATE TYPE LDAP_EVENT_STATUS_V3 AS OBJECT (
event _id VARCHAR2(32) ,
status VARCHAR2(32) ,
status_msg VARCHAR2(2048),
obj ect _guid VARCHAR(32),

)

/

GRANT EXECUTE ON LDAP_EVENT_STATUS V3 to public;

CREATE TYPE LDAP_EVENT_STATUS LI ST_V3 AS TABLE OF LDAP_EVENT_STATUS_V3;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS LI ST_V3 to public;

-- Nane: LDAP_NTFY

-- DESCRIPTION. This is the interface to be inplenented by provisioning integrated
applications to send infornation to and receive information fromthe directory.
The name of the package can be custonized as needed. The function and procedure
names within this package shoul d not be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS
-- The Predefined Event Types

ENTRY_ADD CONSTANT VARCHAR2 (32) :=' ENTRY_ADD ;
ENTRY_DELETE CONSTANT VARCHAR? (32) :='ENTRY_DELETE ;
ENTRY_MODI FY CONSTANT VARCHAR? (32) :='ENTRY_MODI FY' :

USER ADD CONSTANT VARCHAR2 (32) :='USER ADD ;
USER DELETE CONSTANT VARCHAR2 (32) :=' USER DELETE ;
USER MODI FY CONSTANT VARCHAR2 (32) :=' USER MODI FY ;

| DENTI TY_ADD CONSTANT VARCHAR? (32) :='|DENTI TY_ADD ;
| DENTI TY_DELETE CONSTANT VARCHAR2 (32) : ='|DENTI TY_DELETE ;
| DENTI TY_MODI FY CONSTANT VARCHAR2 (32) : ='IDENTI TY_MODIFY' ;

GROUP_ADD CONSTANT VARCHAR? (32) :=' GROUP_ADD
GROUP_DELETE CONSTANT VARCHAR? (32) :=' GROUP_DELETE ;
GROUP_MODI FY CONSTANT VARCHARZ (32) :=' GROUP_MODIFY' ;

17-6 Oracle Identity Management Application Developer’s Guide

PL/SQL Bidirectional Interface (Version 3.0)

SUBSCRI PTION ADD ~ CONSTANT VARCHARZ(32) :=' SUBSCR! PTI ON_ADD :
SUBSCR! PTI ON_DELETE CONSTANT VARCHARZ(32) : =" SUBSCRI PTI ON_DELETE' ;
SUBSCRI PTION_MODI CONSTANT VARCHARZ(32) : =" SUBSCRI PTI ON_MODI FY' ;

SUBSCRI BER_ADD CONSTANT VARCHAR2('32) :=' SUBSCRI BER ADD ;
SUBSCRI BER_DELETE CONSTANT VARCHAR2(32) :=' SUBSCRI BER DELETE';
SUBSCRI BER_MCDI FY CONSTANT VARCHAR2(32) :=' SUBSCRI BER_MODI FY' ;

-- The Attribute Type

ATTR_TYPE_STRI NG CONSTANT NUMBER : = 0;

ATTR_TYPE_BI NARY CONSTANT NUMBER : = 1;
ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER := 2;

-- The Attribute Mdification Type

MOD_ADD CONSTANT NUMBER : = 0;

MOD_DELETE ~ CONSTANT NUMBER : = 1,

MOD_REPLACE CONSTANT NUMBER : = 2;

-- The BEvent dispostions constants

EVENT_SUCCESS CONSTANT VARCHAR2(32) :=' EVENT_SUCCESS';
EVENT_| N_PROGRESS CONSTANT VARCHAR2(32) :='EVENT_I N_PROGRESS;
EVENT_USER_NOT_REQUI RED CONSTANT VARCHAR2(32) :='EVENT_USER NOT_REQU RED;
EVENT_ERROR CONSTANT VARCHAR2(32) :='EVENT_ERRCR ;
EVENT_ERROR_ALERT CONSTANT VARCHAR2(32) :='EVENT_ERROR ALERT';
EVENT_ERROR_ABORT CONSTANT VARCHAR2(32) :='EVENT_ERROR ABCRT' ;

-- The Actual Callbacks

FUNCTI ON Get AppEvents (events OUT LDAP_EVENT_LI ST_V3)
RETURN NUMBER

-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER: 0;
EVENT_NOT_FOUND CONSTANT NUMBER = 1403;

If the provisioning server is unable to process an inbound event, it triggers an EVENT _
ERROR_ALERT status, which generates a trigger in Oracle Enterprise Manager.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified, subscribed, or deleted does not
exist—it responds with EVENT _ERRORto indicate to the application that something is
wrong. It is again up to the application to handle the status event.

EVENT _ERROR means no errors in directory operations. The event cannot be processed
for other reasons.

-- Put AppEvent Status() : DIP Server invokes this callback in the renote Data
base after processing an event it had received using the Get AppEvents()

cal | back. For every event received, the DIP server sends the status event
back after processing the event. This APl will NOT be required by the
Oracle Collaboration Suite release 3.0 conmponents.

PROCEDURE Put AppEvent Status (event_status | N LDAP_EVENT_STATUS LI ST_V3);
-- PutO DEvents() : DIP Server invokes this APl in the renote Database. DI P
server sends event to applications using this callback. It also expects a status

event object in response as an OUT paraneter. This APl needs to be inplenented
by all the Oracle Collaboration Suite rel ease 3.0 conponents.

Provisioning Integration PL/SQL API Reference 17-7

PL/SQL Bidirectional Interface (Version 2.0)

PROCEDURE Put O DEvents (event

END LDAP_NTFY;
/

IN LDAP_EVENT LIST V3,

event _status OUT LDAP_EVENT _STATUS LI ST _V3);

PL/SQL Bidirectional Interface (Version 2.0)

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL

package specification:
DROP TYPE LDAP_EVENT;

DRCP TYPE LDAP_EVENT_STATUS;
DROP TYPE LDAP_ATTR_LI ST;

DROP TYPE LDAP_ATTR;

- Nane: LDAP_ATTR
- Data Type: OBJECT

DESCRI PTION: This structure contains details regarding an attribute. A list

or nore of this object is passed in any event.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2(256) ,
attr_val ue VARCHAR2(4000) ,
attr_bval ue RAW 2048) ,
attr_value_len | NTEGER,
attr_type I NTEGER ,
attr_nod_op | NTEGER

)
GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP_ATTR LI ST AS TABLE OF LDAP ATTR
/
GRANT EXECUTE ON LDAP_ATTR LI ST to public;

- Nane: LDAP_EVENT

- Data Type: OBJECT

- DESCRIPTION: This structure contains event information plus the attribute
list.

CREATE TYPE LDAP_EVENT AS OBJE
event _type
event _id
event_src
event _tine
obj ect _name
obj ect _type
obj ect _guid
obj ect _dn

9

17-8 Oracle Identity Management Application Developer’s Guide

Provisioning Event Interface (Version 1.1)

profile_id VARCHAR2(1024),
attr _|ist LDAP_ATTR_LIST) ;
/

GRANT EXECUTE ON LDAP_EVENT to public;

- Name: LDAP_EVENT_ STATUS

- Data Type: OBJECT

- DESCRIPTION: This structure contains information that is sent by the
consuner of an event to the supplier in response to the
actual event.

CREATE TYPE LDAP_EVENT_STATUS AS OBJECT (

event _id VARCHAR2(32) ,
orcl guid VARCHAR(32) ,
error_code | NTEGER,
error_String VARCHAR2(1024) ,

error_di sposition VARCHAR2(32)) ;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS to public;

Provisioning Event Interface (Version 1.1)

You must develop logic to consume events generated by the provisioning integration
service. The interface between the application and the provisioning integration service
can be table-based, or it can use PL/SQL callbacks.

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

Rem

Rem NAVE

Rem I dap_ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP_ATTR LI ST;
DROP TYPE LDAP_ATTR;

- LDAP ATTR

Nare . LDAP_ATTR

Data Type : OBJECT

DESCRI PTION : This structure contains details regarding
an attribute.

CREATE TYPE LDAP_ATTR AS OBJECT (

attr_name VARCHAR2(255) ,
attr_val ue VARCHAR2(2048) ,
attr_bval ue RAW 2048) ,

Provisioning Integration PL/SQL API Reference 17-9

Provisioning Event Interface (Version 1.1)

attr_value_len | NTEGER,
attr_type INTEGER -- (0 - String, 1 - Binary)
attr_nod_op | NTECER
)
/
GRANT EXECUTE ON LDAP_ATTR to public;

-- Nane . LDAP_ATTR LI ST

-- Data Type : COLLECTION

-- DESCRIPTION : This structure contains collection
-- of attributes.

CREATE TYPE LDAP_ATTR LI ST AS TABLE OF LDAP_ATTR
/
GRANT EXECUTE ON LDAP_ATTR LI ST to public;

-- NAME . LDAP_NTFY

-- DESCRIPTION: This is a notifier interface inplenented by Provisioning System
-- clients to receive information about changes in Oacle Internet
-- Directory. The nane of package can be custom zed as needed.

-- The function names within this package shoul d not be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

-- LDAP_NTFY data type definitions

-- EBvent Types

USER_DELETE CONSTANT VARCHAR?(256) : = ' USER DELETE ;
USER_MODI FY CONSTANT VARCHAR2(256) : = ' USER MODI FY' ;
GROUP_DELETE CONSTANT VARCHAR?(256) : = ' GROUP_DELETE ;
GROUP_MODI FY CONSTANT VARCHAR2(256) : = ' GROUP_MODI FY' ;

-- Return Codes (Bool ean)

SUCCESS CONSTANT NUMBER : = 1;
FAI LURE CONSTANT NUMBER : = 0;
-- Values for attr_mod_op in LDAP_ATTR object.

MOD_ADD CONSTANT NUMBER : = 0;
MOD_DELETE CONSTANT NUMBER : = 1,
MOD_REPLACE CONSTANT NUMBER : = 2;

-- Nane: LDAP_NTFY

-- DESCRIPTION. This is the interface to be inplenented by Provisioning System
-- clients to send information to and receive information from

-- Oracle Internet Directory. The name of the package can be

-- custoni zed as needed. The function names within this package
-- shoul d not be changed.

17-10 Oracle Identity Management Application Developer’'s Guide

Provisioning Event Interface (Version 1.1)

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

Predefined Event Types

Attribute Type

ENTRY_ADD
ENTRY_DELETE
ENTRY_MODI FY

USER_ADD
USER_DELETE
USER_MODI FY CONSTANT

| DENTI TY_ADD
| DENTI TY_DELETE
| DENTI TY_MODI FY

GROUP_ADD
GROUP_DELETE
GROUP_MODI FY

SUBSCR! PTI ON_ADD
SUBSCR! PTI ON_DELETE
SUBSCR! PTI ON_MDI

SUBSCRI BER_ADD
SUBSCRI BER_DELETE
SUBSCRI BER_MODI FY

ATTR TYPE_STRI NG
ATTR_TYPE_BI NARY

Attribute Modification Type

Event Dispositions Constants

Callbacks

CONSTANT VARCHAR? (32)
CONSTANT VARCHAR? (32)
CONSTANT VARCHAR? (32)

CONSTANT VARCHAR? (32)
CONSTANT VARCHAR? (32)
VARCHAR2(32)

CONSTANT VARCHARZ2 (32)
CONSTANT VARCHAR2 (32)
CONSTANT VARCHARZ2 (32)

CONSTANT VARCHAR? (32)
CONSTANT VARCHAR? (32)
CONSTANT VARCHAR? (32)

CONSTANT VARCHARY(32)
CONSTANT VARCHARY(32)
CONSTANT VARCHARY(32)

CONSTANT VARCHAR2(32)
CONSTANT VARCHAR2(32)
CONSTANT VARCHAR2(32)

CONSTANT NUMBER
CONSTANT NUMBER

' ENTRY_ADD ;
" ENTRY_DELETE' ;
" ENTRY_MODI FY" ;

' USER ADD ;
' USER DELETE ;
' USER_MODI FY' ;

"I DENTI TY_ADD ;
" | DENTI TY_DELETE' ;
"I DENTI TY_MODI FY' ;

* GROUP_ADD ;
GROUP_DELETE ;
* GROUP_MODI FY' ;

' SUBSCRI PTI ON_ADD ;
' SUBSCRI PTI ON_DELETE' ;
" SUBSCRI PTI ON_MODI FY' ;

' SUBSCRI BER_ADD ;
' SUBSCRI BER_DELETE';
' SUBSCRI BER_MCDI FY" ;

ATTR_TYPE_ENCRYPTED_STRI NG CONSTANT NUMBER 2,
MCD_ADD CONSTANT NUMBER =0

MCD_DELETE CONSTANT NUMBER =1

MOD_REPLACE CONSTANT NUMBER =2

EVENT_SUCCESS CONSTANT VARCHAR2(32) = ' EVENT_SUCCESS ;
EVENT_ERRCR CONSTANT VARCHAR2(32) = ' EVENT_ERRCR ;
EVENT_RESEND CONSTANT VARCHAR2(32) = ' EVENT_RESEND ;

A callback is a function invoked by the provisioning integration service to send or
receive notification events. While transferring events for an object, the related
attributes can also be sent along with other details. The attributes are delivered as a
collection (array) of attribute containers, which are in unnormalized form: if an
attribute has two values, two rows are sent in the collection.

Provisioning Integration PL/SQL API Reference 17-11

Provisioning Event Interface (Version 1.1)

GetAppEvent()

The directory integration and provisioning server invokes this API in the remote
database. It is up to the application to respond with an event. The Oracle Directory
Integration and Provisioning platform processes the event and sends the status back
using the Put AppEvent St at us() callback. The return value of Get AppEvent ()
indicates whether an event is returned or not.

FUNCTI ON Get AppEvent (event OUT LDAP_EVENT)
RETURN NUMVBER,

- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER
EVENT_NOT_FCOUND CONSTANT NUMBER

0;
1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—it responds with EVENT_RESEND. The application is expected to
resend that event when Get AppEvent () is invoked again.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified does not exist, or the user to be
subscribed does not exist, or the user to be deleted does not exist—then it responds
with EVENT_ERRORto indicate to the application that something was wrong.
Resending the event is not required. It is up to the application to handle the event.

Note the difference between EVENT _RESEND and EVENT _ERRORin the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

EVENT _ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reasons.

PutAppEventStatus()

The directory integration and provisioning server invokes this callback in the remote
database after processing an event it has received using the Get AppEvent () callback.
For every event received, the directory integration and provisioning server sends the
status event back after processing the event.

PROCEDURE Put AppEvent Status (event _status | N LDAP_EVENT_STATUS);

PutOIDEvent()

The directory integration and provisioning server invokes this API in the remote
database. It sends event to applications using this callback. It also expects a status
event object in response as an OUT parameter. If a valid event status object is not sent
back, or it indicates a RESEND, the directory integration and provisioning server
resends the event. In case of EVENT_ERROR, the server does not resend the event.

PROCEDURE Put O DEvent (event |N LDAP_EVENT, event _status OUT LDAP_EVENT _
STATUS) ;

END LDAP_NTFY;

/

17-12 Oracle Identity Management Application Developer’'s Guide

Part Il

Appendixes

Part 11l presents plug-ins that can be used to customize provisioning in Oracle
Collaboration Suite. In addition, this section contains an appendix about DSML syntax

and usage.
« Appendix A, "Java Plug-ins for User Provisioning"

« Appendix B, "DSML Syntax"

A

Java Plug-ins for User Provisioning

This appendix explains how to use plug-ins to customize provisioning policy
evaluation, data validation, data manipulation, and event delivery in typical
deployments of Oracle Provisioning Service version 3.0.

The Oracle provisioning server cannot support all of the provisioning needs of a
deployment. Hence, hooks are provided at various stages of user creation,
modification, and deletion. These hooks enable an enterprise to incorporate its own
business rules and to tailor information creation to its needs. The hooks take the form
of Java plug-ins.

This appendix contains these topics:
« Plug-in Types and Their Purpose
« Plug-in Requirements

« Data Entry Plug-in

« Data Access Plug-in

« Event Delivery Plug-in

« Plug-in Return Status

« Configuration Template

« Sample Code

Plug-in Types and Their Purpose
There are three types of plug-ins:
« Dataentry plug-ins
« Data manipulation and data access plug-ins
« Event Delivery plug-ins

The data entry plug-ins can be used by applications that integrate with the
provisioning framework using either synchronous or asynchronous provisioning. The
data access plug-ins are used only by applications that are integrated with the
provisioning framework for synchronous provisioning. The event delivery plug-ins
are used only by applications that integrate with the provisioning framework using
asynchronous provisioning.

Oracle Provisioning Console, Oracle integration and provisioning server, and other
mechanisms that affect the base user information in the directory invoke these plug-ins
when the information is created. By configuring a data entry plug-in, a deployment
can do any of the following:

Java Plug-ins for User Provisioning A-1

Plug-in Requirements

« Validate attribute values for application users
« Validate attribute values for base users

« Enhance attribute values for application users
« Enhance attribute values for base users

« Evaluate provisioning policies

If you want the deployed application to maintain application user information you
must configure a data access plug-in for it. This type of plug-in enables you to
maintain the application information either outside of the directory or within it as
several entries.

Data entry and data access plug-ins are typically invoked from one of these
environments:

« User provisioning console for Oracle Delegated Administration Services
« Oracle directory integration and provisioning server

« Provisioning API

« Bulk Provisioning Tools

The event delivery plug-ins are required by applications that have the JAVA interface
type and that subscribe for provisioning events. Applications that have synchronous
provisioning should not implement event delivery plug-ins.

Plug-in Requirements

All of the plug-ins that you provide for an application must be in a JAR file that can be
uploaded to the directory with the standard LDIF template. See the section
"Configuration Template" for an example. The plug-in interface definitions are found
in SORACLE_HOWE/ j | 'i b/ | dapj cl nt 10. j ar . Refer to Oracle Internet Directory API
Reference and the public interfaces for a more detailed description. If the application
requires additional jar files, you can upload them too.

Data Entry Plug-in
Data entry plug-ins take two forms:
« Pre-data-entry plug-ins
« Post-data-entry plug-ins

If you want to use either of these plug-ins, you must implement the
oracl e.idm provi si oni ng. pl ugi n. | dat aént r yPl ugi n interface. This
interface has three methods. Here it is:

/**

The applications can performa post data entry operation by
i npl ementing this method.

@aram appCt x the application context
@aram i dnlser the Idnmser object

@ar am baseUser Attr Base user properties

* @aram appUserAttr App user properties

* @hrows Plugi nException when an exception occurs.
*/

public PluginStatus process(ApplicationContext appCx,
I dmser idmser, MbdPropertySet baseUserAttr,

A-2 Oracle Identity Management Application Developer’'s Guide

Data Entry Plug-in

ModPropertySet appUserAttr)throws Plugi nException;

/**

* Returns the Mdified Base User properties

*

* @eturn ModPropertySet nodified base user properties.
*|

public MdPropertySet getBaseAttrMds();

/**

* Returns the Mdified App User properties

*
* @eturn ModPropertySet modified app user properties.
*
/
public MdPropertySet get AppAttrMds();

Typically the plug-in implementer uses these methods for data validation or policy
evaluation. In the latter case, a base user attribute is used to make the decision.

The application context object contains this information:
« LDAP directory context

If you want the application to perform a directory operation, you can have it
obtain the LDAP context from the application object. Note that this LDAP context
should not be closed in the plug-in.

« Plug-in call mode

The plug-in is called from Oracle Provisioning Console, Oracle directory
integration and provisioning server, or another environment that invokes the
provisioning API. If the calling environment is Oracle Directory Integration and
Provisioning, the provisioning service calls the plug-in. The two possible values
are | NTERACTI VE_MODE and AUTOVATI C_MODE. The first indicates that the
plug-in was invoked through interaction between Oracle Delegated
Administration Services and a client application. The second indicates that the
plug-in was invoked by Oracle Directory Integration and Provisioning, where user
intervention does not occur.

= Client locale

The plug-in may want to know what the client locale is, especially if it is invoked
from Oracle Delegated Administration Services.

« Plug-in call operation

You may decide to have data entry plug-ins for both create and modify user
operations. You may even implement these plug-ins in the same class. Under these
conditions, the plug-in must determine which operation is invoked. The
application context object uses the values OP_CREATE and OP_MODI FY to identify
the operation.

« Plug-in invocation point

The data entry plug-in is typically used to determine whether a user needs to be
provisioned for an application. The policy evaluation and data validation that
occurs can be performed in either a pre-data-entry plug-in or a post-data-entry
plug-in. You may choose either or both. If you choose both, you can implement
them in the same class. The application context object specifies which one is
actually invoked. It uses the values PRE_DATA ENTRY and POST_DATA_ENTY to
do this.

« Callback context

Java Plug-ins for User Provisioning A-3

Data Entry Plug-in

If you decide to have both pre and post plug-ins for an operation and you want
the pre plug-in to share information with the post plug-in, you can set the callback
context in the application context object of the pre-data-entry plug-in. The post—
data-entry plug-in can then obtain and use this callback context.

« Logging

You can use the log methods provided in the application context object to log
information for the plug-in.

The calling sequence looks like this:

1. Download and instantiate a plug-in object based on the configuration
information object in Oracle Internet Directory

2. Construct an application context object that will be passed to the plug-in.
3. Callprocess nethod()

4. Callget BaseAttr Mbds() to obtain base user attributes that are modified in
process().

5. Merge the base user attributes returned by get BaseAt t r Mods() with the
base user attributes, depending on the plug-in execution status. The execution
status can be either success or f ai | ur e. The plug-in implementer must
return a valid plug-in execution status object. If null is returned, the execution
status is considered a failure.

6. Merging of the base user will only be done if the plug-in execution status is
successful.

7. Call get AppAttr Mods() for the plug-in. This method obtains application
user attributes that are modified in pr ocess() .

8. Merge the application user attributes returned by get AppAt t r Mods() with
the application user attributes, depending on the user provisioning status
returned by the plug-in.

Pre-Data-Entry Plug-in
The pre-data-entry plug-in generates values for application attributes. The attribute
defaults specified during application registration are passed to this plug in along with
the current base user attributes. The returned values are displayed in the Ul if the
invocation environment is interactive like Oracle Delegated Administration Services.

The pre-data-entry plug-in can decide whether the user should be provisioned for an
application. The plug-in examines base user attributes to make the decision. It is
invoked during create and modify operations. You can support both operations with
one plug-in class, or you can assign one class to each.

If the application decides to have pre-data- entry plug-ins for create and modify
operations, two configuration entries must be created in Oracle Internet Directory
under the application container. The first entry is for the create operation:

This

dn: cn=PRE_DATA ENTRY_CREATE, cn=Pl ugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect G ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecName: oracl e. nyapp. provi si oni ng. User Cr eat ePl ugi n

A-4 Oracle Identity Management Application Developer’'s Guide

Data Access Plug-in

orcl ODI PPl ugi nAddI nfo: Pre Data Entry Plugin for CREATE operation

The second entry is for the modify operation:

dn: cn=PRE_DATA ENTRY_MXDI FY, cn=Pl ugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNane: oracl e. nyapp. provi si oni ng. User Modi f yPl ugi n

orcl QDI PPl ugi nAddI nfo: Pre Data Entry Plugin for MODIFY operation

In this example, separate classes for create and modify plug-ins are shown.

Post-Data-Entry Plug-in

The post-data-entry plug-in validates data entered by the user in the Ul. In addition, it
generates derived attribute values. If the plug in fails for any one application, the Ul
does not proceed. All applications must successfully validate the data before a user
entry can be created in the directory. However, in the case of non-Ul environment or
automatic route, the plug-in implementer can decide to raise an error or continue,
based on the plug-in call mode (I NTERACTI VE_MODE or AUTOVATI C_MODE).

Like the pre-data-entry plug-in, the post-data-entry plug-in is invoked during create
and modify operations. The application can decide to implement one plug-in class for
both operations or a separate class for each.

If you decide to have post—-data-entry plug-ins for create and modify operations, create
two configuration entries in Oracle Internet Directory under the application container.
The first entry is for the create operation:

dn: cn=POST_DATA_ENTRY_CREATE, cn=Pl ugi ns, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=Cr acl eCont ext

changet ype: add

obj ect G ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNarre: or acl e. nyapp. provi si oni ng. User Mynt Pl ugi n

orcl ODI PPl ugi nAddI nfo: Post Data Entry Plugin for CREATE and MXD FY
operations

The second entry is for the modify operation:

dn: cn=POST_DATA_ENTRY_MODI FY, cn=Pl ugi ns, cn=FI LES, cn=Appli cati ons,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

or cl CDI PPl ugi nExecNane: oracl e. nyapp. provi si oni ng. User Mynt Pl ugi n

orcl DI PPl ugi nAddI nfo: Post Data Entry Plugin for MODIFY and CREATE operation

In this example, too, separate classes for create and modify plug-ins are shown.

Data Access Plug-in

The primary purpose of the data access plug in is to manage the application-specific
information of the user in the directory. You can use this plug-in to create and retrieve
the information.

Java Plug-ins for User Provisioning A-5

Data Access Plug-in

The data access plug-in is invoked whenever a user is created and is requesting
provisioning for an application—whether by Oracle Delegated Administration
Services, by Oracle Directory Integration and Provisioning, or by bulk provisioning
tools.

The data access plug-in is invoked during modify and delete operations as well. It can
update the application information or remove it.

If you want to use the data access plug-in, implement the interface
oracl e. i dm provi si oni ng. pl ugi n. | Dat aAccessPl ugi n. Here is the interface:

/ *
The applications can create/ nodify/delete the user footprint by
i npl ementing this method.

*

*

*

*

* @aram appCx the application context

* @aramidmser |dmser object

* @aram baseUser Attr Base user properties
* @aram appUser Attr App user properties
*
*
*
*
*
*
*

@eturn PluginStatus a plugin status object, which must contain
the either <codE>l dnser. PROVI SI ON_SUCCESS</ CODE> or
<codE>l dmser . PROVI SI ON_FAI LURE</ CCDE> provi si oni ng st atus

@hrows Pl ugi nException when an exception occurs.

/
public PluginStatus process(ApplicationContext appCtx,
I dmJser idmser, MbdPropertySet baseUserAttr,
ModPropertySet ppUserAttr) throws PluginException;

/**

* The applications can return their user footprint by
* inplenmenting this nethod. Use <CODE>

oracle.ldap.util.VarPropertySet </ CODE>
as the return object
<PRE>

For Ex.

PropertySet retPropertySet = null;
ret PropertySet = new VarPropertySet();

//Fetch the App data and add it to retPropertySet
ret PropertySet.addProperty("nane", "value");

return retPropertySet;
</ PRE>

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* @hrows PluginException when an exception occurs.
*/
public PropertySet get AppUser Dat a(ApplicationContext appCtx,

I dnlUser user, String regAttrs[]) throws Pl ugi nException;

If you want to manage the user information for an application, create a plug-in
configuration entry in the directory under the application container. The example that
follows shows what this entry looks like:

dn: cn=DATA_ACCESS, cn=Pl ugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ectd ass: orcl QDI PPl ugin

A-6 Oracle Identity Management Application Developer’'s Guide

Event Delivery Plug-in

orcl Status: ENABLE
orcl ODI PPl ugi nExecNane: oracl e. nyapp. provi si oni ng. User Dat aAccPl ugi n
orcl QDI PPl ugi nAddl nfo: Data Access Plugin

Event Delivery Plug-in

The primary purpose of the event delivery plug-in is to use the events notified by the
Oracle integration and provisioning server. Events are delivered to the plug-in by the
Oracle integration and provisioning server. Based on the event type and the action to
be performed in the application repository, the plug-in performs the required
operations. The interface definitions for this plug-in are as follows:

/* $Header: |EventPlugin.java 09-jun-2005.12: 45:53 *
[* Copyright (c) 2004, 2005, Oracle. Al rights reserved. */

/*
DESCRI PTI ON
Al'l of the plug-in interfaces must extend this common interface.
PRI VATE CLASSES
None
NOTES
None
*/
package oracle.idm provisioning.plugin;
/**

* This is the base interface

*/
public interface | EventPl ugin
{
/**
* The applications can performthe initialization logic in this nethod.
*
* @aram Qbject For nowit is the provisioning Profile that will be passed.
* | ook at oracle.|dap.odip.engine.ProvProfile for nore details.
*
*
* @hrows Plugi nException when an exception occurs.
*|
public void initialize(Object profile) throws Plugi nException;
/**
* The applications can performthe ternmination logic in this method.
*
* @aramvoid Provisioning Profile Gbject will be sent.
* refer to oracle.|dap.odip.engine. ProvProfile for nore details
* @hrows PluginException when an exception occurs.
*/
public void term nate(Cbject profile) throws Plugi nException;
/**
* Set Additional Info.
* Since we pass on the conplete profile, there is no requirenent to set
* the additiona
* @aram addlnfo Plugin additional info
*/
[Ipublic void set Addl nfo((hj ect addlnfo);
}

/* $Header: |EventsFronO D.java 09-j un-2005. 12: 45: 53 */
[* Copyright (c) 2004, 2005, Oracle. Al rights reserved. */
/*

DESCRI PTI ON

Applications interested in receiving changes fromQ D shoul d

Java Plug-ins for User Provisioning A-7

Event Delivery Plug-in

i npl ement this

interface.

PRI VATE CLASSES

<None>

NOTES
*|
package oracle.idm provi sioning. pl ugin;
inport oracle.idm provisioning.event.Event;
inport oracle.idm provisioning.event.Event Status;

*

/
Applications interested in receiving changes from O D shoul d inplement this
interface. The applications register with the O D for the changes occurring
at OD. The DIP engine would instantiate an object of this class and invoke
the initialize(), sendEventsToApp(), and truncate() method in the same
sequence. The initialize method would provide the appropriate infornmation
fromthe profile in the formof a java.util.Hashtable object.

The property nanes, i.e. the hash table key that could be used by the
interface inplementer will be defined as constants in this interface.

N

—

@ersion $Header: |EventsFromQOD.java 09-jun-2005.12:45:53 §$

public interface | EventsFronO D extends | Event Pl ugin

{

/**
* |nitialize. The application would provide any initialization |ogic
* through nethod. The DIP engine after instantiating a class that
* inplements this interface will first invoke this nethod.
*
* @aram prop A HashMap that woul d contain necessary informtion exposed
* to the applications
* @hrows EventlnitializationException the applications must throw this
* exception in case of error.
*|

public void initialize(Object provProfile)

t hrows Event Pl ugi nl nit Excepti on;

/**
* 0D Events are deliverd to the application through this method.
*
* @aramevts an array of LDAPEvent objects returned by the DI P engine
* @eturn the application logc nust process these events and return the
* status of the processed events
* @hrows EventDeliveryException the applications nmust throw this exception
* in case of any error.
*/

public EventStatus[] sendEventsToApp(Event [] evts)

throws EventDel i veryExcepti on;
}

/* $Header: |EventsToO D.java 09-jun-2005.12:45:53 $ */
/* Copyright (c) 2004, 2005, Oacle. Al rights reserved. */

/*
DESCRI PTI ON
Applications interested in sending changes to O D should inplenent this
interface.

*|

package oracl e.idm provisioning. plugin;

A-8 Oracle Identity Management Application Developer’'s Guide

Event Delivery Plug-in

inport oracle.idm provisioning.event.Event;
inport oracle.idm provisioning.event.Event Status;

/**

* Applications interested in sending changes to O D should inplenent this

* interface. The applications nust register with the O D for the sending

* changes at their end to DIP. The DI P engine would instantiate an object
* of this class and invoke the initialize(), sendEventsFromApp(), and

* truncate() nethod in the same sequence. The initialize nmethod woul d

* provide the appropriate information fromthe profile in the form of

* ajava.util.Hashtable object. The property names, i.e. the hash table key
* that could be used by the interface inplementer will be defined as

* constants in this interface.

*/
public interface | EventsToO D extends |EventPl ugin
{
/**
* |nitialize. The application would provide any initialization |ogic
* through nethod. The DI P engine after instantiating a class that
* inplenments this interface will first invoke this nethod.
*
* @aram prop ProvProfile
* oracl e. | dap. odi p. engi ne. ProvProfile
* @hrows Event Pl uginlnitException the applications nmust throw this
* exception in case of error.
*/
public void initialize(Object profile) throws EventPl uginlnitException;
/**

* Application Events are deliverd to OD through this nethod.

* @eturn an array of Event objects returned to be processed by the
* DI P engine.
* @hrows EventDeliveryException the applications nust throw this exception
* in case of any error.
*|
public Event[] receiveEvent sFromApp()
throws Event Del i veryExcepti on;

/**

* Application can let the DI P engine know whether there are nore event to
* follow through this method

*

* @eturn ture if there are nore events to be returned and fal se otherw se
* @hrows PluginException the applications nust throw this exception

* in case of any error.

*/

public bool ean hashre() throws Pl uginException;

/**
* The status of the application events are intimted through this nethod.

* j.e the DIP engine after processing the events calls this nmethod to set
* the event status.

* @araman array of Event status objects describing the processed event

* status by the DI P engine.

* @hrows EventDeliveryException the applications nmust throw this exception
* in case of any error.

*/

public void set AppEvent Stat us(Event Status[] evtStatus)

Java Plug-ins for User Provisioning A-9

Plug-in Return Status

throws EventDel i veryExcepti on;

Plug-in Return Status

Each of the provisioning plug-ins must return an object of the class

oracl e. i dm provi si oni ng. pl ugi n. Pl ugi nSt at us This object indicates the
execution status, which is either success or f ai | ur e. The object can return the user
provisioning status as well.

Configuration Template

The LDIF template provided here is used in Oracle Internet Directory10g Release 2
(10.1.2) to specify the application plug-in. You must create a directory entry for the
application and upload the JAR file that contains the classes that implement the

plug-in.

dn: cn=Pl ugi ns, cn=APPTYPE, cn=Applications, cn=Provisioning,
cn=Directory Integration Platformcn=Products, cn=0r acl eCont ext

changet ype: add

add: orcl ODI PPl ugi nExecDat a

orcl ODI PPl ugi nExecData: ful | _path_nane_of _the JAR file

obj ect cl ass: orcl ODI PPl ugi nCont ai ner

dn: cn=PRE_DATA ENTRY_CREATE, cn=Pl ugi ns, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=Cr acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNanme: Nane_of _the_cl ass_that _i npl enents_the_plug-in

orcl DI PPl ugi nAddInfo: Pre Data Entry Plugin for CREATE operation

dn: cn=PRE_DATA ENTRY_MXI FY, cn=Pl ugi ns, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect & ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNanme: Nane_of _the_cl ass_that _i npl enents_the_pl ug-in

orcl ODI PPl ugi nAddI nfo: Pre Data Entry Plugin for MODIFY operation

dn: cn=POST_DATA_ENTRY_CREATE, cn=Pl ugi ns, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=Cr acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl QDI PPl ugi nExecNanme: Nane_of _the_class_that _i npl enents_the_plug-in

orcl ODI PPl ugi nAddl nfo: Post Data Entry Plugin for CREATE and nodi fy operations

dn: cn=POST_DATA_ENTRY_MODI FY, cn=Pl ugi ns, cn=APPTYPE, cn=Applicati ons,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=Cr acl eCont ext

changet ype: add

obj ect & ass: orcl ODI PPl ugin

A-10 Oracle Identity Management Application Developer’s Guide

Sample Code

orcl Status: ENABLE
orcl ODI PPl ugi nExecNanme: Nane_of _the_cl ass_t hat _i npl enments_t he_pl ug-in
orcl QDI PPl ugi nAddl nfo: Post Data Entry Plugin for MODIFY and CREATE operation

dn: cn=DATA_ACCESS, cn=Pl ugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNane: Nane_of _the_cl ass_that _i npl ements_t he_plug-in

orcl DI PPl ugi nAddI nfo: Data Access Plugin

dn: cn=EVENT_DELI VERY_QUT, cn=Pl ugi ns, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=0r acl eCont ext

changet ype: add

obj ect G ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNanme: Nane_of _the_cl ass_t hat _i npl enments_t he_pl ug-in

orcl ODI PPl ugi nAddI nfo: Event Delivery Plugin for CQutbound

dn: cn=EVENT_DELI VERY_IN, cn=Pl ugi ns, cn=APPTYPE, cn=Appli cati ons,
cn=Provisioning, cn=Directory Integration Platform cn=Products,
cn=Cr acl eCont ext

changet ype: add

obj ect d ass: orcl ODI PPl ugin

orcl Status: ENABLE

orcl ODI PPl ugi nExecNane: Nane_of _the_cl ass_that _i npl ements_t he_pl ug-in

orcl CDI PPl ugi nAddI nfo: Event Delivery Plugin for |nbound

Sample Code

/* Copyright (c) 2004, Oracle. Al rights reserved. */
/**
DESCRI PTI ON
Sanpl e PRE DATA Entry Plugin for CREATE operation that
val i dates the attribute.
PRI VATE CLASSES
None.
NOTES
This class inplenments the PRE_DATA ENTRY_CREATE plugin ONLY
MODI FI ED (MM DD YY)
12/ 15/ 04 \226 Creation
*|
package oracle.|dap.idm

inport java.util.*;

i nport javax.nam ng.*;

i nport javax.nam ng. | dap. *;

i nport javax.nam ng.directory.*;

inport oracle.ldap.util.*;

inport oracle.idmprovisioning.plugin.*;

/**

* This class inplements the PRE_DATA ENTRY_CREATE plugin ONLY

*
*/
public class Sanpl ePreDat aEnt ryCreat ePl ugin inplements |DataEntryPl ugin

{
public MdPropertySet npBaseUser = null;

Java Plug-ins for User Provisioning A-11

Sample Code

public MdPropertySet npAppUser = null;

public PluginStatus process(ApplicationContext appCtx,|dmser idnuser,
ModPropertySet baseUserAttr, MdPropertySet appUserAttr)
throws Pl ugi nException

Pl ugi nStatus retPluginStatus = null;
String retProvStatus = null;
String retProvStatusMsg = null;

LDI FRecord I Rec = nul I ;
LDI FAttribute 1 Attr = null;
String val = null;
if(nul'l == baseUserAttr.get ModPropertyVal ue(\223depart ment Nunber\ 224))
{
mpBaseUser = new ModPropertySet();
mpBaseUser . addPr opert y("depart nent Nunber", " ST");
appCt x. l og(\ 223Base user attribute \226 department Nunber nissing\224 +
\223Setting default - ST\ 224);

else if (baseUserAttr.get ModPropertyVal ue(\223depart ment Number\ 224)
.not I n(\223ST\ 224, \223APPS\ 224, \224CRM 224))

{
t hrow new Pl ugi nException(\ 223l nvalid departnent Nunber\224);
}
if((null == appUserAttr) ||
nul | == appUserAttr. get ModPropertyVal ue(\223emai | Qout a\ 224))
{
mpAppUser = new ModPropertySet();
mpAppUser . addProperty("enmai | Quta", "50M');
appCt x. og(\223Application user attribute - email Qouta missing \224 +
\223Setting default - 50M 224);
}
return new Pl ugi nSt atus(Pl ugi nSt atus. SUCCESS, null, null);
}
public MdPropertySet getBaseAttrMds()
{
return npBaseUser;
}
public MdPropertySet get AppAttrMds()
{
return npAppUser;
}
}
/* Copyright (c) 2004, Oracle. Al rights reserved. */
/**
DESCRI PTI ON

Sampl e POST DATA Entry Plugin for CREATE operation. |nplenenting a
policy check to provision only those users who bel ong to \223SALES\ 224.
PRI VATE CLASSES

None.

NOTES

This class inplenments the POST_DATA ENTRY_CREATE plugin ONLY

MODI FI ED (MM DD/ YY)

12/ 15/ 04 \ 226 Creation
*/

package oracle.ldap.idm

A-12 Oracle Identity Management Application Developer’s Guide

Sample Code

inport java.util.*;

i nport javax.nam ng.*;

i nport javax.nam ng. | dap.*;

inport javax.nam ng.directory.*;

inport oracle.ldap.util.*;

inport oracle.idm provisioning.plugin.*;

/**

* This class inplenents the POST_DATA ENTRY_CREATE pl ugin ONLY

public class Sanpl ePost Dat aEnt ryCreat ePl ugin

{

public MdPropertySet npBaseUser = null;
public MdPropertySet npAppUser = null;

public PluginStatus process(ApplicationContext appCtx,|dmlser idnuser,
ModPropertySet baseUserAttr, MdPropertySet appUserAttr)
throws Pl ugi nException

Pl ugi nStatus retPluginStatus = null;
String retProvStatus = null;
String retProvStatusMsg = null;

if(nul'l == baseUserAttr.get ModPropertyVal ue(\223dept art nent Nunber\ 224))
{

mpBaseUser = new MbdPropertySet();

mpBaseUser . addPr operty("dept art ment Nunber ", " SALES");

appCt x. l og("Base user attribute \221c\222 is mssing");

retProvStatus = IdmJser. PROVI SION_ REQUI RED;
retProvStatusMsg = "Provision policy: Only \221SALES\ 222\ 224.
}
else if (baseUserAttr. get ModPropertyVal ue(\223dept art ment Nuber \ 224)
.equal s(\ 223SALES\ 224))
{
retProvStatus = IdmJser. PROVI SION_ REQUI RED;
retProvStatusMsg = "Provision policy: Only \221SALES\ 222\ 224.
}

el se
{
/1 do not provision those users who do not belong to SALES.
retProvStatus = | dmser. PROVI SI ON_NOT_REQU RED;
retProvStat ushMsg =
"Do not provision the person who is not from\221SALES\ 222";

}

return new Pl uginStatus(Pl ugi nStatus. SUCCESS, retProvStatushsg,
ret ProvSt at us);

public MdPropertySet getBaseAttrMds()

return npBaseUser;

public MdPropertySet get AppAttrMds()

return npAppUser;

Java Plug-ins for User Provisioning A-13

Sample Code

}

/* Copyright (c) 2004, Oracle. Al rights reserved. */
/**
DESCRI PTI ON
Sanpl e DATA Access Pl ugin.
NOTES
This class inplenments the DATA ACCESS pl ugin
MODI FI ED (MM DD/ YY)
12/ 15/ 04 \ 226 Creation
*/
package oracle.ldap.idm

inport javax.nam ng.*;

i nport javax.nam ng. | dap.*;

i nport javax.nam ng.directory.*;

inport oracle.ldap.util.*;

inport oracle.idm provisioning.plugin.*;

/**

* This class inplenents the DATA ACCESS plugin ONLY

*

*/
public class Sanpl eDat aAccessPl ugin
{

public PluginStatus process(ApplicationContext appCtx,|dmser idmuser,
MbdPropertySet baseUserAttr, ModPropertySet appUserAttr)
throws Pl ugi nException

{
try {
DirContext dirCx = appCtx.getDirCx();
if (appCx.getCall Op().equal s(ApplicationContext.OP_CREATE)
Il Use the directory context and create the entry.
}
elseif (appCtx.getCall Qp().equal s(ApplicationContext.OP_MXD FY)
{
Il Use the directory context and nodify the entry.
} catch (Exception e) {
t hrow new Pl ugi nException(e);
}
return new Pl uginStat us(Pl ugi nSt atus. SUCCESS, null, null);
}

public PropertySet get AppUser Dat a(ApplicationContext appCtx,
| dmJser idmuser, String [] regAttrs) throws Plugi nException
{

Var PropertySet vpSet = null;
DirContext dirCtx = appCtx.getDirCx();

try {
Attributes attrs= dirCx.getAttributes(\223nyAppCont ai ner\224);

vpSet = new VarPropertySet(); // Popul ate the VarPropertySet fromattrs

} catch(Exception ne) {
t hrow new Pl ugi nException(e);

}
return vpSet; }

A-14 Oracle Identity Management Application Developer’s Guide

B

DSML Syntax

This appendix contains the following sections:
« Capabilities of DSML

« Benefits of DSML

« DSML Syntax

« Tools Enabled for DSML

Capabilities of DSML

Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are brought
to the Internet, there is a pressing and urgent need to express the directory information
as XML data. This caters to the growing breed of applications that are not
LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of

LDAP information and operations. The LDAP Data Interchange Format (LDIF) is

used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of DSML

Using DSML with Oracle Internet Directory and Internet applications makes it easier
to flexibly integrate data from disparate sources. Also, DSML enables applications that
do not use LDAP to communicate with LDAP-based applications, easily operating on
data generated by an Oracle Internet Directory client tool or accessing the directory
through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured data
in XML will be uniform and independent of application or vendors, thus making
possible numerous new flat file type synchronization connectors. Once in XML format,
the directory data can be made available in the middle tier and have more meaningful
searches performed on it.

DSML Syntax

A DSML version 1 document describes either directory entries, a directory schema or
both. Each directory entry has a unique name called a distinguished name (DN). A
directory entry has a number of property-value pairs called directory attributes. Every
directory entry is a member of a number of object classes. An entry's object classes

DSML Syntax B-1

DSML Syntax

constrain the directory attributes the entry can take. Such constraints are described in a
directory schema, which may be included in the same DSML document or may be in a
separate document.

The following subsections briefly explain the top-level structure of DSML and how to
represent the directory and schema entries.

Top-Level Structure

The top-level document element of DSML is of the type dsm , which may have child
elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the type entry.
Similarly the child element directory-schema may in turn have child elements of the
types class and attribute-type.

At the top level, the structure of a DSML document looks like this:

<!- a docurment with directory & schema entries -->
<dsni:directory-entries>
<dsm:entry dn="...">...</dsnl:entry>

</dsm:directory-entries>

<dsm : di rect ory-schema>
<dsm:class id="..." ...> ..</dsnl:class>
<dsm:attribute-type id="..." ...> ..</dsm:attribute-type>

</dsmi : directory-schem>
</dsni:dsm >

Directory Entries

The element type ent r y represents a directory entry in a DSML document. The
ent r y element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

Here is an XML entry to describe the directory entry:

<dsm :entry dn="ui d=Heman, c=in, dc=oracle, dc=com >

<dsni : obj ect cl ass>
<dsni : oc- val ue>t op</ dsm : oc- val ue>
<dsni : oc-val ue ref="#person">person</dsni: oc-val ue>
<dsni : oc- val ue>or gani zat i onal Person</ dsni : oc- val ue>
<dsni : oc- val ue>i net Or gPer son</ dsn : oc- val ue>

</ dsm : obj ect cl ass>

<dsm :attr name="sn">

<dsm : val ue>Si va</ dsni : val ue></dsni : attr>

<dsm :attr name="uid">

<dsm : val ue>Henman</ dsni : val ue></dsm : attr>

<dsm :attr name="mail">

B-2 Oracle Identity Management Application Developer’'s Guide

Tools Enabled for DSML

<dsm :attr nane="givennane">

<dsm :val ue>Siva V. Kumar</dsnl:val ue></dsm:attr>
<dsm :attr name="cn">

<dsm : val ue>SVK@r acl e. conx/ dsm : val ue></dsni : attr>
<dsm : val ue>Si va Kumar </ dsn : val ue></dsnl:attr>

The oc-val ue' s ref isa URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the per son object
class. The child elements obj ect cl ass and at t r are used to specify the object
classes and the attributes of a directory entry.

Schema Entries

The element type cl ass represents a schema entry in a DSML document. The cl ass
element takes an XML attribute i d to make referencing easier.

For example, the object class definition for the per son object class might look like the
following:

<dsni : cl ass id="person" superior="#top" type="structural">
<dsm : name>per son</ dsn : name>
<dsni: description>. ..</dsm:description>
<dsm : obj ect-identifier>2.5. 6.6</object-identifier>
<dsni:attribute ref="#sn" required="true"/>
<dsm :attribute ref="#cn" required="true"/>
<dsnm :attribute ref="#userPassword" required="fal se"/>
<dsnm :attribute ref="#tel ephoneNurmber” required="fal se"/>
<dsni:attribute ref="#seeAl so" required="fal se"/>
<dsni:attribute ref="#description" required="fal se"/>
</dsm : cl ass>

The directory attributes are described in a similar way. For example, the attribute
definition for the cn attribute may look like this:

<dsm:attribute-type id="cn">
<dsni : nane>cn</ dsm : name>
<dsni: description>. ..</dsm:description>
<dsm : obj ect-identifier>2.5. 4.3</object-identifier>
<dsm :syntax>1.3.6.1.4.1. 1466. 115. 121. 1. 44</ dsn : synt ax>
</dsm:attribute-type>

Tools Enabled for DSML

With the XML framework, you can now use non-ldap applications to access directory
data. The XML framework broadly defines the access points and provides the
following tools:

« | dapadd
« | dapaddnt
« | dapsearch
See Also: "Oracle Internet Directory Server Administration Tools"

in Oracle Identity Management User Reference for information about
syntax and usage.

The client tool | di f wri t e generates directory data and schema LDIF files. If you
convert these LDIF files to XML, you can store the XML file on an application server

DSML Syntax B-3

Tools Enabled for DSML

and query it. The query and response time is small compared to performing an LDAP
operation against an LDAP server.

B-4 Oracle Identity Management Application Developer’'s Guide

Glossary

3DES
See Triple Data Encryption Standard (3DES).

access control item (ACI)

Access control information represents the permissions that various entities or subjects
have to perform operations on a given object in the directory. This information is
stored in Oracle Internet Directory as user-modifiable operational attributes, each of
which is called an access control item (ACI). An ACI determines user access rights to
directory data. It contains a set of rules for controlling access to entries (structural
access items) and attributes (content access items). Access to both structural and
content access items may be granted to one or more users or groups.

access control list (ACL)

A list of resources and the usernames of people who are permitted access to those
resources within a computer system. In Oracle Internet Directory, an ACL is a list of
access control item (ACI) attribute values that is associated with directory objects.
The attribute values on that list represent the permissions that various directory user
entities (or subjects) have on a given object.

access control policy point (ACP)

A directory entry that contains access control policy information that applies
downward to all entries at lower positions in the directory information tree (DIT).
This information affects the entry itself and all entries below it. In Oracle Internet
Directory, you can create ACPs to apply an access control policy throughout a subtree
of your directory.

account lockout

A security feature that locks a user account if repeated failed logon attempts occur
within a specified amount of time, based on security policy settings. Account lockout
occurs in OracleAS Single Sign-On when a user submits an account and password
combination from any number of workstations more times than is permitted by Oracle
Internet Directory. The default lockout period is 24 hours.

ACI

See access control item (ACI).

ACL
See access control list (ACL).

Glossary-1

Glossary-2

ACP
See access control policy point (ACP).

administrative area

A subtree on a directory server whose entries are under the control of a single
administrative authority. The designated administrator controls each entry in that
administrative area, as well as the directory schema, access control list (ACL), and
attributes for those entries.

Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is a symmetric cryptography algorithm that is
intended to replace Data Encryption Standard (DES). AES is a Federal Information
Processing Standard (FIPS) for the encryption of commercial and government data.

advanced replication
See Oracle Database Advanced Replication.

advanced symmetric replication (ASR)
See Oracle Database Advanced Replication.

AES
See Advanced Encryption Standard (AES).

anonymous authentication

The process by which a directory authenticates a user without requiring a user name
and password combination. Each anonymous user then exercises the privileges
specified for anonymous users.

API
See application programming interface (API).

application programming interface (API)

A series of software routines and development tools that comprise an interface
between a computer application and lower-level services and functions (such as the
operating system, device drivers, and other software applications). APIs serve as
building blocks for programmers putting together software applications. For example,
LDAP-enabled clients access Oracle Internet Directory information through
programmatic calls available in the LDAP API.

application service provider

Application Service Providers (ASPs) are third-party entities that manage and
distribute software-based services and solutions to customers across a wide area
network from a central data center. In essence, ASPs are a way for companies to
outsource some or almost all aspects of their information technology needs.

ASN.1

Abstract Syntax Notation One (ASN.1) is an International Telecommunication Union
(ITU) notation used to define the syntax of information data. ASN.1 is used to describe
structured information, typically information that is to be conveyed across some
communications medium. It is widely used in the specification of Internet protocols.

ASR
See Oracle Database Advanced Replication.

asymmetric algorithm
A cryptographic algorithm that uses different keys for encryption and decryption.

See also: public key cryptography.

asymmetric cryptography
See public key cryptography.

attribute

Directory attributes hold a specific data element such as a hame, phone number, or job
title. Each directory entry is comprised of a set of attributes, each of which belongs to
an object class. Moreover, each attribute has both a type, which describes the kind of
information in the attribute, and a value, which contains the actual data.

attribute configuration file

In an Oracle Directory Integration and Provisioning environment, a file that specifies
attributes of interest in a connected directory.

attribute type

Attribute types specify information about a data element, such as the data type,
maximum length, and whether it is single-valued or multivalued. The attribute type
provides the real-world meaning for a value, and specifies the rules for creating and
storing specific pieces of data, such as a name or an e-mail address.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes have
the same value. It enables applications synchronizing with the enterprise directory to
use attributes as unique keys.

attribute value

Attribute values are the actual data contained within an attribute for a particular
entry. For example, for the attribute type enmi | , an attribute value might be
sal ly.jones@racl e. com

authentication

The process of verifying the identity claimed by an entity based on its credentials.
Authentication of a user is generally based on something the user knows or has (for
example, a password or a certificate).

Authentication of an electronic message involves the use of some kind of system (such
as public key cryptography) to ensure that a file or message which claims to originate
from a given individual or company actually does, and a check based on the contents
of a message to ensure that it was not modified in transit.

authentication level

An OracleAS Single Sign-On parameter that enables you to specify a particular
authentication behavior for an application. You can link this parameter with a specific
authentication plugin.

authentication plugin

An implementation of a specific authentication method. OracleAS Single Sign-On has
Java plugins for password authentication, digital certificates, Windows native
authentication, and third-party access management.

Glossary-3

Glossary-4

authorization

The process of granting or denying access to a service or network resource. Most
security systems are based on a two step process. The first stage is authentication, in
which a user proves his or her identity. The second stage is authorization, in which a
user is allowed to access various resources based on his or her identity and the defined
authorization policy.

authorization policy

Authorization policy describes how access to a protected resource is governed. Policy
maps identities and objects to collections of rights according to some system model.
For example, a particular authorization policy might state that users can access a sales
report only if they belong to the sales group.

basic authentication

An authentication protocol supported by most browsers in which a Web server
authenticates an entity with an encoded user name and password passed via data
transmissions. Basic authentication is sometimes called plaintext authentication
because the base-64 encoding can be decoded by anyone with a freely available
decoding utility. Note that encoding is not the same as encryption.

Basic Encoding Rules (BER)

Basic Encoding Rules (BER) are the standard rules for encoding data units set forth in
ASN.1. BER is sometimes incorrectly paired with ASN.1, which applies only to the
abstract syntax description language, not the encoding technique.

BER

See Basic Encoding Rules (BER).

binding

In networking, binding is the establishment of a logical connection between
communicating entities.

In the case of Oracle Internet Directory, binding refers to the process of authenticating
to the directory.

The formal set of rules for carrying a SOAP message within or on top of another
protocol (underlying protocol) for the purpose of exchange is also called a binding.
block cipher

Block ciphers are a type of symmetric algorithm. A block cipher encrypts a message
by breaking it down into fixed-size blocks (often 64 bits) and encrypting each block
with a key. Some well known block ciphers include Blowfish, DES, and AES.

See also: stream cipher.

Blowfish

Blowfish is a symmetric cryptography algorithm developed by Bruce Schneier in 1993
as a faster replacement for DES. It is a block cipher using 64-bit blocks and keys of up
to 448 bits.

CA

See Certificate Authority (CA).

CA certificate

A Certificate Authority (CA) signs all certificates that it issues with its private key.
The corresponding Certificate Authority's public key is itself contained within a
certificate, called a CA Certificate (also referred to as a root certificate). A browser
must contain the CA Certificate in its list of trusted root certificates in order to trust
messages signed by the CA's private key.

cache

Generally refers to an amount of quickly accessible memory in your computer.
However, on the Web it more commonly refers to where the browser stores
downloaded files and graphics on the user's computer.

CBC
See cipher block chaining (CBC).

central directory

In an Oracle Directory Integration and Provisioning environment, the directory that
acts as the central repository. In an Oracle Directory Integration and Provisioning
environment, Oracle Internet Directory is the central directory.

certificate

A certificate is a specially formatted data structure that associates a public key with
the identity of its owner. A certificate is issued by a Certificate Authority (CA). It
contains the name, serial number, expiration dates, and public key of a particular
entity. The certificate is digitally signed by the issuing CA so that a recipient can verify
that the certificate is real. Most digital certificates conform to the X.509 standard.

Certificate Authority (CA)

A Certificate Authority (CA) is a trusted third party that issues, renews, and revokes
digital certificates. The CA essentially vouches for a entity's identity, and may delegate
the verification of an applicant to a Registration Authority (RA). Some well known
Certificate Authorities (CAs) include Digital Signature Trust, Thawte, and VeriSign.

certificate chain

An ordered list of certificates containing one or more pairs of a user certificate and its
associated CA certificate.

certificate management protocol (CMP)

Certificate Management Protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI)) components, such as the Certificate Authority (CA),
Registration Authority (RA), and the user or application that is issued a certificate.

certificate request message format (CRMF)

Certificate Request Message Format (CRMF) is a format used for messages related to
the life-cycle management of X.509 certificates, as described in the RFC 2511
specification.

certificate revocation list (CRL)

A Certificate Revocation List (CRL) is a list of digital certificates which have been
revoked by the Certificate Authority (CA) that issued them.

Glossary-5

Glossary-6

change logs
A database that records changes made to a directory server.

cipher
See cryptographic algorithm.

cipher block chaining (CBC)

Cipher block chaining (CBC) is a mode of operation for a block cipher. CBC uses what
is known as an initialization vector (1V) of a certain length. One of its key
characteristics is that it uses a chaining mechanism that causes the decryption of a
block of ciphertext to depend on all the preceding ciphertext blocks. As a result, the
entire validity of all preceding blocks is contained in the immediately previous
ciphertext block.

cipher suite

In Secure Sockets Layer (SSL), a set of authentication, encryption, and data integrity
algorithms used for exchanging messages between network nodes. During an SSL
handshake, the two nodes negotiate to see which cipher suite they will use when
transmitting messages back and forth.

ciphertext

Ciphertext is the result of applying a cryptographic algorithm to readable data
(plaintext) in order to render the data unreadable by all entities except those in
possession of the appropriate key.

circle of trust

A circle of trust is a federation of service providers and identity providers that have
business relationships based on Liberty Alliance architecture and operational
agreements, and with whom users can transact business in a secure and apparently
seamless environment.

claim

A claim is a declaration made by an entity (for example, a name, identity, key, group,
and so on).

client SSL certificates

A type of certificate used to identify a client machine to a server through Secure
Sockets Layer (SSL) (client authentication).

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.
CMP

See certificate management protocol (CMP).

CMS
See Cryptographic Message Syntax (CMS).

code signing certificates

A type of certificate used to identify the entity who signed a Java program, Java Script,
or other signed file.

cold backup

In Oracle Internet Directory, this refers to the procedure of adding a new directory
system agent (DSA) node to an existing replicating system by using the database copy
procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on Oracle Internet Directory from all
of the concurrent clients. Note that this is not necessarily the same as the concurrent
clients, because some of the clients may be keeping their sessions idle.

confidentiality

In cryptography, confidentiality (also known as privacy) is the ability to prevent
unauthorized entities from reading data. This is typically achieved through
encryption.

configset
See configuration set entry.

configuration set entry

An Oracle Internet Directory entry holding the configuration parameters for a specific
instance of the directory server. Multiple configuration set entries can be stored and
referenced at runtime. The configuration set entries are maintained in the subtree
specified by the subConf i gsubEnt r y attribute of the directory-specific entry (DSE),
which itself resides in the associated directory information base (DIB) against which
the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

The destination service is indicated by using its service name for the Oracle Database
or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7 databases. The
network route provides, at a minimum, the location of the listener through use of a
network address.

connected directory

In an Oracle Directory Integration and Provisioning environment, an information
repository requiring full synchronization of data between Oracle Internet Directory
and itself—for example, an Oracle human resources database.

consumer

A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

Glossary-7

Glossary-8

context prefix
The distinguished name (DN) of the root of a naming context.

CRL
See certificate revocation list (CRL).

CRMF
See certificate request message format (CRMF).

cryptographic algorithm

A cryptographic algorithm is a defined sequence of processes to convert readable data
(plaintext) to unreadable data (ciphertext) and vice versa. These conversions require
some secret knowledge, normally contained in a key. Examples of cryptographic
algorithms include DES, AES, Blowfish, and RSA.

Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS) is a syntax defined in RFC 3369 for signing,
digesting, authenticating, and encrypting digital messages.

cryptography

The process of protecting information by transforming it into an unreadable format.
The information is encrypted using a key, which makes the data unreadable, and is
then decrypted later when the information needs to be used again. See also public key
cryptography and symmetric cryptography.

dads.conf

A configuration file for Oracle HTTP Server that is used to configure a database access
descriptor (DAD).

DAS
See Oracle Delegated Administration Services. (DAS).

Data Encryption Standard (DES)

Data Encryption Standard (DES) is a widely used symmetric cryptography algorithm
developed in 1974 by IBM. It applies a 56-bit key to each 64-bit block of data. DES and
3DES are typically used as encryption algorithms by S/IMIME.

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

See also: integrity.

database access descriptor (DAD)

Database connection information for a particular Oracle Application Server
component, such as the OracleAS Single Sign-On schema.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such hosted environments, the enterprise performing the
hosting is called the default identity management realm, and the enterprises that are
hosted are each associated with their own identity management realm in the directory
information tree (DIT).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

Delegated Administration Services
See Oracle Delegated Administration Services.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory. Other administrators—called delegated
administrators—may exercise roles in specific identity management realms, or for
specific applications.

DER

See Distinguished Encoding Rules (DER).

DES
See Data Encryption Standard (DES).

DIB
See directory information base (DIB).

Diffie-Hellman

Diffie-Hellman (DH) is a public key cryptography protocol that allows two parties to
establish a shared secret over an unsecure communications channel. First published in
1976, it was the first workable public key cryptographic system.

See also: symmetric algorithm.

digest
See message digest.

digital certificate
See certificate.

digital signature

A digital signature is the result of a two-step process applied to a given block of data.
First, a hash function is applied to the data to obtain a result. Second, that result is

Glossary-9

Glossary-10

encrypted using the signer's private key. Digital signatures can be used to ensure
integrity, message authentication, and non-repudiation of data. Examples of digital
signature algorithms include DSA, RSA, and ECDSA.

Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) is an asymmetric algorithm that is used as
part of the Digital Signature Standard (DSS). It cannot be used for encryption, only for
digital signatures. The algorithm produces a pair of large numbers that enable the
authentication of the signatory, and consequently, the integrity of the data attached.
DSA is used both in generating and verifying digital signatures.

See also: Elliptic Curve Digital Signature Algorithm (ECDSA).

directory

See Oracle Internet Directory, Lightweight Directory Access Protocol (LDAP), and
X.500.

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)
A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration and provisioning server

In an Oracle Directory Integration and Provisioning environment, the server that
drives the synchronization of data between Oracle Internet Directory and a connected
directory.

directory integration profile

In an Oracle Directory Integration and Provisioning environment, an entry in Oracle
Internet Directory that describes how Oracle Directory Integration and Provisioning
communicates with external systems and what is communicated.

Directory Manager
See Oracle Directory Manager.

directory naming context
See naming context.

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration and Provisioning
sends to the directory-enabled applications.

directory replication group (DRG)
The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory server,
each started with the same or different configuration set entries and startup flags, are
said to be different directory server instances.

directory synchronization profile

A special kind of directory integration profile that describes how synchronization is
carried out between Oracle Internet Directory and an external system.

directory system agent (DSA)
The X.500 term for a directory server.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the same
directory information tree (DIT) name, but have different contents—that is, the
contents can be specific to the directory holding it. A DSE is an entry with contents
specific to the directory server holding it.

directory user agent (DUA)

The software that accesses a directory service on behalf of the directory user. The
directory user may be a person or another software element.

DIS

See directory integration and provisioning server.

Distinguished Encoding Rules (DER)

Distinguished Encoding Rules (DER) are a set of rules for encoding ASN.1 objects in
byte-sequences. DER is a special case of Basic Encoding Rules (BER).

distinguished name (DN)

A X.500 distinguished name (DN) is a unique name for a node in a directory tree. A
DN is used to provide a unique name for a person or any other directory entry. A DN
is a concatenation of selected attributes from each node in the tree along the path from
the root node to the named entry's node. For example, in LDAP notation, the DN for a
person named John Smith working at Oracle's US office would be: "cn=John Smith,
ou=People, 0=0Oracle, c=us".

DIT

See directory information tree (DIT).

DN
See distinguished name (DN).

Document Type Definition (DTD)

A Document Type Definition (DTD) is a document that specifies constraints on the
tags and tag sequences that are valid for a given XML document. DTDs follow the
rules of Simple Generalized Markup Language (SGML), the parent language of XML.

domain component attribute

The domain component (dc) attribute can be used in constructing a distinguished
name (DN) from a domain name. For example, using a domain name such as
"oracle.com”, one could construct a DN beginning with "dc=oracle, dc=com”, and then
use this DN as the root of its subtree of directory information.

DRG

See directory replication group (DRG).

Glossary-11

Glossary-12

DSA
See Digital Signature Algorithm (DSA) or directory system agent (DSA).

DSE
See directory-specific entry (DSE).

DTD
See Document Type Definition (DTD).

ECC
See Elliptic Curve Cryptography (ECC).

ECDSA
See Elliptic Curve Digital Signature Algorithm (ECDSA).

EJB
See Enterprise Java Bean (EJB).

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is an alternative to the RSA encryption system
which is based on the difficulty of solving elliptic curve discrete logarithm problems
rather than on factoring large numbers. Developed and marketed by Certicom, ECC is
especially suitable for environments, such as wireless devices and PC cards, where
computational power is limited and high speed is required. For any given key size
(measured in bits) ECC provides more security (is harder to decrypt without the key)
than RSA.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of
the Digital Signature Algorithm (DSA) standard. The advantages of ECDSA
compared to RSA-like schemes are shorter key lengths and faster signing and
decryption. For example, a 160 (210) bit ECC key is expected to give the same security
as a 1024 (2048) bit RSA key, and the advantage increases as level of security is raised.

encryption

Encryption is the process of converting plaintext to ciphertext by applying a
cryptographic algorithm.

encryption certificate

An encryption certificate is a certificate containing a public key that is used to encrypt
electronic messages, files, documents, or data transmission, or to establish or exchange
a session key for these same purposes.

end-to-end security

This is a property of message-level security that is established when a message
traverses multiple applications within and between business entities and is secure over
its full route through and between the business entities.

Enterprise Java Bean (EJB)

Enterprise JavaBeans (EJBs) are a Java APl developed by Sun Microsystems that
defines a component architecture for multi-tier client/server systems. Because EJB
systems are written in Java, they are platform independent. Being object oriented, they

can be implemented into existing systems with little or no recompiling and
configuring.

Enterprise Manager
See Oracle Enterprise Manager.

entry

An entry is a unique record in a directory that describes an object, such as a person. An
entry consists of attributes and their associated attribute values, as dictated by the
object class that describes that entry object. All entries in an LDAP directory structure
are uniquely identified through their distinguished name (DN).

export agent

In an Oracle Directory Integration and Provisioning environment, an agent that
exports data out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration and Provisioning environment, the file that contains
data exported by an export agent.

export file
See export data file.

external agent

A directory integration agent that is independent of Oracle Directory Integration and
Provisioning server. Oracle Directory Integration and Provisioning server does not
provide scheduling, mapping, or error handling services for it. An external agent is
typically used when a third party metadirectory solution is integrated with Oracle
Directory Integration and Provisioning.

external application

Applications that do not delegate authentication to the OracleAS Single Sign-On
server. Instead, they display HTML login forms that ask for application user names
and passwords. At the first login, users can choose to have the OracleAS Single
Sign-On server retrieve these credentials for them. Thereafter, they are logged in to
these applications transparently.

failover

The process of failure recognition and recovery. In an Oracle Application Server Cold
Failover Cluster (Identity Management), an application running on one cluster node is
transparently migrated to another cluster node. During this migration, clients
accessing the service on the cluster see a momentary outage and may need to
reconnect once the failover is complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

Federal Information Processing Standards (FIPS)

Federal Information Processing Standards (FIPS) are standards for information
processing issued by the US government Department of Commerce's National
Institute of Standards and Technology (NIST).

Glossary-13

Glossary-14

federated identity management (FIM)

The agreements, standards, and technologies that make identity and entitlements
portable across autonomous domains. FIM makes it possible for an authenticated user
to be recognized and take part in personalized services across multiple domains. It
avoids pitfalls of centralized storage of personal information, while allowing users to
link identity information between different accounts. Federated identity requires two
key components: trust and standards. The trust model of federated identity
management is based on circle of trust. The standards are defined by the Liberty
Alliance Project.

federation

A federation is a group of entities (companies and organizations) that have a shared
user base, and have agreed to provide identity and authorization tokens so that their
users only have to logon once to access all of the services in their circle of trust. Within
the federation, at least one entity serves as the identity provider who is responsible for
authenticating users. Entities that provide services to the user are referred to as service
providers.

filter

A filter is an expression that defines the entries to be returned from a request or search
on a directory. Filters are typically expressed as DNs, for example: cn=susi e

smit h, o=acne, c=us.

FIM

See federated identity management (FIM).

FIPS
See Federal Information Processing Standards (FIPS).

forced authentication

The act of forcing a user to reauthenticate if he or she has been idle for a preconfigured
amount of time. Oracle Application Server Single Sign-On enables you to specify a
global user inactivity timeout. This feature is intended for installations that have
sensitive applications.

GET

An authentication method whereby login credentials are submitted as part of the login
URL.

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a user.

global user inactivity timeout

An optional feature of Oracle Application Server Single Sign-On that forces users to
reauthenticate if they have been idle for a preconfigured amount of time. The global
user inactivity timeout is much shorter than the single sign-out session timeout.

globalization support

Multilanguage support for graphical user interfaces. Oracle Application Server Single
Sign-On supports 29 languages.

globally unique user ID

A numeric string that uniquely identifies a user. A person may change or add user
names, passwords, and distinguished names, but her globally unique user ID always
remains the same.

grace login
A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the groups can be found.

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID

See global unique identifier (GUID).

handshake
A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

See also: hash function.

hash function

In cryptography, a hash function or one-way hash function is an algorithm that
produces a given value when applied to a given block of data. The result of a hash
function can be used to ensure the integrity of a given block of data. For a hash
function to be considered secure, it must be very difficult, given a known data block
and a known result, to produce another data block that produces the same result.

Hashed Message Authentication Code (HMAC)

Hashed Message Authentication Code (HMAC) is a hash function technique used to
create a secret hash function output. This strengthens existing hash functions such as
MD5 and SHA. It is used in transport layer security (TLS).

HMAC
See Hashed Message Authentication Code (HMAC).

Glossary-15

Glossary-16

HTTP

The Hyper Text Transfer Protocol (HTTP) is the protocol used between a Web browser
and a server to request a document and transfer its contents. The specification is
maintained and developed by the World Wide Web Consortium.

HTTP Server
See Oracle HTTP Server.

httpd.conf
The file used to configure Oracle HTTP Server.

IASAdmins

The administrative group responsible for user and group management functions in
Oracle Application Server. The OracleAS Single Sign-On administrator is a member of
the group iIASAdmins.

identity management

The process by which the complete security lifecycle for network entities is managed
in an organization. It typically refers to the management of an organization's
application users, where steps in the security life cycle include account creation,
suspension, privilege modification, and account deletion. The network entities
managed may also include devices, processes, applications, or anything else that needs
to interact in a networked environment. Entities managed by an identity management
process may also include users outside of the organization, for example customers,
trading partners, or Web services.

identity management infrastructure database

The database that contains data for OracleAS Single Sign-On and Oracle Internet
Directory.

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the enterprise
may belong to another realm. An identity management realm is represented in the
directory by a specific entry with a special object class associated with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

« User naming policy of the identity management realm—that is, how users are
named and located.

« Mandatory authentication attributes.
« Location of groups in the identity management realm.

« Privilege assignments for the identity management realm—for example: who has
privileges to add more users to the realm.

« Application specific data for that realm including authorizations.

identity provider

These are organizations recognized by the members of a circle of trust as the entity
responsible for authenticating users and providing the digital identity information of

users to other parties in a federation. Identity providers enter into partnerships with
service providers and provide services that follow agreed-upon practices set by all
parties in a federation.

import agent

In an Oracle Directory Integration and Provisioning environment, an agent that
imports data into Oracle Internet Directory.

import data file

In an Oracle Directory Integration and Provisioning environment, the file containing
the data imported by an import agent.

infrastructure tier

The Oracle Application Server components responsible for identity management.
These components are OracleAS Single Sign-On, Oracle Delegated Administration
Services, and Oracle Internet Directory.

inherit
When an object class has been derived from another class, it also derives, or inherits,

many of the characteristics of that other class. Similarly, an attribute subtype inherits
the characteristics of its supertype.

instance
See directory server instance.

integrity

In cryptography, integrity is the ability to detect if data has been modified by entities
that are not authorized to modify it.

Internet Directory
See Oracle Internet Directory.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in a
way that is functionally equivalent to local mailboxes.

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)

Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and
deploying enterprise applications, defined by Sun Microsystems Inc. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing multitiered, Web-based
applications.

Glossary-17

Glossary-18

Java Server Page (JSP)

JavaServer Pages (JSP), a server-side technology, are an extension to the Java servlet
technology that was developed by Sun Microsystems. JSPs have dynamic scripting
capability that works in tandem with HTML code, separating the page logic from the
static elements (the design and display of the page). Embedded in the HTML page, the
Java source code and its extensions help make the HTML more functional, being used
in dynamic database queries, for example.

JSP
See Java Server Page (JSP).

key

A key is a data structure that contains some secret knowledge necessary to
successfully encrypt or decrypt a given block of data. The larger the key, the harder it
is to crack a block of encrypted data. For example, a 256-bit key is more secure than a
128-bit key.

key pair

A public key and its associated private key.

See also: public/private key pair.

knowledge reference

The access information (name and address) for a remote directory system agent
(DSA) and the name of the directory information tree (DIT) subtree that the remote
DSA holds. Knowledge references are also called referrals.

latency

The time a client has to wait for a given directory operation to complete. Latency can
be defined as wasted time. In networking discussions, latency is defined as the travel
time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDAP connection cache

To improve throughput, the OracleAS Single Sign-On server caches and then reuses
connections to Oracle Internet Directory.

LDAP Data Interchange Format (LDIF)

A common, text-based format for exchanging directory data between systems. The set
of standards for formatting an input file for any of the LDAP command-line utilities.
LDIF

See LDAP Data Interchange Format (LDIF).

legacy application

Older application that cannot be modified to delegate authentication to the OracleAS
Single Sign-On server. Also known as an external application.

Liberty Alliance

The Liberty Alliance Project is an alliance of more than 150 companies, non-profit, and
government organizations from around the globe. The consortium is committed to
developing an open standard for federated network identity that supports all current

and emerging network devices. The Liberty Alliance is the only global body working
to define and drive open technology standards, privacy, and business guidelines for
federated identity management (FIM).

Lightweight Directory Access Protocol (LDAP)

A set of protocols for accessing information in directories. LDAP supports TCP/IP,
which is necessary for any type of Internet access. Its framework of design conventions
supports industry-standard directory products, such as Oracle Internet Directory.
Because it is a simpler version of the X.500 standard, LDAP is sometimes called X.500
light.

load balancer

Hardware devices and software that balance connection requests between two or more
servers, either due to heavy load or failover. BiglP, Alteon, or Local Director are all
popular hardware devices. Oracle Application Server Web Cache is an example of load
balancing software.

logical host

In an Oracle Application Server Cold Failover Cluster (Identity Management), one or
more disk groups and pairs of host names and IP addresses. It is mapped to a physical
host in the cluster. This physical host impersonates the host name and IP address of
the logical host.

MAC
See message authentication code (MAC).

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

mapping rules file

In an Oracle Directory Integration and Provisioning environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site (MDS) that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with the
t el ephoneNunber attribute could cause "(650) 123-4567" to be matched with either
"(650) 123-4567" or "6501234567" or both. When you create an attribute, you associate a
matching rule with it.

Glossary-19

Glossary-20

MD2

Message Digest Two (MD?2) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD2 was developed by Ron Rivest
for RSA Security and is intended to be used in systems with limited memory, such as
smart cards.

MD4

Message Digest Four (MD4) is similar to MD2 but designed specifically for fast
processing in software.

MD5

Message Digest Five (MD5) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD5 was developed by Ron Rivest
after potential weaknesses were reported in MD4. MD5 is similar to MD4 but slower
because more manipulation is made to the original data.

MDS
See master definition site (MDS).

message authentication
The process of verifying that a particular message came from a particular entity.

See also: authentication.

message authentication code (MAC)

The Message Authentication Code (MAC) is a result of a two-step process applied to a
given block of data. First, the result of a hash function is obtained. Second, that result
is encrypted using a secret key. The MAC can be used to authenticate the source of a
given block of data.

message digest
The result of a hash function.

See also: hash.

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

middle tier

That portion of a OracleAS Single Sign-On instance that consists of the Oracle HTTP
Server and OC4J. The OracleAS Single Sign-On middle tier is situated between the
identity management infrastructure database and the client.

mod_0sso

A module on the Oracle HTTP Server that enables applications protected by OracleAS
Single Sign-On to accept HTTP headers in lieu of a user name and password once the

user has logged into the OracleAS Single Sign-On server. The values for these headers
are stored in the mod_osso cookie.

mod_osso cookie

User data stored on the HTTP server. The cookie is created when a user authenticates.

When the same user requests another application, the Web server uses the information
in the mod_osso cookie to log the user in to the application. This feature speeds server
response time.

mod_proxy

A module on the Oracle HTTP Server that makes it possible to use mod_osso to enable
single sign-on to legacy, or external applications.

MTS
See shared server.

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a multimaster
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

naming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The default
value for this is cn.

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to either
leaf entries or knowledge references (also called referrals) to subordinate naming
contexts. It can range in size from a single entry to the entire directory information
tree (DIT).

native agent

In an Oracle Directory Integration and Provisioning environment, an agent that runs
under the control of the directory integration and provisioning server. It is in contrast
to an external agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they wish to connect, for example:

CONNECT user nane/ passwor d@et _servi ce_nane

Depending on your needs, net service names can be stored in a variety of places,
including:

« Local configuration file, t nsnanes. or a, on each client
« Directory server
« Oracle Names server

« External naming service, such as NDS, NIS or CDS

Net Services
See Oracle Net Services.

Glossary-21

Glossary-22

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default value
for this is ui d. Applications use this to resolve a simple user name to the complete
distinguished name. The user nickname attribute cannot be multi-valued—that is, a
given user cannot have multiple nicknames stored under the same attribute name.

non-repudiation

In cryptography, the ability to prove that a given digital signature was produced with
a given entity's private key, and that a message was sent untampered at a given point
in time.

OASIS

Organization for the Advancement of Structured Information Standards. OASIS is a
worldwide not-for-profit consortium that drives the development, convergence and
adoption of e-business standards.

object class

In LDAP, object classes are used to group information. Typically an object class models
a real-world object such as a person or a server. Each directory entry belongs to one or
more object classes. The object class determines the attributes that make up an entry.
One object class can be derived from another, thereby inheriting some of the
characteristics of the other class.

0C4J

See Oracle Containers for J2EE (OC4J).

OCA
See Oracle Certificate Authority.

OcCl
See Oracle Call Interface (OCI).

OCSsP
See Online Certificate Status Protocol (OCSP).

OEM
See Oracle Enterprise Manager.

OID
See Oracle Internet Directory.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility
The utility used to change the password with which Oracle Internet Directory connects
to an Oracle Database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates the
Oracle Internet Directory Server processes. It also controls the replication server if one
is installed, and Oracle Directory Integration and Provisioning Server.

Online Certificate Status Protocol (OCSP)

Online Certificate Status Protocol (OCSP) is one of two common schemes for checking
the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is certificate revocation list (CRL). OCSP is specified in
RFC 2560.

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

one-way hash function
A one-way function that takes a variable sized input and creates a fixed size output.

See also: hash function.

Oracle Application Server Single Sign-On

OracleAS Single Sign-On consists of program logic that enables you to log in securely
to applications such as expense reports, mail, and benefits. These applications take two
forms: partner applications and external applications. In both cases, you gain access
to several applications by authenticating only once.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle Database server and control all phases of SQL statement execution.

Oracle Certificate Authority

Oracle Application Server Certificate Authority is a Certificate Authority (CA) for use
within your Oracle Application Server environment. OracleAS Certificate Authority
uses Oracle Internet Directory as the storage repository for certificates. OracleAS
Certificate Authority integration with OracleAS Single Sign-On and Oracle Internet
Directory provides seamless certificate provisioning mechanisms for applications
relying on them. A user provisioned in Oracle Internet Directory and authenticated in
OracleAS Single Sign-On can choose to request a digital certificate from OracleAS
Certificate Authority.

Oracle CMS

Oracle CMS implements the IETF Cryptographic Message Syntax (CMS) protocol.
CMS defines data protection schemes that allow for secure message envelopes.
Oracle Containers for J2EE (0OC4J)

A lightweight, scalable container for Java 2 Platform, Enterprise Edition (J2EE).

Oracle Context
See identity management realm-specific Oracle Context and root Oracle Context.

Oracle Crypto
Oracle Crypto is a pure Java library that provides core cryptography algorithms.

Oracle Database Advanced Replication

A feature in the Oracle Database that enables database tables to be kept synchronized
across two Oracle databases.

Glossary-23

Glossary-24

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle Internet
Directory Self-Service Console makes it easier to develop and deploy administration
solutions for both Oracle and third-party applications that use Oracle Internet
Directory.

Oracle Directory Integration and Provisioning

A collection of interfaces and services for integrating multiple directories by using
Oracle Internet Directory and several associated plug-ins and connectors. A feature of
Oracle Internet Directory that enables an enterprise to use an external user repository
to authenticate to Oracle products.

Oracle Directory Integration and Provisioning Server

In an Oracle Directory Integration and Provisioning environment, a daemon process
that monitors Oracle Internet Directory for change events and takes action based on
the information present in the directory integration profile.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products.

Oracle HTTP Server

Software that processes Web transactions that use the Hypertext Transfer Protocol
(HTTP). Oracle uses HTTP software developed by the Apache Group.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of the Oracle Database.

Oracle Liberty SDK
Oracle Liberty SDK implements the Liberty Alliance Project specifications enabling
federated single sign-on between third-party Liberty-compliant applications.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The main
function of Oracle Net Services is to establish network sessions and transfer data

between a client application and a server. Oracle Net Services is located on each
computer in the network. Once a network session is established, Oracle Net Services
acts as a data courier for the client and the server.

Oracle PKI certificate usages
Defines Oracle application types that a certificate supports.

Oracle PKI| SDK

Oracle PKI SDK implements the security protocols that are necessary within public
key infrastructure (PKI) implementations.

Oracle SAML

Oracle SAML provides a framework for the exchange of security credentials among
disparate systems and applications in an XML-based format as outlined in the OASIS
specification for the Security Assertions Markup Language (SAML).

Oracle Security Engine

Oracle Security Engine extends Oracle Crypto by offering X.509 based certificate
management functions. Oracle Security Engine is a superset of Oracle Crypto.

Oracle SIMIME

Oracle S/MIME implements the Secure/Multipurpose Internet Mail Extension
(S/MIME) specifications from the Internet Engineering Task Force (IETF) for secure
e-mail.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See also: Oracle Advanced Security Administrator's Guide.

Oracle Web Services Security

Oracle Web Services Security provides a framework for authentication and
authorization using existing security technologies as outlined in the OASIS
specification for Web Services Security.

Oracle XML Security
Oracle XML Security implements the W3C specifications for XML Encryption and
XML Signature.

OracleAS Portal

An OracleAS Single Sign-On partner application that provides a mechanism for
integrating files, images, applications, and Web sites. The External Applications portlet
provides access to external applications.

other information repository

In an Oracle Directory Integration and Provisioning environment, in which Oracle
Internet Directory serves as the central directory, any information repository except
Oracle Internet Directory.

OWM
See Oracle Wallet Manager.

Glossary-25

Glossary-26

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

partner application

An Oracle Application Server application or non-Oracle application that delegates the
authentication function to the OracleAS Single Sign-On server. This type of application
spares users from reauthenticating by accepting mod_osso headers.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such a
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

PKCS#1

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#1 provides recommendations for the implementation of
public-key cryptography based on the RSA algorithm, covering the following aspects:
cryptographic primitives; encryption schemes; signature schemes; ASN.1 syntax for
representing keys and for identifying the schemes.

PKCS#5

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#5 provides recommendations for the implementation of
password-based cryptography.

PKCS#7

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #7 describes general syntax for data that may have cryptography
applied to it, such as digital signatures and digital envelopes.

PKCS#8

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #8 describes syntax for private key information, including a
private key for some public key algorithms and a set of attributes. The standard also
describes syntax for encrypted private keys.

PKCS#10

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #10 describes syntax for a request for certification of a public key, a
name, and possibly a set of attributes.

PKCS#12

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #12 describes a transfer syntax for personal identity information,
including private keys, certificates, miscellaneous secrets, and extensions. Systems
(such as browsers or operating systems) that support this standard allow a user to
import, export, and exercise a single set of personal identity information—typically in
a format called a wallet.

PKI
See public key infrastructure (PKI).

plaintext

Plaintext is readable data prior to a transformation to ciphertext using encryption, or
readable data that is the result of a transformation from ciphertext using decryption.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

policy precedence

In Oracle Application Server Certificate Authority (OCA), policies are applied to
incoming requests in the order that they are displayed on the main policy page. When
the OCA policy processor module parses policies, those that appear toward the top of
the policy list are applied to requests first. Those that appear toward the bottom of the
list are applied last and take precedence over the others. Only enabled policies are
applied to incoming requests.

policy.properties

A multipurpose configuration file for Oracle Application Server Single Sign-On that
contains basic parameters required by the single sign-on server. Also used to configure
advanced features of OracleAS Single Sign-On, such as multilevel authentication.

POSIX

Portable Operating System Interface for UNIX. A set of programming interface
standards governing how to write application source code so that the applications are
portable between operating systems. A series of standards being developed by the
Internet Engineering Task Force (IETF).

POST

An authentication method whereby login credentials are submitted within the body of
the login form.

predicates

In Oracle Application Server Certificate Authority (OCA), a policy predicate is a
logical expression that can be applied to a policy to limit how it is applied to incoming
certificate requests or revocations. For example, the following predicate expression
specifies that the policy in which it appears can have a different effect for requests or
revocations from clients with DNs that include "ou=sales,o=acme,c=us":

Type=="client" AND DN=="ou=sal es, o=acne, c=us"

primary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node on which the application runs at any given time.

See also: secondary node.

private key

A private key is the secret key in a public/private key pair used in public key
cryptography. An entity uses its private key to decrypt data that has been encrypted
with its public key. The entity can also use its private key to create digital signatures.
The security of data encrypted with the entity's public key as well as signatures
created by the private key depends on the private key remaining secret.

Glossary-27

Glossary-28

private key cryptography
See symmetric cryptography.

profile
See directory integration profile.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to that
information in Oracle Internet Directory.

provisioning

The process of providing users with access to applications and other resources that
may be available in an enterprise environment.

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioning integration profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration and Provisioning
sends to the directory-enabled applications.

proxy server

A server between a client application, such as a Web browser, and a real server. It
intercepts all requests to the real server to see if it can fulfil the requests itself. If not, it
forwards the request to the real server. In OracleAS Single Sign-On, proxies are used
for load balancing and as an extra layer of security.

See also: load balancer.

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user's behalf. A proxy user has the
privilege to switch identities and, once it has logged into the directory, switches to the
end user's identity. It then performs operations on the end user’s behalf, using the
authorization appropriate to that particular end user.

public key

A public key is the non-secret key in a public/private key pair used in public key
cryptography. A public key allows entities to encrypt data that can only then be
decrypted with the public key's owner using the corresponding private key. A public
key can also be used to verify digital signatures created with the corresponding
private key.

public key certificate
See certificate.

public key cryptography

Public key cryptography (also known as asymmetric cryptography) uses two keys, one
public and the other private. These keys are called a key pair. The private key must be
kept secret, while the public key can be transmitted to any party. The private key and

the public key are mathematically related. A message that is signed by a private key
can be verified by the corresponding public key. Similarly, a message encrypted by the
public key can be decrypted by the private key. This method ensures privacy because
only the owner of the private key can decrypt the message.

public key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using the
recipient's private key.

public key infrastructure (PKI)

A public key infrastructure (PKI) is a system that manages the issuing, distribution,
and authentication of public keys and private keys. A PKI typically comprises the
following components:

« A Certificate Authority (CA) that is responsible for generating, issuing,
publishing and revoking digital certificates.

« A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA.

« Adirectory service where a certificate or certificate revocation list (CRL) gets
published by the CA and where they can be retrieved by relying third parties.

« Relying third parties that use the certificates issued by the CA and the public keys
contained therein to verify digital signatures and encrypt data.

public/private key pair

A mathematically related set of two numbers where one is called the private key and

the other is called the public key. Public keys are typically made widely available,

while private keys are available only to their owners. Data encrypted with a public key

can only be decrypted with its associated private key and vice versa. Data encrypted

with a public key cannot be decrypted with the same public key.

RC2

Rivest Cipher Two (RC2) is a 64-bit block cipher developed by Ronald Rivest for RSA

Security, and was designed as a replacement for Data Encryption Standard (DES).

RC4

Rivest Cipher Four (RC4) is a stream cipher developed by Ronald Rivest for RSA
Security. RC4 allows variable key lengths up to 1024 bits. RC4 is most commonly used
to secure data communications by encrypting traffic between Web sites that use the
Secure Sockets Layer (SSL) protocol.

RDN

See relative distinguished name (RDN).

readable data

Data prior to a transformation to ciphertext via encryption or data that is the result of a
transformation from ciphertext via decryption.

realm
See identity management realm.

Glossary-29

Glossary-30

realm search base

An attribute in the root Oracle Context that identifies the entry in the directory
information tree (DIT) that contains all identity management realms. This attribute is
used when mapping a simple realm name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also: knowledge reference.

Registration Authority (RA)

The Registration Authority (RA) is responsible for verifying and enrolling users before
a certificate is issued by a Certificate Authority (CA). The RA may assign each
applicant a relative distinguished value or name for the new certificate applied. The
RA does not sign or issue certificates.

registry entry

An entry containing runtime information associated with invocations of Oracle
Internet Directory servers, called a directory server instance. Registry entries are
stored in the directory itself, and remain there until the corresponding directory server
instance stops.

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database management
system, or RDBMS. It stores data in two or more tables and enables you to define
relationships between the tables. The link is based on one or more fields common to
both tables.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names that
would serve to uniquely address the entry. In the example, cn=Sni t h, o=acne, c=US,
the RDN iscn=Smi t h.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS),
that participates in Oracle Database Advanced Replication.

replica
Each copy of a naming context that is contained within a single server.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time
The time between the submission of a request and the completion of the response.

RFC

The Internet Request For Comments (or RFC) documents are the written definitions of
the protocols and policies of the Internet. The Internet Engineering Task Force (IETF)
facilitates the discussion, development, and establishment of new standards. A

standard is published using the RFC acronym and a reference number. For example,
the official standard for e-mail is RFC 822.

root CA

In a hierarchical public key infrastructure (PKI1), the root Certificate Authority (CA)
is the CA whose public key serves as the most trusted datum for a security domain.
root directory specific entry (DSE)

An entry storing operational information about the directory. The information is stored
in a number of attributes.

root DSE

See root directory specific entry (DSE).

root Oracle Context

In the Oracle Identity Management infrastructure, the root Oracle Context is an entry
in Oracle Internet Directory containing a pointer to the default identity management
realm in the infrastructure. It also contains information on how to locate an identity
management realm given a simple name of the realm.

RSA

RSA is a public key cryptography algorithm named after its inventors (Rivest, Shamir,
and Adelman). The RSA algorithm is the most commonly used encryption and
authentication algorithm and is included as part of the Web browsers from Netscape
and Microsoft, and many other products.

RSAES-OAEP

The RSA Encryption Scheme - Optimal Asymmetric Encryption Padding
(RSAES-OAEP) is a public key encryption scheme combining the RSA algorithm with
the OAEP method. Optimal Asymmetric Encryption Padding (OAEP) is a method for
encoding messages developed by Mihir Bellare and Phil Rogaway.

SIMIME
See Secure/Multipurpose Internet Mail Extension (S/MIME).

SAML
See Security Assertions Markup Language (SAML).

SASL
See Simple Authentication and Security Layer (SASL).

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node to which an application is moved during a failover.

See also: primary node.

Glossary-31

Glossary-32

secret key

A secret key is the key used in a symmetric algorithm. Since a secret key is used for
both encryption and decryption, it must be shared between parties that are
transmitting ciphertext to one another but must be kept secret from all unauthorized
entities.

secret key cryptography
See symmetric cryptography.

Secure Hash Algorithm (SHA)

Secure Hash Algorithm (SHA) is a hash function algorithm that produces a 160-bit
message digest based upon the input. The algorithm is used in the Digital Signature
Standard (DSS). With the introduction of the Advanced Encryption Standard (AES)
which offers three key sizes: 128, 192 and 256 bits, there has been a need for a
companion hash algorithm with a similar level of security. The newer SHA-256,
SHA-284 and SHA-512 hash algorithms comply with these enhanced requirements.

Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) is a protocol designed by Netscape Communications to
enable encrypted, authenticated communications across networks (such as the
Internet). SSL uses the public key encryption system from RSA, which also includes
the use of a digital certificate. SSL provides three elements of secure communications:
confidentiality, authentication, and integrity.

SSL has evolved into Transport Layer Security (TLS). TLS and SSL are not
interoperable. However, a message sent with TLS can be handled by a client that
handles SSL.

Secure/Multipurpose Internet Mail Extension (S/MIME)

Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering
Task Force (IETF) standard for securing MIME data through the use of digital
signatures and encryption.

Security Assertions Markup Language (SAML)

Security Assertions Markup Language (SAML) is an XML-based framework for
exchanging security information over the Internet. SAML enables the exchange of
authentication and authorization information between various security services
systems that otherwise would not be able to interoperate. The SAML 1.0 specification
was adopted by OASIS in 2002.

server certificate

A certificate that attests to the identity of an organization that uses a secure Web
server to serve data. A server certificate must be associated with a public/private key
pair issued by a mutually trusted Certificate Authority (CA). Server certificates are
required for secure communications between a browser and a Web server.

service provider

These are organizations recognized by the members of a circle of trust as the entities
that provide Web-based services to users. Service providers enter into partnerships
with other service providers and identity providers with the goal of providing their
common users with secure single sign-on between all parties of the federation.

service time

The time between the initiation of a request and the completion of the response to the
request.

session key
A secret key that is used for the duration of one message or communication session.

SGA
See System Global Area (SGA).

SHA
See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request from
the queue. This means a small pool of server processes can server a large amount of
clients. Contrast with dedicated server.

sibling
An entry that has the same parent as one or more other entries.

Signed Public Key And Challenge (SPKAC)

Signed Public Key And Challenge (SPKAC) is a proprietary protocol used by the
Netscape Navigator browser to request certificates.

simple authentication

The process by which the client identifies itself to the server by means of a DN and a
password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the client
match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use this
specification, a protocol includes a command for identifying and authenticating a user
to a server and for optionally negotiating a security layer for subsequent protocol
interactions. The command has a required argument identifying a SASL mechanism.

single key-pair wallet

A PKCS#12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

single sign-off

The process by which you terminate an OracleAS Single Sign-On session and log out
of all active partner applications simultaneously. You can do this by logging out of the
application that you are working in.

single sign-on (SSO)

A process or system that enables a user to access multiple computer platforms or
application systems after being authenticated only once.

Glossary-33

Glossary-34

single sign-on SDK

Legacy APIs to enable OracleAS Single Sign-On partner applications for single
sign-on. The SDK consists of PL/SQL and Java APIs as well as sample code that
demonstrates how these APIs are implemented. This SDK is now deprecated and
mod_osso is used instead.

single sign-on server

Program logic that enables users to log in securely to single sign-on applications such
as expense reports, mail, and benefits.

SLAPD

Standalone LDAP daemon. An LDAP directory server service that is responsible for
most functions of a directory except replication.

slave

See consumer.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in the
scope of the search. It points the user to the server that stores the requested
information.

SOAP

Simple Object Access Protocol (SOAP) is an XML-based protocol that defines a
framework for passing messages between systems over the Internet via HTTP. A
SOAP message consists of three parts — an envelope that describes the message and
how to process it, a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for representing remote procedure
calls and responses.

specific administrative area
Administrative areas control:

« Subschema administration

« Access control administration

» Collective attribute administration

A specific administrative area controls one of these aspects of administration. A specific
administrative area is part of an autonomous administrative area.

SPKAC

See Signed Public Key And Challenge (SPKAC).

sponsor node
In replication, the node that is used to provide initial data to a new node.

SSL
See Secure Sockets Layer (SSL).

stream cipher

Stream ciphers are a type of symmetric algorithm. A stream cipher encrypts in small
units, often a bit or a byte at a time, and implements some form of feedback

mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher.

See also: block cipher.

subACLSubentry
A specific type of subentry that contains access control list (ACL) information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

« Access control policy points
« Schema rules
« Collective attributes

Subentries are located immediately below the root of an administrative area.

subordinate CA

In a hierarchical public key infrastructure (PKI), the subordinate Certificate
Authority (CA) is a CA whose certificate signature key is certified by another CA, and
whose activities are constrained by that other CA.

subordinate reference

A knowledge reference pointing downward in the directory information tree (DIT)
to a naming context that starts immediately below an entry

subschema DN

The list of directory information tree (DIT) areas having independent schema
definitions.

subSchemaSubentry
A specific type of subentry containing schema information.

subtree

A section of a directory hierarchy, which is also called a directory information tree
(DIT). The subtree typically starts at a particular directory node and includes all
subdirectories and objects below that node in the directory hierarchy.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a commonNarme (cn) attribute with American English as an
option is a subtype of the cormonNane (cn) attribute without that option. Conversely,
the cormonNare (cn) attribute without an option is the supertype of the same
attribute with an option.

success URL

When using Oracle Application Server Single Sign-On, the URL to the routine
responsible for establishing the session and session cookies for an application.

Glossary-35

Glossary-36

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class per son is the superclass of the object class or gani zat i onal Per son. The
latter, namely, or gani zat i onal Per son, is a subclass of per son and inherits the
attributes contained in per son.

superior reference

A knowledge reference pointing upward to a directory system agent (DSA) that
holds a naming context higher in the directory information tree (DIT) than all the
naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the conmonNane (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a conmonNane (cn)
attribute with American English as an option is a subtype of the conmonNane (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It supplies
updates from the master copy to the consumer server.

symmetric algorithm

A symmetric algorithm is a cryptographic algorithm that uses the same key for
encryption and decryption. There are essentially two types of symmetric (or secret
key) algorithms — stream ciphers and block ciphers.

symmetric cryptography

Symmetric cryptography (or shared secret cryptography) systems use the same key to
encipher and decipher data. The problem with symmetric cryptography is ensuring a
secure method by which the sender and recipient can agree on the secret key. If a third
party were to intercept the secret key in transit, they could then use it to decipher
anything it was used to encipher. Symmetric cryptography is usually faster than
asymmetric cryptography, and is often used when large quantities of data need to be
exchanged. DES, RC2, and RC4 are examples of symmetric cryptography algorithms.

symmetric key
See secret key.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, the data in the instance SGA is shared among the users. Consequently, the
SGA is sometimes referred to as the "shared global area." The combination of the
background processes and memory buffers is called an Oracle instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory itself.
Some operational information is specified by the directory to control the server, for

example, the time stamp for an entry. Other operational information, such as access
information, is defined by administrators and is used by the directory program in its
processing.

think time
The time the user is not engaged in actual use of the processor.

third-party access management system

Non-Oracle single sign-on system that can be modified to use OracleAS Single
Sign-On to gain access to Oracle Application Server applications.

throughput

The number of requests processed byOracle Internet Directory for each unit of time.
This is typically represented as "operations per second.”

Time Stamp Protocol (TSP)

Time Stamp Protocol (TSP), as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message. In a TSP system, a trusted third-party Time Stamp Authority (TSA) issues
time stamps for messages.

TLS
See Transport Layer Security (TLS).

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol enables
client/server applications to communicate in a way that prevents eavesdropping,
tampering, or message forgery.

Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard (3DES) is based on the Data Encryption Standard
(DES) algorithm developed by IBM in 1974, and was adopted as a national standard in
1977. 3DES uses three 64-bit long keys (overall key length is 192 bits, although actual
key length is 56 bits). Data is encrypted with the first key, decrypted with the second
key, and finally encrypted again with the third key. This makes 3DES three times
slower than standard DES but also three times more secure.

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when an
identity is being validated as the entity it claims to be. Typically, trusted certificates
come from a Certificate Authority (CA) you trust to issue user certificates.
trustpoint

See trusted certificate.

TSP
See Time Stamp Protocol (TSP).

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined by
Unicode Inc. Unicode is canonical encoding which means its value can be passed

Glossary-37

Glossary-38

around in different locales. But it does not guarantee a round-trip conversion between
it and every Oracle character set without information loss.

UNIX Crypt
The UNIX encryption algorithm.

URI

Uniform Resource Identifier (URI). A way to identify any point of content on the Web,
whether it be a page of text, a video or sound clip, a still or animated image, or a
program. The most common form of URI is the Web page address, which is a
particular form or subset of URI called a URL.

URL

Uniform Resource Locator (URL). The address of a file accessible on the Internet. The
file can be a text file, HTML page, image file, a program, or any other file supported by
HTTP. The URL contains the name of the protocol required to access the resource, a
domain name that identifies a specific computer on the Internet, and a hierarchical
description of the file location on the computer.

URLC token

The OracleAS Single Sign-On code that passes authenticated user information to the
partner application. The partner application uses this information to construct the
session cookie.

user name mapping module

A OracleAS Single Sign-On Java module that maps a user certificate to the user's
nickname. The nickname is then passed to an authentication module, which uses this
nickname to retrieve the user's certificate from the directory.

user search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects the
mean solar time along the Earth's prime meridian. UTC is indicated by a z at the end
of the value, for example, 200011281010z.

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with
one byte, characters from 128-2047 require two bytes, characters from 2048-65535
require three bytes, and characters beyond 65535 require four bytes. The Oracle
character set name for this is AL32UTF8 (for the Unicode 3.1 standard).

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in this
standard.

verification

Verification is the process of ensuring that a given digital signature is valid, given the
public key that corresponds to the private key purported to create the signature and
the data block to which the signature purportedly applies.

virtual host

A single physical Web server machine that is hosting one or more Web sites or
domains, or a server that is acting as a proxy to other machines (accepts incoming
requests and reroutes them to the appropriate server).

In the case of OracleAS Single Sign-On, virtual hosts are used for load balancing
between two or more OracleAS Single Sign-On servers. They also provide an extra
layer of security.

virtual host name

In an Oracle Application Server Cold Failover Cluster (Identity Management), the host
name corresponding to a particular virtual IP address.

virtual IP address

In an Oracle Application Server Cold Failover Cluster (Identity Management), each
physical node has its own physical IP address and physical host name. To present a
single system image to the outside world, the cluster uses a dynamic IP address that
can be moved to any physical node in the cluster. This is called the virtual IP address.

wait time
The time between the submission of the request and initiation of the response.

wallet

An abstraction used to store and manage security credentials for an individual entity.
It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

Wallet Manager
See Oracle Wallet Manager.

Web service

A Web service is application or business logic that is accessible using standard Internet
protocols, such as HTTP, XML, and SOAP. Web Services combine the best aspects of
component-based development and the World Wide Web. Like components, Web
Services represent black-box functionality that can be used and reused without regard
to how the service is implemented.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is the standard format for describing a
Web service using XML. A WSDL definition describes how to access a Web service and
what operations it will perform.

WSDL

See Web Services Description Language (WSDL).

WS-Federation

Web Services Federation Language (WS-Federation) is a specification developed by
Microsoft, IBM, BEA, VeriSign, and RSA Security. It defines mechanisms to allow
federation between entities using different or like mechanisms by allowing and
brokering trust of identities, attributes, and authentication between participating Web
services.

See also: Liberty Alliance.

Glossary-39

Glossary-40

X.500

X.500 is a standard from the International Telecommunication Union (ITU) that defines
how global directories should be structured. X.500 directories are hierarchical with
different levels for each category of information, such as country, state, and city.

X.509

X.509 is the most widely used standard for defining digital certificates. A standard
from the International Telecommunication Union (ITU), for hierarchical directories
with authentication services, used in many public key infrastructure (PKI)
implementations.

XML

Extensible Markup Language (XML) is a specification developed by the World Wide
Web Consortium (W3C). XML is a pared-down version of Standard Generalized
Mark-Up Language (SGML), designed especially for Web documents. XML is a
metalanguage (a way to define tag sets) that allows developers to define their own
customized markup language for many classes of documents.

XML canonicalization (C14N)

This is a process by which two logically equivalent XML documents can be resolved to
the same physical representation. This has significance for digital signatures because a
signature can only verify against the same physical representation of the data against
which it was originally computed. For more information, see the W3C's XML
Canonicalization specification.

A

abandoning an operation,
access control, 2-4, 2-5
and authorization, 2-5

access control information (ACI),

attributes, 2-5
directives
format, 2-6
Access Control List (ACL),
access control lists (ACLs),

11-29

2-5
2-5

2-6

ACI. See access control information (ACI)

ACLs. See Access Control List (ACL)

anonymous authentication,
application login, 9-12
application logout, 9-12
application session cookie
clearing, 9-10
coding for, 9-10
applications, building
with the C API, 11-44
attributes
types, 2-3
values, 2-3
authentication, 2-4
anonymous, 2-5
certificate-based, 2-5
modes, SSL, 11-1, 11-2
one-way SSL, 2-5
options, 2-4
password-based, 2-5
SSL, 2-5,11-1
none, 11-2
one-way, 11-2
two-way, 11-2
strong, 2-5
to a directory server
enabling, 2-10

enabling, by using DBMS_LDAP, 2-11
enabling, by using the C API,

to the directory, 11-10

two-way SSL, 2-5
authentication, simple, 9-6
authorization, 2-4,2-5
authorization ID, 2-4

2-5

2-10

Index

bulk tools, 1-10

functions

abandon, 11-29
abandon_ext, 11-29
add, 11-25

add_ext s, 11-25
add_s, 11-25
compare, 11-20
compare_ext, 11-20
compare_ext_s, 11-20
compare_s, 11-20
count_entries, 11-35
count_references, 11-35
count_values, 11-37
count_values_len, 11-37
delete, 11-26
delete_ext, 11-26
delete_ext_s, 11-26
delete_s, 11-26
dn2ufn, 11-38
err2string, 11-32
explode_dn, 11-38
explode_rdn, 11-38
extended_operation, 11-28
extended_operation_s, 11-28
first_attribute, 11-36
first_entry, 11-35
first_message, 11-34
first_reference, 11-35
get dn, 11-38
get_entry_controls, 11-39
get_option, 11-6

get values, 11-37
get_values_len, 11-37
init_ssl call, 11-2
modify, 11-21
modify_ext, 11-21
modify_ext s, 11-21
modify_s, 11-21
msgid, 11-30

Index-1

msgtype, 11-30
next_attribute, 11-36
next_entry, 11-35
next_message, 11-34
next_reference, 11-35
parse_extended_result, 11-32
parse_reference, 11-39
parse_result, 11-32
parse_sasl_bind_result, 11-32
rename, 11-23
rename_s, 11-23
result, 11-30
sasl_bind, 11-10
sasl_bind_s, 11-10
search_st, 11-17
set_option, 11-6
simple_bind, 11-10
simple_bind_s, 11-10
unbind_ext, 11-16
unbind_s, 11-16
value_free, 11-37
value_free len, 11-37
sample usage, 11-40
summary, 11-3
usage with SSL, 11-40
usage without SSL, 11-41
certificate authority, 2-5
certificate-based authentication, 2-5
certificates, 2-5
children of an entry, listing, 11-20
code examples
application login, 9-12
authentication, 9-6, 9-7
forced authentication, 9-8, 9-12
single sign-off, 9-8
components
Oracle Internet Directory SDK, 1-4
controls, working with, 3-10, 3-12, 11-

D

14

DAP Information Model, 2-3
DAS units, 8-1

DAS URL Parameter Descriptions, 15-5

DAS URL Parameters, 8-3
DAS URL parameters, 15-2
data
integrity, 2-4,2-6
privacy, 2-4,2-6
data-type summary, 12-5
DBMS_LDAP package
searching by using, 2-11
DBMS_LDAP_UTL
about, 14-1
data-types, 14-34
function return codes, 14-32
group-related subprograms
about, 14-2
function create_group_handle,
function get_group_dn, 14-17

Index-2

14-14

function get_group_properties, 14-16

function set_group_handle_properties, 14-15

miscellaneous subprograms

about, 14-2

function check_interface_version, 14-30
function create_mod_propertyset, 14-28
function get_property_names, 14-24
function get_property_values, 14-25
function get_property_values_len, 14-26
function normalize_dn_with_case, 14-24

function populate_mod_propertyset, 14-29

procedure free_handle, 14-30
procedure free_mod_propertyset, 14-29

procedure free_propertyset_collection, 14-27

subscriber-related subprograms
about, 14-2
function create_subscriber_handle, 14-19
function get_subscriber_dn, 14-21
function get_subscriber_properties, 14-19
user-related subprograms
about, 14-1
function authenticate_user, 14-3
function check_group_membership, 14-11
function create_user_handle, 14-5
function get_group_membership, 14-13
function get_user_dn, 14-10
function get_user_extended_properties,
function get_user_properties, 14-6
function locate_subscriber_for_user, 14-12
function set_user_handle_properties, 14-5
function set_user_properties, 14-7
dependencies and limitations, 11-45
C API, 11-45
DES40 encryption, 2-6
directives, 2-6
Directory Information Tree, 2-2
directory information tree (DIT), 2-2
directory server discovery, 3-4
distinguished names, 2-2
components of, 2-2
format, 2-2
DNis. see distinguished names.
documentation, related, 0-xxii
dynamic directives
common types, 9-3
defined, 9-2,9-3
programming languages supported, 9-3
dynamic password verifiers
controls, 3-10, 3-12
creating, 3-10to 3-12
parameters, 3-10, 3-11

E

encryption
DES40, 2-6
levels available in Oracle Internet Directory,
RC4_40, 2-6
entries
distinguished names of, 2-2

locating by using distinguished names
naming, 2-2
reading, 11-19
errors
handling and parsing results, 11-32
exception summary, 12-3

F

filters, 2-14
forced authentication, 9-8, 9-12
formats, of distinguished names, 2-2

G

GET authentication method, 9-9
global user inactivity timeout, 9-9

H

header files and libraries, required, 11-44
history of LDAP, 2-1
HTTP headers, 9-1

integrity, data, 2-6
interface calls, SSL, 11-2

J

J2EE security APIs, 10-1
JAAS policy management APIs, 10-4
Java, 1-4,2-8
Java API reference
class descriptions
Property class, 4-2
PropertySet class, 4-2
PropertySetCollection class, 4-2
Java APIs for Oracle Internet Directory, 13-1
Java partner applications
dynamically protected, 9-6, 9-9
statically protected, 9-6
Java partner applications, statically protected, 9-5
JAZN
see Oracle Application Server Java Authentication
and Authorization Service
JNDI, 1-4,2-8
JNDI location, 13-1

L

LDAP
functional model, 2-3
history, 2-1

information model, 2-3

messages, obtaining results and peeking
inside, 11-30

naming model, 2-2

operations, performing, 11-16

security model, 2-4

session handle options, 11-6
in the C API, 2-10
sessions
initializing, 2-8
version 2 C API, 11-1
LDAP APIs, 1-6
LDAP Functional Model, 2-3
LDAP Models, 2-2
LDAP Naming Model, 2-2
LDAP Security Model, 2-4
Idapadd
plug-in support, 7-20to 7-22
Idap-bind operation, 2-4
ldapcompare
plug-in support, 7-22to 7-25
Idapmodify
plug-in support, 7-18to 7-20

M

mod_0sso
benefits, 9-1
compared with single sign-on SDK, 9-1
definition, 9-1
integration methods, 9-2
sample applications, 9-3, 9-9
mod_osso cookie, 9-10

N

naming entries, 2-2

O

OC4J security APIs, 10-2
one-way SSL authentication, 2-5, 11-2
OpenLDAP Community, 0-xxii
operational attributes
ACI, 2-5
Oracle Application Server Java Authentication and
Authorization Service
defined, 1-2
Oracle Directory Manager, 1-9
Oracle directory replication server, 1-9
Oracle directory server, 1-9
Oracle extensions
application
deinstallation logic, 1-6
runtime logic, 1-6
shutdown logic, 1-6
startup and bootstrap logic, 1-5
group management functionality, 3-3
programming abstractions
for Java language, 4-1,5-1
for PL/SQL language, 5-1
programming abstractions for Java language, 4-1,
5-1
user management functionality, 4-1,5-1
Oracle extensions to support SSL, 11-1
Oracle Identity Management
infrastructure

Index-3

modifying existing applications, 1-2
integrating
new applications, 1-3
integrating applications with, 1-1
benefits of, 1-1
supported services, 1-2
Oracle Internet Directory, components, 1-9
Oracle SSL call interface, 11-1
Oracle SSL extensions, 11-1
Oracle SSL-related libraries, 11-45
Oracle system libraries, 11-45
Oracle wallet, 11-2
Oracle Wallet Manager, 11-2
required for creating wallets, 11-45
Oracle xxtensions
what an LDAP-integrated application looks
like, 1-4
OracleAS Single Sign-On
user attributes, 9-1
overview of LDAP models, 2-2

unbind_s, 12-8
loading into database, 2-8
procedures

free_mod_array, 12-31

populate_mod_array (binary version), 12-25
populate_mod_array (string version), 12-25

subprograms, 12-5
summary, 12-1
plug-ins
binary support, 7-18to 7-25
provisioning interface, A-1
policy management APIs, 10-4
POST authentication method, 9-9
privacy, data, 2-4,2-6
privileges, 2-4,2-5
procedures, PL/SQL
free_mod_array, 12-31
populate_mod_array (binary version), 12-25
populate_mod_array (string version), 12-25
provisioning interface plug-ins, A-1

P R
password-based authentication, 2-5 RC4_40 encryption, 2-6
passwords RDNs. see relative distinguished names (RDNSs)

policies, 2-6

permissions, 2-4,2-5

PL/SQL API, 12-1
contains subset of C API, 2-8
data-type summary, 12-5
exception summary, 12-3

functions
add_s, 12-30
ber_free, 12-37
bind_s, 12-7

compare_s, 12-9
count_entries, 12-15
count_values, 12-32
count_values_len, 12-32
create_mod_array, 12-24
dbms_ldap.init, 12-6
delete_s, 12-21
err2string, 12-23
explode_dn, 12-34
first_attribute, 12-16
first_entry, 12-13
get_dn, 12-18
get_values, 12-19
get_values_len, 12-20
init, 12-5

modify_s, 12-29
modrdn2_s, 12-22
msgfree, 12-36
next_attribute, 12-17
next_entry, 12-14
open_ssl, 12-35, 12-36, 12-37
rename_s, 12-33
search_s, 12-10
search_st, 12-12
simple_bind_s, 12-6

Index-4

related documentation, 0-xxii

relative distinguished names (RDNs), 2-2
results, stepping through a list of, 11-34
RFC 1823, 11-45

S

sample C APl usage, 11-40
SDK components, 1-4
search
results
parsing, 11-35
scope, 2-13
search-related operations, flow of, 2-12
security APIs, 10-1, 10-2
security, within Oracle Internet Directory
environment, 2-4
self-service console, 8-2
service location record, 3-4
servlets
dynamically protected, 9-6, 9-9
statically protected, 9-5, 9-6
sessions
closing, 11-16
enabling termination by using DBMS_
LDAP, 2-17
initializing
by using DBMS_LDAP, 2-9
by using the C API, 2-8
session-specific user identity, 2-4
simple authentication, 2-5
single sign-off, 9-8
single sign-on SDK
compared with mod_osso, 9-1
Smith, Mark, 0-xxii

SSL
authentication modes, 11-1
default port, 2-5
handshake, 11-2
interface calls, 11-2
no authentication, 2-5
one-way authentication, 2-5
Oracle extensions, 11-1

provide encryption and decryption,

two-way authentication, 2-5
wallets, 11-2

static directives
defined, 9-2
writing, 9-2

strong authentication, 2-5

T

11-1

TCP/IP socket library, 11-45
two-way authentication, SSL, 11-2
types of attributes, 2-3

U

URLs, protecting, 9-2,9-3
user attributes, 9-1,9-2

w

wallets
SSL, 11-2
support, 11-2

Index-5

Index-6

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in the SDK?
	New Features in the Release 10.1.2 SDK
	New Features in the Release 9.0.4 SDK

	Part I Programming for Oracle Identity Management
	1 Developing Applications for Oracle Identity Management
	Benefits of Integrating with Oracle Identity Management
	Oracle Identity Management Services Available for Application Integration
	Integrating Existing Applications with Oracle Identity Management
	Integrating New Applications with Oracle Identity Management
	Oracle Internet Directory Programming: An Overview
	Programming Languages Supported by the Oracle Internet Directory SDK
	Oracle Internet Directory SDK Components
	Application Development in the Oracle Internet Directory Environment
	Architecture of a Directory-Enabled Application
	Oracle Internet Directory Interactions During the Application Life Cycle
	Services and APIs for Integrating Applications with Oracle Internet Directory
	Integrating Existing Applications with Oracle Internet Directory
	Integrating New Applications with Oracle Internet Directory

	Other Components of Oracle Internet Directory

	2 Developing Applications with Standard LDAP APIs
	Sample Code
	History of LDAP
	LDAP Models
	Naming Model
	Information Model
	Functional Model
	Security Model
	Authentication
	Anonymous Authentication
	Simple Authentication
	Authentication Using Secure Sockets Layer (SSL)

	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Policies

	About the Standard LDAP APIs
	API Usage Model
	Getting Started with the C API
	Getting Started with the DBMS_LDAP Package
	Getting Started with the Java API

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP
	Initializing the Session by Using JNDI

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Program Flow for Search Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using DBMS_LDAP

	3 Developing Applications with Oracle Extensions to the Standard APIs
	Sample Code
	Using Oracle Extensions to the Standard APIs
	Creating an Application Identity in the Directory
	Creating an Application Identity
	Assigning Privileges to an Application Identity

	Managing Users
	Managing Groups
	Managing Realms
	Discovering a Directory Server
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery

	SASL Authentication
	SASL Authentication by Using the DIGEST-MD5 Mechanism
	Steps Involved in SASL Authentication by Using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Proxying on Behalf of End Users
	Creating Dynamic Password Verifiers
	Request Control for Dynamic Password Verifiers
	Syntax for DynamicVerifierRequestControl
	Parameters Required by the Hashing Algorithms
	Configuring the Authentication APIs
	Parameters Passed If ldap_search Is Used
	Parameters Passed If ldap_compare Is Used

	Response Control for Dynamic Password Verifiers
	Obtaining Privileges for the Dynamic Verifier Framework

	4 Using the Java API Extensions to JNDI
	Sample Code
	Installing the Java Extensions
	Using the oracle.java.util Package to Model LDAP Objects
	The Classes PropertySetCollection, PropertySet, and Property
	Managing Users
	Authenticating Users
	Creating Users
	Retrieving User Objects
	Retrieving Objects from Realms
	Discovering a Directory Server
	Examples: Java API for Discovering a Directory Server
	Using DIGEST-MD5 to Perform SASL Authentication

	5 Using the API Extensions in PL/SQL
	Sample Code
	Installing the PL/SQL Extensions
	Using Handles to Access Directory Data
	Managing Users
	Authenticating Users
	Dependencies and Limitations of the PL/SQL LDAP API

	6 Developing Provisioning-Integrated Applications
	7 Developing Directory Plug-ins
	Plug-in Prerequisites
	Plug-in Benefits
	What Is the Plug-in Framework?
	Operation-Based Plug-ins Supported by the Directory
	Pre-Operation Plug-ins
	Post-Operation Plug-ins
	When-Operation Plug-ins

	Designing, Creating, and Using Plug-ins
	Designing Plug-ins
	Types of Plug-in Operations
	Naming Plug-ins

	Creating Plug-ins
	Package Specifications for Plug-in Module Interfaces

	Compiling Plug-ins
	Dependencies
	Recompiling Plug-ins

	Registering Plug-ins
	The orclPluginConfig Object Class
	Adding a Plug-in Configuration Entry by Using Command-Line Tools
	Example 1
	Example 2

	Managing Plug-ins
	Modifying Plug-ins
	Debugging Plug-ins

	Enabling and Disabling Plug-ins
	Exception Handling
	Error Handling
	Program Control Handling between Oracle Internet Directory and Plug-ins

	Plug-in LDAP API
	Plug-ins and Replication
	Plug-in and Database Tools
	Security
	Plug-in Debugging
	Plug-in LDAP API Specifications
	Database Limitations

	Examples of Plug-ins
	Example 1: Search Query Logging
	Example 2: Synchronizing Two DITs

	Binary Support in the Plug-in Framework
	Binary Operations with ldapmodify
	Binary Operations with ldapadd
	Binary Operations with ldapcompare

	Database Object Types Defined
	Specifications for Plug-in Procedures

	8 Integrating with Oracle Delegated Administration Services
	What Is Oracle Delegated Administration Services?
	How Applications Benefit from Oracle Delegated Administration Services

	Integrating Applications with the Delegated Administration Services
	Integration Profile
	Integration Methodology and Considerations

	Java APIs Used to Access URLs

	9 Developing Applications for Single Sign-On
	What Is mod_osso?
	Protecting Applications Using mod_osso: Two Methods
	Protecting URLs Statically
	Protecting URLs with Dynamic Directives

	Developing Applications Using mod_osso
	Developing Statically Protected PL/SQL Applications
	Developing Statically Protected Java Applications
	Developing Java Applications That Use Dynamic Directives
	Java Example #1: Simple Authentication
	Java Example #2: Single Sign-Off
	Java Example #3: Forced Authentication

	A Word About Non-GET Authentication
	Global Inactivity Timeout and Dynamic Directives

	Security Issues
	Single Sign-Off and Application Logout
	Application Login: Code Examples
	Application Logout: Recommended Code

	Secure Transmission of mod_osso Cookies

	10 Integrating J2EE Applications and Oracle Internet Directory
	Standard J2EE Security APIs
	OC4J Security APIs
	JAAS Policy Management APIs
	JAAS Policy Management
	Retrieving User Policies and Permissions using Standard JAAS APIs

	Part II Oracle Internet Directory Programming Reference
	11 C API Reference
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	Functions in the C API
	The Functions at a Glance
	Initializing an LDAP Session
	ldap_init and ldap_open

	LDAP Session Handle Options
	ldap_get_option and ldap_set_option

	Authenticating to the Directory
	ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props, and ora_ldap_free_cred_hdl

	SASL Authentication
	ora_ldap_init_SASL

	Working With Controls
	Closing the Session
	ldap_unbind, ldap_unbind_ext, and ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
	ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
	ldap_rename and ldap_rename_s
	ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
	ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
	ldap_extended_operation and ldap_extended_operation_s

	Abandoning an Operation
	ldap_abandon_ext and ldap_abandon

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result, ldap_msgtype, and ldap_msgid

	Handling Errors and Parsing Results
	ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and ldap_err2string

	Stepping Through a List of Results
	ldap_first_message and ldap_next_message

	Parsing Search Results
	ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_ count_entries, and ldap_count_references
	ldap_first_attribute and ldap_next_attribute
	ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len, ldap_value_free, and ldap_value_free_len
	ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication

	Required Header Files and Libraries for the C API
	Dependencies and Limitations of the C API

	12 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
	FUNCTION get_values_blob
	FUNCTION count_values_blob
	FUNCTION value_free_blob
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	13 Java API Reference
	14 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Subprograms
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version
	Function get_property_values_blob
	Procedure property_value_free_blob

	Function Return Code Summary
	Data Type Summary

	15 DAS_URL Interface Reference
	Directory Entries for the Service Units
	Service Units and Corresponding URL Parameters
	DAS URL API Parameter Descriptions
	Search-and-Select Service Units for Users or Groups
	Invoking Search-and-Select Service Units for Users or Groups
	Receiving Data from the User or Group Search-and-Select Service Units

	16 Centralized User Provisioning Java API Reference
	Application Configuration
	Application Registration and Provisioning Configuration
	Application Registration
	Provisioning Configuration
	Application Identity Information
	Application Identity Realm Information
	Application Provisioning and Default Policy
	Application User Data Location
	Event Interface Configuration
	Application User Attribute and Defaults Configuration
	Application Provisioning Plug-in Configuration
	Application Propagation Configuration
	Application Event Propagation Run Time Status

	Application Configuration Classes

	User Management
	Creating a User
	Modifying a User
	Deleting a User
	Looking Up a User

	Debugging
	Sample Code

	17 Provisioning Integration PL/SQL API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	Inbound and Outbound Events
	PL/SQL Bidirectional Interface (Version 3.0)
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispositions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	Part III Appendixes
	A Java Plug-ins for User Provisioning
	Plug-in Types and Their Purpose
	Plug-in Requirements
	Data Entry Plug-in
	Pre-Data-Entry Plug-in
	Post-Data-Entry Plug-in

	Data Access Plug-in
	Event Delivery Plug-in
	Plug-in Return Status
	Configuration Template
	Sample Code

	B DSML Syntax
	Capabilities of DSML
	Benefits of DSML
	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

