ORACLE

Oracle® Application Server Web Services
Developer's Guide

10g Release 2 (10.1.2)
Part No. B14027-01

November 2004

Oracle Application Server Web Services Developer’s Guide, 10g Release 2 (10.1.2)
Part No. B14027-01

Copyright © 2001, 2004 Oracle. All rights reserved.

Primary Author: Thomas Van Raalte

Contributing Author: Rodney Ward

Contributors: Jeremy Blanchard, Marco Carrer, Anirban Chatterjee, Daxin Cheng, David Clay, Tony D’Silva,
Neil Evans, Bert Feldman, Kathryn Gruenefeldt, Steven Harris, Anish Karmarkar, Prabha Krishna, Sunil
Kunisetty, Wai-Kwong (Sam) Lee, Gary Moyer, Steve Muench, Giuseppe Panciera, Wei Qian, Eric Rajkovic,
Venkata Ravipati, Susan Shepard, Alok Srivastava, Rodney Ward, Zhe (Alan) Wu, Joyce Yang, Chen Zhou

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SENA US YOUT COMMENES ..ottt eeeet ettt et et et et ettt sttt ese e as et ar st s et et st e eans st st eeeeesenes Xi
P T O C 8 e ettt ettt ettt ettt ettt ettt ettt Xiii
1 aN (T gL [T AN B Lo [T g ot PR Xiv
Documentation ACCESSIDIIITYiiriiiiiii e Xiv
L@ 0 T U 1221 £ o] o PSR Xiv
Related DOCUMENTALIONoiiveiictiie ettt ettt e et e e st e e ettt e e e st et s e sbe e s sab e e e sabaesesteaesssbaesasbassasbanessnneaas XVi
(OL0] 0 V7=1 1 (0] o 13 XVi

1 Web Services Overview

What AFe WED SEIVICES? ...ttt sttt ettt et et esbesne e eas 1-1
UNderstanding WED SEIVICEScociieiiice st te e te e aeenaenne e 1-1
BENEefits OF WED SEIVICES. ..ottt et 1-2
About the Web Services e-Business Transformation ... 1-2

Overview of Web Services Standards ..o 1-3
SOAP STANAAIT.......eeiiiiiie ettt bt bt bbbt bbb e b e s e e e e b bt e b e et ebe st e s b nae 1-4
Web Services Description Language (WSDL)......ccoveiiiniiiieiseeieessese e 1-5
Universal Description, Discovery, and Integration (UDDI)c.ccccoevieviiicvicie i, 1-5

SOAP Message Exchange and SOAP Message ENCOdINgcccoovvveniiiennenciene e 1-5
SOAP MeSSage COMPONENTSooiiiiiieriiriiiie ettt s 1-5
Working With RPC Style SOAP MESSAQEScccuiieiieierieeieieesieiesseeseseesresaessesseessessaessesssessesnes 1-6
Working With Document Style SOAP MESSAQEScocvruirieeieiiriaie ettt 1-6

2 Oracle Application Server Web Services

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services..........ccoeveeennne 2-1
Oracle Application Server Web Services Standards...........cccooeeieiieiiiennieiseee e 2-2
Oracle Application Server Web Services FEATUIES..........ccvcvvviiieiicie s 2-2
Developing ENd-t0-ENd WED SEIVICEScooiiiiiiiceiee e 2-2
Deploying and Managing WED SEIVICES.........cciiiieiiei e eeie et see s 2-3
Using Oracle JDeveloper With WEeD SErviCeS ..o 2-3
Lo 0 [T (o AV LT o IR T=T V7 o] =TT 2-4
AQIregating WeED SEIVICESoi ittt bbbt e 2-4
Oracle Application Server Web Services Archit@Ctureccovviieie i i 2-4
About Serviet Entry Points for Weh SErviCes.........cooiiiiiiniiiie s 2-5
What Are the Packaging and Deployment Options for Web Services..........ccccoceveneinieiecnne. 2-7

About Server Skeleton Code Generation for Webh SErVICESooviiiiiiee i 2-7

Understanding WSDL and Client Proxy Stubs for Web Servicescccocvvvevive i, 2-8
Overview of a WSDL Based Web Service CHENL........c.coovivviiiiiiiire e 2-9
Overview of a Client-Side Proxy Stubs Based Web Service Client..........cc.cccocvveiiiiciincicinins 2-9

WED SErviCES HOMIE PAJE ...cuiiiiiiiieite ettt bbb bbbttt 2-9

About Universal Description, Discovery, and Integration Registrycccccoovvvevvevv e cveenenn, 2-10
Oracle Enterprise Manager Features to Register Web Servicesccccovevveviieicsiesieeveseens 2-11

Developing and Deploying Java Class Web Services

Using Oracle Application Server Web Services With Java Classes.........cccccvvevevveviiesce s, 3-1
Writing Java Class Based WED SEIVICESociiiiiiiiiiiie ettt 3-1
Writing Stateless and Stateful Java WED SEIVICEScccvviiiiiiie e 3-2
Building a Sample Java Class Implementation...........ccccovirvenieniie e 3-2
Using Supported Data Types for Java Webh SErViCeS ..o 3-5
Preparing and Deploying Java Class Based Web Services.........ccocioviiiiniiiii i 3-6
Creating a Configuration File to Assemble Java Class Web Services..........cccoovveiiinniinenen, 3-6
Running WebServicesAssembler To Prepare Java Class Web Services........ccccooviveveiinennene, 3-10
Deploying Java Class Based Webh SEIVICEScccciiviiiiiciire st 3-11
Serializing and Encoding Parameters and Results for Web Servicescccocvvvevveicivccecnnn, 3-11

Developing and Deploying EJB Web Services

Using Oracle Application Server Web Services With Stateless Session EJBS..........c.cccccevvenennn. 4-1
Writing Stateless SesSion EJB WED SEIVICESccviiiiiiiiiiiiiccrcee sttt 4-1
Defining a Stateless Session ReMOte INTErface ... 4-2
Defining a Stateless Session HOME INLEITACEc.ceii i 4-2
Defining a Stateless SESSION EJB BEANc.coviiiiiiiiiiirieisene ettt 4-3
Returning Results From EJB WED SEIVICES......c.ccci i s 4-4
Error Handling fOr EJB WED SEIVICESccviviieiie ettt sttt 4-4
Serializing and Encoding Parameters and Results for EJB Web Services..........ccccevevecenennne. 4-4
Using Supported Data Types for Stateless Session EJB Web Servicesc.ccccoovvvvivevvnnennnnnn. 4-4
Writing a WSDL File for EJB Web Services (Optional)..........ccccoeirieiceiiiiiicenese e 4-6
Preparing and Deploying Stateless Session EJB Based Web Services.........ccccocvvvvevinvenceincnneenns 4-6
Creating a Configuration File to Assemble Stateless Session EJB Web Services...................... 4-6
Running WebServicesAssembler To Prepare Stateless Session EJB Web Services 4-9
Deploying Web Services Implemented as EIBS ... 4-9

Developing and Deploying Stored Procedure Web Services

Using Oracle Application Server Web Services with Stored Procedures............cccocveveiiviieiennnn, 5-1
Writing Stored Procedure WED SEIVICESccoiiiiiiie e e 5-2
Preparing Stored Procedure WED SEIVICESccciiiiiiiiiie e ta et be e sre e 5-2
Creating a Configuration File to Assemble Stored Procedure Web Services.........ccccovvennnns 5-3
Running WebServicesAssembler With Stored Procedure Web Services..........cccccocevveveivennnane, 5-8
Setting Up Datasources in Oracle Application Server Web Services (OC4J)cccocvevvecvicirnnns 5-8
Deploying Stored Procedure WED SEIVICES........coviiiiiiiiiiicseee e 5-9
Limitations for Stored Procedures Running as Web ServiCes........cccovvveiierierieneessie e 5-9
Supported Stored Procedure Features for Web SErviCes ... 5-9

Unsupported Stored Procedure Features for Web Services ... 5-10

Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services 5-10
TIMESTAMP and DATE Granularity LImitation............cccoviiiiniineec e 5-11
LOB (CLOB/BLOB) Emulated Data Source Limitationccccceevviiie i, 5-11

Developing and Deploying Document Style Web Services

Using Document Style WED SEIVICESociiiiiiie e 6-1
Wrriting Document StYIe WED SEIVICEScc.coviiiiie ettt st se e et neen 6-2
Supported Method Signatures for Document Style Web Servicesccocovvvvevvevniviienenesinnnn, 6-2
Writing Stateless and Stateful Document Style Web Services........c.cocovvvviniiiieivecieie e 6-3
Writing Classes and Interfaces for Document Style Web Services.........occovvniiicnennnenn, 6-3
Preparing Document Style WED SEIrVICESccvoiiii i 6-6
Creating a Configuration File to Assemble Document Style Web Servicesccccccocvvvvviinnnnns 6-7
Running WebServicesAssembler With Document Style Web Servicesc.cccovvenneinnenen, 6-11
Deploying Document Style WED SEIrVICES........ccv it 6-11

Developing and Deploying JMS Web Services

JMIS WED SEIVICES OVEIVIEBWottt sttt bbb st b ettt eb et sbe e nes 7-1
USING JIMS WED SEIVICES ...vvceiiieieie sttt ettt ettt sttt be e e e s e anae e e naenreenes 7-1
JMS Web Services Backend Message PrOCESSING........coeviiriiiiiiiinieieesie s 7-2

Writing JIMS Web Services and Handling MESSAgeS.......cccvevveiieiviieeiesieie e sre e 7-4
Using an MDB for Backend MesSSage ProCeSSINGcccoveviuiererineinieninieesieie st 7-5
Using a JMS Standalone Program for Backend Message Processingcccoccevevveveiveeniennenn, 7-7
Message Processing and REPIY MESSAGESc..cvviiriiiiiiiinsieeese et 7-7

Preparing and Configuring JMS WED SEIVICEScccviiiiiiiiiiir e 7-8
Creating a Configuration File to Assemble JMS Web Servicesccccocvvveiviiveineicescnieee e 7-9
Running WebServicesAssembler With JMS Web SErvicescccccovveiiiviie e, 7-13

Deploying JMS WED SEIVICESociuiei ettt sae e era et seentae e 7-13

Limitations fOr JMS WED SEIVICESccuiiiiiieieiieee ettt s 7-14

Building Clients that Use Web Services

LOCAEING WED SEIVICES.....ccuitiiiiiiiietiite ittt bbbt b et eb bbbt 8-1
Getting WSDL Files and Client-Side Proxy Jars for Web Servicesccccvviveiviie e sceseennenns 8-2
Using the Web Service Home Page to Save WSDL and Client Side Proxies...........ccccocevveunnnn. 8-2
Getting Web Service WSDL and Client-Side Proxies Directly ..., 8-3
Generating Client-Side Proxies With WebServicesAssembIer.........ccccccoveivevviicic v 8-5
Working with Client-Side Proxy Jar to Use WED SErVICES ... 8-7
Setting the Web Services Proxy Client CLASSPATH ... 8-8
Using Java Beans as Parameters for Web ServiCes..........coviniiniiieneese e 8-8
Using Web Services SECUTILY FEATUIEScccoii ittt 8-9
Working with WSDL Files and Oracle JDeveloper to Use Web Servicesccovvvvvinnnnne 8-10

Web Services Tools

Running the Web Services ASSemMbBIY TOOIccovi i 9-1
Web Services Assembly Tool Configuration File Sample.........ccceiniiiiiics 9-1

10

vi

Web Services Assembly Tool Configuration File Sample OUtpUL............ccooeeiiiiiniiieiiiicins 9-2

Generating WSDL Files and Client Side ProXi€s........ccccveieiiicii i 9-3
Generating and AsSembliNG WSDL FIlEScoiiiiiiiiiiiiesnsee s 9-3
Generating Client-Side Proxies With WSDL ...t e 9-5

Web Services Assembly Tool Configuration File Specification............cccocvviviiiinininiincs 9-6

Web Services Assembly TOOI LIMITAtIONScccooiiiiiiiiiiie e 9-8

Discovering and Publishing Web Services

Understanding @ UDDI REQISIIYcouiiiiiiiiiiiieisiene ettt 10-1
UDDI RegiStry Data STTUCLUIEccveiiiece et ve e sre e enaenreas 10-2

Introducing OracleAS UDDI REGISIIY ..ot 10-3
Support for Standard Classification and Identifier SyStemscccccevvve i 10-4
UUID GENEIALION ...ttt bttt bbbt bbbt et eb bt nn et nnennes 10-5

Getting Started with Oracle AS UDDI REGISIIYccciiiiiiiiciieeeee e 10-5
Configuring Oracle AS UDDI REQISIIYcuoiiiiieiieie et ste e ens 10-6
Modifying Properties at Installation or FirSt-USe..........cccooeviiiiiiiiiiiiinee e 10-7
Considerations in a Production ENVIFONMENT ..ot 10-8

WWED SEIVICES DISCOVETYcviiiiiiiiiiiieiiite sttt sttt ettt et b bbbttt b et bbb b 10-9
Using the OracleAS UDDI Registry Searching and Browsing ToOlccccccevveveiicieinnennn. 10-9
Using Other Tools to DiSCOVEr WED SEIVICES........ccoiiiiiiieiriesese e 10-9
Using the Oracle AS UDDI Registry INQUIrY AP ..o 10-10

WeD Services PUBTISNING ...ttt naennes 10-13
Using Oracle Enterprise Manager for Web Services Publishing..........ccccoooiiniiniincnnn 10-13
Using the Oracle AS UDDI Registry Publishing ToO!ccccovviiiii i 10-19
Using the OracleAS UDDI Registry Publishing AP ... 10-28

OracleAS UDDI Registry AAMINIStrationccooiiiiiiiiii i 10-34
Using the Command-Line Tool uddiadmMinjar ..o 10-34
CoNFIQUITNG The SEIVEN ... et reesaesnes 10-35
MBNAGING USEIS ...ttt ettt bttt eb e bbbt bt et e bbbt bt e b st 10-36
ENFOrCING QUOTAS.......ociiiieie ettt st st et e e be et e et e s b e e st eneesneesaennes 10-37
Managing AdmMINIStrative ENTITIESc.cocoviiiieii e 10-39
IMPOITING ENTITIES ...ecvieciiiece bbbt bbb 10-40
Setting Operational INfOrMatioN...........cooviiiice e 10-41
UDDI REPIICATIONvitiiecitt bbbt bbb 10-41
Registry-Based Category Validationcccccvoiiiiiiiicie e 10-44
EXTErNal Validationccccoiiiiiecc et erente e ene e 10-47
Performance Monitoring and TUNING ..ot 10-48
Data Backup and Restore OPEratioNSccooierieiriirieniieeisieiesie ettt 10-49
Database CONFIGQUIALIONccciiiiiiiic s st te e s re e se e teesresreens 10-49
LI] o] =T U 1 2SS 10-50

UDDI Open Database SUPPOIT..........cociiiiiiiieieisee sttt 10-50
MICTOSOTE SQL SEIVET ...ttt ettt e eb e et e e be e be e s be e beeebeebee e saaesaras 10-51
IBIMI DB2......ooeeieeste ettt ettt ettt et s bt sas bt R et Rt b Rt n bt n e Rt bt nen 10-53
Other Oracle Database (NON-INFrastruCture)cccviveieiie i 10-55

Oracle AS UDDI Registry Server Erfor MESSAJEScccoeieeirennieiaieesieniereesie s 10-57

11

12

Consuming Web Services in J2EE Applications
Consuming SOAP-Based Web Services USING WSDL ..o 11-1
YN0 \VZ: g o=To M @ToT g} {10 18] = 1o [o] o [PPSR S 11-3
Known Limitations of the wsdl 2ej b ULility........ccooviiii i 11-7
RUNNING the DeMONSEFALIONc.oiiiiiiiieiecsce b et 11-7
Dynamic INvOcation 0F WED SEIVICES.........ccv i 11-16
DyNamic INVOCATION APoiiiiiic bbb 11-16
WEDSEIVICEPIOXY CHIENT.......coviiiiii ettt sae e s be e re e e teesreas 11-19
KNOWN LIMITALIONS L..viiiiiciesecee sttt sttt e st et eneenae e e e s 11-21
Advanced Topics for Web Services
Setting the Web Services Debugging Property Ws.debug..........ccccovviviiiniinic e 12-1
Untyped Request HaNdliNg OPLIONS.........coiiiiiiiieiiiie s 12-1
1@ Y ANl o 1T T L= g Y] o oo o A RS S 12-3
Client Side SOAP Request Header SUPPOIT........ccooiiiiiniiiiee e 12-3
Server Side SOAP Request Header SUPPOITccooiiviiieiicie st 12-4
Limitations for SOAP Header SUPPOITcciiiiiiiiee e 12-6
Using Oracle Application Server SOAP
Understanding Oracle Application SErVEr SOAP ..ot A-2
Apache SOAP DOCUMENTALIONcviiiiiiiiiiiiie bbb bbb A-2
Configuring the SOAP Request Handler Servilet ... A-2
Using OracleAS SOAP Management Utilities and SCriptS.........ccoooovirnvininnenneieneneesee, A-4
Y = T T=To TT o I o fo V4T [=T TSSO A-5
Using the Service Manager to Deploy and Undeploy Java Services.........ccoovvvvvvrvivesvennnnnn, A-5
Generating Client Proxies from WSDL DOCUMENTS.........ccocviiiiiininieeiseiesene s A-6
Generating WSDL Documents from Java Service Implementations..........c..ccccccvevvivviievvennenne. A-7
Deploying OraCleAS SOAP SEIVICES ..ottt sttt sttt n e A-7
Creating Deployment DESCHIPIOIScoi ittt sttt ere e be e A-8
Installing @ SOAP Web Service iN OCA ...ttt A-9
Disabling an Installed SOAP WED SEIVICEcociviiiiie et A-9
Installing a SOAP Web Service in an OCA4J CIUSTENcceiiiinieicieneee e A-9
USIiNG Oracle AS SOAP HaANAIEIScccoviiieicee ettt A-10
REQUEST HANAIETS ...ttt e et e be e e e nteen e neenaeenas A-10
RESPONSE HANAIEKS ...ttt A-10
EPTOr HANAIEES ... ettt b ettt er et ben et A-10
ConfIGUIING HANAIEES ...t b e e A-10
Using OracleAS SOAP AUt LOGUING ..oooviiiiiiiicicie st sve e s enae e nneas A-11
Audit Logging INFOIMALIONccoiiiiiiiiie et A-11
AUITADIE EVENTS ...ttt sttt b bbbt e bbb neens A-12
Configuring the AUt LOGUETcoiiiiiieieee ettt A-13
Using OracleAS SOAP Pluggable Configuration Managers...........ccccccovveiieieiecvesie e A-15
Working With Oracle AS SOAP TranSPOrt SECUFILYccivviiiiiieiiie e eee e A-15
Apache Listener and Servlet Engine Configuration for SSL..........cccccoiiniienninnenccsee A-18
Using JSSE with Oracle Application Server SOAP Client.........cccccveivi v A-18
Using Oracle AS SOAP SAMPIE SEIVICESccviiiiiiirieee e A-20

Vii

viii

The Xmethods SAMPIE. ..o bbb A-20

The AddressBOOK SAMPIE......coi i st peera e e A-20
The StOCKQUOTE SAMPIE ...t A-20
The COMPANY SAMPIEiciie e be et et e be e st e sreeneesaesreesneeraennees A-20
THe ProVider SAMPIE ... et et A-21
The AdAressBOOK2 SAMPIE.........iiiiiiiie ettt e e sneeraennees A-21
The MeSSagiNg SAMPIE......ccci i e e e sreaneesaesraesreeraenneas A-21
THE MIME SAMPIE ..o bbbttt bbb A-21
Using the Oracle AS SOAP EJB PrOVIOErc.ccciiiiiiieiie et ste e s s e e seenneens A-21
Stateless SeSSION EJB PrOVIAET ...ttt sttt s A-21
Stateful Session EJB Provider in APache SOAP ... A-21
Stateful Session EJB Provider in Oracle AS SOAP ... A-22
Entity EJB Provider in OraCleAS SOAP ...ttt A-22
Deployment and Use of the Oracle AS SOAP EJB ProVider..........cccoviinninnieiineennns A-22
Current Known EJB Provider LIMitatioNns..........cccoiiiiiiiii i A-23
Using PL/SQL Stored Procedures With the SP ProVider.........cccccocveeiiiiic s A-23
SP Provider Supported FUNCLIONATILYooveuiiiiiiiiicic s A-23
SP Provider Unsupported FUNCLONAIILYcocviiiiiiir e A-23
SP Provider Supported SiMmple PL/SQL TYPES ..ottt A-24
L0 R g o L@ o) =T ot a1V 0TSSR A-24
Deploying a Stored Procedure ProVIAET ..ot A-24
Translating PL/SQL Stored Procedures iNt0 JAVAccccvvciiieiii it A-24
Deploying a Stored ProCeAUIE SEIVICE........c.ciiiirieieiee sttt A-25
Invoking a SOAP Service that is a Stored ProCedUre...........ccooeiiiieiieiiesic e A-26
SOAP Troubleshooting and LimitatioNScccoiiiiiiiiic et A-26
Tunneling Using the TcpTunNelGui COMMANT.........coieiiiiiiiieee e A-26
Setting Configuration Options for DebUGQINGvoveviiii i A-27
Using DMS to Display Runtime INformation ... A-27
SOAP Limitations for Java Type Precedence with Overloaded Methods...........c.ccccovevenee A-27
Oracle AS SOAP Differences From ApPache SOAP ...t A-28
Service INstallation DIffEreNCEScooi i s A-28
Optional Provider ENNANCEMENTS. ..ottt A-28
Oracle TranSPOIrt HDIAIIESc.o i se e s te et te e reeraenres A-28
Modifications to APache EJB PrOVIAENcoooviiiiieiiiccec sttt A-28
StOred Procedure PrOVIAETcoo ittt sttt s saenee e A-29
ULIHILY ENNANCEMENTS ...ttt et te e e e eneenneas A-29
Modifications t0 SAMPIE COUEc..oviiiiiie e A-29
Handling the mustUnderstand Attribute in the SOAP Header.........ccocoovveeivieveecr e, A-29
Apache Software License, VEISION L. L......ccooo it A-30

Web Services Security

ADOUL WED SEIVICES SECUITYocuviiiiie et cie ettt ettt te e te e ae e e es e s raesreeseessenneesnaeneesneenees B-2
Configuring Web SErviCeS SECUTNTLYciiviiiiiiii ittt B-2
About Oracle Application Server UDDI RegiStry SECUNItYccoooveveieiiirieie e B-4
Protecting Oracle Application Server UDDI Registry RESOUICESccccvvvrveveiveienennriereenens B-4
Managing and Enforcing Protected UDDI RESOUICEScocevieiiiieeie e strcee e B-5
Using Oracle Application SErver SECUNILY SEIVICESccvviriiiiiieiniee e B-5

ConfigUrING UDDI SECUITLYoiitiiiiiiciiet ettt B-5

Configuring the Oracle Application Server UDDI RegiStryc.cocvvvviviie i B-5
Configuring the UDDI Content SUbSCription Manager ..o B-6
Configuring the UDDI CHENT ..ottt sre e se e s re e sna s B-6

C Troubleshooting OracleAS Web Services

Problems and SOTULIONSccoiiiiicee ettt bt es e et e e enene s C-1
Receiving "Unsupported Response Content TYPE" EFTOFccvvvveiieieiieesie e cieeteeste e C-1
Cannot Publish Doc/ZLiteral in JIDEVEIOPET ..ot C-1
CannNOot REQISIEr WED SEIVICEociiiiicee ettt sttt e see e nna s C-2
UDDI ReQiStry SCreENS IMISSINGc.vvviiiitiieiiieetiiie ettt ettt et b e et sne e C-2
UDDI Management Screens Are Not Enabled ... C-2
Diagnosing OracleAS Web Services ProblemSccoooiiiiiiie e C-3
Generating Web Services DiagnOStic MESSAJESceviirriiiiiiiniiieieesie et C-3
=TT AV [0 = =1 1o S C-3
Glossary
Index

Send Us Your Comments

Oracle Application Server Web Services Developer’s Guide, 10g Release 2
(10.1.2)

Part No. B14027-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com
« FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager
« Postal service:

Oracle Corporation

Oracle Application Server Documentation
500 Oracle Parkway M/S 1op6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Xi

Xi

This guide describes Oracle Application Server Web Services.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Preface

xiii

Intended Audience

Oracle Application Server Web Services Developer’s Guide is intended for application
programmers, system administrators, and other users who perform the following
tasks:

« Configure software installed on the Oracle Application Server.
« Create programs that implement Web Services
= Create programs that run as Web Services clients

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessi bility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Organization

Xiv

This document contains:

Chapter 1, "Web Services Overview"
This chapter provides an overview of Oracle Application Server Web Services.

Chapter 2, "Oracle Application Server Web Services”

This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

Chapter 3, "Developing and Deploying Java Class Web Services"

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that are implemented as Java classes.

Chapter 4, "Developing and Deploying EJB Web Services"

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that are implemented as stateless session Enterprise Java Beans
(EJBs).

Chapter 5, "Developing and Deploying Stored Procedure Web Services"

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that are implemented as PL/SQL Stored Procedures or Functions.

Chapter 6, "Developing and Deploying Document Style Web Services"

This chapter describes the procedures you use to write and deploy Document Style
Oracle Application Server Web Services implemented as Java classes.

Chapter 7, "Developing and Deploying JMS Web Services"

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that expose JMS destinations as Web Services.

Chapter 8, "Building Clients that Use Web Services"

This chapter describes the steps required to build a client application that uses Oracle
Application Server Web Services.

Chapter 9, "Web Services Tools"

This chapter describes the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er, that assists in assembling Oracle Application Server Web
Services.

Chapter 10, "Discovering and Publishing Web Services"

This chapter provides a description of the Universal Discovery Description and
Integration (UDDI-compliant Web Services registry in which business Web Service
providers in an enterprise environment can publish and describe their Web Services.

Chapter 11, "Consuming Web Services in J2EE Applications"
This chapter describes ways to consume Web Services in J2EE applications.

Chapter 12, "Advanced Topics for Web Services"

This chapter describes several advanced Oracle Application Server Web Services
topics, including untyped request handling options and SOAP header support.

Appendix A, "Using Oracle Application Server SOAP"

This appendix describes Oracle SOAP and covers the differences between Apache
SOAP and Oracle SOAP.

Appendix B, "Web Services Security"

This appendix describes the architecture and configuration of security for Oracle
Application Server Web Services, including the Oracle Application Server UDDI
Registry.

Appendix C, "Troubleshooting OracleAS Web Services"
This appendix provides information on troubleshooting problems with Web services.

XV

Glossary
The glossary contains the Web Services glossary terms and descriptions.

Related Documentation

For more information, see these Oracle resources:
= Overview Guide in the Oracle Application Server 10g Documentation Library.

« Oracle Application Server Containers for J2EE User’s Guide in the Oracle
Application Server 10g Documentation Library.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e.com
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e. com menber shi p/
If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracl e.con docunent ati on/ content. htni

Conventions

XVi

The following conventions are used in this manual:

Convention Meaning

Ellipsis points in statements or commands mean that parts of the
statement or command not directly related to the example have been

omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

[1 Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the Command Language prompt in

Windows and the Bourne shell prompt in UNIX

1

Web Services Overview

This chapter provides an overview of Web Services. Chapter 2, "Oracle Application
Server Web Services" describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:
« What Are Web Services?
« Overview of Web Services Standards

« SOAP Message Exchange and SOAP Message Encoding

What Are Web Services?

Web Services consist of a set of messaging protocols, programming standards, and
network registration and discovery facilities that expose business functions to
authorized parties over the Internet from any web-connected device.

This section covers the following topics:
« Understanding Web Services
« Benefits of Web Services

= About the Web Services e-Business Transformation

Understanding Web Services

A Web Service is a software application identified by a URI, whose interfaces and
binding are capable of being defined, described, and discovered by XML artifacts. A
Web Service supports direct interactions with other software applications using XML
based messages and internet-based products.

A Web Service does the following:

« Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. By providing a WSDL file, a
Web Service makes its functionality available to other applications.

« Allows other services to locate it on the web — A Web Service can be registered in a
UDDI Registry so that applications can locate it.

« Can be invoked — Once a Web Service has been located and examined, the remote
application can invoke the service using an Internet standard protocol.

« Web Services are of either request and response or one-way style, and they can use
either synchronous or asynchronous communication. However, the fundamental

Web Services Overview 1-1

What Are Web Services?

unit of exchange between Web Services clients and Web Services, of either style or
type of communication, is a message.

Web Services provide a standards based infrastructure through which any business
can do the following:

« Offer appropriate internal business processes as value-added services that can be
used by other organizations.

« Integrate its internal business processes and dynamically link them with those of
its business partners.

Benefits of Web Services

The benefits for enterprises seeking to develop and use Web Services to streamline
their business processes include the following:

« Support for open Internet standards. Oracle supports SOAP, WSDL, and UDDI as
the primary standards to develop Web Services. Web Services developed with
Oracle's products can inter-operate with those developed to Microsoft's .NET
architecture.

« Simple and productive development facilities. Oracle provides developers with an
easy-to-use and productive environment for developing Web Services using a
programming model that is identical to that for J2EE applications.

= Mission critical deployment facilities. Oracle provides a mission-critical platform
to deploy Web Services by unifying the Web Services and J2EE runtime
infrastructure. Oracle Application Server Web Services provide optimizations to
speed up Web Services responses, to scale Web Services on single CPUs or
multiple CPUs, and to provide high availability through fault tolerant design and
clustering.

See Also: "Overview of Web Services Standards” on page 1-3

About the Web Services e-Business Transformation

The move to transform businesses to e-Businesses has driven organizations around the
world to begin to use the Internet to manage corporate business processes. Despite this
transformation, business on the Internet still functions as a set of local nodes, or Web
sites, with point-to-point communications between them. As more business moves
online, the Internet should no longer be used in such a static manner, but rather should
be used as a universal business network through which services can flow freely, and
over which applications can interact and negotiate among themselves.

To enable this transformation, the Internet needs to support a standards-based
infrastructure that enables companies and their enterprise applications to
communicate with other companies and their applications more efficiently. These
standards should allow discrete business processes to expose and describe themselves
on the Internet, allow other services to locate them, to invoke them once they have
been located, and to provide a predictable response.

Web Services drive this transformation by promising a fundamental change in the way
businesses function and enterprise applications are developed and deployed.

This e-Business transformation is occurring in the following two areas:
« Business Transformation with Web Services

« Technology Transformation with Web Services

1-2 Oracle Application Server Web Services Developer’s Guide

Overview of Web Services Standards

About Business Transformation with Web Services

Web Services enables the next-generation of e-business, a customer-centric, agile
enterprise that does the following:

Expands Markets - Offers business processes to existing and new customers as
services over the Internet, opening new global channels and capturing new
revenue opportunities.

Improves Efficiencies - Streamlines business processes across the entire enterprise
and with business partners, taking action in real-time with up-to-date information.

Reaches Suppliers and Partners - Creates and maintains pre-defined, systematic,
contractually negotiated relationships and dynamic, spot partnerships with
business partners who are tightly linked within supply chains.

About Technology Transformation with Web Services

Web Services enables enterprise applications with the following technology
transformations:

Development and Deployment — Web Services can be developed and deployed
quickly and productively.

Locating Services — Web Services allow applications to be aggregated and
discovered within Internet portals, enterprise portals, or service registries which
serve as Internet Yellow Pages.

Integrating Services — Web Services allow applications to locate and electronically
communicate with other applications within an enterprise and outside the
enterprise boundaries.

Inter-Operating Services — Web Services allow applications to inter-operate with
applications that are developed using different programming languages and
following different component paradigms.

Overview of Web Services Standards

This section describes the Internet standards that comprise Web Services, including:

SOAP Standard
Web Services Description Language (WSDL)

Universal Description, Discovery, and Integration (UDDI)

Figure 1-1 shows a conceptual architecture for Web Services using these standards.

Web Services Overview 1-3

Overview of Web Services Standards

Figure 1-1 Web Services Standards

Client Application
(Web Service)

Web
Services
Directory
(UDDI)
@ rubiish
Interface (WSDL)
Application Program +— J2EE, Java Class,
(Service Implementation) PL / SQL Stored
Procedure or
Web Service Function
Interface Application
WSDL Program
(Service
Implementation)

SOAP Standard

The SOAP is a lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP supports different styles of information
exchange, including: Remote Procedure Call style (RPC) and Message-oriented
exchange. RPC style information exchange allows for request-response processing,
where an endpoint receives a procedure oriented message and replies with a
correlated response message. Message-oriented information exchange supports
organizations and applications that need to exchange business or other types of
documents where a message is sent but the sender may not expect or wait for an
immediate response. Message-oriented information exchange is also called Document
style exchange.

SOAP has the following features:

« Protocol independence

« Language independence

« Platform and operating system independence

« Support for SOAP XML messages incorporating attachments (using the multipart
MIME structure)

See Also: http://ww. w3. or g/ TR/ SOAP/ for information on
the SOAP 1.1 specification

1-4 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding

Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) is an XML format for describing
network services containing RPC-oriented and message-oriented information.
Programmers or automated development tools can create WSDL files to describe a
service and can make the description available over the Internet. Client-side
programmers and development tools can use published WSDL descriptions to obtain
information about available Web Services and to build and create proxies or program
templates that access available services.

See Also: http://ww. wW3. or g/ TR/ wsdl for information on
the Web Services Description Language (WSDL) format.

Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) specification is an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

There are two types of UDDI registries, public UDDI registries that serve as
aggregation points for a variety of businesses to publish their services, and private
UDDI registries that serve a similar role within organizations.

See Also: http://ww. uddi . or g for information on Universal
Description, Discovery and Integration specifications.

SOAP Message Exchange and SOAP Message Encoding

The SOAP standard defines a lightweight, XML-based protocol for exchanging
information in a decentralized, distributed environment. SOAP supports different
styles of information exchange, including: Remote Procedure Call, RPC Style, and
Message-oriented exchange, or Document Style. SOAP Messages, whether RPC Style
or Document Style use a certain encoding, as specified with the encodi ngStyl e
attribute specified for SOAP message elements. This section describes these SOAP
message features, in the following sections:

« SOAP Message Components
« Working With RPC Style SOAP Messages
« Working With Document Style SOAP Messages

SOAP Message Components

Each SOAP message is a transmission between a SOAP sender and a SOAP receiver.
Each SOAP message consists of a SOAP envelope containing two sub-elements, a
Header and a Body. The SOAP Header is optional. The children of the SOAP header
are called header bl ocks;each header block represents a logical grouping of data.
The SOAP Body is a mandatory element within a SOAP message. This is where the
end-to-end information conveyed in a SOAP message is carried. The choice of what
data is placed in a header block and what data goes in the SOAP Body element are
decisions that are taken at the time that an application is designed.

Using Oracle Application Server Web Services, developers determine if an
implementation supports RPC Style or Document Style messages. Developers write
the appropriate application logic and the WebServicesAssembler configuration files for
the implementation.

Web Services Overview 1-5

SOAP Message Exchange and SOAP Message Encoding

Working With RPC Style SOAP Messages

Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. RPC Style exchanges
represent exchanges that can be modeled as remote procedure calls (RPC); these are
used when there is a need to model a certain programatic behavior, with the
exchanged messages conforming to a well-defined signature for the remote call and its
return. Using RPC Style messages, SOAP specifies the form of the SOAP message
body.

RPC style information exchange allows for request-response processing, where an
endpoint receives a procedure oriented message and replies with a response message.
Using the RPC style SOAP message exchange, the contents of the SOAP message body
conform to a structure that specifies a procedure and includes set of parameters, or a
response, with a result and any additional parameters. The SOAP message in the body
is an XML document, but it is XML document that conforms the limitations specified
in the SOAP specification.

Example 1-1 shows a SOAP RPC Style request that includes the

Char geReser vat i on method with several parameters. Example 1-2 shows the
SOAP RPC Style response message that includes the

Char geReser vat i onResponse, with a "Response” string appended.

Example 1-1 SOAP RPC Style Request Message

<?xm version="1.0" encodi ng=" UTF-8" ?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM.Schema" >
<SOAP- ENV: Body>
<nsl:hel | oWorl d xm ns:nsl="urn: oracl e-j 2ee-ws_exanpl e- St at el essExanpl e"
SOAP- ENV: encodi ngSt yl e="ht t p: // schemas. xm soap. or g/ soap/ encodi ng/ ">
<paranD xsi:type="xsd: string">Wendy</ par an0>
</nsl:hel | oWor| d>
</ SOAP- ENV: Body>
</ SQAP- ENV: Envel ope>

Example 1-2 SOAP RPC Style Response Message

<?xm version="1.0" encodi ng=" UTF-8" ?>
<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xm ns: xsd="http: //ww. w3. or g/ 2001/ XM_Schena" >
<SOAP- ENV: Body>
<nsl: hel | oWor| dResponse
xm ns: ns1="urn: oracl e-j 2ee-ws_exanpl e- St at el essExanpl e"
SOAP- ENV: encodi ngSt yl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ ">
<return xsi:type="xsd:string">Hello Wrld, Wndy</return>
</ nsl: hel | oWor | dResponse>
</ SOAP- ENV: Body>
</ SQAP- ENV: Envel ope>

Working With Document Style SOAP Messages

Oracle Application Server Web Services supports two types of SOAP message
exchanges: RPC Style exchanges and Document-Style exchanges. Document-style
exchanges, also called message-oriented exchanges, model exchanges where XML

1-6 Oracle Application Server Web Services Developer’s Guide

SOAP Message Exchange and SOAP Message Encoding

documents are exchanged, where the exchange patterns are defined in the sending and
the receiving applications. For Document Style messages, SOAP places no constraints
on how the document sent in the SOAP message body is structured, the application, or
an externally specified XML schema determines the structure of the XML document
that is sent in the body of the SOAP message.

Message-oriented information exchange supports organizations and applications that
need to exchange business or other types of documents where a message is sent but
the sender may not expect or wait for an immediate response. Message-oriented
information exchange is also called Document style SOAP message exchange.
Document -style messages model exchanges where XML documents are exchanged,
where the semantics of the exchange patterns are defined in the sending and the
receiving applications.

Example 1-3 shows a sample Document Style SOAP message that is sent from a client
to an Oracle Application Server Web Services document style service. The client sends
an XML document that contains employee records with elements including name,
emp_id, department, and contact information. A web service that processes this XML
document to produce a phone listing may supply an XML document that contains
only the name and phone number elements.

Example 1-3 Document Style SOAP Message

<?xm version="1.0" encodi ng=' UTF-8' 7>
<SQAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance”
xm ns: xsd="ht tp: / / www. w3. or g/ 2001/ XM_.Schenma" >
<SQAP- ENV: Body>
<organi sati on>
<empl oyee>
<nane>Bob</ name>
<enp_i d>1234</ enp_i d>
<depar t ment >hr </ depar t ment >
<cont act >
<phone>827 644 5674</ phone>
<emai | >bob@r gani sati on. conx/ emai | >
</ cont act >
</ enpl oyee>
<enpl oyee>
<name>Susan</ name>
<enp_i d>2434</ emp_i d>
<depart ment >i t </ depar t ment >
<cont act >
<phone>827 644 5674</ phone>
<emai | >Susan@r gani sati on. conx/ enai | >
</ cont act >
</ enpl oyee>
</ or gani sati on>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 1-4 Document Style SOAP Message Processed by a Web Service

<?xm version="1.0" encodi ng=" UTF-8" ?>
<SCAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="ht t p: / / www. w3. or g/ 2001/ XM.Schema" >
<SCAP- ENV: Body>
<enpl oyee>

Web Services Overview 1-7

SOAP Message Exchange and SOAP Message Encoding

<name>Bob</ nane>
<phone>827 644 5674</ phone>
<name>Susan</ name>
<phone>827 644 5674</ phone>
</ enpl oyee>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

1-8 Oracle Application Server Web Services Developer’s Guide

2

Oracle Application Server Web Services

This chapter describes the Oracle Application Server Web Services features,
architecture, and implementation.

This chapter covers the following topics:

« Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
« Oracle Application Server Web Services Standards

« Oracle Application Server Web Services Features

« Oracle Application Server Web Services Architecture

» Understanding WSDL and Client Proxy Stubs for Web Services

= Web Services Home Page

« About Universal Description, Discovery, and Integration Registry

Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web

Services

Oracle Application Server supports two different Web Services options, a J2EE based
Web Services environment built into Oracle Application Server Containers for J2EE
(OC4)), and an Apache SOAP based Web Services environment called Oracle
Application Server SOAP.

The chapters in this manual describe the OC4J (J2EE) Web Services environment. This
environment makes it easy to develop and deploy services using J2EE artifacts, and is
moving the Oracle Application Server Web Services features toward the evolving Web
Services standards included in the next release of J2EE (J2EE 1.4). The Oracle
Application Server Web Services environment includes many development and
deployment features that are integrated with the advanced Oracle Application Server
features.

Appendix A, "Using Oracle Application Server SOAP" describes the Oracle
Application Server support for Apache SOAP (Oracle Application Server SOAP).
Oracle Application Server includes support for Apache SOAP because this
implementation was one of the earliest SOAP implementations and it supports
existing Web Services applications.

Note: Oracle recommends using the Oracle Application Server
OC4J (J2EE) Web Services environment for developing Web
Services. The Apache SOAP (Oracle Application Server SOAP)
implementation is currently in maintenance mode.

Oracle Application Server Web Services 2-1

Oracle Application Server Web Services Standards

Oracle Application Server Web Services Standards

Oracle Application Server Web Services supports the following Web Services
standards:

SOAP 1.1, including the following:
« RPC/Encoded

= Document/Literal

WSDL 1.1

uUDDI 2.0

See Also: "Overview of Web Services Standards" on page 2-1

Oracle Application Server Web Services Features

Oracle Application Server provides advanced runtime features and comprehensive
support for developing and deploying Web Services. The Oracle Application Server
infrastructure includes support for the following:

Developing End-to-End Web Services
Deploying and Managing Web Services
Using Oracle JDeveloper with Web Services
Securing Web Services

Aggregating Web Services

Developing End-to-End Web Services

Oracle Application Server Web Services provides comprehensive support for
developing Web Services, including:

Development Environment — Oracle Application Server Web Services allows
application developers to implement Web Services using J2EE components. In
addition, you can use Java Classes or PL/SQL Stored Procedures to implement
Web Services. Web Services inherit all the runtime and lifecycle management
elements of J2EE Applications.

Development Tools and Wizards — Oracle Application Server Web Services
Developers can use the same set of command line utilities to create, package, and
deploy Web Services as other Oracle Application Server Containers for J2EE
(OC4)) applications.

Automatically Generating WSDL — Oracle Application Server Web Services can
generate WSDL and client-side proxy stubs. This generation occurs when the Web
Service is assembled using the WebServices Assembly tool or alternatively, for a
deployed Web Service, the first time the WSDL or the client-side proxy stubs are
requested (after the first request, the previously generated WSDL or client-side
proxy stubs are sent when requested).

Registration, Publishing, and Discovery — Oracle Application Server Web Services
provides a standards-compliant UDDI registry where Web Services can be
published and discovered. The Oracle UDDI registry supports both a private and
public UDDI registry and can also synchronize information with other UDDI
nodes.

2-2 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Features

Developer Simplicity — Using Oracle Application Server Web Services, developers
do not need to learn a completely new set of concepts — Web Services are
developed, deployed and managed using the same programming concepts and
tools as with J2EE Applications.

Business Logic Reuse — Application developers can transparently publish their
J2EE Applications to new Web Services clients with no change in the application
itself. Their existing business logic developed in J2EE can be transparently
accessed from existing J2EE/EJB clients or from a new Web Service client.

Common Runtime Services — Oracle Application Server has a common runtime
and brokering environment for J2EE Applications and Web Services. As a result,
Web Services transparently inherit various services available with the J2EE
Container including Transaction Management, Messaging, Naming, Logging, and
Security Services.

Deploying and Managing Web Services

Oracle Enterprise Manager and the Web Services Assembly Tool assist with deploying
and managing Oracle Application Server Web Services. These tools provide the
following support for Web Services:

Packaging and Assembly - The Web Services Assembly Tool assists with
assembling Web Services and producing a J2EE .ear file.

Deployment — Oracle Enterprise Manager provides a comprehensive set of
facilities to deploy Web Services to Oracle Application Server. Oracle Enterprise
Manager provides a single, consistent Deploy Applications wizard for deploying
Web Services to Oracle Application Server. It accepts a J2EE .ear file, and walks
you through a set of steps to get information about the application to be deployed,
and then deploys the application.

Register Web Service - The Deploy Applications wizard is only available when
deploying Web Services. This step provides access to facilities for registering Web
Services in the UDDI Registry.

Browse the UDDI Registry - Oracle's UDDI Registry provides the UDDI standards
compliant pre-defined, hierarchical categorization schemes. Oracle Enterprise
Manager can drill-down through these categories and look up specific Web
Services registered in any category.

Monitoring and Administration — Once deployed, Oracle Enterprise Manager
provides facilities to de-install a Web Service and also to monitor Web Service
performance, as measured by response-time and throughput, and status, as
measured by up-time, CPU, and memory consumption. Oracle Enterprise
Manager also provides facilities to identify and list all the Web Services deployed
to a specific Oracle Application Server instance.

Using Oracle JDeveloper with Web Services

The Oracle JDeveloper IDE supports Oracle Application Server Web Services. Oracle
JDeveloper is the industry’s most advanced Java and XML IDE and provides
unparalleled productivity and end-to-end J2EE and integrated Web Services standards
compliance.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

Oracle Application Server Web Services 2-3

Oracle Application Server Web Services Architecture

« Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and WSDL
file for you.

« Provides schema-driven WSDL file editing.

« Offers significant J2EE deployment support for Web Services J2EE .ear files, with
automatic deployment to OC4J.

Securing Web Services

Oracle Enterprise Manager secures Oracle Application Server Web Services in the
same way that it secures J2EE Servlets running under OC4J. This provides a
comprehensive set of security facilities, including:

« Complete, standards-based security architecture for encryption, authentication,
and authorization of Web Services.

= Single Sign-on to enable users to access several Web Services with a single
password.

= Single Point of administration to enable users to centrally manage the security for
Web Services.

Aggregating Web Services

OracleAS Portal facility provides the ability to aggregate Oracle Application Server
Web Services within an organization into a Portal. Additionally, portlets in the
OracleAS Portal framework can be published as Web Services.

Oracle Application Server Web Services Architecture

Oracle Application Server Containers for J2EE (OC4J) provides the foundation for
building applications as components and supports Oracle Application Server Web
Services. Oracle Application Server Web Services supports both RPC Style and
Document Style web services.

Oracle Application Server Web Services supports the following RPC Web Services:
« Java Classes

« Stateless Session Enterprise Java Beans (EJBS)

« Stateless PL/SQL Stored Procedures or Functions

Oracle Application Server Web Services supports the following Document Style web
services:

« Java Class Document Style Web Services
« JMS Document Style Web Services

For each implementation type, Oracle Application Server Web Services uses a different
Servlet that conforms to J2EE standards to provide an entry point to a Web Service
implementation. Figure 2-1 shows the Web Services runtime architecture, including
the Servlet entry points.

The Oracle Application Server Web Services runtime architecture discussion includes
the following:

= About Servlet Entry Points for Web Services
= What Are the Packaging and Deployment Options for Web Services

2-4 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Architecture

= About Server Skeleton Code Generation for Web Services

See Also: "SOAP Standard" on page 1-4 for information on RPC
Style and Document Style Web Services.

Figure 2-1 Web Services Runtime Architecture (RPC and Document Style with Servlet Entry Points)

0C4J

Encode / Decode

SOAP Binding

Servlet Entry Point | | Stateless
Java
Class

Encode / Decode

iill
v

SOAP Binding

&
Browser or XML Document

Fat Client Servlet Entry Point | | Stateful
Encode / Decode é?;lss

SOAP Binding

Servlet Entry Point | | Stateless

Encode / Decode E?ESlon

SOAP Binding

Servlet Entry Point | | Stateless

Encode / Decode PL7SQL
Apache OracleAS
SOAP Binding
Servlet Entry Point | | Stateless
Java
Encode / Decode Clz\;ss
(Document
SOAP Binding Style)
Servlet Entry Point | | Stateful
Java
Encode / Decode Class
(Document
SOAP Binding Style)
Servlet Entry Point | [JMS Java
(Document
Encode / Decode Style)
SOAP Binding
—_—

About Servlet Entry Points for Web Services

To use Oracle Application Server Web Services, you need to deploy a J2EE .ear file to
Oracle Application Server. The J2EE .ear file contains a Web Services Servlet
configuration and includes an implementation of the Web Service. Oracle Application
Server Web Services supplies the Servlet classes, one for each supported
implementation type. At runtime, Oracle Application Server uses the Servlet classes to
access the user supplied Web Service implementation.

Oracle Application Server Web Services 2-5

Oracle Application Server Web Services Architecture

The Oracle Application Server Web Services Servlet classes support the following Web
Services implementation types:

« Java Class (Stateless) - The object implementing the Web Service is any arbitrary
Java class. The Web Service is stateless.

« Java Class (Stateful) -The object implementing the Web Service is any arbitrary
Java class. The Web Service is considered stateful. A Servlet Ht t pSessi on
maintains the object state between requests from the same client.

« Stateless Session EJBs - Stateless Session EJBs can be exposed as Web Services. The
Web Service is considered to be stateless.

« PL/SQL Stored Procedure or Function - The object implementing the Web Service
is a Java class that accesses the PL/SQL stored procedure or function. The Web
Service is considered to be stateless. The Oracle JPublisher tool generates the Java
access class for the PL/SQL stored procedure or function.

« Java Class Document Style Web Service (Stateless) - The object implementing the
Web Service is a Java class using a supported method signature. The Web Service
is stateless.

« Java Class Document Style Web Service (Stateful) -The object implementing the
Web Service is a Java class using a supported method signature. The Web Service
is considered stateful. A Servlet Ht t pSessi on maintains the object state between
requests from the same client.

« Java JMS Web Service - Supports sending and receiving messages to or from JMS
destinations. Using the JMS Web Service you can include an MDB to handle or
generate messages.

When a Web Service is deployed, a unique instance of the Servlet class manages the
Web Service. The Servlet class is implemented as part of Oracle Application Server
Web Services runtime support. To make Web Services accessible, you deploy the Web
Service implementation with the corresponding Web Services Servlet.

Note: Using Oracle Application Server SOAP, based on Apache
SOAP 2.3.1, there is only a single instance of a single Servlet entry
point for all the Web Services in the entire system. The Oracle
Application Server Web Services architecture differs; under Oracle
Application Server Web Services, a unique Servlet instance
supports each Web Service.

RPC Style Web Service implementations under Oracle Application Server Web
Services that take values as parameters or that return values to a client need to restrict
the types passed. This restriction allows the types passed to be converted between
XML and Java objects (and between Java objects and XML). Table 2-1 lists the
supported types for passing to or from Oracle Application Server \Web Services.

Document Style Web Service implementations under Oracle Application Server Web
Services restrict the signature of the Java methods that implement the Web Service.
Only or g. w3c. dom El enent can be passed to or sent from these Web Services.

Note: The preceding restriction means that
org. wdc. dom El ement types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

2-6 Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Web Services Architecture

Table 2-1 Web Services Supported Data Types (for RPC Parameters and Return Values)

Primitive Type Object Type

Bool ean j ava. | ang. Bool ean
byt e java.l ang. Byte
doubl e java. | ang. Doubl e
fl oat j ava. | ang. Fl oat

i nt java. |l ang. I nt eger
| ong java. | ang. Long
short j ava. | ang. Short
string java.lang. String

java.util.Date
java.util.Mp

or g. w3c. dom El erment

org. w3c. dom Docunent

or g. w3c. dom Docunent Fr agment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table

What Are the Packaging and Deployment Options for Web Services

Oracle Application Server Web Services are accessed as Servlets, thus, Web Services
need to be assembled. The WebSer vi cesAssenbl er tool prepares J2EE .ear files for
Web Services by configuring aweb. xni file that is a component of a J2EE .war file,
and including the required resources and the implementation and support classes.

To build a Web Service with the assembly tool, you can supply a Jar file, .war file,
ebj.jar, or .ear file that includes your Web Service implementation. The assembly tool
then builds the Web Service using configuration information specified in its XML
configuration file.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

« Chapter 6, "Developing and Deploying Document Style Web
Services"

About Server Skeleton Code Generation for Web Services

The first time Oracle Application Server Web Services receives a request for a service,
the Servlet entry point automatically does the following (this discussion does not
apply for JMS Web Services, which are handled differently):

Oracle Application Server Web Services 2-7

Understanding WSDL and Client Proxy Stubs for Web Services

« Validates the class loading. All the classes that are required for the Web Service
implementation must conform to standard J2EE class loading norms.

« Validates the data types. All the Java classes or EJBs must conform to the
restrictions on supported parameter and return types as shown in Table 2-1.

« Generates server skeleton code. The server skeleton code is only generated the first
time the Web Service is accessed or when the ear file is redeployed (when an
application is redeployed, the server skeleton code and other Web Services
support files are regenerated). The generated code is stored in the temporary
directory associated with the Servlet context. The server skeleton code controls the
lifecycle of the EJB (for Stateless Session EJB implementations), handles the
marshaling of the parameters and return types (for SOAP RPC based Web
Services), and dispatches to the actual Java class or EJB methods that implement
the service.

After the server skeleton class is generated, when subsequent requests for a service
are received, the server skeleton directly handles marshalling and then invokes the
method that implements the service (for Web Services implemented with PL/SQL
stored procedures or functions, the server skeleton invokes the Java class that
accesses the Database containing the PL/SQL stored procedure or function).

For document style Web Services, the server skeleton passes the DOM element to
the method that implements the service.

Understanding WSDL and Client Proxy Stubs for Web Services

Oracle Application Server Web Services provides a tool to generate a WSDL file that
can be packaged with a Web Service at assembly time, (if you do not package the
WSDL file, it can be generated at runtime). This tool also supports generating
client-side proxy stubs, given a WSDL file.

There are several elements to Oracle Application Server Web Services WSDL support.
First, RPC style Web Services are based on interoperable XML data representations
and arbitrary Java objects do not in general map to XML. Oracle Application Server
Web Services supports a set of XML types corresponding to a set of Java types (see
Table 2-1 for the list of supported Java types).

Second, using Oracle Application Server Web Services, an application developer can
either statically generate the WSDL interfaces for a Web Service or the Oracle
Application Server Web Services runtime can generate WSDL and client-side proxy
stubs if they are not provided when a Web Service is deployed. These files can be
generated by the runtime on the server-side and delivered when they are requested by
a Web Services client.

Oracle Application Server also provides a client-side tool to statically generate WSDL
given a Java class or a J2EE application. Likewise, the Web Services Assembly tool can
generate the client-side proxy given a generated WSDL file or a known WSDL
endpoint.

See Also:

= "Generating Client-Side Proxies With WebServicesAssembler”
on page 8-5

« "Generating WSDL Files and Client Side Proxies" on page 9-3

2-8 Oracle Application Server Web Services Developer’s Guide

Web Services Home Page

Overview of a WSDL Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client application
development, the Oracle Application Server Web Services runtime can generate WSDL
to describe a Web Service. Using the WSDL, development tools can assist developers
in building applications that invoke Web Services.

See Also:

= "Using Oracle JDeveloper with Web Services" on page 2-3

« Chapter 8, "Building Clients that Use Web Services"

Overview of a Client-Side Proxy Stubs Based Web Service Client

Using Web Services, a client application sends a SOAP request that invokes a Web
Service and handles the SOAP response from the service. To facilitate client-side
application development, Oracle Application Server Web Services can generate
client-side proxy stubs. The client-side proxy stubs hide the details of composing a
SOAP request and decomposing the SOAP response. The generated client-side proxy
stubs support a synchronous invocation model for requests and responses. The
generated stubs make it easier to write a Java client application to make a Web Service
(SOAP) request and handle the response.

See Also: Chapter 8, "Building Clients that Use Web Services"

Web Services Home Page

Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service.

A Web Service Home Page provides the following:

« ALinkto the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

« Links to Web Service Test Pages for each supported operation-To test the available
Web Service operations enter the parameter values for the operation, if any, and
select the Invoke button.

« Links to the Web Service client-side proxy Jar and the client-side proxy source - To
obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

Figure 2-2 shows a sample Web Service Home Page.

Oracle Application Server Web Services 2-9

About Universal Description, Discovery, and Integration Registry

Figure 2-2 Web Service Home Page

* Count

J
* Melosari

ocdj client

= Py

StatefulExample endpoint

WSDOL for Servce; StatefulExampls, gensrated Dy Oracls WSOL toollkit fversion: 1.1)

For a formal definkion, please review the Service Description (ee siyiE)
StatefulExample service

The fallowing coerabions are supported

The |ava prowy = packaged in & Jar efther 35 clesses ar sources files

® FTOEY SOUrcE

About Universal Description, Discovery, and Integration Registry

The Universal Description, Discovery, and Integration (UDDI) specification consists of
a four-tier hierarchical XML schema that provides the base information model to
publish, validate, and invoke information about Web Services. The four types of
information that the UDDI XML schema defines are:

Business Entity - The top level XML element in a UDDI entry captures the starting
set of information required by partners seeking to locate information about a
business' services including its name, its industry or product category, its
geographic location, and optional categorization and contact information. This
includes support for Yellow Pages taxonomies to search for businesses by industry;,
product, or geography.

Business Service - The businessService structure groups a series of related Web
Services together so that they can be related to either a business process or a
category of services. An example of a business process could be a
logistics/delivery process which could include several Web Services including
shipping, routing, warehousing, and last-mile delivery services. By organizing
Web Services into groups associated with categories or business processes, UDDI
allows more efficient search and discovery of Web Services.

Binding Information - Each businessService has one or more technical Web Service
Descriptions captured in an XML element called a binding template. The binding
template contains the information that is relevant for application programs that
need to invoke or to bind to a specific Web Service. This information includes the
Web Service URL address, and other information describing hosted services,
routing and load balancing facilities.

Compliance Information - While the bindingTemplate contains the information
required to invoke a service, it is not always enough to simply know where to
contact a particular Web Service. For instance, to send a business partner's Web

2-10 Oracle Application Server Web Services Developer’'s Guide

About Universal Description, Discovery, and Integration Registry

Service a purchase order, the invoking service must not only know the
location/URL for the service, but what format the purchase order should be sent
in, what protocols are appropriate, what security required, and what form of a
response will result after sending the purchase order. Before invoking a Web
Service, it is useful to determine whether the specific service being invoked
complies with a particular behavior or programming interface. Each
bindingTemplate element, therefore, contains an element called a tModel that
contains information which enables a client to determine whether a specific Web
Service is a compliant implementation.

Oracle Enterprise Manager Features to Register Web Services

When a Web Service is deployed on Oracle Application Server, you can use Oracle
Enterprise Manager to register the specific Web Service and publish its WSDL to the
UDDI registry and to discover published Web Services.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Oracle Application Server Web Services 2-11

About Universal Description, Discovery, and Integration Registry

2-12 Oracle Application Server Web Services Developer's Guide

3

Developing and Deploying Java Class Web
Services

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that are implemented as Java classes.

This chapter covers the following topics:

« Using Oracle Application Server Web Services With Java Classes
« Writing Java Class Based Web Services

« Preparing and Deploying Java Class Based Web Services

« Serializing and Encoding Parameters and Results for Web Services

Using Oracle Application Server Web Services With Java Classes

This chapter shows sample code for writing Web Services implemented with Java
classes and describes the difference between writing stateful and stateless Java Web
Services.

Oracle Application Server supplies Servlets to access the Java classes which implement
a Web Service. The Servlets handle requests generated by a Web Service client, run the
Java method that implements the Web Service and returns results back to Web Services
clients.

See Also:
« Chapter 2, "Oracle Application Server Web Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

« Chapter 8, "Building Clients that Use Web Services"

Writing Java Class Based Web Services

Writing Java class based Web Services involves building a Java class that includes one
or more methods. When a Web Services client makes a service request, Oracle
Application Server Web Services invokes a Web Services Servlet that runs the method
that implements the service request. There are very few restrictions on what actions
Web Services can perform. At a minimum, Web Services generate some data that is
sent to a client or perform an action as specified by a Web Service request.

Developing and Deploying Java Class Web Services 3-1

Writing Java Class Based Web Services

This section shows how to write a stateful and a stateless Java Web Service that returns
a string, "Hello World". The stateful service also returns an integer running count of
the number of method calls to the service. This Java Web Service receives a client
request and generates a response that is returned to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.comtech/javal/ oc4j/denps/ 1012/ i ndex. ht m

After expanding the Web Services deno. zi p file, the Java class based Web Service is
in the directory under webser vi ces/ deno/ basi c/j ava_servi ces on UNIX or
in\webservi ces\ deno\ basi c\j ava_servi ces on Windows.

Writing Stateless and Stateful Java Web Services

Oracle Application Server Web Services supports stateful and stateless
implementations for Java classes running as Web Services, as follows:

« For astateful Java implementation, Oracle Application Server Web Services uses a
single Java instance to serve the Web Service requests from an individual client.

« For astateless Java implementation, Oracle Application Server Web Services
creates multiple instances of the Java class in a pool, any one of which may be
used to service a request. After servicing the request, the object is returned to the
pool for use by a subsequent request.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing and Deploying Java Class
Based Web Services" on page 3-6.

Building a Sample Java Class Implementation
Developing a Java Web Service consists of the following steps:

« Defining a Java Class Containing Methods for the Web Service
« Defining an Interface for Explicit Method Exposure
« Writing a WSDL File (Optional)

Defining a Java Class Containing Methods for the Web Service

Create a Java Web Service by writing or supplying a Java class with methods that are
deployed as a Web Service. In the sample supplied in the j ava_ser vi ces sample
directory, the .ear file, ws_exanpl e. ear contains the Web Service source, class, and
configuration files. In the expanded .ear file, the class St at ef ul Exanpl el npl
provides the stateful Java service and St at el essExanpl el npl provides the
stateless Java service.

When writing a Java Web Service, if you want to place the Java service in a package,
use the Java package specification to name the package. The first line of
St at ef ul Exanpl el npl . j ava specifies the package name, as follows:

package oracl e.j2ee. ws_exanpl e;

3-2 Oracle Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services

The stateless sample Web Service is implemented with St at el essExanpl el npl , a
public class. The class defines a public method, hel | oWor | d() . In general, a Java
class for a Web Service defines one or more public methods.

Example 3-1 shows St at el essExanpl el npl .

The stateful sample Web Service is implemented with St at ef ul Exanpl el npl ,a
public class. The class initializes the count and defines two public methods, count ()
and hel | oWor 1 d() .

Example 3-2 shows St at ef ul Exanpl el npl .

Example 3—1 Defining A Public Class with Java Methods for a Stateless Web Service
package oracle. | 2ee. ws_exanpl e;

public class Statel essExanpl el npl {
public Statel essExanplel npl () {

}
public String hell oWrld(String param {
return "Hello World, " + param

}
}

Example 3-2 Defining a Public Class with Java Methods for a Stateful Web Service
package oracl e.j 2ee. ws_exanpl €;

public class Stateful Exanpl el npl {
int count = 0;
public Stateful Exanpl el npl () {

}
public int count() {

return count ++,

}
public String helloWrld(String param {
return "Hello World, " + param

}
}

A Java class implementation for a Web Service must include a public constructor that
takes no arguments. Example 3-1 shows the public constructor
St at el essExanpl el npl () and Example 3-2 shows St at ef ul Exanpl el npl ().

When an error occurs while running a Web Service implemented as a Java class, the
Java class should throw an exception. When an exception is thrown, the Web Services
Servlet returns a Web Services (SOAP) fault. Use the standard J2EE and OC4J
administration facilities to view the logs of Servlet errors for a Web Service that uses
Java classes for its implementation.

When you create a Java class containing methods that implement a Web Service, the
method’s parameters and return values must use supported types, or you need to use
an interface class to limit the methods exposed to those methods using only supported
types. Table 3-1 lists the supported types for parameters and return values for Java
methods that implement Web Services.

Note: See Table 3-1 for the list of supported types for parameters
and return values.

Developing and Deploying Java Class Web Services 3-3

Writing Java Class Based Web Services

There are several additional steps required to implement a Java Web Service if you
need to handle or process SOAP request header entries.

See Also: "SOAP Header Support" on page 12-3

Defining an Interface for Explicit Method Exposure

Oracle Application Server Web Services allows you to limit the methods you expose as
Web Services by supplying a public interface. To limit the methods exposed in a Web
Service, include a public interface that lists the method signatures for the methods that
you want to expose. Example 3-3 shows an interface to the method in the class

St at el essExanpl el npl . Example 3-4 shows an interface to the methods in the
class St at ef ul Exanpl el npl .

Example 3-3 Using a Public Interface to Expose Stateless Web Services Methods
package oracl e.j2ee. ws_exanpl e;

public interface Statel essExanple {
String helloWrld(String param;

}

Example 3—-4 Using a Public Interface to Expose Stateful Web Services Methods
package oracl e.j2ee. ws_exanpl e;

public interface Stateful Exanple {
int count();
String hell oWrld(String param;

}

When an interface class is not included with a Web Service, the Web Services
deployment exposes all public methods defined in the Java class. Using an interface,
for example St at el essExanpl e shown in Example 3-3 or St at ef ul Exanpl e
shown in Example 3-4, exposes only the methods listed in the interface.

Note: Using an interface, only the methods with the specified
method signatures are exposed when the Java class is prepared and
deployed as a Web Service.

Use a Web Services interface for the following purposes:
1. To limit the exposure of methods to a subset of the public methods within a class.

2. To expand the set of methods that are exposed as Web Services to include methods
within the superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a class,
where the subset contains only the methods that use supported types for
parameters or return values. Table 3-1 lists the supported types for parameters
and return values for Java methods that implement Web Services.

See Also: "Using Supported Data Types for Java Web Services" on
page 3-5

Writing a WSDL File (Optional)

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags to
allow a Web Service developer to generate WSDL files and client-side proxy files. You

3-4 Oracle Application Server Web Services Developer’s Guide

Writing Java Class Based Web Services

can use these tags to control whether the WSDL file and the client-side proxy are
generated. Using these tags you can also specify that the generated WSDL file or a
WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Using Supported Data Types for Java Web Services

Table 3-1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

Table 3-1 Web Services Supported Data Types

Primitive Type Object Type

Bool ean java. | ang. Bool ean
byt e java. |l ang. Byte
doubl e j ava. | ang. Doubl e
fl oat j ava. | ang. Fl oat

i nt java. |l ang. I nt eger
| ong java. | ang. Long
short java. | ang. Short
string java.lang. String

java.util.Date

java. util.Mp

or g. w3c. dom El enment

or g. w3c. dom Docunent

or g. w3c. dom Docunent Fr agnment

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Document Style Web Service implementations under Oracle Application Server Web
Services restrict the signature of the Java methods that implement the Web Service.
Only or g. w3c. dom El ement can be passed to or sent from these Web Services.

Note: The preceding restriction means that
or g. w3c. dom El enent types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

Note: Oracle Application Server Web Services does not support
El ement[], (arrays of or g. w3c. dom El enent).

Developing and Deploying Java Class Web Services 3-5

Preparing and Deploying Java Class Based Web Services

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

« It must have a constructor taking no arguments.
« It must expose all interesting state through properties.

« It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of property
types that are listed in Table 3-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates SOAP
structures to and from Java Beans by translating SOAP structure namespaces to and
from fully qualified Bean class names. If a Bean with the specified hame does not exist
in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather than
the client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as Oracle JDeveloper,
which work directly from WSDL documents can correctly call Oracle Application
Server Web Services with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type i nt , the equivalent
parameter in the proxy is of type j ava. | ang. | nt eger. This
mapping occurs for all primitive types.

See Also: Chapter 8, "Building Clients that Use Web Services"

Preparing and Deploying Java Class Based Web Services

To deploy a Java class as a Web Service you need to assemble a J2EE .ear file that
includes the deployment descriptors for the Oracle Application Server Web Services
Servlet and includes the Java class that supplies the Java implementation. This section
describes how to use the Oracle Application Server Web Services tool,

WebSer vi cesAssenbl er. WebSer vi cesAssenbl er takes an XML configuration
file that describes the Java Class Web Service and produces a J2EE .ear file that can be
deployed under Oracle Application Server Web Services.

This section contains the following topics.
« Creating a Configuration File to Assemble Java Class Web Services

« Running WebServicesAssembler To Prepare Java Class Web Services

Creating a Configuration File to Assemble Java Class Web Services

The Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web

3-6 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Services. This section describes how to create a configuration file to use with Java
Class Web Services.

Create a WebSer vi cesAssenbl er configuration file by adding the following:

« Adding Web Service Top Level Tags

« Adding Java Stateless Service Tags

« Adding Java Stateful Service Tags
« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 3-2 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a

<web- ser vi ce> tag in the configuration file.

Example 3-5 shows a complete conf i g. xml file, including the top level tags.

Table 3-2 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>

</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ destinati on- pat h>

<di spl ay- nanme>
disp_name
</ di spl ay- nanme>

<opti on nane="sour ce- pat h"

[cont extr oot ="pathl"] >
path2
<opti on>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to specify java

resources, or the name of an existing .war, .ear, or ejb-jar file that is used as a
source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot specifies the
root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="source- pat h"
contextroot="/test">/ nyTest Area/ ws/ src/stateful | .war</option>

Developing and Deploying Java Class Web Services 3-7

Preparing and Deploying Java Class Based Web Services

Table 3-2 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<st at el ess-j ava-servi ce> Use this tag to add a Java Web Services that defines a stateless service. See
sub-tags Table 3-3 for a description of valid sub-tags.

</ statel ess-j ava-servi ce>

<stateful -java-servi ce> Use this tag to add a Java Web Services that defines a stateful service. See
sub-tags Table 3-3 for a description of valid sub-tags.

</stateful -java-service>

<t enpor ary-directory> Specifies a directory where the assembler can store temporary files.
temp_dir

</tenporary-directory>

This tag is optional.

Adding Java Stateless Service Tags

Prepare Java Stateless Web Services using the WebSer vi cesAssenbl er

<st at el ess-j ava- servi ce>tag. This tag is included within a <web- ser vi ce>
tag in the configuration file. Add this tag to provide information required for
generating a Stateless Java Web Service.

Table 3-3 shows the <st at el ess-j ava- servi ce> sub-tags and the
<stateful -j ava- servi ce> sub-tags. As noted in Table 3-3, some of the sub-tags
listed only apply when using a <st at ef ul -j ava- servi ce>.

Example 3-5 shows a complete conf i g. xmi file, including
<st at el ess-j ava- servi ce>.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently.

Adding Java Stateful Service Tags

Prepare Java Stateful Web Services using the WebSer vi cesAssenbl er

<stateful -java-servi ce> tag. This tag is included within a <web- ser vi ce> tag
in the configuration file. Add this tag to provide information required for generating a
Stateful Java Web Service.

To support a clustered environment, for stateful Java Web Services with serializable
java classes, the WebSer vi cesAssenbl er adds a <di stri but abl e> tag in the
web. xm of the Web Service’s generated J2EE .ear file.

Table 3-3 shows the <st at ef ul - j ava- ser vi ce> sub-tags.

Example 3-5 shows a complete conf i g. xn file, including
<stateful -java-service>.

3-8 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Java Class Based Web Services

Table 3-3 Stateless and Stateful Java Service Sub-Tags

Tag

Description

<accept - unt yped- r equest >

val ue

</ accept - unt yped- r equest >

<cl ass-nane>
class
</ cl ass- nane>

<i nterface-nane>
interface
</interface-nanme>

<ej b-resource>
ejb-resource
</ ej b-resour ce>

<j ava-resource>
resource
</java-resource>

<message- styl e>
rpc
</ message- styl e>

<scope>
scope
</ scope>

<sessi on-ti neout >
value
</ sessi on-ti neout >

<uri>
URI
<luri>

Setting value to t r ue tells WebSer vi cesAssenbl er to allow the Web Service
to accept untyped requests. When the value is f al se, the Web Service does
not accept untyped-request.

Valid values: t rue, f al se

(case is not significant; TRUE and FALSE are also valid)
This tag is optional.

Default value: f al se

Specifies the fully qualified class name for the class that supplies the Web
Service implementation.

This tag is required

Specifies the fully qualified name of the interface that tells the Web Service
Servlet generation code which methods should be exposed as Web Services.

This tag is optional

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3-2.
This tag is optional

This is a backward compatibility tag.

See Also: the top level <option name="source-path"> tag in Table 3-2.
This tag is optional

Sets the message style. When defining a Java Web Service, if you include the
<message- st yl e> tag you must specify the value r pc.

Valid Values: doc, r pc

This tag is optional

Default value: r pc (when the <message- st yl e> tag is not supplied)
Sets the scope of the session for stateful services.

The <scope> tag only applies for stateful services. Use this tag only within
the <st at ef ul -j ava- servi ce>tag.

This tag is optional
Valid Values: appl i cati on, sessi on

Default Value: sessi on

Sets the session timeout for a stateful session.

The <sessi on-ti nmeout >tag only applies for stateful services. Use this tag
only within the <st at ef ul - j ava- servi ce> tag.

Specify value with an integer that defines the timeout for the session in
seconds. The default value for the session timeout for stateful Java sessions
where no session timeout is specified is 60 seconds.

This tag is optional

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <cont ext > to
specify the Web Service location.

This tag is required

Developing and Deploying Java Class Web Services 3-9

Preparing and Deploying Java Class Based Web Services

Example 3-5 Sample WebServicesAssembler Configuration File

<web- servi ce>

<di spl ay- name>Wb Services Exanpl e</ di spl ay- nane>

<descri ption>Java Wb Service Exanpl e</description>

<I-- Specifies the resulting web service archive will be stored in
.Iws_exanpl e. ear -->

<desti nation-pat h>. /ws_exanpl e. ear</ desti nati on- pat h>

<I'-- Specifies the tenporary directory that web service assenbly
tool can create tenporary files. -->

<tenporary-directory>./tnp</tenporary-directory>

<I'-- Specifies the web service will be accessed in the servlet context
naned "/webservices". -->

<cont ext >/ webser vi ces</ cont ext >

<I-- Specifies the web service will be stateless -->
<stat el ess-j ava- servi ce>
<interface-name>oracl e.j 2ee. ws_exanpl e. St at el essExanpl e</i nt er f ace- nane>
<cl ass- name>or acl e. j 2ee. ws_exanpl e. St at el essExanpl el npl </ cl ass- nane>
<I'-- Specifies the web service will be accessed in the uri named
"statel essTest" within the servlet context. -->
<uri>/statel essTest</uri>
<I-- Specifies the location of Java class files are under
src -->
<j ava-resource>./src</java-resource>
</statel ess-java-service>

<stateful -java-service>
<i nterface-name>oracl e. j 2ee. ws_exanpl e. St at ef ul Exanpl e</i nt erf ace- nane>
<cl ass- name>or acl e. j 2ee. ws_exanpl e. St at ef ul Exanpl el npl </ cl ass- nane>
<I'-- Specifies the web service will be accessed in the uri named
"stateful | Test” within the servliet context. -->
<uri>/stateful Test</uri>
<I-- Specifies the location of Java class files are under
src -->
<j ava-resource>./src</java-resource>
</stateful -java-servi ce>
</ web- servi ce>

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags to
allow a Web Service developer to generate WSDL files and client-side proxy files. You
can use these tags to control whether the WSDL file and the client-side proxy are
generated. Using these tags you can also specify that the generated WSDL file or a
WSDL file that you supply is packaged with the Web Service J2EE .ear.

A client-side developer can use the WSDL file that is obtained from a deployed Web
Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Running WebServicesAssembler To Prepare Java Class Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate a
J2EE .ear file for the Web Service. The J2EE .ear file includes the Java Web Service
servlet configuration information, including the file web. xm , and the Java classes and
interfaces that you supply.

3-10 Oracle Application Server Web Services Developer’'s Guide

Serializing and Encoding Parameters and Results for Web Services

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config config file

Where: config_file is the configuration file that contains the
<stat el ess-java-servi ce>orthe <stateful -java-servi ce> tags.

See Also:

« "Creating a Configuration File to Assemble Java Class Web
Services" on page 3-6

« "Running the Web Services Assembly Tool" on page 9-1

Deploying Java Class Based Web Services

After creating the J2EE .ear file containing the Java classes and the Web Services
Servlet deployment descriptors you can deploy the Web Service as you would any
standard J2EE application stored in an .ear file (to run under OC4)).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Serializing and Encoding Parameters and Results for Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation go through the following steps:

1. Parameters are serialized and encoded in XML when sent from the Web Service
client.

2. Parameters are deserialized and decoded from XML when the Web Service
receives a request on the server side.

3. Parameters or results are serialized and encoded in XML when a request is
returned from a Web Service to a Web Service client.

4. Parameters or results must be deserialized and decoded from XML when the Web
Service client receives a reply.

Oracle Application Server Web Services supports a prepackaged implementation for
handling these four steps for serialization and encoding, and deserialization and
decoding. The prepackaged mechanism makes the four serialization and encoding
steps transparent both for the Web Services client-side application, and for the Java
service writer that is implementing a Web Service. Using the prepackaged mechanism,
Oracle Application Server Web Services supports the following encoding mechanisms:

« Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the server
side Web Services Servlet that calls the Java class implementation handles
serialization and encoding internally for the types supported by Oracle
Application Server Web Services. Table 3-1 lists the supported Web Services
parameter and return value types when using standard SOAP v.1.1 encoding.

« Literal XML encoding. Using Literal XML encoding, a Web Service client can pass
as a parameter, or a Java service can return as a result, a value that is encoded as a
conforming W3C Document Object Model (DOM) or g. w3c. dom El enent .
When an El emrent passes as a parameter to a Web Service, the server side Java
implementation processes the or g. w3c. dom El ement . For return values sent

Developing and Deploying Java Class Web Services 3-11

Serializing and Encoding Parameters and Results for Web Services

from a Web Service, the Web Services client parses or processes the
org.w3c. dom El enment .

Note: For parameters to a Web Service or results that the Web
Service generates and returns to Web Services clients, the Oracle
Application Server Web Services implementation supports either
the Standard SOAP encoding or Literal XML encoding but not
both, for any given Web Service (Java method).

See Also: Chapter 8, "Building Clients that Use Web Services"

3-12 Oracle Application Server Web Services Developer’'s Guide

A

Developing and Deploying EJB Web Services

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that are implemented as stateless session Enterprise Java Beans
(EJBs).

This chapter covers the following topics:
« Using Oracle Application Server Web Services With Stateless Session EJBs
= Writing Stateless Session EJB Web Services

« Preparing and Deploying Stateless Session EJB Based Web Services

Using Oracle Application Server Web Services With Stateless Session
EJBs

This chapter shows sample code for writing Web Services implemented with stateless
session EJBs.

Oracle Application Server supplies Servlets to access the EJBs which implement a Web
Service. A Servlets handle requests generated by a Web Service client, locates the EJB
home and remote interfaces, runs the EJB that implements the Web Service, and
returns results back to the Web Service client.

See Also:
« Chapter 2, "Oracle Application Server Web Services"

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

« Chapter 8, "Building Clients that Use Web Services"

Writing Stateless Session EJB Web Services

Writing EJB based Web Services involves obtaining or building an EJB that implements
a service. The EJB should contain one or more methods that a Web Services Servlet
running under Oracle Application Server invokes when a client makes a Web Services
request. There are very few restrictions on what actions Web Services can perform. At
a minimum, Web Services usually generate data that is sent to a Web Services client or
perform an action as specified by a Web Services method request.

This section shows how to write a simple stateless session EJB Web Service,
Hel | oSer vi ce that returns a string, "Hello World", to a client. This EJB Web Service

Developing and Deploying EJB Web Services 4-1

Writing Stateless Session EJB Web Services

receives a client request with a single St r i ng parameter and generates a response that
it returns to the Web Service client.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracl e.comtech/javal/ oc4j/denos/ 1012/ i ndex. ht m

After expanding the Web Services deno. zi p file, the EJB based Web Service is in the
directory under / webser vi ces/ deno/ basi c/ statel ess_ej b on UNIXorin
\ webser vi ces\ denp\ basi c\ st at el ess_ej b on Windows.

Create a stateless session EJB Web Service by writing a standard J2EE stateless session
EJB containing a remote interface, a home interface, and an enterprise bean class.
Oracle Application Server Web Services runs EJBs that are deployed as Oracle
Application Server Web Services in response to a request issued by a Web Service
client.

Developing a stateless session EJB consists of the following steps:

« Defining a Stateless Session Remote Interface

« Defining a Stateless Session Home Interface

« Defining a Stateless Session EJB Bean

« Returning Results From EJB Web Services

« Error Handling for EJB Web Services

« Serializing and Encoding Parameters and Results for EJB Web Services
« Using Supported Data Types for Stateless Session EJB Web Services

« Writing a WSDL File for EJB Web Services (Optional)

See Also: "Preparing and Deploying Stateless Session EJB Based
Web Services" on page 4-6

Defining a Stateless Session Remote Interface

When looking at the Hel | oSer vi ce EJB Web Service, note that the .ear file,

Hel | oSer vi ce. ear defines the Web Service and its configuration files. In the sample
directory, the file Hel | oSer vi ce. j ava provides the remote interface for the

Hel | oSer vi ce EJB.

Example 4-1 shows the Renot e interface for the sample stateless session EJB.

Example 4-1 Stateless Session EJB Remote Interface for Web Service
package deno;

public interface Hell oService extends javax.ejb. EJBObject {
java.lang. String hello(java.lang. String phrase) throws java.rm .RenoteException;

}

Defining a Stateless Session Home Interface

The sample file Hel | oSer vi ceHone. j ava provides the home interface for the
Hel | oSer vi ce EJB.

Example 4-2 shows the EJBHomne interface for the sample stateless session EJB.

4-2 Oracle Application Server Web Services Developer's Guide

Writing Stateless Session EJB Web Services

Example 4-2 Stateless Session EJB Home Interface for Web Service
package deno;
/**
* This is a Home interface for the Session Bean
*/
public interface HelloServiceHonme extends javax.ejb. EJBHonme {

Hel | oService create() throws javax.ejb.CreateException, java.rm .RenoteException

}

Defining a Stateless Session EJB Bean

The sample file Hel | 0Ser vi ceBean. j ava provides the Bean logic for the

Hel | oSer vi ce EJB. When you create a Bean to implement a Web Service, the
parameters and return values must be of supported types. Table 4-1 lists the
supported types for parameters and return values for stateless session EJBs that
implement Web Services.

Example 4-3 shows the source code for the Hel | oSer vi ce Bean.

Example 4-3 Stateless Session EJB Bean Class for Web Services

package deno;

i nport java.rni.RenmoteException;
inport java.util.Properties;
inport javax.ejb.*;

/**
* This is a Session Bean d ass.
*/
public class HelloServiceBean inpl ements Sessi onBean {
private javax.ejb. SessionContext mySessionCtx = null;

public void ejbActivate() throws java.rni.RenoteException {}
public void ejbCreate() throws javax.ejb. CreateException, java.rni.RenoteException

{}

public void ejbPassivate() throws java.rm.RenoteException {}
public void ejbRenove() throws java.rm . RenoteException {}
public javax.ejb. Sessi onCont ext get Sessi onContext() {

return nySessionCtx;

}
public String hello(String phrase)
{
return "HELLO! You just said :" + phrase;
}

public void setSessi onContext (j avax. ej b. Sessi onCont ext ctx) throws
java.rm . Renot eException {
mySessi onQ x = ctx;
}
}

Developing and Deploying EJB Web Services 4-3

Writing Stateless Session EJB Web Services

Returning Results From EJB Web Services

The hel | o() method shown in Example 4-3 returnsa St ri ng. An Oracle
Application Server Web Services server-side Servlet runs the Bean that calls the

hel | o() method when the Servlet receives a Web Services request from a client. After
executing the hel | o() method, the Servlet returns a result to the Web Service client.

Example 4-3 shows that the EJB Bean writer only needs to return values of supported
types to create Web Services implemented as stateless session EJBs.

See Also: "Using Supported Data Types for Stateless Session EJB
Web Services" on page 4-4

Error Handling for EJB Web Services

When an error occurs while running a Web Service implemented as an EJB, the EJB
should throw an exception. When an exception is thrown, the Web Services Servlet
returns a Web Services (SOAP) fault. Use the standard J2EE and OC4J administration
facilities for logging Servlet errors for a Web Service that uses stateless session EJBs for
its implementation.

Serializing and Encoding Parameters and Results for EJB Web Services

Parameters and results sent between Web Service clients and a Web Service
implementation need to be encoded and serialized. This allows the call and return
values to be passed as XML documents using SOAP.

See Also: "Serializing and Encoding Parameters and Results for
Web Services" on page 3-11

Using Supported Data Types for Stateless Session EJB Web Services

Table 4-1 lists the supported data types for parameters and return values for Oracle
Application Server Web Services.

Table 4-1 Web Services Supported Data Types

Primitive Type Object Type

Bool ean j ava. | ang. Bool ean
byte java.l ang. Byte
doubl e java. | ang. Doubl e
fl oat j ava. | ang. Fl oat

i nt java.l ang. I nt eger
| ong java. | ang. Long
short j ava. | ang. Short
string java.lang. String

java.util.Date
java.util.Mp

or g. w3c. dom El enent
org. w3c. dom Docunent

or g. w3c. dom Docunent Fr agment

4-4 Oracle Application Server Web Services Developer’s Guide

Writing Stateless Session EJB Web Services

Table 4-1 (Cont.) Web Services Supported Data Types

Primitive Type Object Type

Java Beans (whose property types are listed in this table or are
another supported Java Bean)

Single-dimensional arrays of types listed in this table.

Note: Oracle Application Server Web Services does not support
El ement[], (arrays of or g. w3c. dom El enment).

Document Style Web Service implementations under Oracle Application Server Web
Services restrict the signature of the Java methods that implement the Web Service.
Only or g. w3c. dom El ement can be passed to or sent from these Web Services.

Note: The preceding restriction means that
or g. w3c. dom El enent types cannot be mixed as a parameter
with other types in methods that implement a Web Service.

A Bean, for purposes of Web Services, is any Java class which conforms to the
following restrictions:

« It must have a constructor taking no arguments.
« It must expose all interesting state through properties.

« It must not matter what order the accessors for the properties, for example, the
setX or getX methods, are in.

Oracle Application Server Web Services allows Beans to be returned or passed in as
arguments to J2EE Web Service methods, as long as the Bean only consists of property
types that are listed in Table 4-1 or are another supported Java Bean.

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates SOAP
structures to and from Java Beans by translating SOAP structure namespaces to and
from fully qualified Bean class names. If a Bean with the specified name does not exist
in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather than
the client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as Oracle JDeveloper,
which work directly from WSDL documents can correctly call Oracle Application
Server Web Services with Java Beans as parameters.

Note: When Web Service proxy classes and WSDL are generated,
all Java primitive types in the service implementation on the
server-side are mapped to Object types in the proxy code or in the
WSDL. For example, when the Web Service implementation
includes parameters of primitive Java type i nt, the equivalent
parameter in the proxy is of type j ava. | ang. | nt eger. This
mapping occurs for all primitive types.

Developing and Deploying EJB Web Services 4-5

Preparing and Deploying Stateless Session EJB Based Web Services

See Also: Chapter 8, "Building Clients that Use Web Services"

Writing a WSDL File for EJB Web Services (Optional)

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags to
allow a Web Service developer to generate WSDL files and client-side proxy files. You
can use these tags to control whether the WSDL file and the client-side proxy are
generated. Using these tags you can also specify that the generated WSDL file or a
WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Preparing and Deploying Stateless Session EJB Based Web Services

To deploy a stateless session EJB as a Web Service you need to assemble a J2EE .ear file
that includes the deployment descriptors for the Oracle Application Server Web
Services Servlet and includes the ejb.jar that supplies the Java implementation. This
section describes how to use the Oracle Application Server Web Services tool,
WebSer vi cesAssenbl er. WebSer vi cesAssenbl er takes an XML configuration
file that describes the stateless session EJB Web Service and produces a J2EE .ear file
that can be deployed under Oracle Application Server Web Services.

This section contains the following topics.
« Creating a Configuration File to Assemble Stateless Session EJB Web Services
« Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

« Deploying Web Services Implemented as EJBs

Creating a Configuration File to Assemble Stateless Session EJB Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use with stateless
session EJB Web Services.

Create Wb Ser vi cesAssenbl er configuration file by adding the following:
« Adding Web Service Top Level Tags

= Adding Stateless Session EJB Service Tags

» Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 4-2 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the Java Stateless Web
Service or a Java Stateful Web Service. These tags are included within a

<web- ser vi ce> tag in the configuration file.

Example 4-4 shows a complete confi g. xm file, including the top level tags.

4-6 Oracle Application Server Web Services Developer’s Guide

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-2 Top Level WbSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>
datasource
</ dat asour ce- JNDI - nane>

<descri pti on>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- nanme>
disp_name
</ di spl ay- name>

<option name="sour ce- pat h">
path
<opti on>

<st at el ess- sessi on-ej b-service>

sub-tags

</ st at el ess-sessi on-ej b-service>

<tenporary-directory>
temp_dir
</tenporary-directory>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_
path specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to

specify java resources, or the name of an existing .war, .ear, or
ejb-jar file that is used as a source file for the output J2EE .ear file.

When a .war file is supplied as input, the optional contextroot
specifies the root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option nane="source- path"
contextroot="/test">/ nyTest Area/ ws/ src/stateful | .war
</ option>

This tag is optional.

Use this tag to add a stateless session EJB Web Service. See
Table 4-3 for a description of the valid sub-tags.

Specifies a directory where the assembler can store temporary files.
This tag is optional.

Adding Stateless Session EJB Service Tags

Prepare Stateless Session EJB Web Services using the WebSer vi cesAssenbl er
<st at el ess- sessi on-ej b-servi ce> tag. This tag is included within a

<web- ser vi ce> tag in the configuration file. Add this tag to provide information
required for generating a stateless session EJB Web Service.

Table 4-3 shows the <st at el ess- sessi on- ej b- servi ce> sub-tags.

Example 4-4 shows a complete confi g. xm file, including
<st at el ess- sessi on-ej b-servi ce>.

Developing and Deploying EJB Web Services 4-7

Preparing and Deploying Stateless Session EJB Based Web Services

Table 4-3 Stateless Session EJB Web Service Sub-Tags

Tag

Description

<accept - unt yped- r equest >

val ue

</ accept - unt yped- r equest >

<ej b- name>
name
</ ej b- name>

<ej b-resource>
resource
</ ej b-resource>

<pat h>
path
</ pat h>

<uri>
URI
<luri>

Setting valueto t r ue tells WebSer vi cesAssenbl er to allow the Web Service
to accept untyped requests. When the value is f al se, the Web Service does
not accept untyped-request.

Valid values: t rue, f al se

(case is not significant; TRUE and FALSE are also valid)
This tag is optional.

Default value: f al se

Specifies the name of the stateless session EJB.

This tag is required

This is a backward compatibility tag.

See Also: the top level <opt i on name="sour ce- pat h" > tag in Table 4-2.
This tag is optional

This is a backward compatibility tag.

See Also: the top level <opt i on name="sour ce- pat h" > tag in Table 4-2.
This tag is optional

Specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <cont ext > to
specify the Web Service location.

This tag is required.

Example 4-4 Sample Stateless Session EJB WebServicesAssembler Configuration File

<web- servi ce>
<di spl ay- nane>EJB Wb Servi ces Deno</di spl ay- nanme>
<desti nati on- pat h>t np/ Hel | oSer vi ce. ear </ desti nat i on- pat h>
<t enpor ary-di rect ory>t np</ t enpor ary-di r ect ory>
<cont ext >/ sej b_webser vi ces</ cont ext >

<st at el ess- sessi on-ej b-servi ce>
<pat h>t np/ Hel | 0. j ar </ pat h>
<uri>/ Hel | oServi ce</uri >
<ej b- nane>Hel | oSer vi ce</ ej b- name>
</ statel ess-sessi on-ej b-servi ce>
</ web-servi ce>

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags to
allow a Web Service developer to generate WSDL files and client-side proxy files. You
can use these tags to control whether the WSDL file and the client-side proxy are
generated. Using these tags you can also specify that the generated WSDL file or a
WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

4-8 Oracle Application Server Web Services Developer's Guide

Preparing and Deploying Stateless Session EJB Based Web Services

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Running WebServicesAssembler To Prepare Stateless Session EJB Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate a
J2EE .ear file for the Web Service. The J2EE .ear file includes the stateless session EJB
Web Service servlet configuration information.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config config file

Where: config_file is the configuration file that contains the
<st at el ess- sessi on-ej b-servi ce> tag.
See Also:

« "Creating a Configuration File to Assemble Stateless Session
EJB Web Services" on page 4-6

« "Running the Web Services Assembly Tool" on page 9-1

Deploying Web Services Implemented as EJBs

After creating the .ear file containing a stateless session EJB, you can deploy the Web
Service as you would any standard J2EE application stored in an .ear file (to run under
OC4)).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server Documentation Library

Developing and Deploying EJB Web Services 4-9

Preparing and Deploying Stateless Session EJB Based Web Services

4-10 Oracle Application Server Web Services Developer’'s Guide

D

Developing and Deploying Stored Procedure
Web Services

This chapter describes how to write and deploy Oracle Application Server Web
Services implemented as stateless PL/SQL Stored Procedures or Functions (Stored
Procedure Web Services). Stored Procedure Web Services enable you to export, as
services running under Oracle Application Server Web Services, PL/SQL procedures
and functions that run on an Oracle database server.

This chapter covers the following topics:

« Using Oracle Application Server Web Services with Stored Procedures
« Writing Stored Procedure Web Services

« Preparing Stored Procedure Web Services

« Deploying Stored Procedure Web Services

« Limitations for Stored Procedures Running as Web Services

Using Oracle Application Server Web Services with Stored Procedures

This chapter shows sample code for writing Web Services implemented with stateless
PL/SQL stored procedures or functions. The sample is based on a PL/SQL package
representing a company that manages employees.

Oracle Application Server Web Services supplies a Servlet to access Java classes that
support PL/SQL Stored Procedure Web Services. The Servlet handles requests
generated by a Web Service client, runs the Java method that accesses the stored
procedure that implements the Web Service, and returns results back to the Web
Service client.

The Oracle database server supports procedures implemented in languages other than
PL/SQL, including Java and C/C++. These stored procedures can be exposed as Web
Services using PL/SQL interfaces.

See Also:
« Chapter 2, "Oracle Application Server Web Services"

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 6, "Developing and Deploying Document Style Web
Services"

Developing and Deploying Stored Procedure Web Services 5-1

Writing Stored Procedure Web Services

Writing Stored Procedure Web Services

Writing Stored Procedure Web Services involves creating and installing a PL/SQL
package on an Oracle database server that is available as a datasource to Oracle
Application Server and generating a Java class that includes one or more methods to
access the Stored Procedure.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracl e.conltech/javal/ oc4j/denps/ 1012/ i ndex. htm

After expanding the Web Services deno. zi p file, the sample Stored Procedure Web
Service is supplied in the directory under webser vi ces/ deno/ basi c/ st ored_
procedur e on UNIX orinwebser vi ces\ deno\ basi c\ st or ed_procedure on
Windows.

Create a Stored Procedure Web Service by writing and installing a PL/SQL Stored
Procedure. To write and install a PL/SQL Stored Procedure, you need to use facilities
independent of Oracle Application Server Web Services.

For example, to use the sample COVPANY package, first create and load the supplied
package on the database server using the cr eat e. sqgl script. This script, along with
several other required . sql scripts are in the st or ed_pr ocedur e directory. These
scripts create several database tables and the sample COMPANY package.

When the Oracle database server is running on the local system, use the following
command to create the sample PL/SQL package:

sql plus scott/tiger @reate

When the Oracle database server is not the local system, use the following command
and include a connect identifier to create the sample PL/SQL package:

sql pl us scott/tiger@b_service _nane @reate
where db_service_name is the net service name for the Oracle database server.

See Also:

« "Limitations for Stored Procedures Running as Web Services"
on page 5-9

» PL/SQL User’s Guide and Reference in the Oracle Database
Documentation Library

« Oracle Net Services Administrator’s Guide in the Oracle Database
Documentation Library

Preparing Stored Procedure Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file that supports using a PL/SQL
procedure or function as a Stored Procedure Web Service.

This section contains the following topics:
« Creating a Configuration File to Assemble Stored Procedure Web Services
« Running WebServicesAssembler With Stored Procedure Web Services

« Setting Up Datasources in Oracle Application Server Web Services (OC4J)

5-2 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services

Creating a Configuration File to Assemble Stored Procedure Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use to assemble a
Stored Procedure Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Stored Procedure Web Service and produces a
J2EE .ear file that can be deployed under Oracle Application Server Web Services.

Create WebSer vi cesAssenbl er configuration file by adding the following:

« Adding Web Service Top Level Tags

« Adding Stateless Stored Procedure Java Service Tags

« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 5-1 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the PL/SQL Stored
Procedure Web Service.

Example 5-1 shows a complete conf i g. xml file, including the top level tags.

Table 5-1 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>
datasource
</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ desti nati on- pat h>

<di spl ay- name>
disp_name
</ di spl ay- name>

<option name="sour ce- pat h">
path
<opti on>

<st at el ess- st or ed- pr ocedur e-
j ava-servi ce>

sub-tags

</ st at el ess-stored-procedure
-j ava-service>

<t emporary-directory>
temp_dir
</tenporary-directory>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Includes a specified file in the output .ear file. Use this option to include
Java resources.

The path specifies the path to the file to include.

Use this tag to add stateless stored procedure Web Services. See Table 5-2
and Table 5-4 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.

This tag is optional.

Developing and Deploying Stored Procedure Web Services 5-3

Preparing Stored Procedure Web Services

Adding Stateless Stored Procedure Java Service Tags

There are two ways to develop Stored Procedure Web Services using the
WebSer vi cesAssenbl er:

» Adding Stateless Stored Procedure Java Service Using Jar Generation

» Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Note: Most Stored Procedure Web Service developers use the Jar
generation technique for assembling the Web Service J2EE .ear file.
Only use the pre-generated Jar technique for creating a J2EE .ear
when you have a pre-generated Jar file containing Oracle
JPublisher generated classes.

Adding Stateless Stored Procedure Java Service Using Jar Generation

Using a configuration file that includes the <j ar - gener at i on> tag specifies Oracle
Database Server connection information that allows the WebSer vi cesAssenbl er to
run Oracle JPublisher to generate the classes to support the Stored Procedure Web
Service. The Oracle JPublisher generated classes support accessing the PL/SQL
procedure or function and also includes classes for mapping Java types to PL/SQL
types. The WebSer vi cesAssenbl er packages the generated classes into a Jar file
that is assembled with the Stored Procedure Web Service.

Table 5-2 describes the <st at el ess- st or ed- procedur e-j ava- servi ce>
WebSer vi cesAssenbl er configuration file tags used when creating a configuration
file that uses Jar generation to create a Stored Procedure Web Service. The

<st at el ess- st ored- procedur e-j ava- servi ce> tag is included within a
<web- servi ce> tag in the configuration file. Add this tag to provide information
required for generating the Stored Procedure Web Service J2EE .ear file.

Table 5-3 describes the sub-tags for <j ar - gener at i on> within the

<st at el ess-st ored- procedure-java-servi ce>tag. The<j ar-generation>
tags provide information to the WebSer vi cesAssenbl er so that it can run Oracle
JPublisher to generate the Java classes for the Stored Procedure Web Service. The
WebSer vi cesAssenbl er then uses these classes to generate the Jar file that provides
Java mappings for the stored procedure or function.

Example 5-1 shows a complete conf i g. xm file, including the Stored Procedure Web
Service tags shown in Table 5-2 and Table 5-3.

5-4 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services

Table 5-2 Stateless Stored Procedure Sub-Tags (Using Jar Generation)

Tag

Description

<dat abase- JNDI - nane>

source_JNDI_name

</ dat abase- JNDI - nane>

<j ar-generation>

sub-tags

</jar-generation>

<uri>
URI
</uri>

This tag specifies the JNDI name of the backend database.

The data-sources.xml OC4J configuration file describes the database server source
associated with the specified source_JNDI_name.

Table 5-3 describes the supported sub-tags for <j ar - gener ati on>.
Example:

<j ar-generation>
<schema>scott/ti ger</schema>
<db-url >j dbc: oracl e: t hin: @yst eml: 1521: or cl </ db- url >
<pref i x>sp. conpany</ prefi x>
<db- pkg- name>Conpany</ db- pkg- nane>
</jar-generation>
This tag specifies servlet mapping pattern for the Servlet that implements the Web

Service. The path specified as the URI is appended to the <cont ext > to specify
the Web Service location.

Table 5-3 Stateless Stored Procedure <jar-generation> Sub-Tags

Tag

Description

<db- pkg- nane>
pkg_name
</ db- pkg- nanme>

<db-url >
url_path
</ db-url >

<nmet hod- name>
method
</ met hod- nane>

<prefix>
prefix
</ prefix>

<schena>
user_name/password
</ schema>

Where pkg_name is the name of the PL/SQL package to export.
This is required when <j ar - gener at i on> is included.

Where url_path is the database connect string for the Oracle database server with the
specified package to export. The <schenma> and <db- ur | > are combined to connect
to the database which contains the stored procedures to be exported.

This is required when <j ar - gener at i on> is included.
Example:

<db-ur | >j dbc: oracl e: t hi n: @ystent. us. oracl e. com 1521: tvi</db-url >

Where method is the name of the PL/SQL method to export.

This tag is optional. Including multiple <rmet hod> tags is valid. In this case the
specified methods are exported.

Without this tag, all methods within the package are exported. If the specified
method is overloaded, then all variations of the method are exported.

Where prefix is the Java package prefix for generated classes.

By default, the PL/SQL package is generated into a Java class in the default Java
package.

This tag is optional.

Example:

<pr ef i x>sp. conpany</ pref i x>

This tag includes the Database Server user_name/password:
where:

user_name is the database user name.

password is the database password for the specified user name.
This tag is required when <j ar - gener at i on> is included.
Example:

<schema>scott/tiger</schema>

Developing and Deploying Stored Procedure Web Services 5-5

Preparing Stored Procedure Web Services

Example 5-1 Sample WebServicesAssembler Configuration File For Stored Procedure
Using <jar-generation> Tag

<web- servi ce>

<di spl ay- nane>Web Servi ces Exanpl e</di spl ay- name>

<descri ption>Java Wb Service Exanpl e</descri ption>

<I-- Specifies the resulting web service archive will be stored in ./spexanple.ear -->
<destination-path>./spexanpl e. ear </ desti nati on- pat h>

<l-- Specifies the tenporary directory that web service assenbly tool can create tenporary files. -->
<t enpor ary-directory>/tnp</tenporary-directory>

<I-- Specifies the web service will be accessed in the servlet context naned "/webservices". -->
<cont ext >/ webser vi ces</ cont ext >

<I-- Specifies the web service will be stateless -->

<st at el ess-stored- procedure-j ava- servi ce>
<j ar-generation>
<schema>scott/tiger</schema>
<db-url >j dbc: oracl e: thi n: @yst entl: 1521: or cl </ db-ur| >
<prefi x>sp. conpany</ prefix>
<db- pkg- name>Conpany</ db- pkg- nane>
</jar-generation>
<l-- Specifies the web service will be accessed in the uri naned
"statel essSP" within the servlet context. -->
<uri>/statel essSP</uri >
<dat abase- JNDI - name>/ j dbc/ Or acl eDat aSour ce</ dat abase- JNDI - nane>
</ st atel ess-stored-procedure-java-servi ce>
<wsdl - gen>
<wsdl - di r>wsdl </ wsdl - dir>
<I--force "true' wll wite over existing wsdl -->
<option name="force">true</ option>
<l'-- change this to point to your soap servers http listener -->
<option name="httpServer URL">http://| ocal host: 8888</ opti on>
</wsdl - gen>
<pr oxy- gen>
<pr oxy- di r >proxy</ pr oxy-di r >
<l-- include-source "true’ wll create an additional jar with only the proxy source-->
<option name="incl ude- source" >t rue</ option>
</ proxy-gen>

</ web- servi ce>

Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

Using a configuration file that specifies the stored procedure <cl ass- nane> and

<i nt er f ace- nanme> assembly options when a pre-generated Jar file that includes the
required classes to support the Web Service is available. The <cl ass- nhane> and

<i nt er f ace- name> tags specified in a configuration file support using a previously
generated Jar file that contains the Java classes that provide a mapping between the
PL/SQL procedure or function and the Web Service.

Table 5-4 describes the <st at el ess- st or ed- procedur e-j ava- servi ce>
WebSer vi cesAssenbl er configuration file tags used when creating a configuration
file that uses a pre-generated Jar file to create a Stored Procedure Web Service. The
<st at el ess- st ored- procedur e-j ava- servi ce> tag is included within a
<web- servi ce> tag in the configuration file. Add this tag to provide information
required for generating the Stored Procedure Web Service J2EE .ear file.

The <cl ass> and <i nt er f ace> tags that are added to the
<st at el ess-st ored- procedur e-j ava- servi ce>only when using a
pre-generated Jar file.

5-6 Oracle Application Server Web Services Developer’s Guide

Preparing Stored Procedure Web Services

Table 5-4 Stateless Stored Procedure Sub-Tags (Using Pre-generated Jar File)

Tag

Description

<cl ass- nane>
class
</ cl ass- name>

<dat abase- JNDI - nane>
source_JNDI_name
</ dat abase- JNDI - nane>

<i nterface-nane>
interface
</interface-nanme>

<j ava-resource>
resource
</java-resource>

<uri>
URI
<luri>

The Stored Procedure Web Services Servlet definition requires a <par am nane>
with the value class-name and a corresponding <par am val ue> set to the fully
qualified name of the Java class that accesses the PL/SQL Web Service
implementation.

You need to use the configuration file <cl ass- nane> tag to supply the class
name for this parameter; you can find the class name in the Jar file you provide
that is specified in the top level <opti on nane="sour ce- pat h" > tag.

This tag specifies the JNDI name of the backend database.

The dat a- sour ces. xm OC4J configuration file describes the database server
source associated with the specified source_JNDI_name.

A Stored Procedure Web Services Servlet definition requires a <par am nane>
with the value interface-name, and a corresponding <par am val ue> set to the
fully qualified name of the Java interface that specifies the methods to include in
the stored procedure Web Service.

The <i nt er f ace- name> tag provides the name of the interface that tells the Web
Service Servlet generation code which methods should be exposed as Web
Services. You can find the interface name in the Jar file you provide that is
specified in the top level <opti on nane="sour ce- pat h" > tag.

This is a backward compatibility tag.
See Also: the top level <option name="source-path"> tag in Table 5-1.
This tag is optional.

The Stored Procedure pre-generated Jar file should be specified using the

<j ava- r esour ce> tag. The class specified with the <cl ass- name> tag and the
interface specified with the <i nt er f ace- nanme> tag must exist in the resource
specified in the <j ava- r esour ce> tag(s).

This tag specifies servlet mapping pattern for the Servlet that implements the Web
Service. The path specified as the URI is appended to the <cont ext > to specify
the Web Service location.

See Also:

"Adding Stateless Stored Procedure Java Service Using Jar
Generation"” on page 5-4

Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er configuration file supports the <wsdl - gen> and
<pr oxy- gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control
whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Stored Procedure Style Web Service J2EE
.ear. A client-side developer can then use the WSDL file that is obtained from the
deployed Web Service to build an application that uses the Web Service.

See Also:

"Generating WSDL Files and Client Side Proxies" on

page 9-3

Developing and Deploying Stored Procedure Web Services 5-7

Preparing Stored Procedure Web Services

Running WebServicesAssembler With Stored Procedure Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate a
J2EE .ear file for the Stored Procedure Web Service. The J2EE .ear file includes Stored
Procedure Web Service servlet configuration information, including the file web. xni ,
and Oracle JPublisher generated classes (the WebSer vi cesAssenbl er collects the
Oracle JPublisher generated classes into a single Jar file that it includes in the
generated J2EE .ear).

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config ny_pl_service_config

Where: my_pl_service_config is the configuration file that contains the
<st at el ess- st ored- procedur e-j ava- servi ce> tag.

See Also:

« "Creating a Configuration File to Assemble Stored Procedure
Web Services" on page 5-3

= "Running the Web Services Assembly Tool" on page 9-1

Setting Up Datasources in Oracle Application Server Web Services (0C4J)

To add Web Services based on PL/SQL Stored Procedures you need to set up data
sources in OC4J by configuring dat a- sour ces. xml . Configuring the

dat a- sour ces. xm file points OC4J to a database. The database should contain
PL/SQL Stored Procedure packages that implement a Stored Procedure Web Service.

A single database connection is created when OC4] initializes a Web Services Servlet
instance. The resulting database connection is destroyed when OC4J removes the Web
Services Servlet instance. Each Stored Procedure Web Services Servlet implements a
single threaded model. As a result, any Web Services Servlet instance can only service
a single client’s database connection requests at any given time. OC4J pools the Web
Services Servlet instances and assigns instances to Oracle Application Server Web
Services clients.

Every invocation of a PL/SQL Web Service is implicitly a separate database
transaction. It is not possible to have multiple service method invocations run within a
single database transaction. When such semantics are required, the user must write a
PL/SQL procedure that internally invokes other procedures and functions, and then
expose the new procedure as another method in a Stored Procedure Web Service (but
Oracle Application Server Web Services does not provide explicit support or tools to
do this).

When using an emulated data source with CLOB or BLOB types in the stored
procedure, the emulated data source must use the | ocat i on attribute to specify the
JNDI name. The name cannot be specified using the ej b- | ocat i on.

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

5-8 Oracle Application Server Web Services Developer’s Guide

Limitations for Stored Procedures Running as Web Services

Deploying Stored Procedure Web Services

After creating the J2EE .ear file containing the Stored Procedure Web Service
configuration, class, Jar, and support files you can deploy the Web Service as you
would any standard J2EE application stored in a J2EE .ear file (to run under OCA4J).

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Limitations for Stored Procedures Running as Web Services

This section covers the following topics:

Supported Stored Procedure Features for Web Services
Unsupported Stored Procedure Features for Web Services

Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web
Services

TIMESTAMP and DATE Granularity Limitation
LOB (CLOB/BLOB) Emulated Data Source Limitation

Supported Stored Procedure Features for Web Services
Stored Procedure Web Services support the following PL/SQL features:

1.
2.

PL/SQL stored procedures, including both procedures and functions.

IN, OUT, IN, INOUT parameter modes. When a stored procedure contains OUT or
INOUT parameters, the INOUT and OUT data are passed back to the client as
attributes of the returned objects. The declared stored procedure return value, if
the stored procedure is a function, will also be included as an attribute of the
returned objects INOUT parameter modes.

Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported as a Web Service).

Overloaded procedures. Oracle JPublisher may map multiple PL/SQL types into
the same Java type. For example, different PL/SQL number types may all map to
Javai nt . This means that methods that were considered overloaded in PL/SQL
are no longer overloaded in Java. In this case the Java method names will be
renamed to avoid compilation errors for the generated code. However, at runtime,
the PL/SQL engine may report PLS- 00307 error (too many declarations of
<method name> match this call). The error is due to PL/SQL limitation on
overloading resolution.

Simple PL/SQL types

The following simple types are supported. NULL values are supported for all of
the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings for
these simple types.

VARCHAR2 (STRING, VARCHAR), LONG, CHAR (CHARACTER), NUMBER
(DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT, NUMERIC,
REAL, SMALLINT), PLS_INTEGER, BINARY_INTEGER (NATURAL,
NATURALN, POSITIVE, POSITIVEN), BOOLEAN

Developing and Deploying Stored Procedure Web Services 5-9

Limitations for Stored Procedures Running as Web Services

10.

TIMESTAMP is supported, along with variations TIMESTAMP WITH LOCAL
TIME ZONE and TIMESTAMP WITH TIME ZONE.

DATE is supported.
User-defined Object Types.

Oracle JPublisher and Oracle Application Server Web Services provide support for
the following LOB types: BLOB, CLOB, and BFILE.

If your PL/SQL procedures use LOB types as input/output types, then the
WebServices Assembler will not publish those stored procedures that will cause
runtime errors. For instance, the WebServices Assembler will not publish a method
containing BFILE as an IN parameter.

SYS.XMLTYPE is supported. SYS.XMLTYPE is mapped into the type,
org.w3c.dom.DocumentFragment in Web Services.

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Unsupported Stored Procedure Features for Web Services

Stored Procedure Web Services impose the following limitations on PL/SQL functions
and procedures:

1.

Only procedures and functions within a PL/SQL package are exported as Web
Services. Top-level stored procedures must be wrapped inside a package. Methods
must be wrapped into package-level methods with a default "this" reference.

NCHAR and related types are not supported.

Oracle JPublisher translates almost all PL/SQL types to Java types. The
deployment tools for Stored Procedure Web Services generate "jdbc" style for
builtin and number types and "oracle" style for user types and lob types. The lob
types are converted to java types that can be serialized/deserialized by Web
Services. The user types that conform to java beans are also serialized/deserialized
by Web Services. Check the Oracle JPublisher documentation for full details of
these styles, and for the caveats associated with them.

Fractional seconds in a TIMESTAMP value are not preserved when using Stored
Procedure Web Services.

TIMESTAMP as a field in a user defined ADT is not supported. However, DATE as
a field in a user defined ADT is supported.

See Also: Oracle9i JPublisher User’s Guide in the Oracle Database
Documentation Library

Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services

Using a Oracle Database Server of Release 9.2.0.1 or earlier, or with a Database Server
that is not Java-enabled, then you must install the SYS.SQLJUTIL package into the SYS
schema to support PL/SQL BOOLEAN arguments.

The PL/SQL script that defines this package is located at the following location on
UNIX:

${ ORACLE_HOWVE}/sql j/1ib/sgljutil.sql

On Wndows systens, this script is located at the follow ng |ocation:

5-10 Oracle Application Server Web Services Developer’'s Guide

Limitations for Stored Procedures Running as Web Services

Y%ORACLE_HOVE% sql j\lib\sqgljutil.sql

TIMESTAMP and DATE Granularity Limitation

Fractional seconds in a TIMESTAMP value are not preserved when using Stored
Procedure Web Services.

LOB (CLOB/BLOB) Emulated Data Source Limitation

When using an emulated data source with CLOB or BLOB types, the emulated data
source must use the | ocat i on attribute to specify the INDI name. The name cannot
be specified using the ej b- | ocat i on.

Developing and Deploying Stored Procedure Web Services 5-11

Limitations for Stored Procedures Running as Web Services

5-12 Oracle Application Server Web Services Developer's Guide

6

Developing and Deploying Document Style
Web Services

This chapter describes the procedures you use to write and deploy Oracle Application
Server Web Services that handle document style messages and are implemented as
Java classes.

This chapter covers the following topics:

« Using Document Style Web Services

« Writing Document Style Web Services

« Preparing Document Style Web Services

« Deploying Document Style Web Services

Using Document Style Web Services

This chapter describes Document Style Web Services that are implemented with Java
classes and describes the difference between writing stateful and stateless Document
Style Java Web Services.

The sample code is supplied on the Oracle Technology Network Web site,
http://otn.oracle.comtech/javal/ oc4j/denos/1012/i ndex. htm

After expanding the Web Services deno. zi p file, the Document Style Web Services
samples are in the st at el ess and st at ef ul directories under

webser vi ces/ deno/ basi c/j ava_doc__servi ces on UNIXorin

webser vi ces\ denp\ basi c\j ava_doc_servi ces on Windows.

Oracle Application Server supplies Servlets to access the Java classes which you write
to implement a Web Service. The Servlets handle messages generated by Web Services
clients and dispatch them to run the Java methods that implement Document Style
Web Services. After a Web Service is deployed, when a client makes a service request
(uses a service) the Oracle Application Server Web Services runtime, using an
automatically generated Web Services Servlet invokes the methods that you
implement to support the Document Style Web Service.

Developing and Deploying Document Style Web Services 6-1

Writing Document Style Web Services

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"
« Chapter 7, "Developing and Deploying IMS Web Services"
« Chapter 8, "Building Clients that Use Web Services"

Writing Document Style Web Services

Writing Document Style Java Web Services involves building a Java class that includes
one or more methods using supported method signatures; the java class includes
methods that either handle an incoming message or return an outgoing message.

This section covers the following topics:
« Supported Method Signatures for Document Style Web Services
= Writing Stateless and Stateful Document Style Web Services

= Writing Classes and Interfaces for Document Style Web Services

Supported Method Signatures for Document Style Web Services

Table 6-1 shows the supported method signatures for Document Style Web Services.
The Oracle Application Server Web Services runtime verifier rejects Document Style
Web Services that do not conform to the method signatures listed in Table 6-1.

The El enent input parameter and El enent return value shown in the method
signatures in Table 6-1 must conform to the Document Object Model (DOM) as
specified by the W3C (or g. w3c. dom El enent) .

Table 6-1 Supported Method Signatures for Document Style Java Web Services

Method Signature Description

public El ement op_Name(El enent e _name) The method op_Name is a Document Style Web Service
operation implemented as a Java method that takes an
El enent e_name as an input parameter and returns an
El ement .

publ i c El enent get Name() The method get_Name is a Document Style Web Service
operation implemented as a Java method that takes no input
parameters and returns an El enent .

public void set Name(El ement e_name) The method set_Name is a Document Style Web Service
operation implemented as a Java method that takes an
El enent e_name as an input parameter and returns nothing.

Passing Null Values for Document Style Web Services

Anul | could be passed as an input El erent or as the El enent that the Document
Style Web Service returns.

Arrays of Elements

Oracle Application Server Web Services does not support El ement [] (arrays of
org.w3c. dom El enent).

6-2 Oracle Application Server Web Services Developer’s Guide

Writing Document Style Web Services

See Also:

« "Handling Messages for Document Style Web Services" on
page 6-6

. http://ww. w3. or g/ DOV for information on the W3C
Document Object Model (DOM)

Writing Stateless and Stateful Document Style Web Services

Oracle Application Server Web Services supports stateful and stateless
implementations for Document Style Java classes running as Web Services. For a
stateful Java implementation, Oracle Application Server Web Services allows a single
Java instance to serve the Web Service requests from an individual client.

For a stateless Java implementation, Oracle Application Server Web Services creates
multiple instances of the Java class in a pool, any one of which may be used to service
a request. After servicing the request, the object is returned to the pool for use by a
subsequent request.

Note: Itis the job of the Web Services developer to make the
design decision to implement a stateful or stateless Web Service.
When packaging Web Services, stateless and stateful Web Services
are handled slightly differently. This chapter describes these
differences in the section, "Preparing Document Style Web Services"
on page 6-6.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

Writing Classes and Interfaces for Document Style Web Services
Developing a Document Style Java Web Service consists of the following steps:

« Defining Methods in a Document Style Web Service
» Defining an Interface for Explicit Method Exposure

« Handling Messages for Document Style Web Services

Defining Methods in a Document Style Web Service

Create a Document Style Web Service by writing or supplying a Java class with
methods that are deployed as a Document Style Web Service. The st at ef ul and

st at el ess sample directories contain sample stateless and stateful Document Style
Web Services. In the sr ¢ directories, the file St at ef ul Docl npl . j ava provides the
implementation of the sample stateful Java service and St at el essDocl npl . j ava
provides the implementation of the stateless Document Style Web Service. These
examples use interface classes; the use of interface classes is optional when
implementing Document Style Web Services.

A Java class that implements a Document Style Web Service has the following
limitations:

« TheJava class should define public methods that conform to the method
signatures shown in Table 6-1. If you use an interface, then only the public

Developing and Deploying Document Style Web Services 6-3

Writing Document Style Web Services

methods specified in the interface need to conform to the method signature
restrictions. If you do not include an interface, then all the public methods in the
class must conform to the method signature restrictions shown in Table 6-1.

« ThelJava class implementation must include a public constructor that takes no
arguments.

There are very few restrictions on what actions a Document Style Java class based web
service can perform. At a minimum, the service performs some action to handle an
incoming message (El ement) or to generate an outgoing message (El enent).

The St at el essDoc Web Service sample is implemented with St at el essDocl npl
a public class and the interface St at el essDoc. The St at el essDocl npl class
defines two public methods: di spl ayEl enent (), that displays the incoming
message on the server where the web service runs, and pr ocessEl enent (), that
takes an incoming message and returns a transformed message to the client. The
private method appl yXSLt oXM.() is a helper method that transforms the incoming
message, as specified in the convert er. xsl file.

Example 6-1 shows the method signatures for the St at el essDocl npl class (see the
sr ¢ directory to view the complete source code for St at el essDocl npl).

Example 6-1 Defining Java Methods for a Stateless Document Style Web Service
i nport org.w3c.dom*;

import oracle.xnl.parser.v2.*;
inport java.io.*;

public class StatelessDocl npl inplements Statel essDoc

{
public Statel essDocl npl ()

{}

/1 Display the Element that was sent
public void displayEl enent (El ement e)

{1

/I'method to process the input xm doc
public El ement processEl enent(El enent e)

{}

/**

* This Method Transforms an XM. Document into another using the provided
* Style Sheet: converter.xsl. Note : This Method makes use of XSL

* Transformation capabilities of Oracle XM. Parser Version 2.0

**/

private El ement appl yXSLt oXML(El enent e)

throws Exception

{}

The St at ef ul Doc Web Service sample is implemented with St at ef ul Docl npl , a
public class and the interface St at ef ul Doc. The St at ef ul Docl npl class defines
two public methods: st art Shoppi ng() that initializes the state of the customer
information and nakePur chase() , that modifies the state of the customer
information and returns the updated information to the client. The private method
processEl enment () is a helper method that processes the customer’s XML element
representing a purchase and returns the updated XML element.

6-4 Oracle Application Server Web Services Developer’s Guide

Writing Document Style Web Services

Example 6-2 shows the method signatures for the St at ef ul Doc class (see the src
directory to view the complete source code for St at ef ul Docl npl).

Example 6-2 Defining Java Methods for a Stateful Document Style Web Service

i nport org.w3c.dom *;
inport oracle.xm.parser.v2. *;

public class Stateful Doclnpl inplements Stateful Doc
private Elenent e ;
public void start Shoppi ng(El enent e)

{

}

public El ement makePurchase()

{

}

private void processEl enent(El enent e) {
}

Defining an Interface for Explicit Method Exposure

Oracle Application Server Web Services allows you to limit the methods you expose as
Document Style Web Services by supplying a public interface. To limit the methods
exposed in a Web Service, include a public interface that lists the method signatures
for the methods that you want to expose. Example 6-3 shows an interface for the
methods in the class St at el essDocl npl . Example 6-4 shows an interface for the
methods in the class St at el f ul Docl npl .

When an interface is included with a Document Style Web Service, then only the
public methods specified in the interface need to conform to the method signature
restrictions shown in Table 6-1. If you do not include an interface, then all the public
methods in the class must conform to the method signature restrictions. Using an
interface, for example St at el essDoc shown in Example 6-3, only the methods with
the specified method signatures are exposed when the Java class is prepared and
deployed as a Document Style Web Service.

Use a Document Style Web Service interface for the following purposes:
1. To limit the exposure of methods to a subset of the public methods within a class.

2. To expand the set of methods that are exposed to include methods within the
superclass of a class.

3. To limit the exposure of methods to a subset of the public methods within a class,
where the subset contains only the methods that use supported method
signatures. Table 6-1 lists the supported signatures for Java methods that
implement Document Style Web Services.

Example 6-3 Using a Public Interface to Expose Stateless Java Services
inport org.w3c.dom *;

public interface Statel essDoc

{
/I method to display the el enment
public void displayEl enent (El enment e) ;
/Imethod to process the input xm doc
public Element processEl enent (El enent e) ;
}

Developing and Deploying Document Style Web Services 6-5

Preparing Document Style Web Services

Example 6-4 Using a Public Interface to Expose Stateful Java Services
i nport org.w3c.dom El enent ;

Il Interface that inplenents getElenment and setEl ement
public interface Stateful Doc {

Il Set the El enment
public void startShoppi ng(El enent e);

/! Retrieve the elenment that was set
public El ement makePurchase();

Handling Messages for Document Style Web Services

It is entirely up to the Web Service developer to determine the processing that occurs
for messages associated with a Document Style Web Service.

The message associated with a Document Style Web Service is specified in the

El emrent parameter or the El erent return value associated with the Document Style
Web Service. It is the Document Style Web Service developer’s job to process or
generate messages. The only limitation on Document Style Web Service messages is
that the El ement must conform to must conform to the Document Object Model
(DOM) as specified by the W3C (or g. w3c. dom El enent) .

A Document Style Web Service implementation or the client that uses a service may
need to supports nul | values, since anul | could be passed as an input El enent or
as the El ement that is returned.

For example, the following is valid for a Document Style Web Service implementation:

El ement get_op () {
return null;

}

Preparing Document Style Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file for a stateless and stateful
Document Style Web Service implemented as Java classes.

To deploy a Java class that implements a Document Style Web Service, you need to
assemble a J2EE .ear file that includes the deployment descriptors for the Oracle
Application Server Web Services Servlet and the Java classes that supply the Java
implementation. A Web Service implemented with Java classes includes a .war file that
provides configuration information for the Web Services Servlet running under Oracle
Application Server Containers for J2EE (OC4J). This section describes the procedures
you use to create a configuration file to use with the WebSer vi cesAssenbl er.

This section contains the following topics:
« Creating a Configuration File to Assemble Document Style Web Services

= Running WebServicesAssembler With Document Style Web Services

6-6 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Creating a Configuration File to Assemble Document Style Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create a configuration file to use to assemble a
Document Style Web Service. The Web Services assembly tool uses an XML
configuration file that describes the Document Style Web Service. The

WebSer vi cesAssenbl er uses the configuration file to produce a J2EE .ear file that
can be deployed under Oracle Application Server Web Services.

Create WebSer vi cesAssenbl er configuration file by adding the following:

« Adding Web Service Top Level Tags

« Adding Java Service Tags with Document Message Style Specified
« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 6-2 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the Document Style Web

Service.

Example 6-5 shows a complete stateless sample configuration file. Example 6-6 shows
a complete stateful sample configuration file. The st at el ess and st at ef ul
directories in thej ava_doc_servi ces deno directory contain the sample

confi g. xm files.

Table 6-2 Top Level WbSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>
name
</ dat asour ce- JNDI - nane>

<descri pti on>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ destinati on- pat h>

<di spl ay- nanme>
disp_name
</ di spl ay- name>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Developing and Deploying Document Style Web Services 6-7

Preparing Document Style Web Services

Table 6-2 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<option Includes a specified file in the output .ear file. Use this option to specify java
name=sour ce- pat h" > resources, or the name of an existing .war, .ear, or ejb-jar file that is used as a
path source file for the output J2EE .ear file.

<opti on>

<st at el ess-j ava-servi ce>
sub-tags
</ st atel ess-j ava-service>

<stateful -java-servi ce>
sub-tags
</stateful -java-service>

<t enpor ary-directory>
temp_dir
</ tenporary-directory>

When a .war file is supplied as input, the optional contextroot specifies the
root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<option name="source- pat h"
contextroot="/test">/ nyTest Area/ ws/ src/stateful | .war</option>

This tag is optional.

Use this tag to add a Document Style Web Services that defines a stateless
service. See Table 6-3 for a description of valid sub-tags.

Use this tag to add a Document Style Web Services that defines a stateful
service. See Table 6-3 for a description of valid sub-tags.

Specifies a directory where the assembler can store temporary files.
This tag is optional.

Adding Java Service Tags with Document Message Style Specified

The Document Style Web Service developer determines if the service is stateful or
stateless. The configuration file includes different tags depending on the type of the
service. This section covers the tags for both cases, including:

« Adding Stateful Document Style Java Service Tags

« Adding Stateless Document Style Java Service Tags

Table 6-3 Java Service WebServicesAssembler Configuration Tags - Document Style

Tag

Description

<cl ass- nanme>
value
</ cl ass- nane>

The Document Style Web Service definition requires at least one <cl ass- nane>
tag. The value specifies the name of the Java class that provides the Document Style
Web Service implementation.

This tag is required.

<i nterface-nane>
interface
</interface-nanme>

A Document Style Web Service configuration file supports the optional
<i nt er f ace- nane> tag. The corresponding interface value supplied specifies the
name of the Java interface that lists the methods to include in the Document Style

Web Service.

This tag is optional.

<j ava-resource>
resource
</java-resource>

This tag supports adding a Java resource. This specifies the location of the java
resources to include in the Document Style Web Service.

Include multiple <j ava- r esour ce> tags to include multiple Java resources.

This tag is optional

6-8 Oracle Application Server Web Services Developer’s Guide

Preparing Document Style Web Services

Table 6-3 (Cont.) Java Service WebServicesAssembler Configuration Tags - Document Style

Tag

Description

<message- styl e>
doc
</ message- styl e>

<scope>
value
</ scope>

<sessi on-ti neout >
value
</ sessi on-ti neout >

<uri>
URI
<luri>

When defining a Document Style Web Service, you must include the
<message- st yl e>tag and specify the value doc.

Valid Values: doc, r pc
This tag is required for Document Style Web Services.
Default value: r pc (when the <message- st yl e> tag is not supplied)

The <scope> tag only applies for stateful services. Use this tag only within the
<stateful -java-servi ce>tag.

This tag is optional.
Valid Values: appl i cati on, sessi on
Default Value: sessi on

This optional parameter only applies for stateful services. Use this tag only within
the <st at ef ul - j ava- servi ce> tag.

Specify value with an integer that defines the timeout for the session timeout.
session. The default value for the session timeout for stateful Java sessions where
no session timeout is specified is 60 seconds.

This tag is optional.

This tag specifies servlet mapping pattern for the Servlet that implements the
Document Style Web Service. The path specified as the URI is appended to the
<cont ext > to specify the Document Style Web Service location.

This tag is optional.

Adding Stateful Document Style Java Service Tags

Table 6-3 describes the <st at ef ul - j ava- servi ce>WbSer vi cesAssenbl er
configuration file tags. Use these tags when creating a configuration file for a stateful
Document Style Web Service.

Example 6-5 shows a complete confi g. xm file, including the stateful Document
Style Web Service tags.

Adding Stateless Document Style Java Service Tags

Table 6-3 describes the <st at el ess-j ava- servi ce>WebSer vi cesAssenbl er
configuration file tags to use when creating a stateful Document Style Web Service.
The <st at el ess-j ava- servi ce> tag is included within a <web- ser vi ce> tag in
the configuration file. Add this tag to provide information required for generating a
stateless Document Style Web Service J2EE .ear file.

Example 6-6 shows a complete confi g. xm file, including the stateless Document
Style Web Service tags.

Note: Deploying a stateful Java implementation class as a stateless
Document Style Web Service could yield unpredictable results.

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er configuration file supports the <wsdl - gen> and
<pr oxy- gen> tags to allow a Web Service developer to generate Web Service
description WSDL files and client-side proxy files. You can add these tags to control

Developing and Deploying Document Style Web Services 6-9

Preparing Document Style Web Services

whether the WSDL file and the client-side proxy are generated. You can also specify
that the WSDL file be assembled with the Document Style Web Service .ear. A
client-side developer can then obtain the WSDL file from the deployed Web Service
and use it to build an application.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Example 6-5 Sample Stateful Java WebServicesAssembler Configuration File for a Document Style Web
Service

<web- service>
<di spl ay- nane>St at ef ul Java Docunment Wb Service</di spl ay- name>
<description>Stateful Java Docunent Wb Service Exanpl e</description>
<I-- Specifies the resulting web service archive will be stored in ./docws.ear -->
<destination-pat h>./docws. ear </ desti nati on- pat h>
<l-- Specifies the tenporary directory that web service assenbly tool can create tenporary files. -->
<tenporary-directory>. /tenp</tenporary-directory>
<I-- Specifies the web service will be accessed in the servlet context naned "/docws". -->
<cont ext >/ st at ef ul docws</ cont ext >

<I-- Specifies the web service will be stateful -->

<stateful -java-service>
<interface-name>St at ef ul Doc</i nt er f ace- name>
<cl ass- name>St at ef ul Docl npl </ cl ass- name>
<l-- Specifies the web service will be accessed in the uri naned "/docService" within the servlet

context. -->

<uri >/ docservice</uri>
<I-- Specifies the location of Java class files ./classes -->
<j ava-resource>./cl asses</java-resour ce>
<I-- Specifies that it uses docunent style SOAP messaging -->
<nmessage- st yl e>doc</ message- styl e>

</ stateful -java-service>

<l-- generate the wsdl -->

<wsdl - gen>

<wsdl - di r>wsdl </ wsdl - di r>

<l-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</ option>

<option name="httpServer URL">http:// | ocal host: 8888</ opti on>

</ wsdl - gen>

<l-- generate the proxy -->

<proxy- gen>
<proxy-di r>proxy</ proxy-dir>
<option name="incl ude- source">true</ option>
</ proxy- gen>
</ web- servi ce>

Example 6-6 Sample Stateless Java WebServicesAssembler Configuration File for a Document Style Web
Service

<web- service>
<di spl ay- name>St at el ess Java Document Web Servi ce</ di spl ay- name>
<descri ption>Statel ess Java Document b Service Exanpl e</descri ption>
<I-- Specifies the resulting web service archive will be stored in ./statel essdocws. ear -->
<destination-path>./statel essdocws. ear </ desti nati on- pat h>
<l-- Specifies the tenporary directory that web service assenbly tool can create tenporary files. -->
<tenporary-directory>./tenp</tenporary-directory>

6-10 Oracle Application Server Web Services Developer’'s Guide

Deploying Document Style Web Services

<l-- Specifies the web service will be accessed in the serviet context named "/statel essdocws". -->
<cont ext >/ st at el essdocws</ cont ext >

<l-- to package the stylesheet to format input xm -->

<opti on name="source-path">converter.xsl </ opti on>

<I'-- Specifies the web service will be stateless -->

<stat el ess-j ava-servi ce>
<interface-name>St at el essDoc</i nt er f ace- nanme>
<cl ass-nanme>$St at el essDocl npl </ ¢l ass- nane>
<l-- Specifies the web service will be accessed in the uri named "/docService" within the servlet
context. -->

<uri >/ docservice</uri >
<I-- Specifies the location of Java class files ./classes -->
<j ava-resource>./cl asses</java-resource>
<I-- Specifies that it uses docunent style SOAP nessaging -->
<nmessage- st yl e>doc</ message- styl e>

</ statel ess-j ava-servi ce>

<l-- generate the wsdl -->

<wsdl - gen>

<wsdl - di r>wsdl </ wsdl - di r>

<I-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</option>
<option name="httpServer URL">http:/ /| ocal host: 8888</ opti on>

</ wsdl - gen>

<l-- generate the proxy -->

<pr oxy- gen>
<pr oxy- di r >pr oxy</ pr oxy-di r >
<option name="i ncl ude- sour ce" >t rue</ opti on>
</ proxy- gen>

</ web- servi ce>

Running WebServicesAssembler With Document Style Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate a
J2EE .ear file for the Document Style Web Service. The J2EE EAR file includes
Document Style Web Service servlet configuration information, including the
generated file web. xmri , and the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config ny_service_config

Where: my_service_config is the configuration file that contains the
<statel ess-java-servi ce>orthe<stateful -java-service>tag.

See Also:

« "Creating a Configuration File to Assemble Document Style
Web Services" on page 6-7

« "Running the Web Services Assembly Tool" on page 9-1

Deploying Document Style Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any standard
J2EE application stored in an .ear file (to run under OC4J).

Developing and Deploying Document Style Web Services 6-11

Deploying Document Style Web Services

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

6-12 Oracle Application Server Web Services Developer’'s Guide

v

Developing and Deploying JMS Web
Services

This chapter describes the procedures you use to configure, deploy, and build Oracle
Application Server Web Services that expose JMS destinations, including JMS Queues
and JMS Topics as Web Services. This chapter also covers writing a backend JMS
message processor to consume incoming JMS messages and to generate outgoing JMS
messages.

Oracle Application Server Web Services supports asynchronous message facilities with
JMS Web Services.

This chapter covers the following topics:

« JMS Web Services Overview

« Writing JMS Web Services and Handling Messages
« Preparing and Configuring JMS Web Services

« Deploying JMS Web Services

= Limitations for JMS Web Services

JMS Web Services Overview
This section covers the following topics:
« Using JMS Web Services

« JMS Web Services Backend Message Processing

Using JMS Web Services

The sample code for IMS Web Services is supplied on the Oracle Technology Network
Web site,

http://otn.oracle.comtech/javal oc4j/denos/ 1012/i ndex. ht n

After expanding the Web Services deno. zi p file, the samples are in the denol and
deno2 directories under webser vi ces/ deno/ basi ¢/ j ms_servi ce on UNIX and
webser vi ces\ denmp\ basi c\j ns_servi ce.

JMS Web Services examples show both OC4J/JMS and Oracle JMS. In the samples,
denopl uses OC4J/IMS and denp?2 uses Oracle JMS.

Using JMS Web Services, Oracle Application Server supplies a Servlet that supports
two operations on messages: a send operation and a r ecei ve operation. Using these
two operations, if the destination is a IMS Queue, send means enqueue, and r ecei ve

Developing and Deploying JMS Web Services 7-1

JMS Web Services Overview

means dequeue. If the destination is a topic, send means publish and r ecei ve means
subscribe. An individual JMS Web Service can support just the send operation, just the
receive operation, or both operations, as determined by the service developer.

The JMS Web Service determines how to handle incoming and outgoing messages for
JMS destinations based on the configuration of the JMS Web Service and on the
operation specified by the client-side program that uses the JMS Web Service. The
Oracle Application Server Web Services runtime verifier throws an exception if the
operation supplied by a JIMS Web Service client is invalid. For example, if the
deployment operation is send, and the request isr ecei ve, an exception is thrown.

The client-side message associated with a JMS Web Service is an XML document that
conforms to the Document Object Model (DOM) as specified by the W3C

(org. w3c. dom El ement) . For a send operation, it is the client-side developer’s job
to deliver a message of the correct form to a JMS Web Service. And likewise, for a
receive operation, the client must handle the message it receives from a JIMS Web
Service.

See Also: http://java. sun. coni products/jns/ for
information on JMS

JMS Web Services Backend Message Processing

A JMS Web Service consists of configuration information that defines the Web Service,
and, in addition the server-side developer provides code that consumes the messages
that a JMS Web Service client sends, or generates the messages that the client receives.

This section describes the architecture for processing JMS messages associated with a
JMS Web Service and covers the following topics:

« Using an MDB for Message Processing

« Using a JMS Client for Message Processing

Using an MDB for Message Processing

A JMS Web Service either sends messages to a JMS destination or receives messages
from a JMS destination and can use an MDB on the backend for generating and
consuming messages. For example, Figure 7-1 shows an MDB based JMS Web Service
that, from the JMS Web Service client’s view, handles both the message send and the
message r ecei ve operations.

7-2 Oracle Application Server Web Services Developer’s Guide

JMS Web Services Overview

Figure 7-1 MDB Based JMS Web Service

0C4J

EJB Container

JMS JMS
Destination 2 Destination 1

o &
l J‘7 HTTP
@ - g HTTP u

JMS Servlet %
Client

Figure 7-1 includes an MDB that is configured to listen to a JMS destination. The MDB
based JMS Web Service works with the following steps:

1.

A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

The JMS Web Service processes the incoming message and directs it to a IMS
destination, JMS Destination 1.

The EJB container invokes the MDB listening on JMS Destination 1.

After processing the message an MDB produces a new message on JMS
Destination 2. Producing and consuming messages could involve one or more
MDBs. For example, a single MDB could be listing on JMS Destination 1 and the
same MDB could also send the message to JMS Destination 2.

(Arrows 5 and 6) A JMS Web Service client performs ar ecei ve operation on the
JMS Web Service to receive a message. The JMS Web Service consumes a message
from the JMS destination, processes it, and passes the outgoing message to the
client.

Using a JMS Client for Message Processing

Using a JMS client for message processing, the JMS Web Service does not assemble,
deploy, or run the JMS code on the backend. A separate JMS program that runs outside
of the JMS Web Service, as a standalone JMS client, is responsible for generating and
consuming the JMS messages that are associated with the JMS Web Service.

For example, Figure 7-2 shows a JMS Web Service that use a server-side JMS client for
message processing.

Developing and Deploying JMS Web Services 7-3

Writing JMS Web Services and Handling Messages

Figure 7-2 JMS Client Based JMS Web Service

A

'|JMS DEST 2| Qi

: <l 4 IMS
Client

. JMS DEST 1 >

' ©

1

g
0C4J e

| Gale—= g umw
| Receive: 7 @ HTTP u

JIMS Servlet r_é;)
Client

The JMS Web service includes only configuration information that supports handling
messages and using JMS destinations. The JMS client based JMS Web Service works
with the following steps:

1. A JMS Web Service client performs a send operation on the JMS Web Service to
send a message.

2. The JMS Web Service then processes the incoming message and directs it to JMS
DEST 1.

3. The JMS client processes the incoming message on JMS DEST 1. The incoming
message could be identified using a message listener, or by other means.

4. After processing the incoming message the JMS client may produce a new
message on JMS DEST 2. The message on JMS DEST 2 could be produced by
another JMS client or by the same JMS client.

5. (Arrows 5 and 6) A JMS Web Service client performs ar ecei ve operation on the
JMS Web Service to receive a message. The JMS Web Service consumes an
outgoing message from the JMS destination and passes the message to the client.

Writing JMS Web Services and Handling Messages
Writing a JIMS Web Service presents a server-side developer with two tasks:
1. Building the backend message processing program for a JMS Web Service.
2. Preparing and configuring a JIMS Web Service.
This section covers the following:
« Using an MDB for Backend Message Processing
» Using a JMS Standalone Program for Backend Message Processing

« Message Processing and Reply Messages

7-4 Oracle Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages

See Also:
« "Preparing and Configuring JMS Web Services" on page 7-8
« Chapter 4, "Developing and Deploying EJB Web Services"

Using an MDB for Backend Message Processing

When a JMS Web Service uses an MDB for generating or consuming messages, the
MDB must be assembled with the JMS Web Service. In this case, the MDB is packaged
as part of the J2EE .ear file that is deployed as a JIMS Web Service.

Using an MDB with a JMS Web Service, the server-side developer is responsible for
performing the following steps:

« Developing the MDB that Processes Incoming Messages
« Developing the MDB that Generates Outgoing Messages
« Compiling and Preparing the MDB EJB.jar File

« Assembling the JIMS Web Service With the MDB

« Defining the Server-Side Resource References

Note: A given JMS Web Service may process incoming messages,
generate outgoing messages, or do both.

Developing the MDB that Processes Incoming Messages

The MDB that processes incoming messages, generated from a JMS Web Service send
operation, must include an onMessage() method with the following characteristics:

« TheonMessage() method should be declared as publ i ¢, butnot fi nal or
static

« TheonMessage() method should have a return type of voi d

« TheonMessage() method should have one argument of type
j avax.j ms. Message. The JMS Web Service only supports messages of type
hj ect Message, so the MDB developer should cast the incoming JMS Web
Service message to an OGbj ect Message.

« The message payload is available from the message using the get Obj ect ()
method on the incoming JMS message and casting to the El enent type.

Example 7-1 shows an MDB method that handles an incoming JMS Message. Also see
MessageBean. j ava in the denpl directory for the complete code.

Example 7-1 Sample Incoming onMessage() Method for JMS Web Service

public void onMessage(Message inMessage) {
bj ect Message nsg = nul | ;
El ement e;

try {

/1 Message should be of type objectMessage

if (inMessage instanceof ObjectMessage) {
Il retrieve the object
msg = (Obj ect Message) i nMessage;
e = (E enent)nsg. get Ovj ect ();
processEl enent (e);
t hi s. send2Queue(e);

} else {

Developing and Deploying JMS Web Services 7-5

Writing JMS Web Services and Handling Messages

System out. println("MessageBean: : onMessage() => Message of wong type: "
+ inMessage. get G ass(). get Nane());

} catch (JMSException ex) {
ex. print StackTrace();
mdc. set Rol | backOnl y();

} catch (Throwable te) {
te. printStackTrace();

}
}

Developing the MDB that Generates Outgoing Messages

An MDB that generates an outgoing message, consumed by a JMS Web Service
r ecei ve operation, must include code that produces a message on a JMS destination
with the following characteristics:

« The message placed on the JMS destination should be of type:
j avax. j ns. Message.Cbj ect Message.

« Set the payload of the message using the set Obj ect () method on the outgoing
JMS message and casting to the j ava. i 0. Seri al i zabl e type.

Example 7-2 shows a code fragment that creates an outgoing message of the correct
type. For the complete code for this example, see MessageBean2. j ava in the denn2
directory.

Example 7-2 Sample Outgoing Message for JIMS Web Service

Il Create an Object Message

message = queueSessi on. creat eChj ect Message() ;

Il Stuff the result into the ObjectMessage

((Obj ect Message) nessage) . set Cbj ect ((j ava.io. Serializable)ee);
/1 Send the Message

queueSender . send(message) ;

Compiling and Preparing the MDB EJB.jar File

After compiling the MDB classes, create an EJB .jar file that includes the MDB and its
required deployment information.

Assembling the JMS Web Service With the MDB

Assemble the MDB'’s EJB.jar file with the IMS Web Service .ear file using the
WebSer vi cesAssenbl er tool and a configuration file containing the top-level tag
<opti on nane=sour ce- pat h" > that specifies the EJB .jar, and the

<j ms- doc- ser vi ce> that defines the IMS Web Service configuration.

See Also:
« "Preparing and Configuring JIMS Web Services" on page 7-8
« "Deploying JMS Web Services" on page 7-13

7-6 Oracle Application Server Web Services Developer’s Guide

Writing JMS Web Services and Handling Messages

Defining the Server-Side Resource References
Define the resource references associated with the JMS destinations that the IMS Web
Service uses:

« If the MDB uses OC4J/JMS, define the resource references in the OC4J j nms. xm
configuration file.

« If the MDB uses Oracle JMS, then run the sql files that support access to the Oracle
JMS destinations.

See Also: Chapter 3, "AQ Programmatic Environments" in the
Application Developer’s Guide - Advanced Queuing in the Oracle9i
Database Documentation library

Using a JMS Standalone Program for Backend Message Processing

Using a JMS standalone program on the backend for the JMS Web Service, the
server-side developer is responsible for performing the following steps:

1. Developing the JMS client that defines the JMS destinations, handles incoming
messages, processes them, and produces the outgoing messages. The JMS client
can also perform processing that uses a JMS destination that triggers an MDB.

2. Assembling the JIMS Web Service .ear file using the WebSer vi cesAssenbl er
tool and a configuration file containing the top-level tag <j ns- doc- ser vi ce>.

3. Defining the resource references associated with JMS destinations in the
OC4)/IMS j ns. xm configuration file. If the JMS destinations are defined in
Oracle JMS, then the developer must run the sql files that initialize the access to
the Oracle JMS destinations.

See Also:
« "Using an MDB for Backend Message Processing" on page 7-5

« "Deploying JMS Web Services" on page 7-13

Note: When a JMS Web Service uses standalone a JMS client to
consume or generate messages, the standalone client cannot be
assembled with the JMS Web Service.

Message Processing and Reply Messages

The JMS Web Service processes an incoming message, a JMS Web Service send
operation message, and places the message on a JMS destination. This section covers
details that a developer needs to know to consume and process the IMS messages that
originate from a JMS Web Service.

The client-side message associated with a JMS Web Service is an XML document that
conforms to the Document Object Model (DOM) as specified by the W3C

(org. w3c. dom El enent) . When a JMS Web Service is sent an El enrent from a Web
Service client, it creates a JMS Cbj ect Message that contains the El enent . The IMS
Web Service may set certain header values before it places the message on a JMS
destination. Depending on the values of optional configuration tags specified when
the JMS Web Service is assembled, the IMS Web Service sets the following JMS
Message Headers:

JMSType
JMSRepl yTo

Developing and Deploying JMS Web Services 7-7

Preparing and Configuring JMS Web Services

JVBExpi ration
JMSPriority
JMBDel i ver yMode

When the JMS Web Service sets the JMSRepl yTo header, it uses either the value
specified with the <r epl y-t o- t opi c-r esour ce-r ef > or the

<repl y-t o- queue-r esour ce- r ef > (only one of these should be configured for
any given JMS Web Service). The value specified with the

<repl y-to-connection-factory-resource-ref>tagissetonthe message as a
standard string property. The property name is OC4J_REPLY_TO FACTORY_NAME.

Example 7-3 provides a code segment that shows where the onMessage() method
gets the Repl yTo information for message generated from a JMS Web Service send
operation:

Example 7-3

public void onMessage(Message i nMessage) {
/1 Do sonme processing
oj ect Message msg = nul | ;

String fact or yName;
Destination dest;

El enent el ;

try {

/'l Message shoul d be of type objectMessage
i f (inMessage instanceof ObjectMssage) {
Il retrieve the object
msg = (Qbj ect Message) inMessage;
el = (El ement)nsg. get Chj ect();
Systemout. println("MessageBean2: : onMessage() => Message received: ");
((XMLEl enent) el). print(Systemout);
processEl ement (el);
factoryNane = i nMessage. get StringProperty("OC4J_REPLY_TO FACTORY_NAME');
dest = inMessage. get IMSRepl yTo();

See Also:

« "Developing the MDB that Processes Incoming Messages" on
page 7-5

« "Adding JMS Doc Service Tags" on page 7-10

Preparing and Configuring JMS Web Services

This section describes how to use the Oracle Application Server Web Services tool
WebSer vi cesAssenbl er to prepare a J2EE .ear file for a JMS Web Service.

To deploy a JMS Web Service, you need to assemble a J2EE .ear file. The J2EE .ear file
can include the following:

« The deployment descriptors for the Oracle Application Server Web Services
Servlet.

« If the JIMS Web Service also includes an MDB, then the J2EE .ear also includes a Jar
file that supplies the MDB implementation. This component is optional. To expose
JMS Queues or Topics as IMS Web Services, you are not required to include an
MDB Jar file with the JMS Web Service.

7-8 Oracle Application Server Web Services Developer’s Guide

Preparing and Configuring JMS Web Services

This section describes the procedures you use to create a configuration file to use with
the WebSer vi cesAssenbl er.

This section contains the following topics:

« Creating a Configuration File to Assemble JMS Web Services

« Running WebServicesAssembler With JMS Web Services

Creating a Configuration File to Assemble JMS Web Services

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. This section describes how to create an XML configuration file that describes
the JMS Web Service to be assembled.

Create WebSer vi cesAssenbl er configuration file by adding the following:

« Adding Web Service Top Level Tags
« Adding JMS Doc Service Tags
« Adding WSDL and Client-Side Proxy Generation Tags

Adding Web Service Top Level Tags

Table 7-1 describes the top level WebSer vi cesAssenbl er configuration file tags.
Add these tags to provide top level information describing the IMS Web Service.

Example 7-4 shows a complete IMS Web Service sample configuration file. The denol
and deno?2 directories in the j ms_ser vi ce directory contain complete confi g. xm
files for JIMS Web Services.

Table 7-1 Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description
<cont ext > Specifies the context root of the Web Service.
context

</ cont ext >

<dat asour ce- JNDI - nane>
name
</ dat asour ce- JNDI - nane>

<descri ption>
description
</ descri ption>

<desti nati on- pat h>
dest_path
</ destinati on- pat h>

<di spl ay- nane>
disp_name
</ di spl ay- nanme>

This tag is required.

Specifies the datasource associated with the Web Service.

Provides a simple description of the Web Service.

This tag is optional.

Specifies the name of the generated J2EE .ear file output. The dest_path
specifies the complete path for the output file.

This tag is required.

Specifies the Web Service display name.

This tag is optional.

Developing and Deploying JMS Web Services 7-9

Preparing and Configuring JMS Web Services

Table 7-1 (Cont.) Top Level WebSer vi cesAssenbl er Configuration Tags

Tag Description

<opti on nanme="source- pat h"> Includes a specified file in the output .ear file. Use this option to specify
path java resources, or the name of an existing .watr, .ear, or ejb-jar file that is
<opti on> used as a source file for the output J2EE .ear file.

<j ms- doc- servi ce>
sub-tags
</j nms-doc-service>

<t errpor ary-di rectory>
temp_dir
</tenporary-directory>

When a .war file is supplied as input, the optional contextroot specifies
the root-context for the .war file.

pathl specifies the context-root for the .war.
path2 specifies the path to the file to include.
For example:

<opti on name="source-path"
contextroot="/test">/ nyTest Area/ ws/src/stateful | .war</option>

This tag is optional.

Use this tag to add a JIMS Web Service. See Table 7-2 for a description of
the valid sub-tags.

Specifies a directory where the assembler can store temporary files.
This tag is optional.

Adding JMS Doc Service Tags

The <j ns- doc- ser vi ce> defines the configuration information for a JMS Web
Service. The JMS Web Service developer determines if the service supports send
operations, receive operations, or both send and receive, based on the value of the
<oper at i on> sub-tag. Some of the configuration file tags are only valid, depending
on the operation selected for the Web Service. Table 7-2 lists all the supported

<j ms-doc- servi ce>sub-tags, and includes information on whether each is valid,
based on the operation specified.

Table 7-2 JMS Service \WbSer vi cesAssenbl er Configuration Tags

Tag

Description

<connection-factory-reso
urce-ref>

resource-ref

</ connection-factory-res
ource-ref>

<j ms-del i very- node>
delivery-mode
</jms-delivery-node>

<j ms-expiration>
expiration
</jms-expiration>

<j ms- nessage-type>
message-type
</j ns- nessage-type>

Specifies the Topic Connection Factory or Queue Connection Factory resource
reference resource-ref for the JMS destination associated with the JMS Web
Service.

This tag is required.

Sets the JMSDel i ver yMode message header to the specified delivery-mode
value for the IMS message that is created with a send operation.

This tag is valid when the <oper at i on>value is: send or bot h
This tag is optional.

Sets the JMSEXpi r at i on message header to the specified expiration value for
the JMS message that is created with a send operation.

This tag is valid when the <oper at i on> value is: send or bot h
This tag is optional.

Sets the JMBTy pe for the message to the specified message-type for the IMS
message that is created with a send operation

This tag is valid when the <oper at i on>value is: send or bot h
This tag is optional.

7-10 Oracle Application Server Web Services Developer’'s Guide

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebSer vi cesAssenbl er Configuration Tags

Tag Description
<jnms-priority> Sets the JMSPr i or i t y message header to the specified priority value for the
priority JMS message that is created with a send operation.

</jms-priority> This tag is valid when the <oper at i on> value is: send or bot h

This tag is optional.

<recei ve-timeout > Provides a configurable timeout value to specify the receive timeout in
timeout milliseconds. This specifies the time in milliseconds that a receive operation
</receive-tineout > waits for a new message.

This tag is valid when the <oper at i on> value is: r ecei ve or bot h

When this tag is not specified or when the value is set to 0, a JMS receive
operation blocks indefinitely. Valid values are 0 and positive integers.

Default value: 0

This tag is optional.
<operati on> Specifies the operation op that the JMS Web Service supports.
op . . .
</ oper at i on> Using the send and r ecei ve operation:

« Ifthe destination is a JMS Queue, send means enqueue, and r ecei ve
means dequeue.

« Ifthe destination is a topic, send means publish and r ecei ve means
subscribe.

The send operation uses the <connect i on-f act ory-resour ce-ref>and
the corresponding JMS destination <queue- r esour ce- r ef > or

<t opi c- r esour ce- r ef > to determine the JMS destination for a send
operation on the service.

With the receive operation, when the

<repl y-to-connecti on-factory-resource-ref>tag is not set, then the
r ecei ve operation uses the <connecti on-f act ory-resour ce-ref >and
the corresponding JMS destination <queue- r esour ce- r ef > or

<t opi c-resour ce-r ef >. When the
<reply-to-connection-factory-resource-ref >tagis set, then the
<repl y-t o- *> tags specify the IMS destination for r ecei ve operations.

Valid values: send, r ecei ve, bot h
Default value: bot h
This tag is optional.

<gueue-resource-ref> Specifies the resource reference queue-ref of the destination JMS queue.
queue-ref

Either a <t opi c-r esour ce-r ef >or a<queue-resource-ref >mustb
</ queue- r esour ce-r ef > e op 0 ef >ora<queue 0 e e

specified, but not both. When a <queue- r esour ce- r ef > is specified, the
<connecti on-factory-resour ce-ref>must refer to a corresponding
Queue connection factory.

<repl y-to-connection-fac Ifthe<operati on> specified is bot h, then r ecei ve operations use the

tory-resource-ref> <reply-to-connection-factory-resource-ref>. Thespecified
reply-to-conn-factory-res-ref reply-to-conn-factory-res-ref value specifies the JMS destination connection
</reply-to-connection-fa factory forrecei ve operations. Also, if the MDB, or any JMS consumer,
ctory-resource-ref> expects to send results back then the name of the destination connection factory

to which the reply message will be sent has to be specified in this parameter.
See Also: "Message Processing and Reply Messages" on page 7-7.
This tag is optional.

Developing and Deploying JMS Web Services 7-11

Preparing and Configuring JMS Web Services

Table 7-2 (Cont.) JMS Service WebSer vi cesAssenbl er Configuration Tags

Tag

Description

<repl y-t 0- queue-resour ce
-ref>

reply-to-queue-res-ref

</repl y-to-queue-resourc
e-ref>

<repl y-to-topic-resource
-ref>

reply-to-topic-res-ref
</reply-to-topic-resourc
e-ref>

<t opi c-resource-ref>
topic-ref
</topi c-resource-ref>

<t opi c- subscri pti on- nane
>

topic-name

</ topi c-subscription-nam
e>

<uri>
URI
<luri>

Specifies the resource reference reply-to-queue-res-ref of the destination JMS
queue.

When a <r epl y-t 0- queue-r esour ce-r ef > is specified, the
<repl y-to-connecti on-factory-resource-ref>mustrefertoa
corresponding Queue connection factory.

If the <r epl y-t o- connecti on-fact ory-resource-ref >tag is set, then
eithera<repl y-to-topi c-resource-ref>ora
<repl y-to- queue-r esour ce- r ef > must be specified, but not both.

This tag is optional.
Specifies the resource reference reply-to-topic-res-ref of the destination JMS Topic.

When a <r epl y-t o-t opi c-resour ce-r ef > is specified, the
<repl y-to-connection-factory-resource-ref>mustrefertoa
corresponding Topic connection factory.

If the <r epl y-t 0- connect i on-f act ory-resour ce-r ef > tag is set, then
either a<repl y-to-topi c-resource-ref>ora
<repl y-to- queue-r esour ce- r ef > must be specified, but not both.

This tag is optional.

Specifies the resource reference topic-ref of the destination JMS Topic.

Either a <t opi c-r esour ce-r ef > ora <queue-r esour ce-r ef > must be
specified, but not both. When a <t opi c- r esour ce- r ef > is specified, the
<connecti on-factory-resource-ref>mustrefer to a corresponding
Topic connection factory.

When a JMS provider supports durable JMS topics, the JMS Doc service
supports using the durable topics. To specify a durable topic, use this tag to
specify the topic-name. This tag is only valid when a <t opi c-r esour ce-r ef >
is supplied.

This tag is optional.

This tag specifies servlet mapping pattern for the Servlet that implements the
JMS Web Service. The path specified as the URI is appended to the <cont ext >
to specify the JMS Web Service location.

This tag is optional.

Adding WSDL and Client-Side Proxy Generation Tags

The WebSer vi cesAssenbl er supports the <wsdl - gen> and <pr oxy- gen> tags to
allow a Web Service developer to generate WSDL files and client-side proxy files. You
can use these tags to control whether the WSDL file and the client-side proxy are
generated. Using these tags you can also specify that the generated WSDL file or a
WSDL file that you write is packaged with the Web Service J2EE .ear.

A client-side developer either uses the WSDL file that is obtained from a deployed
Web Service, or the client-side proxy that is generated from the WSDL to build an
application that uses the Web Service.

See Also: "Generating WSDL Files and Client Side Proxies" on
page 9-3

Example 7-4 Sample WebServicesAssembler Configuration File for JIMS Web Service

<web- servi ce>

<di spl ay- name>JM5 Wb Servi ce Exanpl e</di spl ay- nane>
<description>JM5 Wb Service Exanpl e</description>

<I'-- Name of the destination --

>

<destination-path>./jnmswsl. ear </ desti nati on- pat h>

7-12 Oracle Application Server Web Services Developer’'s Guide

Deploying JMS Web Services

<t enpor ary-directory>./tnp</tenporary-directory>

<l-- Context root of the application -->

<cont ext >/ j nsws 1</ cont ext >

<l-- Path of the jar file with MDBs definied/inplemented init -->
<option name="sour ce- pat h">MDB/ mdb_servi cel. j ar</ option>

<l-- tags for jnms doc service -->

<j ms- doc- servi ce>
<uri>JmsSend</ uri>
<connection-factory-resource-ref>j ns/theQueueConnecti onFact ory</ connecti on-fact ory-resource-ref>
<queue-r esour ce-ref >j ms/ t heQueue</ queue- resour ce-ref >
<oper at i on>send</ oper ati on>x

</ j ms-doc-servi ce>

<j ms- doc- servi ce>

<uri>JmsRecei ve</uri >

<connection-factory-resource-ref>j ns/| ogQueueConnect i onFact ory</ connecti on-fact ory-resource-ref>

<queue- r esour ce-ref >j ms/ | ogQueue</ queue- resour ce-ref >

<oper ati on>r ecei ve</ operati on>

</j ms- doc- servi ce>

<l-- generate the wsdl -->

<wsdl - gen>
<wsdl - di r>wsdl </ wsdl -di r>
<I-- over-wite a pregenerated wsdl , turn it 'false' to use the pregenerated wsdl-->
<option name="force">true</option>
<option name="httpServer URL">http:// | ocal host: 8888</ opti on>
<!I-- do not package the wsdl -generate it again on the server-->
<opti on name="packagelt">fal se</ option>

</ wsdl - gen>

<l-- generate the proxy -->

<pr oxy- gen>
<pr oxy-di r >pr oxy</ pr oxy- di r >
<option name="i ncl ude-source">true</ option>

</ proxy-gen>

</ web- servi ce>

Running WebServicesAssembler With JMS Web Services

After you create the WebSer vi cesAssenbl er configuration file, you can generate a
J2EE .ear file for the IMS Web Service. The J2EE EAR file includes Web Service servlet
configuration information, including the generated file web. xm , and if the service
includes MDBs, the ejb.jar file containing the implementation classes.

Run the Oracle Application Server Web Services assembly tool,
WebSer vi cesAssenbl er as follows:

java -jar WebServicesAssenbler.jar -config ny_jns_service config
Where: my_jms_service_config is the configuration file that contains the
<j ms- doc- servi ce> tag.

See Also:

« "Creating a Configuration File to Assemble JMS Web Services"
on page 7-9

« "Running the Web Services Assembly Tool" on page 9-1

Deploying JMS Web Services

After creating the .ear file containing Java classes and the Web Services Servlet
deployment descriptors, you can deploy the Web Service as you would any standard
J2EE application stored in an .ear file (to run under OC4J).

Developing and Deploying JMS Web Services 7-13

Limitations for JMS Web Services

See Also: Oracle Application Server Containers for J2EE User’s Guide
in the Oracle Application Server 10g Documentation Library

Limitations for JMS Web Services

The JMS Web Service only supports messages of type Obj ect Message
(j avax. j ms. Message.Cbj ect Message) .

7-14 Oracle Application Server Web Services Developer’'s Guide

38

Building Clients that Use Web Services

This chapter describes the Oracle Application Server Web Services features that allow
you to easily create and run a client application that uses Oracle Application Server
Web Services.

This chapter contains the following topics:

« Locating Web Services

« Getting WSDL Files and Client-Side Proxy Jars for Web Services

« Working with Client-Side Proxy Jar to Use Web Services

« Working with WSDL Files and Oracle JDeveloper to Use Web Services

Locating Web Services

When you want to use Web Services you need to develop a client application. There
are two types of Web Services clients: static web service clients and dynamic web
service clients. A static web service client knows where a Web Service is located
without looking up the service in a UDDI registry. A dynamic web service client
performs a lookup to find the Web Service’s location in a UDDI registry before
accessing the service. Chapter 10, "Discovering and Publishing Web Services" provides
detailed information on looking up Web Services in a UDDI registry.

Using a static client Oracle Application Server Web Services provides several options
for locating Oracle Application Server Web Services, including:

« Using a known Web Service located at a known URL.

« Using Oracle Application Server Web Services and a known service URL to obtain
a client-side proxy Jar, or by other means obtaining a client-side proxy Jar for a
Web Service. The client-side proxy Jar that Oracle Application Server Web Services
generates includes the URL to locate the associated Web Service.

« Using Oracle Application Server Web Services and a known service URL to obtain
a WSDL file, or by other means obtaining a WSDL file that describes a Web
Service. The WSDL files that Oracle Application Server Web Services generates
includes the URL to locate the associated Web Service.

After you locate a Web Service or after you obtain either the WSDL or client-side proxy
Jar, you can build a client-side application that uses the Web Service.

See Also: Chapter 10, "Discovering and Publishing Web Services"

Building Clients that Use Web Services 8-1

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Getting WSDL Files and Client-Side Proxy Jars for Web Services
This section covers the following:
« Using the Web Service Home Page to Save WSDL and Client Side Proxies
» Getting Web Service WSDL and Client-Side Proxies Directly

« Generating Client-Side Proxies With WebServicesAssembler

Using the Web Service Home Page to Save WSDL and Client Side Proxies

To use Oracle Application Server Web Services you need to create a client-side
application that accesses a Web Service. Oracle Application Server Web Services
supplies the following files for deployed Web Services:

« WSDL service descriptions
« Client-side proxy Jar (class files)
« Client-side proxy source

Oracle Application Server Web Services provides a Web Service Home Page for each
deployed Web Service. To access a Home Page, enter a service endpoint of the form,

http:// host: port/ context-rootl service
Figure 8-1 shows the Web Service Home Page for StatefulExample, at the following
endpoint,

http://systemtl. us. oracl e. coml webservi ces/ st at ef ul Test

A Web Service Home Page provides the following:

« A Linkto the WSDL file - To obtain the WSDL file for a Web Service, select the
Service Description link and save the file.

« Links to Web Service Test Pages for each supported operation-To test the available
Web Service operations enter the parameter values for the operation, if any, and
select the Invoke button.

« Links to the Web Service client-side proxy Jar and the client-side proxy source - To
obtain the client-side proxy Jar or the client-side proxy source, select the
appropriate link, Proxy Jar or Proxy Source, and save the file.

8-2 Oracle Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

Figure 81 Web Service Home Page

StatefulExample endpoint

WSO for Serdce; StatefulExampls, generated by Oracls WSOL toolkit (version: 1.1)

For a formal definkion, please review the Service Description {fee siyds)

StatefulExample service

The fallowing operations are supported

« Ccount
* NEloaric

ocdj client

The java prowy (= packaged in & jar efther 3s classes ar sources files

» Promy J3r
' FTOEY SOUrce

Limitations for Web Service Test Pages
Web Service Test Pages have the following limitations:

« There is no support for complex input parameters for RPC style Web Services.
Such pages do not support the Invoke button.

« There is no support for Document Style Web Services. Such pages do not support
the Invoke button.

Getting Web Service WSDL and Client-Side Proxies Directly

If you do not use the Web Service Home Page to get the WSDL file or client-side proxy
for a Web Service, you can obtain these files directly.

This section covers the following:

« Getting WSDL Service Descriptions

« Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

« Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

Getting WSDL Service Descriptions

To obtain the WSDL service description for a Web Service, use the Web Service URL
and append a query string. The format for the URL to obtain the WSDL service
description is as follows (see Table 8-1 for a description of the URL components):

http:// host: port/ context-root/ servi ce?WsDL

Building Clients that Use Web Services 8-3

Getting WSDL Files and Client-Side Proxy Jars for Web Services

or

http:// host: port/ context-root! service?wsdl

This command returns a WSDL description in the form service. wsdl . The

service. wsdl description contains the WSDL for the Web Service named service,
located at the specified URL. Using the WSDL that you obtain, you can build a client
application to access the Web Service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar

To obtain the client-side proxy Jar for a Web Service, use the Web Service URL and
append a query string. The client-side proxy Jar file contains the proxy stubs class that
supports building an application that communicates using SOAP to access the Web
Service. The proxy class does the following:

= Provides a static location for the Web Service (the service does not need to be
looked up in a UDDI registry).

« Provides proxy methods for each method exposed as part of the Web Service.

« Performs all of the work to construct the SOAP request, including marshalling and
unmarshalling parameters, and handling the response.

The format for the URL to obtain the client-side proxy Jar is as follows (see Table 8-1
for a description of the URL components):

http:// host: port/ context-root! service?PROXY_JAR
or

http:// host: port/ cont ext-root/ service?proxy_jar

This command returns the file service_pr oxy. j ar. The service_pr oxy. j ar isalar
file that contains the client-side proxy classes that you can use to build a client-side
application to access the Web Service.

To obtain the client-side proxy source Jar for a Web Service, use the Web Service URL
and append a query string. The format for the URL to obtain the client-side proxy
source Jar is as follows (see Table 8-1 for a description of the URL components):

http:// host: port/ context-root/ service?PROXY_SCQURCE
or

http:// host: port/ context-root| service?proxy_source

This command returns the file service_pr oxysr c. j ar. The file

service_proxysrc. j ar is alJar file that contains the client-side proxy source files.
This file represents the source code for the file service_pr oxy. j ar associated with the
service.

Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

When you obtain the client-side proxy Jar file or the client-side proxy source Jar, you
have the option of including a request parameter that specifies a package name for the
generated client-side proxy classes or source files. If the Web Service’s client-side Java
class is part of a particular package, then you should specify the package name to
match the client-side application’s package name.

8-4 Oracle Application Server Web Services Developer’s Guide

Getting WSDL Files and Client-Side Proxy Jars for Web Services

The format for the URL to obtain the client-side proxy Jar and specify the package
name is as follows (see Table 8-1 for a description of the URL components):

http:// host: port/ context-root/ servi ce?PROXY_JAR&packageNane=nypackage
or

http:// host: port/ context-root/ service?proxy_j ar &ackageNanme=nypackage

This command returns the file service_pr oxy. j ar. The service_proxy. j ar isalar
file that contains the client-side proxy classes, using the specified package, mypackage
for the Java package statement.

The format for the URL to obtain the client-side proxy source Jar and specify the
package name is as follows (see Table 8-1 for a description of the URL components):

http:// host: port/ cont ext-root/ servi ce?PROXY_SOURCE&packageNane=nypackage
or

http:// host: port! context-root/ servi ce?proxy_sour ce&packageNane=nypackage

This command returns the file service_pr oxysrc. j ar. As for the proxy_j ar, you
have the option of specifying a request parameter with a supplied package name by
include a packageName=name option. The service_proxysrc. j ar isaJar file that
contains the client-side source files for the client-side proxy that accesses the Web
Service.

Table 8-1 URL for Accessing Client Side Proxy Stubs

URL Component

Description

context-root

host

mypackage

port

service

The context-root is the value specified in the <cont ext - r oot > tag for the web
module associated with the Web Service. See the META- | NF/ appl i cati on. xml in
the Web Service’s .ear file to determine this value.

This is the host of the Web Service’s server running Oracle Application Server Web
Services.

This specifies the value that you want to use for the package name in the generated
proxy Jar or proxy source.

This is the port of the Web Service’s server running Oracle Application Server Web
Services.

The service is the value specified in the <ur | - pat t er n> tag for the servlet
associated with the Web Service. This is the service name. See the VEB- | NF/ web. xni
in the Web Service’s .war file to determine this value.

See Also:

« Chapter 3, "Developing and Deploying Java Class Web
Services"

« Chapter 4, "Developing and Deploying EJB Web Services"

« Chapter 5, "Developing and Deploying Stored Procedure Web
Services"

Generating Client-Side Proxies With WebServicesAssembler

The Oracle Application Server Web Services WebSer vi cesAssenbl er tool allows
you to generate client-side proxies. A client-side proxy can access a Web Service that is
deployed either on an Oracle Application Server Web Services endpoint or on a third
party Web Service endpoint.

Building Clients that Use Web Services 8-5

Getting WSDL Files and Client-Side Proxy Jars for Web Services

To generate a client-side proxy with WebSer vi cesAssenbl er, specify a
<pr oxy- gen> tag in the configuration file. Table 8-2 describes the <pr oxy- gen>
WebSer vi cesAssenbl er configuration file sub-tags.

Note: When you are generating client-side proxies and you are
accessing an external WSDL file from behind a firewall, make sure
to set the appropriate security properties shown in Table 8-4, such
ashttp. proxyHost and htt p. proxyPort.

Example 8-1 shows a sample WebSer vi cesAssenbl er that includes a
<pr oxy- gen> tag.

Example 8-1 WebServicesAssembler Proxy Gen Configuration File

<?xm version="1.0"?>
<web- servi ce>
<pr oxy- gen>
<proxy-dir>/Test Areal Hot el / pr oxy/ out si de</ pr oxy-di r >
<opti on name="incl ude- source">true</ option>
<option name="wsdl -l ocati on" package- nane="nyPackage. proxy" >
http://terraservice.net/ TerraService. asmx?WsDL</ opti on>
<option nanme="wsdl -| ocati on">
http://ws. serviceobjects. net/sq/ Fast Quot e. asmx?WSDL</ opt i on>
</ proxy- gen>
</ web- servi ce>

Table 8-2 Proxy Generation <proxy-gen> Sub-Tags

Tag Description
<proxy-dir> Specifies the directory for the generated client-side proxy stubs Jar file
directory that is included in the generated Web Service . ear file.

</ proxy-dir> This tag is required.

<opti on nane="i ncl ude- sour ce" > Settingvaluetotr ue tells WebSer vi cesAssenbl er to include the
value classes and the source in the generated client-side proxy. When the
</ opti on> value is false, the source is not included in the generated Jar.

This tag is optional.
Valid values: t r ue, f al se
Default value: f al se

<option nane="wsdl -1 ocation"> This tag sets the URL to use for the source WSDL to use to generate the
URL client-side proxy.

</ option> This option also supports the optional attribute package- name. The

or package- namne can specify the name package for the generated

<opti on nane="wsdl -1 ocati on" client-side proxy.

package- nane=" package" > This tag is optional.
URL .
</ option> Examples:

<option name="wsdl -1 ocati on">
http://systeml: 8888/ webservi ce3/ Test Ser vi ce?WSDL
</ opti on>

<option name="wsdl - | ocati on"

package- nane="nyPackage. pr oxy" >

http://systeml: 8888/ webservi ce3/ Test Ser vi ce?WSDL
</ opti on>

8-6 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services

See Also: Chapter 9, "Web Services Tools"

Working with Client-Side Proxy Jar to Use Web Services

This section describes how to use the client-side proxy Jar when you are building the
client-side application to access a Web Service. The client-side proxy Jar class allows
you to easily build an application that uses a Web Service.

The client side proxy Jar file contains a Java class to serve as a proxy to the Web Service
implementation. The client-side proxy code constructs a SOAP request and marshalls
and unmarshalls parameters for you. Using the proxy classes saves you the work of
creating SOAP requests for accessing a Web Service or processing Web Service
responses.

Example 8-2 shows a source code sample client-side proxy extracted from a Web
Service. For each operation available on the Web Service, there is a corresponding
method in the proxy class. The example shows the method hel | oWor 1 d(Stri ng)
that serves as a proxy to the hel | oWor | d(St ri ng) method in the associated Web
Service implementation.

Example 8-3 shows client-side application code that uses the hel | oWor | d() method
from the supplied client-side proxy shown in Example 8-2.

Note: When you are accessing an external Web Service from
behind a firewall, make sure to set the appropriate security
properties shown in Table 8-4, such as ht t p. pr oxyHost and
http. proxyPort.

Example 8-2 Sample Client-side Proxy Method for Web Services
public class Stateful Exanpl eProxy {

public java.lang. String hell oWrld(java.lang. String paranD) throws Exception
{

Example 8-3 Sample Client-side Application Using a Proxy Class for Web Services
inport oracle.j2ee. ws_exanpl e. proxy. *;

public class Cient

{

public static void main(String[] argv) throws Exception

{
St at ef ul Exanpl eProxy proxy = new St at ef ul Exanpl eProxy();
System out. println(proxy. hell oWrld("Scott"));

Building Clients that Use Web Services 8-7

Working with Client-Side Proxy Jar to Use Web Services

System out. println(proxy.count());
System out. println(proxy.count());
Systemout. println(proxy.count());
}
}

Setting the Web Services Proxy Client CLASSPATH

When you build a Web Services clients using a proxy, you need to use the correct
CLASSPATHto run the client. Table 8-3 lists jars that you need to include in the

CLASSPATH

Table 8-3 Web Services CLASSPATH Components for a Client Using a Client-side Proxy

Component Jar

Description

proxy.j ar

$ORACLE_HOME/ | i b/ xml parserv2.j ar
$ORACLE_HOME/ j 2ee/ home/ I i b/ http_client.jar
$ORACLE_HOME/ soap/ | i b/ soap. j ar
$ORACLE_HOMVE/ j 2ee/ home/ | i b/ mai | . j ar

$ORACLE_HOME/ j 2ee/ hone/ | i b/ activation.jar

$ORACLE_HOME/ j | i b/ javax-ssl-1_1.jar

$ORACLE_HOVE/jlib/jssl-1_1.jar

$ORACLE_HOME/ | i b/ j sse. j ar

$ORACLE_HOMVE/ webser vi ces/ | i b/ wsdl . j ar
$ORACLE_HOME/ webser vi ces/ i b/ dsv2.jar

The proxy jar file that provides access to the Web Service.
The Oracle XML parser jar.

The Oracle HTTP client jar.

The Oracle SOAP jar.

Generally, this is available in the JRE. If this is not available in the
JRE, then include it in the CLASSPATH.

Generally, this is available in the JRE. If this is not available in the
JRE, then include it in the CLASSPATH

Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE
HOVE/ |'i b/ j see. j ar in the CLASSPATH.

Required when the client is using SSL to connect to a Web Service
that uses SSL. In this case, either SORACLE _

HOVE/ j|i b/ javax-ssl-1_1.jar or SORACLE

HOVE/ | i b/ j sse. j ar must be specified.

Used when the client uses SSL to connect to a Web Service that
uses SSL. In this case, do not include $ORACLE
HOVE/ j | i b/javax-ssl-1_1.jar inthe CLASSPATH.

Required when the client is using a Dynamic Proxy.

Required when the client is using a Dynamic Proxy.

Using Java Beans as Parameters for Web Services

When Java Beans are used as parameters to Oracle Application Server Web Services,
the client-side code should use the generated Bean included with the downloaded
client-side proxy. This is because the generated client-side proxy code translates SOAP
structures to and from Java Beans by translating SOAP structure namespaces to and
from fully qualified Bean class names. If a Bean with the specified name does not exist
in the specified package, the generated client code will fail.

However, there is no special requirement for clients using Web Services Description
Language (WSDL) to form calls to Oracle Application Server Web Services, rather than
the client-side proxy. The generated WSDL document describes SOAP structures in a
standard way. Application development environments, such as Oracle JDeveloper,
which work directly from WSDL documents can correctly call Oracle Application
Server Web Services with Java Beans as parameters.

8-8 Oracle Application Server Web Services Developer’s Guide

Working with Client-Side Proxy Jar to Use Web Services

Using Web Services Security Features

When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table 8-4 shows the available properties that provide credentials and
other security information for Web Services clients. Table 8-3 lists jar file that need to
be included in the CLASSPATH, including those required to support SSL.

In a Web Services client application, you can set the security properties shown in
Table 8-4 as system properties by using the - D flag at the Java command line, or you
can also set security properties in the Java program by adding these properties to the
system properties (use Syst em set Properti es() to add properties). In addition,
the client side stubs include the _set Tr anport Properti es method that is a public
method in the client proxy stubs. This method enables you to set the appropriate
values for security properties by supplying a Pr oper ti es argument.

Table 8-4 Web Services HTTP Transport Security Properties

Property

Description

http. aut hReal m

http.

http.
http.

http.

http.
http.
http.

http.
http.

aut hType

password

Specifies the realm for which the HTTP authentication username/password
is specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basi c, di gest
The value basic specifies HTTP basic authentication.

Specifying any value other than basi c or di gest is the same as not setting
the property.

Specifies the HTTP authentication password.

pr oxyAut hReal m Specifies the realm for which the proxy authentication username/password

is specified.

pr oxyAut hType Specifies the proxy authentication type. The case of the value specified is

pr oxyHost

ignored.
Valid values: basi c, di gest

Specifying any value other than basi c or di gest is the same as not setting
the property.

Specifies the hostname or IP address of the proxy host.

proxyPasswor d Specifies the HTTP proxy authentication password.

proxyPort

Specifies the proxy port. The specified value must be an integer. This
property is only used when ht t p. pr oxyHost is defined; otherwise this
value is ignored.

Default value: 80

pr oxyUser nane Specifies the HTTP proxy authentication username.

user nane

Specifies the HTTP authentication username.

Building Clients that Use Web Services 8-9

Working with WSDL Files and Oracle JDeveloper to Use Web Services

Table 8-4 (Cont.) Web Services HTTP Transport Security Properties

Property

Description

j ava. prot ocol . handl er . pkgs

oracl e. soap.transport.
al | owser | nteraction

oracl e. ssl . ciphers

oracle.wal l et.location

oracl e.wal | et. password

Specifies a list of package prefixes for
j ava. net . URLSt r eanHand! er Fact or y The prefixes should be separated
by "|" vertical bar characters.

This value should contain: HTTPCl i ent

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when using
HTTPS. If this property is not set using HTTPS, a

j ava. net . Mal f or mredURLExcept i on is thrown.

Note: This property must be set as a system property.
For example, set this property as shown in either of the following:
« java.protocol. handl er. pkgs=HTTPC i ent

« java.protocol. handl er. pkgs=sun. net. ww. pr ot ocol |
HTTPd i ent

Specifies the allows user interaction parameter. The case of the value
specified is ignored. When this property is set to t r ue and either of the
following are true, the user is prompted for a username and password:

1. Ifany of propertiesht t p. aut hType, http. user nane, or
htt p. passwor d is not set, and a 401 HTTP status is returned by the
HTTP server.

2. Ifeither of propertiesht t p. pr oxyAut hType, htt p. pr oxyUser nane,
orhttp. proxyPasswor d is not set and a 407 HTTP response is
returned by the HTTP proxy.

Valid values: t r ue, f al se
Specifying any value other than t r ue is considered as f al se.

Specifies a list of: separated cipher suites that are enabled.
Default value: The list of all cipher suites supported with Oracle SSL.

Specifies the location of an exported Oracle wallet or exported trustpoints.
Note: The value used is not a URL but a file location, for example:

[et c/ ORACLE/ Wl | et s/ systenil/ export ed_wal | et (on UNIX)
d:\oracl e\ syst eml\ exported_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

Working with WSDL Files and Oracle JDeveloper to Use Web Services

The Web Services WSDL allows you to manually, or using Oracle JDeveloper or
another IDE, build client applications that use Web Services.

The Oracle JDeveloper IDE supports Oracle Application Server Web Services with
WSDL features and provides unparalleled productivity for building end-to-end J2EE
and integrated Web Services applications.

Oracle JDeveloper supports Oracle Application Server Web Services with the
following features:

« Allows developers to create Java stubs from Web Services WSDL descriptions to
programmatically use existing Web Services.

8-10 Oracle Application Server Web Services Developer’'s Guide

Working with WSDL Files and Oracle JDeveloper to Use Web Services

« Allows developers to create a new Web Service from Java or EJB classes,
automatically producing the required deployment descriptor, web.xml, and WSDL
file for you.

« Provides schema-driven WSDL file editing.

« Offers significant J2EE deployment support for Web Services J2EE .ear files, with
automatic deployment to OC4J.

Non-Oracle Web Services IDEs or client development tools can use the supplied
WSDL file to generate Web Services requests for services running under Oracle
Application Server Web Services. Currently, many IDEs have the capability to create
SOAP requests, given a WSDL description for the service.

Building Clients that Use Web Services 8-11

Working with WSDL Files and Oracle JDeveloper to Use Web Services

8-12 Oracle Application Server Web Services Developer’'s Guide

9

Web Services Tools

The Oracle Application Server Web Services assembly tool,

WebSer vi cesAssenbl er, assists in assembling Oracle Application Server Web
Services. The Web Services assembly tool takes a configuration file which describes a
Web Service, including the location of the Java classes, PL/SQL stored procedures or
functions, or J2EE EAR, WAR, or JAR files and produces a J2EE EAR file that can be
deployed under Oracle Application Server Web Services.

This chapter contains the following topics:

« Running the Web Services Assembly Tool

=« Web Services Assembly Tool Configuration File Sample

« Generating WSDL Files and Client Side Proxies

=« Web Services Assembly Tool Configuration File Specification

« Web Services Assembly Tool Limitations

Running the Web Services Assembly Tool
Run the Web Services assembly tool as follows:

java -jar WebServicesAssenbl er.jar [-debug] -config [file€]
or
java -jar WebServicesAssenbler.jar [-debug]

Where file is a Web Services assembly tool configuration file. Without the - conf i g
option, a file named confi g. xm must be present in the same directory where
WebSer vi cesAssenbl er. j ar isinvoked.

With the - debug option, WebSer vi cesAssenbl er displays verbose debugging
comments.

Note: When running WebSer vi cesAssenbl er. j ar from the
command line, the PATH environment variable should include the
JDK/ bi n directory (the directory with the j avac compiler).

Web Services Assembly Tool Configuration File Sample

The sample configuration file shown in Example 9-1 defines two services to be
wrapped in an Enterprise ARchive file (EAR). The sample includes configuration
information for services defined with <st at el ess-j ava- servi ce>and
<stat ef ul -j ava- ser vi ce> tags.

Web Services Tools 9-1

Web Services Assembly Tool Configuration File Sample

See Also:

« "Preparing and Deploying Java Class Based Web Services" on
page 3-6

« "Preparing and Deploying Stateless Session EJB Based Web
Services" on page 4-6

« "Preparing Stored Procedure Web Services" on page 5-2
« "Preparing Document Style Web Services" on page 6-6

« "Preparing and Configuring JMS Web Services" on page 7-8

Example 9—1 Sample Web Services Assembly Tool Configuration File

<web- servi ce>

<di spl ay- nane>Web Servi ces Exanpl e</di spl ay- name>
<description>Java Wb Service Exanpl e</descri ption>
<I-- Specifies the resulting web service archive will be stored in ./ws_exanple.ear -->
<destination-path>./ws_exanpl e. ear </ desti nati on- pat h>
<I-- Specifies the tenporary directory that web service assenbly
tool can create tenporary files. -->
<tenporary-directory>./tnp</tenporary-directory>
<l-- Specifies the web service will be accessed in the servlet context
naned "/webservices". -->
<cont ext >/ webser vi ces</ cont ext >

<I-- Specifies the web service will be stateless -->

<st at el ess-j ava- servi ce>
<interface-name>oracl e. j 2ee. ws_exanpl e. St at el essExanpl e</ i nt er f ace- nane>
<cl ass- nane>or acl e. j 2ee. ws_exanpl e. St at el essExanpl el npl </ cl ass- name>
<l-- Specifies the web service will be accessed in the uri naned

"statel essTest" within the servlet context. -->

<uri>/statel essTest</uri>
<I-- Specifies the location of Java class files are under ./src -->
<j ava-resource>./src</java-resource>

</ statel ess-java-servi ce>

<stateful -java-service>
<interface-name>oracl e. j 2ee. ws_exanpl e. St at ef ul Exanpl e</i nt er f ace- name>
<cl ass- name>or acl e. j 2ee. ws_exanpl e. St at ef ul Exanpl el npl </ cl ass- nane>
<l-- Specifies the web service will be accessed in the uri naned

"stateful Test" within the servliet context. -->

<uri>/stateful Test</uri>
<I-- Specifies the location of Java class files are under ./src -->
<j ava-resource>./src</java-resource>

</stateful -java-service>

</ web- servi ce>

Web Services Assembly Tool Configuration File Sample Output

After running the Web Services Assembly tool with the sample input file shown in
Example 9-1, the generated output is an EAR file (/ t np/ ws_exanpl e. ear) The
generated J2EE .ear file, ws_exanpl e. ear, has the structure shown in Example 9-2.

9-2 Oracle Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies

Example 9-2 Structure of Web Services Assembly Tool Sample Ear File

ws_exanpl e. ear

- META- I NF

‘---application. xm

‘- --ws_exanpl e_web. war

| ---index. htm
‘---WEB- I NF
[--==-- web. xm
TR cl asses
IEEEEEE oracl e
-----] 2ee

--Stateful Exanpl e.j ava

-- Stat ef ul Exanpl e. cl ass
--Stat ef ul Exanpl el npl . j ava
-- Stat ef ul Exanpl el npl . cl ass
--Statel essExanpl e. j ava

-- Stat el essExanpl e. cl ass
--Statel essExanpl el npl . j ava
--Statel essExanpl el npl . cl ass

Generating WSDL Files and Client Side Proxies

This section describes using the <wsdl - gen> and <pr oxy- gen> tags in a

WebSer vi cesAssenbl er configuration file. These tags controls the options for
generating WSDL files and client-side proxies for Web Services. A client-side
developer can obtain and use the WSDL file or the client-side proxies to build an
application that uses a Web Service. A server-side developer that is assembling Web
Services can use these file for testing Web Services.

This section covers the following topics:

Generating and Assembling WSDL Files
Generating Client-Side Proxies with WSDL

Generating and Assembling WSDL Files

Using Oracle Application Server Web Services, a Web Service developer has several
choices for deciding how the WSDL file that is associated with a Web Service is
generated:

1.

Using the <wsdl - gen> tag, you can specify that WebSer vi cesAssenbl er create
the WSDL file. At assembly time, when the Web Service is prepared, the

WebSer vi cesAssenbl er generates and packages the WSDL file with the Web
Service.

Example 9-3 shows a configuration file that includes the <wsdl - gen> tag.

Allowing the Oracle Application Server Web Services runtime to generate the
WSDL file when the WSDL is requested by a Web Service client (after the WEB
Service is deployed). In this case, you do not specify the <wsdl - gen> tag in the
configuration file.

Creating a WSDL file manually. In this case, use the <wsdl - gen> tag during
assembly of the J2EE .ear file to specify the path to the WSDL file. At assembly

Web Services Tools 9-3

Generating WSDL Files and Client Side Proxies

time when the Web Service is prepared, the WebSer vi cesAssenbl er packages
the WSDL file with the Web Service.

Table 9-1 describes the <wsdl - gen>WbSer vi cesAssenbl er configuration file

sub-tags.

Note:

Using the <wsdl - gen> tag, the default behavior is to

package the WSDL into the J2EE .ear file. To exclude the generated
WSDL from the J2EE .ear file, use <opt i on name="packagelt">
tag and set the value to f al se.

Table 9-1

WSDL Generation <wsdl-gen> Sub-Tags

Tag

Description

<opti on name="force">
value
</ option>

<opti on nane="htt pServer URL" >

URL
</ option>

<opti on nane="packagelt">
value
</ opti on>

<wsdl -di r>
directory
</wsdl -dir>

Setting value to t r ue forces WebSer vi cesAssenbl er to overwrite
any existing WSDL file in the WSDL directory specified with the
<wsdl - di r > tag.

Valid values: t r ue, f al se
Default value: t r ue

This tag sets the value for the HTTP server listener endpoint in the
generated WSDL. Set the URL to point to the Web Service HTTP
listener.

Example:
<option name="httpServerURL">http://localhost:8888</0option>

Setting value to t r ue tells WebSer vi cesAssenbl er to include the
generated WSDL in the assembled .ear file. When the value is f al se,
the generated WSDL file is not included in the assembled . ear file.

Valid values: t r ue, f al se
Default value: t r ue

Specifies the directory for the WSDL file source that is included in the
generated Web Service . ear file.

When you are manually supplying the WSDL file, place a copy of the
WSDL file in the specified directory and use the <opti on
name="f or ce" > tag with the value f al se.

Example 9-3 WebServicesAssembler Configuration File Including <wsdl-gen>

<web- servi ce>

<di spl ay- nanme>St at el ess Java Document Web Servi ce</ di spl ay- name>
<description>Statel ess Java Document Wb Service Exanpl e</descri ption>
<destination-pat h>./stat el essdocws. ear </ dest i nati on- pat h>

<t enpor ary-directory>./tenp</tenporary-directory>

<cont ext >/ st at el essdocws</ cont ext >

<option nanme="sour ce- pat h" >converter. xsl </ option>

<st at el ess-j ava- servi ce>
<interface-name>St at el essDoc</i nt er f ace- nane>
<cl ass- name>St at el essDocl npl </ ¢l ass- name>
<uri>/ docservi ce</uri>
<j ava-resource>./cl asses</j ava-resour ce>
<nmessage- styl e>doc</ message- styl e>

9-4 Oracle Application Server Web Services Developer’s Guide

Generating WSDL Files and Client Side Proxies

</ statel ess-j ava- service>

<l-- generate the wsdl -->
<wsdl - gen>

<wsdl - di r>wsdl </ wsdl -dir>

<I-- over-wite a pregenerated wsdl , turnit 'false'

to use the pregenerated wsdl -->

<option name="force">true</opti on>

<option nanme="httpServer URL">http://| ocal host: 8888</ opti on>
</ wsdl - gen>

</ web- servi ce>

Manually Producing a WSDL File

When you do not want to use either the WebSer vi cesAssenbl er tool generated
WSDL or the Oracle Application Server Web Services runtime generated WSDL file,
and you want to supply your own version of the Web Service WSDL file, perform the
following steps:

1. Manually create the WSDL file for your service.

2. Name the WSDL file with a name using the . wsdl extension placed after the
service name. For example, servi cel. wsdl for a service named ser vi cel.

3. Create a configuration file that includes the <wsdl - gen> tag, including <opt i on
nane="force">settofal se and <opti on nane="packagelt"> settotrue.

4. Place the WSDL file that you create in the directory specified with the
<wsdl - di r > tag.

5. Runthe WbSer vi cesAssenbl er with the specified configuration file.

Generating Client-Side Proxies with WSDL

When the <pr oxy- gen> tag is included in a configuration file with the <wsdl - gen>,
the generated WSDL is used to generate the proxy that is placed in the specified
directory (this occurs when WebSer vi cesAssenbl er runs during the Web Service
assembly process).

Table 8-2 lists the <pr oxy- gen> sub-tags.

Note: Using <pr oxy- gen>, the generated proxy is not assembled
in the J2EE .ear file.

Example 9-4 shows a sample configuration file that includes both the <wsdl - gen>
and the <pr oxy- gen> tags.

Example 9-4 WebServicesAssembler Configuration File Including <wsdl-gen>

<web- servi ce>
<di spl ay- name>Test </ di spl ay- name>
<descri ption>Test progranx/description>
<destinati on-pat h>t est. ear </ desti nati on- path>
<t enmpor ary- di rect or y>t enp/ </ t enpor ar y- di r ect or y><cont ext >/ Hot el Servi ce</ cont ext >
<option name="sour ce- pat h" >Wr kspacel/ common/ cl asses</ opti on>

<st at el ess-j ava- servi ce>

Web Services Tools 9-5

Web Services Assembly Tool Configuration File Specification

<i nterface-name>com nypackagel. | test</i nterface-nane>
<uri>/ main</uri>
<cl ass- name>com nypackagel. t est </ cl ass- nane>

</statel ess-java-service>

<wsdl - gen>
<wsdl - di r>wsdl </ wsdl -dir>
<option name="force">true</option>
<option name="httpServer URL">http:/ /| ocal host: 8888</ opti on>
<option nane="packagel t">fal se</ opti on>
</wsdl - gen>

<pr oxy- gen>
<proxy-di r >pr oxy</ proxy-dir>
<opti on name="incl ude- source">true</ option>
</ pr oxy-gen>

</ web-servi ce>

Web Services Assembly Tool Configuration File Specification

The input file for WebSer vi cesAssenbl er is an XML file conforming to the Web
Services Assembly Tool configuration file DTD.

Example 9-5 shows the Web Services Assembly Tool Configuration file DTD.

Example 9-5 Assembly Tool Input File DTD

<?xm version="1.0" encodi ng="UCS- 2" ?>

<l-- Specify the properties of the web services to be assenbled. -->

<! ELEMENT web-service

((display-nane)?, (description)?, destination-path,tenporary-directory, context, (datasource-JND -nanme)?, (stateful -j
ava-service)*, (statel ess-java-service)*, (statel ess-stored-procedure-java-service)*, (statel ess-session-ejb-servic
e)*, (j ms-doc-service)*, (option)*, (wsdl-gen)?, (proxy-gen)?)>

<! ELEMENT di spl ay- name (#PCDATA) *>

<! ELEMENT description (#PCDATA)*>

<I-- Specify the full path of the resulting EAR file. For exanple

"/ hone/ deno/ webser vi ces. ear" -->

<! ELEMENT desti nati on-path (#PCDATA)*>

<I-- Specify a directory where the assembly tool can create tenmporary

directories and files. -->

<! ELEMENT tenporary-directory (#PCDATA)*>

<l-- Specify the context root of the web services. For exanple, "/webservices". -->

<l ELEMENT cont ext (#PCDATA)*>

<I-- for specifying database resource refs -->

<! ELEMENT dat asour ce- JNDI - name (#PCDATA) *>

<l-- Specify the properties of a stateful Java service -->

<! ELEMENT st at ef ul -j ava- service

((interface-name)?, class-nang, uri, (java-resource)*, (ejb-resource)*, (scope)*, (session-tinmeout)*, (nmessage-style)?)
>

<l-- Specify the properties of a stateless Java service -->

<l ELEMENT st at el ess-j ava- servi ce
((interface-name)?,class-nane, uri, (java-resource)*, (ejb-resource)*, (nmessage-style)?)>

<I-- Specify the properties of a stateless stored procedure Java service -->

<! ELEMENT st at el ess- st or ed- procedure-j ava- service

((interface-name)?, (cl ass-nane)?, uri, dat abase- JNDI - nane, (j ava-resource) ?, (j ar-generation)?)>
<!-- Specify the properties of a stateless session ejb service -->

<! ELEMENT st at el ess- sessi on-ej b-service (path,uri,ejb-nane, (ej b-resource)*)>

<l-- Specify the java interface which defines the public methods to be exposed

in the web service. For exanple, "comfoo.nyproject.helloWrld". -->
<l ELEMENT i nterface-nane (#PCDATA)*>

9-6 Oracle Application Server Web Services Developer’s Guide

Web Services Assembly Tool Configuration File Specification

<I-- Specify the java class to be exposed as a web service. If interface-nane is

not specified, all the public nmethods in this class will be exposed. For exanple,
"com f oo. nyproj ect. hel | oVorldlnpl". -->

<IELEMENT cl ass- nanme (#PCDATA)*>

<l-- Specify the uri of this service. This uri is used in the URL to access the

WSDL and client jar, and invoke the web service. For exanple, "/myService". -->
< ELEMENT uri (#PCDATA)*>
<l--

Specify the java resources used in this service.

The val ue can be a directory or a file that inplenents the web services. If it
is adirectory, all the files and subdirectories under the directory are copi ed
and packaged in the Enterprise ARchive. If the java resource should belong to a
java package, you should either package it as a jar file and specify it as a
java resource, or create the necessary directory and specify the directory which
contains this directory structure as java resource. For exanple, you want to
include "com nyconpany. nmypackage.foo" class as a java resource of the web
services, you can either package this class file in foo.jar and specify
<java-resource>c:/nydir/foo.jar</java-resource> or place the class under

d: / mydi r/ conf myconpany/ nypackage/ f 0o. cl ass and specify the java resource as
<java-resource>c:/nydir/</java-resource>.

-->

< ELEMENT j ava-resource (#PCDATA)*>

<l-- Specify the ejb resources used in this service. ejb-resource should be a
jar file that inplements a enterprise java bean. -->

<! ELEMENT ej b-resource (#PCDATA)*>

<I-- Specify the database JNDI name for stateless PL/SQL web service. -->

< ELEMENT dat abase-j ndi - nane (#PCDATA) *>

<I-- Specifies the path of the EJB jar file to exposed as web services. -->

<I ELEMENT path (#PCDATA)*>

<I-- Specify the ejb-nane of the session bean to be exposed as web services.

ej b-name shoul d match the <ejb-nanme> value in the META-INF/ ejb-jar.xm of the bean. -->
<! ELEMENT ej b- nane (#PCDATA) *>

<l-- Specify scope of Stateful Java service -->

<! ELEMENT scope (#PCDATA)*>

<I-- Specify session tineout of Stateful Java service -->

<l ELEMENT session-timeout (#PCDATA)*>

<I-- Specify the directory location of the generated wsdl-->

<! ELEMENT wsdl -dir (#PCDATA)*>

<I-- Specify that wsdl generation is to happen 'force' 'httpServerURL' 'packagelt'-->
< ELEMENT wsdl -gen (wsdl-dir, (option)*)>

<I-- Specifyg the directory location of the generated proxy-->

</ ELEMENT proxy-dir (#PCDATA)*>

<! ELEMENT option (#PCDATA)*>

<I ATTLI ST option name CDATA #REQU RED>

<I-- Specifying that proxy generation is asked for , it can have optional tags as
"include-source' 'wsdl-location' -->

<l ELEMENT proxy-gen (proxy-dir, (option)*)>

<! ELEMENT j ar-generation (db-package-nanme, db-schem, db-url, prefix, (nethod- name) *) >
<! ELEMENT dat abase- JNDI - nane (#PCDATA) *>

<! ELEMENT db- package- name (#PCDATA) *>

<! ELEMENT db-url (#PCDATA)*>

<! ELEMENT db- schenma (#PCDATA) *>

<! ELEMENT prefix (#PCDATA)*>

<! ELEMENT et hod- nane (#PCDATA) * >

<l-- specify the message style ,if this tag is not present it is considered to have 'rpc' ..it can have val ues

of 'rpc' or 'doc' or 'docurment' -->
<! ELEMENT nessage-styl e (#PCDATA)*>

<!/ ELEMENT connection-factory-resource-ref (#PCDATA)*>

<! ELEMENT t opi c-resource-ref (#PCDATA)*>

<l ELEMENT queue-resource-ref (#PCDATA)*>

<I--Resource ref of the return destination factory-->

<l ELEMENT repl y-to-connection-factory-resource-ref (#PCDATA)*>
<I--Resource ref of the return destination Topic. -->

<l ELEMENT reply-to-topic-resource-ref (#PCDATA)*>

Web Services Tools 9-7

Web Services Assembly Tool Limitations

<!--Resource ref of the return destination Queue. -->

<! ELEMENT repl y-to-queue-resour ce-ref (#PCDATA)*>

<l--jms-priority ,jns-nessage-type,jnms-del very-nmode ,jns-expiration The JVS properties are only set for

enqueui ng operations, i..e, for send operations only. -->

<! ELEMENT jms-priority (#PCDATA)*>

<! ELEMENT j ms- message-type (#PCDATA)*>

<! ELEMENT j ms- del i very-node (#PCDATA) * >

<! ELEMENT | ms- expi ration (#PCDATA)*>

<l-- operation property is optional. Possible values for this paraneter are: send, receive, and both. If not
provided, the value defaults to both. -->

<! ELEMENT operation (#PCDATA)*>

<! ELEMENT j ns- doc- servi ce

(uri, connection-factory-resource-ref, (topic-resource-ref)?, (queue-resource-ref)?, (reply-to-connection-factory-re
source-ref)?, (reply-to-topic-resource-ref)?, (reply-to-queue-resource-ref)?, (jms-priority)?, (jns-nmessage-type)?, (
jms-del i very-node)?, (j ms-expiration)?, (operation)?)>

Web Services Assembly Tool Limitations
The WebSer vi cesAssenbl er tool has the following limitations:

« No Upload/download capabilities: the Web Services Assembly tool does not
upload Java classes from a client system to a server or download a generated EAR
file back to a client system.

« Does not support advanced configuration tasks: for example, the Web Services
Assembly tool is not able to control the security options for a Web Services Servlet,
cannot secure an EJB, secure welcome files, or perform other administrative tasks.

9-8 Oracle Application Server Web Services Developer’s Guide

10

Discovering and Publishing Web Services

Oracle Application Server Containers for J2EE (OC4J) provides a Universal Discovery
Description and Integration (UDDI) Web Services registry known as Oracle
Application Server UDDI Registry (OracleAS UDDI Registry).

With OracleAS UDDI Registry, Web Services provider administrators in an enterprise
environment can publish their Web Services for use by Web Services consumers
(application programmers). Web Services consumers can use the UDDI inquiry
interface to discover published Web Services and can use those services in their
applications for a particular enterprise process.

This chapter is organized into the following main sections:
« Understanding a UDDI Registry

« Introducing OracleAS UDDI Registry

« Getting Started with OracleAS UDDI Registry

« Web Services Discovery

« Web Services Publishing

« OracleAS UDDI Registry Administration

« UDDI Open Database Support

« OracleAS UDDI Registry Server Error Messages

«» Command-Line Options for the uddiadmin.jar Tool

« Server Configuration Properties

Understanding a UDDI Registry

The information provided in a UDDI registry can be used to perform three types of
searches:

« White pages search—address, contact, and known identifiers. For example, search
for a business that you already know something about, such as its name or some
unique identifier (ID).

« Yellow pages topic search—industrial categories based on standard classifications,
such as NAICS, 1ISO-3166, and UNSPSC.

« Green pages service search—technical information about Web Services that are
exposed by a business, including references to specifications of interfaces for Web
Services, as well as support for pointers to various file and URL-based discovery
mechanisms.

Discovering and Publishing Web Services 10-1

Understanding a UDDI Registry

A UDDI registry uses standards-based technologies, such as common Internet
protocols (TCP/IP and HTTP), XML, and SOAP, which is a specification for using
XML in simple message-based exchanges. UDDI is a standard Web Services
description format and Web Services discovery protocol; a UDDI registry can contain
metadata for any type of service, with best practices already defined for those
described by Web Services Description Language (WSDL).

UDDI Registry Data Structure

The UDDI registry consists of the following five data structure types, which group
information to facilitate rapid location and comprehension of registry information:

businessEntity—the top-level, logical parent data structure. It contains descriptive
information about the business that publishes information about Web Services,
such as company name, contacts, business services, categories, contacts, discovery
URLs, and identifier and category information that is useful for performing
searches.

businessService—the logical child of a single businessEntity data structure as well
as the logical parent of a bindingTemplate structure. It contains descriptive
business service information about a particular family of technical services
including its name, brief description, technical service description, and category
information that is useful for performing searches.

bindingTemplate—the logical child of a single businessService data structure. It
contains technical information about a Web Services entry point, and references to
interface specifications.

tModel—a description of specifications for Web Services, or a classification that
forms the basis for technical identification. It represents the technical specification
of Web Services. It facilitates the Web Services consumers (programmers)
searching for registered Web Services that are compatible with a particular
technical specification. That is, based on the descriptions of the specifications for
Web Services in the tModel data structure, Web Services consumers can easily
identify other compatible Web Services.

publisherAssertion—information about a relationship between two parties,
asserted by one or both.

Figure 10-1 shows the UDDI information model and the relationships among its five
data structure types.

10-2 Oracle Application Server Web Services Developer's Guide

Introducing OracleAS UDDI Registry

Figure 10-1 UDDI Registry Information Model

businessEntity

 —~

<
—H businessService fm———

: —Lly tModel

|

3 |

e
EJ\ bindingTemplate

publisherAssertion

Because the UDDI registry makes use of XML and SOAP, each of these data structures
contains a number of elements and attributes that further serve to describe a business
or have a technical purpose.

For a complete description of the UDDI service description framework, see UDDI
Version 2.03, Data Structure Reference Published Specification, Dated 19 July 2002 and
UDDI Version 2.04 API, Published Specification Dated 19 July 2002, available at:

htt p: // www. uddi . or g/ speci fication. htn

Introducing OracleAS UDDI Registry

Using OracleAS UDDI Registry in an enterprise environment, Web Services provider
administrators can publish their Web Services for use by Web Services consumers
(programmers). Web Services consumers can use the UDDI inquiry interface to
discover published Web Services by browsing, searching, and drilling down in
OracleAS UDDI Registry. Consumers can select one or more Web Services from among
those registered, and use those services in their applications for a particular enterprise
process.

For example, an administrator can publish the Web Services by providing all the
metadata and pointers to the interface specification in OracleAS UDDI Registry. The
administrator can work with consumers who have completed a Web Services
implementation using the J2EE stack (Enterprise JavaBeans (EJB), JavaBeans,
JavaServer Pages (JSP), or servlets) and expose the implementation as Web Services
based on Simple Object Access Protocol (SOAP). In this way, the administrator
publishes the availability of these Web Services for the Web Services consumers to
discover and select for use in their own applications.

OracleAS UDDI Registry is compliant with the UDDI Version 2 specifications,
including the following specifications:

« UDDI Version 2.04 API Specification
« UDDI Version 2.03, Data Structure Reference Specification
« UDDI Version 2.03, Replication Specification

OracleAS UDDI Registry support for Web Services deployed in OC4J is composed of
the following parts:

Discovering and Publishing Web Services 10-3

Introducing OracleAS UDDI Registry

Web Services discovery—Consumers can use the Inquiry API to implement their
own Web Services discovery tool to search, locate, and drill down to discover J2EE
Web Services in OracleAS UDDI Registry, as well as in any other accessible UDDI
registry compatible with the UDDI v1.0 or V2.0 specifications. See "Using the
OracleAS UDDI Registry Inquiry API" on page 10-10 for more information about
using the Inquiry API and locating the Javadoc documentation.

Web Services publishing—Administrators can deploy J2EE Web Services using
Oracle Enterprise Manager 10g. As part of the deployment process, the
administrator can publish Web Services to OracleAS UDDI Registry.

Consumers can use the Publishing API to publish Web Services by providing save
and delete calls for each of the five key UDDI data structures (businessEntity,
businessService, bindingTemplate, tModel, and publisherAssertion). See "Using
the OracleAS UDDI Registry Publishing API" on page 10-28 for more information
about using the Publishing API and locating the Javadoc documentation.

Web Services updates—Administrators can update published Web Services by
searching, locating, and drilling down to J2EE Web Services using Oracle
Enterprise Manager 10g.

Additional tool development—Consumers can use a Java-based client library to
facilitate additional tool development and application development. See the Oracle
Application Server Web Services UDDI Client API Reference for information about this
API.

Replication management—Administrators can create a logical registry that
comprises one or more OracleAS UDDI Registry implementations and UDDI
implementations from other vendors that also implement the UDDI v2.03
Replication Specification. See "UDDI Replication” on page 10-41 for more
information.

Database support—UDDI open database support is provided for Microsoft SQL
Server, IBM DB2, and Oracle (non-infrastructure) databases. See "UDDI Open
Database Support” on page 10-50 for more information.

Support for Standard Classification and Identifier Systems

OracleAS UDDI Registry supports standard taxonomies for classifying (categorizing)
tModels, businessEntities, and businessServices and for identifying tModels and
BusinessEntities.

OracleAS UDDI Registry provides the following built-in and checked standard
taxonomies for categorizing tModels, businessEntities, and businessServices:

North American Industry Classification System (NAICS) 1997 Release

This is a classification system for each industry and corresponding code. For more
information about NAICS, see the following Web site:

http://ww. census. gov/ epcd/ ww/ nai cs. ht m

United Nations Standard Products and Services Codes (UNSPSC) Version 7.3

This is the first coding system to classify both products and services for use
throughout the global marketplace. For more information about UNSPSC,
following Web site:

http://ww. unspsc. org/

1ISO-3166 Geographic Code System (1SO-3166)

10-4 Oracle Application Server Web Services Developer's Guide

Getting Started with OracleAS UDDI Registry

This a list of all countries and their subdivisions. For more information about
1SO-3166, see the following Web site:

http://ww.iso.org/iso/en/prods-services/iso3166ma/ 02i so- 3166- code-
l'ists/index. htm

When administrators publish Web Services, they can select the taxonomy and the
category to which they want to register the Web Services. They have the option of
publishing their Web Services to any or all three of these taxonomies, and to as many
categories and subcategories as they wish within each.

OracleAS UDDI Registry also provides the following built-in identifier systems for
identifying tModels and businessEntities:

» Dun & Bradstreet D-U-N-S Number Identifier System (D-U-N-S)

This system uses unique nine-digit sequences for identifying businesses
worldwide. For more information, see the following Web site:

http://ww. dnb. com

« Thomas Register Supplier Identifier Code System

This system provides identification codes for manufacturers and suppliers. For
more information see the following Web site:

http://ww. t homasr egi ster. com

Table 10-1 lists the taxonomy, its name, and its tModel key, a unique universal
identifier (UUID).

Table 10-1 Classifications and Identifier Taxonomies

Taxonomy Name tModel key

NAICS ntis-gov:naics:1997 uuid:COB9FE13-179F-413D-8A5B-5004DB8E5BB2
UNSPSC unNspsc-org:unspsc uuid:CD153257-086A-4237-B336-6BDCBDCC6634
1SO-3166 uddi-org:iso-ch:3166-1999 uuid:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88
D-U-N-S dnb-com:D-U-N-S uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823

Thomas Register thomasregister-com:supplierlD uuid:B1B1BAF5-2329-43E6-AE13-BA8E97195039

For more information about the taxonomies, see the following Web site:

htt p: //ww. uddi . or g/ t axonom es/ UDDI _Taxonomny_t Mbdel s. ht m

UUID Generation

OracleAS UDDI Registry uses an algorithm to generate a version 4 Unique Universal
Identifier (UUID) from random numbers.

All built-in tModel data structures as specified in the UDDI v2 specification are
included. An additional tModel data structure uddi - or g: oper at or s, defined in the
UDDI v2 specification, is also included to classify the bootstrap node businessEntity
that represents OracleAS UDDI Registry itself.

Getting Started with OracleAS UDDI Registry

This section describes how to get started using OracleAS UDDI Registry. It includes
the following topics:

Discovering and Publishing Web Services 10-5

Getting Started with OracleAS UDDI Registry

» Configuring OracleAS UDDI Registry
« Modifying Properties at Installation or First-Use

= Considerations in a Production Environment

Configuring OracleAS UDDI Registry

If you install the Oracle Application Server Infrastructure and the OracleAS Portal and
Wireless middle tier, OracleAS UDDI Registry is installed. OracleAS UDDI Registry is
automatically deployed into an OC4J_Portal instance and the UDDI database schema

is embedded in the OracleAS Infrastructure database.

If you want to install OracleAS UDDI Registry with OC4J standalone or with Oracle
Application Server Core install, please refer to the standalone OracleAS UDDI Registry
kit on OTN:

http://ww. oracl e. com' t echnol ogy/tech/ webservi ces/ ht docs/ uddi

To initialize and configure OracleAS UDDI Registry, you must access (either through
the browser or programmatically through a SOAP invocation) the UDDI servlet
inquiry end point or publishing SOAP end points. Otherwise, you will not be able to
use OracleAS UDDI Registry from Oracle Enterprise Manager 10g, including the
integrated Web Services publishing.

To initialize and configure OracleAS UDDI Registry by pinging the UDDI inquiry
servlet end point from a browser, enter the following URL.:

http:// O acl eAS- host: Oracl eAS- port/uddi/inquiry

The OracleAS UDDI Registry page is displayed. You should see the message:
"Welcome! Your registry is now up and running."

This initialization and configuration step sets up the following:

= UDDI core tModel data structures

= A businessEntity node representing the registry node

= The businessEntity discoveryURL prefix and the operatorName property

By default, the installation creates UDDI users and user groups. Table 10-2 lists the
type of user, the user names, and passwords.

Table 10-2 Default UDDI Users and Passwords

Type User Name Default Password
Administration ias_admin ias_admin123

Publisher uddi_publisher uddi_publisher123

Publisher uddi_publisherl uddi_publisherl

Replicator uddi_replicator no password, not used explicitly

You can connect to the UDDI end points using these user names and passwords.
"Managing Users" on page 10-36 provides more information about the UDDI users and
groups that are set up during installation.

The OracleAS UDDI Registry is available through the following URLs:
« Getting started information

http:// O acl eAS- host: Oracl eAS- port/uddi/

10-6 Oracle Application Server Web Services Developer's Guide

Getting Started with OracleAS UDDI Registry

« UDDI inquiry SOAP end point
http:// O acl eAS-host: O acl eAS-port/uddi/inquiry

« UDDI publishing SOAP end point
http:// Oracl eAS- host: Oracl eAS-port/ uddi / publ i shi ng

« UDDI administration end point
http:// O acl eAS-host: O acl eAS-port/ uddi/admin

« UDDI replication SOAP end point
http:// Oracl eAS-host: Oracl eAS-port/uddirepl/replication

« UDDI replication HTTPS Wallet Password Administration end point
http:// Oracl eAS-host: O acl eAS- port/ uddi repl / adm n/ wal | et

Modifying Properties at Installation or First-Use

You perform many administrative operations using the command-line tool

uddi admi n. j ar. The tool is located in the uddi / I i b/ uddi adm n. j ar file for
UNIX and in the uddi \ | i b\ uddi adni n. j ar file for Windows. In general, the
command-line tool uses the following format:

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n username password
[-verbose] options_and their_paraneters

With the set Pr oper t y option of the command-line tool uddi admi n. j ar, you can
set the value of configuration properties, such as maximum database connections and
default language.

You should change the following two properties immediately after installation.
However, once you change them, you should not change them again unless there are
changes to the host setup or you move the system from a staging environment to a
production environment.

« operatorName: Provides the name of the operator of OracleAS UDDI Registry.
This name appears in the operator attribute of responses. Setting this property
applies in a retroactive fashion to existing entities in the database. For example,
changing the operator name results in the new operator name replacing the old
operator name in all business and tModel data structures.

The following example sets the operatorName property to OracleUddiServerIT_
Dept:

java -jar uddiadnmin.jar http:// Oacl eAS- host: port/uddi/adm n username password
-set Property oracl e. uddi . server. operat or Nane=0r acl eUddi Server | T_Dept

« businessEntityURLPrefix: Provides the prefix of the generated discoveryURL,
which is automatically generated for each businessEntity data structure saved in
the registry. The prefix should be customized for your deployment environment.
Setting this parameter applies in a retroactive fashion to existing entities in the
database. For example, changing the discoveryURL prefix results in the new
discoveryURL replacing the old discoveryURLSs in all businessEntity usetypes.

The host name and port should be the host name and port of the Web server
(which may or may not be the same as the servlet container).

Discovering and Publishing Web Services 10-7

Getting Started with OracleAS UDDI Registry

The following example sets the prefix of the discoveryURL to
http:// uddi host: port/uddi/inquiryget:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty
oracl e. uddi . server. busi nessEntityURLPrefix=http://uddi host: port/uddi/inqguiryget

Note: Be sure to set these properties before enabling UDDI
replication.

In addition, you can set the default language of the registry by using the defaultLang
property. See "defaultLang" on page 10-71 for more information.

See "Using the Command-Line Tool uddiadmin.jar" on page 10-34 for information
about the command-line tool. See "setProperty" on page 10-66 for more information
about the set Pr opert y option.

Considerations in a Production Environment

The following information describes some postinstallation configuration steps that
you should do immediately after the installation. These steps are not mandatory, but
are highly recommended in a production environment:

Security for publishing the end point: By default, HTTP access is enabled.
However, HTTPS access is recommended for security concerns. See "Transport
Security" on page 10-50 for more information about disabling HTTP access.

Database connection pool sizing and statement caching: Database connection
pool parameters, such as maximum number of database connections and usage of
statement caching, should be configured to accommodate the actual database
server load.

If you are using an Oracle database other than the OracleAS Infrastructure
database as the back-end storage, you can configure the parameters by editing the
data source j dbc/ Or acl eUddi . Refer to the chapter on data sources in the Oracle
Application Server Containers for J2EE Services Guide for more information.

If you are using the OracleAS Infrastructure database as the back-end storage, you
can configure the parameters by modifying the following UDDI server
configuration properties:

— minConnections
— maxConnections
— jdbcDriverType
— stmtCacheType
— stmtCacheSize

Change of the operatorName and businessEntity discoveryURL prefix: In some
cases, you may want to change either the businessEntity discoveryURL prefix or
the operatorName, or both parameter values, when moving a system from a
staging environment to a production environment. See "businessEntityURLPrefix"
on page 10-69 and "operatorName" on page 10-76 for more information.

10-8 Oracle Application Server Web Services Developer's Guide

Web Services Discovery

Web Services Discovery

To discover Web Services in OracleAS UDDI Registry, you browse the registry using
tools or using the Inquiry API. These methods are described in the following sections:

« Using the OracleAS UDDI Registry Searching and Browsing Tool
« Using Other Tools to Discover Web Services

« Using the OracleAS UDDI Registry Inquiry API

Using the OracleAS UDDI Registry Searching and Browsing Tool

OracleAS UDDI Registry provides a Searching and Browsing Tool that lets you search
a registry by businessEntity, businessService, tModel, or bindingTemplate. To access
the Searching and Browsing tool, enter the following URL:

http:// Oracl eAS- host: O acl eAS- port/ uddi

Then, click the UDDI Inquiry/Publishing tool link. The Searching and Browsing Tool
page is displayed, as shown in the following illustration:

B lHeaclafs LTI Mageisy & asichagMmsang Dl - Berassh islensl | agless

e
ﬂi-|ﬂ|-n-'ﬁnhmwmﬁmmwwﬂmm =
OracleAS UDDI Registry: Searching/Browsing Toal [

¥ - U .'||-5-= PEEL £

Iy UL [Fip M dree iy BB edd oy Sl TIEM TS0 TME

Semrch reglatry More Gt business, servics, binding, er tModal:

papmpEs T wah name |l|-_

amy [Ll.l [3FEEEF BT -5F C3-462 F-A351. O 40CEDE)

il Erniny '..'--III

a R T Nl |

gl wifh roame |y

i w1

B i e s el G e |
Sawch |

Using Other Tools to Discover Web Services

Sout clain =orirame Max Ross | iodel reierence ™ | Add camgory Add inmier [~
W e @ SRR
Frosot Frosen rim ot o R T
= ley T m | | I o) (TR
Wb 1 Maich i e iy ek
F rreenbthe [el | [[m
" st rrmirnd g bl e EEre ety
e T opan [et T amd
A e B ek ST LR
I‘..m-:.u I“m ™ parvics
[usiufi] - Bog] - Mol - (] - Frierd] » [gdimh] - [Create ria] = [Crealn (snge] - [koen] =
el ——————— R

As a consumer, you can use Oracle JDeveloper to browse OracleAS UDDI Registry, or
you can use third-party tools to browse and drill down for information about Web

Discovering and Publishing Web Services 10-9

Web Services Discovery

Services from OracleAS UDDI Registry, as well as from any other accessible UDDI
v1.0 Web Services registry.

Using the OracleAS UDDI Registry Inquiry API

As a consumer, you can use the Inquiry API available for Java programmers to
implement your own Web Services discovery interface. The Inquiry API, part of the
UDDI Client API, providesf i nd (browse and drill-down) calls and get calls for
locating and getting information in each of the five data structures shown in

Figure 10-1.

The Inquiry API is a Java-based API and is provided as a convenience for Java
programmers. However, programs can be written in any language and can use SOAP
to discover Web Services.

The URL for the OracleAS UDDI Registry inquiry APl is:
http:// O acl eAS- ht t p- server - host name: O acl eAS- port/ uddi /i nquiry

In the URL, Or acl eAS- ht t p- ser ver - host nane is the host where Oracle HTTP
Server is installed, and O ac/ eAS- port is the port number for Oracle HTTP Server.

The Inquiry API is located in the Oracle Application Server installation directory,

${ ORACLE Hone}/ uddi/ for UNIX and %#0ORACLE Hone_ORACLE% uddi \ for
Windows. For reference documentation for the Inquiry API, see the Oracle Application
Server Web Services UDDI Client API Reference.

A set of sample demonstration files (uddi denp. zi p) are located on the Oracle
Technology Network (OTN) Web site at:

http://ww. oracl e. com t echnol ogy/tech/ webservi ces/ ht docs/ uddi

The uddi denp. zi p file contains a Java program file, Uddi | nqui r yExanpl e. j ava,
which provides Java programmers with a starting point that demonstrates the key
constructs and the sequence in using the OracleAS UDDI Registry client library.

The program example does the following:

« Gets an implementation of the SoapTransportLiaison interface. This is an
implementation that handles the details of communication between the UDDI
client and server, using SOAP and some underlying transport protocol (in this case
HTTP).

SoapTransportLiaison transport = new O acl eSoapHttpTransportLiai son();
« Calls a helper method to set up proxy information, if necessary. You can specify
HTTP proxy information for accessing OracleAS UDDI Registry on the command

line, using parameters, such as - Dht t p. pr oxyHost =host nane
-Dht t p. proxyPort =port num

set H t pProxy((SoapH t pTransportLi ai son)transport);
« Uses the SoapTransportLiaison instance and the URL of a UDDI inquiry registry to
initialize an instance of UddiClient, which connects to the specified OracleAS

UDDI Registry. The UddiClient instance is the primary interface by which clients
send requests to OracleAS UDDI Registry.

Uddi Client uddidient = new Uddi Client(szlnquiryUrl, null, transport);

10-10 Oracle Application Server Web Services Developer's Guide

Web Services Discovery

Note: The UddiClient instance, by default, operates as a UDDI v2
client (the latest version supported). If a specific version is needed, the
version can be specified either through another constructor, or the
JVM property or acl e. uddi . cl i ent. def aul t Ver si on.

For example:

- Dor acl e. uddi . cl i ent. def aul t Ver si on=1

Uses the UddiClient instance to perform a find business request. Specifically, it
finds all businessEntities that start with the letter T and prints out the response.
Note that input parameters and return values are objects that precisely mimic the
XML elements defined in the UDDI specification.

Il Find a business with a nane that starts with "T"
String szBizToFind = "T";
Systemout. println("\nListing businesses starting with " + szBi zToFi nd);
/I Actual find business operation:
[l First null means no specialized FindQualifier.
/1 Second null neans no max nunber of entries in response.
Il (For exanple, maxRows attribute is absent.)
Busi nessLi st bl = uddi dient.findBusiness(szBizToFind, null, null);
[l Print the response.
Systemout. println("The response is: ");
List |istBusinessinfo = bl.getBusinesslnfos().getUddi El ementList();
for (int i =0; i < listBusinessinfo.size(); i++) {
Busi nessl nfo busi nesslnfo = (Businesslnfo)listBusinesslnfo.get(i);
System out. printl n(busi nessl nf 0. get Busi nessKey());
Narme nanme = busi nessl nfo. get Fi r st NameAsName() ;
if (nane !'=null) {
Systemout. println("name=" + name. get Content() +
" ; xm:lang=" + nane.getlang());

}

Description description =
busi nessl nf 0. get Fi r st Descri pti onAsDescri ption();
if (description !=null) {
Systemout. println("description=" + description.getContent()
+ " ; xm:lang=" + description.getLang());

}

Uses the UddiClient instance to get a UddiElementFactory instance. This factory
should always be used to create any UDDI objects needed for inquiries.

Uddi El ement Fact ory uddi El t Factory = uddi O i ent. get Uddi El ement Factory();

Uses the UddiElementFactory instance to create a CategoryBag instance and its
KeyedReference, which will be used for searching.

Cat egoryBag chb = (Cat egoryBag)uddi El t Factory. creat eCat egor yBag();
KeyedRef erence kr =

(KeyedRef erence) uddi El t Fact ory. creat eKeyedRef erence() ;

kr. set TMbdel Key(szCat egor yThodel Key) ;

kr. set KeyVal ue(szCat egor yKeyVal ue) ;

kr.set KeyNane("");

ch. addUddi El enent (kr);

Uses the UddiClient instance to perform a find service request. Specifically, it finds
a maximum of 30 services, which are classified as application service providers

Discovering and Publishing Web Services 10-11

Web Services Discovery

(code 81.11.21.06.00) under the UNSPSC classification in any businessEntity (no
businessKey is specified).

Servi celi st servicelList =
uddi Cient.findService("", cb, null, new Integer(30));

Uses the UddiElementFactory instance to retrieve an XmlIWriter object. To view the
raw XML data represented by an object, which extends UddiElement, marshall the
element content to the writer, and then flush and close the writer.

XmWiter witerXmWiter =

uddi El t Factory. createWiter Xm Witer(new PrintWiter(Systemout));
servicelLi st.marshal | (witerXm Witer);
witerXm Witer.flush();

Finds tModel operations with multiple arguments. This is a UDDI v2 feature. A
find_xx request now allows multiple arguments. For example, find tModel
operations that have a name pattern, such as "uddi%inquiry%" and are classified
as wsdlSpec or xmISpec in uddi-org:types taxonomy:

Systemout.println("\nListing tModels with the nane pattern \"uddi % nquiry%"
")
Systemout.printin("and classified as \"wsdl Spec\" or \"xm Spec\" ");
Systemout. println("under uddi-org:types taxonony.");
/1 Use Uddi El ement factory to create UDDI-specific objects
/1 that are needed in inquiries.
Cat egoryBag chTM = (Cat egoryBag) uddi El t Fact ory. cr eat eCat egor yBag() ;
KeyedRef erence krTML =

(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
kr TML. set TMbdel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr TML. set KeyVal ue(Cor eTModel Const ant's. UDDI _TYPE_VALUE_WSDL_SPEC) ;
cbTM addUddi El enent (kr TML) ;

KeyedRef erence krTM =

(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
kr TM2. set TModel Key(Cor eTMbdel Const ant s. TAXONOW_KEY_UDDI _TYPE) ;
kr TM2. set KeyVal ue(Cor eTModel Const ant s. UDDI _TYPE_VALUE_XM__SPEC) ;
chTM addUddi El enent (kr TM2) ;

FindQualifiers fqTM = (FindQualifiers)uddi El t Factory. creat eFi ndQual i fiers();
List [istFQTM = uddi El t Factory.createlist();

|'i st FQTM add(Fi ndQual i fiers. OR_ALL_KEYS);

fqTM set Fi ndQual i fierStringList(listFQTM;

Il Actual find tMdel operation:
/1 Integer(10) neans a maximum of 10 tMdel operations are to be returned.
Thodel Li st tMdel List = uddi Cient.findTMdel ("uddi % nquiry%,

null,

ch™

fqT™M

new | nteger(10));

Il Print sone response information.
Systemout. println("The response is: ");
List |istThodel Info = tMdel Li st. get TMdel I nfos(). get Uddi El enent Li st ();
for (int i =0; i <listTModelInfo.size(); i++) {
Thodel Info tMdel Info = (TMbdel I nfo)listTMdel I nfo.get(i);
System out. println(tMdellnfo.get TModel Key());
Systemout. println("name=" + tMdel I nfo.getName());

}

10-12 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

« Closes the UddiClient instance when finished, to release resources.
uddi Client.close();

« Provides URLs (in comments) to OracleAS UDDI Registry and four public UDDI
registries.

Web Services Publishing

Web Services are published in OracleAS UDDI Registry by using one of the following
interfaces:

« Oracle Enterprise Manager 10g. See "Using Oracle Enterprise Manager for Web
Services Publishing" on page 10-13.

« The OracleAS UDDI Registry Publishing Tool. See "Using the OracleAS UDDI
Registry Publishing Tool" on page 10-19.

« The OracleAS UDDI Registry Publishing API. See "Using the OracleAS UDDI
Registry Publishing API" on page 10-28.

Using Oracle Enterprise Manager for Web Services Publishing

Using Oracle Enterprise Manager 10g, administrators can publish Web Services in
OracleAS UDDI Registry and can update discovered Web Services:

« Using the Deploy Application Wizard. The Deploy Application wizard takes you
through the process of deploying a J2EE application on the OC4J container.

See "Publishing Web Services Using the Deploy Application Wizard" on
page 10-13.

« Using the UDDI Registry page. The UDDI Registry page lets you discover
published Web Services and update those published Web Services.

See "Updating Published Web Services in OracleAS UDDI Registry" on page 10-16.

Note: To use any of the UDDI functions in Oracle Enterprise
Manager, you must have initialized the UDDI registry by pinging the
UDDI inquiry servlet end point. See "Configuring OracleAS UDDI
Registry" on page 10-6 for more information.

If you have accessed any of the UDDI-related pages before you
initialize the UDDI registry, you must restart Oracle Enterprise
Manager.

Publishing Web Services Using the Deploy Application Wizard

As an administrator, you can publish J2EE Web Services, which are produced by the
OracleAS Web Services assembly tool, using the Oracle Enterprise Manager Deploy
Application wizard.

To publish J2EE Web Services, you must first assemble them as J2EE Enterprise
Archive (EAR) files. See Chapter 9 for more information. See the Oracle Application
Server Containers for J2EE User’s Guide for information about EAR file-based
deployment of J2EE Web applications.

You can use the wizard to publish Web Services servlets that are found in an EAR file.
Any Web Services servlet in an application that you want to access must be published
to OracleAS UDDI Registry to one or more desired categories within one or more of

Discovering and Publishing Web Services 10-13

Web Services Publishing

the classifications provided. Any unpublished Web Services servlet in an application
appears with the status of Not Publ i shed. When the Web Services servlet is
published, the status changes to Publ i shed.

After you have initialized the OracleAS UDDI Registry, take the following steps:

1. Invoke Oracle Enterprise Manager and navigate to the Application Server
Instance-name page. From the System Components table, select an OC4J instance.
By default, the UDDI registry is deployed in the OC4J_PORTAL instance.

2. Inthe OC4J.oc4j-name page, click Applications.

3. Inthe Deployed Applications section, click Deploy Ear File to invoke the Deploy
Application wizard.

4. Inthe Deploy Application wizard, in the Deploy Application page, specify the ear
file location in the J2EE Application field and the application name in the
Application Name field, as shown in the following illustration:

O Neacls | slpipmae Mansps - Depioy Appicsian - Hcmaol Inismsel | eplas M=
o ta e Lkt]
Eibmk v = -) D Btees [Fots ek J S O Links
EHFAlLE tniuipiss Banaiei 1d =

i Ll Fieieeies el
Fan Sppicalan S Focus milssiosepiun simce com > D04 OCA) Poda Deplop Apalcation
Leplay Appllealion

For & J2EE maplcaiion ip ba cuccessiolly deplopad o the OC4) comgmen, |ha apphcetion has (o be a6 som bled
capscHy a5 an Dnierpoes Archess (oo Bl with 30 f5& nesded applcsion angd mapdes deplpyment descrphon The

QA edrdanai geravale i dealagl OC4] dpaciic depiogmen daie iglon when Se azplcalog @ feplped 11pai b
cuisiom DCA) epecibe daplayireant e cod phioes thal pau sich 58 e, yioul nasd o 10 | rcfiede | heesi e b o T

DEE Saplaalios E Yuidulis e pli . eai Ei vl
Apphcanon Mams FRamplel

Faend Agpleaion |datak '|

Caniotl) | Cenbnsg)

Logs | Pmlmences | Help =
Copeenyd B s i CeacE B aY irERT R
Siad Cncia Ecbicnies Usrssoes 1o Aok slon S Coninl =
&1 [Lol o
Click Continue.

5. For the next pages, take the defaults until you reach the Publish Web Services
page, shown in the following illustration:

10-14 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

ili. icle | mipipmar Hansgs - Depios Appicsian "ulilish wah Deeces - Mioima imismesi § epies

B E# Ve Fpests okl [ot |
FaBak o+ = -) 1] 2} Btessd [giFevsts PHela J S LF T Linka
ol E tninipiss Banags 1y =

Fubdinh ‘il
it

Daploy Application. Publish Vet Services

The (shim beige bt ol pf the s=p smmac e ound m o yor pbcybon. Esch weh merace thai you wish [o access masd

Lo iR bl 10 (hi DO i iy on i sp prop et Calagory, To o 1hil, Baloc] @ wes sevici wndl Ihes click on thi
Publich Bulton. Yo wil be diecbod 10 & nes paga whetre yoo con emier dedale and cabeci ihe calegery Chck on O n
Ihexd paage 1 gl Bach I e soress sng pusheh arofer ssbosarace
Wb Serviced
B |- Fusich |
Saburd Wl Senaice Wah Bundule Sialus
" sisiwlere 59 weh revcs Shytmimne 55 Weh Sewvires L} p_|
Erarmple Exaimgie Fulb b
Caresl | | Hack | Mot § | [iniah) ﬂ
=] (s {2 Lowadindearast

If the wizard does not display the Publish Web Services page, either the UDDI
registry has not been initialized or the OracleAS Infrastructure is not running. See
See "Configuring OracleAS UDDI Registry" on page 10-6 for information about
initializing the UDDI registry. Then, you may need to restart Oracle Enterprise
Manager.

At the Publish Web Services page, select the desired Web Services to register from
the list of Web Services known to the application whose Status is Not Published.

Then, click Publish to continue to the Web Service Details page.

At the Web Service Detail page, review, edit, or enter the information as needed in
each of the fields in the Service Details and tModel Details sections. OracleAS
UDDI Registry automatically adds the Name and URL to Service.

« To specify a category, select a Classification and Code in the Category Section.

« To specify categories to which the Service or tModel are to be registered, in the
Service Details or the tModel Details sections, click Browse UDDI Registry.
Then, browse to the desired classification, and drill down as needed through
each desired category, noting all desired category names and values.

» Toadd an empty row of category information, click Add Another Row. Select
the desired classification, then enter the value code and its corresponding
category name for the desired category.

The following illustration shows the top part of the Web Service Details page:

Discovering and Publishing Web Services 10-15

Web Services Publishing

ili....‘l- | mlEijmae Haneps - Dejior Appicaien Weh Sasice leisfs - Waonsli bl 1 apioes
e B8 e Fposiw Tock fisk [ot |
ek » = -)] BSeess [GiFeastn PHedka 4 S LTS Lirka

CHFARULE tninipiss Managei 1a —

Weab Sernvice Details: stateless SP web service example

Service Details

kymg |'|J|¢ln-;-' = weh qerars acample
[ascrphan _J
e |
L In Sarace |1I': Trrilwitars-pc un. oras B com TTH st nac eatal ul e
Select Catgary and ., _rhl::FJ
Sibinr! Ol et stlin Tl i
n E_'. = -| .F'::.I.H
Bal @ ArayTeai Foxw ﬂ
8. After entering all the required information on the Web Service Details page,
publish the Web Services to OracleAS UDDI Registry by clicking OK. You return
to the Publish Web Services page.
9. Inthe Publish Web Services page, select another Web Service to publish and repeat
this entire process again as described in Step 6 and Step 7.
10. After publishing all Web Services for this application, click Next to continue to the
Review page where you can review the application deployment information.
11. If there are no further changes, click Deploy to deploy the J2EE application on the

OC4J container. Doing this returns you to the Oracle Enterprise Manager OC4J
Home page.

After deployment, metadata describing the Web Services that you chose to publish has

been added to OracleAS UDDI Registry.

Updating Published Web Services in OracleAS UDDI Registry

You can use Oracle Enterprise Manager to browse, drill down, and get information
about Web Services published for categories in OracleAS UDDI Registry. You can

update the discovered published Web Services.

To update published Web Services using Oracle Enterprise Manager 10g, do the
following:

1.

Invoke Oracle Enterprise Manager and navigate to the Application Server
Instance-name page. From the System Components table, select an OC4J instance.

In the OC4J:0c4j-name page, click the Administration link. On the Administration
page, click the UDDI Registry link in the Related Links section.

If UDDI Registry is not listed in the Related Links column, initialize the OracleAS
UDDI Registry by pinging the UDDI inquiry servlet end point (see "Configuring
OracleAS UDDI Registry" on page 10-6.) Then, restart Oracle Enterprise Manager.

10-16 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

3.

In the UDDI Registry page, select one of the three standard classifications, NAICS,
UNSPSC, or I1SO-3166, by clicking its link. The following illustration shows the
UDDI Registry page:
B liacls | pisipmae Bansgs - LD Negesy - Ml | niesst [apdeis
Do 04 Yo Femim Imk b | v |
e e I B e B 1 L T L T B e s
CwacLE Enuipres BManagei g d
Ju] i | Lom Priieiences Hel
Sppircalian St Theary inimenlons-se UL ocacle. bom L P LICICH H ety
LIDD Registry
The Oracie LEJDY Hegadry proedes & web-based graphical user imertice thal supposs browsisg 3 isndad
cisnicrion (svsrmmeay, NECS UREDST and 150 3R
B 55 Cogormmbar Towin iy F20 JIGH)
hign | Prebesicis | Hels
Copsrighl & | 95, 3004, Crecie A egiis. reaereed
diwnl Cogriy bivvjmoo Uawvmpe |0 Epydie e S e Ciadr
¥
In the UDDI Registry: Classification_Name page, you can drill down from category
to subcategory to discover published Web Services associated with any category or
subcategory. Each classification is organized in a hierarchical tree. Navigate down
a particular branch by clicking the category name to determine all its subcategory
names, and so forth. As you navigate down a branch, also note the change in the
category code value.
The following illustration shows the page:
B Hrscls | misipmse Hansgs - LUON Nepoy - Hcssoll Ikemst ©aplsis
D B Wew Fposw 1ok iy '
diBmkor = - [) B [gFeestn ek 0 55 S T -
CHFACLE Eninipises Binagei 10 =
i il 1 taad Freieromcess Helo
F A Sppicalan et Focus milsslose-gi.up sisce com * D04 00 Poda DL Rsgalny
Wl Bosices
Web Sendces
Fag Eimshe Jun Il|.|'1IIII11Il|'l|'|-|T':'
This abla diepdays Tha Sore 0o A Gl ad cosicn by of 30wl gosaces pobliabad within thie cabesied CRlogoy T o
T compbsie detade of pemb marace, paaes the Wi Ceisbn Guiton
Cumanl Catigory. UDOH Fogrilin Word = Lidesd SHaes = Miss Himgaleie
Eeleat Service snd ... wra Dielails [ra)
Heleci Mame Semace oy [y By
® gexielees 5P wab sarace PFFIF21N 0000 ATS ACHE| TP FT-L DB e
rpp— FAREEAI00ES1 FARE01 FRB
Loge | Prelsienges | felp
Crperagt & 100, 2004 Crnce A8 sgiin s el L=
dhoaj Cogcig S=igrpeys Ligngges |0k dppie goon Temsyr Cragr :|

Navigate to the desired category or subcategory by successively clicking the
desired categories.

Discovering and Publishing Web Services 10-17

Web Services Publishing

5. To view all Web Services published in a particular category, select the

corresponding radio button in the Select column for that category, and click View
Details.

The Web Services page lists all Web Services published for that category name. For
Web Services listed for the selected category, the corresponding service name,
service key, and business key are also listed. If the selected category or
subcategory has no published Web services, none is listed.

The following illustration shows the Web Services page:

EII. acls | pipipmae Hansgs - LG Repesy - Hamanll Iniessi L aplais

D D Yo Fposm Lok lise [W |
ek v o= -) 3 Qe [wfeasin @eed J e L ST Lk
[R T E Enivipress Manage 10g =
Wil B i N) I)

Web Serdces

-

i dun i, Hald 3430 PR
Thiks abda chupdases Thas GEreCo Aaamd sl ponvicd bow of all Wi soniC i pubiisbeed within e sebaciid Calegory To
dp the complets delsbs ol 5 wish ssevca, presss | he Wiy Letals lifion

Cumanl Catagary. UDDH Pagilis . Agaicullird, Farilry, Fisheng and Hisonsg

Ealaat Servics snd .

oy Dolaie) Dot
AplEr] Mpme haErdlre Rey T rem, L]
& 0 Dty RS- L A- a0 F AL 0T BTG F M- e
BOH 3 D053 BRATREERENTE
0z | Prlesarces | He

Coperaghl O 105, 2004 Cance Al egnie ieeeesd
b i Carpci Prigrirs (b | 0 ACoicaior

L]

6. To view the complete details of a particular published Web Services listed for a
category, either click its service name or select its corresponding radio button in
the Select column and click View Details.

Click the desired service name.

7. The Web Service Details page displays detailed information for the selected Web
Service published in OracleAS UDDI Registry. This information includes:

« Service Details: Information such as the Web Services name, Web Services
description, and the URL of the Web Services access point.

Service Category: The classification and the corresponding code value and its
category name.

« tModel Details: Information that describes the interface that the Web Services
implements, such as the tModel name, tModel description, and URL to the
interface specification, typically a WSDL document.

tModel Category: The classification and the corresponding code value and its
category name.

On this page, you can:

« Browse OracleAS UDDI Registry to look for categories in which to register
Web Services: Click Browse UDDI Registry.

« Add categories to which either the Web Services or tModel are to be
registered: Click Add Another Row.

10-18 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

= Remove categories to which the Web Services and tModel are registered: Click
Delete.

8. After making all selections or completing all changes for this Web Services, click
Apply to save your changes.

If you have made changes to any field and you decide you want to return to the
original set of values for all selections, click Revert. The page refreshes with the
original set of values for all selections as if you had just begun your current session.

To update other published Web Services for the same category;, at the top of the Web
Service Details page, select the Web Services: Classification_Name link to return to
the desired Web Services:Classification_Name page. The following illustration shows
the Web Service Details page:

!II..-..-Ir I mleijinze Haneps - Wel Deivicr Delab - HemeeH sans 1 aglas

[ie E@ ‘yesr Fpodes Jook |is -
dibmk v = -)]) D [giFrasts @keke f e o Lirda

WL E tnivipiss anagei g

TIHE LB - -
gk bni Weh Sievdia Dedaks

Webh Serdee Details FEFFAF217-0808-457B-A 0 2F-FZBREA4Q0ER

i W, TN LY PRI

Berdice Detally

plamp I'llla-:l-'.r EF weh nerars ai wripd

Lecnphan _l
b |
LR 10 Sansts I‘Il!: el edlers-ge Ui ines l Eorm 77D i e it W1l
C M S ary
LAY Pguilis
=
] {2 Locatwiraras

When you return to the desired Web Services:Classification_Name page, select another
Web Service to view in more detail, make any necessary changes, and finally click
Apply to save your changes.

Alternatively, you can click Browse UDDI Registry to return to the UDDI Registry
page, where you can navigate to another classification to discover Web Services for
other categories. At each desired category, select the desired Web Services to view the
details, make any necessary changes, and finally click Apply to save your changes.

Using the OracleAS UDDI Registry Publishing Tool

OracleAS UDDI Registry provides a Publishing tool that enables you to create a new
businessEntity, containing new businessServices and bindingTemplates, or tModel. To
access the Publishing tool, enter the following URL in a browser:

http:// O acl eAS- host: Oracl eAS- port/ uddi

The OracleAS UDDI Registry page is displayed.

This section uses an example that publishes a service for a Google-based search. It
shows how to publish to the UDDI registry including how to create a tModel that is

Discovering and Publishing Web Services 10-19

Web Services Publishing

mapped to a WSDL interface specification and how to create a businessEntity and a
businessService.

Take the following steps:

1.

Click the UDDI Inquiry/Publishing tool link. Then, on the OracleAS UDDI
Registry: Searching and Browsing Tool page, click Publishing Tool.

On the Log Into Publishing Service page, enter the user name and password for
the uddi_publisher user and click Login. (See Table 10-2 for default passwords.)

The Publishing Tool page is displayed, as shown in the following figure:

i NracladS LIGH Megpewy 1"ubiling 1ol - Mainmmb el 1 spima
[E& Yo Frodss Lok Hew -
T T |h-| o kst ny TR Ukl e bl i e i ll o fin

OracioAS UDDI Rogiiry: Publshing Tool - [

Leagged in a8 uddi_publidaber
Cras

L ¥t i BTG 10T Barsicl rosidoe
» (o]

LEsr &l businass antities swmnad by uddl publishar

In the Publishing Tool page, you can create:
« A new businessEntity
« A new tModel

The first step in registering a Web service in OracleAS UDDI Registry is to create a
tModel. This example creates a tModel that represents a Google-compatible
service.

To create a new tModel, click tModel. The Publish tModel page is displayed.
In the Basic information section, specify the following information:

a. For Name, specify a name so that this tModel can be located. For example,
enter urn:google.com:search-interface.

b. For Description, specify a description of the tModel, such as Google search
interface.

c. For Overview Document URL, specify the URL to the interface specification,
typically a WSDL document. In this case, Google provides a WSDL document,
http://api.google.com/GoogleSearch.wsdl.

d. For Overview Document Description, enter a description of the overview
document.

In the Category section, you categorize the tModel, in this case as a WSDL-based
interface. To find information about the tModel key and key name and value, click
the browse category icon at the end of the first row. The Category Browsing page
is displayed.

Take the following steps:
a. Select uddi-org:types and click Browse.

The Classification Tree for this selection is displayed.

10-20 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

b. Click Specification for a Web Service. The Classification Tree for this selection
is displayed, as shown in the following figure:

: N D Hegnie, Corgme Bammey Hesaesll irdemmt Fagleri

OracleAS UDDI Registry: Category Browsing

gy LIRL g ud dinegg siry” AR RSN afdiingrarny
Category Thodel Ky [0 CNACF2E0- 56724 204-5070- 396756 ES2AEA
Coagcs O unper CRadE T adloongtppes T cestamized T greeched

B |

L - - - o -
L Spae feaion b e specifcaton ¥
Key Nama Key Value Salect
B Specificaon for o et Serdce wsing XML mes saes aripec o)
B o B e £ i Wi pes "
- =

c. Inthe row Specification for a Web Service described in WSDL, click the
Select icon.

In the Publish tModel page, the information you selected is automatically entered
into the Category section. Now, it contains the following information:

«» For tModel Key: uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4
« For Key Name: Specification for a Web Service described in WSDL
« For Key Value: wsdlSpec

The Identifier section specifies identifying information, such as from the D-U-N-S
or Thomas Register systems (see "Support for Standard Classification and
Identifier Systems" on page 10-4 for more information). For this example, leave
this section blank.

The following figure shows the Publish tModel page:

Discovering and Publishing Web Services 10-21

Web Services Publishing

N leaclah s LIGIH Megpetey 1"l fiadnd - Mo seh G emst | sploss:

Jih-l“] i furchs g IEW ke e g bated o 1 S

OracledAS UDDI Registry: Publish tModel

Legged In as uddi_publisber

Basbz Information
Kl ||.r|| q:lqh £ o wars i prlacs

Diestrplie |[Faogie saach merace

Crerams Document LRL [api geogls comDosglsSasch wadl

Crempvaw Do umen] D Esirplon I:l' [oighs poaich inliefece

Category

Thioda | Ky Ky Harnie oy Walie

JUD C1ACFIE0 56740 [Rpe Pcation tar a W 5 fesdTpe: o s
Mencifiar 5 I~
Thioe| Ky ey Name HEsy Wiahe

| r r m*

Fusksh | Rest | .

7. Click the Publish button to publish the tModel. The TModel Details page is
displayed, as shown in the following figure:

N Nvackad s LTIH Memety | olel Delsils - St baisns §gpbioes

Jih-l|{||q-. i iy IEW ik et e e kel 13 = B

OracleAS UDDI Registry: Thilodel Details

Buse infarmstion
Fame; um: Qoogls Com SBar h-interiale

Ky, oULe: BFE0EETE- SABF-4hES-Bods- oAz rEcaEpn O 61
Cisscnpion Googe seach interiace
Overaaa COC UManT UL e s oo S b i

Categerias far this thbedal

Thodel Ky ey Name Ky Walus

LI i e el S Spechcabon for a Wl ¥
lplnipn o e i Sarvice describad i WSO wizdi e
(i) - (bop) - ekl - (2] - fnmird - |pblsh] - |creaie Cusness] - [creale Tdodel] - [ogoe]

=]

Note that the key (UUID:B960F57E-54BF-4DB8-BC36-F2802FE6BEFO) for this
tModel is randomly assigned by the registry.

8. Click the Publish link at the bottom of the page to return to the Publishing Tool
page.

9. Create a businessEntity, which contains details about the business, such as the
name, contacts, and categories with which the businessEntity is associated. Click
business entity (or service provider). The Publish Business Entity (Service
Provider) page is displayed.

If a businessEntity already exists, you do not need to create a new entity. In the

Publishing Tool page, click the link to the existing businessEntity. Then, proceed to
Step 15.

10-22 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

10.

11.

12.

13.

In the Business Details section of the Publish Business Entity (Service Provider)
page, specify the following information:

a. For Name, specify a name so that this business can be located. For example,
enter Google Service Provider.

b. For Description, specify a description of the business.

In the Contacts section, enter information that you want to appear in the UDDI
registry. Specify information for the following fields:

a. For name, specify the name of a contact.
b. For voice, specify a voice mail number.
c. For email, specify an email address.

d. For address, specify a mailing address.

In the Category section, add any categories with which the business should be
associated. For this example, use the 1SO-3166 geographic taxonomy to provide
geographic categorization of the business.

To find information about the tModel key and key name and value of the category,
click the browse category icon at the end of the first row. The Category Browsing
page is displayed. Then, take the following steps:

a. Select iso3166 and click Browse. The Classification Tree for this selection is
displayed.

b. Drill down to select the geographic category. For this example, click World,
click United States, and then click the select icon for New Hampshire.

In the Publish Business Entity page, the information you selected is automatically
entered into the Category section. Now, it contains the following information:

« For tModel Key: uuid:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88
« For Key Name: New Hampshire.
« For Key Value: US-NH.

The information for the Identifier section is optional. For this example, leave it
blank.

The following figure shows the Publish Business Entity (Service Provider) page:

Discovering and Publishing Web Services 10-23

Web Services Publishing

|- Menim ah Bl s 1 spioss

B Em e Fgedss fock o lise

iﬁu|ﬂwrwqmummntm:nm .ﬂ orhn

OracleAS UDDI Regisiry: Publish Business Entity (Service [
Provider)

Legged in as uddi_publisher

Basis information
Hamng [Google Serdos Fsda

Dezorpnon [Gamge Saecs

~CHRENES

Hame WapE Emal Address

l:m jiec W IF B3] Iilr‘;!ﬂl:gﬂln‘r .‘-Ill]uu_hh

Catagory %

Thice| Key ey Marme Ky Walie

LiD AF siARDE-TS a4 F rln.- Humpehue |LessH Om
~Idantifisr [=

Thicce| Key ey Name Hey walke

| ox

o e

=

14. Click Publish to publish the business. The Business Details page is displayed:

T lraciahS LT H Maguiey Dunss Deisls

Mirinbah e re L apfies
[l G e Fposiss Jock jisw
iﬂq'u.|i| s i s TEW ik s vl L s il p & 'ﬂ hn
=
OracleAS UDDI Registry: Business Dealails
Busks infarmstian
Business name: Google Serace Prosder
Business key dzopEeTr-3pdE-4040-nper-mefeddmaingy CF WA
Ciescnpinn: Google Seanch
Contacty
Hame oce Emal fAddress
alan 1 T34 5585 sanffigooogleseah com Blashua, M
Catmgories for ghis businsss
TR mcked ey ey Name Eey Yalue
Hews Hamgrshire LE-HH
us=Type
businessEntiy
[Lgni) - [op] - [oekef - (o] - finmard] - [podish] - [cmale osress] - [creaie fdode]] - [ogou) =

Note that the Business Key and the Discovery URL are generated by OracleAS

UDDI Registry. With the Discovery URL, you can retrieve the businessEntity using
the HTTP Get method.

10-24 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing

15.

16.

17.

In the Services section of the Business Details page, click the icon to the right of
Services to enter information about the businessServices offered by the
businessEntity and the categorization of the service. The Publish Business Service
page is displayed.

In the Basic information section, specify the following information:

a. The key for the business is automatically entered in Owning business.
b. For Name, enter a name for the businessService.

c. For Description, specify a description of the businessService.

In the Category section, add any categories to detail the intended use of this
service. For this example, add a category from the NAICS taxonomy to specify that
that category is an online search tool.

To find information about the tModel key and key name and value of the category,
click the browse category icon at the end of the first row. The Category Browsing
page is displayed. Then, take the following steps:

a. Select naics and click Browse. The Classification Tree for this selection is
displayed.

b. Drill down to select the category. Click Information, then Information
Services and Data Processing Services, then Information Services, and Other
Information Services. Then, click the Select icon for On-Line Information
Services.

In the Publish Business Service page, the information you selected is automatically
entered into the Category section. Now, it contains the following information:

« For tModel Key: uuid:COB9FE13-179F-413D-8A5B-5004DB8E5BB2
« For Key Name: On-Line Information Services
« For Key Value: 514191

The following figure shows the Publish Business Service page:

i Iiackad S LIDHH Memewy "ol Baameas S#vies - Hosend] Iniesal [aplars

[L fesy Fgoses look [sw -
u"l'ﬂI..'_I|||1'h-'|'-l'l‘h‘-j."."lf-'u-‘l".'l‘i-l..-]{h."hﬁii-'. svis o i tierwal ap=TTTO I 77 T ETHHETF AT I'll :-"‘El

OracleAS UDDI Registry: Publish Business Service i
Leagged I as uddl_puiblisber

Bk InFarmatian
Owining busness |EMCDEETF S5 A5 EEF -BESERBAIEET

Pearre F.:W.L' Eanch Sereca

Ciezcnptan: Find anmhing sk Geogl

Caugary 5 =
Thiocel ey K=y Harme Hom e

LD COBAFE13-170F-41 EnLne imomuian Same [Eta191 ol [

Fuhish I EEEE]] | -

18. Click the Publish button to publish the service. The Service Details page is

displayed, as shown in the following figure:

Discovering and Publishing Web Services 10-25

Web Services Publishing

S [&A% LD Nepeiey 5 a4 Deiade - Hicieandl | it | splais

h!-uh-r-mmut | |

-H!'-I‘]Im turidmsgd n TENE i e i L el LER wa 1 S aracs U ﬂ i 1]

OracleAS UDDI Registry: Service Details [

Buibs informmtion
‘=.-t'l-='.v nEme "l:l:l.i-" Saarch Senipe

Samace by [SR - ABAS- 81 55- AEZA-EIDTIFSI 170 O M
Descrphion Find 'rl'.i"llu'\-'ﬂ.h Dooge

Categorias far this service
Thingde] Hay Kigy Marms Eay Walig
inkLine I
O ST [T] [A e [R Lin L:;_“:I:.I;I'Iﬂ:l:ﬂ S8
Bindirg Daraits & £
Dwning business
Suenzss by JJCLDEET IF-3043-4040-EEEF-BEnERaRapRET O

=l

19. Create a bindingTemplate, which contains details of how and where the service
provided by this businessService is accessed. On the Service Details page, click the
icon to the right of Binding Details.

20. In the Publish Binding Template page, OracleAS UDDI Registry automatically fills
in the field Owning Service Key with the key for the service you just created. In
the Basic information section, enter the following information:

« For Description, specify a description for the bindingTemplate.

« For Access Point, specify the access point for accessing the service. In this
case, review the source code for
http://api.googl e. conl Googl eSear ch. wsdl to find the access point.
The WSDL file contains the following:

<soap: address | ocation="http://api.googl e. conf search/ beta2"/>

Enter http://api.google.com/search/beta2 as the Access Point.
« For Access Point URL Type, select HTTP.
The following figure shows the Publish Binding Template page:

B NraclafS LITIH Mages g I"ubshins Baedang 1emgplas - Wacinoah fmisires L aploess

LT 'm-. ook liew [#]

-‘i'-lt]lml'n'lﬁ'hhj.lln.-lm.‘.rﬂ'MmWﬂMrn|:r.'lnll.lll-l'lr..l-'..n:lﬁ:p.l.jEﬂ-‘m-‘mﬁulﬂ e 1]

OracleAS UDDI Registry: Publish Binding Template

Lagged in o8 uddi_publisher

-
==

Basi: Infarmation
Dhwming Service Key: [(5RIC000- AaaR-A50- AR A, ELT IFES T
Do s onphion |

Access Fort [t i o cu ire'emarch il

access Fort URLTyoe (S
| Funlish I Hessi |

10-26 Oracle Application Server Web Services Developer’s Guide

Web Services Publishing

21. Click Publish to publish the bindingTemplate. The Binding Details page is
displayed, as shown in the following figure:

I llvackah 5 LIGIH Me@eiey Nindisg Daisls - S ol eismsi | apboss

OracleAS UDDI Registry: Binding Details i

Biiés infarmmian
Birving kéy” DECTEDTE- ADEE-47 50— 008 - APFFIACINCTE o X

ACCEEE PONL oy S geogs s imugret gy
access Font URLTyoe hitp

et aces mplemanted &

Thwning Sarvice
Senace by (5SBCHIT-ALAE- 4350 S8 ETIF G253 2

L

22. Click the icon to the right of Interfaces implemented to add a new interface
reference.

The Publish Interface Reference page is displayed.

23. On this page, OracleAS UDDI Registry automatically fills in the Binding Key
field. Click the Search a suitable tModel icon, which is at the end of the Interface
(tModel) Key line.

The Find tModel page is displayed.

24. For tModel Name, enter the beginning of the name of the tModel you created, for
example, %urn%google%. The following figure shows the Find tModel page:

B et B0 Aegniy. Fiml tbasdel Bicmolt |t Epphoms

OracleAS UDDI Registry: Find tModel

gy LIFRL W Vud dingce sory” GO AR T niguary

Trdnck| Plarme e 2 |
Ophioral Aetds foreerety,.
it o Gotname. MagRows | Add cabegony T el ineriier T
Cmsr " asc = m
oy g Wakie
e ~ dese r e
i rosort Fonosot ™00 | I [m Toicutet oy [LLICH BN (]
&0 I I | n e o JOUA L Biand
Ca=e Maich -
¥ incersove [et st | | 11 | ey e |
" Er e
[T R R e T]
Mgl T o T parpoa [o
jrebetnml whioe yenbypee clope e

|E
il

_ | ¥ lecuivimra

25. Click Search.
26. The tModel you created earlier is returned. Click Select.

The Publisher Interface Reference page is displayed. The tModel Key is
automatically entered in the Interface (tModel) key field of the page.

Discovering and Publishing Web Services 10-27

Web Services Publishing

27. For Overview Document URL, enter the URL for the interface specification. In
this case, enter http://api.google.com/GoogleSearch.wsdl, as shown in the
following figure:

I Hraclads LI Negeey "ol lelmisoe Nelsisnes - Bz | sl §oplos

depbrrn |‘] g urchesuat e DERR s chera L LS iOna sl cans B Pl =08 LI TG0 B4 P00 AT P 5] ot B

-
OracleAS UDDI Registry: Publish Interface Reference

Loagged in a8 uddi_publiiber

rdlE . An rsEnce-speciic relerent® [0 4 Mods & conEidered pot of the
techneal gement of a servee which 15 represented ky o Bnding
bermpdane

Imtance details
Bridrsy key OFCTI0TE-ADBE-4T30-B000-AFFFBSCOOT0E

In=rtace [Booed) key |I'llr.l BRI AT E-Ri B - 40 BR- B C3R-F R0 FERSEF [T
IrstanceFams |

nstance Descnpion | -

Cremnaarey Documaim URL b a1 gaegie comiGoapleSash wed
Oversi=ve Document Descnpion |

b | .

28. Click the Publish button. The Binding Details page is displayed. As the following
figure shows, it now contains information about the implemented interfaces:

B llackads LG Nepeiey Nindisg Deisls - Moo cel eismesi | epioss

Mh-l“]lm vttty IEWE ik e e e e igranLes = ptEn
OracleAS UDDI Registry: Binding Detalls
Blwiks infarmatian
B ke DPCTR0TE- ADGEG-47 50— BE0H - AP FPIRCANCTE 3 X”

AppEes POnL e S e mow e oy
Access Pont URLTye= hitp

Irtesfaces mpbemented &
B pigitaca narne W Qocde com saach-aterface
miedace key tTo: pSElrETe- S4nr- dpel- poid-ria0credeern L
FEmace gescngbon Goige Sesnth netace
FlEdace ovEriee UL e v geogi som kg eyt =i
Imilemensbohreference spedilc detmk
Crvervewy cocument URL apy o g oo iwnt snil

Dwning Service
Eenace ey (8590000 adap 4390 st B PRI O
Gaidd] - oo - Tiched - i - Erivany] - EoCash] - (e] - (Lo d o] - Moo =

Using the OracleAS UDDI Registry Publishing API

The OracleAS UDDI Registry Publishing API lets consumers (programmers),
following authentication, publish Web Services by providing save and delete calls for
each of the five key UDDI data structures (businessEntity, businessService,
bindingTemplate, tModel, and publisherAssertion).

10-28 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

The Publishing API, part of the UDDI Client API, allows programmers to publish Web
Services using the Java language. Programs can be written in any language, using
SOAP to publish Web Services. The Java API is provided as a convenience for Java
programmers.

The Publishing API is located in the Oracle Application Server installation directory,
${ ORACLE Hone}/ uddi / for UNIX and %#0ORACLE Hone_ ORACL E% uddi \ for
Windows. The API documentation can be found in the Oracle Application Server Web
Services UDDI Client API Reference Javadoc.

A set of sample demonstration files (uddi deno. zi p) are located on the Oracle
Technology Network (OTN) Web site at:

http://ww. oracl e. com technol ogy/tech/ webservi ces/ ht docs/ uddi

UddiPublishingExample.java Example

The uddi denp. zi p file contains a Java program file,

uddi Publ i shi ngExanpl e. j ava, that provides Java programmers with a starting
point that demonstrates the key constructs and the sequence in using the OracleAS
UDDI Registry client library.

The program example does the following:

« Gets an instance of SoapHTTPTransportLiaison. This is an implementation that
handles the details of communication between the UDDI client and server using
SOAP and some underlying transport protocol (in this case HTTP).

SoapHt t pTransportLi ai son transport = new O acl eSoapH t pTransportLiai son();

« Sets the proxy information for the transport if the system properties
http.proxyHost and http.proxyPort are set. These properties can be set on the
command line. If these properties are not set, this command has no effect.

set Ht t pProxy((SoapHtt pTransport Li ai son)transport);

« Uses a SoapTransportLiaison instance and the URL of a UDDI publishing registry
to initialize an instance of UddiClient, which connects to the specified OracleAS
UDDI Registry. The UddiClient instance is the primary interface by which clients
send requests to OracleAS UDDI Registry. Authentication is done using the UDDI
get_authToken message in this example.

Si npl eAut henti cationLiai son auth =
new Si npl eAut henti cati onLi ai son(szUser Nane, szPassword);
Uddi Cient uddiClient = new Uddi dient(null, szPublishingUl,
transport, auth);

Note: The UddiClient instance, by default, operates as a UDDI v2
client (the latest release supported). If a specific release is needed, the
release can be specified, either through another constructor, or by the
JVM property oracle.uddi.client.default\ersion.

« Performs authentication. You should make this call before doing any publishing.

Uddi G ient.authenticate();

« Uses UddiClient to get a UddiElementFactory instance. This factory should
always be used to create any UDDI objects needed.

Uddi El ement Fact ory uddi El t Factory = uddi O i ent. get Uddi El ement Factory();

Discovering and Publishing Web Services 10-29

Web Services Publishing

« Creates and includes the OverviewDoc data structure in the tModel data structure
by using the UddiElementFactory instance.

Overvi ewbDoc overvi ewbocTm =
(Overvi ewboc) uddi El t Fact ory. creat eOver vi ewDoc() ;
t Model . set Over vi ewDoc(over vi ewDocTn) ;
overvi ewDocTm set Over vi ewdRL("ht t p: // api . googl e. coml Googl eSear ch. wsdl ") ;

« Creates a tModel data structure that represents a Google-compatible service by
using the UddiElementFactory instance.

ThWodel tMdel = (TMdel)uddi Elt Factory. creat eThodel ();
t Model . set Nanme("urn: googl e. com search-interface");

= Inthe tModel data structure, uses the UddiElementFactory instance to create a
CategoryBag data structure and its keyedReference data structure, which will be
used for searching. Classify the tModel data structure as a SOAP/WSDL-based
interface and put it under the "applicable service providers" category.

Cat egoryBag cat BagTm =
(Cat egor yBag) uddi El t Fact ory. creat eCat egor yBag() ;
t Model . set Cat egor yBag(cat BagTn) ;

KeyedReference krTnl =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();

cat BagTm addUddi El ement (kr Tni) ;

kr T, set TMbdel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr T set KeyName(" soapSpec");

kr Tri. set KeyVal ue("soapSpec");

KeyedRef erence krTn2 =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagTm addUddi El ement (kr TnR) ;
kr TnR. set TMbdel Key(Cor eTMbdel Const ant s. TAXONOWY_KEY_UDDI _TYPE) ;
kr TnR. set KeyName(" wsdl Spec");
kr Tn2. set KeyVal ue("wsdl Spec");

KeyedRef erence krTnB =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagTm addUddi El ement (kr Tn8B) ;
kr Tn8. set TModel Key(Cor eTModel Const ant's. TAXONOW_KEY_UNSPSC 7_3);
kr TnB. set KeyName(" appl i cation service providers");
kr Tn8. set KeyVal ue("81. 11. 21. 06. 00");

= Publishes the Google search interface tModel business operation.

Systemout. println("\nPublish the google search interface tMdel.");

Thodel tMsaved = uddi Cient.saveTMdel (t Model);

String szGoogl eTModel Key = t MSaved. get TModel Key() ;

Systemout. println("The tMdel is saved with tMdel Key assigned to be " +
szGoogl eThbdel Key) ;

« Creates a businessEntity data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

Busi nessEntity businessEntity =
(Busi nessEntity)uddi El t Fact ory. creat eBusi nessEntity();
busi nessEntity. set Name(" ACME search Inc.", "en");

10-30 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

In the businessEntity data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its keyedReference data structure, which
will be used for searching. Classify the businessEntity data structure under the
"information services and data processing services" category.

KeyedRef erence krBel =
(KeyedRef er ence) uddi El t Fact ory. cr eat eKeyedRef erence() ;
cat BagBe. addUddi El enent (krBel);
krBel. set TMbdel Key(Cor eTModel Const ant s. TAXONOW_KEY_NAI CS_1997) ;
krBel. set KeyNanme("I nformation Services and Data Processing Services");
krBel. set KeyVal ue("514");

Creates a businessService data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

Busi nessServi ces busi nessServices =

(Busi nessSer vi ces) uddi El t Fact ory. cr eat eBusi nessSer vi ces();
busi nessEnti ty. set Busi nessSer vi ces(busi nessServi ces);

Busi nessServi ce businessService =

(Busi nessServi ce) uddi El t Fact ory. creat eBusi nessServi ce();
busi nessServi ces. addUddi El ement (busi nessServi ce);

busi nessServi ce. set Nane("ACME Wb Search service", "en");

In the businessService data structure, uses the UddiElementFactory instance to
create a CategoryBag data structure and its keyedReference data structure, which
will be used for searching. Classify the businessService data structure under the
"application service providers" category.

Cat egoryBag cat BagBs =
(Cat egor yBag) uddi El t Fact ory. cr eat eCat egor yBag() ;
busi nessServi ce. set Cat egor yBag(cat BagBs) ;
KeyedRef erence krBsl =
(KeyedRef erence) uddi El t Fact ory. cr eat eKeyedRef erence();
cat BagBs. addUddi El ement (krBs1);
krBs1. set TMbdel Key(Cor eTModel Const ant's. TAXONOW_KEY_UNSPSC_7_3);
krBsl. set KeyNane("application service
providers"); krBsl. set KeyVal ue("81. 11. 21. 06. 00") ;

Creates the bindingTemplate data structure that represents a Google-compatible
service by using the UddiElementFactory instance.

Bi ndi ngTenpl at es bi ndi ngTenpl ates =
(Bi ndi ngTenpl at es) uddi El t Fact ory. cr eat eBi ndi ngTenpl at es() ;
busi nessServi ce. set Bi ndi ngTenpl at es(bi ndi ngTenpl at es) ;
Bi ndi ngTenpl ate bi ndi ngTenpl ate =
(Bi ndi ngTenpl at e) uddi El t Fact ory. creat eBi ndi ngTenpl ate() ;
bi ndi ngTenpl at es. addUddi El enent (bi ndi ngTenpl ate);

— Creates and includes the access point in the bindingTemplate data structure by
using the UddiElementFactory instance.

AccessPoi nt accessPoint =

(AccessPoi nt) uddi El t Fact ory. creat eAccessPoi nt ();

bi ndi ngTenpl at e. set AccessPoi nt (accessPoint);
accessPoint.set Ul Type("http");

accessPoint. set Content ("http://foobar.net/search-g");

— Creates and includes the tModel instance details in the bindingTemplate data
structure by using the UddiElementFactory instance.

TModel I nst anceDet ai | s t Model | nstanceDetails =
(TModel I nst anceDet ai | s) uddi El t Fact ory. cr eat eTModel | nst anceDet ai | s();

Discovering and Publishing Web Services 10-31

Web Services Publishing

bi ndi ngTenpl at e. set TMbdel | nst anceDet ai | s(t Model I nst anceDet ai | s);

— Declares that the bindingTemplate data structure implements the Google
search interface.

Thbdel | nst ancel nf o t Mbdel I nstancel nfo =

(TModel I nst ancel nf o) uddi El t Fact ory. creat eTModel | nst ancel nf o() ;
t Model | nst anceDet ai | s. addUddi El ement (t Mbdel | nst ancel nf o) ;
t Model | nst ancel nf 0. set TMbdel Key(szGoogl eTModel Key) ;

« Publishes the businessEntity data structure and its contained businessService and
bindingTemplate data structures.

Systemout. println("Publish the ACME Search Inc. businessEntity...");
Busi nessEntity bESaved = uddi dient. saveBusi ness(busi nessEntity);
Systemout. println("The saved businessEntity (in X\M) is:");

bESaved. set Nane(" The ACME search Inc.", "en");
Busi nessEntity bEUpdated = uddi Client.saveBusi ness(bESaved);

« Uses the UddiElementFactory instance to retrieve an XmlIWriter object. To view the
raw XML data represented by an object, which extends UddiElement, marshall the
element content to the writer, and then flush and close the writer.

XmMWiter witerXmWiter =

uddi El t Factory.createWiterXm Witer(new PrintWiter(Systemout));
bESaved. marshal | (witerXm Witer);

witerXmWiter.flush();

witerXm Witer.close();

« Closes the UddiClient instance when finished to release resources and to log out
from the registry.

uddi dient.close();

UddiPublisherAssertionExample.java Example

The uddi denv. zi p file contains a Java program file,

uUddi Publ i sher Asserti onExanpl e. j ava, which provides Java programmers
with a starting point that demonstrates the key constructs and the sequence in using
the OracleAS UDDI Registry client library for publisher assertion-related operations.

A publisherAssertion, which is a UDDI v2 feature, is an assertion made by a
publisher who is expressing a particular fact about a business registration and its
relationships to other business data within OracleAS UDDI Registry. A
publisherAssertion is used to establish visible relationships between registered data.
Once completed, a set of assertions can be seen by the general inquiry message named
findRelatedBusinesses.

The program example does the following:
« Initializes instances of two UddiClients.

Uddi Cient uddidientl = createlUddi dient(szlnquiryUrl,
szPubl i shingUrl, szUserNanel, szPasswordl);
Uddi Cient uddiQient2 = createUddi Cient(szlnquiryUrl, szPublishingWl,
szUser Nane2, szPassword2);
Di sposi ti onReport dispositionReport = null;

« Creates the businessEntity data structures to be used.

String bEKeyl = createBusinessEntity(uddiCientl,
"bE1l - Uddi Publi sher AssertionExanpl e");

10-32 Oracle Application Server Web Services Developer's Guide

Web Services Publishing

String bEKey2 = createBusinessEntity(uddi Cient2,
"bE2 - Uddi Publ i sher Asserti onExanpl e");

Creates, for uddiClientl, a publisherAssertion that represents a peer-to-peer
relationship from bE1 to bE2.

Systemout.printin("");
Systemout.printin("uddiClientl attenpts to create a peer-to-peer relationship
")
Systemout.printin("frombEl to bE2...");
di spositionReport = uddi Cientl. addPublisherAssertion

(creat ePeer ToPeer Publ i sher Assertion(uddi ientl, bEKeyl, bEKey2));
Systemout. println("Done.");

Makes a query for uddiClientl for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReportl =
uddi Cientl. get AssertionStat usReport
(AssertionStatusltem COVWPLETI ON_STATUS_TOKEY_| NCOMPLETE) ;
printQut Xm (" pending rel ati onships for uddi Cientl: case toKey inconplete",
assertionStat usReportl);

Makes a query for uddiClient2 for relationships yet to be established; that is,
looking for those relationships that the toKey side has not yet acknowledged.

AssertionStatusReport assertionStatusReport2 =
uddi G i ent 2. get AssertionStat usReport (AssertionStatusltem COVPLETI ON_STATUS_
TOKEY_| NCOVPLETE) ;
printQut Xm ("pending rel ationships for uddi Cient2: case toKey inconplete",
assertionSt at usReport 2);

Shows uddiClient2 agreeing to the peer-to-peer relationship requested by creating
a publisherAssertion.

Systemout.printin("");
Systemout.println("uddi Client2 agrees to the peer-to-peer relationship");
Systemout.printin("frombEl to bE2");
di spositionReport = uddi Cient2.addPublisherAssertion

(creat ePeer ToPeer Publ i sher Assertion(uddi O ient2, bEKeyl, bEKey2));
Systemout. println("Done.");

Makes another query for uddiClient2 for relationships yet to be established to see
if there are other peer-to-peer relationships to be established. There are no more
pending relationships to be established.

AssertionStatusReport assertionStatusReport2After =
uddi d i ent 2. get AssertionSt at usReport
(AssertionStatusltem COVMPLETI ON_STATUS_TOKEY_| NCOVPLETE) ;
printQut Xm (" pending rel ati onships for client2: toKey inconplete (should be
none)", assertionStatusReport2After);

Finds related businesses that have established peer-to-peer relationships (that have
published assertions) by calling the general inquiry message
findRelatedBusinesses.

Rel at edBusi nessesLi st rbList = uddi dientl.findRel at edBusi nesses(bEKeyl,
creat ePeer ToPeer KeyedRef erence(uddi O i ent 1),
null);

printQut Xm ("find all businesses that are peers to " + bEKeyl, rblList);

Discovering and Publishing Web Services 10-33

OracleAS UDDI Registry Administration

« Deletes a publisher assertion relationship between bE1 and bE2, owned by
uddiClientl.

Systemout.printin("");

Systemout. println("Delete a publisherAssertion...");

di spositionReport = uddi Cientl. del etePublisherAssertion
(createldentityPublisherAssertion(uddi Cientl, bEKeyl, bEKey2));

Systemout. println("Done");

« Shows another way of deleting all publisher assertion relationships owned by
uddiClientl by using the setPublisherAssertions call.

Systemout.println("");

Systemout.printin("Delete all publisherAssertions of uddiCientl ");
Systemout. println("by using setPublisherAssertions...");

publ i sherAssertions = uddi Qi ent1.setPublisherAssertions(null);
printQutXn ("Done. The current list:", publisherAssertions);

OracleAS UDDI Registry Administration
The following sections describe OracleAS UDDI Registry administration features:
= Using the Command-Line Tool uddiadmin.jar

« Configuring the Server

Using the Command-Line Tool uddiadmin.jar

As administrator, you perform many administrative operations using the
command-line tool uddi admi n. j ar.

The command-line tool uddi adni n. j ar is located in the ${ ORACLE

Hore}/ uddi /1'i b/ uddi adm n. j ar file for UNIX and in the %0RACLE Hone_
ORACLE% uddi \ | i b\ uddi admi n. j ar file for Windows. In general, the
command-line tool uses the following command format:

java -jar uddiadmin.jar registry_admn_URL usernane password
[-verbose] options_and_their_paraneters

In the format, the parameters have the following meanings:

« registry _adm n_URL: A URL pointing to the administration end point;
http:// O acl eAS- host : Oracl eAS- port/uddi / admi n

« username: The default user name isi as_admi n. The user nane must belong to
the uddiadmin group.

« passwor d. The default password isi as_adm n123.

« -Vverbose: This causes stack trace information to be printed out when an
exception is encountered.

« options_and_their_paraneters: Any of the options listed in Table 10-3 and
their parameters.

Table 10-3 shows the command-line options for the command-line tool
uddi admi n. jar.

10-34 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Table 10-3 Command-Line Options for uddiadmin.jar

Option Description

changeOwner Changes the ownership of the named entity to the
specified user.

correctChangeRecord Applies the changeRecordCorrectionfile file contents and

deleteEntity

deleteRoleQuotaLimits

destroyTModel
doPing

downloadReplicationConfiguration

getChangeRecord
getHighWaterMarks

getProperties
getRoleQuotaL imits
getUserDetalil
getUsers

import

setOperationallnfo
setProperty
setRoleQuotaLimits

setWalletPassword

transferCustody

uploadReplicationConfiguration

changeRecordNewDatafile file contents to the UDDI
node.

Deletes the named entity irrespective of the owner of the
entity.

Deletes the group-to-quota-limits mappings for the
specified quota groups.

Permanently deletes the named tModel from the registry.

Sends a UDDI replication do_ping message to the
replication end-point URL specified.

Downloads the currently used replication configuration
from a specified UDDI node.

Gets the detail of a change record specified by local_usn.

Gets the high-water marks vector from the specified
UDDI node.

Lists the current registry configuration parameters.
Displays the current J2EE role-to-quota limit mappings.
Retrieves the details of the named user.

Lists all existing users who have entities in the registry.

Imports all businessEntity and tModel data structures
and a publisherAssertion in the named file.

Sets some operational information for entities.
Changes the value of the named configuration parameter.
Sets the quota limit for the specified quota group.

Sets the wallet password to be used for HTTPS
communication among UDDI nodes for UDDI
replication.

Transfers the custody of a tModel or businessEntity data
structure to a new operator and a new authorized name.

Uploads the specified replication configuration to a
particular UDDI node.

For reference information about these options, see "Command-Line Options for the
uddiadmin.jar Tool" on page 10-62.

Configuring the Server

You use the following options of the command-line tool uddi admi n. j ar to configure

the server:

« getProperti es: Lists the current registry configuration parameters. The

following shows an example:

java -jar uddiadnin.jar http:// Oacl eAS-host: port/uddi/adm n username password

[-verbose] -getProperties

Discovering and Publishing Web Services 10-35

OracleAS UDDI Registry Administration

See "getProperties” on page 10-64 for more information on this option.

« set Property: Changes the value of the named configuration parameter. The
OracleAS UDDI Registry J2EE application needs to be restarted for the parameters
to take effect.

Caution: Be very careful when using the set Pr opert y option to
change server configuration property values. Making an incorrect
property setting could cause severe damage to the integrity of the
registry.

With the set Pr oper t y option, you can specify server configuration as described
in "Modifying Properties at Installation or First-Use" on page 10-7.

Managing Users

OracleAS UDDI Registry uses Oracle Internet Directory (OID) of the OracleAS
Infrastructure as the default user repository. This is achieved through the use of
LDAP-based provider of OC4J Java Authentication and Authorization Service (JAAS).

UDDI-specific OID groups are located under the cn=uddi _gr oups subtree of the
group subtree of the OID default subscriber, and users are located under the user
subtree of the OID default subscriber.

Table 10-4 summarizes the groups of UDDI users.

Table 10-4 Default UDDI User Groups

Group Description
uddiadmin Can access the administration end points and perform administrative
activities.

Can perform all activities specified in the uddipublisher group.

uddipublisher Can access the publishing end point and save, update, or delete UDDI
entities in the registry.

uddireplicator Can perform replication activities based on the replication schedule:
send replication requests such as get ChangeRecor d to other UDDI
nodes and apply the changeRecords received.

Note: Do not remove any of these default UDDI groups.

In addition to the default UDDI groups, there are also a set of default groups for user
quota purposes. As administrator, you can add, update, or remove the groups, based
on the specific user quota policy that you may need to enforce.

By default, the users listed in Table 10-5 are created during installation. You can add
users to, or remove users from, these groups.

10-36 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Table 10-5 Default UDDI Users

Group User Names Comments

uddiadmin ias_admin Administration user. Typically, Oracle Enterprise
Manager administrators also log inas i as_adnmni n to
publish to the UDDI registry through the Oracle
Enterprise Manager integrated J2EE Web Services
deployment and publishing wizard.

uddipublisher uddi_publisher ngple users for demonstrating publishing and
uddi_publisherl different default quota groups.

uddireplicator uddi_replicator The default user that OracleAS UDDI Registry uses to
perform UDDI replication activities in the background.
This user should not be removed. If you do need to
remove this user, make sure you add another user to
the uddireplicator group. The user to start the
Replication Client module must be updated as well, by
modifying the ori on- appl i cati on. xm file in the
or audr epl . ear application.

Generic user management, such as creation, deletion, suspension, is handled by OID
and its Oracle Delegated Administration Services. Refer to Oracle Identity Management
Guide to Delegated Administration for more information.

User management, including operations such as creation, deletion, suspension, role
management, is handled by the JAAS service of OC4J. Refer to Oracle Application Server
Containers for J2EE Services Guide for more information.

However, to find out the authorized name of a user, use the get User s or
get User Det ai | option of the uddi admi n. j ar command-line tool:

« getUsers: Lists all existing users who have entities in the registry. For example:

java -jar uddiadnin.jar http:// Oacl eAS-host: port/uddi/adm n username password
[-verbose] -getUsers

See "getUsers" on page 10-65 for more information on this option.

« getUserDet ai | : Retrieves the details of the named user, currently the
authorized name of each user. For example:

java -jar uddiadmn.jar http:// O acl eAS-host: port/ uddi/adm n usernane password
[-verbose] -getUserDetail usernane

See "getUserDetail" on page 10-64 for more information on this option.

Enforcing Quotas

Oracle AS UDDI Registry provides a mechanism to enforce the number of entities a
publisher can own. A publisher can own at most a specific number of tModel,
publisherAssertion, businessEntity, and businessService data structures for each
businessEnitity, and bindingTemplate data structures for each businessService,
depending upon the quota group associated with the publisher. The quota group is
guided by the user group to which the publisher is assigned.

OracleAS UDDI Registry uses a group-based mechanism for assigning quota limits to
a publisher. When a new publisher is added, the OracleAS UDDI Registry
administrator must associate the publisher with a quota group. Table 10-6 shows the
predefined quota groups and quota limits for each entity that a publisher can own.

Discovering and Publishing Web Services 10-37

OracleAS UDDI Registry Administration

Table 10-6 Predefined Quota Groups and Their Limits

Quota Group Quota Limits per Entity

businessService bindingTemplates

per per

businessEntity businessEntity businessService tModel publisherAssertion

Default 1 4 2 100 10
uddi _unl i mted_quota_group Unlimited Unlimited Unlimited Unlimited Unlimited
uddi _lowl imts_quota_group 2 2 1 3 3
<Implicit> Unlimited Unlimited Unlimited Unlimited Unlimited

UDDI _Admi nistrators

The explicit Default quota group cannot be deleted. Users who are OracleAS UDDI
Registry administrators are always assigned unlimited quota.

As OracleAS UDDI Registry administrator, you can also update a quota group, add a
new quota group, delete a quota group, view the lists of quota groups and their quota
limits, and associate a publisher with a quota group. The following sections describe
each of these administrator tasks.

Updating the Limits of a Quota Group

To update the limits of a quota group, use the set Rol eQuot aLi ni t s option of the
command-line tool uddi admi n. j ar.

Set the quota limit value for the specified quota group. This option can be used to
create a new group-to-quota-limit mapping or to update an existing mapping. The
parameters are defined as follows:

« roleName—name of the quota group to map to the specified limits
» maxBE—maximum number of businessEntity data structures allowed

» MmaxBSperBE—maximum number of businessService data structures per
businessEntity allowed

« maxBTperBS—maximum number of bindingTemplate data structures per
businessEntity allowed

« maxTM—maximum number of tModel data structures allowed

« maxPA—maximum number of publisherAssertion data structures allowed
The value -1 means unlimited.

The following shows the format of the command:

java -jar uddiadmn.jar http:// QO acl eAS-host: port/uddi/adm n username password
-set Rol eQuot aLinits rol eName maxBE maxBSper BE nmaxBTper BS maxTM maxPA

See "setRoleQuotalLimits" on page 10-67 for more information on this option.

Adding a New Quota Group (Advanced Operation)
To add a new quota group, perform the following steps:

1. Oracle recommends that you back up the configuration files, appl i cati on. xm ,
web. xm ,and ori on- appl i cati on. xm , before you begin this process.

2. Add the group to the user store, typically OID.

3. Define the corresponding J2EE security role, par t ner Gr oup, for the new group
name you want to create in the or auddi . ear application. The settings must be

10-38 Oracle Application Server Web Services Developer’s Guide

OracleAS UDDI Registry Administration

added in both the appl i cati on. xm and web. xm files of the or auddi . ear
application.

4. Define the J2EE security role to the user store mapping in the
orion-application.xmn file ofthe orauddi . ear application.

5. Define the actual limits of the quota group using the set Rol eQuot aLi nits
option of the command-line tool uddi addni n. j ar . See "Updating the Limits of a
Quota Group" on page 10-38 for more information.

Deleting a Quota Group (Advanced Operation)
To remove a quota group, perform the following steps:
1. Remove the J2EE security role for the par t ner G oup you want to remove from

the or auddi . ear application. The settings must be removed from both the
application.xm and web. xm files of the or auddi . ear application.

2. Remove the J2EE security role to the user store mapping in the
orion-application.xmn fileof the orauddi . ear application.

3. Remove the actual limits of the quota group using the del et eRol eQuot aLimits
option of the command-line tool uddi admi n. j ar, as shown in the following
example:

java -jar uddiadmin.jar http:// Oacl eAS- host:port/uddi/adm n usernanme password
- del et eRol eQuotaLinmits rol eNane [rol eNane. . .]

See "deleteRoleQuotalLimits" on page 10-62 for more information on this option.

4. Remove the group from the user store, typically OID.

Viewing the Lists of Quota Groups and Their Limits

To view the list of quota groups and their limits, use the get Rol eQuot aLi mits
option of the command-line tool uddi admi n. j ar . This option displays all the
J2EE-role-to-quota-limit mapping currently set in the registry, as shown in the
following example:

java -jar uddiadmin.jar http:// Oracl eAS- host:port/uddi/adm n usernanme password
-get Rol eQuotaLimts

See "getRoleQuotaLimits" on page 10-64 for more information on this option.

Associating a Publisher with a Quota Group

When you add a user to the user store (OID or j azn- dat a. xm), you must place the

user in a group so that it is assigned to the appropriate quota group. For example, with
the pre-defined settings, administrators can assign a user to have the low quota limits

by assigning the user to the uddi _| ow i mi ts_quot a_gr oup group.

If a user does not belong to a particular group, the user is assigned the quota limits
from the Default group. An OracleAS UDDI Registry administrator is always assigned
unlimited quota.

Managing Administrative Entities

Use the following options of the command-line tool uddi addm n. j ar for
administrative entity management:

Discovering and Publishing Web Services 10-39

OracleAS UDDI Registry Administration

« deleteEntity: Deletes the named entity irrespective of the owner of the entity. Note
that this operation performs a nonpermanent delete (hide) operation in the case of
a tModel entity.

See "deleteEntity" on page 10-62 for reference information about this option.

« destroyTModel: Permanently deletes the named tModel from the registry (as
opposed to the UDDI-defined delete_tModel call, which is just hiding the tModel
entity).

See "destroyTModel" on page 10-63 for reference information about this option.

« changeOwner: Changes the ownership of the named entity to the new specified
user.

See "changeOwner" on page 10-62 for reference information about this option.

Importing Entities

To import entities from a file, you use the i mport option of the command-line tool
uddi addmi n. j ar. You can import all businessEntity, tModel, and publisherAssertion
data structures in the named file.

To import the businessEntity data structure, the named file for importing should
contain a UDDI businessDetail XML document.

To import tModel data structures, the named file should contain a UDDI tModelDetail
XML document. By importing them, entity keys (such as businessKey, serviceKey,
bindingKey, tModelKey) are preserved. The operatorName and authorizedName
fields, however, are not preserved. The operatorName field will be replaced by the
operatorName configuration parameter of the registry. The owner of the imported
entities is the administrator; hence, the authorizedName field will be the
authorizedName of the administrator.

Thei nport option is particularly useful in importing the well-known service
interface specification tModel and classification tModel data structures from some
authoritative sources.

Because the entity keys are preserved, you should be careful in evaluating the source
of the entities to ensure there will not be a collision in entity keys.

For importing a publisherAssertion, two Boolean values are required. These Boolean
values are used to indicate from which side (or both sides, when two Boolean values
are true) the publisherAssertion is going to be inserted.

You can import in single mode, using the option - s, which does not allow partial
success (some entities are imported and some are not, due to some error condition), or
in multiple mode (- m), which does allow partial success.

The following shows the format of the i nport option:

-import [-s|-m {-businesses filenane | -tmodels filenane |
-assertions filename -fronBusinessCheck {true|fal se}
-t oBusi nessCheck {true|false} }

For example, the contents of the publisherAssertion file, assert . xml , could contain
the following:

<publ i sher Assertion generic="2.0" xm ns="urn: uddi - org: api _v2">
<f r onKey>22A5A0304C64- 11D8- AB19- BBA03C50A862</ f r onKey>
<t 0Key>27CC6702- 7F6E- 4395- AOB8- 97D2FFB5F7634 </t oKey>
<keyedRef erence t Mbdel Key="UUJ D: 807A2C6A- EE22- 470D- ADC7- E0424A337003"
keyNane="subsi di ary"

10-40 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

keyVal ue="parent-child" />
</ publ i sher Assertion>

Then, to import the publisherAssertion data structure, use the following command:

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n username password
-inport -s -assertions assert.xm -fronBusi nessCheck true
-t oBusi nessCheck true

Setting Operational Information

You can use the set Oper at i onal | nf o option to set some operational information of
entities, such as the operator name, authorized name, or timestamp of a businessEntity
or tModel specified by a key, for example, following an import operation.

The set Qper at i onal | nf o option uses two syntax formats:

« To change the operator name, the authorized name, or the timestamp, or all three,
of a businessEntity or tModel specified by a key, use the following format:

-set Operational I nfo {-businessKey key | -tMdel Key key}
[- newOper at or Oper at or Nane] [- newAut hori zedname aut hNane] [-newTi ne tinestanp]]

Any combination of operator name, authorized name, or timestamp of a
businessEntity or tModel data structure is allowed.

« To change only the timestamp of a businessService or bindingTemplate data
structure, use the following format:

-set Qperational Info {-serviceKey key | -bindingKey key} [-newTinme tinestanp]

See "setOperationallnfo” on page 10-66 for more information on this option.

UDDI Replication

OracleAS UDDI Registry allows administrators to create a logical registry that
comprises one or more OracleAS UDDI Registry implementations, as well as UDDI
implementations from other vendors that also implement the UDDI v2 Replication
Specification.

This section briefly describes the data replication process and the program interface
required to achieve complete data replication among UDDI operator nodes that form a
UDDI service. UDDI replication ensures that all operator nodes see all the changes that
have originated at individual operator nodes. In addition, any inquiries made at any
operator node within the UDDI service yield results consistent to those made at any
other operator node within the UDDI service, hence the logical OracleAS UDDI
Registry.

For detailed technical descriptions of concepts and definitions involved with UDDI
replication, including replication processing, how to bring new UDDI operators
online, checking and validation of replicated data, see the UDDI v2.0.3 Replication
Specification. The sections that follow describe the Oracle implementation of UDDI
replication.

Enabling UDDI Replication
To enable UDDI replication, as administrator, you must perform the following steps:

1. Participate with and agree to the replication topology with UDDI administrators
of other operator nodes. This involves editing the replication configuration (in the
format specified in the UDDI v2 Replication Specification), and using the

Discovering and Publishing Web Services 10-41

OracleAS UDDI Registry Administration

upl oadRepl i cati onConfi gurati onand
downl oadRepl i cat i onConf i gur at i on options of the command-line tool
uddi admi n. jar.

java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n usernanme password
-upl oadReplicationConfiguration xm_file_containing_replication_configuration

See "uploadReplicationConfiguration” on page 10-68 for reference information on
this option.

Before you can download successfully, you must upload the replication
configuration.

java -jar uddiadnmin.jar http:// Oacl eAS-host: port/uddi/adm n username password
- downl oadRepl i cati onConfi guration

See "downloadReplicationConfiguration" on page 10-63 for reference information
on this option.

Enable replication scheduling by setting the property status to the value 1:

java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n username password
-setProperty oracl e.uddi.server.schedul er. status=1

See "setProperty" on page 10-66 for reference information on this option. See
"status” on page 10-79 for reference information on this property.

Enable update journal storage by setting the property
startMaintainingUpdateJournal, to true:

java -jar uddiadnmin.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracle. uddi.server.replication.startMintaini ngUpdat eJour nal =t rue

See "setProperty" on page 10-66 for reference information on this option. See
"startMaintainingUpdateJournal” on page 10-78 for reference information on this

property.

After UDDI replication is started, as administrator, you can suspend or resume
replication operations by stopping or starting the or audr epl . ear application.

If HTTPS client certification is used, you must do the following:

1.

Obtain an exported Oracle wallet file using Oracle Wallet Manager and specify the
exported wallet location by setting the property walletLocation. In the following
example, the location of ewallet.p12 is relative to ${ ORACLE

Hone}/ uddi / confi g on UNIX or #ORACLE Honme_ORACLE% uddi \ confi gon
Windows:

java -jar uddiadnin.jar http:// Qacl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server.replication.walletLocation=ewallet.pl2

This option needs to be set only once.

See "setProperty” on page 10-66 for reference information on this option. See
"walletLocation" on page 10-81 for reference information on this property.

Use the set Wl | et Passwor d option to supply the wallet password, whenever
the or audr epl . ear application is started or restarted. Specify the
uddi repl /adni n/ wal | et path, as shown in the following example:

java -jar uddiadnmin.jar http:// Qacl eAS-host: port/uddirepl/adn n/wall et
usernanme password
- set Wl | et Passwor d=ual | et passwor d

10-42 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Because the password is not persistent for security reasons, each time the
application is restarted, this option must be invoked.

See "setWalletPassword" on page 10-67 for reference information on this option.

In some cases, the administrator of the source of the error must correct an invalid
changeRecord operation that caused the error. The administrator can use the

cor r ect ChangeRecor d option of the command-line tool uddi adni n. j ar to
supply the correct changeRecord data. See "Handling Replication Exceptions” on
page 10-43 for more information.

Transferring Custody

To transfer the custody of a tModel or a businessEntity to a new operator and a new
authorized name use the t r ansf er Cust ody option of the command-line tool

uddi admi n. j ar. This option is part of custody transfer as defined by the UDDI
specification. See "transferCustody" on page 10-68 for reference information on this
option.

Setting Properties for the UDDI Replication Scheduler
You can use the following UDDI server properties to set UDDI replication scheduler
properties:

« timer_pool_size: Specifies the number of concurrently active threads used by the
scheduler. The following example sets the number of threads to 1:

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Property oracle.uddi.server. schedul er.timer_pool _size=1

See "timer_pool_size" on page 10-80 for reference information on this property.

« status: Indicates whether or not the scheduler is enabled to send out replication
requests. The value 0 sets the scheduler off; the value 1 sets it to on. The following
example sets it to on:

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Property oracle.uddi.server.schedul er. status=1

See "status" on page 10-79 for reference information on this property.

Handling Replication Exceptions

If any errors occur during replication operations, OracleAS UDDI Registry logs the
error in the appl i cati on. | og file of the or audr epl . ear application. You should
investigate the cause of the error and correct each problem.

To correct the change records, use the cor r ect ChangeRecor d option. This option
applies the changeRecordCorrectionfile file contents and changeRecordNewDatafile
file contents to the UDDI node. The content of these files must conform to the UDDI
replication XML schema. This option is part of UDDI replication error recovery.

Advanced Configuration and Tuning for UDDI Replication
In the addition to the UDDI server properties described in previous sections, you can
use the following server properties with replication:

« changeRecordWantsAck: Controls whether or not ACK is required for the change
records sent out from the local node. See "changeRecordWantsAck" on page 10-71
for reference information on this property.

Discovering and Publishing Web Services 10-43

OracleAS UDDI Registry Administration

maxChangeRecordsSentEachTime: Controls the maximum number of change
records sent out in response to an incoming getChangeRecords request. See
"maxChangeRecordsSentEachTime" on page 10-74 for reference information on
this property.

pushEnabled: Controls whether or not a push task should be performed for UDDI
replication. See "pushEnabled" on page 10-76 for reference information on this

property.

pushTaskExecutionPeriod: Controls the push task execution period (in
milliseconds). See "pushTaskExecutionPeriod" on page 10-76 for reference
information on this property.

soapRequestAuthMethod: Controls the authentication method the registry node
will try to use in sending replication SOAP requests to other nodes. If HTTP client
certification (CLIENT_CERT) is used, you must set the wallet password each time
the registry node gets started or restarted.

See "soapRequestAuthMethod" on page 10-77 for reference information on this
property.

soapRequestTimeout: Controls the timeout value for each SOAP replication
request (in milliseconds). See "soapRequestTimeout" on page 10-78 for reference
information on this property.

taskExecutionPeriod: Controls the period of time during which replication task
should be executed (in milliseconds). See "taskExecutionPeriod" on page 10-80 for
reference information on this property.

You can use the following options of the command-line tool uddi admi n. j ar to
perform advanced configuration:

doPing: Sends a UDDI replication do_ping message to the replication end-point
URL specified. This is similar to the ping command in TCP/IP that is used to
check if the other end point is active. The optional walletPassword parameter is
useful when the JVM, which receives the do_ping message, does not have a valid
wallet password set.

See "doPing" on page 10-63 for reference information on this option.

getChangeRecord: Gets the detail of a change record specified by local_usn (an
integer). This API is used in conjunction with the cor r ect ChangeRecor d option
to correct wrong or inconsistent data across different UDDI nodes with OracleAS
UDDI Registry.

See "getChangeRecord" on page 10-63 for reference information on this option.

getHighWaterMarks: Gets the high-water marks vector from the specified UDDI
node. The optional walletPassword parameter is useful when the J)VM, which
receives the do_ping message, does not have a valid wallet password set.

See "getHighWaterMarks" on page 10-64 for reference information on this option.

Registry-Based Category Validation

OracleAS UDDI Registry can perform a spell-check form of category value validation.
As administrator, you can add or remove the set of categories that will be validated by
the registry. Refer to the UDDI v2 specification for more information.

10-44 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Adding a New Category for Registry-Based Validation

To add a new category, you must load the category values into the database and
register the category with the registry. Perform the following steps:

1.

Publish the category to the registry by saving a new tModel data structure. For
example, look at the tModel data structure named nt i s- gov: nai cs: 1997. You
can use a third-party tool or the included sample Web applications link:

http:// Oracl eAS- host: Oracl eAS- por t/ uddi /

If the tModel data structure has been defined in some other registry, you can also
import it (instead of creating a new one, which results in different tModelKey
entities) using the uddi admi n. j ar command-line tool. See "Importing Entities"
on page 10-40 for more information on the import operation.

The tModel data structure published should be classified as "unvalidatable™ in the
uddi-org:types taxonomy. Specifically, the following keyedReference should
appear in the CategoryBag element of the tModel data structure:

<keyedRef erence t Mdel Key="uui d: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4"
keyName="" keyVal ue="unval i databl e" />

Load the category values into the database. To do this, all the category values
should be in a file using the following format:

« Each line of the file describes one category value in the category. It should be
in the following format:

<category val ue> | <description of category val ue>
| <category value of the parent>

« If acategory value is a root value, for example, it has no parent, the category
value of the parent should be set to itself.

« The line in the file for a category value should occur before the lines for all of
its descendants.

Examples can be found in the uddi / t axonory directory for UNIX and in the
uddi \ t axonony directory for Windows. Excerpts from the NAICS file are as
follows:

22| Uilities|22
221 Wilities|22
2211| El ectric Power Generation, Transmi ssion|221

If your files use different characters from different languages, it is
recommended that you save the file with UTF-8 encoding to avoid any
problems that may arise, such as character corruption.

Create a SQL*Loader control file to load the category file. An example is

${ ORACLE Hone}/ uddi / admi n/ nai cs-97. ct| for UNIX and %4ORACLE _
Home_ORACLE% uddi \ admi n\ nai cs-97. ct| for Windows. Copy the file and
replace the category file name in the control file with the name of the one you
create. Refer to the UDDI v2 specification for more information about generating a
unique ID for the new category tModel.

Load the category file into the database using SQL*Loader. Refer to Oracle Database
Utilities, part of the Oracle Database documentation, for more information about
using SQL*Loader.

Configure the registry so that it recognizes the category that must be validated by
using the command-line tool, uddi adni n. j ar . For example, to add a new

Discovering and Publishing Web Services 10-45

OracleAS UDDI Registry Administration

tModel entity with key UUI D: FFFFFFFF- FFFF- FFFF- FFFF- FFFFFFFFFFFO,
use the set Pr oper t y option to set the property categoryValidationTModelKeys
as follows:

java -jar uddiadnin.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty "oracle. uddi.server. categoryValidati onTMbdel Keys=

" UUI D: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4" ,

" UUI D: 4E49A8D6- D5A2- 4FC2- 93A0- 0411D8D19ES8'"

" UUI D: COB9FEL3- 179F- 413D- 8A5B- 5004DB8ESBB?'

" UUI D: CD153257- 086A- 4237- B336- 6BDCBDCC6634" ,

" WUl D: FFFFFFFF- FFFF- FFFF- FFFF- FFFFFFFFFFFO!

Make sure that you enter the command on one line, with no returns or extra
spaces.

Because the set Pr oper t y option defines all categories that need to be validated,
you must specify all the existing tModelKey values plus the new tModelKey value
to add a new category.

You can also use the following server properties:
« identifierValidation: Controls validation for all IdentifierBag entities.

« operatorCategory: Determines whether or not additional entities may be
categorized as an operator node, if the value of categoryValidation is true.

« categoryValidation: Controls validation for all CategoryBag entities.

« assertionKeyedRefValidation: Controls validation for all publisherAssertion
keyedReference data structures.

« tModellnstancelnfoKeyValidation: Determines if tModelKey existence
validation occurs within tModellnstancelnfo elements.

« addressTModelKeyValidation: Determines if tModelKey existence validation
occurs within address elements.

« hostingRedirectorValidation: Determines if hostingRedirector validation
occurs within bindingTemplate elements. Validation ensures that the
referenced bindingTemplate element exists and does not contain a
hostingRedirector element.

See "Server Configuration Properties" on page 10-69 for information on these
properties.

6. Allow the registry users to use the category tModel published by removing the
"unvalidatable™ categorization done in Step 1. Specifically, the following
keyedReference element should be removed from the CategoryBag element of the
tModel data structure:

<keyedRef erence t Mbdel Key="uui d: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4"
keyName="" keyVal ue="unval i databl e" />

Removing a Category from Registry-Based Validation

To remove a category from registry-based validation, you should unregister the
category and remove the category values from the database. Perform the following
steps:

1. To unregister the category from the registry, remove it from the list of validated
categories using the uddi adni n. j ar command with the set Pr oper t y option to
set the property categoryValidationTModelKeys.

10-46 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

You do not have to (and in general should not) delete the tModel data structure
from the registry.

2. To remove the category values from the database, use the SQL*Plus script
wurvcerm sql inthe uddi / adm n directory for UNIX and in the uddi \ adm n
directory for Windows. For example:

sqgl pl us sys/ sys-password @wrvcrm sql

When running this script, you will be prompted for the tModelKey value of the
category to be removed. You should see that a set of rows has been deleted. If the
result shows that 0 rows were deleted, you entered an invalid tModelKey value.
Run the script again.

External Validation

Third parties can register new category and identifier schemes, and then control the
validation process used by OracleAS UDDI Registry to perform external validation or
checking. This enables a third-party category provider to validate the UDDI entities to
be saved when the entity is categorized, or identified with the category, by providing a
validate values SOAP Web service.

The operator that calls the validate_values service passes a businessEntity, a
businessService, or a tModel element as the sole argument to this call. This is the same
data that is being passed within a save_business, save_service, or save_tModel API
call. External validation is performed for any third-party category provider and
identifier scheme that is classified as checked. A tModel element marked as checked
asserts that it represents a categorization, identifier, or namespace tModel element that
has a properly registered validation service.

If no error is found, the response is a dispositionReport message returning an
errorCode value of E_success and an er r no value of 0. If any error is found, or the
called service needs to signal that the information being saved is not valid based on
the validation algorithm chosen by the external service provider, then the service
should raise a SOAP Fault and indicate either an errorCode value of E_invalidValue or
E_valueNotAllowed. In either case, the error text indicates the keyedReference data
that is being rejected, and the reason why.

Use the command-line tool uddi admni n. j ar with the set Property option to:
« Enable external validation
« Add an externally validated category to the registry

« Remove an externally validated category from the registry

Enabling External Category Validation

To enable external category validation, issue the set Pr opert y option to set the server
property externalValidation as follows:

java -jar uddiadmin.jar http:// Oracl eAS- host:port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. external Val i dation=true

Adding an Externally Validated Category to the Registry
To add an externally validated category to the registry, perform the following steps:

1. Publish the new category as a tModel data structure to the registry. This data
structure must be classified as checked under the uddi-org:types category.

Discovering and Publishing Web Services 10-47

OracleAS UDDI Registry Administration

2. Register the external validation service of the category with the registry by
updating the server property externalValidationTModelList using the
set Property option as follows:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server. external Val i dati onTModel Li st =key- val ue,
URL-val i dat i on- servi ce

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme. com ext er nal Val i dati on, use the following command:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty

oracl e. uddi . server. ext ernal Val i dati onThWbdel Li st =uui d: acne- t axonony- key,
http://acne. com external Val i dati on

3. Optionally, you can tune the timeout limit (in milliseconds) for calls to the external
validation service using the server property externalValidationTimeout as follows:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracl e. uddi . server. external Val i dati onTi meout =5000

Removing an Externally Validated Category from the Registry

To remove an externally validated category from the registry, perform the following
steps:

1. Update the server property externalValidationTModelList using the
set Pr oper t y option by supplying a null value for the
URL- val i dati on- servi ce as follows:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracl e. uddi . server. external Val i dati onTMbdel Li st =key-val ue,""

For example, if the category tModel published has the key
"uuid:acme-taxonomy-key", and the URL of the validation service is
http://acme. com ext er nal Val i dati on, the command with the null entry
will be as follows:

java -jar uddiadmn.jar http:// QO acl eAS-host: port/uddi/adm n username password
-setProperty
oracl e.uddi . server. external Val i dati onTModel Li st =uui d: acre- t axonony- key, ""

2. Deprecate or update the corresponding tModel data structure. If the tModel is not
updated, the registry will reject any new UDDI entries that are categorized or
identified by the category that was removed in subsequent save calls to the save_
business, save_service, or save_tModel API.

Performance Monitoring and Tuning

On the back end of an Oracle database, UDDI servlets and the associated JDBC
connection pools can be monitored using Oracle Enterprise Manager 10g and other
standard database monitoring and tuning utilities.

In an OC4J standalone environment, performance information is typically available at:

http:// oc4j - host - nane: port - nunber/ dmsoc4j / Spy

10-48 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Administration

Data Backup and Restore Operations

You can back up and restore UDDI Registry data by using the standard Oracle
database back up and restore operations. See the Oracle Backup and Recovery Concepts,
part of the Oracle Database documentation set.

Database Configuration
The following sections describe some database-specific configuration information.

Database Character Set Should Be UTF-8

The database character set should be UTF-8 to accommodate all possible characters.
However, you are absolutely certain that the data to be stored in the registry contains
characters of a specific country or region (such as western Europe), you can use the
appropriate database character set.

Database Character Set and Built-in ISO-3166 Classification

The UDDI specification mandates that the registry support the full UTF-8 character
set. Oracle recommends, though does not require, using UTF-8 as the character set for
the Oracle Application Server Infrastructure database if OracleAS UDDI Registry is
used.

If the database is not configured with the UTF-8 character set or its equivalent or
superset, there could be data corruption and error due to loss in character set
conversion to or from UTF-8. Refer to the Oracle Globalization Support Guide for details.

In particular, the descriptions in the UDDI built-in ISO-3166 classification contain
descriptions with non-ASCII characters, such as some Western European characters
and some Eastern European characters for the names of cities or regions. In order to
support the non-UTF-8 database, all non-ASCII characters in the descriptions are
replaced with ASCII characters as an approximation.

If you do have a UTF-8 database, you can upgrade the built-in ISO-3166 classification
to the one with accurate descriptions using the following instructions:

« Delete the existing 1SO-3166 classification by running the SQL script,
wur rm so. sql , for example:

cd ${ ORACLE Hone}/ uddi/adm n
sql pl us systeni manager @wrrni so. sql

« Load the ISO-3166 classification with accurate descriptions by using SQL* Loader
control filei s03166- 99. ct |, for example:

cd ${ ORACLE Hone}/ uddi/ adm n
sql l dr userid=system manager control =i s03166-99. ct|

Functional Index Must Be Enabled

The functional index must be enabled to support index-based, case-insensitive search.
The following initialization parameter is involved: query_rewri t e_enabl ed=true

In addition, the cost-based optimizer must be turned on for analyzing all tables or
indexes in the UDDISYS schema. For example:

execute dbns_st ats. gat her _schenma_st at s(ownname=>" UDDI SYS' , cascade=>tr ue) ;

Discovering and Publishing Web Services 10-49

UDDI Open Database Support

Accuracy of Modified Timestamps of UDDI Entities

The accuracy of modified timestamps of UDDI entities is dependent on the version
and compatibility of the database. If the database compatibility is release 9.0.1 or later,
the modified timestamps are of SQL type TIMESTAMP, with accuracy up to
microseconds. If the database compatibility is prior to release 9.0.1, the modified
timestamps are of SQL type DATE, with accuracy up to seconds.

Transport Security

In general, the Inquiry API does not require authentication. However, if the inquiry
end point needs to be protected, transport-level authentication, such as HTTP BASIC
authentication and HTTPS Secure Sockets Layer (SSL) client authentication, can be
enabled by configuring the web. xm file. A security role, uddi guest , is reserved for
accessing the protected inquiry end point. Refer to Oracle Application Server Containers
for J2EE Services Guide and Oracle Application Server Containers for J2EE User’s Guide for
more information about security roles and related security configuration.

For the publishing end-point URL, consider allowing only HTTPS access. To disable
HTTP access, edit the web. xni file of the or auddi application to enforce data
confidentiality and make adjustments to HTTP servers. For example, to disable HTTP
access in the web. xmi file, use the following code:

<user - dat a- constrai nt >
<t ransport - guar ant ee>CONFI DENTI AL</ t r anspor t - guar ant ee>
</ user - dat a- const rai nt >

Refer to the chapter on security in Oracle Application Server Containers for J2EE User’s
Guide and to Oracle Application Server Containers for J2EE Services Guide for more
information.

Similarly, you can set up HTTPS access for the administrative end point and the UDDI
Replication end point in the same way.

UDDI Open Database Support

In addition to the Oracle Application Server Infrastructure database, the following
databases are supported by OracleAS UDDI Registry:

« Microsoft SQL Server
. IBM DB2
» Other Oracle Database (Non-Infrastructure)

For Microsoft SQL Server and IBM DB2, the Oracle Application Server DataDirect
Connect JDBC driver is needed.

The steps described in the following sections assume that the relevant database server
has been installed. These instructions also assume that Oracle Application Server
Portal has been installed, which copies the relevant UDDI files to ${ ORACLE

Hone}/ uddi / adm n on UNIX or ¥ORACLE Honme_ORACLE% uddi \ adni n on
Windows.

10-50 Oracle Application Server Web Services Developer’s Guide

UDDI Open Database Support

Note: You can also deploy OracleAS UDDI Registry in a standalone
OC4J installation. See the Oracle UDDI Support for Web Services Readme
for Standalone Kit on OTN for more information:

http://ww. oracl e. com t echnol ogy/t ech/ webser vi ces/ ht docs/
uddi /i ndex. ht m

As you follow the instructions in that document, you can specify
arbitrary values for the db.host, db.port, and db.sid options to the ant
command. Then, you will change those values later when you define
the data source in the following sections.

Microsoft SQL Server

The following sections describe installation and configuration information with SQL
Server.

Script Source Directory

Installation must be performed from a Windows machine. If the %40ORACLE

Home% uddi \ admi n\ nssql directory is not accessible from the SQL Server machine,
then copy this directory to a location that is accessible. This directory (or the original
Y%ORACLE Hone% uddi \ adm n\ nssql if no copying is necessary) will be referred to
as WBESQ._ HOVE _DB%

Create the Database and User

The 9V6SQL_ HOVE DB% wur cr eat edb_nssql . sql script has been provided to
create the uddi sys database and uddi sys user for a SQL Server instance in

m xed- aut hent i cati on mode. If you are using Windows authentication or wish to
alter some of the settings in this script, you may do so as long as all the following
requirements are met:

« The collation for the uddi sys database must be case-sensitive.
« Recursive triggers must be enabled on the uddi sys database.
» Theuddi sys user must have the uddi sys database as its default database.

« Theuddi sys user must be a member of the db_owner role for the uddi sys
database.

To run the script with the Microsoft osql utility, use the administrator login (sa) and
the administrator password. The following example assumes that the administrator
password is sa, but if it is not, please substitute the appropriate password for your
environment:

osql -S server -Usa -P sa -i wircreatedb_nssql.sql

In the example, ser ver is the server hosting the SQL Server instance.

If you receive the following error, make sure to change the authentication mode for
SQL Server to SQL Server and Windows mode:

"Login failed for user 'sa'. Reason: Not associated with a trusted SQL Server
Server Connection."

To change the authentication mode, open the SQL Server enterprise manager, navigate
to your server, right-click and choose properties, click the security tab and select SQL
Server and Windows. Then, restart SQL Server.

Discovering and Publishing Web Services 10-51

UDDI Open Database Support

Install the Schema

Go to the WBESQA._ HOVE _DB%directory. Use the osql utility to execute the SQL script
wuri nst_nssql . sql using the uddi sys/ uddi sys account created in "Create the
Database and User" on page 10-51.

The syntax is as follows:

osql -S server -U user -P password -d database -i wurinst_nssql . sql

In the example, ser ver is the server hosting the SQL Server instance.
For example:

osql -S server-nachine -U uddi sys -P uddisys -d uddisys -i wurinst_nssql.sql

Import BUILTIN_CHECKED_CATEGORY Table Entries

Importthei s03166- 99_t Model Key. t xt, nai cs-97_t Model Key. t xt, and
unspsc- 73_t Model Key. t xt files from the %vSSQL_HOVE_DB%directory into the
BUILTIN_CHECKED_CATEGORY table as follows:

1. Select the Import and Export Data option from the SQL Server Start menu options.
Click Next.

2. For the Data Source, select the last option, Text File. Then, provide the name and
location of the appropriate text file, 96SQ._ HOVE DB% i s03166- 99
t Model Key. t xt . Click Next.

3. The default file format should be Delimited. Accept this by clicking Next.
4. Set the delimiter to the vertical bar character (]). Click Next.

5. Select the uddisys database for the destination. Provide the appropriate
authentication mechanism and credentials, which are SQL Ser ver
Aut hent i cat i on with user uddi sys and password uddi sys, by default. Make
sure that the selected database is uddisys. Click Next.

6. Click the Destination and select the BUILTIN_CHECKED_CATEGORY table.

7. Click Transform. Map TMODEL_KEY to Col001, KEY_NAME to Col003, KEY_
VALUE to Col002, and PARENT_VALUE to Col004. Click OK.

8. Click Next.
9. Click Next to run immediately, and click Finish to start.

10. Repeat this process for the nai cs- 97_t Mbdel Key. t xt and unspsc-73_
t Model Key. t xt files.

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. t xt to load the 1ISO-3166 taxonomy because
the taxonomy contains characters from different languages. Instead,
use the scripti s03166- 99- asci i .t xt toload an ASClI-only
version of the taxonomy.

Configure OC4J to Use SQL Server

Define a data source with the name and location set toj dbc/ Or acl eUddi to reflect
that SQL Server is the desired database, similar to the following:

<dat a- sour ce
cl ass="com everni nd. sql . Dri ver Manager Dat aSour ce"
name="j dbc/ O acl eUddi "

10-52 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

IBM DB2

| ocation="j dbc/ Oracl elUddi "

connection-driver="comoracle.ias.jdbc.sql server. SQ.ServerDriver"

user nane="uddi sys"

passwor d="uddi sys"
url ="jdbc: oracl e: sql server:// server: 1433; Sel ect Met hod=cur sor; User =uddi sys; Passwor d=uddi sys"
/>

Note that ser ver is the network name or IP address of the server hosting the SQL
Server instance used for OracleAS UDDI Registry. Be sure you enter the line that
begins ur | = on one line.

The data source needs to be accessible by the or auddi . ear and or audr epl . ear
applications.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

The following sections describe installation and configuration information for
OracleAS UDDI Registry relative to IBM DB2.

Script Source Directory

If the ${ ORACLE Hon®e}/ uddi / adm n/ db2 directory is not accessible from the
machine with the relevant DB2 tools, then copy this directory to a location that is
accessible. This directory will be referred to as ${ DB2_HOVE_DB} on UNIX or %DB2_
HOVE _DB%0on Windows.

Create the Database and User

Go to the ${ DB2 HOVE DB} directory on UNIX or the 9DB2 HOVE DB%directory on
Windows. The wur cr eat edb_db2. sql script is provided for creating the uddi sys
database. The user is responsible for creating a uddi sys user with password

uddi sys based on the authentication scheme that is being used for DB2. By default,
this requires creating a uddi sys user at the operating system level. On Windows, the
uddi sys user should belong to the local administrator group.

If you wish to alter some of the settings in this script, you may do so as long as both
the following requirements are met:;

« The default tablespace for the uddi sys database must be at least 8 KB pages. This
also requires providing a buffer pool that will support a page size of at least 8 KB.

« The value of the appl heapsz parameter must be increased to approximately
12800 pages.

To run the script, start the DB2 Command Line Processor by entering db2 in UNIX or
db2cnd in Windows. Then, execute the script:

db2 -t +p < wurcreatedb_db2. sql

The option - t allows the use of semicolons to terminate SQL statements and +p
suppresses prompting.

Install the Schema

Run the wur i nst _db2. sql script. This also triggers the wur cr eat . sql ,
wur dbsql . sql , and wur popul . sql scripts.

Discovering and Publishing Web Services 10-53

UDDI Open Database Support

To run these scripts, launch the command-line processor as previously described, then
enter the following:

db2 -t +p < wurinst_db2. sql

Import BUILTIN_CHECKED_CATEGORY Table Entries

Import thei s03166-99_t Mbdel Key. t xt, nai cs-97_t Mbdel Key. t xt, and
unspsc- 73_t Model Key. t xt files into the BUILTIN_CHECKED_CATEGORY table
as follows:

1. Right-click the table BUILTIN_CHECKED_CATEGORY from the Control Center
and select IMPORT.

2. Specify the Import file as ${ DB2_ HOVE DB} /i s03166- 99_t Mbdel Key. t xt for
UNIX or 4DB2_HOVE DB%i s03166- 99_t Mbdel Key. t xt for Windows.

3. Select Delimited ASCII format (DEL). Click Options and select the vertical bar
character (]) as the delimiter for Column delimiter (COLDEL).

4. Use the INSERT import mode (the default).
5. Set the Commit records equal to 500.

6. For the Message file, enter ${ DB2 HOVE DB}/ uddi / adm n/ db2/i s03166- 99_
t Model Key. | og for UNIX or %4DB2_HOVE _
DB% uddi \ admi n\ db2\i s03166- 99_t Model Key. | og for Windows.

7. Go to the Columns tab. Select Include Columns by Position. Map TMODEL_KEY
to 1, KEY_NAME to 3, KEY_VALUE to 2, and PARENT_VALUE to 4.

8. Click OK to run the import process.

9. Repeat this process for the nai cs- 97_t Model Key. t xt and unspsc-73_
t Model Key. t xt files.

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. t xt to load the ISO-3166 taxonomy because
the taxonomy contains characters from different languages. Instead,
use the scripti s03166- 99- asci i . t xt to load an ASCll-only
version of the taxonomy.

Configure OC4J to Use DB2

The following sections describe how to create the DB2 package and modify the URL
for regular use.

Create a DB2 Package Define a data source with the name and location set to
j dbc/ Oracl eUddi to reflect that DB2 is the desired database, similar to the
following:

<dat a- sour ce
cl ass="com everni nd. sql . Dri ver Manager Dat aSour ce"
name="j dbc/ Or acl eUddi "
| ocati on="j dbc/ Oracl eUddi "
connection-driver="comoracle.ias.jdbc. db2. DB2Dri ver"
user nane="uddi sys"
passwor d="uddi sys"
url ="j dbc: oracl e: db2: / / server nane: 50000; dat abaseNane=UDDI SYS;
PackageNane=JDBCPKG Dynani cSecti ons=512;
Cr eat eDef aul t Package=TRUE; Repl acePackage=t r ue"
/>

10-54 Oracle Application Server Web Services Developer's Guide

UDDI Open Database Support

Note that ser ver nane is the network name or IP address of the server hosting the
DB?2 instance used for the UDDI registry. Also, the line that begins with ur | and the
two subsequent lines should be on one line, without spaces or returns. They are
presented here on three lines for readability.

The data source needs to be made accessible by editing the dat a- sour ces. xni files
in the corresponding or auddi . ear and or audr epl . ear applications.

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Now, connect to the UDDI inquiry servlet end point, as shown in the following
example, so that these initial URL connection strings will be used to create the
appropriate default package in DB2;

http:// O acl eAS-host: port/uddi/inquiry
If the request to the inquiry servlet end point hangs or fails, from the DB2 Control
Center, check for the JDBCPKGA and JDBCPKGB packages under the application

objects of the uddi sys database. If the packages have been created, stop the OC4J
instance and proceed with modifying the URL, as described in the next section.

Modify the URL for Regular Use Now that the DB2 package has been created, update the
data source defined in the previous step (see "Create a DB2 Package" on page 10-54)
and change the URL attribute from:

url="jdbc: oracl e: db2: // server nanme: 50000; dat abaseNane=uddi sys;
PackageNane=JDBCPKG, Dynani cSect i ons=512;

Cr eat eDef aul t Package=TRUE; Repl acePackage=t r ue"

to:

url="jdbc: oracl e: db2: // server name: 50000; dat abaseNane=uddi sys;
PackageNane=JDBCPKG Dynani cSect i ons=512"

In the preceding examples, the text should be on one line, without spaces or returns.
They are presented here on multiple lines for readability.

Note that the last two parameters, Cr eat eDef aul t Package and Repl acePackage,
have been removed from the final URL attribute.

Once these changes have been made to the dat a- sour ces. xmi files in the
or auddi . ear and or audr epl . ear applications, restart the server for the changes to
take effect.

Then, connect to the UDDI inquiry servlet end point again, as shown in the following
example:

http:// Oracl eAS-host : port/uddi/inquiry

The OracleAS UDDI Registry page is displayed. You should see the message:
"Welcome! Your registry is now up and running."”

Other Oracle Database (Non-Infrastructure)

The following sections describe installation and configuration information for an
Oracle database that is not an OracleAS Infrastructure database.

Discovering and Publishing Web Services 10-55

UDDI Open Database Support

Script Source Directory

If the / uddi / admi n directory, located at ${ ORACLE _Hone}/ uddi / adm n on UNIX
or WORACLE Home ORACLE% uddi \ adm n on Windows, is not accessible from the
server with the relevant Oracle tools, then copy this directory to a location that is
accessible.

Create the Database and User
Create the uddi sys database and the uddi sys user, by taking the following steps:

1. Gotothe ${ ORACLE Hone} directory on UNIX or the %40RACLE Hone_ORACLE%
directory on Windows.

2. Use SQL*Plus to execute the SQL scriptwur i nst . sql using the sys user
account. For example:

sqgl plus "sys/change_on_instal |l as sysdba" @wrinst. sql

The schema uddi sys is created with the password uddi sys. A log file
wuri nst . | og is produced.

Populate the Validated Taxonomy Codes

Populate the validated taxonomy codes using SQL*Loader with the three control
scripts: nai ¢s-97. ctl,i s03166-99. ctl,and unspsc- 73. ctl . For example:

sql | dr userid=uddi sys/ uddi sys control =nai ¢s-97. ct|
sql I dr userid=uddi sys/ uddi sys

cont rol =unspsc- 73. ct|
sql | dr userid=uddi sys/ uddi sys control =i s03166-99. ctl

Note: If the character set of your database is not UTF-8, do not use
the scripti s03166- 99. ct| to load the ISO-3166 taxonomy because
the taxonomy contains characters from different languages. Instead,
use the script to load an ASCII-only version of the taxonomy:

sql | dr userid=uddi sys/ uddi sys control =i s03166-99-ascii.ctl

Configure OC4J to Use the Non-OracleAS Infrastructure Database

Define a data source with the name and location set toj dbc/ Or acl eUddi to reflect
that a non-OracleAS Infrastructure database is the desired database, similar to the
following:

<dat a- sour ce
cl ass="oracl e. j dbc. pool . Oracl eConnect i onCachel npl "
name="j dbc/ Or acl eUddi "
| ocati on="j dbc/ Oracl eUddi "
connection-driver="oracl e.jdbc.driver.Oacl eDriver"
user nane="uddi sys"
passwor d="uddi sys"

url ="j dbc: oracl e: t hi n: @ervernane: 1521: oracl e si d"

/>

Note that ser ver nane is the network name or IP address of the server hosting the
non-OracleAS Infrastructure database instance used for the UDDI registry.

The data source needs to be accessible by the or auddi . ear and or audr epl . ear
applications.

10-56 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Server Error Messages

Refer to the Data Sources chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Restart the UDDI server for these changes to take effect.

OracleAS UDDI Registry Server Error Messages

The error codes listed are used by UDDI administrators. In general, UDDI error code
E_fatalError can represent various server-side errors that an administrator has to
handle.

The specific server-side error is captured in the J2EE application log file. The log file,
appl i cation. | og, for the or auddi . ear application is typically located under the
J2EE_HOVE! appl i cati on-depl oynent s/ or auddi directory.

The log file, appl i cati on. | og, for the or audr epl . ear application is typically
located under the J2ZEE_HOVH appl i cati on- depl oynent s/ or audr epl directory.
The reference provides additional information for an administrator to diagnose and
resolve problems.

WUR-00010: An attempt was made to update a configuration parameter that does
not exist "{0}".
Cause: The named UDDI server configuration parameter does not exist.

Action: Correct the spelling of the name of the configuration parameter to be
updated. Refer to the configuration parameter reference information for details.

WUR-00011: An attempt was made to update a configuration parameter "{0}" in
uddiserver.config. That file cannot be found.

Cause: The UDDI server configuration file uddiserver.config could not be found.

Action: Make sure that the J)VM property oracle.home of the OC4J instance is
defined properly.

WUR-00012: The specified user name, "{0}", is not a name that is known to the
registry.
Cause: The named user does not exist in the registry.
Action: Correct the spelling of the named user.

WUR-00013: The 'Default’ role for publishing limits may not be deleted.

Cause: An attempt was made to remove the system-defined user quota role
'‘Default.’

Action: Do not delete the user quota role 'Default.’ If the 'Default’ user quota role
is not desirable, set the quota limits to zero to disable it.

WUR-00100: An internal error occurred while marshaling the response.
Cause: An unexpected internal error occurred in writing the response to a client.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00101: An internal error occurred while unmarshaling the request.

Cause: An unexpected internal error occurred in parsing the request sent by a
client.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00104: The value of the configuration parameter named "{0}" is invalid.

Discovering and Publishing Web Services 10-57

OracleAS UDDI Registry Server Error Messages

Cause: The value of the named UDDI server configuration parameter was invalid.

Action: Refer to the configuration parameter reference information for the valid
values. Use the UDDI administration tool to update the configuration parameter.

WUR-00105: A database error with SQL code "{0}" occurred while trying to "{1}".
Cause: An unexpected database error occurred in carrying out the named action.

Action: Identify and correct the database error. The database error is embedded in
the details of the error.

WUR-00106: An internal error caused the request to fail to make the specified
updates. While rolling back the changes, another error occurred; this leaves
data in an unpredictable state.

Cause: An unexpected database error occurred in rollback phases of error
processing.

Action: Identify and correct the database error. The database error is embedded in
the details of the error.

WUR-00107: An internal error occurred while committing the requested changes to
the registry; this leaves data in an unpredictable state.
Cause: An unexpected database error occurred in committing the requested
changes.
Action: ldentify and correct the database error. The database error is embedded in
the details of the error.

WUR-00108: An internal error occurred while trying to get a connection to the
underlying database.
Cause: An unexpected database error occurred in obtaining a database connection
to serve the request.

Action: ldentify and correct the database error. The database error is embedded in
the details of the error.

WUR-00109: An internal error occurred while trying to close a connection to the
underlying database.
Cause: An unexpected database error occurred during the release of the database
connection after the request was served.

Action: ldentify and correct the database error. The database error is embedded in
the details of the error.

WUR-00110: An internal error occurred while trying to create and set up a data
source abstraction for the underlying database.
Cause: An unexpected internal error occurred while creating the database
connection pool.

Action: ldentify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00111: An internal error occurred while trying to perform a JNDI lookup and
locate of the object "{0}".
Cause: An internal error occurred in obtaining the named object from the JNDI
context. Examples of possible objects include database connection pools, message
queues, and so forth.

Action: ldentify and correct the internal error. The internal error is embedded in
the details of the error.

10-58 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Server Error Messages

WUR-00113: An internal error occurred while trying to access the repository API to

set up a data source abstraction.
Cause: An unexpected internal error occurred while creating the database
connection pool using Oracle Application Server metadata repository access API.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00114: An internal error occurred while trying to generate a Universal Unique

Identifier (UUID).
Cause: An unexpected internal error occurred while generating a UUID.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00115: The registry was unable to retrieve OC4J-specific environment settings

from the J2EE container; the user "{0}"" cannot be authenticated.

Cause: An unexpected internal error occurred while authenticating the user. The
error is usually due to incorrect settings in web.xml or using an unsupported
version of the OC4J container.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00116: An internal error occurred while performing the automatic

postinstallation configuration for the UDDI registry. Regular registry
operations cannot proceed if the registry is not properly configured.

Cause: An unexpected internal error occurred in performing the automatic
postinstallation configuration for the UDDI registry.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00117: Cannot close data source properly.

Cause: An unexpected internal error occurred while closing the database
connection pool during shutdown of the UDDI registry.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00200: An internal error occurred during external validation.

Cause: An unexpected internal error occurred while making a validation call to
an external validation service.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00201: An internal error occurred during external validation while processing

the in-memory request.

Cause: An unexpected internal error occurred while processing the UDDI entities
in the request before they were sent for external validation.

Action: Identify and correct the internal error. The internal error is embedded in
the details of the error.

WUR-00202: An internal error occurred during external validation because the

tModel list property, "{0}", has the wrong format.

Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTModelList, was invalid.

Discovering and Publishing Web Services 10-59

OracleAS UDDI Registry Server Error Messages

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00203: An internal error occurred during external validation because the
timeout property, "{0}", is not the right integer format.
Cause: The value of the UDDI server configuration property,
oracle.uddi.server.externalValidationTimeout, was invalid.

Action: Correct the value. Refer to the configuration parameter reference
information for details.

WUR-00204: An internal error occurred during external validation because the
response is not a correct DispositionReport.
Cause: DispositionReport returned by the external validation service was invalid.
For example, DispositionReport was empty.

Action: Contact the external validation service provider.

WUR-00205: An internal error occurred during external validation because the
response is not expected. The response is of code "{0}" with message "{1}".

Cause: DispositionReport returned by the external validation service contained an
unexpected DispositionReport error number.

Action: Contact the external validation service provider.

WUR-00300: DB schema version is missing. Please check DB for VERSION table.
Cause: The version of the database schema for persistent storage was missing.

Action: Contact Oracle Support Services.

WUR-00301: DB schema version "{0}" is incompatible with mid-tier version. DB
schema must be updated to make the UDDI registry function.
Cause: The version of the database schema for persistent storage was not
supported by the version of the registry being used.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-00302: An internal error occurred while trying to retrieve and load the UDDI
DELTA server property file.
Cause: An internal error occurred while initializing the UDDI registry in the
backward compatibility mode with an older version of the database schema.

Action: Contact Oracle Support Services.

WUR-00303: This operation is not allowed by DB schema version "{0}". You must
upgrade DB schema to the latest version to carry out this operation.

Cause: The requested operation was not supported because the UDDI registry
was running in the backward compatibility mode with an older version of the
database schema.

Action: Upgrade the database schema to the latest version. Refer to the UDDI
database schema upgrade documentation for details.

WUR-05001: Cannot find the UDDI entity just saved.
Cause: An unexpected internal error occurred in updating the update journal.

Action: Contact Oracle Support Services.

WUR-05002: Cannot perform custody transfer for an entity that is not
businessEntity or tModel. The key of the offending entity is "{0}".

10-60 Oracle Application Server Web Services Developer's Guide

OracleAS UDDI Registry Server Error Messages

Cause: In the custody transfer change record, the specified UDDI entity is not
businessEntity or tModel.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05003: Warning: Received a duplicate change record originating from node
"{0}" with usn "{1}".
Cause: A duplicate change record sent from the named UDDI node was detected.
Action: No action is needed. This is merely an informational message.

WUR-05004: Received an out-of-order change record originating from node "{0}"
with usn "{1}". The change record with usn "{2}" has been processed.
Cause: The named change record was received after a change record with a larger
update sequence number (USN) had been processed.

Action: Contact the administrator of the UDDI node where the change record
originated.

WUR-05005: The change record originating from node "{0}" with usn "{1}" is invalid
because the named node is not recognized.

Cause: The originating node of the named change record was not recognized. In
other words, the node was not recorded in the replication communication graph.

Action; Contact the administrator of the UDDI node that provided the change
record.

Discovering and Publishing Web Services 10-61

Command-Line Options for the uddiadmin.jar Tool

Command-Line Options for the uddiadmin.jar Tool

The following sections describe the options for the uddi admni n. j ar command-line
tool. In most cases, the command line uses the following format (setWalletPassword
uses a different URL):

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
[-verbose] options_and_their_paraneters

Make sure that you enter the command on one line. For more information about the
uddi admi n. j ar command-line tool, see "Using the Command-Line Tool
uddiadmin.jar" on page 10-34.

changeOwner

Format

- changeOmer new username{-busi nessKey busi ness_Key | -tMdel Key

t Mbdel _Key}

Description

Changes the ownership of the named entity to the new specified user.
correctChangeRecord

Format

- correct ChangeRecord changeRecordCorrectionfile changeRecord_

NewDat af i | e

Description

Applies the changeRecordCorrectionfile file contents and changeRecordNewDatafile

file contents to the UDDI node. The content of these files must conform to the UDDI

replication XML schema. This option is part of UDDI replication error recovery.
deleteEntity

Format

-del eteEntity {-busi nessKey business _Key | -serviceKey

serviceKey | -bindingKey binding Key | -tModel Key t Mbdel _Key}

Description

Deletes the named entity irrespective of the owner of the entity. Note that this
operation performs a nonpermanent delete (hide) operation in the case of a tModel
entity.

deleteRoleQuotaLimits

Format
-del eteRol eQuotaLinmtsrol e Nane [rol e_Nane ...]

Description

Deletes the group-to-quota-limit mappings for the specified quota groups. See
"Deleting a Quota Group (Advanced Operation)" on page 10-39 for information on
using this option.

10-62 Oracle Application Server Web Services Developer's Guide

Command-Line Options for the uddiadmin.jar Tool

destroyTModel

doPing

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-del eteRol eQuotaLimts rol e_Nane

Format
-destroyThWodel t Mbdel _Key

Description
Permanently deletes the named tModel from the registry (as opposed to the
UDDI-defined delete_tModel call, which is just hiding the tModel entity).

Format
-doPing replicationEndPointUl [-timeout tinelnM|Iliseconds]]|
-wal | et Password wal / et _passwor d|

Description

Sends a UDDI replication do_ping message to the replication end-point URL specified.
This is similar to the ping command in TCP/IP that is used to check if the other end
point is active. The optional walletPassword parameter is useful when the JVM, which
receives the do_ping message, does not have a valid wallet password set.

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-doPing http:// Oracl eAS- host: port/uddirepl/replication

downloadReplicationConfiguration

Format
- downl oadRepl i cati onConfi guration

Description

Downloads the currently used replication configuration from a specified UDDI node
within OracleAS UDDI Registry. You must upload a replication configuration before
you can successfully download one. See "Enabling UDDI Replication" on page 10-41
for information about using this option.

Example
java -jar uddiadnin.jar http:// Oacl eAS- host: port/uddi/adm n username password
- downl oadRepl i cati onConfi guration

getChangeRecord

Format
- get ChangeRecord / ocal _usn

Description

Gets the detail of a change record specified by local_usn (an integer). This APl is used
in conjunction with the Cor r ect ChangeRecor d option to correct wrong or
inconsistent data across different UDDI nodes with OracleAS UDDI Registry.

Discovering and Publishing Web Services 10-63

Command-Line Options for the uddiadmin.jar Tool

getHighWaterMarks

getProperties

Format
- get H ghWat er Mar ks repl i cati onEndPoi nt Url [-wal | et Password
wal | et _passwor d|

Description

Gets the high-water marks vector from the UDDI node specified by the

repl i cati onEndPoi nt Ur| parameter. The optional walletPassword parameter is
useful when the JVM, which receives the do_ping message, does not have a valid
wallet password set.

Example
java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n username password
-get H ghvat er Marks http:// Oracl eAS-host: port/uddirepl/replication

Format
-get Properties

Description
Lists the current registry configuration parameters. See "Configuring the Server" on
page 10-35 for information about using this option.

Example
java -jar uddiadnmin.jar http:// O acl eAS-host: port/uddi/adm n username password
-get Properties

getRoleQuotaLimits

getUserDetalil

Format
-get Rol eQuotaLimts

Description

Displays all the J2EE-role-to-quota-limits mappings that are currently set in the
registry. See "Viewing the Lists of Quota Groups and Their Limits" on page 10-39 for
information about using this option.

Example
java -jar uddiadnin.jar http:// O acl eAS host: port/uddi/adm n username password
-get Rol eQuotaLinits

Format
-get UserDetail usernane_to_retrieve

Description
Retrieves the details of the named user, currently the authorizedName of each user.
See "Managing Users" on page 10-36 for information about using this option.

Example
java -jar uddiadnmin.jar http:// O acl eAS-host: port/uddi/adm n username password
-get UserDetail usernane

10-64 Oracle Application Server Web Services Developer's Guide

Command-Line Options for the uddiadmin.jar Tool

getUsers

import

Format
-get Users

Description
Lists all existing users who have entities in the registry. See "Managing Users" on
page 10-36 for information about using this option.

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
[-verbose] -getUsers

Format
-inmport [-s|-m
- busi nesses filenane |
-tnodel s fil enane |
-assertions filenane -fronBusi nessCheck {true|fal se}

-t oBusi nessCheck {true|fal se}]

Description

Imports all businessEntity and tModel data structures, and a publisherAssertion data
structure in the named file. For importing the businessEntity data structure, the named
file (fi | enane) for importing should contain a UDDI businessDetail XML document.
For importing tModel data structures, the named file should contain a UDDI
tModelDetail XML document. By importing them, entity keys (such as businessKey,
serviceKey, bindingKey, tModelKey) are preserved. The operatorName and
authorizedName fields, however, are not preserved. The operatorName field will be
replaced by the operatorName configuration parameter of the registry. The owner of
the imported entities is the administrator; hence, the authorizedName field will be the
authorized name of the administrator.

Importing can be done in single mode (- s), which does not allow partial success
(some entities are imported and some are not due to some error condition), or in
multiple mode (- n), which does allow partial success.

The import parameter is particularly useful in importing the well-known service
interface specification tModel and classification tModel data structures from some
authoritative sources.

Because the entity keys are preserved, administrators should be careful in evaluating
the source of the entities to ensure there will not be a collision in entity keys.

For importing a publisherAssertion, two Boolean values are required. These Boolean
values are used to indicate from which side (or both sides when two Boolean values
are true) the publisherAssertion is going to be inserted.

See "Importing Entities" on page 10-40 for information about using this option.
Example

The following example imports the publisherAssertion contained in the file
assert.xm:

java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
-import -s -assertions assert.xm -fronBusi nessCheck true

Discovering and Publishing Web Services 10-65

Command-Line Options for the uddiadmin.jar Tool

-t oBusi nessCheck true

setOperationalinfo

setProperty

Format 1

-set Operational I nfo{-busi nesskey key | -tMdel Key key}

[-newOperat or (perat or Nane] [-newAut hori zedname aut hNane]
[- newTi ne tinestanp]

Format 2
-set Operational Info {-serviceKey key | -bindingKey key}
[-newTi ne tinestanp]

Description

Sets some operational information, such as the operator name, authorized name, or
timestamp of a businessEntity or tModel data structure specified by a key, for
example, following an import operation. You can set any combination of operator
name, authorized name, or timestamp using the set Oper at i onal | nf o option.

Format 1 lets you change either the operator name, the authorized name, or the
timestamp, or all three, of the businessEntity or tModel specified by a key.

Format 2 lets you change only the timestamp of a businessService or bindingTemplate.

Note: The format of a timestamp is defined as 'yyyy-mm-dd
hh.mm:ss fffffffff' by java.sql. Timestamp. For example:

' 2002-12- 01 00: 00: 00'

Because there is a blank space in the timestamp value between
'yyyy-mm-dd' and 'hh.mm:ss.fffffffff", the entire value must be placed
inside a pair of single quotation marks on the command line.

Caution: In general, the set Oper at i onal | nf 0 option should not
be used when replication is enabled.

See "Setting Operational Information” on page 10-41 for information about using this
option.

Format
-set Property property nane=val ue

Description
Changes the value of the named server configuration property. The OracleAS UDDI
Registry J2EE application needs to be restarted for the changes to take effect.

Example
The following example sets the operatorName property to OracleUddiServerIT_Dept:

java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-set Property oracl e. uddi . server. operat or Name=0r acl eUddi Server | T_Dept

10-66 Oracle Application Server Web Services Developer’s Guide

Command-Line Options for the uddiadmin.jar Tool

Caution: Be very careful when using the set Pr operty option to
change the value of server configuration properties. Setting an
incorrect value for a property could cause severe damage to the
integrity of the registry.

See "Modifying Properties at Installation or First-Use" on page 10-7 for more
information on this option.

setRoleQuotaLimits

Format
-set Rol eQuot aLi m ts rol eNane [maxBE] [maxBSper BE] [maxBTper BS]
[maxTM [maxPA]

Description

Sets the quota limit value for the specified quota group. This option can be used to
create a new group-to-quota-limit mapping or to update an existing mapping. The
parameters are defined as follows:

« roleName—name of the quota group to map to the specified limits
« maxBE—maximum number of businessEntity data structures allowed

« MmaxBSperBE—maximum number of businessService data structures per
businessEntity allowed

« maxBTperBS—maximum number of bindingTemplate data structures per
businessEntity allowed

« maxTM—maximum number of tModel data structures allowed
« maxPA—maximum number of publisherAssertion data structures allowed
The value -1 means unlimited.

See "Updating the Limits of a Quota Group" on page 10-38 for more information about
this option.

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Rol eQuot aLinmits rol eName maxBE naxBSper BE nmaxBTper BS maxTM maxPA

setWalletPassword

Format
-set Wl | et Password wal | et _passwor d

Description

Sets the wallet password to be used for HTTPS communication among UDDI nodes
for UDDI replication. Each time the application is restarted, this option must be
invoked because the wallet password is not stored persistently, for security reasons.
The registry replication wallet admin URL is:

http:// Oracl eAS- host: port/ uddirepl /adm n/wal | et

See "Enabling UDDI Replication" on page 10-41 for more information about using this
option with UDDI replication.

Discovering and Publishing Web Services 10-67

Command-Line Options for the uddiadmin.jar Tool

Example
java -jar uddiadnin.jar http:// Qracl eAS-host: port/uddirepl/adnmin/wall et username
passwor d

-set Wl | et Passwor d=val | et passwor d

transferCustody

Format

-transf er Cust ody ol dQper at or Name new(per at or Nane
newAut hori zedNanme { -t Model Key t Mbdel _Key | -busi nessKey
busi nessKey}

Description

Transfers the custody of a tModel or a businessEntity to a new operator and a new
authorized name. This option is part of custody transfer as defined by the UDDI
specification.

uploadReplicationConfiguration

Format
- upl oadRepli cati onConfigurationxm _file containing replication_
configuration

Description

Uploads the specified replication configuration to a particular UDDI node within
OracleAS UDDI Registry. The application must be restarted for the new replication
configuration to be used. See "Enabling UDDI Replication" on page 10-41 for
information about using this option.

Example

java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n username password
- upl oadRepl i cationConfiguration xm _file_containing_ replication_configuration

10-68 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

Server Configuration Properties

This section provides reference information for UDDI server configuration properties.
The properties are of the class or acl e. uddi . ser ver and its subclasses. You set
them by using the options of the command-line tool uddi admi n. j ar . See "Using the
Command-Line Tool uddiadmin.jar" on page 10-34 for more information about the
uddi admi n. j ar command-line tool.

addressTModelKeyValidation

Description
Determines if tModelKey existence validation occurs within address elements.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. addressTMbdel KeyVal i dati on=true

assertionKeyedRefValidation

Description
Controls validation for all publisherAssertion keyedReference entities.

Property Type/Allowable Values
« full: All validation conditions will be checked.

« tmodel_existence: Only tModelKey existence will be checked.

= none: No condition will be checked.

Initial Value
full

Typical Value
full

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. asserti onKeyedRef Val i dati on=f ul |

businessEntityURLPrefix

Description

Provides the prefix of the generated discovery URL, which is automatically generated
for each businessEntity data structure saved in the registry. The prefix should be
customized for your deployment environment. Setting this parameter applies in a
retroactive fashion to existing entities in the database. For example, changing the

Discovering and Publishing Web Services 10-69

Server Configuration Properties

discoveryURL prefix results in all discovery URLs of usetype busi nessEnt ity that
begin with the old URL prefix to be changed to the new URL prefix.

Property Type/Allowable Values
A valid URL.

Initial Value
OracleAS UDDI Registry generates an initial value upon server initialization.

Typical Value
The host name and port should be the host name and port of the Web server (which
may or may not be the same as the servlet container).

Notes
See "Modifying Properties at Installation or First-Use" on page 10-7 for information
about using this property.

Example

java -jar uddiadmin.jar http:// O acl eAS-host: port/uddi/adnin usernane password
-set Property

oracl e. uddi . server. busi nessEntityURLPrefix="http://uddi host: port/uddi/inquiryget

categoryValidation

Description
Controls validation for all CategoryBag entities.

Property Type/Allowable Values
« full: All validation conditions will be checked.

« tmodel_existence: Only tModelKey existence will be checked.

= none: No condition will be checked.

Initial Value
full

Typical Value
full

Example
java -jar uddiadmn.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server. categoryValidation=full

categoryValidationTModelKeys

Description
Represents the categorization and identifier tModel keys, which will be validated by
the registry during an attempted save operation.

Property Type/Allowable Values
A list in the form of '<tModelKey1>', '<tModelKey2>', '<tModelKey3>'.

Initial Value

'UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4', which represents the
uddi-org:types classification. The preinstalled value, however, is the UDDI types
classification plus the three classifications defined in the UDDI v1.0 specification:
(uddi-org:types, uddi-org:iso-ch:3166-1999, ntis-gov:naics:1997, unspsc-org:unspsc).

10-70 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

Typical Value
The preinstalled value.

Notes
The uddi-org:types classification should not be removed from the list. In addition, you
must enter the command on one line, with no returns or no extra spaces.

Example

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-set Property

"oracl e. uddi . server. categoryVal i dati onTMbdel Keys=

" UUl D: CLACF26D- 9672- 4404- 9D70- 39B756E62AB4"

" UUl D: 4E49A8D6- D5A2- 4FC2- 93A0- 0411D8D19E88'

" UUl D: COB9FEL3- 179F- 413D- 8A5B- 5004DB8E5BB?'

" UUl D: CD153257- 086A- 4237- B336- 6BDCBDCC6634"

changeRecordWantsAck

defaultLang

Description
Controls whether or not ACK is required for the change records sent out from the local
node.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
false

Typical Value
false

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server.replication.changeRecor dWant sAck=f al se

Description

Provides the default language of the registry for the purpose of filling in UDDI v1.0
description elements, which lack a language qualification. Language defaults are not
done for UDDI v2 requests. Valid values are the values of the xml:lang attribute.

Property Type/Allowable Values
Values of xml:lang.

Initial Value
en

Typical Value
The location of the primary region the registry serves.

Example

java -jar uddiadmin.jar http:// Oracl eAS host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. def aul t Lang=en

Discovering and Publishing Web Services 10-71

Server Configuration Properties

externalValidation

Description
Determines if external validation occurs.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
false

Typical Value
false

Notes
See "Enabling External Category Validation" on page 10-47 for information on using
this property.

Example
java -jar uddiadnin.jar http:// Qracl eAS-host: port/uddi/adm n username password
-setProperty oracle. uddi.server.external Validation=true

externalValidationTimeout

Description
Defines the amount of time, in milliseconds, before a timeout occurs for external
validation.

Property Type/Allowable Values
long

Initial Value
5000

Typical Value
NA

Notes
See "Adding an Externally Validated Category to the Registry" on page 10-47 for
information on using this property.

Example
java -jar uddiadnmin.jar http:// O acl eAS-host: port/uddi/adm n usernanme password
-setProperty oracle.uddi.server.external ValidationTi neout =5000

externalValidationTModelList

Description

Provides the list of tModel key-URL pairs that represents the category and identifier
tModel data structures that will be validated by an external SOAP service. The
tModelKey and URL values within a pair are separated by a comma (,), and pairs of
values are separated by a semicolon (}).

Property Type/Allowable Values
NA

10-72 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

Initial Value
null value "

Typical Value
null value ™

Notes
See "Adding an Externally Validated Category to the Registry" on page 10-47 for
information on using this property.

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password

-set Property
oracl e.uddi . server. external Val i dati onTMVodel Li st =uui d: acne- t axonony- key,
http://acne. conf ext ernal Val i dation

hostingRedirectorValidation

Description

Determines if hostingRedirector validation occurs within bindingTemplate elements.
Validation ensures that the referenced bindingTemplate element exists and does not
contain a hostingRedirector element.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. hostingRedi rectorVal i dati on=true

identifierValidation

Description
Controls validation for all IdentifierBag entities.

Property Type/Allowable Values
« full: All validation conditions will be checked.

« tmodel_existence: Only tModelKey existence will be validated.

= none: No condition will be checked.

Initial Value
full

Typical Value
full

Example

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n username password
-setProperty oracl e.uddi.server.identifierValidation=full

Discovering and Publishing Web Services 10-73

Server Configuration Properties

jdbcDriverType

Description

Defines the type of JDBC driver to be used to access the OracleAS Infrastructure
database. This property is applicable only if the OracleAS Infrastructure database is
used as the back-end storage.

Property Type/Allowable Values
thin or oci

Initial Value
thin

Typical Value
NA

Notes
In a cluster environment, this property must be set for each OC4J instance.

Example
java -jar uddiadmn.jar http:// QO acl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server.db.jdbcDriverType=thin

maxChangeRecordsSentEachTime

Description
Controls the maximum number of change records sent out in response to an incoming
getChangeRecords request.

Property Type/Allowable Values
integer

Initial Value
100

Typical Value
NA

Example
java -jar uddiadmin.jar http:// O acl eAS-host: port/uddi/adnin usernane password
-setProperty oracle.uddi.server.replication. maxChangeRecor dsSent EachTi ne=100

maxConnections

Description

Determines the maximum number of database connections in the connection pool.
This property is applicable only if the OracleAS Infrastructure database is used as the
back-end storage.

Property Type/Allowable Values
A positive integer.

Initial Value
8

10-74 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

Typical Value
Depends on the maximum number of concurrent requests and the desired
performance.

Notes
Enter a value that is the estimated maximum number of concurrent requests plus a
percentage of the buffer.

In a cluster environment, this property must be set for each OC4J instance.

Example
java -jar uddiadmn.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Property oracl e. uddi . server. db. maxConnect i ons=10

minConnections

Description

Determines the minimum number of database connections in the connection pool. This
property is applicable only if the OracleAS Infrastructure database is used as the
back-end storage.

Property Type/Allowable Values
A nonnegative integer that is smaller than the value for maxConnect i ons.

Initial Value
1

Typical Value
1

Notes
In a cluster environment, this property must be set for each OC4J instance.

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. db. m nConnect i ons=1

operatorCategory

Description
Determines whether or not additional entities may be categorized as an operator node,
if the value of the categoryValidation property is true.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Example

java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Property oracl e. uddi.server. categoryVal idation. operatorCat egory=true

Discovering and Publishing Web Services 10-75

Server Configuration Properties

operatorName

Description

Provides the name of the operator of OracleAS UDDI Registry. This name appears in
the operator attribute of responses. Setting this parameter applies in a retroactive
fashion to existing entities in the database. For example, changing the operator name
results in all business and tModel data structures that currently have the old operator
name to have that name changed to the new operator name.

Property Type/Allowable Values
A non-null string.

Initial Value
OracleUddiServer

Typical Value
domain_of the UDDI registry/uddi

Notes
Be sure to set this parameter before enabling replication.

See "Adding an Externally Validated Category to the Registry” on page 10-47 for
information on using this property.

Example

java -jar uddiadnmin.jar http:// Qacl eAS-host: port/uddi/adm n username password
-set Property oracl e. uddi . server. operat or Nane=0r acl eUddi Server| T_Dept

pushEnabled

Description
Controls whether or not a push task should be performed for UDDI replication.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Example

java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n usernanme password
-setProperty oracle.uddi.server.replication. pushEnabl ed=true

pushTaskExecutionPeriod

Description
Controls the push task execution period (in milliseconds).

Property Type/Allowable Values
45000

Initial Value
NA

10-76 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

Typical Value
NA

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server.replication. pushTaskExecuti onPeri 0d=45000

quotaLimitChecking

Description
Determines whether or not publishing quotas, the limits on the number of entities that
can be created in the registry per user, are enforced.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Notes
See "Enforcing Quotas" on page 10-37 for information on quota limits.

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server. quotaLi ni t Checki ng=true

schemaValidationUponincomingRequests

Description
Determines whether or not the server will validate incoming requests against the
UDDI XML schema.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
true

Typical Value
true

Example
java -jar uddiadnin.jar http:// Oacl eAS- host: port/uddi/adm n username password
-setProperty oracle.uddi.server.schenmaVal i dati onUponl ncom ngRequest s=true

soapRequestAuthMethod

Description

Controls the authentication method the registry node will try to use in sending
replication SOAP requests to other nodes. If the value CLIENT-CERT is used, the
administrator must set the wallet password each time the registry node gets started or
restarted.

Discovering and Publishing Web Services 10-77

Server Configuration Properties

Property Type/Allowable Values
NONE or CLIENT-CERT

Initial Value
NONE

Typical Value
CLIENT-CERT

Example
java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n usernanme password
-setProperty oracle.uddi.server.replication. soapRequest Aut hMet hod=NONE

soapRequestTimeout

Description
Controls the timeout value for each SOAP replication request (in milliseconds).

Property Type/Allowable Values
long

Initial Value
180000

Typical Value
NA

Example
java -jar uddiadnmin.jar http:// O acl eAS-host: port/uddi/adm n username password
-setProperty oracle.uddi.server.replication. soapRequest Ti neout =180000

startMaintainingUpdateJournal

Description
Controls whether or not the update journal will be maintained for UDDI replication.
This property must be set to true for replication to occur.

Property Type/Allowable Values
Boolean (true, false)

Initial Value
false

Typical Value
true

Notes
Be sure to upload a correct replication configuration before you set this property to
true.

Once you set this property to true, you should set it back to false only if you no longer
want to participate in UDDI replication. Setting this property haphazardly from true to
false will result in fatal loss of change records.

See "Enabling UDDI Replication" on page 10-41 for information on using this property.

Example
java -jar uddiadnin.jar http:// O acl eAS- host: port/uddi/adm n username password

10-78 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

status

stmtCacheType

stmtCacheSize

-set Property oracl e.uddi.server.replication.startMintaini ngUpdat eJour nal =f al se

Description
Indicates whether or not the scheduler is enabled to send out replication requests.

Property Type/Allowable Values
Boolean (0=off, 1=0n)

Initial Value
1

Typical Value
1

Notes
See "Enabling UDDI Replication” on page 10-41 for information on using this property.

Example
java -jar uddiadmin.jar http:// Qracl eAS-host: port/uddi/adm n username password
-setProperty oracl e.uddi.server.schedul er. status=1

Description
Defines the type of statement caching. This property is to be used with the OracleAS
Infrastructure database and JDBC driver only.

Property Type/Allowable Values
NONE, IMPLICIT, or EXPLICIT

Initial Value
NONE

Typical Value
EXPLICIT

Notes
In a cluster environment, this property must be set for each OC4J instance.

Example
java -jar uddiadmn.jar http:// Qracl eAS-host: port/uddi/adm n usernane password
-set Property oracl e. uddi . server. db. st nt CacheType=NONE

Description

Defines the size (humber of statements cached) of statement caching per connection.
This property is to be used with the OracleAS Infrastructure database and JDBC driver
only.

Property Type/Allowable Values
integer

Initial Value
50

Discovering and Publishing Web Services 10-79

Server Configuration Properties

Typical Value
50

Example
java -jar uddiadnin.jar http:// Qracl eAS-host: port/uddi/adm n usernanme password
-setProperty oracle.uddi.server. db. stnt CacheSi ze=50

taskExecutionPeriod

Description
Controls the period of time during which a replication task should be executed (in
milliseconds).

Property Type/Allowable Values
long

Initial Value
5000

Typical Value
NA

Example
java -jar uddiadnmin.jar http:// Qacl eAS-host: port/uddi/adm n username password
-set Property oracl e. uddi.server.replication.taskExecutionPeri od=5000

timer_pool_size

Description
Specifies the number of concurrently active threads used by the scheduler.

Property Type/Allowable Values
NA

Initial Value
1

Typical Value
1

Notes
See "Setting Properties for the UDDI Replication Scheduler" on page 10-43 for
information on using this property.

Example

java -jar uddiadnmin.jar http:// O acl eAS- host: port/uddi/adm n usernanme password
-setProperty oracle.uddi.server.schedul er.tiner_pool _size=1

tModellnstancelnfoKeyValidation

Description
Determines if tModelKey existence validation occurs within tModellnstancelnfo
elements.

Property Type/Allowable Values
Boolean (true, false)

10-80 Oracle Application Server Web Services Developer's Guide

Server Configuration Properties

walletLocation

Initial Value
true

Typical Value
true

Example
java -jar uddiadmin.jar http:// Oracl eAS- host: port/uddi/adm n usernanme password
-set Property oracl e. uddi . server.tMdel | nst ancel nf oKeyVal i dati on=true

Description
Defines the wallet file name. The wallet file will be located in the same place as the
uddi server. confi g file.

Property Type/Allowable Values
NA

Initial Value
ewallet.p12

Typical Value
NA

Notes
See "Enabling UDDI Replication” on page 10-41 for information on using this property.

Example

java -jar uddiadmin.jar http:// Oracl eAS host: port/uddi/adm n usernanme password
-set Property oracl e.uddi.server.replication.walletLocation=ewallet.pl2

Discovering and Publishing Web Services 10-81

Server Configuration Properties

10-82 Oracle Application Server Web Services Developer's Guide

11

Consuming Web Services in J2EE
Applications

This chapter describes how to consume Web Services in Java 2 Platform, Enterprise
Edition (J2EE) applications. One type of Web-based information or services is
supported:

« SOAP-based Web Services described using WSDL, see Consuming SOAP-Based
Web Services Using WSDL.

In addition, when a J2EE application acquires a WSDL document at runtime, the
dynamic invocation API is used to invoke any SOAP operation described in the WSDL
document. See Dynamic Invocation of Web Services for information about how to use
the dynamic invocation API.

Consuming SOAP-Based Web Services Using WSDL

The wsdl 2ej b utility can be used by J2EE developers to consume a Web Service
described in Web Services Description Language (WSDL) document into their
applications. This utility takes a WSDL document and some additional optional
parameters and produces an EJB EAR file that can be deployed into OC4J. The EJB
Remote Interface is generated based on the WSDL portType. Each WSDL operation is
mapped to an EJB method. The EJB method parameters are derived from the WSDL
operation input message parts, while the EJB method return value is mapped from the
parts of the WSDL operation output message. The Oracle SOAP Mapping Registry is
used to map XML types to the corresponding Java types.

Additional references regarding WSDL and SOAP can be found in the following
locations:

« The WSDL 1.1 specification is available at
http:// ww. w3. or g/ TR/ wsdl

=« The SOAP 1.1 specification is available at
http:// ww. w3. or g/ TR/ SOAP/

The command-line options for running the wsdl 2ej b utility are described in
Table 11-1.

Table 11-1 wsdI2ejb Utility Command-Line Options

Option Description

-conf <config file> Allows the wsdl 2ej b utility to load a configuration file.

Consuming Web Services in J2EE Applications 11-1

Consuming SOAP-Based Web Services Using WSDL

Table 11-1 (Cont.) wsdl2ejb Utility Command-Line Options

Option Description

-d <destDi r > Allows a destination directory to be specified where the generated
EJB EAR file is to be written.

-Dhttp.proxyHost Allows the proxy host name to be specified when an HTTP URL is
used to supply the location of the WSDL document and an HTTP
proxy server is required to access it.

-Dhttp.proxyPort Allows the proxy port number to be specified when an HTTP
URL is used to supply the location of the WSDL document and an
HTTP proxy server is required to access it.

-jar Allows you to specify the wsdl 2ej b utility as a JAR file.

To run the wsdl 2ej b utility, enter the following command where <dest Di r > is the
destination directory to where the generated EJB EAR file is to be written and the file
mydoc. wsdl is the location of the WSDL document:

java -jar wsdl 2ejb.jar -d <destDir> nydoc. wsdl

Note: The wsdl 2ej b. j ar file is located in your $ORACLE
HOVE webser vi ces/ | i b installation directory for UNIX or
Y%ORACLE HOVE\ webser vi ces\ | i b installation directory for
Windows.

If an HTTP URL is used to supply the location of the WSDL document and an HTTP
proxy is required to access it, the following command and syntax must be used to run
the utility:

java -Dhttp. ProxyHost =nyProxyHost -Dhttp.proxyPort=80 -jar wsdl 2ejb.jar -d
<destDir> http://nmyhost/nydoc. wsdl

In this example, the utility uses the supplied WSDL to generate the EJB EAR file in the
destination directory (<dest Di r >). The EJB class hame, Java Naming and Directory
Interface (JNDI) binding key, and Java package name are derived from the location of
the SOAP service described in the WSDL.

In this command syntax, the wsdl 2ej b utility maps the XML types, which are
supported by default by the Oracle SOAP Mapping Registry.

The wsdl 2ej b utility generates the following sets of files located within the
destination directory name (<dest D r >) that you specify in the command line. The
utility saves the generated files using the following directory layout:

Root /
+ app. ear
+ srcl/
+ ... generated java sources ...
+ cl asses/
+ META- | NF/
+ ej b-jar.xnl
+ ... conpiled classes and xml resources
+ depl oy/
+ ejb.jar
+ META- I NF/
+ application. xm

11-2 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

« An .ear file (which is a JAR archive containing the J2EE application that can be
deployed in OC4)) is located within the destination directory (<dest Di r >) you
specified in the command line. The .ear file contains the generated EJB, JAR, and
XML files for your application, where the appl i cati on. xm file located in the
/ depl oy/ META- | NF directory for UNIX or the \ depl oy\ META- | NF directory
for Windows serves as the EAR manifest file.

=« Anarchive JAR file containing your EJB application class files is located within the
/ depl oy directory for UNIX or the\ depl oy directory for Windows. The JAR file
includes all EJB application class files and the deployment descriptor file.

« Astandard J2EE EJB deployment descriptor (ej b-j ar . xm) for the generated
bean in the module is located within the / cl asses/ META- | NF directory for
UNIX or the\ cl asses\ META- | NF directory for Windows. The XML deployment
descriptor describes the application components and provides additional
information to enable the container to manage the application.

« The source code of a set of Java classes that you can use in your Java applications
is located within the / sr ¢ directory for UNIX or the \ sr ¢ directory for Windows.
The generated JavaBean and EJB Java source code is contained in subdirectories
according to their Java package name. An EJB client stub is also generated.

« The/ cl asses directory for UNIX or the \ cl asses directory for Windows
contains the compiled generated classes and additional XML resources used by the
generated code.

Advanced Configuration

To have more controls on the EJB generated from a WSDL document, an XML
configuration file can be supplied to the wsdl 2ej b utility. Through the configuration
file, developers can control several options on the WSDL source, as well as options on
the generated EJB.

Developers can also use the configuration file to supply additional xml to Java type
maps, so that WSDL documents using complex types can be supported.

The syntax of the wsdl 2ej b configuration file is shown in its Document Type
Definition (DTD) as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<I-- Specify the properties of the source WSDL docunent and of the target EJB. -->
<! ELEMENT wsdl 2ej b (useProxy?, useWallet?, wsdl, ejb?, napTypes?)>

<l-- Specify if the generated EJB should use the supplied HTTP proxy when accessing HTTP URLs -->
<! ELEMENT useProxy (#PCDATA) >
<! ATTLI ST useProxy

proxyHost CDATA #REQUI RED

proxyPort CDATA #REQU RED>

<I-- Specify the location of the wallet credential file used by the generated EJB for opening HTTPS connecti on
-->
<! ELEMENT useV@l | et (#PCDATA) >
<UATTLI ST useVal | et
| ocation CDATA #REQU RED>

<l--
Speci fy how the wsdl 2ejb tools shoul d process the source WSDL document.
In additional to the mandatory location of the WSDL document, the nane of the WSDL service and
its port can be specified. In this case, an EJB will be generated only for the supplied service and
port.
An alternative: the nane of a WBDL service binding and the SOAP location to be used can be supplied.
Inthe latter case, an EJB using the specified binding and the supplied SOAP location will be used.
This is particularly useful when generating an EJB froma WSDL stored in a UDD registry.

Consuming Web Services in J2EE Applications 11-3

Consuming SOAP-Based Web Services Using WSDL

In fact, following a UDDI best practice, the WSDL SOAP | ocation will be nanaged separately fromthe
WSDL docunent.

-->

<! ELEMENT wsdl (location, ((service-name, service-port) | (service-binding, soap-location))?)>

<I-- Specify the location of the source WSDL docunent (for exanple, "/home/nywsdl .wsdl",
"http://nyhost/nmywsdl . wsdl ") -->
<l ELEMENT | ocation (#PCDATA)>

<l-- Specify the nane of the WSDL service to be used for the generation.
It is the nane of one of the services defined in the source WsDL. -->
<! ELEMENT servi ce- name (#PCDATA) >

<l-- Specify the service port of the WSDL service to be used for the generation.
It is the name of one ports of the service name defined above in the source WSDL. -->
<l ELEMENT servi ce-port (#PCDATA) >

<I-- Specify the name of the WSDL binding to be used for the generation.
It is the nane of one of the bindings defined in the source WsDL. -->
<! ELEMENT servi ce- bi ndi ng (#PCDATA) >

<l-- Specify the SOAP location service port of the WSDL service to be used for the generation.
It is the name of one ports of the service nane defined above in the source WSDL. -->
<! ELEMENT soap-| ocation (#PCDATA)>

<l-- Specify the properties related to the generated EJB. -->
< ELEMENT ej b (application-name?, ejb-nane?, package-name?, renpte-name?, session-type?)>

<l-- Specify the nane of the J2EE application for the generated EAR -->
<! ELEMENT appl i cation-name (#PCDATA) >

<l-- Specify the JNDI binding key name for the generated EJB. -->
<I ELEMENT ej b- nane (#PCDATA) >

<l-- Specify the nane for Java package under which the generated EJB will belong. (for exanple, comoracle) -->
<! ELEMENT package- name (#PCDATA) >

<l-- Specify the class name for the EJB Rennte Interface (for exanple, M/WdIEb) -->
<! ELEMENT renot e-nane (#PCDATA) >

<I-- Specify the if the generated EJB should be stateless or stateful (for exanple, Stateless | Stateful) -->
<! ELEMENT sessi on-type (#PCDATA) >

<l
Speci fy the customJava types and nap themto XM types.
The JAR attribute value will point to a JARfile containing the definition of the custom
types or the serializer/deserializer to be used for the customtype.

-->

<! ELEMENT napTypes (map*)>
<I ATTLI ST nmapTypes
jar CDATA #l MPLED>

Specify a new XM to JAR type map.
Encodi ngStyl e: nane of the encodingStyle under which this map will bel ong
(for exanple, http://schemas.xnl soap. or g/ soap/ encodi ng/)

namespace- uri . uri of the nanespace for the XM. type defined in this map
| ocal - name . local name of the XML type defined in this map
java-type : Java class name to which this type is mapped to (for exanple, com org. M/Bean)

java2xnl - cl ass-nane: Java class name of the type serializer

(for exanple, org.apache.soap. encodi ng. soapenc. BeanSeri al i zer)
xm 2j ava- cl ass-nane: Java cl ass name of the type deserializer

(for exanple, org.apache.soap.encodi ng. soapenc. BeanSeri al i zer)

11-4 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

>
< ELEMENT map (#PCDATA) >

<I ATTLI ST map
encodi ngStyl e CDATA #REQUI RED
namespace- uri CDATA #REQUI RED
| ocal - nanme CDATA #REQUI RED
java-type CDATA #REQUI RED

java2xn - cl ass-nane CDATA #REQUI RED
xm 2j ava- cl ass- name CDATA #REQUI RED>

Table 11-2 describes the elements, subelements, and attributes of the wsdl 2ej b XML
configuration file as defined in the DTD. Required elements and attributes are shown
as bold text.

Table 11-2 Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as Defined in
the DTD

Element Subelement Attribute Description

useProxy Optional element. Specifies the proxy server attributes.

proxyHost Required attribute. Specifies the host name of the proxy
server.

proxyPort Required attribute. Specifies the port number of the proxy
server.

useWallet Optional element. Specifies the Oracle Wallet attribute.

location Required attribute. Specifies the location of the Oracle
Wallet credential file used by the EJB for opening the HTTPS
connection.

wsdl Required element. Specifies how the wsdl 2ej b utility
should process the source WSDL document. Requires the
location element be specified and optionally, either the
service-name and service-port pair of elements or the
service-binding and soap-location pair of elements be
specified.

location Required element. Specifies the location of the source WSDL
document. Can be a file path or an URL.

service-name Optional element. Specifies the name of the WSDL service to
be used for the generated EJB. If specified, must be specified
with the service-port element as a pair of elements.

service-port Optional element. Specifies the service port of the WSDL
service to be used for the generated EJB. If specified, must
be specified with the service-name element as a pair of
elements.

service-binding Optional element. Specifies the name of the WSDL binding
to be used for the generated EJB. If specified, must be
specified with the soap-location element as a pair of
elements.

soap-location Optional element. Specifies the SOAP location service port
of the WSDL service to be used for the generated EJB. If
specified, must be specified with the service-binding
element as a pair of elements.

ejb Optional element. Specifies the properties related to the
generated EJB.
application-nam Optional element. Specifies the name of the J2EE application
e for the generated EAR file.
ejb-name Optional element. Specifies the JNDI binding key name for

the generated EJB.

Consuming Web Services in J2EE Applications 11-5

Consuming SOAP-Based Web Services Using WSDL

Table 11-2 (Cont.) Elements, Subelements, and Attributes of the wsdl2ejb XML Configuration File as
Defined in the DTD

Element Subelement Attribute Description
package-name Optional element. Specifies the name for the Java package
under which the generated EJB belongs.
remote-name Optional element. Specifies the class name for the EJB
Remote Interface.
session-type Optional element. Specifies whether the generated EJB
should be stateless or stateful.
mapTypes Optional element. Specifies the custom Java types and maps
them to XML types.
map Optional element. Specifies the XML to JAR type map.
encodingStyle Required attribute. Specifies the name of the encoding style

under which this map belongs.

namespace-uri Required attribute. Specifies the URI of the namespace for
the XML type defined in this map.

local-name Required attribute. Specified the local name of the XML type
defined in this map.

java-type Required attribute. Specifies the Java class name to which
this type is mapped.

java2xml-class-nam Required attribute. Specifies the Java class name of the type
e serializer.

xml2java-class-nam Required attribute. Specifies the Java class name of the type
e deserializer.

Developers can run the wsdl 2ej b utility with a configuration file using the following
command:

java -jar wsdl 2ejb.jar -conf wsdl conf.xm

Supported WSDL Documents

The wsdl 2ej b utility supports most WSDL documents using SOAP binding. This
support includes both Remote Procedure Call (RPC) and document style documents as
well as types that are encoded or literal. Table 11-3 shows how the supported XML
Schema types are mapped to the corresponding Java type by default. Any other
required type will have to be supported though the custom type mapping described
previously.

Table 11-3 Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type Corresponding Java Type

string java.lang.String
int int

decimal BigDecimal
float float

double double

Boolean Boolean

long long

11-6 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

Table 11-3 (Cont.) Supported XML Schema Types and Corresponding Java Type

Supported XML Schema Type Corresponding Java Type

short short

byte byte

date GregorianCalendar
timelnstant java.util.Date

Note: Arrays of supported types, shown in Table 11-3 are also
supported.

Known Limitations of the wsdl 2ej b Utility

The following information describes the known limitations of the wsdl 2ej b utility:

« Supports only types defined by the W3C recommendation XML schema version
whose namespace is: ht t p: / / www. W3. or g/ 2001/ XM_Schena

« Supports only the One-way and Request-Response transmission primitives
defined in the WSDL 1.1 specification.

« Does not support WSDL documents that use the <i npor t > tag to include other
WSDL documents.

« Does not support HTTP, MIME, or any other custom bindings.

Running the Demonstration

The wsdl 2ej b demo directory contains examples on how to use the wsdl 2ej b utility.
All the commands are assumed to be executed from the $SORACLE_
HOME/webservices/deno/ basi ¢/ wsdl 2ej b directory. The demonstration (demo)
will use some sample WSDL documents as sources and generate EJB that can be used
to invoke the Web Service operations.

The demos can be run using Jakarta ant. Review the bui | d. xm file to make sure that
the initial properties (RMI_HOST, RMI_PORT, RMI_ADMIN, RMI_PWD) are set
correctly according to your configuration. The bui | d. xni file will execute the

wsdl 2ej b utility on the demo WSDL documents, deploy the generated EJB, and
execute the EJB clients.

Note: IIf you are executing the demos behind a firewall and need
to set proxy information to access external HTTP sites, make sure
this proxy information is specified in the wsdl 2ej b configuration
files (rpc_doc_conf.xml, base_conf.xml).

Consuming Web Services in J2EE Applications 11-7

Consuming SOAP-Based Web Services Using WSDL

Note: The demos are based on WSDL/SOAP interoperability test
suites. They access live SOAP services available on the Internet as
SOAP interoperability test cases. The successful execution of these
demos depends on the availability of these services.

The directory structure of the demos is as follows:

deno/ web_servi ces/ wsdl 2¢j b:

- README. t xt : Readne file
- build. xm : Jakarta ant build file to run all the denos
- rpc_doc : directory for sinple RPC and docunent style operations
- rpc_doc_conf. xni . wsdl 2ej b configuration file for the rpc_doc denp
- TestRpcDocClient.java : client for the rpc_doc deno
- DocAndRpc. wsdl : sanple WBDL for the rpc_doc deno
- (generat ed) : directory where the EJB will be generated
- base
- base_conf. xm © wsdl 2ej b configuration file for the base interoperability deno
- TestInteropBaseClient.java : client for the base interoperability denp
- InteropTest. wsdl . WBDL docurent for the base interoperability denp
- MSoapStruct Bean. j ava . bean utilized to map the customtype used
in the exanple defined in the WSDL docunent
- MSoapStruct Bean. j ar . packaged- conpil ed customtype bean
- (generat ed) . directory where the EJB will be generated

RPC and Document Style with Simple Types Example

This example uses a simple WSDL document that shows a couple of operations: Add
and Multiply. Add is using the document-style operation using literal parts, while
Multiply is RPC-style and uses encoded parts.

To generate the EJB stub, use the following command:

On NI X
cd $ORACLE_HOVE/ webser vi ces/ deno/ basi ¢/ wsdl 2ej b
java -jar ../../../lib/wsdl2ejb.jar -conf rpc_doc/rpc_doc_conf.xm

On Wndows
cd %ORACLE_HOVE% webser vi ces\ deno\ basi c\ wsdl 2ej b
java -jar ..\..\..\lib\wsdl 2ejb.jar -conf rpc_doc\rpc_doc_conf.xm

The utility generates the Test App. ear file containing the definition of a stateless EJB,
which can be used as a proxy for the Web Service. The EAR file can be deployed in
OC4J as any standard EJB. Refer to Oracle Application Server Containers for J2EE User’s
Guide for information on how to deploy an EJB.

By looking at the generated EJB Remote Interface, you can see how the WSDL
portType DocAndRpc.wsdl file has been mapped to Java.

WSDL PortType:

<types>
<s:schema el ement For nDef aul t ="qual i fi ed" target Namespace="http://soapinterop.org">
<s:el enent name="Add">
<s: conpl exType>
<s:sequence>
<s:el ement minCccurs="1" maxCccurs="1" nanme="a" type="s:int" />
<s:el ement minCccurs="1" maxCccurs="1" name="b" type="s:int" />
</ s: sequence>

11-8 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

i nport
i nport
i nport

i nport
i nport

i nport
i nport

/**

java.io.*;

java. util.*

</s: compl exType>
</s: el enent >
<s: el ement name="AddResponse" >
<s: conpl exType>
<s: sequence>
<s:element mnQccurs="1" maxCccurs="1" nane="AddResult" type="s:int" />
</ s:sequence>
</s: compl exType>
</s: el enent >
</ s: schema>
</types>
<nessage nane="AddSoapl n">
<part name="paraneters" el ement="s0: Add" />
</ message>
<message name="AddSoapQut ">
<part name="paraneters" el ement="s0: AddResponse" />
</ message>
<nessage name="Mil ti pl ySoapl n">
<part name="a" type="xsd:int" />
<part nanme="b" type="xsd:int" />
</ nessage>
<nessage name="Mil ti pl ySoapQut ">
<part name="Mil tiplyResult" type="s:int" />
</ message>
<port Type name="Test Soap" >
<operation name="Add" >
<i nput message="s0: AddSoapl n" />
<out put nessage="s0: AddSoapQut" />
</ operation>
<operation name="Miltiply">
<i nput nmessage="s0: Mul ti pl ySoapln" />
<out put nessage="sO0: Mul ti pl ySoapQut" />
</ operation>
</port Type>

From the Test . j ava file, the EJB Remote Interface is:

public org.w3c.dom El enent add(org. w3c.dom El ement paranet ers)
t hrows Renot eException;

public int multiply(int a, int b)
t hrows Rerot eException;

When the WSDL operation is using RPC style and its parts are encoded, the parts XML
schema type is mapped to a corresponding Java native type. In this example, xsd: i nt
is mapped to Java i nt . In adocument style using literal parts, each part is simply
mapped to an or g. w3c. dom El enent .

The following client code in the Test RpcDocCl i ent . j ava file can be used to invoke
the Add and Multiply Web Service operations. The code has been produced by
modifying the client code stub generated by the wsdl 2ej b utility.

j avax. nam ng. *;

org.w3c. dom *;
oracl e. xnl. parser.v2.*;

or g. mssoapi nt er op. asnx. Test ;
or g. nssoapi nt er op. asnx. Test Hone;

* This is a sinple client tenplate. To conpile it,

Consuming Web Services in J2EE Applications 11-9

Consuming SOAP-Based Web Services Using WSDL

* please include the generated EJB jar file as well as
* EJB and JNDI libraries in classpath.
*/
public class TestRpcDocC i ent
{
Il replace the val ues
private static String RM_HOST = "local host";
private static String RM _PORT = "23791";
private static String RM_ADM N = "adni n";
private static String RM_PW = "wel cone";

public TestRpcDocCient () {}
public static void main(String args[]) {

Test RocDocClient client = new Test RocDocClient();

try {
RM _HOST = args[0];
RM _PORT = args[1];
RM _ADM N = args[2];
RM _PW = args[3];

Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com evernind. server.rni.RM Initial ContextFactory");
env. put (Cont ext . SECURI TY_PRI NCl PAL, RM _ADM N) ;

env. put (Cont ext . SECURI TY_CREDENTI ALS, RM _PWD);

env. put (Cont ext. PROVIDER_URL, "ormi://" + RM _HOST + ":" + RM _PORT + "/Wédl 2Ej bTest Appl");
Context ctx = new Initial Context(env);

Test Home hone = (Test Honme) ctx. | ookup(" mssoapi nterop. or g/ asmx/ DocAndRpc. asnx");

Test service = hone.create();

/1 call any of the Renote nethods that followto access the EJB

I

/1 Add test

I

Docunent doc = new XM.Docunent ();

El enent el Add = doc. creat eEl ement NS("htt p: //soapi nterop.org", "s:Add");
El enent el A = doc. creat eEl ement NS("http://soapinterop.org", "s:a");
El enent el B = doc. creat eEl ement NS("http://soapinterop.org", "s:b");

el A. appendChi | d(doc. creat eText Node("4"));
el B. appendChi | d(doc. creat eText Node("3"));
el Add. appendChi | d(el A);
el Add. appendChi | d(el B) ;
doc. appendChi | d(el Add) ;

El enent el AddResponse = service. add(el Add) ;
Node t Node = el AddResponse. getFirstChild().getFirstChild();
System out. println("AddResponse: "+t Node. get NodeVal ue());

I

Il Miltiply Test
I

int a=4

int b=3;

int iMltiplyResponse = service.mltiply(a, b);
Systemout. printIn("MltiplyResponse: "+i MiltiplyResponse);

}

catch (Throwabl e ex) {
ex. print StackTrace();

}

11-10 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

The result of the execution of the client is the following:

AddResponse: 7
Mul ti pl yResponse: 12

Round 2 Interop Services: Base Test Suite Example

This example starts from a subset of the WSDL document defined by the base test suite
of the second round of SOAP interoperability tests. The purpose of this demo example
is to show the usage of built-in types in the SOAP Mapping Registry as well as how to
add custom types mapping.

Start by looking at the WSDL portType in the | nt er opTest . wsdl file.

<t ypes>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schera"
t arget Namespace="htt p: // soapi nt er op. or g/ xsd" >
<conpl exType name="ArrayCfstring">
<conpl exCont ent >
<restriction base="SQOAP- ENC. Array" >
<attribute ref="SOAP-ENC: arrayType" wsdl:arrayType="string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="ArrayCfint">
<conpl exCont ent >
<restriction base="SQOAP- ENC. Array" >
<attribute ref="SOAP-ENC: arrayType" wsdl:arrayType="int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="ArrayCf fl oat">
<conpl exCont ent >
<restriction base="SOAP-ENC: Array" >
<attribute ref="SOAP-ENC: arrayType" wsdl:arrayType="float[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="ArrayCf SOAPSt r uct " >
<conpl exCont ent >
<restriction base="SOAP-ENC: Array" >
<attribute ref="SOAP-ENC: arrayType"
wsdl : arrayType="s: SOAPStruct[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType name="SOAPStruct">
<all>
<el ement name="var String" type="string"/>
<el ement name="varl|nt" type="int"/>
<el ement name="varFl oat" type="float"/>
<lall>
</ conpl exType>
</ schema>
</types>

<message nane="echoStringRequest ">

Consuming Web Services in J2EE Applications 11-11

Consuming SOAP-Based Web Services Using WSDL

<part nanme="inputString" type="xsd:string"/>
</ message>
<message nane="echoStringResponse" >
<part nane="return" type="xsd:string"/>
</ message>
<message name="echoStringArrayRequest"”>
<part nane="inputStringArray" type="s:ArrayOfstring"/>
</ message>
<message name="echoStringArrayResponse"” >
<part nane="return" type="s:ArrayOfstring"/>
</ message>
<nessage name="echol nt eger Request ">
<part nane="inputlnteger" type="xsd:int"/>
</ message>
<nessage name="echol nt eger Response">
<part nanme="return" type="xsd:int"/>
</ message>
<message nanme="echol nt eger ArrayRequest ">
<part nane="inputlntegerArray" type="s:ArrayCfint"/>
</ message>
<message name="echol nt eger Arr ayResponse" >
<part nane="return" type="s:ArrayCfint"/>
</ message>
<message nane="echoFl oat Request" >
<part nane="inputFl oat" type="xsd:float"/>
</ message>
<message nane="echoFl oat Response" >
<part nane="return" type="xsd:float"/>
</ message>
<nessage name="echoFl oat ArrayRequest ">
<part nane="input Fl oat Array" type="s:ArrayCffloat"/>
</ message>
<nessage name="echoFl oat ArrayResponse" >
<part nane="return" type="s:ArrayOifloat"/>
</ message>
<message nane="echoStruct Request ">
<part nane="inputStruct" type="s: SCAPStruct"/>
</ message>
<message name="echoSt ruct Response" >
<part nane="return" type="s:SOAPStruct"/>
</ message>
<message name="echoSt ruct ArrayRequest ">
<part nane="inputStruct Array" type="s:ArrayOf SOAPStruct"/>
</ message>
<message nanme="echoStruct ArrayResponse” >
<part nane="return" type="s:ArrayOf SOAPStruct"/>
</ message>
<nessage name="echoVoi dRequest"/>
<message nane="echoVoi dResponse"/ >
<message name="echoBase64Request ">
<part nane="input Base64" type="xsd: base64Bi nary"/>
</ message>
<message name="echoBase64Response" >
<part nane="return" type="xsd: base64Bi nary"/>
</ message>
<message nanme="echoDat eRequest ">
<part nane="inputDate" type="xsd: dateTine"/>
</ message>
<nessage name="echoDat eResponse">
<part nane="return" type="xsd: dateTime"/>

11-12 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

</ message>
<message nane="echoDeci mal Request ">
<part nane="input Deci mal " type="xsd: deci mal "/>
</ message>
<nessage name="echoDeci nmal Response">
<part nanme="return" type="xsd:decimal"/>
</ message>
<nessage name="echoBool eanRequest" >
<part nane="i nput Bool ean" type="xsd: bool ean"/>
</ nessage>
<message nanme="echoBool eanResponse" >
<part name="return" type="xsd:bool ean"/>
</ message>

<port Type name="InteropTest Port Type">

<oper ation nane="echoString" paraneterO der="inputString">
<i nput message="tns:echoStringRequest"/>
<out put message="tns: echoStringResponse"/>

</ operation>

<oper ation nane="echoStringArray" parameterO der="input StringArray">
<i nput nmessage="tns:echoStringArrayRequest"/>
<out put message="tns: echoStri ngArrayResponse"/>

</ operation>

<oper ation nane="echol nteger" paraneter Order ="i nput | nt eger " >
<i nput nessage="tns: echol nteger Request"/>
<out put message="t ns: echol nt eger Response"/ >

</ operati on>

<oper ati on nane="echol nt eger Array" paraneter Order="i nput | nt eger Array">
<i nput message="tns: echol nteger ArrayRequest"/>

<out put nessage="t ns: echol nt eger ArrayResponse"/ >

</ operati on>

<oper ation nane="echoFl oat" paramneter Order="i nput Fl oat">
<i nput nmessage="t ns: echoFl oat Request "/ >

<out put nessage="tns: echoFl oat Response"/>

</ operation>

<oper ation nane="echoFl oat Array" paranet er Or der="i nput Fl oat Array">
<i nput message="tns: echoFl oat ArrayRequest"/>
<out put message="t ns: echoFl oat Arr ayResponse" />

</ operation>

<operation nane="echoStruct" paraneterO der="inputStruct">
<i nput message="tns:echoStruct Request"/>
<out put message="tns: echoStruct Response"/ >

</ operation>

<operation name="echoStruct Array" paraneterCOrder="inputStructArray">
<i nput message="tns:echoStruct ArrayRequest"/>
<out put message="tns: echoStruct ArrayResponse"/>

</ operation>

<operation name="echoVoi d">
<i nput message="tns: echoVoi dRequest"/ >
<out put message="t ns: echoVoi dResponse"/ >

</ operation>

<oper ation nane="echoBase64" paranet er O der ="i nput Base64" >
<i nput message="tns: echoBase64Request"/>
<out put message="t ns: echoBase64Response" />

</ operati on>

<oper ation nane="echoDat e" paraneter Order="i nput Dat e">
<i nput nmessage="tns: echoDat eRequest"/ >
<out put message="t ns: echoDat eResponse"/ >

</ operati on>

<oper ati on nane="echoDeci mal " paranet er Or der ="i nput Deci mal " >

Consuming Web Services in J2EE Applications 11-13

Consuming SOAP-Based Web Services Using WSDL

<input message="tns: echoDeci mal Request"/>
<out put nessage="tns: echoDeci mal Response”/>

</ operation>

<operation nane="echoBool ean" paranet er Order ="i nput Bool ean" >
<input message="tns: echoBool eanRequest"/>
<out put nessage="t ns: echoBool eanResponse”/ >

</ operation>

</ port Type>

Notice that the WSDL document contains more complex types than the previous
demo. Array of primitives types are now used as well as the struct primitive types.
With the exception of the SOAPStruct complex type, every other type is supported as
built-in type in the SOAP Mapping Registry. You then need to add a new complex type
definition to the SOAP Mapping Registry to handle the SOAPStruct complex type.

The SOAPStruct schema definition is the following:

<conpl exType nanme="SCOAPStruct" >
<all>
<el ement name="varString" type="string"/>
<el ement name="varInt" type="int"/>
<el ement nane="varFl oat" type="float"/>
<lall>
</ conpl exType>

In the MySoapSt r uct Bean. j ava file, this SOAPStruct complex type can be mapped
to a simple JavaBean class such as the following, and have the marshalling and
unmarshalling actions handled by the BeanSerializer.

public class MySoapStructBean inplenments java.io. Serializable

{
private String mvarString = null;
private int mvarlnt = 0;
private float mvarFloat = 0;
public MySoapStructBean() {}
public MySoapStructBean(String s, int i, float f) {
myvarString = s;
m var | nt =i
myvarFloat = f;
}
public String getVarString () { return mvarString; }
public int getVarint() { return mvarint; }
public float getVarFloat() { return mvarFloat; }
public void setVarString (String s) { mvarString = s; }
public void setVarint(int i) { mvarint =i; }
public void setVarFloat(float f) { mvarFloat =f; }
}

With the mapping JavaBean class ready, and having identified what serializer and
deserializer to use, you can now configure the wsdl 2ej b utility so that a new schema
to Java map is added. This can be achieved by adding the following to the wsdl 2ej b
configuration file, base_conf . xnm :

<mapTypes jar="base/ MySoapStruct Bean.jar" >
<map encodi ngStyl e="http://schemas. xn soap. or g/ soap/ encodi ng/ "
| ocal - nane="SQOAPSt r uct "
namespace- uri ="http://soapi nt erop. or g/ xsd"
j ava-type="MSoapStruct Bean"

11-14 Oracle Application Server Web Services Developer's Guide

Consuming SOAP-Based Web Services Using WSDL

j ava2xni - cl ass- nane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2j ava- cl ass- nane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer" />
</ mapTypes>

The MySoapSt r uct Bean. j ar file contains the definition of the MySoapStructBean
class. With this map, the SOAPStruct complex type, belonging to the
http://soapint erop. org/ xsd nanespace, will be mapped to the
MySoapStructBean JavaBean class and the converse is true as well. For more
information about SOAP serializers and deserializers, see the Oracle SOAP
documentation.

With this additional configuration, you can now run the wsdl 2ej b utility with the
following command:

On UNIX

cd $ORACLE_HOME/ webser vi ces/ denmo/ basi ¢/ wsdl 2ej b

java -jar ../../../1ib/wsdl 2ejb.jar -conf base/base_conf.xnl
On W ndows

cd Y%ORACLE_HOMVEY webser vi ces/ deno/ basi ¢/ wsdl 2ej b

java -jar ..\..\..\lib\wsdl 2ejb.jar -conf base\base_conf.xnl

The wsdl 2ej b utility generates the | nt er opLabApp. ear file that contains the
definition of a stateless EJB, which can be used as a proxy for the Web Service. The
EAR file can be deployed in OC4J] as any standard EJB. See Oracle Application Server
Containers for J2EE User’s Guide for information on how to deploy an EJB.

The Test | nt er opBased i ent . j ava class file, saved in the base directory, can be
used to test the generated EJB after it has been deployed. The result of the execution of
the client is the following:

echoString: Hello Wrld!
echoStringArray[0]: Hello Wrld!
echoStringArray[1]: Seens to work!
echoStringArray[2]: Fine!
echoStringArray[3]: WOW

echol nteger: 7

echol ntegerArray[0]: 1
echol ntegerArray[1]: 2
echol ntegerArray[2]: 3
echol ntegerArray[3]: 4
echoFl oat: 1.7777

echoFloatArray[0]: 1.1
echoFl oat Array[1]: 1.2
echoFl oat Array[2]: 1.3

echoFl oat Array[3]: 1.4

echoStruct: varString=Hello Wrld , varint=1, varFloat=1.777

echoStructArray: varString[0]=Hello Wrld , varint[0]=0, varFloat=[0]=1.7771
echoStructArray: varString[1]=Hello Wrld 1 , varlnt[1]=1 , varFloat=[1]=1.7772
echoStructArray: varString[2]=Hello Wrld 2 , varlnt[2]=2 , varFl oat=[2]=1.7773
echoStructArray: varString[3]=Hello Wrld 3, varlnt[3]=3 , varFloat=[3]=1.7774
echoVoi d.

echoDeci mal : 1. 77709999999999990194510246510617434978485107421875

echoBool ean: true

echoBase64[0]: 1

echoBase64[1] : 2

echoBase64[2]: 3

echoBase64[3]: 4

echoDate: Sat Nov 10 12:30: 00 EST 2001

Consuming Web Services in J2EE Applications 11-15

Dynamic Invocation of Web Services

Dynamic Invocation of Web Services

When a Java2 Platform Enterprise Edition (J2EE) application acquires a WSDL
document at runtime, the dynamic invocation APl is used to invoke any SOAP
operation described in the WSDL document. The dynamic invocation APl describes a
WebServiceProxyFactory factory class that can be used to build instances of a
WebServiceProxy. Each created WebServiceProxy instance is based on the location of
the WSDL document, (and optionally on additional qualifiers), that identify which
service and port should be used. The WebServiceProxy class exposes methods to
determine the WSDL portType, including the syntax and signatures of all operations
exposed by the WSDL service and to invoke the defined operations.

This section briefly describes the dynamic invocation APl and how to use it.

For Java samples, refer to the code supplied with Oracle Application Server Web
Services in $ORACLE_HOVE/ webser vi ces/ denmp/ basi ¢/ j ava_

servi ces/ dynami cproxy on UNIX or in %0RACLE_

HOVE% webser vi ces\ denp\ basi c\ java_servi ces\ dynamni cproxy on
Windows. For EJB samples, refer to the code supplied in the directory
$ORACLE_HOVE/ webser vi ces/ deno/ basi c/ st at el ess_ej b on UNIX or
%ORACLE_HOVE% webser vi ces\ denp\ basi c\ st at el ess_ej b on Windows.

Dynamic Invocation API

The dynamic invocation API contains two packages, oracle.j2ee.ws.client and
oracle.j2ee,ws.client.wsdl, which contain additional classes grouped by interface, class,
and exception, as shown in Table 11-4 and Table 11-5.

Table 11-4 The oracle.j2ee.ws.client Package

Classes Description

Classes

WebServiceProxyFactory This class creates a WebServiceProxy class given a WSDL
document.

Interfaces

WebServiceProxy This interface represents a service defined in a WSDL
document.

WebServiceMethod This interface invokes a Web Service method.

Exceptions

WebServiceProxyException This class describes exceptions raised by the WebServiceProxy
API.

Table 11-5 The oracle.j2ee.ws.client.wsdl Package

Classes Description

Interfaces

PortType This interface represents a port type.

Operation This interface represents a WSDL operation.

Input This interface represents an input message, and contains the

name of the input and the message itself.

Output This interface represents an output message, and contains the
name of the output and the message itself.

11-16 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

Table 11-5 (Cont.) The oracle.j2ee.ws.client.wsdl Package

Classes Description

Fault This interface represents a fault message, and contains the
name of the fault and the message itself.

Message This interface describes a message used for communication
with an operation.

Part This interface represents a message part and contains the part's
name, elementName, and typeName.

Classes

OperationType This class represents an operation type which can be one of

request-response, solicit response, one way, or notification.

The oracle.j2ee.ws.client package is described in more detail in this section. The API
documentation describes to use this proxy API can be found in the Oracle Application
Server 10g Documentation Library as Proxy API Reference (Javadoc) under Oracle
Application Server Web Services, which is located under the J2EE and Internet
Applications tab.

The WebServiceProxyFactory class contains methods that can instantiate a
WebServiceProxy class given either the URL or the Java input stream of the WSDL
document. Four methods let you use either the first service and its first port in the
supplied WSDL document or use the name of one of services and the name of one of
the ports of the service to create a WebServiceProxy instance. Two methods also let you
create a WebServiceProxy instance for a WSDL document, which has been authored
following the UDDI best practices for WSDL. A method lets you supply additional
optional initialization parameters to the WebServiceProxy instance.

Table 11-6 briefly describes the WebServiceProxyFactory factory class methods and the
required parameters for each method. See the JavaDoc for more detailed information
about this factory class and its methods.

Table 11-6 WebServiceProxyFactory Factory Methods and Parameters

Methods Parameters

creat eWebSer vi ceProxy() java.io. | nputStream i sWdl
java. net. URL baseURL

creat eWebSer vi ceProxy() java. net. URL wsdl URL

creat eWebSer vi ceProxyFronBi ndi ng() java.io.lnputStreamwsdlis
java. net.URL baseUrl
java.lang. String szBi ndi ngNane
java.lang. String szSoapLocati on

creat eWebSer vi ceProxyFronServi ce() java.io.lnputStreamwsdlis
java. net. URL baseUrl
java.lang. String szServi ceNane
java.lang. String szServi cePort

creat eWebSer vi cePr oxyFronBi ndi ng() java.net.URL wsdl Url
java.lang. String szBi ndi ngNane
java.lang. String szSoapLocati on

creat eWebSer vi ceProxyFronServi ce() java.net.URL wsdl Url
java.lang. String szServi ceNanme
java.lang. String szServicePort

set Properties() java. util.Hashtabl e ht

Consuming Web Services in J2EE Applications 11-17

Dynamic Invocation of Web Services

Table 11-7 describes the WebServiceProxy interface. The WebServiceProxyFactory
factory methods optionally take additional parameters that are provided in the
WebServiceProxy interface that can be used to dynamically invoke an operation in a
WSDL document.

Table 11-7 WebServiceProxy Interface Methods and Parameters

Methods Parameters Description
get XMLMappi ng None Returns the SOAP mapping registry used by the
Regi stry() WebServiceProxy and contains information that lets clients

use this registry to query for XML to or from Java type
mapping as well as extend the mapping registry with new
map definitions.

get Port Type() None Returns a structure describing the WSDL portType used
by this proxy and contains information about operations
associated with this port type.

get Met hod() Returns a WebServiceMethod method, which can be used
to invoke Web Service methods.

szOperationName Name of the WSDL operation to be executed.

szInputName Name of the wsdl:input tag for the operation to be
szOutputName executed.
Name of the wsdl:output tag for the operation to be
executed.
get Met hod() Returns a WebServiceMethod method, which can be used

to invoke Web service methods and provides a signature
that can be used for non-overloaded WSDL operations.

szOperationName Name of the WSDL operation to be executed.

Table 11-8 describes the WebServiceMethod interface, which is used to invoke a Web
Service method.

Table 11-8 WebServiceMethod Interface Methods and Parameters

Methods Parameters Description

get | nput Encodi ngStyl e() None Returns the encoding style to be used by the input
message parts, null if none has been specified in the
source WSDL.

get Qut put Encodi ngStyl e(None Returns the encoding style to be used by the output

) message parts, null if none has been specified in the
source WSDL.

i nvoke() Executes one of the service operations with the set of

supplied input parts and returns the object, if the
response message contains only one part, return the
response part, otherwise an array of the output
message parts. If the invoked WSDL operation has no
inMsgPartNames output parts, null will be returned.
inMsgPartValues
Name of the parts supplied in the input message.
Corresponding value of the parts whose name is
supplied in the inMsgPartNames parameter. If the
invoked WSDL operation has no input parts, null or
empty arrays parameters can be supplied

The oracle.j2ee.ws.client.wsdl package exposes methods to determine the WSDL
portType, including the syntax and signatures of all operations exposed by the WSDL
service.

11-18 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

WebServiceProxy Client

The following client code shows the use of the dynamic invocation API followed by

the output of the client execution. The client code shows the following:
« Initializes proxy parameters in the WebServiceProxyFactory.

« Creates an instance of the proxy given a URL of a WSDL document.
« Performs WSDL introspection.

« Shows the input message parts.

« Executes a Web Service operation with a set of supplied input parts and returns

the result.

The WSDL document is described as follows:

<?xm version="1.0" encodi ng="utf-8" ?>
- <definitions xm ns:soap="http://schemas. xm soap. org/ wsdl / soap/" xnins:tns="http://soapinterop.org"
xm ns:s="http:// ww.w3. or g/ 2001/ XM_.Schenma" xni ns: http="http://schemas. xn soap. org/ wsdl / http/"
xmns:tnE"http://mcrosoft.com wsdl / m ne/textMatching/" xmns:mne="http://schemas. xm soap. or g/ wsdl / m me/"
xn ns: soapenc="http://schenas. xn soap. or g/ soap/ encodi ng/ " target Namespace="htt p://soapi nterop. org"
xm ns="http://schemas. xm soap. org/ wsdl / ">
<types />
- <nmessage name="AddSoapl n">
<part nanme="a" type="s:int" />
<part nane="b" type="s:int" />
</ message>
- <nessage name="AddSoapQut">
<part nane="AddResul t" type="s:int" />
</ message>
- <port Type nane="Test Soap">
- <operation nane="Add">
<i nput nmessage="tns: AddSoapl n" />
<out put nessage="tns: AddSoapQut" />
</ operation>
</ port Type>
- <bi ndi ng name="Test Soap" type="tns: Test Soap" >
<soap: bi ndi ng transport="http://schemas. xnl soap. org/ soap/ http" style="rpc" />
- <operation name="Add">
<soap: operation soapAction="http://soapinterop.org/Add" style="rpc" />
- <input>
<soap: body use="encoded" nanmespace="http://soapi nterop.org"
encodi ngStyl e="htt p:// schemas. xm soap. or g/ soap/ encodi ng/" />
</i nput >
- <out put >
<soap: body use="encoded" nanmespace="http://soapi nterop.org"
encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/" />
</ out put >
</ operation>
</ bi ndi ng>
- <service name="Test">
- <port name="Test Soap" bi nding="tns: Test Soap" >
<soap: address | ocati on="http://nssoapi nterop. org/ asmx/ Rpc. asnx" />
</port>
</ service>
</definitions>

package oracle.j2ee.ws.client.inpl;

inport java.util.*;

inport java.io.*;

inport java.net.*;

inport oracle.j2ee.ws.client.*;
inport oracle.j2ee. ws.client.wsdl.*;
inport org.apache.soap. util.xnl.Q\ane;

Consuming Web Services in J2EE Applications 11-19

Dynamic Invocation of Web Services

inport org.apache. soap. util.xm . XM.JavaMappi ngRegi stry;
public class dient {
public static void main(String[] args) throws Exception {
String szWsdl Url = "http://nssoapi nt erop. or g/ asmx/ Rpc. asmx?WsDL" ;

URL urlV¢dl = new URL(szWdl Url);
Systemerr.printin("Wdl url =" + urlWdl);

V\ebSer vi ceProxyFactory wsfact= new WebSer vi ceProxyFactory();

I

I/ Set some initial parameters

I

Hasht abl e ht = new Hashtabl e();

ht. put ("http. proxyHost", "ww* proxy.us.oracle.cont');
ht. put ("http. proxyPort", "80");

wsfact . set Properties(ht);

I

Il Create an instance of the proxy

I

\WebSer vi ceProxy wsp = wsfact. createWebServi ceProxy(url Védl) ;

I

/1 Qptional: Wsdl Introspection
I

Port Type pt = wsp. get Port Type();
List opList = pt.getOperations();
for (int i =0; i <opList.size(); i++) {
Qperation op = (Qperation) opList.get(i);
String szQpNane = op. get Nang();

String szl nput op. get I nput (). get Nanme();
String szQutput = op.get Qut put (). get Name();

Systemerr.printin("operation["+i +'] = [" + szOpNane +

n’n + Szlnput + ”1" + SZth put + u]u);
I
/'l show i nput message parts
I

Message msgln = op. getlnput (). get Message();
Map mapParts = nsgln. getParts();

Col I ection col Parts = mapParts. val ues();
Iterator itParts = col Parts.iterator();

\WebServi ceMet hod wsm = wsp. get Met hod(szQoNane) ;
String szlnEncStyle = wsm get | nput Encodi ngStyl e();
XM.JavaMappi ngRegi stry xnt = wsp. get XM_Mappi ngRegi stry();

while (itParts.hasNext()) {
Part part = (Part) itParts.next();
String szPartName = part.get Name();
QNane gnarne = part. get TypeNane();
String szJavaType = xnr. queryJavaType(qgnane,
szl nEncStyl e). get Name() ;
Systemerr.printin("part nane = " + szPartName +

11-20 Oracle Application Server Web Services Developer's Guide

Dynamic Invocation of Web Services

}
}

", type =" + gnane +
", java type = " + szJavaType);
}
}

11

/'l invoke operation/method Add(2,10)

I

String[] inMsgPartNames = new String[2];
i nMsgPart Nanes[0] = "a";

i nMsgPart Nanes[1] = "b";

vj ect[] inMsgPartVal ues = new Qoj ect[2];
i nMsgPart Val ues[0] = new Integer(2);

i nMsgPart Val ues[1] = new I nteger(10);

\WebSer vi ceMet hod wsm = wsp. get Met hod(" Add") ;
(bj ect obj Ret = wsm i nvoke(i nMsgPart Nanes,

i nMsgPart Val ues) ;
Systemerr.printin("Calling method Add(" +inMsgPartValues[0] + ","

i nMsgPart Val ues[1] +")");
Systemerr.printin("return =" + obj Ret);

The output of the client execution is as follows:

Vedl url = http://nmssoapinterop. org/ asmx/ Rpc. asmx?WSDL
operation[0] = [Add,,]

part name = b, type = http://ww. w3. org/ 2001/ XM.Schena: i nt, java type
part name = a, type = http://ww. w3. org/ 2001/ XM.Schena: i nt, java type

int
int

Calling nethod Add(2,10)
return = 12

Known Limitations

The following information describes the known limitations of the dynamic invocation
API:

Supports invoking operations defined in the WSDL document defined by the W3C
recommendation XML schema version whose hamespace is:
http://ww. w3. or g/ 2001/ XM_.Schema

Does not support WSDL documents that use the <i npor t > tag to include other
WSDL documents.

Does not support HTTP, MIME, or any other custom bindings.

Consuming Web Services in J2EE Applications 11-21

Dynamic Invocation of Web Services

11-22 Oracle Application Server Web Services Developer's Guide

12

Advanced Topics for Web Services

This chapt er covers advanced Oracle Application Server Web Services topics,
including the following topics:

« Setting the Web Services Debugging Property ws.debug
« Untyped Request Handling Options
« SOAP Header Support

Setting the Web Services Debugging Property ws.debug

To obtain Oracle Application Server Web Services debugging information, use the Java
property ws. debug, and set its value to t r ue. To set the ws. debug value to t r ue,
use Oracle Enterprise Manager to specify OC4J startup options. Debugging output is
sent to the OC4J instance log file corresponding to the island where Oracle Application
Server Web Services is running.

Example 12-1 provides sample debugging output.

Example 12-1 Web Services Debug Output

WS Debug: initQrameMap(’ null’)

WS Debug: operation name is: helloWrld

WS Debug: QueryString is: invoke=hel | oWrl| d&par anD=t est

WS Debug: Operation Name is: helloWrld

WS Debug: Port Type Local nane is: Statel essExanpl ePort Type
WS Debug: Port Type Namespace URI is: http://oracle.j2ee. ws_
exanpl e/ St at el essExanpl e. wsdl

WS Debug: Operation Local nanme is: helloWrld

WS Debug: Operation Nanmespace URI is: http://oracle.j2ee. ws_
exanpl e/ St at el essExanpl e. wsdl

WS Debug: Operation Get parameter order: null

See Also: Oracle Application Server Containers for J2EE User’s Guide
for information on setting debugging options and showing
debugging output.

Untyped Request Handling Options

Oracle Application Server Web Services supports requests for RPC style Web Services
in the following cases:

Advanced Topics for Web Services 12-1

Untyped Request Handling Options

« Typed requests where an incoming RPC request with SOAP encoded parameters
includes type attributes that specify type information for every incoming
parameter. Example 12-2 shows a sample typed RPC request.

« Untyped requests where an incoming RPC request with SOAP encoded
parameters may not include a type attribute for every incoming parameter.
Example 12-3 shows a sample un-typed RPC request. This type of RPC request
provides improved interoperability with .NET clients.

Oracle Application Server Web Services client-side applications and tools do not
generate untyped requests, but some external tools or applications may generate such
requests. Due to the performance cost for supporting untyped requests, by default
such support is not enabled.

To support requests with untyped parameters, use the optional

<accept - unt yped- r equest > tag with the WebServicesAssembler. This tag applies
as a sub-tag with the <st at ef ul - j ava- servi ce>and

<st at el ess-j ava- servi ce>tags when the corresponding <message- st yl e>tag
is set to the value RPC. The <accept - unt yped- r equest > tag also applies as a
sub-tag for the <st at el ess- sessi on-ej b- servi ce> tag.

Table 12-1 shows <accept - unt yped- r equest > tag specification.

Example 12-2 Sample Typed RPC Request

<?xm version="1.0" encodi ng=' UTF-8' ?>
<SQAP- ENV: Envel ope xm ns: SOAP- ENV="
http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schemna- i nst ance"
xm ns: xsd="htt p: // wmv. w3. or g/ 2001/ XM.Schema" >
<SOAP- ENV: Body>
<nsl:sayHel | o xm ns:ns1="urn: Hel | 0"

SOAP- ENV: encodi ngStyl e="ht t p: // schemas. xm soap. or g/ soap/ encodi ng/ ">
<paranD xsi:type="xsd: string">Scott</paranD>
<paraml xsi:type="xsd:int">27</paranml>

</ nsl: sayHel | 0>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 12-3 Sample Un-Typed RPC Request

<?xm version="1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope xm ns: SQAP- ENvV="
http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http: //ww. w3. or g/ 2001/ XM.Schena" >
<SOAP- ENV: Body>
<nsl:sayHell o xm ns:nsl="urn: Hel | 0"
SOAP- ENV: encodi ngSt yl e="htt p: / / schemas. xm soap. or g/ soap/ encodi ng/ ">
<par anD>Scot t </ par an0>
<par aml>27</ par aml>
</ nsl:sayHel | o>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

12-2 Oracle Application Server Web Services Developer's Guide

SOAP Header Support

Table 12-1 WebServicesAssembler <accept-untyped-request> Tag

Tag Description

<accept - unt yped-r equest > Setting value to t r ue tells WebSer vi cesAssenbl er to allow the Web
val ue Service to accept untyped requests. When the value is f al se, the Web

</ accept -untyped-request> Service does not accept untyped-request.

Valid values: t r ue, f al se (case is not significant; TRUE and FALSE are also
valid)

Default value: f al se

SOAP Header Support

This section covers Oracle Application Server Web Services support for SOAP request
headers sent from a Web Services client to an endpoint. This section covers the
following topics:

» Client Side SOAP Request Header Support
« Server Side SOAP Request Header Support
« Limitations for SOAP Header Support

Client Side SOAP Request Header Support

Oracle Application Server Web Services generated client-side proxy code provides
methods to use SOAP request headers. A SOAP request message, including the SOAP
request headers is transmitted to a service endpoint when Web Services proxy code is
invoked.

When Oracle Application Server Web Services generates a proxy, either from WSDL
for a Web Services Document or RPC style service, the proxy code provides two SOAP
request header support methods:

voi d _set SOAPRequest Header s(or g. apache. soap. Header headers)
org. apache. soap. Header _get SOAPRequest Header s()

These methods provide access to an or g. apache. soap. Header object. By default
the org.apache.soap.Header object’s value is set to nul | which signifies there are no
headers in the SOAP request message. When a request header is needed, use the _
set SOAPRequest Header s() method to specify the Header object to be sent with
the SOAP request message.

Note: When proxies are generated for Stored Procedure or IMS
Document Style Web Services the _set SOAPRequest Header s()
and _get SOAPRequest Header s() methods are not supplied.

The SOAP request header information is shared for all proxy operations. After the
headers are set using _set SOAPRequest Header s(), all subsequent operation
invocations using the proxy use the same header value. To set a new header value, call
_set SOAPRequest Header s() using a new Header object or with anul | value.

Note: After setting the SOAP request header, the same header
object is used for each subsequent operation invocation until the
object is reset using _set SOAPRequest Header s() .

Advanced Topics for Web Services 12-3

SOAP Header Support

To create and manipulate SOAP request headers you need to populate the header
object. The or g. apache. soap. Header object provides a method for specifying the
contents of one or more SOAP header blocks. It is defined as:

public void setHeaderEntries(java.util.Vector headerEntries)

The vector is populated with or g. w3c. dom El ement objects which specify
individual SOAP header blocks.

When a header entry includes the nust Under st and attribute set to the value 1, the
recipient must process the header entry. If the recipient cannot process the header
entry, then a SOAP fault is returned with the value FAULT_CODE_MUST _
UNDERSTAND.

See Also: Section 4.2, "SOAP Header", in for information on
header entries in SOAP 1.1 htt p: / / www. W3. or g/ TR/ SOAP/ .

Setting SOAP Headers in a Client-Side Proxy

This section shows a sample that uses the proxy class Enpl oyeePr oxy. The complete
sample containing this code is available in the directory $SORACLE_HOME/ web

servi ces/ deno/ header _deno/ cl i ent. In the sample, a single header block is
added to the Header object. The Header object is then supplied as an argument to the
proxy's _set SOAPRequest Header s() method.

Example 12-4 Segment of Client Using Message with SOAP Request Header

/1 Create an intance of the proxy

Enpl oyeeProxy proxy = new Enpl oyeeProxy();
Il Oreate a Header objecy

Vector v = new Vector();

v.add (e);

Header hdr = new Header();

hdr. set Header Entries(v);

/1 Set the Header

proxy. _set SOAPRequest Header s(hdr);

/'l Invoke the request

Systemout.printin("Salary of MLLER is: " + proxy.getEnpl oyeeSal ary("M LLER"));

Server Side SOAP Request Header Support

To process a SOAP request header on the server side, a Web Service needs to

implement the or acl e. j 2ee. ws. Header Cal | back interface that is part of the
Oracle Application Server Web Services supplied wsser ver . j ar. This interface
includes one method that takes a single or g. apache. soap. Header argument.

The Oracle Application Server Web Services infrastructure calls the
processHeader s() method before every associated service method.

When an incoming SOAP request header includes one or more header entries with the
nust Under st and attribute set to either 1, t r ue, or TRUE values, then the Web
Service implementation must implement the or acl e. j 2ee. ws. Header Cal | back
interface. If this interface is not implemented, Oracle Application Server Web Services
throws a SOAP fault with the fault code set to FAULT_CODE_MJST_UNDERSTAND.

12-4 Oracle Application Server Web Services Developer's Guide

SOAP Header Support

If a Web Service implementation implements the Header Cal | back interface, the
implementation can throw a SOAP exception with the fault code set to FAULT_CCDE_
MUST_UNDERSTAND if the service does not know how to process a header entry with
the mustUnderstand attribute set to 1, t r ue, or TRUE. Oracle Application Server Web
Services then translates the exception and Oracle Application Server Web Services
throws a SOAP fault with the fault code set to FAULT _CODE_MJUST_UNDERSTAND.

This section shows server-side Web Services code that provides the implementation for
the Enpl oyee service. The complete sample containing this Web Service is available in
the directory $ORACLE_HOME/ web_ser vi ces/ denp/ basi c/ header _

deno/ cl i ent (after unzipping $ORACLE_HOVE/ webser vi ces/ deno/ denp. zi p).

Example 12-5 shows an interface that extends Header Cal | back.

Example 12-6 shows a section of the service implementation for the sample
get Enpl oyeeSal ery interface, including the pr ocessHeader s() method that can
handle incoming SOAP request headers of the form:

<SCQAP- ENV: Header >
<credential s>
<user name>scot t </ user nane>
<passwor d>t i ger </ passwor d>
<dat asour ce>j dbc/ Or acl eCor eDS</ dat asour ce>
</credenti al s>
</ SOAP- ENV: Header >

Example 12-5 Employee Interface Extending HeaderCallback
inport oracle.j2ee. ws. Header Cal | back;
/**
* Enpl oyee java class being exposed as Wb Services
* This service al so extends Header Cal | back so as to
* access Headers.
*/
public interface Enpl oyee
extends Header Cal | back
{
/] Get the salary for a given Enployee
int get Enpl oyeeSal ary(String enane);
}

Example 12-6 Including A HeaderCallback processHeaders() Implementation

public void processHeader s(Header header)
throws java.io.|CException,
oracl e. xn . parser.v2. XSLExcept i on

/] CGet all the Elenents

Vector entries = header. get HeaderEntries();
Element e = (Element) entries.firstEl enment();
Systemout.printlIn("El ement received is: ");
((XMLEl enent) e) . print(Systemout);

/1 Get independent nodes and retrieve node val ues.
Node user Node;

user Node = ((XM-Node)e). sel ect Si ngl eNode(" user nane");
user Nane = ((XMLEl enent) user Node) . get Text () ;

Node passwor dNode;
passwor dNode = ((XM_Node) e) . sel ect Si ngl eNode(" password");

Advanced Topics for Web Services 12-5

SOAP Header Support

password = ((XM.El ement) passwor dNode) . get Text () ;

Node dsNode;

dsNode = ((XM.Node)e). sel ect Si ngl eNode(" dat asour ce");
dat asour ceNane = ((XM.El ement) dsNode) . get Text () ;
Systemout.println("User name is: " + userNane);
Systemout. println("Password is: " + password);
Systemout. println("Datasource is: " + datasourceNane);

Limitations for SOAP Header Support

The following list contains limitations related to SOAP header support:

1.

Oracle Application Server Web Services does not provide support for processing
or translating header information that is specified in a WSDL definition.

Oracle Application Server Web Services does not provide validation, XML or
otherwise, for SOAP request header information provided in the

or g. apache. soap. Header object. The user is responsible for populating this
object with well-formed XML.

Oracle Application Server Web Services does not provide support for SOAP
response headers.

When proxies are generated for JMS Document Style Web Services, the SOAP
request header _set SOAPRequest Header s() and _

get SOAPRequest Header s() methods are not supplied. Using JMS Web Services
there are no server-side facilities for processing SOAP request headers.

When proxies are generated for Stored Procedure Web Services, the SOAP request
header _set SOAPRequest Header s() and _get SOAPRequest Header s()
methods are not supplied. Using Stored Procedure Web Services there are no
server-side facilities for processing SOAP request headers.

12-6 Oracle Application Server Web Services Developer's Guide

A

Using Oracle Application Server SOAP

This appendix covers the following topics:

Understanding Oracle Application Server SOAP
Apache SOAP Documentation

Configuring the SOAP Request Handler Servlet

Using OracleAS SOAP Management Utilities and Scripts
Deploying OracleAS SOAP Services

Using OracleAS SOAP Handlers

Using OracleAS SOAP Audit Logging

Using OracleAS SOAP Pluggable Configuration Managers
Working With OracleAS SOAP Transport Security

Using OracleAS SOAP Sample Services

Using the OracleAS SOAP EJB Provider

Using PL/SQL Stored Procedures With the SP Provider
SOAP Troubleshooting and Limitations

OracleAS SOAP Differences From Apache SOAP
Apache Software License, Version 1.1

Using Oracle Application Server SOAP A-1

Understanding Oracle Application Server SOAP

Understanding Oracle Application Server SOAP

In addition to the Oracle Application Server Web Services previously described in this
chapter, that use a unique Servlet interface and J2EE deployment for Web Services,
Oracle Application Server also provides Oracle Application Server SOAP (OracleAS
SOAP) that is derived from Apache 2.3.1 SOAP and includes a number of
enhancements.

The SOAP Message Processor, OracleAS SOAP, provides the following facilities:

« SOAP Protocol Handling - It provides an implementation of the interoperable
SOAP specification. This includes support for Cookies and Sessions which is
particularly useful to pass state information for stateful Web Services
request/response.

« Support for SOAP requests with Attachments (XML Payloads).

« Parsing - OracleAS SOAP Processor integrates the Oracle XML Parser. For
RPC-style requests, the OracleAS SOAP Processor can efficiently parse the
incoming XML document, ensure the request is well-formed, and possibly validate
the request. Similarly, it can also encode/serialize a Java response into a SOAP
message.

« Invoking Web Service Using Customized Web Services Servlet - The SOAP
Processor un-marshals the message contents and depending on the Servlet, calls
the Web Services implementation. Web Services can be implemented as Java
Classes, EJBs, or PL/SQL Stored Procedures.

« Engaging a security manager to possibly authenticate the sender - Before invoking
the Web Services implementation, the OracleAS SOAP Processor (Servlet)
authenticates the user using a standard JAAS-based User Manager plug-in.
OracleAS SOAP Processor also supports Oracle's Single Sign-On Server and
third-party authentication services to provide single-sign on for Web Services.

« Exception Handling - When exceptions occur during processing, the Java
Exception is transformed to a SOAP fault and delivered to the service client.

Apache SOAP Documentation

OracleAS SOAP is a modified version of Apache SOAP 2.3.1. Most of the
documentation that applies to Apache SOAP 2.3.1 also applies to OracleAS SOAP. The
Apache SOAP 2.3.1 documentation can be found at the following site:

http://xm . apache. or g/ soap/ docs/ i ndex. ht m

Configuring the SOAP Request Handler Servlet

The OracleAS SOAP Request Handler uses an XML configuration file to set required
servlet parameters. By default, this file is named soap. xm and is placed in the

soap. ear file in the directory $SOAP_HOVE/ | i b on UNIX or #50AP_HOVE% | i b on
Windows.

The XML namespace for this file is:
http://xm ns. oracl e. com soap/ 2001/ 04/ confi g

To use a different configuration file for SOAP installation, expand the soap. ear file.
In the directory webapps/ soap/ VEEB- | NF on UNIX or webapps\ soap\ VEEB- | NF on
Windows, modify the path name specified for the SoapConf i g parameter in the
soap. properti es file. Then, redeploy the updated soap. ear file.

A-2 Oracle Application Server Web Services Developer’'s Guide

Configuring the SOAP Request Handler Servlet

For example, to change the configuration file from the default, soap. xm , to
newConfi g. xm , modify the value set for soapConfi g in soap. properti es.

servl et.soaprouter.initArgs=soapConfi g=soap_hone/ soap/ webapps/ soap/ EB- | NF/ newConfi g. xm

Where soap_hone is the full path to the SOAP installation on your system.

The pat hAut h boolean attribute, if set to t r ue, enforces that clients must specify the
unique service URL in order to post a message to the deployed service. The service
URL is the SOAP servilet URL with the service URI appended on at the end. The
default value of this attribute (if unspecified) is f al se.

Table A-1 lists the SOAP Request Handler Servlet XML configuration file elements.

Table A-1 SOAP Request Handler Servlet Configuration File Parameters

Parameter

Description

error Handl ers

faul tLi steners

handl er

| ogger

Specifies a list of handlers for the error handler chain.

This is an optional element that defines a list of faultListener elements. The faultListener
element specifies a class that is invoked when a fault occurs. To cause a stack trace to be
added to the SOAP fault that is returned to the user, specify a faultListener of
org.apache.soap.server.DOMFaultListener.

The handlers element is an optional element that defines a list of handler elements. The
handler element defines a global handler that can be configured to be invoked on every
SOAP request in one of three contexts: request, response, error. You can define any
number of handlers. The handler’s name attribute specifies the name of the handler; each
handler must have a unique name. The handler’s class attribute specifies the Java class
that implements the handler, and this class must implement the interface
oracle.soap.server.Handler. Each handler may have any number of options, which are
name-value pairs. The contexts are configured in the elements: requestHandlers,
responseHandlers, and errorHandlers. Each of these elements defines an ordered list of
handler names, or a chain of handlers.

Note that SOAP creates one instance of each uniquely identified handler. Every
appearance of a specific handler name in any chain refers to the same instance of the
handler. Handlers are destroyed when the SOAP servlet is destroyed.

Error and informational messages are logged using the class defined in the logger
element. The logger class must extend or acl e. soap. server. Logger.

OracleAS SOAP includes the class or acl e. soap. server. i npl. Servl et Logger that
collects the servlet log methods so that SOAP messages are logged to the servlet log file.
Ser vl et Logger is the default logger. For the default logger, the severity option can be to
any of the following values: st at us, err or, debug.

If you specify er r or, you will get both st at us and er r or messages. Similarly, if you
specify debug, you will get all three types of messages.

OracleAS SOAP includes two logger implementations. To log to the servlet log, use
oracle.soap.server.impl.ServletLogger. To log to stdout, use
oracle.soap.server.impl.StdOutLogger.

You may implement your own logger by implementing the oracle.soap.server.Logger
interface.

Using Oracle Application Server SOAP A-3

Using OracleAS SOAP Management Utilities and Scripts

Table A—1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description

provi der Manager The providerManager is an optional element that allows a configuration manager to be
defined. This defines how the server accesses provider deployment information.

The provi der Manager class attribute specifies a Java class that implements

oracl e. soap. server. Provi der Manager . The default configuration manager,
oracle.soap.server.impl. XMLProviderConfigManager, persists the deployed providers to a
file in XML format. It accepts a filename option. The filename is the path to the registry
filename which may be a simple file name, relative path or an absolute path. If it is not an
absolute path, then the path is determined from the filename and the servlet context. The
default filename is WEB-INF/providers.xml.

An alternative provider configuration manager,
oracle.soap.server.impl.BinaryProviderConfigManager, persists the deployed providers in
a file as a serialized object. The default file is WEB-INF/providers.dd.

To specify a different configuration manager add a class attribute to the configManager
element. For example:

<osc:configManager class="fully.qualified.classname">.
request Handl ers Specifies a list of handlers for the request handler chain
responseHandl ers Specifies a list of handlers for the response handler chain

servi ceManager The serviceManager is an optional element that allows a configuration manager to be
defined and ServiceManager options to be set. This defines how the server accesses service
deployment information. The ser vi ceManager class attribute specifies a Java class that
implements or acl e. soap. server. Servi ceManager.

The default OracleAS SOAP configuration manager class is

oracl e. soap. server.inpl.XM.Servi ceConfi gManager which stores the service
deployment information in an XML file. Using XMLSer vi ceConf i gManager , the file
name is specified with the f i | enane option. The filename is the path to the registry
filename which may be a simple file name, relative path or an absolute path. If it is not an
absolute path, then the path is determined from the filename and the servlet context. The
default filename is WEB-INF/services.xml.

To specify a different configuration manager add a class attribute to the conf i gManager
element.

For example:
<osc:configManager class="fully.qualified.classname">.

An alternative service configuration manager,
oracle.soap.server.impl.BinaryServiceConfigManager, persists the deployed services in a
file as a serialized object. The default file is WEB-INF/services.dd.

The service manager can automatically deploy the provider manager and the service
manager as SOAP services. To allow these managers to be exposed as services, set the
autoDeploy option to true. By default autoDeploy value is false.

Using OracleAS SOAP Management Utilities and Scripts

To use the OracleAS SOAP management utilities, you need to set up the execution
environment for executing SOAP management utilities using one of the supplied client
side scripts. The cl i ent env scripts set the CLASSPATHand add the $SOAP_

HOVE/ bi n directory to the path.

To set the client environment, on UNIX, use the following commands:

cd $SOAP_HOWE/ bin
source clientenv. csh

On Windows, use the following commands:
cd Y80AP_HOME% bi n

A-4 Oracle Application Server Web Services Developer’'s Guide

Using OracleAS SOAP Management Utilities and Scripts

clientenv. bat

The cl i ent env scripts sets environment variables that are used by the other scripts
and the samples. You can override these by setting the environment variables yourself.
The variable SOAP_URL is the URL of the SOAP server and JAXP is set to use the
Docunent Bui | der Fact or y for the Oracle XML parser.

Managing Providers

The provi der Mgr script runs the SOAP client that manages providers. Run the script
without any parameters for usage information.

On UNIX, use the following command:

provi derrMyr. sh options

On Windows, use the following command:

provi der Myr. bat options

Where the options for pr ovi der Myr are:
depl oy ProviderDescriptorFile

This deploys the provider described in the ProviderDescriptorFile and makes the
provider available.

undepl oy ProviderID

This removes the provider with the supplied ProviderID. The ProviderID is the id
attribute specified in the provider descriptor file.

The Java provider is deployed once at installation time with id=java-provider, but any
provider you create must be explicitly deployed. For example, on UNIX, to deploy a
provider using the provider deployment descriptor pr ovi der . xni , use the following
command:

provi der Myr. sh depl oy provider. xn

Using the Service Manager to Deploy and Undeploy Java Services

The Ser vi ceMgr is an administrative utility that deploys and undeploys SOAP
services. To deploy a service, first set the SOAP environment, then use the depl oy
command. On UNIX, the command is:

source clientenv.csh
Servi ceMyr. sh depl oy ServiceDescriptorFile

For Windows, the command is:

clientenv. bat
Servi ceManager . bat depl oy ServiceDescriptorFile

The deploy option makes the service specified in ServiceDescriptorFile available.

When you are ready to undeploy a service, use the undepl oy command with the
registered service name as an argument. On UNIX, the command is:

Servi ceManager. sh undepl oy ServicelD

For Windows, the command is:

Using Oracle Application Server SOAP A-5

Using OracleAS SOAP Management Utilities and Scripts

Servi ceManager . bat undepl oy Servicel D

This makes the service with the given id unavailable. The ServicelD is the service id
attribute specified in the service descriptor file.

The Ser vi ceMgr supports listing and querying SOAP services. To list the available
services, first set the SOAP environment, then use the | i st command. On UNIX, the
command is:

source clientenv.csh
Servi ceMyr. sh |ist

On Windows, the command is:

clientenv. bat
ServiceMyr.bat |ist

To query a service and obtain the descriptor parameters set in the service deployment
descriptor file, use the quer y command. On UNIX, the command is:

Servi ceMyr. sh query Servicel D

On Windows, the command is:

Servi ceMyr. bat query ServicelD

Where ServicelD is the service id attribute set in the service descriptor file.

Generating Client Proxies from WSDL Documents

The wsdl 2j ava script takes as input a WSDL document and returns a Java class
which can be used to call the service. The Java class contains methods with the same
names as those described in the WSDL document. The generated code make calls to
the Apache client side libraries.

On UNIX, use the following command:

wsdl 2j ava. sh opti ons

On Windows, use the following command:

wsdl 2j ava. bat options

Where the options for wsdl 2j ava are:

wsdl 2j ava. sh WsdIDocumentURL OutputDir [- k PackageName] [- s ServiceName] [- p
PortName]

Where:

WsdIDocumentURL is the URL of the WSDL document.

OutputDir is the output directory for generated proxy Java code.

-k PackageName is the package name for generated proxy Java code.

-s ServiceName is the service name for which proxy will be generated.

A-6 Oracle Application Server Web Services Developer’'s Guide

Deploying OracleAS SOAP Services

-p PortName the port name of the service. The proxy is generated for the specified port
of the service.

The output directory structure is:

output root dir/service name/port name/package name/java proxy source code

By default, the PackageName will be the same as the WSDL service name.

If neither of - s and - p options is specified, proxies for all ports of all services are
generated. Without - p option specified, proxies for all ports of the specified service are
generated.

Generating WSDL Documents from Java Service Implementations

The j ava2wsdl| script takes as input a Java class and creates as output a WSDL
document describing the class as an RPC service. When the Java class is used as a Web
Service, the associated WSDL document can be transmitted to developers who might
wish to call the service.

On UNIX, use the following command:

j ava2wsdl . sh options

On Windows, use the following command:

j ava2wsdl . bat options

Where the options for wsdl 2j ava are:
java2wsdl . sh O assName QutputFile SoapURL ClassURL1 Cl assURL2 ...

Where:

ClassName is the fully qualified path name of a Java .class file that is to be a Web
Service.

OutputFile is the output WSDL document name.
SoapURL is the SOAP endpoint.

ClassURL list serves as a class path for searching referenced classes

Deploying OracleAS SOAP Services

This section covers the following topics related to deploying and undeploying
OracleAS SOAP Services:

« Creating Deployment Descriptors

» Installing a SOAP Web Service in OC4J

« Disabling an Installed SOAP Web Service

« Installing a SOAP Web Service in an OC4J Cluster

Using Oracle Application Server SOAP A-7

Deploying OracleAS SOAP Services

Creating Deployment Descriptors

Deployment descriptors include service deployment descriptors and provider
deployment descriptors. A provider deployment descriptor file is an XML file that
describes, to the SOAP servlet, the configuration information for a provider. A service
deployment descriptor file is an XML file that describes, to the SOAP servlet, the
configuration information for a service.

Services written in Java only require a service descriptor. All Java service descriptors
may point to the same Java provider descriptor supplied with the OracleAS SOAP
installation.

Each service written as a PL/SQL stored procedure requires one service descriptor and
one provider descriptor for each database user. The advantage of this is that when a
password or user is changed, only one descriptor needs to be updated, not every
service descriptor.

See the Stored Procedure section for more information.

Services written as an EJB require one service descriptor and one provider descriptor
for each EJB container user.

See the EJB section of this document for more information.

Note: For developers who wish to write their own providers, the
Apache style provider interface and descriptors are also supported.
Apache descriptors contain both service and provider properties in
a single file, so common provider information must be duplicated
for every service.

A service deployment descriptor file defines the following information:
= Theservice ID

« The service provider type (for example, Java)

= The available methods

The best way to write a descriptor is to start with a copy of an existing descriptor from
one of the sample directories.

Example A-1 shows the Java Si npl eCl ock service descriptor file

Si mpl eCl ockDescri pt or. xmi . This descriptor file is included in the

sanpl es/ si npl ecl ock directory. The service descriptor file must conform to the
service descriptor schema (the schema, ser vi ce. xsd, is located in the directory
$SCAP_HOVE/ schenas on UNIX or in ¥560QAP_HOVE% schenmas on Windows).

The service descriptor file identifies methods associated with the service in the

i sd: provi der element that uses the net hods attribute. Thei sd: j ava cl ass
element identifies the Java class that implements the SOAP service, and provides an
indication of whether the class is static.

Example A-1 Java Service Descriptor File for Sample Simple Clock Service

<isd:service xmns:isd="http://xm ns. oracl e. conf soap/ 2001/ 04/ depl oy/ servi ce"
i d="urn:jurassic-cl ock"
type="rpc" >
<i sd: provi der
i d="j ava- provi der"

A-8 Oracle Application Server Web Services Developer’'s Guide

Deploying OracleAS SOAP Services

met hods="get Dat e"
scope="Application" >
<isd:java class="sanpl es. si npl ecl ock. Si npl ed ockServi ce"/ >
</i sd: provi der>
<l'-- includes stack trace in fault -->
<isd:faul tListener class="org.apache. soap. server.DOVFaul t Li st ener"/>
</isd: service>

Note: The service descriptor file does not define the method
signature for service methods. SOAP uses reflection to determine
method signatures.

Installing a SOAP Web Service in OC4J

Install an OracleAS SOAP Web Service in Oracle Application Server Containers for
J2EE (OC4)J) by performing the following steps:

1. Create service and provider deployment descriptors.

2. Expand the soap. ear file found in $SOAP_HOVE/ | i b on UNIX or %S0AP_
HOME\ | i b on Windows.

3. Copy Java classes and Jars implementing the service to the correct locations in the
expanded soap. ear directories.

Copy Java .class files to EB- | NF/ cl asses.
Copy Java .jar files to VEB- | NF/ | i bs.
4. Redeploy the updated soap. ear file.
5. Deploy the provider descriptor by executing the command:

provi der Myr. sh depl oy Fil eName

where FileName is the name of the provider descriptor xml file.
6. Deploy the service by executing the command:

servi ceMyr.sh deploy Fil eName

Where FileName is the name of the service descriptor xml file.

Disabling an Installed SOAP Web Service

To disable an installed service, run the command:

servi ceMyr. sh undepl oy Servicel D

where ServicelD is the id attribute of the service element in the service descriptor.

Installing a SOAP Web Service in an OC4J Cluster

It is necessary to install an OracleAS SOAP service on every machine in a cluster. If the
service is not installed on all machines in a cluster, the cluster dispatcher might
dispatch a service request to a machine that does not have the service, resulting in an
error on the service invocation.

Using Oracle Application Server SOAP A-9

Using OracleAS SOAP Handlers

Using OracleAS SOAP Handlers

A handler is a class that implements the or acl e. soap. server . Handl er interface.
A handler can be configured as part of a chain in one of three contexts: request,
response, or error. Note that handlers in a chain are invoked in the order they are
specified in the configuration file.

Request Handlers

Handlers in the request chain are invoked on every request that arrives, immediately
after the SOAP Request Handler Servlet reads the SOAP Envelope. If any handler in
the request chain throws an exception, the processing of the chain is immediately
terminated and the service is not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers

Error Handlers

Handlers in the response chain are invoked on every request immediately after the
service completes. If any handler in the response chain throws an exception,
processing of the chain is immediately terminated. The error chain is invoked if any
exception occurs during response chain invocation.

When an exception occurs during either request-chain invocation, service invocation,
or response-chain invocation, the SOAP Request Handler Servlet invokes the handlers
in the error chain. In contrast to the request and response chains, an exception from an
error handler is logged and processing of the error chain continues. All handlers in the
error chain are invoked, regardless of whether one of the error handlers throws an
exception.

Configuring Handlers

Configure handlers and handler chains in the SOAP configuration file. Handlers can
be invoked for each service request or response, or when an error occurs. Handlers are
global in the sense that they apply to every SOAP request and cannot be configured on
a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file, soap. xml .
Example A-2 shows a sample segment from a SOAP configuration file showing the
configuration for a handler.

Example A-2 Handler Configuration

<osc: handl ers>
<osc: handl er name="auditor"
cl ass="oracl e. soap. handl ers. audi t . Audi t Logger " >
<osc: option name="auditLogDirectory"
val ue="/privatel/ oracl e/ app/ product/tv02/ soap/ webapps/ soap/ VEB- | NF" / >
<osc:option name="filter" value="(!(host=local host))"/>
</ osc: handl er >
</ osc: handl er s>

<osc: request Handl ers names="audi tor"/>
<osc: responseHandl ers names="auditor"/>
<osc: errorHandl ers names="auditor"/>

A-10 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Audit Logging

Using OracleAS SOAP Audit Logging

The OracleAS SOAP audit logging feature monitors and records SOAP usage. Audit
logging maintains records for postmortem analysis and accountability. The SOAP
audit logging feature complements the audit logging capabilities available with the
OC4J server which hosts the SOAP Request Handler Servlet (SOAP server).

OracleAS SOAP stores audit trails as XML documents. Using XML documents,
OracleAS SOAP creates portable audit trails and enables the transformation of
complete audit trails or individual audit records to different formats.

By default, OracleAS SOAP audit logging uses an audit logger class that implements

the Handl er interface (part of the or acl e. soap. server package). The audit logger

class is invoked conditionally to monitor events including service requests, service
responses, and errors.

This section covers the following topics:

« Audit Logging Information

« Auditable Events

« Configuring the Audit Logger

Audit Logging Information

Table A-2 lists the audit logging elements available for each audit log record.
Individual audit log records may not contain all these elements. In the log file, each
audit log record is stored as a SoapAudi t Recor d element.

Table A-2 Auditable Audit Record Elements

Audit Record Element

Description

HostName

IpAddress

Method

Request Envelope
Request Envelope Method
Request Envelope URI
Response Envelope
ServiceURI
SoapAuditRecord

TimeStamp

User

Specifies the hostname of the client that sent the request.
Specifies the IP address of the client that sent the request.
Specifies the method name for the SOAP request.

Provides the complete SOAP request message.

Name of the Method in the SOAP request envelope

Specifies the URI of the service in the SOAP request envelope.
Provides the complete SOAP response message.

Specifies the service URI for the SOAP request.

Contains an individual record. The chai nType attribute indicates if the record is
generated as part of a request or a response.

Specifies the system time when the SOAP audit record was generated.

Specifies the username associated with the request. Note, this element is only
provided when a user context is associated with the service request or service
response.

Audit Logging Output

The XML schema for the generated audit log is provided in the file
SoapAudi t Trai | . xsd in the directory $SOAP_HOVE/ schena on UNIX or %S0AP_
HOME% schema on Windows. Refer to the schema file for complete details on the
format of a generated audit log record.

Using Oracle Application Server SOAP A-11

Using OracleAS SOAP Audit Logging

Auditable Events

The audit logger class is invoked when an auditable event occurs and the SOAP
Request Handler Servlet is configured to enable auditing for the event. Auditable
events include a service request or a service response.

Audit Logging Filters

An audit logging filter can be specified in the SOAP configuration file to limit the set
of auditable events that are recorded to the audit log. The SOAP server applies event
filters to request and response events. Table A-4 shows the filter attributes available to
select with an event filter specification. When applied, filters limit the number of
records generated in the audit log. For example, when a filter is specified for a
particular host, only the auditable events generated for the specified host are saved to
the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254,
Table A-3 shows the filter syntax, and Example A-3 provides several examples.
See Also:
« "Configuring the Audit Logger" on page A-13

« ftp://ftp.isi.edu/in-notes/rfc2254.txt onRFC
2254

Table A-3 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes

Description

Host

urn

username

Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within the
specified hostname are not supported the examples show valid and invalid uses of wildcards.
If a wildcard is used then the wildcard must be the first character in the filter. Case is ignored
for hostnames. Care should be used in setting this attribute. Depending on the DNS setup, the
hostname returned could be fully qualified or nonqualified; for example,

expl osi ves. acne. comor expl osi ves. For some IP addresses, the DNS may not be able to
resolve the hostname.

Legal values for a Host filter attribute include the following examples:

expl osi ves. acne.com *.acne.com *.com

Illegal values for a Host filter attribute include the following examples:

* expl osives. acne.*, explosives.*, ex*s.acne.com *ives.acne.com
Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.
Legal values for an i p filter attribute include the following examples:
138.2.142.154, 138.2.142.*, 138.2.*, 138.*
Illegal values for an i p filter attribute include the following examples:
, 138.2.. 154, * 2, 138.*.152, 138.2.142, 138.2, 138

Specifies the service URN. Wildcards are not supported for this attribute.

Specifies the transport level username associated with the client.
Wildcards are not supported in a username filter attribute.

A-12 Oracle Application Server Web Services Developer’s Guide

Using OracleAS SOAP Audit Logging

Table A—4 Audit Log Filter Syntax

Filter Value Description

attr 1*(any US-ASCII char except ™", "(",)", "&", "]","I", ™", "=")
equal ="

filter "("filtercomp")"

Whitespaces between "(“filtercomp and)" are not allowed.

filtercomp and | or | not | item
and ="&" filterlist

or ="|"filterlist
not ="1"filter
filterlist 2*2 filter
filtertype equal
item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.
value 1*(any octet except ASCII representation of ")" - 0x29).
The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches
anything.

Example A-3 Sample Audit Log Filters

(i p=138.2.142.154)

(! (host=l ocal host))
(! (host=*.acne.conj)
(& host=*.acme. con (
(&(1p=138.2.142.*)(|

sername=daffy))

u
(ur n=ur n: wwv or acl e- com Addr essBook) (user nane=daf fy)))

Configuring the Audit Logger

Configure the default SOAP audit logger supplied with Oracle Application Server by
setting parameters in the SOAP configuration file, soap. xmi . To enable the default
audit logger and turn on audit logging, do the following in the configuration file.

« Define the name and options for the audit log handler. The default SOAP audit
logger is defined in the class or acl e. soap. handl ers. audi t. Audi t Logger .
The default audit logger supports several options that you specify in the
configuration file. Table A-5 shows the available audit logger options.

« Add the name for the audit logger handler to the r equest Handl er,
responseHandl er, or err or Handl er chain (or to all of the handler chains).

Example A-4 shows a sample segment from a SOAP configuration file including the

audit logging configuration options. Example A-4 shows configuration options set to
use all options. However, this configuration would produce an extremely large audit
log, and is not recommended.

Using Oracle Application Server SOAP A-13

Using OracleAS SOAP Audit Logging

Note: When you audit errors using the audit logger, depending on
when the error occurs in the request-chain or the response-chain, it
is possible that the request or response message may hot be
included in the audit log record, even with i ncl udeRequest or

i ncl udeResponse enabled.

Example A-4 Audit Logging Configuration

<osc: handl er s>
<osc: handl er name="auditor"
class="oracl e. soap. handl ers. audi t . Audi t Logger" >
<osc: option name="auditLogDirectory"
val ue="/privat el/ oracl e/ app/ product/ t v02/ soap/ webapps/ soap/ WEB- | NF"/ >
<osc:option name="filter" value="(!(host=local host))"/>
<osc: option name="incl udeRequest" val ue="true"/>
<osc: option name="incl udeResponse" val ue="true"/>
</ osc: handl er >
</ osc: handl er s>
<osc: request Handl ers names="audi tor"/>
<osc: responseHandl ers nanes="auditor"/>
<osc: error Handl ers nanes="auditor"/>

Table A-5 Audit Logger Configuration Options

Option Description

auditLogDirectory Specifies the directory where the audit log file is saved. The
audi t LogDi r ect or y option is required. The name of the
generated audit log file is O acl eSoapAudi t Log.t i nest anp,
where t i nest anp is the date and time the file is first generated.

Valid values: any string that is a valid directory

filter Specifies the audit event filter. This option is optional. Ifafil ter
is not specified SOAP server logs every event.

Valid values: any valid filter.

includeRequest Specifies that the audit record include the request message for the
event that generated the audit log record.

Valid values: t r ue, f al se
Any value other than t r ue or f al se is treated as an error.
Default Value: f al se

includeResponse Specifies that the audit record include the response message for
the event that generated the audit log record.

Valid values: t r ue, f al se
Any value other than t r ue or f al se is treated as an error.
Default Value: f al se

See Also: "Using OracleAS SOAP Handlers" on page A-10

A-14 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security

Using OracleAS SOAP Pluggable Configuration Managers

OracleAS SOAP supports pluggable configuration managers similar to those
supported in Apache SOAP 2.3.1. Since OracleAS SOAP supports provider
deployment descriptors separate from service deployment descriptors, the interface
details using OracleAS SOAP are slightly different from Apache SOAP 2.3.1. In
OracleAS SOAP, configuration managers are configured separately for the provider
manager and the service manager. All configuration managers must implement the
oracl e. soap. server. Confi gManager interface.

To simplify development, when you write a configuration manager implementation,
you may the abstract class that is provided with OracleAS SOAP

(oracl e. soap. server. i npl . BaseConf i gManager). This abstract class provides
a standard implementation for most of the Conf i gManager interface with two
abstract methods that read and write the persistent store.

Example A-5 shows a sample implementation of a provider configuration manager.

Example A-5 Sample Provider Configuration Manager Implementation.

public class M/ProviderConfi gManager extends BaseConfi gManager
{

public void setOptions(Properties options)
t hrows SOAPException
{

}

/'l handl e inplenentation specific options

public void readRegistry()
t hrows SOAPException

{
}

/1 read the depl oyed providers frompersistent store

public void witeRegistry()
t hrows SOAPException

{
}

/Il wite the depl oyed providers to persistent store

The set Opt i ons method is passed the options specified in any <opt i on> elements
specified in the <conf i gManager > element. Synchronization of reading/writing the
registry is the responsibility of the specific configuration manager implementation.

Working With OracleAS SOAP Transport Security

Oracle Application Server uses the security capabilities of the underlying transport
that sends SOAP messages. Oracle Application Server supports the HTTP and HTTPS
protocols for sending SOAP messages. HTTP and HTTPS support the following
security features:

« HTTP proxies
« HTTP authentication (basic RFC 2617)
= Proxy authentication (basic RFC 2617)

OracleAS SOAP Client transport uses the modified, to support Oracle Wallet Manager,
HTTPCl i ent package. OracleAS SOAP transport defines several properties to support

Using Oracle Application Server SOAP A-15

Working With OracleAS SOAP Transport Security

these features. Table A-6 lists the client-side security properties that Oracle
Application Server supports.

In an OracleAS SOAP Client application, you can set the security properties shown in
Table A-6 as system properties by using the - D flag at the Java command line. You can
also set security properties in the Java program by adding these properties to the
system properties (use Syst em set Properti es() toadd properties).

Example A-6 shows how Oracle Application Server supports overriding the values
specified for system properties using Oracle Application Server transport specific
APIs. The set Properti es() method in the class Or acl e SOAPHTTPConnecti on
contains set properties specifically for the HTTP connection (this class is in the
package oracl e. soap.transport. http).

Example A-6 Setting Security Properties for OracleSOAPHHTTPConnection

org.apache. soap.rpc. Call call = new org.apache. soap.rpc.Call();

oracl e. soap. transport. http. Oracl eSOAPHTTPConnecti on conn =

(oracl e.soap. transport.http. Oracl eSOAPHTTPConnection) call . get SOAPTransport();
java.util.Properties prop = new java.util.Properties();

/1 Use client code to set name-value pairs of properties in prop

conn. set Properties(prop);

Note: The property j ava. prot ocol . handl er . pkgs must be
set as a system property.

Table A~6 SOAP HTTP Transport Security Properties

Property

Description

http.authRealm

http.authType

http.password
http.proxyAuthRealm

http.proxyAuthType

http.proxyHost
http.proxyPassword

Specifies the realm for which the HTTP authentication username/password is
specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is ignored.
Valid values: basi c, di gest

The value basic specifies HTTP basic authentication.

Specifying any value other than basi ¢ or di gest is the same as not setting the
property.

Specifies the HTTP authentication password.

Specifies the realm for which the proxy authentication username/password is
specified.

Specifies the proxy authentication type. The case of the value specified is ignored.
Valid values: basi ¢, di gest

Specifying any value other than basi ¢ or di gest is the same as not setting the
property.

Specifies the hostname or IP address of the proxy host.

Specifies the HTTP proxy authentication password.

A-16 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security

Table A—6 (Cont.) SOAP HTTP Transport Security Properties

Property Description

http.proxyPort Specifies the proxy port. The specified value must be an integer. This property is only
used when ht t p. pr oxyHost is defined; otherwise this value is ignored.

Default value: 80

http.proxyUsername Specifies the HTTP proxy authentication username.

http.username Specifies the HTTP authentication username.

java.protocol. Specifies a list of package prefixes for j ava. net . URLSt r eanHandl er Fact ory The
handler.pkgs prefixes should be separated by "|" vertical bar characters.

This value should contain: HTTPCl i ent

This value is required by the Java protocol handler framework; it is not defined by
Oracle Application Server. This property must be set when using HTTPS. If this
property is not set using HTTPS, aj ava. net . Mal f or mredURLExcept i on is
thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

« java.protocol . handl er. pkgs=HTTPd i ent

« java.protocol. handl er. pkgs=sun. net. ww. prot ocol |

HTTPC i ent
oracle.soap. Specifies the value for the Content-Type HTTP header in Oracle9iAS, and in Oracle
transport. Application Server 10g. The value for this property supports Oracle SOAP servers
1022ContentType running either Oracle 9iAS Release 1.0.2.2 or Release 9.0.x or 10g (9.0.4). This property

provides interoperablity between Oracle9iAS Release 9.0.x Oracle SOAP clients or
Oracle Application Server 10g (9.0.4) and older server versions (as distributed with
Oracle9iAS Release 1.0.2.2).

Valid values: t r ue, f al se (case is ignored)

Setting the value to t r ue specifies to use the Oracle9 iAS Release 1.0.2.2 content-type
HTTP header values when the SOAP message is sent. In this case, the value is set to:
content-type: text/xm

Setting the value to f al se specifies to use the Oracle Application Server version 9.0.x
content-type header value when the SOAP message is sent. In this case, the value is
set to:

content-type: text/xm; charset=utf-8

The value f al se is the default value.

Note: for SOAP messages with attachments, the content-type HTTP header is always
set to the value: mul ti part/rel at ed.

oracle.soap. Specifies the allows user interaction parameter. The case of the value specified is
transport. ignored. When this property is set to t r ue and either of the following are true, the
allowUserlInteraction user is prompted for a username and password:

1. Ifany of properties ht t p. aut hType, htt p. user name, or htt p. password is
not set, and a 401 HTTP status is returned by the HTTP server.

2. Ifeither of properties ht t p. pr oxyAut hType, ht t p. pr oxyUser nane, or
ht t p. proxyPasswor d is not set and a 407 HTTP response is returned by the
HTTP proxy.

Valid values: t r ue, f al se
Specifying any value other than t r ue is considered as f al se.

Using Oracle Application Server SOAP A-17

Working With OracleAS SOAP Transport Security

Table A—6 (Cont.) SOAP HTTP Transport Security Properties

Property Description

oracle.ssl.ciphers Specifies a list of: separated cipher suites that are enabled.

Default value: The list of all cipher suites supported by Oracle SSL are supported.

oracle. Specifies the location of an exported Oracle wallet or exported trustpoints.

wallet.location) . . .)
Note: The value used is not a URL but a file location, for example:

/ et c/ ORACLE/ Wl | et s/ systent/ exported_wal | et (on UNIX)

d:\oracl e\ syst eml\ exported_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet. Specifies the password of an exported wallet. Setting this property is required when
password HTTPS is used with client, mutual authentication as the transport.

Apache Listener and Servlet Engine Configuration for SSL

When using Apache listener and mod_ssl (or mod_ossl), the following directives must
be set for the soap servletlocation/directory:

SSLOption +StdEnvVars +Export CertData
This directive can be set conditionally, refer to mod_ssl/mod_ossl documentation for
details. By default this directive is disabled for performance reasons. If this directive is

not set then the servlet engine does not have a way to access the SSL related data (such
as the cipher suite, client cert etc).

Using JSSE with Oracle Application Server SOAP Client

This section describes how to use SSL with the OracleAS SOAP Client side when the
Oracle security infrastructure is not available. Availability of Oracle security
infrastructure means the availability of Oracle client side libraries (including
$ORACLE_HOVE/ | i b/ *, $ORACLE HOVE/ j | i b/ javax-ssl-1_2.jar,and
$ORACLE_ HOVE/jlib/jssl-1_2.jar).

OracleAS SOAP uses the following class as the default transport class:

oracl e. soap.transport. http. Oracl eSQAPHTTPConnect i on

This class uses a modified version of HTTPCl i ent package. For information on
HTTPd i ent, see the following site:

http://ww. i nnovation.ch/java/ HTTPO i ent/
This version of HTTPCl i ent package is integrated with Oracle Java SSL and supports
Oracle Wallet for HTTPS transport. If a SOAP client side does not have OracleAS

SOAP Client side available, it is still possible to use HTTPS as a transport with
OracleAS SOAP Client side libraries.

To do this, follow these steps:
1. Use the following transport class:

cl ass org. apache. soap. transport. htt p. SOAPHTTPConnect i on

A-18 Oracle Application Server Web Services Developer’s Guide

Working With OracleAS SOAP Transport Security

If using RPC then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

met hod org. apache. soap. rpc. Cal | #set SOAPTr ansport
(org. apache. soap. transport. SOAPTransport)
For example:

org. apache. soap.rpc. Call nyCall Cbj = new

org. apache. soap.rpc. Cal I ();

myCal | Qbj . set SOAPTr anspor t (new

org. apache. soap. transport. http. SOAPHTTPConnecti on());

If using messaging, then call the following method by passing an instance of
org.apache.soap.transport.http.SOAPHTTPConnection as an argument:

or g. apache. soap. messagi ng. Message#set SOAPTr anspor t

(org. apache. soap. transport. SOAPTransport)

For example:

org. apache. soap. nessagi ng. Message nyMsgCbj = new
org. apache. soap. messagi ng. Message() ;
myMsgQhj . set SCAPTransport (new
or g. apache. soap. transport . http. SOAPHTTPConnecti on());

Download Java Secure Socket Extension (JSSE) and configure JSSE according to

the supplied instructions. JSSE is available at the following site:

http://java. sun. conl products/jsse/

« Makesurethefilesjnet.jar,jcert.jar andjsse.jar areinthe
classpath or in the installed extensions directory ($JRE_HOVE/ | i b/ ext).

« Make sure that SUnJSSE provider is correctly configured. This can be done
either statically by editing the $JRE_HOME/Iib/security/java.security file and
adding the line:

security. provider. nunrcom sun. net. ssl.internal.ssl.Provider
Where num is 1-based preference order or by dynamically by adding the provider
at run time by adding the following line of code:
Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
Dynamic addition of security providers requires that appropriate permissions are
set.

« Make sure the system property j ava. pr ot ocol . handl er . pkgs is set to
com sun. net. ssl . internal.ww. protocol

« If using proxy server, make sure that the following system properties are set is
set to the correct proxy hostname and proxy port, respectively:

htt ps. pr oxyHost
ht t ps. pr oxyPort

« Ifusing SSL with server side authentication and the default Tr ust Manager,
ensure that the certificate signer of the server is one of the following files:

$JRE_HOVE/ | i b/ security/jssecacerts

orifj ssecacert s does not exist:

Using Oracle Application Server SOAP A-19

Using OracleAS SOAP Sample Services

$JRE_HOME/ | i b/ security/cacerts

« To override the KeyManager/TrustManager keystore default locations, use the
system properties:

j avax. net.ssl . keystore

j avax. net. ssl . keyStoreType

j avax. net. ssl . keySt or ePassword
javax.net.ssl.trustStore

j avax. net.ssl.trustStoreType

j avax. net. ssl . trust St orePasswor d

Please consult JSSE documentation for details. If using a specific third party
JSSE implementation, please consult the appropriate documentation.

See Also: HTTPC i ent information at the site:
http://ww. innovation.ch/java/ HTTPCl i ent/

Using OracleAS SOAP Sample Services

The section lists the samples included with OracleAS SOAP. The class files for all of
the samples are in $SOAP_HOVE/ | i b/ sanpl es. j ar on UNIX or in “SOAP_
HOVE% | i b\ sanpl es. j ar on Windows.

To run any sample, you need to ensure that sanpl es. j ar is available on your
servlet’s CLASSPATH. Please refer to the README included with each sample for
more information.

The Xmethods Sample

The clients in the xmethods sample represent the easiest way to get started with SOAP
because they are clients that access existing services that are hosted on systems on the
internet. Information on these services can be found at the site:

http://ww. xmet hods. org
This sample is in $SOAP_HOME/samples/xmethods.

The AddressBook Sample

This sample has a service implemented in Java and several clients. This sample
illustrates literal XML encoding. See $SOAP_HOVE/ sanpl es/ addr essbook for the
sample source code. This directory also contains a script that illustrates how to run the
sample addressbook clients using HTTPS as transport.

The StockQuote Sample

This sample has a service implemented in Java and one client. It is located in $SOAP_
HOME/samples/stockquote

The Company Sample

This sample has a service that is comprised of PL/SQL stored procedures and several
clients. It is located in $SOAP_HOME/samples/sp/company. Check the README file
in this directory for details on how to setup, compile, and test this sample service.

A-20 Oracle Application Server Web Services Developer’s Guide

Using the OracleAS SOAP EJB Provider

The Provider Sample

This includes a template provider that can be used as a starting point for creating your
own provider.

The AddressBook2 Sample

This sample demonstrates use of the Addressbook service with session scope. It shows
how to maintain the same HTTP session across SOAP Calls. It contains an example of
a SOAP client proxy generated from a WSDL service description file. It is located in
$SOAP_HOME/samples/addressbook2

The Messaging Sample

This sample is an example of a message-based SOAP service. It is located in $SOAP_
HOME/samples/messaging

The Mime Sample

This sample does SOAP with attachments using both RPC and message based
services. It is located in $SOAP_HOME/samples/mime.

Using the OracleAS SOAP EJB Provider

This section compares the OracleAS SOAP EJB providers with the Apache-SOAP 2.2
EJB providers.

Stateless Session EJB Provider

In Apache SOAP, the Stateless EJB provider, on receiving the SOAP request, performs
a JNDI lookup on the home interface of the EJB. The Stateless EJB provider then
invokes a create on the EJB’s Home Interface in order to get a reference to a stateless
EJB. Then it uses this EJB reference to invoke the requested method.

OracleAS SOAP uses the same mechanism to support Stateless Session EJBs as Apache
SOAP.

Stateful Session EJB Provider in Apache SOAP

On receiving a first time SOAP request, the Apache SOAP Stateful Session EJB
provider first locates the Home Interface through a INDI lookup and using a
subsequent create obtains an object reference to a Stateful Session EJB. The provider
then invokes the requested method on the object reference.

In the next step the provider serializes the EJBHandl e of the specified EJB reference
and appends it to the targetURI with an "@" delimiter. The Stateful Session EJB
provider then sends this modified target URI back to the requesting SOAP client. If the
client wants to reuse the same EJB instance, it must retrieve this "modified" target URI
for the service from the Response and set it in the next SOAP Call.

Upon receiving this request, the Stateful EJB provider extracts the stringified EJB
reference and deserializes it into an EJBHandle from which it can obtain the EJB
reference. It can then invoke the method on the specified EJB.

The drawback of the Apache SOAP implementation is that the client must be EJB
aware and that it could not operate with other SOAP servers.

Using Oracle Application Server SOAP A-21

Using the OracleAS SOAP EJB Provider

OracleAS SOAP offers an alternative solution for Stateful Session EJBs that allows for
client interoperablity.

Stateful Session EJB Provider in OracleAS SOAP

The OracleAS SOAP Stateful Session EJB provider binds the EJB reference to the
current session, if none is bound, otherwise, it merely retrieves the EJB reference from
the session. In order for the client to access the same Stateful Session EJB, the client has
to simply maintain it’s current session between successive Calls.

If at any point in a session, the SOAP client invokes a create on the EJB’s Home
Interface, the provider binds the EJB reference from the create to the session, to be used
for other call requests within the session.

Entity EJB Provider in OracleAS SOAP

In order for a SOAP client to run a business method on an entity EJB, it first needs to
either "create" a new EJB upon which to run the method or find an already existing EJB
which suit some criteria. Access to an entity EJB occurs within a session. At the start of
the session the SOAP client must invoke a "create” or "find" (in order to specify the
bean object interest). While maintaining the same session, all other business methods
are directed to that EJB. A subsequent "find" or "create" within the same or different
session directs business method execution requests to the newly "created” (or "found")
EJB.

Another issue is that EJB specification provides that some "find" methods can return
either a Collection of EJB refs or single EJB ref.

The Oracle solution for Entity EJBs embraces the following solution for this problem:

It disallows find methods that return "Collections". This allows for the provider to
uniquely specify an Entity EJB to target subsequent business method requests.

Deployment and Use of the OracleAS SOAP EJB Provider

To install an EJB provider and deploy Web Services to the provider under OC4J, where
the application server hosts both the SOAP servlet and the deployed EJB’s, follow
these steps:

1. Deploy an EJB provider to SOAP using a provider descriptor.
The provider descriptor specifies the following:
« EJB access credentials by the middle tier
= JNDI context factory class
= JNDI context factory URL
« Provider class name

=« Providerid

2. Create the EJB Web Service:

« Define the associated EJB classes and package the EJB into an EAR file as
defined by J2EE spec.

A-22 Oracle Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider

3.

« Define the service descriptor which specifies following details of the EJB Web
Service:

* JNDI Location

* Home interface class name

* Application Deployment Name of this EJB Web Service in OC4J
* The provider id to which this service is to be associated

Deploy ear file in OC4J. Modify the OC4J specific EJB descriptor to correct the
JNDI location for the EJB (as described in sample README).

Current Known EJB Provider Limitations

All service methods can only take primitive Java types as arguments to the methods.
User-defined Java types are currently not supported.

Using PL/SQL Stored Procedures With the SP Provider

The OracleAS SOAP Stored Procedure (SP) Provider supports exposing PL/SQL
stored procedures or functions as SOAP services. The Oracle9i Database Server allows
procedures implemented in other languages, including Java and C/C++, to be
exposed using PL/SQL; these stored procedures are exposed as SOAP services
through PL/SQL interfaces.

The SP Provider framework works by translating PL/SQL procedures into Java
wrapper classes, and then exporting the generating Java classes as SOAP Java services.

SP Provider Supported Functionality
The SP Provider supports the following:

PL/SQL stored procedures. both procedures and functions (this document uses
procedure to refer to both)

IN parameter modes

Packaged procedures only (top-level procedures must be wrapped in a package
before they can be exported)

Overloaded procedures (however, if two different PL/SQL types map to the same
Java type during translating, there may be errors during the export of the PL/SQL
package; these errors may be fixed by avoiding the overloading, or else by writing
a new dummy package which does not contain the offending overloaded
procedures)

Simple types
(user-defined) object types

SP Provider Unsupported Functionality

The SP provider does not support the following:

The SP Provider framework uses Oracle JPublisher to translate from PL/SQL to
Java; hence, it inherits all of the restrictions of Oracle JPublisher.

Using Oracle Application Server SOAP A-23

Using PL/SQL Stored Procedures With the SP Provider

SP Provider Supported Simple PL/SQL Types

The SOAP SP provider supports the following simple types. NULL values are
supported for all of the simple types listed, except NATURALN and POSITIVEN.

The Oracle JPublisher documentation provides full details on the mappings of these

types.
« VARCHAR2 (STRING, VARCHAR)
« LONG

« CHAR (CHARACTER)

« NUMBER (DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, INT,
NUMERIC, REAL, SMALLINT)

=« PLS_INTEGER
« BINARY_INTEGER (NATURAL, NATURALN, POSITIVE, POSITIVEN)

Using Object Types

Oracle JPublisher supports the use of user-defined object types. The SP Provider
framework generates or acl e. sql . Cust onDat umstyle classes since these allow
automatic serialization using the default BeanSeri al i zer in SOAP.

Refer to the company sample for an example of using object types.

Deploying a Stored Procedure Provider

Example A-7 shows a sample provider deployment descriptor for a stored procedure.
You may use any unique id for the provider name (the example uses
"company-provider").

The attributes user, password, and url are used to create the URL to connect to the
database, and they are all required. The number of connections for a service, handled
by this provider, is set using connect i ons_per _servi ce; this is optional and
defaults to 10.

Deploy the sample provider descriptor shown in Example A-7, appropriately edited
for the local configuration, using the provider manager.

Example A—-7 Sample SP Provider Deployment Descriptor

<i sd: provider xmns:isd="http://xmns.oracle. con soap/ 2001/ 04/ depl oy/ provi der"
i d="conpany- provi der"
cl ass="oracl e. soap. provi ders. sp. SpProvi der ">
<I-- edit the following option "values" as appropriate -->
<isd:option key="user" val ue="YOUR- USER- NAME" />
<isd: option key="password" val ue="YCOUR- PASSWORD" />
<isd:option key="url" val ue="jdbc: oracl e: t hi n: @OUR- HOST: YOUR- PORT: YOUR- SI D' />
<i sd:option key="connections_per_service" val ue="3" />
</isd: provi der>

Translating PL/SQL Stored Procedures into Java

The shell script $SOAP_HOVE/ bi n/ sp2j ar . sh translates a PL/SQL package and all
its contained procedures/functions into a Java class with equivalent methods. If the
package uses any user-defined types, these types are also translated into equivalent
Java classes.

A-24 Oracle Application Server Web Services Developer’s Guide

Using PL/SQL Stored Procedures With the SP Provider

The READMVE file in the samples directory has an example of the usage of the

sp2j ar. sh command to translate the company example into a jar file of compiled
Java classes. The READMVE also describes how to load the PL/SQL packages into the
database.

Let us assume for the rest of the document that a PL/SQL package company has been
installed on a database, and it has been exported into a set of compiled Java classes
available in the jar file conpany. j ar.

The generated conpany. j ar should be made available in the CLASSPATH of the
SOAP servlet, just as for other Java services.

Deploying a Stored Procedure Service

Example A-8 shows a sample service deployment descriptor for a stored procedure.
Notice that the id attribute in the provider element identifies the provider under which
this service is deployed.

The service descriptor looks exactly like that for a Java service, since the SP Provider
framework translated PL/SQL procedures into Java class methods. All of the
information specific to PL/SQL are part of the provider descriptor---the service itself
looks like a Java service.

If the procedures use object types, it is necessary to define a type mapping for each
object type. The XML type name must be identical to the SQL type name and must be
in UPPER CASE (see EMPLOYEE and ADDRESS below). The javaType attribute
identifies the oracle.sgl.CustomDatum type that was generated by Oracle JPublisher.

The default BeanSerializer can be used to serialize/deserialize the types.

The generated method names are in lower-case since this is the default setting of
Oracle JPublisher.

Deploy the sample service descriptor shown in Example A-8 using the service
manager.

Example A-8 Sample Stored Procedure Service Deployment Descriptor

<isd:service xmns:isd="http://xn ns. oracl e. conf soap/ 2001/ 04/ depl oy/ servi ce"
i d="urn: www- or acl e- com conpany"
type="rpc" >

<i sd: provi der
i d="conpany- provi der"
met hods="addenp getenp getaddress getenpinfo changesal ary renoveenp”
scope="Application" >
<isd:java class="sanpl es. sp. conpany. Conpany"/ >
</isd: provi der>

<i sd: mappi ngs>
<i sd: map encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: x="ur n: conpany- sanpl e" gname="x: EMPLOYEE"
j avaType="sanpl es. sp. conpany. Enpl oyee"
j ava2XM.d assNanme="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2Javad assName="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"/ >
<i sd: map encodi ngStyl e="http://schemas. xn soap. or g/ soap/ encodi ng/ "
xm ns: x="urn: conpany- sanpl " gname="x: ADDRESS"
j avaType="sanpl es. sp. conpany. Addr ess"
j ava2XML.d assName="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2JavaC assNane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"/>
</'i sd: mappi ngs>

Using Oracle Application Server SOAP A-25

SOAP Troubleshooting and Limitations

<isd:faul tListener class="org.apache.soap. server.DOVWaul tLi st ener"/>

</isd: service>

Invoking a SOAP Service that is a Stored Procedure

SOAP services that are PL/SQL stored procedures are invoked in exactly the same
manner as any other SOAP service. The conpany. j ar file created during the
translating/deployment of a PL/SQL package is also needed on the client-side to
compile application programs that invoke the SOAP service (this jar file is needed only
if the stored procedures have input/output types that are user-defined types; if the
procedures use only builtin-types, the generated jar file is not needed on the client).

The README file in the company samples directory has instructions on how to compile
and test the sample client.

SOAP Troubleshooting and Limitations

This section lists several techniques for troubleshooting Oracle Application Server Web
Services, including:

« Tunneling Using the TcpTunnelGui Command

« Setting Configuration Options for Debugging

« Using DMS to Display Runtime Information

« SOAP Limitations for Java Type Precedence with Overloaded Methods

Tunneling Using the TcpTunnelGui Command

SOAP provides the TcpTunnel Gui command to display messages sent between a
SOAP client and a SOAP server. TcpTunnel Gui listens on a TCP port, which is
different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnel Gui as follows:

java org. apache. soap. util.net. TcpTunnel Gui TUNNEL- PORT SQAP- HOST SQAP- PORT
Table A-7 lists the command line options for TcpTunnel Gui .

Table A—7 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnel Gui listens to on the same host as the
client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server

For example, suppose the SOAP server is running as follows,

http://systemntl: 8080/ soap/ servl et/ soaprout er

You would then invoke TcpTunnel Gui on port 8082 with this command:

java org. apache. soap. util.net. TcpTunnel Gui 8082 systenl 8080

A-26 Oracle Application Server Web Services Developer’s Guide

SOAP Troubleshooting and Limitations

To test a client and view the SOAP traffic, you would use the following SOAP URL in
the client program:

http://systeml: 8082/ soap/ servl et/ soaprout er

Setting Configuration Options for Debugging

To add debugging information to the SOAP Request Handler Servlet log files, change
the value of the severi ty option for in the file soap. xm . This file is placed in
soap. ear file in the directory $SOAP_HOVE/ | i b on UNIX or in “SOAP_HOVE% | i b
on Windows.

To modify the debugging option, expand the soap. ear file and modify the file
soap. xm in the directory webapps/ soap/ V\EB- | NF on UNIX or in
webapps\ soap\ VIEB- | NF on Windows, then redeploy the updated soap. ear file.

For example, the following soap. xm segment shows the value to set for severity
to enable debugging:

<I-- severity can be: error, status, or debug -->

<osc: | ogger class="oracl e.soap. server.inpl.ServletLogger">
<osc:option name="severity" val ue="debug" />

</ osc: | ogger >

After stopping and restarting the SOAP Request Handler Servlet, you can view debug
information in the file x. | og. The file is in the directory $ORACLE _

HOVE/ Apache/ | ogs on UNIX or in

Y%ORACLE_HOVE% Apache\ x\ | ogs on Windows.

Using DMS to Display Runtime Information

Oracle Application Server Web Services is instrumented with DMS to gather
information on the execution of the SOAP Request Handler Servlet, the Java Provider,
and on individual services.

DMS information includes execution intervals from start to stop for the following:

« Total time spent in SOAP request and response (includes time in providers and
services)

« Total time spent in the Java Provider (includes time in services)
« Total time executing services (soap/ j ava- provi der/ servi ce- URl)
To view the DMS information, go to the following site:

http://host nane: port/ soap/ servl et/ Spy

SOAP Limitations for Java Type Precedence with Overloaded Methods

OracleAS SOAP supports Java inbuilt (primitive) types, wrapper types, one
dimensional arrays of inbuilt types, and one dimensional arrays of wrapper types as
parameters for SOAP RPC.

An inbuilt type parameter always takes precedence to a wrapper type parameter when
the Java provider searches for an overloaded method. When there isn't a clear winner,
for an overloaded method, a fault with appropriate message is returned.

For example:

A java class containing aMet hod(i nt) hides aMet hod(| nt eger) in the same class.

Using Oracle Application Server SOAP A-27

OracleAS SOAP Differences From Apache SOAP

A java class containing aMet hod(i nt[]) hidesaMet hod(| nteger[]) inthe same
class.

A java class, when deployed as a SOAP RPC service returns a fault when a client
invokes aMet hod() containing the signatures, aMet hod(i nt, Fl oat) and

aMet hod(I nteger, fl oat).In thiscase, there is no clear winner for resolving the
precedence of the overloaded aMet hod() .

OracleAS SOAP Differences From Apache SOAP

This section covers differences between Apache Soap and OracleAS SOAP.

Service Installation Differences

Additional instructions are provided for installing services when OracleAS SOAP is
used in conjunction with OC4J.

Optional Provider Enhancements

OracleAS SOAP supports both the Apache Provider interface, defined in
org. apache. soap. util . Provi der, and an enhanced provider interface, defined
inoracl e. soap. server. Provi der.

The native Apache provider includes only two methods, | ocat e() and i nvoke().
The Oracle Provider interface combines the locate and invoke methods, so that the
provider does not have to store input parameters between the | ocat e() and

i nvoke() calls. Additionally, the Oracle Provider interface hasi ni t () and

dest roy() methods, which the SOAP servlet calls only once when the provider is
instantiated. This allows providers to perform one time initialization such as opening a
database or network connection, and to perform one time clean up activities.

When using the Apache provider interface, a single deployment descriptor supplies
both service and provider properties. When using the Oracle Provider interface, these
properties are separated between a service descriptor file and a provider descriptor
file. This allows common provider properties to be shared among services. When a
provider property changes, only a single descriptor file must be changed. Please see
the Deployment section of this document for more information.

Oracle Transport libraries

Oracle transport libraries are included for use with SOAP clients. Use of these libraries
enables use of the Oracle Wallet Manager for keeping certificates securely, and use of
the HttpClient libraries for HTTP connection management. The HttpClient libraries fix
a security problem in the native Apache code which incorrectly returns cookies to
servers other than the originating server.

Modifications to Apache EJB Provider

The Apache EJB provider has been modified to work with the OC4J EJB container. In
addition, the client interface to services provided by stateful and entity EJB’s has been
improved. The EJB handle is contained in the HttpSession association with the
connection rather than being concatenated to the returned URL. Since the
HTTPSession cookie is handled transparently by the SOAP client, no special coding is
required in the client.

A-28 Oracle Application Server Web Services Developer’s Guide

OracleAS SOAP Differences From Apache SOAP

Stored Procedure Provider

A special provider has been added which allows services to be written using PL/SQL
Stored Procedures or Functions.

Utility Enhancements

The wsdl 2j ava and j ava2wsdl scripts simplify building client side code from
WSDL descriptions and for generating WSDL descriptions of Java services.

Modifications to Sample Code

The Apache samples have been modified to work with OracleAS SOAP and OC4J. The
comcal cul at or, webl ogi c_ej b samples have been omitted. New samples
illustrating use of Oracle Stored Procedures and OC4J EJB’s as Web Services have been
added.

Handling the mustUnderstand Attribute in the SOAP Header

This section describes the check that is performed for the must Under st and attribute
within the header blocks of the SOAP envelope, and describes the difference between
the Apache SOAP and the OracleAS SOAP processing of this attribute.

Setting the mustUnderstand Check

The check for the nust Under st and attribute is enabled in the deployment descriptor
of the service by setting the checkMust Under st ands flag. If this flag settot r ue, the
check for the nust Under st and attribute within each header block is performed. If
the checkMust Under st ands flag is set to f al se, the check for the

must Under st and attribute is not performed. The default value of

checkMust Under st ands flagistr ue.

How the mustUnderstand Check Works

If the checkMust Under st ands flag is setto t r ue, then a check is made on all header
entries of the envelope after the global request handlers have finished processing and
before handing the envelope to the appropriate service. At this point, if any header
entries contain a nust Under st and attribute thatissettotrue orto"1", then an
exception is thrown. Note, the global handler(s) can be used to process one or more
header blocks that have the must Under st and attribute settotr ue.

If the checkMust Under st ands flag is set to f al se, then header entries of the
envelope are not checked to see if any entries contain a nust Under st and attribute
thatissettot rue or to "1". It is then understood that it is up to the service
implementation to make sure that this check is done before processing the body of the
envelope.

Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

The differences between Apache SOAP and OracleAS SOAP with respect to the
handling of the nust Under st and attribute are the following:

1. Inthe Apache service deployment descriptor and the Oracle Service deployment
descriptor, you may include the checkMust Under st ands attribute. In Apache,
the default value of the checkMust Under st ands attribute is f al se, in OracleAS
SOAP the default value of this attribute ist r ue.

2. In Apache SOAP, if the service deployment descriptor contains
checkMust Under st ands='true' and a message with must Under st and=" 1"

Using Oracle Application Server SOAP A-29

Apache Software License, Version 1.1

or must Under st and="t r ue" arrives at the server then a fault is sent back with
the fault code value of:

nmust Under st and
This fault code is not namespace qualified and is incorrect.

In OracleAS SOAP the fault code that is sent back is namespace qualified and is
defined by SOAP 1.1:

SOAP- ENV: Must Under st and

3. In Apache SOAP, the must Under st and attribute has to be handled by the service
implementation. In OracleAS SOAP, the must Under st and attribute can be either
handled in the SOAP handlers or in the service implementation. This is very
useful for processing headers (with nust Under st and set to '1") which have a
‘global’ use. Examples of such headers/functionality are encryption, digsig,
authentication, logging etc.

Apache Software License, Version 1.1

This program contains third-party code from the Apache Software Foundation
(Apache). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or Apache.

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include
the following acknowledgment:

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may "Apache”
appear in their name, without prior written permission of the Apache Software
Foundation.

A-30 Oracle Application Server Web Services Developer’s Guide

Apache Software License, Version 1.1

THIS SOFTWARE IS PROVIDED AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf
of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/.

Portions of this software are based upon public domain software originally written at
the National Center for Supercomputing Applications, University of Illinois,
Urbana-Champaign.

Using Oracle Application Server SOAP A-31

Apache Software License, Version 1.1

A-32 Oracle Application Server Web Services Developer’s Guide

B

Web Services Security

The ability to control user access to Web content and to protect your site against people
breaking into your system is critical. This appendix describes the architecture and
configuration of security for Oracle Application Server Web Services, including the
Oracle Application Server UDDI Registry.

This chapter covers the following topics:

« About Web Services Security

« Configuring Web Services Security

« About Oracle Application Server UDDI Registry Security
« Configuring UDDI Security

See Also:
« Oracle Application Server 10g Security Guide

= Oracle Identity Management Concepts and Deployment Planning
Guide

Web Services Security B-1

About Web Services Security

About Web Services Security

SOAP is the messaging protocol for Oracle Application Server Web Services. Oracle
Application Server Web Services only supports HTTP (S) for a transport protocol for
SOAP messages. Oracle Application Server security that applies for HTTP(S) can be
leveraged for Oracle Application Server Web Services.

Oracle Application Server Web Services supports the following security features:

= Secure Connection: By securing the connection using SSL (HTTPS), one can invoke
a Web Service securely.

= Authentication: Basic and Digest Access Authentication can be enforced using
HTTP (S) headers. This method is not secure unless the authentication is specified
in conjunction with SSL.

« Authorization: Authorization is supported by retrieving the Principal using a User
Manager such as the Oracle Application Server Java Authentication and
Authorization Service (JAZN) User Manager.

All the HTTP(S) transport security features are applicable to all types of Oracle
Application Server Web Services implementations (including stateless and stateful java
classes, stateless session bean and stateless stored procedures). In addition, if a
stateless session bean is exposed as a Web Service, ACL policies can be enforced on the
bean when the connection is authorized by a User Manager and a Principal object is
obtained.

If a stored procedure is exposed as a Web Service, then it is secure to encrypt the
password of the corresponding data source in the data-sources.xml file.

See Also:
« Oracle Application Server Containers for J2EE Security Guide

« Chapter 8, "Configuring EJB Application Security" in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

Configuring Web Services Security

When you run a client-side application that uses Oracle Application Server Web
Services, you can access secure Web Services by setting properties in the client
application. Table B-1 shows the available properties that provide credentials and
other security information for Web Services clients.

In a Web Services client application, you can set the security properties shown in
Table B-1 as system properties by using the - D flag at the Java command line, or you
can also set security properties in the Java program by adding these properties to the
system properties (use Syst em set Properti es() toadd properties). In addition,
the client side stubs include the _set Tr anport Proper ti es method that is a public
method in the client proxy stubs. This method enables you to set the appropriate
values for security properties by supplying a Pr operti es argument.

B-2 Oracle Application Server Web Services Developer’s Guide

Configuring Web Services Security

Table B-1 Web Services HTTP Transport Security Properties

Property

Description

http. aut hReal m

http. aut hType

http. password
http. proxyAut hReal m

htt p. proxyAut hType

http. proxyHost
htt p. pr oxyPasswor d
http. proxyPort

http. proxyUser nane
http. user nane

j ava. prot ocol . handl er. pkgs

Specifies the realm for which the HTTP authentication username/password
is specified.

This property is mandatory when using basic authentication.

Specifies the HTTP authentication type. The case of the value specified is
ignored.

Valid values: basi c, di gest
The value basic specifies HTTP basic authentication.

Specifying any value other than basi c or di gest is the same as not setting
the property.

Specifies the HTTP authentication password.

Specifies the realm for which the proxy authentication username/password
is specified.

Specifies the proxy authentication type. The case of the value specified is
ignored.

Valid values: basi c, di gest

Specifying any value other than basi c or di gest is the same as not setting
the property.

Specifies the hostname or IP address of the proxy host.
Specifies the HTTP proxy authentication password.

Specifies the proxy port. The specified value must be an integer. This
property is only used when ht t p. pr oxyHost is defined; otherwise this
value is ignored.

Default value: 80
Specifies the HTTP proxy authentication username.
Specifies the HTTP authentication username.

Specifies a list of package prefixes for
j ava. net . URLSt r eamHandl er Fact or y The prefixes should be separated
by "|" vertical bar characters.

This value should contain: HTTPC i ent

This value is required by the Java protocol handler framework; it is not
defined by Oracle Application Server. This property must be set when using
HTTPS. If this property is not set using HTTPS, a

j ava. net. Mal f or nedURLExcept i on is thrown.

Note: This property must be set as a system property.
For example, set this property as shown in either of the following:
« java.protocol . handl er. pkgs=HTTPd i ent

« java.protocol . handl er. pkgs=sun. net. ww. pr ot ocol |
HTTPC i ent

Web Services Security B-3

About Oracle Application Server UDDI Registry Security

Table B-1 (Cont.) Web Services HTTP Transport Security Properties

Property

Description

oracl e. soap.transport.
al | owser | nteraction

oracl e. ssl . ciphers

oracle.wal l et.location

oracl e.wal | et. password

Specifies the allows user interaction parameter. The case of the value
specified is ignored. When this property is set to t r ue and either of the
following are true, the user is prompted for a username and password:

1. Ifany of propertiesht t p. aut hType, http. user nane, or
htt p. passwor d is not set, and a 401 HTTP status is returned by the
HTTP server.

2. Ifeither of propertiesht t p. pr oxyAut hType, htt p. pr oxyUser nane,
orhttp. proxyPasswor d is not set and a 407 HTTP response is
returned by the HTTP proxy.

Valid values: t r ue, f al se

Specifying any value other than t r ue is considered as f al se.

Specifies a list of: separated cipher suites that are enabled.
Default value: The list of all cipher suites supported with Oracle SSL.

Specifies the location of an exported Oracle wallet or exported trustpoints.
Note: The value used is not a URL but a file location, for example:

[et c/ ORACLE/ Wl | et s/ systenil/ export ed_wal | et (on UNIX)
d:\oracl e\ syst eml\ exported_wal | et (on Windows)

This property must be set when HTTPS is used with SSL authentication,
server or mutual, as the transport.

Specifies the password of an exported wallet. Setting this property is
required when HTTPS is used with client, mutual authentication as the
transport.

About Oracle Application Server UDDI Registry Security

This section covers the following topics:

« Protecting Oracle Application Server UDDI Registry Resources

= Managing and Enforcing Protected UDDI Resources

« Using Oracle Application Server Security Services

See Also: "OracleAS UDDI Registry Administration” on
page 10-34

Protecting Oracle Application Server UDDI Registry Resources
Oracle Application Server UDDI resources are protected as follows.

Oracle Application Server UDDI Registry
For the OracleAS UDDI Registry, the following resources are protected:

« Data - Write access to the data stored in the OracleAS UDDI Registry is protected,;
this is typically metadata of Web Services.

« Functions — Administrative operations to the OracleAS UDDI Registry.

« Passwords — N/A. User passwords are protected by JAZN.

B-4 Oracle Application Server Web Services Developer’s Guide

Configuring UDDI Security

Oracle Application Server Content Subscription Manager Application
For the Oracle Application Server UDDI Content Subscription Manager application,
the following resource is protected:

« Passwords — Password for the UDDI syndication subscriber are protected.

Managing and Enforcing Protected UDDI Resources

Protection for the following OracleAS UDDI Registry resources are managed and
enforced as follows.

Oracle Application Server UDDI Registry

Oracle Application Server Java Authentication and Authorization Service (JAZN) and
the UDDI application manages and enforces write access to the data stored in the
OracleAS UDDI Registry. JAZN determines the identity and the security role of a user.
Only the owner has rights to update data.

For administrative operations for the OracleAS UDDI Registry JAZN also manages
and enforces access; in addition, JAZN protects the servlets that provide
administrative operations.

Oracle Application Server Content Subscription Manager Application

The application manages the UDDI syndication subscription password used to access
Oracle Application Server Syndication Services. The password, which is persistently
stored in the database, is further protected by the database DBMS_OBFUSCATI ON

PL/ SQL package.

Update of the UDDI syndication subscriber password is available through a UDDI
Web-based tool. The web-based tool uses JAZN to query the security role of the
authenticated user. The password update facility is available only if the authenticated
user has the uddi admi n security role.

Using Oracle Application Server Security Services

UDDI leverages the JAZN User level security features and uses SSL encryption, both
server side and client side, for accessing OracleAS Infrastructure 10g options.

Configuring UDDI Security
To configure UDDI for security, consider the following areas:
« Configuring the Oracle Application Server UDDI Registry
« Configuring the UDDI Content Subscription Manager
« Configuring the UDDI Client

Configuring the Oracle Application Server UDDI Registry

To ensure the confidentiality of the communication between the OracleAS UDDI
Registry and clients, do the following:

1. Configure the Oracle HTTP Server/SSL listener to provide HTTPS access.
2. Configure OC4J to prohibit HTTP access.

Web Services Security B-5

Configuring UDDI Security

3. To ensure the communication to a UDDI replication endpoint is authorized,
configure the Oracle HTTP Server/SSL listener to enable HTTPS client-certificate
based authentication.

Configure all security-sensitive UDDI endpoints, including: publishing,
administration, replication wallet administration, and subscription management
(typically, the inquiry endpoint does not need to be confidential).

Configuring the UDDI Content Subscription Manager

In order to make the Oracle Application Server Content Subscription Manager
functional, you must supply the proper password of the UDDI syndication subscriber.

Configuring the UDDI Client

If you use the UDDI Client Library to develop applications to communicate with the
OracleAS UDDI Registry, you can use the Oracle Application Server Web Services
security features to configure the HTTP transport properties.

See Also: "Configuring Web Services Security” on page B-2

B-6 Oracle Application Server Web Services Developer’s Guide

C

Troubleshooting OracleAS Web Services

This appendix describes common problems that you might encounter when using
Oracle Application Server Web Services and explains how to solve them. It contains
the following topics:

« Appendix C.1, "Problems and Solutions"
« Appendix C.2, "Diagnosing OracleAS Web Services Problems”
« Appendix C.3, "Need More Help?"

C.1 Problems and Solutions

This section describes common problems and solutions. It contains the following
topics:

« Appendix C.1.1, "Receiving "Unsupported Response Content Type" Error”
« Appendix C.1.2, "Cannot Publish Doc/Literal in JDeveloper™"

« Appendix C.1.3, "Cannot Register Web Service"

« Appendix C.1.4, "UDDI Registry Screens Missing"

« Appendix C.1.5, "UDDI Management Screens Are Not Enabled”

C.1.1 Receiving "Unsupported Response Content Type" Error

Invoking a Web service produces an "unsupport ed response content type"
error.

Problem

A likely cause of the error is that the URI address of the endpoint in the stub or
dynamic proxy is incorrect. With an incorrect URI address, the client receives a native
HTTP response without a SOAP payload which results in an "unsupported response
content type" error.

Solution
Ensure that the URI address is correct.

C.1.2 Cannot Publish Doc/Literal in JDeveloper
Web service cannot publish doc/literal in JDeveloper 9.0.3/9.0.4/9.0.5.1.

Troubleshooting OracleAS Web Services C-1

Problems and Solutions

Problem

Trying to publish doc/literals without using Stateless Java Classes and JMS
destinations.

Solution

Since Oracle Application Server 9.0.3, Oracle Application Server Web Services has
supported doc/literal operations using Stateless Java Classes and JMS destinations.
Information for this support is available in the Oracle Application Server
documentation at:

htt p: // downl oad- west . oracl e. com docs/ cd/ B10464_
02/ web. 904/ b10447/ docser vi ces. ht m#st href 259

C.1.3 Cannot Register Web Service

When deploying a Web service, using Oracle Application Server Control, the Web
service cannot be registered in the Oracle Application Server UDDI Registry.

Problem

Although the button to register the service appears, it is not enabled. This problem
often indicates that you have not installed the Oracle Application Server Portal. The
Oracle Application Server UDDI Server is a J2EE servlet application that is deployed
automatically by the Oracle Application Server Installer into the same J2EE OC4J
container as the Oracle Application Server Portal.

Solution

Install the Oracle Application Server Portal. After installation, you must ping the
servlet at least once to initialize the registry and enable the Application Server Control
UDDI user interface.

C.1.4 UDDI Registry Screens Missing

The Oracle Application Server UDDI Registry screens in the Application Server
Control are missing.

Problem

This problem indicates that the Oracle Application Server Portal is not installed.
Requiring that the Oracle Application Server Portal be installed, before the Oracle
Application Server UDDI Registry screens become available, ensures that customers
have the Oracle Application Server MetaData Repository installed, which is a
pre-requisite for Oracle Application Server UDDI management.

Solution

Install the Oracle Application Server Portal. After installation, you must ping the
servlet at least once to initialize the registry and enable the Application Server Control
UDDI user interface.

C.1.5 UDDI Management Screens Are Not Enabled

The Oracle Application Server Control UDDI management screens are not enabled.

C-2 Oracle Application Server Web Services Developer’s Guide

Problem

The Oracle Application Server Control UDDI management screens are not enabled.
The Oracle Application UDDI Registry is installed on another instance of Oracle
Application Server.

Solution

The Oracle Application UDDI Registry must be installed in the same instance of
Oracle Application Server as the Oracle Application Server Control UDDI
management screens for the screens to be enabled.

C.2 Diagnosing OracleAS Web Services Problems

Oracle Application Server can consist of many components. To aid in diagnosing
problems specific to Web Services, you can configure Oracle Application Server to
generate diagnostic messages specific to Web Services. The following section provides
information on how to configure Oracle Application Server to generate diagnostic
messages for Web Services.

« Appendix C.2.1, "Generating Web Services Diagnostic Messages"

C.2.1 Generating Web Services Diagnostic Messages

To obtain diagnostic information specific to Web services, set the system property
ws. debug to True.

« Tosetws.debug in an OC4J standalone version, at the command line enter:
java Dws.debug=true ... -jar ocdj.jar

« For the OC4JJava, Standard, or Enterprise editions, ws. debug can be set from
within the Oracle Application Server Control. From the Administration tab of the

OC4J instance where the Web service is deployed, navigate to the Server
properties link. In the Java options text field, add:

Dws. debug=t r ue

The diagnostic messages are located in the redirected output/errors log. You can find
the log in the Log Viewer Application Server Control screens.

C.3 Need More Help?

You can find more solutions on Oracle MetaLink, ht t p: / / met al i nk. oracl e. com If
you do not find a solution for your problem, log a service request.

See Also:

« Oracle Application Server Release Notes, available on the Oracle
Technology Network:
http: //ww. oracl e. com t echnol ogy/ docunentati on/in
dex. htm

Troubleshooting OracleAS Web Services C-3

Need More Help?

C-4 Oracle Application Server Web Services Developer’s Guide

Glossary

Dynamic Web Service Client

When you want to use Web Services, you can develop a dynamic Web Service client.
With A dynamic client the client performs a lookup to find the Web Service’s location
in a OracleAS UDDI Registry before accessing the service.

SOAP

SOAP is the name of a lightweight, XML-based protocol for exchanging information in
a decentralized, distributed environment. SOAP supports different styles of
information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange.

See Also: http://ww. wW3. or g/ TR/ SOAP/ for information on
SOAP 1.1 specification

Static Web Service Client

When you want to use Web Services, you can develop a static client. A static client
knows where a Web Service is located without looking up the service in a OracleAS
UDDI Registry.

Stored Procedure Web Service

Oracle Application Server Web Services implemented as stateless PL/SQL Stored
Procedures or Functions are called Stored Procedure Web Services. Stored Procedure
Web Services enable you to export, as services running under Oracle Application
Server Web Services, PL/SQL procedures and functions that run on an Oracle
database server.

uDDI

Universal Description, Discovery, and Integration (UDDI) is a specification for an
online electronic registry that serves as electronic Yellow Pages, providing an
information structure where various business entities register themselves and the
services they offer through their WSDL definitions.

See Also: htt p://wwv. uddi . or g for information on Universal
Description, Discovery and Integration specifications.

Web Service
A Web Service is a discrete business process that does the following:

« Exposes and describes itself — A Web Service defines its functionality and
attributes so that other applications can understand it. A Web Service makes this
functionality available to other applications.

Glossary-1

Glossary-2

= Allows other services to locate it on the web — A Web Service can be registered in
an electronic Yellow Pages, so that applications can easily locate it.

« Can be invoked — Once a Web Service has been located and examined, the remote
application can invoke the service using an Internet standard protocol.

« Returns a response — When a Web Service is invoked, the results are passed back
to the requesting application over the same Internet standard protocol that is used
to invoke the service.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is an XML format for describing network
services containing RPC-oriented and message-oriented information. Programmers or
automated development tools can create WSDL files to describe a service and can
make the description available over the Internet.

See Also: http://ww. w3. or g/ TR/ wsdl for information on
the Web Services Description Language (WSDL) format.

A

accept-untyped-request configuration tag, 12-3
access point
creating with
UDDI client API, 10-31
UDDI publishing tool, 10-26
addPublisherAssertion method
UDDI Client API, 10-33
addressTModelKeyValidation property, 10-69
addUddiElement method
UDDI Client API, 10-12,10-30, 10-31
administration end point
for UDDI, 10-7

assertionKeyedRefValidation property, 10-46, 10-69

AssertionStatusReport instance

UDDI Client API, 10-33
authenticate method

UDDI Client API, 10-29
authentication

UDDI publishing and, 10-29

B

bindingTemplate data structures, 10-2
creating with
publishing tool, 10-26
UDDI client API, 10-31
businessEntity data structures, 10-2
creating with
UDDI Client API, 10-32
UDDI publishing tool, 10-22
publishing, 10-32
setting prefix, 10-7
businessEntityURLPrefix property, 10-7, 10-69
businessService data structures, 10-2
creating with
UDDI client API, 10-31
UDDI publishing tool, 10-25

C

categories
for UDDI registry, 10-4
CategoryBag data structures
UDDI Client API, 10-30, 10-31

Index

CategoryBag instance
UDDI Client API, 10-11
categoryValidation property, 10-46, 10-70
categoryValidationTModelKeys property, 10-46,
10-70
changeOwner option, 10-40, 10-62
changeRecordWantsAck property, 10-43, 10-71
classification support for UDDI, 10-4, 10-5
classifications
for UDDI, 10-4
class-name configuration tag, 3-9, 6-8
client-side certification
UDDI replication and, 10-42
client-side proxies
generating for Web Services, 8-5
getting directly, 8-3
using, 8-7
client-side request header support, 12-3
close method
UDDI Client API, 10-13
configuration
UDDI registry, 10-7, 10-8
connection-factory-resource-ref configuration
tag, 7-10
consuming Web Services
SOAP-based Web services using WSDL
document, 11-1
running the demonstration, 11-7
using configuration file, 11-3
using wsdl2ejb utility command-line
options, 11-1
context configuration tag, 3-7
correctChangeRecord option, 10-43, 10-62
createAccessPoint method
UDDI Client API, 10-31
createBindingTemplates method
UDDI Client API, 10-31
createBusinessEntity method
UDDI Client API, 10-32
createBusinessServices method
UDDI Client API, 10-31
createCategoryBag method
UDDI Client API, 10-30, 10-31
createFindQualifiers method
UDDI Client API, 10-12
createldentityPublisherAssertion method

Index-1

UDDI Client API, 10-34
createKeyedReference method
UDDI Client API, 10-30
createOverviewDoc method

UDDI Client API, 10-30
createTModel method

UDDI Client API, 10-30
createTModellnstanceDetails method

UDDI Client API, 10-31
createUddiClient method

UDDI Client API, 10-32
createWriterXmIWriter method

UDDI Client API, 10-32
custody transfers

UDDI entities, 10-43

D

database-JNDI-name configuration tag, 5-5
data-sources.xml configuration file, 5-8
db-pkg-name configuration tag, 5-5
db-url configuration tag, 5-5
debugging using ws.debug property, 12-1
default language
for UDDI registry, 10-8, 10-71
defaultLang property, 10-8, 10-71
deleteEntity option, 10-40, 10-62
deletePublisherAssertion method
UDDI Client API, 10-34
deleteRoleQuotaL imits option, 10-39, 10-62
description configuration tag, 3-7
destination-path configuration tag, 3-7
destroyTModel option, 10-40, 10-63
discovering Web Services, 10-4, 10-9
Discovery URL
UDDI and, 10-24
display-name configuration tag, 3-7
document style interface, 6-5
doPing option, 10-44, 10-63
downloadReplicationConfiguration option,
10-63
Dun & Bradstreet D-U-N-S Number identifier
system, 10-5
D-U-N-S, 10-5
dynamic invocation of Web Services, 11-16
dynamic invocation API, 11-16
WebServiceProxy client, 11-19

E

10-42,

ejb-name configuration tag, 4-8
ejb-resource configuration tag, 3-9, 4-8
EJBs sample code, 4-1
Element
arrays of, 3-5, 4-5, 6-2
null values, 6-2
entities
changing authorized name, 10-41
changing operator name, 10-41
changing ownership, 10-40, 10-62

Index-2

changing timestamp, 10-41

deleting, 10-40, 10-62

setting operational information, 10-41
error handling

UDDI replication, 10-43
exception handling

UDDI replication, 10-43
external validation, 10-47, 10-48

UDDI registry, 10-47
externalValidation property, 10-47, 10-72

externalValidationTimeout property, 10-48, 10-72

externalValidationTModelList property, 10-48, 10-72

F

findBusiness method

UDDI Client API, 10-11
findService method

UDDI Client API, 10-12

G

generating client proxies, A-6
generating WSDL documents, A-7
getAssertionStatusReport method

UDDI Client API, 10-33
getChangeRecord option, 10-44, 10-63
getHighWaterMarks option, 10-44, 10-64
getProperties option, 10-35, 10-64
getRoleQuotalLimits option, 10-39, 10-64
getting client-side proxies for Web Services,
getting WSDL descriptions for Web Services,
getUddiElementFactory method

UDDI Client API, 10-29
getUserDetail option, 10-37, 10-64
getUsers option, 10-65

UDDI registry, 10-37
groups

UDDI registry, 10-36

H

8-2

8-2

header support, 12-3

hostingRedirectorValidation property, 10-46, 10-73

http
//metalink.oracle.com, C-3

HTTP transport properties
http.authRealm property, 8-9, B-3
http.authType property, 8-9, B-3
http.password property, 8-9, B-3
http.proxyAuthRealm property, 8-9, B-3
http.proxyAuthType property, 8-9, B-3
http.proxyHost property, 8-9, B-3
http.proxyPassword property, 8-9, B-3
http.proxyPort property, 8-9, B-3
http.proxyUsername property, 8-9, B-3
http.username property, 8-9, B-3

java.protocol. handler.pkgs property, 8-10, B-3

oracle. wallet.location property, 8-10, B-4

oracle.soap. transport. allowUserlInteraction

property, 8-10, B-4

oracle.ssl.ciphers property, 8-10, B-4

oracle.wallet. password property, 8-10, B-4
http.authRealm property, 8-9, B-3
http.authType property, 8-9, B-3
http.password property, 8-9, B-3
http.proxyAuthRealm property, 8-9, B-3
http.proxyAuthType property, 8-9, B-3
http.proxyHost property, 8-9, B-3
http.proxyPassword property, 8-9, B-3
http.proxyPort property, 8-9, B-3
http.proxyUsername property, 8-9, B-3
HTTPS

client-side certification

UDDI replication and, 10-42

http.username property, 8-9, B-3

identifier support for UDDI, 10-5
identifier taxonomies, 10-5

identifiers
for UDDI, 10-21
UulD, 10-5

identifierVValidation property, 10-46, 10-73
import option, 10-65

UDDI registry, 10-40
importing entities, 10-40
initialization

UDDI registry, 10-6
inquiry API

for UDDI registry, 10-4,10-10
inquiry SOAP end point, 10-7
interface-name configuration tag, 3-9, 6-8
interoperability with .NET, 12-1
1SO-3166 Geographic classification (1SO-3166), 10-4
1SO-3166 taxonomy, 10-4

J

jar-generation configuration tag, 5-5

Java Beans, 3-5,4-4

java class interface, 3-4

java2wsdl script, A-7

java.protocol. handler.pkgs property, 8-10, B-3
java-resource configuration tag, 3-9, 6-8
jdbcDriverType property, 10-74
jms-delivery-mode configuration tag, 7-10
jms-doc-service configuration tag, 7-10
jms-expiration configuration tag, 7-10
jms-message-type configuration tag, 7-10
jms-priority configuration tag, 7-11

L

language
default for UDDI registry, 10-8, 10-71
locating Web Services, 8-1

M

maxChangeRecordsSentEachTime property, 10-44,

10-74
maxConnections property, 10-74
message-style configuration tag, 3-9, 6-9
method-name configuration tag, 5-5
minConnections property, 10-75

N

NAICS taxonomy, 10-4

.NET interoperablity, 12-1

North American Industry Classification System
(NAICS), 10-4

O

OC4J startup using ws.debug, 12-1
operation configuration tag, 7-11
operational information
setting for entities, 10-41
operator name
changing for entity, 10-41
operatorCategory property, 10-46, 10-75
operatorName property, 10-7,10-76
option name="force" configuration tag, 9-4
option name="httpServerURL" configuration
tag, 9-4
option name="include-source" configuration tag, 8-6
option name="packagelt" configuration tag, 9-4
option name="source-path" configuration tag, 3-7
option name="wsdI-location" configuration tag, 8-6
option package-name configuration tag, 8-6
Oracle SOAP, A-16
audit logger
configuring, A-13
filter, A-12
HostName, A-11
IpAddress, A-11
Method element, A-11
schema, A-11
ServiceURI element, A-11
TimeStamp element, A-11
User element, A-11
auditLogDirectory option, A-14
client API
security features, A-15
configuration
handlers, A-10
soap.xml, A-2
debugging
setting values in soap.xml, A-27
deploying services, A-5
deployment descriptor, A-8
error handlers, A-10
errorHandlers deployment parameter, A-3
faultListeners deployment parameter, A-3
filter option, A-14
handlers
deployment parameter, A-3
error, A-10
request, A-10

Index-3

response, A-10 soap.properties

HostName element, A-11 soapConfig, A-2
HTTP transport properties soap.xml, A-2
http.authRealm property, A-16 TcpTunnelGui command, A-26
http.authType property, A-16 TimeStamp element, A-11
http.password property, A-16 troubleshooting, A-26
http.proxyAuthRealm property, A-16 undeploying services, A-5
http.proxyAuthType property, A-16 User element, A-11
http.proxyHost property, A-16 oracle. wallet.location property, 8-10, B-4
http.proxyPassword property, A-16 OracleAS UDDI Registry
http.proxyPort property, A-17 see UDDI registry
http.proxyUsername property, A-17 oracle.soap. transport.allowUserInteraction
http.username property, A-17 property, 8-10, B-4
java.protocol. handler.pkgs property, A-17 oracle.ssl.ciphers property, 8-10, B-4
oracle. wallet.location property, A-18 oracle.wallet. password property, 8-10, B-4
oracle.soap. transport. allowUserlInteraction overview document URL
property, A-17 for UDDI, 10-20
oracle.wallet. password property, A-18 OverviewDoc data structure
http.authRealm property, A-16 UDDI Client API, 10-30
http.authType property, A-16
http.password property, A-16 p
http.proxyAuthRealm property, A-16
http.proxyAuthType property, A-16 packageName request parameter, 8-4
http.proxyHost property, A-16 path configuration tag, 4-8
http.proxyPassword property, A-16 pinging replication end-point, 10-44, 10-63
http.proxyPort property, A-17 PL/SQL stored procedures
http.proxyUsername property, A-17 setting up datasources, 5-8
http.username property, A-17 writing, 5-2
includeRequest option, A-14 prefix configuration tag, 5-5
includeResponse option, A-14 proxy information
IpAddress element, A-11 UDDI and, 10-29
java.protocol. handler.pkgs property, A-17 publisherAssertion
listing services, A-6 creating with UDDI Client API, 10-33
logger deleting relationship, 10-34
setting values in soap.xml, A-27 importing, 10-40
logger deployment parameter, A-3 UDDI registry, 10-32
Method element, A-11 publisherAssertion data structures, 10-2
oracle. wallet.location property, A-18 publishing API, 10-4, 10-28
oracle.soap. transport. allowUserInteraction publishing end point
property, A-17 UDDI registry, 10-7
oracle.soap. transport.1022ContentType publishing SOAP end point, 10-7
property, A-17 publishing Web services, 10-4, 10-13
oracle.ssl.ciphers property, A-18 using Enterprise Manager, 10-13
oracle.wallet. password property, A-18 pushEnabled property, 10-44, 10-76
providerManager deployment parameter, A-4 pushTaskExecutionPeriod property, 10-44, 10-76
querying services, A-6
request handlers, A-10 Q
requestHandlers deployment parameter, A-4
response handlers, A-10 gueue-resource-ref configuration tag, 7-11
responseHandlers deployment parameter, A-4 quota groups)
security features, A-15 adding to UDDI registry, 10-38
service manager associating publisher with, 10-39
deploying services, A-5 deleting from UDDI registry, 10-39
listing services, A-6 UDDI registry and, 10-37
querying services, A-6 quota limits
undeploying services, A-5 deleting, 10-39, 10-62
verifying services, A-6 enforcing for UDDI registry, 10-37
serviceManager deployment parameter, A-4 retr_ieving, 10-39
ServiceURI element, A-11 setting, 10-38
servlet.soaprouter.initArgs parameter, A-2 viewing, 10-39

Index-4

quotaLimitChecking property, 10-77

R

receive-timeout configuration tag, 7-11
registry-based category validation, 10-44
adding category, 10-45
removing categories, 10-46
replication for UDDI, 10-41
enabling, 10-41
replication SOAP end point
for UDDI, 10-7

replicationEndPointSoapUrl, 10-64

reply-to-connection-factory-resource-ref configuration

tag, 7-11

reply-to-queue-resource-ref configuration tag, 7-12

reply-to-topic-resource-ref configuration tag, 7-12
request header support
client-side, 12-3
server-side, 12-4
RPC typed request, 12-1
RPC untyped requests, 12-1

S

saveBusiness method
UDDI Client API,
saveTModel method
UDDI Client API, 10-30
schema configuration tag, 5-5
schemaValidationUponlncomingRequests
property, 10-77
scope configuration tag,
searches
UDDI registration, 10-1
UDDI registry, 10-9
using searching and browsing tool, 10-9
using UDDI Inquiry API, 10-10
security
HTTP transport properties
http.authRealm property, 8-9
http.authType property, 8-9
http.password property, 8-9
http.proxyAuthRealm property, 8-9
http.proxyAuthType property, 8-9
http.proxyHost property, 8-9
http.proxyPassword property, 8-9
http.proxyPort property, 8-9
http.proxyUsername property, 8-9
http.username property, 8-9
java.protocol.handler.pkgs property, 8-10
oracle.soap.transport.allowUserInteraction,
10
oracle.ssl.ciphers property, 8-10
oracle.wallet.location property, 8-10
oracle.wallet.password property, 8-10
server-side request header support, 12-4
session-timeout configuration tag, 3-9, 6-9
setAccessPoint method
UDDI Client API,

10-32

3-9, 6-9

10-31

8-

setBindingTemplates method
UDDI Client API, 10-31

setBusinessServices method
UDDI Client API, 10-31

setCategoryBag method

UDDI Client API, 10-30, 10-31
setContent method
UDDI Client API, 10-31

setFindQualifierStringList method
UDDI Client API, 10-12
setHttpProxy method, 10-29
setkeyName method
UDDI Client API,
setKeyValue method
UDDI Client API,
setOperationallnfo option,
setOverviewDoc method
UDDI Client API, 10-30
setProperty option, 10-36, 10-66
validation and, 10-45
setPublisherAssertions method
UDDI Client API, 10-34
setRoleQuotaLimits option,
UDDI registry, 10-38
setTModellnstanceDetails method

10-30

10-12, 10-30
10-41, 10-66

10-39, 10-67

UDDI Client API, 10-32
setTModelKey method

UDDI Client API, 10-12, 10-30
setUrlType method

UDDI Client API, 10-31

setWalletPassword option, 10-42, 10-67
Simple Object Access Protocol (SOAP), 10-3
SimpleAuthenticationLiaison method
UDDI Client API, 10-29
SOAP
features,
web services,
what is SOAP,
SOAP end point
for UDDI inquiry, 10-7
for UDDI publishing, 10-7
SOAP header support, 12-3
SOAP request header support, 12-3,12-4
SoapHTTPTransportLiaison interface
UDDI Client API, 10-29
soapRequestAuthMethod property, 10-44, 10-77
soapRequestTimeout property, 10-44, 10-78
SoapTransportLiaison
UDDI Client API, 10-10
SoapTransportLiaison instance
UDDI Client API, 10-29
startMaintainingUpdateJournal property,
10-78
stateful document style, 6-3
stateful java class, 3-2
stateful-java-service configuration tag,
stateless document style, 6-3
stateless java class, 3-2
stateless session EJBs
helloStatelessSession sample code, 4-1

1-4,1-5
1-4,1-5
1-4,1-5

10-42,

3-8, 6-8

Index-5

writing, 4-1
stateless-java-service configuration tag, 3-8, 6-8
stateless-session-ejb-service configuration tag, 4-7
status property, 10-42,10-43, 10-79
stmtCacheSize property, 10-79
stmtCacheType property, 10-79

T

taskExecutionPeriod property, 10-44, 10-80
taxonomies

for UDDI, 10-1,10-4, 10-5
temporary-directory configuration tag, 3-8
Thomas Register Supplier Identifier Code

System, 10-5

timer_pool_size property, 10-43, 10-80
tModel data structures, 10-2

categorizing, 10-20

creating with

UDDI Client API, 10-30
UDDI publishing tool, 10-20

destroying, 10-40, 10-63

importing, 10-40
tModel instance

creating, 10-31
tModel operations

finding, 10-12
tModellnstanceDetails instance

UDDI Client API, 10-31
TModellnstancelnfo instance

UDDI Client API, 10-32
tModellnstancelnfoKeyValidation property, 10-46,

10-80

topic-resource-ref configuration tag, 7-12
topic-subscription-name configuration tag, 7-12
transferCustody option, 10-43, 10-68
typed RPC requests, 12-1

U

UDDI Client API, 10-10, 10-28
UDDI client library
using, 10-29
UDDI publishing tool, 10-19
UDDI registration, 10-3
searches, 10-1
UDDI registry, 10-1, 10-3
adding categories, 10-15, 10-47
administration
administrative entity management, 10-39
built-in validated category
management, 10-44, 10-46
command-line tool uddiadmin.jar, 10-34
database character set, 10-49
database configuration, 10-49
import operation, 10-40
performance monitoring and tuning, 10-48
server configuration, 10-35
transport security, 10-50
user account management, 10-36

Index-6

user groups, 10-36
administration end point, 10-7
classification support, 10-4
classifications, 10-5
configuration, 10-6, 10-7
external validation, 10-47
adding category, 10-47
enabling, 10-47
removing category, 10-48
identifiers, 10-5
initialization, 10-6
inquiry SOAP end point, 10-7
listing configuration properties, 10-35
production environment configuration, 10-8
publishing SOAP end point, 10-7
publishing Web Services
using Deploy Applications Wizard, 10-13
using publishing API, 10-28
publishing Web services
using OracleAS UDDI publishing tool, 10-19
registry administration
database character set, 10-49
registry-based validation
adding tModel entity, 10-45
removing category, 10-48
replication, 10-4
replication SOAP end point, 10-7
setting operator name, 10-7
setting properties, 10-7, 10-36
standard taxonomies

1ISO3166, 10-1
NAICS, 10-1
UNSPSC, 10-1

structures, 10-2
updating published Web services
using Web Services Details window, 10-16
users, 10-36
wallet endpoint, 10-7
Web Services discovery, 10-4
using inquiry API, 10-10
using tools, 10-9
Web Services publishing, 10-4
using Enterprise Manager, 10-13
using publishing API, 10-4, 10-28
using publishing tool, 10-19
UDDI replication, 10-41
downloading configuration, 10-42, 10-63
enable update journal, 10-42
enabling, 10-41
enabling scheduling, 10-42
error handing, 10-43
number of threads, 10-43
scheduler, 10-43
scheduler status, 10-43
starting and stopping, 10-42
uddiadmin.jar
registry administration command-line tool, 10-34
UddiClient
closing instance, 10-32
creating query, 10-33

initializing, 10-10
initializing instance, 10-29, 10-32
instance, 10-29
UddiElementFactory instance
UDDI Client API, 10-11, 10-29, 10-30
United Nations Standard Products and Services
Codes (UNSPSC), 10-4
Universal Discovery Description and Integration
(UDDI)
see UDDI
UNSPSC taxonomy, 10-4
untyped RPC requests, 12-1
update journal
for UDDI replication, 10-42

uploadReplicationConfiguration option, 10-42, 10-68

uri configuration tag, 3-9, 4-8, 5-5, 6-9, 7-12
user management for UDDI registry, 10-36
users

default for UDDI registry, 10-6

for UDDI registry, 10-36
uUuID

generating, 10-5

\Y
validate_values SOAP Web service, 10-47
validation
external, 10-47

adding category, 10-47

enabling, 10-47

removing category, 10-48
w

walletLocation property, 10-42, 10-81
wallets
endpoint for UDDI, 10-7
location for UDDI, 10-42, 10-81
password for UDDI replication, 10-42
Web Services
Bean support, 3-5,4-4
client-side proxies, 8-2, 8-7
packageName request parameter, 8-4
discovering, 10-9
document style
deploying, 6-11
interface, 6-5
null value for Element, 6-2
stateful, 6-3
stateless, 6-3
encoding parameters, 3-11
encoding results, 3-11
generating client proxies, 8-5, A-6
generating WSDL documents, 9-3, A-7
home page, 8-2
Java Bean support, 3-5, 4-4
java class
deploying, 3-6, 3-11
interface, 3-4
preparing, 3-6

stateful, 3-2
stateless, 3-2
supported parameter types, 3-5
supported return value types, 3-5
supported types, 3-3
JMS
deploying, 7-13
preparing an EAR file, 7-13
locating, 8-1
PL/SQL stored procedures, 5-2
deploying, 5-9
preparing an EAR file, 5-8
setting up datasources, 5-8
proxies, 8-7
publishing, 10-13
publishing using Enterprise Manager, 10-13
serializing parameters, 3-11
serializing results, 3-11
stateless session EJBs, 4-1
bean code, 4-3
deploying, 4-6,4-9
developing web services, 4-2
error handling, 4-4
home interface, 4-2,4-3
preparing, 4-6
remote interface, 4-2
returning results, 4-4
sample code, 4-1
supported parameter types, 4-4
supported return value types, 4-4
test page, 8-2
updating published, 10-4
WSDL descriptions, 8-2, 8-5

Web Services Description Language (WSDL), 10-2
Web Services registry

see UDDI registry

WebServicesAssembler

DTD, 9-6

running, 9-1

sample input file, 9-1

sample output, 9-2

tag
class-name, 3-9, 6-8
connection-factory-resource-ref, 7-10
context, 3-7
db-pkg-name, 5-5
db-url, 5-5
description, 3-7
destination-path, 3-7
display-name, 3-7
ejb-name, 4-8
ejb-resource, 3-9, 4-8
interface-name, 3-9, 6-8
jar-generation, 5-5
java-resource, 3-9, 6-8
jms-delivery-mode, 7-10
jms-doc-service, 7-10
jms-expiration, 7-10
jms-message-type, 7-10
jms-priority, 7-11

Index-7

message-style, 3-9, 6-9
method-name, 5-5
operation, 7-11
option name="force", 9-4
option name="httpServerURL", 9-4
option name="include-source", 8-6
option name="packagelt", 9-4
option name="source-path”, 3-7
option name="wsdl-location”, 8-6
option package-name, 8-6
path, 4-8
prefix, 5-5
proxy-dir, 8-6
queue-resource-ref, 7-11
receive-timeout, 7-11
reply-to-connection-factory-resource-ref, 7-11
reply-to-queue-resource-ref, 7-12
reply-to-topic-resource-ref, 7-12
schema, 5-5
scope, 3-9,6-9
session-timeout, 3-9, 6-9
stateful-java-service, 3-8, 6-8
stateless-java-service, 3-8, 6-8
stateless-session-ejb-service, 4-7
stateless-stored-procedure-java-service, 5-3
temporary-directory, 3-8
topic-resource-ref, 7-12
topic-subscription-name, 7-12
uri, 3-9, 4-8, 5-5, 6-9, 7-12
wsdl-dir, 9-4
WSDL file, 9-5
writerXmlWriter instance
UDDI Client API, 10-32
ws.debug property, 12-1
WSDL file
getting directly, 8-3
wsdl2java script, A-6

X

XmlWriter object
retrieving with UDDI publishing API, 10-32
UDDI Client API, 10-12

Index-8

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Web Services Overview
	What Are Web Services?
	Understanding Web Services
	Benefits of Web Services
	About the Web Services e-Business Transformation
	About Business Transformation with Web Services
	About Technology Transformation with Web Services

	Overview of Web Services Standards
	SOAP Standard
	Web Services Description Language (WSDL)
	Universal Description, Discovery, and Integration (UDDI)

	SOAP Message Exchange and SOAP Message Encoding
	SOAP Message Components
	Working With RPC Style SOAP Messages
	Working With Document Style SOAP Messages

	2 Oracle Application Server Web Services
	Oracle Application Server OC4J (J2EE) and Oracle SOAP Based Web Services
	Oracle Application Server Web Services Standards
	Oracle Application Server Web Services Features
	Developing End-to-End Web Services
	Deploying and Managing Web Services
	Using Oracle JDeveloper with Web Services
	Securing Web Services
	Aggregating Web Services

	Oracle Application Server Web Services Architecture
	About Servlet Entry Points for Web Services
	What Are the Packaging and Deployment Options for Web Services
	About Server Skeleton Code Generation for Web Services

	Understanding WSDL and Client Proxy Stubs for Web Services
	Overview of a WSDL Based Web Service Client
	Overview of a Client-Side Proxy Stubs Based Web Service Client

	Web Services Home Page
	About Universal Description, Discovery, and Integration Registry
	Oracle Enterprise Manager Features to Register Web Services

	3 Developing and Deploying Java Class Web Services
	Using Oracle Application Server Web Services With Java Classes
	Writing Java Class Based Web Services
	Writing Stateless and Stateful Java Web Services
	Building a Sample Java Class Implementation
	Defining a Java Class Containing Methods for the Web Service
	Defining an Interface for Explicit Method Exposure
	Writing a WSDL File (Optional)

	Using Supported Data Types for Java Web Services

	Preparing and Deploying Java Class Based Web Services
	Creating a Configuration File to Assemble Java Class Web Services
	Adding Web Service Top Level Tags
	Adding Java Stateless Service Tags
	Adding Java Stateful Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Java Class Web Services
	Deploying Java Class Based Web Services

	Serializing and Encoding Parameters and Results for Web Services

	4 Developing and Deploying EJB Web Services
	Using Oracle Application Server Web Services With Stateless Session EJBs
	Writing Stateless Session EJB Web Services
	Defining a Stateless Session Remote Interface
	Defining a Stateless Session Home Interface
	Defining a Stateless Session EJB Bean
	Returning Results From EJB Web Services
	Error Handling for EJB Web Services
	Serializing and Encoding Parameters and Results for EJB Web Services
	Using Supported Data Types for Stateless Session EJB Web Services
	Writing a WSDL File for EJB Web Services (Optional)

	Preparing and Deploying Stateless Session EJB Based Web Services
	Creating a Configuration File to Assemble Stateless Session EJB Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Session EJB Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler To Prepare Stateless Session EJB Web Services
	Deploying Web Services Implemented as EJBs

	5 Developing and Deploying Stored Procedure Web Services
	Using Oracle Application Server Web Services with Stored Procedures
	Writing Stored Procedure Web Services
	Preparing Stored Procedure Web Services
	Creating a Configuration File to Assemble Stored Procedure Web Services
	Adding Web Service Top Level Tags
	Adding Stateless Stored Procedure Java Service Tags
	Adding Stateless Stored Procedure Java Service Using Jar Generation
	Adding Stateless Stored Procedure Java Services Using a Pre-generated Jar

	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Stored Procedure Web Services
	Setting Up Datasources in Oracle Application Server Web Services (OC4J)

	Deploying Stored Procedure Web Services
	Limitations for Stored Procedures Running as Web Services
	Supported Stored Procedure Features for Web Services
	Unsupported Stored Procedure Features for Web Services
	Database Server Release Limitation for Boolean Use in Oracle PL/SQL Web Services
	TIMESTAMP and DATE Granularity Limitation
	LOB (CLOB/BLOB) Emulated Data Source Limitation

	6 Developing and Deploying Document Style Web Services
	Using Document Style Web Services
	Writing Document Style Web Services
	Supported Method Signatures for Document Style Web Services
	Passing Null Values for Document Style Web Services
	Arrays of Elements

	Writing Stateless and Stateful Document Style Web Services
	Writing Classes and Interfaces for Document Style Web Services
	Defining Methods in a Document Style Web Service
	Defining an Interface for Explicit Method Exposure
	Handling Messages for Document Style Web Services

	Preparing Document Style Web Services
	Creating a Configuration File to Assemble Document Style Web Services
	Adding Web Service Top Level Tags
	Adding Java Service Tags with Document Message Style Specified
	Adding Stateful Document Style Java Service Tags
	Adding Stateless Document Style Java Service Tags

	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With Document Style Web Services

	Deploying Document Style Web Services

	7 Developing and Deploying JMS Web Services
	JMS Web Services Overview
	Using JMS Web Services
	JMS Web Services Backend Message Processing
	Using an MDB for Message Processing
	Using a JMS Client for Message Processing

	Writing JMS Web Services and Handling Messages
	Using an MDB for Backend Message Processing
	Developing the MDB that Processes Incoming Messages
	Developing the MDB that Generates Outgoing Messages
	Compiling and Preparing the MDB EJB.jar File
	Assembling the JMS Web Service With the MDB
	Defining the Server-Side Resource References

	Using a JMS Standalone Program for Backend Message Processing
	Message Processing and Reply Messages

	Preparing and Configuring JMS Web Services
	Creating a Configuration File to Assemble JMS Web Services
	Adding Web Service Top Level Tags
	Adding JMS Doc Service Tags
	Adding WSDL and Client-Side Proxy Generation Tags

	Running WebServicesAssembler With JMS Web Services

	Deploying JMS Web Services
	Limitations for JMS Web Services

	8 Building Clients that Use Web Services
	Locating Web Services
	Getting WSDL Files and Client-Side Proxy Jars for Web Services
	Using the Web Service Home Page to Save WSDL and Client Side Proxies
	Limitations for Web Service Test Pages

	Getting Web Service WSDL and Client-Side Proxies Directly
	Getting WSDL Service Descriptions
	Getting Client-Side Proxy Jar and Client-Side Proxy Source Jar
	Getting Client-Side Proxy Jar and Client-Side Proxy Source by Package

	Generating Client-Side Proxies With WebServicesAssembler

	Working with Client-Side Proxy Jar to Use Web Services
	Setting the Web Services Proxy Client CLASSPATH
	Using Java Beans as Parameters for Web Services
	Using Web Services Security Features

	Working with WSDL Files and Oracle JDeveloper to Use Web Services

	9 Web Services Tools
	Running the Web Services Assembly Tool
	Web Services Assembly Tool Configuration File Sample
	Web Services Assembly Tool Configuration File Sample Output

	Generating WSDL Files and Client Side Proxies
	Generating and Assembling WSDL Files
	Manually Producing a WSDL File

	Generating Client-Side Proxies with WSDL

	Web Services Assembly Tool Configuration File Specification
	Web Services Assembly Tool Limitations

	10 Discovering and Publishing Web Services
	Understanding a UDDI Registry
	UDDI Registry Data Structure

	Introducing OracleAS UDDI Registry
	Support for Standard Classification and Identifier Systems
	UUID Generation

	Getting Started with OracleAS UDDI Registry
	Configuring OracleAS UDDI Registry
	Modifying Properties at Installation or First-Use
	Considerations in a Production Environment

	Web Services Discovery
	Using the OracleAS UDDI Registry Searching and Browsing Tool
	Using Other Tools to Discover Web Services
	Using the OracleAS UDDI Registry Inquiry API

	Web Services Publishing
	Using Oracle Enterprise Manager for Web Services Publishing
	Publishing Web Services Using the Deploy Application Wizard
	Updating Published Web Services in OracleAS UDDI Registry

	Using the OracleAS UDDI Registry Publishing Tool
	Using the OracleAS UDDI Registry Publishing API

	OracleAS UDDI Registry Administration
	Using the Command-Line Tool uddiadmin.jar
	Configuring the Server
	Managing Users
	Enforcing Quotas
	Updating the Limits of a Quota Group
	Adding a New Quota Group (Advanced Operation)
	Deleting a Quota Group (Advanced Operation)
	Viewing the Lists of Quota Groups and Their Limits
	Associating a Publisher with a Quota Group

	Managing Administrative Entities
	Importing Entities
	Setting Operational Information
	UDDI Replication
	Enabling UDDI Replication
	Transferring Custody
	Setting Properties for the UDDI Replication Scheduler
	Handling Replication Exceptions
	Advanced Configuration and Tuning for UDDI Replication

	Registry-Based Category Validation
	Adding a New Category for Registry-Based Validation
	Removing a Category from Registry-Based Validation

	External Validation
	Enabling External Category Validation
	Adding an Externally Validated Category to the Registry
	Removing an Externally Validated Category from the Registry

	Performance Monitoring and Tuning
	Data Backup and Restore Operations
	Database Configuration
	Database Character Set Should Be UTF-8
	Database Character Set and Built-in ISO-3166 Classification
	Functional Index Must Be Enabled
	Accuracy of Modified Timestamps of UDDI Entities

	Transport Security

	UDDI Open Database Support
	Microsoft SQL Server
	Script Source Directory
	Create the Database and User
	Install the Schema
	Import BUILTIN_CHECKED_CATEGORY Table Entries
	Configure OC4J to Use SQL Server

	IBM DB2
	Script Source Directory
	Create the Database and User
	Install the Schema
	Import BUILTIN_CHECKED_CATEGORY Table Entries
	Configure OC4J to Use DB2
	Create a DB2 Package
	Modify the URL for Regular Use

	Other Oracle Database (Non-Infrastructure)
	Script Source Directory
	Create the Database and User
	Populate the Validated Taxonomy Codes
	Configure OC4J to Use the Non-OracleAS Infrastructure Database

	OracleAS UDDI Registry Server Error Messages
	Command-Line Options for the uddiadmin.jar Tool
	changeOwner
	correctChangeRecord
	deleteEntity
	deleteRoleQuotaLimits
	destroyTModel
	doPing
	downloadReplicationConfiguration
	getChangeRecord
	getHighWaterMarks
	getProperties
	getRoleQuotaLimits
	getUserDetail
	getUsers
	import
	setOperationalInfo
	setProperty
	setRoleQuotaLimits
	setWalletPassword
	transferCustody
	uploadReplicationConfiguration

	Server Configuration Properties
	addressTModelKeyValidation
	assertionKeyedRefValidation
	businessEntityURLPrefix
	categoryValidation
	categoryValidationTModelKeys
	changeRecordWantsAck
	defaultLang
	externalValidation
	externalValidationTimeout
	externalValidationTModelList
	hostingRedirectorValidation
	identifierValidation
	jdbcDriverType
	maxChangeRecordsSentEachTime
	maxConnections
	minConnections
	operatorCategory
	operatorName
	pushEnabled
	pushTaskExecutionPeriod
	quotaLimitChecking
	schemaValidationUponIncomingRequests
	soapRequestAuthMethod
	soapRequestTimeout
	startMaintainingUpdateJournal
	status
	stmtCacheType
	stmtCacheSize
	taskExecutionPeriod
	timer_pool_size
	tModelInstanceInfoKeyValidation
	walletLocation

	11 Consuming Web Services in J2EE Applications
	Consuming SOAP-Based Web Services Using WSDL
	Advanced Configuration
	Known Limitations of the wsdl2ejb Utility
	Running the Demonstration
	RPC and Document Style with Simple Types Example
	Round 2 Interop Services: Base Test Suite Example

	Dynamic Invocation of Web Services
	Dynamic Invocation API
	WebServiceProxy Client
	Known Limitations

	12 Advanced Topics for Web Services
	Setting the Web Services Debugging Property ws.debug
	Untyped Request Handling Options
	SOAP Header Support
	Client Side SOAP Request Header Support
	Setting SOAP Headers in a Client-Side Proxy

	Server Side SOAP Request Header Support
	Limitations for SOAP Header Support

	A Using Oracle Application Server SOAP
	Understanding Oracle Application Server SOAP
	Apache SOAP Documentation
	Configuring the SOAP Request Handler Servlet
	Using OracleAS SOAP Management Utilities and Scripts
	Managing Providers
	Using the Service Manager to Deploy and Undeploy Java Services
	Generating Client Proxies from WSDL Documents
	Generating WSDL Documents from Java Service Implementations

	Deploying OracleAS SOAP Services
	Creating Deployment Descriptors
	Installing a SOAP Web Service in OC4J
	Disabling an Installed SOAP Web Service
	Installing a SOAP Web Service in an OC4J Cluster

	Using OracleAS SOAP Handlers
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	Using OracleAS SOAP Audit Logging
	Audit Logging Information
	Audit Logging Output

	Auditable Events
	Audit Logging Filters

	Configuring the Audit Logger

	Using OracleAS SOAP Pluggable Configuration Managers
	Working With OracleAS SOAP Transport Security
	Apache Listener and Servlet Engine Configuration for SSL
	Using JSSE with Oracle Application Server SOAP Client

	Using OracleAS SOAP Sample Services
	The Xmethods Sample
	The AddressBook Sample
	The StockQuote Sample
	The Company Sample
	The Provider Sample
	The AddressBook2 Sample
	The Messaging Sample
	The Mime Sample

	Using the OracleAS SOAP EJB Provider
	Stateless Session EJB Provider
	Stateful Session EJB Provider in Apache SOAP
	Stateful Session EJB Provider in OracleAS SOAP
	Entity EJB Provider in OracleAS SOAP
	Deployment and Use of the OracleAS SOAP EJB Provider
	Current Known EJB Provider Limitations

	Using PL/SQL Stored Procedures With the SP Provider
	SP Provider Supported Functionality
	SP Provider Unsupported Functionality
	SP Provider Supported Simple PL/SQL Types
	Using Object Types
	Deploying a Stored Procedure Provider
	Translating PL/SQL Stored Procedures into Java
	Deploying a Stored Procedure Service
	Invoking a SOAP Service that is a Stored Procedure

	SOAP Troubleshooting and Limitations
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information
	SOAP Limitations for Java Type Precedence with Overloaded Methods

	OracleAS SOAP Differences From Apache SOAP
	Service Installation Differences
	Optional Provider Enhancements
	Oracle Transport libraries
	Modifications to Apache EJB Provider
	Stored Procedure Provider
	Utility Enhancements
	Modifications to Sample Code
	Handling the mustUnderstand Attribute in the SOAP Header
	Setting the mustUnderstand Check
	How the mustUnderstand Check Works
	Differences Between Apache SOAP and Oracle SOAP for mustUnderstand

	Apache Software License, Version 1.1

	B Web Services Security
	About Web Services Security
	Configuring Web Services Security
	About Oracle Application Server UDDI Registry Security
	Protecting Oracle Application Server UDDI Registry Resources
	Oracle Application Server UDDI Registry
	Oracle Application Server Content Subscription Manager Application

	Managing and Enforcing Protected UDDI Resources
	Oracle Application Server UDDI Registry
	Oracle Application Server Content Subscription Manager Application

	Using Oracle Application Server Security Services

	Configuring UDDI Security
	Configuring the Oracle Application Server UDDI Registry
	Configuring the UDDI Content Subscription Manager
	Configuring the UDDI Client

	C Troubleshooting OracleAS Web Services
	C.1 Problems and Solutions
	C.1.1 Receiving "Unsupported Response Content Type" Error
	C.1.2 Cannot Publish Doc/Literal in JDeveloper
	C.1.3 Cannot Register Web Service
	C.1.4 UDDI Registry Screens Missing
	C.1.5 UDDI Management Screens Are Not Enabled

	C.2 Diagnosing OracleAS Web Services Problems
	C.2.1 Generating Web Services Diagnostic Messages

	C.3 Need More Help?

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

