ORACLE

Oracle® Application Server Containers for J2EE
Security Guide

10g Release 2 (10.1.2)

Part No. B14013-01

December 2004

This book gives information on writing and deploying secure
applications using OC4J.

Oracle Application Server Containers for J2EE Security Guide 10g Release 2 (10.1.2)
Part No. B14013-01

Copyright © 2003, 2004, Oracle. All rights reserved.

Primary Author: Elizabeth Hanes Perry

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Send US YOUT COMMENTS ..ottt XV
=Y = TR U OO XVii
DocumMEeNtation ACCESSIDITITYociiiiiiiie i bbb XVii
gl (] (=T AN U Lo [=T o ot TSROSO SU SRS XVii
(@ 0T U a2 o] o ST XViii
REIALEA DOCUMENTS ...ttt et s te e e beete e s be e st e s be e s bebe e beebeenbeenbenbeenseneesaeesaesaeas Xix
(0] V=T o1 1 T 1SS XX

1 Concepts
The Java 2 SECUNTY IMOTEL ...ttt ettt en e 1-1
=T 0 1S3 Lo o PSSR 1-2
ProteCtion DOMAINS.......cccviiiiieiee ettt st be e et e st sb e e ae e sresbeesbesbeesteebaebeeseesbeeseenteans 1-2
Oracle AS JAAS Provider PermisSion ClaSSEScccviviiviiiieiiesiesiesieeteesiesieeseeseeseeseeseeseesaenneens 1-3
PIINCIPALS ..t b bbb bbbttt b ettt e 1-3
ST U] o 1= £ S R 1-3
Authentication and AULNOTIZATION...........ccci ittt sre e see e e sbebe e 1-4
SecuUre COMMUNICATIONScviiiiiicii ettt st e s b te e s ae e s beste e s tebe e be e e esbeesaeneeenreareenes 1-5
SECUIE SOCKEELS LAY .. .ottt b ettt b et eb etk b bbbttt st bbbt e b e ene s 1-5
(O1=T 1) 07 1 (=T PSPPSRI 1-5
o I 1 2 TSP 1-5
1AENTItY PrOPagationc.civiiieiiiiiiice bbbttt e 1-6
Developing Secure J2EE APPHICALIONScc.viiiiiiii et eesaene e 1-6

2 Overview of JAAS in Oracle Application Server

The Oracle AS JAAS PrOVIGEL ..ottt ettt st et s ae e s beebe e s te e seesbeestebeens 2-1
(g 0NV Lo 1= g I/ o T SR 2-2
WAL IS JA A S ..ottt et he st e st et e e be et e be e s be b e eabeeteeaeesbesaeeabeeteeste e st e teenreareen 2-2
Login Module AURENTICATION..........coiiice e et ere s 2-3
0] L= OSSOSO PRSP RR 2-3
ST 1L 1SS 2-3
AAPPIICALIONS .ot bbb bbbttt e 2-4

(o] [Tl [T Vg Lo I =T ¢ T TS] T S SSSPS 2-4
XIML-BaSed EXAMIPIEcoiviiiiiieiiiiiriee bbbt bbb 2-4

JAAS FrameEWOIrK FEATUIEScciiiiieiceie ettt ettt sttt et se et e e te b e e st e sbeansesbesaeesaeetaesteeseesteestebaens 2-5

USEE IMBNAGETS ..ot b bbb s s 2-5

L0 R o IV AW N 1= 1V T g T Vo -1 PSSR 2-6
USING XIMLUSEIMEBNAGETc.eiviiiitiiiieieiiseei sttt sttt sttt sttt bbbt e 2-7
Capability Model of ACCESS CONIIOIccviiiiice e e 2-8
Role-Based AcCesS CONLIOI (RBAC) ..ottt ettt be e 2-8
(o] L= o 1T=T - Ul)Y 2-8
ROIE ACTIVALION ...t ettt ren e nn s 2-9
Changes SINCE REICASE 9.0.4c.oiiiiei bbbt 2-9

Understanding OC4J Security

a1 (o T LU o1 f o o ST 3-1
Security Considerations During Development and Deployment...........ccocoviiiie e veneennene, 3-2
(DT 7=Y o] o =] o | S 3-2
DEPIOYMIENT. ...ttt ettt b bbb bbbttt 3-2
OC4J and the OracleAS JAAS PrOVITEN ...ttt 3-2
O CA] INTEGFATION ...tttk b ekt b e bbbt bbb e er et e e bt sb e b b e anennenas 3-3

NN A N O T g Y o g =T [OSSPSR TR 3-3
AUthentication ENVIFONMENTSccoiiiiiiieiiie et ere e ere e e saesteses e esensessessenseseesnens 3-3
Enabling OracleAS Single Sign-On in J2EE APPlicatioNS.........ccccovieiicicce e 3-4
OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario..................... 3-4
Integrating the OracleAS JAAS Provider with SSL-Enabled Applications.............cccccceevvieenen. 3-5
Integrating the OracleAS JAAS Provider with Basic Authentication..........c.ccccccceveevvieeinenn, 3-5
Basic Authentication J2EE Environments: Typical SCENAriocccccvevrviinnienenneenenen, 3-6
Authentication in the J2EE ENVIFONMENT ..o e 3-6
Running with an Authenticated IAENTILY ..o 3-6
Retrieving Authentication INfOrmationc.cocco i 3-7
Authorization in the J2EE ENVIFONMENTccoiiiiiiiieeeeeee e s sre st 3-7
SECUNItY ROIE MaAPPING ..ottt ettt a e s b e ebe e s teeaeseesseesaesree s e eseeaneens 3-7
J2EE SECUITLY ROIES ..ottt e 3-8
Deployment ROIES @nNd USEIS.........coviiiiiiciiie ettt ettt s re et te e sre e aesnaens 3-8

OC4J Group Mapping to J2EE SecUrity ROIESccovviiiie e 3-8

Overall Security Configuration

Choosing the XML-Based or LDAP-Based ProVIAEr.......ccccccccveieiiiiiiie et 4-1
Locating jazn.xml, jazn-data.xml, and the <jazn> element..........cccocoeviinniniinin s 4-2
(o Tor AT a1 T V.4 0 157 1 [U 4-2
(o Tor- U AT g T T V. Bl F=1 = e o 0| IS 4-2
Locating the <jazn> @IEMENT..........cciiii e 4-2
AAMINTOOT OVEIVIEBW ...ttt ettt 4-3
AAMINTOOT Prer@QUISITESoiviiiiiiitieiit ettt 4-3
AULhenticating YOUISEITottt re et ereeaeene s 4-3
AddiNg CIUSTEFING SUPPOIT ..ottt bbbttt nbens 4-4
Specifying an Admintool LoginModule in jazn-data.Xmlcccocoviieiiiicicciic e, 4-4
Specifying An Alternate Policy Provider (Optional) ..., 4-5
Specifying Bootstrap OracleAS JAAS Provider SettingS........cccceveivii e 4-5
LIS TaalTale @] a1 B =] T8 Lo T IoTe o | 1ia o S 4-5
SPECITYING USEIIMANAGETS.cueiuiitiiteiieieiist ettt bbbt b bbb bbbttt b 4-6

SPECITYING A USEIMANAGET ...ttt ettt b bbbttt 4-6

Specifying a UserManager In orion-application.Xml...........cccccooviiiiiiiiiiiesicic e 4-6
Advanced CONFIGUIALIONccoviiiiiiii ettt sn b 4-7
Customizing RealmLoginNMOAUIE ..o 4-7
Enabling RealmLoginModule UsSing A TeXt EQItOr.........ccccviiiiiiiniiccseee e 4-8
Specifying Authentication (aUth-method) ... 4-9
Specifying auth-method in Web. XM ... s 4-9
Specifying auth-method in orion-application. XMl ... 4-9
Configuring J2EE AUNOTIZAtIONocuviiii et 4-10
Servlets, runas-mode, and doasprivileged-mMOode............cccoiriiiiiniine e 4-10
Mapping Logical RoIeS t0 SECUTILY ROIESc.eoviiiiicic e 4-11
Removing Realm Names From Authentication Principals ..., 4-11
Configuring Third-Party LDAP PrOVIUEIS ..ottt ste e 4-12
Permitting EJB RIMI CHENT ACCESSc.oouiiiiiiiiririeisese sttt 4-12
Creating @ Java 2 POLICY FIlE ...t 4-13
Using the <principals> element and principals.Xmlc.cccooiiiiiiii e, 4-13

Configuring the OC4J Instance

The Bootstrap JazN. XM FIlE. ...ttt et e ere e nre e e 5-1
Specifying LDAP CoNNECtioN PrOPertieScooiiiiiiiiiie et 5-1
Specifying LDAP JNDI Connection POOI SIZE ...ttt 5-2
Configuring LDAP CaChiNg.....cccociiiiiiicicee sttt sttt te et eeneeneeanes 5-3
Changing Session Cache DetailScccciiiiiiiiiiii e 5-3
D TEF Lo [g To T B Y A o O Tod o1 o o S 5-4
LDAP Cache CONTIGUIALION.........ciiieiiiciiert et 5-4
Configuring LDAP SSL PrOPerti€S.......cciciiiiiie ittt st s ettt na e be e e enreenes 5-6
Cho0oSiNg SSL AULNENTICALIONc.cviiiiiiiicie bbb 5-6
Configuring LDAP Default REAIM ... 5-7

Security Considerations During Application Deployment

SeIECtING 8 USEIIMBNAGET ..ottt bbb bbbt b bbbttt 6-1
MaPPING SECUMTY ROIESottt e sr e e s esreereesteeseesteeseenreans 6-1
GraNTiNG PEIMMISSIONSoviiiteieieti sttt ettt b et b et b bt b e bbbt b bt n et e ettt 6-2
Granting RMI Permission Or Administration Permission............cccccccovvievini i see s, 6-2
Granting and Revoking All Other PermiSSIONScccouiiiiiiiiineneeise e 6-2
Creating USEIS ANG GIOUPSccciiiiiieiiteetee it esie e estesteestesteassesteassessseseesaeestesteestessaesteaeessesssessesssessesnns 6-3

Configuring the LDAP-Based Provider

Preparing TO USE LDAP ..ottt bbbt bttt ettt 7-1
Creating Administrative USers and GrOUPScceiieiiiiieieeieenee e sireie e ste st sresseesne e e e snseneens 7-1
LDAP-Based Provider ENVironmMent Variablescccceoiiiiiiiiniinienieneneseneese s se s eee s 7-3

Creating LDAP USErs aNd GIrOUPS......c.coiciiiiiiieieeiteieeiteste e stesssesasessesseestestesstessaestesssessesssessesnsessesnns 7-3

Configuring the XML-Based Provider
CrEALING USEIS ittt ettt e et bbbt b e e bbbt bt et e bt bbbt b et b e 8-1

10

vi

Creating ROIES (GrOUPS)iiiiiiiiiiiiieiste ettt bbbt b bbb bbbttt 8-2

(D 1] L] A o Y=Y SRS SRR 8-2
Deleting ROIES (GFOUPS) .. .ouviiiiiitiiieiettie sttt sttt et bttt es bt eb ettt enenes 8-2
(08 =T LA Lo =T 1L o PSP 8-2
Deleting REAIMSuiiiiiii bbbttt b bbbt bbb ens 8-3
Granting PeIMISSIONSc.vciici et e et s e e sae st e e s be st e e s be e st e beenbenbeennesresneeanens 8-3
REVOKING PEINISSIONS ... ciiiiiieisce sttt et ettt e beete e aeen e aeeneeseeaneesrenreenrenes 8-3
Granting ROIES (GrOUPS).....c.uuiuiiuiiiiiirieitsei ettt bttt sttt b bbbttt 8-3
REVOKING ROIES (GrOUPS) . veiveieiiiieieeiesie sttt ste e ste et aes et seestaestesna e taese e aeansenaesneeseeaneesaenransrenes 8-4
Setting PersiStENCE IMOUTE.........ciiiii bbbt 8-4
Configuring XML Default REAIMc.cov it 8-4
Migrating Principals from the principals.Xml FIle ... 8-5

Configuring External LDAP Providers

L T (=T0 [U 1S (TSRS 9-1
Creating a <login-module> Element in jazn-data.Xml.........c.ccoooiiininiiiieee e 9-2
AN EXample LDIF DESCIIPLION ...ccoviiiiieeicce ettt ste e s esee s e e ree e 9-3
Configuring Sun Java System Application Server as LDAP Provider ..o, 9-4

SUNOINE EXAMPIE ... ettt e b e st e ebe e s teetesbeeeete e s be e e eseeeneans 9-4
Configuring Microsoft Active Directory as LDAP ProVIider ..., 9-5

Custom LoginModules

Overview of JAAS LOGIN MOGUIEScc.ooiiiece e 10-1
PrEIEOUISITES ...ttt bbbt btk bbbtk e bbbt bbbt b et b b 10-2
Configuring Dynamic ROIE MapPiNg.......cccccieiiiiiiiie e 10-2
Integrating Custom JAAS LOGINMOTUIES ..ottt 10-3
Developing a LOGINMOAUIEcc.ooiiicc et be e e ne e 10-3
Subject-based AULNOFIZATIONccoviiiece e neereens 10-3
J2EE Security AUTNOFIZALIONcoiiiiiiii bbb 10-3

(0% 1 | o - Tod 11U] o o i A OSSO PRRR 10-3
DEDUGGING TIPS 1ttt b b ettt b e bbb bbb eb et eb e b bt et eb e e b nn e nnere 10-4
(7] o8 Lo N o T o 1 T OSSPSR 10-4
Debugging LOGINMOAUIES ..ot 10-4
Adding and RemoVving LOgin MOUIESccooiiiiiieiecce et 10-4
LiSting LOGIN IMOAUIESc.ooiiiiiiiice bbb ettt 10-5
o= NG To TTa o I Vg o Il =Y o] [o 7 | T TSR 10-5
Deploying as Standard Extensions or Optional Packagesccccvvvevinierieiecie e, 10-6
Deploying Within the J2EE APPLICAtION ..ot 10-6
Using the OC4J Classloading MeChaniSmMcccviviiiiiini e 10-6
Configuring YOUr APPHICALIONccviiiiiiiicere e e 10-6
J =4 g o - U 10 o TSRS 10-7
<JAZN-IOGINCONTIG™ ..o 10-7
T2V 4 B 0 To] 03y PSR 10-7
WED.XIMT OF €JD-JAI XM ..o bbb 10-8

Lo g To] g Br=1o] o] I o= d o] o 15 d 1 o1 S TSR RPRPRPR 10-8
2 V.4 0 DRSS 10-9
<SECUNITY-TOIE-MAPPINGS ...eoviivieiiiicee ettt b et ae s 10-9

11

12

13

[0] = 1 TSSO URTR R 10-9

ocdj-ra.xml (J2EE Connector ArchiteCture ONlY).......cccooeiieiieiiiie e 10-10
Simple Login Module J2EE INtEGration ..o 10-10
(DoAY 7=Y o] o o =T o | SRS 10-10
PACKAGINGvcveitteete bbbt b bbb bbbt 10-10
[T=T o] (o)1 0 1= o | (ST 10-10
Custom LoginModule EXAMPIE ..ottt e 10-11
Configuring OC4J and SSL
Overview of SSL Keys and CertifiCates ...t 11-1
Using Keys and Certificates with OC4J and Oracle HTTP SErvercccocovvivvivnivneiesneereennnns 11-3
ST a o o] T aTe TS I 1 O 1 11-6
Configuring Oracle HTTP Server fOr SSL........covoiiie e 11-6
Requesting Client AUTNENTICALION ..o 11-8
Resolving Common SSL ProblemsS ... 11-10
Common SSL Errors and SOIULIONSoiiiiiiieneieecse e st 11-10
General SSL DEDUGQINGooviiiiie e et sae e anen 11-10
Configuring EJB Security
EJB INDI SECUITTY PrOPEITIES. .. cciiiiiiiitiieii sttt bbbt 12-1
JNDI Properties in JNAi.prOPEITIESocviiieeee e et se et e e 12-1
JNDI Properties Within Implementation............coooiiiie e 12-1
(O%0T) F o[0T a1 To JEST=TolU 1 | YRS 12-2
Granting PermiSSIONS IN BROWSENceiiiiiiiiieie ettt ettt sre e 12-2
Authenticating and Authorizing EJB Applications...........ccccoveiiiieii s 12-2
SPECITYING USEIS @NA GrOUPS.....civiviiiiiiietirieiieiestete sttt ettt b e en et nenes 12-3
Specifying Logical Roles in the EJB Deployment Descriptorcccccvvvveveiiiesienieennee. 12-4
Specifying Unchecked Security for EJB Methods..........cccocovviiviie i 12-7
Specifying the runAs Security IdeNTity ... 12-7
Mapping Logical Roles to USers and GrOUPScccvcvrriiieirerieeseneeesieeseeseseesenees e neens 12-8
Specifying a Default Role Mapping for Undefined Methods.............ccccoviiiineiicicnienen, 12-9
Specifying Users and Groups by the CHENt ..o 12-9
Specifying Credentials in EJB CHENTS........ccooi i 12-10
Credentials in INDI PrOPEITIEScc.civieieiieice et sttt 12-10
Credentials in the INIAICONTEXL.........ccccoveieiie e 12-10
Oracle HTTPS for Client Connections
Y1 0T 801§ o o PSSR 13-1
Requesting Client AUTNENTICALIONc..oiiiiiie e 13-2
Oracle HTTPS AN CHIBNTS ..ottt ettt bbb et 13-3
HTTPCONNECHION CIASS ...vvviceiieiiiveeieiete st s e sae sttt e e ereenaenes 13-3
OracleSSLCredential Class (OracleSSL ONIY).....cccciiiiiiiiiie e 13-3
Overview Of Oracle HTTPS FEATUIEScccviiiiiiiece ettt et 13-4
SSL ClHPRNET SUILES ...ttt bttt b e e 13-5
Choosing @ CIPREIr SUILEoiiiiccice et et e e 13-5
SSL Cipher Suites Supported by OracleSSL.........ccooiiriiiiniecee e 13-5

Vii

SSL Cipher Suites SUPPOrted DY JSSE ..o e 13-6

Access Information About Established SSL CONNECLIONS..........ccccuveiiineiicinc e 13-6
Security-Aware APPlICatioNS SUPPOIt........cciiiiiiiiie et 13-6
java.net.URL FramewWOrK SUPPOIT........cooiiiieicccce e sttt sre e e 13-7
Specifying Default SYStem ProPerties ...t e 13-7
[T T =] S B A=) Y2 (o (=SS 13-7
JaVaxX.Net.sSLLKEYSTOrEPaSSWOIU.cccveiiece ettt 13-8
Potential Security Risk with Storing Passwords in System Properties.........c.cccocvevnnene. 13-8
Oracle.ssl.defaultCipherSuites (OracleSSL ONIY) ..o i 13-8
Oracle HTTPS EXAMIPIE....c.o ittt ettt nnene s 13-8
Initializing SSL Credentials 1IN OracleSSL ..o 13-10
Verifying Connection INFOrMAtioN ...t 13-10
Transferring Data UsSiNng HTTPS ..o 13-11
USING HTTPCHENT WItN JSSE ..ottt e 13-11
Configuring HTTPCHENT TO USE JSSEc.ovoiiiiiie ettt s 13-12

14 Password Management

a1 (o To 111 f o o 1TSS 14-1
Password Obfuscation In jazn-data.xml and jazn.Xmlc..ccccoeiiiieiiiiieieccc e, 14-1
Hand-editing Jazn-data. XMl ... e 14-2
Creating AN INAIreCt PASSWOIU........c..ociiiiie et sttt be et sre e e anes 14-2
Indirect Password EXamMPIESccvcieiie et nnes 14-3
Specifying a UserManager In application.Xml..........ccooiiiiiiiiniiiinee e 14-3

15 Configuring CSIv2

Introduction to CSIV2 SECUTNItY PrOPEITIESccccooiviiiiiiiiiieeees et 15-1
EJB Server Security Properties in internal-settings.Xml...........ccccccooeiiiiiiiciccc e, 15-2
CSIv2 Security Properties in internal-settingS.Xmlc.cocooiiiiiiiiecis e 15-3
CSIv2 Security Properties in ejb_SeC.proPerties ..ot 15-4
TrUSt REIALIONSNIPS ...viiieiceiice ettt e st e e sne e e sneeraennees 15-4
CSIv2 Security Properties in orion-ejD-JarXml ... 15-5
The <transport-Config> €leMENTcccoov i e 15-5
The <as-CONEXE> BIEMENT ..ottt 15-5
The <SaS-CONTEXE> CIEIMENTc.iiiiiie bbb 15-6
N I TSRS 15-6

EJB Client Security Properties in €jb_SEC.PrOPErtiesccccovviiiiiieiiieieeie e 15-7

16 J2EE Connector Architecture Security

Deploying RESOUICE AQAPTEIS......cviiiiiiiirii e bbbttt 16-1
I e o TR o g] B D 1= o] o) (] SR 16-1
The <security-config> EIBMENT.........cccoiviiiiie et 16-2

The 0c4j-coNNECLOrS. XMI DESCIIPIONc.viii e re e 16-3
Specifying Container-Managed or Component-Managed Sign-OnNcccccevevvevvneeneeienneenn 16-4
Authentication in Container-Managed SigN-ON ...t 16-5
JAAS Pluggable AUTNENTICAtION..........ccceiiieiiee e 16-5
The InitiatingPrincipal and InitiatingGroup Classes. ..o 16-6

viii

17

18

19

JAAS and the <connector-factory> Element ... 16-6

User-Created Authentication CIASSES ...t s 16-7
Extending AbstractPrinCipalMappingccccoeoeiiiiniiesee e 16-9
MOiIfYING OCAJ-TAXIMI ...ooiiiiice e re et be e e ra e ee e 16-11
Security Support for EIS Connections
Overview of Security and Authentication Setup for EIS Connectionscccooveneiinnennenen. 17-1
Summary of J2EE Connector Architecture Security Contract...........cccccovvveiveiieicie i 17-1
Summary of Component-Managed Versus Container-Managed Sign-Onc.ccovevnee. 17-3
Understanding Component-Managed Sign-ON.........ccccociiiiiiiieiin i 17-4
Understanding Container-Managed SIgN-ON ... 17-5
Using Declarative Container-Managed SignN-ON..........ccccooiiiiiiiin i 17-7
Using Programmatic Container-Managed SignN-ONccccovviiiiicieniee s e 17-9
Using a Principal Mapping Class ..o 17-9
Understanding the PrincipalMapping Interface APIS.........ccocvvviivvcie i 17-10
Extending the AbstractPrincipalMapping Class ..., 17-10
Configuring a Principal Mapping Class ..o e 17-13
USING @ JAAS LOGIN MOAUIE ..o s 17-13
OC4J Support for Groups in Programmatic Container-Managed Sign-0Onccccoc....... 17-13
Troubleshooting Security Issues
LOCALING JAZNXIMI .ot b bbbt bbb ea bbbt 18-1
JAZIN AGMINTOON ...t bbbt b ettt ettt b et n b b e 18-2
CUSTOM LOGINMOAUIES ..ottt b e et b e e 18-2
Subject-Based AULNOFIZALIONc..coiiiiie e r e sre e saeeenes 18-2
J2EE SECUNItY INTEGIAtIONiviiiiiiiiie bbbttt 18-2
LDAP-BaSed PrOVIAEN ISSUEScc.iiiiiiiiiiiiieieieiee ettt sttt bbb bt se et bene e nns 18-3
Checking JAZN-LDAP ConfigUrationccccccveiieiiiieiie e s sreesaeeaens 18-3
Enabling and Disabling Cachingcccoiiiiiiiiieieee e 18-3
Servlets, runas-mode, and doasprivileged-MOde...........cccvevviiieiicie s 18-3
Creating REAIMS.......oi bbb bbb b ettt b 18-3
Removing Realm Names From PrinCIPalS.........cccoviiiiiiiic e 18-4
SPECITYING the JAAS PrOVIAETocuiiiiici e 18-4
Security Tips
o I I I TSSOSO 19-1
OVEIAIT SECUITLY ..ottt ettt bt bbbt bbb b bbbt b b 19-2
JAAS e h bt R R b £ R AR R b £ Rt R R R Rt E Rt AR Rt R bRt e bt enes 19-2
OracleAS JAAS Provider Standards and Samples

Sample JazN-data. XMl COOE..........cooiiiiiree bbbt A-1
MOdifyiNg USEI PEIrMMISSIONScviiiiciiiii ettt sttt ettt e e e saesteesteteentaereenseenseneas A-6
Modifying User PermiSSioNs COUEciiiiiiiiiiiiesieit ettt A-6

Discussion Of SAMPIE COUEociiiiiiiie et a e te et eereeeeaneaaesneeneeas A-8

B Using the JAZN Admintool

Authentication and the JAZN Admintool (XML-based Provider Only)ccccovvviicinnicnnnnnn, B-2
JAZN Admintool Command-Lineg OPLiONS........ccccccieiiiiiiicie et B-2
R/ 41 €= TP PP P PR TPTPPUPPPPRPON B-3
Admintool Authentication (XML-based Provider ONly).........cccccoiiiniinninnciicnnens B-3
CIUSTENING OPEIAtIONSeiciieie ettt te e te e es e st e st e sreestesaeesreeseeseeaneeseenneens B-3
CoNFIGUIAtioN OPEIALIONS.c.iiitiiiiiiiiieit et bbbt B-3
INTEraCtiVe SNEIL.... ..o bbb B-3

LOGIN IMOTUIES. ..ottt b et b et bbbt B-3
MiIgration OPEIALIONSc.cciiiiiiiiie ettt e e st et e e te e s b e s taeneesneeseesneennes B-3
IMISCEITANEOUS ...ttt sttt eete s e st st e etens e ee s e naeraenseneenee s B-3
Password Management (XML-based Provider only)c.cccoeiiiiiiiicie e B-4

(0] 110y Y@ o T=] LA o o LSS B-4

REAIM OPEIALIONSevivieieeeieet ettt bbbttt b b b es B-4
Adding and Removing Policy Permissions (XML-based Provider Only)........cccccoovvvviveveinenn. B-5
AddIiNG CIUSTENTNG SUPPOIT.c.viiiiiiiiitiiiieeiet ittt b bbbt B-5
Adding and Removing Login Modules (XML-based Provider Only)cccocoeviviiieiieniiinnnnnns B-6
Adding and Removing Principals (XML-based Provider Only)........ccocovviinniniinninennee B-7
Adding and RemMOVING REAIMS..........coo it re e e re e e B-7
Adding and Removing Roles (XML-based Provider ONnly) ... B-8
Adding and Removing Users (XML-based Provider ONly) ... B-8
Checking Passwords (XML-based Provider ONlY) ..o B-9
ConfigUration OPEIALIONSooiiiiiiiiitii ettt eb et b e et sn e nnebe e B-9
Granting and ReVOKING PEIMISSIONSc.ciiiiiiiiiiieiieir et a e be e ae s e sreanee e B-9
Granting and ReVOKING ROIES ..ot B-10
LiSting LOGIN IMOAUIESooiiee ettt e st e et ta e be e e ereens B-10
LISTING PEIMISSIONS ...ttt bbbt bttt bbbttt B-11
Listing Permission INTOrMationcccui i B-11
LisSting PrinNCIPal CIASSESccoouiiiiiiiiiiiies ettt e B-12
Listing Principal Class INTOrmationccco i B-12
LISTING REAIMS ...t e s et e e et et eat e be et e nteeaesaeeaestenreens B-12
LISTING ROIES ...ttt bbbt bt ettt B-13
TS T T O ES = OSSR OSPRPR B-13
Migrating Principals from the principals.Xml File ... B-13
Setting Passwords (XML-based Provider 0Nnly)........ccccoviiiiiii i B-14
Using the JAZN AdmIntool Shell ... e B-15
Navigating the JAZN Admintool Shell...........c.ooooii e B-15
add: Creating Provider DAtaccocoeiiiiiniee e B-15

cd: Navigating Provider Datacccccvoiiii ittt B-15

clear: Clearing the SCIEEM.........ccii it se e e ereesreas B-15

exit: EXiting the JAZN Shell.........ccoooi e B-16

help: Listing JAZN Admintool Shell ComMmands...........cccoooeviiieniii e B-16

IST LESTING DALA.cvcieieetiieeie ettt bbbt b bt et eb et B-16

man: Viewing JAZN Admintool Man PagesSccccveiieieiierieie e sesee e e B-16

pwd: Displaying The WOrking DireCtOrYccuiriiiiiniieeinesneese s B-16

rm: ReEMOVING ProVider Data.........cccociiiiiiie ettt B-16

SEt: UPAating VAIUES........ccoiieiiie bbb B-17

Index

Admintool Shell Directory Structure

Xi

List of Examples

Xi

9-1
9-2
10-1
10-2
10-3
10-4
11-1
12-1
13-1
17-1
17-2
A-1
A-2

Sample LDIF Defining A User and ROIE ..o e 9-3
JAAS LoginModule Configuration Corresponding To Example 9—1..........cccccevivinvennnane, 9-4
Example jazn-1oginconfig €leMENT ..ot 10-7
Example jazn-policy ElEMENT ..ot 10-8
SamMpPleLoginMOAUIE.JAVAc.cviiiiiicicce e 10-11
SamplePrinCipal eXamPIe ..o 10-18
Creating an SSL Certificate and Configuring HTTPS........cccooiiiiiniiineeeeee 11-6
Mapping Logical Role to AcCtUal ROIE..........ccoiiiiiicec e 12-8
UsSIiNg JSSE With HTTPCHENT ..ot 13-12
The <res-auth> EIEMENT ... e 17-6
Extending AbstractPrinCipalMappingccccoeieiiiiiiiiiciire e 17-12
Sample jazn-data. XMl Fil.........ccoiiiiii e A-1
MOdifying USEr PEIMISSIONSciiviiiieiiiieiiiieiieie ettt er e ettt sbe e nn i A-6

List of Figures

1-1 JAVA 2 SECUTILY IMOAEL.......eiiiiicce et see e e ra e 1-2
1-2 Identity Propagation USING CSIV2.........ccooiiiiiiiieiieese et 1-6
2-1 OC4J Security Architecture Under the JAZNUserManager Class.........ccocoovevenveincrnienn. 2-7
2-2 Role-Based ACCESS CONTIOL.........couiiiiiiii ittt eb e 2-8
3-1 OracleAS Single Sign-On and J2EE ENVIFONMENTScccoiiiiinieneeiseneree e 3-4
3-2 Oracle Component Integration In SSL-Enabled J2EE ENVironments............ccccovevvviernenn. 3-5
3-3 Oracle Component Integration in j2ee ENVIrONMENT.........c.cocovv i iicie e 3-5
12-1 ROIE MAPPING ottt bbb bbbt bbbttt n e 12-3
122 SECUITLY MAPPING .. ittt bbbt bbb bbb bbb en et b 12-4
G R 1= Yot U] Y \Y, F=1 o] o 1 o USSP 12-9
17-1 Flow Chart of Choices for OC4J Container-Managed Sign-Onccccceoineneiinniennenen. 17-4
17-2 Component-Managed SigN-OMN ... 17-5
17-3 Container-Managed SigN-ONcccoeiiiiiiiiieie et sbe e be e sresnesne s 17-6
B—1 JAZN Shell DIireCtOry SIIUCTUIEcooiiiiiiiiieisie st B-17
B-2 Hlustrated Shell DIreCtory StFUCTUIEccocciviiriiee e B-18

xiii

List of Tables

1-1 Java Permission INStance EIBMENTS ..ot 1-2
1-2 OracleAS JAAS Provider Permission ClasSes........cocoieiriiiiiieiniesiniese e 1-3
2-1 POLICY File Parameterscccvo ittt ettt ne e neste e neeees 2-4
2-2 Oracle AS JAAS Provider FEAtUIESccccciiiiiiieie ittt e e 2-5
2-3 OC4J User Managers AN REPOSITONIES.couiiriiiriiriiieiieisieii et 2-6
2-4 USEE PEIMNISSIONS ...ttt ettt bt bbbt b ettt b et eb e b b eneer e e 2-8
2-5 Dynamic Library Path SEttiNgSccciii it 2-9
4-1 USEIMANAGET TGSciiuiiiiiiiie it 4-7
4-2 RealmLoginMOodule OPLIONS.ccvoiiiiiee ettt e esreanneane s 4-8
4-3 Values for auth-method in Web.XM..........cocooiiiiii e 4-9
4-4 runas-mode and doasprivileged-mode SEttingsccoovereiriiiinne e 4-11
4-5 Elements in prinCipalS. XMl ..o 4-14
5-1 (DY N e OfoT o] o 1-Te1 £ o] g I o o] o 1=T i A =TSSR 5-1
5-2 LDAP JNDI Connection POOI PrOPEITIES..........cciiiiieerieie et 5-2
5-3 LDAP CaChe PrOPEITIES . .ovveiiciiceiiciieie st st s ettt et e st s e sne e aesaeesaeteenaesnennaenrenns 5-5
5-4 Values For <property> Element of <jazn> Tagcccccvviiiiiiieiiiie e 5-6
9-1 LoginModule Provider OPLIONScccoeiiiiiienieiieesieie e et 9-2
9-2 LOgIiNMOAUIE USEE OPLIONS.....ciiiiieieiieiiie ettt ese e snesraesreeseesreeeens 9-2
9-3 (WoTo T a]Y oTe [U] L=l = o] [T @] o] d o] o 1SS 9-3
10-1 LoginModule CoNtrol FIAGScovciiiiiiiicicriee s 10-4
13-1 Cipher Suites SUpPPOrted BY OracCleSSLcccoviiiiiiiiie e 13-5
13-2 Cipher Suites SUPPOItEd BY JSSEcooiiioiiii ettt 13-6
15-1 EJB Server SECUNILY PrOPEITIESccooi ittt 15-2
15-2 EJB ClieNnt SECUNILY PrOPEITIES.....cccviie ettt ettt ste sttt ve e 15-7
17-1 Properties for Declarative Container-Managed Sign-On..........ccccocevvviviiiiieve e, 17-8
17-2 Method Descriptions for PrincipalMapping Interfacecccocoveiinninciiiienee 17-10
17-3 Method Descriptions for AbstractPrincipalMapping CIassccccccoocvviviieiieniesnennnn, 17-11
A-1 Objects In Sample Modifying User Permissions Code...........ccccoveveiieniie e A-6
B-1 LoginModule CONLIOL FIAGScoviiiiiiiiiiitece s B-6

Xiv

Send Us Your Comments

Oracle Application Server Containers for J2EE Security Guide, 10g Release 2
(10.1.2)

Part No. B14013-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com
« FAX:650-506-7225. Attn: Oracle Containers for Java Documentation
« Postal service:

Oracle Corporation

Attention: Java Platform Group, Information Development Manager
500 Oracle Parkway 40P978

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XV

XVi

Preface

This manual discusses how to make effective use of the Oracle Application Server
Containers for J2EE (OC4J) security features.

This preface contains these topics:
« Documentation Accessibility
« Intended Audience

« Organization

« Related Documents

« Conventions

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at:

http://ww. oracl e.com accessibility/

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Intended Audience

This manual is intended for experienced Java developers, deployers, and application
managers who want to understand the security features of OC4J. It discusses the
Oracle Application Server Java Authentication and Authorization Service (JAAS)
Provider in detail, as well as discussing security implications of individual J2EE
features, including EJBs, the J2EE Connector Architecture, SSL, and CSIv2.

XVii

Organization

Xviii

This document contains:

Chapter 1, "Concepts"—Concepts fundamental to application security.

Chapter 2, "Overview of JAAS in Oracle Application Server"—The Java
Authentication and Authorization Service (JAAS) and the OracleAS JAAS
Provider.

Chapter 3, "Understanding OC4J Security"—Security issues affecting J2EE
applications in Oracle Application Server Containers for J2EE (OC4J).

Chapter 4, "Overall Security Configuration"—Security configuration decisions that
affect your entire installation.

Chapter 5, "Configuring the OC4J Instance"—Security configuration decisions that
are instance-specific.

Chapter 6, "Security Considerations During Application Deployment"—Security
configuration decisions that occur during the deployment process.

Chapter 7, "Configuring the LDAP-Based Provider"—Security configuration
decisions that are applicable only to the LDAP-based provider.

Chapter 8, "Configuring the XML-Based Provider"—Security configuration
decisions that are applicable only to the XML-based provider.

Chapter 9, "Configuring External LDAP Providers"—Using third-party LDAP
implementations with the OracleAS JAAS Provider.

Chapter 10, "Custom LoginModules"—User-developed JAAS LoginModules.

Chapter 11, "Configuring OC4J and SSL"—Configuring OC4J to use SSL in
communicating with other application components.

Chapter 12, "Configuring EJB Security"—Security implications of EJB
development.

Chapter 13, "Oracle HTTPS for Client Connections"—HTTPS and HTTPClient.

Chapter 14, "Password Management"—Protecting file-stored passwords with
obfuscation.

Chapter 15, "Configuring CSIv2"— Common Secure Interoperability Version 2
protocol (CSlv2) settins for OC4J-based applications.

Chapter 16, "J2EE Connector Architecture Security"—Security implications of the
J2EE Connector Architecture.

Chapter 17, "Security Support for EIS Connections"—J2EE Connector Architecture
security and EIS connections.

Chapter 18, "Troubleshooting Security Issues"—Common security problems and
how to fix them.

Chapter 19, "Security Tips"—Security best practices.

Appendix A, "OracleAS JAAS Provider Standards and Samples"—A sample
j azn. xm file and sample applications.

Appendix B, "Using the JAZN Admintool"—Reference guide for JAZN
Admintool.

Related Documents

For more information, see these Oracle resources:

Oracle Application Server Security Guide

Oracle Application Server Administrator’s Guide

Oracle Identity Management Concepts and Deployment Planning Guide
Oracle Application Server Certificate Authority Administrator’s Guide
Oracle Application Server Single Sign-On Administrator’s Guide
Oracle Internet Directory Administrator’s Guide

Oracle Internet Directory Application Developer’s Guide

Oracle Application Server Containers for J2EE Services Guide

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
Oracle Application Server Web Services Developer’s Guide

The OC4J Javadoc

Printed documentation is available for sale in the Oracle Store at:

http://oracl estore. oracl e. com

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at:

http://ww. oracl e. com t echnol ogy/ menber shi p/ i ndex. ht ni

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at:

http: //ww. oracl e. com t echnol ogy/ i ndex. ht m

For additional information, see:

The Sun Java and J2EE Web pages, especially the Java Authentication and

Authorization Service (JAAS) Web site at :

http://java. sun.com product s/j aas/ overvi ew. ht m

XiX

Conventions

The following conventions are also used in this manual:

XX

Convention

Meaning

boldface text

italic text

[]

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

Italicized text indicates placeholders or variables for which you must
supply particular values.

Brackets enclose optional clauses from which you can choose one or
none.

1

Concepts

This chapter describes the following topics:

The Java 2 Security Model
Principals

Subjects

Authentication and Authorization
Secure Communications

Developing Secure J2EE Applications

For a broader description of Oracle Application Server security in middle-tier
environments that connect to the Internet, see the Oracle Application Server Security
Guide. For information on Web services, see the Oracle Application Server Web Services
Developer’s Guide.

The Java 2 Security Model

The Java 2 Security Model is fundamental to the OracleAS JAAS Provider.The Java 2
Security Model enables configuration of security at all levels of restriction. This
provides developers and administrators with increased control over many aspects of
enterprise applet, component, servlet, and application security. The Java 2 Security
Model is capability-based and enables you to establish protection domains, and set
security policies for these domains.

See Also: For a tutorial on Java 2 Security, see

http://java. sun. conl docs/ books/tutorial/securityl.
2/ i ndex. ht m . For full information on Java 2 Security, see
http://java. sun.com security.

Concepts 1-1

The Java 2 Security Model

Permissions

Permissions are the basis of the Java 2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission represents a
specific access to a particular resource. Table 1-1 identifies the elements that comprise
a Java permission instance.

Table 1-1 Java Permission Instance Elements

Element Description Example
Class name The permission class java.io. FilePermn ssion
Target The target name (resource) to which Directory / hone/ *

this permission applies

Actions The actions associated with this target Read, write, and execute permissions
on directory / hone/*

Protection Domains

Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group of
permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call to
either:

« SecurityManager. checkPerm ssion()
= AccessControll er.checkPermn ssion()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 1-1 shows the basic model for authorization checking at runtime.

Figure 1-1 Java 2 Security Model

AC class Security Policy
Filz class Protection Domain A

.) - (with read / write permissions
b. class . Domain A > Parmissions > on a like named salkaries)

a.class |l oo B F— ormissions ™™= protection Domain B

(with resad only parmissions
on a file named salarias)

See Also:
« Chapter 4, "JAAS Provider Administration Tasks"

« SunlJava documentation at
http://java. sun. com security/

1-2 Oracle Application Server Containers for J2EE Security Guide

Subjects

OracleAS JAAS Provider Permission Classes

Table 1-2 lists the permission classes furnished by the OracleAS JAAS Provider. These
classes allow applications to control access to resources. For information about the
classes discussed, see the OracleAS JAAS Provider Javadoc.

Table 1-2 OracleAS JAAS Provider Permission Classes

Permission Part of Package Description
Admi nPer mi ssi on oracl e.security.jazn Represents the righttoadminister a permission
.policy (that is, grant or revoke another user’s
permission assignment).
Rol eAdni nPer mi ssi on oracl e.security.jazn The grantee of this permission is granted the

JAZNPer m ssi on

. policy right to further grant/revoke the target role.

oracl e.security.jazn Forauthorization permissions.
JAZNPer m ssi on contains a name (also called a
target name), but no actions list; you either have
or do not have the named permission.

Real nPer ni ssi on oracl e. security.jazn. Represents permission actions for a realm (such

real m as cr eat eReal m dr opReal m and so on).
Real nPer ni ssi on extends from
java. security. Perm ssion,andis used like
any regular Java permission.

Principals

Subjects

A principal is a specific identity, such as a user named f r ank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service. Principals are instances of classes that implement the

java.security. Principal interface. A principal class must define a namespace that
contains a unique name for each instance of the class.

A subject represents a grouping of related information for a single user of a computing
service, such as a person, computer, or process. This related information includes the
subject's identities and security-related attributes (such as passwords and
cryptographic keys).

Subjects can have multiple identities; principals represent identities in a subject. A
subject becomes associated with a principal (user f r ank) upon successful
authentication to a computing service—that is, the subject provides evidence (such as
a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user f r ank, may
have two principals:

« One binds the principal f rank doe (name on his driver license) to the subject

« Another binds the identification principal 999- 99- 9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are stored
in a private credential set. Credentials intended to be shared, such as public key

Concepts 1-3

Authentication and Authorization

certificates or Kerberos server tickets, are stored in a public credential set. Different
permissions are required to access and modify different credential sets.

Subjects are represented by the j avax. securi ty. aut h. Subj ect class.

To perform work as a particular subject, an application invokes the method

Subj ect . doAs(Subj ect, Privil egedAction) (orone of its variations). This method
associates the subject with the current thread's AccessCont r ol Cont ext and then
executes the specified request.

Authentication and Authorization

Software security depends on two fundamental concepts: authentication and
authorization.

= Authentication deals with the question “Who is trying to access my services?” In
any system and application it is paramount to ensure that the identity of the entity
or caller trying to access your application is identified in a secure manner. In a
multitier application, the entity or caller can be a human user, a business
application, a host, or one entity acting on behalf of (or impersonating) another
entity.

Authentication information is stored in a user repository. When a subject attempts
to access a J2EE application, a user manager looks up the subject in the user
repository and verifies the subject’s identity. A user repository can be a file or a
directory server, depending on your environment. The Oracle Internet Directory is
an example of a user repository.

Although each J2EE application determines which user can use the application, it
is the user manager that authenticates the user’s identity using the user repository.

OC4J supports several different authentication options; for details, see
"Authentication Environments" on page 3-3.

« Authorization deals with the question “Who can access what services offered by
which components?” For large-scale enterprises, where the access to various
business-critical services and resources by millions of users need to be managed, it
is important that a scalable authorization infrastructure be in place to deal with
user and application provisioning. Unfortunately, in part due to the complex
nature of authorization, this is also an area where confusion reigns and
incompatible technologies and standards are prevalent.

Developers specify authorization for subjects in the application’s J2EE and
OC4J-specific deployment descriptors. These deployment descriptors indicate
what roles are needed to access the different parts of the application. Roles are the
identities that each application uses to indicate access rights to its different objects.
The OC4J-specific deployment descriptors provide a mapping between the logical
roles and the users and groups known by OCA4J.

1-4 Oracle Application Server Containers for J2EE Security Guide

Secure Communications

Secure Communications

To communicate securely, applications must satisfy the following goals:

« Secure communications—the data transmitted over the network cannot be
intercepted, read, or altered by a third party. OC4J supports secure
communications using the HTTP protocol over the Secure Sockets Layer.

= Network authentication—clients and servers must be able to authenticate
themselves to one another over the network. This is achieved using digital
certificates, single sign-on, or username/password combinations.

« ldentity propagation—allowing one client to act as the agent of another client,
using the original client’s identity.

Secure Sockets Layer

Certificates

HTTPS

The Secure Sockets Layer (SSL) is the industry-standard point-to- point protocol which
provides confidentiality through encryption, authentication and data integrity.
Although SSL is used by many protocols, it is most important for OC4J when used
with the HTTP browser protocol and in the AJP link between the OHS and OC4)J
processes.

Applications need to transmit authentication and authorization information over the
network. A digital certificate, as specified by the X.509 v3 standard, contains data
establishing a principal’s authentication and authorization information. A certificate
contains:

« A public key, which is used in Public Key Infrastructure (PKI) operations
« ldentity information (for example, name, company, country, and so on)
= Optional digital rights which grant privileges to the owner of the certificate.

Each certificate is digitally signed by a trustpoint. The trustpoint signing the certificate
can be a certificate authority such as VeriSign, a corporation, or an individual.

For convenience, this book uses "HTTPS" as shorthand when discussing HTTP
running over SSL. Although there isan htt ps: URL prefix, there is no HTTPS protocol
as such.

Concepts 1-5

Developing Secure J2EE Applications

|dentity Propagation

OC4J supports propagating the identity of principals from context to context. A Web
client can establish its identity to a servlet; the servlet can then use that identity to
communicate with other EJBs and servlets, as illustrated in Figure 1-2.

Figure 1-2 Identity Propagation Using CSIv2

Web Client J2EE J2EE
(such as browser) Container Container
' Enterprise
ller ID I Information
username JSP/ caller £JB I system tier
password serviet CSIv2 |
|
| Messaging
Y System
caller ID //:/'
EJB EJB
CSlIv2 } »| Database
\\]l\
| ERP, SAP
I |Applications
|

Developing Secure J2EE Applications

J2EE software development is based on a develop-deploy-manage cycle. The OracleAS
JAAS Provider plays an important role in the deploy-manage part of the cycle. The
OracleAS JAAS Provider is integrated with J2EE security. This means that developers
can use a declarative security model instead of having to integrate security
programmatically, unburdening the developer.

The following list summarizes the J2EE development cycle, with an emphasis on the
tasks specific to developing secure applications.

1. The software developer creates Web components, enterprise beans, applets,
servlets, and application clients.

The OracleAS JAAS Provider offers programmatic interfaces, but the developer
can create components without making use of those interfaces.

2. The application assembler takes these components and combines them into an
Enterprise Archive (EAR) file.

As part of this process, the application assembler specifies OracleAS JAAS
Provider options appropriate to the environment.

3. The deployer installs the EAR into an instance of OC4J.
As part of the deployment process, the deployer may map roles to users.
4. The system administrator maintains and manages the deployed application.

This task includes creating and managing JAAS roles and users as required by the
application customers.

1-6 Oracle Application Server Containers for J2EE Security Guide

2

Overview of JAAS in Oracle Application
Server

This chapter introduces the Oracle Application Server Java Authentication and
Authorization Service (JAAS) Provider in Oracle Application Server Containers for
J2EE (OC4J). The OracleAS JAAS Provider enables application developers to integrate
authentication, authorization, and delegation services with their applications.

This chapter contains these topics:

« The OracleAS JAAS Provider

« What Is JAAS?

« JAAS Framework Features

« User Managers

« Capability Model of Access Control
« Role-Based Access Control (RBAC)
« Changes Since Release 9.0.4

The OracleAS JAAS Provider

The Oracle Application Server supports JAAS with the OracleAS JAAS Provider. The
OracleAS JAAS Provider implements user authentication, authorization, and
delegation services that developers can integrate into their application environments.
Instead of devoting resources to developing these services, application developers can
focus on the presentation and business logic of their applications.

Note: Some class and component names contain the word
"JAZN," which is a shortened name for the OracleAS JAAS
Provider.

The JAAS framework and the Java 2 Security model form the foundation of JAAS. The
OracleAS JAAS Provider implements support for JAAS policies. Policies contain the
rules (permissions) that authorize a user to use resources, such as reading a file. Using
JAAS, services can authenticate and enforce access control upon resource users. The
OracleAS JAAS Provider is easily integrated with J2SE and J2EE applications that use
the Java 2 Security model.

Overview of JAAS in Oracle Application Server 2-1

What Is JAAS?

Provider Types

The OC4J JAAS implementation supports two different provider types. Each provider
type implements a repository for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and JAAS
policy (permissions) information.

« XML-Based Provider

The XML-based provider is used for lightweight storage of information in XML
files. The XML-based provider stores user, realm, and policy information in an
XML file, normally j azn- dat a. xm .

Note: XML files are used as property and configuration files by
both LDAP-based and XML-based provider types. However, only
the XML-based provider stores users, realms, and policies in an
XML file, j azn- dat a. xml .

« LDAP-Based Provider

The LDAP-based provider is based on the Lightweight Directory Access Protocol
(LDAP) for centralized storage of information in a directory. The LDAP-based
provider stores user, realm, and policy information in the LDAP-based Oracle
Internet Directory.

Note: We recommend that you use the LDAP-based provider in a
production environment; the XML-based provider is suitable for
prototyping only.

What Is JAAS?

JAAS is a Java package that enables applications to authenticate and enforce access
controls upon users. The OracleAS JAAS Provider is an implementation of the JAAS
interface.

JAAS is designed to complement the existing code-based Java 2 security. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java 2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authentication, authorization,
and user community (realm) features. The OracleAS JAAS Provider enhances some of
these features.

« Login Module Authentication
=« Roles
« Realms

« Policies and Permissions

2-2 Oracle Application Server Containers for J2EE Security Guide

What Is JAAS?

See Also:

« "JAAS Framework Features" on page 2-5 for information on
how the OracleAS JAAS Provider enhances the JAAS
framework to explicitly define key authorization,
authentication, and user community (realm) features

« JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java. sun. com product s/ j aas/

Login Module Authentication

Roles

Realms

To associate a principal (such as f r ank) with a subject, a client attempts to log in to an
application. In login module authentication, the Logi nCont ext class provides the
basic methods used to authenticate subjects such as users, roles, or computing services.
The Logi nCont ext class consults configuration settings to determine whether the
authentication modules (known as login modules) are configured for use with the
particular application that the subject is attempting to access. Different login modules
can be configured with different applications; furthermore, a single application can use
multiple login modules.

Because the Logi nCont ext separates the application code from the authentication
services, you can plug a different login module into an application without affecting
the application code.

Actual authentication is performed by the method Logi nCont ext . | ogi n() . If
authentication succeeds, then the authenticated subject can be retrieved by invoking
Logi nCont ext . get Subj ect () . The real authentication process can involve
multiple login modules. The JAAS framework defines a two-phase authentication
process to coordinate the login modules configured for an application.

After retrieving the subject from the Logi nCont ext , the application then performs
work as the subject by invoking Subj ect . doAs() or
Subj ect . doAsPri vil eged().

The JAAS framework does not explicitly define roles or groups. Instead, roles or
groups are implemented as concrete classes that use the interface
java. security. Principal.

The JAAS framework does not define how to support the role-based access control
(RBAC) role hierarchy, in which you can grant a role to a role.

The JAAS framework does not explicitly define user communities. However, the J2EE
reference implementation (RI) defines a similar concept of user communities called
realms. A realm provides access to users and roles (groups) and optionally provides
administrative functionality. A user community instance is essentially a realm that is
maintained internally by the authorization system. The J2EE Rl Realm API supports
user-defined realms through subclassing.

See Also:

"JAAS Provider Realm Framework" on page 4-3 for OracleAS JAAS
Provider enhancements to realms.

Overview of JAAS in Oracle Application Server 2-3

What Is JAAS?

Applications

The JAAS framework does not explicitly define an application or subsystem for
partitioning authorization rules.

Policies and Permissions

A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are the
granted permissions of the grantee?

Policy information is supplied by the OracleAS JAAS Provider. The JAAS framework
does not define an administrative API for policy administration. The administrative
API provided by the OracleAS JAAS Provider is an Oracle extension.

Table 2-1 describes the Sun Microsystems implementation of policy file parameters.

Policy File Parameters

Is Defined As Example
one or more principal(s) duke
codebase, signer http://ww. exanpl e. com nysi gner

XML-Based Example

The JAAS XML-based provider can store policy data in the file j azn- dat a. xnl . In
the following example, a segment of the j azn- dat a. xm file grants the admi n
principal permission to log in.

<j azn-policy>
<grant>
<gr ant ee>
<princi pal s>
<pri nci pal >
<cl ass>oracl e. security.jazn. sanpl es. Sanpl eUser </ cl ass>
<nane>adni n</ name>
</princi pal >
</ princi pal s>
</ grant ee>
<perm ssi ons>
<permi ssi on>
<cl ass>com everm nd. server. rmi . RM Per ni ssi on</ cl ass>
<nane>| ogi n</ name>
</ perm ssi on>
</ perm ssi ons>
</ grant>
</jazn-policy>

See Also:

« "Sample jazn-data.xml Code" on page A-1 to view a complete
j azn-dat a. xnl file.

2-4 Oracle Application Server Containers for J2EE Security Guide

User Managers

JAAS Framework Features

Table 2-2 contains the JAAS framework features implemented by the OracleAS JAAS
Provider.

Table 2-2 OracleAS JAAS Provider Features

Feature Description See Also
Authentication « Integrates with Oracle Application Server Single Chapter 3, "Understanding OC4J
Sign-On for login authentication in J2EE Security"

application environments.

« Supplies an out-of-the-box
Real mLogi nModul e class for non-OracleAS
Single Sign-On environments, such as OracleAS
Core or Java Edition

« Supports any JAAS-compliant custom

Logi nMbdul e
Declarative Model « Integrates J2EE deployment descriptors, such as. Chapter 4, "Overall Security
web. xm , with JAAS security Configuration"
« Supports programmatic model as well
Authorization « Provides centralized role-based access control, "Role-Based Access Control
including support for hierarchical roles (RBAC)" on page 2-8
Realms « Organizes users and roles (groups) around user ~ "Realms" on page 2-3

communities. An Oracle API package

(oracl e.security.jazn.real mis
provided to support user and role management.
This API includes a Real nPri nci pal
interface that extends from

j ava. security. Principal and
associates a realm with users and roles.

"JAAS Provider Realm
Framework" on page 4-3

Management « Manages settings and data using command-line Chapter 4, "JAAS Provider
tool (Admintool) or Oracle Enterprise Manager ~ Administration Tasks"
109

« Supports a centrally managed provider type
with Oracle Internet Directory

JAZNUser Manag Provides an implementation of the OC4J "JAZNUserManager" on page 3-3
er User Manager that integrates with both the
XML-based and the LDAP-based providers.

User Managers

OC4J security employs a user manager to authenticate and authorize users and groups
that attempt to access a J2EE application. You base your choice of user manager on
performance and security needs.

All User Manager classes implement the com ever m nd. security. User Manager
interface (see the Javadoc for further information.). User Manager classes manage
users, groups, and passwords through methods such as cr eat eUser (), get User (),
and get Group() .

Overview of JAAS in Oracle Application Server 2-5

User Managers

OC4J provides two predefined user managers, JAZNUser Manager and

XM_User Manager. JAZNUser Manager supports both XML-based and LDAP-based
providers. We recommend using JAZNUs er Manager because it is based on the JAAS
specification and is integrated with Oracle Application Server Single Sign-On and
Oracle Internet Directory. JAZNUser Manager is the default security provider, because
it offers powerful and flexible security control. Customers can also supply their own
classes that implement the User Manager interface, although this will be deprecated
at a future release.

Note: For a discussion of creating a custom User Manager , see
http://otn.oracle.com sanpl e_
code/tech/ xm / xm news/ News_Security. htm .

Table 2-3 lists the user managers provided by OC4J.

Table 2-3 OC4J User Managers And Repositories

User Manager Class User Repository
oracl e.security.jazn. oc4j.JAZNUser Manag Several types:
er « using the XML-based provider
—j azn-dat a. xm
« using the LDAP-based provider—Oracle
Internet Directory
« Using a third-party LDAP provider
com ever i nd. server. XM_User Manager The princi pal s. xni file
Custom user manager Customized user repository
See "Specifying a UserManager In orion-application.xml" on page 4-6 for directions on
how to define the default User Manager for all applications or a single User Manager
for a specific application.
The following sections describe the JAZN and XML user managers:
« Using JAZNUserManager
« Using XMLUserManager
Using JAZNUserManager

The JAZNUser Manager class is the default user manager. The primary purpose of the
JAZNUser Manager class is to leverage the OracleAS JAAS Provider as the security
infrastructure for OC4l.

There are two JAAS Providers supplied with OC4J security: XML-based and
LDAP-based.

« The XML-based provider is a fast, lightweight implementation of the JAAS
Provider API. This provider type uses XML to store user names and encrypted
passwords. The user repository is stored in the j azn- dat a. xml file, in a location
specified in the jazn.xml file. For details, see Chapter 8, "Configuring the
XML-Based Provider".

Select JAZN-XML as the user manager in the Enterprise Manager. Configure its
users, roles, and groups using the JAZN Admintool. For further information, see
Chapter 8, "Configuring the XML-Based Provider".

2-6 Oracle Application Server Containers for J2EE Security Guide

User Managers

« The LDAP-based provider is scalable, secure, enterprise-ready, and integrated
with OracleAS Single Sign-On. The LDAP-based provider is the only OracleAS
JAAS Provider that supports OracleAS Single Sign-On.

Select JAZN-LDAP as the user manager in the Enterprise Manager. Configure its
users and groups using the Oracle Delegated Administration Services from Oracle
Internet Directory. The user repository is an Oracle Internet Directory instance,
which requires that the application server instance be associated with an
infrastructure. If it the server is not associated with an Oracle Internet Directory
instance, then the LDAP-based provider is not a security option.For information
on configuring the LDAP-based provider, see Chapter 7, "Configuring the
LDAP-Based Provider".

Figure 2-1 shows the two different JAAS Providers supplied with OC4J.

Figure 2-1 OC4J Security Architecture Under the JAZNUserManager Class

Oracle HTTP Server

0C4J
JAZNUserManager

T I
r—+4 L — 45

LDAP-based
provider type

XML-based
provider type

Oracle Internet jazn-data.xml

Directo .
user repnrs?itury user repository

JAAS Provider

Using XMLUserManager

The XM_LUser Manager class is a simple user manager that manages users, groups, and
roles in an XML-based system. It stores user passwords in the clear, and therefore is
not as secure as the JAZNUser Manager . All XM_LUser Manager configuration
information is stored in the pri nci pal s. xm file, which is the user repository for the
XM_User Manager class.

Note: The XM_User Manager class is supported for backward
compatibility only, and will be desupported in a forthcoming
release. Oracle strongly recommends that you use one of the
OracleAS JAAS Provider types.

Overview of JAAS in Oracle Application Server 2-7

Capability Model of Access Control

Capability Model of Access Control

The capability model is a method for organizing authorization information. The
OracleAS JAAS Provider is based on the Java 2 Security Model, which uses the
capability model to control access to permissions. With the capability model,
authorization is associated with the principal (a user named f r ank in the following
example). Table 2-4 shows the permissions that user f r ank is authorized to use:

Table 2-4 User Permissions

User Has These File Permissions

frank Read and write permissions on a file named sal ari es. t xt inthe
/ hone/ user directory

When user f r ank logs in and is successfully authenticated, the permissions described
in Table 2—4 are retrieved from the OracleAS JAAS Provider (whether the LDAP- based
Oracle Internet Directory or XML-based provider) and granted to user f r ank. User

f r ank is then free to execute the actions permitted by these permissions.

Role-Based Access Control (RBAC)

RBAC enables you to assign permissions to roles. You grant users permissions by
making them members of appropriate roles. Support for RBAC is a key JAAS feature.
This section describes the following RBAC features:

« Role Hierarchy

=« Role Activation

Role Hierarchy

RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially a
major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a role,
and users are granted their permissions by being made members of that role. Multiple
roles can be granted to a user. A role can also be granted to another role, thus forming
a role hierarchy that provides administrators with a tool to model enterprise security
policies. Figure 2-2 provides an example of role-based access control.

Figure 2-2 Role-Based Access Control

The HR rolke includes the following:
o Read and write permissons on & e named

HR role ‘] salaries in tha momedusarn’ direcitony
1 — Usars trank, bob, and mary are grantad the
1 - i - T - i |y
Usar frank Usar bab L sar mary pot ssuns__dnr_j [.:rn.-' k_bg,m ! vlu..uc_'.f-' th the
HR roke bocause they are members of
the role.

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that individual
user.

2-8 Oracle Application Server Containers for J2EE Security Guide

Changes Since Release 9.0.4

For example, if multiple users no longer require write permissions on a file named
sal ari es inthe/ hone/ user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

Role Activation

A user is typically granted multiple roles. However, not all roles are enabled by
default. An application can selectively enable the required roles to accomplish a
specific task in a user session with the r un- as security identity and

Subj ect . doAS() . Selectively enabling roles upholds the principle of least privilege:
the application is not enabling permissions or privileges unnecessary for the task. This
limits the damage that can potentially result from an accident or error.

Changes Since Release 9.0.4

« The correct setting for the environment variable controlling loading of dynamic
libraries (for example, LD_LI BRARY_PATH in Solaris) is now ORACLE
HOVE/ | i b32 instead of ORACLE_HOME]/ | i b). Table 2-5shows the complete
settings.

Table 2-5 Dynamic Library Path Settings

Operating
System Variable Value
Solaris LD_LIBRARY_PATH_64 ORACLE HOVE/ | i b32
ORACLE_HOME/ |'i b
HP/UX SHLIB_PATH ORACLE_HOME/ |'i b32
LD_LIBRARY_PATH ORACLE_HOME/ i b
AIX LIBPATH ORACLE_HOME/ | i b32 for 32-bit applications,
LD LIBRARY PATH ORACLE_HQOVE/ | i b for 64-bit applications
Null
Windows Not applicable Not applicable

« TheJava Development Kit 1.3 default installation does not include JAAS support.
To use JAAS with JDK1.3, you must download JAAS 1.0_01 from the Sun Web site
http://java. sun. conl product s/jaas/index-10. ht ml and follow the
installation Land deployment instructions.

Note: When you develop applications using JDK 1.3, you should be
aware of a JDK class loader issue. The class loader can locate custom
login modules only if you deploy the JAR containing them as a
standard extension in ORACLE_HOVE/ j r e/ | i b/ ext . This problem
will be fixed at the next release.

« Atthis release, Oracle supports third-party LDAP providers. See Chapter 9,
"Configuring External LDAP Providers", for details.

Overview of JAAS in Oracle Application Server 2-9

Changes Since Release 9.0.4

« At this release, Oracle supplies a default file (azn. security. props) inthe
directory ORACLE_HOVE/ j 2ee/ horre/ st ar t up that specifies the OracleAS JAAS
provider to be used for JAAS login configuration and policy. Note that these
properties are set by default during OC4J startup, so in most circumstances you do
not need to worry about setting these properties. For details, see "Specifying An
Alternate Policy Provider (Optional)" on page 4-5.

« Custom User Manager classes are still supported at this release, but will be
deprecated at a future release.

« Thefile principals.xml will no longer be supported at a future release. We strongly
encourage you to migrate your existing applications from using
pri nci pal s. xm to using JAZNUser Manager . For instructions, see "Migrating
Principals from the principals.xml File" on page 8-5.

« The interface for retrieving the SSL client certificate has changed. You now use
servl et Request . getAttri bute("javax. servl et.request. X509Certif
i cate") instead of
servl et Request. get Attri bute("javax. security.cert.X509certific
ate").

2-10 Oracle Application Server Containers for J2EE Security Guide

3

Understanding OC4J Security

This chapter describes security issues affecting J2EE applications in Oracle Application
Server Containers for J2EE (OC4J).

This chapter contains these topics:

« Introduction

« Security Considerations During Development and Deployment
» OC4Jand the OracleAS JAAS Provider

« Authentication in the J2EE Environment

= Authorization in the J2EE Environment

Introduction

The following are components of the OC4J security architecture:

« The OracleAS JAAS Provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The OracleAS JAAS Provider supports two possible repositories or
provider types:

« XML-based Provider Type

« LDAP-based Oracle Internet Directory (available only with Oracle Application
Server Infrastructure installation)

« JAAS login modules, such as the Real nLogi nModul e, third-party
Logi nMbdul es, and custom Logi nModul es

See Also:

« "Provider Types" on page 2-2 for further information about
provider types

« Oracle Application Server Installation Guide for information on
installing Oracle Internet Directory.

Understanding OC4J Security 3-1

Security Considerations During Development and Deployment

Security Considerations During Development and Deployment

The OracleAS JAAS Provider is designed to work with the J2EE declarative security
model. This declarative model requires little or no programming to use JAAS security
in your application. Instead, most security decisions are made as part of the
deployment process, making it easy to make changes without requiring re-coding. If
the declarative model is not sufficient, the OracleAS JAAS Provider also supports
programmatic security in the same manner that JAAS is used in any J2SE
environment.

Development

If your application relies on the declarative security model (where J2EE security roles
are defined in deployment descriptors, such as web. xni), the developer must
determine if the application uses application-specific roles. If so, the developer must
define these roles so that they can be mapped to the J2EE logical roles during the
deployment phase.

Deployment

Using the declarative security model, the deployer must make the following
security-related decisions:

« Determine the J2EE logical roles that are assumed in the application, then define
these roles in the deployment descriptors. For example, an HR application may
assume that the J2EE logical role hr _manager is running the application; the
deployer must define that role.

« Determine the authorization constraints that apply to these roles and define them
in the deployment descriptors. For web modules, these constraints typically apply
to URL patterns as defined in the J2EE specification. EJB modules typically have
constraints at the EJB-method level.

« Decide whether to use an XML flat file or Oracle Internet Directory (LDAP) as the
repository for the OracleAS JAAS Provider. This also determines which provider,
XML-based or LDAP-based, and user manager the application uses.

= Map the security roles (including the application-specific roles, if they exist) to
users and groups defined by the OC4J user manager (for instance,
JAZNUser Manager). For example, the J2EE logical role called hr _nmanager may
be mapped to a given set of users defined by the OC4J user manager.

For information on making and implementing these decisions, see Chapter 6, "Security
Considerations During Application Deployment”; for a full discussion of deployment,
see the Oracle Application Server Containers for J2EE User’s Guide.

OC4J and the OracleAS JAAS Provider

Oracle Application Server Containers for J2EE is a J2EE container that accepts HTTP
and RMI client connections. These connections permit access to servlets, Java Server
Pages (JSPs), and Enterprise JavaBeans (EJBS).

J2EE containers separate business logic from resource and lifecycle management. This
enables developers to focus on writing business logic, rather than writing enterprise
infrastructure. For example, Java servlets simplify Web development by providing an
infrastructure for component, communication, and session management in a Web
container integrated with a Web server.

3-2 Oracle Application Server Containers for J2EE Security Guide

0C4J and the OracleAS JAAS Provider

0C4J Integration

The OracleAS JAAS Provider is integrated with Oracle Application Server Containers
for J2EE and with OracleAS Single Sign-On to enhance application security. This
integration provides the following benefits:

run- as identity support, delegation support (from servlet to Enterprise
JavaBeans)

Full support for OracleAS Single Sign-On

Support for custom Logi nMbdul es

JAZNUserManager

The OracleAS JAAS Provider is supported through JAZNUser Manager ,
JAZNUser Manager , an implementation of the OC4J User Manager interface,
supports the following features:

Secure storage of obfuscated passwords
Full role-based access control (RBAC), including hierarchical roles
Full support for the Java 2 permission model and JAAS

Secure implementation based on the Java 2 permission model, allowing
non-trusted (or partially trusted) code to run in the same JVM as the OracleAS
JAAS Provider

OracleAS Single Sign-On integration with Oracle Application Server Containers
for J2EE

Real m_Logi nModul e integration in non-OracleAS Single Sign-On environments
Support for custom JAAS login modules

Identity propagation

Authentication Environments

The OracleAS JAAS Provider integrates with several different login authentication
environments in a J2EE application.

OracleAS Single Sign-On

Uses OracleAS Single Sign-On to authenticate logins

SSL

« Uses Secure Socket Layers for client certificate-based authentication

« Uses alogin module (for example, Real nLogi nMbdul e) to authenticate
logins

Basic Authentication

« Prompts user directly for username and password, without going through
OracleAS Single Sign-On

« Uses alogin module (for example, Real nLogi nModul e) to authenticate
logins

Understanding OC4J Security 3-3

0C4J and the OracleAS JAAS Provider

« Form-based Authentication

When the user attempts to access a protected resource, OC4J checks whether the
user has already been authenticated. If not, OC4J displays an application-specific
login screen, prompting for username and password.

The following sections discuss how the OracleAS JAAS Provider integrates with each
of these authentication types.

Enabling OracleAS Single Sign-On in J2EE Applications

OracleAS Single Sign-On lets a user access multiple applications with a single set of
login credentials. Figure 3-1 shows JAAS integration in an application running in an
OracleAS Single Sign-On-enabled J2EE environment.

Figure 3-1 OracleAS Single Sign-On and J2EE Environments

Oracle AS Containers
Apache JServ for J2EE /DK
, Protocol

b

WebApp Al

senviet sarviet
51 52

JAZNUserManager
HTTP (OracleAS JAAS Provides

0C4J Security
Provider

Oracle
=aa Internet
Directory

OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in an OracleAS Single Sign-On-enabled J2EE environment.

1. AnHTTP client attempts to access a Web application, WebApp Al, hosted by
Oracle Application Server Containers for J2EE (the Web container for executing
servlets). Oracle HTTP Server (using an Apache listener) handles the request.

2. mod_osso/Oracle HTTP Server receives the request and:

« Determines that WebApp Al application requires Web-based OracleAS Single
Sign-On for authenticating HTTP clients

« Redirects the HTTP client request to the Web-based OracleAS Single Sign-On
(because it has not yet been authenticated).

3. The HTTP client is authenticated by OracleAS Single Sign-On through a user name
and password or through a user certificate. OracleAS Single Sign-On then:

3-4 Oracle Application Server Containers for J2EE Security Guide

0C4J and the OracleAS JAAS Provider

« Validates the user's stored login credentials

« Sets the OracleAS Single Sign-On cookie (including the user’s distinguished
name and realm)

« Redirects back to the WebApp Al application (in Oracle Application Server
Containers for J2EE)

4. The OracleAS JAAS Provider retrieves the OracleAS Single Sign-On user.

Note: For full details on OracleAS Single Sign-On, see the Oracle
Application Server Single Sign-On Administrator’s Guide.

Integrating the OracleAS JAAS Provider with SSL-Enabled Applications

SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 3-2 shows JAAS integration in an application
running in an SSL-enabled J2EE environment.

Figure 3-2 Oracle Component Integration In SSL-Enabled J2EE Environments

OracleAS Containers
Apache JServ | for 1BEE / JDK
Protocol

WebApp A

sernviet sarnvlet
s1 52

JAZNUsarManager
Oracle (OracleAS JAAS Provides

0C4J Security
+— Provider

Integrating the OracleAS JAAS Provider with Basic Authentication

Basic authentication bypasses OracleAS Single Sign-On. Figure 3-3 shows specific

JAAS integration in an application configured for Basic authentication in a J2EE
environment.

Figure 3-3 Oracle Component Integration in j2ee Environment

OracleAS Containers
Apache JServ | for 1BEE / JDK

WebApp A

sernviet sarnvlet
s1 52
JAZNUserManager

Oracle (Oracle AS JAAS Provides

0C4J Security
+— Provider

Understanding OC4J Security 3-5

Authentication in the J2EE Environment

Basic Authentication J2EE Environments: Typical Scenario

This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in a J2EE environment configured for Basic authentication. In this
environment, OracleAS Single Sign-On is not used. A login module (for example,
Real m_Logi nModul e) is used.

1. An HTTP client attempts to access a Web application (named WebApp Al) hosted
by Oracle Application Server Containers for J2EE (the Web container for executing
servlets).

2. 0OC4Jinvokes the Real niLogi nModul e whenever user credentials are required.
For example, when a request hits a protected page, OC4J will ask the OracleAS
JAAS Provider to authenticate the user, then the Real mLogi nModul e will be
invoked to authenticate the user, using the credentials sent by the user via the
browser over HTTP.

3. The OracleAS JAAS Provider retrieves the user.

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL.:

http://java. sun. com j 2ee/

Authentication in the J2EE Environment

Authentication is the process of verifying the identity of a user in a computing system,
often as a prerequisite to granting access to resources in a system. User authentication
in the J2EE environment is performed by the following:

« OracleAS Single Sign-On (for OracleAS Single Sign-On environments) or the
OracleAS JAAS Provider Real mLogi nMbdul e or other login module (for
non-OracleAS Single Sign-On environments)

Before HTTP requests can be dispatched to the target servlet, the

JAZNUser Manager gets the authenticated user information (set by nod_osso)
from the HTTP request object and sets the JAAS subject in Oracle Application
Server Containers for J2EE.

= One of the following:
« JAZNUser Manager
« XM.User Manager
« Adeveloper-supplied User Manager

Note: Developer-supplied User Manager s are deprecated and will
be desupported in a future release.

Running with an Authenticated Identity

You can choose to configure the JAZNUser Manager so that a filter enables the target
servlet to run with the permissions and roles associated with an authenticated identity
or run-as identity. To do this, configure the j azn- web- app element.

See Also: "JAZNUserManager" on page 3-3 for further

information on options and configuration of the
JAZNUser Manager filter, including the j azn- web- app element.

Oracle Application Server Containers for J2EE Security Guide

Authorization in the J2EE Environment

Retrieving Authentication Information

The following j avax. servl et. Ht t pSer vl et Request APIs retrieve authentication
information within the servlet:

« get Renot eUser for the authenticated username
« get Aut hType for the authentication scheme

« getUserPrincipal forthe authenticated principal object

Note: The returned principal is an instance of the interface
com everm nd. security. User, which extends
java. security. Principal.

« getAttribute("javax.servlet.request. X509certificate") forthe
SSL client certificate

Authorization in the J2EE Environment

Authorization is the process of granting permissions and privileges to an
authenticated user. This section discusses authorization within servlets.

If the servlet is configured to permit doAs(), the JAZNUser Manager invokes an
authenticated target servlet within a Subj ect . doAs() block to enable JAAS-based
authorization in the target servlets.

Authorization is achieved through the following:
« JAZNUser Manager
= Methods based on JAAS authorization:
« Servlet.service() intheservlet
« Subject. doAs() and Subj ect. doAsPri vi | eged() inthe client

« SecurityManager. checkPer ni ssi on() in the server

See Also: Configuring J2EE Authorization on page 4-10.

Security Role Mapping

Two distinct role types are available to application developers creating secure
applications in J2EE environments: J2EE roles and JAAS roles. When these role types
are mapped together using Oracle Application Server Containers for J2EE group
mappings, users can access an application with a defined set of role permissions for as
long as the user is mapped to this role.

This section describes these role types and how they are mapped together.
« J2EE Security Roles
« Deployment Roles and Users

« OC4J) Group Mapping to J2EE Security Roles

Understanding OC4J Security 3-7

Authorization in the J2EE Environment

J2EE Security Roles

The J2EE development environment includes a portable security roles feature defined
inthe web. xm file for servlets and Java Server Pages (JSPs). Security roles define a set
of resource access permissions for an application. Associating a principal (in this case,
a JAAS user) with a security role assigns the defined access permissions to that
principal for as long as they are mapped to the role. For example, an application
defines a security role called sr _devel oper:

<security-rol e>
<rol e-nane>sr _devel oper </ rol e- nane>
</security-rol e>

You also define the access permissions for the sr _devel oper role.

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>access to the entire application</web-resource-nane>
<url-pattern>/ *</url-pattern>
</ web-resource-col | ection>
<l-- authorization -->
<aut h-constraint >
<rol e- nanme>sr _devel oper </r ol e- nane>
</ aut h-constraint>
</security-constraint>

Deployment Roles and Users

JAAS roles and users are defined depending on the provider type, LDAP-based or
XML-based.

For example, with the XML-based provider type, developer is listed as a role element
inthej azn-dat a. xm file:

<rol e>
<name>devel oper </ name>
<menber s>
<menber >
<type>user <t ype>
<name>j chn<nane>
</ menber >
</ menber s>
</rol e>

0C4J Group Mapping to J2EE Security Roles

Oracle Application Server Containers for J2EE (OC4J) enables you to map portable
J2EE security roles defined in the J2EE web. xm file to groups in an
ori on-application.xm file.

The roles and users defined in your provider environment are mapped to the Oracle
Application Server Containers for J2EE devel oper group role in the
orion-application.xmn file.

For example, the sr _devel oper security role is mapped to the group named
devel oper.

<security-rol e-mappi ng nane="sr_devel oper">
<group nane="devel oper" />
</security-rol e- nappi ng>

3-8 Oracle Application Server Containers for J2EE Security Guide

Authorization in the J2EE Environment

Notice that a <gr oup>ina<security-rol e- mappi ng> element corresponds to a
role in the OracleAS JAAS Provider. Therefore, this association permits the

devel oper group to access the resources allowed for the sr _devel oper security
role.

In this paradigm, the user j ohn is listed as a member of the devel oper role. Because
the devel oper group is mapped to the J2EE security role sr _devel oper in the
orion-application.xm file,j ohn has access to the application resources defined
by the sr _devel oper role.

Understanding OC4J Security 3-9

Authorization in the J2EE Environment

3-10 Oracle Application Server Containers for J2EE Security Guide

A

Overall Security Configuration

This chapter discusses tasks related to configuring the complete security system. It
contains the following parts:

Choosing the XML-Based or LDAP-Based Provider
Locating jazn.xml, jazn-data.xml, and the <jazn> element
Admintool Overview

Specifying An Alternate Policy Provider (Optional)
Specifying Bootstrap OracleAS JAAS Provider Settings
Turning On Debug Logging

Specifying UserManagers

Customizing RealmLoginModule

Specifying Authentication (auth-method)

Configuring J2EE Authorization

Removing Realm Names From Authentication Principals
Configuring Third-Party LDAP Providers

Permitting EJB RMI Client Access

Creating a Java 2 Policy File

Using the <principals> element and principals.xml

Choosing the XML-Based or LDAP-Based Provider

As part of installing OC4J, you determine whether to use the LDAP-based or
XML-based provider. This section gives guidelines on how to make that choice.

XML-based Provider—Use the XML-based provider in development
environments and in deployed applications with a small user population.

LDAP-Based Provider—Use the LDAP-based provider in production
environments.

Compared to the XML-based provider, the LDAP-based provider offers better
security and performance. The centralized Oracle Internet Directory server scales
gracefully as the number of applications and users grows. We recommend you
take advantage of a centralized Oracle Internet Directory server in your
production deployments, both for better performance and to take advantage of

Overall Security Configuration 4-1

Locating jazn.xml, jazn-data.xml, and the <jazn> element

such features as centralized account creation and management, single passwords,
and credential management.

The LDAP-based provider enables you to configure cache parameters to improve
overall performance of authentication and authorization. If secure
communications are needed between the Oracle Internet Directory server and
OC4J, configure the system to use the level of security required.

When you install infrastructure, then associate the OC4J instance with a mid-tier
Oracle Internet Directory or Oracle Application Server Single Sign-On instance, the
installer automatically selects the LDAP-based provider. For details, see the Oracle
Application Server Installation Guide . If you need to configure OC4J to use the
LDAP-based Provider, see the instructions in the Oracle Application Server
Administrator’s Guide.

Locating jazn.xml, jazn-data.xml, and the <jazn> element

To configure the Oracle Application Server Java Authentication and Authorization
Service (JAAS) Provider, you must sometimes edit various configuration files using
text editors. This section discusses how to locate the configuration files and the

<j azn> element.

Locating jazn.xml

The OracleAS JAAS Provider must locate a valid j azn. xm file before it can begin
running. Thej azn. xn file is used to configure the OracleAS JAAS Provider.

The bootstrap j azn. xnl isin ORACLE_HOVE/ j 2ee/ hone/ confi g]. The OracleAS
JAAS Provider reads the information in this file before OC4J is started up. This means
that certain settings can only be made in the bootstrap file; if these changes are read
after OC4J starts up, they have no effect on the OracleAS JAAS Provider. Optionally,
users can specify a different location forj azn. xm ; see "Locating jazn.xml" on

page 18-1 for details.

Locating jazn-data.xml

The filej azn- dat a. xm is the datastore for the XML-based JAAS provider. By
default, OC4J expects the file j azn- dat a. xnl to be in ORACLE

HOVE/ j 2eel i nst ancenane/ conf i g. You can specify an alternate path name for
j azn-dat a. xnl inthe <j azn provi der="xm " | ocati on="pat hname" >
elementinjazn. xm .

Locating the <jazn> element

The <j azn> element is used to configure the OracleAS JAAS Provider. Most often, the
<j azn> element appears in one of two places:

1. The global application.xml, for global configuration
2. The application-specificori on-appl i cati on. xm

The <j azn> tag may also appear in the bootstrap <j azn. xnl > when it is used to
configure virtual machine properties. For details, see "The Bootstrap jazn.xml File" on
page 5-1.

4-2 Oracle Application Server Containers for J2EE Security Guide

Admintool Overview

Admintool Overview

This section discusses basic information needed to understand and use the JAZN
Admintool.

Admintool Prerequisites

When you use the JAZN Admintool, by default it edits the filej azn- dat a. xm
under the conf i g directory of the OC4J home instance. For details on locating

j azn-dat a. xm , see "Locating jazn-data.xml". The password for the admi n user is
set during installation time to the same value as the Oracle Application Server
administrator (i as_admi n) password.

Before using the Admintool with the LDAP-based provider, be sure to set the correct
environment settings as described in "Preparing To Use LDAP" on page 7-1.

Authenticating Yourself

If you are using the XML-based provider, you must authenticate yourself to the JAZN
Admintool before making administrative changes. You authenticate yourself in one of
two ways:

« Supplying the - user and - passwor d switches, as in:

java -jar jazn.jar -user nyusernane -password nypassword -listreal ns

Note: If you specify the - user, - passwor d, or
- cl ust er support options, you must specify them before all
other options on the command line.

« Supplying a username and password when prompted by the Admintool, as in:

java -jar jazn.jar -listrealns
>Real nmLogi nModul e usernane: nartha
>Real mLogi nModul e password: nypass

Caution: The Admintool does not require authentication when
used with the LDAP-based provider; anyone who runs the tool can
perform Admintool operations against the Oracle Internet
Directory server. This means that it is vital to secure access to the
production machine(s) on which OC4J uses the LDAP-based
provider. If you specify the - user and - passwor d options when
using the LDAP-based provider, they are ignored.

Overall Security Configuration 4-3

Admintool Overview

Adding Clustering Support

-cl ust ersupport oracle_home

Specifying this option instructs the Admintool to propagate all JAAS configuration
changes throughout a cluster. The or acl e_hone argument specifies the absolute path
name of ORACLE_HOME, the Oracle home directory. You can combine

- cl ust er support with the - shel | option.

Notes: If you are using the - cl ust er support option, you must
specify it before all other options on the command line.

The - cl ust er suppor t option is meaningful only when using the
XML-based provider.

For example:

java -jar jazn.jar -clustersupport /oracle_home -shell

Specifying an Admintool LoginModule in jazn-data.xml

To specify which Logi nModul e the JAZN Admintool uses to authenticate its users,
you must add a <l ogi n- nodul es> element to the appl i cati on elementin
j azn-dat a. xnl . For example:

<appl i cation>
<nane>or acl e. security.jazn. tool s. Adm nt ool </ name>
<l ogi n- modul es>
<l ogi n- nodul e>
<cl ass>oracl e. security.jazn.real m Real nLogi nMdul e</ cl ass>
<control -fl ag>required</control -fl ag>
<opt i ons>
<opt i on>
<name>debug</ name>
<val ue>f al se</val ue>
</ option>
<opt i on>
<name>addAl | Rol es</ nanme>
<val ue>t rue</ val ue>
</ option>
</ options>
</l ogi n- nodul e>
</l ogi n- nodul es>
</ appl i cation>

If you try to run the JAZN Admintool without specifying a Logi nModul e, the
Real mLogi nMbdul e with the default options is used. The default options are shown
in Table 4-2, " RealmLoginModule Options".

4-4 Oracle Application Server Containers for J2EE Security Guide

Turning On Debug Logging

Specifying An Alternate Policy Provider (Optional)

If you use the Java Virtual Machine shipped with Oracle Application Server, the
OracleAS JAAS Provider is automatically specified as the JAAS policy provider. If you
use another JVM, you must explicitly specify

oracl e. security.jazn. spi.PolicyProvider asthe policy provider, because
by default, the JVM uses the Sun JAAS provider.

Note: When you use OC4J, the JAAS configuration properties are set
by default during OC4J startup, so in most circumstances you do not
need to worry about setting these properties. You set them only when
you are running a J2SE application outside OC4J.

You can specifying Oracle-specific JAAS properties in a separate file and passing them
to the JVM on the command line. Oracle supplies a default file (ORACLE _

HOME/ | 2ee/ hone/ confi g/ j azn. security. props) that specifies the OracleAS
JAAS provider.

« Toreplace all security properties with the Oracle properties:

java -D ava.security.properties==propfile
« To append the Oracle-specific properties to the other properties:

java -D ava.security.properties=propfile

Specifying Bootstrap OracleAS JAAS Provider Settings

The bootstrap j azn. xmi file is inORACLE_HOVE/ j 2ee/ horre/ confi g] . The
OracleAS JAAS Provider reads the information in this file before OC4J is started up.
This means that certain settings can only be made in the bootstrap file; if they are read
after OC4J starts up, they have no effect on the OracleAS JAAS Provider. These
properties are discussed in detail in Chapter 5, "Configuring the OC4J Instance".

Turning On Debug Logging

To turn on OracleAS JAAS Provider debug logging, set the system property
j azn. debug. | og. enabl e tot r ue during Java Virtual Machine (JVM) startup.

You do this by modifying the JVM startup settings for your OC4J instance. In Oracle
Application Server, you normally manage JVM settings with Oracle Enterprise
Manager, using the Java Options textbox on the Server Properties screen.

In standalone mode, you set this property using JVM command-line options.
For instance, you might start OC4J standalone with a command line such as:

java -0 azn. debug. | og. enabl e=true -jar oc4j.jar

Or you can start the Admintool shell in debug mode with the command:

java - D azn. debug. | og. enabl e=true -jar jazn.jar -shell

In Oracle Application Server, the debug output is captured by OPMN and written to
log files associated with each OC4J instance in the directory ORACLE _
HOVE/ opmm/ | ogs.

Overall Security Configuration 4-5

Specifying UserManagers

Specifying UserManagers

The user manager, employing the user name and password, verifies the user’s identity
using information in the user repository. The user manager contains your definitions
for users, groups, or roles. The default user manager is the JAZNUser Manager .

You can define a user manager for all applications or for specific applications.

« Global user manager—The global (default) user manager is inherited by all
applications within an instance that has not defined a specific user manager. The
instance User Manager is defined inappl i cati on. xm .

= Specific user manager—This user manager is defined inori on_
appl i cation. xm solely for a single application. It is not used by any other
application.

Note: Within a single OC4J instance you can specify different
values for the application-specific User Manager instance and the
global User Manager instance. When you do this, we recommend
that you not mix custom User Manager s and Oracle-supplied
User Manager s. You can use different custom User Manager s for
the application and the global instance, and you can use different
Oracle-supplied User Manager s for the application and the global
instance, but you should avoid using a custom User Manager for
the one instance and an Oracle-supplied User Manager for the
other.

= Insome cases, if an application inherits from another application instead of
inheriting from the global application, then the application’s parent user manager
will be the global User Manager instance instead of the User Manager instance
specified in the parent application.

Specifying A UserManager

To specify a UserManager for an entire OC4J instance or for a specific application
within that instance, use Enterprise Manager. For details, see the Enterprise Manager
help screen "Modifying the User Manager for All Applications”.

Specifying a UserManager In orion-application.xml

Every application, including the top-level default application, has an associated
User Manager. The User Manager ’s primary function is to authenticate users who
attempt to access web pages and EJBs.

Note: We strongly encourage you to use JAZNUser Manager .
User-defined User Manager s will stop being supported in a future
release.

The User Manager is used to authenticate users when connections are made to the
application. These are specified using sub-elements within an

<ori on- appl i cati on>element that define the configuration. There are three tags
that can be used to specify a User Manager . They are:

Oracle Application Server Containers for J2EE Security Guide

Customizing RealmLoginModule

Table 4-1 UserManager Tags

Tag Meaning

<user - nanager > A user manager implemented by a user-defined class.

<j azn> JAZNUser Manager .

<pri nci pal s> A user manager defined in apri nci pal s. xim file. See
"Using the <principals> element and principals.xml|" on
page 4-13

Advanced Configuration

There may be more than one of the user-manager configuration within a single
<orion-appl i cati on>element. Which element determines the User Manager is
determined by the order the elements appear in the table: <user - manager > takes
precedence over <j azn>, which takes precedence over <pri nci pal s>. For
example, if both a <j azn> and a <pri nci pal s> element are present, the

User Manager is based on the <j azn> element. If multiple elements with the
highest-priority tag are present, then the User Manager s are chained together as
parents. That is, the User Manager specified in the first tag becomes the parent of the
User Manager specified in the second, and so on. The last User Manager specified
then becomes the User Manager of the application. The parent of the first

User Manager isthe User Manager associated with the parent application (if any) of
the application. The default application does not have a parent application and the
parent of its User Manager is null.

If no user manager is specified, then the User Manager is determined according to the
following rules.

« For the default application, a JAAS User Manager is created based on
j azn-dat a. xm in the directory containing appl i cati on. xm . If no
j azn-dat a. xm is present in that directory, one is created. The default realm of
the created j azn- dat a. xnl isj azn. com

« Atdeploymenttime, if the User Manager of the parent application is the JAAS
User Manager , then a JAAS UserManager is created based on j azn-data. xm .
If necessary, aj azn- dat a. xm file is created in the same way as the previous
bullet. A <j azn> element is written into the or i on- appl i cati on. xmi
associated with the application.

« Atapplication deployment time, if the User Manager of the parent application is
based on pri nci pal s. xnl , then the User Manager of the application will be a
principals User Manager . Ifapri nci pal s. xm file is not present, then an empty
file is created. A <j azn> element is written into the ori on- appl i cati on. xni
associated with the application.

« Ifthe User Manager of the parent application is user-written, then the parent’s
User Manager will become the User Manager of the application.

Customizing RealmLoginModule

The Real mLogi nMbdul e class is the default Logi nMbdul e that is configured
through the j azn-dat a. xnl file. The Real mLogi nMbdul e class authenticates user
login credentials before the user can access J2EE applications. Authentication is
performed using OC4J container-based authentication (HTTP BASI C, FORM and so
on). You do not need to enable the Real nLogi nModul e class if your application uses
OracleAS Single Sign-On authentication.

Overall Security Configuration 4-7

Customizing RealmLoginModule

See Also: Oracle Application Server Installation Guide for OracleAS
Single Sign-On configuration tasks.

You can configure Real nLogi nModul e either using the JAZN Admintool or by
editing j azn- dat a. xnl . For details on using the Admintool, see "Adding and
Removing Login Modules" on page 10-4.

The <I ogi n- nodul e> tag supports the following <opti on> values:

Table 4-2 RealmLoginModule Options

Name Meaning Default
debug If set to t r ue, prints debugging messages. fal se
addRol es If setto t r ue, the Real nLogi nModul e adds true

all directly granted roles of the user to the
Subject after successful authentication.

addAl | Rol es If settotrue, the Real nLogi nMbdul e adds true
all directly or indirectly granted roles of the user
to the Subject after successful authentication.

storePrivateCredentials Ifsettotrue,the Real nLogi nMbdul e adds fal se
all private credentials (for instance, password
credentials) to the Subject after successful
authentication.

support CSl v2 If setto t r ue, the Real mLogi nMbdul e fal se
supports CSIv2. See Chapter 15, "Configuring
CSlv2" for details.

support Nul | Passwor d (LDAP-based provider only) If settot rue, the fal se
Real m_ogi nMbdul e does not check to see if
the supplied password is null or empty. If set to
f al se, authentication fails if the supplied
password is null or empty.

Enabling RealmLoginModule Using A Text Editor

4-8

Use a text editor to modify the login configuration filej azn- dat a. xm where
needed.

The default configuration for the Real mLogi nMbdul e class setting in the
j azn-dat a. xm file is as follows:

<I DOCTYPE j azn-data (View Source for full doctype...)>
<j azn- dat a>

<l-- Login Mdule Data -->
<j azn- | ogi nconfi g>
<appl i cati on>
<nane>or acl e. security.jazn. oc4j.JAZNUser Manager </ name>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.real m Real m_Logi nModul e</ cl ass>
<control -flag>required</control -fl ag>
<options>
<opti on>
<nane>addRol es</ name>
<val ue>t rue</ val ue>
</ option>

Oracle Application Server Containers for J2EE Security Guide

Specifying Authentication (auth-method)

</ opti ons>
</l ogi n- nodul e>
</l ogi n- nodul es>
</ application>
</jazn-1oginconfi g>
</jazn-data>

See Also: The OracleAS JAAS Provider Javadoc.
"Adding and Removing Login Modules" on page 10-4

Specifying Authentication (auth-method)

You specify the authentication method (aut h- net hod) in one of several configuration
files, using either the <j azn- web- app> or <l ogi n- confi g> elements. You must
edit these files by hand.

Specifying auth-method in web.xml

To specify authentication method at the application level, you edit the
<l ogi n- conf i g> element of web. xm . For example:

<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- net hod>
</l ogin-config>
Inweb. xnl , aut h- net hod can have the values shown in Table 4-3:

Table 4-3 Values for auth-method in web.xml

Setting Meaning

BASI C (default) The application uses basic authentication, the standard
authentication.

FORM The application uses form-based authentication.

CLI ENT- CERT The application requires the client to supply its own certificate

for use with SSL.

These values can be overridden at the application level by using the
<j azn-web- app>elementin ori on-application. xm .

Specifying auth-method in orion-application.xml

The aut h- net hod supplied in the top-level <j azn- web- app> element overrides the
aut h- met hod inweb. xm .

There is only one possible value for aut h- met hod in ori on-appl i cati on. xnl:
SSO, meaning that the application uses OracleAS Single Sign-On. If your installation
includes LDAP, Oracle Enterprise Manager automatically sets aut h- met hod to SSO.
If you stop using OracleAS Single Sign-On, you must edit the file to remove this
method.

A sample entry for ori on- appl i cati on. xm would look like:

<jazn provi der="LDAP"
<j azn-web-app aut h- net hod="SSO'/ >
</jazn>

Overall Security Configuration 4-9

Configuring J2EE Authorization

Configuring J2EE Authorization

J2EE defines a declarative authorization model that decouples applications from the
underlying security infrastructure. This model allows an application's authorization
policy to be expressed in a portable manner in the application’'s deployment
descriptors. This model has proven to be hugely successful and suffice for most
application's needs.

In some advanced scenarios, however, the J2EE authorization model may seem too
static and coarse-grained - in these cases the JAAS authorization model can be used
instead of (or in addition to) the J2EE security model. When compared to the J2EE
authorization model, the JAAS authorization model is more powerful (fine-grained
and dynamic) and more flexible (custom permission types supported). Such power
and flexibility come at a cost, however, the JAAS authorization model is more complex
to understand, deploy and administer than the J2EE authorization model.

Both models are fully supported in OC4J.

Servlets, runas-mode, and doasprivileged-mode

In most cases, URL authorization is sufficient for an application. However, if your
application requires granular authorization, this extended authorization can be used to
enforce JAAS Policy-based authorization at the method level.

If you want a servlet to be invoked using subj ect . doAs() or

subj ect. doAsPri vi | eged(), you must set the r unas- node and

doaspri vi | eged- node attributes of the <j azn- web- app> element contained in a
<j azn> element in either the ori on-web. xm or ori on-appli cation.xml files.
To do this, you open the appropriate file in a text editor.

=« subj ect. doAs() invokes the servlet using the privileges of a particular subject.
A subject is defined by an instance of the j avax. security. aut h. Subj ect
class and includes a set of facts regarding a single entity, such as a person. Such
facts include identities and security-related attributes, such as passwords and
cryptographic keys. The OracleAS JAAS Provider passes in the Subj ect instance
in the method call.

When the doAs() method is used, an AccessCont r ol Cont ext instance is
retrieved from the current thread (from the server).

=« subject.doAsPrivil eged() uses the privileges of a particular subject without
being limited by the access-control restrictions of the server.

When the doAsPri vi | eged() method is used, the OracleAS JAAS Provider
invokes the method with a null j ava. securi ty. AccessCont r ol Cont ext
instance, in order to start the action fresh and execute the servlet without the
restrictions of the current server AccessCont r ol Cont ext instance.

runas- node and doaspri vi | eged- node control whether the servlet is invoked
with subj ect . doAsPri vi |l eged() orsubj ect. doAs(). By default, r unas- node
isset to f al se, which means that neither subj ect . doAsPri vi | eged() or

subj ect . doAs() isinvoked.

Note: runas- node is unrelated to the ser vl et . r unAs method.

4-10 Oracle Application Server Containers for J2EE Security Guide

Removing Realm Names From Authentication Principals

Table 4—4 runas-mode and doasprivileged-mode Settings

And
If runas-mode doasprivileged-mode
is Set To Is Set To Then the servlet is invoked with:
fal se trueorfal se No special privileges
(default)
true t r ue (default) subj ect . doAsPri vil eged()
true fal se subj ect . doAs()

Thus, to have your servlet invoked using subj ect . doAsPri vi | eged() you should
have a <j azn- web- app> element that looks like this:

<j azn- web- app

aut h- net hod=" SSO'

runas- node="true"

doaspri vi | eged- node="tr ue"
/>

Mapping Logical Roles to Security Roles

You sometimes deploy a servlet into a container that uses different role names than
expected by the servlet. You do this by mapping the logical role (the role name used by
the servlet) to the security role (the role name used by the container) in the file

web. xm .

For example, the following entity maps the security role cor pnanager s to the logical
role to the logical role ngnt :

<security-role-ref>

<r ol e- name>mgnt </ r ol e- nane>

<rol e-link>cor pmanager s</rol e-1i nk>
</security-role-ref>

In this example, if a servlet running as a user belonging to cor pmanager s invokes
i sUser I nRol e("mgmnt "), the method will returnt r ue. Whenever the container
findsnosecurity-rol e-ref matching a security role, the container checks the
<r ol e- name> against the entire list of security roles for the Web application.

Removing Realm Names From Authentication Principals

It is often desirable to avoid parsing the principal returned by various method calls.
You can configure OracleAS JAAS Provider so that the returned principal contains no
realm name. To do this, you add aj aas. user nane. si npl e property to the <j azn>
element in the file j azn. xm , or, at application level, to the <j azn> element in the file
orion-application.xm . Ifthispropertyissettotrue,returned principals
contain no realm name; if itis set to f al se, the default, returned principals contain the
complete realm name.

This property affects the return values of the following methods:

« javax.servlet.http. HTTPSer vl et Request, get Renpt eUser and
get User Pri nci pal methods

« javax.ejb.EJBContext, getCallerldentityandgetCallerPrincipal
methods

Overall Security Configuration 4-11

Configuring Third-Party LDAP Providers

By default, the principal returned by these methods is in the formatr eal m_
name/ si npl e_nane, such asj azn. com j ohn. When you set

j aas. usernane. si npl e totr ue, the returned principal is in the format si npl e_
name, such asj ohn.

You setj aas. user nane. si npl e as follows:

1. Locate the file containing the <j azn> element (see "Locating jazn.xml,
jazn-data.xml, and the <jazn> element"), open the file in a text editor, and go to the
<j azn> element within the file.

2. Search fora<property nanme="jaas. usernane. si npl e" > sub-element
within the <j azn> element.

3. If the sub-element exists, change the value to t r ue or f al se; if the sub-element

does not exist, create one. In either case, you should have a sub-element that looks
like:

<jazn provider="XM." |ocation="./jazn-data.xm">

<property name="j aas. usernane.sinple" value="true" />
</jazn>

Note: Do noteditany <j azn> properties except as specified in this
chapter.

Configuring Third-Party LDAP Providers

See Chapter 9, "Configuring External LDAP Providers".

Permitting EJB RMI Client Access

To enable fat client access to EJBs using RMI, you must grant the correct permissions
using the JAZN Admintool. (For general information on using the Admintool, see

"Admintool Overview" on page 4-3.) You must grant RM Per mi ssion | ogin to
your user, role, or group.

java -jar jazn.jar -grantpermnyrealm-role adninistrators \
com evernind. server.rm . RM Perni ssion |ogin

4-12 Oracle Application Server Containers for J2EE Security Guide

Using the <principals> element and principals.xml

Creating a Java 2 Policy File

The Java 2 policy file grants permissions to trusted code or applications that you run.
This enables code or applications to access Oracle support for JAAS or JDK APIs
requiring specific access privileges.

A preconfigured Java 2 policy (j ava2. pol i cy) is provided in
ORACLE_HOWE/ j 2ee/ home/ confi g.

You need to modify the Java 2 policy file to grant permissions to trusted code or
applications.

For example, the following section of aj ava2. pol i cy file grants
java. security. Al'l Perm ssion tothe trustedj azn. j ar.

[* grant the JAZN library Al'l Perm ssion */
grant codebase "file: ${oracl e. hone}/j2ee/ home/jazn.jar" {
permi ssion java.security. Al Pernission;

b

The following example grants specific permissions to all applications running in the
ORACLE_HQOVE/ appdeno directory.

[* Assuming you are running your application demo in $ORACLE_HOVE appdeno/, */
[* Grant JAZN pernissions to the deno to run JAZN APl s*/
grant codebase "file:/${oracle.ons.oracl ehone}/appdemo/-" {

perm ssion oracl e.security.jazn. JAZNPer m ssion "getPolicy";

perm ssion oracl e.security.jazn. JAZNPer ni ssi on "get Real mvhnager";

perm ssion oracle.security.jazn. policy. Adm nPernission
"oracl e. security.jazn.real m Real nPerm ssion$*$cr eat eReal m dropReal m

createRol e, dropRol e, nodi f yReal m\etaData";

Using the <principals> element and principals.xml

The <pri nci pal s> element tells OC4J to use the User Manager described in a
principals file, normally pri nci pal s. xm . A<pri nci pal s> element has one
attribute, <pat h>, which specifies a path for the principals file, normally
principals.xm.

For example,
<principals path="nyprincipals. xm” />
Aprincipal s. xm filealso contains a<pri nci pal s> element; this contains two

sub-elements, <gr oups> and <user s>. The <gr oups> element contains one or more
<gr oup> elements, and the <user s> element contains one or more <user > elements.

Note: The XM_User Manager class is deprecated, and is
supported for backward compatibility only. Oracle will cease to
support XM_User Manager and pri nci pal s. xm ina future
release.

Overall Security Configuration 4-13

Using the <principals> element and principals.xml

Table 4-5 Elements in principals.xml

Element Can Contain Attributes Description
<pri nci pal s> <groups>, NA Containing element in file
<user s>
<groups> <gr oup> A list of groups known to this user
manager
<gr oup> <descri ption>, nane Identifies a single user group; name
<per m ssi on> attribute specifies group name
<descri pti on> Not used by OracleAS JAAS Provider,
but is displayed in various
circumstances.
<per m ssi on> nane Ajava. security. Perm ssionthatis
granted to principals. There are two
special values:
« adm ni strat or—equivalent to
com everm nd. security. Adm n
i strationPerm ssion()
« rm:|logi n—equivalent to
com everm nd. server.rm RM P
erm ssion(“l ogin”)
<users> <user > List of users known to the User Manager
<user > <descri pti on>, Single user belonging to this group
<gr oup- menber sh . . .
i g> P user nane String used to identify the user
password Cleartext password used to authenticate

<descri pti on>

<gr oup- menber shi p>

deact i vat ed

group

the user. There is no mechanism for
obfuscating this password.

Eithertrue or f al se. Ift r ue, then this
user will not be found in lookups and
will not be able to be authenticated

Arbitrary content that may be displayed
in various circumstances

Name attribute of a <group> which
contains this user

Groups inpri nci pal s. xm correspond to roles in the OracleAS JAAS Provider. The
pri nci pal s. xm file does not support any equivalent of the OracleAS JAAS
Provider’s concept of realms. Permissions granted to groups may be checked explicitly,
and OC4J does check for the special permissions listed above. However, group
permissions are not integrated with the usual Per nmi ssi on checking performed by a

Securit yManager.

4-14 Oracle Application Server Containers for J2EE Security Guide

Using the <principals> element and principals.xml

The following is an example pri nci pal s. xm file.

<?xm version="1.0" standal one="yes' ?>
<I'DOCTYPE principals PUBLIC "//Evermind - Orion Principals//"
"http://xmns.oracl e.confias/dtds/principals.dtd">

<princi pal s>
<gr oups>
<group nane="guests">
<descri ption>users</ description>
</ group>
<group name="adm nistrators">
<descri ption>adnmi ni strat ors</descri ption>
<per ni ssi on nanme="adnini stration" />
</ group>
</ groups>
<users>
<user username="SCOTT" password="TI GER'>
<gr oup- menber shi p group="guests" />
</ user>
<user username="anonynous" password="">
<descri ption>The default guest/anonynous user</description>
<group- menber shi p group="guests" />
</ user>
<user username="admi n" password= deactivated="true">
<description>The default adm ni strator</description>
<group- menber shi p group="users" />
<group- menber shi p group="adni ni strators" />
</ user>
</ user s>
</ princi pal s>

Overall Security Configuration 4-15

Using the <principals> element and principals.xml

4-16 Oracle Application Server Containers for J2EE Security Guide

D

Configuring the OC4J Instance

This chapter discusses instance-specific OC4J configuration. All tasks in this chapter
affect an entire OC4J instance and all applications running under that instance. This
chapter contains the following sections:

The Bootstrap jazn.xml File

Specifying LDAP Connection Properties
Specifying LDAP JNDI Connection Pool Size
Configuring LDAP Caching

Configuring LDAP SSL Properties
Configuring LDAP Default Realm

The Bootstrap jazn.xml File

All of the tasks in this chapter rely on editing the bootstrap jazn.xml file, which is the
instance-specific configuration file read at instance startup. The bootstrap j azn. xni
file is ORACLE_HOME/ j 2ee/ i nst ancenane/ confi g/ jazn. xmi . All changes to this
file affect the entire OC4J instance. The properties listed in this section can be changed
only in the instance-specific j azn. xm file.

Note: You cannot change the bootstrap j azn. xm file with
Application Server Control Console; you must edit it using a text
editor.

Specifying LDAP Connection Properties

There are two properties that change LDAP connection properties. They are listed in
Table 5-1.

Table 5-1 LDAP Connection Properties

Property Name

Default
Meaning Value

| dap. connect . max.retry Number of times the OracleAS JAAS Provider attemptsto 5

create an LDAP connection before giving up.

| dap. connect . sl eep Number of milliseconds the OracleAS JAAS Provider waits 5000

before retrying a failed LDAP connection attempt.

To configure LDAP connection properties, use the following steps:

Configuring the OC4J Instance 5-1

Specifying LDAP JNDI Connection Pool Size

Open the bootstrap <j azn. xm > file, ORACLE__
HOVE/ j 2eel i nst ance/ confi g/ jazn. xm , inatexteditor and go to the
<j azn> element within the file.

Locate the <pr oper t y> sub-element within the <j azn> element. The syntax of
the <pr oper t y> sub-element is:

<property name="propnane" val ue="propval ue"/>
If there is no <pr oper t y> sub-element corresponding to the property you want to
change, create one.

Restart OC4J.

Specifying LDAP JNDI Connection Pool Size

There are two properties that change LDAP connection pool properties. They are listed
in Table 5-2.

Table 5-2 LDAP JNDI Connection Pool Properties

Default
Property Name Meaning Value
jndi.ctx_pool.init_size Initial size for INDI/LDAP connection pool. 5
jndi.ctx_pool.inc_size Pool increment size for INDI/LDAP connection pool — 10

number of connections added to pool whenever the supply
of connections in the pool is exhausted.

To specify the size of the connection pool used by JNDI:

1.

Open the bootstrap <j azn. xm > file, ORACLE _
HOWE/ j 2ee/ i nst ance/ confi g/ jazn. xm , in a text editor and go to the
<j azn> element within the file.

Locate the <pr oper t y> sub-element within the <j azn> element. The syntax of
the <pr opert y> sub-element is;

<property name="propnane" val ue="pr opval ue"/>

5-2 Oracle Application Server Containers for J2EE Security Guide

Configuring LDAP Caching

If there is no <pr opert y> sub-element corresponding to the property you wish to
change, create one. For example, a <pr oper t y> sub-element setting the initial
size to 20 would look like:

<property name="jndi.ctx_pool .init_size" val ue="20">

Note: Do not edit any <j azn> properties except as specified in this
documentation.

3. Restart OC4J.

Configuring LDAP Caching

The LDAP-based OracleAS JAAS Provider supports caching, providing improved
performance and scalability. There are three separate caches:

« Policy cache, which stores grantees and permissions
« Realm cache, which stores realms, users and roles, and a role graph.

« Session cache, which stores users and role graphs in an HTTP session object. (This
cache is available only to web-based clients with cookies enabled.)

The caching service maintains a global HashMap, which is used to store and retrieve
cached objects. A daemon thread runs periodically in the background to invalidate
and clean up expired objects in the HashMap. Objects in the cache expire based on a
time-to-live algorithm; expiration time can be set with the cache properties, described
in Table 5-3.

Note: Only the LDAP-based Provider provides these caches. The
XML-based Provider defaults to caching the entire XML document.

Changing Session Cache Details

Ht t pSessi on objects persist for the duration of the server-side session. An
application can terminate a session explicitly, by invoking
Ht t pSessi on. i nval i dat e() ; a container can terminate a session based on the

<sessi on-ti meout > value.

Note: Objects stored inan Ht t pSessi on instance must
implement the j ava. i 0. Seri al i zabl e interface in order to be
deployed with the <di stri but abl e />flag inweb. xmi .

See Also: The Oracle HTTP Server Administrator’s Guide for more
information about session support in OC4J.

Configuring the OC4J Instance 5-3

Configuring LDAP Caching

Disabling LDAP Caching

Caching is enabled by default. You should disable the caches when performing
management and administrative tasks programmatically. In particular:

« Disable the policy cache when managing policy. If the policy cache is enabled,
calling Pol i cy. grant () orPol i cy.revoke() causesan
Unsupport edQOperati onExcepti on.

« Disable the realm cache when managing realms. This includes adding realms,
dropping realms, granting roles, and revoking roles.

« Disable the session cache when you disable HTTP session cookies.

Note: The JAZN Admintool automatically disables caching while it
is in operation, then reenables caching when it finishes.

To disable the LDAP cache, use the following steps:

1. Open the bootstrap <j azn. xm > file, ORACLE_
HOVE/ | 2ee/ i nst ance/ confi g/ j azn. xm , in a text editor and go to the
<j azn> element within the file.

2. Edit the <j azn> element to appear as follows:

<jazn provi der="LDAP">
<property
name="|dap. user" val ue=
"orcl Appl i cat i onConmonNane=j aznadmi n1, cn=JAZNCont ext, cn=pr oduct s, cn=0r acl eCont ext "/ >
<property name="| dap. passwor d"
val ue="{903} 304PTHogMz VI zbVf KI TI C6Bgi 06KK9kD' / >
<property name="| dap. cache. sessi on. enabl e"
val ue="fal se" />
<property name="| dap. cache. real m enabl e"
val ue="fal se" />
<property name="| dap. cache. pol i cy. enabl e"
val ue="fal se" />
</jazn>

3. Restart OC4J.

LDAP Cache Configuration

The properties that affect the LDAP cache are controlled by <pr opert y>
sub-elements within the <j azn> element. To change these properties, you must edit
the bootstrap <j azn. xml > file, ORACLE_

HOVE/ j 2eel/ i nst ance/ confi g/ j azn. xm , and change the <j azn> element.

To configure LDAP cache properties, use the following steps:

1. Open the bootstrap <j azn. xm > file, ORACLE _
HOWE/ j 2ee/ i nst ance/ confi g/ jazn. xm , in a text editor and go to the
<j azn> element within the file.

2. Locate the <pr oper t y> sub-element within the <j azn> element. The syntax of
the <pr opert y>sub-element is;

<property nanme="propnane" val ue="pr opval ue"/>

If there is no <pr oper t y> sub-element corresponding to the property you wish to
change, create one.

5-4 Oracle Application Server Containers for J2EE Security Guide

Configuring LDAP Caching

3. Restart OC4J.

Table 5-3 describes the LDAP cache properties and their default values. You can set
these properties only at the instance level, in the <j azn> tag in the bootstrap
<j azn.xnl >,

Table 5-3 LDAP Cache Properties

Property Description Default

| dap. cache. pol i cy. enabl Ifsettotr ue, enables cache; if set to true
e (see Note) f al se, disables cache.

| dap. cache. real m enabl e Ifsettotr ue, enables cache; if set to true
f al se, disables cache.

| dap. cache. sessi on. enab Ifsettotr ue, enables cache; if set to true

e f al se, disables cache.

| dap. cache.initial.capa Initial capacity for the HashMap. 20

city

| dap. cache. | oad. f act or Load factor for the HashMap. .7

| dap. cache. purge.initia String containing an integer that 3600000
| . del ay represents the number of milliseconds

the daemon thread waits before starts
checking for expired objects.

| dap. cache. purge. ti meou The string representation of an integer 3600000
t that represents the number of

milliseconds an object remains in cache

before being invalidated and removed.

It is also the sleep time for the daemon

thread between each run looking for

expired objects.

Notes:

« Donoteditany <j azn> properties except as specified in this
documentation.

« | dap. cache. policy. enabl e replaces the deprecated property
| dap. cache. enabl e

A j azn element with all caches enabled, a cache size of 100, and a 10000-millisecond
timeout would look like:

< jazn provider="LDAP" |ocation="Idap://exanpl e.com 389" >
< property nane="I| dap. cache.initial capacity" val ue="100" />
< property nane="I| dap. cache. purget.tineout" val ue="10000" />
</jazn>

Configuring the OC4J Instance 5-5

Configuring LDAP SSL Properties

Configuring LDAP SSL Properties

The properties that affect SSL are controlled by <pr oper t y> sub-elements within the
<j azn> element. To change these properties, you must edit the file containing the
<j azn> element.

To configure LDAP SSL properties, use the following steps:

1. Open the bootstrap <j azn. xm > file, ORACLE _
HOWE/ j 2ee/ i nst ance/ config/jazn.xm , inatexteditor and go to the
<j azn> element within the file.

2. Locate the <pr oper t y> sub-element within the <j azn> element. The syntax of
the <pr opert y>sub-element is:

<property name="propnane" val ue="pr opval ue"/>

If there is no <pr oper t y> sub-element corresponding to the property you wish to
change, create one.

3. Restart OC4J.
Table 54 lists the SSL properties.

Table 5-4 Values For <property> Element of <jazn> Tag

Property Name Value

| dap. passwor d Obfuscated password for the LDAP user name. For example:
{903} 0zzYqntsc/ i yCaDr D4qs2FHoXf SLAW MN

See "Password Obfuscation In jazn-data.xml and jazn.xml" on page 14-1 for
details on obfuscation.

| dap. pr ot ocol The protocol to be used when communicating with LDAP using SSL.

| dap. user LDAP username or DN This element is populated automatically; you should
not change the contents. For example:

orcl Appl i cat i onCormopnNane=j aznadm nl, cn=JAZNCont ext ,
cn=product s, cn=Cr acl eCont ext

Note: Do noteditany <j azn> properties except as specified in this
document.

Choosing SSL Authentication

This section discusses configuring the OracleAS JAAS Provider to use SSL with Oracle
Internet Directory. For information on how to configure Oracle Internet Directory to
use SSL, see the Oracle Internet Directory Administrator’s Guide andOracle Application
Server Containers for J2EE Servlet Developer’s Guide .

At 10g Release 2 (10.1.2), you must use NULL authentication when communicating
with Oracle Internet Directory, NULL authentication means that data are encrypted
with the Anonymous Diffie-Hellman cipher suite, but no certificates are used for
authentication.

If you choose SSL at install time, SSL is enabled with NULL authentication in place.
You must manually enable SSL only if you did not choose SSL as part of your
installation. In that case, for NULL authentication, add a <pr oper t y> tag to the

<j azn>tag in the bootstrap j azn. xm to specify a protocol (note that you do not

5-6 Oracle Application Server Containers for J2EE Security Guide

Configuring LDAP Default Realm

specify a wallet location or password, because NULL authentication does not use
certificates):

<?xm version = '1.0" encoding = 'UTF-8' ?>
<jazn provider="LDAP" | ocation="|dap://exanpl e.com 5000" defaul t-real n¥"us">

<property name="|dap. protocol " val ue="ssl"/>

</jazn>

Configuring LDAP Default Realm

The default realm is the realm used whenever an authentication or authorization
request does not specify a realm explicitly. This attribute is automatically populated
with the default Oracle Identity Management realm; you need to edit the attribute
only if the default is incorrect for your application. To configure the LDAP default
realm, use the following steps:

1. Open the bootstrap <j azn. xm > file, ORACLE _
HOME/ j 2ee/ i nst ance/ confi g/j azn. xm , in a text editor and go to the
<j azn> element within the file.

2. Editthe def aul t - r eal mattribute of the <j azn> element. The syntax is:

<jazn provider="LDAP" defaul t-real m="nyreal nf

3. Restart OC4J.

Note: Do noteditany <j azn> properties except as specified in this
documentation.

For example, a jazn element that set the default-realm to "Sales" would look like:

<jazn provi der="LDAP" default-real m"Sales" ... nore attributes
<contents of jazn el enent/>
</jazn>

Configuring the OC4J Instance 5-7

Configuring LDAP Default Realm

5-8 Oracle Application Server Containers for J2EE Security Guide

6

Security Considerations During Application

Deployment

This chapter discusses issues to be considered when deploying applications. It is
divided into the following sections:

Selecting a UserManager
Mapping Security Roles
Granting Permissions

Creating Users And Groups

Selecting a UserManager

By default, if you associated your OC4J instance with infrastructure, the JAZN LDAP
User Manager is used for your newly-deployed application; otherwise, the JAZN
XML User Manager is used for your application. If for some reason you need to
change your application’s user manager, you can do so from the Application Server
Control Console. For details, see the Application Server Control Console help screen
"Modifying the User Manager for All Applications".

Mapping Security Roles

You map security roles for your application using the Security page of the
Application Server Control Console. You use the following steps:

1.

Select your application from the Application Server Control Console, then click the
Security link.

Select a role from the list titled Security Roles.

Click the button Map Roles To Principals. A new screen appears headed Role:
yourrole.

Click the checkbox next to the desired group or user. (There are two separate areas
labeled Map Role To Groups and Map Role To Users.) Click Apply.

A confirmation screen appears. Click OK.

Security Considerations During Application Deployment 6-1

Granting Permissions

Granting Permissions
There are two different ways to grant permissions.

= To grant RMI permission or admni ni strati on permission, use Oracle Enterprise
Manager 10g Application Server Control Console; for details, see "Granting RMI
Permission Or Administration Permission” .

« To grant any permissions other than RMI permission or admi ni strati on
permission, you use the JAZN Admintool. For details, see "Granting and Revoking
All Other Permissions”.

Granting RMI Permission Or Administration Permission

You can grant RMI or admi ni strati on permission to a group using Oracle
Enterprise Manager 10g Application Server Control Console. To do this:

1. Select an application and navigate to the Security page.

2. Select the group’s name from the list of groups. The Add/Edit Group Page
appears.

3. Check whichever permissions you wish to add and click Apply.

Granting and Revoking All Other Permissions

You use the JAZN Admintool to grant and revoke user permissions. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

-grantpermreal m{-user user|-role role } | principal _class principal _paraneters}
perm ssion_cl ass [pernission_paraneters]

-revokepermreal m {-user user|-role role} | principal_class principal _paraneters}
perm ssion_cl ass [perm ssion_paraneters]

-listperms real m{-user user|-role role} | principal _class principal _paraneters}
per ni ssion_cl ass [perni ssion_paranet ers]

where pri nci pal _cl ass is the fully qualified name of a class that implements the
principal interface (such as com sun. security. aut h. NTDormai nPri nci pal) and
princi pal _par ant er s is a single String parameter.

The - gr ant per moption grants the specified permission to a user (when called with
- user)orarole (when called with - r ol €) or a principal. The - r evokeper moption
revokes the specified permission from a user or role or principal

A perm ssion_descript or consists of a permission’s explicit class name (for
example, oracl e. security.jazn. real m Real mPer nmi ssi on), its action, and its
action and target parameters (for Real nPer m ssi on, r eal nmame act i on). Note
that there may be multiple action and target parameters.

Note: If the Admintool gives the error message Per ni ssi on

cl ass not found, it means that the permission you wish to grant is
not in the classpath. You must place the JAR containing the
permission class inthej dk/jre/li b/ ext directory so that the
Admintool can locate it..

6-2 Oracle Application Server Containers for J2EE Security Guide

Creating Users And Groups

For example, to grant Fi | ePer mi ssi on with target a. t xt and actions "r ead,
write"touser marthainrealmf oo, type:

java -jar jazn.jar -grantpermfoo -user nartha java.io.FilePermssion
a.txt read,wite

Admintool shell:

JAZN: > grantpermfoo -user martha java.io.FilePermssion a.txt read,wite

Creating Users And Groups

See Chapter 7, "Configuring the LDAP-Based Provider" or Chapter 8, "Configuring the
XML-Based Provider" for details on creating users and groups in each provider.

Security Considerations During Application Deployment 6-3

Creating Users And Groups

6-4 Oracle Application Server Containers for J2EE Security Guide

v

Configuring the LDAP-Based Provider

This chapter discusses configuring the LDAP-based provider. It contains the following
sections:

« Preparing To Use LDAP
« Creating LDAP Users and Groups

Some LDAP properties affect the entire OC4J instance; these properties are discussed
in "Specifying Bootstrap OracleAS JAAS Provider Settings" on page 4-5.

Preparing To Use LDAP

You normally associate OC4J with infrastructure at the time of installation.However,
you can also associate OC4J with infrastructure using Oracle Enterprise Manager 10g
Application Server Control Console. See the Oracle Enterprise Manager 10g help
screen "Application Server- Infrastructure Page"

When you associate an OC4J instance with an Oracle Application Server Infrastructure
(including the Oracle Internet Directory), your application can leverage the
LDAP-based provider for central management of users.

Creating Administrative Users and Groups

If you specify the LDAP-based provider globally in the appl i cati on. xni
configuration file, then you must set up certain users, groups, and permissions in
Oracle Delegated Administration Services:, and then grant these users and groups the
appropriate permissions.

You can set up the appropriate groups and users by using the tool
oracl e.security.jazn.util.LoadG dDat a, which is part of the j azncor e
library supplied inJ2EE_HOME.. You run the tool with the command line:

java -cp ./jazncore.jar oracle.security.jazn.util.LoadG dData

Configuring the LDAP-Based Provider 7-1

Preparing To Use LDAP

The syntax for this tool is:

LoadG dData [-h | daphost] [-p |dapport] [-D binddn] [-w passwd] [-f filenane
[-oc4j Adm nPwd passwd] [-ignoreError [true|false]

The supported options are:
« -h | daphost —The LDAP hosthame
« -p | dapport—The port of the LDAP server

« - Dbi nddn—The distinguished name for the Oracle Internet Directory
administrator

« -wpasswor d—The password for the Oracle Internet Directory administrator

« -f fil enanme—The file containing the entries to be loaded; this should always be
J2EE HOWE/ j azn/i nstal | / oi dConfi gFor Cc4j . sbs

« -o0c4j Admi nPwd passwor d—The password that will be assigned to OC4J
administrator

« -ignoreErrorbool ean—Ifsettof al se, the default, the tool stops as soon as it
encounters an error; if set to t r ue, the tool continues after reporting the error.

For example, assume the password for the Oracle database administrator is
wel conel and the password for the OC4J admin user is wel conme2. The command
line would be:

java -cp $J2EE HOW j azncore.jar oracle.security.jazn.util.LoadO dData
-h oi dhost -p oidport -D cn=orcladnmin -w wel conel
-f $J2EE HOWE/ j azn/instal | / oi dConfi gFor Cc4j . sbs - oc4j Adm nPwd wel conme?2

After you run this tool, your default Oracle Identity Management realm will contain
the following:

« Anadm ni strators group

=« Anadm n user that is a member of the adni ni strat or s group

The admi ni st rat or s group will have the following permissions:

« comeverm nd. server. Adni ni strati onPerm ssi on
("adm nistration")

« comevermn nd. server.rni . RM Perm ssion("login")

Finally, you must set the | dap. user property to admi n and the | dap. passwor d
property to the admin password; see "Configuring LDAP SSL Properties" on page 5-6
for instructions.

7-2 Oracle Application Server Containers for J2EE Security Guide

Creating LDAP Users and Groups

LDAP-Based Provider Environment Variables

Before beginning development, you must ensure that the operating-system-specific
environment variable controlling loading of dynamic libraries (for example, LD _
LI BRARY_PATH in Solaris) is set appropriately. See Table 2-5 for details.

When you manage OC4J with Oracle Enterprise Manager, it sets this variable
automatically.

Creating LDAP Users and Groups

To create users and groups when using the LDAP-based provider, you use the Oracle
Delegated Administration Services tools. For details, see Oracle Identity Management
Guide to Delegated Administration.

Configuring the LDAP-Based Provider 7-3

Creating LDAP Users and Groups

7-4 Oracle Application Server Containers for J2EE Security Guide

38

Configuring the XML-Based Provider

This chapter discusses performing basic user, group, and role management tasks using
Oracle Enterprise Manager 10g Application Server Control Console and JAZN
Admintool. Itis divided into the following sections:

« Creating Users

» Creating Roles (Groups)
« Deleting Users

« Deleting Roles (Groups)
«» Creating Realms

« Deleting Realms

« Granting Permissions

« Revoking Permissions

» Granting Roles (Groups)
« Revoking Roles (Groups)
« Setting Persistence Mode
« Configuring XML Default Realm

« Migrating Principals from the principals.xml File

Note: This chapter uses the term "role" because that term is used by
the JAZN Admintool. A "role" is the same thing as a "group”, which is
the more commonly-used term.

Creating Users
To create users in the XML-based Provider, use Enterprise Manager as follows:
1. Go to the Application Server Control Console.
2. Navigate to the Security screen for the appropriate OC4J instance.

3. Click the Add User button and follow the instructions on the screens.

Configuring the XML-Based Provider 8-1

Creating Roles (Groups)

Creating Roles (Groups)

To create roles (also known as groups) in the XML-based Provider, use Enterprise
Manager as follows:

1. Go to the Application Server Control Console.
2. Navigate to the Security screen for the appropriate OC4J instance.

3. Click the Add Group button and follow the instructions on the screens.

Deleting Users
To delete users in the XML-based Provider, use Enterprise Manager as follows:
1. Go to the Application Server Control Console.
2. Navigate to the Security screen for the appropriate OC4J instance.
3. Select a user with the radio button.
4

Click the Remove button and follow the instructions on the screens.

Note: The bootstrap j azn-dat a. xm must contain accounts for
"admi n"and "anonynous". Do not remove these accounts; if you do,
the OracleAS JAAS Provider will stop working.

Deleting Roles (Groups)

To delete roles (also known as groups) in the XML-based Provider, use Enterprise
Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen for the appropriate OC4J instance.
3. Select a group with the radio button.
4

Click the Remove button and follow the instructions on the screens.

Creating Realms

To add a realm, use the JAZN Admintool. See "Admintool Overview" on page 4-3 for
details on using the Admintool.

The Admintool - addr eal moption adds a realm. It takes as arguments the realm
name, the administrator name, and the administrator password. The syntax is:

-addreal mreal madm n adni npwd adminrol e

For example, using the XML-based Provider, the administrator mar t ha with password
mypass using role hr would add the realm enpl oyees as follows:

java -jar jazn.jar -addreal menpl oyees martha nypass hr

8-2 Oracle Application Server Containers for J2EE Security Guide

Granting Roles (Groups)

Deleting Realms

To delete realms, use the JAZN Admintool. See "Admintool Overview" on page 4-3
for details on using the Admintool.

The Admintool - r enr r eal moption deletes a role from the realm. It takes one
arguments, r eal m the realm name. The syntax is:

-renrealmrealm

To delete a realm foo, type:

java -jar jazn.jar -renreal mfoo

Granting Permissions

See "Granting Permissions" on page 6-2.

Revoking Permissions

To revoke permissions, use the JAZN Admintool. See"Admintool Overview" on
page 4-3 for details on using the Admintool.

The - r evokeper moption revokes the specified permission from a user or role or
principal. To supply multiple words in the per mi ssi on argument, enclose it in
guotation marks ("t hr ee wor d perni ssi on"). The syntax is:

-revokepermreal m{-user user|-role role} | principal_class principal _paraneters}
perni ssion_cl ass [pernission_paranet ers]

where pri nci pal _cl ass is the fully qualified name of a class that implements the
principal interface (such as com sun. security. aut h. NTDomai nPri nci pal) and
princi pal _paramnt ers isasingle St ri ng parameter.

To revoke the per ml permission, type:

java -jar jazn.jar -revokepermfoo -user martha java.io.FilePernission a.txt
read, wite

Granting Roles (Groups)

To grant roles in the XML-based Provider, use Enterprise Manager as follows:
1. Go to the Application Server Control Console.

2. Navigate to the Security screen of the chosen OC4J instance.

3. Select a user with the radio button.

4. Select the checkboxes that correspond to the roles you wish to grant.

5

Click the Apply button.

Configuring the XML-Based Provider 8-3

Revoking Roles (Groups)

Revoking Roles (Groups)
To grant roles in the XML-based Provider, use Enterprise Manager as follows:
1. Go to the Application Server Control Console.
2. Navigate to the Security screen of the chosen OC4J instance.
3. Select a user with the radio button.
4. Select the checkboxes that correspond to the roles you wish to revoke..
5. Click the Apply button.

Setting Persistence Mode

Persistence mode governs when changes to data are written toj azn- dat a. xn .
There are three possible values for persistence:

= NONE
Do not write changesto j azn- dat a. xm .
« ALL
Write changes after every modification.
« VMEX T (the default)
Write changes when the Java Virtual Machine exits.

To configure the persistence mode in the XML-based provider, you must edit the
<j azn>elementinthejazn. xm file by hand. (For details on locating j azn. xm , see
"Locating jazn.xml, jazn-data.xml, and the <jazn> element" on page 4-2)

1. Openj azn. xn in your text editor and go to the <j azn> element.

2. Editthe per si st ence attribute of the <j azn> element. For example, to write
changes after every modification, you should edit the j azn element to look like:

<jazn persistence="ALL" ... other attributes />

Note: Do not change the other attributes of the j azn tag.

Configuring XML Default Realm

The default realm is the realm used whenever an authentication or authorization
request does not specify a realm explicitly. This attribute is not needed if you have
configured only one realm in the repository. To configure the XML default realm, use
the following steps:

1. Locate the file containing the <j azn> element (see "Locating jazn.xml,
jazn-data.xml, and the <jazn> element" on page 4-2), open the file in a text editor,
and go to the <j azn> element within the file.

2. Editthe def aul t - r eal mattribute of the <j azn> element. The syntax is:

<jazn provider="XM" default-real m="nyreal ni

3. Forexample, a jazn element that set the default-realm to Sales would look like:

<jazn provider="XM." defaul t-real m="Sales" ... nore attributes
<contents of jazn el enent/>
</jazn>

8-4 Oracle Application Server Containers for J2EE Security Guide

Migrating Principals from the principals.xml File

Note: Do noteditany <j azn> properties except as specified in this
chapter.

Migrating Principals from the principals.xml File

You use the JAZN Admintool to migrate your data out of the pri nci pal s. xn file.
For basic information on running the JAZN Admintool, see "Admintool Overview" on
page 4-3.

-convert filenane realm

The - convert option migrates the pri nci pal s. xm file into the specified realm of
the current OracleAS JAAS Provider. The f i | ename argument specifies the path
name of the input file (typically ORACLE _

HOVE/ j 2ee/ home/ confi g/ pri nci pal s. xm).

The migration converts pri nci pal s. xm users to JAASusers and

princi pal s. xm groups to JAAS roles. All permissions that were previously
granted toa pri nci pal s. xm group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

An error (either Javax. nam ng. Aut henti cati onException:lnvalid
user name/ passwor d or j avax. nani ng. Nam ngExcepti on: Lookup Error)is
returned if the input file contains errors.

Before you convert pri nci pal s. xm , you must make sure that you have an
administrator user that is authorized to manage realms. To do this:

1. Activate the administrative user in pri nci pal s. xm , which is deactivated by
default. Be sure to create a password for the administrator.

2. Create the realm pri nci pal s. comwith a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addreal m princi pal s.comul wel cone r1l
Make sure that the administrator name you used to create the realm is different
from the name of the administrator in pri nci pal s. xm . This is necessary

because the convert command does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

3. Migrate pri nci pal s. xm totheprinci pal s. comrealm, as in

java -jar jazn.jar -convert config/principals.xm principals.com
4. Change the <defaul t -real n>toprinci pal s. com see "Setting Persistence
Mode" on page 8-4.

5. Stop OC4J and restart it.

Configuring the XML-Based Provider 8-5

Migrating Principals from the principals.xml File

8-6 Oracle Application Server Containers for J2EE Security Guide

9

Configuring External LDAP Providers

This chapter discusses how to configure OC4J to use non-Oracle LDAP servers. It is
divided into the following sections:

Prerequisites

Prerequisites

Creating a <login-module> Element in jazn-data.xml

An Example LDIF Description

Configuring Sun Java System Application Server as LDAP Provider

Configuring Microsoft Active Directory as LDAP Provider

Note: Although OC4J supports non-Oracle LDAP servers, Oracle
Identity Management does not. You cannot configure Oracle Identity
Management to use a third-party LDAP server. Furthermore, you
should not configure the JAAS Provider to use Oracle Identity
Management as a third-party LDAP server; by doing so, you lose
access to the optimizations and integrations available when using
Oracle Identity Management as the native LDAP provider.

Before you configure OC4J, you must complete the following prerequisites:

1.

Install and configure Sun Java System Application Server (formerly iPlanet) or
Active Directory.

Install and configure OC4J.

Locate thej azn- dat a. xm file associated with your OC4J instance. This is
normally in the directory ORACLE_HOWE/ j 2ee/ i nst ance_nane/ confi g. You
will be editing this file using a text editor.

Note: Although manyj azn- dat a. xm files can be associated with
an OC4J instance, the j azn- dat a. xm specified in the bootstrap
j azn. xm serves as the default repository for JAAS login modules.

Locate the ori on-appl i cati on. xm file that controls your application. This

file will normally be located in the directory ORACLE_HOWE/ j 2ee/ i nst ance_
name/ appl i cati on- depl oynent / appl i cati on_nane. You will be editing
this file using a text editor.

Configuring External LDAP Providers 9-1

Creating a <login-module> Element in jazn-data.xml

Note:

Sample login module entries for Sun Java System Application

Provider and Microsoft Active Directory are provided in the directory
J2EE_HOME/ j azn/ confi g. A non-provider-specific login module
entry is provided in J2EE_HOWE/ j azn/ confi g/ | dap_| ogi n_
nmodul e. t enpl at e.

Creating a <login-module> Element in jazn-data.xml

Each option in a <l ogi n- nodul e> corresponds to a configuration setting in the
LDAP provider. The supported options are listed in Table 9-2,Table 9-2 , and
Table 9-3. Unless marked (optional), all options must be explicitly specified.

Table 9-1 LoginModule Provider Options

Option name

Meaning

oracle.security.jaas.ldap.provider.
url

oracle.security.jaas.ldap.provider.
principal

oracle.security.jaas.ldap.provider.
credential

oracle.security.jaas.ldap.provider.
type

oracle.security.jaas.ldap.provider.
connect.pool

oracle.security.jaas.ldap.Im.cache_
enabled

The URL of the LDAP provider in the format host nane:por t nane.

The Distinguished Name (DN) of the LDAP user that is used to connect to the LDAP
server. This user must be an admiinstrator with privileges to search users and
groups, and to invoke | dapconpar e on a user password if the target directory
supports this.

The credential (generally a password) used to authenticate the LDAP user defined in
oracl e.security.jaas.|dap. provider.principal.

(Optional) The product name of the LDAP provider. Supported values are i pl anet,
active directory,andother. If yousupplyi pl anet oractive directory,
the login module is able to infer some LDAP properties (for example, the group
objectclass for active directory is "group") and do some optimizations.

(Optional) Boolean: whether connection pooling is enabled. Tr ue enables connection
pooling, f al se disables it.

(Optional) Boolean: whether login module caching is enabled. Tr ue (default)
enables caching, f al se disables it.

Table 9-2 LoginModule User Options

Option name Meaning

oracle.security.jaas.ldap.user. The name of the LDAP attribute that uniquely identifies the name of the user. In Sun
name.attribute Java System Application Server, ui d; on Active Directory, sAMAccount Nane.

oracle.security.jaas.Idap.user. A list of space-separated LDAP schema object class(es) used to represent a use. On
objectclass SSun Java System Application Server, i net Or gPer son.

oracle.security.jaas.ldap.user. A list of space-separated based distinguished name (DN) in the LDAP directory that
searchbase contains users. For example, cn=user s, dc=us, dc=abc, dc=com

oracle.security.jaas.Idap.user. Specifies how deep in the LDAP directory tree to search for users. Supported values:
searchscope subtree, onel evel

9-2 Oracle Application Server Containers for J2EE Security Guide

An Example LDIF Description

Table 9-3

LoginModule Role Options

Option name

Meaning

oracle.security.jaas.ldap.

role.name.attribute

oracle.security.jaas.ldap.

role.object.class

oracle.security.jaas.ldap.

role.searchbase

oracle.security.jaas.ldap.

role.searchscope

oracle.security.jaas.ldap..

role.membership.
searchscope

oracle.security.jaas.Idap.

role.member.attribute

The name of the LDAP attribute that uniquely identifies the name of the role. In
iplanet, this would be uni queMenber ; in Active Directory, it would be nenber .

A list of space-separated LDAP schema object classes that is used to represent a
group. On Sun Java System Application Server, gr oupOf Uni queNanes. On Active
Directory, gr oup.

A list of space-separated distinguished names (DN) in the LDAP directory that
contains group. For example, cn=gr oups, dc=us, dc=abc, dc=com

Specifies how deep in the LDAP directory tree to search for roles. Supported values:
subtree, onel evel .

Specifies how deep in the LDAP directory tree to search for role membership.
Supported values: di r ect , nest ed.

The attribute of a static LDAP group object specifying the distinguished names (DNs)
of the members of the group. On Sun Java System Application Server,
uni queMenber ; on Active Directory, nenber .

An Example LDIF Description

Table 9-1, "Sample LDIF Defining A User and Role" contains sample declarations for a
user object and role object; each of the next two sections discusses how to map those
objects to an LDAP provider.

Example 9-1 Sample LDIF Defining A User and Role

An exanpl e user object entry

ui d= j doe, dc=us, dc=exanpl e, dc=com
ui d= j doe

gi venName=John

sn=Doe

cn=John Doe

user Passwor d={ SSHA} zD¥ 44JbzY330sr y4nef LnOdu7nBhl | AHKDGEFg==
ui dNunber =1

gi dNunber =1

honeDi rectory=c:\

obj ect d ass=t op

obj ect d ass=per son

obj ect d ass=or gani zat i onal Person

obj ect G ass= i net OrgPer son

obj ect d ass=posi xAccount

An exanple role object entry

cn=nmnager s, ou=gr oups, dc=us, dc=exanpl e, dc=com
obj ect d ass=t op

obj ect d ass= groupC Uni queNanes

cn=manager s

uni queMenber =ui d=j doe, dc=us, dc=exanpl e, dc=com

Configuring External LDAP Providers 9-3

Configuring Sun Java System Application Server as LDAP Provider

Configuring Sun Java System Application Server as LDAP Provider

At this release, you must configure Sun Java System Application Server as your LDAP
provider by editing the j azn- dat a. xm file to add a <l ogi n- nodul e>
corresponding to the Sun product. This section discusses the necessary changes.

Note: A template file containing a sample login module entry for
Sun Java System Application Server is provided in the file J2EE_
HOVE/ j azn/ confi g/ sanpl e_I| ogi n_nodul e. sun.

1. Openyourjazn-data.xm file (see "Prerequisites") using a text editor.

2. Locate the <appl i cati on> element representing your application. If there is no
<appl i cati on>element, create one.

3. Locate the <l ogi n- nodul es> section within the <appl i cat i on> element. If
there is no <l ogi n- nodul es> element, create one.

4. Edit the <opt i on> elements to specify appropriate values for Sun Java System
Application Server. One set of suggested values can be found in Example 9-2.
Save the edited file.

5. Openyourorion-application.xm file (see "Prerequisites™) using a text
editor.

6. Locate the <j azn> element within ori on- appl i cati on. xm . Setthe
provi der property to " XM." and add a <pr opert y> element setting cust om
| dap. provi der totrue. The edited <j azn> element should look like this:

<jazn provider="XM">
<property nanme="custom | dap. provi der" val ue="true"/>
</jazn>
7. Restart the OC4J instance using Enterprise Manager.

SunOne Example

Suppose that your Sun Java System Application Server installation is described by the
set of LDIF entries shown in Example 9-1.

The corresponding <j azn- | ogi nconf i g> entity is shown in Example 9-2.

Example 9-2 JAAS LoginModule Configuration Corresponding To Example 9-1

<j azn-1 ogi nconf i g>
<appl i cation>
<name>cal | er| nf o</ nane>
<l ogi n- modul es>
<l ogi n- nodul e
<cl ass>oracl e. security.jazn. | ogi n. nodul e. LDAPLogi nMbdul e</ cl ass>
<control -flag>required</control -flag>
<options>
irrelevant options onitted ...
<option>
<nane>oracl e. security.jaas.|dap. user.nane. attribute</nane>
<val ue>ui d</ val ue>
</ opti on>
<option>
<nane>oracl e. security.jaas. | dap. user. object.class</ name>
<val ue>i net Or gPer son</ val ue>
</ opti on>

9-4 Oracle Application Server Containers for J2EE Security Guide

Configuring Microsoft Active Directory as LDAP Provider

<opti on>

<nane>or acl e. security.jaas. | dap. user. sear chbase</ nane>
<val ue>dc=us, dc=exanpl e, dc=conx/ val ue>

</ option>

<opti on>

<nane>or acl e. security.jaas.|dap.rol e.nane. attri but e</ name>
<val ue>cn</ val ue>

</ option>

<opt i on>

<nane>or acl e. security.jaas. | dap.rol e.object.class</ name>
<val ue>gr oupOf Uni queNames</ val ue>

</ opti on>

<opt i on>

<nane>or acl e. securi ty.jaas. | dap. rol e. sear chbase</ nane>
<val ue>ou=gr oups, dc=us, dc=exanpl e, dc=conx/ val ue>

</ option>

<option>

<nane>or acl e. security.jaas. | dap. menber. attri but e</ nane>
<val ue> uni queMenber </val ue>

</ option>

</ options>

</ I ogi n- nodul e>

</ | ogi n- nodul es>

</ application>

</jazn-1oginconfi g>

Configuring Microsoft Active Directory as LDAP Provider

At this release, you must configure Microsoft Active Directory as your LDAP provider
by editing the j azn- dat a. xnl file to add a <I ogi n- nodul e> corresponding to the
Microsoft product. This section discusses the necessary changes.

Note: A template file containing a sample login module entry for
Active Directory is provided in the file J2EE
HOVE/ j azn/ confi g/ sanpl e_| ogi n_nodul e. ad

1. Locate the <appl i cat i on> element representing your application. If there is no
<appl i cati on>element, create one.

2. Locate the <I ogi n- modul es> section within the <appl i cati on> element. If
there is no <l ogi n- modul es> element, create one.

3. Edit the <opti on> elements to specify appropriate values for Microsoft Active
Directory. Save the edited file.

4. Openyourorion-application.xnl file (see "Prerequisites") using a text
editor.

5. Locate the <j azn> element within ori on-appl i cati on. xm . Set the
pr ovi der property to" XM." and add a <pr oper t y> element setting cust om
| dap. provi der totrue. The edited <j azn> element should look like this:

<jazn provi der="XW">
<property nane="custom | dap. provi der" val ue="true"/>
</jazn>

6. Restart the OC4J instance using Enterprise Manager.

Configuring External LDAP Providers 9-5

Configuring Microsoft Active Directory as LDAP Provider

9-6 Oracle Application Server Containers for J2EE Security Guide

10

Custom LoginModules

This chapter discusses how to write and install a Logi niMbdul e to be used with the
OracleAS JAAS Provider. This chapter contains the following sections:

« Overview of JAAS Login Modules

« Prerequisites

» Integrating Custom JAAS LoginModules
« Developing a LoginModule

» Adding and Removing Login Modules

« Listing Login Modules

«» Packaging and Deploying

« Configuring Your Application

« Simple Login Module J2EE Integration

» Custom LoginModule Example

Note: Because the JAAS specification does not cover user
management, when you configure your application to use a custom
Logi nModul e, the use of the User Manager API within your
application is effectively disabled. The J2EE API, however, will
continue to function within your application.

Overview of JAAS Login Modules

OC4J supplies a JAAS pluggable authentication framework that conforms to the JAAS
standard. With this framework, an application server and any underlying
authentication services remain independent from each other, and alternative
authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code.

Possible types of JAAS login modules include the following:
« Principal mapping JAAS module

« Credential mapping JAAS module

« Kerberos JAAS module

A JAAS login module can be developed by the customer or supplied by the provider
of the EIS and resource adapter. A login module must implement the standard JAAS
Logi nMbdul e interface, which includes methods to initialize the login module,

Custom LoginModules 10-1

Prerequisites

authenticate a given subject (referred to as phase 1), commit or abort an authentication
(referred to as phase 2), and sign off a subject.

OC4J passes an initiating-principal subject to a JAAS login module. Specifically, this is
a Subj ect instance containing a Pri nci pal instance that represents the OC4J user
(initiating principal), along with any public certificates. OC4J can pass a null Subj ect
instance if there is no authenticated user (that is, if the OC4J user is anonymous). The
initiating-principal subject is passed to thei ni ti al i ze() method of the JAAS login
module.

Thel ogi n() method of the JAAS login module (for phase 1 authentication) must,
based on the initiating principal, find the corresponding resource principal and create
a new credential (such as a Passwor dCr edent i al instance) for the resource
principal. The resource principal and the credential are then added to the
initiating-principal Subj ect instance through the JAAS login module comri t ()
method. The resource credential is passed to the cr eat eManagedConnecti on()
method of the ManagedConnect i onFact or y implementation that is provided by
the resource adapter.

If a null Subj ect is passed, the JAAS login module is responsible for creating a new
Subj ect instance containing the resource principal and the appropriate credential.

Prerequisites

Before working with custom Logi nModul es, you must verify that you are using the
XML-based provider; the LDAP-based provider does not support custom
LoginModules. After you have verified the provider, turn on dynamic role mapping;
see Configuring Dynamic Role Mapping for details.

Configuring Dynamic Role Mapping

When you turn on dynamic role mapping, the OracleAS JAAS Provider performs
authorization checks based on the current Subj ect instead of using static
configurations. By default, dynamic role mapping is turned off, which means that the
OracleAS JAAS Provider uses static configurations as the basis for authorization
checks.

To turn on dynamic role mapping:

1. Openthe bootstrapj azn. xm file, ORACLE _
HOWVE/ | 2ee/ i nst ance/ confi g/ j azn. xm , in a text editor and go to the
<j azn> element within the file.

2. Search fora<property nanme="rol e. mappi ng. dynani c" > sub-element
within the <j azn> element.

3. If the sub-element exists, change the value to t r ue or f al se; if the sub-element
does not exist, create one. In either case, you should have a sub-element that looks
like:

<jazn provi der="XM." |ocation="./jazn-data. xm">
<property name="rol e. nappi ng. dynani ¢c" val ue="true" />
</jazn>

Note: Do noteditany <j azn> properties except as specified in this
documentation.

4. Restart OCA4J.

10-2 Oracle Application Server Containers for J2EE Security Guide

Developing a LoginModule

Integrating Custom JAAS LoginModules

A custom JAAS Logi nMbdul e may be desirable when Oracle Identity Management
is not available and users and roles are defined in an external repository. You can
configure a Logi nModul e using the XML-based provider type. When you create a
custom Logi nMbdul e, the following preliminary questions need to be considered.

1. Development. Do you want to take advantage of J2EE security constraints?

2. Development, packaging, and deployment. Are you using the login modules that
come with J2SE 1.4? Or are you deploying custom or third-party login modules?

Note: Custom login modules are supported only with the
XML-based Provider.

Developing a LoginModule

You can use an any JAAS-compliant Logi nModul e within the OC4J framework. For
general information on developing LoginModules, see the Sun JAAS documentation at
http://java.sun.com j2se/ 1. 4. 2/ docs/ gui de/ security/jaas/ JAASLMDe
vGui de. ht m

When developing a Logi nModul e, you must consider several important issues:
« Subject-based Authorization

« J2EE Security Authorization

« Callback Support

« Debugging Tips

Each of these is discussed in detail in its own section.

Subject-based Authorization

When you associate a custom Logi nModul e with an application, the Subject and the
principals it contains are used as the sole basis for all authorization tasks, including
evaluating J2EE security constraints. To ensure that all relevant principals are
considered during authorization, the Logi nModul e must add the relevant principals,
including all roles and groups that the authenticated user participates in, to the
Subject durring the commit phase of the JAAS authentication process.

J2EE Security Authorization

The OracleAS JAAS Provider custom Logi nModul e framework supports the J2EE
declarative security model. This means that Subject-based authorization enforces the
J2EE security constraints declared in an application’s deployment descriptors

(web. xm and ej b-j ar. xnl , for example). We encourage you to take advantage of
the J2EE security model whenever possible.

Callback Support

The OracleAS JAAS Provider supports the standard
j avax. security. aut h. cal | back name (NameCallback) and password
(PasswaordCallback) callbacks.

Custom LoginModules 10-3

Adding and Removing Login Modules

Debugging Tips
When debugging your secure application, bear the following issues in mind:
« Debug Logging
« Debugging LoginModules

Debug Logging

If you set the JVM system property j azn. debug. | og. enabl e tot r ue, the
OracleAS JAAS Provider logs debugging output to the console. Under Oracle
Application Server, debugging output is captured in the directory ORACLE _
HOVE/ opm/ | ogs.

Debugging LoginModules

We encourage you to include debugging options in your custom Logi nModul e. For
an example, see the default login module, Real nLogi nModul e, which provides
diagnostic output if debug issettot r ue.

Adding and Removing Login Modules

You use the JAZN Admintool to add and remove login modules. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -addl ogi nmodul e application_nanme |ogi n_nmodul e_nane
control _flag [optionnane=val ue ...]
java -jar jazn.jar -renl ogi nnodul e application_nane |ogin_nodul e_nane

The - addl ogi nnmodul e option configures a new Logi nvbdul e for the named
application.

Thecontrol _fl ag musthbeoneofrequired,requisite,sufficient or
opti onal , as specified in j avax. security. aut h. | ogi n. Confi gurati on. See
Table 10-1.

Table 10-1 LoginModule Control Flags

Flag Meaning

Requi red The Logi nMbdul e must succeed. Whether or not it succeeds,
authentication proceeds down the Logi nMbdul e list.

Requisite The Logi nMbdul e must succeed. If it succeeds, authentication
continues down the Logi nMbdul e list. If it fails, control
immediately returns to the application (authentication does not
continue down the Logi nMbdul e list).

Suf fici ent The Logi nMbdul e is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the Logi nMbdul e list.
If it fails, authentication continues down the Logi nModul e
list.

tional The Logi nMbdul e is not required to succeed. Whether or not
g q
it succeeds, authentication proceeds down the Logi nhvbdul e
list.

If the Logi nMbdul e accepts its own options, you specify each option and its value as
an opt i onname=val ue pair. Each Logi nMbdul e has its own individual set of
options.

10-4 Oracle Application Server Containers for J2EE Security Guide

Packaging and Deploying

For instance, to add MyLogi nMbdul e to the application myapp as a required module
with debug settot rue, type:

java -jar jazn.jar -addl ogi nnodul e nyapp MyLogi nMbdul e required debug=true

To delete MyLogi nModul e from nmyapp, type:
java -jar jazn.jar -renlogi nmodul e nyapp MyLogi nModul e

Admintool shell:

JAZN: > addl ogi nnodul e nyapp MyLogi nMbdul e required debug=true
JAZN: ren ogi nnodul e nyapp MyLogi nMbdul e

Listing Login Modules

You use the JAZN Admintool to list login modules. For basic information on running
the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -listloginnodul es [application_name [|ogin_nodul e _class]]
The - 1i stl ogi nnodul es option displays all Logi nModul es either in the specified
appl i cati on_nane,or, ifnoappli cati on_nane is specified, in all applications.

Specifying | ogi n_nodul e_cl ass, after appl i cati on_nane displays information
on only the specified class within the application.

For example, to display all Logi nMbdul es for the application nyapp, type:

java -jar jazn.jar -listloginnodul es nyapp

Admintool shell:

JAZN: > |i st ogi nnodul es myapp

Packaging and Deploying

If you are using one or more of the default login modules provided with J2SE 1.3 and
1.4 (such as the J2SE1.4 com sun. security. aut h. nodul e. Kr b5Logi nModul e),
then no additional configuration is needed. The OracleAS JAAS Provider can locate
the default login modules.

If you are deploying your application with a custom login module, then you must
deploy the login module and configure the OracleAS JAAS Provider properly so that
the module can be found at runtime.

The following options are available when packaging and deploying your custom login
modules:

« Deploying as Standard Extensions or Optional Packages
« Deploying Within the J2EE Application
« Using the OC4J Classloading Mechanism

The remainder of this section discusses these options in greater detail.

Custom LoginModules 10-5

Configuring Your Application

Deploying as Standard Extensions or Optional Packages

If you deploy your login modules as standard extensions, the OracleAS JAAS Provider
will be able to find them. No additional configuration is necessary. Deploying login
modaules as standard extensions allows multiple applications to share the deployed
login modules.

For example, one way to deploy your login modules as standard extensions is to
deploy them to the $J2EE_HOVE/ | i b/ ext directory.

See Also:
http://java. sun. com j 2se/ 1. 4/ docs/ gui de/ ext ensi ons

Deploying Within the J2EE Application

If your login module is used only by a single J2EE application rather than shared
among multiple applications, then you can simply package your login module as part
of your application, and the OracleAS JAAS Provider will be able to find it. No
additional configuration is necessary.

If a later application needs the same Logi nMbdul e, you must repackage the login
module and any relevant classes with the new application.

If you want to enable multiple applications to share the same Logi nMbdul e but you
cannot deploy the Logi nModul e as an extension, then you can consider using the
OC4J classloading mechanism.

Using the OC4J Classloading Mechanism

The OracleAS JAAS Provider is integrated with OCA4J's classloading architecture. If
you configure your application so that the deployed custom login modules are part of
your application cl asspat h, then the OracleAS JAAS Provider can locate them.

One way to accomplish this is using the <l i br ar y> element in either of the following
files:

« application.xm (instance-specific)
« orion-application.xnm (application-specific)

See Also: The Oracle Application Server Containers for J2EE Services
Guide for more information about the <l i br ar y> element.

Configuring Your Application

You modify the following files to configure your application to take advantage of
custom login modules:

« jazn-data.xml

« web.xml or ejb-jar.xml

« orion-application.xml

« ocdj-ra.xml (J2EE Connector Architecture only)

This section gives details on the configuration files.

10-6 Oracle Application Server Containers for J2EE Security Guide

Configuring Your Application

jazn-data.xml

Note: You must choose the XML-based provider when using custom
login modules. See "Integrating Custom JAAS LoginModules" on
page 10-3.

All login module configuration information is stored in the bootstrap
j azn-dat a. xm file. This file is usually located in the directory ORACLE
HOVE/ j 2ee/ i nst ance_nane/ confi g.

Note: The bootstrap j azn- dat a. xm must contain accounts for
"adm n"and "anonynous"”. Do not remove these accounts; if you do,
the administrative functions of the OracleAS JAAS Provider will not
work.

Because the bootstrap j azn- dat a. xm file is instance-specific, you must modify it
whenever you deploy your application into a new OC4J instance. You edit this file
using the JAZN Admintool.

The following sections discuss these XML elements:
« <jazn-loginconfig>

« <jazn-policy>

<jazn-loginconfig>
This tag contains information that associates applications with login modules.

Example 10-1 Example jazn-loginconfig element

<j azn-| ogi nconfi g>
<application>
<nane>sanpl eLM/ name>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.sanmpl es. Sanpl eLogi nMddul e</ cl ass>
<control -flag>required</control -fl ag>
</ | ogi n- nodul e>
</l ogi n- nodul es>
</ appl i cation>
</jazn-1ogi nconfi g>

This fragment associates the application sanpl eLMwith the login module
sanpl e. Sanpl eLogi nModul e.

Note: Do not remove login configuration information on
RealmLoginModule.

<jazn-policy>

This tag contains information that associates grantees with permissions. If you want
to make your fat client accessible to an EJB, you must explicitly make the permissions
available. When you deploy a custom Logi nModul e in OC4J, you normally use
custom principal classes or types. To grant or revoke permissions to these types, use
the JAZN Admintool.

Custom LoginModules 10-7

Configuring Your Application

Example 10-2 Example jazn-policy element
<j azn-policy>
<grant>
<grant ee>
<princi pal s>
<pri nci pal >
<cl ass>oracl e. security.jazn. sanpl es. Sanpl eUser </ cl ass>
<nane>adni n</ name>
</princi pal >
</ princi pal s>
</ grantee>
<perm ssi ons>
<permi ssi on>
<cl ass>com everm nd. server. rmi . RM Per ni ssi on</ cl ass>
<nane>| ogi n</ name>
</ perm ssi on>
</ perm ssi ons>
</ grant>
</jazn-policy>

This fragment grants the permission

com everm nd. server. rm . RM Per ni ssi on with target name | ogi n to the
principal with classoracl e. security.jazn. sanpl es. Sanpl eUser and name
adm n.

Note: Oracle recommends that you manage the contents of
j azn-dat a. xm using the JAZN Admintool.

For more information about the JAZN Admintool, see Chapter 8, "Configuring the
XML-Based Provider".

web.xml or ejb-jar.xml

To take advantage of J2EE declarative security in your application, you must configure
the appropriate security constraints, either using your IDE or by hand-editing either
web. xm orej b-jar.xm . For details on these files, see the J2EE standard
documentation atht t p: //j ava. sun. coni j 2ee.

orion-application.xml

This file is a container-specific deployment descriptor that is generated for each
application deployed in OC4J. The following elements are relevant to writing custom
Logi nMbdul es:

= <jazn>

« <security-role-mapping>

Note: This section discusses only elements relevant to security. For a
full discussion of this file, see the Oracle Application Server Containers
for J2EE User’s Guide.

10-8 Oracle Application Server Containers for J2EE Security Guide

Configuring Your Application

<jazn>

Note: For a discussion of how to locate the <jazn> element, see
"Locating the <jazn> element" on page 4-2.

The following <j azn> property is specific to Logi nModul e configuration:
« role. mapping. dynanic

This property, when set to t r ue, instructs the OracleAS JAAS Provider to base
authorization checks on the authenticated Subj ect instead of basing checks on
the users and roles defined in the application specific j azn- dat a. xm .

The Logi nModul e instance(s) must ensure that the appropriate principals (users,
roles, or groups) are associated with the Subj ect instance during the commit
phase of the authentication process, in order for the principals to be taken into
consideration during the authorization process. This association of principals to
the Subj ect is typically implemented using the standard JAAS API.

<jazn provider="XM." |ocation="./jazn-data.xm">
<property name="rol e. mappi ng. dynani c" val ue="true" />
</jazn>

Note: For full details on dynamic role mapping, see "Configuring
Dynamic Role Mapping"” on page 10-2.

<security-role-mapping>
When you set J2EE security constraints in web. xm orej b-j ar. xnl , you must
configure security role mapping.

The optional <securi ty-rol e- mappi ng> element describes static security-role
mapping information. If you set J2EE security constraints in your application’s
deployment descriptors (web. xm or ej b-j ar. xnl), you must configure security
role mapping.

For details, see "Authenticating and Authorizing EJB Applications" on page 12-2.

<library>

This tag sets the cl asspat h associated with your application. (nested in libraries)
Example:

<library path="../../shared/lib/sanple.jar"/>
<library path="../../shared/lib/sanpl emodul e.jar"/>

Custom LoginModules 10-9

Simple Login Module J2EE Integration

oc4j-ra.xml (J2EE Connector Architecture only)

Each <connect or - f act or y>elementin oc4j - r a. xm can specify a different JAAS
login module, as in the following example. This also shows <confi g- property>
setup to connect to a database through Oracle JDBC.

<connect or-factory connector-nanme="nyBl ackbox" |ocation="eis/nyEl S1">
<confi g- property nane="connecti onURL"
val ue="j dbc: oracl e: thi n: @ ocal host : 5521/ nyservice" />
<security-config use="j aas- nodul ">
<j aas- modul e>
<j aas-appl i cati on- name>JAASMbdul eDenp</j aas- appl i cati on- name>
</ j aas- modul e>
</security-config>
</ connect or - f act ory>

Simple Login Module J2EE Integration

Developing a simple Logi nModul e follows the standard development, packaging,
and deployment cycle. The following sections discuss each step in the cycle.

Development

Develop a JAAS-compliant Logi nMbdul e according to the JAAS SPI (see the Javadoc
forj avax. security. aut h. spi . Logi nModul e for more information).

Packaging
Package your Logi nModul e classes as part of your application's EAR file. For Web
applications, include the classes under the VEB- | NF/ cl asses.

Deployment
To deploy your Logi nModul e in the bootstrap j azn- dat a. xml file:

1. Register your application's login module within the <appl i cat i on> tag.

The following entry registers the login module
oracl e.security.jazn.sanpl es. Sanpl eLogi nModul e to be used for
authenticating users accessing the sanpl eLMapplication.

<appl i cation>
<name>sanpl eLM/ nanme>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn. sanpl es. Sanpl eLogi nMbdul e</ ¢l ass>
<control -fl ag>requi red</control -fl ag>
<opti ons>
<option>
<name>debug</ name>
<val ue>t r ue</ val ue>
</ opti on>
</ options>
</l ogi n- modul e>
</l ogi n- nodul es>
</application>

10-10 Oracle Application Server Containers for J2EE Security Guide

Custom LoginModule Example

2. Optional. Grant relevant permissions to your users and roles.

For example, if the principal admi n needs EJB access, then you must grant the
permission com evern nd. rni . RM Perm ssi on to admi n.

<grant >
<grant ee>
<pri nci pal s>
<princi pal >
<cl ass>oracl e. security.jazn. sanpl es. Sanpl eUser </ ¢l ass>
<nane>adni n</ name>
</ principal >
</ principal s>
</ grantee>
<perm ssi ons>
<permi ssi on>
<cl ass>com everm nd. server.rni . RM Per ni ssi on</ cl ass>
<nane>| ogi n</ name>
</ perm ssi on>
</ perm ssi ons>
</ grant>
To deploy your Logi nMbdul e in the application-specific ori on- appl i cati on. xm
file:

1. Setthe <j azn> property r ol e. mappi ng. dynami c tot r ue:

<jazn provider="XM" location="./jazn-data.xm" >
<property name="rol e. mappi ng. dynami c" val ue="true" />
</jazn>
2. Create appropriate <securi ty-rol e- nappi ng> entries.

<security-rol e-mappi ng nane="sr_devel oper">
<user nane="devel oper" />

</ security-rol e- mappi ng>

<security-rol e-mappi ng name="sr_nanager ">
<group name="nanagers" />

</ security-rol e- mappi ng>

Custom LoginModule Example

This section gives source code for a simple custom Logi nModul e to be used by the
Cal | er I nf o example; you can find the complete source code for the revised example
by searching the Oracle Technology Network at

http://ww. oracl e. com t echnol ogy/ i ndex. ht m .

Example 10-3 SampleLoginModule.java
package oracle.security.jazn. sanpl es;

inport java.util.Set;

inport java.util.lterator;

inport java.util.Mp;

inport java.security.Principal;

inport javax.security.auth. Subject;

inport javax.security.auth. callback. Cal | backHandl er;
i nport javax.security.auth.callback. Cal | back;

inport javax.security.auth. call back. NameCal | back;
inport javax.security.auth. callback. PasswordCal | back;
inport javax.security.auth.login.LoginException;
inport javax.security.auth. spi.Logi nMdul e;

Custom LoginModules 10-11

Custom LoginModule Example

public class Sanpl eLogi nMdul e i npl enents Logi nMbdul e {

Il initial state

protected Subject _subject;

protected Cal | backHandl er _cal | backHandl er;
protected Map _sharedState;

protected Map _options;

/'l configuration options
protected bool ean _debug;

/] the authentication status
protected bool ean _succeeded;
protected bool ean _conmit Succeeded,;

/'l usernanme and password
protected String _nane;
protected char[] _password,;

protected Principal[] _authPrincipals;

/**

* |nitialize this <code>Logi nMdul e</ code>.

* <p/>

* <p/>

*

* @ar am subj ect the <code>Subj ect</code> to be authenticated. <p>
* @aram cal | backHandl er a <code>Cal | backHandl er </ code> for communi cating
* with the end user (pronpting for usernames and

* passwords, for example). <p>

* @aram sharedState shared <code>Logi nModul e</ code> state. <p>

* (@aram options options specified in the login

* <code>Confi guration</code> for this particular

* <code>Logi nMbdul e</ code>.

*

~

public void initialize(Subject subject,

Cal | backHandl er cal | backHandl er,
Map sharedState,
Map options) {

this._subject = subject;

this. _cal | backHandl er = call backHandl er;

this._sharedState = sharedState;

this._options = options;

[l initialize any configured options
_debug = "true". equal sl gnoreCase((String) _options.get("debug"));

if (debug()) {
printConfiguration(this);
}

final public bool ean debug() {
return _debug;

}

protected Principal[] getAuthPrincipals() {

10-12 Oracle Application Server Containers for J2EE Security Guide

Custom LoginModule Example

return _authPrincipals;

/**

* Authenticate the user by pronpting for a usernane and password.
* <pl/>

* <pl>

@eturn true if the authentication succeeded, or false if this
<code>Logi nMbdul e</ code> shoul d be i gnored.
@hrows Fail edLogi nException if the authentication fails. <p>
@hrows Logi nException if this <code>Logi nMbdul e</ code>
is unable to performthe authentication.

* * * * * *

*/
public bool ean I ogin() throws Logi nException {
if (debug())
Systemout. println("\t\t[Sanpl eLogi nMdul] |o0gin");

if (_callbackHandler == null)
t hrow new Logi nException("Error: no Cal | backHandl er available " +
"to garner authentication information fromthe user");

/1 Setup default callback handlers.
Cal | back[] call backs = new Cal | back[] {
new NaneCal | back("Usernane: "),
new PasswordCal | back("Password: ", false)

b

try {
_cal | backHandl er . handl e(cal | backs);

} catch (Exception e) {
_succeeded = fal se;
t hrow new Logi nExcepti on(e. get Message());

String usernane = ((NameCal | back)cal | backs[0]). get Nane();
String password = new

String(((PasswordCal | back)cal | backs[1]). get Password());
if (debug())

{
}

Systemout. println("\t\t[Sanpl eLogi nMbdul €] username : " + usernane);

/1 Authenticate the user. On successfull authentication add principals
Il to the Subject. The name of the principal is used for authorization by
[/ OC4J by mapping it to the value of the name attribute of the group
/] tag in the security-role-mapping for the application.
i f(usernane. equal s("devel oper") && password. equal s("wel cone"))
{

_succeeded = true;

_name = "devel oper";

_password = password.toCharArray();

_authPrincipals = new Sanpl ePrincipal [2];

[Addi ng usernane as principal to the subject

_aut hPrinci pal s[0] = new Sanpl ePri nci pal ("devel oper");

/1 Adding rol e devel opers to the subject

_aut hPrinci pal s[1] = new Sanpl ePri nci pal ("devel opers");

Custom LoginModules 10-13

Custom LoginModule Example

i f (usernane. equal s("manager") && password. equal s("wel cone"))

{
_succeeded = true;
_hame = "nmanager";
_password = password.toCharArray();
_authPrincipals = new Sanpl ePri nci pal [3];
[/ Addi ng usernane as principal to the subject
_authPrincipal s[0] = new Sanpl ePrinci pal ("manager");
/1 Addi ng rol es devel opers and nmanagers to the subject
_authPrincipal s[1] = new Sanpl ePrinci pal ("devel opers");
_authPrincipal s[2] = new Sanpl ePrinci pal ("managers");
}

((Passwor dCal | back) cal | backs[1]). cl ear Password();
cal | backs[0] = null;
cal I backs[1] = null;

if (debug())
{

}

Systemout.println("\t\t[Sanpl eLogi nMddul €] success : + _succeeded);

if (! _succeeded)
t hr ow new Logi nException("Aut hentication failed: Password does not

mat ch");
return true;
}
/**
* <p> This method is called if the Logi nContext's
* overall authentication succeeded
* (the relevant REQUI RED, REQU SITE, SUFFI CI ENT and OPTI ONAL Logi nhbdul es
* succeeded).
* <p/>
* <p> If this LoginMdule's own authentication attenpt
* succeeded (checked by retrieving the private state saved by the
*

<code>| ogi n</ code> method), then this method associates a

* <code>Princi pal </ code>

* with the <code>Subj ect</code> located in the

* <code>Logi nMbdul e</code>. If this Logi nMdul e's own

* authentication attenpted failed, then this method renoves
* any state that was originally saved.

* <p/>

* <p/>

*

* @eturn true if this LoginMdule's own | ogin and comit
* attenpts succeeded, or fal se otherwise.

* @hrows Logi nException if the commit fails.

*/

public bool ean commt ()
t hrows Logi nException {
try {

if (_succeeded == false) {
return fal se;

}

10-14 Oracle Application Server Containers for J2EE Security Guide

Custom LoginModule Example

if (_subject.isReadOnly()) {
t hrow new Logi nExcepti on(" Subj ect is ReadOnly");

}

/] add authenticated principals to the Subject
if (getAuthPrincipals() !'=null) {
for (int i =0; i < getAuthPrincipals().length; i++) {
i f(!_subject.getPrincipals().contains(getAuthPrincipals()[i]))

{
_subj ect. get Princi pal s().add(get Aut hPrincipal s()[i]);
}
}
}
/1 in any case, clean out state
cl eanup();
if (debug()) {
print Subj ect (_subj ect);
}
_commit Succeeded = true;
return true;
} catch (Throwable t) {
if (debug()) {
Systemout. println(t.get Message());
t.printStackTrace();
}
t hrow new Logi nException(t.toString());
}
}
/**
* <p> This method is called if the Logi nContext's
* overal |l authentication failed.
* (the rel evant REQUI RED, REQUI SI TE, SUFFI CI ENT and OPTI ONAL Logi nhbdul es
* did not succeed).
* <pl>
* <p> If this Logi nMdul e's own aut hentication attenpt
* succeeded (checked by retrieving the private state saved by the
* <code>l ogi n</ code> and <code>conmi t </ code> net hods),
* then this nmethod cleans up any state that was originally saved.
* <pl>
* <pl>
*
* @eturn false if this LoginMdule's own |ogin and/or commt attenpts
* failed, and true otherw se.
* @hrows Logi nException if the abort fails.
*/
public bool ean abort() throws Logi nException {
if (debug()) {
Systemout. println("\t\t[Sanpl eLogi nMbdul e] aborted authentication
attenpt.");

}

if (_succeeded == false) {
cl eanup();
return fal se;

Custom LoginModules 10-15

Custom LoginModule Example

} else if (_succeeded == true && _commit Succeeded == fal se) {
/'l Togin succeeded but overall authentication failed
_succeeded = fal se;
cleanup();

} else {
/1 overall authentication succeeded and commit succeeded,
/1 but someone else's commit failed
| ogout () ;

}

return true,

protected void cleanup() {

_nane = null;
if (_password !'=null) {
for (int i =0; i < _password.length; i++) {
_password[i] ="' ';
}

_password = null;

protected void cleanupAl () {
cl eanup();

if (getAuthPrincipals() '=null) {
for (int i =0; i < getAuthPrincipals().length; i++) {
_subj ect. get Principal s().renmove(get AuthPrincipal s()[i]);
}

/**

* Logout the user.

* <p/>

<p> This nethod removes the <code>Princi pal </ code>
that was added by the <code>commit</code> net hod.
<p/ >

<p/ >

@eturn true in all cases since this <code>Logi nMdul e</ code>
shoul d not be ignored.
@hrows Logi nException if the logout fails.

R .

/
public bool ean | ogout () throws Logi nException {
_succeeded = fal se;

_conmi t Succeeded = fal se;

cleanupA | ();

return true;

}

Il hel per methods //

protected static void printConfiguration(SanpleLogi nMbdule sim {
if (slm==null) {
return;

}

10-16 Oracle Application Server Containers for J2EE Security Guide

Custom LoginModule Example

Systemout. println("\t\t[Sanpl eLogi nMbdul €] configuration options:");
if (slmdebug()) {

Systemout. printin("\t\t\tdebug = " + sl mdebug());
}

protected static void printSet(Set s) {
try {
Iterator principallterator = s.iterator();
while (principallterator.hasNext()) {
Principal p = (Principal) principallterator.next();
Systemout.printin("\t\t\t" + p.toString());
}
} catch (Throwable t) {

}

protected static void printSubject(Subject subject) {
try {
if (subject == null) {
return;
}
Set s = subject. getPrincipals();
if ((s!=null) & (s.size() '=10)) {
Systemout. println("\t\t[Sanpl eLogi nModul e] added the fol |l owi ng
Principals:");
printSet(s);
}

s = subj ect. get PublicCredentials();
if ((s!=null) & (s.size() '=10)) {
Systemout. println("\t\t[Sanpl eLogi nModul e] added the fol | owi ng
Public Credentials:");
printSet(s);
}
} catch (Throwable t) {
}
}

}
The Pri nci pal that this Logi nModul e uses is in Example 10-4.

Custom LoginModules 10-17

Custom LoginModule Example

Example 10-4 SamplePrincipal example
package oracl e.security.jazn. sanpl es;

inport java.security.Principal;
class Sanpl ePrincipal inplements Principal {

private String _name = null;

Sanpl ePrincipal (String name) {
_nane = nane;

}

public bool ean equal s(Chj ect another) {
return ((Sanpl ePrincipal)another).getNane().equal s(_nane);

}

public String getNane() {
return _nane;

}

public int hashCode() {
return _nane. hashCode();

}

public String toString() {
return "[Sanpl ePrincipal] : " + _name;

}

10-18 Oracle Application Server Containers for J2EE Security Guide

11

Configuring OC4J and SSL

OCA4J supports Secure Socket Layer (SSL) communication between Oracle HTTP
Server and OC4J in an Oracle Application Server environment, using secure AJP. This
is the secure version of Apache JServ Protocol, the protocol that Oracle HTTP Server
uses to communicate with OC4J. Note, however, that the secure AJP protocol used
between Oracle HTTP Server and OC4J is not visible to the end user.

This chapter discusses only configuring OC4J to take advantage of SSL; for full
information about configuring other Oracle Application Server components, see the
Oracle Application Server Administrator’s Guide .

The following sections provide details:

« Overview of SSL Keys and Certificates

« Using Keys and Certificates with OC4J and Oracle HTTP Server
« Enabling SSL in OC4J

« Requesting Client Authentication

« Resolving Common SSL Problems

Note: Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. This chapter covers only secure
communication between Oracle HTTP Server and OC4J.

This chapter assumes some prior knowledge of security and SSL concepts. See the
following documents for additional information about Oracle Application Server
security and Oracle HTTP Server.

= Oracle Application Server Security Guide

= Oracle HTTP Server Administrator’s Guide

Overview of SSL Keys and Certificates

In SSL communication between two entities, such as companies or individuals, the
server has a public key and an associated private key. Each key is a number, with the
private key of an entity being kept secret by that entity, and the public key of an entity
being publicized to any other parties with which secure communication might be
necessary. The security of the data exchanged is guaranteed by keeping the private key
secret, and by the complex encryption algorithm. This system is known as asymmetric
encryption, because the key used to encrypt data is not the same as the key used to
decrypt data.

Configuring OC4J and SSL 11-1

Asymmetric encryption has a performance cost due to its complexity. A much faster
system is symmetric encryption, where the same key is used to encrypt and decrypt
data. But the weakness of symmetric encryption is that the same key has to be known
by both parties, and if anyone intercepts the exchange of the key, then the
communication becomes insecure.

SSL uses both asymmetric and symmetric encryption to communicate. An asymmetric
key (PKI public key) is used to encode a symmetric encryption key (the bulk encryption
key); the bulk encryption key is then used to encrypt subsequent communication. After
both sides agree on the bulk encryption key, faster communication is possible without
losing security and reliability.

When an SSL session is negotiated, the following steps take place:
1. The server sends the client its public key.

2. The client creates a bulk encryption key, often a 128 bit RC4 key, using a specified
encryption suite.

3. Theclient encrypts the bulk key with the server's public key, and sends the
encrypted bulk key to the server.

4. The server decrypts the bulk encryption key using the server’s private key.

This set of operations is called key exchange. After key exchange has taken place, the
client and the server use the bulk encryption key to encrypt all exchanged data.

Note: Itis possible, but rare, for the client to have its own private
and public keys as well.

In SSL the public key of the server is sent to the client in a data structure known as an
X.509 certificate. This certificate, created by a certificate authority (CA), contains a public
key, information concerning the owner of the certificate, and optionally some digital
rights of the owner. Certificates are digitally signed by the CA which created them
using that CA's digital certificate public key.

In SSL, the CA's signature is checked by the receiving process to ensure that it is on the
approved list of CA signatures. This check is sometimes performed by analysis of
certificate chains. This occurs if the receiving process does not have the signing CA's
public key on the approved list. In that case the receiving process checks to see if the
signer of the CA's certificate is on the approved list or the signer of the signer, and so
on. This chain of certificate, signer of certificate, signer of signer of certificate, and so
on is a certificate chain. The highest certificate in the chain (the original signer) is called
the root certificate of the certificate chain.

The root certificate is often on the approved list of the receiving process. Certificates in
the approve list are called trust points or trusted certificates. A root certificate can be
signed by a CA or can be self-signed, meaning that the digital signature that verifies the
root certificate is encrypted through the private key that corresponds with the public
key that the certificate contains, rather than through the private key of a higher CA.
(Note that certificates of the CAs themselves are always self-signed.)

Functionally, a certificate acts as a container for public keys and associated signatures.
A single certificate file can contain one or multiple chained certificates, up to an entire
chain. Private keys are normally kept separately to prevent them from being
inadvertently revealed, although they can be included in a separate section of the
certificate file for convenient portability between applications.

11-2 Oracle Application Server Containers for J2EE Security Guide

Using Keys and Certificates with OC4J and Oracle HTTP Server

A keystore is used to store certificates, including the certificates of all trusted parties, for
use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties as well as authenticate itself to other parties. The keystore
password is obfuscated. Oracle HTTP Server has what is called a wallet for the same
purpose. Sun's SSL implementation introduces the notion of a truststore, which is a
keystore file that includes the trusted certificate authorities that a client will implicitly
accept during an SSL handshake.

In Java, a keystore isaj ava. security. KeySt or e instance that you can create and
manipulate using the keyt ool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file. Go to
http://java.sun.conifj 2se/ 1. 3/ docs/t ool docs/ wi n32/ keyt ool . ht m for
information about keyt ool .

Using Keys and Certificates with OC4J and Oracle HTTP Server

The follwoing steps describe using keys and certificates for SSL communication in
OCA4J. These are server-level steps, typically executed prior to deployment of an
application that will require secure communication, perhaps when you first set up an
Oracle Application Server instance.

Note that a keystore stores certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties, as well as authenticate itself to other parties. Oracle HTTP
Server uses what is called a wallet for the same purpose.

In Java, a keystore isaj ava. security. KeySt or e instance that you can create and
manipulate using the keyt ool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file. Go to the following
Web site for information about keyt ool :

http://java. sun.conij2se/ 1. 3/ docs/t ool docs/ wi n32/ keyt ool . ht m
The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to

the functionality of keyt ool for keystores. For information on Oracle Wallet Manager,
see the Oracle Application Server Administrator’s Guide

Here are the steps in using certificates between OC4J and Oracle HTTP Server:

1. Use keyt ool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two approaches.
Generate your own signature:

a. Usekeyt ool to "self-sign" the certificate. This is appropriate if your clients
trust you as, in effect, your own certificate authority.

Alternatively, obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keyt ool to generate a certificate request,
which is a request to have the certificate signed by a certificate authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority, and import it into the

keystore, again using keyt ool . In the keystore, the signature is matched with
the associated certificate.

Configuring OC4J and SSL 11-3

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). OCA enables customers to
create and issue certificates for themselves and their users,
although these certificates would probably be unrecognized outside
a customer’s organization without prior arrangements. See the
Oracle Application Server Certificate Authority Administrator’s Guide
for information about OCA.

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle Application
Server, the documentation does not cover it. You can go to the Web site of any
certificate authority for information. (Any browser should have a list of trusted
certificate authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte, Inc.,
for example:

http://ww. verisign.conl
http://ww.thawt e. coml

For SSL communication between OC4J and Oracle HTTP Server, execute the preceding
steps for Oracle HTTP Server, but use a wallet and Oracle Wallet Manager instead of a
keystore and the keyt ool utility. See the Oracle Application Server Administrator’s
Guide for information about wallets and the Oracle Wallet Manager.

In addition to steps 1 and 2 above, execute the following steps as necessary:

1. If the OC4J certificate is signed by an entity that Oracle HTTP Server does not
yet trust, obtain the certificate of the entity and import it into Oracle HTTP Server.
The specifics depend on whether the OC4J certificate in question is self-signed, as
follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not yet
trust OC4J):

a. From OC4J, use keyt ool to export the OC4J certificate. This step places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Alternatively, if OC4J has a certificate that is signed by another entity (that Oracle
HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the certificate
of the entity.

2. If the Oracle HTTP Server certificate is signed by an entity that OC4J does not
yet trust, and OCA4J is in a mode of operation that requires client authentication:
(as "Requesting Client Authentication” on page 11-8 discusses):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From OC4J, use keyt ool to import the certificate of the entity.

11-4 Oracle Application Server Containers for J2EE Security Guide

Using Keys and Certificates with OC4J and Oracle HTTP Server

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed:

1. The OCA4l certificate chain is authenticated to Oracle HTTP Server
during establishment of the encrypted channel.

2. Optionally, if OC4J is in client-authentication mode, Oracle HTTP
Server is authenticated to OC4J. This process also occurs during
establishment of the encrypted channel.

3. Any further communication after this initial exchange will be
encrypted.

Example: Creating an SSL Certificate and Generating Your Own Signature This
example corresponds to the step of obtaining a signature for the certificate, in the
mode where you generate your own signature by using keyt ool to self-sign the
certificate.

First, create a keystore with an RSA private/public keypair, using the keyt ool
command. The following example (in which %is the system prompt) uses the RSA
keypair algorithm to generate a keystore to reside in a file named nykeyst or e, which
has a password of 123456 and is valid for 21 days:

% keyt ool -genkey -keyal g "RSA" -keystore nykeystore -storepass 123456 -validity 21

Note the following:

« The keyst or e option specifies the name of the file in which the keys are stored.
« The st or epass option sets the password for protecting the keystore.

« Thevalidity option sets the number of days for which the certificate is valid.
The keyt ool prompts you for more information, as follows:

Vhat is your first and |ast nanme?
[Unknown]: Test User
\Wat is the name of your organizational unit?
[Unknown]: Support
Vhat is the name of your organization?
[Unknown]: Oracle
VWhat is the name of your Gty or Locality?
[Unknown] : Redwood Shores
VWhat is the name of your State or Province?
[Unknown]: CA
What is the two-letter country code for this unit?
[Unknown]: US
I's <CN=Test User, OU=Support, O=Cracle, L=Reading, ST=Berkshire, C=GB> correct?
[no]: vyes

Enter key password for <nykey>
(RETURN i f sane as keystore password):

Note: To determine your two-letter country code, use the ISO
country code list at the following URL.:

http://ww. bcpl . net/ ~j spat h/i socodes. ht n

The nykeyst or e file is created in the current directory. The default alias of the key is
nykey.

Configuring OC4J and SSL 11-5

Enabling SSL in OC4J

For secure communication between Oracle HTTP Server and OC4J, configuration steps
are required at each end, as discussed in the following section.

Configuring Oracle HTTP Server for SSL

In Oracle HTTP Server, verify proper SSL settings in the nod_oc4j . conf file for
secure communication. SSL must be enabled, with a wallet file and password
specified, as follows:

Cc4j Enabl eSSL on
Ccdj SSLVal letFile wall et _path
Cc4j SSLVal | et Passwor d pwd

Thewal | et _pat h value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.) The pwd value is the wallet password.

For more information about the nod_oc4j . conf file, see the Oracle HTTP Server
Administrator’s Guide.

Example 11-1 Creating an SSL Certificate and Configuring HTTPS

The following example uses keyt ool to create a test certificate and shows all of the
XML configuration necessary for HTTPS to work. To create a valid certificate for use in
production environments, see the keyt ool documentation.

1. Install the correct IDK

Ensure that JDK 1.3.x is installed. This is required for SSL with OCA4J. Set the
JAVA HOME to the JDK 1.3 directory. Ensure that the JDK 1.3.x JAVA HOVE/ bi n is
at the beginning of your path. This may be achieved by doing the following:

UNIX

$ PATH=/ usr/opt/j aval30/ bi n: $PATH
$ export $PATH

$ java -version

java version "1.3.0"

Windows

set PATH=d:\j dk131\ bi n; %°ATH%

Ensure that this JDK version is set as the current version in your Windows registry.
In the Windows Registry Editor under

HKEY_LOCAL_MACHI NE/ SOFTWARE/ JavaSof t/ Java Devel oprment Kit, set
'‘Current Ver si on'to 1.3 (or later).

2. Request a certificate
a. Change directory to ORACLE_HOWE/ | 2ee

b. Create a keystore with an RSA private/public keypair using the keyt ool
command. In our example, we generate a keystore to reside in a file named
mykeyst or e', which has a password of '123456’ and is valid for 21 days,
using the 'RSA' key pair generation algorithm with the following syntax:

keytool -genkey -keyal g "RSA" -keystore nykeystore -storepass 123456 -validity
21

11-6 Oracle Application Server Containers for J2EE Security Guide

Enabling SSL in OC4J

In this tool,

« the keyst or e option sets the filename where the keys are stored

« the st or epass option sets the password for protecting the keystore
« thevali di ty option sets number of days the certificate is valid
The keyt ool prompts you for more information, as follows:

keyt ool -genkey -keyalg "RSA" -keystore nykeystore -storepass 123456 -validity
21

VWat is your first and |ast nanme?
[Unknown]: Test User

Vhat is the name of your organizational unit?
[Unknown]: Support

VWat is the name of your organization?
[Unknown]: Oracle

Vhat is the name of your Gty or Locality?
[Unknown] : Redwood Shores

VWhat is the name of your State or Province?
[Unknown]: CA

VWhat is the two-letter country code for this unit?
[Unknown]: US

s <CN=Test User, OU=Support, O=Cracle, L=Reading, ST=Berkshire, C=GB> correct?
[no]: vyes

Enter key password for <nykey>
(RETURN i f sane as keystore password):

Note: To determine your 'two-letter country code’, use the ISO
country code list at
http: //www. bcpl . net/ ~j spat h/i socodes. htn .

The nykeyst or e file is created in the current directory. The default alias of the
key is mykey.

If you do not have a secur e- web- si t e. xni file, then copy the
def aul t-web-site. xm to
ORACLE_HQOWVE/ j 2eel/ hone/ confi g/ secure-web-site. xm .

Edit secur e- web- si t e. xm with the following elements:
a. Addsecur e="true"to the <web- si t e> element, as follows:

<web-site port="8888" display-name="Default OracleAS Containers for J2EE
Wb Site" secure="true">

Configuring OC4J and SSL 11-7

b. Add the following new line inside the <web- si t e> element to define the
keystore and the password.

<ssl-config keystore="<Your-Keystore>" keyst ore-passwor d="<Your - Passwor d>"
/>

Where <Your - Keyst or e> is the full path to the keystore and
<Your - Passwor d> is the keystore password. In our example, this is as
follows:

<l-- Enable SSL -->
<ssl-config keystore="../../keystore" keystore-password="123456"/>

Note: The keystore path is relative to where the XML file resides.

c. Change the web-site port number, to use an available port. For example, the
default for SSL ports is 443, so change the Web site port attribute to
port="4443". To use the default of 443, you have to be a super user.

d. Now save the changesto secure-web-site. xml .

5. If you did not have the secur e- web-si te. xm file, then editserver. xm to
point to the secur e- web-si te. xnl file.

a. Uncomment or add the following line in the file ser ver . xim so that the
secur e- web-si te.xm fileis read.

<web-site path="./secure-web-site.xm" />

Note: Even on Windows, you use a forward slash, not a backslash,
in the XML files.

b. Savethe changestoserver.xm .

6. Stop and restart OC4J to initialize the secure-web-site.xml file additions. Test the
SSL port by accessing the site in a browser on the SSL port. If successful, you will
be asked to accept the certificate, because it is not signed by an accepted authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests on
another. You can disable either SSL requests or non-SSL requests, by commenting out
the appropriate *web- si t e. xm inthe server. xm configuration file.

<web-site path="./secure-web-site.xm" /> - coment out this to remove SSL
<default-site path="./defaul t-web-site.xm" /> - coment out this to
remove non- SSL

Requesting Client Authentication

OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server communicates with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and must
authenticate itself by sending a certificate and a certificate chain that ends with a root
certificate. You can configure OC4J to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

11-8 Oracle Application Server Containers for J2EE Security Guide

Requesting Client Authentication

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate OC4J encounters that matches one in
its own keystore. There are three ways to establish trust:

The client certificate is in the keystore.

One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain, up to and including the trust point, is
valid to prevent any forged certificates.

If you request client authentication with the needs- cl i ent - aut h attribute, perform
the following steps.

1.

Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Execute the steps to create the client certificate (documented in "Using Keys and
Certificates with OC4J and Oracle HTTP Server" on page 11-3). The client
certificate includes the intermediate or root certificate that is installed in the server.
If you wish to trust another certificate authority, obtain a certificate from that
authority.

Save the certificate in a file on Oracle HTTP Server.

Note: If you are running OC4J Standalone, save the certificate on the
client.

Provide the certificate.

a. Ifyou are running Oracle HTTP Server, then provide the certificate for the
Oracle HTTP Server initiation of the secure AJP connection.

b. If you are running OC4J in a standalone environment,

— Iftheclient is a browser, set the certificate in the client browser security
area.

— Ifthe client is a Java client, you must programmatically present the client
certificate and the certificate chain when initiating the HTTPS connection.

Configuring OC4J and SSL 11-9

Resolving Common SSL Problems

This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

Common SSL Errors and Solutions
The following errors may occur when using SSL certificates:
Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keyt ool utility does not allow.
Action: Delete all trailing white space. If the error still occurs, add a newline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keyt ool utility from an older JDK.
Action:; Use the keyt ool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply

Cause: The keyt ool utility cannot locate the root CA certificates in your
keystore, and therefore cannot build the certificate chain from your server key to
the trusted root certificate authority.

Action: Execute the following command:

keytool -keystore keystore -inport -alias cacert -file cacert.cer
(keytool -keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keyt ool utility, then execute this command:
keystore keystore -genkey -keyal g RSA -alias serverkey

keytool -keystore keystore -certreq -file ny.host.comcsr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following command:

keytool -keystore keystore -inport -file ny.host.comcer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL Debugging

While you are developing in OC4J standalone, you can display verbose debug
information from the Java Secure Socket Extension (JSSE) implementation. To get a list
of options, start OC4J as follows (where %is the system prompt):

% java -Dj avax. net.debug=help -jar oc4j.jar

Start it as follows to enable full verbosity:

% java -Djavax.net.debug=all -jar oc4j.jar

This will display the browser request header, server HTTP header, server HTTP body,
content length (before and after encryption), and SSL version.

11-10 Oracle Application Server Containers for J2EE Security Guide

12

Configuring EJB Security

This chapter discusses security issues affecting EJBs. It discusses the following topics:
« EJBJINDI Security Properties
« Configuring Security

For full information about EJBs, see the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

EJB JNDI Security Properties

There are two JNDI properties that are specific to security. You can either set these
within the jndi.properties file or within your EJB implementation.

JNDI Properties in jndi.properties
If setting the JNDI properties within the j ndi . pr opert i es file, set the properties as
follows. Make sure that this j ndi . properti es file is accessible from the
CLASSPATH.
When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the j ndi . properti es file
deployed with the client’s code.

j ava. nam ng. security. princi pal =<user nane>
j ava. nam ng. security. credenti al s=<passwor d>

JNDI Properties Within Implementation

Set the properties with the same values, only with different syntax. For example,
JavaBeans running within the container pass their credentials within the
I ni tial Cont ext,which is created to look up the remote EJBs.

Configuring EJB Security 12-1

Configuring Security

For instance, to pass JNDI security properties within the Hasht abl e environment, set
these as shown in the following example:

Hasht abl e env = new Hashtabl e();
env. put ("j ava. nani ng. provider.url", "orm://nmyhost/ejbsanples");
env. put ("java.namng.factory.initial",
"com everm nd. server. ApplicationCientlnitial ContextFactory");
env. put (Cont ext. SECURI TY_PRI NCl PAL, "guest");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel conme");
Context ic = new Initial Context (env);
bj ect homeChj ect = ic.lookup("java: conp/ env/ enpl oyeeBean");

/1 Narrow the reference to a Tenpl at eHorre.

Enpl oyeeHone enpHore =
(Enpl oyeeHone) Port abl eRenot ethj ect . narr ow homehj ect,
Enpl oyeeHone. cl ass) ;

Note: ApplicationClientlnitial ContextFactory isinthe
fileoc4djclient.jar.

Configuring Security

EJB security involves two realms: granting permissions if you download into a
browser and configuring your application for authentication and authorization. This
section covers the following:

« Granting Permissions in Browser
« Authenticating and Authorizing EJB Applications
« Specifying Credentials in EJB Clients

Granting Permissions in Browser

If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

pernission java.net.Socket Permission "*:*" "connect,resolve";

pernission java.lang. Runti nePerni ssion "createC assLoader";

perm ssion java.lang. Runti nePerni ssion "getC assLoader";

pernmission java.util.PropertyPermission "*", "read";

perm ssion java.util.PropertyPerm ssion "LoadBal anceOnLookup",
"read, wite";

Authenticating and Authorizing EJB Applications

For EJB authentication and authorization, you define the principals under which each
method executes by configuring of the EJB deployment descriptor. The container
enforces that the user who is trying to execute the method is the same as defined
within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which each
method is allowed to execute. These methods are mapped to users or groups in the
OC4J-specific deployment descriptor. The users and groups are defined within your
designated security user managers, which uses either the JAZN or XML user manager.
For a full description of security user managers, see the Oracle Application Server
Containers for J2EE User’s Guide and Oracle Application Server Containers for J2EE Services
Guide.

12-2 Oracle Application Server Containers for J2EE Security Guide

Configuring Security

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors, as follows:

« The EJB deployment descriptor describes access rules using logical roles.

« The OC4J-specific deployment descriptor maps the logical roles to concrete users
and groups, which are defined either the JAZN or XML user managers.

Users and groups are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 12-1.

Figure 12-1 Role Mapping

<security-role-ref><role-link> | <Secur ity_role> ejb—jar . =ml

'

<security_role_mapping> orion—ejb-jar. =ml

¥

<role>

jazn—data . =Zml

<lser> <UuUser> <UsSers

Defining users, groups, and roles are discussed in the following sections:
« Specifying Users and Groups

» Specifying Logical Roles in the EJB Deployment Descriptor

« Specifying Unchecked Security for EJB Methods

« Specifying the runAs Security Identity

« Mapping Logical Roles to Users and Groups

» Specifying a Default Role Mapping for Undefined Methods

» Specifying Users and Groups by the Client

Specifying Users and Groups

OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or application-specific
users and groups within either the JAZN or XML user managers. See the Oracle
Application Server Containers for J2EE User’s Guide and Oracle Application Server
Containers for J2EE Services Guide. for directions.

Configuring EJB Security 12-3

Configuring Security

Specifying Logical Roles in the EJB Deployment Descriptor

As shown in Figure 12-2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct security role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 12-8 for more information.

Figure 12—2 Security Mapping

ElB Deployvment Descriptor

=enterprise-heans=>

security-rode-ret =
=role-name>"OMgr< /role-name:
<role-link=>myMgr= /role-link

<security-rode-ret

< /enterprise-beans>
=assembly-descriptor=

<seCurity-role>
<role-name>myMgr= / role-name - —————
</ security-roles
<method-permission=
<re-name=myMgr< /role-name -«
method>. . </ method >
</ method-permission:=

< /assembly-descriptor=

If you use a logical name for a database role within your bean implementation for
methods such asi sCal | er | nRol e, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <ent er pri se- beans> section
<security-rol e-ref>element. For example, to define a role used within the
purchase order example, you may have checked, within the bean’s
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the

bean to not need to be aware of database roles, you can checki sCal | er | nRol e
on a logical name, such as POMgr , because only purchase order managers can sign

off on the order. Thus, you would define the logical security role, POMgr within
the <securi ty-rol e-ref ><rol e- name> element within the
<ent er pri se- beans> section, as follows:

12-4 Oracle Application Server Containers for J2EE Security Guide

Configuring Security

<enterprise-beans>

<security-rol e-ref>
<r ol e- name>POMyr </ r ol e- name>
<rol e-link>myMyr</rol e-1ink>
</security-role-ref>
</ enterprise-beans>

The <r ol e- | i nk> element within the <security-rol e-ref >element can be
the actual database role, which is defined further within the

<assenbl y- descri pt or > section. Alternatively, it can be another logical name,
which is still defined more in the <assenbl y- descri pt or > section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

Note: The<security-rol e-ref>elementisnotrequired. You
only specify it when using security context methods within your
bean.

2. Define the role and the methods that it applies to. In the purchase order example,
any method executed within the Pur chaseOr der bean must have authorized
itself as myMyr . Note that Pur chaseOr der is the name declared in the <entity
| sessi on><ej b- name> element.

Thus, the following defines the role as myMyr , the EJB as Pur chaseOr der , and all
methods by denoting the’*’ symbol.

Note: The myMyr role in the <security-r ol e>elementis the
same as the <r ol e- | i nk> element within the

<ent er pri se- beans> section. This ties the logical name of
POMgr to the myMgr definition.

<assenbl y- descri pt or >
<security-role>
<descri ption>Rol e needed purchase order authorization</description>
<r ol e- nane>nyMyr </ r ol e- name>
</security-rol e>
<net hod- per nmi ssi on>
<rol e- nane>nyMyr </ r ol e- name>
<nmet hod>
<ej b- name>Pur chaseO der </ ej b- nane>
<net hod- name>* </ net hod- name>
</ met hod>
</ met hod- per ni ssi on>

</ assenbl y-descri ptor>

After performing both steps, you can refer to POVMgr within the bean’s implementation
and the container translates POVMgr to nyMyr .

Note: If you define different roles within the

<met hod- per m ssi on> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Configuring EJB Security 12-5

Configuring Security

The <net hod- per m ssi on><met hod> element is used to specify the security role
for one or more methods within an interface or implementation. According to the EJB
specification, this definition can be of one of the following forms:

1. Defining all methods within a bean by specifying the bean name and using the’*’
character to denote all methods within the bean, as follows:

<net hod- per mi ssi on>
<rol e- nane>nmyMyr </ r ol e- nane>
<net hod>
<ej b- name>EJBNAME</] b- name>
<net hod- nane>* </ net hod- nanme>
</ met hod>

</ met hod- permi ssi on>

2. Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<net hod- per ni ssi on>
<rol e- nane>nmyMyr </ r ol e- nane>
<net hod>
<ej b- name>nyBean</ ej b- nane>
<net hod- nane>nyMet hodl nMyBean</ net hod- nane>
</ met hod>
</ met hod- permi ssi on>

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

3. Defining a method with a specific sighature among many overloaded versions, as
follows:

<net hod- per ni ssi on>
<rol e-nane>nyMyr </ r ol e- name>
<net hod>
<ej b- name>nyBean</ ej b- nane>
<net hod- nanme>nyMet hod</ net hod- nane>
<net hod- par anms>
<net hod- par an®j avax. | ang. St ri ng</ met hod- par an®
<net hod- par an®j avax. | ang. St ri ng</ met hod- par an»
</ met hod- par ans>
</ met hod>
</ met hod- permi ssi on>

The parameters are the fully-qualified Java types of the method’s input
parameters. If the method has no input arguments, the <met hod- par ans>
element contains no elements. Arrays are specified by the array element’s type,
followed by one or more pair of square brackets, such asi nt[][].

12-6 Oracle Application Server Containers for J2EE Security Guide

Configuring Security

Specifying Unchecked Security for EJB Methods

If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

<met hod- per ni ssi on>
<unchecked/ >
<net hod>
<ej b- name>EJBNAME</ gj b- nanme>
<met hod- nane>* </ net hod- nane>
</ met hod>
</ et hod- per mi ssi on>

Instead of a <r ol e- name> element defined, you define an <unchecked/ > element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity

You can specify that all methods of an EJB execute under a specific identity. That is, the
container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller’s identity as the security identity.

Specify the runAs security identity in the <securi ty-i denti t y>element, which is
contained in the <ent er pri se- beans> section. The following XML demonstrates
that the POMgr is the role under which all the entity bean methods execute.

<enterpri se-beans>
<entity>

<security-identity>
<run-as>
<rol e- nane>POMyr </ r ol e- name>
</run-as>
</security-identity>

</entity>
</ enterprise-beans>
Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:
<enterpri se-beans>

<entity>

<security-identity>
<use-cal ler-identity/>
</security-identity>
<lentity>
</ enterprise-beans>

Configuring EJB Security 12-7

Configuring Security

Mapping Logical Roles to Users and Groups

You can use logical roles or actual users and groups in the EJB deployment descriptor.
However, if you use logical roles, you must map them to the actual users and groups
defined either in the JAZN or XML User Managers.

Map the logical roles defined in the application deployment descriptors to JAZN or
XML User Manager users or groups through the <securi ty-r ol e- mappi ng>
element in the OC4J-specific deployment descriptor.

« The nane attribute of this element defines the logical role that is to be mapped.

= Thegroup oruser element maps the logical role to a group or user name. This
group or user must be defined in the JAZN or XML User Manager configuration.
See Oracle Application Server Containers for J2EE User’s Guide and Oracle Application
Server Containers for J2EE Services Guide for a description of the JAZN and XML
User Managers.

Example 12-1 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the manager s group in the
orion-ejb-jar.xm file. Any user that can log in as part of this group is considered
to have the POMGR role; thus, it can execute the methods of Pur chaseOr der Bean.

<security-rol e-mappi ng name="POVCR'>
<group name="nmanagers" />
</ security-rol e-nappi ng>

Note: You can map a logical role to a single group or to several
groups.

To map this role to a specific user, do the following:

<security-rol e- mappi ng name="POMR'>
<user nane="guest" />
</ security-rol e- mappi ng>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-rol e-mappi ng name="POVCR'>
<group nane="managers" />
<user name="guest" />

</ security-rol e- mappi ng>

As shown in Figure 12-3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to manager s within the OC4J-specific deployment
descriptor in the <securi ty-r ol e- mappi ng> element.

12-8 Oracle Application Server Containers for J2EE Security Guide

Configuring Security

Figure 12-3 Security Mapping

EJE Dreployment Descriptor OC4]-specific Deployment Descriptor

=security-roles
role-name=POMGR </ role-namse:

< fsecurity-roles

=method-pe

 name="POMGR">

/security-role-map ping
fassembly-descriptor=

< fassembly-descriptor=

Notice that the <r ol e- nane> in the EJB deployment descriptor is the same as the
name attribute in the <securi ty-rol e- mappi ng> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods

If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <def aul t - met hod- access> element in the
orion-ejb-jar.xm file. The following is the automatic mapping for any insecure
methods:

<def aul t - met hod- access>
<security-rol e-mappi ng name="&l t;defaul t-ej b-cal l er-rol e>"
inpliesAll="true" />
</ security-rol e- mappi ng>
</ def aul t - met hod- access>

The default role is <def aul t - ej b- cal | er - r ol e> and is defined in the nane
attribute. You can replace this string with any name for the default role. The

i mpl i esAl'|l attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check for
this default role on these methods.

If thei npl i esAl | attribute is false, you must map the default role defined in the
nane attribute to a JAZN or XML user or group through the <user > and <gr oup>
elements. The following example shows how all methods not associated with a
method permission are mapped to the "ot her s" group.

<def aul t - met hod- access>
<security-rol e-mappi ng name="defaul t-role" inpliesAl="false" />
<group nane="others" />
</security-rol e- mappi ng>
</ def aul t - met hod- access>

Specifying Users and Groups by the Client

In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the JAZN or
XML User Manager recognizes. And the user or group must be the same one as
designated in the security role for the intended method. See "Specifying Credentials in
EJB Clients" on page 12-10 for more information.

Configuring EJB Security 12-9

Configuring Security

Specifying Credentials in EJB Clients

When you access EJBs in a remote container, you must pass valid credentials to this
container.

« Stand-alone clients define their credentials in the j ndi . properti es file
deployed with the EAR file.

« Servlets or JavaBeans running within the container pass their credentials within
thel ni ti al Cont ext, which is created to look up the remote EJBs.

Credentials in JNDI Properties

Indicate the username (principal) and password (credentials) to use when looking up
remote EJBs in the j ndi . properti es file.

For example, if you want to access remote EJBs as POMGR/ wel come, define the
following properties. The f act ory. i ni ti al property indicates that you will use the
Oracle JINDI implementation:

j ava. nam ng. security. princi pal =POMGR
j ava. nam ng. security. credenti al s=wel come
java.namng.factory.initial=

com everm nd. server. Applicationdientlnitial ContextFactory
j ava. nami ng. provider. url =orm://nyhost/ ej bsanpl es

In your application program, authenticate and access the remote EJBs, as shown in the
following example:

Initial Context ic = new Initial Context();
Cust omer Hone =
(Cust omer Hone) i c. | ookup("j ava: conp/ env/ pur chaseOr der Bean") ;

Credentials in the InitialContext

To access remote EJBs from a servlet or JavaBean, pass the credentials in the
I nitial Context object, as follows:

Hasht abl e env = new Hashtabl e();
env. put ("j ava. namng. provider.url", "ormi://nyhost/ejbsanpl es");
env. put ("java.nanming.factory.initial",
"com evermi nd. server. ApplicationCientlnitial ContextFactory");
env. put (Cont ext . SECURI TY_PRI NCI PAL, "POMGR');
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");
Context ic = new Initial Context (env);
Cust oner Home =
(CustonerHone)ic. | ookup("j ava: conp/ env/ pur chaseOr der Bean")

12-10 Oracle Application Server Containers for J2EE Security Guide

13

Oracle HTTPS for Client Connections

This chapter describes the Oracle Application Server Containers for J2EE (Oracle
Application Server Containers for J2EE) implementation of HTTPS that provides SSL
functionality to client HTTP connections. The following topics are included:

Introduction

Introduction

Requesting Client Authentication
Oracle HTTPS And Clients
Overview of Oracle HTTPS Features
Specifying Default System Properties
Oracle HTTPS Example

Using HTTPClient with JSSE

Note: For a general overview of configuring OC4J to use the Secure
Sockets Layer, see Chapter 11, "Configuring OC4J and SSL". This
chapter assumes that you have already obtained keys and certificates.

This chapter discusses how to use the Secure Sockets Layer protocol to communicate
securely between networked applications. It discusses using Oracle HTTPS and JSSE.

Note: Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4]J is not visible to the
end user.) This section covers only secure communication between
OC4J and the client.

Oracle HTTPS for Client Connections 13-1

Requesting Client Authentication

Requesting Client Authentication

OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4.J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticate itself by sending a certificate and a certificate chain that ends with a root
certificate. OC4J can be configured to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate that OC4J encounters that matches
one in its own keystore. There are three ways to establish trust:

= Theclient certificate is in the keystore.

= One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

« The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4] verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs- cl i ent - aut h attribute, perform
the following steps. See "Requesting Client Authentication” on page 11-8 for how to
configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

3. Execute the steps to create the client certificate (documented in Chapter 11,
"Configuring OC4J and SSL"). The client certificate includes the intermediate or
root certificate that is installed in the server. If you wish to trust another certificate
authority, obtain a certificate from that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

During secure communication between the client and OC4J, the following
functionality is executed:

« Thelink (all communications) between the two is encrypted.

« OC4Jis authenticated to the client. A "secret key" is securely exchanged and used
for the encryption of the link.

= Optionally, if OC4J is in client-authentication mode, the client is authenticated to
OC4l.

13-2 Oracle Application Server Containers for J2EE Security Guide

Oracle HTTPS And Clients

See Also:

« Oracle Application Server Administrator’s Guide for information
about Oracle Wallet Manager, PKI, and security fundamentals.

« Documentation for JSSE and the j ava. net packages at
http://ww. java. sun. com

Oracle HTTPS And Clients

HTTPS is vital to securing client-server interactions. For many server applications,
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the server.
Java application developers who are familiar with either the HTTP package,

HTTPC i ent, or who are familiar with the Sun Microsystems, Inc., j ava. net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnect i on class of the HTTPC i ent package,
which provides a complete HTTP client library. To support client HTTPS connections,
several methods have been added to the HTTPConnect i on class that use the
OracleSSL class, Or acl eSSLCr edenti al .

Note: Oracle HTTPCI i ent supports two different SSL
implementations: the Java Secure Socket Extension (JSSE) and
OracleSSL. This documentation discusses the two implementations
separately.

HTTPConnection Class

The HTTPConnect i on class is used to create new connections that use HTTP, with or
without SSL. To provide support for PKI (Public Key Infrastructure) digital certificates
and wallets, the methods described in "Oracle HTTPS Example" on page 13-8 have
been added to this class.

See Also: The HTTPCl i ent Javadoc.

OracleSSLCredential Class (OracleSSL Only)

Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, Or acl eSSLCr edenti al , to load
user certificates and trustpoints from base64 or DER-encoded certificates. (DER, part of
the X.690 ASN.1 standard, stands for Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the HTTP
connection before the connection is established. The Or acl eSSLCr edent i al class is
used to store these security credentials. Typically, a wallet generated by Oracle Wallet
Manager is used to populate the Or acl eSSLCr edent i al object. Alternatively,
individual certificates can be added by using an Or acl eSSLCr edent i al class API.
After the credentials are complete, they are passed to the connection with the

set Cr edenti al s method.

Oracle HTTPS for Client Connections 13-3

Overview of Oracle HTTPS Features

Overview of Oracle HTTPS Features

Oracle HTTPS supports HTTP 1.0 and HTTP 1.1 connections between a client and a
server. To provide SSL functionality, new methods have been added to the
HTTPConnect i on class of this package. These methods are used in conjunction with
Oracle Java SSL to support cipher suite selection, security credential management with
Oracle Wallet Manager, security-aware applications, and other features that are
described in the following sections. Oracle HTTPS uses the Oracle Java SSL class,
Oracl eSSLCr edent i al , and it extends the HTTPConnect i on class of the

HTTPd i ent package. HTTPCl i ent supports two SSL implementations, OracleSSL
and JSSE.

In addition to the functionality included in the HTTPC i ent package, Oracle HTTPS
supports the following:

= Multiple cryptographic algorithms

« Certificate and key management with Oracle Wallet Manager
« Limited support for the j ava. net . URL framework

» Both the OracleSSL and JSSE SSL implementations

In addition, Oracle HTTPS uses the HTTPCl i ent package to support
« HTTP tunneling through proxies

« HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:
» SSL Cipher Suites

» SSL Cipher Suites Supported by OracleSSL

» SSL Cipher Suites Supported by JSSE

« Security-Aware Applications Support

« java.net.URL Framework Support

13-4 Oracle Application Server Containers for J2EE Security Guide

Overview of Oracle HTTPS Features

SSL Cipher Suites

Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection establish
the appropriate level for their communications.

HTTPC i ent supports two different SSL implementations, each of which supports
different cipher suites. These are discussed in this section.

Choosing a Cipher Suite
In general, you should prefer:

» RSA to Diffie-Hellman, because RSA defeats many security attacks.

« 3DES or RC4 128 to other encryption methods, because 3DES and RC4 128 have
strong keys

« SHALl digest to MD5, because SHA1 produces a stronger digest.

SSL Cipher Suites Supported by OracleSSL

OracleSSL supports the cipher suites listed in Table 13-1. Note that with NULL
encryption, SSL is only used for authentication and data integrity purposes.

Table 13—-1 Cipher Suites Supported By OracleSSL

Hash Function

Cipher Suite Authentication Encryption (Digest)
SSL_RSA W TH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1
SSL_RSA W TH_RC4_128_SHA RSA RC4 128 SHA1
SSL_RSA W TH_RC4_128_ M5 RSA RC4 128 MD5
SSL_RSA W TH_DES_CBC_SHA RSA DES CBC SHA1
SSL_RSA EXPORT W TH_RC4_40_ND5 RSA RC4 40 MD5
SSL_RSA_EXPORT_W TH_DES40_CBC_SHA RSA DES40 CBC SHA1
SSL_DH anon_W TH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1
SSL_DH anon W TH_RC4_128 MD5 DH anon RC4 128 MD5
SSL_DH anon_W TH_DES_CBC_SHA DH anon DES CBC SHA1
SSL_DH_anon_EXPORT W TH _RC4_ 40 MD5 DH anon RC4 40 MD5
SSL_DH_anon_EXPORT_W TH_DES40_CBC_SHA DH anon DES40 CBC SHA1
SSL_RSA W TH_NULL_SHA RSA NULL SHA1
SSL_RSA W TH_NULL_MD5 RSA NULL MD5

Oracle HTTPS for Client Connections 13-5

Overview of Oracle HTTPS Features

SSL Cipher Suites Supported by JSSE

JSSE supports the cipher suites listed in Table 13-2. Note that with NULL encryption,
SSL is only used for authentication and data integrity purposes.

Table 13-2 Cipher Suites Supported By JSSE

Hash Function

Cipher Suite Authentication Encryption (Digest)
SSL_RSA W TH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1
SSL_RSA W TH_RC4_ 128 SHA RSA RC4 128 SHAL
SSL_RSA W TH _RC4_128_MD5 RSA RC4 128 MD5
SSL_RSA W TH_DES_CBC_SHA RSA DES CBC SHAL
SSL_RSA_EXPORT_W TH_RC4_40_ND5 RSA RC4 40 MD5
SSL_DH_anon_W TH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1L
SSL_DH anon_W TH_RC4_128 MD5 DH anon RC4 128 MD5
SSL_DH_anon_W TH_DES_CBC SHA DH anon DES CBC SHA1
SSL_DH_anon_EXPORT_W TH_RC4_40_MD5 DH anon RC4 40 MD5
SSL_DH_anon_EXPORT W TH_DES40_CBC_SHA DH anon DES40 CBC SHAL
SSL_RSA W TH_NULL_SHA RSA NULL SHA1L
SSL_RSA W TH_NULL_MD5 RSA NULL MD5
SSL_DHE_DSS_W TH_DES_CBC_SHA DH DES CBC SHA1L
SSL_DHE_DSS W TH_3DES_EDE_CBC_SHA DH 3DES EDE CBC SHAL
SSL_DHE_DSS EXPORT W TH_DES40 CBC_SHA DH DES40 CBC SHAL

Access Information About Established SSL Connections

Users can access information about established SSL connections using the

get SSLSessi on method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

Security-Aware Applications Support

Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows them
to perform their own validation letting the handshake complete successfully only if a
complete certificate chain is sent by the peer. When applications authenticate to the
trustpoint level, they are responsible for authenticating individual certificates below
the trustpoint.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the HTTPS infrastructure.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

13-6 Oracle Application Server Containers for J2EE Security Guide

Specifying Default System Properties

java.net.URL Framework Support

The HTTPCI i ent package provides basic support for the j ava. net . URL framework
with the HTTPCl i ent . Ht t pUr | Connect i on class. However, many of the Oracle
HTTPS features are supported through system properties only.

Features that are only supported through system properties are
« cipher suites selection option

« confidentiality only option

= server authentication option

« mutual authentication option

« security credential management with Oracle Wallet Manager
Note: Ifthej ava. net. URL framework is used, then set the
java. protocol . handl er. pkgs system property to select the

HTTPCl i ent package as a replacement for the JDK client as
follows:

j ava. prot ocol . handl er. pkgs=HTTPC i ent

See Also:

« "Specifying Default System Properties” on page 13-7 for
information about configuring your client to use JSSE.

« Documentation for the j ava. net . URL framework at

http://java. sun.com

« Oracle Application Server Administrator’s Guide for information
about wallets and Oracle Wallet Manager.

Specifying Default System Properties

For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the j ava. | ang. Syst emclass. These
properties are the only way for users of the j ava. net . URL framework to set security
credential information. Oracle HTTPS recognizes the following properties:

» javax.net.ssl.KeyStore
» javax.net.ssl.KeyStorePassword
» Oracle.ssl.defaultCipherSuites (OracleSSL only)

The following sections describe how to set these properties.

javax.net.ssl.KeyStore

This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection. For
example:

j avax. net.ssl . KeyStore=/ et c/ ORACLE/ WALLETS/ Def aul t/ def aul t. t xt

where def aul t . t xt is the name of the text wallet file that contains the credentials.

Oracle HTTPS for Client Connections 13-7

Oracle HTTPS Example

If no other credentials have been set for the HTTPS connection, then the file indicated
by this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an | OExcept i on is thrown.

If you do not set this property, the application is responsible for verifying that the
certificate chain contains a certificate that can be trusted. However, HTTPC i ent using
Oracle SSL does verify that all of the certificates in the certificate chain, from the user
certificate to the root CA, have been sent by the server and that all of these certificates
contain valid signatures.

javax.net.ssl.KeyStorePassword
This property can be set to the password that is necessary to open the wallet file. For
example:

j avax. net. ssl . KeySt or ePasswor d=wel conel

where wel conel is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties

Storing the wallet file password as a Java system property can result in a security risk
in some environments. To avoid this risk, use one of the following alternatives:

« If mutual authentication is not required for the application, use a text wallet that
contains no private key. No password is needed to open these wallets.

« Ifapassword is necessary, then do not store it in a clear text file. Instead, load the
property dynamically before the HTTPConnect i on is started by using
Syst em set Property().Unset the property after the handshake is completed.

Oracle.ssl.defaultCipherSuites (OracleSSL only)

This property can be set to a comma-delimited list of cipher suites. For example:

Oracl e. ssl . defaul t G pher Sui t es=
SSL_RSA W TH DES CBC SHA, \
SSL_RSA _EXPORT W TH RCA_40 MD5, \
SSL_RSA W TH_RCA_128_MDb

The cipher suites that you set this property to are used as the default cipher suites for
new HTTPS connections.

See Also: Table 13-1 on page 13-5 for a complete list of the cipher
suites that are supported by OracleSSL.

Oracle HTTPS Example

The following is a simple program that uses Oracle HTTPS, HTTPCl i ent , and
OracleSSL to connect to a Web server, send a GET request, and fetch a Web page. The
complete code for this program is presented here followed by sections that explain
how Oracle HTTPS is used to set up secure connections.

i mport HTTPd i ent. HTTPConnect i on;

i mport HTTPO i ent. HTTPResponse;

inmport oracle.security.ssl.Oacl eSSLCredenti al ;
inport java.io.lCException;

public class HTTPSConnecti onExanpl e
{

13-8 Oracle Application Server Containers for J2EE Security Guide

Oracle HTTPS Example

public static void main(String[] args)

{

if(args.length < 4)

{
Systemout. println(
"Usage: java HITPSConnectionTest [host] [port] " +
"[wal | et] [password]");
Systemexit(-1);

}

String hostnane = args[0].toLowerCase();

int port = Integer.decode(args[1]).intValue();
String wal l etPath = args[2];

String password = args[3];

HTTPConnecti on httpsConnection = nul | ;
Oracl eSSLOredential credential = null;
try
{
htt psConnecti on = new HTTPConnecti on("https", hostname, port);
}
cat ch(I OException e)
{
Systemout. println("HTTPS Protocol not supported");
Systemexit(-1);
}
try
{
credential = new O acl eSSLCredential ();
credential.set\Wal |l et (wal | et Path, password);
}
cat ch(1 OException e)
{
Systemout. println("Coul d not open wallet");
Systemexit(-1);
}
htt psConnecti on. set SSLCredenti al (credential);
try
{
htt psConnecti on. connect ();
}
catch (1 OException e)
{
Systemout. println("Coul d not establish connection");
e.printStackTrace();
Systemexit(-1);
}
javax.servl et.request.X509Certificate[] peerCerts = null;
try
{
peerCerts =
(httpsConnecti on. get SSLSessi on()) . get Peer Certifi cateChain();
}

Oracle HTTPS for Client Connections 13-9

Oracle HTTPS Example

cat ch(j avax. net. ssl. SSLPeer Unveri fi edException e)

{
Systemerr.printlin("Unable to obtain peer credentials");
Systemexit(-1);

}

String peerCertDN =
peer Certs[peerCerts.length -1].get Subj ect DN(). get Nane();
peer Cert DN = peer Cert DN. t oLower Case() ;

i f(peerCertDN. | ast | ndexOf ("cn="+hostnane) == -1)

{
Systemout.printin("Certificate for " + hostname + " is issued to "

+ peerCertDN);

Systemout. println("Aborting connection");
Systemexit(-1);

}

try

{
HTTPResponse rsp = httpsConnection. Get("/");
Systemout. println("Server Response: ");
Systemout.println(rsp);

}

cat ch(Exception e)

{
Systemout. println("Exception occured during Get");
e.printStackTrace();
Systemexit(-1);

}

Initializing SSL Credentials In OracleSSL

This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded using

credential = new Oracl eSSLCredential ();
credential . set\al | et (wal | et Path, password);

After the credentials are created, they are passed to HTTPSConnect i on using

htt psConnecti on. set SSLOredenti al (credential);

The private key, user certificate, and trust points located in the wallet can now be used
for the connection.

Verifying Connection Information

Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name. Then
it is the responsibility of the client to perform this validation after the SSL connection
is established.

To perform this validation in this sample program, HTTPSConnect i onExanpl e
establishes a connection to the server without transferring any data using the
following:

13-10 Oracle Application Server Containers for J2EE Security Guide

Using HTTPClient with JSSE

ht t psConnect i on. connect () ;

After the connection is established, the connection information, in this case the server
certificate chain, is obtained with the following:

peer Certs = (httpsConnection. get SSLSessi on()). getPeer CertificateChain();

Finally the server certificate’s common name is obtained with the following:

String peerCert DN = peerCerts[peerCerts.length -1].get Subj ect DN(). get Name();
peer Cert DN = peer Cert DN. t oLower Case();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with the following:

i f(peerCertDN. | ast|ndexOf ("cn="+host name) == -1)
{

Systemout.printin("Certificate for " + hostname + " is issued to " +

peer Cert DN) ;
Systemout. println("Aborting connection");
Systemexit(-1);

Transferring Data Using HTTPS

It is important to verify the connection information before data is transferred from the
client or from the server. The data transfer is performed in the same way for HTTPS as
itis for HTTP. In this sample program a GET request is made to the server using the
following:

HTTPResponse rsp = httpsConnection. Get("/");

Using HTTPClient with JSSE

Oracle Application Server supports HTTPS client connections using the Java Secure
Socket Extension (JSSE). A client can configure HTTPC i ent to use JSSE as the
underlying SSL provider.

Notes: «The JSSE SSL implementation is not thread-safe; if you
need to use SSL in a threaded application, use OracleSSL.

« For full information on JSSE, see the Sun documentation at
http://java. sun. com products/j sse/

HTTPCl i ent still uses OracleSSL as the default provider, but the developer can easily
change this by setting the SSLSocket Fact ory on the HTTPConnect i on class.
Example 13-1 demonstrates how a client could configure HTTPClient to use JSSE for
SSL communication.

Oracle HTTPS for Client Connections 13-11

Using HTTPClient with JSSE

Example 13-1 Using JSSE with HTTPClient

public voi d obtai nHTTPSConnect i onUsi ngJSSE() throws Exception
{
/] set the trust store to the location of the client's trust store file
Il this value specifies the certificate authorities the client accepts
System set Property("javax. net.ssl.trustStore", KEYSTORE_FILE);
/] creates the HTTPS URL
URL testURL = new URL("https://" + HOSTNAME + ":" + HTTPS_PORTNUM) ;
/1 call SSLSocketFactory.getDefault() to obtain the default JSSE inplenentation
Il of an SSLSocket Factory
SSLSocket Factory socket Factory =
(SSLSocket Fact ory) SSLSocket Factory. get Defaul t () ;
HTTPConnecti on connection = new HTTPConnecti on(test URL);

/1 configure HTTPClient to use JSSE as the underlying
/1 SSL provider

connect i on. set SSLSocket Fact or y(socket Fact ory);

/1 call connect to setup SSL handshake

try

{

}
catch (1 CException e)

{

connecti on. connect () ;

e.printStackTrace(); }

HTTPResponse response = connection. Get("/index.htm");

}

Configuring HTTPClient To Use JSSE
The steps required to use JSSE with HTTPCI i ent are as follows:

1. Create a truststore using the keytool.

Notes: «For details of using the keytool, see
http://java.sun.com j2se/ 1. 3/ docs/t ool docs/w n3
2/ keyt ool . ht m

» JSSE's implementation of SSL has some subtle differences from
Oracle's implementation. Unlike in OracleSSL, if no truststore is
set, the JDK default truststore will be used. This default will
accept known certificate authorities, such as Verisign and
Thawte. Many self-signed certificates will be rejected by this
default.

2. Set the truststore property. A client wishing to use JSSE must specify the client
truststore location inj avax. net . ssl . t rust St or e. Unlike OracleSSL, the client
does not need to set the j avax. net. ssl . keySt or e property.

3. Obtain the JSSE SSLSocket Fact ory by calling
SSLSocket Fact ory. get Def aul t ().

4. Create an HTTPC i ent connection.

13-12 Oracle Application Server Containers for J2EE Security Guide

Using HTTPClient with JSSE

Configure the HTTPC i ent connection to use the JSSE implementation of SSL.
HTTPCl i ent can be configured to use JSSE in one of two ways:

1. (For each connection) The client calls
HTTPConnect i on. set SSLSocket Fact or y(SSLSocket Fact ory
factory)

2. (Entire VM) The client calls the static method:
Ht t pConnect i on.set Def aul t SSLSocket Fact or y(SSLSocket Fact ory
fact ory) . This static method must be called before instantiating any
HTTPConnect i on instances.

Call HTTPConnect i on. connect () before sending any HTTPS data. This allows
the connection to verify the SSL handshaking that must occur between client and
server before any data can be encrypted and sent.

Use the HTTPConnect i on instance normally. At this point, the client is set up to
use HTTPC i ent with JSSE. There is no additional configuration necessary and
basic usage is the same.

Oracle HTTPS for Client Connections 13-13

Using HTTPClient with JSSE

13-14 Oracle Application Server Containers for J2EE Security Guide

14

Password Management

This chapter discusses managing passwords within XML files. It contains the
following sections:

« Introduction
« Password Obfuscation In jazn-data.xml and jazn.xml
« Creating An Indirect Password

« Specifying a UserManager In application.xml

Introduction

Many OC4J components require passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially if
the permissions on the files allow them to be read by any user. To avoid this problem,
OCA4J provides two solutions:

« password obfuscation, which replaces passwords stored in cleartext files with an
encrypted version of the password. This is discussed in "Password Obfuscation In
jazn-data.xml and jazn.xml".

. password indirection, which replaces cleartext passwords with information
necessary to look up the password in another location. This is discussed in
"Creating An Indirect Password".

Password Obfuscation In jazn-data.xml and jazn.xml

The JAAS configuration files, j azn. xm and j azn- dat a. xm , contain user names
and passwords for JAAS authorization. To protect these files, OC4J uses password
obfuscation.

Whenever you update j azn. xni orj azn- dat a. xm , OC4J reads the file, then
rewrites it with obfuscated (encrypted) versions of all passwords. In all other OC4]
configuration files, you can avoid exposing password cleartext by using password
indirection, as explained in "Creating An Indirect Password" on page 14-2.

Password Management 14-1

Creating An Indirect Password

The OracleAS JAAS Provider does not obfuscate passwords in
orion-application. xml . This means that you should not embed passwords
within a <j azn> element that is stored in ori on- appl i cati on. xn .

Note: For security reasons, credentials stored in Oracle Internet
Directory cannot usually be retrieved in decrypted (cleartext) format,
which means that the LDAP-based JAAS Provider cannot be used as a
password manager for your application. To resolve this, you can
specify the XML-based JAAS Provider as your application's password
manager even when your application uses the LDAP-based JAAS
provider as the User Manager .

To do this, add the following entry to appl i cat i on. xmi :

<passwor d- manager >
<jazn provider="XM"
| ocati on=CRACLE_HOVE/ j 2ee/ i nst ance/ confi g/ j azn- dat a. xm >
</jazn>
</ passwor d- manager >

Otherwise, passwords are not obfuscated.

Hand-editing jazn-data.xml

If you prefer, you can directly editj azn- dat a. xm with a text editor. The next time
OC4Jreadsj azn- dat a. xm , it will rewrite the file with all passwords obfuscated
and unreadable.

Setting the cl ear attribute of the <cr edenti al s>elementtotr ue enables you to
use clear (human-readable) passwords in the j azn- dat a. xm file.

<credential s clear="true">wel cone</credential s>
<credenti al s>! wel come</credential s>

Creating An Indirect Password

The following OC4J XML configuration and deployment files support password
indirection in one or more entities:

« dat a-sources. xm —passwor d attribute of <dat a- sour ce> element
« ra.xm —<res-password>element
« rm.xm —password attribute of <cl ust er > element

« application.xm — password attributes of <r esour ce- provi der > and
<conmi t - coor di nat or > elements

« Jjnme.xm —<passwor d> element

« internal-settings.xm —<sep-property>element, attributes nane="
keyst or e- password" and nane="tr ust st or e- passwor d"

To make any of these passwords indirect, replace the literal password string with a
string containing "- >" followed by either the username or by the realm and username
separated by a slash ("/).

Note: To begin a literal (non-indirect) password with the string
" - >" precede the password by "- >! ", For instance, you would
represent the direct password "->si | | y"as"->!->si| | y".

14-2 Oracle Application Server Containers for J2EE Security Guide

Specifying a UserManager In application.xml

Indirect Password Examples

« <data-source password="->Scott">— Use JaznUser Manager to look up
Scot t inthe JaznUser Manager, and use the password stored there.

« <res-password="->custonmers/ Scott">— UseJaznUser Manager to look
up Scott inthe cust omer s realm, and use the password stored there.

« <cluster password="martha">—The literal string "mar t ha" is the password;
the password is not indirect.

Specifying a UserManager In application.xml

The <passwor d- manager > elementin appl i cat i on. xnl specifies the

User Manager that the global application uses to look up indirect passwords. (See
"Creating An Indirect Password" on page 14-2.) If this element is omitted, the

User Manager of the global application is used for authentication and authorization of
indirect passwords. The <j azn> element within a <passwor d- nanager > element
can be different from the <j azn> element at the top level.

The <passwor d- manager > element should always contain the path name of the
instance-level <j azn- dat a. xm >.

For example, you can use an LDAP-based User Manager for the regular
User Manager , but use an XML-based User Manager to authenticate indirect
passwords. This is the only way to use indirect passwords in LDAP.

For full details, see"Specifying UserManagers" on page 4-6.

Note: Itis possible to use pluggable UserManagers as password
managers. However, if you use XM_LUser Manager as your
password manager, pri nci pal s. xm will not have passwords
obfuscated.

Password Management 14-3

Specifying a UserManager In application.xml

14-4 Oracle Application Server Containers for J2EE Security Guide

15

Configuring CSIv2

Oracle Application Server Containers for J2EE supports the Common Secure
Interoperability Version 2 protocol (CSIv2). CSlv2 specifies different conformance
levels; Oracle Application Server Containers for J2EE complies with the EJB
specification, which requires conformance level 0.

This chapter covers the following topics:

« Introduction to CSIv2 Security Properties

« EJB Server Security Properties in internal-settings.xml
« CSIv2 Security Properties in internal-settings.xml

« CSIv2 Security Properties in ejb_sec.properties

« CSIv2 Security Properties in orion-ejb-jar.xml

« EJB Client Security Properties in ejb_sec.properties

Note: If your application uses JAAS, you must configure the
OracleAS JAAS Provider to use CSIv2; see Table 4-2,
" RealmLoginModule Options" for details.

Introduction to CSIv2 Security Properties

Common Secure Interoperability version 2 (CSIv2) is an Object Management Group
(OMG) standard for a secure interoperable wire protocol that supports authorization
and identity delegation. You configure CSIv2 properties in three different locations:

« internal _settings.xnl
« orion-ejb-jar.xm
« ejb_sec.properties

These configuration files are discussed in "CSlv2 Security Properties in
internal-settings.xml" on page 15-3, "CSlv2 Security Properties in orion-ejb-jar.xml" on
page 15-5, "CSIv2 Security Properties in orion-gjb-jar.xml" on page 15-5, and "EJB
Client Security Properties in ejb_sec.properties” on page 15-7.

Configuring CSIv2 15-1

EJB Server Security Properties in internal-settings.xml

EJB Server Security Properties in internal-settings.xml

You specify server security properties ini nt er nal - setti ngs. xnl .

Note: You cannotediti nternal -settings. xm with the
Enterprise Manager.

This file specifies certain properties as values within <sep- pr oper t y> entities.
Table 15-1, " EJB Server Security Properties” contains a list of properties.

The table refers to keystore and truststore files, which use the Java Key Store (JKS), a
JDK-specified format, to store keys and certificates. A keystore stores a map of private
keys and certificates. A truststore stores trusted certificates for the certificate
authorities (CAs; such as VeriSign and Thawte).

Table 15-1 EJB Server Security Properties

Property Meaning

port 1IOP port number (defaults to 5555)

ssl true if IOP/SSL is supported, f al se otherwise
ssl - port 1IOP/SSL port number (defaults to 5556) This

port is used for server-side authentication only. If
your application uses client and server
authentication, you also need to set
ssl-client-server-auth-port.

ssl -client-server-auth-port Port used for client and server authentication
(defaults to 5557). This is the port on which OC4J
listens for SSL connections that require both client
and server authentication. If not set, OC4J will
listen onssl - port + 1 for client-side
authentication.

keystore Name of keystore (used only if ssl istrue)
keyst or e- passwor d the keystore password (used only if ssl istrue)
trusted-clients Comma-separated list of hosts whose identity

assertions can be trusted. Each entry in the list
can be an IP address, a host name, a host name
pattern (for instance, *. exanpl e. com, or *; *
alone means that all clients are trusted. The
default is to trust no clients.

truststore Name of truststore. If you do not specify a
truststore for a server, OC4J uses the keystore as
the truststore (used only if ssl istrue).

truststore-password Truststore password (can only be set if ssl is
true)

Note: In Table 15-1, the properties keyst or e- passwor d
andt r ust st or e- passwor d support password indirection.

If Oracle Application Server Containers for J2EE is started by the Oracle Process
Management Notification service (OPMN) in an Oracle Application Server (as
opposed to standalone) environment, then ports specified in

i nternal -settings.xm areignored. If OPMN is configured to disable IIOP for a

15-2 Oracle Application Server Containers for J2EE Security Guide

CSlIv2 Security Properties in internal-settings.xml

particular Oracle Application Server Containers for J2EE instance, then, even though
IIOP may be enable through i nt er nal - setti ngs. xn (as pointed to by
server. xm), lIOP is not enabled.

The following example shows a typical i nt er nal - setti ngs. xnl file:

<server - ext ensi on- provi der name="110P"
class="comoracle.iiop.server.||OPServerExtensi onProvi der">

<sep-property name="port" val ue="5555" />
<sep-property nanme="host" val ue="| ocal host" />
<sep-property nanme="ssl" val ue="fal se" />
<sep-property nane="ssl-port" val ue="5556" />
<sep-property nanme="ssl-client-server-auth-port" val ue="5557" />
<sep-property name="keystore" val ue="keystore.jks" />
<sep-property nane="keyst or e- password" val ue="123456" />
<sep-property name="truststore" value="truststore.jks" />
<sep-property name="trust st ore-password" val ue="123456" />
<sep-property name="trusted-clients" val ue="*" />

</ server - ext ensi on- provi der >

Note: Although the default value of port is one less than the
default value for ssl - por t, this relationship is not required.

Here is the DTD for i nt er nal - setti ngs. xm :

<I-- A server extension provider that is to be plugged in to the server
>

<! ELEMENT server - ext ensi on-provi der (sep-property*) (#PCDATA) >

<I ATTLI ST server-extensi on-provi der name cl ass CDATA #| MPLI ED>

<! ELEMENT sep-property (#PCDATA)>

<I ATTLI ST sep-property nane val ue CDATA #l MPLI ED>

<I-- This file contains internal server configuration settings. -->

< ELEMENT internal -settings (server-extension-provider*)>

CSIv2 Security Properties in internal-settings.xmi

This section discusses the semantics of the values you set within the
<sep- property>elementini nternal _setti ngs. xm . For details of syntax, see
"EJB Server Security Properties in internal-settings.xml" on page 15-2.

To use the CSIv2 protocol with Oracle Application Server Containers for J2EE, you
must both set ss| tot r ue and specify an IIOP/SSL port (ssl - port).

« Ifyoudonotsetssl totrue, then CSIv2 is not enabled. Setting ssl totrue
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

« Ifyou do not specify an ssl - port , then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <i or - securi ty-confi g>
entity inori on-ej b-jar. xn .

When IIOP/SSL is enabled on the server, Oracle Application Server Containers for
J2EE listens on two different sockets—one for server authentication alone and one for
server and client authentication. You specify the server authentication port within the
<sep- propert y> element; the server and client authentication listener uses the port
number immediately following.

Configuring CSIv2 15-3

CSlv2 Security Properties in ejb_sec.properties

For SSL clients using server authentication alone, you can specify:
= Truststore only

» Both keystore and truststore.

= Neither

If you specify neither keystore nor truststore, the handshake may fail if there are no
default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties in ejb_sec.properties

If the client does not use client-side SSL authentication, you must set
client.sendpasswordintheejb_sec. properti es file in order for the client
runtime to insert a security context and send the user name and password. You must
also set server. trustedhost s toinclude your server.

Note: Server-side authentication takes precedence over a user
name and password.

If the client does use client-side SSL authentication, the server extracts the
Di sti ngui shedName from the client's certificate and then looks it up in the
corresponding user manager; it does not perform password authentication.

Trust Relationships
Two types of trust relationships exist:

« Clients trusting servers to transmit user names and passwords using non-SSL
connections

« Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j . i i op. trust edServers. See
Table 15-2, " EJB Client Security Properties" on page 15-7 for details. Servers list
trusted clients in thet rust ed- cl i ent property of the <sep- pr operty>elementin
i nternal -settings.xm . See"EJB Server Security Properties in
internal-settings.xml" on page 15-2 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

= presumed trust, in which the server presumes that the logical client is trustworthy,
even if the logical client has not authenticated itself to the server, and even if the
connection is not secure

« authenticated trust, in which the target trusts the intermediate server based on
authentication either at the transport level or in the trust ed-cl i ent list or both

Note: You can also configure the server to both require SSL
client-side authentication and also specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

15-4 Oracle Application Server Containers for J2EE Security Guide

CSlIv2 Security Properties in orion-ejb-jar.xml

Oracle Application Server Containers for J2EE provides both kinds of trust; you
configure trust using the bean’s <i or - securi ty- confi g>elementin
orion-ej b-jar.xm . See"CSlv2 Security Properties in orion-ejb-jar.xml" on
page 15-5 for details.

CSIv2 Security Properties in orion-ejb-jar.xml

This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies initsori on-ej b-j ar. xm . The CSlv2
security properties are specified within <i or - securi t y- conf i g> elements. Each
element contains a <t ransport - conf i g> element, an <as- cont ext > element, and
a<sas- cont ext > element.

The <transport-config> element

This element specifies the transport security level. Each element within

<t ransport - confi g> must be set to support ed, r equi r ed, or none. None means
that the bean neither supports nor uses that feature; suppor t s means that the bean
permits the client to use the feature; r equi r ed means that the bean insists that the
client use the feature. The elements are:

« <integrity>—Isthere a guarantee that all transmissions are received exactly as
they were transmitted?

« <confidentiality>—Isthere aguarantee that no third party was able to read
transmissions?

« <establish-trust-in-target>—Does the server authenticate itself to the
client?

« <establish-trust-in-client>—Does the client authenticate itself to the
server?

Notes: Ifyouset<establish-trust-in-client>to

requi r ed, this overrides specifying user name_passwor d in
<as- cont ext >. If you do this, you must also set the <r equi r ed>
node value in the <as- cont ext > section to f al se; otherwise
access permission issues will arise.

Setting any of the <t r ansport - conf i g> properties to r equi r ed
means that the bean will use RMI/I1IOP/SSL to communicate.

The <as-context> element
This element specifies the message-level authentication properties.

« <aut h- met hod>—Must be set to either user nane_passwor d or none. If set to
user name_passwor d, beans use user names and passwords to authenticate the
caller.

« <real n>—Must be set to def aul t at this release.

« <required>—Ifsettotrue,the bean requires the caller to specify a user name
and password.

Configuring CSIv2 15-5

CSlv2 Security Properties in orion-ejb-jar.xml

The <sas-context> element

This element specifies the identity delegation properties. It has one element,

<cal | er - pr opagat i on>, which can be set to support ed, r equi r ed, or none. If
the <cal | er - pr opagat i on> element is set to suppor t ed, then this bean accepts
delegated identities from intermediate servers. If it is set to r equi r ed, then this bean
requires all other beans to transmit delegated identities. If set to none, this bean does
not support identity delegation.

An example:

<i or-security-config>
<transport-config>
<integrity>supported</integrity>
<confidentiality>supported</confidentiality>
<establish-trust-in-target>supported</establish-trust-in-target>
<establish-trust-in-client>supported</establish-trust-in-client>
</transport-config>
<as-cont ext >
<aut h- met hod>user name_passwor d</ aut h- met hod>
<real npdef aul t </ real mp
<requi red>t rue</required>
</ as- cont ext >
<sas-cont ext >
<cal | er-propagat i on>support ed</ cal | er - propagati on>
</ sas-cont ext >
<lior-security-config>

DTD
The DTD for the <i or - securi ty-confi g>elementis:

<I'ELEMENT i or-security-config (transport-config?, as-context?
sas-context?) >

<I'ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >

<! ELEMENT as-context (auth-nmethod, realm required) >

<l ELEMENT sas-context (caller-propagation) >
<l ELEMENT integrity (#PCDATA) >

< ELEMENT confidentiality (#PCDATA)>

<! ELEMENT establish-trust-in-target (#PCDATA)
<l ELEMENT establish-trust-in-client (#PCDATA)
<! ELEMENT aut h- net hod (#PCDATA) >

<! ELEMENT real m (#PCDATA) >

<! ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<l ELEMENT cal | er- propagati on (#PCDATA) >

>
>

15-6 Oracle Application Server Containers for J2EE Security Guide

EJB Client Security Properties in ejb_sec.properties

EJB Client Security Properties in ejb_sec.properties

Any client, whether running inside a server or not, has EJB security properties.
Table 15-2 lists the EJB client security properties controlled by the ej b_

sec. properti es file. By default, Oracle Application Server Containers for J2EE
searches for this file in the current directory when running as a client or in J2EE_
HOVE/ conf i g when running in the server. You can specify this file’s location
explicitly with - Dej b_sec_properties_| ocati on=pat hnarme.

Table 15-2 EJB Client Security Properties

Property

Meaning

oc4j
oc4j
oc4j

oc4j

* O OH

oc4j

Liiop.
Liiop.
.iiop.
Liiop.

.iiop.

keySt or eLoc The path name for the keystore.
keySt or ePass The password for the keystore.
trust St orelLoc The path name for the truststore.
trust St or ePass The password for the truststore.

enabl e.clientauth Whether the client supports client-side authentication. If this
property is set to t r ue, you must specify a keystore location and
password.

oc4j .iiop.ciphersuites Which cipher suites are to be enabled. The valid cipher suites are:

TLS RSA W TH_RCA_128 M5

SSL_RSA W TH_RC4_128_MD5
TLS_DHE_DSS W TH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_W TH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_W TH_RC4_40_MD5
SSL_RSA_EXPORT_W TH_RC4_40_MD5
TLS_DHE_DSS_EXPORT W TH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_W TH_DES40_CBC_SHA

nameservi ce. useSSL Whether to use SSL when making the initial connection to the

server.

client.sendpassword Whether to send user name and password in clear form

(unencrypted) in the service context when not using SSL. If this
property issettot r ue, the user name and password are sent only
to servers listed in the t r ust edSer ver list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive passwords sent in

clear form. Has no effect if cl i ent . sendpasswor d is set to

f al se. The list is comma-separated. Each entry in the list can be
an IP address, a host name, a host name pattern (for instance,
*_exanpl e. con), or *; * alone means that all servers are trusted.

Note: The properties marked with a # can be set either inej b_
sec. properti es or as system properties. The settingsinej b_
sec. properti es always override settings specified as system
properties.

Configuring CSIv2 15-7

EJB Client Security Properties in ejb_sec.properties

15-8 Oracle Application Server Containers for J2EE Security Guide

16

J2EE Connector Architecture Security

This chapter describes the security issues affecting the J2EE Connector Architecture in
an Oracle Application Server Containers for J2EE (OC4J) application. For full
information on the J2EE Connector Architecture, see the Oracle Application Server
Containers for J2EE Services Guide. This chapter covers the following topics:

« Deploying Resource Adapters
« Specifying Container-Managed or Component-Managed Sign-On

« Authentication in Container-Managed Sign-On

Deploying Resource Adapters

This section discusses deployment descriptors, deploying standalone resource
adapters, and deploying embedded resource adapters.

Oracle Application Server Containers for J2EE supports three deployment descriptors:
ra.xm ,oc4j-ra.xnl,and oc4j - connectors. xnml . The ra. xml descriptor is
normally supplied with the resource adapter. Whenever you deploy a resource
adapter within an EAR file, Oracle Application Server Containers for J2EE generates
oc4j - connectors. xm and oc4j -ra. xm . You should manually edit the second
file.

The oc4j-ra.xml Descriptor

The oc4j - ra. xm descriptor provides Oracle Application Server Containers for
J2EE-specific deployment information (Java Naming and Directory Interface (JNDI)
path name and connector properties) for resource adapters. For each resource
adapter, oc4j - ra. xnl contains one or more <connect or - f act or y> elements
specifying a INDI name corresponding to a set of configuration parameter values.
Oracle Application Server Containers for J2EE binds each connection into the proper
JNDI namespace location as a Connect i onFact or y instance.

A <connect or - f act or y> element can contain an optional <security-confi g>
element that describes how to supply user names and passwords to the EIS.

J2EE Connector Architecture Security 16-1

Deploying Resource Adapters

The <security-config> Element

The <security- confi g> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <security-confi g>
element of the oc4j -ra. xm file:

= Specifying mapping sub-elements explicitly (in the
<pri nci pal - mappi ng- ent ri es> sub-element)

= Specifying the name of a user-created mapping class that either implements
oracl e. j 2ee. connect or. Pri nci pal Mappi ng or inherits from
oracl e.j 2ee. Abst ract Pri nci pal Mappi ng (in the
<pri nci pal - mappi ng-i nt er f ace> sub-element)

Authentication issues are discussed in detail in "Authentication in Container-Managed
Sign-On" on page 16-5. This section discusses only the syntax for the
<security-config>element.

A <security-config>elementcontains either a

<pri nci pal - mappi ng- ent ri es> element, specifying user names and passwords
explicitly; a<pri nci pal - mappi ng-i nt er f ace> element, specifying the name of
the mapping class; or a <j aas- nodul e> element, specifying the JAAS module to be
used for authentication.

<security-config>

<princi pal - mappi ng-entries> 1
<def aul t - mappi ng> 12
<r es- user>user nane</ r es- user > /13

<res- passwor d>passwor d</ r es- passwor d> Il 4

</ def aul t - mappi ng>

<pri nci pal - mappi ng-entry> 15
<initiating-user>iunane</initiating-user>// 6
<r es- user >user nane</ r es- user >
<r es- passwor d>passwor d</ r es- passwor d>

</ pri nci pal - mappi ng-ent ry>

</ princi pal - mappi ng-entries>

<pri nci pal - mappi ng-i nt er f ace> 7
<i npl - cl ass>cl assname</i npl - cl ass> I8
<property nane="propnane"

val ue="propval ue" /> 19

</ princi pal - mappi ng-interface>

<j aas- nodul e> /1 10
<j aas-application-nane> /111
appname

</jaas-appl i cati on- nane>
</j aas- modul e>
</ security-config>
1. <principal - mappi ng-entri es>:

Provides a declarative specification for resource mapping. This element begins
with an optional <def aul t - mappi ng> element; it continues with one or more
<pri nci pal - mappi ng- entr y> elements.

2. <def aul t - mappi ng>: specifies the user name and password for the default
resource principal.

3. <res-user >:specifies user name.

16-2 Oracle Application Server Containers for J2EE Security Guide

Deploying Resource Adapters

4. <res- passwor d>: specifies password.

Note: This element supports password indirection. For more
information, refer to "Creating An Indirect Password" on page 14-2.

5. <princi pal - mappi ng- ent r y>: specifies a mapping from a single initiating
principal to a resource principal and password.

6. <initiating-user>:specifies the initiating principal.

7. <princi pal - mappi ng-i nt er f ace>: specifies information necessary to employ
user-created classes to provide mappings.

8. <inpl - cl ass>: specifies the name of the user-provided Pri nci pal Mappi ng
implementation.

9. <property nane="propnane" val ue="propval ue">: specifies information
specific to your Pri nci pal Mappi ng implementation: for instance, the path of the
principal mapping file, or LDAP server connection information. (This element is
optional and it can be repeated.)

10. <j aas- nodul e>: specifies the JAAS module that is used for authentication. It has
only one element, <j aas- appl i cati on- nane>.

11. <j aas- appl i cati on- nane>: specifies the name of the JAAS module that is
used for authentication.

The oc4j-connectors.xml Descriptor

The oc4j - connect or s. xm descriptor configures the resource adapters that are
deployed by oc4j -ra. xm . The oc4j - connect or s. xml descriptor lists the
standalone resource adapters that are deployed in this Oracle Application Server
Containers for J2EE instance, as well as the resource adapters that are embedded
within an application. This descriptor contains, for each individual connector, a
connect or > element that specifies the name and path name for the connector. Each
<connect or > element contains a <securi t y- per ni ssi on> element that defines
the permissions granted to each resource adapter. The syntax is:

<security-pernission enabl ed="bool eanval ue">

This element specifies the permissions to be granted to each resource adapter. Each
<security-perm ssi on>containsa<security-perm ssi on- spec>that
conforms to the Java 2 Security policy file syntax.

Oracle Application Server Containers for J2EE automatically generates a
<security-perm ssi on>elementinoc4j - connectors. xm for each
<security-perm ssi on>elementinra. xm . Each generated element has the
enabl ed attribute set to f al se. Setting the enabl ed attribute to t r ue grants the
named permission.

<oc4j - connect or s>
<connector nane="nyEl S" path="eis.rar">

<security-perni ssi on>
<security-perm ssion-spec enabl ed="fal se">
grant {perm ssion java.lang. RuntimePerm ssion "LoadLi brary", *'};
</ security-perm ssion-spec>
</ security-perm ssion>
</ connect or >
</ oc4j - connect or s>

J2EE Connector Architecture Security 16-3

Specifying Container-Managed or Component-Managed Sign-On

Specifying Container-Managed or Component-Managed Sign-On

Applications can use either application components or the Oracle Application Server
Containers for J2EE application server to manage resource-adapter sign-on to the EIS
system. Specify the manager using the <r es- aut h> deployment descriptor element
for EJB or Web components. If <r es- aut h>issetto Appl i cati on, then the
application component signs on to the EIS programmatically. The application
component is responsible for providing explicit security information for the sign-on. If
<res- aut h>issetto Cont ai ner, then Oracle Application Server Containers for J2EE
provides the resource principal and credentials that are required for signing on to the
EIS.

Example:

Context initctx = new Initial Context();
/1 perform JNDI |ookup to obtain a connection factory
j avax. resource. cci . ConnectionFactory cxf =

(j avax. resource. cci . Connecti onFact ory)initctx. | ookup("java: conlenv/eis/ WEI' S");

/'l For container-managed si gn-on, no security information is passed in the
get Connection call

j avax.resource. cci . Connection cx = cxf.getConnection();

/'l |'f conponent-nmanaged sign-on is specified, the code should instead provide
explicit security

/1 information in the getConnection call

/I W need to get a new ConnectionSpec inplenentation instance for setting login

Il attributes

com nyei s. Connecti onSpecl npl connSpec = ...

connSpec. set User Nane("El Suser");

connSpec. set Passwor d(" El Spassword");

j avax. resource. cci . Connection cx = cxf.get Connecti on(connSpec);

In either case, the cr eat eManagedConnect i on method in the resource adapter's
implementation of j avax. r esour ce. spi . ManagedConnect i onFact ory interface
is called to create a physical connection to the EIS.

If you specify component-managed sign-on, then Oracle Application Server
Containers for J2EE invokes the cr eat eManagedConnect i on method with a null
Subj ect and the Connect i onRequest | nf o object that is passed in from the
application component code. If you specify container-managed sign-on, then Oracle
Application Server Containers for J2EE provides a

j avax. security. aut h. Subj ect object to the cr eat eManagedConnect i on
method. The content of the Subj ect object depends on the value in the

<aut henti cati on- nechani smtype>and <cr edenti al -i nt erface> elements
in the resource adapter deployment descriptor.

If <aut hent i cati on- mechani smtype> is Basi cPasswor d and
<credential -i nterface>is

j avax. resource. spi.security. Passwor dCredenti al , then the Subj ect
object must contain j avax. resour ce. spi . security. Passwor dCr edenti al
objects in the private credential set.

On the other hand, if <aut henti cati on- mechani smtype> is Kerberos version 5
(Kerbvb) or any other non-password-based authentication mechanism, and
<credential -i nterface>is

j avax. resource. spi.security.Generi cCredenti al , then the Subj ect object
must contain credentials represented by instances of implementers of the

j avax. resource. spi.security. Generi cCredenti al interface. The

16-4 Oracle Application Server Containers for J2EE Security Guide

Authentication in Container-Managed Sign-On

Generi cCredenti al interface is used for resource adapters that support
non-password-based authentication mechanisms, such as Kerberos.

Authentication in Container-Managed Sign-On

When using container-managed sign-on, Oracle Application Server Containers for
J2EE must provide a resource principal and its credentials to the EIS. The principal and
credentials can be obtained in one of the following ways:

« Configured Identity: the resource principal is independent of the initiating or
caller principal and can be configured at deployment time in a deployment
descriptor.

« Principal Mapping: the resource principal is determined by a mapping from the
identity and security attributes of the initiating or caller principal.

« Caller Impersonation: the resource principal acts on behalf of an initiating or caller
principal by delegating the caller's identity and credentials to the EIS.

« Credentials Mapping: the resource principal is identical to the initiating or caller
principal, but with its credential mapped from the authentication type that Oracle
Application Server Containers for J2EE uses to the authentication type that the EIS
uses. An example would be to map a public key certificate-based credential
associated with a principal to a Kerberos credential.

Oracle Application Server Containers for J2EE supports all these methods with three
authentication mechanisms:

« JAAS Pluggable Authentication
« User-Created Authentication Classes
« Modifying oc4j-ra.xml

The following sections discuss these mechanisms in detail.

JAAS Pluggable Authentication

Oracle Application Server Containers for J2EE furnishes a JAAS pluggable
authentication framework that conforms to Appendix C in the Connector Architecture
1.0 specification. With this framework, an application server and its underlying
authentication services remain independent from each other, and new authentication
services can be plugged in without requiring modifications to the application server.

Authentication services can obtain resource principals and credentials using any of the
following modules:

« Principal Mapping JAAS module
« Credential Mapping JAAS module
« Kerberos JAAS module (for Caller Impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendors, or the
resource adapter vendors. Login modules must implement the

j avax.security. aut h. spi.Logi nModul e interface, as documented in the Sun
JAAS specification.

Oracle Application Server Containers for J2EE provides initiating user subjects to login
modules by passing an instance of j avax. securi ty. aut h. Subj ect containing
any public certificates and an instance of

oracl e.j 2ee.connector.InitiatingPrincipal representing the Oracle

J2EE Connector Architecture Security 16-5

Authentication in Container-Managed Sign-On

Application Server Containers for J2EE user. Oracle Application Server Containers for
J2EE can pass a null Subj ect if there is no authenticated user (that is, an anonymous
user). The JAAS login module’s login method must, based on the initiating user, find
the corresponding resource principal and create new Passwor dCr edenti al or
Ceneri cCredenti al instances for the resource principal. The resource principal and
credential objects are then added to the initiating Subj ect inthe comri t method.
The resource credential is passed to the cr eat eManagedConnect i on method in the
j avax. resource. spi . ManagedConnect i onFact or y implementation that is
provided by the resource adapter. If a null Subj ect is passed, the JAAS login module
is responsible for creating a new j avax. securi ty. aut h. Subj ect containing the
resource principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes

The classes or acl e. j 2ee. connector. I nitiatingPrinci pal and

oracl e. j 2ee. connector. I nitiatingG oup represent Oracle Application Server
Containers for J2EE users to the JAAS login modules. Oracle Application Server
Containers for J2EE creates instances of

oracl e.j2ee.connector. | nitiatingPrincipal and incorporates them into
the Subject that is passed to thei ni ti al i ze method of the login modules. The

oracl e.j2ee.connector. I nitiatingPrincipal classimplements the

java. security. Princi pal interface and adds the method get Gr oups() .

/**

* Returns a Set of groups (or roles in JAZN termnol ogy) that this

* principal is a nenber of.
*

* @eturn A set of InitiatingGoup objects representing the groups
* that this pricipal belongs to.

*|

public Set getG oups()

The get Gr oups method returnsaj ava. util . Set of

oracl e. j 2ee. connector. I nitiatingG oup objects, representing the Oracle
Application Server Containers for J2EE groups or JAZN roles for this Oracle
Application Server Containers for J2EE user. The group membership is defined in
Oracle Application Server Containers for J2EE-specific descriptor files such as
principal s.xm orjazn-data. xmn , depending on the user manager. The
oracl e.j2ee.connector. I nitiatingG oup class implements but does not
extend the j ava. security. Princi pal interface.

Login modules can use get Gr oups() to provide mappings between Oracle
Application Server Containers for J2EE groups and EIS users. The

java. security. Principal interface methods support mappings between Oracle
Application Server Containers for J2EE users and EIS users. Login modules do not
need to refer to the or acl e. j 2ee. connector. I nitiatingPri nci pal and
oracl e.j2ee.connector. I nitiatingG oup classes if they do not provide
mappings between Oracle Application Server Containers for J2EE groups and EIS
users.

JAAS and the <connector-factory> Element

Each <connect or - f act ory>elementin oc4j - ra. xml can specify a different JAAS
login module. Specify a name for the connector factory configuration in the

<j aas- modul e>element. Here is an example of a <connect or - f act or y> element
inoc4j -ra. xm that uses JAAS login modules for container-managed sign-on:

16-6 Oracle Application Server Containers for J2EE Security Guide

Authentication in Container-Managed Sign-On

<connector-factory connector-name="nyBl ackbox" | ocation="ei s/ nyEl S1">
<descri ption>Connection to ny El S</description>
<config-property nane="connecti onURL"
val ue="j dbc: oracl e: t hin: @ocal host: 5521: orcl" />
<security-config>
<j aas- nodul e>
<j aas-appl i cati on- name>JAASMbdul eDeno</ j aas- appl i cati on- name>
</ j aas- nodul e>
</ security-config>
</ connect or-factory>

In JAAS, you must specify which Logi nMbdul e to use for a particular application,
and in what order to invoke the Logi nModul es. JAAS uses the value that are
specified in the <j aas- appl i cat i on- nane> element to look up Logi nModul es.

User-Created Authentication Classes

Oracle Application Server Containers for J2EE provides the
oracl e.j 2ee. connector. Pri nci pal Mappi ng interface for principal mapping.

package oracl e.j 2ee. connector;

public interface Principal Mappi ng
{

/**

* |nitializes the various settings for the Principal Mappi ng i npl enmentation cl ass.
* |nplementation class may use the properties for setting default user name and
* password, LDAP connect info, or default napping.

OC4J will pass the properties specified in the <principal-nmpping-interface>
element in oc4j-ra.xm to this nethod.

@aram prop A Properties object containing the set up information required
by the inplenmentation class.

L

/
public void init(Properties prop);

/**
* The ManagedConnectionFactory instance that can be used in creating a
* PasswordCredenti al .
*
* @aram ncf The ManagedConnectionFactory instance that is needed when
*creating a PasswordCredential instance
*/
public void set ManagedConnecti onFact ory(ManagedConnecti onFact ory ncf);

/**
* Passes the authentication nechanisn(s) supported by the resource
* adapter to the Principal Mapping inplenentation class.
* The key of the map passed is a String containing the supported mechani sm
* type, such as "BasicPassword", or "Kerbv5". The value is a String
* containig the corresponding credentials interface as declared in ra. xn,
* such as "javax.resource.spi.security. PasswordCredential ".
*

* The map may contain nmultiple elements if the resource adatper supports

* nultiple authentication mechani sns.
*

* @aram aut hMechani sns The aut hentication mechani sms and their corresponding
* credentials intereface supported by the resource adapter

*|

J2EE Connector Architecture Security 16-7

Authentication in Container-Managed Sign-On

public void setAuthenticationMechani sms(Map aut hMechani sms);

/**
* This is the method that performs the principal mapping. An application user
* subject is passed, and the inplenetation of this method should return
* a subject for use by the resource adapter to log in to the EI'S resource
* according to the Connector specifications.
*

* OC4J will only called this method for container-managed sign on.
*

* @araminitiatingSubject A Subject containing the application server |ogged

* in principals and public credentials.
*

* @eturn A Subject for use by resource adapter to log into the renote EIS.

* It may return null if the proper resource principal cannot be
det er mi ned.
*/
public Subject mappi ng(Subject initiatingSubject);

}

The mappi ng method must return a Subj ect containing the resource principal and
credential. The Subj ect that is returned must adhere to either option A or option B in
section 8.2.6 of the Connector Architecture 1.0 specification. Oracle Application Server
Containers for J2EE invokes the mappi ng method with the initiating user as the
initiatingPrincipal.

Oracle Application Server Containers for J2EE also provides the abstract class

oracl e.j 2ee. connect or. Abst ract Pri nci pal Mappi ng. This class furnishes a
default implementation of the set ManagedConnect i onFact ory() and

set Aut hent i cati onMechani srm() methods, as well as utility methods to
determine whether the resource adapter supports the Basi cPasswor d or Kerberos
version 5 (Kerbv5) authentication methods, and a method for extracting the

Pri nci pal from the application server user Subj ect. By extending the

oracl e.j 2ee. connect or. Abst ract Pri nci pal Mappi ng class, developers need
only implement thei ni t and mappi ng methods.

Here are the utility methods provided by the
oracl e. j 2ee. connector. Abstract Pri nci pal Mappi ng class:

/**

* Uility method provided by this abstract class to return

* the ManagedConnectionFactory instance for use to create a
* PasswordCredential s object

*
* @eturn The ManagedConnectionFactory instance that is needed when
* creating a PasswordCredential instance
*/

publ i ¢ ManagedConnecti onFactory get ManagedConnecti onFact ory()

/**

* Wility nethod provided by this abstract class to return the Map

* of all authentication nechanisns supported by this resource adapter.
* The key of the map passed is a String containing the supported mechani sm
* type, such as "BasicPassword", or "Kerbv5". The value is a String
* containig the corresponding credentials interface as declared in ra.xm,
* such as "javax.resource. spi.security.PasswordCredential".
*

* @eturn The authentication mechani sms and their corresponding

* credentials intereface supported by the resource adpater

16-8 Oracle Application Server Containers for J2EE Security Guide

Authentication in Container-Managed Sign-On

*/
public Map getAut henticati onMechani sns()

/**
Utility method provided by this abstract class to return whether

*
* Basi cPassword authention mechanismis supported by this resource
* adapter.

*

* @eturn true if BasicPassword authentication mechani smis supported
* by the resource adapter, false otherw se.

publi ¢ bool ean i sBasi cPasswor dSupported()

/**
* Uility method provided by this abstract class to return whether

* Kerbv5 authention nmechanismis supported by this resource
* adapter.

*

* @eturn true if Kerbv5 authentication mechanismis supported
* by the resource adapter, false otherw se.
*|

public bool ean i sKerbv5Supported()

/**

* Uility method provided by this abstract class to extract the
* Principal object fromthe given application server user subject
* passed from OCAJ.

*

* @aram subj ect The application server user subject passed from
* oCc4d.

* @eturn The principal extracted fromthe given subject
*/
public Principal getPrincipal (Subject subject)

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. This directory is typically OC4J _
HOVE/ appl i cati ons/ appl i cati on_name/r ar - name. After copying the file, edit
oc4j -ra. xnml tocontaina <pri nci pal - mappi ng-i nt erface> element for the
new class; see "The <security-config> Element" on page 16-2 for details.

Extending AbstractPrincipalMapping

This simple example demonstrates how to extend the

oracl e.j 2ee. connect or. Abstract Pri nci pal Mappi ng abstract class to
provide a principal mapping that always maps the user to the default user and
password. Specify the default user and password by using properties under the
<princi pal - mappi ng-i nterface>elementinoc4j-ra.xm .

The Pri nci pal Mappi ng class is called MyMappi ng. It is defined as follows:

package com acne. app;

inport java.util.*;

i nport javax.resource.spi.*;

inport javax.resource.spi.security.*;

inport oracle.j2ee. connector. AbstractPrinci pal Mappi ng;
inport javax.security.auth.*;

inport java.security.*;

J2EE Connector Architecture Security 16-9

Authentication in Container-Managed Sign-On

public class MyMappi ng extends Abstract Princi pal Mappi ng

{
String mdefaul t User;

String mdefaul t Passwor d;

public void init(Properties prop)

{
if (prop !'= null)

Il Retrieves the default user and password fromthe properties
m def aul t User = prop. get Property("user");
m def aul t Password = prop. get Property("password");
}
}

public Subject mapping(Subject initiatingSubject)
{
/1 This inplenmentation only supporst BasicPassword authentication
/'l mechanism Return if the resource adapter does not support it.
if (!isBasicPasswordSupported())
return null;

Il Use the utility method to retrieve the Principal fromthe
/1 OCAJ user. This code is included here only as an exanple.
Il The principal obtained is not being used in this nmethod.

Principal principal = getPrincipal (initiatingSubject);

char[] resPasswordArray = null;
if (mdefaultPassword !'= null)
resPasswor dArray = m defaul t Password. toCharArray();

[/ Create a PasswordCredential using the default user name and
/] password, and add it to the Subject, as in option Ain section
/] 8.2.6 in the Connector 1.0 spec.
Passwor dCredential cred = new PasswordCredenti al (m def aul t User,
resPasswor dArray) ;
cred. set ManagedConnect i onFact or y(get ManagedConnect i onFactory());
initiatingSubject.getPrivateCredentials().add(cred);
return initiatingSubject;
}
}

You add a<pri nci pal - mappi ng-i nt erface>entrytooc4j -ra. xm that
specifiescom acne. app. MyMappi ng for the principal mapping mechanism:

<connector-factory nanme="..." location="...">

<security-config>
<princi pal - mappi ng-i nterface>
<i mpl - cl ass>com acne. app. M/Mappi ng</i npl - cl ass>
<property name="user" val ue="scott" />
<property name="password" val ue="tiger" />
</ princi pal - mappi ng-i nterface>
</security-config>

</connector-factory>

16-10 Oracle Application Server Containers for J2EE Security Guide

Authentication in Container-Managed Sign-On

Modifying oc4j-ra.xml

If you prefer, you can create default principal mappings in the oc4j -ra. xm file. To
employ the default principal mappings mechanism, use the

<princi pal - mappi ng- ent ri es> sub-element under the <security-confi g>
element. For syntax details, see "The <security-config> Element” on page 16-2.

Use the <def aul t - mappi ng> element to specify the user name and password for the
default resource principal. This principal is used to log on to the EIS if there is no
<princi pal - mappi ng- ent r y> element whose initiating user corresponds to the
current initiating principal. If no default mapping is specified, Oracle Application
Server Containers for J2EE uses the values of the configuration properties User Nane
and Passwor d from the deployment descriptor (either inra. xm or oc4j-ra. xm),
assuming that these defaults are acceptable to the resource adapter. If neither
configuration properties nor a default mapping is specified, Oracle Application Server
Containers for J2EE may not be able to log in to the EIS.

Each <pri nci pal - mappi ng- ent r y> element contains a mapping from initiating
principal to resource principal and password.

For example, if the Oracle Application Server Containers for J2EE principal scot t
should be logged in to a certain EIS, nyEl S1, as user name scott and password

ti ger, while all other Oracle Application Server Containers for J2EE users should be
logged in to the EIS using user name guest with password guest pw, the

<connect or - fact ory>elementin oc4j -ra. xm should look like this:

<connector-factory name="..." location="...">

<security-config>
<pri nci pal - mappi ng-entri es>
<def aul t - nappi ng>
<res- user>guest </ res-user>
<res- passwor d>guest pw</ r es- passwor d>
</ def aul t - mappi ng>
<princi pal - nappi ng-entry>
<initiating-user>scott</initiating-user>
<res- user>scott</res-user>
<res- passwor d>ti ger </ res- passwor d>
</ princi pal - mappi ng-entry>
</ princi pal - mappi ng-entri es>
</ security-config>

</ connect or - fact ory>

J2EE Connector Architecture Security 16-11

Authentication in Container-Managed Sign-On

16-12 Oracle Application Server Containers for J2EE Security Guide

17

Security Support for EIS Connections

This chapter discusses security considerations and how to configure security and
authentication for EIS sign-on. The following topics are covered:

« Overview of Security and Authentication Setup for EIS Connections
« Understanding Component-Managed Sign-On

« Understanding Container-Managed Sign-On

« Using Declarative Container-Managed Sign-On

» Using Programmatic Container-Managed Sign-On

Overview of Security and Authentication Setup for EIS Connections

To ensure secure interactions between a J2EE application and an EIS, the J2EE
Connector Architecture allows application components to associate a security context
with connections established to the EIS. To accomplish this, the J2EE Connector
Architecture security contract can work in conjunction with the standard Java
Authentication and Authorization Service (JAAS). The following sections provide an
overview:

« Summary of J2EE Connector Architecture Security Contract

« Summary of Component-Managed Versus Container-Managed Sign-On

Summary of J2EE Connector Architecture Security Contract

The J2EE Connector Architecture security contract, between an application server and
a resource adapter, extends the connection management contract with functionality
relating to secure connections. The security contract supports standard JAAS
interfaces, allowing it to be independent of any particular security framework or
mechanism. In particular, the security contract includes features for the following:

« Propagating a security context, or subject, directly from a J2EE component to a
resource adapter (for component-managed sign-on)

« Propagating a security context, or subject, from an application server to a resource
adapter (for container-managed sign-on)

The security contract supports two particular authentication mechanisms:

« The commonly used "basic password" mechanism relies on a user name /
password pair, contained together in a password credential object. The application
server passes this object to the resource adapter for authentication.

Security Support for EIS Connections 17-1

Overview of Security and Authentication Setup for EIS Connections

The Kerberos version 5 mechanism ("Kerbv5" for short) is an authentication
protocol distributed by the Massachusetts Institute of Technology. This mechanism
uses a "generic credential" object that encapsulates credential information such as
a Kerberos ticket. The application server passes this object to the resource adapter
for verification.

Security contract functionality includes use of the following key interfaces:

j avax. security. aut h. Subj ect: This JAAS interface, which represents a
subject, is for use in providing a custom plugin module.

j avax. security. Princi pal : This JAAS interface, which represents a resource
principal, is for use in providing a custom plugin module.

j avax. security. auth. spi . Logi nModul e: This JAAS interface represents a
JAAS login module.

j avax. resource. spi.security. Passwor dCredenti al : This J2EE
Connector Architecture class represents a user name / password pair for basic
password authentication.

org.ietf.jgss. GSSCredenti al (inJ2SE version 1.4): This interface represents
a generic credential object for Kerberos version 5 authentication. (This replaces the
J2EE Connector Architecture

j avax. resource. spi.security. Generi cCredenti al interface, which is
deprecated.)

Note: Reauthentication" may be supported in the ra. xm file of a
resource adapter, through a value of t r ue in the

<reaut henti cati on-support >element. In this case, it is possible
for a managed connection to be reused even for aconnection request
with a security context that differs from the security context with
which the managed connection was initially created.

17-2 Oracle Application Server Containers for J2EE Security Guide

Overview of Security and Authentication Setup for EIS Connections

Summary of Component-Managed Versus Container-Managed Sign-On

Sign-on from a J2EE application to an EIS can be managed either by the application
component or by the J2EE container (OC4J). Component-managed sign-on must be set
up programmatically and does not involve OC4J-specific configuration.
Container-managed sign-on can be set up either declaratively, through OC4J-specific
configuration without any programming requirements, or programmatically,
involving a combination of OC4J-specific configuration and programming
requirements. Programmatic container-managed sign-on can use either a principal
mapping class or a JAAS login module (both discussed later in this chapter).

The following list summarizes the options and the type of setup required for each.
Bullets at each level represent choices.

« Component-managed sign-on: requires web. xnl or ej b-j ar. xm <res-aut h>
setting of Appl i cat i on; programmatic setup for sign-on; no OC4J-specific
configuration

« Container-managed sign-on: requires web. xm orej b-j ar. xnl <res-aut h>
setting of Cont ai ner ; setup for sign-on may be declarative or programmatic;
OC4J-specific configuration, as follows, for each of the container-managed sign-on
modes:

— None: implies either component-managed sign-on or no security; specify
through Application Server Control; reflected as use="none" in
<security-config>elementofoc4j-ra.xn

— Declarative: OC4J configuration through principal mapping entries; configure
through Application Server Control; reflected as
use="pri nci pal - mappi ng-entri es" with appropriate sub-elements in
<security-config>elementofoc4j-ra.xn

— Programmatic: using either a principal mapping class or a JAAS login module:

* Principal mapping class: implement Pri nci pal Mappi ng interface
directly or extend Abst ract Pri nci pal Mappi ng class (both in package
oracl e. j 2ee. connect or); configure directly through oc4j - r a. xm
(no Application Server Control support) with
use="pri nci pal - mappi ng-i nterface" and appropriate
sub-elements in <securi ty-confi g>element

* JAAS login module: use a JAAS login module; configure directly through
oc4j - ra. xm (no Application Server Control support) with

use="j aas- nmodul e" and appropriate sub-elements in
<security-config>element

Security Support for EIS Connections 17-3

Understanding Component-Managed Sign-On

Choices for container-managed sign-on in OC4J are also illustrated inFigure 17-1.

Figure 17-1 Flow Chart of Choices for OC4J Container-Managed Sign-On

Which
0OC4J-Managed
Sign-On
Mode?

Declarative

Administrator

Configure Principal
Mapping Instance

Class

Implement Interface
Directly

How to
Implement
Principal Mapping
Class?

Developer
Implement
PrincipalMapping
Interface

Administrator

Configure Principal
Mapping Instance

Principal Mapping

Programmatic

Which
Programmatic
0OC4J-Managed
Sign-On
Mode?,

Extend Abstract
Class

JAAS Login

Module

Developer

Develop JAAS
Login Module
(As Applicable)

Administrator

Configure JAAS
Login Module
Instance

Developer

Extend
AbstractPrincipalMapping
Class

Administrator

Configure Principal
Mapping Instance

Understanding Component-Managed Sign-On

When deploying an application that is to manage its EIS sign-on, use a

<res-aut h>Appl i cati on</ res- aut h> setting in the appropriate descriptor file
(web. xm for a Web component or ej b-j ar. xm for an EJB component). The
application component is then responsible for providing explicit security information
for the sign-on. Here is an example:

<resource-ref>
<res-ref-nanme>...</res-ref-nane>
<res-type>...</res-type>
<res-aut h>Appli cati on</res-aut h>
<res-sharing-scope>. .. </res-sharing-scope>
</resource-ref>

No OC4J-specific configuration is required for component-managed sign-on.

Figure 17-2 shows the steps in component-managed sign-on, with the text that follows
providing further detail.

17-4 Oracle Application Server Containers for J2EE Security Guide

Understanding Container-Managed Sign-On

Figure 17-2 Component-Managed Sign-On

Request with
incoming
security context

0O—/—

0C4J

Get connection
with explicit

L outgoing security Logon to EIS
| Application t—gp| context determined f==gp| ReSOUrCe L__g | with outgoing || 1S

Component by component Adapter security context

Interact with EIS under
— explicit outgoing security

context

=

The client makes a request, which is associated with an incoming security context
for the initiating principal.

2. As part of servicing the request, the application component maps the incoming
security context to an outgoing security context for the resource principal, or
hard-codes an outgoing security context, then uses the outgoing security context
to request a connection to the EIS.

3. As part of the connection acquisition, the resource adapter signs on to the EIS
using the outgoing security context provided by the application component.

4. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that performs
component-managed sign-on:

Context initctx = new Initial Context();
/1 PerformJND |ookup to obtain a connection factory.
j avax. resource. cci . ConnectionFactory cxf =
(j avax.resource. cci. ConnectionFactory)initctx.|ookup
("java:com env/ei s/ MEI S");
/1 Assunme a custom class ConnectionSpeclnpl, used to store sign-on credentials.
com nyei s. Connect i onSpecl npl connSpec = ...
connSpec. set User Nane("El Suser") ;
connSpec. set Passwor d("El Spasswor d") ;
/'l Pass sign-on credentials through getConnection() method call.
j avax. resour ce. cci . Connection cx = cxf.get Connecti on(connSpec);

Understanding Container-Managed Sign-On

When deploying an application that is to depend on OC4J to manage EIS sign-on, use
a<res-aut h>Cont ai ner </ r es- aut h>element in the appropriate descriptor file
(web. xm for a Web component or ej b-j ar. xml for an EJB component). OC4J is
then responsible for providing security information for the sign-on. Example 17-2,
"Extending AbstractPrincipalMapping" demonstrates the use of this element.

Security Support for EIS Connections 17-5

Understanding Container-Managed Sign-On

Example 17-1 The <res-auth> Element

<resource-ref>
<res-ref-name>. .. </res-ref-nane>

<res-type>...</res-type>

<res- aut h>Cont ai ner </ res-aut h>

<res-sharing- scope>. .. </res-sharing- scope>

</resource-ref>

For declarative container-managed sign-on, OC4J uses configuration information that
you specify through Application Server Control. For programmatic

container-managed sign-on—through either a principal mapping class or a JAAS login

module—OC4] uses configuration information that you specify directly through the
ocdj -ra. xnl file. When an application tries to obtain a connection, OC4J uses the
applicable mechanism to determine the outgoing security context and to perform

authentication.

Figure 17-3 illustrates the steps in container-managed sign-on. These steps are detailed

following the diagram.

Figure 17-3 Container-Managed Sign-On

Client

incoming

Request with

security context

0C4J

> Application
Component

| context

Custom
Authentication
Mechanism

o 1V

Map incoming
security context
to outgoing
security context

ty

Get connection
without explicit
outgoing security

0OC4J Security
Context Manager
For Resource
Adapters

Logon to EIS
with outgoing

security context

EIS

Resource
T-: Adapter |'

Interact with EIS

» | under established
outgoing security

The client makes a request, which is associated with an incoming security context
for the initiating principal.

As part of servicing the request, the application component requests a connection

to the EIS.

As part of the connection acquisition, the container (the OC4J security context

manager shown in Figure 17-3) maps the incoming security context to the

outgoing security context for the resource principal. This is based on principal
mapping entry elements, a principal mapping class, or a JAAS login module.

17-6 Oracle Application Server Containers for J2EE Security Guide

Using Declarative Container-Managed Sign-On

4. The resource adapter logs on to the EIS using the outgoing security context
provided by OC4J.

5. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that depends on
container-managed sign-on:

Context initctx = new Initial Context();

/1 performJND |ookup to obtain a connection factory
j avax. resource. cci. ConnectionFactory cxf =
(javax.resource. cci. ConnectionFactory)initctx.|ookup("java: confenv/eis/ WEIS");
/'l For container-nanaged sign-on, no security information is passed in the
/'l getConnection call
j avax. resource. cci . Connection cx = cxf.get Connection();

Using Declarative Container-Managed Sign-On

This section describes how to set up authentication through OC4J-specific
configuration of principal mapping entries. We refer to this as "declarative
container-managed sign-on" (as opposed to "programmatic container-managed
sign-on"). You can configure this through Application Server Control.

Specify a default resource user and a set of principal mapping entries. Each principal
mapping entry specifies an initiating principal and a corresponding resource principal.
If the actual initiating principal (OC4J user) during program execution matches one of
the initiating principals you specified, then the corresponding resource principal is
used for sign-on to the EIS. If the actual initiating principal does not match any you
specified, then the default resource user is used for sign-on to the EIS, assuming one is
provided or defined. If no default resource user is specified, then a nul | subject will
be passed to the EIS. In this case, the EIS has the option of sighing on with its own
default.

Use the following steps in the Application Server Control Console:

1. From the Connection Factories tab of the appropriate Resource Adapter page,
choose to create or edit a connection factory, as desired.

2. Go to the Security tab for the connection factory you are creating or editing.

3. Choose to enable security for container-managed sign-on.

4. Specify declarative principal mappings. This is to specify the default resource user.
a. Specify the default resource user name.

b. Specify a password for the default resource user, either indirectly or by typing
the desired password. For an indirect password, specify a key (which might
just be the user name, for example). OC4J uses the key to do a lookup in the
User Manager (such as through the j azn- dat a. xni file).

5. Specify initiating user mappings. Specify a mapping for each initiating principal
that you want to map to a resource principal. You can edit an existing row ro
change an existing mapping, or add another row to specify a new mapping. For
each mapping:

a. Specify the initiating user—the user name of an initiating principal.

b. Specify the resource user—the user name for a corresponding resource
principal.

Security Support for EIS Connections 17-7

Using Declarative Container-Managed Sign-On

c. Specify the resource password—a password for the mapped resource
principal. As with the default principal mapping, you can do this either

directly or indirectly.

Table 17-1 summarizes how these settings correspond to XML entities in the
oc4j -ra. xml file. An example follows the table.

Table 17-1 Properties for Declarative Container-Managed Sign-On

Application Server
Control Property Corresponding XML Entity

Description

Enable security for <security-config> element
container-managed use attribute
sign-on

Default Resource <res-user> sub-element of

User <default-mapping>

Indirect Password <res-password> sub-element
or Password (for of <default-mapping>
Declarative

Principal Mappings)

Initiating User <initiating-user> sub-element
of <principal-mapping-entry>

Resource User <res-user> sub-element of
<principal-mapping-entry>

Resource Password <res-password> sub-element
of <principal-mapping-entry>

Being enabled corresponds to
use="princi pal - mappi ng-entrie
s" (assuming declarative
container-managed sign-on). Being
disabled corresponds touse="none" .

User name for the default resource
principal.

Password for the default resource principal,
specified either indirectly or directly.

User name for an initiating principal that
you want to map to a resource principal.

User name for a resource principal that you
want to map to an initiating principal.
(Each initating-user/resource-user pair
uses a separate <principal-mapping-entry>
element.)

Password for the resource principal,
specified either indirectly or directly.

<océ4j -connector-factories ... >
<connector-factory ... >

<security-config use="principal - mappi ng-entries">

<pri nci pal - mappi ng-entri es>
<def aul t - mappi ng>
<res-user>scott</res-user>

<r es- password>- >ti ger </res- passwor d>

</ def aul t - mappi ng>
<princi pal - mappi ng-entry>

<initiating-user>servletuserl1</initiating-user>

<res- user>j nsuser 1</ r es- user >

<r es- passwor d>- >j nsuser 1</ r es- passwor d>

</ princi pal - mappi ng-entry>
<princi pal - mappi ng-entry>

<initiating-user>servletuser2</initiating-user>

<res- user>j nsuser 2</r es- user >

<r es- passwor d>- >j nsuser 2</ r es- passwor d>

</ princi pal - mappi ng-entry>
</ princi pal - mappi ng-entri es>
</security-config>
</ connect or - f act ory>

</ oc4j - connect or-factories>

17-8 Oracle Application Server Containers for J2EE Security Guide

Using Programmatic Container-Managed Sign-On

Using Programmatic Container-Managed Sign-On

OC4J can manage programmatic authentication, either through an OC4J-specific
mechanism that uses a principal mapping class, or through a pluggable JAAS
mechanism that uses a JAAS login module. The following sections discuss these
mechanisms plus additional features:

« Using a Principal Mapping Class
« Using a JAAS Login Module
« OC4J Support for Groups in Programmatic Container-Managed Sign-On

Using a Principal Mapping Class

One option in OC4)J for programmatic container-managed sign-on is to use an Oracle
feature that implements principal mapping. The application must include a principal
mapping class, which is a class that implements the

oracl e.j 2ee. connector. Pri nci pal Mappi ng interface. A developer can
accomplish this by implementing the interface directly, or by extending the

oracl e.j 2ee. connector. Abstract Pri nci pal Mappi ng class, supplied by
Oracle for convenience. You must configure a principal mapping class through the
oc4j -ra. xm file. The following sections describe aspects of using a principal
mapping class:

« Understanding the PrincipalMapping Interface APIls
« Extending the AbstractPrincipalMapping Class
« Configuring a Principal Mapping Class

Security Support for EIS Connections 17-9

Using Programmatic Container-Managed Sign-On

Understanding the PrincipalMapping Interface APIs
Table 17-2 describes how OC4J uses methods of the Pri nci pal Mappi ng interface.

Table 17-2 Method Descriptions for PrincipalMapping Interface

Method Signature Use by OC4J

void init (java.util.Properties prop) OC4Jcallsi ni t () to initialize the settings for the
Pri nci pal Mappi ng instance, passing in property values
specified under the <pr i nci pal - mappi ng-i nt erface>
elementin oc4j - r a. xnl . (See "Configuring a Principal
Mapping Class" on page 17-13.) The implementation class can use
the properties to set either a default user name and password,
information for LDAP connection, or a default mapping.

void setManagedConnectionFactory OC4J calls set ManagedConnecti onFact ory() to provide
(ManagedConnectionFactory mcf) the Pri nci pal Mappi ng instance with a
ManagedConnect i onFact ory instance (for connections to
the EIS), which is used in creating a Passwor dCr edent i al

instance.
void setAuthenticationMechanisms OC4Jcalls set Aut henti cati onMechani sns() to passthe
(java.util. Map authMechanisms) authentication mechanisms supported by the resource adapter to

the Pri nci pal Mappi ng instance. The key in the map that is
passed is a string containing the supported mechanism type, such
as" Basi cPasswor d" or" Ker bvb5" . The value corresponding
to the key is a string containing the fully qualified name of the
corresponding credentials interface, as declared in a
<credential -interface>elementinra. xm , such as for
the Passwor dCr edent i al interface. The map can contain
multiple entries if the resource adapter supports multiple
authentication mechanisms.

Subject mapping (Subject initiatingSubject) OC4]J calls mappi ng() toinstruct the Pri nci pal Mappi ng
instance to perform the principal mapping. A Subj ect instance
for the OC4J user (initiating principal) is passed in, and this
method returns a Subj ect instance for the resource principal,
for use by the resource adapter for sign-on to the EIS. (The
implementation may return nul | if the proper resource principal
cannot be determined.)

Extending the AbstractPrincipalMapping Class

As a convenience, OC4J provides the abstract class Abst ract Pri nci pal Mappi ng,
which implements the Pri nci pal Mappi ng interface. This class provides default
implementations of the the the set ManagedConnect i onFact ory() and

set Aut hent i cati onMechani sm() methods, as well as utility methods to
accomplish the following:

= Retrieve the managed connection factory used for connections to the EIS.
« Retrieve the authentication mechanisms supported by the resource adapter.

« Determine whether the resource adapter supports the basic password
authentication mechanism.

« Determine whether the resource adapter supports the Kerberos version 5
authentication mechanism.

« ExtractaPrinci pal instance from a Subj ect instance.

When extending the Abst ract Pri nci pal Mappi ng class, developers need only
implement thei ni t () and mappi ng() methods.

17-10 Oracle Application Server Containers for J2EE Security Guide

Using Programmatic Container-Managed Sign-On

The methods exposed by the Abst ract Pri nci pal Mappi ng class are summarized in

Table 17-3.

Table 17-3 Method Descriptions for AbstractPrincipalMapping Class

Method Signature

Description

abstract void init (java.util.Properties prop)

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

void setAuthenticationMechanisms
(java.util. Map authMechanisms)

abstract Subject mapping (Subject
initiatingSubject)

ManagedConnectionFactory
getManagedConnectionFactory ()

java.util.Map getAuthenticationMechanisms ()

boolean isBasicPasswordSupported ()

boolean isKerbv5Supported ()

Principal getPrincipal (Subject)

The subclass must implement the i ni t () method. See
Table 17-2 for a description.

The subclass need not implement the
set ManagedConnecti onFact or y() method. See
Table 17-2 for a description.

The subclass need not implement the

set Aut hent i cati onMechani sns() method. See

Table 17-2 for a description. Note that the subclass can use the

i sBasi cPasswor dSupport ed() and

i sKer bv5Support ed() methods (described later in this
table) to determine which authentication mechanism is supported
by the resource adapter. The subclass can also use the

get Aut hent i cati onMechani snms() method to retrieve the
authentication mechanisms.

The subclass must implement the mappi ng() method. See
Table 17-2 for a description.

The get ManagedConnect i onFact ory() utility method
returns the ManagedConnect i onFact ory instance (for
connections to the EIS), which might be required to create a
Passwor dCr edent i al instance.

The get Aut hent i cati onMechani sns() utility method
returns a map of all authentication mechanisms supported by the
resource adapter. See set ManagedConnecti onFact ory()
in Table 17-2 for a description of the map.

The i sBasi cPasswor dSupport ed() utility method
determines whether the basic password authentication mechanism
is supported by the resource adapter.

The i sKer bv5Support ed() utility method determines
whether the Kerbv5 authentication mechanism is supported by
the resource adapter.

The get Pri nci pal () utility method extracts the Pr i nci pal
instance from the OC4J user Subj ect instance passed from
OC4J.

Note: In cases where there are multiple principals in a subject
(which is not typical), this method would retrieve the first
principal. (There is also aget Pri nci pal s() method, and the
"first" principal is the first element of the collection of principals
that this method would return.)

Example 17-2, "Extending AbstractPrincipalMapping"”, extends the

Abstract Pri nci pal Mappi ng class to provide a principal mapping from the OC4J
user to the EIS default user and password. This assumes a default user and password
is specified under the <pri nci pal - mappi ng-i nt er f ace> elementin

oc4j - ra. xmi , as shown in "Configuring a Principal Mapping Class" on page 17-13.

Security Support for EIS Connections 17-11

Using Programmatic Container-Managed Sign-On

Example 17-2 Extending AbstractPrincipalMapping
package com exanpl e. app;

inport java.util.*;

i nport javax.resource.spi.*;

i nport javax.resource.spi.security.*;

i nport oracle.j2ee.connector. AbstractPrinci pal Mappi ng;
inport javax.security.auth.?*;

inport java.security.*;

public class MyMappi ng extends AbstractPrinci pal Mappi ng
{

String mdefaul t User;

String mdefaul t Passwor d;

public void init(Properties prop)
{
if (prop !'=null)
{
Il Retrieves the default user and password fromthe properties
m def aul t User = prop. get Property("user");
m def aul t Password = prop. get Property("password");

}
}
public Subject mappi ng(Subject initiatingSubject)
{
[l This inplementation is for BasicPassword authentication
Il mechani sm Return if the resource adapter does not support it.
if (!isBasicPasswordSupported())
return null;
Il Use the utility nethod to retrieve the Principal fromthe inconming Subject
/'l (security context), corresponding to the OC4J user.
/1 This code is included here only as an exanpl e.
/1 The principal obtained is not actually used in this exanple.
Principal principal = getPrincipal(initiatingSubject);
char[] resPasswordArray = null;
if (mdefaultPassword != null)
resPasswor dArray = m def aul t Password. t oChar Array();
Il Create a PasswordCredential using the default user nane and
/] password, and add it to the Subject, as in "Cption A" in the
/1 J2EE Connector Architecture specification.
Passwor dCredential cred =
new PasswordCredenti al (m defaul t User, resPasswordArray);
cred. set ManagedConnect i onFact or y(get ManagedConnecti onFactory());
initiatingSubject.getPrivateCredentials().add(cred);
return initiatingSubject;

17-12 Oracle Application Server Containers for J2EE Security Guide

Using Programmatic Container-Managed Sign-On

Configuring a Principal Mapping Class

To use a principal mapping class, you must update oc4j - r a. xm to include a
<princi pal - mappi ng- i nt er f ace> element for the class. This is a sub-element of
the <securi t y- confi g> element and must include the following:

« An<inpl -cl ass> sub-element to specify the fully qualified name of the
principal mapping class

« Property settings appropriate to the principal mapping class implementation—for
the class shown in the preceding section, a <pr oper t y> sub-element with
nane="user" and aval ue setting to specify the default user name for EIS
sign-on, and a <pr oper t y> sub-element with nane="passwor d" and aval ue
setting to specify the password for the default user, as shown in the following
example.

<oc4j - connect or - fact ori es>
<connector-factory name="..." location="...">

<security-config use="princi pal - mappi ng-i nterface">
<princi pal - mappi ng-i nterface>
<i npl - cl ass>com exanpl e. app. MyMappi ng</ i npl - cl ass>
<property name="user" val ue="scott" />
<property name="password" val ue="tiger" />
</ princi pal - mappi ng-interface>
</ security-config>

</ connect or - f act or y>
</ oc4j - connector-factori es>

Note: You can use password indirection to hide the password. For a
full discussion of password indirection, see Chapter 14, "Password
Management".

Using a JAAS Login Module

Alternatively, you can manage sign-on to an EIS programmatically through JAAS. For
details, see Chapter 10, "Custom LoginModules".

0C4J Support for Groups in Programmatic Container-Managed Sign-On

Principal mapping classes and JAAS login modules, in addition to mapping from
individual OC4J users to EIS users, can map from OC4J groups to EIS users.

The oracl e. j 2ee. connect or package containsthel niti ati ngPri nci pal class,
which implements the Pri nci pal interface and represents OC4J users, and the

I nitiatingG oup class, which also implements the Pri nci pal interface but
represents OC4J groups. OC4Jcreatesan | ni ti ati ngPri nci pal intance and
incorporates it into the Subj ect instance that it passes either to thei ni ti al i ze()
method of a login module, or to the mappi ng() method of a principal mapping class.

ThelnitiatingPrincipal classalso has aget G oups() method. This returns a
java. util . Set instance with a collection of I ni ti ati ngG oup instances that
represent the OC4J groups or JAZN roles that the OC4J user belongs to. The group
membership is defined in OC4J-specific descriptor files such as j azn- dat a. xm
(depending on the user manager).

Security Support for EIS Connections 17-13

Using Programmatic Container-Managed Sign-On

17-14 Oracle Application Server Containers for J2EE Security Guide

18

Troubleshooting Security Issues

This chapter discusses techniques for locating security problems in your OC4J
application. It is divided into the following sections:

» Locating jazn.xml

« JAZN Admintool

» Custom LoginModules

« LDAP-Based Provider Issues

« Servlets, runas-mode, and doasprivileged-mode
« Creating Realms

« Removing Realm Names From Principals

« Specifying the JAAS Provider

Locating jazn.xml

When the OracleAS JAAS Provider starts, it searches for aj azn. xm file. The
jazn.xm file can be in a variety of locations, but is normally in ORACLE_

HOME/ | 2ee/ horre/ confi g . However, if you specify the location of this file in a
system property, the file in the system property takes precedence.

When the OracleAS JAAS Provider starts, it searches for j azn. xm in order through
the directories specified by:

1. oracle.security.jazn.config (system property)
2. java.security. auth. policy (system property)

3. J2EE_HOWE/ confi g (J2EE_HOVE is specified by the system property
oracl e.j 2ee. hone)

4. ORACLE_HOWE/j 2eel/ hone/ config (ORACLE_HOME is specified by the system
property or acl e. hone)

5. ./config

The OracleAS JAAS Provider stops searching after locating aj azn. xm file. If no file
is found, you receive the error message "JAZN has not been properly
configured.”

Troubleshooting Security Issues 18-1

JAZN Admintool

JAZN Admintool

Before using the Admintool, you must set the environment variable controlling
loading of dynamic libraries (for example, LD_LI BRARY_PATH in Solaris). See
Table 2-5 for details.

Caution: The Admintool does not require authentication when
used with the LDAP-based provider; anyone who runs the tool is
granted all rights. This means that it is vital to secure the
Admintool in production environments; you normally do this by
using file-system properties. If you specify the - user and

- passwor d options when using LDAP, they are ignored.

If you are attempting to grant a permission and the Admintool gives the error message
Perm ssion class not found, it means that the permission you wish to grant is
not in the classpath. You must place the JAR containing the permission class in the
jdk/jrelliblext directory so that the Admintool can locate it..

Custom LoginModules
When writing a custom Logi nMbdul e, you should be aware of the following issues:
« Subject-Based Authorization

« J2EE Security Integration

Subject-Based Authorization

When an application uses a custom login module, the Subject (and the principals it
contains) are used as the sole basis for authorization, including the evaluation of J2EE
security constraints. To ensure that all relevant principals are taken into consideration
during authorization, the login module should add the relevant principals (including
any roles/groups that the authenticated user belongs to) to the Subject during the
comni t phase of the JAAS authentication process.

J2EE Security Integration

The custom Logi nModul e framework supports the J2EE security declarative security
model. That is, the J2EE security constraints declared in an application's deployment
descriptors, such asweb. xm and ej b-j ar . xm , are enforced using Subject-based
authorization.

We encourage J2EE developers to take advantage of the J2EE security model whenever
possible, rather than writing their own security implementation; this ensures forward
compatibility with future releases.

18-2 Oracle Application Server Containers for J2EE Security Guide

Creating Realms

LDAP-Based Provider Issues
Two important issues when troubleshooting the LDAP-based provider are:
» Checking JAZN-LDAP Configuration
« Enabling and Disabling Caching

Checking JAZN-LDAP Configuration

When you associate an Oracle Application Server instance with Oracle Application
Server Infrastructure, either during installation or using Enterprise Manager, the
instance is automatically configured to use the LDAP-based provider. The Oracle
Internet Directory location and port are determined by the file ORACLE_

HOVE/ confi g/i as. properti es.

To verify that the LDAP-based provider has been configured property, do the
following:

1. Use Enterprise Manager to verify that the user manager is set to "LDAP".

2. Issue the JAZN Admintool - I i st r eal ms command to verify that the
LDAP-based provider can retrieve data from Oracle Internet Directory.

java -jar jazn.jar -listreal ns

3. If the Admintool responds with the message "Communi cati on Error" thenitis
likely that Oracle Internet Directory is down.

4. If the Admintool responds with the message "I nval i d Credenti al s", then the
LDAP users and credentials are incorrectly configured.

Enabling and Disabling Caching

LDAP caching is enabled by default; caching is per-JVM, not per-application. Before
using JAAS Admintool management commands, such as granting permissions or
roles, you must disable caching. After you use the Admintool, you should re-enable
caching.

For details on enabling and disabling caching, see "Configuring LDAP Caching" on
page 5-3.

Servlets, runas-mode, and doasprivileged-mode

If you want a servlet to be invoked using subj ect. doAs() or

subj ect. doAsPri vi |l eged(), you must set the r unas- node and
doaspri vi | eged- node attributes of the <j azn- web- app> element in the
orion-web. xm or orion-application.xm files.

For details, see "Configuring J2EE Authorization" on page 4-10.

Creating Realms

It is important to use the appropriate tool to create realms. In general, if you’re using
the LDAP-based provider or Oracle Application Server Single Sign-On, use Oracle
Delegated Administration Services to create realms; if you’re using the XML-based
provider, create realms with the JAAS Admintool. The realms you create with the
JAAS Admintool are external or application realms; they are located in a different
place in the realm tree than identity management realms.

Troubleshooting Security Issues 18-3

Removing Realm Names From Principals

Removing Realm Names From Principals

In some applications, you prefer to avoid parsing the principal returned by various
method calls. You can configure the OracleAS JAAS Provider so that the returned
principal contains no realm name. To do this, you add a property to the <j azn>
elementin the filej azn. xm . The new property is:

<property name="j aas. usernane. si npl e" val ue="true" />

This property affects the return values of the following methods:

« javax.servlet.http. HTTPSer vl et Request, get Renot eUser and
get User Pri nci pal methods

« javax.ejb.EIJBContext, getCallerldentityandgetCallerPrincipal
methods

Specifying the JAAS Provider
If you receive an exception and stack trace similar to:

Exception in thread "mai n" java.lang. SecurityException: Unable to locate a | ogin
configuration

at comsun. security.auth.login. ConfigFile.<init>(ConfigFile.java:97)

at sun.reflect. NativeConstructorAccessor|npl.new nstanceO(Native Met hod)

at sun.reflect. NativeConstructorAccessorlnpl.new nstance

you have probably failed to specify the OracleAS JAAS Provider as the JAAS policy
provider. See "Specifying An Alternate Policy Provider (Optional)" on page 4-5for
details.

18-4 Oracle Application Server Containers for J2EE Security Guide

19

HTTPS

Security Tips

These hints come from the Security Best Practices document, available from Oracle
Technology Network (htt p: // www. or acl e. conf t echnol ogy/ i ndex. htm).
Check the OTN Web site for updates. This chapter is divided into the following parts:

« HTTPS
« Overall Security
« JAAS

Oracle HTTP Server (OHS) has several features that provide security to an application
without requiring you to modify the application. You should evaluate and leverage
these features before coding similar features yourself. HTTP security features include:

« Authentication — OHS can authenticate users and pass the authenticated user-id
to an application in a standard manner (REMOTE_USER). It also supports single
sign-on, thus reusing existing login mechanismes.

« Authorization — OHS has directives that can allow access to your application only
if the end user is authenticated and authorized. Again, no code change is required.

« Encryption — OHS can provide transparent SSL communication to end customers
without any code change on the application.

Other suggestions for securing HTTPS:

« Configure Oracle Application Server to fail attempts to use weak encryption. You can
configure Oracle Application Server to use only specified encryption ciphers for
HTTPS connections. For instance, your application could reject connections from
non-128-bit client-side SSL libraries. This ability is especially useful for banks and
other financial institutions because it provides server-side control of the
encryption strength for each connection.

« Use HTTPS to HTTP appliances for accelerating HTTP over SSL. Use HTTPS
everywhere you need to. However, the huge performance overhead of HTTPS
forces a trade-off in some situations.

For a relatively low cost, HTTPS-to-HTTP appliances can change throughput on a
500MHz UNIX machine from 20-30 transactions per second to 6000 transactions
per second, making this trade-off decision easier.

Moreover, these appliances provide much better solutions than adding
mathematics or cryptography cards to UNIX, Windows, or Linux boxes.

Security Tips 19-1

Overall Security

Ensure that sequential HTTPS transfers are requested through the same Web server.
Expect 40 to 50 milliseconds of CPU time to initiate SSL sessions on a 500 MHz
machine. Most of this CPU time is spent in the key exchange logic, where the bulk
encryption key is exchanged. Caching the bulk encryption will significantly
reduces CPU overhead on subsequent accesses, provided that the accesses are
routed to the same Web server.

Keep secure pages and pages not requiring security on separate servers. Although it may
be easier to place all pages for an application on one HTTPS server, this strategy
has enormous performance costs. Reserve your HTTPS server for pages needing
SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files to be displayed on
the same screen, it is probably not worth the effort to segregate secure from
nonsecure static content. The SSL key exchange (a major consumer of CPU cycles)
is likely to be called exactly once in any case, and the overhead of bulk encryption
is not that high.

Overall Security

JAAS

When assigning privileges to modules, use the lowest levels that are adequate to perform
the modules’ function(s). Using low-level privileges provides "fault containment": if
security is compromised, it is contained within a small area of the network and
cannot invade the entire intranet.

Tune the SSLSessionCacheTimeout directive if you are using SSL. The Apache server in
Oracle Application Server caches a client's SSL session information by default.
With session caching, only the first connection to the server incurs high latency.

In a simple test to connect and disconnect to an SSL-enabled server, the elapsed
time for 5 connections was 11.4 seconds without SSL session caching; with session
caching enabled, the elapsed time was 1.9 seconds.

The default SSLSessi onCacheTi meout is 300 seconds. Note that the duration of
an SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessi onCacheTi meout directive in the ht t pd. conf file to meet
your application needs.

Migrate your user management from principals.xml to the OracleAS JAAS Provider. In
earlier releases of Oracle Application Server, the J2EE application server
component stored all user information in a file called pri nci pal s. xm
(including storing passwords in cleartext). The OracleAS JAAS Provider provides
a similar simple security model as a default, without storing passwords in
cleartext. The OracleAS JAAS Provider also offers tight integration with Oracle
Application Server Infrastructure Infrastructure (including OracleAS Single
Sign-On and Oracle Internet Directory) out of the box.

Avoid writing custom user managers; instead, extend the OracleAS JAAS Provider,
OracleAS Single Sign-On, and Oracle Internet Directory. The Oracle Application
Server Containers for J2EE (OC4J) container continues to supply several methods
and levels of extending security providers. Although you can extend the

User Manager class to build a custom user manager, leveraging the rich
functionality provided by the OracleAS JAAS Provider, OracleAS Single Sign-On,
and Oracle Internet Directory gives you more time to focus on actual business
logic instead of infrastructure code. Both OracleAS Single Sign-On and Oracle

19-2 Oracle Application Server Containers for J2EE Security Guide

JAAS

Internet Directory provide APIs to integrate with external authentication servers
and directories respectively.

Use OracleAS Single Sign-On as the authentication mechanism with the OracleAS JAAS
Provider. The OracleAS JAAS Provider allows different authentication options.
However, we strongly recommend leveraging the OracleAS Single Sign-On server
whenever possible because:

» Itis the default mechanism for most Oracle Application Server components,
such as Portal, Forms, Reports, Wireless, and so on.

« Itiseasy to set up in a declarative fashion and does not require any custom
programming.

« It provides seamless PKI integration.

Use the OracleAS JAAS Provider's declarative features to reduce programming. Because
most of the features in the OracleAS JAAS Provider are controlled declaratively,
particularly in the area of authentication, developers can postpone setup until
deployment time. This not only reduces the programming tasks for integrating a
JAAS based application, it enables the deployer to use environment-specific
security models for that application.

Use the fine-grained access control offered by the OracleAS JAAS Provider and the Java
permission model. Unlike the "coarse-grained" J2EE authorization model as it exists
today, the OracleAS JAAS Provider integrated with OC4J allows any protected
resource to be modeled using Java permissions. The Java permission model (and
associated Permission class) is extensible and allows a flexible way to define
fine-grained access control.

Use Oracle Internet Directory as the central repository for the OracleAS JAAS Provider in
production environments. Although the OracleAS JAAS Provider supports a flat-file
XML-based repository useful for development and testing environments, it should
be configured to use Oracle Internet Directory for production environments.
Oracle Internet Directory provides LDAP standard features for modeling
administrative metadata and is built on the Oracle database platform, inheriting
all the database properties of scalability, reliability, manageability, and
performance.

Take advantage of the authorization features of the OracleAS JAAS Provider. In addition
to the authorization functionality defined in the JAAS 1.0 specification, the
OracleAS JAAS Provider supports:

« Hierarchical, role-based access control (RBAC)

« The ability to partition security policy by subscriber (that is, each user
community)

These extensions provide a more scalable and manageable framework for security
policies covering a large user population.

Security Tips 19-3

JAAS

19-4 Oracle Application Server Containers for J2EE Security Guide

A

OracleAS JAAS Provider Standards and
Samples

This appendix provides supplemental samples and standards. It contains the
following topics:

« Sample jazn-data.xml Code
« Modifying User Permissions

« Modifying User Permissions Code

Sample jazn-data.xml Code

This section presents a sample j azn- dat a. xm file which illustrates the specific
standards that XML files must conform to. Thisj azn- dat a. xnl file contains a realm,
j azn. com users, and roles.

See Also:

« "Realm Management in XML-Based Environments" on
page 4-3.

« "Realm and Policy Management" on page 4-2 for further
information on managing the OracleAS JAAS Provider in
XML-based provider environment

Example A—-1 Sample jazn-data.xml File

<?xm version="1.0" encodi ng="UTF-8" standal one='yes' ?>
<I DOCTYPE j azn-data PUBLIC "JAZN- XM. Dat a"
"http://xmns.oracl e. confias/dtds/jazn-data-9_04.dtd">
<j azn- dat a>

<l-- JAZN Realm Data -->
<j azn-real m>
<real m»
<nane>j azn. conx/ name>
<user s>
<user >
<nane>anonynous</ nane>
<description>The default guest/anonynous user</description>
</ user >
<user >
<name>SCOTT</ name>
<di spl ay- nane>SCOTT</ di spl ay- nane>
<credential s>! TI GER</ credent i al s>

OracleAS JAAS Provider Standards and Samples A-1

Sample jazn-data.xml Code

<[user>

<user >
<nane>adni n</ nane>
<di spl ay- name>0C4J Adni ni strat or </ di spl ay- name>
<descri ption>0C4J Admini strator</description>
<credential s>! wel come</credential s>

<[user>

<user >
<nane>user </ name>
<description>The default user</description>
<credenti al s>! 456</credenti al s>

</ user>

<I'-- users used for password hiding -->
<user >
<name>pwFor Scot t </ nane>
<description>Password for database user Scott</description>
<credential s>! TI GER</ credenti al s>
</ user>
<user >
<nane>pwFor SSL</ nane>
<description>Password for ssl key and trust stores</description>
<credential s>! 123456</ credenti al s>
</ user>
<user>
<name>pwFor Syst enx/ name>
<descri ption>Password for database system user </description>
<credenti al s>! manager </ credenti al s>
</ user>

</ user s>
<rol es>

<rol e>
<nane>admi ni st rat or s</ nang>
<di spl ay- name>Real m Adni n Rol e</ di spl ay- nane>
<description>Adm nistrative role for this real m</description>
<menber s>
<menber >
<type>user </ type>
<nane>adni n</ name>
</ menber >
</ menber s>
</rol e>
<rol e>
<nane>user s</ nang>
<nenber s>
<nenber >
<type>user</type>
<nane>user </ nane>
</ menber >
<nenber >
<type>user</type>
<nane>SCOTT</ nane>
</ menber >
<menber >
<type>rol e</type>
<nane>adm ni st rat or s</ name>
</ menber >
</ menber s>
</rol e>
<rol e>

A-2 Oracle Application Server Containers for J2EE Security Guide

Sample jazn-data.xml Code

<name>guest s</ nane>
<menber s>
<nmenber >
<type>user</type>
<name>anonymous</ name>
</ menber >
<nenber >
<type>rol e</type>
<nane>user s</ nane>
</ menber >
</ menber s>
</rol e>
<rol e>
<nane>j mxuser s</ name>
<di spl ay- name>JMX user s</ di spl ay- nane>
<description>A | ows access to application |evel user defined
MBeans</ descri ption>
<nmenber s>
</ menber s>
</rol e>
</rol es>
</real n»
</jazn-real mp

<l-- JAZN Policy Data -->
<j azn-pol i cy>

<grant >
<grant ee>
<princi pal s>
<pri nci pal >

<r eal m name>j azn. conx/ r eal m name>
<type>rol e</type>
<cl ass>oracl e. security.jazn.spi.xm .XMReal nRol e</ cl ass>
<nane>j azn. cont admi ni st rat or s</ nane>
</ principal >
</ princi pal s>
</ grant ee>
<perm ssi ons>
<pernmi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPer ni ssi on</cl ass>

<nane>or acl e. security.jazn.real m Real nPerm ssi on$j azn. concr eat er eal nx/ nane>
</ permi ssi on>
<permi ssi on>
<cl ass>oracl e. security.jazn.real m Real nPer ni ssi on</ cl ass>
<nane>j azn. conx/ name>
<actions>createreal nx/ acti ons>
</ per ni ssi on>
<perni ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPerm ssion</cl ass>
<name>or acl e. security.jazn. real m Real nPermi ssi on$j azn. con$dr opr eal nx/ nane>
</ perm ssi on>
<pernmi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPer ni ssi on</cl ass>

<name>or acl e. security.jazn.real m Real nPermi ssi on$j azn. concr eat er ol e</ nane>
</ perm ssi on>
<perni ssi on>
<cl ass>oracl e. security.jazn.policy. Adn nPerm ssi on</cl ass>
<name>or acl e. security.jazn. policy. Rol eAdm nPer ni ssi on$j azn. conf *$</ nane>

OracleAS JAAS Provider Standards and Samples A-3

Sample jazn-data.xml Code

</ perni ssi on>

<permi ssi on>
<cl ass>com everni nd. server. Adni ni strati onPer m ssi on</ cl ass>
<name>adni ni strati on</ nane>
<actions>admi ni stration</actions>

</ per ni ssi on>

<per mi ssi on>
<cl ass>oracl e. security.jazn. real m Real nPerni ssi on</ cl ass>
<nane>j azn. conk/ nane>
<acti ons>dropreal nx/ acti ons>

</ perm ssi on>

<per ni ssi on>
<cl ass>oracl e. security.jazn. real m Real nPerm ssi on</ cl ass>
<nane>j azn. conk/ nane>
<acti ons>dropuser </ acti ons>

</ per ni ssi on>

<per mi ssi on>
<cl ass>oracl e. security.jazn. policy. Rol eAdm nPer mi ssi on</ cl ass>
<name>j azn. cont *</ nane>

</ per ni ssi on>

<per mi ssi on>
<cl ass>com everni nd. server.rmi . RM Perni ssi on</ cl ass>
<name>| ogi n</ nanme>

</ per m ssi on>

<permi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPermi ssi on</ cl ass>

<name>or acl e. security.jazn.real m Real nPer m ssi on$j azn. con$nodi f yr eal net adat a</ nam
e>
</ perni ssi on>
<permi ssi on>
<cl ass>oracl e. security.jazn. real m Real mnPerm ssi on</ cl ass>
<name>j azn. conx/ name>
<actions>nodi f yr eal met adat a</ acti ons>
</ per m ssi on>
<per mi ssi on>
<cl ass>oracl e. security.jazn. policy. Adm nPerm ssi on</ cl ass>
<nane>oracl e. security.jazn.real m Real nPer m ssi on$j azn. con®dr opr ol e</ nane>
</ per m ssi on>
</ per ni ssi ons>
</grant>
<grant>
<grant ee>
<princi pal s>
<princi pal >
<real m name>j azn. conx/ r eal m name>
<type>rol e</type>
<cl ass>oracl e. security.jazn.spi.xm .XMReal nRol e</ cl ass>
<name>j azn. cont user s</ nane>
</ principal >
</ princi pal s>
</ grant ee>
<perm ssi ons>
<per mi ssi on>
<cl ass>com everni nd. server.rni. RM Perm ssi on</ cl ass>
<name>| ogi n</ name>
</ per m ssi on>
</ per ni ssi ons>
</grant>
<grant >

A-4 Oracle Application Server Containers for J2EE Security Guide

Sample jazn-data.xml Code

<grant ee>
<princi pal s>
<pri nci pal >

<r eal m nane>j azn. conx/ r eal m name>
<type>rol e</type>
<cl ass>oracl e. security.jazn.spi.xm . XMReal nRol e</ cl ass>
<nane>j azn. con j nxuser s</ name>
</ princi pal >
</ princi pal s>
</ grantee>
<perm ssi ons>
<permi ssi on>
<cl ass>com everm nd. server. rnm . RM Perni ssi on</ cl ass>
<nane>l ogi n</ name>
</ per ni ssi on>
</ per m ssi ons>
</ grant>

</jazn-policy>

<l-- Pernmission Cass Data -->
<j azn- per m ssi on- cl asses>
</jazn-perm ssi on-cl asses>

<l-- Principal Cass Data -->
<j azn-principal - cl asses>
</jazn-principal - cl asses>

<l-- Login Mdul e Data -->
<j azn- | ogi nconfi g>
<application>
<nane>or acl e. security.jazn. ocdj. JAZNUser Manager </ narme>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.real m Real nLogi nModul e</ cl ass>
<control -fl ag>requi red</control -fl ag>
<opt i ons>
<opti on>
<name>addAl | Rol es</ nane>
<val ue>t r ue</ val ue>
</ option>
</ options>
</l ogi n-modul e>
</l ogi n- modul es>
</ appl i cation>
<application>
<name>or acl e. security.jazn.tool s. Adni nt ool </ name>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.real m Real nLogi nModul e</ cl ass>
<control -fl ag>requi red</control -fl ag>
<opt i ons>
<option>
<name>addAl | Rol es</ nanme>
<val ue>t r ue</ val ue>
</ option>
<option>
<name>debug</ name>
<val ue>f al se</val ue>
</ option>

OracleAS JAAS Provider Standards and Samples A-5

Modifying User Permissions

</ options>
</l ogi n- nodul e>
</l ogi n- nodul es>
</application>
<appl i cation>
<nane>oracl e. security.jazn.oc4j. D gestAut henti cat or </ name>
<l ogi n- modul es>
<l ogi n- modul e>
<cl ass>oracl e. security.jazn.|ogin. nodul e. di gest . Di gest Logi nMbdul e</ cl ass>
<control -flag>required</control -flag>
<options>
<opti on>
<name>debug</ name>
<val ue>f al se</ val ue>
</ option>
<opt i on>
<nane>addAl | Rol es</ nane>
<val ue>t rue</val ue>
</ option>
</ options>
</l ogi n- nodul e>
</l ogi n- nodul es>
</application>
</jazn-1ogi nconfi g>

</j azn- dat a>

Modifying User Permissions

Example A-2 demonstrates granting j ava. i 0. Fi | ePer mi ssi on to a user named
Jane. Sni t h. The objects to be modified are presented in bold.

Table A-1 lists the objects in Example A-2.

Table A-1 Objects In Sample Modifying User Permissions Code

Objects Names Comments

Real mJser user Jane. Smith

codesourcecs file:/hone/task.jar

File path report.data Path is the path name of the file.
sample organization abc. com abc. comdoes not appear in this

code directly.

sample External Realm abcReal m

Modifying User Permissions Code

Example A-2 Modifying User Permissions

inmport oracle.security.jazn.*;
inport oracle.security.jazn.policy.*;
inport oracle.security.jazn.realm?*;
inport java.lang.*;

inport java.security.*;

inport java.util.?*;

inport java.net.*;

inport java.io.*;

A-6 Oracle Application Server Containers for J2EE Security Guide

Modifying User Permissions Code

public class Init {

public static void main(String[] args) {

try {
Real mvanager real m\Wgr = JAZNCont ext . get Real mvanager () ;

Real m real m = real mvyr. get Real n{"abcReal ni');

User Manager user Myr = real m get User Manager () ;

Rol eManager rol eMyr = real m get Rol eManager ();
final JAZNPolicy policy = JAZNContext. getPolicy();

final Real mUser user = userMjr.getUser("Jane.Snith");

AccessControl I er.doPrivileged (new Privil egedAction() {
public Object run() {

try {

CodeSource cs = new CodeSour ce(new URL("
file:/home/task.jar"), null);
HashSet prop = new HashSet();
prop. add((Principal) user);

/'l assign permission to principals
pol i cy. grant (new G antee(prop, cs), new
Fi | ePermission("report.data", "read"));

return null;
} catch (JAZNException el) {
el. print StackTrace();
} catch (java.net. MalfornmedURLException e2) {
e2. print StackTrace();
}
return null;
}
}
);

} catch (JAZNException e) {
e.printStackTrace();

}

OracleAS JAAS Provider Standards and Samples A-7

Modifying User Permissions Code

Discussion Of Sample Code

The sample code shown in Example A-2 grants a user, Jane. Sni t h, permission to
use the sample application, AccessTest 1, as follows:

The name cs is assigned tothefi | e: / hone/ t ask. j ar, which includes the sample
application AccessTest 1:

CodeSource cs = new CodeSour ce(new URL("
file:/home/task.jar"), null);
Jane. Sni t h is the user added to the HashSet prop:
HashSet prop = new HashSet ();
prop. add((Principal) user);
Jane. Sni t h is granted permission, on the Codesour ce cs, to read the file
report. data.

policy.grant(new Grantee(prop, cs), new
Fi | ePermission("report.data", "read"));

A-8 Oracle Application Server Containers for J2EE Security Guide

B

Using the JAZN Admintool

The JAZN Admintool can manage both XML-based and LDAP-based JAAS
configurations and data from the command prompt. The JAZN Admintool is a flexible
Java console application, with functions that can be called directly from the command
line or through an interactive shell. The JAZN Admintool is located in OC4J_

HOVE/ j 2ee/ hone/ j azn.j ar.

Note: The JAZN Admintool manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

This chapter discusses how to perform common administration tasks using the JAZN
Admintool. It is divided into the following sections:

« Authentication and the JAZN Admintool (XML-based Provider Only)
« JAZN Admintool Command-Line Options

« Adding and Removing Policy Permissions (XML-based Provider Only)
« Adding Clustering Support

« Adding and Removing Login Modules (XML-based Provider Only)

« Adding and Removing Principals (XML-based Provider Only)

« Adding and Removing Realms

« Adding and Removing Roles (XML-based Provider Only)

« Adding and Removing Users (XML-based Provider Only)

« Checking Passwords (XML-based Provider Only)

« Configuration Operations

« Granting and Revoking Permissions

« Granting and Revoking Roles

« Listing Login Modules

« Listing Permissions

« Listing Permission Information

« Listing Principal Classes

« Listing Principal Class Information

Using the JAZN Admintool B-1

Authentication and the JAZN Admintool (XML-based Provider Only)

« Listing Realms

« Listing Roles

« Listing Users

« Migrating Principals from the principals.xml File
« Setting Passwords (XML-based Provider only)

» Using the JAZN Admintool Shell

Authentication and the JAZN Admintool (XML-based Provider Only)

If you are using the XML-based provider, you must authenticate yourself to the JAZN
Admintool before making administrative changes. You authenticate yourself in one of
two ways:

« Supplying the - user and - passwor d switches, as in:

java -jar jazn.jar -user nyusernane -password nmypassword -1listreal ns

Note: If you specify the - user , - passwor d, or
- cl ust er support options, you must specify them before all
other options on the command line.

« Supplying a username and password when prompted by the Admintool, as in:

java -jar jazn.jar -listreal ns
>Real nLogi nMbdul e usernane: nartha
>Real nLogi nMbdul e passwor d: mypass

Cautions:

= Because of Java limitations, the password you type to the
Admintool may be visible in the command window. Be sure to
close the command window after using the Admintool.

« The Admintool does not require authentication when used with
the LDAP-based provider; anyone who runs the toolcan
perform Admintool operations against the Oracle Internet
Directory server. This means that it is vital to secure access to
the production machine(s) on which OC4J uses the
LDAP-based provider. If you specify the - user and
- passwor d options when using the LDAP-based provider,
they are ignored.

JAZN Admintool Command-Line Options

The JAZN Admintool provides the following command options, described in greater
detail in the following sections. The tool prints error messages if the syntax or
parameters are incorrect. You can list all the options and their syntax with the - hel p
option, as in:

java -jar jazn.jar -help

B-2 Oracle Application Server Containers for J2EE Security Guide

JAZN Admintool Command-Line Options

Syntax

The overall syntax for the Admintool is

java -jar jazn.jar [-user usernane -password mypassword
-cl ust ersupport ORACLE_HOMVE] [ot heroptions]

Note: If you are using the - user, - password, or
- cl ust er support options, you must specify them before all
other options on the command line.

This section lists all the Admintool command options.

Admintool Authentication (XML-based Provider Only)

-user username -password mypassword
See "Authentication and the JAZN Admintool (XML-based Provider Only)" on
page B-2.

Clustering Operations

-clustersupport oracle_hone

See "Adding Clustering Support" on page B-5.

Configuration Operations
-getconfig

See "Configuration Operations" on page B-9.

Interactive Shell
-shel |

See "Using the JAZN Admintool Shell" on page B-15.

Login Modules

- addl ogi nnmodul e appl i cation_nanme | ogi n_nodul e_nane
control _flag [options]

-listloginnmodul es [application_name] [l ogin_modul e_cl ass]

-rent ogi nnmodul e appl i cation_name | ogi n_nodul e_nane

See "Adding and Removing Login Modules (XML-based Provider Only)" on page B-6
and "Listing Login Modules" on page B-10.

Migration Operations
-convert filenane realm

See "Migrating Principals from the principals.xml File" on page B-13.

Miscellaneous
-hel p [command name]

To display help for a specific command.

Using the JAZN Admintool B-3

JAZN Admintool Command-Line Options

Password Management (XML-based Provider only)

- checkpasswd real muser [-pw password]
-setpasswd real muser ol d_pwd new_pwd

See "Checking Passwords (XML-based Provider Only)" on page B-9 and "Setting
Passwords (XML-based Provider only)" on page B-14.

Policy Operations

-addper m perni ssi on pernission_class action target [description]

-addprncpl principlename principle_class paraneters [description]

-grantperm {real m {-user user|-role role} | principal_class
princi pal _parans} perm ssion_class [pernission_parans]

-listpernms [{realm{-user user |-role role} |
principal _class principal _parans | permi ssion_nane]

-1i st perm perni ssion

-listprncpls [principal _name]

-listprncpl principal _nane

-renper m perm ssi on

-renprncpl principal _nanme

-revokeperm {real m{-user user|-role role} | principal_class
princi pal _parans} pernission_class [pernission_parans]

See "Adding and Removing Policy Permissions (XML-based Provider Only)" on

page B-5, "Adding and Removing Principals (XML-based Provider Only)" on page B-7,
"Granting and Revoking Permissions" on page B-9, "Listing Permissions" on page B-11,
"Listing Permission Information" on page B-11, "Listing Principal Classes" on

page B-12, and"Listing Principal Class Information".

Realm Operations

-addreal mreal madm n {adm npwd adninrole | adminrole
userbase rol ebase real ntype }

-addrole realmrole

-adduser real m usernane password

-grantrole role realm{user|-role to_rol e}

-listrealms realm

-listroles [realm[user|-role role]]

-listusers [realm[-role role|-perm pernission]]

-renteal mreal m

-rentrole realmrole

-remuser real muser

-revokerol e role real m{user|-role fromrol e}

See "Adding and Removing Realms" on page B-7, "Adding and Removing Roles
(XML-based Provider Only)" on page B-8, "Adding and Removing Users (XML-based
Provider Only)" on page B-8, "Granting and Revoking Roles" on page B-10, "Listing
Realms" on page B-12, "Listing Roles" on page B-13, and "Listing Users" on page B-13.

B-4 Oracle Application Server Containers for J2EE Security Guide

Adding Clustering Support

Adding and Removing Policy Permissions (XML-based Provider Only)

- addper m per mi ssi on perni ssion_class action target [description]
- renperm per m ssi on

The - addper moption registers a permission with the JAAS Provider

Per m ssi onCl assManager . The - r enrper moption removes registration for the
specified permission class. To supply multiple words in the per mi ssi on or
descri pt i on arguments, enclose them in quotation marks ("t hr ee word
pernm ssi on”).

If you add a permission that already exists, the Admintool updates the permission’s
action and target lists.

For instance, to create permission to drop a realm, type:

java -jar jazn.jar -addperm pernl oracle.security.jazn.real m Real mPernission
dropreal m"permssion to drop a real nf

To delete the dr opr eal mpermission, type:

java -jar jazn.jar -renperm pernl

Admintool shell:

JAZN: > addperm perml oracle.security.jazn.real m Real nPernission dropreal m-null
"permission to drop a real nf
JAZN: renperm perni

Adding Clustering Support

-clustersupport oracl e_hone

Specifying this option instructs the Admintool to propagate all JAAS configuration
changes throughout a cluster. The or acl e_hone argument specifies the absolute path
name of $ORACLE_HQOVE, the Oracle home directory. You can combine

- cl ust er support with the - shel | option.

Notes: If you are using the - cl ust er support option, you must
specify it before all other options on the command line.

The - cl ust er support option is meaningful only when using the
XML-based provider.

For example:

java -jar jazn.jar -clustersupport /oracle_hone -shell

Using the JAZN Admintool B-5

Adding and Removing Login Modules (XML-based Provider Only)

Adding and Removing Login Modules (XML-based Provider Only)

You use the JAZN Admintool to add and remove login modules. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -addl ogi nnodul e application_nane | ogin_nmodul e_nane
control _flag [optionnane=val ue ...]
java -jar jazn.jar -rem ogi nnodul e application_nane | ogin_nodul e_nane

The - addl ogi nnodul e option configures a new Logi nMbdul e for the named
application.

Thecontrol _flag mustbeoneofrequired, requisite,sufficient or
opti onal , as specified in j avax. security. aut h. | ogi n. Confi gurati on. See
Table B-1.

Table B-1 LoginModule Control Flags

Flag Meaning

Requi red The Logi nMbdul e must succeed. Whether or not it succeeds,
authentication proceeds down the Logi nMbdul e list.

Requi site The Logi nMbdul e must succeed. If it succeeds, authentication
continues down the Logi nMbdul e list. If it fails, control
immediately returns to the application (authentication does not
continue down the Logi nMbdul e list).

Suf fici ent The Logi nMbdul e is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the Logi nModul e list.
If it fails, authentication continues down the Logi nModul e
list.

tional The Logi nMbdul e is not required to succeed. Whether or not
g q
it succeeds, authentication proceeds down the Logi nMbdul e
list.

If the Logi nMbdul e accepts its own options, you specify each option and its value as
an opt i onnanme=val ue pair. Each Logi nModul e has its own individual set of
options.

For instance, to add MyLogi nMbdul e to the application nyapp as a required module
with debug settot r ue, type:

java -jar jazn.jar -addl ogi nmodul e myapp MyLogi nMbdul e required debug=true

To delete MyLogi nMbdul e from nyapp, type:

java -jar jazn.jar -renioginmdul e nyapp M/Logi nModul e

Admintool shell:

JAZN > addl ogi nnodul e nyapp MyLogi nMbdul e required debug=true
JAZN: rem ogi nmodul e myapp MyLogi nWbdul e

B-6 Oracle Application Server Containers for J2EE Security Guide

Adding and Removing Realms

Adding and Removing Principals (XML-based Provider Only)
-addprncpl principlename principle_class parameters [description]

-renprncpl principal _nane

The - addpr ncpl option registers a principal with the JAAS Provider

Pri nci pal d assManager . The - r enpr ncpl option removes registration for the
specified principal class. To supply multiple words in the pri nci pal _nane and
descri pt i on arguments, enclose them in quotation marks ("t hr ee word
descri ption").

If you add a principal that already exists, the Admintool updates the principal’s
parameter list.

For example, to add the principal st af f, type:

java -jar jazn.jar -addprincpl staff oracle.security.jazn.spi.xnl.XMReal nker
"a staff user"

Admintool shell:

JAZN > addprincpl staff oracle.security.jazn.spi.xm.XMReal niser -null "a staff
user"

Adding and Removing Realms

-addreal mreal madmin {adnm npwd adminrole | adnminrole
userbase rol ebase real ntype}
-renrealmrealm

The - addr eal m option creates a realm of the specified type with the specified name,
and - r ent eal mdeletes a realm.

For example, using the XML-based Provider, the administrator mar t ha with password
nypass using role hr would add the realm enpl oyees as follows:

java -jar jazn.jar -addreal menpl oyees martha nmypass hr

Using the LDAP-based Provider, the administrator mar t ha using role hr would add
the realm enpl oyees to userbase ub and rolebase r b in an external realm as follows:

java -jar jazn.jar -addreal menpl oyees martha hr ub rb external

Note: Ther eal nt ype argument is required only when using the
LDAP-based Provider. The possible values for r eal nt ype are:

« external

« application

In either environment, the administrator would delete enpl oyees as follows:

java -jar jazn.jar -renreal menpl oyees

Using the JAZN Admintool B-7

Adding and Removing Roles (XML-based Provider Only)

Adding and Removing Roles (XML-based Provider Only)

-addrole realmrole
-remole realmrole

The - addr ol e option creates a role in the specified realm; the - r ent ol e option
deletes a role from the realm.

Note: If you are using the LDAP-based provider, - addr ol e and
- renr ol e are supported only for application realms; they are not
supported for external or identity management realms.

For example, to add the role r ol eFoo to the realm f 0o, type:

java -jar jazn.jar -addrole foo fooRole

To delete the role from the realm, type:

java -jar jazn.jar -renrole foo fooRole

Admintool shell:

JAZN: > renrol e foo fooRole

Adding and Removing Users (XML-based Provider Only)
-adduser real m usernane password

-remuser real muser

The - adduser option adds a user to a specified realm; the - r eruser option deletes a
user from the realm. For example, to add the user mar t ha to the realm f oo with the
password nypass, type:

java -jar jazn.jar -adduser foo martha mypass

Notes: «

« Toinsert a user with no password, end the command line with
the -null option, asin:
jazn -jar jazn.jar -adduser foo martha -null

« If you are using the LDAP-based provider, these commands
will not work.

To delete mar t ha from the realm, type:

java -jar jazn.jar -renuser foo martha

Admintool shell:
JAZN: > adduser foo martha nypass

B-8 Oracle Application Server Containers for J2EE Security Guide

Granting and Revoking Permissions

Checking Passwords (XML-based Provider Only)
-checkpasswd real muser [-pw password]
The - checkpasswd option indicates whether the given user requires a password for
authentication.

When you specify - checkpasswd alone, the Admintool responds " A passwor d
exists for this principal"ifthe user has a password, or "No password
exists for this principal"ifthe user has no password.

When you specify - checkpasswd together with the - pwoption, the Admintool
responds "Successful verification of user/password pair"ifthe
username and password pair are correct, or "Unsuccessful verification of
user/ password pair"if username and/or password is incorrect.

For example, to check whether the user nar t ha in realm f oo uses the password
Hel | o, type:

java -jar jazn.jar -checkpasswd foo martha -pw Hello

Admintool shell:

JAZN: > checkpasswd foo martha -pw Hello

Configuration Operations

-getconfig

The - get conf i g option displays the current configuration setting inj azn. xni .
For example, to check the configuration settings for the realm f 0o, type:

java -jar jazn.jar -getconfig

Admintool shell:
JAZN. > getconfig foo

Granting and Revoking Permissions

-grantpermreal m{-user user|-role role } | principal_paranms} pernission_class

[per mi ssi on_par ans]

-revokepermreal m{-user user|-role role} | principal_class principal _paraneters}
perni ssion_cl ass [pernission_paranet ers]

-listperns real m{-user user|-role role} | principal_class principal_paraneters}
perm ssion_cl ass [pernission_paraneters]

where pri nci pal _cl ass is the fully qualified name of a class that implements the
principal interface (such as com sun. security. aut h. NTDomai nPri nci pal) and
princi pal _parant er s is asingle String parameter.

The - gr ant per moption grants the specified permission to a user (when called with
- user) or arole (when called with - r ol €) ora principal. The - r evokeper moption
revokes the specified permission from a user or role or principal

A perm ssion_descri ptor consists of a permission’s explicit class name (for
example, or acl e. security.jazn.real m Real nPerni ssi on), its action, and its
action and target parameters (for Real mPer mi ssi on, r eal mane act i on). Note
that there may be multiple action and target parameters.

Using the JAZN Admintool B-9

Granting and Revoking Roles

For example, to grant Fi | ePer mi ssi on with target a. t xt and actions "r ead,
write"touser mart hainrealmf oo, type:

java -jar jazn.jar -grantpermfoo -user martha java.io.FilePermn ssion
a.txt read, wite

Admintool shell:

JAZN: > grantpermfoo -user martha java.io.FilePermssion a.txt read, wite

Granting and Revoking Roles

-grantrole role realm{user|-role to_rol e}
-revokerole role realm{user|-role fromrol e}

The - gr ant r ol e option grants the specified role to a user (when called with a user
name) or a role (when called with - r ol e). The - r evoker ol e option revokes the
specified role from a user or role.

Note: If you are using the LDAP-based provider, - grantrol e
and - r evoker ol e are supported only for application realms; they
are not supported for external or identity management realms.

For example, to grant the role edi t or to the user mar t ha in realm f oo, type:

java -jar jazn.jar -grantrole editor foo martha

Admintool shell:

JAZN: > grantrol e editor foo nartha

Listing Login Modules
-listlogi nmodul es [application_nanme] [l ogi n_nodul e_cl ass]
You use the JAZN Admintool to list login modules. For basic information on running
the JAZN Admintool, see "Admintool Overview" on page 4-3.
java -jar jazn.jar -listloginmodul es [application_name [|ogin_nmodul e_class]]
The-1i stl ogi nnodul es option displays all Logi nModul es either in the specified
appl i cation_nane,or ifnoappli cation_nane is specified, in all applications.

Specifying | ogi n_nodul e_cl ass, after appl i cati on_nane displays information
on only the specified class within the application.

For example, to display all Logi nModul es for the application myapp, type:

java -jar jazn.jar -listlogi nnmodul es nyapp

Admintool shell:
JAZN > |istlogi nmodul es nyapp

B-10 Oracle Application Server Containers for J2EE Security Guide

Listing Permission Information

Listing Permissions

-listpermsreal m{-user user|-role role} | principal_class
princi pal _paraneters} permnission_class [pernission_paraneters]

The -1 i st per ns option displays all permissions that match the list criteria. This
option lists the following:

= All permissions registered with the JAAS Provider Per mi ssi onCl assManager
« Permissions that are granted to a role when the - r ol e option is used.

« Permissions that are grated toa pri ni cpal .

For example, to display all permissions for the user mar t ha in realm f 0o, type:

java -jar jazn.jar -listperns foo -user nartha

Admintool shell:

JAZN. > |istperns foo -user martha

Listing Permission Information
-1istperm perm ssion
The- 1 i st per moption displays detailed information about the specified permission,
including the permission’s display name, class, description, actions, and targets.
For example, to list all information about the permission per i, type:

java -jar jazn.jar -listperm perni

Typical output might look like

Nane:
per i

C ass:
oracl e.security.jazn.real mReal nPernission

Descri pti on:
perm ssion to drop realm

Targets:
Acti ons:

dropreal m <no description avail abl e>
Admintool shell:

JAZN: > |i st perm per il

Using the JAZN Admintool B-11

Listing Principal Classes

Listing Principal Classes

-listprncpls principal _name

The-1i st prncpl s option lists all principal classes registered with the
Pri nci pal Cl assManager. If the pri nci pal _nane argument is present, only the
named principal class is listed.

For example:

java -jar jazn.jar -listprncpls
Admintool shell:

JAZN: > listprncpls

Listing Principal Class Information

-listprncpl principal _nane

The-li st prncpl option displays detailed information about the specified principal,
including the display name, class, description, and actions.
For example, to list all information about the principal mar t ha, type:

java -jar jazn.jar -listprncpl martha

In our example, the output would be:

Nare:

mart ha

C ass:

oracl e. security.jazn.spi.xn . XMReal mser
Descri pti on:

a staff user

Par anet ers:

Admintool shell:
JAZN: > listprncpl martha

Listing Realms

-listrealns [realn

The-1i streal ns option displays all realms in the current JAAS environment; if an
argument is specified, it lists only the specified realm.

For example, to list all realms, type:

java -jar jazn.jar -listrealns

Admintool shell:
JAZN > listreal ms

B-12 Oracle Application Server Containers for J2EE Security Guide

Migrating Principals from the principals.xml File

Listing Roles

-listroles [realm[user|-role role]]

The - 1i strol es option displays a list of roles that match the list criteria. This option
lists:

« Allrolesin all realms, when called without any parameters
« All roles granted to a user, when called with a realm name and user name

« Roles that are granted the specified r ol e, when called with a realm name and the
option-rol e

For example, to list all roles in realm f 00, type:

java -jar jazn.jar -listroles foo

Admintool shell:

JAZN. > listroles foo

Listing Users

-listusers [realm[-role role|-perm permssion]]

The -1 i st user s option displays a list of users that match the list criteria. This option
lists:

« All usersin all realms, when called without any parameters
« All users in arealm, when called with a realm name

« Users that are granted a certain role or permission, when called with a realm name
and the option-rol e or - perm

For example, to list all users in realm f 00, type:

java -jar jazn.jar -listusers foo

Admintool shell:

JAZN: > |istusers foo

For example, to list all users in realm f 00 using permission bar , type:

java -jar jazn.jar -listusers foo -perm bar
The Admintool lists users one to a line, as in:

scott
adm n
anonynous

Migrating Principals from the principals.xml File

You use the JAZN Admintool to migrate your data out of the pri nci pal s. xn file.
For basic information on running the JAZN Admintool, see "Admintool Overview" on
page 4-3.

-convert filenane realm

The - convert option migrates the pri nci pal s. xm file into the specified realm of
the current OracleAS JAAS Provider. The f i | ename argument specifies the path

Using the JAZN Admintool B-13

Setting Passwords (XML-based Provider only)

name of the input file (typically $ORACLE_
HOVE/ j 2eel/ hone/ confi g/ pri nci pal s. xml).

The migration converts pri nci pal s. xm users to JAASusers and

pri nci pal s. xm groups to JAAS roles. All permissions that were previously
granted to apri nci pal s. xm group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

An error (either j avax. nam ng. Aut henti cati onException: I nvalid
user name/ passwor d or j avax. nani ng. Nam ngExcepti on: Lookup Error)is
returned if the input file contains errors.

Before you convert pri nci pal s. xnl , you must make sure that you have an
administrator user that is authorized to manage realms. To do this:

1. Activate the administrative user in pri nci pal s. xm , which is deactivated by
default. Be sure to create a password for the administrator.

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in pri nci pal s. xnl . This is necessary
because the convert command does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

2. Create the realm pri nci pal s. comwith a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addreal m princi pal s.com ul wel cone rl

3. Migrate princi pal s. xm tothe princi pal s. comrealm, as in

java -jar jazn.jar -convert config/principals.xm principals.com
4, Change the <def aul t-real n»to princi pal s. com see "Setting Persistence
Mode" on page 8-4.

Stop OC4J and restart it.

o

Setting Passwords (XML-based Provider only)

-setpasswd real muser ol d_pwd new_pwd

The - set passwd option enables administrators to reset the password of a user given
the old password.

For example, to change the user mar t ha in realm f oo from password mypass to
password a2d3vn, type:

java -jar jazn.jar -setpasswd foo martha nmypass a2d3vn

Admintool shell:
JAZN: > set passwd foo martha nypass a2d3vn

B-14 Oracle Application Server Containers for J2EE Security Guide

Using the JAZN Admintool Shell

Using the JAZN Admintool Shell

-shel |

The - shel | option starts a JAZN Admintool shell. The JAZN Admintool shell
provides interactive administration of JAAS principals and policies through a
UNIX-derived interface.

java -jar jazn.jar -user martha -password mypass -shell
JAZN: >

The shell responds with the JAZN: > prompt. To leave the interface shell, type exi t .

Note: Multi-word arguments must be enclosed in quotes. For
example, java -jar jazn.jar -user 'O acle DBA

If you are using the XML-based provider you must supply a username and password
to the Admintool; for details see "Authentication and the JAZN Admintool
(XML-based Provider Only)" on page B-2. If you are using the LDAP-based Provider,
you do not need to specify the - user and - passwor d arguments.

Navigating the JAZN Admintool Shell

The Admintool shell supports UNIX-like commands for navigating within a JAZN
structure. For a complete discussion of the Admintool directory structure, see
"Admintool Shell Directory Structure" on page B-17. All the Admintool commands
support relative and absolute paths.

The Admintool navigation commands are:

add: Creating Provider Data

add directory_nane [other_paraneter]
mkdi r directory_name [other_paraneter]
mk directory_name [other_paraneter]

The add, nkdi r, and nk commands are synonyms: they create a subdirectory or node
in the current directory. For example, if the current directory is the root, then nk
creates a realm. If the current directory is/ r eal mf user s, then nk creates a user. The
effect of add depends upon the current directory. Some commands require additional
parameters in addition to the name.

cd: Navigating Provider Data
cd path

The cd command enables users to navigate the directory tree. Relative and absolute
path names are supported. To exit a directory, type:

cd ..

Typing cd / returns the user to the root node. An error message is displayed if the
specified directory does not exist.

clear: Clearing the Screen
cl ear

Using the JAZN Admintool B-15

Using the JAZN Admintool Shell

The cl ear command clears the terminal screen by displaying 80 blank lines.

exit: Exiting the JAZN Shell

exit

The exi t command exits the JAZN shell.

help: Listing JAZN Admintool Shell Commands
hel p

The hel p command displays a list of all valid commands.

Is: Listing Data
I's [path]

The | s command lists the contents of the current directory or node. For example, if the
current directory is the root, then | s lists all realms. If the current directory is

/ real m user s, then| s lists all users in the realm. The results of the listing depends
on the current directory. The | s command can operate with the * wildcard.

man: Viewing JAZN Admintool Man Pages

man conmand_option
man shel | _comand

The man command displays detailed usage information for the specified shell
command or JAZN Admintool command option. Where information presented by the
man page and this document conflict, this document contains the correct usage for the
command.

pwd: Displaying The Working Directory
pwd

The pwd command displays the current location of the user in the directory tree.
Undefined values are left blank in this listing.

rm: Removing Provider Data
rmdirectory_nane

The r mcommand removes the directory or node in the current directory. For example,
if the current directory is the root, then r mremoves the specified realm. If the current
directory is/ r eal m user s, it removes the specified user. The effect of r mdepends on
the current directory. An error message is displayed if the specified directory does not
exist.

The r mcommand accepts the * wildcard.

B-16 Oracle Application Server Containers for J2EE Security Guide

Using the JAZN Admintool Shell

set: Updating Values
set name=val ue

The set command updates the value of the specified name. For example, use this
command to update the login module class, or a login module control flag, or a login
module class option, depending on the working directory.

Admintool Shell Directory Structure

The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN shell
is an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure B-1 illustrates the node structure.

Figure B-1 JAZN Shell Directory Structure

roaod

loginmodules
applications
loginmodules
options

roes ” usars permissions
pENmESons

:

Qo= permission user ke pemission

In this structure, the user and r ol e nodes are linked together. This means that the
rol es link under user is the same link as ther ol es link under r eal m In Unix
terms, the r ol e at numeral 1 in the diagram is a symbolic link tor ol e at numeral 2 in
the diagram.

Note: In this release, the policy directory is always empty.

Using the JAZN Admintool B-17

Using the JAZN Admintool Shell

Figure B-2 shows nodes of the abc Real mcreated by the j azn- dat a. xni file in
"Sample jazn-data.xml Code" on page A-1.

Figure B-2 Illustrated Shell Directory Structure

oot

loginmodules

Admintool

RealmLoginModule

pohn_singh

debug

permissions

fava, o File Pemisson

B-18 Oracle Application Server Containers for J2EE Security Guide

Symbols

<as-context>element, 15-5
<confidentiality> element, 15-5
<default-method-access> element, 12-9
<establish-trust-in-client> element, 15-5
<establish-trust-in-target> element, 15-5
<group> element, 4-13
<groups> element, 4-13
<integrity> element, 15-5
<jazn> element
and <password-manager> element, 14-3
<jazn-loginconfig>, 10-7
<jazn-policy>, 10-7
<jazn-web-app> element, 4-9, 4-10, 18-3
auth-method, 4-9
<login-module> entity

options, 4-8
<method> element
defined, 12-6

<method-permission> element, 12-3, 12-4, 12-5, 12-6
<password-manager> element, 14-3
<principals> element, 4-13
<role-link> element, 12-3, 12-4,12-5
<role-name> element, 12-3,12-4
<run-as>element, 12-7

<sas-context> element, 15-6
<security-identity> element, 12-7
<security-role>element, 12-3,12-4
<security-role-mapping> element, 12-8
<security-role-ref> element, 12-3,12-4
<transport-config> element, 15-5
<unchecked/> element, 12-7
<use-caller-identity/> element, 12-7
<user> element, 4-13

<users>element, 4-13

A

access control lists
definition, 2-8
AccessController, 1-2
AccessTestl, A-8
actions
definition, 1-2
add command, B-15

Index

adding and removing realms, 10-4, B-5, B-6
adding and removing roles, B-8
adding and removing users, B-8
-addperm option to JAZN Admintool, 10-4, B-5, B-6
-addprncpl option to JAZN Admintool, B-7
-addrealm option to JAZN Admintool, B-7
-addrole option to JAZN Admintool, B-8
-adduser option to JAZN Admintool, B-8
administration permission

granting, 6-2
AdminPermission class

definition, 1-3
Apache Listener. See Oracle HTTP Server.
applications

in Java 2 application environments, 3-1

with JAAS, 2-4
authentication, 1-4, 4-6

basic, 3-3

environments, 3-3

form-based, 3-4

J2EE, 3-6

using login modules, 2-3

using OracleAS Single Sign-On, 2-5

using RealmLoginModule class, 2-5

with Basic Authentication, 3-6

with OracleAS Single Sign-on, 2-5

with SSO, 3-4
authentication methods, 4-9
auth-method, 4-9
authorization, 1-4

J2EE, 3-7

B

bootstrap jazn.xml, 5-1

C
cache properties, 5-5
caching, 5-3

disabling, 5-4
caching properties, 5-3, 5-4
capability model

definition, 2-8
certificate authorities, 11-1
certificates (SSL), 11-1

Index-1

checking

passwords, B-9
-checkpasswd option to JAZN Admintool, B-9
cipher suites

supported by Oracle HTTPS, 13-5, 13-6
class names

definition, 1-2
clear command, B-16
client.sendpassword property, 15-7
codesource in policy files, 2-4
Common Secure Interoperability version 2 see CSlv2
configuration data

retrieving from jazn.xml file, B-9
configuring

external LDAP providers, 9-1to9-5

LoginModules, 10-6

XML-based provider, 8-1to8-5
connection properties, 5-1,5-2
connector-factory element, 10-10
createUser method, 2-5

creating
groups, 8-2
realms, 8-2
users, 8-1,8-2

credentials, 1-3,14-2

cryptographic keys, 1-3

CSIv2
and EJBs, 15-3
internal-settings.xml, 15-3
introduction, 15-1
properties in orion-ejb-jar.xml, 15-5
security properties, 15-5

custom Loginmodules
troubleshooting, 18-2

D
DAS, 2-7
debugging

general SSL debugging, 11-10
default realm, 8-4
properties, 5-7
Delegated Administrative Service, see DAS

deleting
realms, 8-3
users, 8-2

deploying

LoginModule, 10-5
deployment descriptors
J2EE Connector, 16-1
security, 12-3,12-4,12-8
DER, 13-3
digital certificates, 1-5
disabling caching, 5-4
Distinguished Encoding Rules, 13-3
doAsPrivileged(), 4-10
doasprivileged-mode, 4-10
DTDs
internal-settings.xml, 15-3
<ior-security-config> element, 15-6

Index-2

E

EIS connections
JCA, 17-1t017-13
EJB
CSlv2, 15-3
interoperability, 15-1
security, 12-2
server security properties, 15-2
ejb_sec.properties, 15-7
environment variables
and JAZN Admintool, 18-2
LDAP, 7-3
exit command, B-16

G

GenericCredential interface
and Kerberos, 16-5
getAttribute("java.security.cert.X509certificate"),
0, 3-7
getAuthType, 3-7
-getconfig option to JAZN Admintool, B-9
getGroup method, 2-5
getRemoteUser, 3-7
getUser method, 2-5
getUserPrincipal, 3-7
granting
administration permission, 6-2
permissions, 6-2
RMI permission, 6-2
roles, 8-3
granting and revoking permissions, 6-2, B-9
-grantperm option to JAZN Admintool, 6-2, B-9
groups
creating, 8-2
creating in LDAP, 7-1

H

2-1

help command, B-16
HTTPClient.HttpUrlConnection, 13-7
HTTPConnection, 13-3
HttpSession, 5-3

impliesAll attribute, 12-9
instance properties
jazn.xml, 5-1
integrating
custom LoginModule, 10-3
internal-settings.xml file, 15-2
CSIv2 entities, 15-3
DTD, 15-3
<sep-property> element, 15-2, 15-3
interoperability, 15-1
invoking JAZN Admintool, B-2
<ior-security-config> element
DTD, 15-6
isCallerInRole method, 12-4

J

J2EE Connector, 16-1
deployment descriptors, 16-1
JAAS
login modules, 2-3
JAAS Provider, 2-1
and SSL/Oracle Internet Directory, 5-6
common configuration tasks
configuring a Java 2 Policy File, 4-13
integration with Basic authentication, 3-5
integration with SSL-enabled applications, 3-5
integration with SSO-enabled applications, 3-4
locations for jazn.xml, 4-2
overview, 2-1
permission classes, 1-3
security role, 3-8
JAAS. See Java Authentication and Authorization
Service (JAAS)
jaas.config file, 4-7
Java 2 application environments, 3-1
Java 2 Platform, Enterprise Edition (J2EE), 1-1
application development in, 3-1
integration with JAZNUserManager, 3-3
Oracle component responsibilities in basic
authentication environments, 3-6
Oracle component responsibilities in SSO-enabled
environments, 3-4
Java 2 Platform, Standard Edition (J2SE)
application development in, 3-1
creating applications using the Java 2 Security
Model, 1-1
Java 2 policy file
configuring for JAAS Provider, 4-13
Java 2 Security Model, 2-2
definition, 1-1
using access control capability model, 2-8
using with J2EE applications, 1-1
using with J2SE applications, 1-1
Java Authentication and Authorization Service (JAAS)
applications, 2-4

definition, 2-2
policy files
example, 2-4
principals, 1-3
realms, 2-3
roles, 2-3

subjects, 1-3
Java Key Store (JKS), 15-2
Java Platform, Enterprise Edition (J2EE)

security role, 3-7
java2.policy file

configuring for JAAS Provider, 4-13
java.io.FilePermission, A-6
java.net.URL framework, 13-7
java.security.Principal, 2-3,2-5
java.security.Principal interface

using with principals, 1-3

using with roles and groups, 2-3
javax.net.ssl.KeyStore, 13-7
javax.net.ssl.KeyStorePassword, 13-8

javax.servlet.HttpServletRequest, 3-7
JAZN Admintool
adding and removing permissions, 10-4, B-5, B-6
adding and removing principals, B-7
adding realms, B-7
adding roles, B-8
adding users, B-8
and environment variables, 18-2
checking passwords, B-9
command options, B-2
granting and revoking permissions, 6-2, B-9
granting roles, B-10
invoking, B-2
listing permissions, B-11
listing principals, B-12
listing realms, B-12
listing roles, B-13
listing users, B-13
migrating principals, 8-5, B-13
navigating shell, B-15
retrieving configuration data, B-9
revoking roles, B-10
setting passwords, B-14
shell commands, B-15to B-16
starting shell, B-15
JAZN Admintool shell
starting, 8-5, B-13
JAZN Admintool shell commands

add, B-15
clear, B-16
exit, B-16
help, B-16
man, B-16
mk, B-15
pwd, B-16
rm, B-16
set, B-17

jazn-data.xml

and LoginModule, 9-1, 10-7

deploying LoginModules, 10-10
jazn-data.xml file, 2-4, 2-6

and Admintool, 4-2,4-3
JAZNPermission class

definition, 1-3
JAZNUserManager, 2-6, 3-7

definition, 2-5, 3-3

integration in J2EE environments, 3-3
jazn.xml

bootstrap file, definition, 5-1

file location, 4-2

instance properties, 5-1

retrieving configuration data, B-9
JCA

component-managed vs. container-managed

sign-on, 17-3

EIS connections, 17-1to 17-13

security contract, 17-1
JNDI connection pool, 5-2
VM, 4-5

Index-3

K

Kerberos, 1-4
and GenericCredential interface, 16-5
keys (SSL), 11-1
keystore
definition, 15-2
keystores, 11-1

L

LD_LIBRARY_PATH
variable setting, 2-9, 7-3, 18-2
LDAP, 2-6
caching properties, 5-3,5-4
configuring external providers, 9-1to 9-5
connection properties, 5-1, 5-2
creating users and groups, 7-1
environment variables, 7-3
Oracle Internet Directory used as provider
type, 2-2
prerequisites, 7-1
SSL properties, 5-6
LDAP default realm properties, 5-7
LDAP provider
Microsoft Active Directory, 9-5
Sun Java System Application Server, 9-4
third-party, 9-2
LDAP-based provider type, 2-6, 2-7
Idap.password property name, 5-6
Idap.protocol, 5-6
Idap.user property name, 5-6

Lightweight Directory Access Protocol. See LDAP.

listing

permission information, B-11

permissions, B-11

principal class information, B-12

principal classes, B-12

realms, B-12

roles, B-13

users, B-13
listing realms, B-12
-listperm option to JAZN Admintool, B-11
-listprncpl option to JAZN Admintool, B-12
-listprnepls option to JAZN Admintool, B-12
-listrealms option to JAZN Admintool, B-12
-listroles option to JAZN Admintool, B-13
-listusers option to JAZN Admintool, B-13
login-config element, 4-9
LoginContext class, 2-3

authenticating subjects, 2-3
login-module element

and third-party LDAP provider, 9-2
LoginModules, 10-1to 10-11

configuring, 10-6

configuring with different applications, 2-3

definition, 2-3

deploying, 10-10

integrating, 10-10

integration with OC4J, 10-3

packaging and deployment, 10-5

Index-4

troubleshooting custom, 18-2

M

man command, B-16
mapping

groups to EIS users, 17-13

security roles, 6-1
Microsoft Active Directory

as LDAP provider, 9-5
-migrate option to JAZN Admintool, 8-5, B-13
migrating

principals, 8-5, B-13
mk command, B-15
modes

persistence, 8-4

N
nameservice.useSSL property, 15-7
navigating
JAZN Admintool shell, B-15
@)

obfuscation, 14-2

LDAP password, 5-6
oc4j.iiop.ciphersuites property, 15-7
ocdj.iiop.enable.clientauth property, 15-7
ocdj.iiop.keyStoreLoc property, 15-7
ocdj.iiop.keyStorePass property, 15-7
oc4j.iiop.trustedServers property, 15-7
oc4j.iiop.trustStoreLoc property, 15-7
océj.iiop.trustStorePass property, 15-7
oc4j-ra.xml, 10-10
OPMN, 15-2
Oracle HTTPS, 13-1to13-11

default system properties, 13-7

example, 13-8

feature overview, 13-4

supported cipher suites, 13-5, 13-6
Oracle Internet Directory, 1-4, 2-6, 2-7
Oracle Process Management Notification

service, 15-2

OracleAS Containers for J2EE (OC4J)

interoperability, 15-1

mapping security roles to JAAS Provider users and

roles, 3-8
OracleAS Single Sign-On, 2-5
oracle.security.jazn.realm package
use of, 2-5
OracleSSLCredential, 13-3
Oracle.ssl.defaultCipherSuites, 13-8
orion-application.xml, 4-10, 18-3
and LoginModule, 10-8
deploying LoginModules, 10-11

mapping security roles to JAAS Provider users and

roles, 3-8
passwords not obfuscated, 14-2
specifying UserManager, 4-6 to 4-15
orion-gjb-jar file

<establish-trust-in-target> element, 15-5
orion-gjb.jar file

<sas-context> element, 15-6

<transport-config> element, 15-5
orion-gjb-jar.xml, 15-5

<as-context> element, 15-5

<establish-trust-in-client> element, 15-5

<integrity> element, 15-5

security properties, 15-5
orion-gjb-jar.xml file

<confidentiality> element, 15-5
orion-web.xml, 4-10, 18-3

P

partitioning, 2-4
password indirection
definition, 14-1
password obfuscation
definition, 14-1
passwords, 14-2
checking, B-9
checking in JAZN Admintool, B-9

not obfuscated in orion-application.xml, 14-2

obfuscating, 14-2
setting, 6-2, B-9
setting in JAZN Admintool, B-14
permissions, 2-8, 12-2
actions, 1-2
adding and removing in JAZN Admintool,
B-5, B-6
class definitions, 1-3
class name, 1-2
definition, 2-4
granting, 6-2
granting and revoking in JAZN Admintool,
B-9
granting and revoking with the JAZN
Admintool, 6-2,B-9
in Java 2 Security Model, 1-2
JAAS Provider, 1-3
Java permission instance contents, 1-2
listing in JAZN Admintool, B-11
listing with the JAZN Admintool, B-11
revoking, 6-2,8-3
target, 1-2
persistence mode, 8-4, 14-2
Pluggable Authentication Module (PAM), 2-2

policy

definition, 2-4
policy cache, 5-3
policy files

codesource, 2-4
example, 2-4
subject, 2-4
prerequisites
LDAP, 7-1
principal mapping classes, 17-13
principals, 1-3
adding and removing in JAZN Admintool,

10-4,

6-2,

B-7

definition, 1-3
listing class information with the JAZN
Admintool, B-12
listing in JAZN Admintool, B-12
migrating, 8-5
migrating in JAZN Admintool, 8-5, B-13
with JAAS, 1-3
principals.xml file, 2-6, 2-7, 4-13, 8-5
converting from, 8-5, B-13
examples, 4-15
private keys (SSL), 11-1
privileges, 2-9
properties
connection, 5-1
JNDI connection pool, 5-2
LDAP caching, 5-3,5-4
LDAP default realm, 5-7
LDAP SSL, 5-6
property names
Idap.password, 5-6
Idap.user, 5-6
PropertyPermission, 12-2
protection domain
in Java 2 Security Model, 1-2
provider types, 2-2
in J2SE environments, 3-1
retrieving permissions from, 2-8
public key certificates, 1-3
public keys (SSL), 11-1
pwd command, B-16

R

RBAC (role-based access control), 2-8
realm cache, 5-3
RealmLoginModule class, 2-5, 3-6, 4-7
in J2SE environments, 3-1
RealmPermission class
definition, 1-3
RealmPrincipal interface, 2-5
realms
adding and removing with the JAZN
Admintool, 10-4, B-5, B-6
adding in JAZN Admintool, B-7

creating, 8-2
default, 8-4
definition, 2-3,2-5
deleting, 8-3

JAAS Provider support, 2-5

listing in JAZN Admintool, B-12

listing with the JAZN Admintool, B-12

with JAAS, 2-3
-remperm option to JAZN Admintool, 10-4, B-5, B-6
-remprncpl option to JAZN Admintool, B-7
-remrealm option to JAZN Admintool, B-7
-remrole option to JAZN Admintool, B-8
-remuser option to JAZN Admintool, B-8
retrieving authentication information, 3-7
-revokeperm option to JAZN Admintool, 6-2, B-9
revoking

Index-5

permissions, 6-2, 8-3
roles, 8-4
roles in JAZN Admintool, B-10
rm command, B-16
RMI permission
granting, 6-2
RMI/ZIIOP, 15-1
role activation
definition, 2-9
role hierarchy
definition, 2-8
RoleAdminPermission class
definition, 1-3
role-based access control (RBAC), 2-3
definition, 2-8
role activation, 2-9
role hierarchy, 2-8
roles, 1-4
adding and removing with the JAZN
Admintool, B-8
adding in JAZN Admintool, B-8
definition, 2-8
granting, 8-3
granting in JAZN Admintool, B-10
listing in JAZN Admintool, B-13
listing with the JAZN Admintool, B-13
mapping, 6-1
revoking, 8-4
revoking in JAZN Admintool, B-10
using the J2EE security roles, 3-7
with JAAS, 2-3
run-as element, 2-9
runAs security identity, 12-7
runas-mode, 4-10
RuntimePermission, 12-2

S

sample application
AccessTestl, A-8
secure socket layer (SSL)
integration with Basic authentication, 3-5
integration with JAAS Provider, 3-5
Secure Sockets Layer. See SSL
security, 12-2
keys and certificates, 11-1
OC4J and OHS configuration, 11-6
permissions, 12-2
requesting client authentication, 11-8, 13-2
SSL common problems and solutions, 11-10
SSL debugging, 11-10
using certificates with OC4J and OHS, 11-3
security role
using in the web.xml file, 3-7
security roles
mapping, 6-1
SecurityManager, 1-2
SecurityManager.checkPermission, 3-7
selecting
UserManager, 6-1

Index-6

<sep-property> element, 15-2, 15-3
Servlet.service, 3-7
session cache, 5-3
setcommand, B-17
-setpasswd option to JAZN Admintool, B-14
setting a password, 6-2, B-9
-shell option to JAZN Admintool, B-15
signon

component-managed vs.

container-managed, 17-3

single sign-on, 3-3, 3-6

integration with JAAS Provider, 3-4
SocketPermission, 12-2
SSL, 1-5,3-3

authentication method, 3-3

LDAP properties, 5-6

use with Oracle Internet Directory and JAAS

Provider, 5-6
starting
JAZN Admintool, B-2
subject

definition, 4-10
Subject.doAs method, 2-9, 3-7
associating a subject with
AccessControlContext, 1-3
invoking, 2-3
subject.doAs(), 4-10, 18-3
subjects, 1-3
definition, 1-3
with JAAS, 1-3
Sun Java System Application Server
as LDAP provider, 9-4

T

target names
definition, 1-2
<transport-config> element, 15-5
troubleshooting, 18-1to 18-4
custom LoginModules, 18-2
trustpoint, 1-5
truststore
definition, 15-2

U

user communities, 2-3
user manager

definition, 1-4
user repository
definition, 1-4

jazn-data.xml, 2-6

Oracle Internet Directory, 2-6, 2-7

principals.xml, 2-6,2-7
UserManager

selecting, 6-1

specifying, 4-6t04-15
users

adding and removing with the JAZN

Admintool, B-8

adding in JAZN Admintool, B-8
creating, 8-1,8-2

creating in LDAP, 7-1

deleting, 8-2

listing in JAZN Admintool, B-13
listing with the JAZN Admintool, B-13

Vv

variables
LD_LIBRARY_PATH, 2-9,7-3,18-2

W

web.xml, 4-9
using the J2EE security role, 3-7

X

XML-based provider, 2-2,2-6
configuring, 8-1to08-5

XML-based provider type, 2-6

XMLUserManager class, 2-6, 2-7

Index-7

Index-8

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Documentation Accessibility
	Intended Audience
	Organization
	Related Documents
	Conventions

	1 Concepts
	The Java 2 Security Model
	Permissions
	Protection Domains
	OracleAS JAAS Provider Permission Classes

	Principals
	Subjects
	Authentication and Authorization
	Secure Communications
	Secure Sockets Layer
	Certificates
	HTTPS
	Identity Propagation

	Developing Secure J2EE Applications

	2 Overview of JAAS in Oracle Application Server
	The OracleAS JAAS Provider
	Provider Types

	What Is JAAS?
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions
	XML-Based Example

	JAAS Framework Features
	User Managers
	Using JAZNUserManager
	Using XMLUserManager

	Capability Model of Access Control
	Role-Based Access Control (RBAC)
	Role Hierarchy
	Role Activation

	Changes Since Release 9.0.4

	3 Understanding OC4J Security
	Introduction
	Security Considerations During Development and Deployment
	Development
	Deployment

	OC4J and the OracleAS JAAS Provider
	OC4J Integration
	JAZNUserManager
	Authentication Environments
	Enabling OracleAS Single Sign-On in J2EE Applications
	OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario

	Integrating the OracleAS JAAS Provider with SSL-Enabled Applications
	Integrating the OracleAS JAAS Provider with Basic Authentication
	Basic Authentication J2EE Environments: Typical Scenario

	Authentication in the J2EE Environment
	Running with an Authenticated Identity
	Retrieving Authentication Information

	Authorization in the J2EE Environment
	Security Role Mapping
	J2EE Security Roles
	Deployment Roles and Users
	OC4J Group Mapping to J2EE Security Roles

	4 Overall Security Configuration
	Choosing the XML-Based or LDAP-Based Provider
	Locating jazn.xml, jazn-data.xml, and the <jazn> element
	Locating jazn.xml
	Locating jazn-data.xml
	Locating the <jazn> element

	Admintool Overview
	Admintool Prerequisites
	Authenticating Yourself
	Adding Clustering Support
	Specifying an Admintool LoginModule in jazn-data.xml

	Specifying An Alternate Policy Provider (Optional)
	Specifying Bootstrap OracleAS JAAS Provider Settings
	Turning On Debug Logging
	Specifying UserManagers
	Specifying A UserManager
	Specifying a UserManager In orion-application.xml
	Advanced Configuration

	Customizing RealmLoginModule
	Enabling RealmLoginModule Using A Text Editor

	Specifying Authentication (auth-method)
	Specifying auth-method in web.xml
	Specifying auth-method in orion-application.xml

	Configuring J2EE Authorization
	Servlets, runas-mode, and doasprivileged-mode
	Mapping Logical Roles to Security Roles

	Removing Realm Names From Authentication Principals
	Configuring Third-Party LDAP Providers
	Permitting EJB RMI Client Access
	Creating a Java 2 Policy File
	Using the <principals> element and principals.xml

	5 Configuring the OC4J Instance
	The Bootstrap jazn.xml File
	Specifying LDAP Connection Properties
	Specifying LDAP JNDI Connection Pool Size
	Configuring LDAP Caching
	Changing Session Cache Details
	Disabling LDAP Caching
	LDAP Cache Configuration

	Configuring LDAP SSL Properties
	Choosing SSL Authentication

	Configuring LDAP Default Realm

	6 Security Considerations During Application Deployment
	Selecting a UserManager
	Mapping Security Roles
	Granting Permissions
	Granting RMI Permission Or Administration Permission
	Granting and Revoking All Other Permissions

	Creating Users And Groups

	7 Configuring the LDAP-Based Provider
	Preparing To Use LDAP
	Creating Administrative Users and Groups
	LDAP-Based Provider Environment Variables

	Creating LDAP Users and Groups

	8 Configuring the XML-Based Provider
	Creating Users
	Creating Roles (Groups)
	Deleting Users
	Deleting Roles (Groups)
	Creating Realms
	Deleting Realms
	Granting Permissions
	Revoking Permissions
	Granting Roles (Groups)
	Revoking Roles (Groups)
	Setting Persistence Mode
	Configuring XML Default Realm
	Migrating Principals from the principals.xml File

	9 Configuring External LDAP Providers
	Prerequisites
	Creating a <login-module> Element in jazn-data.xml
	An Example LDIF Description
	Configuring Sun Java System Application Server as LDAP Provider
	SunOne Example

	Configuring Microsoft Active Directory as LDAP Provider

	10 Custom LoginModules
	Overview of JAAS Login Modules
	Prerequisites
	Configuring Dynamic Role Mapping

	Integrating Custom JAAS LoginModules
	Developing a LoginModule
	Subject-based Authorization
	J2EE Security Authorization
	Callback Support
	Debugging Tips
	Debug Logging
	Debugging LoginModules

	Adding and Removing Login Modules
	Listing Login Modules
	Packaging and Deploying
	Deploying as Standard Extensions or Optional Packages
	Deploying Within the J2EE Application
	Using the OC4J Classloading Mechanism

	Configuring Your Application
	jazn-data.xml
	<jazn-loginconfig>
	<jazn-policy>

	web.xml or ejb-jar.xml
	orion-application.xml
	<jazn>
	<security-role-mapping>
	<library>

	oc4j-ra.xml (J2EE Connector Architecture only)

	Simple Login Module J2EE Integration
	Development
	Packaging
	Deployment

	Custom LoginModule Example

	11 Configuring OC4J and SSL
	Overview of SSL Keys and Certificates
	Using Keys and Certificates with OC4J and Oracle HTTP Server
	Enabling SSL in OC4J
	Configuring Oracle HTTP Server for SSL

	Requesting Client Authentication
	Resolving Common SSL Problems
	Common SSL Errors and Solutions
	General SSL Debugging

	12 Configuring EJB Security
	EJB JNDI Security Properties
	JNDI Properties in jndi.properties
	JNDI Properties Within Implementation

	Configuring Security
	Granting Permissions in Browser
	Authenticating and Authorizing EJB Applications
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying Unchecked Security for EJB Methods
	Specifying the runAs Security Identity
	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Credentials in JNDI Properties
	Credentials in the InitialContext

	13 Oracle HTTPS for Client Connections
	Introduction
	Requesting Client Authentication
	Oracle HTTPS And Clients
	HTTPConnection Class
	OracleSSLCredential Class (OracleSSL Only)

	Overview of Oracle HTTPS Features
	SSL Cipher Suites
	Choosing a Cipher Suite
	SSL Cipher Suites Supported by OracleSSL
	SSL Cipher Suites Supported by JSSE

	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Potential Security Risk with Storing Passwords in System Properties

	Oracle.ssl.defaultCipherSuites (OracleSSL only)

	Oracle HTTPS Example
	Initializing SSL Credentials In OracleSSL
	Verifying Connection Information
	Transferring Data Using HTTPS

	Using HTTPClient with JSSE
	Configuring HTTPClient To Use JSSE

	14 Password Management
	Introduction
	Password Obfuscation In jazn-data.xml and jazn.xml
	Hand-editing jazn-data.xml

	Creating An Indirect Password
	Indirect Password Examples

	Specifying a UserManager In application.xml

	15 Configuring CSIv2
	Introduction to CSIv2 Security Properties
	EJB Server Security Properties in internal-settings.xml
	CSIv2 Security Properties in internal-settings.xml
	CSIv2 Security Properties in ejb_sec.properties
	Trust Relationships

	CSIv2 Security Properties in orion-ejb-jar.xml
	The <transport-config> element
	The <as-context> element
	The <sas-context> element
	DTD

	EJB Client Security Properties in ejb_sec.properties

	16 J2EE Connector Architecture Security
	Deploying Resource Adapters
	The oc4j-ra.xml Descriptor
	The <security-config> Element

	The oc4j-connectors.xml Descriptor

	Specifying Container-Managed or Component-Managed Sign-On
	Authentication in Container-Managed Sign-On
	JAAS Pluggable Authentication
	The InitiatingPrincipal and InitiatingGroup Classes
	JAAS and the <connector-factory> Element

	User-Created Authentication Classes
	Extending AbstractPrincipalMapping

	Modifying oc4j-ra.xml

	17 Security Support for EIS Connections
	Overview of Security and Authentication Setup for EIS Connections
	Summary of J2EE Connector Architecture Security Contract
	Summary of Component-Managed Versus Container-Managed Sign-On

	Understanding Component-Managed Sign-On
	Understanding Container-Managed Sign-On
	Using Declarative Container-Managed Sign-On
	Using Programmatic Container-Managed Sign-On
	Using a Principal Mapping Class
	Understanding the PrincipalMapping Interface APIs
	Extending the AbstractPrincipalMapping Class
	Configuring a Principal Mapping Class

	Using a JAAS Login Module
	OC4J Support for Groups in Programmatic Container-Managed Sign-On

	18 Troubleshooting Security Issues
	Locating jazn.xml
	JAZN Admintool
	Custom LoginModules
	Subject-Based Authorization
	J2EE Security Integration

	LDAP-Based Provider Issues
	Checking JAZN-LDAP Configuration
	Enabling and Disabling Caching

	Servlets, runas-mode, and doasprivileged-mode
	Creating Realms
	Removing Realm Names From Principals
	Specifying the JAAS Provider

	19 Security Tips
	HTTPS
	Overall Security
	JAAS

	A OracleAS JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Modifying User Permissions
	Modifying User Permissions Code
	Discussion Of Sample Code

	B Using the JAZN Admintool
	Authentication and the JAZN Admintool (XML-based Provider Only)
	JAZN Admintool Command-Line Options
	Syntax
	Admintool Authentication (XML-based Provider Only)
	Clustering Operations
	Configuration Operations
	Interactive Shell
	Login Modules
	Migration Operations
	Miscellaneous
	Password Management (XML-based Provider only)
	Policy Operations
	Realm Operations

	Adding and Removing Policy Permissions (XML-based Provider Only)
	Adding Clustering Support
	Adding and Removing Login Modules (XML-based Provider Only)
	Adding and Removing Principals (XML-based Provider Only)
	Adding and Removing Realms
	Adding and Removing Roles (XML-based Provider Only)
	Adding and Removing Users (XML-based Provider Only)
	Checking Passwords (XML-based Provider Only)
	Configuration Operations
	Granting and Revoking Permissions
	Granting and Revoking Roles
	Listing Login Modules
	Listing Permissions
	Listing Permission Information
	Listing Principal Classes
	Listing Principal Class Information
	Listing Realms
	Listing Roles
	Listing Users
	Migrating Principals from the principals.xml File
	Setting Passwords (XML-based Provider only)
	Using the JAZN Admintool Shell
	Navigating the JAZN Admintool Shell
	add: Creating Provider Data
	cd: Navigating Provider Data
	clear: Clearing the Screen
	exit: Exiting the JAZN Shell
	help: Listing JAZN Admintool Shell Commands
	ls: Listing Data
	man: Viewing JAZN Admintool Man Pages
	pwd: Displaying The Working Directory
	rm: Removing Provider Data
	set: Updating Values

	Admintool Shell Directory Structure

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

