
Oracle® Application Server Containers for J2EE
Security Guide

10g Release 2 (10.1.2)

Part No. B14013-01

December 2004

This book gives information on writing and deploying secure
applications using OC4J.

Oracle Application Server Containers for J2EE Security Guide 10g Release 2 (10.1.2)

Part No. B14013-01

Copyright © 2003, 2004, Oracle. All rights reserved.

Primary Author: Elizabeth Hanes Perry

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xv

Preface .. xvii

Documentation Accessibility .. xvii
 Intended Audience.. xvii
Organization .. xviii
Related Documents ... xix
Conventions ... xx

1 Concepts

The Java 2 Security Model .. 1-1
Permissions ... 1-2
Protection Domains.. 1-2
OracleAS JAAS Provider Permission Classes .. 1-3

Principals ... 1-3
Subjects .. 1-3
Authentication and Authorization.. 1-4
Secure Communications ... 1-5

Secure Sockets Layer.. 1-5
Certificates... 1-5
HTTPS.. 1-5
Identity Propagation.. 1-6

Developing Secure J2EE Applications ... 1-6

2 Overview of JAAS in Oracle Application Server

The OracleAS JAAS Provider .. 2-1
Provider Types ... 2-2

What Is JAAS?... 2-2
Login Module Authentication.. 2-3
Roles ... 2-3
Realms.. 2-3
Applications .. 2-4
Policies and Permissions ... 2-4

XML-Based Example .. 2-4
JAAS Framework Features ... 2-5

iv

User Managers .. 2-5
Using JAZNUserManager... 2-6
Using XMLUserManager ... 2-7

Capability Model of Access Control .. 2-8
Role-Based Access Control (RBAC).. 2-8

Role Hierarchy.. 2-8
Role Activation ... 2-9

Changes Since Release 9.0.4 ... 2-9

3 Understanding OC4J Security

Introduction... 3-1
Security Considerations During Development and Deployment .. 3-2

Development... 3-2
Deployment... 3-2

OC4J and the OracleAS JAAS Provider ... 3-2
OC4J Integration... 3-3
JAZNUserManager .. 3-3
Authentication Environments .. 3-3
Enabling OracleAS Single Sign-On in J2EE Applications .. 3-4

OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario..................... 3-4
Integrating the OracleAS JAAS Provider with SSL-Enabled Applications 3-5
Integrating the OracleAS JAAS Provider with Basic Authentication... 3-5

Basic Authentication J2EE Environments: Typical Scenario .. 3-6
Authentication in the J2EE Environment ... 3-6

Running with an Authenticated Identity .. 3-6
Retrieving Authentication Information .. 3-7

Authorization in the J2EE Environment .. 3-7
Security Role Mapping.. 3-7

J2EE Security Roles ... 3-8
Deployment Roles and Users .. 3-8
OC4J Group Mapping to J2EE Security Roles .. 3-8

4 Overall Security Configuration

Choosing the XML-Based or LDAP-Based Provider ... 4-1
Locating jazn.xml, jazn-data.xml, and the <jazn> element.. 4-2

Locating jazn.xml ... 4-2
Locating jazn-data.xml .. 4-2
Locating the <jazn> element... 4-2

Admintool Overview ... 4-3
Admintool Prerequisites ... 4-3
Authenticating Yourself .. 4-3
Adding Clustering Support.. 4-4
Specifying an Admintool LoginModule in jazn-data.xml ... 4-4

Specifying An Alternate Policy Provider (Optional) .. 4-5
Specifying Bootstrap OracleAS JAAS Provider Settings ... 4-5
Turning On Debug Logging ... 4-5
Specifying UserManagers... 4-6

v

Specifying A UserManager... 4-6
Specifying a UserManager In orion-application.xml.. 4-6

Advanced Configuration ... 4-7
Customizing RealmLoginModule ... 4-7

Enabling RealmLoginModule Using A Text Editor.. 4-8
Specifying Authentication (auth-method) .. 4-9

Specifying auth-method in web.xml ... 4-9
Specifying auth-method in orion-application.xml ... 4-9

Configuring J2EE Authorization .. 4-10
Servlets, runas-mode, and doasprivileged-mode... 4-10
Mapping Logical Roles to Security Roles .. 4-11

Removing Realm Names From Authentication Principals ... 4-11
Configuring Third-Party LDAP Providers ... 4-12
Permitting EJB RMI Client Access .. 4-12
Creating a Java 2 Policy File .. 4-13
Using the <principals> element and principals.xml .. 4-13

5 Configuring the OC4J Instance

The Bootstrap jazn.xml File.. 5-1
Specifying LDAP Connection Properties .. 5-1
Specifying LDAP JNDI Connection Pool Size .. 5-2
Configuring LDAP Caching... 5-3

Changing Session Cache Details ... 5-3
Disabling LDAP Caching.. 5-4
LDAP Cache Configuration.. 5-4

Configuring LDAP SSL Properties ... 5-6
Choosing SSL Authentication .. 5-6

Configuring LDAP Default Realm ... 5-7

6 Security Considerations During Application Deployment

Selecting a UserManager .. 6-1
Mapping Security Roles.. 6-1
Granting Permissions .. 6-2

Granting RMI Permission Or Administration Permission... 6-2
Granting and Revoking All Other Permissions... 6-2

Creating Users And Groups ... 6-3

7 Configuring the LDAP-Based Provider

Preparing To Use LDAP .. 7-1
Creating Administrative Users and Groups .. 7-1
LDAP-Based Provider Environment Variables .. 7-3

Creating LDAP Users and Groups .. 7-3

8 Configuring the XML-Based Provider

Creating Users .. 8-1

vi

Creating Roles (Groups) .. 8-2
Deleting Users .. 8-2
Deleting Roles (Groups) ... 8-2
Creating Realms ... 8-2
Deleting Realms .. 8-3
Granting Permissions .. 8-3
Revoking Permissions ... 8-3
Granting Roles (Groups)... 8-3
Revoking Roles (Groups) ... 8-4
Setting Persistence Mode.. 8-4
Configuring XML Default Realm ... 8-4
Migrating Principals from the principals.xml File ... 8-5

9 Configuring External LDAP Providers

Prerequisites .. 9-1
Creating a <login-module> Element in jazn-data.xml.. 9-2
An Example LDIF Description .. 9-3
Configuring Sun Java System Application Server as LDAP Provider .. 9-4

SunOne Example.. 9-4
Configuring Microsoft Active Directory as LDAP Provider ... 9-5

10 Custom LoginModules

Overview of JAAS Login Modules .. 10-1
Prerequisites ... 10-2

Configuring Dynamic Role Mapping... 10-2
Integrating Custom JAAS LoginModules .. 10-3
Developing a LoginModule .. 10-3

Subject-based Authorization ... 10-3
J2EE Security Authorization.. 10-3
Callback Support... 10-3
Debugging Tips ... 10-4

Debug Logging... 10-4
Debugging LoginModules.. 10-4

Adding and Removing Login Modules .. 10-4
Listing Login Modules ... 10-5
Packaging and Deploying.. 10-5

Deploying as Standard Extensions or Optional Packages .. 10-6
Deploying Within the J2EE Application.. 10-6
 Using the OC4J Classloading Mechanism.. 10-6

Configuring Your Application.. 10-6
jazn-data.xml ... 10-7

<jazn-loginconfig>... 10-7
<jazn-policy> .. 10-7

web.xml or ejb-jar.xml .. 10-8
orion-application.xml ... 10-8

<jazn> .. 10-9
<security-role-mapping>.. 10-9

vii

<library>.. 10-9
oc4j-ra.xml (J2EE Connector Architecture only)... 10-10

Simple Login Module J2EE Integration .. 10-10
Development.. 10-10
Packaging ... 10-10
Deployment.. 10-10

Custom LoginModule Example .. 10-11

11 Configuring OC4J and SSL

Overview of SSL Keys and Certificates .. 11-1
Using Keys and Certificates with OC4J and Oracle HTTP Server .. 11-3
Enabling SSL in OC4J .. 11-6

Configuring Oracle HTTP Server for SSL.. 11-6
Requesting Client Authentication ... 11-8
Resolving Common SSL Problems .. 11-10

Common SSL Errors and Solutions .. 11-10
General SSL Debugging ... 11-10

12 Configuring EJB Security

EJB JNDI Security Properties.. 12-1
JNDI Properties in jndi.properties .. 12-1
JNDI Properties Within Implementation... 12-1

Configuring Security .. 12-2
Granting Permissions in Browser ... 12-2
Authenticating and Authorizing EJB Applications.. 12-2

Specifying Users and Groups... 12-3
Specifying Logical Roles in the EJB Deployment Descriptor .. 12-4
Specifying Unchecked Security for EJB Methods.. 12-7
Specifying the runAs Security Identity... 12-7
Mapping Logical Roles to Users and Groups .. 12-8
Specifying a Default Role Mapping for Undefined Methods.. 12-9
Specifying Users and Groups by the Client ... 12-9

Specifying Credentials in EJB Clients... 12-10
Credentials in JNDI Properties .. 12-10
Credentials in the InitialContext.. 12-10

13 Oracle HTTPS for Client Connections

Introduction .. 13-1
Requesting Client Authentication ... 13-2
Oracle HTTPS And Clients ... 13-3

HTTPConnection Class .. 13-3
OracleSSLCredential Class (OracleSSL Only)... 13-3

Overview of Oracle HTTPS Features .. 13-4
SSL Cipher Suites .. 13-5

Choosing a Cipher Suite ... 13-5
SSL Cipher Suites Supported by OracleSSL... 13-5

viii

SSL Cipher Suites Supported by JSSE... 13-6
Access Information About Established SSL Connections ... 13-6
Security-Aware Applications Support... 13-6
java.net.URL Framework Support.. 13-7

Specifying Default System Properties .. 13-7
javax.net.ssl.KeyStore ... 13-7
javax.net.ssl.KeyStorePassword.. 13-8

Potential Security Risk with Storing Passwords in System Properties 13-8
Oracle.ssl.defaultCipherSuites (OracleSSL only) ... 13-8

Oracle HTTPS Example.. 13-8
Initializing SSL Credentials In OracleSSL ... 13-10
Verifying Connection Information ... 13-10
Transferring Data Using HTTPS... 13-11

Using HTTPClient with JSSE ... 13-11
Configuring HTTPClient To Use JSSE ... 13-12

14 Password Management

Introduction.. 14-1
Password Obfuscation In jazn-data.xml and jazn.xml .. 14-1

Hand-editing jazn-data.xml... 14-2
Creating An Indirect Password... 14-2

Indirect Password Examples ... 14-3
Specifying a UserManager In application.xml .. 14-3

15 Configuring CSIv2

Introduction to CSIv2 Security Properties .. 15-1
EJB Server Security Properties in internal-settings.xml .. 15-2
CSIv2 Security Properties in internal-settings.xml .. 15-3
CSIv2 Security Properties in ejb_sec.properties ... 15-4

Trust Relationships .. 15-4
CSIv2 Security Properties in orion-ejb-jar.xml ... 15-5

The <transport-config> element .. 15-5
The <as-context> element ... 15-5
The <sas-context> element ... 15-6

DTD.. 15-6
EJB Client Security Properties in ejb_sec.properties ... 15-7

16 J2EE Connector Architecture Security

Deploying Resource Adapters .. 16-1
The oc4j-ra.xml Descriptor... 16-1

The <security-config> Element.. 16-2
The oc4j-connectors.xml Descriptor ... 16-3

Specifying Container-Managed or Component-Managed Sign-On ... 16-4
Authentication in Container-Managed Sign-On .. 16-5

JAAS Pluggable Authentication.. 16-5
The InitiatingPrincipal and InitiatingGroup Classes.. 16-6

ix

JAAS and the <connector-factory> Element .. 16-6
User-Created Authentication Classes .. 16-7

Extending AbstractPrincipalMapping .. 16-9
Modifying oc4j-ra.xml .. 16-11

17 Security Support for EIS Connections

Overview of Security and Authentication Setup for EIS Connections 17-1
Summary of J2EE Connector Architecture Security Contract .. 17-1
Summary of Component-Managed Versus Container-Managed Sign-On 17-3

Understanding Component-Managed Sign-On.. 17-4
Understanding Container-Managed Sign-On ... 17-5
Using Declarative Container-Managed Sign-On .. 17-7
Using Programmatic Container-Managed Sign-On ... 17-9

Using a Principal Mapping Class ... 17-9
Understanding the PrincipalMapping Interface APIs.. 17-10
Extending the AbstractPrincipalMapping Class ... 17-10
Configuring a Principal Mapping Class ... 17-13

Using a JAAS Login Module ... 17-13
OC4J Support for Groups in Programmatic Container-Managed Sign-On 17-13

18 Troubleshooting Security Issues

Locating jazn.xml .. 18-1
JAZN Admintool ... 18-2
Custom LoginModules ... 18-2

Subject-Based Authorization ... 18-2
J2EE Security Integration ... 18-2

LDAP-Based Provider Issues .. 18-3
Checking JAZN-LDAP Configuration .. 18-3
Enabling and Disabling Caching .. 18-3

Servlets, runas-mode, and doasprivileged-mode.. 18-3
Creating Realms... 18-3
Removing Realm Names From Principals.. 18-4
Specifying the JAAS Provider .. 18-4

19 Security Tips

HTTPS .. 19-1
Overall Security ... 19-2
JAAS... 19-2

A OracleAS JAAS Provider Standards and Samples

Sample jazn-data.xml Code ... A-1
Modifying User Permissions .. A-6
Modifying User Permissions Code .. A-6

Discussion Of Sample Code .. A-8

x

B Using the JAZN Admintool

Authentication and the JAZN Admintool (XML-based Provider Only) B-2
JAZN Admintool Command-Line Options.. B-2

Syntax.. B-3
Admintool Authentication (XML-based Provider Only)... B-3
Clustering Operations ... B-3
Configuration Operations... B-3
Interactive Shell .. B-3
Login Modules.. B-3
Migration Operations ... B-3
Miscellaneous ... B-3
Password Management (XML-based Provider only) ... B-4
Policy Operations... B-4
Realm Operations .. B-4

Adding and Removing Policy Permissions (XML-based Provider Only).................................... B-5
Adding Clustering Support... B-5
Adding and Removing Login Modules (XML-based Provider Only) .. B-6
Adding and Removing Principals (XML-based Provider Only).. B-7
Adding and Removing Realms... B-7
Adding and Removing Roles (XML-based Provider Only) .. B-8
Adding and Removing Users (XML-based Provider Only) .. B-8
Checking Passwords (XML-based Provider Only) ... B-9
Configuration Operations ... B-9
Granting and Revoking Permissions .. B-9
Granting and Revoking Roles .. B-10
Listing Login Modules ... B-10
Listing Permissions .. B-11
Listing Permission Information ... B-11
Listing Principal Classes ... B-12
Listing Principal Class Information .. B-12
Listing Realms ... B-12
Listing Roles... B-13
Listing Users... B-13
Migrating Principals from the principals.xml File .. B-13
Setting Passwords (XML-based Provider only)... B-14
Using the JAZN Admintool Shell .. B-15

Navigating the JAZN Admintool Shell.. B-15
add: Creating Provider Data ... B-15
cd: Navigating Provider Data .. B-15
clear: Clearing the Screen.. B-15
exit: Exiting the JAZN Shell.. B-16
help: Listing JAZN Admintool Shell Commands ... B-16
ls: Listing Data.. B-16
man: Viewing JAZN Admintool Man Pages ... B-16
pwd: Displaying The Working Directory... B-16
rm: Removing Provider Data ... B-16
set: Updating Values.. B-17

xi

Admintool Shell Directory Structure ... B-17

Index

xii

List of Examples

9–1 Sample LDIF Defining A User and Role .. 9-3
9–2 JAAS LoginModule Configuration Corresponding To Example 9–1.................................. 9-4
10–1 Example jazn-loginconfig element .. 10-7
10–2 Example jazn-policy element ... 10-8
10–3 SampleLoginModule.java... 10-11
10–4 SamplePrincipal example ... 10-18
11–1 Creating an SSL Certificate and Configuring HTTPS... 11-6
12–1 Mapping Logical Role to Actual Role ... 12-8
13–1 Using JSSE with HTTPClient ... 13-12
17–1 The <res-auth> Element.. 17-6
17–2 Extending AbstractPrincipalMapping.. 17-12
A–1 Sample jazn-data.xml File... A-1
A–2 Modifying User Permissions.. A-6

xiii

List of Figures

1–1 Java 2 Security Model ... 1-2
1–2 Identity Propagation Using CSIv2.. 1-6
2–1 OC4J Security Architecture Under the JAZNUserManager Class....................................... 2-7
2–2 Role-Based Access Control .. 2-8
3–1 OracleAS Single Sign-On and J2EE Environments .. 3-4
3–2 Oracle Component Integration In SSL-Enabled J2EE Environments.................................. 3-5
3–3 Oracle Component Integration in j2ee Environment... 3-5
12–1 Role Mapping ... 12-3
12–2 Security Mapping... 12-4
12–3 Security Mapping... 12-9
17–1 Flow Chart of Choices for OC4J Container-Managed Sign-On .. 17-4
17–2 Component-Managed Sign-On.. 17-5
17–3 Container-Managed Sign-On ... 17-6
B–1 JAZN Shell Directory Structure ... B-17
B–2 Illustrated Shell Directory Structure ... B-18

xiv

List of Tables

1–1 Java Permission Instance Elements ... 1-2
1–2 OracleAS JAAS Provider Permission Classes.. 1-3
2–1 Policy File Parameters ... 2-4
2–2 OracleAS JAAS Provider Features .. 2-5
2–3 OC4J User Managers And Repositories.. 2-6
2–4 User Permissions.. 2-8
2–5 Dynamic Library Path Settings .. 2-9
4–1 UserManager Tags... 4-7
4–2 RealmLoginModule Options.. 4-8
4–3 Values for auth-method in web.xml.. 4-9
4–4 runas-mode and doasprivileged-mode Settings .. 4-11
4–5 Elements in principals.xml .. 4-14
5–1 LDAP Connection Properties... 5-1
5–2 LDAP JNDI Connection Pool Properties.. 5-2
5–3 LDAP Cache Properties .. 5-5
5–4 Values For <property> Element of <jazn> Tag.. 5-6
9–1 LoginModule Provider Options .. 9-2
9–2 LoginModule User Options.. 9-2
9–3 LoginModule Role Options .. 9-3
10–1 LoginModule Control Flags .. 10-4
13–1 Cipher Suites Supported By OracleSSL... 13-5
13–2 Cipher Suites Supported By JSSE ... 13-6
15–1 EJB Server Security Properties .. 15-2
15–2 EJB Client Security Properties... 15-7
17–1 Properties for Declarative Container-Managed Sign-On.. 17-8
17–2 Method Descriptions for PrincipalMapping Interface .. 17-10
17–3 Method Descriptions for AbstractPrincipalMapping Class ... 17-11
A–1 Objects In Sample Modifying User Permissions Code.. A-6
B–1 LoginModule Control Flags .. B-6

xv

Send Us Your Comments

Oracle Application Server Containers for J2EE Security Guide, 10g Release 2
(10.1.2)

Part No. B14013-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX:650-506-7225. Attn: Oracle Containers for Java Documentation

■ Postal service:

Oracle Corporation
Attention: Java Platform Group, Information Development Manager
500 Oracle Parkway 4OP978
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xvi

xvii

Preface

This manual discusses how to make effective use of the Oracle Application Server
Containers for J2EE (OC4J) security features.

This preface contains these topics:

■ Documentation Accessibility

■ Intended Audience

■ Organization

■ Related Documents

■ Conventions

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at:

http://www.oracle.com/accessibility/

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

 Intended Audience
This manual is intended for experienced Java developers, deployers, and application
managers who want to understand the security features of OC4J. It discusses the
Oracle Application Server Java Authentication and Authorization Service (JAAS)
Provider in detail, as well as discussing security implications of individual J2EE
features, including EJBs, the J2EE Connector Architecture, SSL, and CSIv2.

xviii

Organization
This document contains:

■ Chapter 1, "Concepts"—Concepts fundamental to application security.

■ Chapter 2, "Overview of JAAS in Oracle Application Server"—The Java
Authentication and Authorization Service (JAAS) and the OracleAS JAAS
Provider.

■ Chapter 3, "Understanding OC4J Security"—Security issues affecting J2EE
applications in Oracle Application Server Containers for J2EE (OC4J).

■ Chapter 4, "Overall Security Configuration"—Security configuration decisions that
affect your entire installation.

■ Chapter 5, "Configuring the OC4J Instance"—Security configuration decisions that
are instance-specific.

■ Chapter 6, "Security Considerations During Application Deployment"—Security
configuration decisions that occur during the deployment process.

■ Chapter 7, "Configuring the LDAP-Based Provider"—Security configuration
decisions that are applicable only to the LDAP-based provider.

■ Chapter 8, "Configuring the XML-Based Provider"—Security configuration
decisions that are applicable only to the XML-based provider.

■ Chapter 9, "Configuring External LDAP Providers"—Using third-party LDAP
implementations with the OracleAS JAAS Provider.

■ Chapter 10, "Custom LoginModules"—User-developed JAAS LoginModules.

■ Chapter 11, "Configuring OC4J and SSL"—Configuring OC4J to use SSL in
communicating with other application components.

■ Chapter 12, "Configuring EJB Security"—Security implications of EJB
development.

■ Chapter 13, "Oracle HTTPS for Client Connections"—HTTPS and HTTPClient.

■ Chapter 14, "Password Management"—Protecting file-stored passwords with
obfuscation.

■ Chapter 15, "Configuring CSIv2"— Common Secure Interoperability Version 2
protocol (CSIv2) settins for OC4J-based applications.

■ Chapter 16, "J2EE Connector Architecture Security"—Security implications of the
J2EE Connector Architecture.

■ Chapter 17, "Security Support for EIS Connections"—J2EE Connector Architecture
security and EIS connections.

■ Chapter 18, "Troubleshooting Security Issues"—Common security problems and
how to fix them.

■ Chapter 19, "Security Tips"—Security best practices.

■ Appendix A, "OracleAS JAAS Provider Standards and Samples"—A sample
jazn.xml file and sample applications.

■ Appendix B, "Using the JAZN Admintool"—Reference guide for JAZN
Admintool.

xix

Related Documents
For more information, see these Oracle resources:

■ Oracle Application Server Security Guide

■ Oracle Application Server Administrator’s Guide

■ Oracle Identity Management Concepts and Deployment Planning Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Internet Directory Application Developer’s Guide

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Application Server Web Services Developer’s Guide

■ The OC4J Javadoc

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at:

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at:

http://www.oracle.com/technology/index.html

For additional information, see:

■ The Sun Java and J2EE Web pages, especially the Java Authentication and
Authorization Service (JAAS) Web site at :

http://java.sun.com/products/jaas/overview.html

xx

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

italic text Italicized text indicates placeholders or variables for which you must
supply particular values.

[] Brackets enclose optional clauses from which you can choose one or
none.

Concepts 1-1

1
Concepts

This chapter describes the following topics:

■ The Java 2 Security Model

■ Principals

■ Subjects

■ Authentication and Authorization

■ Secure Communications

■ Developing Secure J2EE Applications

For a broader description of Oracle Application Server security in middle-tier
environments that connect to the Internet, see the Oracle Application Server Security
Guide. For information on Web services, see the Oracle Application Server Web Services
Developer’s Guide.

The Java 2 Security Model
The Java 2 Security Model is fundamental to the OracleAS JAAS Provider.The Java 2
Security Model enables configuration of security at all levels of restriction. This
provides developers and administrators with increased control over many aspects of
enterprise applet, component, servlet, and application security. The Java 2 Security
Model is capability-based and enables you to establish protection domains, and set
security policies for these domains.

See Also: For a tutorial on Java 2 Security, see
http://java.sun.com/docs/books/tutorial/security1.
2/index.html. For full information on Java 2 Security, see
http://java.sun.com/security.

The Java 2 Security Model

1-2 Oracle Application Server Containers for J2EE Security Guide

Permissions
Permissions are the basis of the Java 2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission represents a
specific access to a particular resource. Table 1–1 identifies the elements that comprise
a Java permission instance.

Protection Domains
Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group of
permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call to
either:

■ SecurityManager.checkPermission()

■ AccessController.checkPermission()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 1–1 shows the basic model for authorization checking at runtime.

Figure 1–1 Java 2 Security Model

Table 1–1 Java Permission Instance Elements

Element Description Example

Class name The permission class java.io.FilePermission

Target The target name (resource) to which
this permission applies

Directory /home/*

Actions The actions associated with this target Read, write, and execute permissions
on directory /home/*

See Also:

■ Chapter 4, "JAAS Provider Administration Tasks"

■ Sun Java documentation at
http://java.sun.com/security/

Subjects

Concepts 1-3

OracleAS JAAS Provider Permission Classes
Table 1–2 lists the permission classes furnished by the OracleAS JAAS Provider. These
classes allow applications to control access to resources. For information about the
classes discussed, see the OracleAS JAAS Provider Javadoc.

Principals
A principal is a specific identity, such as a user named frank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service. Principals are instances of classes that implement the
java.security.Principal interface. A principal class must define a namespace that
contains a unique name for each instance of the class.

Subjects
A subject represents a grouping of related information for a single user of a computing
service, such as a person, computer, or process. This related information includes the
subject's identities and security-related attributes (such as passwords and
cryptographic keys).

Subjects can have multiple identities; principals represent identities in a subject. A
subject becomes associated with a principal (user frank) upon successful
authentication to a computing service—that is, the subject provides evidence (such as
a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user frank, may
have two principals:

■ One binds the principal frank doe (name on his driver license) to the subject

■ Another binds the identification principal 999-99-9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are stored
in a private credential set. Credentials intended to be shared, such as public key

Table 1–2 OracleAS JAAS Provider Permission Classes

Permission Part of Package Description

AdminPermission oracle.security.jazn
.policy

Represents the right to administer a permission
(that is, grant or revoke another user’s
permission assignment).

RoleAdminPermission oracle.security.jazn
.policy

The grantee of this permission is granted the
right to further grant/revoke the target role.

JAZNPermission oracle.security.jazn For authorization permissions.
JAZNPermission contains a name (also called a
target name), but no actions list; you either have
or do not have the named permission.

RealmPermission oracle.security.jazn.
realm

Represents permission actions for a realm (such
as createRealm, dropRealm, and so on).
RealmPermission extends from
java.security.Permission, and is used like
any regular Java permission.

Authentication and Authorization

1-4 Oracle Application Server Containers for J2EE Security Guide

certificates or Kerberos server tickets, are stored in a public credential set. Different
permissions are required to access and modify different credential sets.

Subjects are represented by the javax.security.auth.Subject class.

To perform work as a particular subject, an application invokes the method
Subject.doAs(Subject, PrivilegedAction) (or one of its variations). This method
associates the subject with the current thread's AccessControlContext and then
executes the specified request.

Authentication and Authorization
Software security depends on two fundamental concepts: authentication and
authorization.

■ Authentication deals with the question “Who is trying to access my services?” In
any system and application it is paramount to ensure that the identity of the entity
or caller trying to access your application is identified in a secure manner. In a
multitier application, the entity or caller can be a human user, a business
application, a host, or one entity acting on behalf of (or impersonating) another
entity.

Authentication information is stored in a user repository. When a subject attempts
to access a J2EE application, a user manager looks up the subject in the user
repository and verifies the subject’s identity. A user repository can be a file or a
directory server, depending on your environment. The Oracle Internet Directory is
an example of a user repository.

Although each J2EE application determines which user can use the application, it
is the user manager that authenticates the user’s identity using the user repository.

OC4J supports several different authentication options; for details, see
"Authentication Environments" on page 3-3.

■ Authorization deals with the question “Who can access what services offered by
which components?” For large-scale enterprises, where the access to various
business-critical services and resources by millions of users need to be managed, it
is important that a scalable authorization infrastructure be in place to deal with
user and application provisioning. Unfortunately, in part due to the complex
nature of authorization, this is also an area where confusion reigns and
incompatible technologies and standards are prevalent.

Developers specify authorization for subjects in the application’s J2EE and
OC4J-specific deployment descriptors. These deployment descriptors indicate
what roles are needed to access the different parts of the application. Roles are the
identities that each application uses to indicate access rights to its different objects.
The OC4J-specific deployment descriptors provide a mapping between the logical
roles and the users and groups known by OC4J.

Secure Communications

Concepts 1-5

Secure Communications
To communicate securely, applications must satisfy the following goals:

■ Secure communications—the data transmitted over the network cannot be
intercepted, read, or altered by a third party. OC4J supports secure
communications using the HTTP protocol over the Secure Sockets Layer.

■ Network authentication—clients and servers must be able to authenticate
themselves to one another over the network. This is achieved using digital
certificates, single sign-on, or username/password combinations.

■ Identity propagation—allowing one client to act as the agent of another client,
using the original client’s identity.

Secure Sockets Layer
The Secure Sockets Layer (SSL) is the industry-standard point-to- point protocol which
provides confidentiality through encryption, authentication and data integrity.
Although SSL is used by many protocols, it is most important for OC4J when used
with the HTTP browser protocol and in the AJP link between the OHS and OC4J
processes.

Certificates
Applications need to transmit authentication and authorization information over the
network. A digital certificate, as specified by the X.509 v3 standard, contains data
establishing a principal’s authentication and authorization information. A certificate
contains:

■ A public key, which is used in Public Key Infrastructure (PKI) operations

■ Identity information (for example, name, company, country, and so on)

■ Optional digital rights which grant privileges to the owner of the certificate.

Each certificate is digitally signed by a trustpoint. The trustpoint signing the certificate
can be a certificate authority such as VeriSign, a corporation, or an individual.

HTTPS
For convenience, this book uses "HTTPS" as shorthand when discussing HTTP
running over SSL. Although there is an https: URL prefix, there is no HTTPS protocol
as such.

Developing Secure J2EE Applications

1-6 Oracle Application Server Containers for J2EE Security Guide

Identity Propagation
OC4J supports propagating the identity of principals from context to context. A Web
client can establish its identity to a servlet; the servlet can then use that identity to
communicate with other EJBs and servlets, as illustrated in Figure 1–2.

Figure 1–2 Identity Propagation Using CSIv2

Developing Secure J2EE Applications
J2EE software development is based on a develop-deploy-manage cycle. The OracleAS
JAAS Provider plays an important role in the deploy-manage part of the cycle. The
OracleAS JAAS Provider is integrated with J2EE security. This means that developers
can use a declarative security model instead of having to integrate security
programmatically, unburdening the developer.

The following list summarizes the J2EE development cycle, with an emphasis on the
tasks specific to developing secure applications.

1. The software developer creates Web components, enterprise beans, applets,
servlets, and application clients.

The OracleAS JAAS Provider offers programmatic interfaces, but the developer
can create components without making use of those interfaces.

2. The application assembler takes these components and combines them into an
Enterprise Archive (EAR) file.

As part of this process, the application assembler specifies OracleAS JAAS
Provider options appropriate to the environment.

3. The deployer installs the EAR into an instance of OC4J.

As part of the deployment process, the deployer may map roles to users.

4. The system administrator maintains and manages the deployed application.

This task includes creating and managing JAAS roles and users as required by the
application customers.

Web Client
(such as browser)

J2EE
Container

Enterprise
Information
System tierJSP/

servlet

EJB EJB

ERP, SAP
Applications

Messaging
System

J2EE
Container

EJB
caller ID

CSIv2

caller ID

CSIv2

username
password

Database

Overview of JAAS in Oracle Application Server 2-1

2
Overview of JAAS in Oracle Application

Server

This chapter introduces the Oracle Application Server Java Authentication and
Authorization Service (JAAS) Provider in Oracle Application Server Containers for
J2EE (OC4J). The OracleAS JAAS Provider enables application developers to integrate
authentication, authorization, and delegation services with their applications.

This chapter contains these topics:

■ The OracleAS JAAS Provider

■ What Is JAAS?

■ JAAS Framework Features

■ User Managers

■ Capability Model of Access Control

■ Role-Based Access Control (RBAC)

■ Changes Since Release 9.0.4

The OracleAS JAAS Provider
The Oracle Application Server supports JAAS with the OracleAS JAAS Provider. The
OracleAS JAAS Provider implements user authentication, authorization, and
delegation services that developers can integrate into their application environments.
Instead of devoting resources to developing these services, application developers can
focus on the presentation and business logic of their applications.

The JAAS framework and the Java 2 Security model form the foundation of JAAS. The
OracleAS JAAS Provider implements support for JAAS policies. Policies contain the
rules (permissions) that authorize a user to use resources, such as reading a file. Using
JAAS, services can authenticate and enforce access control upon resource users. The
OracleAS JAAS Provider is easily integrated with J2SE and J2EE applications that use
the Java 2 Security model.

Note: Some class and component names contain the word
"JAZN," which is a shortened name for the OracleAS JAAS
Provider.

What Is JAAS?

2-2 Oracle Application Server Containers for J2EE Security Guide

Provider Types
The OC4J JAAS implementation supports two different provider types. Each provider
type implements a repository for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and JAAS
policy (permissions) information.

■ XML-Based Provider

The XML-based provider is used for lightweight storage of information in XML
files. The XML-based provider stores user, realm, and policy information in an
XML file, normally jazn-data.xml.

■ LDAP-Based Provider

The LDAP-based provider is based on the Lightweight Directory Access Protocol
(LDAP) for centralized storage of information in a directory. The LDAP-based
provider stores user, realm, and policy information in the LDAP-based Oracle
Internet Directory.

What Is JAAS?
JAAS is a Java package that enables applications to authenticate and enforce access
controls upon users. The OracleAS JAAS Provider is an implementation of the JAAS
interface.

JAAS is designed to complement the existing code-based Java 2 security. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java 2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authentication, authorization,
and user community (realm) features. The OracleAS JAAS Provider enhances some of
these features.

■ Login Module Authentication

■ Roles

■ Realms

■ Policies and Permissions

Note: XML files are used as property and configuration files by
both LDAP-based and XML-based provider types. However, only
the XML-based provider stores users, realms, and policies in an
XML file, jazn-data.xml.

Note: We recommend that you use the LDAP-based provider in a
production environment; the XML-based provider is suitable for
prototyping only.

What Is JAAS?

Overview of JAAS in Oracle Application Server 2-3

Login Module Authentication
To associate a principal (such as frank) with a subject, a client attempts to log in to an
application. In login module authentication, the LoginContext class provides the
basic methods used to authenticate subjects such as users, roles, or computing services.
The LoginContext class consults configuration settings to determine whether the
authentication modules (known as login modules) are configured for use with the
particular application that the subject is attempting to access. Different login modules
can be configured with different applications; furthermore, a single application can use
multiple login modules.

Because the LoginContext separates the application code from the authentication
services, you can plug a different login module into an application without affecting
the application code.

Actual authentication is performed by the method LoginContext.login(). If
authentication succeeds, then the authenticated subject can be retrieved by invoking
LoginContext.getSubject(). The real authentication process can involve
multiple login modules. The JAAS framework defines a two-phase authentication
process to coordinate the login modules configured for an application.

After retrieving the subject from the LoginContext, the application then performs
work as the subject by invoking Subject.doAs() or
Subject.doAsPrivileged().

Roles
The JAAS framework does not explicitly define roles or groups. Instead, roles or
groups are implemented as concrete classes that use the interface
java.security.Principal.

The JAAS framework does not define how to support the role-based access control
(RBAC) role hierarchy, in which you can grant a role to a role.

Realms
The JAAS framework does not explicitly define user communities. However, the J2EE
reference implementation (RI) defines a similar concept of user communities called
realms. A realm provides access to users and roles (groups) and optionally provides
administrative functionality. A user community instance is essentially a realm that is
maintained internally by the authorization system. The J2EE RI Realm API supports
user-defined realms through subclassing.

See Also:

■ "JAAS Framework Features" on page 2-5 for information on
how the OracleAS JAAS Provider enhances the JAAS
framework to explicitly define key authorization,
authentication, and user community (realm) features

■ JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun.com/products/jaas/

See Also:

"JAAS Provider Realm Framework" on page 4-3 for OracleAS JAAS
Provider enhancements to realms.

What Is JAAS?

2-4 Oracle Application Server Containers for J2EE Security Guide

Applications
The JAAS framework does not explicitly define an application or subsystem for
partitioning authorization rules.

Policies and Permissions
A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are the
granted permissions of the grantee?

Policy information is supplied by the OracleAS JAAS Provider. The JAAS framework
does not define an administrative API for policy administration. The administrative
API provided by the OracleAS JAAS Provider is an Oracle extension.

Table 2–1 describes the Sun Microsystems implementation of policy file parameters.

XML-Based Example
The JAAS XML-based provider can store policy data in the file jazn-data.xml. In
the following example, a segment of the jazn-data.xml file grants the admin
principal permission to log in.

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

Table 2–1 Policy File Parameters

Where Is Defined As Example

subject one or more principal(s) duke

codesource codebase, signer http://www.example.com, mysigner

See Also:

■ "Sample jazn-data.xml Code" on page A-1 to view a complete
jazn-data.xml file.

User Managers

Overview of JAAS in Oracle Application Server 2-5

JAAS Framework Features
Table 2–2 contains the JAAS framework features implemented by the OracleAS JAAS
Provider.

User Managers
OC4J security employs a user manager to authenticate and authorize users and groups
that attempt to access a J2EE application. You base your choice of user manager on
performance and security needs.

All UserManager classes implement the com.evermind.security.UserManager
interface (see the Javadoc for further information.). UserManager classes manage
users, groups, and passwords through methods such as createUser(), getUser(),
and getGroup().

Table 2–2 OracleAS JAAS Provider Features

Feature Description See Also

Authentication ■ Integrates with Oracle Application Server Single
Sign-On for login authentication in J2EE
application environments.

■ Supplies an out-of-the-box
RealmLoginModule class for non-OracleAS
Single Sign-On environments, such as OracleAS
Core or Java Edition

■ Supports any JAAS-compliant custom
LoginModule

Chapter 3, "Understanding OC4J
Security"

Declarative Model ■ Integrates J2EE deployment descriptors, such as.
web.xml, with JAAS security

■ Supports programmatic model as well

Chapter 4, "Overall Security
Configuration"

Authorization ■ Provides centralized role-based access control,
including support for hierarchical roles

"Role-Based Access Control
(RBAC)" on page 2-8

Realms ■ Organizes users and roles (groups) around user
communities. An Oracle API package
(oracle.security.jazn.realm) is
provided to support user and role management.
This API includes a RealmPrincipal
interface that extends from
java.security.Principal and
associates a realm with users and roles.

"Realms" on page 2-3

"JAAS Provider Realm
Framework" on page 4-3

Management ■ Manages settings and data using command-line
tool (Admintool) or Oracle Enterprise Manager
10g

■ Supports a centrally managed provider type
with Oracle Internet Directory

Chapter 4, "JAAS Provider
Administration Tasks"

JAZNUserManag
er

■ Provides an implementation of the OC4J
UserManager that integrates with both the
XML-based and the LDAP-based providers.

"JAZNUserManager" on page 3-3

User Managers

2-6 Oracle Application Server Containers for J2EE Security Guide

OC4J provides two predefined user managers, JAZNUserManager and
XMLUserManager. JAZNUserManager supports both XML-based and LDAP-based
providers. We recommend using JAZNUserManager because it is based on the JAAS
specification and is integrated with Oracle Application Server Single Sign-On and
Oracle Internet Directory. JAZNUserManager is the default security provider, because
it offers powerful and flexible security control. Customers can also supply their own
classes that implement the UserManager interface, although this will be deprecated
at a future release.

Table 2–3 lists the user managers provided by OC4J.

See "Specifying a UserManager In orion-application.xml" on page 4-6 for directions on
how to define the default UserManager for all applications or a single UserManager
for a specific application.

The following sections describe the JAZN and XML user managers:

■ Using JAZNUserManager

■ Using XMLUserManager

Using JAZNUserManager
The JAZNUserManager class is the default user manager. The primary purpose of the
JAZNUserManager class is to leverage the OracleAS JAAS Provider as the security
infrastructure for OC4J.

There are two JAAS Providers supplied with OC4J security: XML-based and
LDAP-based.

■ The XML-based provider is a fast, lightweight implementation of the JAAS
Provider API. This provider type uses XML to store user names and encrypted
passwords. The user repository is stored in the jazn-data.xml file, in a location
specified in the jazn.xml file. For details, see Chapter 8, "Configuring the
XML-Based Provider".

Select JAZN-XML as the user manager in the Enterprise Manager. Configure its
users, roles, and groups using the JAZN Admintool. For further information, see
Chapter 8, "Configuring the XML-Based Provider".

Note: For a discussion of creating a custom UserManager, see
http://otn.oracle.com/sample_
code/tech/xml/xmlnews/News_Security.html.

Table 2–3 OC4J User Managers And Repositories

User Manager Class User Repository

oracle.security.jazn.oc4j.JAZNUserManag
er

Several types:

■ using the XML-based provider
—jazn-data.xml

■ using the LDAP-based provider—Oracle
Internet Directory

■ Using a third-party LDAP provider

com.evermind.server.XMLUserManager The principals.xml file

Custom user manager Customized user repository

User Managers

Overview of JAAS in Oracle Application Server 2-7

■ The LDAP-based provider is scalable, secure, enterprise-ready, and integrated
with OracleAS Single Sign-On. The LDAP-based provider is the only OracleAS
JAAS Provider that supports OracleAS Single Sign-On.

Select JAZN-LDAP as the user manager in the Enterprise Manager. Configure its
users and groups using the Oracle Delegated Administration Services from Oracle
Internet Directory. The user repository is an Oracle Internet Directory instance,
which requires that the application server instance be associated with an
infrastructure. If it the server is not associated with an Oracle Internet Directory
instance, then the LDAP-based provider is not a security option.For information
on configuring the LDAP-based provider, see Chapter 7, "Configuring the
LDAP-Based Provider".

Figure 2–1 shows the two different JAAS Providers supplied with OC4J.

Figure 2–1 OC4J Security Architecture Under the JAZNUserManager Class

Using XMLUserManager
The XMLUserManager class is a simple user manager that manages users, groups, and
roles in an XML-based system. It stores user passwords in the clear, and therefore is
not as secure as the JAZNUserManager. All XMLUserManager configuration
information is stored in the principals.xml file, which is the user repository for the
XMLUserManager class.

Note: The XMLUserManager class is supported for backward
compatibility only, and will be desupported in a forthcoming
release. Oracle strongly recommends that you use one of the
OracleAS JAAS Provider types.

Capability Model of Access Control

2-8 Oracle Application Server Containers for J2EE Security Guide

Capability Model of Access Control
The capability model is a method for organizing authorization information. The
OracleAS JAAS Provider is based on the Java 2 Security Model, which uses the
capability model to control access to permissions. With the capability model,
authorization is associated with the principal (a user named frank in the following
example). Table 2–4 shows the permissions that user frank is authorized to use:

When user frank logs in and is successfully authenticated, the permissions described
in Table 2–4 are retrieved from the OracleAS JAAS Provider (whether the LDAP- based
Oracle Internet Directory or XML-based provider) and granted to user frank. User
frank is then free to execute the actions permitted by these permissions.

Role-Based Access Control (RBAC)
RBAC enables you to assign permissions to roles. You grant users permissions by
making them members of appropriate roles. Support for RBAC is a key JAAS feature.
This section describes the following RBAC features:

■ Role Hierarchy

■ Role Activation

Role Hierarchy
RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially a
major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a role,
and users are granted their permissions by being made members of that role. Multiple
roles can be granted to a user. A role can also be granted to another role, thus forming
a role hierarchy that provides administrators with a tool to model enterprise security
policies. Figure 2–2 provides an example of role-based access control.

Figure 2–2 Role-Based Access Control

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that individual
user.

Table 2–4 User Permissions

User Has These File Permissions

frank Read and write permissions on a file named salaries.txt in the
/home/user directory

Changes Since Release 9.0.4

Overview of JAAS in Oracle Application Server 2-9

For example, if multiple users no longer require write permissions on a file named
salaries in the /home/user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

Role Activation
A user is typically granted multiple roles. However, not all roles are enabled by
default. An application can selectively enable the required roles to accomplish a
specific task in a user session with the run-as security identity and
Subject.doAS(). Selectively enabling roles upholds the principle of least privilege:
the application is not enabling permissions or privileges unnecessary for the task. This
limits the damage that can potentially result from an accident or error.

Changes Since Release 9.0.4
■ The correct setting for the environment variable controlling loading of dynamic

libraries (for example, LD_LIBRARY_PATH in Solaris) is now ORACLE_
HOME/lib32 instead of ORACLE_HOME]/lib). Table 2–5shows the complete
settings.

■ The Java Development Kit 1.3 default installation does not include JAAS support.
To use JAAS with JDK1.3, you must download JAAS 1.0_01 from the Sun Web site
http://java.sun.com/products/jaas/index-10.html and follow the
installation Land deployment instructions.

■ At this release, Oracle supports third-party LDAP providers. See Chapter 9,
"Configuring External LDAP Providers", for details.

Table 2–5 Dynamic Library Path Settings

Operating
System Variable Value

Solaris LD_LIBRARY_PATH_64 ORACLE_HOME/lib32

ORACLE_HOME/lib

HP/UX SHLIB_PATH

LD_LIBRARY_PATH

ORACLE_HOME/lib32

ORACLE_HOME/lib

AIX LIBPATH

LD_LIBRARY_PATH

ORACLE_HOME/lib32 for 32-bit applications,
ORACLE_HOME/lib for 64-bit applications

Null

Windows Not applicable Not applicable

Note: When you develop applications using JDK 1.3, you should be
aware of a JDK class loader issue. The class loader can locate custom
login modules only if you deploy the JAR containing them as a
standard extension in ORACLE_HOME/jre/lib/ext. This problem
will be fixed at the next release.

Changes Since Release 9.0.4

2-10 Oracle Application Server Containers for J2EE Security Guide

■ At this release, Oracle supplies a default file (jazn.security.props) in the
directory ORACLE_HOME/j2ee/home/startup that specifies the OracleAS JAAS
provider to be used for JAAS login configuration and policy. Note that these
properties are set by default during OC4J startup, so in most circumstances you do
not need to worry about setting these properties. For details, see "Specifying An
Alternate Policy Provider (Optional)" on page 4-5.

■ Custom UserManager classes are still supported at this release, but will be
deprecated at a future release.

■ The file principals.xml will no longer be supported at a future release. We strongly
encourage you to migrate your existing applications from using
principals.xml to using JAZNUserManager. For instructions, see "Migrating
Principals from the principals.xml File" on page 8-5.

■ The interface for retrieving the SSL client certificate has changed. You now use
servletRequest.getAttribute("javax.servlet.request.X509Certif
icate") instead of
servletRequest.getAttribute("javax.security.cert.X509certific
ate").

Understanding OC4J Security 3-1

3
Understanding OC4J Security

This chapter describes security issues affecting J2EE applications in Oracle Application
Server Containers for J2EE (OC4J).

This chapter contains these topics:

■ Introduction

■ Security Considerations During Development and Deployment

■ OC4J and the OracleAS JAAS Provider

■ Authentication in the J2EE Environment

■ Authorization in the J2EE Environment

Introduction
The following are components of the OC4J security architecture:

■ The OracleAS JAAS Provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The OracleAS JAAS Provider supports two possible repositories or
provider types:

■ XML-based Provider Type

■ LDAP-based Oracle Internet Directory (available only with Oracle Application
Server Infrastructure installation)

■ JAAS login modules, such as the RealmLoginModule, third-party
LoginModules, and custom LoginModules

See Also:

■ "Provider Types" on page 2-2 for further information about
provider types

■ Oracle Application Server Installation Guide for information on
installing Oracle Internet Directory.

Security Considerations During Development and Deployment

3-2 Oracle Application Server Containers for J2EE Security Guide

Security Considerations During Development and Deployment
The OracleAS JAAS Provider is designed to work with the J2EE declarative security
model. This declarative model requires little or no programming to use JAAS security
in your application. Instead, most security decisions are made as part of the
deployment process, making it easy to make changes without requiring re-coding. If
the declarative model is not sufficient, the OracleAS JAAS Provider also supports
programmatic security in the same manner that JAAS is used in any J2SE
environment.

Development
If your application relies on the declarative security model (where J2EE security roles
are defined in deployment descriptors, such as web.xml), the developer must
determine if the application uses application-specific roles. If so, the developer must
define these roles so that they can be mapped to the J2EE logical roles during the
deployment phase.

Deployment
Using the declarative security model, the deployer must make the following
security-related decisions:

■ Determine the J2EE logical roles that are assumed in the application, then define
these roles in the deployment descriptors. For example, an HR application may
assume that the J2EE logical role hr_manager is running the application; the
deployer must define that role.

■ Determine the authorization constraints that apply to these roles and define them
in the deployment descriptors. For web modules, these constraints typically apply
to URL patterns as defined in the J2EE specification. EJB modules typically have
constraints at the EJB-method level.

■ Decide whether to use an XML flat file or Oracle Internet Directory (LDAP) as the
repository for the OracleAS JAAS Provider. This also determines which provider,
XML-based or LDAP-based, and user manager the application uses.

■ Map the security roles (including the application-specific roles, if they exist) to
users and groups defined by the OC4J user manager (for instance,
JAZNUserManager). For example, the J2EE logical role called hr_manager may
be mapped to a given set of users defined by the OC4J user manager.

For information on making and implementing these decisions, see Chapter 6, "Security
Considerations During Application Deployment"; for a full discussion of deployment,
see the Oracle Application Server Containers for J2EE User’s Guide.

OC4J and the OracleAS JAAS Provider
Oracle Application Server Containers for J2EE is a J2EE container that accepts HTTP
and RMI client connections. These connections permit access to servlets, Java Server
Pages (JSPs), and Enterprise JavaBeans (EJBs).

J2EE containers separate business logic from resource and lifecycle management. This
enables developers to focus on writing business logic, rather than writing enterprise
infrastructure. For example, Java servlets simplify Web development by providing an
infrastructure for component, communication, and session management in a Web
container integrated with a Web server.

OC4J and the OracleAS JAAS Provider

Understanding OC4J Security 3-3

OC4J Integration
The OracleAS JAAS Provider is integrated with Oracle Application Server Containers
for J2EE and with OracleAS Single Sign-On to enhance application security. This
integration provides the following benefits:

■ run-as identity support, delegation support (from servlet to Enterprise
JavaBeans)

■ Full support for OracleAS Single Sign-On

■ Support for custom LoginModules

JAZNUserManager
The OracleAS JAAS Provider is supported through JAZNUserManager,
JAZNUserManager, an implementation of the OC4J UserManager interface,
supports the following features:

■ Secure storage of obfuscated passwords

■ Full role-based access control (RBAC), including hierarchical roles

■ Full support for the Java 2 permission model and JAAS

■ Secure implementation based on the Java 2 permission model, allowing
non-trusted (or partially trusted) code to run in the same JVM as the OracleAS
JAAS Provider

■ OracleAS Single Sign-On integration with Oracle Application Server Containers
for J2EE

■ RealmLoginModule integration in non-OracleAS Single Sign-On environments

■ Support for custom JAAS login modules

■ Identity propagation

Authentication Environments
The OracleAS JAAS Provider integrates with several different login authentication
environments in a J2EE application.

■ OracleAS Single Sign-On

Uses OracleAS Single Sign-On to authenticate logins

■ SSL

■ Uses Secure Socket Layers for client certificate-based authentication

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

■ Basic Authentication

■ Prompts user directly for username and password, without going through
OracleAS Single Sign-On

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

OC4J and the OracleAS JAAS Provider

3-4 Oracle Application Server Containers for J2EE Security Guide

■ Form-based Authentication

When the user attempts to access a protected resource, OC4J checks whether the
user has already been authenticated. If not, OC4J displays an application-specific
login screen, prompting for username and password.

The following sections discuss how the OracleAS JAAS Provider integrates with each
of these authentication types.

Enabling OracleAS Single Sign-On in J2EE Applications
OracleAS Single Sign-On lets a user access multiple applications with a single set of
login credentials. Figure 3–1 shows JAAS integration in an application running in an
OracleAS Single Sign-On-enabled J2EE environment.

Figure 3–1 OracleAS Single Sign-On and J2EE Environments

OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in an OracleAS Single Sign-On-enabled J2EE environment.

1. An HTTP client attempts to access a Web application, WebApp A1, hosted by
Oracle Application Server Containers for J2EE (the Web container for executing
servlets). Oracle HTTP Server (using an Apache listener) handles the request.

2. mod_osso/Oracle HTTP Server receives the request and:

■ Determines that WebApp A1 application requires Web-based OracleAS Single
Sign-On for authenticating HTTP clients

■ Redirects the HTTP client request to the Web-based OracleAS Single Sign-On
(because it has not yet been authenticated).

3. The HTTP client is authenticated by OracleAS Single Sign-On through a user name
and password or through a user certificate. OracleAS Single Sign-On then:

OC4J and the OracleAS JAAS Provider

Understanding OC4J Security 3-5

■ Validates the user's stored login credentials

■ Sets the OracleAS Single Sign-On cookie (including the user’s distinguished
name and realm)

■ Redirects back to the WebApp A1 application (in Oracle Application Server
Containers for J2EE)

4. The OracleAS JAAS Provider retrieves the OracleAS Single Sign-On user.

Integrating the OracleAS JAAS Provider with SSL-Enabled Applications
SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 3–2 shows JAAS integration in an application
running in an SSL-enabled J2EE environment.

Figure 3–2 Oracle Component Integration In SSL-Enabled J2EE Environments

Integrating the OracleAS JAAS Provider with Basic Authentication
Basic authentication bypasses OracleAS Single Sign-On. Figure 3–3 shows specific
JAAS integration in an application configured for Basic authentication in a J2EE
environment.

Figure 3–3 Oracle Component Integration in j2ee Environment

Note: For full details on OracleAS Single Sign-On, see the Oracle
Application Server Single Sign-On Administrator’s Guide.

Authentication in the J2EE Environment

3-6 Oracle Application Server Containers for J2EE Security Guide

Basic Authentication J2EE Environments: Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP client
request is initiated in a J2EE environment configured for Basic authentication. In this
environment, OracleAS Single Sign-On is not used. A login module (for example,
RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1) hosted
by Oracle Application Server Containers for J2EE (the Web container for executing
servlets).

2. OC4J invokes the RealmLoginModule whenever user credentials are required.
For example, when a request hits a protected page, OC4J will ask the OracleAS
JAAS Provider to authenticate the user, then the RealmLoginModule will be
invoked to authenticate the user, using the credentials sent by the user via the
browser over HTTP.

3. The OracleAS JAAS Provider retrieves the user.

Authentication in the J2EE Environment
Authentication is the process of verifying the identity of a user in a computing system,
often as a prerequisite to granting access to resources in a system. User authentication
in the J2EE environment is performed by the following:

■ OracleAS Single Sign-On (for OracleAS Single Sign-On environments) or the
OracleAS JAAS Provider RealmLoginModule or other login module (for
non-OracleAS Single Sign-On environments)

Before HTTP requests can be dispatched to the target servlet, the
JAZNUserManagergets the authenticated user information (set by mod_osso)
from the HTTP request object and sets the JAAS subject in Oracle Application
Server Containers for J2EE.

■ One of the following:

■ JAZNUserManager

■ XMLUserManager

■ A developer-supplied UserManager

Running with an Authenticated Identity
You can choose to configure the JAZNUserManager so that a filter enables the target
servlet to run with the permissions and roles associated with an authenticated identity
or run-as identity. To do this, configure the jazn-web-app element.

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL:

http://java.sun.com/j2ee/

Note: Developer-supplied UserManagers are deprecated and will
be desupported in a future release.

See Also: "JAZNUserManager" on page 3-3 for further
information on options and configuration of the
JAZNUserManager filter, including the jazn-web-app element.

Authorization in the J2EE Environment

Understanding OC4J Security 3-7

Retrieving Authentication Information
The following javax.servlet.HttpServletRequest APIs retrieve authentication
information within the servlet:

■ getRemoteUser for the authenticated username

■ getAuthType for the authentication scheme

■ getUserPrincipal for the authenticated principal object

■ getAttribute("javax.servlet.request.X509certificate") for the
SSL client certificate

Authorization in the J2EE Environment
Authorization is the process of granting permissions and privileges to an
authenticated user. This section discusses authorization within servlets.

If the servlet is configured to permit doAs(), the JAZNUserManager invokes an
authenticated target servlet within a Subject.doAs() block to enable JAAS-based
authorization in the target servlets.

Authorization is achieved through the following:

■ JAZNUserManager

■ Methods based on JAAS authorization:

■ Servlet.service() in the servlet

■ Subject.doAs() and Subject.doAsPrivileged() in the client

■ SecurityManager.checkPermission()in the server

Security Role Mapping
Two distinct role types are available to application developers creating secure
applications in J2EE environments: J2EE roles and JAAS roles. When these role types
are mapped together using Oracle Application Server Containers for J2EE group
mappings, users can access an application with a defined set of role permissions for as
long as the user is mapped to this role.

This section describes these role types and how they are mapped together.

■ J2EE Security Roles

■ Deployment Roles and Users

■ OC4J Group Mapping to J2EE Security Roles

Note: The returned principal is an instance of the interface
com.evermind.security.User, which extends
java.security.Principal.

See Also: Configuring J2EE Authorization on page 4-10.

Authorization in the J2EE Environment

3-8 Oracle Application Server Containers for J2EE Security Guide

J2EE Security Roles
The J2EE development environment includes a portable security roles feature defined
in the web.xml file for servlets and Java Server Pages (JSPs). Security roles define a set
of resource access permissions for an application. Associating a principal (in this case,
a JAAS user) with a security role assigns the defined access permissions to that
principal for as long as they are mapped to the role. For example, an application
defines a security role called sr_developer:

<security-role>
 <role-name>sr_developer</role-name>
</security-role>

You also define the access permissions for the sr_developer role.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>access to the entire application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developer</role-name>
 </auth-constraint>
 </security-constraint>

Deployment Roles and Users
JAAS roles and users are defined depending on the provider type, LDAP-based or
XML-based.

For example, with the XML-based provider type, developer is listed as a role element
in the jazn-data.xml file:

<role>
 <name>developer</name>
 <members>
 <member>
 <type>user<type>
 <name>john<name>
 </member>
 </members>
</role>

OC4J Group Mapping to J2EE Security Roles
Oracle Application Server Containers for J2EE (OC4J) enables you to map portable
J2EE security roles defined in the J2EE web.xml file to groups in an
orion-application.xml file.

The roles and users defined in your provider environment are mapped to the Oracle
Application Server Containers for J2EE developer group role in the
orion-application.xml file.

For example, the sr_developer security role is mapped to the group named
developer.

<security-role-mapping name="sr_developer">
 <group name="developer" />
 </security-role-mapping>

Authorization in the J2EE Environment

Understanding OC4J Security 3-9

Notice that a <group> in a <security-role-mapping> element corresponds to a
role in the OracleAS JAAS Provider. Therefore, this association permits the
developer group to access the resources allowed for the sr_developer security
role.

In this paradigm, the user john is listed as a member of the developer role. Because
the developer group is mapped to the J2EE security role sr_developer in the
orion-application.xml file, john has access to the application resources defined
by the sr_developer role.

Authorization in the J2EE Environment

3-10 Oracle Application Server Containers for J2EE Security Guide

Overall Security Configuration 4-1

4
Overall Security Configuration

This chapter discusses tasks related to configuring the complete security system. It
contains the following parts:

■ Choosing the XML-Based or LDAP-Based Provider

■ Locating jazn.xml, jazn-data.xml, and the <jazn> element

■ Admintool Overview

■ Specifying An Alternate Policy Provider (Optional)

■ Specifying Bootstrap OracleAS JAAS Provider Settings

■ Turning On Debug Logging

■ Specifying UserManagers

■ Customizing RealmLoginModule

■ Specifying Authentication (auth-method)

■ Configuring J2EE Authorization

■ Removing Realm Names From Authentication Principals

■ Configuring Third-Party LDAP Providers

■ Permitting EJB RMI Client Access

■ Creating a Java 2 Policy File

■ Using the <principals> element and principals.xml

Choosing the XML-Based or LDAP-Based Provider
As part of installing OC4J, you determine whether to use the LDAP-based or
XML-based provider. This section gives guidelines on how to make that choice.

■ XML-based Provider—Use the XML-based provider in development
environments and in deployed applications with a small user population.

■ LDAP-Based Provider—Use the LDAP-based provider in production
environments.

Compared to the XML-based provider, the LDAP-based provider offers better
security and performance. The centralized Oracle Internet Directory server scales
gracefully as the number of applications and users grows. We recommend you
take advantage of a centralized Oracle Internet Directory server in your
production deployments, both for better performance and to take advantage of

Locating jazn.xml, jazn-data.xml, and the <jazn> element

4-2 Oracle Application Server Containers for J2EE Security Guide

such features as centralized account creation and management, single passwords,
and credential management.

The LDAP-based provider enables you to configure cache parameters to improve
overall performance of authentication and authorization. If secure
communications are needed between the Oracle Internet Directory server and
OC4J, configure the system to use the level of security required.

When you install infrastructure, then associate the OC4J instance with a mid-tier
Oracle Internet Directory or Oracle Application Server Single Sign-On instance, the
installer automatically selects the LDAP-based provider. For details, see the Oracle
Application Server Installation Guide . If you need to configure OC4J to use the
LDAP-based Provider, see the instructions in the Oracle Application Server
Administrator’s Guide.

Locating jazn.xml, jazn-data.xml, and the <jazn> element
To configure the Oracle Application Server Java Authentication and Authorization
Service (JAAS) Provider, you must sometimes edit various configuration files using
text editors. This section discusses how to locate the configuration files and the
<jazn> element.

Locating jazn.xml
The OracleAS JAAS Provider must locate a valid jazn.xml file before it can begin
running. The jazn.xml file is used to configure the OracleAS JAAS Provider.

The bootstrap jazn.xml is in ORACLE_HOME/j2ee/home/config]. The OracleAS
JAAS Provider reads the information in this file before OC4J is started up. This means
that certain settings can only be made in the bootstrap file; if these changes are read
after OC4J starts up, they have no effect on the OracleAS JAAS Provider. Optionally,
users can specify a different location for jazn.xml; see "Locating jazn.xml" on
page 18-1 for details.

Locating jazn-data.xml
The file jazn-data.xml is the datastore for the XML-based JAAS provider. By
default, OC4J expects the file jazn-data.xml to be in ORACLE_
HOME/j2ee/]instancename/config. You can specify an alternate path name for
jazn-data.xml in the <jazn provider="xml" location="pathname">
element in jazn.xml.

Locating the <jazn> element
The <jazn> element is used to configure the OracleAS JAAS Provider. Most often, the
<jazn> element appears in one of two places:

1. The global application.xml, for global configuration

2. The application-specific orion-application.xml

The <jazn> tag may also appear in the bootstrap <jazn.xml> when it is used to
configure virtual machine properties. For details, see "The Bootstrap jazn.xml File" on
page 5-1.

Admintool Overview

Overall Security Configuration 4-3

Admintool Overview
This section discusses basic information needed to understand and use the JAZN
Admintool.

Admintool Prerequisites
When you use the JAZN Admintool, by default it edits the file jazn-data.xml
under the config directory of the OC4J home instance. For details on locating
jazn-data.xml, see "Locating jazn-data.xml". The password for the admin user is
set during installation time to the same value as the Oracle Application Server
administrator (ias_admin) password.

Before using the Admintool with the LDAP-based provider, be sure to set the correct
environment settings as described in "Preparing To Use LDAP" on page 7-1.

Authenticating Yourself
If you are using the XML-based provider, you must authenticate yourself to the JAZN
Admintool before making administrative changes. You authenticate yourself in one of
two ways:

■ Supplying the -user and -password switches, as in:

java -jar jazn.jar -user myusername -password mypassword -listrealms

■ Supplying a username and password when prompted by the Admintool, as in:

java -jar jazn.jar -listrealms
>RealmLoginModule username: martha
>RealmLoginModule password: mypass

Note: If you specify the -user, -password, or
-clustersupport options, you must specify them before all
other options on the command line.

Caution: The Admintool does not require authentication when
used with the LDAP-based provider; anyone who runs the tool can
perform Admintool operations against the Oracle Internet
Directory server. This means that it is vital to secure access to the
production machine(s) on which OC4J uses the LDAP-based
provider. If you specify the -user and -password options when
using the LDAP-based provider, they are ignored.

Admintool Overview

4-4 Oracle Application Server Containers for J2EE Security Guide

Adding Clustering Support
-clustersupport oracle_home

Specifying this option instructs the Admintool to propagate all JAAS configuration
changes throughout a cluster. The oracle_home argument specifies the absolute path
name of ORACLE_HOME, the Oracle home directory. You can combine
-clustersupport with the -shell option.

For example:

java -jar jazn.jar -clustersupport /oracle_home -shell

Specifying an Admintool LoginModule in jazn-data.xml
To specify which LoginModule the JAZN Admintool uses to authenticate its users,
you must add a <login-modules> element to the application element in
jazn-data.xml. For example:

<application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

If you try to run the JAZN Admintool without specifying a LoginModule, the
RealmLoginModule with the default options is used. The default options are shown
in Table 4–2, " RealmLoginModule Options".

Notes: If you are using the -clustersupport option, you must
specify it before all other options on the command line.

The -clustersupport option is meaningful only when using the
XML-based provider.

Turning On Debug Logging

Overall Security Configuration 4-5

Specifying An Alternate Policy Provider (Optional)
If you use the Java Virtual Machine shipped with Oracle Application Server, the
OracleAS JAAS Provider is automatically specified as the JAAS policy provider. If you
use another JVM, you must explicitly specify
oracle.security.jazn.spi.PolicyProvider as the policy provider, because
by default, the JVM uses the Sun JAAS provider.

You can specifying Oracle-specific JAAS properties in a separate file and passing them
to the JVM on the command line. Oracle supplies a default file (ORACLE_
HOME/j2ee/home/config/jazn.security.props) that specifies the OracleAS
JAAS provider.

■ To replace all security properties with the Oracle properties:

java -Djava.security.properties==propfile
■ To append the Oracle-specific properties to the other properties:

java -Djava.security.properties=propfile

Specifying Bootstrap OracleAS JAAS Provider Settings
The bootstrap jazn.xml file is inORACLE_HOME/j2ee/home/config]. The
OracleAS JAAS Provider reads the information in this file before OC4J is started up.
This means that certain settings can only be made in the bootstrap file; if they are read
after OC4J starts up, they have no effect on the OracleAS JAAS Provider. These
properties are discussed in detail in Chapter 5, "Configuring the OC4J Instance".

Turning On Debug Logging
To turn on OracleAS JAAS Provider debug logging, set the system property
jazn.debug.log.enable to true during Java Virtual Machine (JVM) startup.

 You do this by modifying the JVM startup settings for your OC4J instance. In Oracle
Application Server, you normally manage JVM settings with Oracle Enterprise
Manager, using the Java Options textbox on the Server Properties screen.

 In standalone mode, you set this property using JVM command-line options.
For instance, you might start OC4J standalone with a command line such as:

java -Djazn.debug.log.enable=true -jar oc4j.jar

 Or you can start the Admintool shell in debug mode with the command:

java -Djazn.debug.log.enable=true -jar jazn.jar -shell

In Oracle Application Server, the debug output is captured by OPMN and written to
log files associated with each OC4J instance in the directory ORACLE_
HOME/opmn/logs.

Note: When you use OC4J, the JAAS configuration properties are set
by default during OC4J startup, so in most circumstances you do not
need to worry about setting these properties. You set them only when
you are running a J2SE application outside OC4J.

Specifying UserManagers

4-6 Oracle Application Server Containers for J2EE Security Guide

Specifying UserManagers
The user manager, employing the user name and password, verifies the user’s identity
using information in the user repository. The user manager contains your definitions
for users, groups, or roles. The default user manager is the JAZNUserManager.

You can define a user manager for all applications or for specific applications.

■ Global user manager—The global (default) user manager is inherited by all
applications within an instance that has not defined a specific user manager. The
instance UserManager is defined in application.xml.

■ Specific user manager—This user manager is defined in orion_
application.xml solely for a single application. It is not used by any other
application.

■ In some cases, if an application inherits from another application instead of
inheriting from the global application, then the application’s parent user manager
will be the global UserManager instance instead of the UserManager instance
specified in the parent application.

Specifying A UserManager
To specify a UserManager for an entire OC4J instance or for a specific application
within that instance, use Enterprise Manager. For details, see the Enterprise Manager
help screen "Modifying the User Manager for All Applications".

Specifying a UserManager In orion-application.xml
Every application, including the top-level default application, has an associated
UserManager. The UserManager’s primary function is to authenticate users who
attempt to access web pages and EJBs.

The UserManager is used to authenticate users when connections are made to the
application. These are specified using sub-elements within an
<orion-application> element that define the configuration. There are three tags
that can be used to specify a UserManager. They are:

Note: Within a single OC4J instance you can specify different
values for the application-specific UserManager instance and the
global UserManager instance. When you do this, we recommend
that you not mix custom UserManagers and Oracle-supplied
UserManagers. You can use different custom UserManagers for
the application and the global instance, and you can use different
Oracle-supplied UserManagers for the application and the global
instance, but you should avoid using a custom UserManager for
the one instance and an Oracle-supplied UserManager for the
other.

Note: We strongly encourage you to use JAZNUserManager.
User-defined UserManagers will stop being supported in a future
release.

Customizing RealmLoginModule

Overall Security Configuration 4-7

Advanced Configuration
There may be more than one of the user-manager configuration within a single
<orion-application> element. Which element determines the UserManager is
determined by the order the elements appear in the table: <user-manager> takes
precedence over <jazn>, which takes precedence over <principals>. For
example, if both a <jazn> and a <principals> element are present, the
UserManager is based on the <jazn> element. If multiple elements with the
highest-priority tag are present, then the UserManagers are chained together as
parents. That is, the UserManager specified in the first tag becomes the parent of the
UserManager specified in the second, and so on. The last UserManager specified
then becomes the UserManager of the application. The parent of the first
UserManager is the UserManager associated with the parent application (if any) of
the application. The default application does not have a parent application and the
parent of its UserManager is null.

If no user manager is specified, then the UserManager is determined according to the
following rules.

■ For the default application, a JAAS UserManager is created based on
jazn-data.xml in the directory containing application.xml. If no
jazn-data.xml is present in that directory, one is created. The default realm of
the created jazn-data.xml is jazn.com.

■ At deployment time, if the UserManager of the parent application is the JAAS
UserManager, then a JAAS UserManager is created based on jazn-data.xml.
If necessary, a jazn-data.xml file is created in the same way as the previous
bullet. A <jazn> element is written into the orion-application.xml
associated with the application.

■ At application deployment time, if the UserManager of the parent application is
based on principals.xml, then the UserManager of the application will be a
principals UserManager. If a principals.xml file is not present, then an empty
file is created. A <jazn> element is written into the orion-application.xml
associated with the application.

■ If the UserManager of the parent application is user-written, then the parent’s
UserManager will become the UserManager of the application.

Customizing RealmLoginModule
The RealmLoginModule class is the default LoginModule that is configured
through the jazn-data.xml file. The RealmLoginModule class authenticates user
login credentials before the user can access J2EE applications. Authentication is
performed using OC4J container-based authentication (HTTP BASIC, FORM, and so
on). You do not need to enable the RealmLoginModule class if your application uses
OracleAS Single Sign-On authentication.

Table 4–1 UserManager Tags

Tag Meaning

<user-manager> A user manager implemented by a user-defined class.

<jazn> JAZNUserManager.

<principals> A user manager defined in a principals.xml file. See
"Using the <principals> element and principals.xml" on
page 4-13

Customizing RealmLoginModule

4-8 Oracle Application Server Containers for J2EE Security Guide

You can configure RealmLoginModule either using the JAZN Admintool or by
editing jazn-data.xml. For details on using the Admintool, see "Adding and
Removing Login Modules" on page 10-4.

The <login-module> tag supports the following <option> values:

Enabling RealmLoginModule Using A Text Editor
Use a text editor to modify the login configuration file jazn-data.xml where
needed.

The default configuration for the RealmLoginModule class setting in the
jazn-data.xml file is as follows:

<!DOCTYPE jazn-data (View Source for full doctype...)>
<jazn-data>
 .
 .
 .
<!-- Login Module Data -->
 <jazn-loginconfig>
 <application>
 <name>oracle.security.jazn.oc4j.JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addRoles</name>
 <value>true</value>
 </option>

See Also: Oracle Application Server Installation Guide for OracleAS
Single Sign-On configuration tasks.

Table 4–2 RealmLoginModule Options

Name Meaning Default

debug If set to true, prints debugging messages. false

addRoles If set to true, the RealmLoginModule adds
all directly granted roles of the user to the
Subject after successful authentication.

true

addAllRoles If set to true, the RealmLoginModule adds
all directly or indirectly granted roles of the user
to the Subject after successful authentication.

true

storePrivateCredentials If set to true, the RealmLoginModule adds
all private credentials (for instance, password
credentials) to the Subject after successful
authentication.

false

supportCSIv2 If set to true, the RealmLoginModule
supports CSIv2. See Chapter 15, "Configuring
CSIv2" for details.

false

supportNullPassword (LDAP-based provider only) If set to true, the
RealmLoginModule does not check to see if
the supplied password is null or empty. If set to
false, authentication fails if the supplied
password is null or empty.

false

Specifying Authentication (auth-method)

Overall Security Configuration 4-9

 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>
</jazn-data>

Specifying Authentication (auth-method)
You specify the authentication method (auth-method) in one of several configuration
files, using either the <jazn-web-app> or <login-config> elements. You must
edit these files by hand.

Specifying auth-method in web.xml
To specify authentication method at the application level, you edit the
<login-config> element of web.xml. For example:

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

 In web.xml, auth-method can have the values shown in Table 4–3:

These values can be overridden at the application level by using the
<jazn-web-app> element in orion-application.xml.

Specifying auth-method in orion-application.xml
The auth-method supplied in the top-level <jazn-web-app> element overrides the
auth-method in web.xml.

There is only one possible value for auth-method in orion-application.xml:
SSO, meaning that the application uses OracleAS Single Sign-On. If your installation
includes LDAP, Oracle Enterprise Manager automatically sets auth-method to SSO.
If you stop using OracleAS Single Sign-On, you must edit the file to remove this
method.

A sample entry for orion-application.xml would look like:

<jazn provider="LDAP"
 <jazn-web-app auth-method="SSO"/>
</jazn>

See Also: The OracleAS JAAS Provider Javadoc.

"Adding and Removing Login Modules" on page 10-4

Table 4–3 Values for auth-method in web.xml

Setting Meaning

BASIC (default) The application uses basic authentication, the standard
authentication.

FORM The application uses form-based authentication.

CLIENT-CERT The application requires the client to supply its own certificate
for use with SSL.

Configuring J2EE Authorization

4-10 Oracle Application Server Containers for J2EE Security Guide

Configuring J2EE Authorization
J2EE defines a declarative authorization model that decouples applications from the
underlying security infrastructure. This model allows an application's authorization
policy to be expressed in a portable manner in the application's deployment
descriptors. This model has proven to be hugely successful and suffice for most
application's needs.

In some advanced scenarios, however, the J2EE authorization model may seem too
static and coarse-grained - in these cases the JAAS authorization model can be used
instead of (or in addition to) the J2EE security model. When compared to the J2EE
authorization model, the JAAS authorization model is more powerful (fine-grained
and dynamic) and more flexible (custom permission types supported). Such power
and flexibility come at a cost, however, the JAAS authorization model is more complex
to understand, deploy and administer than the J2EE authorization model.

Both models are fully supported in OC4J.

Servlets, runas-mode, and doasprivileged-mode
In most cases, URL authorization is sufficient for an application. However, if your
application requires granular authorization, this extended authorization can be used to
enforce JAAS Policy-based authorization at the method level.

If you want a servlet to be invoked using subject.doAs() or
subject.doAsPrivileged(), you must set the runas-mode and
doasprivileged-mode attributes of the <jazn-web-app> element contained in a
<jazn> element in either the orion-web.xml or orion-application.xml files.
To do this, you open the appropriate file in a text editor.

■ subject.doAs() invokes the servlet using the privileges of a particular subject.
A subject is defined by an instance of the javax.security.auth.Subject
class and includes a set of facts regarding a single entity, such as a person. Such
facts include identities and security-related attributes, such as passwords and
cryptographic keys. The OracleAS JAAS Provider passes in the Subject instance
in the method call.

When the doAs() method is used, an AccessControlContext instance is
retrieved from the current thread (from the server).

■ subject.doAsPrivileged() uses the privileges of a particular subject without
being limited by the access-control restrictions of the server.

When the doAsPrivileged() method is used, the OracleAS JAAS Provider
invokes the method with a null java.security.AccessControlContext
instance, in order to start the action fresh and execute the servlet without the
restrictions of the current server AccessControlContext instance.

runas-mode and doasprivileged-mode control whether the servlet is invoked
with subject.doAsPrivileged() or subject.doAs(). By default, runas-mode
is set to false, which means that neither subject.doAsPrivileged() or
subject.doAs() is invoked.

Note: runas-mode is unrelated to the servlet.runAs method.

Removing Realm Names From Authentication Principals

Overall Security Configuration 4-11

Thus, to have your servlet invoked using subject.doAsPrivileged() you should
have a <jazn-web-app> element that looks like this:

<jazn-web-app
 auth-method="SSO"
 runas-mode="true"
 doasprivileged-mode="true"
/>

Mapping Logical Roles to Security Roles
You sometimes deploy a servlet into a container that uses different role names than
expected by the servlet. You do this by mapping the logical role (the role name used by
the servlet) to the security role (the role name used by the container) in the file
web.xml.

For example, the following entity maps the security role corpmanagers to the logical
role to the logical role mgmt:

<security-role-ref>
 <role-name>mgmt</role-name>
 <role-link>corpmanagers</role-link>
</security-role-ref>

In this example, if a servlet running as a user belonging to corpmanagers invokes
isUserInRole("mgmt"), the method will return true. Whenever the container
finds no security-role-ref matching a security role, the container checks the
<role-name> against the entire list of security roles for the Web application.

Removing Realm Names From Authentication Principals
It is often desirable to avoid parsing the principal returned by various method calls.
You can configure OracleAS JAAS Provider so that the returned principal contains no
realm name. To do this, you add a jaas.username.simple property to the <jazn>
element in the file jazn.xml, or, at application level, to the <jazn> element in the file
orion-application.xml. If this property is set to true, returned principals
contain no realm name; if it is set to false, the default, returned principals contain the
complete realm name.

This property affects the return values of the following methods:

■ javax.servlet.http.HTTPServletRequest, getRemoteUser and
getUserPrincipal methods

■ javax.ejb.EJBContext, getCallerIdentity and getCallerPrincipal
methods

Table 4–4 runas-mode and doasprivileged-mode Settings

If runas-mode
is Set To

And
doasprivileged-mode
Is Set To Then the servlet is invoked with:

false
(default)

true or false No special privileges

true true (default) subject.doAsPrivileged()

true false subject.doAs()

Configuring Third-Party LDAP Providers

4-12 Oracle Application Server Containers for J2EE Security Guide

By default, the principal returned by these methods is in the format realm_
name/simple_name, such as jazn.com/john. When you set
jaas.username.simple to true, the returned principal is in the format simple_
name, such as john.

You set jaas.username.simple as follows:

1. Locate the file containing the <jazn> element (see "Locating jazn.xml,
jazn-data.xml, and the <jazn> element"), open the file in a text editor, and go to the
<jazn> element within the file.

2. Search for a <property name="jaas.username.simple"> sub-element
within the <jazn> element.

3. If the sub-element exists, change the value to true or false; if the sub-element
does not exist, create one. In either case, you should have a sub-element that looks
like:

<jazn provider="XML" location="./jazn-data.xml">
 <property name="jaas.username.simple" value="true" />
</jazn>

Configuring Third-Party LDAP Providers
See Chapter 9, "Configuring External LDAP Providers".

Permitting EJB RMI Client Access
To enable fat client access to EJBs using RMI, you must grant the correct permissions
using the JAZN Admintool. (For general information on using the Admintool, see
"Admintool Overview" on page 4-3.) You must grant RMIPermission login to
your user, role, or group.

java -jar jazn.jar -grantperm myrealm -role administrators \
 com.evermind.server.rmi.RMIPermission login

Note: Do not edit any <jazn> properties except as specified in this
chapter.

Using the <principals> element and principals.xml

Overall Security Configuration 4-13

Creating a Java 2 Policy File
The Java 2 policy file grants permissions to trusted code or applications that you run.
This enables code or applications to access Oracle support for JAAS or JDK APIs
requiring specific access privileges.

A preconfigured Java 2 policy (java2.policy) is provided in
 ORACLE_HOME/j2ee/home/config.

You need to modify the Java 2 policy file to grant permissions to trusted code or
applications.

For example, the following section of a java2.policy file grants
java.security.AllPermission to the trusted jazn.jar.

/* grant the JAZN library AllPermission */
grant codebase "file:${oracle.home}/j2ee/home/jazn.jar" {
 permission java.security.AllPermission;
};

The following example grants specific permissions to all applications running in the
ORACLE_HOME/appdemo directory.

/* Assuming you are running your application demo in $ORACLE_HOME/appdemo/, */
/* Grant JAZN permissions to the demo to run JAZN APIs*/
grant codebase "file:/${oracle.ons.oraclehome}/appdemo/-" {
 permission oracle.security.jazn.JAZNPermission "getPolicy";
 permission oracle.security.jazn.JAZNPermission "getRealmManager";
 permission oracle.security.jazn.policy.AdminPermission
"oracle.security.jazn.realm.RealmPermission$*$createRealm,dropRealm,
 createRole, dropRole,modifyRealmMetaData";

Using the <principals> element and principals.xml
The <principals> element tells OC4J to use the UserManager described in a
principals file, normally principals.xml. A <principals> element has one
attribute, <path>, which specifies a path for the principals file, normally
principals.xml.

For example,

<principals path=”myprincipals.xml” />

A principals.xml file also contains a <principals> element; this contains two
sub-elements, <groups> and <users>. The <groups> element contains one or more
<group> elements, and the <users> element contains one or more <user> elements.

Note: The XMLUserManager class is deprecated, and is
supported for backward compatibility only. Oracle will cease to
support XMLUserManager and principals.xml in a future
release.

Using the <principals> element and principals.xml

4-14 Oracle Application Server Containers for J2EE Security Guide

Groups in principals.xml correspond to roles in the OracleAS JAAS Provider. The
principals.xml file does not support any equivalent of the OracleAS JAAS
Provider’s concept of realms. Permissions granted to groups may be checked explicitly,
and OC4J does check for the special permissions listed above. However, group
permissions are not integrated with the usual Permission checking performed by a
SecurityManager.

Table 4–5 Elements in principals.xml

Element Can Contain Attributes Description

<principals> <groups>,
<users>

NA Containing element in file

<groups> <group> A list of groups known to this user
manager

<group> <description>,
<permission>

name Identifies a single user group; name
attribute specifies group name

<description> Not used by OracleAS JAAS Provider,
but is displayed in various
circumstances.

<permission> name A java.security.Permission that is
granted to principals. There are two
special values:

■ administrator—equivalent to
com.evermind.security.Admin
istrationPermission()

■ rmi:login— equivalent to
com.evermind.server.rm.RMIP
ermission(“login”)

<users> <user> List of users known to the UserManager

<user> <description>,
<group-membersh
ip>

Single user belonging to this group

username String used to identify the user

password Cleartext password used to authenticate
the user. There is no mechanism for
obfuscating this password.

deactivated Either true or false. If true, then this
user will not be found in lookups and
will not be able to be authenticated

<description> Arbitrary content that may be displayed
in various circumstances

<group-membership> group Name attribute of a <group> which
contains this user

Using the <principals> element and principals.xml

Overall Security Configuration 4-15

The following is an example principals.xml file.

<?xml version="1.0" standalone='yes'?>
<!DOCTYPE principals PUBLIC "//Evermind - Orion Principals//"
"http://xmlns.oracle.com/ias/dtds/principals.dtd">

<principals>
 <groups>
<group name="guests">
 <description>users</description>
 </group>
 <group name="administrators">
 <description>administrators</description>
 <permission name="administration" />
 </group>
 </groups>
 <users>
 <user username="SCOTT" password="TIGER">
 <group-membership group="guests" />
 </user>
 <user username="anonymous" password="">
 <description>The default guest/anonymous user</description>
 <group-membership group="guests" />
 </user>
 <user username="admin" password="" deactivated="true">
 <description>The default administrator</description>
 <group-membership group="users" />
 <group-membership group="administrators" />
 </user>
 </users>
</principals>

Using the <principals> element and principals.xml

4-16 Oracle Application Server Containers for J2EE Security Guide

Configuring the OC4J Instance 5-1

5
Configuring the OC4J Instance

This chapter discusses instance-specific OC4J configuration. All tasks in this chapter
affect an entire OC4J instance and all applications running under that instance. This
chapter contains the following sections:

■ The Bootstrap jazn.xml File

■ Specifying LDAP Connection Properties

■ Specifying LDAP JNDI Connection Pool Size

■ Configuring LDAP Caching

■ Configuring LDAP SSL Properties

■ Configuring LDAP Default Realm

The Bootstrap jazn.xml File
All of the tasks in this chapter rely on editing the bootstrap jazn.xml file, which is the
instance-specific configuration file read at instance startup. The bootstrap jazn.xml
file is ORACLE_HOME/j2ee/instancename/config/jazn.xml. All changes to this
file affect the entire OC4J instance. The properties listed in this section can be changed
only in the instance-specific jazn.xml file.

Specifying LDAP Connection Properties
There are two properties that change LDAP connection properties. They are listed in
Table 5–1.

To configure LDAP connection properties, use the following steps:

Note: You cannot change the bootstrap jazn.xml file with
Application Server Control Console; you must edit it using a text
editor.

Table 5–1 LDAP Connection Properties

Property Name Meaning
Default
Value

ldap.connect.max.retry Number of times the OracleAS JAAS Provider attempts to
create an LDAP connection before giving up.

5

ldap.connect.sleep Number of milliseconds the OracleAS JAAS Provider waits
before retrying a failed LDAP connection attempt.

5000

Specifying LDAP JNDI Connection Pool Size

5-2 Oracle Application Server Containers for J2EE Security Guide

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Locate the <property> sub-element within the <jazn> element. The syntax of
the <property> sub-element is:

<property name="propname" value="propvalue"/>

If there is no <property> sub-element corresponding to the property you want to
change, create one.

3. Restart OC4J.

Specifying LDAP JNDI Connection Pool Size
There are two properties that change LDAP connection pool properties. They are listed
in Table 5–2.

To specify the size of the connection pool used by JNDI:

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Locate the <property> sub-element within the <jazn> element. The syntax of
the <property> sub-element is:

<property name="propname" value="propvalue"/>

Table 5–2 LDAP JNDI Connection Pool Properties

Property Name Meaning
Default
Value

jndi.ctx_pool.init_size Initial size for JNDI/LDAP connection pool. 5

jndi.ctx_pool.inc_size Pool increment size for JNDI/LDAP connection pool —
number of connections added to pool whenever the supply
of connections in the pool is exhausted.

10

Configuring LDAP Caching

Configuring the OC4J Instance 5-3

If there is no <property> sub-element corresponding to the property you wish to
change, create one. For example, a <property> sub-element setting the initial
size to 20 would look like:

<property name="jndi.ctx_pool.init_size" value="20">

3. Restart OC4J.

Configuring LDAP Caching
The LDAP-based OracleAS JAAS Provider supports caching, providing improved
performance and scalability. There are three separate caches:

■ Policy cache, which stores grantees and permissions

■ Realm cache, which stores realms, users and roles, and a role graph.

■ Session cache, which stores users and role graphs in an HTTP session object. (This
cache is available only to web-based clients with cookies enabled.)

The caching service maintains a global HashMap, which is used to store and retrieve
cached objects. A daemon thread runs periodically in the background to invalidate
and clean up expired objects in the HashMap. Objects in the cache expire based on a
time-to-live algorithm; expiration time can be set with the cache properties, described
in Table 5–3.

Changing Session Cache Details
HttpSession objects persist for the duration of the server-side session. An
application can terminate a session explicitly, by invoking
HttpSession.invalidate(); a container can terminate a session based on the
<session-timeout> value.

Note: Do not edit any <jazn> properties except as specified in this
documentation.

Note: Only the LDAP-based Provider provides these caches. The
XML-based Provider defaults to caching the entire XML document.

Note: Objects stored in an HttpSession instance must
implement the java.io.Serializable interface in order to be
deployed with the <distributable /> flag in web.xml.

See Also: The Oracle HTTP Server Administrator’s Guide for more
information about session support in OC4J.

Configuring LDAP Caching

5-4 Oracle Application Server Containers for J2EE Security Guide

Disabling LDAP Caching
Caching is enabled by default. You should disable the caches when performing
management and administrative tasks programmatically. In particular:

■ Disable the policy cache when managing policy. If the policy cache is enabled,
calling Policy.grant() or Policy.revoke() causes an
UnsupportedOperationException.

■ Disable the realm cache when managing realms. This includes adding realms,
dropping realms, granting roles, and revoking roles.

■ Disable the session cache when you disable HTTP session cookies.

To disable the LDAP cache, use the following steps:

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Edit the <jazn> element to appear as follows:

<jazn provider="LDAP">
 <property
 name="ldap.user" value=
"orclApplicationCommonName=jaznadmin1,cn=JAZNContext,cn=products,cn=OracleContext"/>
 <property name="ldap.password"
 value="{903}3o4PTHbgMzVlzbVfKITIO5Bgio6KK9kD"/>
 <property name="ldap.cache.session.enable"
 value="false" />
 <property name="ldap.cache.realm.enable"
 value="false" />
 <property name="ldap.cache.policy.enable"
 value="false" />
</jazn>

3. Restart OC4J.

LDAP Cache Configuration
The properties that affect the LDAP cache are controlled by <property>
sub-elements within the <jazn> element. To change these properties, you must edit
the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, and change the <jazn> element.

To configure LDAP cache properties, use the following steps:

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Locate the <property> sub-element within the <jazn> element. The syntax of
the <property> sub-element is:

<property name="propname" value="propvalue"/>

If there is no <property> sub-element corresponding to the property you wish to
change, create one.

Note: The JAZN Admintool automatically disables caching while it
is in operation, then reenables caching when it finishes.

Configuring LDAP Caching

Configuring the OC4J Instance 5-5

3. Restart OC4J.

Table 5–3 describes the LDAP cache properties and their default values. You can set
these properties only at the instance level, in the <jazn> tag in the bootstrap
<jazn.xml>.

A jazn element with all caches enabled, a cache size of 100, and a 10000-millisecond
timeout would look like:

< jazn provider="LDAP" location="ldap://example.com:389" >
 < property name="ldap.cache.initial capacity" value="100" />
 < property name="ldap.cache.purget.timeout" value="10000" />
</jazn>

Table 5–3 LDAP Cache Properties

Property Description Default

ldap.cache.policy.enabl
e (see Note)

If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.realm.enable If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.session.enab
le

If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.initial.capa
city

Initial capacity for the HashMap. 20

ldap.cache.load.factor Load factor for the HashMap. .7

ldap.cache.purge.initia
l.delay

String containing an integer that
represents the number of milliseconds
the daemon thread waits before starts
checking for expired objects.

3600000

ldap.cache.purge.timeou
t

The string representation of an integer
that represents the number of
milliseconds an object remains in cache
before being invalidated and removed.
It is also the sleep time for the daemon
thread between each run looking for
expired objects.

3600000

Notes:

■ Do not edit any <jazn> properties except as specified in this
documentation.

■ ldap.cache.policy.enable replaces the deprecated property
ldap.cache.enable

Configuring LDAP SSL Properties

5-6 Oracle Application Server Containers for J2EE Security Guide

Configuring LDAP SSL Properties
The properties that affect SSL are controlled by <property> sub-elements within the
<jazn> element. To change these properties, you must edit the file containing the
<jazn> element.

To configure LDAP SSL properties, use the following steps:

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Locate the <property> sub-element within the <jazn> element. The syntax of
the <property> sub-element is:

<property name="propname" value="propvalue"/>

If there is no <property> sub-element corresponding to the property you wish to
change, create one.

3. Restart OC4J.

Table 5–4 lists the SSL properties.

Choosing SSL Authentication
This section discusses configuring the OracleAS JAAS Provider to use SSL with Oracle
Internet Directory. For information on how to configure Oracle Internet Directory to
use SSL, see the Oracle Internet Directory Administrator’s Guide andOracle Application
Server Containers for J2EE Servlet Developer’s Guide .

At 10g Release 2 (10.1.2), you must use NULL authentication when communicating
with Oracle Internet Directory, NULL authentication means that data are encrypted
with the Anonymous Diffie-Hellman cipher suite, but no certificates are used for
authentication.

If you choose SSL at install time, SSL is enabled with NULL authentication in place.
You must manually enable SSL only if you did not choose SSL as part of your
installation. In that case, for NULL authentication, add a <property> tag to the
<jazn> tag in the bootstrap jazn.xml to specify a protocol (note that you do not

Table 5–4 Values For <property> Element of <jazn> Tag

Property Name Value

ldap.password Obfuscated password for the LDAP user name. For example:

{903}oZZYqmGc/iyCaDrD4qs2FHbXf3LAWtMN

See "Password Obfuscation In jazn-data.xml and jazn.xml" on page 14-1 for
details on obfuscation.

ldap.protocol The protocol to be used when communicating with LDAP using SSL.

ldap.user LDAP username or DN. This element is populated automatically; you should
not change the contents. For example:

orclApplicationCommonName=jaznadmin1,cn=JAZNContext,
cn=products,cn=OracleContext

Note: Do not edit any <jazn> properties except as specified in this
document.

Configuring LDAP Default Realm

Configuring the OC4J Instance 5-7

specify a wallet location or password, because NULL authentication does not use
certificates):

<?xml version = '1.0' encoding = 'UTF-8'?>
<jazn provider="LDAP" location="ldap://example.com:5000" default-realm="us">

 <property name="ldap.protocol" value="ssl"/>

</jazn>

Configuring LDAP Default Realm
The default realm is the realm used whenever an authentication or authorization
request does not specify a realm explicitly. This attribute is automatically populated
with the default Oracle Identity Management realm; you need to edit the attribute
only if the default is incorrect for your application. To configure the LDAP default
realm, use the following steps:

1. Open the bootstrap <jazn.xml> file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Edit the default-realm attribute of the <jazn> element. The syntax is:

<jazn provider="LDAP" default-realm="myrealm"

3. Restart OC4J.

For example, a jazn element that set the default-realm to "Sales" would look like:

<jazn provider="LDAP" default-realm="Sales" ... more attributes
 <contents of jazn element/>
</jazn>

Note: Do not edit any <jazn> properties except as specified in this
documentation.

Configuring LDAP Default Realm

5-8 Oracle Application Server Containers for J2EE Security Guide

Security Considerations During Application Deployment 6-1

6
Security Considerations During Application

Deployment

This chapter discusses issues to be considered when deploying applications. It is
divided into the following sections:

■ Selecting a UserManager

■ Mapping Security Roles

■ Granting Permissions

■ Creating Users And Groups

Selecting a UserManager
By default, if you associated your OC4J instance with infrastructure, the JAZN LDAP
UserManager is used for your newly-deployed application; otherwise, the JAZN
XML UserManager is used for your application. If for some reason you need to
change your application’s user manager, you can do so from the Application Server
Control Console. For details, see the Application Server Control Console help screen
"Modifying the User Manager for All Applications".

Mapping Security Roles
You map security roles for your application using the Security page of the
Application Server Control Console. You use the following steps:

1. Select your application from the Application Server Control Console, then click the
Security link.

2. Select a role from the list titled Security Roles.

3. Click the button Map Roles To Principals. A new screen appears headed Role:
yourrole.

4. Click the checkbox next to the desired group or user. (There are two separate areas
labeled Map Role To Groups and Map Role To Users.) Click Apply.

5. A confirmation screen appears. Click OK.

Granting Permissions

6-2 Oracle Application Server Containers for J2EE Security Guide

Granting Permissions
There are two different ways to grant permissions.

■ To grant RMI permission or administration permission, use Oracle Enterprise
Manager 10g Application Server Control Console; for details, see "Granting RMI
Permission Or Administration Permission" .

■ To grant any permissions other than RMI permission or administration
permission, you use the JAZN Admintool. For details, see "Granting and Revoking
All Other Permissions".

Granting RMI Permission Or Administration Permission
You can grant RMI or administration permission to a group using Oracle
Enterprise Manager 10g Application Server Control Console. To do this:

1. Select an application and navigate to the Security page.

2. Select the group’s name from the list of groups. The Add/Edit Group Page
appears.

3. Check whichever permissions you wish to add and click Apply.

Granting and Revoking All Other Permissions
You use the JAZN Admintool to grant and revoke user permissions. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

-grantperm realm {-user user|-role role } | principal_class principal_parameters}
permission_class [permission_parameters]
-revokeperm realm {-user user|-role role} | principal_class principal_parameters}
permission_class [permission_parameters]
-listperms realm {-user user|-role role} | principal_class principal_parameters}
permission_class [permission_parameters]

where principal_class is the fully qualified name of a class that implements the
principal interface (such as com.sun.security.auth.NTDomainPrincipal) and
principal_paramters is a single String parameter.

The -grantperm option grants the specified permission to a user (when called with
-user) or a role (when called with -role) or a principal. The -revokeperm option
revokes the specified permission from a user or role or principal

A permission_descriptor consists of a permission’s explicit class name (for
example, oracle.security.jazn.realm.RealmPermission), its action, and its
action and target parameters (for RealmPermission, realmname action). Note
that there may be multiple action and target parameters.

Note: If the Admintool gives the error message Permission
class not found, it means that the permission you wish to grant is
not in the classpath. You must place the JAR containing the
permission class in the jdk/jre/lib/ext directory so that the
Admintool can locate it..

Creating Users And Groups

Security Considerations During Application Deployment 6-3

For example, to grant FilePermission with target a.txt and actions "read,
write" to user martha in realm foo, type:

java -jar jazn.jar -grantperm foo -user martha java.io.FilePermission
 a.txt read,write

Admintool shell:

JAZN:> grantperm foo -user martha java.io.FilePermission a.txt read,write

Creating Users And Groups
See Chapter 7, "Configuring the LDAP-Based Provider" or Chapter 8, "Configuring the
XML-Based Provider" for details on creating users and groups in each provider.

Creating Users And Groups

6-4 Oracle Application Server Containers for J2EE Security Guide

Configuring the LDAP-Based Provider 7-1

7
Configuring the LDAP-Based Provider

This chapter discusses configuring the LDAP-based provider. It contains the following
sections:

■ Preparing To Use LDAP

■ Creating LDAP Users and Groups

Some LDAP properties affect the entire OC4J instance; these properties are discussed
in "Specifying Bootstrap OracleAS JAAS Provider Settings" on page 4-5.

Preparing To Use LDAP
You normally associate OC4J with infrastructure at the time of installation.However,
you can also associate OC4J with infrastructure using Oracle Enterprise Manager 10g
Application Server Control Console. See the Oracle Enterprise Manager 10g help
screen "Application Server- Infrastructure Page"

When you associate an OC4J instance with an Oracle Application Server Infrastructure
(including the Oracle Internet Directory), your application can leverage the
LDAP-based provider for central management of users.

Creating Administrative Users and Groups
If you specify the LDAP-based provider globally in the application.xml
configuration file, then you must set up certain users, groups, and permissions in
Oracle Delegated Administration Services:, and then grant these users and groups the
appropriate permissions.

You can set up the appropriate groups and users by using the tool
oracle.security.jazn.util.LoadOidData, which is part of the jazncore
library supplied inJ2EE_HOME.. You run the tool with the command line:

java -cp ./jazncore.jar oracle.security.jazn.util.LoadOidData

Preparing To Use LDAP

7-2 Oracle Application Server Containers for J2EE Security Guide

 The syntax for this tool is:

LoadOidData [-h ldaphost] [-p ldapport] [-D binddn] [-w passwd] [-f filename
[-oc4jAdminPwd passwd] [-ignoreError [true|false]

The supported options are:

■ -h ldaphost —The LDAP hostname

■ -p ldapport—The port of the LDAP server

■ -D binddn—The distinguished name for the Oracle Internet Directory
administrator

■ -w password—The password for the Oracle Internet Directory administrator

■ -f filename—The file containing the entries to be loaded; this should always be
J2EE_HOME/jazn/install/oidConfigForOc4j.sbs

■ -oc4jAdminPwd password—The password that will be assigned to OC4J
administrator

■ -ignoreErrorboolean—If set to false, the default, the tool stops as soon as it
encounters an error; if set to true, the tool continues after reporting the error.

 For example, assume the password for the Oracle database administrator is
welcome1 and the password for the OC4J admin user is welcome2. The command
line would be:

java -cp $J2EE_HOME/jazncore.jar oracle.security.jazn.util.LoadOidData
 -h oidhost -p oidport -D cn=orcladmin -w welcome1
 -f $J2EE_HOME/jazn/install/oidConfigForOc4j.sbs -oc4jAdminPwd welcome2

After you run this tool, your default Oracle Identity Management realm will contain
the following:

■ An administrators group

■ An admin user that is a member of the administrators group

The administrators group will have the following permissions:

■ com.evermind.server.AdministrationPermission
("administration")

■ com.evermind.server.rmi.RMIPermission("login")

Finally, you must set the ldap.user property to admin and the ldap.password
property to the admin password; see "Configuring LDAP SSL Properties" on page 5-6
for instructions.

Creating LDAP Users and Groups

Configuring the LDAP-Based Provider 7-3

LDAP-Based Provider Environment Variables
Before beginning development, you must ensure that the operating-system-specific
environment variable controlling loading of dynamic libraries (for example, LD_
LIBRARY_PATH in Solaris) is set appropriately. See Table 2–5 for details.

When you manage OC4J with Oracle Enterprise Manager, it sets this variable
automatically.

Creating LDAP Users and Groups
To create users and groups when using the LDAP-based provider, you use the Oracle
Delegated Administration Services tools. For details, see Oracle Identity Management
Guide to Delegated Administration.

Creating LDAP Users and Groups

7-4 Oracle Application Server Containers for J2EE Security Guide

Configuring the XML-Based Provider 8-1

8
Configuring the XML-Based Provider

This chapter discusses performing basic user, group, and role management tasks using
Oracle Enterprise Manager 10g Application Server Control Console and JAZN
Admintool. It is divided into the following sections:

■ Creating Users

■ Creating Roles (Groups)

■ Deleting Users

■ Deleting Roles (Groups)

■ Creating Realms

■ Deleting Realms

■ Granting Permissions

■ Revoking Permissions

■ Granting Roles (Groups)

■ Revoking Roles (Groups)

■ Setting Persistence Mode

■ Configuring XML Default Realm

■ Migrating Principals from the principals.xml File

Creating Users
To create users in the XML-based Provider, use Enterprise Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen for the appropriate OC4J instance.

3. Click the Add User button and follow the instructions on the screens.

Note: This chapter uses the term "role" because that term is used by
the JAZN Admintool. A "role" is the same thing as a "group", which is
the more commonly-used term.

Creating Roles (Groups)

8-2 Oracle Application Server Containers for J2EE Security Guide

Creating Roles (Groups)
To create roles (also known as groups) in the XML-based Provider, use Enterprise
Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen for the appropriate OC4J instance.

3. Click the Add Group button and follow the instructions on the screens.

Deleting Users
To delete users in the XML-based Provider, use Enterprise Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen for the appropriate OC4J instance.

3. Select a user with the radio button.

4. Click the Remove button and follow the instructions on the screens.

Deleting Roles (Groups)
To delete roles (also known as groups) in the XML-based Provider, use Enterprise
Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen for the appropriate OC4J instance.

3. Select a group with the radio button.

4. Click the Remove button and follow the instructions on the screens.

Creating Realms
To add a realm, use the JAZN Admintool. See "Admintool Overview" on page 4-3 for
details on using the Admintool.

 The Admintool -addrealm option adds a realm. It takes as arguments the realm
name, the administrator name, and the administrator password. The syntax is:

-addrealm realm admin adminpwd adminrole

For example, using the XML-based Provider, the administrator martha with password
mypass using role hr would add the realm employees as follows:

java -jar jazn.jar -addrealm employees martha mypass hr

Note: The bootstrap jazn-data.xml must contain accounts for
"admin" and "anonymous". Do not remove these accounts; if you do,
the OracleAS JAAS Provider will stop working.

Granting Roles (Groups)

Configuring the XML-Based Provider 8-3

Deleting Realms
To delete realms, use the JAZN Admintool. See "Admintool Overview" on page 4-3
for details on using the Admintool.

 The Admintool -remrrealm option deletes a role from the realm. It takes one
arguments, realm, the realm name. The syntax is:

-remrealm realm

To delete a realm foo, type:

java -jar jazn.jar -remrealm foo

Granting Permissions
See "Granting Permissions" on page 6-2.

Revoking Permissions
To revoke permissions, use the JAZN Admintool. See"Admintool Overview" on
page 4-3 for details on using the Admintool.

The -revokeperm option revokes the specified permission from a user or role or
principal. To supply multiple words in the permission argument, enclose it in
quotation marks ("three word permission"). The syntax is:

-revokeperm realm {-user user|-role role} | principal_class principal_parameters}
permission_class [permission_parameters]

where principal_class is the fully qualified name of a class that implements the
principal interface (such as com.sun.security.auth.NTDomainPrincipal) and
principal_paramters is a single String parameter.

To revoke the perm1 permission, type:

java -jar jazn.jar -revokeperm foo -user martha java.io.FilePermission a.txt
read,write

Granting Roles (Groups)
To grant roles in the XML-based Provider, use Enterprise Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen of the chosen OC4J instance.

3. Select a user with the radio button.

4. Select the checkboxes that correspond to the roles you wish to grant.

5. Click the Apply button.

Revoking Roles (Groups)

8-4 Oracle Application Server Containers for J2EE Security Guide

Revoking Roles (Groups)
To grant roles in the XML-based Provider, use Enterprise Manager as follows:

1. Go to the Application Server Control Console.

2. Navigate to the Security screen of the chosen OC4J instance.

3. Select a user with the radio button.

4. Select the checkboxes that correspond to the roles you wish to revoke..

5. Click the Apply button.

Setting Persistence Mode
Persistence mode governs when changes to data are written to jazn-data.xml.
There are three possible values for persistence:

■ NONE

Do not write changes to jazn-data.xml.

■ ALL

Write changes after every modification.

■ VM_EXIT (the default)

Write changes when the Java Virtual Machine exits.

To configure the persistence mode in the XML-based provider, you must edit the
<jazn> element in the jazn.xml file by hand. (For details on locating jazn.xml, see
"Locating jazn.xml, jazn-data.xml, and the <jazn> element" on page 4-2)

1. Open jazn.xml in your text editor and go to the <jazn> element.

2. Edit the persistence attribute of the <jazn> element. For example, to write
changes after every modification, you should edit the jazn element to look like:

<jazn persistence="ALL" ... other attributes />

Configuring XML Default Realm
The default realm is the realm used whenever an authentication or authorization
request does not specify a realm explicitly. This attribute is not needed if you have
configured only one realm in the repository. To configure the XML default realm, use
the following steps:

1. Locate the file containing the <jazn> element (see "Locating jazn.xml,
jazn-data.xml, and the <jazn> element" on page 4-2), open the file in a text editor,
and go to the <jazn> element within the file.

2. Edit the default-realm attribute of the <jazn> element. The syntax is:

<jazn provider="XML" default-realm="myrealm"

3. For example, a jazn element that set the default-realm to Sales would look like:

<jazn provider="XML" default-realm="Sales" ... more attributes
 <contents of jazn element/>
</jazn>

Note: Do not change the other attributes of the jazn tag.

Migrating Principals from the principals.xml File

Configuring the XML-Based Provider 8-5

Migrating Principals from the principals.xml File
You use the JAZN Admintool to migrate your data out of the principals.xml file.
For basic information on running the JAZN Admintool, see "Admintool Overview" on
page 4-3.

-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path
name of the input file (typically ORACLE_
HOME/j2ee/home/config/principals.xml).

The migration converts principals.xml users to JAAS users and
principals.xml groups to JAAS roles. All permissions that were previously
granted to a principals.xml group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

An error (either Javax.naming.AuthenticationException:Invalid
username/password or javax.naming.NamingException:Lookup Error) is
returned if the input file contains errors.

Before you convert principals.xml, you must make sure that you have an
administrator user that is authorized to manage realms. To do this:

1. Activate the administrative user in principals.xml, which is deactivated by
default. Be sure to create a password for the administrator.

2. Create the realm principals.com with a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addrealm principals.com u1 welcome r1

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in principals.xml. This is necessary
because the convert command does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

3. Migrate principals.xml to the principals.com realm, as in

java -jar jazn.jar -convert config/principals.xml principals.com
4. Change the <default-realm> to principals.com; see "Setting Persistence

Mode" on page 8-4.

5. Stop OC4J and restart it.

Note: Do not edit any <jazn> properties except as specified in this
chapter.

Migrating Principals from the principals.xml File

8-6 Oracle Application Server Containers for J2EE Security Guide

Configuring External LDAP Providers 9-1

9
Configuring External LDAP Providers

This chapter discusses how to configure OC4J to use non-Oracle LDAP servers. It is
divided into the following sections:

■ Prerequisites

■ Creating a <login-module> Element in jazn-data.xml

■ An Example LDIF Description

■ Configuring Sun Java System Application Server as LDAP Provider

■ Configuring Microsoft Active Directory as LDAP Provider

Prerequisites
Before you configure OC4J, you must complete the following prerequisites:

1. Install and configure Sun Java System Application Server (formerly iPlanet) or
Active Directory.

2. Install and configure OC4J.

3. Locate the jazn-data.xml file associated with your OC4J instance. This is
normally in the directory ORACLE_HOME/j2ee/instance_name/config. You
will be editing this file using a text editor.

4. Locate the orion-application.xml file that controls your application. This
file will normally be located in the directory ORACLE_HOME/j2ee/instance_
name/application-deployment/application_name. You will be editing
this file using a text editor.

Note: Although OC4J supports non-Oracle LDAP servers, Oracle
Identity Management does not. You cannot configure Oracle Identity
Management to use a third-party LDAP server. Furthermore, you
should not configure the JAAS Provider to use Oracle Identity
Management as a third-party LDAP server; by doing so, you lose
access to the optimizations and integrations available when using
Oracle Identity Management as the native LDAP provider.

Note: Although many jazn-data.xml files can be associated with
an OC4J instance, the jazn-data.xml specified in the bootstrap
jazn.xml serves as the default repository for JAAS login modules.

Creating a <login-module> Element in jazn-data.xml

9-2 Oracle Application Server Containers for J2EE Security Guide

Creating a <login-module> Element in jazn-data.xml
Each option in a <login-module> corresponds to a configuration setting in the
LDAP provider. The supported options are listed in Table 9–2,Table 9–2 , and
Table 9–3. Unless marked (optional), all options must be explicitly specified.

Note: Sample login module entries for Sun Java System Application
Provider and Microsoft Active Directory are provided in the directory
J2EE_HOME/jazn/config. A non-provider-specific login module
entry is provided in J2EE_HOME/jazn/config/ldap_login_
module.template.

Table 9–1 LoginModule Provider Options

Option name Meaning

oracle.security.jaas.ldap.provider.
url

The URL of the LDAP provider in the format hostname:portname.

oracle.security.jaas.ldap.provider.
principal

The Distinguished Name (DN) of the LDAP user that is used to connect to the LDAP
server. This user must be an admiinstrator with privileges to search users and
groups, and to invoke ldapcompare on a user password if the target directory
supports this.

oracle.security.jaas.ldap.provider.
credential

The credential (generally a password) used to authenticate the LDAP user defined in
oracle.security.jaas.ldap.provider.principal.

oracle.security.jaas.ldap.provider.
type

(Optional) The product name of the LDAP provider. Supported values are iplanet,
active directory, and other. If you supply iplanet or active directory,
the login module is able to infer some LDAP properties (for example, the group
objectclass for active directory is "group") and do some optimizations.

oracle.security.jaas.ldap.provider.
connect.pool

(Optional) Boolean: whether connection pooling is enabled. True enables connection
pooling, false disables it.

oracle.security.jaas.ldap.lm.cache_
enabled

(Optional) Boolean: whether login module caching is enabled. True (default)
enables caching, false disables it.

Table 9–2 LoginModule User Options

Option name Meaning

oracle.security.jaas.ldap.user.
name.attribute

The name of the LDAP attribute that uniquely identifies the name of the user. In Sun
Java System Application Server, uid; on Active Directory, sAMAccountName.

oracle.security.jaas.ldap.user.
objectclass

A list of space-separated LDAP schema object class(es) used to represent a use. On
SSun Java System Application Server, inetOrgPerson.

oracle.security.jaas.ldap.user.
searchbase

A list of space-separated based distinguished name (DN) in the LDAP directory that
contains users. For example, cn=users,dc=us,dc=abc,dc=com

oracle.security.jaas.ldap.user.
searchscope

Specifies how deep in the LDAP directory tree to search for users. Supported values:
subtree, onelevel

An Example LDIF Description

Configuring External LDAP Providers 9-3

An Example LDIF Description
Table 9–1, "Sample LDIF Defining A User and Role" contains sample declarations for a
user object and role object; each of the next two sections discusses how to map those
objects to an LDAP provider.

Example 9–1 Sample LDIF Defining A User and Role

An example user object entry
uid= jdoe,dc=us,dc=example,dc=com
uid= jdoe
givenName=John
sn=Doe
cn=John Doe
userPassword={SSHA}zD/44JbZY33osry4mzfLn0du7nBhIIAHKDG5Fg==
uidNumber=1
gidNumber=1
homeDirectory=c:\
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass= inetOrgPerson
objectClass=posixAccount

An example role object entry
cn=managers,ou=groups,dc=us,dc=example,dc=com
objectClass=top
objectClass= groupOfUniqueNames
cn=managers
uniqueMember=uid=jdoe,dc=us,dc=example,dc=com

Table 9–3 LoginModule Role Options

Option name Meaning

oracle.security.jaas.ldap.
role.name.attribute

The name of the LDAP attribute that uniquely identifies the name of the role. In
iplanet, this would be uniqueMember; in Active Directory, it would be member.

oracle.security.jaas.ldap.
role.object.class

A list of space-separated LDAP schema object classes that is used to represent a
group. On Sun Java System Application Server, groupOfUniqueNames. On Active
Directory, group.

oracle.security.jaas.ldap.
role.searchbase

A list of space-separated distinguished names (DN) in the LDAP directory that
contains group. For example, cn=groups,dc=us,dc=abc,dc=com

oracle.security.jaas.ldap.
role.searchscope

Specifies how deep in the LDAP directory tree to search for roles. Supported values:
subtree, onelevel.

oracle.security.jaas.ldap..
role.membership.
searchscope

Specifies how deep in the LDAP directory tree to search for role membership.
Supported values: direct, nested.

oracle.security.jaas.ldap.
role.member.attribute

The attribute of a static LDAP group object specifying the distinguished names (DNs)
of the members of the group. On Sun Java System Application Server,
uniqueMember; on Active Directory, member.

Configuring Sun Java System Application Server as LDAP Provider

9-4 Oracle Application Server Containers for J2EE Security Guide

Configuring Sun Java System Application Server as LDAP Provider
At this release, you must configure Sun Java System Application Server as your LDAP
provider by editing the jazn-data.xml file to add a <login-module>
corresponding to the Sun product. This section discusses the necessary changes.

1. Open your jazn-data.xml file (see "Prerequisites") using a text editor.

2. Locate the <application> element representing your application. If there is no
<application> element, create one.

3. Locate the <login-modules> section within the <application> element. If
there is no <login-modules> element, create one.

4. Edit the <option> elements to specify appropriate values for Sun Java System
Application Server. One set of suggested values can be found in Example 9–2.
Save the edited file.

5. Open your orion-application.xml file (see "Prerequisites") using a text
editor.

6. Locate the <jazn> element within orion-application.xml. Set the
provider property to "XML" and add a <property> element setting custom.
ldap.provider to true. The edited <jazn> element should look like this:

 <jazn provider="XML">
 <property name="custom.ldap.provider" value="true"/>
 </jazn>

7. Restart the OC4J instance using Enterprise Manager.

SunOne Example
Suppose that your Sun Java System Application Server installation is described by the
set of LDIF entries shown in Example 9–1.

The corresponding <jazn-loginconfig> entity is shown in Example 9–2.

Example 9–2 JAAS LoginModule Configuration Corresponding To Example 9–1

<jazn-loginconfig>
<application>
<name>callerInfo</name>
<login-modules>
<login-module
<class>oracle.security.jazn.login.module.LDAPLoginModule</class>
<control-flag>required</control-flag>
<options>
... irrelevant options omitted ...
<option>
<name>oracle.security.jaas.ldap.user.name.attribute</name>
<value>uid</value>
</option>
<option>
<name>oracle.security.jaas.ldap.user.object.class</name>
<value>inetOrgPerson</value>
</option>

Note: A template file containing a sample login module entry for
Sun Java System Application Server is provided in the file J2EE_
HOME/jazn/config/sample_login_module.sun.

Configuring Microsoft Active Directory as LDAP Provider

Configuring External LDAP Providers 9-5

<option>
<name>oracle.security.jaas.ldap.user.searchbase</name>
<value>dc=us,dc=example,dc=com</value>
</option>
<option>
<name>oracle.security.jaas.ldap.role.name.attribute</name>
<value>cn</value>
</option>
<option>
<name>oracle.security.jaas.ldap.role.object.class</name>
<value>groupOfUniqueNames</value>
</option>
<option>
<name>oracle.security.jaas.ldap.role.searchbase</name>
<value>ou=groups,dc=us,dc=example,dc=com</value>
</option>
<option>
<name>oracle.security.jaas.ldap.member.attribute</name>
<value> uniqueMember </value>
</option>
</options>
</login-module>
</login-modules>
</application>
</jazn-loginconfig>

Configuring Microsoft Active Directory as LDAP Provider
At this release, you must configure Microsoft Active Directory as your LDAP provider
by editing the jazn-data.xml file to add a <login-module> corresponding to the
Microsoft product. This section discusses the necessary changes.

1. Locate the <application> element representing your application. If there is no
<application> element, create one.

2. Locate the <login-modules> section within the <application> element. If
there is no <login-modules> element, create one.

3. Edit the <option> elements to specify appropriate values for Microsoft Active
Directory. Save the edited file.

4. Open your orion-application.xml file (see "Prerequisites") using a text
editor.

5. Locate the <jazn> element within orion-application.xml. Set the
provider property to "XML" and add a <property> element setting custom.
ldap.provider to true. The edited <jazn> element should look like this:

 <jazn provider="XML">
 <property name="custom.ldap.provider" value="true"/>
 </jazn>

6. Restart the OC4J instance using Enterprise Manager.

Note: A template file containing a sample login module entry for
Active Directory is provided in the file J2EE_
HOME/jazn/config/sample_login_module.ad

Configuring Microsoft Active Directory as LDAP Provider

9-6 Oracle Application Server Containers for J2EE Security Guide

Custom LoginModules 10-1

10
Custom LoginModules

This chapter discusses how to write and install a LoginModule to be used with the
OracleAS JAAS Provider. This chapter contains the following sections:

■ Overview of JAAS Login Modules

■ Prerequisites

■ Integrating Custom JAAS LoginModules

■ Developing a LoginModule

■ Adding and Removing Login Modules

■ Listing Login Modules

■ Packaging and Deploying

■ Configuring Your Application

■ Simple Login Module J2EE Integration

■ Custom LoginModule Example

Overview of JAAS Login Modules
OC4J supplies a JAAS pluggable authentication framework that conforms to the JAAS
standard. With this framework, an application server and any underlying
authentication services remain independent from each other, and alternative
authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code.

Possible types of JAAS login modules include the following:

■ Principal mapping JAAS module

■ Credential mapping JAAS module

■ Kerberos JAAS module

A JAAS login module can be developed by the customer or supplied by the provider
of the EIS and resource adapter. A login module must implement the standard JAAS
LoginModule interface, which includes methods to initialize the login module,

Note: Because the JAAS specification does not cover user
management, when you configure your application to use a custom
LoginModule, the use of the UserManager API within your
application is effectively disabled. The J2EE API, however, will
continue to function within your application.

Prerequisites

10-2 Oracle Application Server Containers for J2EE Security Guide

authenticate a given subject (referred to as phase 1), commit or abort an authentication
(referred to as phase 2), and sign off a subject.

OC4J passes an initiating-principal subject to a JAAS login module. Specifically, this is
a Subject instance containing a Principal instance that represents the OC4J user
(initiating principal), along with any public certificates. OC4J can pass a null Subject
instance if there is no authenticated user (that is, if the OC4J user is anonymous). The
initiating-principal subject is passed to the initialize() method of the JAAS login
module.

The login() method of the JAAS login module (for phase 1 authentication) must,
based on the initiating principal, find the corresponding resource principal and create
a new credential (such as a PasswordCredential instance) for the resource
principal. The resource principal and the credential are then added to the
initiating-principal Subject instance through the JAAS login module commit()
method. The resource credential is passed to the createManagedConnection()
method of the ManagedConnectionFactory implementation that is provided by
the resource adapter.

If a null Subject is passed, the JAAS login module is responsible for creating a new
Subject instance containing the resource principal and the appropriate credential.

Prerequisites
Before working with custom LoginModules, you must verify that you are using the
XML-based provider; the LDAP-based provider does not support custom
LoginModules. After you have verified the provider, turn on dynamic role mapping;
see Configuring Dynamic Role Mapping for details.

Configuring Dynamic Role Mapping
When you turn on dynamic role mapping, the OracleAS JAAS Provider performs
authorization checks based on the current Subject instead of using static
configurations. By default, dynamic role mapping is turned off, which means that the
OracleAS JAAS Provider uses static configurations as the basis for authorization
checks.

To turn on dynamic role mapping:

1. Openthe bootstrap jazn.xml file, ORACLE_
HOME/j2ee/instance/config/jazn.xml, in a text editor and go to the
<jazn> element within the file.

2. Search for a <property name="role.mapping.dynamic"> sub-element
within the <jazn> element.

3. If the sub-element exists, change the value to true or false; if the sub-element
does not exist, create one. In either case, you should have a sub-element that looks
like:

<jazn provider="XML" location="./jazn-data.xml">
 <property name="role.mapping.dynamic" value="true" />
</jazn>

4. Restart OC4J.

Note: Do not edit any <jazn> properties except as specified in this
documentation.

Developing a LoginModule

Custom LoginModules 10-3

Integrating Custom JAAS LoginModules
A custom JAAS LoginModule may be desirable when Oracle Identity Management
is not available and users and roles are defined in an external repository. You can
configure a LoginModule using the XML-based provider type. When you create a
custom LoginModule, the following preliminary questions need to be considered.

1. Development. Do you want to take advantage of J2EE security constraints?

2. Development, packaging, and deployment. Are you using the login modules that
come with J2SE 1.4? Or are you deploying custom or third-party login modules?

Developing a LoginModule
You can use an any JAAS-compliant LoginModule within the OC4J framework. For
general information on developing LoginModules, see the Sun JAAS documentation at
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDe
vGuide.html

When developing a LoginModule, you must consider several important issues:

■ Subject-based Authorization

■ J2EE Security Authorization

■ Callback Support

■ Debugging Tips

Each of these is discussed in detail in its own section.

Subject-based Authorization
When you associate a custom LoginModule with an application, the Subject and the
principals it contains are used as the sole basis for all authorization tasks, including
evaluating J2EE security constraints. To ensure that all relevant principals are
considered during authorization, the LoginModule must add the relevant principals,
including all roles and groups that the authenticated user participates in, to the
Subject durring the commit phase of the JAAS authentication process.

J2EE Security Authorization
The OracleAS JAAS Provider custom LoginModule framework supports the J2EE
declarative security model. This means that Subject-based authorization enforces the
J2EE security constraints declared in an application’s deployment descriptors
(web.xml and ejb-jar.xml, for example). We encourage you to take advantage of
the J2EE security model whenever possible.

Callback Support
The OracleAS JAAS Provider supports the standard
javax.security.auth.callback name (NameCallback) and password
(PasswordCallback) callbacks.

Note: Custom login modules are supported only with the
XML-based Provider.

Adding and Removing Login Modules

10-4 Oracle Application Server Containers for J2EE Security Guide

Debugging Tips
When debugging your secure application, bear the following issues in mind:

■ Debug Logging

■ Debugging LoginModules

Debug Logging
If you set the JVM system property jazn.debug.log.enable to true, the
OracleAS JAAS Provider logs debugging output to the console. Under Oracle
Application Server, debugging output is captured in the directory ORACLE_
HOME/opmn/logs.

Debugging LoginModules
We encourage you to include debugging options in your custom LoginModule. For
an example, see the default login module, RealmLoginModule, which provides
diagnostic output if debug is set to true.

Adding and Removing Login Modules
You use the JAZN Admintool to add and remove login modules. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -addloginmodule application_name login_module_name
 control_flag [optionname=value ...]
 java -jar jazn.jar -remloginmodule application_name login_module_name

The -addloginmodule option configures a new LoginModule for the named
application.

The control_flag must be one of required, requisite, sufficient or
optional, as specified in javax.security.auth.login.Configuration. See
Table 10–1.

If the LoginModule accepts its own options, you specify each option and its value as
an optionname=value pair. Each LoginModule has its own individual set of
options.

Table 10–1 LoginModule Control Flags

 Flag Meaning

Required The LoginModule must succeed. Whether or not it succeeds,
authentication proceeds down the LoginModule list.

Requisite The LoginModule must succeed. If it succeeds, authentication
continues down the LoginModule list. If it fails, control
immediately returns to the application (authentication does not
continue down the LoginModule list).

Sufficient The LoginModule is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the LoginModule list.
If it fails, authentication continues down the LoginModule
list.

Optional The LoginModule is not required to succeed. Whether or not
it succeeds, authentication proceeds down the LoginModule
list.

Packaging and Deploying

Custom LoginModules 10-5

For instance, to add MyLoginModule to the application myapp as a required module
with debug set to true, type:

java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

To delete MyLoginModule from myapp, type:

java -jar jazn.jar -remloginmodule myapp MyLoginModule

Admintool shell:

JAZN:> addloginmodule myapp MyLoginModule required debug=true
JAZN: remloginmodule myapp MyLoginModule

Listing Login Modules
You use the JAZN Admintool to list login modules. For basic information on running
the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -listloginmodules [application_name [login_module_class]]

The -listloginmodules option displays all LoginModules either in the specified
application_name , or, if no application_name is specified, in all applications.
Specifying login_module_class, after application_name displays information
on only the specified class within the application.

For example, to display all LoginModules for the application myapp, type:

java -jar jazn.jar -listloginmodules myapp

Admintool shell:

JAZN:> listloginmodules myapp

Packaging and Deploying
If you are using one or more of the default login modules provided with J2SE 1.3 and
1.4 (such as the J2SE1.4 com.sun.security.auth.module.Krb5LoginModule),
then no additional configuration is needed. The OracleAS JAAS Provider can locate
the default login modules.

If you are deploying your application with a custom login module, then you must
deploy the login module and configure the OracleAS JAAS Provider properly so that
the module can be found at runtime.

The following options are available when packaging and deploying your custom login
modules:

■ Deploying as Standard Extensions or Optional Packages

■ Deploying Within the J2EE Application

■ Using the OC4J Classloading Mechanism

The remainder of this section discusses these options in greater detail.

Configuring Your Application

10-6 Oracle Application Server Containers for J2EE Security Guide

Deploying as Standard Extensions or Optional Packages
If you deploy your login modules as standard extensions, the OracleAS JAAS Provider
will be able to find them. No additional configuration is necessary. Deploying login
modules as standard extensions allows multiple applications to share the deployed
login modules.

For example, one way to deploy your login modules as standard extensions is to
deploy them to the $J2EE_HOME/lib/ext directory.

Deploying Within the J2EE Application
If your login module is used only by a single J2EE application rather than shared
among multiple applications, then you can simply package your login module as part
of your application, and the OracleAS JAAS Provider will be able to find it. No
additional configuration is necessary.

If a later application needs the same LoginModule, you must repackage the login
module and any relevant classes with the new application.

If you want to enable multiple applications to share the same LoginModule but you
cannot deploy the LoginModule as an extension, then you can consider using the
OC4J classloading mechanism.

 Using the OC4J Classloading Mechanism
The OracleAS JAAS Provider is integrated with OC4J's classloading architecture. If
you configure your application so that the deployed custom login modules are part of
your application classpath, then the OracleAS JAAS Provider can locate them.

One way to accomplish this is using the <library> element in either of the following
files:

■ application.xml (instance-specific)

■ orion-application.xml (application-specific)

Configuring Your Application
You modify the following files to configure your application to take advantage of
custom login modules:

■ jazn-data.xml

■ web.xml or ejb-jar.xml

■ orion-application.xml

■ oc4j-ra.xml (J2EE Connector Architecture only)

This section gives details on the configuration files.

See Also:

http://java.sun.com/j2se/1.4/docs/guide/extensions

See Also: The Oracle Application Server Containers for J2EE Services
Guide for more information about the <library> element.

Configuring Your Application

Custom LoginModules 10-7

jazn-data.xml
All login module configuration information is stored in the bootstrap
jazn-data.xml file. This file is usually located in the directory ORACLE_
HOME/j2ee/instance_name/config.

Because the bootstrap jazn-data.xml file is instance-specific, you must modify it
whenever you deploy your application into a new OC4J instance. You edit this file
using the JAZN Admintool.

The following sections discuss these XML elements:

■ <jazn-loginconfig>

■ <jazn-policy>

<jazn-loginconfig>
This tag contains information that associates applications with login modules.

Example 10–1 Example jazn-loginconfig element

<jazn-loginconfig>
 <application>
 <name>sampleLM</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.samples.SampleLoginModule</class>
 <control-flag>required</control-flag>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

This fragment associates the application sampleLM with the login module
sample.SampleLoginModule.

<jazn-policy>
This tag contains information that associates grantees with permissions. If you want
to make your fat client accessible to an EJB, you must explicitly make the permissions
available. When you deploy a custom LoginModule in OC4J, you normally use
custom principal classes or types. To grant or revoke permissions to these types, use
the JAZN Admintool.

Note: You must choose the XML-based provider when using custom
login modules. See "Integrating Custom JAAS LoginModules" on
page 10-3.

Note: The bootstrap jazn-data.xml must contain accounts for
"admin" and "anonymous". Do not remove these accounts; if you do,
the administrative functions of the OracleAS JAAS Provider will not
work.

Note: Do not remove login configuration information on
RealmLoginModule.

Configuring Your Application

10-8 Oracle Application Server Containers for J2EE Security Guide

Example 10–2 Example jazn-policy element

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

This fragment grants the permission
com.evermind.server.rmi.RMIPermission with target name login to the
principal with class oracle.security.jazn.samples.SampleUser and name
admin.

For more information about the JAZN Admintool, see Chapter 8, "Configuring the
XML-Based Provider".

web.xml or ejb-jar.xml
To take advantage of J2EE declarative security in your application, you must configure
the appropriate security constraints, either using your IDE or by hand-editing either
web.xml or ejb-jar.xml. For details on these files, see the J2EE standard
documentation at http://java.sun.com/j2ee.

orion-application.xml
This file is a container-specific deployment descriptor that is generated for each
application deployed in OC4J. The following elements are relevant to writing custom
LoginModules:

■ <jazn>

■ <security-role-mapping>

Note: Oracle recommends that you manage the contents of
jazn-data.xml using the JAZN Admintool.

Note: This section discusses only elements relevant to security. For a
full discussion of this file, see the Oracle Application Server Containers
for J2EE User’s Guide.

Configuring Your Application

Custom LoginModules 10-9

<jazn>

The following <jazn> property is specific to LoginModule configuration:

■ role.mapping.dynamic

This property, when set to true, instructs the OracleAS JAAS Provider to base
authorization checks on the authenticated Subject instead of basing checks on
the users and roles defined in the application specific jazn-data.xml.

The LoginModule instance(s) must ensure that the appropriate principals (users,
roles, or groups) are associated with the Subject instance during the commit
phase of the authentication process, in order for the principals to be taken into
consideration during the authorization process. This association of principals to
the Subject is typically implemented using the standard JAAS API.

<jazn provider="XML" location="./jazn-data.xml">
 <property name="role.mapping.dynamic" value="true" />
</jazn>

<security-role-mapping>
When you set J2EE security constraints in web.xml or ejb-jar.xml, you must
configure security role mapping.

The optional <security-role-mapping> element describes static security-role
mapping information. If you set J2EE security constraints in your application’s
deployment descriptors (web.xml or ejb-jar.xml), you must configure security
role mapping.

For details, see "Authenticating and Authorizing EJB Applications" on page 12-2.

<library>
This tag sets the classpath associated with your application. (nested in libraries)
Example:

<library path="../../shared/lib/sample.jar"/>
<library path="../../shared/lib/samplemodule.jar"/>

Note: For a discussion of how to locate the <jazn> element, see
"Locating the <jazn> element" on page 4-2.

Note: For full details on dynamic role mapping, see "Configuring
Dynamic Role Mapping" on page 10-2.

Simple Login Module J2EE Integration

10-10 Oracle Application Server Containers for J2EE Security Guide

oc4j-ra.xml (J2EE Connector Architecture only)
Each <connector-factory> element in oc4j-ra.xml can specify a different JAAS
login module, as in the following example. This also shows <config-property>
setup to connect to a database through Oracle JDBC.

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521/myservice" />
 <security-config use="jaas-module">
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

Simple Login Module J2EE Integration
Developing a simple LoginModule follows the standard development, packaging,
and deployment cycle. The following sections discuss each step in the cycle.

Development
Develop a JAAS-compliant LoginModule according to the JAAS SPI (see the Javadoc
for javax.security.auth.spi.LoginModule for more information).

Packaging
Package your LoginModule classes as part of your application's EAR file. For Web
applications, include the classes under the WEB-INF/classes.

Deployment
To deploy your LoginModule in the bootstrap jazn-data.xml file:

1. Register your application's login module within the <application> tag.

The following entry registers the login module
oracle.security.jazn.samples.SampleLoginModule to be used for
authenticating users accessing the sampleLM application.

 <application>
 <name>sampleLM</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.samples.SampleLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

Custom LoginModule Example

Custom LoginModules 10-11

2. Optional. Grant relevant permissions to your users and roles.

For example, if the principal admin needs EJB access, then you must grant the
permission com.evermind.rmi.RMIPermission to admin.

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jazn.samples.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
</grant>

To deploy your LoginModule in the application-specific orion-application.xml
file:

1. Set the <jazn> property role.mapping.dynamic to true:

<jazn provider="XML" location="./jazn-data.xml" >
 <property name="role.mapping.dynamic" value="true" />
</jazn>

2. Create appropriate <security-role-mapping> entries.

<security-role-mapping name="sr_developer">
 <user name="developer" />
</security-role-mapping>
<security-role-mapping name="sr_manager">
 <group name="managers" />
</security-role-mapping>

Custom LoginModule Example
This section gives source code for a simple custom LoginModule to be used by the
CallerInfo example; you can find the complete source code for the revised example
by searching the Oracle Technology Network at
http://www.oracle.com/technology/index.html.

Example 10–3 SampleLoginModule.java

package oracle.security.jazn.samples;

import java.util.Set;
import java.util.Iterator;
import java.util.Map;
import java.security.Principal;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

Custom LoginModule Example

10-12 Oracle Application Server Containers for J2EE Security Guide

public class SampleLoginModule implements LoginModule {

 // initial state
 protected Subject _subject;
 protected CallbackHandler _callbackHandler;
 protected Map _sharedState;
 protected Map _options;

 // configuration options
 protected boolean _debug;

 // the authentication status
 protected boolean _succeeded;
 protected boolean _commitSucceeded;

 // username and password
 protected String _name;
 protected char[] _password;

 protected Principal[] _authPrincipals;

 /**
 * Initialize this <code>LoginModule</code>.
 * <p/>
 * <p/>
 *
 * @param subject the <code>Subject</code> to be authenticated. <p>
 * @param callbackHandler a <code>CallbackHandler</code> for communicating
 * with the end user (prompting for usernames and
 * passwords, for example). <p>
 * @param sharedState shared <code>LoginModule</code> state. <p>
 * @param options options specified in the login
 * <code>Configuration</code> for this particular
 * <code>LoginModule</code>.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options) {
 this._subject = subject;
 this._callbackHandler = callbackHandler;
 this._sharedState = sharedState;
 this._options = options;

 // initialize any configured options
 _debug = "true".equalsIgnoreCase((String) _options.get("debug"));

 if (debug()) {
 printConfiguration(this);
 }
 }

 final public boolean debug() {
 return _debug;
 }

 protected Principal[] getAuthPrincipals() {

Custom LoginModule Example

Custom LoginModules 10-13

 return _authPrincipals;
 }

 /**
 * Authenticate the user by prompting for a username and password.
 * <p/>
 * <p/>
 *
 * @return true if the authentication succeeded, or false if this
 * <code>LoginModule</code> should be ignored.
 * @throws FailedLoginException if the authentication fails. <p>
 * @throws LoginException if this <code>LoginModule</code>
 * is unable to perform the authentication.
 */
 public boolean login() throws LoginException {
 if (debug())
 System.out.println("\t\t[SampleLoginModule] login");

 if (_callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " +
 "to garner authentication information from the user");

 // Setup default callback handlers.
 Callback[] callbacks = new Callback[] {
 new NameCallback("Username: "),
 new PasswordCallback("Password: ", false)
 };

 try {
 _callbackHandler.handle(callbacks);
 } catch (Exception e) {
 _succeeded = false;
 throw new LoginException(e.getMessage());
 }

 String username = ((NameCallback)callbacks[0]).getName();
 String password = new
String(((PasswordCallback)callbacks[1]).getPassword());
 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] username : " + username);
 }

 // Authenticate the user. On successfull authentication add principals
 // to the Subject. The name of the principal is used for authorization by
 // OC4J by mapping it to the value of the name attribute of the group
 // tag in the security-role-mapping for the application.
 if(username.equals("developer") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "developer";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[2];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("developer");
 //Adding role developers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 }

Custom LoginModule Example

10-14 Oracle Application Server Containers for J2EE Security Guide

 if(username.equals("manager") && password.equals("welcome"))
 {
 _succeeded = true;
 _name = "manager";
 _password = password.toCharArray();
 _authPrincipals = new SamplePrincipal[3];
 //Adding username as principal to the subject
 _authPrincipals[0] = new SamplePrincipal("manager");
 //Adding roles developers and managers to the subject
 _authPrincipals[1] = new SamplePrincipal("developers");
 _authPrincipals[2] = new SamplePrincipal("managers");
 }

 ((PasswordCallback)callbacks[1]).clearPassword();
 callbacks[0] = null;
 callbacks[1] = null;

 if (debug())
 {
 System.out.println("\t\t[SampleLoginModule] success : " + _succeeded);
 }

 if (!_succeeded)
 throw new LoginException("Authentication failed: Password does not
match");

 return true;
 }

 /**
 * <p> This method is called if the LoginContext's
 * overall authentication succeeded
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * succeeded).
 * <p/>
 * <p> If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> method), then this method associates a
 * <code>Principal</code>
 * with the <code>Subject</code> located in the
 * <code>LoginModule</code>. If this LoginModule's own
 * authentication attempted failed, then this method removes
 * any state that was originally saved.
 * <p/>
 * <p/>
 *
 * @return true if this LoginModule's own login and commit
 * attempts succeeded, or false otherwise.
 * @throws LoginException if the commit fails.
 */
 public boolean commit()
 throws LoginException {
 try {

 if (_succeeded == false) {
 return false;
 }

Custom LoginModule Example

Custom LoginModules 10-15

 if (_subject.isReadOnly()) {
 throw new LoginException("Subject is ReadOnly");
 }

 // add authenticated principals to the Subject
 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 if(!_subject.getPrincipals().contains(getAuthPrincipals()[i]))
{
 _subject.getPrincipals().add(getAuthPrincipals()[i]);
 }
 }
 }

 // in any case, clean out state
 cleanup();
 if (debug()) {
 printSubject(_subject);
 }

 _commitSucceeded = true;
 return true;

 } catch (Throwable t) {
 if (debug()) {
 System.out.println(t.getMessage());
 t.printStackTrace();
 }
 throw new LoginException(t.toString());
 }
 }

 /**
 * <p> This method is called if the LoginContext's
 * overall authentication failed.
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * did not succeed).
 * <p/>
 * <p> If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> and <code>commit</code> methods),
 * then this method cleans up any state that was originally saved.
 * <p/>
 * <p/>
 *
 * @return false if this LoginModule's own login and/or commit attempts
 * failed, and true otherwise.
 * @throws LoginException if the abort fails.
 */
 public boolean abort() throws LoginException {
 if (debug()) {
 System.out.println("\t\t[SampleLoginModule] aborted authentication
attempt.");
 }

 if (_succeeded == false) {
 cleanup();
 return false;

Custom LoginModule Example

10-16 Oracle Application Server Containers for J2EE Security Guide

 } else if (_succeeded == true && _commitSucceeded == false) {
 // login succeeded but overall authentication failed
 _succeeded = false;
 cleanup();
 } else {
 // overall authentication succeeded and commit succeeded,
 // but someone else's commit failed
 logout();
 }
 return true;
 }

 protected void cleanup() {
 _name = null;
 if (_password != null) {
 for (int i = 0; i < _password.length; i++) {
 _password[i] = ' ';
 }
 _password = null;
 }
 }

 protected void cleanupAll() {
 cleanup();

 if (getAuthPrincipals() != null) {
 for (int i = 0; i < getAuthPrincipals().length; i++) {
 _subject.getPrincipals().remove(getAuthPrincipals()[i]);
 }
 }
 }

 /**
 * Logout the user.
 * <p/>
 * <p> This method removes the <code>Principal</code>
 * that was added by the <code>commit</code> method.
 * <p/>
 * <p/>
 *
 * @return true in all cases since this <code>LoginModule</code>
 * should not be ignored.
 * @throws LoginException if the logout fails.
 */
 public boolean logout() throws LoginException {
 _succeeded = false;
 _commitSucceeded = false;
 cleanupAll();
 return true;
 }

 // helper methods //

 protected static void printConfiguration(SampleLoginModule slm) {
 if (slm == null) {
 return;
 }

Custom LoginModule Example

Custom LoginModules 10-17

 System.out.println("\t\t[SampleLoginModule] configuration options:");
 if (slm.debug()) {
 System.out.println("\t\t\tdebug = " + slm.debug());
 }
 }

 protected static void printSet(Set s) {
 try {
 Iterator principalIterator = s.iterator();
 while (principalIterator.hasNext()) {
 Principal p = (Principal) principalIterator.next();
 System.out.println("\t\t\t" + p.toString());
 }
 } catch (Throwable t) {
 }
 }

 protected static void printSubject(Subject subject) {
 try {
 if (subject == null) {
 return;
 }
 Set s = subject.getPrincipals();
 if ((s != null) && (s.size() != 0)) {
 System.out.println("\t\t[SampleLoginModule] added the following
Principals:");
 printSet(s);
 }

 s = subject.getPublicCredentials();
 if ((s != null) && (s.size() != 0)) {
 System.out.println("\t\t[SampleLoginModule] added the following
Public Credentials:");
 printSet(s);
 }
 } catch (Throwable t) {
 }
 }
}
The Principal that this LoginModule uses is in Example 10–4.

Custom LoginModule Example

10-18 Oracle Application Server Containers for J2EE Security Guide

Example 10–4 SamplePrincipal example

package oracle.security.jazn.samples;

import java.security.Principal;

class SamplePrincipal implements Principal {

 private String _name = null;

 SamplePrincipal(String name) {
 _name = name;
 }

 public boolean equals(Object another) {
 return ((SamplePrincipal)another).getName().equals(_name);
 }

 public String getName() {
 return _name;
 }

 public int hashCode() {
 return _name.hashCode();
 }

 public String toString() {
 return "[SamplePrincipal] : " + _name;
 }

}

Configuring OC4J and SSL 11-1

11
Configuring OC4J and SSL

OC4J supports Secure Socket Layer (SSL) communication between Oracle HTTP
Server and OC4J in an Oracle Application Server environment, using secure AJP. This
is the secure version of Apache JServ Protocol, the protocol that Oracle HTTP Server
uses to communicate with OC4J. Note, however, that the secure AJP protocol used
between Oracle HTTP Server and OC4J is not visible to the end user.

This chapter discusses only configuring OC4J to take advantage of SSL; for full
information about configuring other Oracle Application Server components, see the
Oracle Application Server Administrator’s Guide .

The following sections provide details:

■ Overview of SSL Keys and Certificates

■ Using Keys and Certificates with OC4J and Oracle HTTP Server

■ Enabling SSL in OC4J

■ Requesting Client Authentication

■ Resolving Common SSL Problems

This chapter assumes some prior knowledge of security and SSL concepts. See the
following documents for additional information about Oracle Application Server
security and Oracle HTTP Server.

■ Oracle Application Server Security Guide

■ Oracle HTTP Server Administrator’s Guide

Overview of SSL Keys and Certificates
In SSL communication between two entities, such as companies or individuals, the
server has a public key and an associated private key. Each key is a number, with the
private key of an entity being kept secret by that entity, and the public key of an entity
being publicized to any other parties with which secure communication might be
necessary. The security of the data exchanged is guaranteed by keeping the private key
secret, and by the complex encryption algorithm. This system is known as asymmetric
encryption, because the key used to encrypt data is not the same as the key used to
decrypt data.

Note: Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. This chapter covers only secure
communication between Oracle HTTP Server and OC4J.

11-2 Oracle Application Server Containers for J2EE Security Guide

Asymmetric encryption has a performance cost due to its complexity. A much faster
system is symmetric encryption, where the same key is used to encrypt and decrypt
data. But the weakness of symmetric encryption is that the same key has to be known
by both parties, and if anyone intercepts the exchange of the key, then the
communication becomes insecure.

SSL uses both asymmetric and symmetric encryption to communicate. An asymmetric
key (PKI public key) is used to encode a symmetric encryption key (the bulk encryption
key); the bulk encryption key is then used to encrypt subsequent communication. After
both sides agree on the bulk encryption key, faster communication is possible without
losing security and reliability.

When an SSL session is negotiated, the following steps take place:

1. The server sends the client its public key.

2. The client creates a bulk encryption key, often a 128 bit RC4 key, using a specified
encryption suite.

3. The client encrypts the bulk key with the server's public key, and sends the
encrypted bulk key to the server.

4. The server decrypts the bulk encryption key using the server’s private key.

This set of operations is called key exchange. After key exchange has taken place, the
client and the server use the bulk encryption key to encrypt all exchanged data.

In SSL the public key of the server is sent to the client in a data structure known as an
X.509 certificate. This certificate, created by a certificate authority (CA), contains a public
key, information concerning the owner of the certificate, and optionally some digital
rights of the owner. Certificates are digitally signed by the CA which created them
using that CA's digital certificate public key.

In SSL, the CA's signature is checked by the receiving process to ensure that it is on the
approved list of CA signatures. This check is sometimes performed by analysis of
certificate chains. This occurs if the receiving process does not have the signing CA's
public key on the approved list. In that case the receiving process checks to see if the
signer of the CA's certificate is on the approved list or the signer of the signer, and so
on. This chain of certificate, signer of certificate, signer of signer of certificate, and so
on is a certificate chain. The highest certificate in the chain (the original signer) is called
the root certificate of the certificate chain.

The root certificate is often on the approved list of the receiving process. Certificates in
the approve list are called trust points or trusted certificates. A root certificate can be
signed by a CA or can be self-signed, meaning that the digital signature that verifies the
root certificate is encrypted through the private key that corresponds with the public
key that the certificate contains, rather than through the private key of a higher CA.
(Note that certificates of the CAs themselves are always self-signed.)

Functionally, a certificate acts as a container for public keys and associated signatures.
A single certificate file can contain one or multiple chained certificates, up to an entire
chain. Private keys are normally kept separately to prevent them from being
inadvertently revealed, although they can be included in a separate section of the
certificate file for convenient portability between applications.

Note: It is possible, but rare, for the client to have its own private
and public keys as well.

Using Keys and Certificates with OC4J and Oracle HTTP Server

Configuring OC4J and SSL 11-3

A keystore is used to store certificates, including the certificates of all trusted parties, for
use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties as well as authenticate itself to other parties. The keystore
password is obfuscated. Oracle HTTP Server has what is called a wallet for the same
purpose. Sun's SSL implementation introduces the notion of a truststore, which is a
keystore file that includes the trusted certificate authorities that a client will implicitly
accept during an SSL handshake.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file. Go to
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html for
information about keytool.

Using Keys and Certificates with OC4J and Oracle HTTP Server
The follwoing steps describe using keys and certificates for SSL communication in
OC4J. These are server-level steps, typically executed prior to deployment of an
application that will require secure communication, perhaps when you first set up an
Oracle Application Server instance.

Note that a keystore stores certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties, as well as authenticate itself to other parties. Oracle HTTP
Server uses what is called a wallet for the same purpose.

In Java, a keystore is a java.security.KeyStore instance that you can create and
manipulate using the keytool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file. Go to the following
Web site for information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to
the functionality of keytool for keystores. For information on Oracle Wallet Manager,
see the Oracle Application Server Administrator’s Guide

Here are the steps in using certificates between OC4J and Oracle HTTP Server:

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two approaches.

Generate your own signature:

a. Use keytool to "self-sign" the certificate. This is appropriate if your clients
trust you as, in effect, your own certificate authority.

Alternatively, obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keytool to generate a certificate request,
which is a request to have the certificate signed by a certificate authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority, and import it into the
keystore, again using keytool. In the keystore, the signature is matched with
the associated certificate.

11-4 Oracle Application Server Containers for J2EE Security Guide

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle Application
Server, the documentation does not cover it. You can go to the Web site of any
certificate authority for information. (Any browser should have a list of trusted
certificate authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte, Inc.,
for example:

http://www.verisign.com/

http://www.thawte.com/

For SSL communication between OC4J and Oracle HTTP Server, execute the preceding
steps for Oracle HTTP Server, but use a wallet and Oracle Wallet Manager instead of a
keystore and the keytool utility. See the Oracle Application Server Administrator’s
Guide for information about wallets and the Oracle Wallet Manager.

In addition to steps 1 and 2 above, execute the following steps as necessary:

1. If the OC4J certificate is signed by an entity that Oracle HTTP Server does not
yet trust, obtain the certificate of the entity and import it into Oracle HTTP Server.
The specifics depend on whether the OC4J certificate in question is self-signed, as
follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not yet
trust OC4J):

a. From OC4J, use keytool to export the OC4J certificate. This step places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Alternatively, if OC4J has a certificate that is signed by another entity (that Oracle
HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the certificate
of the entity.

2. If the Oracle HTTP Server certificate is signed by an entity that OC4J does not
yet trust, and OC4J is in a mode of operation that requires client authentication:
(as "Requesting Client Authentication" on page 11-8 discusses):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From OC4J, use keytool to import the certificate of the entity.

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). OCA enables customers to
create and issue certificates for themselves and their users,
although these certificates would probably be unrecognized outside
a customer’s organization without prior arrangements. See the
Oracle Application Server Certificate Authority Administrator’s Guide
for information about OCA.

Using Keys and Certificates with OC4J and Oracle HTTP Server

Configuring OC4J and SSL 11-5

Example: Creating an SSL Certificate and Generating Your Own Signature This
example corresponds to the step of obtaining a signature for the certificate, in the
mode where you generate your own signature by using keytool to self-sign the
certificate.

First, create a keystore with an RSA private/public keypair, using the keytool
command. The following example (in which % is the system prompt) uses the RSA
keypair algorithm to generate a keystore to reside in a file named mykeystore, which
has a password of 123456 and is valid for 21 days:

% keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 -validity 21

Note the following:

■ The keystore option specifies the name of the file in which the keys are stored.

■ The storepass option sets the password for protecting the keystore.

■ The validity option sets the number of days for which the certificate is valid.

The keytool prompts you for more information, as follows:

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

The mykeystore file is created in the current directory. The default alias of the key is
mykey.

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed:

1. The OC4J certificate chain is authenticated to Oracle HTTP Server
during establishment of the encrypted channel.

2. Optionally, if OC4J is in client-authentication mode, Oracle HTTP
Server is authenticated to OC4J. This process also occurs during
establishment of the encrypted channel.

3. Any further communication after this initial exchange will be
encrypted.

Note: To determine your two-letter country code, use the ISO
country code list at the following URL:

http://www.bcpl.net/~jspath/isocodes.html

11-6 Oracle Application Server Containers for J2EE Security Guide

Enabling SSL in OC4J
For secure communication between Oracle HTTP Server and OC4J, configuration steps
are required at each end, as discussed in the following section.

Configuring Oracle HTTP Server for SSL
In Oracle HTTP Server, verify proper SSL settings in the mod_oc4j.conf file for
secure communication. SSL must be enabled, with a wallet file and password
specified, as follows:

Oc4jEnableSSL on
Oc4jSSLWalletFile wallet_path
Oc4jSSLWalletPassword pwd

The wallet_path value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.) The pwd value is the wallet password.

For more information about the mod_oc4j.conf file, see the Oracle HTTP Server
Administrator’s Guide.

Example 11–1 Creating an SSL Certificate and Configuring HTTPS

The following example uses keytool to create a test certificate and shows all of the
XML configuration necessary for HTTPS to work. To create a valid certificate for use in
production environments, see the keytool documentation.

1. Install the correct JDK

Ensure that JDK 1.3.x is installed. This is required for SSL with OC4J. Set the
JAVA_HOME to the JDK 1.3 directory. Ensure that the JDK 1.3.x JAVA_HOME/bin is
at the beginning of your path. This may be achieved by doing the following:

UNIX

$ PATH=/usr/opt/java130/bin:$PATH
$ export $PATH
$ java -version
java version "1.3.0"

 Windows

set PATH=d:\jdk131\bin;%PATH%

Ensure that this JDK version is set as the current version in your Windows registry.
In the Windows Registry Editor under
HKEY_LOCAL_MACHINE/SOFTWARE/JavaSoft/Java Development Kit, set
'CurrentVersion' to 1.3 (or later).

2. Request a certificate

a. Change directory to ORACLE_HOME/j2ee

b. Create a keystore with an RSA private/public keypair using the keytool
command. In our example, we generate a keystore to reside in a file named
'mykeystore', which has a password of '123456’ and is valid for 21 days,
using the 'RSA' key pair generation algorithm with the following syntax:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 -validity
21

Enabling SSL in OC4J

Configuring OC4J and SSL 11-7

In this tool,

■ the keystore option sets the filename where the keys are stored

■ the storepass option sets the password for protecting the keystore

■ the validity option sets number of days the certificate is valid

The keytool prompts you for more information, as follows:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 -validity
21

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

The mykeystore file is created in the current directory. The default alias of the
key is mykey.

3. If you do not have a secure-web-site.xml file, then copy the
default-web-site.xml to
ORACLE_HOME/j2ee/home/config/secure-web-site.xml.

4. Edit secure-web-site.xml with the following elements:

a. Add secure="true" to the <web-site> element, as follows:

<web-site port="8888" display-name="Default OracleAS Containers for J2EE
Web Site" secure="true">

Note: To determine your 'two-letter country code', use the ISO
country code list at
http://www.bcpl.net/~jspath/isocodes.html.

11-8 Oracle Application Server Containers for J2EE Security Guide

b. Add the following new line inside the <web-site> element to define the
keystore and the password.

<ssl-config keystore="<Your-Keystore>" keystore-password="<Your-Password>"
/>

Where <Your-Keystore> is the full path to the keystore and
<Your-Password> is the keystore password. In our example, this is as
follows:

<!-- Enable SSL -->
<ssl-config keystore="../../keystore" keystore-password="123456"/>

c. Change the web-site port number, to use an available port. For example, the
default for SSL ports is 443, so change the Web site port attribute to
port="4443". To use the default of 443, you have to be a super user.

d. Now save the changes to secure-web-site.xml.

5. If you did not have the secure-web-site.xml file, then edit server.xml to
point to the secure-web-site.xml file.

a. Uncomment or add the following line in the file server.xml so that the
secure-web-site.xml file is read.

<web-site path="./secure-web-site.xml" />

b. Save the changes to server.xml.

6. Stop and restart OC4J to initialize the secure-web-site.xml file additions. Test the
SSL port by accessing the site in a browser on the SSL port. If successful, you will
be asked to accept the certificate, because it is not signed by an accepted authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests on
another. You can disable either SSL requests or non-SSL requests, by commenting out
the appropriate *web-site.xml in the server.xml configuration file.

<web-site path="./secure-web-site.xml" /> - comment out this to remove SSL
<default-site path="./default-web-site.xml" /> - comment out this to
 remove non-SSL

Requesting Client Authentication
OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server communicates with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and must
authenticate itself by sending a certificate and a certificate chain that ends with a root
certificate. You can configure OC4J to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

Note: The keystore path is relative to where the XML file resides.

Note: Even on Windows, you use a forward slash, not a backslash,
in the XML files.

Requesting Client Authentication

Configuring OC4J and SSL 11-9

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate OC4J encounters that matches one in
its own keystore. There are three ways to establish trust:

■ The client certificate is in the keystore.

■ One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

■ The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain, up to and including the trust point, is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute, perform
the following steps.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

3. Execute the steps to create the client certificate (documented in "Using Keys and
Certificates with OC4J and Oracle HTTP Server" on page 11-3). The client
certificate includes the intermediate or root certificate that is installed in the server.
If you wish to trust another certificate authority, obtain a certificate from that
authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate.

a. If you are running Oracle HTTP Server, then provide the certificate for the
Oracle HTTP Server initiation of the secure AJP connection.

b. If you are running OC4J in a standalone environment,

– If the client is a browser, set the certificate in the client browser security
area.

– If the client is a Java client, you must programmatically present the client
certificate and the certificate chain when initiating the HTTPS connection.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Note: If you are running OC4J Standalone, save the certificate on the
client.

11-10 Oracle Application Server Containers for J2EE Security Guide

Resolving Common SSL Problems
This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

Common SSL Errors and Solutions
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keytool utility does not allow.

Action: Delete all trailing white space. If the error still occurs, add a newline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keytool utility from an older JDK.

Action: Use the keytool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool utility cannot locate the root CA certificates in your
keystore, and therefore cannot build the certificate chain from your server key to
the trusted root certificate authority.

Action: Execute the following command:

keytool -keystore keystore -import -alias cacert -file cacert.cer
(keytool -keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keytool utility, then execute this command:

keystore keystore -genkey -keyalg RSA -alias serverkey
keytool -keystore keystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following command:

keytool -keystore keystore -import -file my.host.com.cer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL Debugging
While you are developing in OC4J standalone, you can display verbose debug
information from the Java Secure Socket Extension (JSSE) implementation. To get a list
of options, start OC4J as follows (where % is the system prompt):

% java -Djavax.net.debug=help -jar oc4j.jar

Start it as follows to enable full verbosity:

% java -Djavax.net.debug=all -jar oc4j.jar

This will display the browser request header, server HTTP header, server HTTP body,
content length (before and after encryption), and SSL version.

Configuring EJB Security 12-1

12
Configuring EJB Security

This chapter discusses security issues affecting EJBs. It discusses the following topics:

■ EJB JNDI Security Properties

■ Configuring Security

For full information about EJBs, see the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

EJB JNDI Security Properties
There are two JNDI properties that are specific to security. You can either set these
within the jndi.properties file or within your EJB implementation.

JNDI Properties in jndi.properties
If setting the JNDI properties within the jndi.properties file, set the properties as
follows. Make sure that this jndi.properties file is accessible from the
CLASSPATH.

When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the jndi.properties file
deployed with the client’s code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

JNDI Properties Within Implementation
Set the properties with the same values, only with different syntax. For example,
JavaBeans running within the container pass their credentials within the
InitialContext, which is created to look up the remote EJBs.

Configuring Security

12-2 Oracle Application Server Containers for J2EE Security Guide

For instance, to pass JNDI security properties within the Hashtable environment, set
these as shown in the following example:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =

(EmployeeHome) PortableRemoteObject.narrow(homeObject,
EmployeeHome.class);

Configuring Security
EJB security involves two realms: granting permissions if you download into a
browser and configuring your application for authentication and authorization. This
section covers the following:

■ Granting Permissions in Browser

■ Authenticating and Authorizing EJB Applications

■ Specifying Credentials in EJB Clients

Granting Permissions in Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup",
"read,write";

Authenticating and Authorizing EJB Applications
For EJB authentication and authorization, you define the principals under which each
method executes by configuring of the EJB deployment descriptor. The container
enforces that the user who is trying to execute the method is the same as defined
within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which each
method is allowed to execute. These methods are mapped to users or groups in the
OC4J-specific deployment descriptor. The users and groups are defined within your
designated security user managers, which uses either the JAZN or XML user manager.
For a full description of security user managers, see the Oracle Application Server
Containers for J2EE User’s Guide and Oracle Application Server Containers for J2EE Services
Guide.

Note: ApplicationClientInitialContextFactory is in the
file oc4jclient.jar.

Configuring Security

Configuring EJB Security 12-3

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors, as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

■ The OC4J-specific deployment descriptor maps the logical roles to concrete users
and groups, which are defined either the JAZN or XML user managers.

Users and groups are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 12–1.

Figure 12–1 Role Mapping

Defining users, groups, and roles are discussed in the following sections:

■ Specifying Users and Groups

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Specifying Unchecked Security for EJB Methods

■ Specifying the runAs Security Identity

■ Mapping Logical Roles to Users and Groups

■ Specifying a Default Role Mapping for Undefined Methods

■ Specifying Users and Groups by the Client

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or application-specific
users and groups within either the JAZN or XML user managers. See the Oracle
Application Server Containers for J2EE User’s Guide and Oracle Application Server
Containers for J2EE Services Guide. for directions.

Configuring Security

12-4 Oracle Application Server Containers for J2EE Security Guide

Specifying Logical Roles in the EJB Deployment Descriptor
As shown in Figure 12–2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct security role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 12-8 for more information.

Figure 12–2 Security Mapping

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked, within the bean’s
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the
bean to not need to be aware of database roles, you can check isCallerInRole
on a logical name, such as POMgr, because only purchase order managers can sign
off on the order. Thus, you would define the logical security role, POMgr within
the <security-role-ref><role-name> element within the
<enterprise-beans> section, as follows:

Configuring Security

Configuring EJB Security 12-5

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can be
the actual database role, which is defined further within the
<assembly-descriptor> section. Alternatively, it can be another logical name,
which is still defined more in the <assembly-descriptor> section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

2. Define the role and the methods that it applies to. In the purchase order example,
any method executed within the PurchaseOrder bean must have authorized
itself as myMgr. Note that PurchaseOrder is the name declared in the <entity
| session><ejb-name> element.

Thus, the following defines the role as myMgr, the EJB as PurchaseOrder, and all
methods by denoting the’*’ symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean’s implementation
and the container translates POMgr to myMgr.

Note: The <security-role-ref> element is not required. You
only specify it when using security context methods within your
bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> element within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Note: If you define different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Configuring Security

12-6 Oracle Application Server Containers for J2EE Security Guide

The <method-permission><method> element is used to specify the security role
for one or more methods within an interface or implementation. According to the EJB
specification, this definition can be of one of the following forms:

1. Defining all methods within a bean by specifying the bean name and using the’*’
character to denote all methods within the bean, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

2. Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethodInMyBean</method-name>
 </method>
</method-permission>

3. Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>javax.lang.String</method-param>
 <method-param>javax.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

The parameters are the fully-qualified Java types of the method’s input
parameters. If the method has no input arguments, the <method-params>
element contains no elements. Arrays are specified by the array element’s type,
followed by one or more pair of square brackets, such as int[][].

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Configuring Security

Configuring EJB Security 12-7

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Instead of a <role-name> element defined, you define an <unchecked/> element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity
You can specify that all methods of an EJB execute under a specific identity. That is, the
container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller’s identity as the security identity.

Specify the runAs security identity in the <security-identity> element, which is
contained in the <enterprise-beans> section. The following XML demonstrates
that the POMgr is the role under which all the entity bean methods execute.

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <run-as>
 <role-name>POMgr</role-name>
 </run-as>
 </security-identity>
...
 </entity>
</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
...
 </entity>
</enterprise-beans>

Configuring Security

12-8 Oracle Application Server Containers for J2EE Security Guide

Mapping Logical Roles to Users and Groups
You can use logical roles or actual users and groups in the EJB deployment descriptor.
However, if you use logical roles, you must map them to the actual users and groups
defined either in the JAZN or XML User Managers.

Map the logical roles defined in the application deployment descriptors to JAZN or
XML User Manager users or groups through the <security-role-mapping>
element in the OC4J-specific deployment descriptor.

■ The name attribute of this element defines the logical role that is to be mapped.

■ The group or user element maps the logical role to a group or user name. This
group or user must be defined in the JAZN or XML User Manager configuration.
See Oracle Application Server Containers for J2EE User’s Guide and Oracle Application
Server Containers for J2EE Services Guide for a description of the JAZN and XML
User Managers.

Example 12–1 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is considered
to have the POMGR role; thus, it can execute the methods of PurchaseOrderBean.

<security-role-mapping name="POMGR">
<group name="managers" />
</security-role-mapping>

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />
</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />
<user name="guest" />
</security-role-mapping>

As shown in Figure 12–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific deployment
descriptor in the <security-role-mapping> element.

Note: You can map a logical role to a single group or to several
groups.

Configuring Security

Configuring EJB Security 12-9

Figure 12–3 Security Mapping

Notice that the <role-name> in the EJB deployment descriptor is the same as the
name attribute in the <security-role-mapping> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any insecure
methods:

<default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
 </security-role-mapping>
</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role. The
impliesAll attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check for
this default role on these methods.

If the impliesAll attribute is false, you must map the default role defined in the
name attribute to a JAZN or XML user or group through the <user> and <group>
elements. The following example shows how all methods not associated with a
method permission are mapped to the "others" group.

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" />
 <group name="others" />
 </security-role-mapping>
</default-method-access>

Specifying Users and Groups by the Client
In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the JAZN or
XML User Manager recognizes. And the user or group must be the same one as
designated in the security role for the intended method. See "Specifying Credentials in
EJB Clients" on page 12-10 for more information.

Configuring Security

12-10 Oracle Application Server Containers for J2EE Security Guide

Specifying Credentials in EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this
container.

■ Stand-alone clients define their credentials in the jndi.properties file
deployed with the EAR file.

■ Servlets or JavaBeans running within the container pass their credentials within
the InitialContext, which is created to look up the remote EJBs.

Credentials in JNDI Properties
Indicate the username (principal) and password (credentials) to use when looking up
remote EJBs in the jndi.properties file.

For example, if you want to access remote EJBs as POMGR/welcome, define the
following properties. The factory.initial property indicates that you will use the
Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=

com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/ejbsamples

In your application program, authenticate and access the remote EJBs, as shown in the
following example:

InitialContext ic = new InitialContext();
CustomerHome =
(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Credentials in the InitialContext
To access remote EJBs from a servlet or JavaBean, pass the credentials in the
InitialContext object, as follows:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
CustomerHome =

(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean")

Oracle HTTPS for Client Connections 13-1

13
Oracle HTTPS for Client Connections

This chapter describes the Oracle Application Server Containers for J2EE (Oracle
Application Server Containers for J2EE) implementation of HTTPS that provides SSL
functionality to client HTTP connections. The following topics are included:

■ Introduction

■ Requesting Client Authentication

■ Oracle HTTPS And Clients

■ Overview of Oracle HTTPS Features

■ Specifying Default System Properties

■ Oracle HTTPS Example

■ Using HTTPClient with JSSE

Introduction
This chapter discusses how to use the Secure Sockets Layer protocol to communicate
securely between networked applications. It discusses using Oracle HTTPS and JSSE.

Note: For a general overview of configuring OC4J to use the Secure
Sockets Layer, see Chapter 11, "Configuring OC4J and SSL". This
chapter assumes that you have already obtained keys and certificates.

Note: Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4J is not visible to the
end user.) This section covers only secure communication between
OC4J and the client.

Requesting Client Authentication

13-2 Oracle Application Server Containers for J2EE Security Guide

Requesting Client Authentication
OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticate itself by sending a certificate and a certificate chain that ends with a root
certificate. OC4J can be configured to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate that OC4J encounters that matches
one in its own keystore. There are three ways to establish trust:

■ The client certificate is in the keystore.

■ One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

■ The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute, perform
the following steps. See "Requesting Client Authentication" on page 11-8 for how to
configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

3. Execute the steps to create the client certificate (documented in Chapter 11,
"Configuring OC4J and SSL"). The client certificate includes the intermediate or
root certificate that is installed in the server. If you wish to trust another certificate
authority, obtain a certificate from that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

During secure communication between the client and OC4J, the following
functionality is executed:

■ The link (all communications) between the two is encrypted.

■ OC4J is authenticated to the client. A "secret key" is securely exchanged and used
for the encryption of the link.

■ Optionally, if OC4J is in client-authentication mode, the client is authenticated to
OC4J.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Oracle HTTPS And Clients

Oracle HTTPS for Client Connections 13-3

Oracle HTTPS And Clients
HTTPS is vital to securing client-server interactions. For many server applications,
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the server.
Java application developers who are familiar with either the HTTP package,
HTTPClient, or who are familiar with the Sun Microsystems, Inc., java.net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnection class of the HTTPClient package,
which provides a complete HTTP client library. To support client HTTPS connections,
several methods have been added to the HTTPConnection class that use the
OracleSSL class, OracleSSLCredential.

HTTPConnection Class
The HTTPConnection class is used to create new connections that use HTTP, with or
without SSL. To provide support for PKI (Public Key Infrastructure) digital certificates
and wallets, the methods described in "Oracle HTTPS Example" on page 13-8 have
been added to this class.

OracleSSLCredential Class (OracleSSL Only)
Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, OracleSSLCredential, to load
user certificates and trustpoints from base64 or DER-encoded certificates. (DER, part of
the X.690 ASN.1 standard, stands for Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the HTTP
connection before the connection is established. The OracleSSLCredential class is
used to store these security credentials. Typically, a wallet generated by Oracle Wallet
Manager is used to populate the OracleSSLCredential object. Alternatively,
individual certificates can be added by using an OracleSSLCredential class API.
After the credentials are complete, they are passed to the connection with the
setCredentials method.

See Also:

■ Oracle Application Server Administrator’s Guide for information
about Oracle Wallet Manager, PKI, and security fundamentals.

■ Documentation for JSSE and the java.net packages at
http://www.java.sun.com

Note: Oracle HTTPClient supports two different SSL
implementations: the Java Secure Socket Extension (JSSE) and
OracleSSL. This documentation discusses the two implementations
separately.

See Also: The HTTPClient Javadoc.

Overview of Oracle HTTPS Features

13-4 Oracle Application Server Containers for J2EE Security Guide

Overview of Oracle HTTPS Features
Oracle HTTPS supports HTTP 1.0 and HTTP 1.1 connections between a client and a
server. To provide SSL functionality, new methods have been added to the
HTTPConnection class of this package. These methods are used in conjunction with
Oracle Java SSL to support cipher suite selection, security credential management with
Oracle Wallet Manager, security-aware applications, and other features that are
described in the following sections. Oracle HTTPS uses the Oracle Java SSL class,
OracleSSLCredential, and it extends the HTTPConnection class of the
HTTPClient package. HTTPClient supports two SSL implementations, OracleSSL
and JSSE.

In addition to the functionality included in the HTTPClient package, Oracle HTTPS
supports the following:

■ Multiple cryptographic algorithms

■ Certificate and key management with Oracle Wallet Manager

■ Limited support for the java.net.URL framework

■ Both the OracleSSL and JSSE SSL implementations

In addition, Oracle HTTPS uses the HTTPClient package to support

■ HTTP tunneling through proxies

■ HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

■ SSL Cipher Suites

■ SSL Cipher Suites Supported by OracleSSL

■ SSL Cipher Suites Supported by JSSE

■ Security-Aware Applications Support

■ java.net.URL Framework Support

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 13-5

SSL Cipher Suites
Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection establish
the appropriate level for their communications.

HTTPClient supports two different SSL implementations, each of which supports
different cipher suites. These are discussed in this section.

Choosing a Cipher Suite
In general, you should prefer:

■ RSA to Diffie-Hellman, because RSA defeats many security attacks.

■ 3DES or RC4 128 to other encryption methods, because 3DES and RC4 128 have
strong keys

■ SHA1 digest to MD5, because SHA1 produces a stronger digest.

SSL Cipher Suites Supported by OracleSSL
OracleSSL supports the cipher suites listed in Table 13–1. Note that with NULL
encryption, SSL is only used for authentication and data integrity purposes.

Table 13–1 Cipher Suites Supported By OracleSSL

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Overview of Oracle HTTPS Features

13-6 Oracle Application Server Containers for J2EE Security Guide

SSL Cipher Suites Supported by JSSE
JSSE supports the cipher suites listed in Table 13–2. Note that with NULL encryption,
SSL is only used for authentication and data integrity purposes.

Access Information About Established SSL Connections
Users can access information about established SSL connections using the
getSSLSession method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

Security-Aware Applications Support
Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows them
to perform their own validation letting the handshake complete successfully only if a
complete certificate chain is sent by the peer. When applications authenticate to the
trustpoint level, they are responsible for authenticating individual certificates below
the trustpoint.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the HTTPS infrastructure.

Table 13–2 Cipher Suites Supported By JSSE

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

SSL_DHE_DSS_WITH_DES_CBC_SHA DH DES CBC SHA1

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA DH 3DES EDE CBC SHA1

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA DH DES40 CBC SHA1

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

Specifying Default System Properties

Oracle HTTPS for Client Connections 13-7

java.net.URL Framework Support
The HTTPClient package provides basic support for the java.net.URL framework
with the HTTPClient.HttpUrlConnection class. However, many of the Oracle
HTTPS features are supported through system properties only.

Features that are only supported through system properties are

■ cipher suites selection option

■ confidentiality only option

■ server authentication option

■ mutual authentication option

■ security credential management with Oracle Wallet Manager

Specifying Default System Properties
For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the java.lang.System class. These
properties are the only way for users of the java.net.URL framework to set security
credential information. Oracle HTTPS recognizes the following properties:

■ javax.net.ssl.KeyStore

■ javax.net.ssl.KeyStorePassword

■ Oracle.ssl.defaultCipherSuites (OracleSSL only)

The following sections describe how to set these properties.

javax.net.ssl.KeyStore
This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection. For
example:

javax.net.ssl.KeyStore=/etc/ORACLE/WALLETS/Default/default.txt

where default.txt is the name of the text wallet file that contains the credentials.

Note: If the java.net.URL framework is used, then set the
java.protocol.handler.pkgs system property to select the
HTTPClient package as a replacement for the JDK client as
follows:

java.protocol.handler.pkgs=HTTPClient

See Also:

■ "Specifying Default System Properties" on page 13-7 for
information about configuring your client to use JSSE.

■ Documentation for the java.net.URL framework at

http://java.sun.com

■ Oracle Application Server Administrator’s Guide for information
about wallets and Oracle Wallet Manager.

Oracle HTTPS Example

13-8 Oracle Application Server Containers for J2EE Security Guide

If no other credentials have been set for the HTTPS connection, then the file indicated
by this property is opened when a handshake first occurs. If any errors occur while
reading this file, then the connection fails and an IOException is thrown.

If you do not set this property, the application is responsible for verifying that the
certificate chain contains a certificate that can be trusted. However, HTTPClient using
Oracle SSL does verify that all of the certificates in the certificate chain, from the user
certificate to the root CA, have been sent by the server and that all of these certificates
contain valid signatures.

javax.net.ssl.KeyStorePassword
This property can be set to the password that is necessary to open the wallet file. For
example:

javax.net.ssl.KeyStorePassword=welcome1

where welcome1 is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties
Storing the wallet file password as a Java system property can result in a security risk
in some environments. To avoid this risk, use one of the following alternatives:

■ If mutual authentication is not required for the application, use a text wallet that
contains no private key. No password is needed to open these wallets.

■ If a password is necessary, then do not store it in a clear text file. Instead, load the
property dynamically before the HTTPConnection is started by using
System.setProperty(). Unset the property after the handshake is completed.

Oracle.ssl.defaultCipherSuites (OracleSSL only)
This property can be set to a comma-delimited list of cipher suites. For example:

Oracle.ssl.defaultCipherSuites=
 SSL_RSA_WITH_DES_CBC_SHA,\
 SSL_RSA_EXPORT_WITH_RC4_40_MD5,\
 SSL_RSA_WITH_RC4_128_MD5

The cipher suites that you set this property to are used as the default cipher suites for
new HTTPS connections.

Oracle HTTPS Example
The following is a simple program that uses Oracle HTTPS, HTTPClient, and
OracleSSL to connect to a Web server, send a GET request, and fetch a Web page. The
complete code for this program is presented here followed by sections that explain
how Oracle HTTPS is used to set up secure connections.

import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import oracle.security.ssl.OracleSSLCredential;
import java.io.IOException;

public class HTTPSConnectionExample
{

See Also: Table 13–1 on page 13-5 for a complete list of the cipher
suites that are supported by OracleSSL.

Oracle HTTPS Example

Oracle HTTPS for Client Connections 13-9

 public static void main(String[] args)
 {
 if(args.length < 4)
 {
 System.out.println(
 "Usage: java HTTPSConnectionTest [host] [port] " +
 "[wallet] [password]");
 System.exit(-1);
 }

 String hostname = args[0].toLowerCase();
 int port = Integer.decode(args[1]).intValue();
 String walletPath = args[2];
 String password = args[3];

 HTTPConnection httpsConnection = null;
 OracleSSLCredential credential = null;

 try
 {
 httpsConnection = new HTTPConnection("https", hostname, port);
 }
 catch(IOException e)
 {
 System.out.println("HTTPS Protocol not supported");
 System.exit(-1);
 }

 try
 {
 credential = new OracleSSLCredential();
 credential.setWallet(walletPath, password);
 }
 catch(IOException e)
 {
 System.out.println("Could not open wallet");
 System.exit(-1);
 }
 httpsConnection.setSSLCredential(credential);

 try
 {
 httpsConnection.connect();
 }
 catch (IOException e)
 {
 System.out.println("Could not establish connection");
 e.printStackTrace();
 System.exit(-1);
 }

 javax.servlet.request.X509Certificate[] peerCerts = null;
 try
 {
 peerCerts =
 (httpsConnection.getSSLSession()).getPeerCertificateChain();
 }

Oracle HTTPS Example

13-10 Oracle Application Server Containers for J2EE Security Guide

 catch(javax.net.ssl.SSLPeerUnverifiedException e)
 {
 System.err.println("Unable to obtain peer credentials");
 System.exit(-1);
 }

 String peerCertDN =
 peerCerts[peerCerts.length -1].getSubjectDN().getName();
 peerCertDN = peerCertDN.toLowerCase();
 if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
 {
 System.out.println("Certificate for " + hostname + " is issued to "
 + peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
 }

 try
 {
 HTTPResponse rsp = httpsConnection.Get("/");
 System.out.println("Server Response: ");
 System.out.println(rsp);
 }
 catch(Exception e)
 {
 System.out.println("Exception occured during Get");
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

Initializing SSL Credentials In OracleSSL
This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded using

credential = new OracleSSLCredential();
credential.setWallet(walletPath, password);

After the credentials are created, they are passed to HTTPSConnection using

httpsConnection.setSSLCredential(credential);

The private key, user certificate, and trust points located in the wallet can now be used
for the connection.

Verifying Connection Information
Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name. Then
it is the responsibility of the client to perform this validation after the SSL connection
is established.

To perform this validation in this sample program, HTTPSConnectionExample
establishes a connection to the server without transferring any data using the
following:

Using HTTPClient with JSSE

Oracle HTTPS for Client Connections 13-11

httpsConnection.connect();

After the connection is established, the connection information, in this case the server
certificate chain, is obtained with the following:

peerCerts = (httpsConnection.getSSLSession()).getPeerCertificateChain();

Finally the server certificate’s common name is obtained with the following:

String peerCertDN = peerCerts[peerCerts.length -1].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with the following:

if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
{
 System.out.println("Certificate for " + hostname + " is issued to " +
 peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
}

Transferring Data Using HTTPS
It is important to verify the connection information before data is transferred from the
client or from the server. The data transfer is performed in the same way for HTTPS as
it is for HTTP. In this sample program a GET request is made to the server using the
following:

HTTPResponse rsp = httpsConnection.Get("/");

Using HTTPClient with JSSE
Oracle Application Server supports HTTPS client connections using the Java Secure
Socket Extension (JSSE). A client can configure HTTPClient to use JSSE as the
underlying SSL provider.

HTTPClient still uses OracleSSL as the default provider, but the developer can easily
change this by setting the SSLSocketFactory on the HTTPConnection class.
Example 13–1 demonstrates how a client could configure HTTPClient to use JSSE for
SSL communication.

Notes: ■The JSSE SSL implementation is not thread-safe; if you
need to use SSL in a threaded application, use OracleSSL.

■ For full information on JSSE, see the Sun documentation at
http://java.sun.com/products/jsse/

Using HTTPClient with JSSE

13-12 Oracle Application Server Containers for J2EE Security Guide

Example 13–1 Using JSSE with HTTPClient

public void obtainHTTPSConnectionUsingJSSE() throws Exception
{
// set the trust store to the location of the client's trust store file
 // this value specifies the certificate authorities the client accepts
 System.setProperty("javax.net.ssl.trustStore", KEYSTORE_FILE);
 // creates the HTTPS URL
 URL testURL = new URL("https://" + HOSTNAME + ":" + HTTPS_PORTNUM);
 // call SSLSocketFactory.getDefault() to obtain the default JSSE implementation
 // of an SSLSocketFactory
 SSLSocketFactory socketFactory =
(SSLSocketFactory)SSLSocketFactory.getDefault();
 HTTPConnection connection = new HTTPConnection(testURL);

 // configure HTTPClient to use JSSE as the underlying
 // SSL provider
 connection.setSSLSocketFactory(socketFactory);
 // call connect to setup SSL handshake
 try
 {
 connection.connect();
 }
 catch (IOException e)
 {
 e.printStackTrace(); }

 HTTPResponse response = connection.Get("/index.html");

 }

Configuring HTTPClient To Use JSSE
The steps required to use JSSE with HTTPClient are as follows:

1. Create a truststore using the keytool.

2. Set the truststore property. A client wishing to use JSSE must specify the client
truststore location in javax.net.ssl.trustStore. Unlike OracleSSL, the client
does not need to set the javax.net.ssl.keyStore property.

3. Obtain the JSSE SSLSocketFactory by calling
SSLSocketFactory.getDefault().

4. Create an HTTPClient connection.

Notes: ■ For details of using the keytool, see
http://java.sun.com/j2se/1.3/docs/tooldocs/win3
2/keytool.html

■ JSSE's implementation of SSL has some subtle differences from
Oracle's implementation. Unlike in OracleSSL, if no truststore is
set, the JDK default truststore will be used. This default will
accept known certificate authorities, such as Verisign and
Thawte. Many self-signed certificates will be rejected by this
default.

Using HTTPClient with JSSE

Oracle HTTPS for Client Connections 13-13

5. Configure the HTTPClient connection to use the JSSE implementation of SSL.
HTTPClient can be configured to use JSSE in one of two ways:

1. (For each connection) The client calls
HTTPConnection.setSSLSocketFactory(SSLSocketFactory
factory)

2. (Entire VM) The client calls the static method:
HttpConnection.setDefaultSSLSocketFactory(SSLSocketFactory
factory). This static method must be called before instantiating any
HTTPConnection instances.

6. Call HTTPConnection.connect() before sending any HTTPS data. This allows
the connection to verify the SSL handshaking that must occur between client and
server before any data can be encrypted and sent.

7. Use the HTTPConnection instance normally. At this point, the client is set up to
use HTTPClient with JSSE. There is no additional configuration necessary and
basic usage is the same.

Using HTTPClient with JSSE

13-14 Oracle Application Server Containers for J2EE Security Guide

Password Management 14-1

14
Password Management

This chapter discusses managing passwords within XML files. It contains the
following sections:

■ Introduction

■ Password Obfuscation In jazn-data.xml and jazn.xml

■ Creating An Indirect Password

■ Specifying a UserManager In application.xml

Introduction
Many OC4J components require passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially if
the permissions on the files allow them to be read by any user. To avoid this problem,
OC4J provides two solutions:

■ password obfuscation, which replaces passwords stored in cleartext files with an
encrypted version of the password. This is discussed in "Password Obfuscation In
jazn-data.xml and jazn.xml".

■ password indirection, which replaces cleartext passwords with information
necessary to look up the password in another location. This is discussed in
"Creating An Indirect Password".

Password Obfuscation In jazn-data.xml and jazn.xml
The JAAS configuration files, jazn.xml and jazn-data.xml, contain user names
and passwords for JAAS authorization. To protect these files, OC4J uses password
obfuscation.

Whenever you update jazn.xml or jazn-data.xml, OC4J reads the file, then
rewrites it with obfuscated (encrypted) versions of all passwords. In all other OC4J
configuration files, you can avoid exposing password cleartext by using password
indirection, as explained in "Creating An Indirect Password" on page 14-2.

Creating An Indirect Password

14-2 Oracle Application Server Containers for J2EE Security Guide

The OracleAS JAAS Provider does not obfuscate passwords in
orion-application.xml. This means that you should not embed passwords
within a <jazn> element that is stored in orion-application.xml.

Hand-editing jazn-data.xml
If you prefer, you can directly edit jazn-data.xml with a text editor. The next time
OC4J reads jazn-data.xml, it will rewrite the file with all passwords obfuscated
and unreadable.

Setting the clear attribute of the <credentials> element to true enables you to
use clear (human-readable) passwords in the jazn-data.xml file.

<credentials clear="true">welcome</credentials>
<credentials>!welcome</credentials>

Creating An Indirect Password
The following OC4J XML configuration and deployment files support password
indirection in one or more entities:

■ data-sources.xml—password attribute of <data-source> element

■ ra.xml — <res-password> element

■ rmi.xml— password attribute of <cluster> element

■ application.xml— password attributes of <resource-provider> and
<commit-coordinator> elements

■ jms.xml— <password> element

■ internal-settings.xml— <sep-property> element, attributes name="
keystore-password" and name=" truststore-password"

To make any of these passwords indirect, replace the literal password string with a
string containing "->" followed by either the username or by the realm and username
separated by a slash ("/").

Note: For security reasons, credentials stored in Oracle Internet
Directory cannot usually be retrieved in decrypted (cleartext) format,
which means that the LDAP-based JAAS Provider cannot be used as a
password manager for your application. To resolve this, you can
specify the XML-based JAAS Provider as your application's password
manager even when your application uses the LDAP-based JAAS
provider as the UserManager.

To do this, add the following entry to application.xml:

<password-manager>
 <jazn provider="XML"
 location=ORACLE_HOME/j2ee/instance/config/jazn-data.xml>
 </jazn>
</password-manager>

Otherwise, passwords are not obfuscated.

Note: To begin a literal (non-indirect) password with the string
"->", precede the password by "->!". For instance, you would
represent the direct password "->silly" as "->!->silly".

Specifying a UserManager In application.xml

Password Management 14-3

Indirect Password Examples
■ <data-source password="->Scott">— Use JaznUserManager to look up

Scott in the JaznUserManager, and use the password stored there.

■ <res-password="->customers/Scott">— Use JaznUserManager to look
up Scott in the customers realm, and use the password stored there.

■ <cluster password="martha">—The literal string "martha" is the password;
the password is not indirect.

Specifying a UserManager In application.xml
The <password-manager> element in application.xml specifies the
UserManager that the global application uses to look up indirect passwords. (See
"Creating An Indirect Password" on page 14-2.) If this element is omitted, the
UserManager of the global application is used for authentication and authorization of
indirect passwords. The <jazn> element within a <password-manager> element
can be different from the <jazn> element at the top level.

The <password-manager> element should always contain the path name of the
instance-level <jazn-data.xml>.

For example, you can use an LDAP-based UserManager for the regular
UserManager, but use an XML-based UserManager to authenticate indirect
passwords. This is the only way to use indirect passwords in LDAP.

For full details, see"Specifying UserManagers" on page 4-6.

Note: It is possible to use pluggable UserManagers as password
managers. However, if you use XMLUserManager as your
password manager, principals.xml will not have passwords
obfuscated.

Specifying a UserManager In application.xml

14-4 Oracle Application Server Containers for J2EE Security Guide

Configuring CSIv2 15-1

15
Configuring CSIv2

Oracle Application Server Containers for J2EE supports the Common Secure
Interoperability Version 2 protocol (CSIv2). CSIv2 specifies different conformance
levels; Oracle Application Server Containers for J2EE complies with the EJB
specification, which requires conformance level 0.

 This chapter covers the following topics:

■ Introduction to CSIv2 Security Properties

■ EJB Server Security Properties in internal-settings.xml

■ CSIv2 Security Properties in internal-settings.xml

■ CSIv2 Security Properties in ejb_sec.properties

■ CSIv2 Security Properties in orion-ejb-jar.xml

■ EJB Client Security Properties in ejb_sec.properties

Introduction to CSIv2 Security Properties
Common Secure Interoperability version 2 (CSIv2) is an Object Management Group
(OMG) standard for a secure interoperable wire protocol that supports authorization
and identity delegation. You configure CSIv2 properties in three different locations:

■ internal_settings.xml

■ orion-ejb-jar.xml

■ ejb_sec.properties

These configuration files are discussed in "CSIv2 Security Properties in
internal-settings.xml" on page 15-3, "CSIv2 Security Properties in orion-ejb-jar.xml" on
page 15-5, "CSIv2 Security Properties in orion-ejb-jar.xml" on page 15-5, and "EJB
Client Security Properties in ejb_sec.properties" on page 15-7.

Note: If your application uses JAAS, you must configure the
OracleAS JAAS Provider to use CSIv2; see Table 4–2,
" RealmLoginModule Options" for details.

EJB Server Security Properties in internal-settings.xml

15-2 Oracle Application Server Containers for J2EE Security Guide

EJB Server Security Properties in internal-settings.xml
You specify server security properties in internal-settings.xml.

This file specifies certain properties as values within <sep-property> entities.
Table 15–1, " EJB Server Security Properties" contains a list of properties.

The table refers to keystore and truststore files, which use the Java Key Store (JKS), a
JDK-specified format, to store keys and certificates. A keystore stores a map of private
keys and certificates. A truststore stores trusted certificates for the certificate
authorities (CAs; such as VeriSign and Thawte).

If Oracle Application Server Containers for J2EE is started by the Oracle Process
Management Notification service (OPMN) in an Oracle Application Server (as
opposed to standalone) environment, then ports specified in
internal-settings.xml are ignored. If OPMN is configured to disable IIOP for a

Note: You cannot edit internal-settings.xml with the
Enterprise Manager.

Table 15–1 EJB Server Security Properties

Property Meaning

port IIOP port number (defaults to 5555)

ssl true if IIOP/SSL is supported, false otherwise

ssl-port IIOP/SSL port number (defaults to 5556) This
port is used for server-side authentication only. If
your application uses client and server
authentication, you also need to set
ssl-client-server-auth-port.

ssl-client-server-auth-port Port used for client and server authentication
(defaults to 5557). This is the port on which OC4J
listens for SSL connections that require both client
and server authentication. If not set, OC4J will
listen on ssl-port + 1 for client-side
authentication.

keystore Name of keystore (used only if ssl is true)

keystore-password the keystore password (used only if ssl is true)

trusted-clients Comma-separated list of hosts whose identity
assertions can be trusted. Each entry in the list
can be an IP address, a host name, a host name
pattern (for instance, *.example.com), or *; *
alone means that all clients are trusted. The
default is to trust no clients.

truststore Name of truststore. If you do not specify a
truststore for a server, OC4J uses the keystore as
the truststore (used only if ssl is true).

truststore-password Truststore password (can only be set if ssl is
true)

Note: In Table 15–1, the properties keystore-password
andtruststore-password support password indirection.

CSIv2 Security Properties in internal-settings.xml

Configuring CSIv2 15-3

particular Oracle Application Server Containers for J2EE instance, then, even though
IIOP may be enable through internal-settings.xml (as pointed to by
server.xml), IIOP is not enabled.

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="false" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />
 <sep-property name="keystore" value="keystore.jks" />
 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

Here is the DTD for internal-settings.xml:

<!-- A server extension provider that is to be plugged in to the server.
-->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

CSIv2 Security Properties in internal-settings.xml
This section discusses the semantics of the values you set within the
<sep-property> element in internal_settings.xml. For details of syntax, see
"EJB Server Security Properties in internal-settings.xml" on page 15-2.

To use the CSIv2 protocol with Oracle Application Server Containers for J2EE, you
must both set ssl to true and specify an IIOP/SSL port (ssl-port).

■ If you do not set ssl to true, then CSIv2 is not enabled. Setting ssl to true
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

■ If you do not specify an ssl-port, then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <ior-security-config>
entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, Oracle Application Server Containers for
J2EE listens on two different sockets—one for server authentication alone and one for
server and client authentication. You specify the server authentication port within the
<sep-property> element; the server and client authentication listener uses the port
number immediately following.

Note: Although the default value of port is one less than the
default value for ssl-port, this relationship is not required.

CSIv2 Security Properties in ejb_sec.properties

15-4 Oracle Application Server Containers for J2EE Security Guide

For SSL clients using server authentication alone, you can specify:

■ Truststore only

■ Both keystore and truststore.

■ Neither

If you specify neither keystore nor truststore, the handshake may fail if there are no
default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties in ejb_sec.properties
If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file in order for the client
runtime to insert a security context and send the user name and password. You must
also set server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the
DistinguishedName from the client's certificate and then looks it up in the
corresponding user manager; it does not perform password authentication.

Trust Relationships
Two types of trust relationships exist:

■ Clients trusting servers to transmit user names and passwords using non-SSL
connections

■ Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers. See
Table 15–2, " EJB Client Security Properties" on page 15-7 for details. Servers list
trusted clients in the trusted-client property of the <sep-property> element in
internal-settings.xml. See "EJB Server Security Properties in
internal-settings.xml" on page 15-2 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

■ presumed trust, in which the server presumes that the logical client is trustworthy,
even if the logical client has not authenticated itself to the server, and even if the
connection is not secure

■ authenticated trust, in which the target trusts the intermediate server based on
authentication either at the transport level or in the trusted-client list or both

Note: Server-side authentication takes precedence over a user
name and password.

Note: You can also configure the server to both require SSL
client-side authentication and also specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

CSIv2 Security Properties in orion-ejb-jar.xml

Configuring CSIv2 15-5

Oracle Application Server Containers for J2EE provides both kinds of trust; you
configure trust using the bean’s <ior-security-config> element in
orion-ejb-jar.xml. See "CSIv2 Security Properties in orion-ejb-jar.xml" on
page 15-5 for details.

CSIv2 Security Properties in orion-ejb-jar.xml
This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies in its orion-ejb-jar.xml. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> element, an <as-context> element, and
a <sas-context> element.

The <transport-config> element
This element specifies the transport security level. Each element within
<transport-config> must be set to supported, required, or none. None means
that the bean neither supports nor uses that feature; supports means that the bean
permits the client to use the feature; required means that the bean insists that the
client use the feature. The elements are:

■ <integrity>—Is there a guarantee that all transmissions are received exactly as
they were transmitted?

■ <confidentiality>—Is there a guarantee that no third party was able to read
transmissions?

■ <establish-trust-in-target>—Does the server authenticate itself to the
client?

■ <establish-trust-in-client>—Does the client authenticate itself to the
server?

The <as-context> element
This element specifies the message-level authentication properties.

■ <auth-method>—Must be set to either username_password or none. If set to
username_password, beans use user names and passwords to authenticate the
caller.

■ <realm>—Must be set to default at this release.

■ <required>—If set to true, the bean requires the caller to specify a user name
and password.

Notes: If you set <establish-trust-in-client> to
required, this overrides specifying username_password in
<as-context>. If you do this, you must also set the <required>
node value in the <as-context> section to false; otherwise
access permission issues will arise.

Setting any of the <transport-config> properties to required
means that the bean will use RMI/IIOP/SSL to communicate.

CSIv2 Security Properties in orion-ejb-jar.xml

15-6 Oracle Application Server Containers for J2EE Security Guide

The <sas-context> element
This element specifies the identity delegation properties. It has one element,
<caller-propagation>, which can be set to supported, required, or none. If
the <caller-propagation> element is set to supported, then this bean accepts
delegated identities from intermediate servers. If it is set to required, then this bean
requires all other beans to transmit delegated identities. If set to none, this bean does
not support identity delegation.

An example:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

DTD
The DTD for the <ior-security-config> element is:

<!ELEMENT ior-security-config (transport-config?, as-context?
sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >
<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

EJB Client Security Properties in ejb_sec.properties

Configuring CSIv2 15-7

EJB Client Security Properties in ejb_sec.properties
Any client, whether running inside a server or not, has EJB security properties.
Table 15–2 lists the EJB client security properties controlled by the ejb_
sec.properties file. By default, Oracle Application Server Containers for J2EE
searches for this file in the current directory when running as a client or in J2EE_
HOME/config when running in the server. You can specify this file’s location
explicitly with -Dejb_sec_properties_location=pathname.

Table 15–2 EJB Client Security Properties

Property Meaning

oc4j.iiop.keyStoreLoc The path name for the keystore.

oc4j.iiop.keyStorePass The password for the keystore.

oc4j.iiop.trustStoreLoc The path name for the truststore.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side authentication. If this
property is set to true, you must specify a keystore location and
password.

oc4j.iiop.ciphersuites Which cipher suites are to be enabled. The valid cipher suites are:

TLS_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_MD5
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

nameservice.useSSL Whether to use SSL when making the initial connection to the
server.

client.sendpassword Whether to send user name and password in clear form
(unencrypted) in the service context when not using SSL. If this
property is set to true, the user name and password are sent only
to servers listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive passwords sent in
clear form. Has no effect if client.sendpassword is set to
false. The list is comma-separated. Each entry in the list can be
an IP address, a host name, a host name pattern (for instance,
*.example.com), or *; * alone means that all servers are trusted.

Note: The properties marked with a # can be set either in ejb_
sec.properties or as system properties. The settings in ejb_
sec.properties always override settings specified as system
properties.

EJB Client Security Properties in ejb_sec.properties

15-8 Oracle Application Server Containers for J2EE Security Guide

J2EE Connector Architecture Security 16-1

16
J2EE Connector Architecture Security

This chapter describes the security issues affecting the J2EE Connector Architecture in
an Oracle Application Server Containers for J2EE (OC4J) application. For full
information on the J2EE Connector Architecture, see the Oracle Application Server
Containers for J2EE Services Guide. This chapter covers the following topics:

■ Deploying Resource Adapters

■ Specifying Container-Managed or Component-Managed Sign-On

■ Authentication in Container-Managed Sign-On

Deploying Resource Adapters
This section discusses deployment descriptors, deploying standalone resource
adapters, and deploying embedded resource adapters.

Oracle Application Server Containers for J2EE supports three deployment descriptors:
ra.xml, oc4j-ra.xml, and oc4j-connectors.xml. The ra.xml descriptor is
normally supplied with the resource adapter. Whenever you deploy a resource
adapter within an EAR file, Oracle Application Server Containers for J2EE generates
oc4j-connectors.xml and oc4j-ra.xml. You should manually edit the second
file.

The oc4j-ra.xml Descriptor
The oc4j-ra.xml descriptor provides Oracle Application Server Containers for
J2EE-specific deployment information (Java Naming and Directory Interface (JNDI)
path name and connector properties) for resource adapters. For each resource
adapter, oc4j-ra.xml contains one or more <connector-factory> elements
specifying a JNDI name corresponding to a set of configuration parameter values.
Oracle Application Server Containers for J2EE binds each connection into the proper
JNDI namespace location as a ConnectionFactory instance.

A <connector-factory> element can contain an optional <security-config>
element that describes how to supply user names and passwords to the EIS.

Deploying Resource Adapters

16-2 Oracle Application Server Containers for J2EE Security Guide

The <security-config> Element
The <security-config> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <security-config>
element of the oc4j-ra.xml file:

■ Specifying mapping sub-elements explicitly (in the
<principal-mapping-entries> sub-element)

■ Specifying the name of a user-created mapping class that either implements
oracle.j2ee.connector.PrincipalMapping or inherits from
oracle.j2ee.AbstractPrincipalMapping (in the
<principal-mapping-interface> sub-element)

Authentication issues are discussed in detail in "Authentication in Container-Managed
Sign-On" on page 16-5. This section discusses only the syntax for the
<security-config> element.

A <security-config> element contains either a
<principal-mapping-entries> element, specifying user names and passwords
explicitly; a <principal-mapping-interface> element, specifying the name of
the mapping class; or a <jaas-module> element, specifying the JAAS module to be
used for authentication.

<security-config>
 <principal-mapping-entries> // 1
 <default-mapping> // 2
 <res-user>username</res-user> // 3
 <res-password>password</res-password> // 4
 </default-mapping>
 <principal-mapping-entry> // 5
 <initiating-user>iuname</initiating-user> // 6
 <res-user>username</res-user>
 <res-password>password</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>

 <principal-mapping-interface> // 7
 <impl-class>classname</impl-class> // 8
 <property name="propname"
 value="propvalue" /> // 9
 </principal-mapping-interface>

 <jaas-module> // 10
 <jaas-application-name> // 11
 appname
 </jaas-application-name>
 </jaas-module>
</security-config>

1. <principal-mapping-entries>:

Provides a declarative specification for resource mapping. This element begins
with an optional <default-mapping> element; it continues with one or more
<principal-mapping-entry> elements.

2. <default-mapping>: specifies the user name and password for the default
resource principal.

3. <res-user>: specifies user name.

Deploying Resource Adapters

J2EE Connector Architecture Security 16-3

4. <res-password>: specifies password.

5. <principal-mapping-entry>: specifies a mapping from a single initiating
principal to a resource principal and password.

6. <initiating-user>: specifies the initiating principal.

7. <principal-mapping-interface>: specifies information necessary to employ
user-created classes to provide mappings.

8. <impl-class>: specifies the name of the user-provided PrincipalMapping
implementation.

9. <property name="propname" value="propvalue">: specifies information
specific to your PrincipalMapping implementation: for instance, the path of the
principal mapping file, or LDAP server connection information. (This element is
optional and it can be repeated.)

10. <jaas-module>: specifies the JAAS module that is used for authentication. It has
only one element, <jaas-application-name>.

11. <jaas-application-name>: specifies the name of the JAAS module that is
used for authentication.

The oc4j-connectors.xml Descriptor
The oc4j-connectors.xml descriptor configures the resource adapters that are
deployed by oc4j-ra.xml. The oc4j-connectors.xml descriptor lists the
standalone resource adapters that are deployed in this Oracle Application Server
Containers for J2EE instance, as well as the resource adapters that are embedded
within an application. This descriptor contains, for each individual connector, a
connector> element that specifies the name and path name for the connector. Each
<connector> element contains a <security-permission> element that defines
the permissions granted to each resource adapter. The syntax is:

<security-permission enabled="booleanvalue">
This element specifies the permissions to be granted to each resource adapter. Each
<security-permission> contains a <security-permission-spec> that
conforms to the Java 2 Security policy file syntax.

Oracle Application Server Containers for J2EE automatically generates a
<security-permission> element in oc4j-connectors.xml for each
<security-permission> element in ra.xml. Each generated element has the
enabled attribute set to false. Setting the enabled attribute to true grants the
named permission.

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 . . .
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary", *’};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Note: This element supports password indirection. For more
information, refer to "Creating An Indirect Password" on page 14-2.

Specifying Container-Managed or Component-Managed Sign-On

16-4 Oracle Application Server Containers for J2EE Security Guide

Specifying Container-Managed or Component-Managed Sign-On
Applications can use either application components or the Oracle Application Server
Containers for J2EE application server to manage resource-adapter sign-on to the EIS
system. Specify the manager using the <res-auth> deployment descriptor element
for EJB or Web components. If <res-auth> is set to Application, then the
application component signs on to the EIS programmatically. The application
component is responsible for providing explicit security information for the sign-on. If
<res-auth> is set to Container, then Oracle Application Server Containers for J2EE
provides the resource principal and credentials that are required for signing on to the
EIS.

Example:

Context initctx = new InitialContext();
// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
 // For container-managed sign-on, no security information is passed in the
getConnection call
 javax.resource.cci.Connection cx = cxf.getConnection();
 // If component-managed sign-on is specified, the code should instead provide
explicit security
 // information in the getConnection call
 // We need to get a new ConnectionSpec implementation instance for setting login
 // attributes
 com.myeis.ConnectionSpecImpl connSpec = ...
 connSpec.setUserName("EISuser");
 connSpec.setPassword("EISpassword");
 javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

In either case, the createManagedConnection method in the resource adapter's
implementation of javax.resource.spi.ManagedConnectionFactory interface
is called to create a physical connection to the EIS.

If you specify component-managed sign-on, then Oracle Application Server
Containers for J2EE invokes the createManagedConnection method with a null
Subject and the ConnectionRequestInfo object that is passed in from the
application component code. If you specify container-managed sign-on, then Oracle
Application Server Containers for J2EE provides a
javax.security.auth.Subject object to the createManagedConnection
method. The content of the Subject object depends on the value in the
<authentication-mechanism-type> and <credential-interface> elements
in the resource adapter deployment descriptor.

If <authentication-mechanism-type> is BasicPassword and
<credential-interface> is
javax.resource.spi.security.PasswordCredential, then the Subject
object must contain javax.resource.spi.security.PasswordCredential
objects in the private credential set.

On the other hand, if <authentication-mechanism-type> is Kerberos version 5
(Kerbv5) or any other non-password-based authentication mechanism, and
<credential-interface> is
javax.resource.spi.security.GenericCredential, then the Subject object
must contain credentials represented by instances of implementers of the
javax.resource.spi.security.GenericCredential interface. The

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 16-5

GenericCredential interface is used for resource adapters that support
non-password-based authentication mechanisms, such as Kerberos.

Authentication in Container-Managed Sign-On
When using container-managed sign-on, Oracle Application Server Containers for
J2EE must provide a resource principal and its credentials to the EIS. The principal and
credentials can be obtained in one of the following ways:

■ Configured Identity: the resource principal is independent of the initiating or
caller principal and can be configured at deployment time in a deployment
descriptor.

■ Principal Mapping: the resource principal is determined by a mapping from the
identity and security attributes of the initiating or caller principal.

■ Caller Impersonation: the resource principal acts on behalf of an initiating or caller
principal by delegating the caller's identity and credentials to the EIS.

■ Credentials Mapping: the resource principal is identical to the initiating or caller
principal, but with its credential mapped from the authentication type that Oracle
Application Server Containers for J2EE uses to the authentication type that the EIS
uses. An example would be to map a public key certificate-based credential
associated with a principal to a Kerberos credential.

Oracle Application Server Containers for J2EE supports all these methods with three
authentication mechanisms:

■ JAAS Pluggable Authentication

■ User-Created Authentication Classes

■ Modifying oc4j-ra.xml

The following sections discuss these mechanisms in detail.

JAAS Pluggable Authentication
Oracle Application Server Containers for J2EE furnishes a JAAS pluggable
authentication framework that conforms to Appendix C in the Connector Architecture
1.0 specification. With this framework, an application server and its underlying
authentication services remain independent from each other, and new authentication
services can be plugged in without requiring modifications to the application server.

Authentication services can obtain resource principals and credentials using any of the
following modules:

■ Principal Mapping JAAS module

■ Credential Mapping JAAS module

■ Kerberos JAAS module (for Caller Impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendors, or the
resource adapter vendors. Login modules must implement the
javax.security.auth.spi.LoginModule interface, as documented in the Sun
JAAS specification.

Oracle Application Server Containers for J2EE provides initiating user subjects to login
modules by passing an instance of javax.security.auth.Subject containing
any public certificates and an instance of
oracle.j2ee.connector.InitiatingPrincipal representing the Oracle

Authentication in Container-Managed Sign-On

16-6 Oracle Application Server Containers for J2EE Security Guide

Application Server Containers for J2EE user. Oracle Application Server Containers for
J2EE can pass a null Subject if there is no authenticated user (that is, an anonymous
user). The JAAS login module’s login method must, based on the initiating user, find
the corresponding resource principal and create new PasswordCredential or
GenericCredential instances for the resource principal. The resource principal and
credential objects are then added to the initiating Subject in the commit method.
The resource credential is passed to the createManagedConnection method in the
javax.resource.spi.ManagedConnectionFactory implementation that is
provided by the resource adapter. If a null Subject is passed, the JAAS login module
is responsible for creating a new javax.security.auth.Subject containing the
resource principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes
The classes oracle.j2ee.connector.InitiatingPrincipal and
oracle.j2ee.connector.InitiatingGroup represent Oracle Application Server
Containers for J2EE users to the JAAS login modules. Oracle Application Server
Containers for J2EE creates instances of
oracle.j2ee.connector.InitiatingPrincipal and incorporates them into
the Subject that is passed to the initialize method of the login modules. The
oracle.j2ee.connector.InitiatingPrincipal class implements the
java.security.Principal interface and adds the method getGroups().

 /**
 * Returns a Set of groups (or roles in JAZN terminology) that this
 * principal is a member of.
 *
 * @return A set of InitiatingGroup objects representing the groups
 * that this pricipal belongs to.
 */
 public Set getGroups()

The getGroups method returns a java.util.Set of
oracle.j2ee.connector.InitiatingGroup objects, representing the Oracle
Application Server Containers for J2EE groups or JAZN roles for this Oracle
Application Server Containers for J2EE user. The group membership is defined in
Oracle Application Server Containers for J2EE-specific descriptor files such as
principals.xml or jazn-data.xml, depending on the user manager. The
oracle.j2ee.connector.InitiatingGroup class implements but does not
extend the java.security.Principal interface.

Login modules can use getGroups() to provide mappings between Oracle
Application Server Containers for J2EE groups and EIS users. The
java.security.Principal interface methods support mappings between Oracle
Application Server Containers for J2EE users and EIS users. Login modules do not
need to refer to the oracle.j2ee.connector.InitiatingPrincipal and
oracle.j2ee.connector.InitiatingGroup classes if they do not provide
mappings between Oracle Application Server Containers for J2EE groups and EIS
users.

JAAS and the <connector-factory> Element
Each <connector-factory> element in oc4j-ra.xml can specify a different JAAS
login module. Specify a name for the connector factory configuration in the
<jaas-module> element. Here is an example of a <connector-factory> element
in oc4j-ra.xml that uses JAAS login modules for container-managed sign-on:

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 16-7

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
value="jdbc:oracle:thin:@localhost:5521:orcl" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

In JAAS, you must specify which LoginModule to use for a particular application,
and in what order to invoke the LoginModules. JAAS uses the value that are
specified in the <jaas-application-name> element to look up LoginModules.

User-Created Authentication Classes
Oracle Application Server Containers for J2EE provides the
oracle.j2ee.connector.PrincipalMapping interface for principal mapping.

package oracle.j2ee.connector;

public interface PrincipalMapping
{
/**
* Initializes the various settings for the PrincipalMapping implementation class.
* Implementation class may use the properties for setting default user name and
* password, LDAP connect info, or default mapping.
*
* OC4J will pass the properties specified in the <principal-mapping-interface>
* element in oc4j-ra.xml to this method.
*
* @param prop A Properties object containing the set up information required
* by the implementation class.
*/
 public void init(Properties prop);

/**
* The ManagedConnectionFactory instance that can be used in creating a
 * PasswordCredential.
 *
 * @param mcf The ManagedConnectionFactory instance that is needed when
 *creating a PasswordCredential instance
 */
 public void setManagedConnectionFactory(ManagedConnectionFactory mcf);

 /**
* Passes the authentication mechanism(s) supported by the resource
* adapter to the PrincipalMapping implementation class.
 * The key of the map passed is a String containing the supported mechanism
* type, such as "BasicPassword", or "Kerbv5". The value is a String
 * containig the corresponding credentials interface as declared in ra.xml,
* such as "javax.resource.spi.security.PasswordCredential".
 *
 * The map may contain multiple elements if the resource adatper supports
 * multiple authentication mechanisms.
 *
 * @param authMechanisms The authentication mechanisms and their corresponding
 * credentials intereface supported by the resource adapter
 */

Authentication in Container-Managed Sign-On

16-8 Oracle Application Server Containers for J2EE Security Guide

 public void setAuthenticationMechanisms(Map authMechanisms);

 /**
* This is the method that performs the principal mapping. An application user
 * subject is passed, and the implemetation of this method should return
 * a subject for use by the resource adapter to log in to the EIS resource
* according to the Connector specifications.
 *
 * OC4J will only called this method for container-managed sign on.
*
 * @param initiatingSubject A Subject containing the application server logged
 * in principals and public credentials.
 *
 * @return A Subject for use by resource adapter to log in to the remote EIS.
 * It may return null if the proper resource principal cannot be
determined.
 */
 public Subject mapping(Subject initiatingSubject);
}

The mapping method must return a Subject containing the resource principal and
credential. The Subject that is returned must adhere to either option A or option B in
section 8.2.6 of the Connector Architecture 1.0 specification. Oracle Application Server
Containers for J2EE invokes the mapping method with the initiating user as the
initiatingPrincipal.

Oracle Application Server Containers for J2EE also provides the abstract class
oracle.j2ee.connector.AbstractPrincipalMapping. This class furnishes a
default implementation of the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
determine whether the resource adapter supports the BasicPassword or Kerberos
version 5 (Kerbv5) authentication methods, and a method for extracting the
Principal from the application server user Subject. By extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, developers need
only implement the init and mapping methods.

Here are the utility methods provided by the
oracle.j2ee.connector.AbstractPrincipalMapping class:

/**
 * Utility method provided by this abstract class to return
 * the ManagedConnectionFactory instance for use to create a
 * PasswordCredentials object
 *
 * @return The ManagedConnectionFactory instance that is needed when
 * creating a PasswordCredential instance
 */
 public ManagedConnectionFactory getManagedConnectionFactory()

 /**
 * Utility method provided by this abstract class to return the Map
 * of all authentication mechanisms supported by this resource adapter.
 * The key of the map passed is a String containing the supported mechanism
 * type, such as "BasicPassword", or "Kerbv5". The value is a String
 * containig the corresponding credentials interface as declared in ra.xml,
 * such as "javax.resource.spi.security.PasswordCredential".
 *
 * @return The authentication mechanisms and their corresponding
 * credentials intereface supported by the resource adpater

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 16-9

 */
 public Map getAuthenticationMechanisms()

 /**
 * Utility method provided by this abstract class to return whether
 * BasicPassword authention mechanism is supported by this resource
 * adapter.
 *
 * @return true if BasicPassword authentication mechanism is supported
 * by the resource adapter, false otherwise.
 */
 public boolean isBasicPasswordSupported()

 /**
 * Utility method provided by this abstract class to return whether
 * Kerbv5 authention mechanism is supported by this resource
 * adapter.
 *
 * @return true if Kerbv5 authentication mechanism is supported
 * by the resource adapter, false otherwise.
 */
 public boolean isKerbv5Supported()

 /**
 * Utility method provided by this abstract class to extract the
 * Principal object from the given application server user subject
 * passed from OC4J.
 *
 * @param subject The application server user subject passed from
 * OC4J.
 *
 * @return The principal extracted from the given subject
 */
 public Principal getPrincipal(Subject subject)

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. This directory is typically OC4J_
HOME/applications/application_name/rar-name. After copying the file, edit
oc4j-ra.xml to contain a <principal-mapping-interface> element for the
new class; see "The <security-config> Element" on page 16-2 for details.

Extending AbstractPrincipalMapping
This simple example demonstrates how to extend the
oracle.j2ee.connector.AbstractPrincipalMapping abstract class to
provide a principal mapping that always maps the user to the default user and
password. Specify the default user and password by using properties under the
<principal-mapping-interface> element in oc4j-ra.xml.

The PrincipalMapping class is called MyMapping. It is defined as follows:

package com.acme.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

Authentication in Container-Managed Sign-On

16-10 Oracle Application Server Containers for J2EE Security Guide

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;

 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }

 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation only supporst BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;

 // Use the utility method to retrieve the Principal from the
 // OC4J user. This code is included here only as an example.
 // The principal obtained is not being used in this method.
 Principal principal = getPrincipal(initiatingSubject);

 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();

 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject, as in option A in section
 // 8.2.6 in the Connector 1.0 spec.
 PasswordCredential cred = new PasswordCredential(m_defaultUser,
resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

You add a <principal-mapping-interface> entry to oc4j-ra.xml that
specifies com.acme.app.MyMapping for the principal mapping mechanism:

 <connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-interface>
 <impl-class>com.acme.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...
 </connector-factory>

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 16-11

Modifying oc4j-ra.xml
If you prefer, you can create default principal mappings in the oc4j-ra.xml file. To
employ the default principal mappings mechanism, use the
<principal-mapping-entries> sub-element under the <security-config>
element. For syntax details, see "The <security-config> Element" on page 16-2.

Use the <default-mapping> element to specify the user name and password for the
default resource principal. This principal is used to log on to the EIS if there is no
<principal-mapping-entry> element whose initiating user corresponds to the
current initiating principal. If no default mapping is specified, Oracle Application
Server Containers for J2EE uses the values of the configuration properties UserName
and Password from the deployment descriptor (either in ra.xml or oc4j-ra.xml),
assuming that these defaults are acceptable to the resource adapter. If neither
configuration properties nor a default mapping is specified, Oracle Application Server
Containers for J2EE may not be able to log in to the EIS.

Each <principal-mapping-entry> element contains a mapping from initiating
principal to resource principal and password.

For example, if the Oracle Application Server Containers for J2EE principal scott
should be logged in to a certain EIS, myEIS1, as user name scott and password
tiger, while all other Oracle Application Server Containers for J2EE users should be
logged in to the EIS using user name guest with password guestpw, the
<connector-factory> element in oc4j-ra.xml should look like this:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-entries>
 <default-mapping>
 <res-user>guest</res-user>
 <res-password>guestpw</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>scott</initiating-user>
 <res-user>scott</res-user>
 <res-password>tiger</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 ...
</connector-factory>

Authentication in Container-Managed Sign-On

16-12 Oracle Application Server Containers for J2EE Security Guide

Security Support for EIS Connections 17-1

17
Security Support for EIS Connections

This chapter discusses security considerations and how to configure security and
authentication for EIS sign-on. The following topics are covered:

■ Overview of Security and Authentication Setup for EIS Connections

■ Understanding Component-Managed Sign-On

■ Understanding Container-Managed Sign-On

■ Using Declarative Container-Managed Sign-On

■ Using Programmatic Container-Managed Sign-On

Overview of Security and Authentication Setup for EIS Connections
To ensure secure interactions between a J2EE application and an EIS, the J2EE
Connector Architecture allows application components to associate a security context
with connections established to the EIS. To accomplish this, the J2EE Connector
Architecture security contract can work in conjunction with the standard Java
Authentication and Authorization Service (JAAS). The following sections provide an
overview:

■ Summary of J2EE Connector Architecture Security Contract

■ Summary of Component-Managed Versus Container-Managed Sign-On

Summary of J2EE Connector Architecture Security Contract
The J2EE Connector Architecture security contract, between an application server and
a resource adapter, extends the connection management contract with functionality
relating to secure connections. The security contract supports standard JAAS
interfaces, allowing it to be independent of any particular security framework or
mechanism. In particular, the security contract includes features for the following:

■ Propagating a security context, or subject, directly from a J2EE component to a
resource adapter (for component-managed sign-on)

■ Propagating a security context, or subject, from an application server to a resource
adapter (for container-managed sign-on)

The security contract supports two particular authentication mechanisms:

■ The commonly used "basic password" mechanism relies on a user name /
password pair, contained together in a password credential object. The application
server passes this object to the resource adapter for authentication.

Overview of Security and Authentication Setup for EIS Connections

17-2 Oracle Application Server Containers for J2EE Security Guide

■ The Kerberos version 5 mechanism ("Kerbv5" for short) is an authentication
protocol distributed by the Massachusetts Institute of Technology. This mechanism
uses a "generic credential" object that encapsulates credential information such as
a Kerberos ticket. The application server passes this object to the resource adapter
for verification.

Security contract functionality includes use of the following key interfaces:

■ javax.security.auth.Subject: This JAAS interface, which represents a
subject, is for use in providing a custom plugin module.

■ javax.security.Principal: This JAAS interface, which represents a resource
principal, is for use in providing a custom plugin module.

■ javax.security.auth.spi.LoginModule: This JAAS interface represents a
JAAS login module.

■ javax.resource.spi.security.PasswordCredential: This J2EE
Connector Architecture class represents a user name / password pair for basic
password authentication.

■ org.ietf.jgss.GSSCredential (in J2SE version 1.4): This interface represents
a generic credential object for Kerberos version 5 authentication. (This replaces the
J2EE Connector Architecture
javax.resource.spi.security.GenericCredential interface, which is
deprecated.)

Note: Reauthentication" may be supported in the ra.xml file of a
resource adapter, through a value of true in the
<reauthentication-support> element. In this case, it is possible
for a managed connection to be reused even for aconnection request
with a security context that differs from the security context with
which the managed connection was initially created.

Overview of Security and Authentication Setup for EIS Connections

Security Support for EIS Connections 17-3

Summary of Component-Managed Versus Container-Managed Sign-On
Sign-on from a J2EE application to an EIS can be managed either by the application
component or by the J2EE container (OC4J). Component-managed sign-on must be set
up programmatically and does not involve OC4J-specific configuration.
Container-managed sign-on can be set up either declaratively, through OC4J-specific
configuration without any programming requirements, or programmatically,
involving a combination of OC4J-specific configuration and programming
requirements. Programmatic container-managed sign-on can use either a principal
mapping class or a JAAS login module (both discussed later in this chapter).

The following list summarizes the options and the type of setup required for each.
Bullets at each level represent choices.

■ Component-managed sign-on: requires web.xml or ejb-jar.xml <res-auth>
setting of Application; programmatic setup for sign-on; no OC4J-specific
configuration

■ Container-managed sign-on: requires web.xml or ejb-jar.xml <res-auth>
setting of Container; setup for sign-on may be declarative or programmatic;
OC4J-specific configuration, as follows, for each of the container-managed sign-on
modes:

– None: implies either component-managed sign-on or no security; specify
through Application Server Control; reflected as use="none" in
<security-config> element of oc4j-ra.xml

– Declarative: OC4J configuration through principal mapping entries; configure
through Application Server Control; reflected as
use="principal-mapping-entries" with appropriate sub-elements in
<security-config> element of oc4j-ra.xml

– Programmatic: using either a principal mapping class or a JAAS login module:

* Principal mapping class: implement PrincipalMapping interface
directly or extend AbstractPrincipalMapping class (both in package
oracle.j2ee.connector); configure directly through oc4j-ra.xml
(no Application Server Control support) with
use="principal-mapping-interface" and appropriate
sub-elements in <security-config> element

* JAAS login module: use a JAAS login module; configure directly through
oc4j-ra.xml (no Application Server Control support) with
use="jaas-module" and appropriate sub-elements in
<security-config> element

Understanding Component-Managed Sign-On

17-4 Oracle Application Server Containers for J2EE Security Guide

Choices for container-managed sign-on in OC4J are also illustrated inFigure 17–1.

Figure 17–1 Flow Chart of Choices for OC4J Container-Managed Sign-On

Understanding Component-Managed Sign-On
When deploying an application that is to manage its EIS sign-on, use a
<res-auth>Application</res-auth> setting in the appropriate descriptor file
(web.xml for a Web component or ejb-jar.xml for an EJB component). The
application component is then responsible for providing explicit security information
for the sign-on. Here is an example:

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

No OC4J-specific configuration is required for component-managed sign-on.

Figure 17–2 shows the steps in component-managed sign-on, with the text that follows
providing further detail.

Developer

Develop JAAS
Login Module

(As Applicable)

Administrator

Configure JAAS
Login Module

Instance

Developer

Extend
AbstractPrincipalMapping

Class

Administrator

Configure Principal
Mapping Instance

Developer

Implement
PrincipalMapping

Interface

Administrator

Configure Principal
Mapping Instance

Administrator

Configure Principal
Mapping Instance

How to
Implement

Principal Mapping
Class?

Implement Interface
Directly

Extend Abstract
Class

Which
OC4J-Managed

Sign-On
Mode?

Declarative Programmatic

Which
Programmatic

OC4J-Managed
Sign-On
Mode?

Principal Mapping
Class

JAAS Login
Module

Understanding Container-Managed Sign-On

Security Support for EIS Connections 17-5

Figure 17–2 Component-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context
for the initiating principal.

2. As part of servicing the request, the application component maps the incoming
security context to an outgoing security context for the resource principal, or
hard-codes an outgoing security context, then uses the outgoing security context
to request a connection to the EIS.

3. As part of the connection acquisition, the resource adapter signs on to the EIS
using the outgoing security context provided by the application component.

4. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that performs
component-managed sign-on:

Context initctx = new InitialContext();
// Perform JNDI lookup to obtain a connection factory.
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup
 ("java:com/env/eis/MyEIS");
// Assume a custom class ConnectionSpecImpl, used to store sign-on credentials.
com.myeis.ConnectionSpecImpl connSpec = ...
connSpec.setUserName("EISuser");
connSpec.setPassword("EISpassword");
// Pass sign-on credentials through getConnection() method call.
javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

Understanding Container-Managed Sign-On
When deploying an application that is to depend on OC4J to manage EIS sign-on, use
a <res-auth>Container</res-auth> element in the appropriate descriptor file
(web.xml for a Web component or ejb-jar.xml for an EJB component). OC4J is
then responsible for providing security information for the sign-on. Example 17–2,
"Extending AbstractPrincipalMapping" demonstrates the use of this element.

OC4J

Get connection
with explicit
outgoing security
context determined
by component

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

3

Interact with EIS under
explicit outgoing security
context

4

Request with
incoming
security context

1

Client

Application
Component

Understanding Container-Managed Sign-On

17-6 Oracle Application Server Containers for J2EE Security Guide

Example 17–1 The <res-auth> Element

 <resource-ref>
 <res-ref-name>...</res-ref-name>
 <res-type>...</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>...</res-sharing-scope>
 </resource-ref>

For declarative container-managed sign-on, OC4J uses configuration information that
you specify through Application Server Control. For programmatic
container-managed sign-on—through either a principal mapping class or a JAAS login
module—OC4J uses configuration information that you specify directly through the
oc4j-ra.xml file. When an application tries to obtain a connection, OC4J uses the
applicable mechanism to determine the outgoing security context and to perform
authentication.

Figure 17–3 illustrates the steps in container-managed sign-on. These steps are detailed
following the diagram.

Figure 17–3 Container-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context
for the initiating principal.

2. As part of servicing the request, the application component requests a connection
to the EIS.

3. As part of the connection acquisition, the container (the OC4J security context
manager shown in Figure 17–3) maps the incoming security context to the
outgoing security context for the resource principal. This is based on principal
mapping entry elements, a principal mapping class, or a JAAS login module.

OC4J

Get connection
without explicit
outgoing security
context

OC4J Security
Context Manager
For Resource
Adapters

Resource
Adapter EIS

2

Logon to EIS
with outgoing
security context

4

Interact with EIS
under established
outgoing security
context

5

Request with
incoming
security context

1

Client

Application
Component

Map incoming
security context
to outgoing
security context

3

Custom
Authentication
Mechanism

Using Declarative Container-Managed Sign-On

Security Support for EIS Connections 17-7

4. The resource adapter logs on to the EIS using the outgoing security context
provided by OC4J.

5. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that depends on
container-managed sign-on:

Context initctx = new InitialContext();

// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
// For container-managed sign-on, no security information is passed in the
// getConnection call
javax.resource.cci.Connection cx = cxf.getConnection();

Using Declarative Container-Managed Sign-On
This section describes how to set up authentication through OC4J-specific
configuration of principal mapping entries. We refer to this as "declarative
container-managed sign-on" (as opposed to "programmatic container-managed
sign-on"). You can configure this through Application Server Control.

Specify a default resource user and a set of principal mapping entries. Each principal
mapping entry specifies an initiating principal and a corresponding resource principal.
If the actual initiating principal (OC4J user) during program execution matches one of
the initiating principals you specified, then the corresponding resource principal is
used for sign-on to the EIS. If the actual initiating principal does not match any you
specified, then the default resource user is used for sign-on to the EIS, assuming one is
provided or defined. If no default resource user is specified, then a null subject will
be passed to the EIS. In this case, the EIS has the option of signing on with its own
default.

Use the following steps in the Application Server Control Console:

1. From the Connection Factories tab of the appropriate Resource Adapter page,
choose to create or edit a connection factory, as desired.

2. Go to the Security tab for the connection factory you are creating or editing.

3. Choose to enable security for container-managed sign-on.

4. Specify declarative principal mappings. This is to specify the default resource user.

a. Specify the default resource user name.

b. Specify a password for the default resource user, either indirectly or by typing
the desired password. For an indirect password, specify a key (which might
just be the user name, for example). OC4J uses the key to do a lookup in the
User Manager (such as through the jazn-data.xml file).

5. Specify initiating user mappings. Specify a mapping for each initiating principal
that you want to map to a resource principal. You can edit an existing row ro
change an existing mapping, or add another row to specify a new mapping. For
each mapping:

a. Specify the initiating user—the user name of an initiating principal.

b. Specify the resource user—the user name for a corresponding resource
principal.

Using Declarative Container-Managed Sign-On

17-8 Oracle Application Server Containers for J2EE Security Guide

c. Specify the resource password—a password for the mapped resource
principal. As with the default principal mapping, you can do this either
directly or indirectly.

Table 17–1 summarizes how these settings correspond to XML entities in the
oc4j-ra.xml file. An example follows the table.

<oc4j-connector-factories ... >
 <connector-factory ... >
 ...
 <security-config use="principal-mapping-entries">
 <principal-mapping-entries>
 <default-mapping>
 <res-user>scott</res-user>
 <res-password>->tiger</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>servletuser1</initiating-user>
 <res-user>jmsuser1</res-user>
 <res-password>->jmsuser1</res-password>
 </principal-mapping-entry>
 <principal-mapping-entry>
 <initiating-user>servletuser2</initiating-user>
 <res-user>jmsuser2</res-user>
 <res-password>->jmsuser2</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 </connector-factory>
 ...
</oc4j-connector-factories>

Table 17–1 Properties for Declarative Container-Managed Sign-On

Application Server
Control Property Corresponding XML Entity Description

Enable security for
container-managed
sign-on

<security-config> element
use attribute

Being enabled corresponds to
use="principal-mapping-entrie
s" (assuming declarative
container-managed sign-on). Being
disabled corresponds to use="none".

Default Resource
User

<res-user> sub-element of
<default-mapping>

User name for the default resource
principal.

Indirect Password
or Password (for
Declarative
Principal Mappings)

<res-password> sub-element
of <default-mapping>

Password for the default resource principal,
specified either indirectly or directly.

Initiating User <initiating-user> sub-element
of <principal-mapping-entry>

User name for an initiating principal that
you want to map to a resource principal.

Resource User <res-user> sub-element of
<principal-mapping-entry>

User name for a resource principal that you
want to map to an initiating principal.
(Each initating-user/resource-user pair
uses a separate <principal-mapping-entry>
element.)

Resource Password <res-password> sub-element
of <principal-mapping-entry>

Password for the resource principal,
specified either indirectly or directly.

Using Programmatic Container-Managed Sign-On

Security Support for EIS Connections 17-9

Using Programmatic Container-Managed Sign-On
OC4J can manage programmatic authentication, either through an OC4J-specific
mechanism that uses a principal mapping class, or through a pluggable JAAS
mechanism that uses a JAAS login module. The following sections discuss these
mechanisms plus additional features:

■ Using a Principal Mapping Class

■ Using a JAAS Login Module

■ OC4J Support for Groups in Programmatic Container-Managed Sign-On

Using a Principal Mapping Class
One option in OC4J for programmatic container-managed sign-on is to use an Oracle
feature that implements principal mapping. The application must include a principal
mapping class, which is a class that implements the
oracle.j2ee.connector.PrincipalMapping interface. A developer can
accomplish this by implementing the interface directly, or by extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, supplied by
Oracle for convenience. You must configure a principal mapping class through the
oc4j-ra.xml file. The following sections describe aspects of using a principal
mapping class:

■ Understanding the PrincipalMapping Interface APIs

■ Extending the AbstractPrincipalMapping Class

■ Configuring a Principal Mapping Class

Using Programmatic Container-Managed Sign-On

17-10 Oracle Application Server Containers for J2EE Security Guide

Understanding the PrincipalMapping Interface APIs
Table 17–2 describes how OC4J uses methods of the PrincipalMapping interface.

Extending the AbstractPrincipalMapping Class
As a convenience, OC4J provides the abstract class AbstractPrincipalMapping,
which implements the PrincipalMapping interface. This class provides default
implementations of the the the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
accomplish the following:

■ Retrieve the managed connection factory used for connections to the EIS.

■ Retrieve the authentication mechanisms supported by the resource adapter.

■ Determine whether the resource adapter supports the basic password
authentication mechanism.

■ Determine whether the resource adapter supports the Kerberos version 5
authentication mechanism.

■ Extract a Principal instance from a Subject instance.

When extending the AbstractPrincipalMapping class, developers need only
implement the init() and mapping() methods.

Table 17–2 Method Descriptions for PrincipalMapping Interface

Method Signature Use by OC4J

 void init (java.util.Properties prop) OC4J calls init() to initialize the settings for the
PrincipalMapping instance, passing in property values
specified under the <principal-mapping-interface>
element in oc4j-ra.xml. (See "Configuring a Principal
Mapping Class" on page 17-13.) The implementation class can use
the properties to set either a default user name and password,
information for LDAP connection, or a default mapping.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

OC4J calls setManagedConnectionFactory() to provide
the PrincipalMapping instance with a
ManagedConnectionFactory instance (for connections to
the EIS), which is used in creating a PasswordCredential
instance.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

OC4J calls setAuthenticationMechanisms() to pass the
authentication mechanisms supported by the resource adapter to
the PrincipalMapping instance. The key in the map that is
passed is a string containing the supported mechanism type, such
as "BasicPassword" or "Kerbv5". The value corresponding
to the key is a string containing the fully qualified name of the
corresponding credentials interface, as declared in a
<credential-interface> element in ra.xml, such as for
the PasswordCredential interface. The map can contain
multiple entries if the resource adapter supports multiple
authentication mechanisms.

Subject mapping (Subject initiatingSubject) OC4J calls mapping() to instruct the PrincipalMapping
instance to perform the principal mapping. A Subject instance
for the OC4J user (initiating principal) is passed in, and this
method returns a Subject instance for the resource principal,
for use by the resource adapter for sign-on to the EIS. (The
implementation may return null if the proper resource principal
cannot be determined.)

Using Programmatic Container-Managed Sign-On

Security Support for EIS Connections 17-11

The methods exposed by the AbstractPrincipalMapping class are summarized in
Table 17–3.

Example 17–2, "Extending AbstractPrincipalMapping", extends the
AbstractPrincipalMapping class to provide a principal mapping from the OC4J
user to the EIS default user and password. This assumes a default user and password
is specified under the <principal-mapping-interface> element in
oc4j-ra.xml, as shown in "Configuring a Principal Mapping Class" on page 17-13.

Table 17–3 Method Descriptions for AbstractPrincipalMapping Class

Method Signature Description

abstract void init (java.util.Properties prop) The subclass must implement the init() method. See
Table 17–2 for a description.

void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

The subclass need not implement the
setManagedConnectionFactory() method. See
Table 17–2 for a description.

void setAuthenticationMechanisms
(java.util.Map authMechanisms)

The subclass need not implement the
setAuthenticationMechanisms() method. See
Table 17–2 for a description. Note that the subclass can use the
isBasicPasswordSupported() and
isKerbv5Supported() methods (described later in this
table) to determine which authentication mechanism is supported
by the resource adapter. The subclass can also use the
getAuthenticationMechanisms() method to retrieve the
authentication mechanisms.

abstract Subject mapping (Subject
initiatingSubject)

The subclass must implement the mapping() method. See
Table 17–2 for a description.

ManagedConnectionFactory
getManagedConnectionFactory ()

The getManagedConnectionFactory() utility method
returns the ManagedConnectionFactory instance (for
connections to the EIS), which might be required to create a
PasswordCredential instance.

java.util.Map getAuthenticationMechanisms () The getAuthenticationMechanisms() utility method
returns a map of all authentication mechanisms supported by the
resource adapter. See setManagedConnectionFactory()
in Table 17–2 for a description of the map.

boolean isBasicPasswordSupported () The isBasicPasswordSupported() utility method
determines whether the basic password authentication mechanism
is supported by the resource adapter.

boolean isKerbv5Supported () The isKerbv5Supported() utility method determines
whether the Kerbv5 authentication mechanism is supported by
the resource adapter.

Principal getPrincipal (Subject) The getPrincipal() utility method extracts the Principal
instance from the OC4J user Subject instance passed from
OC4J.

Note: In cases where there are multiple principals in a subject
(which is not typical), this method would retrieve the first
principal. (There is also a getPrincipals() method, and the
"first" principal is the first element of the collection of principals
that this method would return.)

Using Programmatic Container-Managed Sign-On

17-12 Oracle Application Server Containers for J2EE Security Guide

Example 17–2 Extending AbstractPrincipalMapping

package com.example.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;
 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }
 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation is for BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;
 // Use the utility method to retrieve the Principal from the incoming Subject
 // (security context), corresponding to the OC4J user.
 // This code is included here only as an example.
 // The principal obtained is not actually used in this example.
 Principal principal = getPrincipal(initiatingSubject);
 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();
 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject, as in "Option A" in the
 // J2EE Connector Architecture specification.
 PasswordCredential cred =
 new PasswordCredential(m_defaultUser, resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

Using Programmatic Container-Managed Sign-On

Security Support for EIS Connections 17-13

Configuring a Principal Mapping Class
To use a principal mapping class, you must update oc4j-ra.xml to include a
<principal-mapping-interface> element for the class. This is a sub-element of
the <security-config> element and must include the following:

■ An <impl-class> sub-element to specify the fully qualified name of the
principal mapping class

■ Property settings appropriate to the principal mapping class implementation—for
the class shown in the preceding section, a <property> sub-element with
name="user" and a value setting to specify the default user name for EIS
sign-on, and a <property> sub-element with name="password" and a value
setting to specify the password for the default user, as shown in the following
example.

<oc4j-connector-factories>
 <connector-factory name="..." location="...">
 ...
 <security-config use="principal-mapping-interface">
 <principal-mapping-interface>
 <impl-class>com.example.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...
 </connector-factory>
</oc4j-connector-factories>

Using a JAAS Login Module
Alternatively, you can manage sign-on to an EIS programmatically through JAAS. For
details, see Chapter 10, "Custom LoginModules".

OC4J Support for Groups in Programmatic Container-Managed Sign-On
Principal mapping classes and JAAS login modules, in addition to mapping from
individual OC4J users to EIS users, can map from OC4J groups to EIS users.

The oracle.j2ee.connector package contains the InitiatingPrincipal class,
which implements the Principal interface and represents OC4J users, and the
InitiatingGroup class, which also implements the Principal interface but
represents OC4J groups. OC4J creates an InitiatingPrincipal intance and
incorporates it into the Subject instance that it passes either to the initialize()
method of a login module, or to the mapping() method of a principal mapping class.

The InitiatingPrincipal class also has a getGroups() method. This returns a
java.util.Set instance with a collection of InitiatingGroup instances that
represent the OC4J groups or JAZN roles that the OC4J user belongs to. The group
membership is defined in OC4J-specific descriptor files such as jazn-data.xml
(depending on the user manager).

Note: You can use password indirection to hide the password. For a
full discussion of password indirection, see Chapter 14, "Password
Management".

Using Programmatic Container-Managed Sign-On

17-14 Oracle Application Server Containers for J2EE Security Guide

Troubleshooting Security Issues 18-1

18
Troubleshooting Security Issues

This chapter discusses techniques for locating security problems in your OC4J
application. It is divided into the following sections:

■ Locating jazn.xml

■ JAZN Admintool

■ Custom LoginModules

■ LDAP-Based Provider Issues

■ Servlets, runas-mode, and doasprivileged-mode

■ Creating Realms

■ Removing Realm Names From Principals

■ Specifying the JAAS Provider

Locating jazn.xml
When the OracleAS JAAS Provider starts, it searches for a jazn.xml file. The
jazn.xml file can be in a variety of locations, but is normally in ORACLE_
HOME/j2ee/home/config . However, if you specify the location of this file in a
system property, the file in the system property takes precedence.

When the OracleAS JAAS Provider starts, it searches for jazn.xml in order through
the directories specified by:

1. oracle.security.jazn.config (system property)

2. java.security.auth.policy (system property)

3. J2EE_HOME/config (J2EE_HOME is specified by the system property
oracle.j2ee.home)

4. ORACLE_HOME/j2ee/home/config (ORACLE_HOME is specified by the system
property oracle.home)

5. ./config

The OracleAS JAAS Provider stops searching after locating a jazn.xml file. If no file
is found, you receive the error message "JAZN has not been properly
configured."

JAZN Admintool

18-2 Oracle Application Server Containers for J2EE Security Guide

JAZN Admintool
Before using the Admintool, you must set the environment variable controlling
loading of dynamic libraries (for example, LD_LIBRARY_PATH in Solaris). See
Table 2–5 for details.

If you are attempting to grant a permission and the Admintool gives the error message
Permission class not found, it means that the permission you wish to grant is
not in the classpath. You must place the JAR containing the permission class in the
jdk/jre/lib/ext directory so that the Admintool can locate it..

Custom LoginModules
When writing a custom LoginModule, you should be aware of the following issues:

■ Subject-Based Authorization

■ J2EE Security Integration

Subject-Based Authorization
When an application uses a custom login module, the Subject (and the principals it
contains) are used as the sole basis for authorization, including the evaluation of J2EE
security constraints. To ensure that all relevant principals are taken into consideration
during authorization, the login module should add the relevant principals (including
any roles/groups that the authenticated user belongs to) to the Subject during the
commit phase of the JAAS authentication process.

J2EE Security Integration
The custom LoginModule framework supports the J2EE security declarative security
model. That is, the J2EE security constraints declared in an application's deployment
descriptors, such as web.xml and ejb-jar.xml, are enforced using Subject-based
authorization.

We encourage J2EE developers to take advantage of the J2EE security model whenever
possible, rather than writing their own security implementation; this ensures forward
compatibility with future releases.

Caution: The Admintool does not require authentication when
used with the LDAP-based provider; anyone who runs the tool is
granted all rights. This means that it is vital to secure the
Admintool in production environments; you normally do this by
using file-system properties. If you specify the -user and
-password options when using LDAP, they are ignored.

Creating Realms

Troubleshooting Security Issues 18-3

LDAP-Based Provider Issues
Two important issues when troubleshooting the LDAP-based provider are:

■ Checking JAZN-LDAP Configuration

■ Enabling and Disabling Caching

Checking JAZN-LDAP Configuration
When you associate an Oracle Application Server instance with Oracle Application
Server Infrastructure, either during installation or using Enterprise Manager, the
instance is automatically configured to use the LDAP-based provider. The Oracle
Internet Directory location and port are determined by the file ORACLE_
HOME/config/ias.properties.

To verify that the LDAP-based provider has been configured property, do the
following:

1. Use Enterprise Manager to verify that the user manager is set to "LDAP".

2. Issue the JAZN Admintool -listrealms command to verify that the
LDAP-based provider can retrieve data from Oracle Internet Directory.

java -jar jazn.jar -listrealms

3. If the Admintool responds with the message "Communication Error", then it is
likely that Oracle Internet Directory is down.

4. If the Admintool responds with the message "Invalid Credentials", then the
LDAP users and credentials are incorrectly configured.

Enabling and Disabling Caching
LDAP caching is enabled by default; caching is per-JVM, not per-application. Before
using JAAS Admintool management commands, such as granting permissions or
roles, you must disable caching. After you use the Admintool, you should re-enable
caching.

For details on enabling and disabling caching, see "Configuring LDAP Caching" on
page 5-3.

Servlets, runas-mode, and doasprivileged-mode
If you want a servlet to be invoked using subject.doAs() or
subject.doAsPrivileged(), you must set the runas-mode and
doasprivileged-mode attributes of the <jazn-web-app> element in the
orion-web.xml or orion-application.xml files.

For details, see "Configuring J2EE Authorization" on page 4-10.

Creating Realms
It is important to use the appropriate tool to create realms. In general, if you’re using
the LDAP-based provider or Oracle Application Server Single Sign-On, use Oracle
Delegated Administration Services to create realms; if you’re using the XML-based
provider, create realms with the JAAS Admintool. The realms you create with the
JAAS Admintool are external or application realms; they are located in a different
place in the realm tree than identity management realms.

Removing Realm Names From Principals

18-4 Oracle Application Server Containers for J2EE Security Guide

Removing Realm Names From Principals
In some applications, you prefer to avoid parsing the principal returned by various
method calls. You can configure the OracleAS JAAS Provider so that the returned
principal contains no realm name. To do this, you add a property to the <jazn>
element in the file jazn.xml. The new property is:

<property name="jaas.username.simple" value="true" />

This property affects the return values of the following methods:

■ javax.servlet.http.HTTPServletRequest, getRemoteUser and
getUserPrincipal methods

■ javax.ejb.EJBContext, getCallerIdentity and getCallerPrincipal
methods

Specifying the JAAS Provider
If you receive an exception and stack trace similar to:

Exception in thread "main" java.lang.SecurityException: Unable to locate a login
configuration
at com.sun.security.auth.login.ConfigFile.<init>(ConfigFile.java:97)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance

you have probably failed to specify the OracleAS JAAS Provider as the JAAS policy
provider. See "Specifying An Alternate Policy Provider (Optional)" on page 4-5for
details.

Security Tips 19-1

19
Security Tips

These hints come from the Security Best Practices document, available from Oracle
Technology Network (http://www.oracle.com/technology/index.html).
Check the OTN Web site for updates. This chapter is divided into the following parts:

■ HTTPS

■ Overall Security

■ JAAS

HTTPS
Oracle HTTP Server (OHS) has several features that provide security to an application
without requiring you to modify the application. You should evaluate and leverage
these features before coding similar features yourself. HTTP security features include:

■ Authentication — OHS can authenticate users and pass the authenticated user-id
to an application in a standard manner (REMOTE_USER). It also supports single
sign-on, thus reusing existing login mechanisms.

■ Authorization — OHS has directives that can allow access to your application only
if the end user is authenticated and authorized. Again, no code change is required.

■ Encryption — OHS can provide transparent SSL communication to end customers
without any code change on the application.

Other suggestions for securing HTTPS:

■ Configure Oracle Application Server to fail attempts to use weak encryption. You can
configure Oracle Application Server to use only specified encryption ciphers for
HTTPS connections. For instance, your application could reject connections from
non-128-bit client-side SSL libraries. This ability is especially useful for banks and
other financial institutions because it provides server-side control of the
encryption strength for each connection.

■ Use HTTPS to HTTP appliances for accelerating HTTP over SSL. Use HTTPS
everywhere you need to. However, the huge performance overhead of HTTPS
forces a trade-off in some situations.

For a relatively low cost, HTTPS-to-HTTP appliances can change throughput on a
500MHz UNIX machine from 20-30 transactions per second to 6000 transactions
per second, making this trade-off decision easier.

Moreover, these appliances provide much better solutions than adding
mathematics or cryptography cards to UNIX, Windows, or Linux boxes.

Overall Security

19-2 Oracle Application Server Containers for J2EE Security Guide

■ Ensure that sequential HTTPS transfers are requested through the same Web server.
Expect 40 to 50 milliseconds of CPU time to initiate SSL sessions on a 500 MHz
machine. Most of this CPU time is spent in the key exchange logic, where the bulk
encryption key is exchanged. Caching the bulk encryption will significantly
reduces CPU overhead on subsequent accesses, provided that the accesses are
routed to the same Web server.

■ Keep secure pages and pages not requiring security on separate servers. Although it may
be easier to place all pages for an application on one HTTPS server, this strategy
has enormous performance costs. Reserve your HTTPS server for pages needing
SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files to be displayed on
the same screen, it is probably not worth the effort to segregate secure from
nonsecure static content. The SSL key exchange (a major consumer of CPU cycles)
is likely to be called exactly once in any case, and the overhead of bulk encryption
is not that high.

Overall Security
■ When assigning privileges to modules, use the lowest levels that are adequate to perform

the modules’ function(s). Using low-level privileges provides "fault containment": if
security is compromised, it is contained within a small area of the network and
cannot invade the entire intranet.

■ Tune the SSLSessionCacheTimeout directive if you are using SSL. The Apache server in
Oracle Application Server caches a client's SSL session information by default.
With session caching, only the first connection to the server incurs high latency.

In a simple test to connect and disconnect to an SSL-enabled server, the elapsed
time for 5 connections was 11.4 seconds without SSL session caching; with session
caching enabled, the elapsed time was 1.9 seconds.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of
an SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessionCacheTimeout directive in the httpd.conf file to meet
your application needs.

JAAS
■ Migrate your user management from principals.xml to the OracleAS JAAS Provider. In

earlier releases of Oracle Application Server, the J2EE application server
component stored all user information in a file called principals.xml
(including storing passwords in cleartext). The OracleAS JAAS Provider provides
a similar simple security model as a default, without storing passwords in
cleartext. The OracleAS JAAS Provider also offers tight integration with Oracle
Application Server Infrastructure Infrastructure (including OracleAS Single
Sign-On and Oracle Internet Directory) out of the box.

■ Avoid writing custom user managers; instead, extend the OracleAS JAAS Provider,
OracleAS Single Sign-On, and Oracle Internet Directory. The Oracle Application
Server Containers for J2EE (OC4J) container continues to supply several methods
and levels of extending security providers. Although you can extend the
UserManager class to build a custom user manager, leveraging the rich
functionality provided by the OracleAS JAAS Provider, OracleAS Single Sign-On,
and Oracle Internet Directory gives you more time to focus on actual business
logic instead of infrastructure code. Both OracleAS Single Sign-On and Oracle

JAAS

Security Tips 19-3

Internet Directory provide APIs to integrate with external authentication servers
and directories respectively.

■ Use OracleAS Single Sign-On as the authentication mechanism with the OracleAS JAAS
Provider. The OracleAS JAAS Provider allows different authentication options.
However, we strongly recommend leveraging the OracleAS Single Sign-On server
whenever possible because:

■ It is the default mechanism for most Oracle Application Server components,
such as Portal, Forms, Reports, Wireless, and so on.

■ It is easy to set up in a declarative fashion and does not require any custom
programming.

■ It provides seamless PKI integration.

■ Use the OracleAS JAAS Provider's declarative features to reduce programming. Because
most of the features in the OracleAS JAAS Provider are controlled declaratively,
particularly in the area of authentication, developers can postpone setup until
deployment time. This not only reduces the programming tasks for integrating a
JAAS based application, it enables the deployer to use environment-specific
security models for that application.

■ Use the fine-grained access control offered by the OracleAS JAAS Provider and the Java
permission model. Unlike the "coarse-grained" J2EE authorization model as it exists
today, the OracleAS JAAS Provider integrated with OC4J allows any protected
resource to be modeled using Java permissions. The Java permission model (and
associated Permission class) is extensible and allows a flexible way to define
fine-grained access control.

■ Use Oracle Internet Directory as the central repository for the OracleAS JAAS Provider in
production environments. Although the OracleAS JAAS Provider supports a flat-file
XML-based repository useful for development and testing environments, it should
be configured to use Oracle Internet Directory for production environments.
Oracle Internet Directory provides LDAP standard features for modeling
administrative metadata and is built on the Oracle database platform, inheriting
all the database properties of scalability, reliability, manageability, and
performance.

■ Take advantage of the authorization features of the OracleAS JAAS Provider. In addition
to the authorization functionality defined in the JAAS 1.0 specification, the
OracleAS JAAS Provider supports:

■ Hierarchical, role-based access control (RBAC)

■ The ability to partition security policy by subscriber (that is, each user
community)

These extensions provide a more scalable and manageable framework for security
policies covering a large user population.

JAAS

19-4 Oracle Application Server Containers for J2EE Security Guide

OracleAS JAAS Provider Standards and Samples A-1

A
OracleAS JAAS Provider Standards and

Samples

This appendix provides supplemental samples and standards. It contains the
following topics:

■ Sample jazn-data.xml Code

■ Modifying User Permissions

■ Modifying User Permissions Code

Sample jazn-data.xml Code
This section presents a sample jazn-data.xml file which illustrates the specific
standards that XML files must conform to. This jazn-data.xml file contains a realm,
jazn.com, users, and roles.

Example A–1 Sample jazn-data.xml File

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<!DOCTYPE jazn-data PUBLIC "JAZN-XML Data"
"http://xmlns.oracle.com/ias/dtds/jazn-data-9_04.dtd">
<jazn-data>

<!-- JAZN Realm Data -->
<jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>anonymous</name>
 <description>The default guest/anonymous user</description>
 </user>
 <user>
 <name>SCOTT</name>
 <display-name>SCOTT</display-name>
 <credentials>!TIGER</credentials>

See Also:

■ "Realm Management in XML-Based Environments" on
page 4-3.

■ "Realm and Policy Management" on page 4-2 for further
information on managing the OracleAS JAAS Provider in
XML-based provider environment

Sample jazn-data.xml Code

A-2 Oracle Application Server Containers for J2EE Security Guide

 </user>
 <user>
 <name>admin</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>!welcome</credentials>
 </user>
 <user>
 <name>user</name>
 <description>The default user</description>
 <credentials>!456</credentials>
 </user>

 <!-- users used for password hiding -->
 <user>
 <name>pwForScott</name>
 <description>Password for database user Scott</description>
 <credentials>!TIGER</credentials>
 </user>
 <user>
 <name>pwForSSL</name>
 <description>Password for ssl key and trust stores</description>
 <credentials>!123456</credentials>
 </user>
 <user>
 <name>pwForSystem</name>
 <description>Password for database system user </description>
 <credentials>!manager</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>administrators</name>
 <display-name>Realm Admin Role</display-name>
 <description>Administrative role for this realm.</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>user</name>
 </member>
 <member>
 <type>user</type>
 <name>SCOTT</name>
 </member>
 <member>
 <type>role</type>
 <name>administrators</name>
 </member>
 </members>
 </role>
 <role>

Sample jazn-data.xml Code

OracleAS JAAS Provider Standards and Samples A-3

 <name>guests</name>
 <members>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 <member>
 <type>role</type>
 <name>users</name>
 </member>
 </members>
 </role>
 <role>
 <name>jmxusers</name>
 <display-name>JMX users</display-name>
 <description>Allows access to application level user defined
MBeans</description>
 <members>
 </members>
 </role>
 </roles>
 </realm>
</jazn-realm>

<!-- JAZN Policy Data -->
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/administrators</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$createrealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.com$droprealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$createrole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.policy.RoleAdminPermission$jazn.com/*$</name>

Sample jazn-data.xml Code

A-4 Oracle Application Server Containers for J2EE Security Guide

 </permission>
 <permission>
 <class>com.evermind.server.AdministrationPermission</class>
 <name>administration</name>
 <actions>administration</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>droprealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>dropuser</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.RoleAdminPermission</class>
 <name>jazn.com/*</name>
 </permission>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$modifyrealmmetadata</nam
e>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>modifyrealmmetadata</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.com$droprole</name>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/users</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
 <grant>

Sample jazn-data.xml Code

OracleAS JAAS Provider Standards and Samples A-5

 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/jmxusers</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>

</jazn-policy>

<!-- Permission Class Data -->
<jazn-permission-classes>
</jazn-permission-classes>

<!-- Principal Class Data -->
<jazn-principal-classes>
</jazn-principal-classes>

<!-- Login Module Data -->
<jazn-loginconfig>
 <application>
 <name>oracle.security.jazn.oc4j.JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 <application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>

Modifying User Permissions

A-6 Oracle Application Server Containers for J2EE Security Guide

 </options>
 </login-module>
 </login-modules>
 </application>
 <application>
 <name>oracle.security.jazn.oc4j.DigestAuthenticator</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.login.module.digest.DigestLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

</jazn-data>

Modifying User Permissions
Example A–2 demonstrates granting java.io.FilePermission to a user named
Jane.Smith. The objects to be modified are presented in bold.

Table A–1 lists the objects in Example A–2.

Modifying User Permissions Code

Example A–2 Modifying User Permissions

import oracle.security.jazn.*;
import oracle.security.jazn.policy.*;
import oracle.security.jazn.realm.*;
import java.lang.*;
import java.security.*;
import java.util.*;
import java.net.*;
import java.io.*;

Table A–1 Objects In Sample Modifying User Permissions Code

Objects Names Comments

RealmUser user Jane.Smith

codesource cs file:/home/task.jar

File path report.data Path is the path name of the file.

sample organization abc.com abc.com does not appear in this
code directly.

sample External Realm abcRealm

Modifying User Permissions Code

OracleAS JAAS Provider Standards and Samples A-7

public class Init {

 public static void main(String[] args) {

 try {
 RealmManager realmMgr = JAZNContext.getRealmManager();
 Realm realm = realmMgr.getRealm("abcRealm");
 UserManager userMgr = realm.getUserManager();
 RoleManager roleMgr = realm.getRoleManager();
 final JAZNPolicy policy = JAZNContext.getPolicy();

 final RealmUser user = userMgr.getUser("Jane.Smith");

 AccessController.doPrivileged (new PrivilegedAction() {
 public Object run() {

 try {

 CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);
 HashSet prop = new HashSet();
 prop.add((Principal) user);

 // assign permission to principals
 policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

 return null;
 } catch (JAZNException e1) {
 e1.printStackTrace();
 } catch (java.net.MalformedURLException e2) {
 e2.printStackTrace();
 }
 return null;
 }
 }
);

 } catch (JAZNException e) {
 e.printStackTrace();
 }
 }
}

Modifying User Permissions Code

A-8 Oracle Application Server Containers for J2EE Security Guide

Discussion Of Sample Code
The sample code shown in Example A–2 grants a user, Jane.Smith, permission to
use the sample application, AccessTest1, as follows:

The name cs is assigned to the file:/home/task.jar, which includes the sample
application AccessTest1:

CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);

Jane.Smith is the user added to the HashSet prop:

HashSet prop = new HashSet();
 prop.add((Principal) user);

Jane.Smith is granted permission, on the Codesource cs, to read the file
report.data.

policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

Using the JAZN Admintool B-1

B
Using the JAZN Admintool

The JAZN Admintool can manage both XML-based and LDAP-based JAAS
configurations and data from the command prompt. The JAZN Admintool is a flexible
Java console application, with functions that can be called directly from the command
line or through an interactive shell. The JAZN Admintool is located in OC4J_
HOME/j2ee/home/jazn.jar.

This chapter discusses how to perform common administration tasks using the JAZN
Admintool. It is divided into the following sections:

■ Authentication and the JAZN Admintool (XML-based Provider Only)

■ JAZN Admintool Command-Line Options

■ Adding and Removing Policy Permissions (XML-based Provider Only)

■ Adding Clustering Support

■ Adding and Removing Login Modules (XML-based Provider Only)

■ Adding and Removing Principals (XML-based Provider Only)

■ Adding and Removing Realms

■ Adding and Removing Roles (XML-based Provider Only)

■ Adding and Removing Users (XML-based Provider Only)

■ Checking Passwords (XML-based Provider Only)

■ Configuration Operations

■ Granting and Revoking Permissions

■ Granting and Revoking Roles

■ Listing Login Modules

■ Listing Permissions

■ Listing Permission Information

■ Listing Principal Classes

■ Listing Principal Class Information

Note: The JAZN Admintool manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Authentication and the JAZN Admintool (XML-based Provider Only)

B-2 Oracle Application Server Containers for J2EE Security Guide

■ Listing Realms

■ Listing Roles

■ Listing Users

■ Migrating Principals from the principals.xml File

■ Setting Passwords (XML-based Provider only)

■ Using the JAZN Admintool Shell

Authentication and the JAZN Admintool (XML-based Provider Only)
If you are using the XML-based provider, you must authenticate yourself to the JAZN
Admintool before making administrative changes. You authenticate yourself in one of
two ways:

■ Supplying the -user and -password switches, as in:

java -jar jazn.jar -user myusername -password mypassword -listrealms

■ Supplying a username and password when prompted by the Admintool, as in:

java -jar jazn.jar -listrealms
>RealmLoginModule username: martha
>RealmLoginModule password: mypass

JAZN Admintool Command-Line Options
The JAZN Admintool provides the following command options, described in greater
detail in the following sections. The tool prints error messages if the syntax or
parameters are incorrect. You can list all the options and their syntax with the -help
option, as in:

java -jar jazn.jar -help

Note: If you specify the -user, -password, or
-clustersupport options, you must specify them before all
other options on the command line.

Cautions:

■ Because of Java limitations, the password you type to the
Admintool may be visible in the command window. Be sure to
close the command window after using the Admintool.

■ The Admintool does not require authentication when used with
the LDAP-based provider; anyone who runs the toolcan
perform Admintool operations against the Oracle Internet
Directory server. This means that it is vital to secure access to
the production machine(s) on which OC4J uses the
LDAP-based provider. If you specify the -user and
-password options when using the LDAP-based provider,
they are ignored.

JAZN Admintool Command-Line Options

Using the JAZN Admintool B-3

Syntax
The overall syntax for the Admintool is

java -jar jazn.jar [-user username -password mypassword
 -clustersupport ORACLE_HOME] [otheroptions]

This section lists all the Admintool command options.

Admintool Authentication (XML-based Provider Only)
-user username -password mypassword
See "Authentication and the JAZN Admintool (XML-based Provider Only)" on
page B-2.

Clustering Operations
-clustersupport oracle_home

See "Adding Clustering Support" on page B-5.

Configuration Operations
-getconfig

See "Configuration Operations" on page B-9.

Interactive Shell
-shell

See "Using the JAZN Admintool Shell" on page B-15.

Login Modules
-addloginmodule application_name login_module_name
 control_flag [options]
-listloginmodules [application_name] [login_module_class]
-remloginmodule application_name login_module_name

See "Adding and Removing Login Modules (XML-based Provider Only)" on page B-6
and "Listing Login Modules" on page B-10.

Migration Operations
-convert filename realm

See "Migrating Principals from the principals.xml File" on page B-13.

Miscellaneous
-help [command name]

To display help for a specific command.

Note: If you are using the -user, -password, or
-clustersupport options, you must specify them before all
other options on the command line.

JAZN Admintool Command-Line Options

B-4 Oracle Application Server Containers for J2EE Security Guide

Password Management (XML-based Provider only)
-checkpasswd realm user [-pw password]
-setpasswd realm user old_pwd new_pwd

See "Checking Passwords (XML-based Provider Only)" on page B-9 and "Setting
Passwords (XML-based Provider only)" on page B-14.

Policy Operations
-addperm permission permission_class action target [description]
-addprncpl principlename principle_class parameters [description]
-grantperm {realm {-user user|-role role} | principal_class
 principal_params} permission_class [permission_params]
-listperms [{realm {-user user |-role role} |
 principal_class principal_params | permission_name]
-listperm permission
-listprncpls [principal_name]
-listprncpl principal_name
-remperm permission
-remprncpl principal_name
-revokeperm {realm {-user user|-role role} | principal_class
 principal_params} permission_class [permission_params]

See "Adding and Removing Policy Permissions (XML-based Provider Only)" on
page B-5, "Adding and Removing Principals (XML-based Provider Only)" on page B-7,
"Granting and Revoking Permissions" on page B-9, "Listing Permissions" on page B-11,
"Listing Permission Information" on page B-11, "Listing Principal Classes" on
page B-12, and"Listing Principal Class Information".

Realm Operations
-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype }
-addrole realm role
-adduser realm username password
-grantrole role realm {user|-role to_role}
-listrealms realm
-listroles [realm [user|-role role]]
-listusers [realm [-role role|-perm permission]]
-remrealm realm
-remrole realm role
-remuser realm user
-revokerole role realm {user|-role from_role}

See "Adding and Removing Realms" on page B-7, "Adding and Removing Roles
(XML-based Provider Only)" on page B-8, "Adding and Removing Users (XML-based
Provider Only)" on page B-8, "Granting and Revoking Roles" on page B-10, "Listing
Realms" on page B-12, "Listing Roles" on page B-13, and "Listing Users" on page B-13.

Adding Clustering Support

Using the JAZN Admintool B-5

Adding and Removing Policy Permissions (XML-based Provider Only)
-addperm permission permission_class action target [description]
-remperm permission

The -addperm option registers a permission with the JAAS Provider
PermissionClassManager. The -remperm option removes registration for the
specified permission class. To supply multiple words in the permission or
description arguments, enclose them in quotation marks ("three word
permission").

If you add a permission that already exists, the Admintool updates the permission’s
action and target lists.

For instance, to create permission to drop a realm, type:

java -jar jazn.jar -addperm perm1 oracle.security.jazn.realm.RealmPermission
droprealm "permission to drop a realm"

To delete the droprealm permission, type:

java -jar jazn.jar -remperm perm1

Admintool shell:

JAZN:> addperm perm1 oracle.security.jazn.realm.RealmPermission droprealm -null
"permission to drop a realm"
JAZN: remperm perm1

Adding Clustering Support
-clustersupport oracle_home

Specifying this option instructs the Admintool to propagate all JAAS configuration
changes throughout a cluster. The oracle_home argument specifies the absolute path
name of $ORACLE_HOME, the Oracle home directory. You can combine
-clustersupport with the -shell option.

For example:

java -jar jazn.jar -clustersupport /oracle_home -shell

Notes: If you are using the -clustersupport option, you must
specify it before all other options on the command line.

The -clustersupport option is meaningful only when using the
XML-based provider.

Adding and Removing Login Modules (XML-based Provider Only)

B-6 Oracle Application Server Containers for J2EE Security Guide

Adding and Removing Login Modules (XML-based Provider Only)
You use the JAZN Admintool to add and remove login modules. For basic
information on running the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -addloginmodule application_name login_module_name
 control_flag [optionname=value ...]
 java -jar jazn.jar -remloginmodule application_name login_module_name

The -addloginmodule option configures a new LoginModule for the named
application.

The control_flag must be one of required, requisite, sufficient or
optional, as specified in javax.security.auth.login.Configuration. See
Table B–1.

If the LoginModule accepts its own options, you specify each option and its value as
an optionname=value pair. Each LoginModule has its own individual set of
options.

For instance, to add MyLoginModule to the application myapp as a required module
with debug set to true, type:

java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

To delete MyLoginModule from myapp, type:

java -jar jazn.jar -remloginmodule myapp MyLoginModule

Admintool shell:

JAZN:> addloginmodule myapp MyLoginModule required debug=true
JAZN: remloginmodule myapp MyLoginModule

Table B–1 LoginModule Control Flags

 Flag Meaning

Required The LoginModule must succeed. Whether or not it succeeds,
authentication proceeds down the LoginModule list.

Requisite The LoginModule must succeed. If it succeeds, authentication
continues down the LoginModule list. If it fails, control
immediately returns to the application (authentication does not
continue down the LoginModule list).

Sufficient The LoginModule is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the LoginModule list.
If it fails, authentication continues down the LoginModule
list.

Optional The LoginModule is not required to succeed. Whether or not
it succeeds, authentication proceeds down the LoginModule
list.

Adding and Removing Realms

Using the JAZN Admintool B-7

Adding and Removing Principals (XML-based Provider Only)
-addprncpl principlename principle_class parameters [description]
-remprncpl principal_name

The -addprncpl option registers a principal with the JAAS Provider
PrincipalClassManager. The -remprncpl option removes registration for the
specified principal class. To supply multiple words in the principal_name and
description arguments, enclose them in quotation marks ("three word
description").

If you add a principal that already exists, the Admintool updates the principal’s
parameter list.

For example, to add the principal staff, type:

java -jar jazn.jar -addprincpl staff oracle.security.jazn.spi.xml.XMLRealmUser
 "a staff user"

Admintool shell:

JAZN:> addprincpl staff oracle.security.jazn.spi.xml.XMLRealmUser -null "a staff
user"

Adding and Removing Realms
-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype}
-remrealm realm

The -addrealm option creates a realm of the specified type with the specified name,
and -remrealm deletes a realm.

For example, using the XML-based Provider, the administrator martha with password
mypass using role hr would add the realm employees as follows:

java -jar jazn.jar -addrealm employees martha mypass hr

Using the LDAP-based Provider, the administrator martha using role hr would add
the realm employees to userbase ub and rolebase rb in an external realm as follows:

java -jar jazn.jar -addrealm employees martha hr ub rb external

In either environment, the administrator would delete employees as follows:

java -jar jazn.jar -remrealm employees

Note: The realmtype argument is required only when using the
LDAP-based Provider. The possible values for realmtype are:

■ external

■ application

Adding and Removing Roles (XML-based Provider Only)

B-8 Oracle Application Server Containers for J2EE Security Guide

Adding and Removing Roles (XML-based Provider Only)
-addrole realm role
-remrole realm role

The -addrole option creates a role in the specified realm; the -remrole option
deletes a role from the realm.

For example, to add the role roleFoo to the realm foo, type:

java -jar jazn.jar -addrole foo fooRole

To delete the role from the realm, type:

java -jar jazn.jar -remrole foo fooRole

Admintool shell:

JAZN:> remrole foo fooRole

Adding and Removing Users (XML-based Provider Only)
-adduser realm username password
-remuser realm user

The -adduser option adds a user to a specified realm; the -remuser option deletes a
user from the realm. For example, to add the user martha to the realm foo with the
password mypass, type:

java -jar jazn.jar -adduser foo martha mypass

To delete martha from the realm, type:

java -jar jazn.jar -remuser foo martha

Admintool shell:

JAZN:> adduser foo martha mypass

Note: If you are using the LDAP-based provider, -addrole and
-remrole are supported only for application realms; they are not
supported for external or identity management realms.

Notes: ■

■ To insert a user with no password, end the command line with
the -null option, as in:
jazn -jar jazn.jar -adduser foo martha -null

■ If you are using the LDAP-based provider, these commands
will not work.

Granting and Revoking Permissions

Using the JAZN Admintool B-9

Checking Passwords (XML-based Provider Only)
-checkpasswd realm user [-pw password]

The -checkpasswd option indicates whether the given user requires a password for
authentication.

When you specify -checkpasswd alone, the Admintool responds "A password
exists for this principal" if the user has a password, or "No password
exists for this principal" if the user has no password.

When you specify -checkpasswd together with the -pw option, the Admintool
responds "Successful verification of user/password pair" if the
username and password pair are correct, or "Unsuccessful verification of
user/password pair" if username and/or password is incorrect.

For example, to check whether the user martha in realm foo uses the password
Hello, type:

java -jar jazn.jar -checkpasswd foo martha -pw Hello

Admintool shell:

JAZN:> checkpasswd foo martha -pw Hello

Configuration Operations
-getconfig

The -getconfig option displays the current configuration setting in jazn.xml.

For example, to check the configuration settings for the realm foo, type:

java -jar jazn.jar -getconfig

Admintool shell:

JAZN:> getconfig foo

Granting and Revoking Permissions
-grantperm realm {-user user|-role role } | principal_params} permission_class
[permission_params]
-revokeperm realm {-user user|-role role} | principal_class principal_parameters}
permission_class [permission_parameters]
-listperms realm {-user user|-role role} | principal_class principal_parameters}
permission_class [permission_parameters]

where principal_class is the fully qualified name of a class that implements the
principal interface (such as com.sun.security.auth.NTDomainPrincipal) and
principal_paramters is a single String parameter.

The -grantperm option grants the specified permission to a user (when called with
-user) or a role (when called with -role) or a principal. The -revokeperm option
revokes the specified permission from a user or role or principal

A permission_descriptor consists of a permission’s explicit class name (for
example, oracle.security.jazn.realm.RealmPermission), its action, and its
action and target parameters (for RealmPermission, realmname action). Note
that there may be multiple action and target parameters.

Granting and Revoking Roles

B-10 Oracle Application Server Containers for J2EE Security Guide

For example, to grant FilePermission with target a.txt and actions "read,
write" to user martha in realm foo, type:

java -jar jazn.jar -grantperm foo -user martha java.io.FilePermission
 a.txt read, write

Admintool shell:

JAZN:> grantperm foo -user martha java.io.FilePermission a.txt read, write

Granting and Revoking Roles
-grantrole role realm {user|-role to_role}
-revokerole role realm {user|-role from_role}

The -grantrole option grants the specified role to a user (when called with a user
name) or a role (when called with -role). The -revokerole option revokes the
specified role from a user or role.

For example, to grant the role editor to the user martha in realm foo, type:

java -jar jazn.jar -grantrole editor foo martha

Admintool shell:

JAZN:> grantrole editor foo martha

Listing Login Modules
-listloginmodules [application_name] [login_module_class]

You use the JAZN Admintool to list login modules. For basic information on running
the JAZN Admintool, see "Admintool Overview" on page 4-3.

java -jar jazn.jar -listloginmodules [application_name [login_module_class]]

The -listloginmodules option displays all LoginModules either in the specified
application_name , or, if no application_name is specified, in all applications.
Specifying login_module_class, after application_name displays information
on only the specified class within the application.

For example, to display all LoginModules for the application myapp, type:

java -jar jazn.jar -listloginmodules myapp

Admintool shell:

JAZN:> listloginmodules myapp

Note: If you are using the LDAP-based provider, -grantrole
and -revokerole are supported only for application realms; they
are not supported for external or identity management realms.

Listing Permission Information

Using the JAZN Admintool B-11

Listing Permissions
-listperms realm {-user user|-role role} | principal_class
principal_parameters} permission_class [permission_parameters]

The -listperms option displays all permissions that match the list criteria. This
option lists the following:

■ All permissions registered with the JAAS Provider PermissionClassManager

■ Permissions that are granted to a role when the -role option is used.

■ Permissions that are grated to a prinicpal.

For example, to display all permissions for the user martha in realm foo, type:

java -jar jazn.jar -listperms foo -user martha

Admintool shell:

JAZN:> listperms foo -user martha

Listing Permission Information
-listperm permission

The-listperm option displays detailed information about the specified permission,
including the permission’s display name, class, description, actions, and targets.

For example, to list all information about the permission perm1, type:

java -jar jazn.jar -listperm perm1

Typical output might look like

Name:
perm1

Class:
oracle.security.jazn.realm.RealmPermission

Description:
permission to drop realm

Targets:

Actions:
droprealm <no description available>
Admintool shell:

JAZN:> listperm perm1

Listing Principal Classes

B-12 Oracle Application Server Containers for J2EE Security Guide

Listing Principal Classes
-listprncpls principal_name

The -listprncpls option lists all principal classes registered with the
PrincipalClassManager. If the principal_name argument is present, only the
named principal class is listed.

For example:

java -jar jazn.jar -listprncpls

Admintool shell:

JAZN:> listprncpls

Listing Principal Class Information
-listprncpl principal_name

The -listprncpl option displays detailed information about the specified principal,
including the display name, class, description, and actions.

For example, to list all information about the principal martha, type:

java -jar jazn.jar -listprncpl martha

In our example, the output would be:

Name:
martha
Class:
oracle.security.jazn.spi.xml.XMLRealmUser
Description:
a staff user
Parameters:

Admintool shell:

JAZN:> listprncpl martha

Listing Realms
-listrealms [realm]

The -listrealms option displays all realms in the current JAAS environment; if an
argument is specified, it lists only the specified realm.

For example, to list all realms, type:

java -jar jazn.jar -listrealms

Admintool shell:

JAZN:> listrealms

Migrating Principals from the principals.xml File

Using the JAZN Admintool B-13

Listing Roles
-listroles [realm [user|-role role]]

The -listroles option displays a list of roles that match the list criteria. This option
lists:

■ All roles in all realms, when called without any parameters

■ All roles granted to a user, when called with a realm name and user name

■ Roles that are granted the specified role, when called with a realm name and the
option -role

For example, to list all roles in realm foo, type:

java -jar jazn.jar -listroles foo

Admintool shell:

JAZN:> listroles foo

Listing Users
-listusers [realm [-role role|-perm permission]]

The -listusers option displays a list of users that match the list criteria. This option
lists:

■ All users in all realms, when called without any parameters

■ All users in a realm, when called with a realm name

■ Users that are granted a certain role or permission, when called with a realm name
and the option -role or -perm

For example, to list all users in realm foo, type:

java -jar jazn.jar -listusers foo

Admintool shell:

JAZN:> listusers foo

For example, to list all users in realm foo using permission bar, type:

java -jar jazn.jar -listusers foo -perm bar
The Admintool lists users one to a line, as in:

scott
admin
anonymous

Migrating Principals from the principals.xml File
You use the JAZN Admintool to migrate your data out of the principals.xml file.
For basic information on running the JAZN Admintool, see "Admintool Overview" on
page 4-3.

-convert filename realm

The -convert option migrates the principals.xml file into the specified realm of
the current OracleAS JAAS Provider. The filename argument specifies the path

Setting Passwords (XML-based Provider only)

B-14 Oracle Application Server Containers for J2EE Security Guide

name of the input file (typically $ORACLE_
HOME/j2ee/home/config/principals.xml).

The migration converts principals.xml users to JAAS users and
principals.xml groups to JAAS roles. All permissions that were previously
granted to a principals.xml group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

An error (either javax.naming.AuthenticationException:Invalid
username/password or javax.naming.NamingException:Lookup Error) is
returned if the input file contains errors.

Before you convert principals.xml, you must make sure that you have an
administrator user that is authorized to manage realms. To do this:

1. Activate the administrative user in principals.xml, which is deactivated by
default. Be sure to create a password for the administrator.

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in principals.xml. This is necessary
because the convert command does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

2. Create the realm principals.com with a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addrealm principals.com u1 welcome r1

3. Migrate principals.xml to the principals.com realm, as in

java -jar jazn.jar -convert config/principals.xml principals.com
4. Change the <default-realm> to principals.com; see "Setting Persistence

Mode" on page 8-4.

5. Stop OC4J and restart it.

Setting Passwords (XML-based Provider only)
-setpasswd realm user old_pwd new_pwd

The -setpasswd option enables administrators to reset the password of a user given
the old password.

For example, to change the user martha in realm foo from password mypass to
password a2d3vn, type:

java -jar jazn.jar -setpasswd foo martha mypass a2d3vn

Admintool shell:

JAZN:> setpasswd foo martha mypass a2d3vn

Using the JAZN Admintool Shell

Using the JAZN Admintool B-15

Using the JAZN Admintool Shell
-shell

The -shell option starts a JAZN Admintool shell. The JAZN Admintool shell
provides interactive administration of JAAS principals and policies through a
UNIX-derived interface.

java -jar jazn.jar -user martha -password mypass -shell
JAZN:>

The shell responds with the JAZN:> prompt. To leave the interface shell, type exit.

If you are using the XML-based provider you must supply a username and password
to the Admintool; for details see "Authentication and the JAZN Admintool
(XML-based Provider Only)" on page B-2. If you are using the LDAP-based Provider,
you do not need to specify the -user and -password arguments.

Navigating the JAZN Admintool Shell
The Admintool shell supports UNIX-like commands for navigating within a JAZN
structure. For a complete discussion of the Admintool directory structure, see
"Admintool Shell Directory Structure" on page B-17. All the Admintool commands
support relative and absolute paths.

 The Admintool navigation commands are:

add: Creating Provider Data
add directory_name [other_parameter]
mkdir directory_name [other_parameter]
mk directory_name [other_parameter]

The add, mkdir, and mk commands are synonyms: they create a subdirectory or node
in the current directory. For example, if the current directory is the root, then mk
creates a realm. If the current directory is /realm/users, then mk creates a user. The
effect of add depends upon the current directory. Some commands require additional
parameters in addition to the name.

cd: Navigating Provider Data
cd path

The cd command enables users to navigate the directory tree. Relative and absolute
path names are supported. To exit a directory, type:

cd ..

Typing cd / returns the user to the root node. An error message is displayed if the
specified directory does not exist.

clear: Clearing the Screen
clear

Note: Multi-word arguments must be enclosed in quotes. For
example, java -jar jazn.jar -user ’Oracle DBA’ ...

Using the JAZN Admintool Shell

B-16 Oracle Application Server Containers for J2EE Security Guide

The clear command clears the terminal screen by displaying 80 blank lines.

exit: Exiting the JAZN Shell
exit

The exit command exits the JAZN shell.

help: Listing JAZN Admintool Shell Commands
help

The help command displays a list of all valid commands.

ls: Listing Data
ls [path]

The ls command lists the contents of the current directory or node. For example, if the
current directory is the root, then ls lists all realms. If the current directory is
/realm/users, then ls lists all users in the realm. The results of the listing depends
on the current directory. The ls command can operate with the * wildcard.

man: Viewing JAZN Admintool Man Pages
man command_option
man shell_command

The man command displays detailed usage information for the specified shell
command or JAZN Admintool command option. Where information presented by the
man page and this document conflict, this document contains the correct usage for the
command.

pwd: Displaying The Working Directory
pwd

The pwd command displays the current location of the user in the directory tree.
Undefined values are left blank in this listing.

rm: Removing Provider Data
rm directory_name

The rm command removes the directory or node in the current directory. For example,
if the current directory is the root, then rm removes the specified realm. If the current
directory is /realm/users, it removes the specified user. The effect of rm depends on
the current directory. An error message is displayed if the specified directory does not
exist.

The rm command accepts the * wildcard.

Using the JAZN Admintool Shell

Using the JAZN Admintool B-17

set: Updating Values
set name=value

The set command updates the value of the specified name. For example, use this
command to update the login module class, or a login module control flag, or a login
module class option, depending on the working directory.

Admintool Shell Directory Structure
The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN shell
is an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure B–1 illustrates the node structure.

Figure B–1 JAZN Shell Directory Structure

In this structure, the user and role nodes are linked together. This means that the
roles link under user is the same link as the roles link under realm. In Unix
terms, the role at numeral 1 in the diagram is a symbolic link to role at numeral 2 in
the diagram.

Note: In this release, the policy directory is always empty.

Using the JAZN Admintool Shell

B-18 Oracle Application Server Containers for J2EE Security Guide

Figure B–2 shows nodes of the abcRealm created by the jazn-data.xml file in
"Sample jazn-data.xml Code" on page A-1.

Figure B–2 Illustrated Shell Directory Structure

Index-1

Index

Symbols
<as-context> element, 15-5
<confidentiality> element, 15-5
<default-method-access> element, 12-9
<establish-trust-in-client> element, 15-5
<establish-trust-in-target> element, 15-5
<group> element, 4-13
<groups> element, 4-13
<integrity> element, 15-5
<jazn> element

and <password-manager> element, 14-3
<jazn-loginconfig>, 10-7
<jazn-policy>, 10-7
<jazn-web-app> element, 4-9, 4-10, 18-3

auth-method, 4-9
<login-module> entity

options, 4-8
<method> element

defined, 12-6
<method-permission> element, 12-3, 12-4, 12-5, 12-6
<password-manager> element, 14-3
<principals> element, 4-13
<role-link> element, 12-3, 12-4, 12-5
<role-name> element, 12-3, 12-4
<run-as> element, 12-7
<sas-context> element, 15-6
<security-identity> element, 12-7
<security-role> element, 12-3, 12-4
<security-role-mapping> element, 12-8
<security-role-ref> element, 12-3, 12-4
<transport-config> element, 15-5
<unchecked/> element, 12-7
<use-caller-identity/> element, 12-7
<user> element, 4-13
<users> element, 4-13

A
access control lists

definition, 2-8
AccessController, 1-2
AccessTest1, A-8
actions

definition, 1-2
add command, B-15

adding and removing realms, 10-4, B-5, B-6
adding and removing roles, B-8
adding and removing users, B-8
-addperm option to JAZN Admintool, 10-4, B-5, B-6
-addprncpl option to JAZN Admintool, B-7
-addrealm option to JAZN Admintool, B-7
-addrole option to JAZN Admintool, B-8
-adduser option to JAZN Admintool, B-8
administration permission

granting, 6-2
AdminPermission class

definition, 1-3
Apache Listener. See Oracle HTTP Server.
applications

in Java 2 application environments, 3-1
with JAAS, 2-4

authentication, 1-4, 4-6
basic, 3-3
environments, 3-3
form-based, 3-4
J2EE, 3-6
using login modules, 2-3
using OracleAS Single Sign-On, 2-5
using RealmLoginModule class, 2-5
with Basic Authentication, 3-6
with OracleAS Single Sign-on, 2-5
with SSO, 3-4

authentication methods, 4-9
auth-method, 4-9
authorization, 1-4

J2EE, 3-7

B
bootstrap jazn.xml, 5-1

C
cache properties, 5-5
caching, 5-3

disabling, 5-4
caching properties, 5-3, 5-4
capability model

definition, 2-8
certificate authorities, 11-1
certificates (SSL), 11-1

Index-2

checking
passwords, B-9

-checkpasswd option to JAZN Admintool, B-9
cipher suites

supported by Oracle HTTPS, 13-5, 13-6
class names

definition, 1-2
clear command, B-16
client.sendpassword property, 15-7
codesource in policy files, 2-4
Common Secure Interoperability version 2 see CSIv2
configuration data

retrieving from jazn.xml file, B-9
configuring

external LDAP providers, 9-1 to 9-5
LoginModules, 10-6
XML-based provider, 8-1 to 8-5

connection properties, 5-1, 5-2
connector-factory element, 10-10
createUser method, 2-5
creating

groups, 8-2
realms, 8-2
users, 8-1, 8-2

credentials, 1-3, 14-2
cryptographic keys, 1-3
CSIv2

and EJBs, 15-3
internal-settings.xml, 15-3
introduction, 15-1
properties in orion-ejb-jar.xml, 15-5
security properties, 15-5

custom Loginmodules
troubleshooting, 18-2

D
DAS, 2-7
debugging

general SSL debugging, 11-10
default realm, 8-4

properties, 5-7
Delegated Administrative Service, see DAS
deleting

realms, 8-3
users, 8-2

deploying
LoginModule, 10-5

deployment descriptors
J2EE Connector, 16-1
security, 12-3, 12-4, 12-8

DER, 13-3
digital certificates, 1-5
disabling caching, 5-4
Distinguished Encoding Rules, 13-3
doAsPrivileged(), 4-10
doasprivileged-mode, 4-10
DTDs

internal-settings.xml, 15-3
<ior-security-config> element, 15-6

E
EIS connections

JCA, 17-1 to 17-13
EJB

CSIv2, 15-3
interoperability, 15-1
security, 12-2
server security properties, 15-2

ejb_sec.properties, 15-7
environment variables

and JAZN Admintool, 18-2
LDAP, 7-3

exit command, B-16

G
GenericCredential interface

and Kerberos, 16-5
getAttribute("java.security.cert.X509certificate"), 2-1

0, 3-7
getAuthType, 3-7
-getconfig option to JAZN Admintool, B-9
getGroup method, 2-5
getRemoteUser, 3-7
getUser method, 2-5
getUserPrincipal, 3-7
granting

administration permission, 6-2
permissions, 6-2
RMI permission, 6-2
roles, 8-3

granting and revoking permissions, 6-2, B-9
-grantperm option to JAZN Admintool, 6-2, B-9
groups

creating, 8-2
creating in LDAP, 7-1

H
help command, B-16
HTTPClient.HttpUrlConnection, 13-7
HTTPConnection, 13-3
HttpSession, 5-3

I
impliesAll attribute, 12-9
instance properties

jazn.xml, 5-1
integrating

custom LoginModule, 10-3
internal-settings.xml file, 15-2

CSIv2 entities, 15-3
DTD, 15-3
<sep-property> element, 15-2, 15-3

interoperability, 15-1
invoking JAZN Admintool, B-2
<ior-security-config> element

DTD, 15-6
isCallerInRole method, 12-4

Index-3

J
J2EE Connector, 16-1

deployment descriptors, 16-1
JAAS

login modules, 2-3
JAAS Provider, 2-1

and SSL/Oracle Internet Directory, 5-6
common configuration tasks

configuring a Java 2 Policy File, 4-13
integration with Basic authentication, 3-5
integration with SSL-enabled applications, 3-5
integration with SSO-enabled applications, 3-4
locations for jazn.xml, 4-2
overview, 2-1
permission classes, 1-3
security role, 3-8

JAAS. See Java Authentication and Authorization
Service (JAAS)

jaas.config file, 4-7
Java 2 application environments, 3-1
Java 2 Platform, Enterprise Edition (J2EE), 1-1

application development in, 3-1
integration with JAZNUserManager, 3-3
Oracle component responsibilities in basic

authentication environments, 3-6
Oracle component responsibilities in SSO-enabled

environments, 3-4
Java 2 Platform, Standard Edition (J2SE)

application development in, 3-1
creating applications using the Java 2 Security

Model, 1-1
Java 2 policy file

configuring for JAAS Provider, 4-13
Java 2 Security Model, 2-2

definition, 1-1
using access control capability model, 2-8
using with J2EE applications, 1-1
using with J2SE applications, 1-1

Java Authentication and Authorization Service (JAAS)
applications, 2-4
definition, 2-2
policy files

example, 2-4
principals, 1-3
realms, 2-3
roles, 2-3
subjects, 1-3

Java Key Store (JKS), 15-2
Java Platform, Enterprise Edition (J2EE)

security role, 3-7
java2.policy file

configuring for JAAS Provider, 4-13
java.io.FilePermission, A-6
java.net.URL framework, 13-7
java.security.Principal, 2-3, 2-5
java.security.Principal interface

using with principals, 1-3
using with roles and groups, 2-3

javax.net.ssl.KeyStore, 13-7
javax.net.ssl.KeyStorePassword, 13-8

javax.servlet.HttpServletRequest, 3-7
JAZN Admintool

adding and removing permissions, 10-4, B-5, B-6
adding and removing principals, B-7
adding realms, B-7
adding roles, B-8
adding users, B-8
and environment variables, 18-2
checking passwords, B-9
command options, B-2
granting and revoking permissions, 6-2, B-9
granting roles, B-10
invoking, B-2
listing permissions, B-11
listing principals, B-12
listing realms, B-12
listing roles, B-13
listing users, B-13
migrating principals, 8-5, B-13
navigating shell, B-15
retrieving configuration data, B-9
revoking roles, B-10
setting passwords, B-14
shell commands, B-15 to B-16
starting shell, B-15

JAZN Admintool shell
starting, 8-5, B-13

JAZN Admintool shell commands
add, B-15
clear, B-16
exit, B-16
help, B-16
man, B-16
mk, B-15
pwd, B-16
rm, B-16
set, B-17

jazn-data.xml
and LoginModule, 9-1, 10-7
deploying LoginModules, 10-10

jazn-data.xml file, 2-4, 2-6
and Admintool, 4-2, 4-3

JAZNPermission class
definition, 1-3

JAZNUserManager, 2-6, 3-7
definition, 2-5, 3-3
integration in J2EE environments, 3-3

jazn.xml
bootstrap file, definition, 5-1
file location, 4-2
instance properties, 5-1
retrieving configuration data, B-9

JCA
component-managed vs. container-managed

sign-on, 17-3
EIS connections, 17-1 to 17-13
security contract, 17-1

JNDI connection pool, 5-2
JVM, 4-5

Index-4

K
Kerberos, 1-4

and GenericCredential interface, 16-5
keys (SSL), 11-1
keystore

definition, 15-2
keystores, 11-1

L
LD_LIBRARY_PATH

variable setting, 2-9, 7-3, 18-2
LDAP, 2-6

caching properties, 5-3, 5-4
configuring external providers, 9-1 to 9-5
connection properties, 5-1, 5-2
creating users and groups, 7-1
environment variables, 7-3
Oracle Internet Directory used as provider

type, 2-2
prerequisites, 7-1
SSL properties, 5-6

LDAP default realm properties, 5-7
LDAP provider

Microsoft Active Directory, 9-5
Sun Java System Application Server, 9-4
third-party, 9-2

LDAP-based provider type, 2-6, 2-7
ldap.password property name, 5-6
ldap.protocol, 5-6
ldap.user property name, 5-6
Lightweight Directory Access Protocol. See LDAP.
listing

permission information, B-11
permissions, B-11
principal class information, B-12
principal classes, B-12
realms, B-12
roles, B-13
users, B-13

listing realms, B-12
-listperm option to JAZN Admintool, B-11
-listprncpl option to JAZN Admintool, B-12
-listprncpls option to JAZN Admintool, B-12
-listrealms option to JAZN Admintool, B-12
-listroles option to JAZN Admintool, B-13
-listusers option to JAZN Admintool, B-13
login-config element, 4-9
LoginContext class, 2-3

authenticating subjects, 2-3
login-module element

and third-party LDAP provider, 9-2
LoginModules, 10-1 to 10-11

configuring, 10-6
configuring with different applications, 2-3
definition, 2-3
deploying, 10-10
integrating, 10-10
integration with OC4J, 10-3
packaging and deployment, 10-5

troubleshooting custom, 18-2

M
man command, B-16
mapping

groups to EIS users, 17-13
security roles, 6-1

Microsoft Active Directory
as LDAP provider, 9-5

-migrate option to JAZN Admintool, 8-5, B-13
migrating

principals, 8-5, B-13
mk command, B-15
modes

persistence, 8-4

N
nameservice.useSSL property, 15-7
navigating

JAZN Admintool shell, B-15

O
obfuscation, 14-2

LDAP password, 5-6
oc4j.iiop.ciphersuites property, 15-7
oc4j.iiop.enable.clientauth property, 15-7
oc4j.iiop.keyStoreLoc property, 15-7
oc4j.iiop.keyStorePass property, 15-7
oc4j.iiop.trustedServers property, 15-7
oc4j.iiop.trustStoreLoc property, 15-7
oc4j.iiop.trustStorePass property, 15-7
oc4j-ra.xml, 10-10
OPMN, 15-2
Oracle HTTPS, 13-1 to 13-11

default system properties, 13-7
example, 13-8
feature overview, 13-4
supported cipher suites, 13-5, 13-6

Oracle Internet Directory, 1-4, 2-6, 2-7
Oracle Process Management Notification

service, 15-2
OracleAS Containers for J2EE (OC4J)

interoperability, 15-1
mapping security roles to JAAS Provider users and

roles, 3-8
OracleAS Single Sign-On, 2-5
oracle.security.jazn.realm package

use of, 2-5
OracleSSLCredential, 13-3
Oracle.ssl.defaultCipherSuites, 13-8
orion-application.xml, 4-10, 18-3

and LoginModule, 10-8
deploying LoginModules, 10-11
mapping security roles to JAAS Provider users and

roles, 3-8
passwords not obfuscated, 14-2
specifying UserManager, 4-6 to 4-15

orion-ejb-jar file

Index-5

<establish-trust-in-target> element, 15-5
orion-ejb.jar file

<sas-context> element, 15-6
<transport-config> element, 15-5

orion-ejb-jar.xml, 15-5
<as-context> element, 15-5
<establish-trust-in-client> element, 15-5
<integrity> element, 15-5
security properties, 15-5

orion-ejb-jar.xml file
<confidentiality> element, 15-5

orion-web.xml, 4-10, 18-3

P
partitioning, 2-4
password indirection

definition, 14-1
password obfuscation

definition, 14-1
passwords, 14-2

checking, B-9
checking in JAZN Admintool, B-9
not obfuscated in orion-application.xml, 14-2
obfuscating, 14-2
setting, 6-2, B-9
setting in JAZN Admintool, B-14

permissions, 2-8, 12-2
actions, 1-2
adding and removing in JAZN Admintool, 10-4,

B-5, B-6
class definitions, 1-3
class name, 1-2
definition, 2-4
granting, 6-2
granting and revoking in JAZN Admintool, 6-2,

B-9
granting and revoking with the JAZN

Admintool, 6-2, B-9
in Java 2 Security Model, 1-2
JAAS Provider, 1-3
Java permission instance contents, 1-2
listing in JAZN Admintool, B-11
listing with the JAZN Admintool, B-11
revoking, 6-2, 8-3
target, 1-2

persistence mode, 8-4, 14-2
Pluggable Authentication Module (PAM), 2-2
policy

definition, 2-4
policy cache, 5-3
policy files

codesource, 2-4
example, 2-4
subject, 2-4

prerequisites
LDAP, 7-1

principal mapping classes, 17-13
principals, 1-3

adding and removing in JAZN Admintool, B-7

definition, 1-3
listing class information with the JAZN

Admintool, B-12
listing in JAZN Admintool, B-12
migrating, 8-5
migrating in JAZN Admintool, 8-5, B-13
with JAAS, 1-3

principals.xml file, 2-6, 2-7, 4-13, 8-5
converting from, 8-5, B-13
examples, 4-15

private keys (SSL), 11-1
privileges, 2-9
properties

connection, 5-1
JNDI connection pool, 5-2
LDAP caching, 5-3, 5-4
LDAP default realm, 5-7
LDAP SSL, 5-6

property names
ldap.password, 5-6
ldap.user, 5-6

PropertyPermission, 12-2
protection domain

in Java 2 Security Model, 1-2
provider types, 2-2

in J2SE environments, 3-1
retrieving permissions from, 2-8

public key certificates, 1-3
public keys (SSL), 11-1
pwd command, B-16

R
RBAC (role-based access control), 2-8
realm cache, 5-3
RealmLoginModule class, 2-5, 3-6, 4-7

in J2SE environments, 3-1
RealmPermission class

definition, 1-3
RealmPrincipal interface, 2-5
realms

adding and removing with the JAZN
Admintool, 10-4, B-5, B-6

adding in JAZN Admintool, B-7
creating, 8-2
default, 8-4
definition, 2-3, 2-5
deleting, 8-3
JAAS Provider support, 2-5
listing in JAZN Admintool, B-12
listing with the JAZN Admintool, B-12
with JAAS, 2-3

-remperm option to JAZN Admintool, 10-4, B-5, B-6
-remprncpl option to JAZN Admintool, B-7
-remrealm option to JAZN Admintool, B-7
-remrole option to JAZN Admintool, B-8
-remuser option to JAZN Admintool, B-8
retrieving authentication information, 3-7
-revokeperm option to JAZN Admintool, 6-2, B-9
revoking

Index-6

permissions, 6-2, 8-3
roles, 8-4
roles in JAZN Admintool, B-10

rm command, B-16
RMI permission

granting, 6-2
RMI/IIOP, 15-1
role activation

definition, 2-9
role hierarchy

definition, 2-8
RoleAdminPermission class

definition, 1-3
role-based access control (RBAC), 2-3

definition, 2-8
role activation, 2-9
role hierarchy, 2-8

roles, 1-4
adding and removing with the JAZN

Admintool, B-8
adding in JAZN Admintool, B-8
definition, 2-8
granting, 8-3
granting in JAZN Admintool, B-10
listing in JAZN Admintool, B-13
listing with the JAZN Admintool, B-13
mapping, 6-1
revoking, 8-4
revoking in JAZN Admintool, B-10
using the J2EE security roles, 3-7
with JAAS, 2-3

run-as element, 2-9
runAs security identity, 12-7
runas-mode, 4-10
RuntimePermission, 12-2

S
sample application

AccessTest1, A-8
secure socket layer (SSL)

integration with Basic authentication, 3-5
integration with JAAS Provider, 3-5

Secure Sockets Layer. See SSL
security, 12-2

keys and certificates, 11-1
OC4J and OHS configuration, 11-6
permissions, 12-2
requesting client authentication, 11-8, 13-2
SSL common problems and solutions, 11-10
SSL debugging, 11-10
using certificates with OC4J and OHS, 11-3

security role
using in the web.xml file, 3-7

security roles
mapping, 6-1

SecurityManager, 1-2
SecurityManager.checkPermission, 3-7
selecting

UserManager, 6-1

<sep-property> element, 15-2, 15-3
Servlet.service, 3-7
session cache, 5-3
set command, B-17
-setpasswd option to JAZN Admintool, B-14
setting a password, 6-2, B-9
-shell option to JAZN Admintool, B-15
signon

component-managed vs.
container-managed, 17-3

single sign-on, 3-3, 3-6
integration with JAAS Provider, 3-4

SocketPermission, 12-2
SSL, 1-5, 3-3

authentication method, 3-3
LDAP properties, 5-6
use with Oracle Internet Directory and JAAS

Provider, 5-6
starting

JAZN Admintool, B-2
subject

definition, 4-10
Subject.doAs method, 2-9, 3-7

associating a subject with
AccessControlContext, 1-3

invoking, 2-3
subject.doAs(), 4-10, 18-3
subjects, 1-3

definition, 1-3
with JAAS, 1-3

Sun Java System Application Server
as LDAP provider, 9-4

T
target names

definition, 1-2
<transport-config> element, 15-5
troubleshooting, 18-1 to 18-4

custom LoginModules, 18-2
trustpoint, 1-5
truststore

definition, 15-2

U
user communities, 2-3
user manager

definition, 1-4
user repository

definition, 1-4
jazn-data.xml, 2-6
Oracle Internet Directory, 2-6, 2-7
principals.xml, 2-6, 2-7

UserManager
selecting, 6-1
specifying, 4-6 to 4-15

users
adding and removing with the JAZN

Admintool, B-8

Index-7

adding in JAZN Admintool, B-8
creating, 8-1, 8-2
creating in LDAP, 7-1
deleting, 8-2
listing in JAZN Admintool, B-13
listing with the JAZN Admintool, B-13

V
variables

LD_LIBRARY_PATH, 2-9, 7-3, 18-2

W
web.xml, 4-9

using the J2EE security role, 3-7

X
XML-based provider, 2-2, 2-6

configuring, 8-1 to 8-5
XML-based provider type, 2-6
XMLUserManager class, 2-6, 2-7

Index-8

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Documentation Accessibility
	Intended Audience
	Organization
	Related Documents
	Conventions

	1 Concepts
	The Java 2 Security Model
	Permissions
	Protection Domains
	OracleAS JAAS Provider Permission Classes

	Principals
	Subjects
	Authentication and Authorization
	Secure Communications
	Secure Sockets Layer
	Certificates
	HTTPS
	Identity Propagation

	Developing Secure J2EE Applications

	2 Overview of JAAS in Oracle Application Server
	The OracleAS JAAS Provider
	Provider Types

	What Is JAAS?
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions
	XML-Based Example

	JAAS Framework Features
	User Managers
	Using JAZNUserManager
	Using XMLUserManager

	Capability Model of Access Control
	Role-Based Access Control (RBAC)
	Role Hierarchy
	Role Activation

	Changes Since Release 9.0.4

	3 Understanding OC4J Security
	Introduction
	Security Considerations During Development and Deployment
	Development
	Deployment

	OC4J and the OracleAS JAAS Provider
	OC4J Integration
	JAZNUserManager
	Authentication Environments
	Enabling OracleAS Single Sign-On in J2EE Applications
	OracleAS Single Sign-On-Enabled J2EE Environments: A Typical Scenario

	Integrating the OracleAS JAAS Provider with SSL-Enabled Applications
	Integrating the OracleAS JAAS Provider with Basic Authentication
	Basic Authentication J2EE Environments: Typical Scenario

	Authentication in the J2EE Environment
	Running with an Authenticated Identity
	Retrieving Authentication Information

	Authorization in the J2EE Environment
	Security Role Mapping
	J2EE Security Roles
	Deployment Roles and Users
	OC4J Group Mapping to J2EE Security Roles

	4 Overall Security Configuration
	Choosing the XML-Based or LDAP-Based Provider
	Locating jazn.xml, jazn-data.xml, and the <jazn> element
	Locating jazn.xml
	Locating jazn-data.xml
	Locating the <jazn> element

	Admintool Overview
	Admintool Prerequisites
	Authenticating Yourself
	Adding Clustering Support
	Specifying an Admintool LoginModule in jazn-data.xml

	Specifying An Alternate Policy Provider (Optional)
	Specifying Bootstrap OracleAS JAAS Provider Settings
	Turning On Debug Logging
	Specifying UserManagers
	Specifying A UserManager
	Specifying a UserManager In orion-application.xml
	Advanced Configuration

	Customizing RealmLoginModule
	Enabling RealmLoginModule Using A Text Editor

	Specifying Authentication (auth-method)
	Specifying auth-method in web.xml
	Specifying auth-method in orion-application.xml

	Configuring J2EE Authorization
	Servlets, runas-mode, and doasprivileged-mode
	Mapping Logical Roles to Security Roles

	Removing Realm Names From Authentication Principals
	Configuring Third-Party LDAP Providers
	Permitting EJB RMI Client Access
	Creating a Java 2 Policy File
	Using the <principals> element and principals.xml

	5 Configuring the OC4J Instance
	The Bootstrap jazn.xml File
	Specifying LDAP Connection Properties
	Specifying LDAP JNDI Connection Pool Size
	Configuring LDAP Caching
	Changing Session Cache Details
	Disabling LDAP Caching
	LDAP Cache Configuration

	Configuring LDAP SSL Properties
	Choosing SSL Authentication

	Configuring LDAP Default Realm

	6 Security Considerations During Application Deployment
	Selecting a UserManager
	Mapping Security Roles
	Granting Permissions
	Granting RMI Permission Or Administration Permission
	Granting and Revoking All Other Permissions

	Creating Users And Groups

	7 Configuring the LDAP-Based Provider
	Preparing To Use LDAP
	Creating Administrative Users and Groups
	LDAP-Based Provider Environment Variables

	Creating LDAP Users and Groups

	8 Configuring the XML-Based Provider
	Creating Users
	Creating Roles (Groups)
	Deleting Users
	Deleting Roles (Groups)
	Creating Realms
	Deleting Realms
	Granting Permissions
	Revoking Permissions
	Granting Roles (Groups)
	Revoking Roles (Groups)
	Setting Persistence Mode
	Configuring XML Default Realm
	Migrating Principals from the principals.xml File

	9 Configuring External LDAP Providers
	Prerequisites
	Creating a <login-module> Element in jazn-data.xml
	An Example LDIF Description
	Configuring Sun Java System Application Server as LDAP Provider
	SunOne Example

	Configuring Microsoft Active Directory as LDAP Provider

	10 Custom LoginModules
	Overview of JAAS Login Modules
	Prerequisites
	Configuring Dynamic Role Mapping

	Integrating Custom JAAS LoginModules
	Developing a LoginModule
	Subject-based Authorization
	J2EE Security Authorization
	Callback Support
	Debugging Tips
	Debug Logging
	Debugging LoginModules

	Adding and Removing Login Modules
	Listing Login Modules
	Packaging and Deploying
	Deploying as Standard Extensions or Optional Packages
	Deploying Within the J2EE Application
	Using the OC4J Classloading Mechanism

	Configuring Your Application
	jazn-data.xml
	<jazn-loginconfig>
	<jazn-policy>

	web.xml or ejb-jar.xml
	orion-application.xml
	<jazn>
	<security-role-mapping>
	<library>

	oc4j-ra.xml (J2EE Connector Architecture only)

	Simple Login Module J2EE Integration
	Development
	Packaging
	Deployment

	Custom LoginModule Example

	11 Configuring OC4J and SSL
	Overview of SSL Keys and Certificates
	Using Keys and Certificates with OC4J and Oracle HTTP Server
	Enabling SSL in OC4J
	Configuring Oracle HTTP Server for SSL

	Requesting Client Authentication
	Resolving Common SSL Problems
	Common SSL Errors and Solutions
	General SSL Debugging

	12 Configuring EJB Security
	EJB JNDI Security Properties
	JNDI Properties in jndi.properties
	JNDI Properties Within Implementation

	Configuring Security
	Granting Permissions in Browser
	Authenticating and Authorizing EJB Applications
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying Unchecked Security for EJB Methods
	Specifying the runAs Security Identity
	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Credentials in JNDI Properties
	Credentials in the InitialContext

	13 Oracle HTTPS for Client Connections
	Introduction
	Requesting Client Authentication
	Oracle HTTPS And Clients
	HTTPConnection Class
	OracleSSLCredential Class (OracleSSL Only)

	Overview of Oracle HTTPS Features
	SSL Cipher Suites
	Choosing a Cipher Suite
	SSL Cipher Suites Supported by OracleSSL
	SSL Cipher Suites Supported by JSSE

	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Potential Security Risk with Storing Passwords in System Properties

	Oracle.ssl.defaultCipherSuites (OracleSSL only)

	Oracle HTTPS Example
	Initializing SSL Credentials In OracleSSL
	Verifying Connection Information
	Transferring Data Using HTTPS

	Using HTTPClient with JSSE
	Configuring HTTPClient To Use JSSE

	14 Password Management
	Introduction
	Password Obfuscation In jazn-data.xml and jazn.xml
	Hand-editing jazn-data.xml

	Creating An Indirect Password
	Indirect Password Examples

	Specifying a UserManager In application.xml

	15 Configuring CSIv2
	Introduction to CSIv2 Security Properties
	EJB Server Security Properties in internal-settings.xml
	CSIv2 Security Properties in internal-settings.xml
	CSIv2 Security Properties in ejb_sec.properties
	Trust Relationships

	CSIv2 Security Properties in orion-ejb-jar.xml
	The <transport-config> element
	The <as-context> element
	The <sas-context> element
	DTD

	EJB Client Security Properties in ejb_sec.properties

	16 J2EE Connector Architecture Security
	Deploying Resource Adapters
	The oc4j-ra.xml Descriptor
	The <security-config> Element

	The oc4j-connectors.xml Descriptor

	Specifying Container-Managed or Component-Managed Sign-On
	Authentication in Container-Managed Sign-On
	JAAS Pluggable Authentication
	The InitiatingPrincipal and InitiatingGroup Classes
	JAAS and the <connector-factory> Element

	User-Created Authentication Classes
	Extending AbstractPrincipalMapping

	Modifying oc4j-ra.xml

	17 Security Support for EIS Connections
	Overview of Security and Authentication Setup for EIS Connections
	Summary of J2EE Connector Architecture Security Contract
	Summary of Component-Managed Versus Container-Managed Sign-On

	Understanding Component-Managed Sign-On
	Understanding Container-Managed Sign-On
	Using Declarative Container-Managed Sign-On
	Using Programmatic Container-Managed Sign-On
	Using a Principal Mapping Class
	Understanding the PrincipalMapping Interface APIs
	Extending the AbstractPrincipalMapping Class
	Configuring a Principal Mapping Class

	Using a JAAS Login Module
	OC4J Support for Groups in Programmatic Container-Managed Sign-On

	18 Troubleshooting Security Issues
	Locating jazn.xml
	JAZN Admintool
	Custom LoginModules
	Subject-Based Authorization
	J2EE Security Integration

	LDAP-Based Provider Issues
	Checking JAZN-LDAP Configuration
	Enabling and Disabling Caching

	Servlets, runas-mode, and doasprivileged-mode
	Creating Realms
	Removing Realm Names From Principals
	Specifying the JAAS Provider

	19 Security Tips
	HTTPS
	Overall Security
	JAAS

	A OracleAS JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Modifying User Permissions
	Modifying User Permissions Code
	Discussion Of Sample Code

	B Using the JAZN Admintool
	Authentication and the JAZN Admintool (XML-based Provider Only)
	JAZN Admintool Command-Line Options
	Syntax
	Admintool Authentication (XML-based Provider Only)
	Clustering Operations
	Configuration Operations
	Interactive Shell
	Login Modules
	Migration Operations
	Miscellaneous
	Password Management (XML-based Provider only)
	Policy Operations
	Realm Operations

	Adding and Removing Policy Permissions (XML-based Provider Only)
	Adding Clustering Support
	Adding and Removing Login Modules (XML-based Provider Only)
	Adding and Removing Principals (XML-based Provider Only)
	Adding and Removing Realms
	Adding and Removing Roles (XML-based Provider Only)
	Adding and Removing Users (XML-based Provider Only)
	Checking Passwords (XML-based Provider Only)
	Configuration Operations
	Granting and Revoking Permissions
	Granting and Revoking Roles
	Listing Login Modules
	Listing Permissions
	Listing Permission Information
	Listing Principal Classes
	Listing Principal Class Information
	Listing Realms
	Listing Roles
	Listing Users
	Migrating Principals from the principals.xml File
	Setting Passwords (XML-based Provider only)
	Using the JAZN Admintool Shell
	Navigating the JAZN Admintool Shell
	add: Creating Provider Data
	cd: Navigating Provider Data
	clear: Clearing the Screen
	exit: Exiting the JAZN Shell
	help: Listing JAZN Admintool Shell Commands
	ls: Listing Data
	man: Viewing JAZN Admintool Man Pages
	pwd: Displaying The Working Directory
	rm: Removing Provider Data
	set: Updating Values

	Admintool Shell Directory Structure

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

