
Oracle® Application Server Containers for J2EE
Services Guide

10g Release 2 (10.1.2) for Windows or UNIX

Part No. B14012-01

November 2004

Oracle Application Server Containers for J2EE Services Guide, 10g Release 2 (10.1.2) for Windows or UNIX

Part No. B14012-01

Copyright © 2002, 2004, Oracle. All rights reserved.

Primary Author: Alfred Franci

Contributing Author: Janis Greenberg, Mark Kennedy , Peter Purich, Elizabeth Hanes Perry, Sheryl
Maring.

Contributor: Anirruddha Thakur, Anthony Lai, Ashok Banerjee, Brian Wright, Cheuk Chau, Debabrata
Panda, Editor Ellen Siegal, Erik Bergenholtz, Gary Gilchrist, Irene Zhang, J.J. Snyder, Jon Currey, Jyotsna
Laxminarayanan, Krishna Kunchithapadam, Kuassi Mensah, Lars Ewe, Lelia Yin, Mike Lehmann, Mike
Sanko, Min-Hank Ho, Nickolas Kavantzas, Rachel Chan, Rajkumar Irudayaraj, Raymond Ng, Sastry
Malladi, Stella Li, Sunil Kunisetty, Thomas Van Raalte.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xi

Preface ... xiii

Intended Audience.. xiii
Documentation Accessibility ... xiii
Structure ... xiv
Related Documents ... xiv
Conventions ... xvi

1 Introduction to OC4J Services

Java Naming and Directory Interface (JNDI) ... 1-1
Java Message Service (JMS) ... 1-1
Remote Method Invocation (RMI).. 1-2
Data Sources .. 1-2
Java Transaction API (JTA) ... 1-2
J2EE Connector Architecture (J2CA)... 1-2
Java Object Cache ... 1-2

2 Java Naming and Directory Interface

Introduction ... 2-1
Initial Context ... 2-1

Example .. 2-2
Constructing a JNDI Context ... 2-2
The JNDI Environment ... 2-3
Creating the Initial Context in OC4J .. 2-4

From J2EE Application Clients... 2-4
Environment Properties ... 2-5
Accessing Objects from an Application Client .. 2-6

From J2EE Application Components .. 2-8
Objects in the Same Application... 2-8
Objects Not in the Same Application ... 2-9

JNDI State Replication .. 2-11
Enabling JNDI State Replication .. 2-11
JNDI State Replication Limitations... 2-11

Multiple Islands on a Given Subnet .. 2-11

iv

Propagating Changes Across the Cluster... 2-11
Binding a Remote Object... 2-12
JNDI Lookups in a Multiple-Instance Environment .. 2-12

3
Java Message Service (JMS)

Overview .. 3-1
Oracle Application Server JMS .. 3-2

Configuring OracleAS JMS Ports.. 3-2
Configuring OracleAS JMS Destination Objects ... 3-2

Default Destination Objects... 3-4
Default Connection Factories .. 3-4

Steps for Sending a Message ... 3-5
Steps for Receiving a Message .. 3-6
OracleAS JMS Utilities... 3-8
OracleAS JMS File-Based Persistence... 3-10

Overview... 3-10
Enabling Persistence.. 3-11
Recovery.. 3-11

Abnormal Termination... 3-14
Predefined OracleAS JMS Exception Queue... 3-14

Message Expiration.. 3-15
Message Paging ... 3-15
OracleAS JMS Configuration File Elements for jms.xml... 3-16

Examples ... 3-20
OracleAS JMS System Properties.. 3-21

Resource Providers.. 3-23
Configuring a Custom Resource Provider .. 3-23

Oracle JMS .. 3-24
Using OJMS as a Resource Provider .. 3-24

Install and Configure the JMS Provider ... 3-25
Create User and Assign Privileges ... 3-25
Create JMS Destination Objects ... 3-25
Define the OJMS Resource Provider .. 3-27
Access the OJMS Resources ... 3-29

Using OJMS with Oracle Application Server and the Oracle Database.................................. 3-32
Error When Copying aqapi.jar... 3-32
OJMS Certification Matrix .. 3-32

Map Logical Names in Resource References to JNDI Names ... 3-33
JNDI Naming for OracleAS JMS .. 3-34
JNDI Naming for OJMS.. 3-35
JNDI Naming Property Setup for Java Application Clients ... 3-35
Client Sends JMS Message Using Logical Names .. 3-35

Third-Party JMS Providers .. 3-37
Using WebSphere MQ as a Resource Provider .. 3-37

Configuring WebSphere MQ ... 3-37
Using SonicMQ as a Resource Provider .. 3-38

v

Configuring SonicMQ ... 3-38
Using SwiftMQ as a Resource Provider... 3-39

Configuring SwiftMQ.. 3-39
Using Message-Driven Beans ... 3-39
High Availability and Clustering for JMS ... 3-40

OracleAS JMS High Availability Configuration... 3-41
Terminology.. 3-41
OracleAS JMS Server Distributed Destinations... 3-42
Cold Failover Cluster .. 3-43
OracleAS Dedicated JMS Server .. 3-44
Modifying the OPMN Configuration ... 3-45
Configuring OracleAS JMS... 3-46
Queue Connection Factory Definition Example.. 3-46
Deploying Applications .. 3-46
High Availability ... 3-46

OJMS High Availability Configuration ... 3-47
Failover Scenarios When Using a RAC Database With OJMS ... 3-47

Using JMS with RAC Network Failover... 3-47
Using OJMS With Transparent Application Failover (TAF) ... 3-48

Server Side Sample Code for Failover for Both JMS Providers.. 3-49
Clustering Best Practices .. 3-49

4 Data Sources

Introduction ... 4-1
Types of Data Sources ... 4-1

Emulated Data Sources .. 4-2
Nonemulated Data Sources ... 4-4
Native Data Sources ... 4-4

Mixing Data Sources.. 4-5
Defining Data Sources .. 4-6

Configuration Files .. 4-7
Defining Location of the Data Source XML Configuration File... 4-7
Application-Specific Data Source XML Configuration File.. 4-8

Data Source Attributes .. 4-8
Defining Data Sources in Oracle Enterprise Manager 10g .. 4-10
Defining Data Sources in the XML Configuration File.. 4-11
Password Indirection.. 4-11

Configuring an Indirect Password with Oracle Enterprise Manager 10g 4-12
Configuring an Indirect Password Manually .. 4-13

Associating a Database Schema with a Data Source.. 4-13
The database-schema.xml File ... 4-14
Example Configuration... 4-14

Using Data Sources ... 4-15
Portable Data Source Lookup.. 4-15
Retrieving a Connection from a Data Source.. 4-16
Retrieving Connections with a Nonemulated Data Source .. 4-17

Retrieving a Connection Outside a Global Transaction... 4-17

vi

Retrieving a Connection Within a Global Transaction... 4-18
Connection Retrieval Error Conditions ... 4-18

Using Different User Names for Two Connections to a Single Data Source 4-18
Improperly configured OCI JDBC Driver .. 4-19

Using Two-Phase Commits and Data Sources... 4-19
Using Oracle JDBC Extensions... 4-21
Using Connection Caching Schemes... 4-21
Using the OCI JDBC Drivers .. 4-22
Using DataDirect JDBC Drivers .. 4-22

Installing and Setting Up DataDirect JDBC Drivers .. 4-22
Example DataDirect Data Source Entries .. 4-23

SQLServer ... 4-23
DB2... 4-24
Sybase .. 4-24

High Availability Support for Data Sources.. 4-24
Oracle Maximum Availability Architecture (MAA).. 4-24

Oracle Data Guard... 4-25
Real Application Clusters (RAC)... 4-25
Network Failover ... 4-25
TAF Failover ... 4-25

High Availability (HA) Support in OC4J .. 4-26
Configuring Network Failover with OC4J .. 4-26
Configuring Transparent Application Failover (TAF) with OC4J... 4-27
Configuring a TAF Descriptor (tnsnames.ora) ... 4-28
Connection Pooling... 4-29
Acknowledging TAF Exceptions .. 4-29
SQL Exception Handling ... 4-30

5 Oracle Remote Method Invocation

Introduction to RMI/ORMI.. 5-1
ORMI Enhancements... 5-1

Increased RMI Message Throughput... 5-1
Enhanced Threading Support ... 5-2
Co-Located Object Support ... 5-2

Client-Side Requirements ... 5-2
Configuring OC4J for RMI... 5-2

Configuring RMI Using Oracle Enterprise Manager 10g ... 5-3
Configuring RMI Manually .. 5-4

Editing server.xml... 5-5
Editing rmi.xml ... 5-5
Editing opmn.xml ... 5-7

RMI Configuration Files.. 5-7
JNDI Properties for RMI.. 5-7

Naming Provider URL ... 5-8
Context Factory Usage ... 5-9

Example Lookups.. 5-10
OC4J Standalone .. 5-10

vii

OC4J in Oracle Application Server: Releases Before 9.0.4 .. 5-10
OC4J in Oracle Application Server Since 9.0 4 ... 5-11

Configuring ORMI Tunneling through HTTP .. 5-11
Configuring an OC4J Mount Point... 5-12

6 J2EE Interoperability

Introduction to RMI/IIOP... 6-1
Transport .. 6-1
Naming ... 6-2
Security .. 6-2
Transactions .. 6-2
Client-Side Requirements ... 6-2
The rmic.jar Compiler.. 6-3

Switching to Interoperable Transport .. 6-3
Simple Interoperability in a Standalone Environment ... 6-3
Advanced Interoperability in a Standalone Environment ... 6-4
Simple Interoperability in Oracle Application Server Environment.. 6-4

Configuring for Interoperability Using Oracle Enterprise Manager 10g............................ 6-5
Configuring for Interoperability Manually... 6-6

Advanced Interoperability in Oracle Application Server Environment.................................... 6-8
Configuring for Interoperability Using Oracle Enterprise Manager 10g............................ 6-8
Configuring for Interoperability Manually... 6-8

The corbaname URL ... 6-10
The OPMN URL .. 6-11
Exception Mapping... 6-11
Invoking OC4J-Hosted Beans from a Non-OC4J Container ... 6-11

Configuring OC4J for Interoperability ... 6-12
Interoperability OC4J Flags ... 6-12
Interoperability Configuration Files... 6-12
EJB Server Security Properties (internal-settings.xml) .. 6-12
CSIv2 Security Properties ... 6-14
CSIv2 Security Properties (internal-settings.xml) .. 6-14
CSIv2 Security Properties (ejb_sec.properties) ... 6-15

Trust Relationships ... 6-15
CSIv2 Security Properties (orion-ejb-jar.xml) ... 6-16

The <transport-config> Element ... 6-16
The <as-context> element ... 6-16
The <sas-context> element ... 6-17

EJB Client Security Properties (ejb_sec.properties).. 6-17
JNDI Properties for Interoperability (jndi.properties) ... 6-18

Context Factory Usage .. 6-19

7 Java Transaction API

Introduction ... 7-1
Demarcating Transactions ... 7-1
Enlisting Resources ... 7-2

viii

Single-Phase Commit .. 7-2
Enlisting a Single Resource... 7-2

Configure the Data Source... 7-2
Retrieve the Data Source Connection .. 7-3
Perform JNDI Lookup .. 7-3
Retrieve a Connection .. 7-4

Demarcating the Transaction ... 7-4
Container-Managed Transactional Demarcation... 7-4
Bean-Managed Transactions ... 7-6
JTA Transactions ... 7-6

JDBC Transactions ... 7-6
Two-Phase Commit .. 7-6

Configuring Two-Phase Commit Engine ... 7-7
Database Configuration Steps... 7-7
OC4J Configuration Steps.. 7-8

Limitations of Two-Phase Commit Engine ... 7-10
Configuring Timeouts .. 7-10
Recovery for CMP Beans when a Database Instance Fails ... 7-11

Connection Recovery for CMP Beans That Use Container-Managed Transactions 7-11
Connection Recovery for CMP Beans That Use Bean-Managed Transactions 7-11

Using Transactions With MDBs ... 7-11
Transaction Behavior for MDBs Using OC4J JMS.. 7-12
Transaction Behavior for MDBs Using Oracle JMS.. 7-12

MDBs that Use Container-Managed Transactions.. 7-12
MDBs that Use Bean-Managed Transactions and JMS Clients ... 7-13

8 J2EE Connector Architecture (J2CA)

Introduction... 8-1
Resource Adapters ... 8-1

Standalone Resource Adapters ... 8-2
Embedded Resource Adapters.. 8-2
Example of RAR File Structure ... 8-2
The ra.xml Descriptor... 8-2

Application Interface ... 8-2
Quality of Service Contracts ... 8-3

Deploying and Undeploying Resource Adapters .. 8-3
Deployment Descriptors ... 8-3

The oc4j-ra.xml Descriptor... 8-4
The oc4j-connectors.xml Descriptor ... 8-6

Standalone Resource Adapters .. 8-7
Deployment ... 8-7
Example: ... 8-8

Embedded Resource Adapters... 8-8
Deployment ... 8-8

Locations of Relevant Files ... 8-9
Specifying Quality of Service Contracts... 8-10

Configuring Connection Pooling.. 8-10

ix

Managing EIS Sign-On ... 8-11
Component-Managed Sign-On.. 8-11
Example: .. 8-12
Container-Managed Sign-On ... 8-12
Example: .. 8-13

Declarative Container-Managed Sign-On ... 8-14
Programmatic Container-Managed Sign-On .. 8-14

OC4J-Specific Authentication Classes... 8-14
JAAS Pluggable Authentication Classes .. 8-18
Special Features Accessible Via Programmatic Interface... 8-19

9 Java Object Cache

Java Object Cache Concepts ... 9-1
Java Object Cache Basic Architecture.. 9-2

Distributed Object Management... 9-3
How the Java Object Cache Works.. 9-4
Cache Organization ... 9-4
Java Object Cache Features... 9-5

Java Object Cache Object Types .. 9-5
Memory Objects ... 9-6
Disk Objects... 9-6
StreamAccess Objects .. 9-6
Pool Objects... 9-7

Java Object Cache Environment .. 9-7
Cache Regions... 9-7
Cache Subregions ... 9-8
Cache Groups ... 9-8
Region and Group Size Control ... 9-8
Cache Object Attributes... 9-9

Using Attributes Defined Before Object Loading ... 9-10
Using Attributes Defined Before or After Object Loading .. 9-12

Developing Applications Using Java Object Cache ... 9-14
Importing Java Object Cache... 9-14
Defining a Cache Region.. 9-15
Defining a Cache Group... 9-15
Defining a Cache Subregion .. 9-15
Defining and Using Cache Objects ... 9-16
Implementing a CacheLoader Object... 9-17

Using CacheLoader Helper Methods.. 9-17
Invalidating Cache Objects .. 9-18
Destroying Cache Objects .. 9-19
Multiple Object Loading and Invalidation.. 9-19
Java Object Cache Configuration.. 9-21

Examples ... 9-24
Declarative Cache.. 9-25

Declarative Cache File Sample... 9-27
Declarative Cache File Format ... 9-27

x

Examples ... 9-29
Declarable User-Defined Objects... 9-31
Declarable CacheLoader, CacheEventListener, and CapacityPolicy 9-32
Initializing the Java Object Cache in a Non-OC4J Container .. 9-32

Capacity Control ... 9-33
Implementing a Cache Event Listener ... 9-35
Restrictions and Programming Pointers.. 9-36

Working with Disk Objects... 9-38
Local and Distributed Disk Cache Objects .. 9-38

Local Objects... 9-38
Distributed Objects .. 9-38

Adding Objects to the Disk Cache.. 9-38
Automatically Adding Objects .. 9-39
Explicitly Adding Objects... 9-39
Using Objects that Reside Only in Disk Cache.. 9-39

Working with StreamAccess Objects .. 9-41
Creating a StreamAccess Object.. 9-41

Working with Pool Objects ... 9-42
Creating Pool Objects ... 9-42
Using Objects from a Pool.. 9-43
Implementing a Pool Object Instance Factory .. 9-43
Pool Object Affinity .. 9-44

Running in Local Mode ... 9-44
Running in Distributed Mode .. 9-45

Configuring Properties for Distributed Mode .. 9-45
Setting the distribute Configuration Property... 9-45
Setting the discoveryAddress Configuration Property.. 9-45

Using Distributed Objects, Regions, Subregions, and Groups... 9-46
Using the REPLY Attribute with Distributed Objects .. 9-46
Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT.. 9-47

Cached Object Consistency Levels ... 9-49
Using Local Objects ... 9-49
Propagating Changes Without Waiting for a Reply ... 9-49
Propagating Changes and Waiting for a Reply... 9-50
Serializing Changes Across Multiple Caches .. 9-50

Sharing Cached Objects in an OC4J Servlet .. 9-50
Using User-Defined Class Loaders... 9-51
HTTP and Security for Distributed Cache... 9-51

HTTP ... 9-51
SSL.. 9-52
Firewall.. 9-53
Restricting Incoming Connections .. 9-54

Monitoring and Debugging .. 9-54
XML Schema for Cache Configuration ... 9-58
XML schema for attribute declaration... 9-59

Index

xi

Send Us Your Comments

Oracle Application Server Containers for J2EE Services Guide, 10g Release 2
(10.1.2) for Windows or UNIX

Part No. B14012-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?

� Is the information clearly presented?

� Do you need more information? If so, where?

� Are the examples correct? Do you need more examples?

� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

� Electronic mail: appserverdocs_us@oracle.com

� FAX: (650) 506-7225 Attn: Java Platform Group, Information Development
Manager

� Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xii

xiii

Preface

Oracle Application Server 10g Release 2 (10.1.2) includes a J2EE environment known
as Oracle Application Server Containers for J2EE (OC4J). This book describes the
services provided by OC4J.

This preface contains these topics:

� Intended Audience

� Documentation Accessibility

� Structure

� Related Documents

� Conventions

Intended Audience
This manual is intended for developers familiar with the J2EE architecture who want
to understand Oracle J2EE Services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does

xiv

not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Structure
This document contains the following chapters:

Chapter 1 Introduction to OC4J Services
This chapter gives an overview of the service technologies included in OC4J. .

Chapter 2 Java Naming and Directory Interface
This chapter covers using the Java Naming and Directory Interface (JNDI) to look up
objects.

Chapter 3 Java Message Service (JMS)
This chapter discusses plugging Resource Providers into the Java Message Service
(JMS) and the two Oracle JMS (OJMS) providers that Oracle furnishes.

Chapter 4 Data Sources
This chapter discusses data sources, vendor-independent encapsulations of a
connection to a database server.

Chapter 5 Oracle Remote Method Invocation
This chapter describes OC4J support for Remote Method Invocation (RMI) over the
proprietary Oracle RMI (ORMI) protocol.

Chapter 6 J2EE Interoperability
This chapter describes OC4J support for EJB2.0 interoperation using RMI over the
standard Internet Inter-Orb Protocol (IIOP) protocol.

Chapter 7 Java Transaction API
This chapter documents the Oracle implementation of the Java Transaction API (JTA).

Chapter 8 J2EE Connector Architecture (J2CA)
This chapter describes how to use the J2EE Connector Architecture in an OC4J
application.

Chapter 9 Java Object Cache
This chapter describes the OC4J Java Object Cache, including its architecture and
programming features.

Related Documents
For more information, see the following additional OC4J documents available from the
Oracle Java Platform Group:

� Oracle Application Server Containers for J2EE Users Guide

This book presents an overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

xv

� Oracle Application Server Containers for J2EE Support for JavaServer Pages Developers
Guide

This book provides information for JSP developers who want to run their pages in
OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps for
getting started in the OC4J environment.

� Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

This book discusses conceptual information and detailed syntax and usage
information for tag libraries, Java Beans, and other OC4J Java utilities.

� Oracle Application Server Containers for J2EE Servlet Developers Guide

This book includes information for servlet developers regarding use of servlets
and the servlet container in OC4J.

� Oracle Application Server Containers for J2EE Enterprise Java Beans Developers Guide

This book documents the EJB implementation and EJB container in OC4J.

The following documents are available from the Oracle Application Server group:

� Oracle Application Server 10g Administrators Guide

� Oracle Enterprise Manager Administrators Guide

� Oracle HTTP Server Administrators Guide

� Oracle Application Server 10g Performance Guide

� Oracle Application Server 10g Globalization Guide

� Oracle Application Web Cache Administrators Guide

The following are available from the JDeveloper group:

� Oracle JDeveloper online help

� Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

The following OTN resources are available for further information about OC4J:

� OTN Web site for OC4J:

http://otn.oracle.com/tech/java/oc4j/content.html

� OTN OC4J discussion forums, accessible through the following address:

http://otn.oracle.com/forums/forum.jsp?id=486963

Printed documentation is available for sale in the Oracle store at:

http://oraclestore.oracle.com

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free of charge and can be done at:

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at:

http://otn.oracle.com/documentation/content.html

xvi

Conventions
The following conventions are also used in this manual:

Convention Meaning

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

Italics Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

Monospace
(fixed-width)
font

Monospace typeface within text indicates items such as executables, file
names, directory names, Java class names, Java method names, variable
names, other programmatic elements (such as JSP tags or attributes, or
XML elements or attributes), or database SQL commands or elements
(such as schema names, table names, or column names).

Italic monospace
(fixed-width) font

Italic monospace font represents placeholders or variables.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

| A vertical bar represents a choice of two or more options. Enter one of
the options. Do not enter the vertical bar.

Introduction to OC4J Services 1-1

1
Introduction to OC4J Services

Oracle Application Server Containers for J2EE (OC4J) supports the following
technologies, each of which has its own chapter in this book:

� Java Naming and Directory Interface (JNDI)

� Java Message Service (JMS)

� Remote Method Invocation (RMI)

� Data Sources

� Java Transaction API (JTA)

� J2EE Connector Architecture (J2CA)

� Java Object Cache

This chapter gives a brief overview of each technology in the preceding list.

Java Naming and Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) service that is implemented by OC4J
provides naming and directory functionality for Java applications. JNDI is defined
independently of any specific naming or directory service implementation. As a result,
JNDI enables Java applications to access different, possibly multiple, naming and
directory services using a single API. Different naming and directory service provider
interfaces (SPIs) can be plugged in behind this common API to handle different
naming services.

See Chapter 2, "Java Naming and Directory Interface", for details.

Java Message Service (JMS)
Java Message Service (JMS) provides a common way for Java programs to access
enterprise messaging products. JMS is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging product.

See Chapter 3, "Java Message Service (JMS)", for details.

Note: In addition to these technologies, OC4J supports the
JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP). For information about these
technologies, see the Sun Microsystems J2EE documentation.

Remote Method Invocation (RMI)

1-2 Oracle Application Server Containers for J2EE Services Guide

Remote Method Invocation (RMI)
Remote Method Invocation (RMI) is one Java implementation of the remote procedure
call paradigm, in which distributed applications communicate by invoking procedure
calls and interpreting the return values.

OC4J supports RMI over both the Oracle Remote Method Invocation (ORMI) protocol
and over the Internet Inter-ORB Protocol (IIOP).

By default, OC4J uses RMI/ORMI. In addition to the benefits provided by RMI/IIOP,
RMI/ORMI provides additional features such as invoking RMI/ORMI over HTTP, a
technique known as "RMI tunneling."

See Chapter 5, "Oracle Remote Method Invocation", for details on RMI/ORMI.

Version 2.0 of the Enterprise Java Beans (EJB) specification uses RMI over the Internet
Inter-ORB Protocol (IIOP) to make it easy for EJB-based applications to invoke one
another across different containers. You can make your existing EJB interoperable
without changing a line of code: simply edit the bean properties and redeploy. J2EE
uses RMI to provide interoperability between EJBs running on different containers.

See Chapter 6, "J2EE Interoperability", for details on interoperability (RMI/IIOP).

Data Sources
A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a
database server.

See Chapter 4, "Data Sources", for details.

Java Transaction API (JTA)
EJBs use Java Transaction API (JTA) 1.0.1 for managing transactions. These
transactions involve single-phase and two-phase commits.

See Chapter 7, "Java Transaction API", for details.

J2EE Connector Architecture (J2CA)
J2EE Connector Architecture (J2CA) defines a standard architecture for connecting the
J2EE platform to heterogeneous Enterprise Information Systems (EISs). Examples of
EISs include ERP, mainframe transaction processing, database systems, and legacy
applications that are not written in the Java programming language.

See Chapter 8, "J2EE Connector Architecture (J2CA)", for details.

Java Object Cache
The Java Object Cache (formerly OCS4J) is a set of Java classes that manage Java
objects within a process, across processes, and on a local disk. The primary goal of the
Java Object Cache is to provide a powerful, flexible, easy-to-use service that
significantly improves server performance by managing local copies of objects that are
expensive to retrieve or create. There are no restrictions on the type of object that can
be cached or the original source of the object. The management of each object in the
cache is easily customized. Each object has a set of attributes associated with it to
control such things as how the object is loaded into the cache, where the object is
stored (in memory, on disk, or both), how it is invalidated (based on time or by explicit

Java Object Cache

Introduction to OC4J Services 1-3

request), and who should be notified when the object is invalidated. Objects can be
invalidated as a group or individually. See Chapter 9, "Java Object Cache", for details.

Java Object Cache

1-4 Oracle Application Server Containers for J2EE Services Guide

Java Naming and Directory Interface 2-1

2
Java Naming and Directory Interface

This chapter describes the Java Naming and Directory Interface (JNDI) service that is
implemented by Oracle Application Server Containers for J2EE (OC4J) applications. It
covers the following topics:

� Introduction

� Constructing a JNDI Context

� The JNDI Environment

� Creating the Initial Context in OC4J

Introduction
JNDI, part of the J2EE specification, provides naming and directory functionality for
Java applications. Because JNDI is defined independently of any specific naming or
directory service implementation, it enables Java applications to access different
naming and directory services using a single API. Different naming and directory
service provider interfaces (SPIs) can be plugged in behind this common API to handle
different naming services.

Before reading this chapter, you should be familiar with the basics of JNDI and the
JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at:

http://java.sun.com/products/jndi/index.html

A JAR file implementing JNDI, jndi.jar, is available with OC4J. Your application
can take advantage of the JNDI API without having to provide any other libraries or
JAR files. A J2EE-compatible application uses JNDI to obtain naming contexts that
enable the application to locate and retrieve objects such as data sources, Java Message
Service (JMS) services, local and remote Enterprise Java Beans (EJBs), and many other
J2EE objects and services.

Initial Context
The concept of the initial context is central to JNDI. Here are the two most frequently
used JNDI operations in J2EE applications:

Note: For information about controlling access to JNDI namespaces,
see the Oracle Application Server Security Guide .

Constructing a JNDI Context

2-2 Oracle Application Server Containers for J2EE Services Guide

� Creating a new InitialContext object (in the javax.naming package)

� Using the InitialContext, to look up a J2EE or other resource

When OC4J starts up, it constructs a JNDI initial context for each application by
reading resource references in the configuration XML file of each application.

Example
The following example shows two lines of Java code to use on the server side in a
typical Web or EJB application:

Context ctx = new InitialContext();
myEJBHome myhome =
 (HelloHome) ctx.lookup("java:comp/env/ejb/myEJB");

The first statement creates a new initial context object, using the default environment.
The second statement looks up an EJB home interface reference in the JNDI tree of the
application. In this case, myEJB might be the name of a session bean that is declared in
the web.xml (or orion-web.xml) configuration file, in an <ejb-ref> tag. For
example:

<ejb-ref>
 <ejb-ref-name>ejb/myEJB</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
</ejb-ref>

http://java.sun.com/products/jndi/1.2/javadoc/index.html

This chapter focuses on setting up the initial contexts for using JNDI and describing
how OC4J performs JNDI lookups. For more information about the other JNDI classes
and methods, see the Javadoc at:

Constructing a JNDI Context
When OC4J starts up, it constructs a JNDI context for each application that is deployed
in the server. There is always at least one application for an OC4J server, the global
application, which is the default parent for each application in a server instance. User
applications inherit properties from the global application and can override property
values defined in the global application, define new values for properties, and define
new properties as required.

For more information about configuring the OC4J server and its contained
applications, see the Oracle Application Server Containers for J2EE User’s Guide.

Note: After the initial configuration, the JNDI tree for each
application is purely memory-based. Additions made to the context
at run time are not persisted. When OC4J is restarted, additional
bindings made by the application components to the JNDI name
space, such as making a Context.bind API call in application
code, are no longer available. However, anything that is bound
declaratively through the various XML files is reconstructed upon
startup.

The JNDI Environment

Java Naming and Directory Interface 2-3

The environment that OC4J uses to construct a JNDI initial context can be found in
three places:

� System property values, as set either by the OC4J server or possibly by the
application container.

� A jndi.properties file contained in the application EAR file (as part of
application-client.jar).

� An environment specified explicitly in a java.util.Hashtable instance passed
to the JNDI initial context constructor. ("Accessing Objects from an Application
Client" on page 2-6 shows a code example of this constructor.)

The JNDI Environment
The JNDI InitialContext has two constructors:

InitialContext()
InitialContext(Hashtable env)

The first constructor creates a Context object, using the default context environment.
If you use this constructor in an OC4J server-side application, then OC4J creates the
initial context when the server is started, using the default environment for that
application. This constructor is typically used in code that runs on the server side, such
as in a JSP, EJB, or servlet.

The second constructor takes an environment parameter. You normally use the second
form of the InitialContext constructor in client applications, where it is necessary
to specify the JNDI environment. The env parameter in this constructor is a
java.util.Hashtable that contains properties required by JNDI. Table 2–1 lists
these properties, which are defined in the javax.naming.Context interface.

Note: During EJB deployment in OC4J, you load the bean class to
find out its methods so that you can generate EJB wrappers. Because
the code in the static block is executed as the class is being loaded, the
JNDI environment context is not yet set up. Even during runtime, the
bean is in the "does not exist" stage. In this stage of the life cycle, the
JNDI environment context is undefined, and the bean provider cannot
rely on it to be available.

To work around this problem, set up and cache the context either
during the construction of the bean, in the ejbCreate() method, or
in the setSessionContext() method.

Table 2–1 InitialContext Properties

Property Meaning

INITIAL_CONTEXT_FACTORY Value for the java.naming.factory.initial
property. This property specifies which initial context
factory to use when creating a new initial context object.

PROVIDER_URL Value for the java.naming.provider.url property.
This property specifies the URL that the application client
code uses to look up objects on the server. Also used by
RMIInitialContextFactory and
ApplicationClientInitialContextFactory to
search for objects in different applications. See Table 2–2,
" JNDI-Related Environment Properties" on page 2-5 for
details.

Creating the Initial Context in OC4J

2-4 Oracle Application Server Containers for J2EE Services Guide

See "Accessing Objects from an Application Client" on page 2-6 for a code example
that sets these properties and gets a new JNDI initial context.

Creating the Initial Context in OC4J
Section 9.1 of the J2EE 1.3 specification defines application clients as follows:

 "... first tier client programs that execute in their own Java virtual machines.
Application clients follow the model for Java technology-based applications: they are
invoked at their main method and run until the virtual machine is terminated.
However, like other J2EE application components, application clients depend on a
container to provide system services. The application client container may be very
light-weight compared to other J2EE containers, providing only the security and
deployment services described [in this specification]."

The following sections describe the ways in which JNDI initial contexts can be used:

� From J2EE Application Clients

� From J2EE Application Components

From J2EE Application Clients
When an application client must look up a resource that is available in a J2EE server
application, the client uses ApplicationClientInitialContextFactory in the
com.evermind.server package to construct the initial context.

Consider an application client that consists of Java code running outside the OC4J
server, and is also part of a bundled J2EE application. For example, the client code is
running on a workstation and might connect to a server object, such as an EJB, to
perform some application task. In this case, the environment that is accessible to JNDI
must specify the value of the property java.naming.factory.initial as
ApplicationClientInitialContextFactory. This can be specified in client

SECURITY_PRINCIPAL Value for the java.naming.security.principal
property. This property specifies the user name. Required
in application client code to authenticate the client. Not
required for server-side code, because the authentication
has already been performed.

SECURITY_CREDENTIAL Value for the java.naming.security.credential
property. This property specifies the password. Required in
application client code to authenticate the client. Not
required for server-side code, because the authentication
has already been performed.

Note: IIf your application is a J2EE client (that is, it has an
application-client.xml file), then you must always use
ApplicationClientInitialContextFactory regardless of
the protocol (ORMI or IIOP) that the client application is using. The
protocol itself is specified by the JNDI property
java.naming.provider.url. See Table 2–2, " JNDI-Related
Environment Properties" on page 2-5 for details.

Table 2–1 (Cont.) InitialContext Properties

Property Meaning

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-5

code, or it can be specified in the jndi.properties file that is part of the
application-client.jar file included in the EAR file.

To have access to remote objects that are part of the application,
ApplicationClientInitialContextFactory reads the
META-INF/application-client.xml and
META-INF/orion-application-client.xml files in the
application-client.jar file.

When clients use the ApplicationClientInitialContextFactory to construct
JNDI initial contexts, they can look up local objects (objects contained in the immediate
application or in its parent application) using the java:comp/env mechanism and
RMIInitialContextFactory. They can then use ORMI or IIOP to invoke methods
on these objects. Note that objects and resources must be defined in deployment
descriptors in order to be bound to the JNDI context of an application.

Environment Properties
If the ORMI protocol is being used,
ApplicationClientInitialContextFactory reads the properties listed in
Table 2–2 from the environment.

Table 2–2 JNDI-Related Environment Properties

Property Meaning

dedicated.rmicontext This property replaces the deprecated
dedicated.connection setting. When two or
more clients in the same process retrieve an
InitialContext, OC4J returns a cached context.
Thus, each client receives the same
InitialContext, which is assigned to the process.
Server lookup, which results in server load
balancing, happens only if the client retrieves its
own InitialContext. If you set
dedicated.rmicontext=true, then each client
receives its own InitialContext instead of a
shared context. When each client has its own
InitialContext, then the clients can be load
balanced.

The dedicated.rmicontext property defaults to
false.

java.naming.provider.url This property specifies the URL to use when looking
for local or remote objects. The format is either
[http: | https:]ormi://hostname/appname
or corbaname:hostname:port. For details on the
corbaname URL, see "The corbaname URL" on
page 6-10.

You can supply multiple hosts (for failover) in a
comma-separated list.

java.naming.factory.url.pkgs Some versions of the JDK on some platforms
automatically set the system property
java.naming.factory.url.pkgs to include
com.sun.java.*. Check this property and remove
com.sun.java.* if it is present.

http.tunnel.path This property specifies an alternative
RMIHttpTunnelServlet path. The default path is
/servlet/rmi, as bound to the target site Web
application. For more information, see "Configuring
ORMI Tunneling through HTTP" on page 5-11.

Creating the Initial Context in OC4J

2-6 Oracle Application Server Containers for J2EE Services Guide

Accessing Objects from an Application Client
This section contains an example of how to configure an application client to access an
EJB running inside an OC4J instance in the same location.

First, the EJB is deployed into OC4J. Here are excerpts of the deployment descriptors
of the EJB.

The EJB is deployed with the name EmployeeBean. The name is defined this way in
ejb-jar.xml:

<ejb-jar>
 <display-name>bmpapp</display-name>
 <description>
 An EJB app containing only one Bean Managed Persistence Entity Bean
 </description>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 <ejb-class>bmpapp.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 ...
 </entity>
 </enterprise-beans>
..
</ejb-jar>
The EJB EmployeeBean is bound to the JNDI location
java:comp/env/bmpapp/EmployeeBean in orion-ejb-jar.xml:

orion-ejb-jar.xml file:

<orion-ejb-jar>
 <enterprise-beans>
 <entity-deployment name="EmployeeBean"
 location="bmpapp/EmployeeBean" table="EMP">
 ...
 </entity-deployment>
 ...
 </enterprise-beans>
 ...
</orion-ejb-jar>

Context.SECURITY_PRINCIPAL This property specifies the user name and is required
in client-side code to authenticate the client. It is not
required for server-side code because authentication
has already been performed. This property name is
also defined as
java.naming.security.principal.

Context.SECURITY_CREDENTIAL This property specifies the password and is required
in client-side code to authenticate the client. It is not
required for server-side code because authentication
has already been performed. This property name is
also defined as
java.naming.security.credentials.

Table 2–2 (Cont.) JNDI-Related Environment Properties

Property Meaning

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-7

The application client program uses the EmployeeBean EJB, and refers to it as
EmployeeBean. An excerpt from the application client program follows:

public static void main (String args[])
{
 ...
 Context context = new InitialContext();
 /**
 * Look up the EmployeeHome object. The reference is retrieved from the
 * application-local context (java:comp/env). The variable is
 * specified in the assembly descriptor (META-INF/application-client.xml).
 */
 Object homeObject =
 context.lookup("java:comp/env/EmployeeBean");
 // Narrow the reference to an EmployeeHome.
 EmployeeHome home =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);
 // Create a new record and narrow the reference.
 Employee rec =
 (Employee) PortableRemoteObject.narrow(home.create(empNo,
 empName,
 salary),
 Employee.class);
 // call method on the EJB
 rec.doSomething();
 ...
}
Note that we are not passing a hash table when creating a context in the line:

Context context = new InitialContext();
This is because the context is created with values read from the jndi.properties
file, which in this example contains:

java.naming.factory.initial=com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost/bmpapp
java.naming.security.principal=SCOTT
java.naming.security.credentials=TIGER

Alternatively, you can pass a hash table to the constructor of InitialContext
instead of supplying a jndi.properties file. The code looks like this:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.evermind.server.ApplicationClientInitialContextFactory");
env.put("java.naming.factory.initial",
"com.evermind.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url","ormi://localhost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context initial = new InitialContext(env);

Because the application client code refers to the EmployeeBean EJB, you must declare
this in the <ejb-ref> element in the application-client.xml file:

<application-client>
 <display-name>EmployeeBean</display-name>
 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 </ejb-ref>

Creating the Initial Context in OC4J

2-8 Oracle Application Server Containers for J2EE Services Guide

</application-client>
Recall that the EmployeeBean EJB is bound to the JNDI location
java:comp/env/bmpapp/EmployeeBean as configured in the
orion-ejb-jar.xml file. You must map the EJB name used in the application client
program to the JNDI location where the EJB is actually bound to. You must do this in
the orion-application-client.xml file:

orion-application-client.xml file:
<orion-application-client>
 <ejb-ref-mapping name="EmployeeBean" location="bmpapp/EmployeeBean" />
</orion-application-client>

From J2EE Application Components
You can use initial context factories in OC4J to access the following objects from J2EE
application components:

� Objects in the Same Application

� Objects Not in the Same Application

Objects in the Same Application
You can use J2EE application components to access objects in the same application
from servlets, JSP pages, and EJBs.

When code is running in a server, it is, by definition, part of an application. Because
the code is part of an application, OC4J can establish defaults for properties that JNDI
uses. Application code does not need to provide any property values when
constructing a JNDI InitialContext object.

When this context factory is being used, the ApplicationContext is specific to the
current application, so all the references specified in files such as web.xml,
orion-web.xml, or ejb-jar.xml for that application are available. This means that
a lookup using java:comp/env works for any resource that the application has
specified. Lookups using this factory are performed locally in the same Java virtual
machine (JVM).

If your application must look up a remote reference, such as a resource in another J2EE
application in the same JVM or a resource external to any J2EE application, then you
must use RMIInitialContextFactory or IIOPInitialContextFactory. See
"Objects Not in the Same Application" on page 2-9.

Example As a concrete example, consider a servlet that must retrieve a data source to
perform a JDBC operation on a database.

Specify data source location in data-sources.xml as follows:

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 location="jdbc/pool/OracleCache"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@//<hostname>:<TTC port>/<DB ID>"
/>

For more information on data source locations, see Chapter 4, "Data Sources".

The servlet web.xml file defines the following resource:

<resource-ref>

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-9

 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The corresponding orion-web.xml mapping is:

<resource-ref-mapping name="jdbc/EmployeeAppDB" location="jdbc/pool/OracleCache" />

The name value is the same as that specified in the <res-ref-name> element in
web.xml. The location value is the location or ejb-location in the
<data-source> element of data-sources.xml.

In this case, the following code in the servlet returns the correct reference to the data
source object:

...
try {
 InitialContext ic = new InitialContext();
 ds = (DataSource) ic.lookup("java:comp/env/jdbc/EmployeeAppDB");
 ...
}
catch (NamingException ne) {
 throw new ServletException(ne);
}
...

No initial context factory specification is necessary, because OC4J sets
ApplicationInitialContextFactory as the default value of the system property
java.naming.factory.initial when the application starts.

There is no need to supply a provider URL in this case, because no URL is required to
look up an object contained within the same application or under java:comp/.

An application can use the java:comp/env mechanism to look up resources that are
specified not only in its own name space, but also in the name spaces of any declared
parent applications, or in the global application (which is the default parent if no
specific parent application was declared).

Objects Not in the Same Application
Use one of the following context factories to access objects not in the same application:

� RMIInitialContextFactory

� IIOPInitialContextFactory

Note: Some versions of the JDK on some platforms automatically
set the system property java.naming.factory.url.pkgs to
include com.sun.java.*. Check this property and remove
com.sun.java.* if it is present.

Creating the Initial Context in OC4J

2-10 Oracle Application Server Containers for J2EE Services Guide

RMIInitialContextFactory For most application purposes, you can use either the default
server-side ApplicationInitialContextFactory or the
ApplicationClientInitialContextFactory. In some cases, however, you must
use an additional context factory:

� If your client application does not have an application-client.xml file, then
you must use the RMIInitialContextFactory property and not the
ApplicationClientInitialContextFactory property.

� If your client application accesses the JNDI name space remotely—not in the
context of a specific application—then you must use
RMIInitialContextFactory.

The RMIInitialContextFactory uses the following environment properties,
which ApplicationClientInitialContextFactory also uses. Table 2–2 on
page 2-5 lists these properties.

� java.naming.provider.url

� http.tunnel.path

� Context.SECURITY_PRINCIPAL

� Context.SECURITY_CREDENTIALS

Here is an example of a servlet that accesses an EJB running on another OC4J instance
on a different machine. The EJB in this example is the EmployeeBean that is used in
the "Accessing Objects from an Application Client" on page 2-6.

Here is an excerpt of the servlet code:

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
"com.evermind.server.rmi.RMIInitialContextFactory");
env.put("java.naming.provider.url","ormi://remotehost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context context = new InitialContext(env);
Object homeObject =
context.lookup("java:comp/env/EmployeeBean");

As in the case of the application client, you must declare <ejb-ref> elements in the
web.xml file for this servlet:

<ejb-ref>
<ejb-ref-name>EmployeeBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>bmpapp.EmployeeHome</home>
<remote>bmpapp.Employee</remote>
</ejb-ref>

In addition, orion-web.xml, must include a mapping from the logical name
EmployeeBean to the actual JNDI name where the EJB is bound, as shown in the
following example:

<ejb-ref-mapping name="EmployeeBean" location="bmpapp/EmployeeBean" />

IIOPInitialContextFactory The conditions under which to use this factory are the same as
those for RMIInitialContextFactory except that the protocol being used is IIOP
instead of ORMI.

Note: You can use this factory only for looking up EJBs.

JNDI State Replication

Java Naming and Directory Interface 2-11

JNDI State Replication
JNDI state replication ensures that changes made to the context on one OC4J instance
of an OC4J cluster is replicated to the name space of every other OC4J instance.

When JNDI state replication is enabled, you can bind a serializable value into an
application context (using a remote client, EJB, or servlet) on one server and read it on
another server. You can also create and destroy subcontexts in this way.

This section explains:

� Enabling JNDI State Replication

� JNDI State Replication Limitations

Enabling JNDI State Replication
JNDI state replication is enabled when EJB clustering is enabled.

To take advantage of JNDI state replication, you must enable EJB clustering, even if
you do not specifically require EJB clustering (for example, when using JNDI to find
startup classes or data sources).

For information on enabling EJB clustering, see the EJB clustering chapter in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

For information on OC4J clustering in general, see the clustering chapter in the Oracle
Application Server Containers for J2EE User’s Guide.

JNDI State Replication Limitations
Consider the following limitations when relying on JNDI state replication:

� Multiple Islands on a Given Subnet

� Propagating Changes Across the Cluster

� Binding a Remote Object

Multiple Islands on a Given Subnet
Although OC4J processes can be organized into groups (known as islands) to improve
state-replication performance, EJB applications replicate state between all OC4J
processes in the OC4J instance and do not use the island subgrouping. This is
described in the clustering chapter in the Oracle Application Server Containers for J2EE
User’s Guide.

Consequently, JNDI clustering is not limited to an island subnet. If there are multiple
islands on a single subnet, then all islands on that subnet share the global JNDI
context.

Propagating Changes Across the Cluster
Rebinding (renaming) and unbinding are not propagated: they apply locally but are
not shared across the cluster.

Bindings to values that are not serializable are also not propagated across the cluster.

JNDI State Replication

2-12 Oracle Application Server Containers for J2EE Services Guide

Binding a Remote Object
If you bind a remote object (typically a home or EJB object) in an application context,
then that JNDI object is shared across the cluster but there is a single point of failure if
the first server it is bound to fails.

JNDI Lookups in a Multiple-Instance Environment
In an environment with multiple OC4J instances, JNDI lookups require additional
information:

� opmn prefix

� ons host name

� ons port number

This applies to EJBs and JMS, as well.

Java Message Service (JMS) 3-1

3
Java Message Service (JMS)

This chapter discusses the following topics:

� Overview

� Oracle Application Server JMS

� Resource Providers

� Oracle JMS

� Map Logical Names in Resource References to JNDI Names

� Third-Party JMS Providers

� Using Message-Driven Beans

� High Availability and Clustering for JMS

Download the JMS example used in this chapter from the OC4J sample code page on
the OTN Web site at

http://otn.oracle.com/tech/java/oc4j/demos

Overview
Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. Java Message Service (JMS) offers a common way for Java
programs to access these systems. JMS is the standard messaging API for passing data
between application components and allowing business integration in heterogeneous
and legacy environments.

JMS provides two programming models:

� Point-to-Point—Messages are sent to a single consumer using a JMS queue.

� Publish and Subscribe—Messages are broadcast to all registered listeners through
JMS topics.

JMS queues and topics are bound in the JNDI environment and made available to J2EE
applications.

You can choose between several JMS providers, depending on their integration and
quality-of-service (QOS) requirements, as follows:

� Oracle Application Server JMS—A JMS provider that is installed with OC4J and
executes in-memory.

� Oracle JMS (OJMS)—A JMS provider that is a feature of the Oracle database and is
based on the Streams Advanced Queuing messaging system.

Oracle Application Server JMS

3-2 Oracle Application Server Containers for J2EE Services Guide

� Third-Party JMS Providers—You can integrate with the following third-party JMS
providers: WebSphere MQ, SonicMQ, and SwiftMQ.

Oracle Application Server JMS
OracleAS JMS is a Java Message Service that provides the following features:

� Complies with the JMS 1.0.2b specification.

� Offers a choice between in-memory or file-based message persistence.

� Provides an exception queue for undeliverable messages.

This section covers the following topics:

� Configuring OracleAS JMS Ports

� Configuring OracleAS JMS Destination Objects

� Steps for Sending a Message

� OracleAS JMS Utilities

� OracleAS JMS File-Based Persistence

� Abnormal Termination

� Predefined OracleAS JMS Exception Queue

� Message Paging

� OracleAS JMS Configuration File Elements for jms.xml

� OracleAS JMS System Properties

Configuring OracleAS JMS Ports
You can use the Oracle Enterprise Manager 10g to configure the port range for
OracleAS JMS. The default range is between 3201 and 3300.

From the OC4J Home page, select the Administration page, then the Instance
Properties column, then Server Properties. Scroll to the Multiple VM Configuration
section.

Configuring OracleAS JMS Destination Objects
OracleAS JMS Destination objects are configured in the jms.xml file. OracleAS
JMS Destination objects can be either queues or topics. OracleAS JMS is already
installed with OC4J, so the only configuration necessary is for the queues, topics, and
their connection factories that your applications use.

� Oracle Enterprise Manager 10g configuration—To edit the jms.xml file directly
through Oracle Enterprise Manager 10g, select Advanced Properties under the
Instance Properties column on the Administration page. In this section, choose
jms.xml to modify the straight XML file.

� Standalone OC4J configuration—You can configure the default jms.xml file in
J2EE_HOME/config/jms.xml. If you want, you can change the name and
location of this file. To modify the name and location of the JMS configuration file,
specify the new name and location in the OC4J server configuration file—J2EE_
HOME/config/server.xml. The server.xml file designates the name and
location of the JMS configuration file through the <jms-config> element.

Oracle Application Server JMS

Java Message Service (JMS) 3-3

Figure 3–1 shows the order in which the elements in the jms.xml file are structured.
"OracleAS JMS Configuration File Elements for jms.xml" on page 3-16 provides a
complete description of all elements and their attributes in the jms.xml file.

Figure 3–1 Configuration Elements Hierarchy

The jms.xml file defines the topics and queues used. For each Destination object
(queue or topic)—you must specify its name (also known as its location) and
connection factory in the jms.xml file. The following jms.xml file example
configuration defines a queue used by the Oc4jjmsDemo demo.

The queue is defined as follows:

� The name (location) of the queue is jms/demoQueue.

� Its queue connection factory is defined as jms/QueueConnectionFactory.

The topic is defined as follows:

� The name (location) of the topic is jms/demoTopic.

� Its topic connection factory is defined as jms/TopicConnectionFactory.

<?xml version="1.0" ?>
<!DOCTYPE jms-server PUBLIC "OracleAS JMS server"
"http://xmlns.oracle.com/ias/dtds
/jms-server.dtd">

<jms-server port="9127">
 <queue location="jms/demoQueue"> </queue>
 <queue-connection-factory location="jms/QueueConnectionFactory">
 </queue-connection-factory>

Note: Configuration changes made to OracleAS JMS (by
modifying jms.xml) take effect only on OC4J restart, or shutdown
and start.

Oracle Application Server JMS

3-4 Oracle Application Server Containers for J2EE Services Guide

 <topic location="jms/demoTopic"> </topic>
 <topic-connection-factory location="jms/TopicConnectionFactory">
 </topic-connection-factory>

 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

See "OracleAS JMS Configuration File Elements for jms.xml" on page 3-16 for
descriptions of the elements in the jms.xml file.

Default Destination Objects
OracleAS JMS creates two default Destination objects, as follows:

� The default queue is defined as jms/demoQueue.

� The default topic is defined as jms/demoTopic.

You can use these Destination objects in your code without adding them to the
jms.xml configuration file.

The default connection factories that are automatically associated with these objects
are as follows:

� jms/QueueConnectionFactory

� jms/TopicConnectionFactory

Default Connection Factories
OracleAS JMS creates six default connection factories for the XA/non-XA and various
JMS domains. You can use these connection factories in your code without adding
them to the jms.xml configuration file, rather than defining new connection factories.
The only reason to define a new connection factory in the jms.xml file is if you need
to specify nondefault values for one or more of the optional attributes of
connection-factory elements.

The default connection factories are as follows:

� jms/ConnectionFactory

� jms/QueueConnectionFactory

� jms/TopicConnectionFactory

� jms/XAConnectionFactory

� jms/XAQueueConnectionFactory

� jms/XATopicConnectionFactory

Thus, if you used only the default connection factories, then you could define only the
topic and queues necessary in the jms.xml file. The following example defines the

Note: Because all of these values are defaults, you do not have to
configure them. However, the example shows the configuration for
the queue, the topic, and their connection factories so that you
understand how to configure your own Destination objects and
connection factories.

Oracle Application Server JMS

Java Message Service (JMS) 3-5

jms/demoQueue and the jms/demoTopic. Both of these objects use their respective
default connection factories.

<?xml version="1.0" ?>
<!DOCTYPE jms-server PUBLIC "OracleAS JMS server"
"http://xmlns.oracle.com/ias/dtds
/jms-server.dtd">

<jms-server port="9127">
 <queue location="jms/demoQueue"> </queue>
 <topic location="jms/demoTopic"> </topic>
 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

OracleAS JMS internally creates the default connection factory objects and binds them
to the default names within the OC4J server where the JMS connection is created.

However, you can also redefine the default connection factories to have specific
attributes by configuring them in the jms.xml file.

Steps for Sending a Message
A JMS client sends a JMS message by doing the following:

1. Retrieve both the configured JMS Destination object (queue or topic) and its
connection factory using a JNDI lookup.

2. Create a connection from the connection factory.

3. If you are receiving messages, then start the connection.

4. Create a session using the connection.

5. Provide the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

6. Create the message.

7. Send out the message using either the queue sender or the topic publisher.

8. Close the queue session.

9. Close the connection for either JMS Destination types.

Example 3–1 demonstrates these steps for sending a JMS message. For the complete
example, download the JMS example used in this chapter from the OC4J sample code
page on the OTN Web site at

http://otn.oracle.com/tech/java/oc4j/demos

Example 3–1 OracleAS JMS Client that Sends Messages to a Queue

The JNDI lookup for OracleAS JMS requires that the OracleAS JMS Destination and
connection factory be defined within the jms.xml file, prepended with the
java:comp/env/ prefix.

Note: For simplicity, most of the error code is removed in
Example 3–1. To see the error processing, see the sample code
available on the OTN Web site.

Oracle Application Server JMS

3-6 Oracle Application Server Containers for J2EE Services Guide

The dosend method, shown in the following example, sets up a queue to send
messages. After creating the queue sender, this example sends out several messages.

public static void dosend(int nmsgs)
{
 // 1a. Retrieve the queue connection factory.
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/QueueConnectionFactory");
 // 1b. Retrieve the queue.
 Queue q = (Queue) ctx.lookup("java:comp/env/jms/demoQueue");

 // 2. Create the JMS connection.
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection.
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 //5. Create a sender on the JMS session to send messages.
 QueueSender snd = qs.createSender(q);

 // Send out messages...
 for (int i = 0; i < nmsgs; ++i)
 {
 //6. Create the message using the createMessage method of the
 // JMS session.
 Message msg = qs.createMessage();
 //7. Send the message out over the sender (snd) using the
 // send method.
 snd.send(msg);
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 }

 //8 & 9 Close the sender, the JMS session and the JMS connection.
 snd.close();
 qs.close();
 qc.close();

}

Steps for Receiving a Message
A JMS client receives a JMS message by doing the following:

1. Retrieve both the configured JMS Destination object (queue or topic) and its
connection factory using a JNDI lookup.

2. Create a connection from the connection factory.

3. If you are receiving messages, then start the connection.

Note: Alternatively, you could use logical names in the JNDI
lookup. See "Map Logical Names in Resource References to JNDI
Names" on page 3-33 for directions. The only difference between an
OracleAS JMS client and an OJMS client is the name provided in
the JNDI lookup. To make your client independent of either JMS
provider, use logical names in the implementation, and change only
the OC4J-specific deployment descriptor.

Oracle Application Server JMS

Java Message Service (JMS) 3-7

4. Create a session using the connection.

5. Providing the retrieved JMS Destination, create a receiver for a queue or a topic
subscriber.

6. Receive the message using the queue receiver or the topic subscriber.

7. Close the queue session.

8. Close the connection for either JMS Destination types.

Example 3–2 demonstrates these steps for receiving a JMS message. For the complete
example, download the JMS example used in this chapter from the OC4J sample code
page on the OTN Web site at

http://otn.oracle.com/tech/java/oc4j/demos

Example 3–2 OracleAS JMS Client That Receives Messages Off a Queue

The dorcv method, shown in the following example, sets up a queue to receive
messages off of it. After creating the queue receiver, it loops to receive all messages off
the queue and compares it to the number of expected messages.

public static void dorcv(int nmsgs)
{
 Context ctx = new InitialContext();

 // 1a. Retrieve the queue connection factory.
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/QueueConnectionFactory");
 // 1b. Retrieve the queue.
 Queue q = (Queue) ctx.lookup("java:comp/env/jms/demoQueue");

 // 2. Create the JMS connection.
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection.
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // 5. Create a receiver, as we are receiving off of the queue.
 QueueReceiver rcv = qs.createReceiver(q);

 // 6. Receive the messages.
 int count = 0;
 while (true)
 {
 Message msg = rcv.receiveNoWait();
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 ++count;
 }

 if (nmsgs != count)
 {
 System.out.println("expected: " + nmsgs + " found: " + count);
 }

Note: For simplicity, most of the error code is removed in
Example 3–2. To see the error processing, see the sample code
available on the OTN Web site.

Oracle Application Server JMS

3-8 Oracle Application Server Containers for J2EE Services Guide

 // 7 & 8 Close the receiver, the JMS session and the JMS connection.
 rcv.close();
 qs.close();
 qc.close();
}

OracleAS JMS Utilities
OC4J JMS comes with an OC4J-specific command-line utility,
com.evermind.server.jms.JMSUtils, for debugging and information access.

The path J2EE_HOME/oc4j.jar must be in the CLASSPATH variable. Then execute
JMSUtils, as follows:

java com.evermind.server.jms.JMSUtils [gen_options] [command]
 [command_options]

The OracleAS JMS server must be running, and only the administrator can use
JMSUtils. You define a user within the administrator role in the security User
Manager. For information on defining users within security roles, see the

Oracle Application Server Containers for J2EE Security Guide.

The generic options for JMSUtils facilitate connecting to the OracleAS JMS server.
Table 3–1 describes these options.

The commands describe the action to be taken and are discussed in Table 3–2. Some of
these commands have their own options (command_options) to further describe the
action desired.

To display the syntax usage, issue the JMSUtils command with no argument. To
display extensive information about the available command set, the argument options,
and the behavior of each command, issue the following:

java com.evermind.server.jms.JMSUtils help

Table 3–1 JMSUtils Options

Option Description

-host <hostname> The (remote) host where the OracleAS JMS server is
installed. This is not required if the client exists on the same
node as the OracleAS JMS server.

-port <port> The (remote) port through which the OracleAS JMS server is
accessed. The default JMS port number is 9127.

-username <username> The username to access the OracleAS JMS server for creating
the JMS connection. This user is defined in the User Manager
security configuration within the administrative roles.

-password <password> The password to access the OracleAS JMS server for creating
the JMS connection. This password is defined in the User
Manager security configuration within the administrative
roles.

-clientID <ID> Use this identifier for all JMS connections. This is required
only for identifying durable subscriptions on topics.

Table 3–2 OC4J JMS Utilities

Utility Command Description

help Print detailed help for all utilities commands.

Oracle Application Server JMS

Java Message Service (JMS) 3-9

Table 3–3 describes the command options.

check
[<other-selector>]

Check validity of a JMS message selector, identified by the
-selector command option. Optionally, check if two specified
selectors are treated as equivalent (useful for reactivating durable
subscriptions), where the second selector is identified in the
optional <other-selector>.

knobs Display all available system properties (shown in Table 3–6) and
their current settings on the OC4J JMS server.

stats Display all available DMS statistics on the OC4J JMS server (this
includes non-JMS statistics as well). (For information on DMS, see
the Oracle Application Server Performance Guide.)

destinations Print a list of all permanent Destination objects known to
OC4J JMS.

durables Print a list of all durable subscriptions known to OC4J JMS.

subscribe <topic> Create a new durable subscription on the <topic>. Specify a
name, message selector, whether it is local, and a durable
subscription client identifier. This replaces existing, inactive
durable subscriptions. The name is identified using the -name
command option. The message selector is identified using the
-selector command option. Whether the durable subscription
is localor not is identified using the -noLocal command option.
The client identifier is defined with the -clientID generic
option.

unsubscribe Drop an existing, inactive durable subscription. The durable
subscription is identified by a name (-name command option)
and the client identifier (-clientID generic option).

browse
<destination>

Browse messages on a given destination (queue or topic durable
subscription, defined in jms.xml).

drain
<destination>

Dequeue messages on a given destination (queue or topic durable
subscription).

copy
<from-destination>
<to-destination>

Copy messages from one destination (queue or topic durable
subscription) to a different destination. If the source and sink
destinations are the same, then the command is not executed,
generating an error instead.

move
<from-destination>
<to-destination>

Move messages from one destination (queue or topic durable
subscription) to a different destination. If the source and sink
destinations are the same, then the command is not executed,
generating an error instead.

Table 3–3 JMSUtils Command Options

Command Option Description

-selector <selector> Create queue receivers and durable subscribers with the
specified JMS message selector.

-noLocal
[true|false]

If set to true, the subscriber does not see the messages that
are published in the same connection. Use when creating a
durable subscriber. The default value is false.

-name <name> Defines a name for a durable subscription, operating on a
topic. This option is mandatory for commands that read topics,
and is ignored for reading queues.

Table 3–2 (Cont.) OC4J JMS Utilities

Utility Command Description

Oracle Application Server JMS

3-10 Oracle Application Server Containers for J2EE Services Guide

An example of using JMSUtils to browse the exception queue is as follows:

java com.evermind.server.jms.JMSUtils -username admin -password welcome
 browse jms/Oc4jJmsExceptionQueue

OracleAS JMS File-Based Persistence
OC4J JMS supports file-based persistence for JMS Destination objects (queues and
topics). The following sections provide more detail on file-based persistence:

� Overview

� Enabling Persistence

� Recovery

Overview
If persistence is enabled, then OC4J automatically performs the following:

� If a persistence file does not exist, OC4J automatically creates the file and
initializes it with the appropriate data.

� If the persistence file exists and is empty, then OC4J initializes it with the
appropriate data.

Even if persistence is enabled, only certain messages are persisted to a file. For a
message to be persisted, all of the following must be true:

� The Destination object is defined to be persistent within the
persistence-file attribute in the jms.xml file.

� The message has a persistent delivery mode, which is the default. Messages sent to
persistent destinations that are defined with a non-persistent delivery mode
(defined as DeliveryMode.NON_PERSISTENT) are not persistent.

The complete semantics of which messages are persisted are documented within the
JMS specification.

-silent Do not print messages while processing. Keeps a count of the
total number of messages processed, which is printed to
standard error.

-count <count> Do not process more than the indicated number of messages
during the current operation. If the count is negative or zero,
then all selected messages are processed.

Caution: A persistence file must not be moved, removed, or
modified when the OC4J server is active. Doing so can result in
data corruption and message loss. If OC4J is not active, then
removing a persistence file is equivalent to deleting all messages
and durable subscriptions in the destination associated with that
persistence file. When OC4J starts up again, the JMS server
reinitializes the file as usual.

Table 3–3 (Cont.) JMSUtils Command Options

Command Option Description

Oracle Application Server JMS

Java Message Service (JMS) 3-11

Enabling Persistence
To enable file-based persistence for Destination objects, specify the
persistent-file attribute in the jms.xml file. For JMS objects within standalone
OC4J, this is all you have to do to enable persistence. The following XML
configuration demonstrates how the persistence-file attribute defines the name
of the file as pers. See "OracleAS JMS Configuration File Elements for jms.xml" on
page 3-16 for information on the path and naming conventions for the
persistence-file attribute.

<queue name="foo" location="jms/persist" persistence-file="pers">
</queue>

The path for the persistence-file attribute is either an absolute path of the file or
a path relative to the persistence directory defined in application.xml.

The JMS server will not create any directories for persistence files. So when a
persistence file is defined in jms.xml it must either be in an existing absolute
directory, for example:

 persistence-file="/this/dir/exists/PersistenceFile"

or simply be a filename for example:

persistence-file="PersistenceFile" .

In the latter case, by default the persistence file will be created in $J2EE_
HOME/persistence (for a standalone instance) or $J2EE_
HOME/persistence/<island_name> (for an iAS environment).

Oracle Application Server may have multiple OC4J instances writing to the same file
directory, even with the same persistence filename. Setting this attribute enables
file-based persistence, but also creates the possibility that your persistence files can be
overwritten by another OC4J instance.

Recovery
The file-based persistence of OC4J JMS provides recoverable and persistent storage of
messages. Each OC4J JMS Destination, which can be either a queue or topic, can be
associated with a relative or absolute path name that points to a file that stores the
messages sent to the Destination object. The file can reside anywhere in the file
system (and not necessarily inside a J2EE_HOME directory). Multiple persistence files
can be placed in the same directory; persistence files can be placed on a remote
network file system or can be part of a local file system.

The following sections discuss the various aspects of persistence recovery for
OracleAS JMS:

� Scope of Recoverability

� Persistence File Management

� Reporting Errors to the JMS Client

� OracleAS JMS Recovery Steps

Scope of Recoverability OC4J JMS cannot recover from all possible types of failures. If
any of the following failures occur, then OC4J JMS does not guarantee the
recoverability of the persistence file.

� Media corruption—the disk system holding the persistence file fails abnormally or
gets corrupted.

Oracle Application Server JMS

3-12 Oracle Application Server Containers for J2EE Services Guide

� External corruption—the persistence file is deleted, edited, modified, or otherwise
corrupted (by software). Only the OC4J JMS server should write into a persistence
file.

� Silent failure or corruption—the I/O methods in the JDK fail silently or corrupt
data that are being read or written silently.

� A java.io.FileDescriptor.sync() failure—the sync() call does not
properly and completely flush all file buffers associated with the given descriptor
to the underlying file system.

Persistence File Management When the OC4J JMS server is running, you must not copy,
delete, or rename persistence files currently in use. It is an unrecoverable error to
perform any of these actions on any of these files when they are being used by OC4J
JMS.

However, when no OC4J JMS server is using a persistence file, you can perform the
following administrative and maintenance operations on these files:

� deleting: Deleting a persistence file removes all messages and, in the case of topics,
all durable subscriptions. On startup, OC4J JMS initializes a new (and empty)
persistence file.

� copying: An existing persistence file can be copied for archival or backup purposes.
If an existing persistence file gets corrupted, an earlier version can be used (as long
as the association between the OC4J JMS Destination name and the file is
maintained), pointed to by any suitable path name, to go back to the previous
contents of the JMS Destination.

Persistence files cannot be concatenated, split up, rearranged, or merged. Attempting
any of these operations causes unrecoverable corruption of the data in these files.

In addition to persistence files specified by a user and lock files, OC4J JMS uses a
special file, jms.state, for internal configuration and transaction state management.
OC4J JMS cleans up this file and its contents during normal operations. You must
never delete, move, copy, or otherwise modify this file, even for archival purposes.
Attempting to manipulate the jms.state file can lead to message and transaction
loss.

Reporting Errors to the JMS Client The sequence of operations when a JMS client
enqueues or dequeues a message, or commits or rolls back a transaction, is as follows:

� Client makes a function call

– pre-persistence operations

– persistence occurs

– post-persistence operations

Note: The location of the jms.state file is different whether you
are operating OC4J in standalone or Oracle Application Server
mode, as follows:

� Standalone: J2EE_HOME/persistence directory

� Oracle Application Server: J2EE_
HOME/persistence/<island_name> directory

The location of the persistence directory is defined in the
application.xml file.

Oracle Application Server JMS

Java Message Service (JMS) 3-13

� Client function call returns

If a failure occurs during the pre-persistence or persistence phase, then the client
receives a JMSException or some other type of error, but no changes are made to the
persistence file.

If a failure occurs in the post-persistence phase, the client may receive a
JMSException or some other type of error; however, the persistence file is still
updated, and OC4J JMS recovers as if the operation succeeded.

OracleAS JMS Recovery Steps Lock files prevent multiple OC4J processes from writing
into the same persistence file. If multiple OC4J JVMs are configured to point to the
same file in the same persistence-file location, then they could overwrite each
others data and cause corruption or loss of persisted JMS messages. To protect against
these kinds of sharing violations, OracleAS JMS associates each persistence file with a
lock file. Thus, each persistence file—for example, /path/to/persistenceFile—
is associated with a lock file named /path/to/persistenceFile.lock. See
"Enabling Persistence" on page 3-11 for more information on persistence files.

OC4J must have appropriate permissions to create and delete the lock file. If OC4J is
terminated normally, then the lock files are cleaned up automatically. However, if
OC4J is terminated abnormally, the lock files continue to exist in the file system.
Because OC4J cannot distinguish leftover lock files from sharing violations, the user
must manually remove all lock files before restarting OC4J after abnormal termination.
OracleAS JMS will not attempt to create the relevant persistent JMS destinations if it
detects an existing lock file for it.

OC4J JMS never attempts to delete lock files automatically. Lock files must be
manually deleted for OC4J JMS to use a given persistence file. The remainder of the
discussion in this subsection assumes that all lock files in question have been removed.

OC4J JMS performs recovery operations on all persistence files as configured in OC4J
JMS at the time of abnormal termination. In other words, if OC4J terminates
abnormally, the user modifies the JMS server configuration and restarts OC4J, the JMS
server still attempts to recover all the persistence files in the original configuration,
and, after recovery is successful, moves to using the new configuration specified.

If recovery of the old configuration fails, then the OC4J JMS server does not start. The
server must be shut down or restarted repeatedly to give recovery another chance,
until recovery is successful.

OC4J JMS caches its current persistence configuration in the jms.state file, which is
also used to maintain transaction state. If you wish to bypass all recovery of the
current configuration, you can remove the jms.state file, remove all lock files,
possibly change the OC4J JMS server configuration, and start the server in a clean-slate
mode. (We do not recommend doing this.) If the OC4J JMS server cannot find a
jms.state file, then it creates a new one.

If, for some reason, the jms.state file itself is corrupted, then the only recourse is to
delete it, with the attendant loss of all pending transactions—that is, transactions that
have been committed, but the commits not yet performed by all individual
Destination objects participating in the transactions.

If messaging activity was in progress during abnormal termination, then OC4J JMS
tries to recover its persistence files. Any data corruption (of the types mentioned

Note: This manual intervention is required only on abnormal
shutdown. See "Abnormal Termination" on page 3-14.

Oracle Application Server JMS

3-14 Oracle Application Server Containers for J2EE Services Guide

earlier) is handled by clearing out the corrupted data; this may lead to a loss of
messages and transactions.

If the headers of a persistence file are corrupted, OC4J JMS may not be able to recover
the file, because such a corrupted file is often indistinguishable from user
configuration errors. The oc4j.jms.forceRecovery administration property
(described in Table 3–6) instructs the OC4J JMS server to proceed with recovery,
clearing out all invalid data at the cost of losing messages or masking user
configuration errors.

Abnormal Termination
If OC4J terminates normally, then the lock files are cleaned up automatically. However,
if OC4J terminates abnormally (for example, a kill -9 command), the lock files
remain in the file system. Because OC4J cannot distinguish leftover lock files from
sharing violations, you must manually remove all lock files before restarting OC4J
after abnormal termination. OC4J JMS does not even attempt to create the relevant
persistent JMS Destination objects if it detects already existing lock files for them.

The default location of the lock files is in the persistence directory—J2EE_
HOME/persistence. (The persistence directory is defined in the application.xml
file.) Other locations can be set within the persistence-file attribute of the
Destination object.

Predefined OracleAS JMS Exception Queue
As an extension to the JMS specification, OC4J JMS comes with a predefined exception
queue for handling undeliverable messages. This is a single, persistent, global
exception queue to store undeliverable messages in all of its Destination objects.
The exception queue has a fixed name (jms/Oc4jJmsExceptionQueue), a fixed
JNDI location (jms/Oc4jJmsExceptionQueue), and a fixed persistence file
(Oc4jJmsExceptionQueue).

The exception queue is always available to OC4J JMS and its clients, and should not be
explicitly defined in the jms.xml configuration file; attempting to do so is an error.
The name, JNDI location, and persistence path name of the exception queue must be
considered reserved words in their respective name spaces; any attempt to define
other entities with these names is an error.

Messages can become undeliverable because of message expiration and listener errors.
The following subsection explains what happens to undeliverable messages in the first
case.

Note: The location of the Oc4jJmsExceptionQueue persistence
file varies according to whether you are operating OC4J in
standalone or Oracle Application Server mode, as follows:

� Standalone: J2EE_HOME/persistence directory

� Oracle Application Server: J2EE_
HOME/persistence/<island_name> directory

The location of the persistence directory is defined in the
application.xml file.

Oracle Application Server JMS

Java Message Service (JMS) 3-15

Message Expiration
By default, if a message sent to a persistent Destination expires, then OC4J JMS
moves the message to the exception queue. The JMSXState of the expiring message is
set to the value 3 (for EXPIRED), but the message headers, properties, and body are
not otherwise modified. The message is wrapped in an ObjectMessage (with
appropriate property name and value copies performed as described elsewhere in this
chapter), and the wrapping message is sent to the exception queue.

To affect the behavior of what goes into the exception queue, use the
oc4j.jms.saveAllExpired property (described in Table 3–6).

The wrapping ObjectMessage has the same DeliveryMode as the original
message.

By default, messages expiring on nonpersistent or temporary Destination objects
are not moved to the exception queue. The messages sent to these Destination
objects are not worth persisting and neither should their expired versions be.

You can specify that all expired messages be sent to the OC4J JMS exception queue,
regardless of whether they are sent to persistent, nonpersistent, or temporary
Destination objects, by setting the oc4j.jms.saveAllExpired administration
property (described in Table 3–6) to true when starting the OC4J server. In this case,
all expired messages are moved to the exception queue.

Message Paging
The OracleAS JMS server supports paging in and out message bodies under the
following circumstances:

� The message has a persistent delivery mode.

� The message is sent to a persistent Destination object (see "OracleAS JMS
File-Based Persistence" on page 3-10).

� The OC4J server JVM has insufficient memory.

Only message bodies are paged. Message headers and properties are never considered
for paging. You set the paging threshold through the OracleAS JMS system property,
oc4j.jms.pagingThreshold, which is a double value (narrowed into the range
[0,1]) that represents the memory usage fraction above which the OracleAS JMS server
considers message bodies for paging. This value is an estimate of the fraction of
memory in use by the Java virtual machine (JVM). This value can range from 0.0 (the
program uses no memory at all) to 1.0 (the program is using all available memory).

The value ranges from somewhere above 0.0 to somewhere below 1.0: it is almost
impossible to write a Java program that uses no JVM memory, and programs almost
always die by running out of memory before the JVM heap gets full.

For example, if the paging threshold is 0.5, and the memory usage fraction of the JVM
rises to 0.6, OracleAS JMS tries to page out as many message bodies as possible until
the memory usage fraction reduces below the threshold, or no more message bodies
can be paged out.

When a message that has been paged out is requested by a JMS client, the OracleAS
JMS server automatically pages in the message body (regardless of the memory usage
in the JVM) and delivers the correct message header/body to the client. After the
message has been delivered to the client, it may once again be considered for paging
out, depending on the memory usage in the server JVM.

If the memory usage fraction drops below the paging threshold, then the OracleAS
JMS server stops paging out message bodies. The bodies of messages already paged

Oracle Application Server JMS

3-16 Oracle Application Server Containers for J2EE Services Guide

out are not automatically paged back in. The paging in of message bodies happens
only on demand (that is, when a message is dequeued or browsed by a client).

By default, the paging threshold of the OracleAS JMS server is set to 1.0. In other
words, by default, the OracleAS JMS server never pages message bodies.

Depending on the JMS applications, and the sizes of the messages they send/receive,
and the results of experiments and memory usage monitoring on real-life usage
scenarios, the user should choose a suitable value for the paging threshold.

No value of the paging threshold is ever incorrect. JMS semantics are always
preserved regardless of whether paging in enabled or disabled. Control of the paging
threshold does allow the OracleAS JMS server to handle more messages in memory
than it might have been able to without paging.

OracleAS JMS Configuration File Elements for jms.xml
This section describes the XML elements for OC4J JMS configuration in jms.xml. The
following is the element order structure within the XML file:

<jms-server>
 <queue>
 <description></description>
 </queue>
 <topic>
 <description></description>
 </topic>
 <connection-factory></connection-factory>
 <queue-connection-factory></queue-connection-factory>
 <topic-connection-factory></topic-connection-factory>
 <xa-connection-factory></xa-connection-factory>
 <xa-queue-connection-factory></xa-queue-connection-factory>
 <xa-topic-connection-factory></xa-topic-connection-factory>
 <log>
 <file></file>
 </log>
</jms-server>

Table 3–4 defines the JMS configuration elements.

Table 3–4 JMS Configuration Elements

Element Description Attributes

jms-server The root element of
the OC4J JMS server
configuration.

host—The host name defined in a String (DNS or dot-notation
host name) to which this OC4J JMS server should bind. By default,
the JMS server binds to 0.0.0.0 (also known as [ALL] in the
configuration file). This attribute is optional.

port—The port defined as an int (valid TCP/IP port number) to
which this OC4J JMS server should bind. The default setting is
9127. This setting applies only to the standalone configuration of
OC4J. In the Oracle Application Server, the port setting in the
configuration file is overridden by command-line arguments that
are used (by, for example, OPMN, DCM, and others) when starting
the OC4J server. This attribute is optional.

Oracle Application Server JMS

Java Message Service (JMS) 3-17

queue This element
configures OracleAS
JMS queues. The
queues are available
when OC4J JMS starts
up, and are available
for use until the server
is restarted or
reconfigured. You can
configure zero or
more queues in any
order. Any newly
configured queue is
not available until
OC4J is restarted.

name—This required attribute is the provider-specific name
(String) for the OC4J JMS queue. The name can be any valid
nonempty string (with white space and other special characters
included, although this is not recommended). The name specified
here can be used in Session.createQueue() to convert the
provider-specific name to a JMS queue. It is invalid for both a
queue and a topic to specify the same name. However, multiple
queues can specify the same name and different locations. There is
no default name.

location—This required attribute states the JNDI location
(String) to which the queue is bound. The value should follow the
JNDI rules for valid names. Within the OC4J JMS container, the
location is bound and accessible as is. In application clients, the
name is part of the java:comp/env/ JNDI name space, and
should be appropriately declared in the relevant deployment
descriptors. The java:comp/env/ names can also be used within
the container, assuming that the relevant deployment descriptors
have been appropriately specified. The location should be unique
across all Destination objects and connection factory elements in
jms.xml. There is no default.

persistence-file—An optional path and filename (String).
The path for the persistence-file attribute is either an
absolute path of the file or a path relative to the persistence
directory defined in application.xml; the default path is J2EE_
HOME/persistence/<island> for Oracle Application Server
environments and J2EE_HOME/persistence for standalone
environments.

See "Recovery" on page 3-11 for more details on the meaning of the
persistence-file attribute. If multiple queue elements with
the same name and different locations are declared in jms.xml,
then all of them should specify the same value for
persistence-file, or should not specify the value at all. If at
least one of these multiple declarations specifies a
persistence-file, that value is used for this queue.

Table 3–4 (Cont.) JMS Configuration Elements

Element Description Attributes

Oracle Application Server JMS

3-18 Oracle Application Server Containers for J2EE Services Guide

topic This element
configures OracleAS
JMS topic. The topics
are available when
OC4J JMS starts up,
and are available for
use until the server is
restarted or
reconfigured. You can
configure zero or
more topics in any
order. Any newly
configured topic is not
available until OC4J is
restarted.

name—This required attributes is the provider-specific name
(String) for the OC4J JMS topic. The name can be any valid
nonempty string (with white space and other special characters
included, although this is not recommended). The name specified
here can be used in Session.createTopic() to convert the
provider-specific name to a JMS topic. It is invalid for both a queue
and a topic to specify the same name. However, multiple topics can
specify the same name and different locations. There is no default
name.

location—This required attribute states the JNDI location
(String) to which the topic is bound. The value should follow the
JNDI rules for valid names. Within the OC4J JMS container, the
location is bound and accessible as is. In application clients, the
name is part of the java:comp/env/ JNDI name space, and
should be appropriately declared in the relevant deployment
descriptors.

The java:comp/env/ names can also be used within the
container, assuming that the relevant deployment descriptors have
been appropriately specified. The location should be unique across
all topics and connection factory elements in jms.xml. There is no
default.

persistence-file—An optional path and filename (String).
The path for the persistence-file attribute is either an
absolute path of the file or a path relative to the persistence
directory defined in application.xml; the default path is J2EE_
HOME/persistence/<island> for Oracle Application Server
environments and J2EE_HOME/persistence for standalone
environments.

See "Recovery" on page 3-11 for more details on the meaning of the
persistence-file attribute. If multiple queue or topic elements
with the same name and different locations are declared in
jms.xml, then all of them should specify the same value for
persistence-file, or should not specify the value at all. If at
least one of these multiple declarations specifies a
persistence-file, that value is used for this topic.

description A user-defined string
to remind the user for
what the queue or
topic is used.

connection-facto
ry

JMS domain
connection factory
configuration.

Table 3–5 describes the attributes for this element.

queue-connection
-factory

JMS domain
connection factory
configuration.

Table 3–5 describes the attributes for this element.

topic-connection
-factory

JMS domain
connection factory
configuration.Table 3–
5 describes all of the
attributes for this
element.

Table 3–5 describes the attributes for this element.

xa-connection-fa
ctory

XA variants of
connection factory
configuration.

Table 3–5 describes the attributes for this element.

Table 3–4 (Cont.) JMS Configuration Elements

Element Description Attributes

Oracle Application Server JMS

Java Message Service (JMS) 3-19

Table 3–5 describes the attributes for any connection factory definition.

xa-queue-connect
ion-factory

XA variants of
connection factory
configuration.

Table 3–5 describes the attributes for this element.

xa-topic-connect
ion-factory

XA variants of
connection factory
configuration.

Table 3–5 describes the attributes for this element.

log Enables logging of the
JMS activity in either
file or ODL format.
See the section
"Enabling OC4J
Logging" in the
Oracle Application
Server Containers for
J2EE User’s Guidefor
information on
logging.

Table 3–5 Connection Factory Configuration Attributes

Attribute Type Mandatory? Default Description

location String Yes (n/a) The JNDI location to which the connection factory
is bound. The value should follow the JNDI rules
for valid names. Within the OC4J JMS container,
the location is bound and accessible as is. In
application clients, the name is part of the
java:comp/env/ JNDI name space, and should
be appropriately declared in the relevant
deployment descriptors. The java:comp/env/
names can also be used within the container,
assuming that the relevant deployment descriptors
have been appropriately specified. The location
should be unique across all Destination and
connection factory elements in jms.xml.

host String (DNS or
dot notation host
name)

No [ALL] The fixed OC4J JMS host to which this connection
factory will connect. By default, a connection
factory uses the same host as configured for the
jms-server element. Nondefault values can be
used to force all JMS operations to be directed to a
specific OC4J JVM, bypassing any locally available
OC4J JMS servers and other Oracle Application
Server or clustered configurations.

port int (valid
TCP/IP port
number)

No 9127 The fixed OC4J JMS port to which this connection
factory connects. By default, a connection factory
uses the same port as configured for the
jms-server element (or the value of the port that
was specified for Oracle Application Server or
clustered configurations on the command line).
Nondefault values can be used to force all JMS
operations to be directed to a specific OC4J JVM,
bypassing any locally available OC4J JMS servers
and other Oracle Application Server or clustered
configurations.

Table 3–4 (Cont.) JMS Configuration Elements

Element Description Attributes

Oracle Application Server JMS

3-20 Oracle Application Server Containers for J2EE Services Guide

Examples
This section contains code samples that show connection factory configuration
fragments.

The following code sample configures a connection factory of jms/Cf, a queue
connection factory of jms/Qcf, and an XA topic connection factory of jmx/xaTcf.

<connection-factory location="jms/Cf">
</connection-factory>

<queue-connection-factory location="jms/Qcf">
</queue-connection-factory>

<xa-topic-connection-factory location="jms/xaTcf"
 username="foo" password="bar" clientID="baz">
</xa-topic-connection-factory>

If you want to add a topic connection factory, you must use a unique name. For
example, you could not use the same name as the connection factory (above) of
jms/Cf. Thus, the following would be invalid.

<!-- Invalid: cannot reuse "location" -->
<topic-connection-factory location="jms/Cf">
</topic-connection-factory>

The following code sample shows queue and topic configuration fragments. This
segment creates a queue foo and a topic bar.

<queue name="foo" location="jms/foo">
</queue>

username String No The empty
string

The user name for the authentication of JMS
default connections created from this connection
factory. The user name itself must be properly
created and configured with other OC4J facilities.

password String No The empty
string

The password for the authentication of JMS
default connections created from this connection
factory. The password itself must be properly
created and configured with other OC4J facilities.

clientID String No The empty
string

The administratively configured, fixed JMS
clientID for connections created from this
connection factory. If no clientID is specified,
then the default is an empty string, which can also
be programmatically overridden by client
programs, according to the JMS specification. The
clientID is used only for durable subscriptions
on topics; its value does not matter for queue and
nondurable topic operations.

Note: In Table 3–5, the property password supports password
indirection. For more information, refer to theOracle Application
Server Containers for J2EE Security Guide.

Table 3–5 (Cont.) Connection Factory Configuration Attributes

Attribute Type Mandatory? Default Description

Oracle Application Server JMS

Java Message Service (JMS) 3-21

<topic name="bar" location="jms/bar">
</topic>

Certain locations are reserved and cannot be redefined within the jms.xml
configuration file. The following code sample shows that you cannot use the
jms/Oc4jJmsExceptionQueue when defining a queue location, because it is a
reserved location.

<!-- Invalid: cannot use a reserved "location" -->
<queue name="fubar" location="jms/Oc4jJmsExceptionQueue">
</queue>

When defining a persistence file for queues and topics, you can define the location and
the filename. In addition, you can specify multiple persistence files, as long as the
persistence filename is the same. Thus, the persistence file is written out to two
locations for the same queue.

<queue name="foo" location="jms/persist" persistence-file="pers">
</queue>

<!-- OK: multiple persistence file specification ok if consistent -->
<queue name="foo" location="jms/file" persistence-file="pers">
</queue>

<!-- Invalid: multiple persistence file specifications should be consistent -->
<queue name="foo" location="jms/file1" persistence-file="notpers">
</queue>

Alternatively, you cannot have two objects writing out to the same persistence file.
Each queue or topic must have its own persistence filename, even if the locations are
different.

<topic name="demoTopic" location="jms/dada" persistence-file="/tmp/abcd">
</topic>

<!-- Invalid: cannot reuse persistence-file for multiple destinations -->
<topic name="demoTopic1" location="jms/dada1" persistence-file="/tmp/abcd">
</topic>

OracleAS JMS System Properties
OC4J JMS allows runtime configuration of the OC4J JMS server and JMS clients
through JVM system properties. None of these properties affect basic JMS
functionality. They pertain to OC4J JMS-specific features, extensions, and performance
optimizations.

Table 3–6 contains a brief summary of these administration properties.

Oracle Application Server JMS

3-22 Oracle Application Server Containers for J2EE Services Guide

Table 3–6 OC4J JMS Administration Properties

JVM System Property
Property
Type

Default
Value

Server/
Client Use

oc4j.jms.serverPoll long 15000 JMS
client

Interval (in milliseconds) that JMS connections
ping the OC4J server and report communication
exceptions to exception listeners.

oc4j.jms.messagePoll long 1000 JMS
client

Maximum interval (in milliseconds) that JMS
asynchronous consumers wait before checking
the OC4J JMS server for new messages.

oc4j.jms.listenerAttempts int 5 JMS
client

Number of listener delivery attempts before the
message is declared undeliverable.

oc4j.jms.maxOpenFiles int 64 OC4J
server

Maximum number of open file descriptors (for
persistence files) in the OC4J JMS server; relevant
if the server is configured with more persistent
Destination objects than the maximum
number of open file descriptors allowed by the
operating system.

oc4j.jms.saveAllExpired boolean false OC4J
server

Save all expired messages on all Destination
objects (persistent, nonpersistent, and temporary)
to the OC4J JMS exception queue.

oc4j.jms.socketBufsize int 64 *
1024

JMS
client

When using TCP/IP sockets for client-server
communication, use the specified buffer size for
the socket input/output streams. A minimum
buffer size of 8 KB is enforced. The larger the size
of messages being transferred between the client
and server, the larger the buffer size should be to
provide reasonable performance.

oc4j.jms.debug boolean false JMS
client

If true, enable tracing of NORMAL events in JMS
clients and the OC4J JMS server. All log events
(NORMAL, WARNING, ERROR, and CRITICAL) are
sent to both stderr and, when possible, either
J2EE_HOME/log/server.log or J2EE_
HOME/log/jms.log. Setting this property to
true typically generates large amounts of tracing
information.

oc4j.jms.noDms boolean false JMS
client

If true, disable instrumentation.

Resource Providers

Java Message Service (JMS) 3-23

Resource Providers
OC4J provides a ResourceProvider interface to transparently plug in JMS
providers.

The ResourceProvider interface of OC4J allows EJBs, servlets, and OC4J clients to
access many different JMS providers. The resources are available under
java:comp/resource/. Oracle JMS is accessed using the ResourceProvider
interface. See "Oracle JMS" on page 3-24 for more information on Oracle JMS.

Configuring a Custom Resource Provider
You can configure a custom resource provider in one of these ways:

� If this is the resource provider for all applications (global), then configure the
global application.xml file.

� If this is the resource provider for a single application (local), then configure the
orion-application.xml file of the application.

To add a custom resource provider, add the following code to the chosen XML file (as
listed above):

<resource-provider class="providerClassName" name="JNDIname">

oc4j.jms.forceRecovery boolean false OC4J
server

If true, forcibly recover corrupted persistence
files. By default, the OC4J JMS server does not
perform recovery of a persistence file if its header
is corrupted (because this condition is, in general,
indistinguishable from configuration errors).
Forcible recovery allows the OC4J JMS server
almost always to start up correctly and make
persistence files and Destination objects
available for use.

oc4j.jms.pagingThreshold double 1.0 OC4J
server

Represents the memory usage fraction above
which the OracleAS JMS server begins to
consider message bodies for paging. This value is
an estimate of the fraction of memory in use by
the JVM. This value can range from 0.0 (the
program uses no memory at all) to 1.0 (the
program is using all available memory).

See "Message Paging" on page 3-15 for more
information.

oc4j.jms.usePersistenceLo
ckFiles

boolean true OC4J
server

Controls whether lock files should be used to
protect OracleAS JMS persistence files from being
overwritten by more than one OC4J process. By
default, lock files are used to protect against
accidental overwrite by more than one OC4J
process. But this requires users to manually
remove lock files when OC4J terminates
abnormally. Setting this system property to
false does not create lock files for persistent
destinations. Set this property to false only if
you can guarantee that only one active process
accesses each persistence file. Set when starting
the OC4J server. It remains in effect for all JMS
clients until shutdown.

Table 3–6 (Cont.) OC4J JMS Administration Properties

JVM System Property
Property
Type

Default
Value

Server/
Client Use

Oracle JMS

3-24 Oracle Application Server Containers for J2EE Services Guide

 <description>description </description>
 <property name="name" value="value" />
</resource-provider>

For the <resource-provider> attributes, configure the following:

� class—The name of the resource provider class.

� name—A name by which to identify the resource provider. This name is used in
finding the resource provider in the application JNDI as:

java:comp/resource/JNDIname/

The subelements of the <resource-provider> are configured as follows:

� description subelement—A description of the specific resource provider.

� property subelement—The name and value attributes are used to identify
parameters provided to the resource provider. The name attribute identifies the
name of the parameter, and its value is provided in the value attribute.

When retrieving the resource provider, use the following syntax in the JNDI lookup:

java:comp/resource/JNDIname/resourceName

where JNDIname is the name of the resource provider (as given in the name attribute
of the <resource-provider> element) and resourceName is the resource name,
which is defined in the application implementation. See "Using OJMS as a Resource
Provider" on page 3-24 for an example of Oracle JMS defined as a resource provider.

Oracle JMS
Oracle JMS (OJMS) is the JMS interface to the Oracle Database Streams Advanced
Queuing (AQ) feature in the Oracle database. OJMS implements the JMS 1.0.2b
specification and is compatible with the J2EE 1.3 specification. OJMS access in OC4J
occurs through the resource provider interface. For more information about AQ and
OJMS, see the Oracle9i Application Developer's Guide—Advanced Queuing for Release 2
(9.2) .

The following sections describe Oracle JMS:

� Using OJMS as a Resource Provider

� Using OJMS with Oracle Application Server and the Oracle Database

Using OJMS as a Resource Provider
To access OJMS queues, do the following:

1. Install and configure OJMS on the database. See "Install and Configure the JMS
Provider" on page 3-25.

2. On the database, create an RDBMS user—which the JMS application will connect
to the back-end database—and assign privileges. The user must have the
necessary privileges to perform OJMS operations. OJMS allows any database user
to access queues in any schema, provided that the user has the appropriate access
privileges. See "Create User and Assign Privileges" on page 3-25.

3. Create the JMS Destination objects in OJMS. See "Create JMS Destination
Objects" on page 3-25.

Oracle JMS

Java Message Service (JMS) 3-25

4. In the OC4J XML configuration, define an OJMS resource provider in the
<resource-provider> element with information about the back-end database.
Create data sources or LDAP directory entries, if needed. See "Define the OJMS
Resource Provider" on page 3-27.

5. Access the resource in your implementation through a JNDI lookup. See "Access
the OJMS Resources" on page 3-29.

Install and Configure the JMS Provider
You or your DBA must install OJMS according to theOracle9i Application Developer's
Guide—Advanced Queuing for Release 2 (9.2) and generic database manuals. After you
have installed and configured this JMS provider, you must apply additional
configuration. This includes the following:

1. You or your DBA must create an RDBMS user through which the JMS client
connects to the database. Grant this user appropriate access privileges to perform
OJMS operations. See "Create User and Assign Privileges" on page 3-25.

2. You or your DBA must create the tables and queues to support the JMS
Destination objects. See "Create JMS Destination Objects" on page 3-25.

Create User and Assign Privileges
Create an RDBMS user through which the JMS client connects to the database. Grant
access privileges to this user to perform OJMS operations. The privileges that you need
depend on what functionality you are requesting. Refer to the Oracle9i Application
Developer's Guide—Advanced Queuing for Release 2 (9.2) for more information on
privileges necessary for each type of function.

The following example creates jmsuser, which must be created within its own
schema, with privileges required for OJMS operations. You must be a SYS DBA to
execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect,resource,AQ_ADMINISTRATOR_ROLE TO jmsuser
 IDENTIFIED BY jmsuser ;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

connect jmsuser/jmsuser;

You may need to grant other privileges, such as two-phase commit or system
administration privileges, based on what the user needs. See Chapter 7, "Java
Transaction API", for information on two-phase commit privileges.

Create JMS Destination Objects
Each JMS provider requires its own method for creating the JMS Destination object.
Refer to the Oracle9i Application Developer's Guide—Advanced Queuing for Release 2 (9.2)

Note: The following sections use SQL for creating queues, topics,
their tables, and assigning privileges within the JMS demo on the
OC4J sample code page on the OTN Web site at
http://otn.oracle.com/tech/java/oc4j/demos.

Oracle JMS

3-26 Oracle Application Server Containers for J2EE Services Guide

for more information on the DBMS_AQADM packages and OJMS messages types. For
our example, OJMS requires the following methods:

1. Create the tables that handle the JMS Destination (queue or topic).

In OJMS, both topics and queues use a queue table. The JMS example creates a
single table, demoTestQTab, for a queue.

To create the queue table, execute the following SQL:

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestQTab’,
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 sort_list => ’PRIORITY,ENQ_TIME’,
 multiple_consumers => false,
 compatible => ’8.1.5’);

The multiple_consumers parameter specifies whether there are multiple
consumers. Thus, is always false for a queue and true for a topic.

2. Create the JMS Destination. If you are creating a topic, you must add each
subscriber for the topic. The JMS example requires a single queue—demoQueue.

The following command creates a queue called demoQueue within the queue table
demoTestQTab. After creation, the queue is started.

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => ’demoQueue’,
 Queue_table => ’demoTestQTab’);

DBMS_AQADM.START_QUEUE(
 queue_name => ’demoQueue’);

If you want to add a topic, then the following example shows how you can create
a topic called demoTopic within the topic table demoTestTTab. After creation,
two durable subscribers are added to the topic. Finally, the topic is started, and a
user is granted a privilege to it.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestTTab’,
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 multiple_consumers => true,
 compatible => ’8.1.5’);
DBMS_AQADM.CREATE_QUEUE(’demoTopic’, ’demoTestTTab’);
DBMS_AQADM.ADD_SUBSCRIBER(’demoTopic’,
 sys.aq$_agent(’MDSUB’, null, null));
DBMS_AQADM.ADD_SUBSCRIBER(’demoTopic’,
 sys.aq$_agent(’MDSUB2’, null, null));
DBMS_AQADM.START_QUEUE(’demoTopic’);

Note: The SQL for creating the tables for the OJMS example is
included in the JMS example available on the OC4J sample code
page on the OTN Web site at
http://otn.oracle.com/tech/java/oc4j/demos

Note: Oracle AQ uses the DBMS_AQADM.CREATE_QUEUE method
to create both queues and topics.

Oracle JMS

Java Message Service (JMS) 3-27

Define the OJMS Resource Provider
You can define the OJMS resource provider either through the Oracle Enterprise
Manager 10g or by hand-editing the XML files, as described in the following sections:

� Configure the OJMS Provider Through the Oracle Enterprise Manager 10g

� Configure the OJMS Provider in the OC4J XML Files

Configure the OJMS Provider Through the Oracle Enterprise Manager 10g Use Application
Server Control in the JMS section to configure the OJMS provider. To add an OJMS
provider, select JMS Providers under the Application Defaults column on the
Administration page. This brings you to the following page:

Click the Add new JMS Provider button to configure each JMS provider.

You can configure either OJMS or a third-party JMS provider. OracleAS JMS is always
provided and preconfigured, except for the topics and queues, with the OC4J
installation.

After you choose the type of JMS provider, you must specify the following:

� OJMS: Specify the data source name and JNDI location for the database in which
OJMS is installed and configured.

� Third-party JMS provider: Specify the name, JNDI initial context factory class, and
JNDI URL for the third-party provider. To add JNDI properties for this JMS
provider, such as java.naming.factory.initial and
java.naming.provider.url, click Add a property. A row is added in which
you can specify the name for each JNDI property and its value.

Doing this configures only the providers; it does not configure the Destination
objects (topic, queue, and subscription).

To configure a JMS provider only for a specific application, select the application from
the Applications page, scroll down to the Resources column, and select JMS Providers.
The screens that appear are the same as for the default JMS provider.

Configure the OJMS Provider in the OC4J XML Files Configure the OJMS provider within
the <resource-provider> element.

� If this is to be the JMS provider for all applications (global), configure the global
application.xml file.

� If this is to be the JMS provider for a single application (local), configure the
orion-application.xml file of the application.

The following code sample shows how to configure the JMS provider using XML
syntax for OJMS.

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">

Note: The names defined here must be the same names used to
define the queue or topic in the deployment descriptors of the
application.

Note: This discussion also includes the directions for configuring
third-party JMS providers, because both OJMS and third-party
providers are configured in the same manner.

Oracle JMS

3-28 Oracle Application Server Containers for J2EE Services Guide

 <description> OJMS/AQ </description>
 <property name="datasource" value="jdbc/emulatedDS"></property>
</resource-provider>

where the attributes of the <resource-provider> element contain the following:

� class attribute—The OJMS provider is implemented by the
oracle.jms.OjmsContext class, which is configured in the class attribute.

� name attribute—The name of the OJMS resource provider is ojmsdemo.

In addition, the name/value attributes of the <property> element identify the data
source used by OJMS. The topic or queue connects to this data source to access the
tables and queues that facilitate the messaging. In this example, a data source is
identified as jdbc/emulatedDS.

How you configure the attributes of the <property> element in the resource provider
configuration depends on where your application is running. With OJMS and
accessing AQ in the database, the resource provider must be configured using either a
data sources property or a URL property, as discussed in the following sections:

� Configuring the Resource Provider with a Data Sources Property

� Configuring the Resource Provider with a URL Property

Configuring the Resource Provider with a Data Sources Property
Use a data source when the application runs within OC4J. To use a data source, first
you must configure it within the data-sources.xml file in which the OJMS
provider is installed. The JMS topics and queues use database tables and queues to
facilitate messaging. The type of data source you use depends on the functionality you
want.

Example 3–3 Emulated DataSource with Thin JDBC Driver

The following example contains an emulated data source that uses the Thin JDBC
driver. To support a two-phase commit transaction, use a nonemulated data source.
For differences between emulated and nonemulated data sources, see "Defining Data
Sources" on page 4-6.

The example is displayed in the format of an XML definition; see the Oracle Application
Server Containers for J2EE User’s Guide for directions on adding a new data source to the
configuration through Oracle Enterprise Manager 10g.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/emulatedOracleCoreDS"
 xa-location="jdbc/xa/emulatedOracleXADS"
 ejb-location="jdbc/emulatedDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="jmsuser"
 password="jmsuser"
 url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com"
/>

Note: For no transactions or single-phase transactions, you can
use either an emulated or nonemulated data source. For two-phase
commit transaction support, you can use only a nonemulated data
source. See the JTA chapter for more information.

Oracle JMS

Java Message Service (JMS) 3-29

Customize this data source to match your environment. For example, substitute the
host name, port, and SID of your database for myhost:1521:orcl.

Next, configure the resource provider using the data source name. The following is an
example of how to configure the resource provider for OJMS using a data source of
jdbc/emulatedDS.

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description> OJMS/AQ </description>
 <property name="datasource" value="jdbc/emulatedDS"></property>
</resource-provider>

For details on configuring data sources, see "Defining Data Sources" on page 4-6.

Configuring the Resource Provider with a URL Property
In this release, the data source is not serializable. Thus, application clients must use a
URL definition to access OJMS resources. When the application is a standalone client
(that is, when it runs outside of OC4J), configure the <resource-provider>
element with a URL property that has the URL of the database where OJMS is
installed and, if necessary, provides the username and password for that database. The
following demonstrates a URL configuration:

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description> OJMS/AQ </description>
 <property name="url"
value="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com">
 </property>
 <property name="username" value="user"></property>
 <property name="password" value="passwd"></property>

Access the OJMS Resources
The steps for accessing OJMS resources are the same as for OracleAS JMS resources, as
listed in "Steps for Sending a Message" on page 3-5. The only difference is the name of
the resource provided in the JNDI lookup.

� The OJMS syntax for the connection factory is "java:comp/resource" + JMS
provider name + "TopicConnectionFactories" or
"QueueConnectionFactories" + a user defined name. The user-defined name
can be anything and does not match any other configuration. The
xxxConnectionFactories details what type of factory is being defined. For
this example, the JMS provider name is defined in the <resource-provider>
element as ojmsdemo.

– For a queue connection factory: Because the JMS provider name is ojmsdemo
and you decide to use a name of myQCF, the connection factory name is:
java:comp/resource/ojmsdemo/ QueueConnectionFactories/myQCF

– For a topic connection factory: Because the JMS provider name is ojmsdemo
and you decide to use a name of myTCF, the connection factory name is:
java:comp/resource/ojmsdemo/
TopicConnectionFactories/myTCF

Note: Instead of providing the password in the clear, you can use
password indirection. For details, see the Oracle Application Server
Containers for J2EE Services Guide.

Oracle JMS

3-30 Oracle Application Server Containers for J2EE Services Guide

The user defined names, as shown above by myQCF and myTCF, are not used for
anything else in your logic. So, any name can be chosen.

� The OJMS syntax for any Destination is "java:comp/resource" + JMS
provider name + "Topics" or "Queues" + Destination name. The Topic or
Queue details what type of Destination is being defined. The Destination
name is the actual queue or topic name defined in the database.

For this example, the JMS provider name is defined in the
<resource-provider> element as ojmsdemo. In the database, the queue name
is demoQueue.

– For a queue: If the JMS provider name is ojmsdemo and the queue name is
demoQueue, then the JNDI name for the topic is:
java:comp/resource/ojmsdemo/Queues/demoQueue

– For a topic: If the JMS provider name is ojmsdemo and the topic name is
demoTopic, then the JNDI name for the topic is:
java:comp/resource/ojmsdemo/Topics/demoTopic

Example 3–4 demonstrates the steps for sending a JMS message; Example 3–5
demonstrates the steps for receiving a JMS message. For the complete example,
download the JMS example used in this chapter from the OC4J sample code page on
the OTN Web site at

http://otn.oracle.com/tech/java/oc4j/demos

Example 3–4 OJMS Client That Sends Messages to an OJMS Queue

The dosend method, shown in the following example, sets up a queue to send
messages. After creating the queue sender, this example sends out several messages.
The steps necessary for setting up the queue and sending out the message are
summarized in "Steps for Sending a Message" on page 3-5.

public static void dosend(int nmsgs)
{
 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup(
 "java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF");
 // 1b. Retrieve the queue
 Queue q = (Queue)
 ctx.lookup("java:comp/resource/ojmsdemo/Queues/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a sender on the JMS session to send messages.
 QueueSender snd = qs.createSender(q);

 // Send out messages...
 for (int i = 0; i < nmsgs; ++i)

Note: For simplicity, most of the error handling is removed in
Example 3–4 and Example 3–5. To see the error processing, see the
sample code available on the OTN Web site.

Oracle JMS

Java Message Service (JMS) 3-31

 {
 //Create the message using the createMessage method
 // of the JMS session
 Message msg = qs.createMessage();
 // Send the message out over the sender (snd) using the send method
 snd.send(msg);
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 }

 // Close the sender, the JMS session and the JMS connection.
 snd.close();
 qs.close();
 qc.close();
}

Example 3–5 OJMS Client That Receives Messages Off a Queue

The dorcv method,shown in the following example, sets up a queue to receive
messages off it. After creating the queue receiver, it loops to receive all messages off
the queue and compares it to the number of expected messages. The steps necessary
for setting up the queue and receiving messages are summarized in "Steps for Sending
a Message" on page 3-5.

public static void dorcv(int nmsgs)
{
 Context ctx = new InitialContext();

 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory) ctx.lookup(
 "java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF");
 // 1b. Retrieve the queue
 Queue q = (Queue)
 ctx.lookup("java:comp/resource/ojmsdemo/Queues/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a receiver, as we are receiving off of the queue.
 QueueReceiver rcv = qs.createReceiver(q);

 // Receive the messages
 int count = 0;
 while (true)
 {
 Message msg = rcv.receiveNoWait();
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 ++count;
 }

 if (nmsgs != count)
 {
 System.out.println("expected: " + nmsgs + " found: " + count);
 }

 // Close the receiver, the JMS session and the JMS connection.
 rcv.close();

Oracle JMS

3-32 Oracle Application Server Containers for J2EE Services Guide

 qs.close();
 qc.close();
}

Using OJMS with Oracle Application Server and the Oracle Database
This section addresses common issues encountered by users of OJMS (AQ/JMS) with
Oracle Application Server.

� Error When Copying aqapi.jar

� OJMS Certification Matrix

Error When Copying aqapi.jar
A common error seen when using OJMS with the Oracle Application Server is:

PLS-00306 "wrong number or types of arguments"

If you receive this message, then the aqapi.jar file being used in Oracle Application
Server is not compatible with the version of the Oracle database being used for AQ. A
common mistake is to copy the aqapi.jar file from the Oracle database installation
into the Oracle Application Server installation, or from the Oracle Application Server
installation into the Oracle database installation, under the false assumption that they
are interchangeable. The confusion is because the Oracle Application Server and the
Oracle database both ship the OJMS client JAR file. Do not copy this file. Use the
matrix in Table 3–7 to find the correct version of the database and Oracle Application
Server, then use the aqapi.jar file that comes with the Oracle Application Server.

In an Oracle Application Server installation, the OJMS client JAR file can be found at
ORACLE_HOME/rdbms/jlib/aqapi.jar and should be included in the
CLASSPATH.

OJMS Certification Matrix
Table 3–7 summarizes which version of the Oracle database to use with the Oracle
Application Server when the OJMS client is running in OC4J. An X indicates that the
Oracle database version and the Oracle Application Server version that intersect at
that cell are certified to work together. If the intersection has no X, then the
corresponding version of the Oracle database and Oracle Application Server should
not be used together.

Note: This is not a certification matrix for Oracle Application
Server and the Oracle database in general. It is only for OJMS when
used in the Oracle Application Server.

Table 3–7 OJMS Certification Matrix

OracleAS / Oracle database v9.0.1 v9.0.1.3 v9.0.1.4 v9.2.0.1 v9.2.0.2+ v10.1.0+

9.0.2 X X X

9.0.3 X X

9.04 X X

9.0.4.1 X

10.1.2 X X X

Map Logical Names in Resource References to JNDI Names

Java Message Service (JMS) 3-33

Map Logical Names in Resource References to JNDI Names
The client sends and receives messages through a JMS Destination object. The client
can retrieve the JMS Destination object and connection factory either through using
its explicit name or by a logical name. The examples in "Oracle Application Server
JMS" on page 3-2 and "Oracle JMS" on page 3-24 use explicit names within the JNDI
lookup calls. This section describes how you can use logical names in your client
application, thereby limiting the JNDI names for the JMS provider within the
OC4J-specific deployment descriptors. With this indirection, you can make your client
implementation generic for any JMS provider.

If you want to use a logical name in your client application code, then define the
logical name in one of the following XML files:

� A standalone Java client—in the application-client.xml file

� An EJB that acts as a client—the ejb-jar.xml file

� For JSPs and servlets that act as clients—the web.xml file

Map the logical name to the actual name of the topic or queue name in the OC4J
deployment descriptors.

Create Logical Names
You can create logical names for the connection factory and Destination objects, as
follows:

� Specify the logical name for the connection factory in the client’s XML deployment
descriptor file within a <resource-ref> element.

– Specify the logical name for the connection factory in the <res-ref-name>
element.

– Specify the connection factory class type in the <res-type> element as either
javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory.

– Specify the authentication responsibility (Container or Bean) in the
<res-auth> element.

– Specify the sharing scope (Shareable or Unshareable) in the
<res-sharing-scope> element.

� Specify the logical name for the JMS Destination, the topic or queue, within a
<resource-env-ref> element.

– Specify the logical name for the topic or queue in the
<resource-env-ref-name> element.

– Specify the Destination class type in the <resource-env-ref-type>
element as either javax.jms.Queue or javax.jms.Topic.

Example
The following example illustrates how to specify logical names for a queue.

<resource-ref>
 <res-ref-name>myQCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
<resource-env-ref>

Map Logical Names in Resource References to JNDI Names

3-34 Oracle Application Server Containers for J2EE Services Guide

 <resource-env-ref-name>myQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

Map Logical Names to Actual Names
After the logical names are created, you map the logical names to actual names in the
OC4J deployment descriptors. The actual names, or JNDI names, are different in
OracleAS JMS than those in OJMS. However, the mapping is defined in one of the
following files:

� For a standalone Java client, the mapping is defined in the
orion-application-client.xml file.

� For an EJB acting as a client, the mapping is defined in the orion-ejb-jar.xml
file.

� For JSPs and servlets acting as a client, the mapping is defined in the
orion-web.xml file.

The logical names in the client’s deployment descriptor are mapped as follows:

� The logical name for the connection factory defined in the <resource-ref>
element is mapped to its JNDI name in the <resource-ref-mapping> element.

� The logical name for the JMS Destination defined in the
<resource-env-ref> element is mapped to its JNDI name in the
<resource-env-ref-mapping> element.

See the following sections for how the mapping occurs for both OracleAS JMS and
OJMS and how clients use this naming convention:

� JNDI Naming for OracleAS JMS

� JNDI Naming for OJMS

� JNDI Naming Property Setup for Java Application Clients

� Client Sends JMS Message Using Logical Names

JNDI Naming for OracleAS JMS
The JNDI names for the OracleAS JMS Destination and connection factory are
defined within the jms.xml file. As Example 3–1 shows, the JNDI names for the
queue and the queue connection factory are as follows:

� The JNDI name for the topic is "jms/demoQueue."

� The JNDI name for the topic connection factory is
"jms/QueueConnectionFactory."

Prepend both of these names with "java:comp/env/". The following example shows
the mapping in the orion-ejb-jar.xml file:

<resource-ref-mapping
 name="myQCF"
 location="java:comp/env/jms/QueueConnectionFactory">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="myQueue"
 location="java:comp/env/jms/demoQueue">
</resource-env-ref-mapping>

Map Logical Names in Resource References to JNDI Names

Java Message Service (JMS) 3-35

JNDI Naming for OJMS
The JNDI naming for OJMS Destination and connection factory objects is the same
name that was specified in the orion-ejb-jar.xml file as described in "Access the
OJMS Resources" on page 3-29.

The following example maps the logical names for the connection factory and queue to
their actual JNDI names. Specifically, the queue defined logically as "myQueue" in the
application-client.xml file is mapped to its JNDI name of
"java:comp/resource/ojmsdemo/Queues/demoQueue."

<resource-ref-mapping
 name="myQCF"
 location="java:comp/resource/ojmsdemo/QueueConnectionFactories/myQF">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="myQueue"
 location="java:comp/resource/ojmsdemo/Queues/demoQueue">
</resource-env-ref-mapping>

JNDI Naming Property Setup for Java Application Clients
In the Oracle Application Server, a Java application client accesses a JMS
Destination object by providing the following code in the JNDI properties:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://$HOST:$OPMN_REQUEST_PORT:$OC4J_INSTANCE/
java.naming.security.principal=admin
java.naming.security.credentials=welcome

You must:

� Use the ApplicationClientInitialContextFactory as your initial context
factory object.

� Supply the OPMN host and port and the OC4J instance in the provider URL.

In an OC4J standalone environment, a Java application client accesses a JMS
Destination object by providing the following code in the JNDI properties:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/
java.naming.security.principal=admin
java.naming.security.credentials=welcome

You must:

� Use the ApplicationClientInitialContextFactory as your initial context
factory object.

� Supply the standalone OC4J host and port in the provider URL.

Client Sends JMS Message Using Logical Names
After the resources have been defined and the JNDI properties configured, the client
must perform the following steps to send a JMS message. These steps summarize the
procedure that Example 3–6 shows in detail.

Map Logical Names in Resource References to JNDI Names

3-36 Oracle Application Server Containers for J2EE Services Guide

1. Retrieve both the configured JMS Destination and its connection factory using
a JNDI lookup.

2. Create a connection from the connection factory. If you are receiving messages for
a queue, start the connection.

3. Create a session over the connection.

4. Providing the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

5. Create the message.

6. Send the message using either the queue sender or the topic publisher.

7. Close the queue session.

8. Close the connection for either JMS Destination types.

Example 3–6 JSP Client Sends a Message to a Topic

The method of sending a message to a topic is similar to that of sending a message to a
queue. Instead of creating a queue, you create a topic. Instead of creating a sender, you
create publishers.

The following JSP client code sends a message to a topic. The code uses logical names,
which are mapped in the OC4J deployment descriptor. The numbered comments in
the example correspond to the steps summarized a the beginning of this section.

<%@ page import="javax.jms.*, javax.naming.*, java.util.*" %>
<%

//1a. Look up the topic.
jndiContext = new InitialContext();
topic = (Topic)jndiContext.lookup("demoTopic");

//1b. Look up the Connection factory.
topicConnectionFactory = (TopicConnectionFactory)
 jndiContext.lookup("myTCF");

//2 & 3. Retrieve a connection and a session on top of the connection.
topicConnection = topicConnectionFactory.createTopicConnection();
topicSession = topicConnection.createTopicSession(true,
 Session.AUTO_ACKNOWLEDGE);

//4. Create the publisher for any messages destined for the topic.
topicPublisher = topicSession.createPublisher(topic);

//5 & 6. Create and send out the message.
for (int ii = 0; ii < numMsgs; ii++)
{
 message = topicSession.createBytesMessage();
 String sndstr = "1::This is message " + (ii + 1) + " " + item;
 byte[] msgdata = sndstr.getBytes();
 message.writeBytes(msgdata);

 topicPublisher.publish(message);
 System.out.println("--->Sent message: " + sndstr);
}

//7 & 8. Close publisher, session, and connection for topic.
topicPublisher.close();
topicSession.close();

Third-Party JMS Providers

Java Message Service (JMS) 3-37

topicConnection.close();
%>

Third-Party JMS Providers
This section discusses the following third-party JMS providers and how they integrate
with OC4J using the resource provider interface:

� Using WebSphere MQ as a Resource Provider

� Using SonicMQ as a Resource Provider

� Using SwiftMQ as a Resource Provider

Here are the operations that the resource provider interface supports:

� Look up queue and topic with

java:comp/resource/providerName/resourceName

� Send a message in EJB

� Receive a message synchronously in EJB

The context-scanning resource provider class is a generic resource provider class
shipped with OCJ for use with third-party message providers.

Using WebSphere MQ as a Resource Provider
WebSphere MQ is an IBM messaging provider. This example demonstrates how to
make WebSphere MQ the default resource provider for JMS connections. The
WebSphere MQ resources are available in OC4J under
java:comp/resource/MQSeries/.

Configuring WebSphere MQ
To configure WebSphere MQ, perform the following steps:

1. Install and configure WebSphere MQ on your system, then verify the installation
by running any examples or tools supplied by the vendor. (See the documentation
supplied with your software for instructions.)

2. Configure the resource provider. You can use either of two methods to configure
the resource provider: Use Oracle Enterprise Manager 10g (as shown in "Define
the OJMS Resource Provider" on page 3-27), or use the <resource-provider>
element in orion-application.xml. Use either method to add WebSphere MQ
as a custom resource provider. The following example demonstrates using the
<resource-provider> element to configure WebSphere MQ. You can use the
same information to configure using Oracle Enterprise Manager 10g.

<resource-provider
 class="com.evermind.server.deployment.ContextScanningResourceProvider"
 name="MQSeries">
 <description> MQSeries resource provider </description>
 <property
 name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory">

Note: Oracle supports only single-phase commit semantics for
resource providers other than OJMS.

Third-Party JMS Providers

3-38 Oracle Application Server Containers for J2EE Services Guide

 </property>
 <property
 name="java.naming.provider.url"
 value="file:/var/mqm/JNDI-Directory">
 </property>
</resource-provider>

3. Add the following WebSphere MQ JMS client JAR files to J2EE_HOME/lib:

com.ibm.mq.jar
com.ibm.mqbind.jar
com.ibm.mqjms.jar
mqji.properties

4. Add the file system JNDI JAR files fscontext.jar and providerutil.jar to
J2EE_HOME/lib.

Using SonicMQ as a Resource Provider
SonicMQ is a messaging provider from Sonic Software Corporation. The resource
provider interface furnishes support for plugging in third-party JMS implementations.
This example describes how to make SonicMQ the default resource provider for JMS
connections. The SonicMQ resources are available in OC4J under
java:comp/resource/SonicMQ.

Configuring SonicMQ
To configure SonicMQ, perform the following steps:

1. Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
supplied with your software for instructions.)

2. Configure the resource provider. You can use either of two methods to configure
the resource provider: Use Oracle Enterprise Manager 10g (as shown in "Define
the OJMS Resource Provider" on page 3-27), or use the <resource-provider>
element in orion-application.xml. Use either method to add SonicMQ as a
custom resource provider. The following example demonstrates using the
<resource-provider> element to configure SonicMQ. You can use the same
information to configure using Oracle Enterprise Manager 10g.

<resource-provider
 class="com.evermind.server.deloyment.ContextScanningResourceProvider"
 name="SonicJMS">
 <description>
 SonicJMS resource provider.
 </description>
 <property name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory">
 <property name="java.naming.provider.url"
 value="file:/private/jndi-directory/">

Note: SonicMQ broker does not embed a JNDI service. Instead, it
relies on an external directory server to register the administered
objects. Administered objects, such as queues, are created by an
administrator—either using SonicMQ Explorer or
programmatically—using the Sonic Management API. Oracle
registers the administered objects from SonicMQ Explorer using the
file system JNDI.

Using Message-Driven Beans

Java Message Service (JMS) 3-39

</resource-provider>

3. Add the following SonicMQ JMS client JAR files to J2EE_HOME/lib:

Sonic_client.jar
Sonic_XA.jar

Using SwiftMQ as a Resource Provider
SwiftMQ is a messaging provider from IIT Software. This example describes how to
make SwiftMQ the default resource provider for JMS connections. The SwiftMQ
resources are available in OC4J under java:comp/resource/SwiftMQ.

Configuring SwiftMQ
To configure SwiftMQ, perform the following steps:

1. Install and configure SwiftMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
provided with your software for instructions.)

2. Configure the resource provider. You can use either of two methods to configure
the resource provider: Use Oracle Enterprise Manager 10g (as shown in "Define
the OJMS Resource Provider" on page 3-27), or use the <resource-provider>
element in orion-application.xml. Use either method to add SwiftMQ as a
custom resource provider. The following example demonstrates using the
<resource-provider> element to configure SwiftMQ. You can use the same
information to configure using Oracle Enterprise Manager 10g.

<resource-provider
 class="com.evermind.server.deloyment.ContextScanningResourceProvider"
 name="SwiftMQ">
 <description>
 SwiftMQ resource provider.
 </description>
 <property name="java.naming.factory.initial"
 value="com.swiftmq.jndi.InitialContextFactoryImpl">
 <property name="java.naming.provider.url"
 value="smqp://localhost:4001">
</resource-provider>

3. Add the following SwiftMQ JMS client JAR files to J2EE_HOME/lib:

swiftmq.jar

Using Message-Driven Beans
See the Message-Driven Beans (MDB) chapter of the Oracle Application Server
Containers for J2EE Enterprise JavaBeans Developer’s Guide for details on deploying an
MDB that accesses OracleAS JMS or OJMS.

High Availability and Clustering for JMS

3-40 Oracle Application Server Containers for J2EE Services Guide

High Availability and Clustering for JMS
A highly available JMS server provides a guarantee that JMS requests will be serviced
with no interruptions because of software or hardware failures. One way to achieve
high availability is through fail-over; if one instance of the server fails, then a
combination of software, hardware, and infrastructure mechanisms causes another
instance of the server to take over the servicing of requests.

Table 3–8 summarizes the support for high availability in OracleAS JMS and OJMS.

JMS clustering provides an environment wherein JMS applications deployed in this
type of environment can load balance JMS requests across multiple OC4J instances or
processes. Clustering of stateless applications is trivial: The application is deployed on
multiple servers, and user requests are routed to one of them.

Note: The message-driven bean (MDB) transaction timeout, as
defined in the transaction-timeout attribute in the orion-ejb-jar.xml
file, is an optional parameter. This attribute controls the transaction
timeout interval (in seconds) for any container-managed transactional
MDB that uses Oracle JMS. The default is one day (86,400 seconds).
The MDB transaction-timeout attribute applies only to CMT MDBs
that use Oracle JMS as the JMS provider. This attribute setting has no
effect on BMT MDBs or any MDBs that use OC4J JMS. (bug 3079322)

� JMS behavior with Oracle Application Server — If the transaction
has not completed in this time frame, then the transaction is rolled
back and the message is redelivered to the Destination object.
After Oracle JMS attempts to redeliver the message (the default is
five attempts), the message is moved to the exception queue. For
more information, refer to the Oracle9i Application Developer's
Guide—Advanced Queuing for Release 2 (9.2) .

� JMS behavior with OC4J — The transaction-timeout setting does
not work for CMT MDBs that use OC4J JMS. The timeout is
always one day and cannot be modified. When the timeout
occurs, OC4J JMS redelivers the message indefinitely, until the
delivery is successful. You cannot set a retry limit.

In addition, the global transaction-timeout attribute defined in the
server.xml file does not have any effect on MDBs.

Table 3–8 High Availability Summary

Feature OJMS OracleAS JMS

High availability RAC + OPMN OPMN

Configuration RAC configuration, resource provider
configuration

Dedicated JMS server, jms.xml configuration,
opmn.xml configuration

 Message store On RAC database In dedicated JMS server/persistence files

 Failover Same or different machine
(depending on RAC)

Same or different machine within Oracle
Application Server Cold Failover Cluster
(Midtier)

High Availability and Clustering for JMS

Java Message Service (JMS) 3-41

JMS is a stateful API: Both the JMS client and the JMS server contain state about each
other, which includes informations about connections, sessions, and durable
subscriptions. Users can configure their environment and use a few simple techniques
when writing their applications to make them cluster-friendly.

The following sections discuss how both OJMS and OracleAS JMS use high availability
and clustering:

� OracleAS JMS High Availability Configuration

� OJMS High Availability Configuration

� Failover Scenarios When Using a RAC Database With OJMS

� Server Side Sample Code for Failover for Both JMS Providers

� Clustering Best Practices

OracleAS JMS High Availability Configuration
OracleAS JMS clustering normally implies that an application deployed in this type of
environment is able to load balance messages across multiple instances of OC4J. There
is also a degree of high availability in this environment because the container
processes can be distributed across multiple nodes. If any of the processes or nodes
goes down, then the processes on an alternate node continue to service messages.

This section describes two JMS clustering scenarios:

� OracleAS JMS Server Distributed Destinations

In this configuration, all factories and destinations are defined on all OC4J
instances. Each OC4J instance has a separate copy of each of the destinations. Each
copy of the destinations is unique and is not replicated or synchronized across
OC4J instances. Destinations can be persistent or in-memory. A message enqueued
to one OC4J instance can be dequeued only from that OC4J instance.

This configuration is ideal for high-throughput applications where requests must
be load balanced across OC4J instances. No configuration changes are required for
this scenario.

� Cold Failover Cluster

This configuration is a two-node cluster. Only one node is active at any time. The
second node is made active if the first node fails.

� OracleAS Dedicated JMS Server

In this configuration, a single JVM within a single OC4J instance is dedicated as
the JMS server. All other OC4J instances that are hosting JMS clients forward their
JMS requests to the dedicated JMS server.

This configuration is the easiest to maintain and troubleshoot and should be
suitable for the majority of OracleAS JMS applications, especially those where
message ordering is a requirement.

Terminology
The terms introduced here are explained in the Oracle Application Server High
Availability Guide and the Oracle Process Manager and Notification Server Administrator’s
Guide.

� OHS—Oracle HTTP Server

High Availability and Clustering for JMS

3-42 Oracle Application Server Containers for J2EE Services Guide

� OracleAS Cluster—A grouping of similarly configured Oracle Application Server
instances

� Oracle Application Server Instance—Represents an installation of Oracle Application
Server (that is, an ORACLE_HOME)

� OC4J Instance—Within an Oracle Application Server instance there can be multiple
OC4J instances, and each OC4J instance has 1 to n identically-configured JVMs.

� Factory—Denotes a JMS connection factory

� Destination —Denotes a JMS destination

OracleAS JMS Server Distributed Destinations
In this configuration, OHS services HTTP requests and load balances them across the
two Oracle Application Server instances in an Oracle Application Server cluster. This
can scale to more than two Oracle Application Server instances. This type of
deployment has several advantages:

� High throughput is achieved because applications and the JMS server are both
running inside the same JVM and no interprocess communication is necessary.

� Load balancing promotes high throughput as well as high availability.

� There is no single point of failure. As long as one OC4J process is available, then
requests can be processed.

� Oracle Application Server instances can be clustered without impacting JMS
operations.

� Destination objects can be persistent or in-memory.

Within each Oracle Application Server instance, two OC4J instances have been
defined. Each of these OC4J instances is running a separate application. In other
words, OC4J instance #1 (Home1) is running Application #1 while OC4J instance #2

High Availability and Clustering for JMS

Java Message Service (JMS) 3-43

(Home2) is running Application #2. Remember, each OC4J instance can be configured
to run multiple JVMs, allowing the application to scale across these multiple JVMs.

Within an Oracle Application Server cluster, the configuration information for each
Oracle Application Server instance is identical (except for the instance-specific
information such as host name, port numbers, and so on). This means that Application
#1 deployed to OC4J instance #1 in Oracle Application Server instance #1 is also
deployed on OC4J instance #1 in Oracle Application Server instance #2. This type of
architecture allows for load balancing of messages across multiple Oracle Application
Server instances—as well as high availability of the JMS application, especially if
Oracle Application Server instance #2 is deployed to another node to ensure against
hardware failure.

The sender and receiver of each application must be deployed together on an OC4J
instance. In other words, a message enqueued to the JMS Server in one OC4J process
can be dequeued only from that OC4J process.

All factories and destinations are defined on all OC4J processes. Each OC4J process has
a separate copy of each of the destinations. The copies of destinations are not
replicated or synchronized. So, in the diagram, Application #1 is writing to a
destination called myQueue1. This destination physically exists in two locations
(Oracle Application Server instance #1 and #2) and is managed by the respective JMS
servers in each OC4J instance.

Note that this type of JMS deployment is suited only for specific types of JMS
applications. Assuming that message order is not a concern, messages are enqueued
onto distributed queues of the same name. Given the semantics of JMS point-to-point
messaging, messages must not be duplicated across multiple queues. In the preceding
case, messages are sent to whatever queue the load balancing algorithm determines,
and the MDBs dequeue them as they arrive.

Cold Failover Cluster
This configuration is a two-node cluster. Only one node is active at any time. The
second node is made active if the first node fails. For Cold Failover documentation, see
the Oracle Application Server 10g High Availability Guide.

Configure
Configure both nodes identically as described in the following example. Modify the
jms.xml file for both OC4J instances. Set the host parameter in the jms-server to
be:

<jms-server host=vmt.us.oracle.com port="9127">
….
….
</jms-server>

When using file-based message persistence for a queue, the file must be located on a
shared disk that is accessible by both nodes. The shared disk must fail over with the
virtual IP when failing over from one node to the other. Configure the
persistence-file as follows:

<queue name="Demo Queue" location="jms/demoQueue"
persistence-file="/path/to/shared_file_system/demoQueueFile">
 <description>A dummy queue</description>
</queue>

High Availability and Clustering for JMS

3-44 Oracle Application Server Containers for J2EE Services Guide

Update, Stop, and Start
On each node, use the following commands to update configuration, stop, and start:

$ORACLE_HOME/dcm/bin/dcmctl updateConfig -ct oc4j
$ORACLE_HOME/opmn/bin/opmnctl stopall
$ORACLE_HOME/opmn/bin/opmnctl startall

OracleAS Dedicated JMS Server
In this configuration, a single OC4J instance is configured as the dedicated JMS server
within an Oracle Application Server clustered environment. This OC4J instance
handles all messages, thus message ordering is always maintained. All JMS
applications use this dedicated server to host their connection factories and
destinations, and to service their enqueue and dequeue requests.

Only one OC4J JVM is acting as the dedicated JMS provider for all JMS applications
within the cluster. This is achieved by limiting the JMS port range in the opmn.xml file
to only one port for the dedicated OC4J instance.

Although this diagram shows the active JMS server in the OC4J Home instance, Oracle
recommends that the JMS provider be hosted in its own OC4J instance. For example,
although Home is the default OC4J instance running after an Oracle Application Server
install, you should create a second OC4J instance with the Oracle Enterprise Manager
10g. In the opmn.xml file example following, we have created an OC4J instance called
JMSserver.

After creating an OC4J instance called JMSserver, we must make the following two
changes to the opmn.xml file for this Oracle Application Server instance:

1. Make sure that only one JVM is started for this OC4J instance (JMSserver).

2. Specify only one value for the JMS port range for this instance.

The single JVM in the OC4J instance ensures that other JVMs will not attempt to use
the same set of persistent files.

High Availability and Clustering for JMS

Java Message Service (JMS) 3-45

The single port value ensures that OPMN always assigns this value to the dedicated
JMS server. This port value is used to define the connection factory in the jms.xml file
that other OC4J instances will use to connect to the dedicated JMS server.

For more information on OPMN and dynamic port assignments, see the Oracle Process
Manager and Notification Server Administrator’s Guide.

Modifying the OPMN Configuration

The following XML from the opmn.xml file shows what changes must be made and
how to find where to make these changes.

� Assuming an OC4J instance has been created through Oracle Enterprise Manager
10g called JMSserver, then the line denoted by (1) demonstrates where to locate
the start of the JMSserver definition.

� The line denoted by (2) is the JMS port range that OPMN uses when assigning JMS
ports to OC4J JVMs. For the desired dedicated OC4J instance that acts as your JMS
provider, narrow this range down to one value. In this example, the original range
was from 3701-3800. In our connection factory definitions, we know the port to use
by configuring this value as 3701-3701.

� The line denoted by (3) defines the number of JVMs that will be in the JMSserver
default island. By default, this value is set to 1. This value must always be 1.

<ias-component id="OC4J">
 (1) <process-type id="JMSserver" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
 "/>
 </category>
 <category id="stop-parameters">
 <data id="java-options"
 value="-Djava.security.policy=
 $ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="ajp" range="3000-3100"/>
 <port id="rmi" range="3201-3300"/>
 (2) <port id="jms" range="3701-3701"/>
 (3) <process-set id="default_island" numprocs="1"/>
 </process-type>

Note: When editing any configuration file by hand (that is, not
using Oracle Enterprise Manager 10g), run the following
Distributed Configuration Management (DCM) command:

dcmctl updateConfig

See the Distributed Configuration Management Administrator’s Guide
for more information.

High Availability and Clustering for JMS

3-46 Oracle Application Server Containers for J2EE Services Guide

</ias-component>

Configuring OracleAS JMS
As already described in this scenario, one of the OC4J instances is dedicated as the JMS
server. Other OC4J instances and standalone JMS clients running outside OC4J must
be set up to forward JMS requests to the dedicated JMS server. All connection factories
and destinations are defined in the JMS server instance's jms.xml file. This jms.xml
file should then be copied to all the other OC4J instances that will be communicating
with the JMS server.

The connection factories configured in the jms.xml file on the dedicated JMS server
should specify, explicitly, the host name and the port number of the server. These
values, in particular the port number, should also use the single port number defined
by OPMN for the dedicated server as discussed above. The same connection factory
configuration should also be used in all other OC4J instances so that they all point to
the dedicated JMS server for their operations.

Thus, if the dedicated JMS server runs on host1, port 3701, then all connection
factories defined within the jms.xml file for each OC4J instance in the cluster should
point to host1, port 3701—where this port is the single port available in the
opmn.xml file used in the dedicated OC4J instance (in our example, JMSserver)
used for the dedicated JMS server.

The destinations configured in the jms.xml file on the dedicated JMS server should
also be configured on all other OC4J instances; the physical store for these
destinations, however, is on the dedicated JMS server.

Queue Connection Factory Definition Example
The following is an example for defining a queue connection factory in the jms.xml
file of the dedicated OracleAS JMS server.

<!-- Queue connection factory -->
<queue-connection-factory name="jms/MyQueueConnectionFactory"
 host="host1" port="3701"
 location="jms/MyQueueConnectionFactory"/>

Administrative changes (that is, add a new Destination object) should be made to
the dedicated JMS server’s jms.xml file. These changes should then be made in the
jms.xml files of all other OC4J instances running JMS applications. Changes can be
made either by hand or by copying the dedicated JMS server’s jms.xml file to the
other OC4J instances.

Deploying Applications
The user decides where the JMS applications will actually be deployed. Although the
dedicated JMS server services JMS requests, it can also execute deployed JMS
applications. JMS applications can also be deployed to other OC4J instances (that is,
Home).

Remember, the jms.xml file from the dedicated JMS server must be propagated to all
OC4J instances where JMS applications are to be deployed. JMS applications can also
be deployed to standalone JMS clients running in separate JVMs.

High Availability
OPMN provides the failover mechanism to keep the dedicated JMS server up and
running. If for some reason the JMS server fails, OPMN detects this and restarts the
JVM. If a hardware failure occurs, then the only way to recover messages is to have the

High Availability and Clustering for JMS

Java Message Service (JMS) 3-47

persisted destinations hosted on a network file system. An OC4J instance can then be
brought up and configured to point to these persisted files.

See the Oracle Process Manager and Notification Server Administrator’s Guidefor more
information on how OPMN manages Oracle Application Server processes.

OJMS High Availability Configuration
To enable high availability with OJMS, run the following:

� Run an Oracle database that contains the AQ queues and topics in RAC-mode.
This ensures that the database is highly available.

� Run Oracle Application Server in OPMN-mode. This ensures that the application
servers (and applications deployed on them) are highly available.

Each application instance in an Oracle Application Server cluster uses OC4J resource
providers to point to the back=end Oracle database, which is operating in RAC-mode.
JMS operations invoked on objects derived from these resource providers are directed
to the real application clusters (RAC) database.

If a failure of the application occurs, then state information in the application is lost
(that is, state of connections, sessions, and messages not yet committed). As the
application server is restarted, the applications must re-create their JMS state
appropriately and resume operations.

If network failover of a back-end database occurs, where the database is a non-RAC
database, then state information in the server is lost (that is, state of transactions not
yet committed). Additionally, the JMS objects (connection factories, Destination
objects, connections, sessions, and so on) inside the application may also become
invalid. The application code can see exceptions if it attempts to use these objects after
the failure of the database occurs. The code throws a JMSException until it gets to
the point where it can look up, through JNDI, all JMS administered objects, and
proceed from there.

Failover Scenarios When Using a RAC Database With OJMS
An application that uses a RAC database must handle database failover scenarios.
There are two types of failover scenarios, as described in Chapter 4, "Data Sources".
The following sections demonstrate how to handle each failover scenario:

� Using JMS with RAC Network Failover

� Using OJMS With Transparent Application Failover (TAF)

Using JMS with RAC Network Failover
A standalone OJMS client running against an RAC database must write code to obtain
the connection again, by invoking the API
com.evermind.sql.DbUtil.oracleFatalError(), to determine if the
connection object is invalid. It must then reestablish the database connection if
necessary. The oracleFatalError() method detects if the SQL error thrown by the
database during network failover is a fatal error. This method takes in the SQL error
and the database connection, and returns true if the error is a fatal error. If true, you

Note: The RAC-enabled attribute of a data source is discussed in
Chapter 4, "Data Sources". For more information on using this flag
with an infrastructure database, see the Oracle Application Server
High Availability Guide.

High Availability and Clustering for JMS

3-48 Oracle Application Server Containers for J2EE Services Guide

may wish to aggressively roll back transactions and re-create the JMS state (such as
connections, session, and messages that were lost).

The following example outlines the logic:

getMessage(QueueSesssion session)
{
 try
 {
 QueueReceiver rcvr;
 Message msgRec = null;
 QueueReceiver rcvr = session.createReceiver(rcvrQueue);
 msgRec = rcvr.receive();
 }
 catch(Exception e)
 {
 if (exc instanceof JMSException)
 {
 JMSException jmsexc = (JMSException) exc;
 sql_ex = (SQLException)(jmsexc.getLinkedException());

 db_conn =
 (oracle.jms.AQjmsSession)session.getDBConnection();

 if ((DbUtil.oracleFatalError(sql_ex, db_conn))
 {
 // failover logic
 }
 }
 }
}

Using OJMS With Transparent Application Failover (TAF)

In most cases where TAF is configured, the application does not notice that failover to
another database instance has occurred. So, you need not do anything to recover from
failure.

However, in some cases, OC4J throws an ORA error when a failure occurs. OJMS
passes these errors to the user as a JMSException with a linked SQL exception. In
this case, do one or more of the following:

� As described in "Using JMS with RAC Network Failover" on page 3-47, you can
use the DbUtil.oracleFatalError method to determine if the error is a fatal
error. If it is not a fatal error, then the client recovers by sleeping for a short time
and then retrying the current operation.

� You can recover from failback and transient errors caused by incomplete failover
by trying to use the JMS connection after a short time. Waiting allows the database
failover to recover from the failure and reinstate itself.

� In the case of transaction exceptions (such as "Transaction must roll back"
(ORA-25402) or "Transaction status unknown" (ORA-25405)) you must roll back
the current operation and retry all operations past the last commit. The connection

Note: Chapter 4, "Data Sources" discusses transparent application
failure (TAF).

High Availability and Clustering for JMS

Java Message Service (JMS) 3-49

is not usable until the cause of the exception is dealt with. If this retry fails, then
close and re create all connections and retry all noncommitted operations.

Server Side Sample Code for Failover for Both JMS Providers
The following shows JMS application code for a queue that is tolerant to server-side
failover. This example is valid for both OJMS and OracleAS JMS.

while (notShutdown)
{
 Context ctx = new InitialContext();

 /* create the queue connection factory */
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup(QCF_NAME);
 /* create the queue */
 Queue q = (Queue) ctx.lookup(Q_NAME);
 ctx.close();

 try
 {
 /*Create a queue connection, session, sender and receiver */
 QueueConnection qc = qcf.createQueueConnection();
 QueueSession qs = qc.createQueueSession(true, 0);
 QueueSender snd = qs.createSender(q);
 QueueReceiver rcv = qs.createReceiver(q);

 /* start the queue */
 qc.start();

 /* receive requests on the queue receiver and send out
 replies on the queue sender.
 while (notDone)
 {
 Message request = rcv.receive();
 Message reply = qs.createMessage();

 /* put code here to process request and construct reply */

 snd.send(reply);
 qs.commit();
 }
 /* stop the queue */
 qc.stop();
 }
 catch (JMSException ex)
 {
 if (transientServerFailure)
 { // retry }
 else {
 notShutdown = false;
 }
}

Clustering Best Practices
� Minimize JMS client-side state.

– Perform work in transacted sessions.

High Availability and Clustering for JMS

3-50 Oracle Application Server Containers for J2EE Services Guide

– Save/checkpoint intermediate program state in JMS queues/topics for full
recoverability.

– Do not depend on J2EE application state to be serializable or recoverable
across JVM boundaries. Always use transient member variables for JMS
objects, and write passivate/activate and serialize/deserialize functions that
save and recover JMS state appropriately.

� Do not use nondurable subscriptions on topics.

– Nondurable topic subscriptions duplicate messages per active subscriber.
Clustering and load-balancing creates multiple application instances. If the
application creates a nondurable subscriber, it causes the duplication of each
message published to the topic. This either inefficient or semantically invalid.

– Use only durable subscriptions for topics. Use queues whenever possible.

� Do not keep durable subscriptions alive for extended periods of time.

– Only one instance of a durable subscription can be active at any given time.
Clustering and load-balancing creates multiple application instances. If the
application creates a durable subscription, only one instance of the application
in the cluster succeeds. All other instances fail with a JMSException.

– Create, use, and close a durable subscription in small time/code windows,
minimizing the duration when the subscription is active.

– Write application code that accomodates failure to create durable subscription
due to clustering (when some other instance of the application running in a
cluster is currently in the same block of code) and program appropriate
back-off strategies. Do not always treat the failure to create a durable
subscription as a fatal error.

Data Sources 4-1

4
Data Sources

This chapter describes how to configure and use data sources in your Oracle
Application Server Containers for J2EE (OC4J) application. A data source is a
vendor-independent encapsulation of a connection to a database server. A data source
instantiates an object that implements the javax.sql.DataSource interface.

 This chapter covers the following topics:

� Introduction

� Defining Data Sources

� Using Data Sources

� Using Two-Phase Commits and Data Sources

� Using Oracle JDBC Extensions

� Using Connection Caching Schemes

� Using the OCI JDBC Drivers

� Using DataDirect JDBC Drivers

� High Availability Support for Data Sources

Introduction
A data source is a Java object that implements the javax.sql.DataSource interface.
Data sources offer a portable, vendor-independent method for creating JDBC
connections. Data sources are factories that return JDBC connections to a database.
J2EE applications use JNDI to look up DataSource objects. Each JDBC 2.0 driver
provides its own implementation of a DataSource object, which can be bound into
the JNDI name space. After this data source object has been bound, you can retrieve it
through a JNDI lookup. Because data sources are vendor-independent, we recommend
that J2EE applications retrieve connections to data servers using data sources.

Types of Data Sources
In OC4J, Data Sources are classified as follows:

� Emulated Data Sources

� Nonemulated Data Sources

� Native Data Sources

Table 4–1 summarizes the key differences between the data source types.

Introduction

4-2 Oracle Application Server Containers for J2EE Services Guide

Figure 4–1 summarizes the decision tree that should guide you when choosing a data
source type.

Figure 4–1 Choosing a Data Source Type

The following sections describe each data source type in detail.

Emulated Data Sources
Emulated data sources are data sources that emulate the XA protocol for JTA
transactions. Emulated data sources offer OC4J caching, pooling, and Oracle JDBC
extensions for Oracle data sources. Historically, emulated data sources were necessary
because many JDBC drivers did not provide XA capabilities. Today even though most
JDBC drivers do provide XA capabilities, there are still cases in which emulated XA is
preferred (such as transactions that do not require two-phase commit.)

Connections obtained from emulated data sources are extremely fast, because the
connections emulate the XA API without providing full XA global transactional

Table 4–1 Features of Emulated, Nonemulated, and Native Data Sources

 Emulated Not Emulated

No JTA Native Data Source

� Vendor extensions

� Vendor JDBC pool/cache

� No JTA

JTA Emulated Data Source

� Lightweight transactions

� One-phase commit

� OC4J pool/cache

Nonemulated Data Source

� Full transactions

� Two-phase commit

� Oracle JDBC pool/cache

: Note

If you access a nonemulated data source by the ejb-location,
then you are using the OC4J pool and cache. If you use
OracleConnectionCacheImpl, then you can access both OC4J
and Oracle JDBC pool and cache.

Introduction

Data Sources 4-3

support. In particular, emulated data sources do not support two-phase commit.
Oracle recommends that you use emulated data sources for local transactions ,or when
your application uses global transactions without requiring two-phase commit. For
information on the limitations of two-phase commit, see Chapter 7, "Java Transaction
API".

The following is a data-sources.xml configuration entry for an emulated data
source:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name=”OracleDS”
location="jdbc/OracleCoreDS"
xa-location="OracleDS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com"
inactivity-timeout=”30”

/>

When defining an emulated data source in data-sources.xml, you must provide
values for the location, ejb-location, and xa-location attributes. However,
when looking up an emulated data source through JNDI, you should look it up by the
value specified with the ejb-location attribute. For example:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
// This lookup could also be done as
// DataSource ds = (DataSource) ic.lookup("java:comp/env/jdbc/OracleDS");
Connection con = ds.getConnection();

This connection opens a database session for scott/tiger.

If you use an emulated data source inside a global transaction, you must exercise
caution. Because the XAResource that you enlist with the transaction manager is an
emulated XAResource, the transaction will not be a true two-phase commit
transaction. If you want true two-phase commit semantics in global transactions, then
you must use a nonemulated data source. For information on the limitations of
two-phase commit, see Chapter 7, "Java Transaction API".

Retrieving multiple connections from a data source using the same user name and
password within a single global transaction causes the logical connections to share a
single physical connection. The following code shows two connections—conn1 and
conn2—that share a single physical connection. They are both retrieved from the same
data source object. They also authenticate with the same user name and password.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");

Note: : Previous releases supported the location and
xa-location attributes for retrieving data source objects. These
attributes are now strongly deprecated. Applications, EJBs, servlets,
and JSPs should use only the JNDI name ejb-location in
emulated data source definitions for retrieving the data source. You
must specify all three values for emulated data sources, although
only ejb-location is actually used.

Introduction

4-4 Oracle Application Server Containers for J2EE Services Guide

Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

Nonemulated Data Sources
Nonemulated data sources provide full (nonemulated) JTA services, including
two-phase commit capabilities for global transactions. Nonemulated data sources offer
pooling, caching, distributed transactions capabilities, and vendor JDBC extensions
(currently, only Oracle JDBC extensions). For information on the limitations of
two-phase commit, see Chapter 7, "Java Transaction API".

Oracle recommends that you use nonemulated data sources for distributed database
communications, recovery, and reliability. Nonemulated data sources share physical
connections for logical connections to the same database for the same user.

The following is a data-sources.xml configuration entry for a nonemulated data
source:

<data-source
class="com.evermind.sql.OrionCMTDataSource"
location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com"

</data-source>

JNDI lookups should be performed using the value of the location attribute.

Here are the expected attribute definitions:

� location is the JNDI name to which this data source is bound within the JNDI
name space. Use location in the JNDI lookup for retrieving this data source.

� url, username, and password identify the database and default user name and
password to use when connections are retrieved with this data source.

� class defines what type of data source class to bind in the name space.

Native Data Sources
Native data sources are JDBC-vendor supplied implementations of the DataSource.
They expose vendor’s JDBC driver capabilities including caching, pooling, and vendor
specific extensions. Exercise caution when using native data sources, because OC4J

Note: You must use a Java-enabled database to run a nonemulated
data source. When you use a nonemulated data source and a
non-Java-enabled database, deploying any MDB application (AQJMS)
generates an exception, thrown to OC4J stdout. If you switch to an
emulated data sopurce or a Java-enabled database, deployment
proceeds correctly.

Note: When an application using a nonemulated data source is
undeployed, the physical database connection is not removed from
OC4J until OC4J is restarted.

Introduction

Data Sources 4-5

cannot enlist them inside global transactions, and they can be used by EJBs or other
components requiring global transaction semantics.

Native data source implementations can be used directly without an emulator. OC4J
supports the use of native data sources directly and benefits from their vendor-specific
pooling, caching, extensions, and properties. However, native data sources do not
provide JTA services (such as begin, commit, and rollback)

The following is a data-sources.xml configuration entry for a native data source:

<data-source
class="com.my.DataSourceImplementationClass"
name=”NativeDS”
location="jdbc/NativeDS"
username="user"
password="pswd"
url="jdbc:myDataSourceURL"

</data-source>

JNDI lookups can be performed only through the value of the location attribute.

Mixing Data Sources
A single application can use several different types of data sources.

If your application mixes data sources, note the following issues:

� Only emulated and nonemulated data sources support JTA transactions.

You cannot enlist connections obtained from native data sources in a JTA
transaction.

� Only nonemulated data sources support true two-phase commit (emulated data
sources emulate two-phase commit).

To enlist multiple connections in a two-phase commit transaction, all connections
must use nonemulated data sources. For information on the limitations of
two-phase commit, see Chapter 7, "Java Transaction API".

� If you have opened a JTA transaction and want to obtain a connection that does
not participate in the transaction, then use a native data source to obtain the
connection.

� If your application does not use JTA transactions, you can obtain connections from
any data source.

� If your application has opened a javax.transaction.UserTransaction, all
future transaction work must be performed through that object.

If you try to invoke the connection’s rollback() or commit() methods, then
you will receive the following SQLException:

calling commit() [or rollback()] is not allowed on a container-managed
transactions Connection

The following example explains what happens:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("JDBC/OracleCMTDS1"); // Using JTA DataSources
Connection conn1 = ds.getConnection("scott", "tiger");
javax.transaction.UserTransaction ut =

(javax.transaction.UserTransaction)ic.lookup("java:comp/UserTransaction");
ut.begin();
conn1.query();

Defining Data Sources

4-6 Oracle Application Server Containers for J2EE Services Guide

conn1.commit(); // not allowed, returns error: calling commit[or rollback] is not allowed
// on a container-managed transaction connection

Defining Data Sources
You define OC4J data sources in an XML file known as data-sources.xml.

The data-sources.xml file installed with OC4J includes predefined, default data
sources that may be sufficient for your needs. If not, you must define your own.

Table 4–2 summarizes the configuration requirements for each type of data source.

Table 4–3 summarizes the characteristics for each type of data source.

Table 4–2 Data Source Configuration Summary

Configuration Nonemulated Emulated Native

Data source class OrionCMTDataSour
ce

DriverManagerDa
taSource

OracleConnection
- CacheImpl

Connection-driver N/A vendor specific

OracleDriver for
Oracle extensions

N/A

JNDI Context
specification

location location

ejb-location

xa-location

location

JNDI Context
lookup

location ejb-location location

URL Oracle driver URL Vendor-specific

Oracle: Thin or OCI
(TAF with OCI)

Vendor-specific

Oracle: Thin or OCI
(TAF with OCI)

Additional
configuration

Oracle database
commit coordinator

Database link for
two-phase commit
coordinator

None Cache scheme

Note: For documentation of OrionCMTDataSource and its
elements, see
http://www.orionserver.com/docs/api/orion/com/evermi
nd/sql/OrionCMTDataSource.html

Defining Data Sources

Data Sources 4-7

To define a new data source object:

1. Select a location for the data-sources.xml file (see "Configuration Files" on
page 4-7).

2. Understand data source attributes (see "Data Source Attributes" on page 4-8).

3. Define a data source either by using the Oracle Enterprise Manager 10g
(See "Defining Data Sources in Oracle Enterprise Manager 10g" on page 4-10)
 or by manually editing configuration files.
(See "Defining Data Sources in the XML Configuration File" on page 4-11).

Configuration Files
One main configuration file establishes data sources at the OC4J server level: J2EE_
HOME/config/data-sources.xml.

Each application also has a separate JNDI name space. The files web.xml,
ejb-jar.xml, orion-ejb-jar.xml, and orion-web.xml contain entries that you
can use to map application JNDI names to data sources, as the next section describes.

Defining Location of the Data Source XML Configuration File
Your application can know about the data sources defined in this file only if the
application.xml file knows about it. The path attribute in the <data-sources>
tag in the application.xml file must contain the name and path to your
data-sources.xml file, as follows:

<data-sources path="data-sources.xml"/>

The path attribute of the <data-sources> tag contains a full path name for the
data-sources.xml file. The path can be absolute, or it can be relative to where the
application.xml is located. Both the application.xml and
data-sources.xml files are located in the J2EE_
HOME/config/application.xml directory. Thus, the path contains only the name
of the data-sources.xml file.

Table 4–3 Data Source Characteristics

Characteristic Nonemulated Emulated Native

Pool and cache
support

Oracle JDBC driver
pool

OC4J connection
pool

vendor specific

Oracle

Vendor extension
support

Oracle only Oracle only vendor specific

Oracle

JTA support Full XA (one- or
two-phase commit)

Emulated XA
(one-phase commit)

Not supported

J2CA support No Yes Yes

Note: If you access a nonemulated data source by the
ejb-location, then you are using the OC4J pool and cache. If
you use OracleConnectionCacheImpl, then you can access
both OC4J and Oracle JDBC pool and cache.

Defining Data Sources

4-8 Oracle Application Server Containers for J2EE Services Guide

Application-Specific Data Source XML Configuration File
Each application can define its own data-sources.xml file in its EAR file. This is
done by having the reference to the data-sources.xml file in the
orion-application.xml file packaged in the EAR file.

To configure this:

1. Locate the data-sources.xml and orion-application.xml files in your
application’s META-INF directory.

2. Edit the orion-application.xml file to add a <data-sources> tag as
follows:

<orion-application>
<data-sources path="./data-sources.xml"/>

</orion-application>

Data Source Attributes
A data source can take many attributes. Some are required; most are optional. The
required attributes are marked below. The attributes are specified in a
<data-source> tag.

Table 4–4 lists and describes the data source attributes.

In addition to the data-source attributes described in Table 4–4, you can also add
property subnodes to a data-source. These are used to configure generic
properties on a data source object (following Java Bean conventions.) A property
node has a name and value attribute used to specify the name and value of a data
source bean property.

All OC4J data source attributes are applicable to the infrastructure database as well.
For more information on the infrastructure database, see Oracle High Availability
Architecture and Best Practices.

Table 4–4 Data Source Attributes

Attribute Name Description Default Value

class Names the class that implements the data source.

For nonemulated, this can be
com.evermind.sql.OrionCMTDataSource.

For emulated, this should be
com.evermind.sql.DriverManagerDataSource.

(This value is required.)

N/A

location The JNDI logical name for the data source object. OC4J binds the
class instance into the application JNDI name space with this
name. This JNDI lookup name is used for nonemulated data
sources. See also Table 4–2, " Data Source Configuration Summary"
on page 4-6.

N/A

name The data source name. Must be unique within the application. None

connection-driver The JDBC-driver class name for this data source, used by some
data sources that deal with java.sql.Connection.

For most data sources, the driver is
oracle.jdbc.driver.OracleDriver. This attribute applies
only to emulated data sources for which the class attribute is
com.evermind.sql.DriverManagerDataSource.

None

username Default user name used when getting data source connections. None

Defining Data Sources

Data Sources 4-9

password Default password used when getting data source connections. See
also "Password Indirection" on page 4-11.

None

URL The URL for database connections. None

xa-location The logical name of an XA data source. Applies to emulated data
sources only. See also Table 4–2, " Data Source Configuration
Summary" on page 4-6.

None

ejb-location Use this attribute for JTA single-phase commit transactions or for
looking up emulated data sources. If you use it to retrieve the data
source, you can map the returned connection to
oracle.jdbc.OracleConnection. See also Table 4–2, " Data
Source Configuration Summary" on page 4-6.

None

stmt-cache-size A performance tuning attribute set to a non-zero value to enable
JDBC statement caching and to define the maximum number of
statements cached. Enabled to avoid the overhead of repeated
cursor creation, and statement parsing and creation. Applicable
only for emulated data sources for which connection-driver is
oracle.jdbc.driver.OracleDriver and class is
com.evermind.sql.DriverManagerDataSource.

0 (disabled)

inactivity-timeout Time (in seconds) to cache an unused connection before closing it. 60 seconds

connection-retry-
interval

Time (in seconds) to wait before retrying a failed connection
attempt.

1 second

max-connections The maximum number of open connections for a pooled data
source.

Depends on the
data source type

min-connections The minimum number of open connections for a pooled data
source. OC4J does not open these connections until the
DataSource.getConnection method is invoked.

Note: In data-sources.xml the <min-connections> attribute
specifies the minimum number of connections to be created in the
connection pool used by that data source. For this reason, if you
start up OC4J with a data source that is configured with a value of
10 for <min-connnections> and you look at the number of
active connections in the database you would expect to see 10 open
connections. In fact, you will see twice the number connections as
the specified minimum (in this example, 20 open connections).
This happens because the data source in OC4J uses two pools
under the covers: One pool for transactional connections and one
pool for non-transactional connections. Each of these pools is filled
with the specified minimum number of connections (10 each in
this case). Therefore, in the database with which the data source
interacts, there are (<min-connections> x 2) open connections.
In this example: 20 = (10 in the transactional pool) + (10 in the
non-transactional pool)

0

wait-timeout The number of seconds to wait for a free connection if the pool has
reached max-connections used.

60

max-connect-
attempts

The number of times to retry making a connection. Useful when
the network or environment is unstable for any reason that makes
connection attempts fail.

3

Table 4–4 (Cont.) Data Source Attributes

Attribute Name Description Default Value

Defining Data Sources

4-10 Oracle Application Server Containers for J2EE Services Guide

The following example shows the use of the
clean-available-connections-threshold and rac-enabled attributes:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="NEDS1"
 location="jdbc/NELoc1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 min-connections="5"
 max-connections="10"
 clean-available-connections-threshold="35"
 rac-enabled="true"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com"
 inactivity-timeout="30"
 max-connect-attempts="5"
/>

For each data source you define, OC4J may create and bind within JNDI up to four
data sources: one each for location, ejb-location, xa-location, and
pool-location. The type of data source selected is determined by the values
associated with data-sources.xml attributes class, connection-driver, and
url, and the JNDI context in which the data source object is created and looked up.
For more information about data source types, see "Types of Data Sources" on
page 4-1.

Defining Data Sources in Oracle Enterprise Manager 10g
You can define any type of data source with the Oracle Enterprise Manager 10g.

The Data Sources Primer chapter of the Oracle Application Server Containers for J2EE
User’s Guide describes how to define data sources.

clean-available-
connections-
threshold

This optional attribute specifies the threshold (in seconds) for
when a cleanup of available connections will occur. For example, if
a connection is bad, the available connections are cleaned up. If
another connection is bad (that is, it throws an exception), and if
the threshold time has elapsed, then the available connections are
cleaned up again. If the threshold time has not elapsed, then the
available connections are not cleaned up again.

30

rac-enabled This optional attribute specifies whether the system is enabled for
Real Application Clusters (RAC). For information on using this
flag with an infrastructure database, see Oracle High Availability
Architecture and Best Practices. For information on using this flag
with a user database, see "Using DataDirect JDBC Drivers" on
page 4-22 and "High Availability Support for Data Sources" on
page 4-24.

If the data source points to an RAC database, set this property to
true. This enables OC4J to manage its connection pool in a way
that performs better during RAC instance failures.

false

schema This optional attribute specifies the database-schema associated
with a data source. It is especially useful when using CMP with
additional data types or third-party databases. For information on
using this attribute, see "Associating a Database Schema with a
Data Source" on page 4-13.

None

Table 4–4 (Cont.) Data Source Attributes

Attribute Name Description Default Value

Defining Data Sources

Data Sources 4-11

See the Oracle Application Server Containers for J2EE User’s Guide to find out how to
use the Administrative tools. See the Oracle Enterprise Manager Administrator’s Guide for
information on Oracle Enterprise Manager 10g.

This section presents a brief overview of these procedures.

Use the Oracle Enterprise Manager 10g and drill down to the Data Source page. OC4J
parses the data-sources.xml file when it starts, instantiates data source objects,
and binds them into the server JNDI name space. When you add a new data source
specification, you must restart the OC4J server to make the new data source available
for lookup.

To define emulated data sources, follow the same steps as for defining nonemulated
data sources, up to the step in which you define the JNDI location. In the procedure for
defining nonemulated data sources, the screen shot shows one field, Location, to be
filled out. For defining an emulated data source, fill out the three fields Location,
XA-Location, and EJB-Location.

Defining Data Sources in the XML Configuration File
The $J2EE_HOME/config/data-sources.xml file is preinstalled with a default
data source. For most uses, this default is all you need. However, you can also add
your own customized data source definitions.

The default data source is an emulated data source.

For more information about data source types, see "Types of Data Sources" on
page 4-1.

The following is a simple emulated data source definition that you can modify for
most applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="OracleDS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.com"
 inactivity-timeout="30"
/>

See "Data Source Attributes" on page 4-8 for details on all data source attributes.

Password Indirection
The data-sources.xml file requires passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially if

Note: Previous releases supported the location and
xa-location attributes for retrieving data source objects. These
attributes are now strongly deprecated; applications, EJBs, servlets,
and JSPs should use only the JNDI name ejb-location in emulated
data source definitions for retrieving the data source. You must specify
all three values must be specified for emulated data sources, but only
ejb-location is actually used.

Defining Data Sources

4-12 Oracle Application Server Containers for J2EE Services Guide

the permissions on this file allow it to be read by any user. To avoid this problem, OC4J
supports password indirection.

An indirect password is made up of a special indirection symbol (->) and a user name
(or user name and realm). When OC4J encounters an indirect password, it uses its
privileged access to retrieve the password associated with the specified user from the
security store provided by a user manager.

For more information on creating users and passwords, and working with a user
manager, see the section on password management in the Oracle Application Server
Containers for J2EE Security Guide.

For example, the sample code under "Emulated Data Sources" on page 4-2 contains the
following line:

password="tiger"

You could replace that with the indirection symbol (->) and a user name (scott) as
follows:

password="->scott"

This assumes that a user named scott with the password tiger has been created in
a user manager.

Because OC4J has privileged access to the security store, it can retrieve the password
(tiger) associated with this user (scott).

There are two ways to configure password indirection:

� Configuring an Indirect Password with Oracle Enterprise Manager 10g

� Configuring an Indirect Password Manually

Configuring an Indirect Password with Oracle Enterprise Manager 10g
To configure an indirect password using the Oracle Enterprise Manager 10g:

1. Log into the Oracle Enterprise Manager 10g

2. Select a target of type OC4J.

3. Select Administer. The Oracle Enterprise Manager 10g for Oracle Application
Server home page is displayed.

4. Select Administration.

5. Select Data Sources. A list of data sources is displayed.

6. Click in the Select column to select a data source.

7. Click Edit. The Edit Data Source page is displayed as shown in Figure 4–2.

Defining Data Sources

Data Sources 4-13

Figure 4–2 Edit Data Source Page

8. In the Datasource Username and Password area, click Use Indirect Password,
and enter the appropriate value in the Indirect Password field.

9. Click Apply.

Configuring an Indirect Password Manually
To configure an indirect password for a data source manually:

1. Edit the appropriate OC4J XML configuration or deployment file:

� data-sources.xml—password attribute of <data-source> element

� ra.xml — <res-password> element

� rmi.xml— password attribute of <cluster> element

� application.xml— password attributes of <resource-provider> and
<commit-coordinator> elements

� jms.xml— <password> element

� internal-settings.xml— <sep-property> element, attributes
name=" keystore-password" and name=" truststore-password"

2. To make any of these passwords indirect, replace the literal password string with a
string containing "->", followed either by the username or by the realm and
username separated by a slash ("/").

For example: <data-source password="->Scott">

This causes the User Manager to look up the user name "Scott" and use the password
stored for that user.

Associating a Database Schema with a Data Source
The data source identifies a database instance. The data source schema attribute
allows you to associate a data source with a database-schema.xml file that you can
customize for its particular database.

When using container-managed persistence (CMP), the container is responsible for
creating the database schema necessary to persist a bean. Associating a data source
with a database-schema.xml file allows you to influence what SQL is ultimately
generated by the container. This can help you solve problems such as accommodating
additional data types supported in your application (such as
java.math.BigDecimal) but not in your database.

Defining Data Sources

4-14 Oracle Application Server Containers for J2EE Services Guide

The database-schema.xml File
A database-schema.xml file contains a database-schema element as shown in
Example 4–1. It is made up of the attributes listed in Table 4–5.

Example 4–1 The database-schema Element

<database-schema case-sensitive="true" max-table-name-length="30"
name="MyDatabase" not-null="not null" null="null" primary-key="primary key">

<type-mapping type="java.math.BigDecimal" name="number(20,8)" />
<disallowed-field name="order" />

</database-schema>

The <database-schema> element may contain any number of the following
subelements:

� <<type-mapping>>

� <<disallowed-field>>

<type-mapping> This subelement is used to map a Java type to the corresponding type
appropriate for this database instance. It contains two attributes:

� name: the name of the database type

� type: the name of the Java type

<disallowed-field> This subelement identifies a name that you must not use because it is
a reserved word in this database instance. It contains one attribute:

� name: the name of the reserved word

Example Configuration
This example shows how to map a data type supported in your application
(java.math.BigDecimal) to a data type supported by the underlying database.

1. Define the mapping for java.math.BigDecimal in your
database-schemas/oracle.xml file as follows:

<type-mapping type="java.math.BigDecimal" name="number(20,8)" />

Table 4–5 database-schema.xml File Attributes

Attribute Description

case-sensitive Specifies whether this database treats names as case sensitive
(true) or not (false). This applies to names specified by
disallowed-field subelements.

max-table-name-length This optional attribute specifies the maximum length for table
names for this database. Names longer than this value will be
truncated.

name The name of this database.

not-null Specifies the keyword used by this database to indicate a
not-null constraint.

null Specifies the keyword used by this database to indicate a null
constraint.

primary-key Specifies the keyword used by this database to indicate a
primary-key constraint.

Using Data Sources

Data Sources 4-15

2. Use this schema in your <data-source> element as follows:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
ejb-location="jdbc/OracleDS"
schema="database-schemas/oracle.xml"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:5521/oracle.regress.rdbms.dev.us.oracle.

com"
clean-available-connections-threshold="30"
rac-enabled="false"
inactivity-timeout="30"

/>

3. Use this <data-source> for your EJBs:

<orion-ejb-jar>
<enterprise-beans>
<entity-deployment name="BigDecimalTest" data-source="jdbc/OracleDS" />

</enterprise-beans>

4. Deploy your ejb and OOC4J creates the appropriate tables.

Using Data Sources
The following sections describe how to use data sources in your application:

� Portable Data Source Lookup

� Retrieving a Connection from a Data Source

� Retrieving Connections with a Nonemulated Data Source

� Connection Retrieval Error Conditions

For information on data source methods, refer to your J2EE API documentation.

Portable Data Source Lookup
When the OC4J server starts, the data sources in the data-sources.xml file in the
j2ee/home/config directory are added to the OC4J JNDI tree. When you look up a
data source using JNDI, specify the JNDI lookup as follows:

DataSource ds = ic.lookup("jdbc/OracleCMTDS1");

The OC4J server looks in its own internal JNDI tree for this data source.

However, we recommend—and it is much more portable—for an application to look
up a data source in the application JNDI tree, using the portable java:comp/env
mechanism. Place an entry pointing to the data source in the application web.xml or
ejb-jar.xml files, using the <resource-ref> tag. For example:

<resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Using Data Sources

4-16 Oracle Application Server Containers for J2EE Services Guide

where <res-ref-name> can be one of the following:

� The actual JNDI name—such as jdbc/OracleDS—that is defined in the
data-sources.xml file. In this situation, no mapping is necessary. The
preceding code example demonstrates this. The <res-ref-name> is the same as
the JNDI name bound in the data-sources.xml file.

Retrieve this data source without using java:comp/env, as shown by the
following JNDI lookup:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("jdbc/OracleDS");

� A logical name that is mapped to the actual JNDI name in the OC4J-specific files,
orion-web.xml or orion-ejb-jar.xml. The OC4J-specific XML files then
define a mapping from the logical name in the web.xml or ejb-jar.xml file to
the actual JNDI name that is defined in the data-sources.xml file.

Example 4–2 Mapping Logical JNDI Name to Actual JNDI Name

The following code demonstrates the second of the two preceding options. If you want
to choose a logical name of "jdbc/OracleMappedDS" to be used within your code for
the JNDI retrieval, then place the following in your web.xml or ejb-jar.xml files:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

For the actual JNDI name to be found, you must have a <resource-ref-mapping>
element that maps the jdbc/OracleMappedDS to the actual JNDI name in the
data-sources.xml file. If you are using the default emulated data source, then the
ejb-location will be defined with jdbc/OracleDS as the actual JNDI name. For
example:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

You can then look up the data source in the application JNDI name space using the
Java statements:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("jdbc/OracleMappedDS");

Retrieving a Connection from a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use
JDBC statements. We recommend that you, instead, use data source objects in your
JDBC operations.

Perform the following steps to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source
definition in the data-sources.xml file.

Note: Data sources always return logical connections.

Using Data Sources

Data Sources 4-17

The lookup is performed on the logical name of the default data source, which is
an emulated data source defined in the ejb-location tag in the
data-sources.xml file.

You must always cast or narrow the object that JNDI returns to the DataSource,
because the JNDI lookup() method returns a Java object.

2. Create a connection to the database represented by the DataSource object.

After you have the connection, you can construct and execute JDBC statements against
this database that is specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Use the following methods of the DataSource object in your application code to
retrieve a connection to your database:

� getConnection();

The user name and password are those that are defined in the data source
definition.

� getConnection(String username, String password);

This user name and password overrides the user name and password that are
defined in the data source definition.

If the data source refers to an Oracle database, then you can cast the connection object
that is returned on the getConnection method to
oracle.jdbc.OracleConnection, and use all the Oracle extensions. See "Using
Oracle JDBC Extensions" on page 4-21 for details.

The following example illustrates this:

oracle.jdbc.OracleConnection conn =
 (oracle.jdbc.OracleConnection) ds.getConnection();

After you retrieve a connection, you can execute SQL statements against the database
through JDBC.

Refer to "Retrieving Connections with a Nonemulated Data Source" on page 4-17 for
information on handling common connection retrieval error conditions.

Retrieving Connections with a Nonemulated Data Source
The physical behavior of a nonemulated data source object changes, depending on
whether you retrieve a connection from the data source outside of or within a global
transaction. The following sections discuss these differences:

� Retrieving a Connection Outside a Global Transaction

� Retrieving a Connection Within a Global Transaction

Retrieving a Connection Outside a Global Transaction
If you retrieve a connection from a nonemulated data source and you are not involved
in a global transaction, then every getConnection method returns a logical handle.
When the connection is used for work, a physical connection is created for each
connection created. Thus, if you create two connections outside of a global transaction,

Using Data Sources

4-18 Oracle Application Server Containers for J2EE Services Guide

then both connections use a separate physical connection. When you close each
connection, it is returned to a pool to be used by the next connection retrieval.

Retrieving a Connection Within a Global Transaction
If you retrieve a connection from a nonemulated data source and you are involved in a
global JTA transaction, then all physical connections retrieved from the same
DataSource object by the same user within the transaction share the same physical
connection.

For example, if you start a transaction and retrieve two connections from the
jdbc/OracleCMTDS1 DataSource with the scott user, then both connections
share the physical connection. In the following example, both conn1 and conn2 share
the same physical connection.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
txn.begin(); //start txn
Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

However, separate physical connections are retrieved for connections that are retrieved
from separate DataSource objects. The following example shows that both conn1
and conn2 are retrieved from different DataSource objects: jdbc/OracleCMTDS1
and jdbc/OracleCMTDS2. Both conn1 and conn2 will exist upon a separate
physical connection.

Context ic = new InitialContext();
DataSource ds1 = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
DataSource ds2 = (DataSource) ic.lookup("jdbc/OracleCMTDS2");
txn.begin; //start txn
Connection conn1 = ds1.getConnection();
Connection conn2 = ds2.getConnection();

Connection Retrieval Error Conditions
The following mistakes can create an error condition:

� Using Different User Names for Two Connections to a Single Data Source

� Improperly configured OCI JDBC Driver

Using Different User Names for Two Connections to a Single Data Source
When you retrieve a connection from a DataSource object with a user name and
password, this user name and password are used on all subsequent connection
retrievals within the same transaction. This is true for all data source types.

For example, suppose an application retrieves a connection from the
jdbc/OracleCMTDS1 data source with the scott user name. When the application
retrieves a second connection from the same data source with a different user name,
such as adams, the second user name (adams) is ignored. Instead, theoriginal user
name (scott) is used.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
txn.begin(); //start txn
Connection conn1 = ds.getConnection("scott", "tiger"); //uses scott/tiger
Connection conn2 = ds.getConnection("adams", "woods"); //uses scott/tiger also

Using Two-Phase Commits and Data Sources

Data Sources 4-19

Thus, you cannot authenticate using two different users to the same data source. If you
try to access the tables as "adams/woods", you enter into an error condition.

Improperly configured OCI JDBC Driver
If you are using the OCI JDBC driver, ensure that you have configured it according to
the recommendations in "Using the OCI JDBC Drivers" on page 4-22.

Using Two-Phase Commits and Data Sources
The Oracle two-phase commit coordinator is a DTC (distributed transaction
coordinator) engine that performs two-phase commits with appropriate recovery. The
two-phase commit engine is responsible for ensuring that when the transaction ends,
all changes to all databases are either totally committed or fully rolled back. The
two-phase commit engine can be one of the databases that participates in the global
transaction, or it can be a separate database. If multiple databases or multiple sessions
in the same database participate in a transaction, then you must specify a two-phase
commit coordinator. Otherwise, you cannot commit the transaction.

Specify a commit coordinator in one of the following ways:

� Use the global application.xml in the J2EE_HOME/config directory to
specify one commit coordinator for all applications.

� Override this commit coordinator for an individual application in the application's
orion-application.xml file.

For example:

<commit-coordinator>
 <commit-class class="com.evermind.server.OracleTwoPhaseCommitDriver" />
 <property name="datasource" value="jdbc/OracleCommitDS" />
 <property name="username" value="system" />
 <property name="password" value="manager" />
</commit-coordinator>

If you specify a user name and password in the global application.xml file, then
these values override the values in the datasource.xml file. If these values are null,
then the user name and password in the datasource.xml file are used to connect to
the commit coordinator.

The user name and password used to connect to the commit coordinator (for example,
System) must have "force any transaction" privilege. By default, during installation,
the commit-coordinator is specified in the global application.xml file, with the
user name and password set as null.

Notes:

� The password attribute of the <commit-coordinator> element
supports password indirection. For more information, see the
section on password management in the Oracle Application Server
Containers for J2EE Security Guide.

� Two-phase commits may be configured only for nonemulated
data sources. For more information on data source types, see
"Types of Data Sources" on page 4-1

Using Two-Phase Commits and Data Sources

4-20 Oracle Application Server Containers for J2EE Services Guide

Each data source participating in a two-phase commit should specify dblink
information in the OrionCMTDatasource data source file This dblink should be the
name of the dblink that was created in the commit coordinator database to connect to
this database.

For example, if db1 is the database for the commit coordinator and db2 and db3 are
participating in the global transactions, then you create link2 and link3 in the db1
database as shown in the following example.

connect commit_user/commit_user
create database link link2 using "inst1_db2"; // link from db1 to db2
create database link link3 using "inst1_db3"; // link from db1 to db3;

Next, define a data source called jdbc/OracleCommitDS in the application.xml
file:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCommitDS"
 location="jdbc/OracleCommitDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="system"
 password="manager"
 url="jdbc:oracle:thin:@//localhost:5521/db1.regress.rdbms.dev.us.oracle.com"
 inactivity-timeout="30"/>

Here is the data source description of db2 that participates in the global transaction.
Note that link2, which was created in db1, is specified as a property here:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDB2"
 location="jdbc/OracleDB2"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:5521/db2.regress.rdbms.dev.us.oracle.com"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK2.REGRESS.RDBMS.EXAMPLE.COM"/>
</data-source>

Here is the data source description of db3 that participates in the global transaction.
Note that link3, which is created in db1, is specified as a property here:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDB3"
 location="jdbc/OracleDB3"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:5521/db3.regress.rdbms.dev.us.oracle.com"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK3.REGRESS.RDBMS.EXAMPLE.COM"/>
</data-source>

For information on the limitations of two-phase commit, see Chapter 7, "Java
Transaction API".

Using Connection Caching Schemes

Data Sources 4-21

Using Oracle JDBC Extensions
To use Oracle JDBC extensions, cast the returned connection to
oracle.jdbc.OracleConnection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
oracle.jdbc.OracleConnection conn =
 (oracle.jdbc.OracleConnection) ds.getConnection();

You can use any of the Oracle extensions on the returned connection, conn.

// you can create oracle.jdbc.* objects using this connection
oracle.jdbc.Statement orclStmt =
 (oracle.jdbc.OracleStatement)conn.createStatement();
// assume table is varray_table
oracle.jdbc.OracleResultSet rs =
 orclStmt.executeQuery("SELECT * FROM " + tableName);
while (rs.next())
{
 oracle.sql.ARRAY array = rs.getARRAY(1);
...
}

Using Connection Caching Schemes
You can define the connection caching scheme to use within the data source definition.
There are three types of connection caching schemes: DYNAMIC_SCHEME, FIXED_
WAIT_SCHEME, and FIXED_RETURN_NULL_SCHEME. For a description of these
schemes, see the Connection Pooling and Caching chapter of the Oracle9i JDBC
Developer’s Guide and Reference, found on OTN at the following location:

http://st-doc.us.oracle.com/9.0/920/java.920/a96654/toc.htm

To specify a caching scheme, specify an integer or string value for a <property>
element named cacheScheme. Table 4–6 shows the supported values.

The following example is a data source using the DYNAMIC_SCHEME.

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 name="OracleDS"
 location="jdbc/pool/OracleCache"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//hostname:TTC port number/SERVICE

Table 4–6 Cpnnection Caching Schemes

Value Cache Scheme

1 DYNAMIC_SCHEME

2 FIXED_WAIT_SCHEME

3 FIXED_RETURN_NULL_SCHEME

Note: The connection cache scheme discussion in this section applies
only to native data sources. It does not apply to any other data source.

Using the OCI JDBC Drivers

4-22 Oracle Application Server Containers for J2EE Services Guide

 inactivity-timeout="30">
 <property name="cacheScheme" value="1" />
</data-source>

In this example, for the <property name> element, you could also specify
value="DYNAMIC_SCHEME".

When you create a data source in data-sources.xml, be aware of the following:
When class is set to oracle.jdbc.pool.OracleConnectionCacheImpl, you
must not specify the ejb-location, xa-location, and pooled-location
attributes. Specify only the location attribute. Accessing the data source using any
other attribute with JNDI causes unpredictable cleanup of cached connections in the
event that the database goes down.

Using the OCI JDBC Drivers
The examples of Oracle data source definitions in this chapter use the Oracle JDBC
Thin driver. However, you can use the Oracle JDBC OCI driver as well. Do the
following before you start the OC4J server:

� Install the Oracle Client on the same system on which OC4J is installed.

� Set the ORACLE_HOME variable.

� Set LD_LIBRARY_PATH (or the equivalent environment variable for your OS) to
$ORACLE_HOME/lib.

� Set TNS_ADMIN to a valid Oracle administration directory with a valid
tnsnames.ora file.

The URL to use in the url attribute of the <data-source> element definition can
have any of these forms:

� jdbc:oracle:oci:@

This TNS entry is for a database on the same system as the client, and the client
connects to the database in IPC mode.

� jdbc:oracle:oci:@TNS_service_name

The TNS service name is an entry in the instance tnsnames.ora file.

� jdbc:oracle:oci:@full_TNS_listener_description

For more TNS information, see the Oracle10i Net Services Administrator’s Guide

Using DataDirect JDBC Drivers
When your application must connect to heterogeneous databases, use DataDirect
JDBC drivers. DataDirect JDBC drivers are not meant to be used with an Oracle
database but for connecting to non-Oracle databases, such as Microsoft, SQLServer,
Sybase, and DB2. If you want to use DataDirect drivers with OC4J, then add
corresponding entries for each database in the data-sources.xml file.

Installing and Setting Up DataDirect JDBC Drivers
Install the DataDirect JDBC drivers as described in the DataDirect Connect for JDBC
User's Guide and Reference

After you have installed the drivers, follow these instructions to set them up.

Using DataDirect JDBC Drivers

Data Sources 4-23

1. Unzip the content of the DataDirect JDBC drivers to the directory DDJD_INSTALL.

2. Create the directory OC4J_INSTALL/j2ee/INSTANCE_NAME/applib if it does
not already exist.

3. Copy the DataDirect JDBC drivers in DDJD_INSTALL/lib to the OC4J_
INSTALL/j2ee/INSTANCE_NAME/applib directory.

4. Verify that the file application.xml contains a library entry that references the
j2ee/home/applib location, as follows:

<library path="../../INSTANCE_NAME/applib" />

5. Add data sources to the file data-source.xml as described in "Example
DataDirect Data Source Entries" on page 4-23.

Example DataDirect Data Source Entries
This section shows an example data source entry for each of the following non-Oracle
databases:

� SQLServer

� DB2

� Sybase

You can also use vendor-specific data sources in the class attribute directly. That is, it is
not necessary to use an OC4J-specific data source in the class attribute.

For more detailed information, refer to the DataDirect Connect for JDBC User's Guide
and Reference.

SQLServer
The following is an example of a data source entry for SQLServer.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSSDS"
 xa-location="jdbc/xa/MerantSSXADS"

Note: In the following instructions, note these definitions:

� OC4J_INSTALL: In a standalone OC4J environment, the directory
into which you unzip the file oc4j_extended.zip. In an Oracle
Application Server, OC4J_INSTALL is ORACLE_HOME.

� In both a standalone OC4J environment and an Oracle
Application Server, DDJD_INSTALL is the directory into which
you unzip the content of the DataDirect JDBC drivers.

� In a standalone OC4J invironment, INSTANCE_NAME is home.

� In an Oracle Application Server, INSTANCE_NAME is the OC4J
instance into which you install the DataDirect JDBC drivers.

Note: OC4J does not work with non-Oracle data sources in the
non-emulated case. That is, you cannot use a non-Oracle data source
in a two-phase commit transaction.

High Availability Support for Data Sources

4-24 Oracle Application Server Containers for J2EE Services Guide

 ejb-location="jdbc/MerantSSDS"
 connection-driver="com.oracle.ias.jdbc.sqlserver.SQLServerDriver"
 username="test"
 password="secret"
 url="jdbc:sqlserver//hostname:port;User=test;Password=secret"
 inactivity-timeout="30"
 />

DB2
Here is a data source configuration sample for a DB2 database:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantDB2DS"
 xa-location="jdbc/xa/MerantDB2XADS"
 ejb-location="jdbc/MerantDB2DS"
 connection-driver="com.oracle.ias.jdbc.db2.DB2Driver"
 username="test"
 password="secret"
 url="jdbc:db2://hostname:port;LocationName=jdbc;CollectionId=default;"
 inactivity-timeout="30"
/>

Sybase
Here is a data source configuration sample for a Sybase database:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSybaseDS"
 xa-location="jdbc/xa/MerantSybaseXADS"
 ejb-location="jdbc/MerantSybaseDS"
 connection-driver="com.oracle.ias.jdbc.sybase.SybaseDriver"
 username="test"
 password="secret"
 url="jdbc:sybase://hostname:port;User=test;Password=secret"
 inactivity-timeout="30"
/>

High Availability Support for Data Sources
This section discusses high availability (HA) support for data sources.

A high availability (HA) architecture must encompass redundancy across all
components, achieve fast client failover for all types of outages, provide consistent
high performance, and provide protection from user errors, corruptions, and site
disasters, while being easy to deploy, manage, and scale.

Oracle Maximum Availability Architecture (MAA)
The Oracle Maximum Availability Architecture (MAA) provides recommendations
and configuration instructions to help you choose and implement an Oracle platform
availability architecture that best fits your availability requirements.

The main MAA recommendations are:

High Availability Support for Data Sources

Data Sources 4-25

� Use redundant middle-tier or application tier (Oracle Application Server),
network, and storage infrastructure.

� Use Oracle Data Guard to protect from human errors and data failures, and to
recover from site failures.

� Use Real Application Clusters (RAC) at each site to protect from host and instance
failures.

� Use sound operational best practices (such as fast-start check pointing to control
the amount of time required to recover from an instance failure).

For more information about MAA, see

http://otn.oracle.com/deploy/availability/htdocs/maa.htm.

Oracle Data Guard
Oracle Data Guard is software integrated with the Oracle database that maintains a
real-time copy of a production database, called a standby database, and keeps this
instance synchronized with its redundant mate. Oracle Data Guard manages the two
databases using log transport services, managed recovery, switchover, and failover
features.

Real Application Clusters (RAC)
RAC uses two or more nodes or computers, each running an Oracle instance that
accesses a single database residing on shared-disk storage. In a RAC environment, all
active instances can concurrently execute transactions against the shared database.
RAC automatically coordinates each instance’s access to the shared data to provide
data consistency and data integrity.

RAC depends on two types of failover mechanisms:

� Network failover implemented in the network layer.

� Transparent Application Failover (TAF) implemented on top of the network layer.

Network Failover
Network failover is the default failover and is the only type of failover available when
using the JDBC Thin driver. Network failure ensures that newer database connections
created after a database instance in an RAC cluster goes down are created against a
backup or surviving database instance in that cluster, even though the TNS alias that
was used to create the newer database connection was for the database instance that
went down. When network failover is the only available failover mechanism, then
existing connections are not automatically reconnected to surviving RAC instances.
These existing connections are no longer usable, and you will get ORA-03113
exceptions if you try to use them. Ongoing database operations (including AQ
operations) can fail with a wide variety of exceptions when failover occurs in a RAC
cluster configured to perform only network failover.

TAF Failover
TAF failover is available only when using the JDBC OCI driver. To enable it, you must
set the FAILOVER_MODE as part of the CONNECT_DATA portion of the TNS alias
used to create the JDBC connection.

TAF is a runtime failover for high-availability environments, such as RAC and Data
Guard, that refers to the failover and re-establishment of application-to-service
connections. It enables client applications to automatically reconnect to the database if

High Availability Support for Data Sources

4-26 Oracle Application Server Containers for J2EE Services Guide

the connection fails, and optionally resume a SELECT statement in progress. This
reconnect happens automatically from within the Oracle Call Interface (OCI) library.

TAF provides a best effort failover mechanism for ongoing operations on a database
connection created against a database instance that is part of a RAC cluster. It also
attempts to ensure that existing connections that are not in use at failover time are
reconnected to a backup or surviving database instance. However, TAF is not always
able to replay transactional operations that occur past the last committed transaction.
When this happens, it usually throws an ORA-25408 ("cannot safely replay call") error.
It is then your application’s responsibility to explicitly roll back the current transaction
before the database connection can be used again. Your application must also replay
all the operations past the last committed transaction to return to the same state as that
before the failover occurred.

TAF protects or fails over:

� Database connections

� User session states

� Prepared statements

� Active cursors (SELECT statements) that began returning results at the time of
failure

TAF neither protects nor fails over:

� Applications not using OCI8 or higher

� Server-side program variables, such as PL/SQL package states

� Active Update transactions (see "Acknowledging TAF Exceptions" on page 4-29)

High Availability (HA) Support in OC4J
You can integrate OC4J with RAC, Data Guard, and TAF as part of your HA
architecture.

The following sections describe configuration issues specific to OC4J that relate
directly to HA. Use this information in conjunction with MAA recommendations and
procedures.

The following sections discuss OC4J HA configuration issues:

� Configuring Network Failover with OC4J

� Configuring Transparent Application Failover (TAF) with OC4J

� Connection Pooling

� Acknowledging TAF Exceptions

� SQL Exception Handling

Configuring Network Failover with OC4J
To configure OC4J to use network failover:

1. Configure a network failover-enabled data source in data-sources.xml.

For example:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
location="jdbc/OracleCoreDS"

High Availability Support for Data Sources

Data Sources 4-27

xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@(DESCRIPTION=

(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP) (HOST=host1) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=host2) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=service_name)))"

inactivity-timeout="300"
connection-retry-interval="2"
max-connect-attempts="60"
max-connections="60"
min-connections="12"

/>

In this example, note the url element. As long as two or more hosts are specified,
the JDBC client randomly chooses one of the alternatives if the current host is
unreachable.

For details on data source configuration, see "Defining Data Sources" on page 4-6.

Configuring Transparent Application Failover (TAF) with OC4J
To configure OC4J for use with TAF:

1. Configure a TAF descriptor as described in "Configuring a TAF Descriptor
(tnsnames.ora)" on page 4-28.

2. Configure a TAF-enabled data source in data-sources.xml. For example:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
location="jdbc/OracleCoreDS"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:oci8:@(description=(load_balance=on)(failover=on)
(address=(protocol=tcp)(host=db-node1)(port=1521))
(address=(protocol=tcp)(host=db-node2)(port=1521))
(address=(protocol=tcp)(host=db-node3)(port=1521))
(address=(protocol=tcp)(host=db-node4)(port=1521))
(connect_data=
(service_name=db.us.oracle.com)
(failover_mode=(type=select)(method=basic)(retries=20)(delay=15))))"

rac-enabled="true"
inactivity-timeout="300"
connection-retry-interval="2"
max-connect-attempts="60"
max-connections="60"
min-connections="12"

/>

In this example, note that the url element failover is on and failover_mode
is defined. As long as two or more hosts are specified, the JDBC client randomly
chooses one of the alternatives if the current host is unreachable. For a description

High Availability Support for Data Sources

4-28 Oracle Application Server Containers for J2EE Services Guide

of failover_mode options, see Table 4–7, " TAF Configuration Options" on
page 4-28.

For details on data source configuration, see "Defining Data Sources" on page 4-6.

3. Configure Oracle JMS as the Resource Provider for JMS in the
orion-application.xml file. For example:

<resource-provider
class="oracle.jms.OjmsContext" name="cartojms1">
<description> OJMS/AQ </description>
<property name="datasource" value="jdbc/CartEmulatedDS"></property>

</resource-provider>

Configuring a TAF Descriptor (tnsnames.ora)
TAF is configured using Net8 parameters in the tnsnames.ora file.

TAF can be configured by including a FAILOVER_MODE parameter under the
CONNECT_DATA section of a connect descriptor. TAF supports the subparameters
described in Table 4–7.

Note: Only data sources configured to use the JDBC OCI client can
be configured for use with TAF.

Table 4–7 TAF Configuration Options

Subparameter Description

BACKUP Specify a different net service name for backup connections. A backup
should be specified when using the PRECONNECT METHOD to
pre-establish connections.

TYPE Specify the type of fail over. Three types of Oracle Net failover
functionality are available by default to Oracle Call Interface (OCI)
applications:

� SESSION: Set to failover the session. If a user's connection is lost, then
a new session is automatically created for the user on the backup. This
type of failover does not attempt to recover selects.

� SELECT: Set to enable users with open cursors to continue fetching on
them after failure. However, this mode involves overhead on the client
side in normal select operations.

� NONE: This is the default. No failover functionality is used. This can
also be explicitly specified to prevent failover from happening.

METHOD Determines how fast failover occurs from the primary node to the backup
node:

� BASIC: Set to establish connections at failover time. This option
requires almost no work on the backup server until failover time.

� PRECONNECT: Set to pre-established connections. This provides
faster failover, but requires that the backup instance be able to support
all connections from every supported instance.

RETRIES Specify the number of times to attempt to connect after a failover. If DELAY
is specified, RETRIES defaults to five retry attempts.

Note: If a callback function is registered, then this subparameter is ignored.

DELAY Specify the amount of time, in seconds, to wait between connect attempts.
If RETRIES is specified, DELAY defaults to one second.

Note: If a callback function is registered, then this subparameter is ignored.

High Availability Support for Data Sources

Data Sources 4-29

In the following example, Oracle Net connects randomly to one of the protocol
addresses on sales1-server or sales2-server. If the instance fails after the
connection, then the TAF application fails over to the listener on another node.

sales.us.acme.com=
(DESCRIPTION=

(LOAD_BALANCE=on)
(FAILOVER=on)
(ADDRESS=(PROTOCOL=tcp)(HOST=sales1-server)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=sales2-server)(PORT=1521))
(CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)
(FAILOVER_MODE=

(TYPE=session)
(METHOD=basic)
(RETRIES=20)
(DELAY=15))))

For more information on configuring TAF, refer to the "Oracle9i Net Services
Administrator’s Guide".

Connection Pooling
If you have a transaction spanning two beans and each bean gets a JDBC connection to
the same database but different instances, then on commit, OC4j issues a simple
commit (instead of a Two-Phase Commit), which makes the transaction suspect. If
your application encounters such transactions, use either TAF or connection pooling,
but not both.

In case of an instance failure, dead connections are cleaned from both the OC4J
connection pool and from the JDBC type 2 connection pool.

If a database goes down and getConnection() is called, and if connection pooling
is used, then the pool is cleaned up. The caller must catch the exception on the
getConnection() call, and retry. In some cases, the OC4J container does the retries.

OC4J cleans up a connection pool when the connection is detected to be bad. That is, if
getConnection() throws a SQLException with error code 3113 or 3114.

When an exception occurs while using a user connection handle, it is useful for OC4J
to detect whether the exception is due to a database connection error or to a database
operational error. The most common error codes thrown by the database when a
connection error occurs are 3113 and 3114. These errors are returned typically for
in-flight connections that get dropped. In addition, new connection attempts may
receive error codes 1033, 1034, 1089 and 1090.

Fast-connection cleanup is implemented in both non-RAC and RAC environments.

In a non-RAC environment, when ajava.sql.SQLException is thrown, all
unallocated connections are removed from the pool.

In a RAC environment, when ajava.sql.SQLException is thrown, first the states
of all unallocated connections are checked. Connections that are alive are left alone.
Otherwise, they are removed from the pool.

Acknowledging TAF Exceptions
Active Update transactions are rolled back at the time of failure because TAF cannot
preserve active transactions after failover. TAF requires an acknowledgement from the

High Availability Support for Data Sources

4-30 Oracle Application Server Containers for J2EE Services Guide

application that a failure has occurred through a rollback command. In other words,
the application receives an error message until a ROLLBACK is submitted.

A common failure scenario is as follows:

1. A JDBC Connection fails or is switched over by TAF.

2. TAF issues an exception.

3. TAF waits for an acknowledgement from the application in the form of a
ROLLBACK.

4. The application rolls back the transaction and replays it.

Using Oracle Call Interface (OCI) callbacks and failover events, your application can
customize TAF operations to automatically provide the required acknowledgement.

Your application (J2EE components) can capture the failure status of an Oracle
instance and customize TAF by providing a function that the OCI library will
automatically call during failover, using OCI callback capabilities. Table 4–8 describes
the failover events defined in the OCI API.

For more information, see the Oracle Call Interface Programmer’s Guide.

SQL Exception Handling
Depending on the driver type used, SQLExceptions will have different error codes and
transaction replay may or may not be supported.

These error codes are obtained by making a getErrorCode() call on the
java.sql.SQLException thrown to the caller.

Table 4–9 summarizes these issues by driver type.

Table 4–8 OCI API Failover Events

Symbol Value Meaning

FO_BEGIN 1 A lost connection has been detected and failover is
starting.

FO_END 2 A successful completion of failover.

FO_ABORT 3 An unsuccessful failover with no option of retrying.

FO_REAUTH 4 A user handle has been re-authenticated.

FO_ERROR 5 A failover was temporarily unsuccessful but the
application has the opportunity to handle the error and
retry.

FO_RETRY 6 Retry failover.

FO_EVENT_UNKNOWN 7 A bad or unknown failover event.

High Availability Support for Data Sources

Data Sources 4-31

Table 4–9 SQL Exceptions and Driver Type

Driver Error Code Servlet Layer Session Bean (CMT, BMT) Entity Bean (CMP)

Thin JDBC 17410 Replay works. Replay works (ignore "No _
activetransaction" error).

Replay not supported.

OCI 3113, 3114 Replay works. Replay not supported. Replay not supported.

OCI/TAF After application sends
acknowledgement to TAF
(see "Acknowledging TAF
Exceptions" on page 4-29),
replay on surviving node
works.

After application sends
acknowledgement to TAF (see
"Acknowledging TAF
Exceptions" on page 4-29), replay
on surviving node works.

If application sends
acknowledgement to
TAF (see
"Acknowledging TAF
Exceptions" on
page 4-29), then OC4J
proceeds transparently.

High Availability Support for Data Sources

4-32 Oracle Application Server Containers for J2EE Services Guide

Oracle Remote Method Invocation 5-1

5
Oracle Remote Method Invocation

This chapter describes Oracle Application Server Containers for J2EE (OC4J) support
for allowing EJBs to invoke one another across OC4J containers using the proprietary
Remote Method Invocation (RMI)/Oracle RMI (ORMI) protocol.

 This chapter covers the following topics:

� Introduction to RMI/ORMI

� Configuring OC4J for RMI

� Configuring ORMI Tunneling through HTTP

Introduction to RMI/ORMI
Java Remote Method Invocation (RMI) enables you to create distributed Java-based to
Java-based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines (JVMs), possibly on different hosts.

By default, OC4J EJBs exchange RMI calls over the Oracle Remote Method Invocation
(ORMI) protocol, an Oracle proprietary protocol optimized for use with OC4J.

Alternatively, you can convert an EJB to use RMI/IIOP, making it possible for EJBs to
invoke one another across different EJB containers as described in Chapter 6, "J2EE
Interoperability".

ORMI Enhancements
ORMI is enhanced for OC4J and provides the following features:

� Increased RMI Message Throughput

� "Enhanced Threading Support"

� "Co-Located Object Support"

Increased RMI Message Throughput
Using ORMI, OC4J can process at a very high transaction rate. This is reflected in
Oracle's SpecJ Application Server benchmarks at

http://www.spec.org/

Note: For the OC4J 10g Release 2 (10.1.2) implementation, load
balancing and failover are supported only for ORMI, not IIOP.

Configuring OC4J for RMI

5-2 Oracle Application Server Containers for J2EE Services Guide

One way ORMI achieves this performance is by using messages that are much smaller
than IIOP messages. Smaller messages take less bandwidth to send and receive, and
less processing time to encode and decode. ORMI message size is further reduced by
optimizing how much state information is exchanged between client and server. Using
ORMI, some state is cached on the server so that it does not need to be transmitted in
every RMI call. This does not violate the RMI requirement to be stateless because in
the event of a failover, the client code resends all the state information required by the
new server.

Enhanced Threading Support
ORMI is tightly coupled with the OC4J threading model to take full advantage of its
queuing, pooling, and staging capabilities.

ORMI uses one thread per client. For multi-threaded clients, OC4J multiplexes each
call through one connection. However, OC4J does not serialize them, so multiple
threads do not block each other.

This feature ensures that each client (single-threaded or multi-threaded) has one
connection to the remote server.

Co-Located Object Support
For co-located objects, RMI/ORMI detects the co-located scenario and avoids the
extra, unnecessary socket call.

The same is true when the JNDI registry is co-located.

Client-Side Requirements
To access EJBs, do the following on the client-side:

1. Download the oc4j_client.zip file from

http://otn.oracle.com/software/products/ias/devuse.html

2. Unzip it into a client-side directory (for example, d:\oc4jclient)

3. Add d:\oc4jclient\oc4jclient.jar to your CLASSPATH

The oc4j_client.zip file contains all the JAR files required by the client (including
oc4jclient.jar and optic.jar). These JAR files contain the classes necessary for
client interaction. You must add only oc4jclient.jar to your CLASSPATH
,because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

If you download this file into a browser, then you must grant certain permissions as
described in the "Granting Permissions" section of the Security chapter in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Configuring OC4J for RMI
You can configure OC4J for RMI in one of two ways:

� Configuring RMI Using Oracle Enterprise Manager 10g

� Configuring RMI Manually

Oracle recommends that you configure OC4J using the Oracle Enterprise Manager 10g.

After OC4J is configured for RMI, you must specify RMI properties as described in
"RMI Configuration Files" on page 5-7.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-3

Configuring RMI Using Oracle Enterprise Manager 10g
Oracle recommends that you configure OC4J to use RMI by using Oracle Enterprise
Manager 10g as follows:

1. Navigate to an OC4J instance in which you want to allow access to applications
through RMI.

Figure 5–1 shows an OC4J instance called home.

Figure 5–1 Oracle Enterprise Manager 10g System Components

This illustration shows a screen shot listing the various system components: Home,
HTTP Server, JServ, OC4J EM, OID, and Web Cache.

1. Click the OC4J instance name.

2. Click the Administration tab.

3. Click Server Properties.

4. By default, RMI is disabled in an Oracle Application Server environment. To
enable RMI, set a unique RMI port (or port range) for each OC4J instance by
entering the value in the RMI Ports field, as shown in Figure 5–2.

Figure 5–2 Oracle Enterprise Manager 10g Server Properties Port Configuration

1. Click Apply.

Configuring OC4J for RMI

5-4 Oracle Application Server Containers for J2EE Services Guide

2. Click the Back button on your browser.

3. Click Replication Properties.

4. Check the Replicate State field as shown in Figure 5–3.

The remaining attributes on the EJB Applications screen are ignored if Replicate
State is not checked.

Figure 5–3 Oracle Enterprise Manager 10g Replication Properties

1. Configure the RMI Server Host field as shown in Figure 5–3.

Enter a particular host name or IP address from which your server will accept RMI
requests. The OC4J server accepts only RMI requests from this particular host.

2. Click Apply.

Configuring RMI Manually
Oracle recommends that you configure OC4J using the Oracle Enterprise Manager 10g
as described in "Configuring RMI Using Oracle Enterprise Manager 10g" on page 5-3.
If you choose to manually configure RMI, you must:

1. Edit the property file server.xml. See "Editing server.xml" on page 5-5.

2. Choose the configuration files appropriate for your environment:

� In an OC4J standalone environment, edit the rmi.xml file (see "Editing
rmi.xml" on page 5-5) only.

� In an Oracle Application Server environment, edit both the rmi.xml file (see
"Editing rmi.xml" on page 5-5) and the opmn.xml file (see "Editing opmn.xml"
on page 5-7).

Note: The other attributes on the Replication Properties window
apply only to EJB clustering. For details, see the section "Configure
the Multicast Address for EJB Clustering" in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-5

Editing server.xml
Your server.xml file must specify the path name of the RMI configuration file in the
<rmi-config> element. Here is the syntax:

<rmi-config path="RMI_PATH" />

The usual RMI_PATH is ./rmi.xml; you can name the file whatever you like.

In an Oracle Application Server environment only, apply changes by running the
following on the Oracle Application Server command line:

dcmctl updateConfig

Editing rmi.xml
Edit the rmi.xml file to specify which host, port, and user name and password to use
to connect to (and accept connections from) remote RMI servers by configuring an
rmi-server element.

To configure the rmi.xml file:

1. Add an rmi-server element for this local RMI server.

For example:

<rmi-server host="hostname" port="port">
</rmi-server>

Here are the user-replaceable attributes of the <rmi-server> element:

� hostname: the host name or IP address from which the RMI server accepts
RMI requests. If you omit this attribute, the RMI server accepts RMI requests
from any host.

� port: the port number on which the RMI server listens for RMI requests.

2. Configure the rmi-server element with zero or more server elements that each
specify a remote (point-to-point) RMI server that your application can contact over
RMI.

For example:

Note: In an Oracle Application Server environment, opmn selects
an RMI port for each OC4J instance from the range of RMI ports
defined in the opmn.xml file (see "Editing opmn.xml" on page 5-7);
the rmi.xml file rmi-server element port attribute is ignored.

Manual changes to configuration files in an Oracle Application
Server environment are not applied until you synchronize the
configuration repository by running the following on the Oracle
Application Server command line: dcmctl updateConfig

Note: In an OC4J standalone environment, if you omit this
attribute, it defaults to 23791.

In an Oracle Application Server environment, opmn selects an RMI
port for each OC4J instance from the range of RMI ports defined in
the opmn.xml file (see "Editing opmn.xml" on page 5-7); the
rmi-server element port attribute is ignored.

Configuring OC4J for RMI

5-6 Oracle Application Server Containers for J2EE Services Guide

<rmi-server host="hostname" port="port">
<server host="serverhostname" username="username" port="serverport"
password="password"/>

</rmi-server>

The host attribute is required; the remaining attributes are optional. Here are the
user-replaceable attributes of the server element:

� serverhostname: the host name or IP address on which the remote RMI
server listens for RMI requests

� username: the user name of a valid principal on the remote RMI server

� serverport: the port number on which the remote RMI server listens for
RMI requests

� password: the password used by the principal username

3. Configure the rmi-server element with zero or more log elements that each
specify a file to which RMI-specific notifications are written.

For example, using the file element:

<rmi-server host="hostname" port="port">
<log>

<file path="logfilepathname" />
</log>

</rmi-server>

Or using the odl element:

<rmi-server host="hostname" port="port">
<log>

<odl path="odlpathname" max-file-size="size" max-num-files="num"/>
</log>

</rmi-server>

You can use either the file element or the odl element (but not both).

Here are the user-replaceable attributes of the log element:

� odlpathname: the path and folder name of the log folder for this area. You
can use an absolute path or a path relative to the J2EE_HOME/config
directory. This denotes where the RMI log files will reside.

� size: the maximum size in bytes of each individual log file.

� num: the maximum number of log files.

� logfilepathname: the path name of a log file (logfilepathname) to
which the server writes all RMI requests.

The <odl> element is new in the OC4J 10g Release 2 (10.1.2) implementation. The
ODL log entries are each written out in XML format in its respective log file. The
log files have a maximum limit. When the limit is reached, the log files are
overwritten.

When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at 1. The first log message starts
the log file log1.xml. When the log file size maximum is reached, the second log
file, named log2.xml, is opened to continue the logging. When the last log file is
full, the first log file, log1.xml, is erased and a new one is opened for the new
messages. Thus, your log files are constantly rolling over and do not encroach on
your disk space.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-7

For more information about ODL logging, see the Oracle Application Server
Containers for J2EE User’s Guide.

4. In an Oracle Application Server environment only, apply changes by running the
following on the Oracle Application Server command line:

dcmctl updateConfig

Editing opmn.xml
In an Oracle Application Server environment, edit the opmn.xml file to specify the
port range on which this local RMI server listens for RMI requests.

To configure the opmn.xml file:

1. Configure the rmi port range using the port id="rmi" element as shown in the
following example opmn.xml file excerpt:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="ajp" range="3301-3400" />
<port id="rmi" range="3101-3200" />
<port id="jms" range="3201-3300" />
<process-set id="default-island" numprocs="1"/>

</process-type>
</ias-component>

For more information on configuring the opmn.xml file, see the Oracle
Application Server Administrator’s Guide.

2. Apply changes by running the following on the Oracle Application Server
command line:

dcmctl updateConfig

RMI Configuration Files
Before EJBs can communicate, you must configure the parameters in the configuration
files listed in Table 5–1.

JNDI Properties for RMI
This section summarizes JNDI properties specific to RMI/ORMI. For details, see
"Accessing the EJB" in the EJB Primer chapter in Oracle Application Server Containers
for J2EE Enterprise JavaBeans Developer’s Guide.

The following RMI/ORMI properties are controlled by the jndi.properties file:

� java.naming.provider.url (see "Naming Provider URL" on page 5-8)

� java.naming.factory.initial (see "Context Factory Usage" on page 5-9)

Table 5–1 RMI Configuration Files

Context File Description

Server server.xml The <sep-config> element in this file specifies the path
name, normally internal-settings.xml, for the
server extension provider properties. Example:

<sep-config path="./internal-settings.xml">

Application jndi.properties This file specifies the URL of the initial naming context
used by the client. See "JNDI Properties for RMI" on
page 5-7.

Configuring OC4J for RMI

5-8 Oracle Application Server Containers for J2EE Services Guide

Naming Provider URL
Use the following syntax to set thejava.naming.provider.url:

<prefix>://<host>:<port>:<oc4j_instance>/<application-name>

Table 5–2 describes arguments used in this syntax.

For example:

java.naming.provider.url=opmn:ormi://localhost:oc4j_inst1/ejbsamples

Using the opmn Request Port

In Oracle Application Server 10g Release 2 (10.1.2), you can specify the port defined for
the request attribute of the notification-server element’s port element
configured in the opmn.xml file (default: 6003). When opmn receives an RMI request

Table 5–2 Naming Provider URL

Variable Description

prefix Use opmn:ormi for Oracle Application Server applications.

Use ormi for standalone OC4J applications.

Use http:ormi for applications that use HTTP tunneling (see
"Configuring ORMI Tunneling through HTTP" on page 5-11).

Use corbaname for applications that must interoperate with non-OC4J
containers (see "The corbaname URL" on page 6-10).

host For Oracle Application Server applications, the name of the OPMN
host as defined in the opmn.xml file. Although OPMN is often located
on the same node as the OC4J instance, specify the host name in case it
is located on another machine.

For standalone OC4J applications, the port number defined by the
rmi.xml file rmi-server element host attribute.

port In Oracle Application Server 10g Release 2 (10.1.2), when the
opmn:ormi prefix is used, specify the request port on which the
opmn process is listening, and the opmn process will forward RMI
requests to the RMI port that it selected for the appropriate OC4J
instance (see "Using the opmn Request Port" on page 5-8). If omitted,
the default request port value 6003 is used.

In Oracle Application Server implementations before 10g Release 2
(10.1.2), when the ormi prefix is used, you must specify the RMI port
that opmn selected for your OC4J instance (see "Using opmnctl to Show
the Selected RMI Port" on page 5-9).

For standalone OC4J applications, when the ormi prefix is used, you
must specify the port number defined by the rmi.xml file
rmi-server element port attribute.

For applications that use HTTP tunneling and use the http:ormi
prefix, see "Configuring ORMI Tunneling through HTTP" on page 5-11
for information on what port to specify.

For applications that must interoperate with non-OC4J containers and
use the corbaname prefix, see "The corbaname URL" on page 6-10 for
information on what port to specify.

oc4j_instance For Oracle Application Server applications, the name of the OC4J
instance as defined in the Enterprise Manager.

For standalone OC4J applications, this is not applicable.

application-n
ame

The name of your application.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-9

on its request port, it forwards the RMI request to the RMI port that it selected for
the appropriate OC4J instance.

For example, consider the following opmn.xml file excerpt:

<notification-server>
<port local="6100" remote="6200" request="6004"/>
<log-file path="$ORACLE_HOME/opmn/logs/ons.log" level="4"

rotation-size="1500000"/>
<ssl enabled="true" wallet-file="$ORACLE_HOME/opmn/conf/ssl.wlt/default"/>

</notification-server>

In this example, the port defined for the request attribute of the
notification-server element’s port element is 6004, so you would use 6004 as
the port in your JNDI naming provider URL.

For an example of how this URL is used, see "OC4J in Oracle Application Server Since
9.0 4" on page 5-11.

Using opmnctl to Show the Selected RMI Port To determine what RMI port has been
selected by opmn for each OC4J instance, use the following command on the host on
which opmn is running:

opmnctl status -l

This outputs a table of data with one row per OC4J instance.

For example (some columns are omitted for clarity):

Processes in Instance: core817.dsunrdb22.us.oracle.com
-------------------+--------------------+-------+ ... +------
ias-component | process-type | pid | ... | ports
-------------------+--------------------+-------+ ... +------
WebCache | WebCacheAdmin | 28821 | ... | administration:4000
WebCache | WebCache | 28820 | ... |
statistics:4002,invalidation:4001,http:7777
OC4J | home | 2012 | ... | iiop:3401,jms:3701,rmi:3201,ajp:3000
HTTP_Server | HTTP_Server | 28818 | ... | http2:7200,http1:7778,http:7200
dcm-daemon | dcm-daemon | 28811 | ... | N/A
LogLoader | logloaderd | N/A | ... | N/A

The ports column of this table lists the ports selected by opmn. For example:

iiop:3401,jms:3701,rmi:3201,ajp:3000

In this example, opmn has selected port 3201 for RMI on the OC4J instance, with
process id 2012, so you would use 3201 as the port in your JNDI naming provider URL
for this OC4J instance.

Context Factory Usage
The initial context factory creates the initial context class for the client.

Set thejava.naming.factory.initial property to one of the following:

� com.evermind.server.ApplicationClientInitialContextFactory

� com.evermind.server.ApplicationInitialContextFactory

� com.evermind.server.RMIInitialContextFactory.

The ApplicationClientInitialContextFactory is used when looking up
remote objects from standalone application clients. It uses the refs and
ref-mappings found in application-client.xml and

Configuring OC4J for RMI

5-10 Oracle Application Server Containers for J2EE Services Guide

orion-application-client.xml. It is the default initial context factory when the
initial context is instantiated in a Java application.

The RMIInitialContextFactory is used when looking up remote objects between
different containers using the ORMI protocol.

The type of initial context factory that you use depends on who the client is:

� If the client is a pure Java client outside the OC4J container, then use the
ApplicationClientInitialContextFactory class.

� If the client is an EJB or servlet client within the OC4J container, then use the
ApplicationInitialContextFactory class. This is the default class; thus,
each time you create a new InitialContext without specifying an initial
context factory class, your client uses the
ApplicationInitialContextFactory class.

� If the client is an administrative class that is going to manipulate or traverse the
JNDI tree, thenuse the RMIInitialContextFactory class.

� If the client is going to use DNS load balancing, then use the
RMIInitialContextFactory class.

Example Lookups
This section provides examples of how to look up an EJB in:

� OC4J Standalone

� OC4J in Oracle Application Server: Releases Before 9.0.4

� OC4J in Oracle Application Server Since 9.0 4

OC4J Standalone
The following example shows how to look up an EJB called MyCart in the J2EE
application ejbsamples deployed in a standalone OC4J instance. The application is
located on a node named localhost, configured to listen on RMI port 23792:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL, "ormi://localhost:23792/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

OC4J in Oracle Application Server: Releases Before 9.0.4
In an OC4J instance in an Oracle Application Server environment, RMI ports are
assigned dynamically, and JAZNUserManager is the default user manager.

Note: If you access an EJB in an application from an EJB in a
different application, then you cannot use the
RMIInitialContextFactory object. In this scenario, you must use a
parent-child relationship between these applications, and you must
use the default initial context factory object.

Configuring ORMI Tunneling through HTTP

Oracle Remote Method Invocation 5-11

In Oracle Application Server releases before 10g Release 2 (10.1.2), if you are accessing
an EJB in Oracle Application Server, you have to know the RMI ports assigned by
opmn. If you have only one JVM for your OC4J instance, then you have to limit the
port ranges for RMIs to a specific number, for example: 3101-3101.

The following example shows how to look up an EJB called MyCart in the J2EE
application ejbsamples in an Oracle Application Server environment in releases
before 10g Release 2 (10.1.2). The application is located on a node named localhost
configured to listen on RMI port 3101:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL, "ormi://localhost:3101/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

OC4J in Oracle Application Server Since 9.0 4
You can use the following type of lookup in the URL to look up an EJB in an Oracle
Application Server environment without needing to know the RMI port assigned to
your OC4J instance.

The following example shows how to look up the EJB named MyCart in the J2EE
application ejbsamples in an Oracle Application Server 10g Release 2 (10.1.2)
environment. The EJB application is located on a node named localhost. The
differences between this invocation and the standalone invocation are: the opmn prefix
to ormi, the specification of the OC4J instance name oc4j_inst1 to which the EJB
application is deployed, and no requirement to specify the RMI port:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL,"opmn:ormi://localhost:oc4j_inst1/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

Configuring ORMI Tunneling through HTTP
When EJBs communicate across firewalls, they can use tunneling to transmit RMI
across HTTP. This tunneling is supported only with RMI/ORMI; you cannot perform
HTTP tunneling with RMI/IIOP.

To configure OC4J to support RMI tunneling, do the following:

1. Verify that the following entries are in global-web-application.xml (the
default installation has these entries preconfigured):

<servlet>
<servlet-name>rmi</servlet-name>
<servlet-class>com.evermind.server.rmi.RMIHttpTunnelServlet
</servlet-class>

</servlet>
<servlet>

<servlet-name>rmip</servlet-name>

Configuring ORMI Tunneling through HTTP

5-12 Oracle Application Server Containers for J2EE Services Guide

<servlet-class>com.evermind.server.rmi.RMIHttpTunnelProxyServlet
</servlet-class>

</servlet>

2. Modify the JNDI provider URL (see "JNDI Properties for RMI" on page 5-7). The
JNDI provider URL for accessing the OC4J EJB server takes the form:

ormi://hostname:ormi_port/appName

� To direct tunneling requests to the home instance of OC4J in an Oracle

Application Server or standalone environment, set the URL to:

http:ormi://hostname:http_port/appName

� To direct tunneling requests to an instance mapped in an OC4J mount point in
an Oracle Application Server environment only, configure oc4j_mount (see
"Configuring an OC4J Mount Point" on page 5-12) and set the URL to:

http:ormi://hostname:http_port/appName@oc4j_mount

3. If your HTTP traffic goes through a proxy server, specify the proxyHost and
(optionally) proxyPort in the command line that starts the EJB client:

-Dhttp.proxyHost=proxy_host -Dhttp.proxyPort=proxy_port

Configuring an OC4J Mount Point
An OC4J mount point maps an OC4J instance to URLs that start with a specified path
name. Oracle Enterprise Manager 10g specifies this mapping in the OC4J
mod-oc4j.conf file at deployment time. This is an example of such a mapping:

Oc4jMount /xyz inst1
Oc4jMount /xyz/* inst1

In this example, the OC4J instance inst1 receives all requests with URLs that start
with /xyz.

An OC4J mount point is used to direct tunneling requests to an OC4J instance other
than the home instance of OC4J.

The first part of "Configuring ORMI Tunneling through HTTP" on page 5-11 shows the
following URL:

http:ormi://hostname:http_port/appName@oc4j_mount

In this URL, appName is the name of the application (defined by
default-web-site.xml attribute name), not the application context (defined by
default-web-site.xml attribute application).

Make sure that the context root for appName in the default-web-site.xml file is
the same as that in the mod-oc4j.conf file. In this example, the application name is

Note: http_port is the HTTP port, not the ORMI port (if
omitted, it defaults to 80), and appName is the name of the
application, not the application context defined in web-site.xml.

Note: If omitted, proxy_port defaults to 80.

Configuring ORMI Tunneling through HTTP

Oracle Remote Method Invocation 5-13

demoApp and its context root is /xyz. The actual line in the
default-web-site.xml file for this application would be:

<default-web-app application="default" name="demoApp" root="/xyz" />

Therefore, in this example, to direct tunneling requests from defaultWebApp to OC4J
instance inst1, the URL would be:

http:ormi://hostname:http_port/defaultWebApp@xyz

The mod-oc4j.conf file is a component of the Oracle HTTP server. For more
information, see the Oracle HTTP Server Administrator’s Guide.

The default-web-site.xml file is an OC4J configuration file. For more
information, see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.

Caution.: Do not manually modify these configuration files. The
Oracle Enterprise Manager 10g internally makes these changes
when an application is deployed. Manual modification of these files
may put the repository out of synchronization.

Configuring ORMI Tunneling through HTTP

5-14 Oracle Application Server Containers for J2EE Services Guide

J2EE Interoperability 6-1

6
J2EE Interoperability

This chapter describes Oracle Application Server Containers for J2EE (OC4J) support
for allowing EJBs to invoke one another across different containers using the standard
Remote Method Invocation (RMI)/Internet Inter-Orb Protocol (IIOP).

This chapter covers the following topics:

� Introduction to RMI/IIOP

� Switching to Interoperable Transport

� Configuring OC4J for Interoperability

Introduction to RMI/IIOP
Java Remote Method Invocation (RMI) enables you to create distributed Java-based to
Java-based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines (JVMs), possibly on different hosts.

Version 2.0 of the EJB specification adds features that make it easy for EJB-based
applications to invoke one another across different containers. You can make your
existing EJB interoperable without changing a line of code: simply edit the bean’s
properties and redeploy. "Switching to Interoperable Transport" on page 6-3 discusses
redeployment details.

EJB interoperability consists of the following:

� Transport interoperability, through CORBA IIOP (Internet Inter-ORB Protocol,
where ORB is Object Request Broker)

� Naming interoperability, through the CORBA CosNaming Service (CORBA Object
Service Naming, part of the OMG CORBA Object Service specification)

� Security interoperability, through Common Secure Interoperability Version 2
(CSIv2)

� Transaction interoperability, through the CORBA Transaction Service (OTS)

OC4J furnishes transport, naming, and security interoperability.

Transport
By default, OC4J EJBs use RMI/Oracle Remote Method Invocation (ORMI), a
proprietary protocol, to communicate as described in Chapter 5, "Oracle Remote
Method Invocation".

Introduction to RMI/IIOP

6-2 Oracle Application Server Containers for J2EE Services Guide

In OC4J, you can easily convert an EJB to use RMI/IIOP, making it possible for EJBs to
invoke one another across different EJB containers. This chapter describes configuring
and using RMI/IIOP.

Naming
OC4J supports the CORBA CosNaming service. OC4J can publish EJBHome object
references in a CosNaming service and provides a JNDI CosNaming implementation
that allows applications to look up JNDI names using CORBA. You can write your
applications using either the JNDI or CosNaming APIs.

Security
OC4J supports Common Secure Interoperability Version 2 (CSIv2), which specifies
different conformance levels; OC4J complies with the EJB specification, which requires
conformance level 0.

Transactions
The EJB2.0 specification stipulates an optional transactional interoperability feature.
Conforming implementations must choose one of the following:

� Transactionally interoperable: transactions are supported between beans that are
hosted in different J2EE containers.

� Transactionally noninteroperable: transactions are supported only among beans in
the same container.

The current release of OC4J is transactionally noninteroperable, so when a transaction
spans EJB containers, OC4J raises a specified exception.

Client-Side Requirements
To access EJBs, you must do the following on the client-side:

1. Download the oc4j_client.zip file from

http://otn.oracle.com/software/products/ias/devuse.html

2. Unzip it into a client-side directory. (for example, d:\oc4jclient).

3. Add d:\oc4jclient\oc4jclient.jar to your CLASSPATH.

The oc4j_client.zip file contains all the JAR files required by the client (including
oc4jclient.jar and optic.jar). These JAR files contain the classes necessary for
client interaction. You need to add only oc4jclient.jar to your CLASSPATH,
because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

If you download this file into a browser, you must grant certain permissions as
described in the "Granting Permissions" section of the Security chapter in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Note: For the OC4J 10g Release 2 (10.1.2) implementation, load
balancing and failover are supported only for ORMI, not IIOP.

Switching to Interoperable Transport

J2EE Interoperability 6-3

The rmic.jar Compiler
To invoke or be invoked by CORBA objects, RMI objects must have corresponding
stubs, skeletons, and Internet Description Language (IDL). Use the rmic.jar
compiler to generate stubs and skeletons from Java classes or to generate IDL, as
described in "Configuring OC4J for RMI" on page 5-2.

For use with RMI/IIOP, be sure to compile using the -iiop option.

Switching to Interoperable Transport
In OC4J, EJBs use RMI/ORMI, a proprietary protocol, to communicate (as described in
Chapter 5, "Oracle Remote Method Invocation"). You can convert an EJB to use
RMI/IIOP, making it possible for EJBs to invoke one another across EJB containers.

The following four sections provide details on making the conversions.

Simple Interoperability in a Standalone Environment
Follow these steps to convert an EJB to use RMI/IIOP in a standalone environment:

1. Restart OC4J with the -DGenerateIIOP=true flag.

2. Deploy your application using admin.jar. You must obtain the client's stub JAR
file, using the -iiopClientJar switch. Here is an example:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome -deploy -file
filename
 -deployment_name application_name -iiopClientJar stub_jar_filename

3. Change the client’s classpath to include the stub JAR file that was obtained
during deployment, by running admin.jar with the -iiopClientJar switch.

A copy of the stub JAR file that was generated by OC4J can also be found in the
server's deployment directory at:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

4. Edit the client’s JNDI property java.naming.provider.url to use a
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"The corbaname URL" on page 6-10.

Note: RMI/IIOP support is based on the CORBA 2.3.1
specification. Applications that were compiled using earlier releases
of CORBA may not work correctly.

Note: You must use the -iiopClientJar switch to enable
interoperability (IIOP) for the application you are deploying. In
OC4J, interoperability is enabled on a per-application basis.

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

6-4 Oracle Application Server Containers for J2EE Services Guide

5. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces. See "Configuring OC4J for Interoperability"
on page 6-12 for a discussion of command-line options.

Advanced Interoperability in a Standalone Environment
This section expands upon the preceding section, describing how to convert an EJB to
use RMI/IIOP in a standalone environment.

1. Specify CSIv2 security policies for the bean in orion_ejb_jar.xml and in
internal_settings.xml. See "CSIv2 Security Properties (orion-ejb-jar.xml)" on
page 6-16 and "EJB Server Security Properties (internal-settings.xml)" on page 6-12
for details.

2. Restart OC4J with the -DGenerateIIOP=true flag.

3. Deploy your application using admin.jar. You must obtain the client's stub JAR
file using the -iiopClientJar switch. Here is an example:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome -deploy -file
filename
 -deployment_name application_name -iiopClientJar stub_jar_filename

4. Change the client’s classpath to include the stub JAR file that was obtained
during deployment, by running admin.jar with the -iiopClientJar switch.

You can also find a copy of the stub JAR file that was generated by OC4J in the
server's deployment directory at:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

5. Edit the client’s JNDI property java.naming.provider.url to use a
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"The corbaname URL" on page 6-10.

6. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces. See "Configuring OC4J for Interoperability"
on page 6-12 for a discussion of command-line options.

Simple Interoperability in Oracle Application Server Environment
You can access an EJB using RMI/IIOP in an Oracle Application Server environment
in two ways:

� Configuring for Interoperability Using Oracle Enterprise Manager 10g

� Configuring for Interoperability Manually

Note: You must use the -iiopClientJar switch to enable
interoperability (IIOP) for the application that you are deploying. In
OC4J, interoperability is enabled on a per-application basis.

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

J2EE Interoperability 6-5

Configuring for Interoperability Using Oracle Enterprise Manager 10g
You can configure an EJB to be accessible by means of RMI/IIOP in an Oracle
Application Server environment by using Oracle Enterprise Manager 10g. Follow these
steps:

1. Navigate to an OC4J instance in which you want to allow access to applications
through RMI/IIOP. Figure 6–1 shows an OC4J instance named home.

Figure 6–1 Oracle Enterprise Manager 10g System Components

This illustration shows a screen that lists the Enterprise Manager systerm components:
Home, HTTP Server, JServ, OC4J EM , OID, and WebCache.

1. Click Server Properties in the Administration section for this OC4J instance.
Figure 6–2 illustrates this.

Figure 6–2 Oracle Enterprise Manager 10g Server Properties

By default, RMI/IIOP is disabled in an Oracle Application Server environment. To
enable RMI/IIOP, ensure that a unique IIOP port (or port range) exists for each OC4J
instance by entering the value in the IIOP ports field, as shown in Figure 6–3. Then
click Apply.

Switching to Interoperable Transport

6-6 Oracle Application Server Containers for J2EE Services Guide

Figure 6–3 Oracle Enterprise Manager 10g Port Configuration

Use the Oracle Enterprise Manager 10g deployment wizard to deploy your
application.

Enable generation of client IIOP stubs for this application by selecting Generate IIOP
stubs, as shown in Figure 6–4.

Figure 6–4 Oracle Enterprise Manager 10g Stub Generation

Finish deploying your application using the Oracle Enterprise Manager 10g
deployment wizard.

Configuring for Interoperability Manually
Follow these steps to manually configure an EJB for remote access by RMI/IIOP in an
Oracle Application Server environment:

1. By default, RMI/IIOP is disabled in an Oracle Application Server environment. To
enable RMI/IIOP, confirm in OPMN's configuration file, J2EE_
HOME/opmn/conf/opmn.xml, that a unique IIOP port (or port range) exists for
each OC4J instance to be managed by OPMN.

Switching to Interoperable Transport

J2EE Interoperability 6-7

Here is an example:

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J">
 <port id="ajp" range="3000-3100"/>
 <port id="rmi" range="23791-23799"/>
 <port id="jms" range="3201-3300"/>
 <port id="iiop" range="3401-3500"/>
 <process-set id="default_island" numprocs="1"/>
 </process-type>
 </ias-component>

2. If you modify any configuration file manually, you must update the configuration
with dcmctl. Use the following command:

dcmctl updateConfig

3. Using opmnctl or Oracle Enterprise Manager 10g, restart all OC4J instances that
are managed by OPMN.

For information on opmnctl, use the following command:

opmnctl help

To stop and restart OPMN and all OPMN-managed processes, first use the
following command:

opmnctl stopall

Then use this command:

opmnctl startall

For information on Oracle Enterprise Manager 10g, see the Oracle Application
Server Containers for J2EE User’s Guide.

4. Deploy your application using dcmctl, specifying the -enableIIOP option.
Here is an example:

dcmctl deployApplication -f filename -a application_name -enableIIOP

5. Change the client’s classpath to include the stub JAR file that was generated by
OC4J. This file is normally found in the server's deployment directory:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

6. Edit the client’s JNDI property java.naming.provider.url to use an OPMN or
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"The corbaname URL" on page 6-10. For details on the OPMN URL, see "The
OPMN URL" on page 6-11.

Note: You must specify an IIOP port (or port range) for each OC4J
instance in which interoperability is to be enabled. Failure to do so
causes OC4J to not configure an IIOP listener, thus automatically
disabling interoperability, regardless of the configuration in the
internal-settings.xml file of OC4J.

Switching to Interoperable Transport

6-8 Oracle Application Server Containers for J2EE Services Guide

7. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces. See "Configuring OC4J for Interoperability"
on page 6-12 for a discussion of command-line options.

Advanced Interoperability in Oracle Application Server Environment
You can access an EJB using RMI/IIOP in an Oracle Application Server environment
in two ways:

� Configuring for Interoperability Using Oracle Enterprise Manager 10g

� Configuring for Interoperability Manually

Configuring for Interoperability Using Oracle Enterprise Manager 10g
The advanced configuring for interoperability using Oracle Enterprise Manager 10g
differs from the simple configuring described under "Configuring for Interoperability
Using Oracle Enterprise Manager 10g" on page 6-5 only in the specification of ports.
That is, you must specify an iiop, iiops1, and iiops2 port (or port range) for each
OC4J instance in which interoperability with CSIv2 is to be enabled. Failure to do so
causes OC4J to not configure an IIOP listener, thus automatically disabling
interoperability, regardless of the configuration in the internal-settings.xml file
of OC4J. Figure 6–5 shows this.

Figure 6–5 Oracle Enterprise Manager 10g Port Specifications

Configuring for Interoperability Manually
This section expands upon the preceding section, describing how to convert an EJB to
use RMI/IIOP in an Oracle Application Server environment.

1. Specify CSIv2 security policies for the bean in orion_ejb_jar.xml and in
internal_settings.xml. See "CSIv2 Security Properties (orion-ejb-jar.xml)" on

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

J2EE Interoperability 6-9

page 6-16 and "EJB Server Security Properties (internal-settings.xml)" on page 6-12
for details.

2. By default, RMI/IIOP is disabled in an Oracle Application Server environment. To
enable RMI/IIOP, confirm in the OPMN configuration file, J2EE_
HOME/opmn/conf/opmn.xml, that a unique iiop, iiops1, and iiops2 port (or
port range) exists for each OC4J instance to be managed by OPMN. These are the
port meanings:

iiop—standard IIOP port

iiops1—IIOP/SSL port used for server-side authentication only

iiops2—IIOP/SSL port used for both client and server authentication

Here is an example:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="ajp" range="3000-3100"/>
<port id="rmi" range="23791-23799"/>
<port id="jms" range="3201-3300"/>
<port id="iiop" range="3401-3500"/>
<port id="iiops1" range="3501-3600"/>
<port id="iiops2" range="3601-3700"/>
<process-set id="default_island" numprocs="1"/>

</process-type>
</ias-component>

3. Using opmnctl or Oracle Enterprise Manager 10g, restart all OC4J instances that
are managed by OPMN.

For information on opmnctl, use the following command:

opmnctl help

To stop and restart OPMN and all OPMN-managed processes, first use the
following command:

opmnctl stopall

Then use this command:

opmnctl startall

Note: You must specify an iiop, iiops1, and iiops2 port (or
port range) for each OC4J instance in which interoperability with
CSIv2 is to be enabled. Failure to do so causes OC4J to not
configure an IIOP listener, thus automatically disabling
interoperability, regardless of the configuration in the
internal-settings.xml file of OC4J.

Note: If you choose to configure your client’s JNDI property
java.naming.provider.url to use an OPMN URL, then your
client cannot connect to iiops1 or iiops2 ports because
OPMN-allocated ports are not reported to OC4J.

Switching to Interoperable Transport

6-10 Oracle Application Server Containers for J2EE Services Guide

For information on Oracle Enterprise Manager 10g, see the Oracle Application
Server Containers for J2EE User’s Guide.

4. Deploy your application using dcmctl, specifying the -enableIIOP option.
Here is an example:

dcmctl deployApplication -f filename -a application_name -enableIIOP

5. Change the client’s classpath to include the stub JAR file that was generated by
OC4J. This is normally found in the server's deployment directory:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

6. Edit the client’s JNDI property java.naming.provider.url to use an OPMN or
corbaname URL instead of an ormi URL. For details on the corbaname URL, see
"The corbaname URL" on page 6-10. For details on the OPMN URL, see "The
OPMN URL" on page 6-11.

7. (Optional) To make the bean accessible to CORBA applications, run rmic.jar to
generate IDL describing its interfaces. See "Configuring OC4J for Interoperability"
on page 6-12 for a discussion of command-line options.

The corbaname URL
To interoperate, an EJB must look up other beans using CosNaming. This means that
the URL for looking up the root NamingContext must use the corbaname URL
scheme instead of the ormi URL scheme. This section discusses the corbaname
subset that EJB developers use most often. For a full discussion of the corbaname
scheme, see section 2.5.3 of the CORBA Naming Service specification. The corbaname
scheme is based on the corbaloc scheme, which section 13.6.10.1 of the CORBA
specification discusses.

The most common form of the corbaname URL scheme is:

corbaname::host[:port]

This corbaname URL specifies a conventional DNS host name or IP address, and a
port number. For example,

corbaname::example.com:8000

A corbaname URL can also specify a naming context by following the host and port
by # and NamingContext in string representation. The CosNaming service on the
specified host is responsible for interpreting the naming context.

corbaname::host[:port]#namingcontext

For example:

corbaname::example.com:8000#Myapp

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

J2EE Interoperability 6-11

The OPMN URL
This section describes OPMN URL details that are specific to RMI/IIOP. For general
information about the OPMN URL, see "JNDI Properties for RMI" on page 5-7.

In an Oracle Application Server environment, IIOP ports for all OC4J processes within
each Oracle Application Server instance are dynamically managed by OPMN. Because
of this, it may not be possible for clients to know the ports on which OC4J processes
are actively listening for IIOP requests. To enable clients to successfully make
RMI/IIOP requests in an Oracle Application Server environment without having to
know the IIOP ports for all active OC4J processes, modify the
jndi.naming.provider.url property (in the client’s jndi.properties file)
with a URL of the following format:

opmn:corbaname::opmn_host[:opmn_port]:]:OC4J_instance_name#naming_context

For example:

opmn:corbaname::dlsun74:6003:home#stateless

Exception Mapping
When EJBs are invoked over IIOP, OC4J must map system exceptions to CORBA
exceptions. Table 6–1 lists the exception mappings.

Invoking OC4J-Hosted Beans from a Non-OC4J Container
EJBs that are not hosted in OC4J must add the file oc4j_interop.jar to the
classpath to invoke OC4J-hosted EJBs. OC4J expects the other container to make the
HandleDelegate object available in the JNDI name space at

Notes:

� For the OC4J 10g Release 2 (10.1.2) implementation, load
balancing and failover are supported only for ORMI, not IIOP.

� If you use an OPMN URL, your client cannot connect to
iiops1 or iiops2 (ssl-port or
ssl-client-server-auth-port) ports.

Table 6–1 Java-CORBA Exception Mappings

OC4J System Exception CORBA System Exception

javax.transaction.

 TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.

TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.

InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN

Configuring OC4J for Interoperability

6-12 Oracle Application Server Containers for J2EE Services Guide

java:comp/HandleDelegate. The oc4j_interop.jar file contains the standard
portable implementations of home and remote handles, and metadata objects.

Configuring OC4J for Interoperability
To add interoperability support to your EJB, you must specify interoperability
properties. Some of these properties are specified when starting OC4J and others in
bean properties that are specified in deployment files.

Interoperability OC4J Flags
The following OC4J startup flags support RMI interoperability:

� -DGenerateIIOP=true generates new stubs and skeletons whenever you
redeploy an application.

� -Diiop.debug=true generates deployment-time debugging messages, most of
which have to do with code generation.

� -Diiop.runtime.debug=true generates runtime debugging messages.

Interoperability Configuration Files
Before EJBs can communicate, you must configure the parameters in the configuration
files listed in Table 6–2.

EJB Server Security Properties (internal-settings.xml)
You specify server security properties in the internal-settings.xml file.

Table 6–2 Interoperability Configuration Files

Context File Description

Server server.xml The <sep-config> element in this file
specifies the path name, normally
internal-settings.xml, for the server
extension provider properties. For example:

<sep-config path="./internal-settings.xml">

internal-settings.xml This file specifies server extension provider
properties that are specific to RMI/IIOP. See
"EJB Server Security Properties
(internal-settings.xml)" on page 6-12 for details.

Application orion-ejb-jar.xml The <ior-security-config> subentity of
the <session-deployment> and
<entity-deployment> entities specifies
Common Secure Interoperability Version 2
(CSIv2) security properties for the server.

See "CSIv2 Security Properties" on page 6-14 for
details

.

ejb_sec.properties This file specifies client-side security properties
for an EJB. See "EJB Client Security Properties
(ejb_sec.properties)" on page 6-17 for details.

jndi.properties This file specifies the URL of the initial naming
context used by the client. See "JNDI Properties
for Interoperability (jndi.properties)" on
page 6-18 for details.

Configuring OC4J for Interoperability

J2EE Interoperability 6-13

This file specifies certain properties as values within <sep-property> entities.
Table 6–3 contains a list of properties.

If OC4J is started by the Oracle Process Management Notification service (OPMN) in
an Oracle Application Server (as opposed to a standalone) environment, then ports
specified in internal-settings.xml are ignored. If OPMN is configured to disable
IIOP for a particular OC4J instance, then, even though IIOP may be enabled through
internal-settings.xml (as pointed to by server.xml), IIOP is not enabled.

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="false" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />

Notes:

� You cannot edit the internal-settings.xml file with the
Oracle Enterprise Manager 10g.

� If you configure your client’s JNDI property
java.naming.provider.url to use an OPMN URL, then
your client cannot connect to ssl-port and
ssl-client-server-auth-port ports because
OPMN-allocated ports are not reported to OC4J.

Table 6–3 EJB Server Security Properties

Property Meaning

port IIOP port number (defaults to 5555).

ssl true if IIOP/SSL is supported, false otherwise.

ssl-port IIOP/SSL port number (defaults to 5556). This
port is used for server-side authentication only. If
your application uses client and server
authentication, you also must set
ssl-client-server-auth-port.

ssl-client-server-auth-port Port used for client and server authentication
(defaults to 5557). This is the port on which OC4J
listens for SSL connections that require both client
and server authentication. If not set, OC4J listens
on ssl-port + 1 for client-side authentication.

keystore Not supported in release 10.1.2.

keystore-password Not supported in release 10.1.2.

trusted-clients Comma-separated list of hosts whose identity
assertions can be trusted. Each entry in the list
can be an IP address, a host name, a host name
pattern (for instance, *.example.com), or *. An
* alone means that all clients are trusted. The
default is to trust no clients.

truststore Not supported in release 10.1.2.

truststore-password Not supported in release 10.1.2.

Configuring OC4J for Interoperability

6-14 Oracle Application Server Containers for J2EE Services Guide

 <sep-property name="keystore" value="keystore.jks" />
 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

Here is the DTD for the internal-settings.xml file:

<!-- A server extension provider that is to be plugged in to the server.
-->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

CSIv2 Security Properties
CSIv2 is an Object Management Group (OMG) standard for a secure interoperable
wire protocol that supports authorization and identity delegation. Configure CSIv2
properties in three different locations:

� internal_settings.xml (see "CSIv2 Security Properties
(internal-settings.xml)" on page 6-14)

� orion-ejb-jar.xml (see "CSIv2 Security Properties (orion-ejb-jar.xml)" on
page 6-16)

� ejb_sec.properties (see "EJB Client Security Properties (ejb_sec.properties)"
on page 6-16)

CSIv2 Security Properties (internal-settings.xml)
This section discusses the semantics of the values that you set within the
<sep-property> element in the internal_settings.xml file. For details of
syntax, see "EJB Server Security Properties (internal-settings.xml)" on page 6-12.

To use the CSIv2 protocol with OC4J, you must both set ssl to true and specify an
IIOP/SSL port (ssl-port).

� If you do not set ssl to true, then CSIv2 is not enabled. Setting ssl to true
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

� If you do not specify an ssl-port, then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <ior-security-config>
entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, OC4J listens on two different sockets—one
for server authentication alone, and one for server and client authentication. You
specify the server authentication port within the <sep-property> element. The
server and client authentication listener uses the port number immediately following.

For SSL clients using server authentication alone, you can specify:

Note: Although the default value of port is one less than the
default value for ssl-port, this relationship is not required.

Configuring OC4J for Interoperability

J2EE Interoperability 6-15

� Truststore only

� Both keystore and truststore

� Neither

If you specify neither keystore nor truststore, then the handshake may fail if there are
no default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties (ejb_sec.properties)
If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file for the client runtime to
insert a security context and send the user name and password. You must also set
server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the
DistinguishedName from the client's certificate and then looks it up in the
corresponding user manager. It does not perform password authentication.

Trust Relationships
Two types of trust relationships exist:

� Clients trusting servers to transmit user names and passwords using non-SSL
connections

� Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers. See
Table 6–4, " EJB Client Security Properties" on page 6-17 for details. Servers list trusted
clients in the trusted-client property of the <sep-property> element in
internal-settings.xml. See "EJB Server Security Properties
(internal-settings.xml)" on page 6-12 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

� Presumed trust, in which the server presumes that the logical client is trustworthy,
even if the logical client has not authenticated itself to the server, and even if the
connection is not secure

� Authenticated trust, in which the target trusts the intermediate server, based on
authentication either at the transport level, or in the trusted-client list, or
both

Note: Server-side authentication takes precedence over a user
name and password.

Note: You can also configure the server both to require SSL
client-side authentication and to specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

Configuring OC4J for Interoperability

6-16 Oracle Application Server Containers for J2EE Services Guide

OC4J offers both kinds of trust. You configure trust using the bean’s
<ior-security-config> element in orion-ejb-jar.xml. See "CSIv2 Security
Properties (orion-ejb-jar.xml)" on page 6-16 for details.

CSIv2 Security Properties (orion-ejb-jar.xml)
This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies in its orion-ejb-jar.xml file. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> element, an <as-context> element, and
an <sas-context> element.

The <transport-config> Element
This element specifies the transport security level. Each element within
<transport-config> must be set to supported, required, or none. The setting
none means that the bean neither supports nor uses that feature; supported means
that the bean permits the client to use the feature; required means that the bean
insists that the client use the feature. The elements are:

� <integrity>: Is there a guarantee that all transmissions are received exactly as
they were transmitted?

� <confidentiality>: Is there a guarantee that no third party was able to read
transmissions?

� <establish-trust-in-target>: Does the server authenticate itself to the
client?

� <establish-trust-in-client>: Does the client authenticate itself to the
server?

The <as-context> element
This element specifies the message-level authentication properties.

� <auth-method>: must be set to either username_password or none. If set to
username_password, beans use user names and passwords to authenticate the
caller.

� <realm>: must be set to default at the current release.

� <required>: if set to true, the bean requires the caller to specify a user name
and password.

Notes:

� If you set <establish-trust-in-client> to required,
this overrides specifying username_password in
<as-context>. If you do this, you must also set the
<required> node value in the <as-context> section to
false; otherwise, access permission issues will arise.

� Setting any of the <transport-config> properties to
required means that the bean will use RMI/IIOP/SSL to
communicate.

Configuring OC4J for Interoperability

J2EE Interoperability 6-17

The <sas-context> element
This element specifies the identity delegation properties. It has one element,
<caller-propagation>, that can be set to supported, required, or none. If the
<caller-propagation> element is set to supported, then this bean accepts
delegated identities from intermediate servers. If it is set to required, then this bean
requires all other beans to transmit delegated identities. If set to none, this bean does
not support identity delegation.

Here is an example:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

DTD The DTD for the <ior-security-config> element is:

<!ELEMENT ior-security-config (transport-config?, as-context?
sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >
<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

EJB Client Security Properties (ejb_sec.properties)
Any client, whether running inside a server or not, has EJB security properties.
Table 6–4 lists the EJB client security properties controlled by the ejb_
sec.properties file. By default, OC4J searches for this file in the current directory
when running as a client, or in J2EE_HOME/config when running in the server. You
can specify this file’s location explicitly with -Dejb_sec_properties_
location=pathname.

Table 6–4 EJB Client Security Properties

Property Meaning

oc4j.iiop.keyStoreLoc The path name for the keystore.

oc4j.iiop.keyStorePass The password for the keystore.

Configuring OC4J for Interoperability

6-18 Oracle Application Server Containers for J2EE Services Guide

JNDI Properties for Interoperability (jndi.properties)
The following RMI/IIOP properties are controlled by the client’s jndi.properties
file:

� java.naming.provider.url may be an OPMN or a corbaname URL for the
bean to be interoperable. For details on corbaname URLs, see "The corbaname
URL" on page 6-10. For details on the OPMN URL, see "The OPMN URL" on
page 6-11.

� contextFactory can be either
ApplicationClientInitialContextFactory or the class
IIOPInitialContextFactory.

oc4j.iiop.trustStoreLoc The path name for the truststore.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side
authentication. If this property is set to true, you
must specify a keystore location and password.

oc4j.iiop.ciphersuites Which cipher suites are to be enabled. Here are the
valid cipher suites:

TLS_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_MD5

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC4_40_MD5

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

nameservice.useSSL Whether to use SSL when making the initial
connection to the server.

client.sendpassword Whether to send user name and password in clear
form (unencrypted) in the service context when
not using SSL. If this property is set to true, the
user name and password are sent only to servers
listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive
passwords sent in clear form. Has no effect if
client.sendpassword is set to false. The list
is comma-separated. Each entry in the list can be
an IP address, a host name, a host name pattern
(for instance, *.example.com), or *. An * alone
means that all servers are trusted.

Note: The properties marked with a # can be set either in ejb_
sec.properties or as system properties. The settings in ejb_
sec.properties always override settings that are specified as
system properties.

Table 6–4 (Cont.) EJB Client Security Properties

Property Meaning

Configuring OC4J for Interoperability

J2EE Interoperability 6-19

If your application has an application-client.xml file, then leave
contextFactory set to ApplicationClientInitialContextFactory. If
your application does not have an application-client.xml file, then change
contextFactory to IIOPInitialContextFactory.

Context Factory Usage
com.evermind.server.ApplicationClientInitialContextFactory is used
when looking up remote objects from standalone application clients. It uses the refs
and ref-mappings found in application-client.xml and
orion-application-client.xml. It is the default initial context factory when the
initial context is instantiated in a Java application.

com.oracle.iiop.server.IIOPInitialContextFactory is used when
looking up remote objects between different containers using the IIOP protocol.

Configuring OC4J for Interoperability

6-20 Oracle Application Server Containers for J2EE Services Guide

Java Transaction API 7-1

7
Java Transaction API

This chapter describes the Oracle Application Server Containers for J2EE (OC4J) Java
Transaction API (JTA). This chapter covers the following topics:

� Introduction

� Single-Phase Commit

� Two-Phase Commit

� Configuring Timeouts

� Recovery for CMP Beans when a Database Instance Fails

� Using Transactions With MDBs

Introduction
Applications deployed in the application server can demarcate transactions using Java
Transaction API (JTA) 10.1.

For example, Enterprise Java Beans (EJBs) with bean-managed transactions, servlets,
or Java objects that are deployed in the OC4J container can begin and end (demarcate)
a transaction.

This chapter discusses the method for using JTA in OC4J. It does not cover JTA
concepts—you must understand how to use and program global transactions before
reading this chapter. See the Sun Microsystems Web site for more information:
http://java.sun.com/products/jta .

Code examples are available for download from the OTN OC4J sample code site:

http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

JTA involves demarcating transactions and enlisting resources.

Demarcating Transactions
Your application demarcates transactions. Enterprise Java Beans use JTA 1.0.1 for
managing transactions through either bean-managed or container-managed
transactions.

� Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

� Container-managed transactions are controlled by the container. That is, the
container either joins an existing transaction or starts a new transaction for the

Single-Phase Commit

7-2 Oracle Application Server Containers for J2EE Services Guide

application—as defined within the deployment descriptor—and ends the newly
created transaction when the bean method completes. It is not necessary for your
implementation to provide code for managing the transaction.

Enlisting Resources
The complexity of your transaction is determined by how many resources your
application enlists with the transaction.

� Single-Phase Commit (1pc): If only a single resource (database) is enlisted in the
transaction, then you can use single-phase commit.

� Two-Phase Commit (2pc): If more than one resource is enlisted, then you must use
two-phase commit, which is more difficult to configure.

Single-Phase Commit
Single-phase commit (1pc) is a transaction that involves only a single resource. JTA
transactions consist of enlisting resources and demarcating transactions.

Enlisting a Single Resource
To enlist the single resource in the single-phase commit, perform the following two
steps:

� Configure the Data Source

� Retrieve the Data Source Connection

Configure the Data Source
Use an emulated data source for a single phase commit. Refer to Chapter 4, "Data
Sources", for information on emulated and nonemulated data source types.

If you can, use the default data source (data-sources.xml) that comes with a
standard OC4J installation for the single-phase commit JTA transaction. After
modifying this data source url attribute with your database URL information,
retrieve the data source in your code using a JNDI lookup with the JNDI name
configured in the ejb-location attribute. Configure a data source for each database
involved in the transaction.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:1521/ORCL"
 inactivity-timeout="30"
/>

Note: Not all data sources support JTA transactions. (See "Using
Data Sources" on page 4-15 for details.)

Single-Phase Commit

Java Transaction API 7-3

In the preceding example, myhost, myport, and mySID are entries that you must
change. You must edit the example to provide meaningful values for myhost,
myport, and mySID.

For information about the expected attribute definitions, see Chapter 4, "Data Sources".

Retrieve the Data Source Connection
Before executing any SQL statements against tables in the database, you must retrieve
a connection to that database. For these updates to be included in the JTA transaction,
perform the following two steps:

� Perform JNDI Lookup

� Retrieve a Connection

Perform JNDI Lookup
After the transaction has begun, look up the data source from the JNDI name space.
Here are the two methods for retrieving the data source:

� Perform JNDI Lookup on Data Source Definition

� Perform JNDI Lookup Using Environment

Perform JNDI Lookup on Data Source Definition You can perform a lookup on the JNDI
name bound to the data source definition in the data-sources.xml file and retrieve
a connection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Perform JNDI Lookup Using Environment You can perform a lookup on a logical name that
is defined in the environment of the bean container. For more information, see
Chapter 4, "Data Sources". Define the logical name in the J2EE deployment descriptor
in ejb-jar.xml or web.xml as follows:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Map the <res-ref-name> in the OC4J-specific deployment descriptor (for example,
orion-ejb-jar.xml) to the JNDI name that is bound in the data-sources.xml
file as follows, where "jdbc/OracleDS" is the JNDI name defined in the
data-sources.xml file:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

Then retrieve the data source using the environment JNDI lookup and create a
connection, as shown in the following:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("java:comp/env/jdbc/OracleMappedDS");
Connection conn = ds.getConnection();

Then start preparing and executing JDBC statements against the database.

Single-Phase Commit

7-4 Oracle Application Server Containers for J2EE Services Guide

Retrieve a Connection
Retrieve a connection off this data source object using the getConnection method.
You can do this in one of two ways:

� Use ds.getConnection() Use the method with no arguments.

� Use ds.getConnection(username, password). Use the method supplying a
user name and password.

Use the method with no arguments when the data source definition contains the user
name and password that you want.

Use the other method when the data source definition does not contain a user name
and password, or when you want to use a user name and password that is different
from what is specified in the data source.

Demarcating the Transaction
With JTA, you can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional.
Container-managed transaction is available to all EJBs. However, the bean-managed
transactions are available for session beans and MDBs.

Specify the type of demarcation in the bean deployment descriptor. Example 7–1
shows a session bean that is declared as container-managed transactional by defining
the <transaction-type> element as Container. To configure the bean to use
bean-managed transactional demarcation, define this element to be Bean.

Example 7–1 Session Bean Declared as Container-Managed Transactional

</session>
 <description>no description</description>
 <ejb-name>myEmployee</ejb-name>
 <home>cmtxn.ejb.EmployeeHome</home>
 <remote>cmtxn.ejb.Employee</remote>
 <ejb-class>cmtxn.ejb.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
</session>

Container-Managed Transactional Demarcation
If you define your bean to use CMTs, then you must specify how the container
manages the JTA transaction for this bean in the <trans-attribute> element in the
deployment descriptor (shown in Example 7–2). Table 7–1 briefly describes the
transaction attribute types that you should specify in the deployment descriptor.

Note: The client cannot demarcate the transaction. Propagation of
the transaction context cannot cross OC4J instances. Thus, neither a
remote client nor a remote EJB can initiate or join the transaction.

Single-Phase Commit

Java Transaction API 7-5

Example 7–2 shows the <container-transaction> portion of the deployment
descriptor. It demonstrates how this bean specifies the RequiresNew transaction
attribute for all (*) methods of the myEmployee EJB.

Example 7–2 <container-transaction> in Deployment Descriptor

 <assembly-descriptor>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>myEmployee</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>

Table 7–1 Transaction Attributes

Transaction Attribute Description

NotSupported The bean is not involved in a transaction.

If the bean invoker calls the bean while involved in a
transaction, then the invoker’s transaction is suspended, the
bean executes, and when the bean returns, the invoker’s
transaction is resumed.

Required The bean must be involved in a transaction.

If the invoker is involved in a transaction, then the bean uses the
invoker’s transaction.

If the invoker is not involved in a transaction,then the container
starts a new transaction for the bean. This attribute is the default.

Supports Whatever transactional state that the invoker is involved in is
used for the bean.

If the invoker has begun a transaction, then the invoker’s
transaction context is used by the bean.

If the invoker is not involved in a transaction, then neither is the
bean.

RequiresNew Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself.

 If the invoker calls while involved in a transaction, then the
invoker’s transaction is suspended until the bean completes.

Mandatory The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker’s transaction context.

Never The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean.

If the invoker is involved in a transaction, then a
RemoteException is thrown.

Note: The default transaction attribute (<trans-attribute>
element) for each type of entity bean is as follows:

� For CMP 2.0 entity beans, the default is Required.

� For MDBs, the default is NotSupported.

� For all other entity beans, the default is Supports.

Two-Phase Commit

7-6 Oracle Application Server Containers for J2EE Services Guide

 </container-transaction>
 </assembly-descriptor>

No bean implementation is necessary to start, commit, or roll back the transaction. The
container handles all these functions based on the transaction attribute that is specified
in the deployment descriptor.

Bean-Managed Transactions
If you declare the bean as bean-managed transactional (BMT) within the
<transaction-type>, then the bean implementation must demarcate the start,
commit, or rollback for the global transaction. In addition, you must be careful to
retrieve the data source connection after you start the transaction, not before.

Programmatic Transaction Demarcation For programmatic transaction demarcation, the
bean developer can use either the JTA user transaction interface or the JDBC
connection interface methods. The bean developer must explicitly start and commit or
roll back transactions within the timeout interval.

Web components (JSP, servlets) can use programmatic transaction demarcation.
Stateless and stateful session beans can use it; entity beans cannot, and thus must use
declarative transaction demarcation.

Client-Side Transaction Demarcation This form of transaction demarcation is not required
by the J2EE specification, and is not recommended for performance and latency
reasons. OC4J does not support client-side transaction demarcation.

JTA Transactions
The Web component or bean writer must explicitly issue begin, commit, and rollback
methods of the UserTransaction interface, as follows:

Context initCtx = new Initial Context();
ut = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");
…
ut.begin();
// Commit the transaction started in ejbCreate.
Try {
 ut.commit();
} catch (Exception ex) { …..}

JDBC Transactions
The java.sql.Connection class provides commit and rollback methods. JDBC
transactions implicitly begin with the first SQL statement that follows the most recent
commit, rollback, or connect statement.

Two-Phase Commit
The main focus of JTA is to declaratively or programmatically start and end simple
and global transactions. When a global transaction is completed, all changes are either
committed or rolled back. The difficulty in implementing a two-phase commit
transaction is in the configuration details. For two-phase commit, you must use only a
nonemulated data source. For more information on nonemulated data sources, refer to
"Nonemulated Data Sources" on page 4-4.

Two-Phase Commit

Java Transaction API 7-7

Figure 7–1 contains an example of a two-phase commit engine,
jdbc/OracleCommitDS, coordinating two databases in the global
transaction—jdbc/OracleDS1 and jdbc/OracleDS2. Refer to this example when
configuring your JTA two-phase commit environment.

Configuring Two-Phase Commit Engine
When a global transaction multiple databases, the changes to these resources must all
be committed or rolled back at the same time. That is, when the transaction ends, the
transaction manager contacts a coordinator—also known as a two-phase commit
engine—to either commit or roll back all changes to all included databases. The
two-phase commit engine is an Oracle9i Database Server database that you must
configure with the following:

� Fully-qualified database links from itself to each of the databases involved in the
transaction. When the transaction ends, the two-phase commit engine
communicates with the included databases over their fully qualified database
links.

� A user that is designated to create sessions to each database involved and is given
the responsibility of performing the commit or rollback. The user that performs the
communication must be created on all involved databases and be given the
appropriate privileges.

To facilitate this coordination, perform the following database and OC4J configuration
steps shown in the next two subsections.

Database Configuration Steps
Designate and configure an Oracle9i Database Server database as the two-phase
commit engine with the following steps:

1. Create the user (for example, COORDUSR) on the two-phase commit engine that
facilitates the transaction, and perform the following three actions:

a. The user must open a session from the two-phase commit engine to each of
the involved databases.

b. Grant the user the CONNECT, RESOURCE, CREATE SESSION privileges to be
able to connect to each of these databases. The FORCE ANY TRANSACTION
privilege allows the user to commit or roll back the transaction.

c. Create this user and grant these permissions on all databases involved in the
transaction.

For example, if the user that is needed for completing the transaction is
COORDUSR, do the following on the two-phase commit engine and each database
involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER COORDUSR IDENTIFIED BY COORDUSR;
GRANT CONNECT, RESOURCE, CREATE SESSION TO COORDUSR;
GRANT FORCE ANY TRANSACTION TO COORDUSR;

2. Configure fully qualified public database links (using the CREATE PUBLIC
DATABASE LINK command) from the two-phase commit engine to each database
that can be involved in the global transaction. This step is necessary for the
two-phase commit engine to communicate with each database at the end of the
transaction. The COORDUSR must be able to connect to all participating databases
using these links.

Two-Phase Commit

7-8 Oracle Application Server Containers for J2EE Services Guide

Figure 7–1 shows two databases involved in the transaction. The database link
from the two-phase commit engine to each database is provided on each
OrionCMTDataSource definition in a <property> element in the
data-sources.xml file. See the next step for the "dblink" <property>
element.

Figure 7–1 Two-Phase Commit Diagram

OC4J Configuration Steps
1. To configure two-phase commit coordination: First, define the database that is to

act as the two-phase commit engine, then configure it as follows:

Define a nonemulated data source, using OrionCMTDataSource, for the
two-phase commit engine database in the data-sources.xml file. The following
code defines the two-phase commit engine OrionCMTDataSource in the
data-sources.xml file.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCommitDS"
 location="jdbc/OracleCommitDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="coordusr"
 password="coordpwd"
 url="jdbc:oracle:thin:@//localhost:1521/ORCL"
 inactivity-timeout="30"
/>

Refer to the two-phase commit engine data source in the global
application.xml file, which resides in the config directory.

Configure the two-phase commit engine as follows:

<commit-coordinator>
 <commit-class class="com.evermind.server.OracleTwoPhaseCommitDriver" />
 <property name="datasource" value="jdbc/OracleCommitDS" />
 <property name="username" value="coordusr" />
 <property name="password" value="coordpwd" />
</commit-coordinator>

Two-Phase Commit

Java Transaction API 7-9

The parameters are as follows:

Specify the JNDI name of "jdbc/OracleCommitDS" for the
OrionCMTDataSource that is defined in the data-sources.xml file. This
identifies the data source to use as the two-phase commit engine.

Specify the two-phase commit engine user name and password. This step is
optional, because you could also specify it in the data source configuration. These
are the user name and password to use as the login authorization to the two-phase
commit engine. This user must have the FORCE ANY TRANSACTION database
privilege, or all session users must be identical to the user that is the commit
coordinator.

Specify the <commit-class>. This class is always
OracleTwoPhaseCommitDriver for two-phase commit engines.

The JNDI name for the OrionCMTDataSource is identified in the <property>
element whose name is "datasource".

The user name is identified in the <property> element "username".

The password is identified in the <property> element "password".

2. To configure databases that will participate in a global transaction, configure
nonemulated data source objects of the type OrionCMTDataSource for each
database involved in the transaction with the following information:

a. The JNDI bound name for the object.

b. The URL for creating a connection to the database.

c. The fully qualified database link from the two-phase commit engine to this
database (for example, LINK1.machine1.COM). This is provided in a
<property> element within the data source definition in the
data-sources.xml file.

The following OrionCMTDataSource objects specify the two databases involved
in the global transaction. Notice that each of them has a <property> element
named "dblink" that denotes the database link from the two-phase commit
engine to itself.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS1"
 location="jdbc/OracleDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:1521/db1.ORCL"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK1.machine1.COM"/>
</data-source>

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS2"

Note: The password attribute of the <commit-coordinator>
element supports password indirection. For more information, refer
to the Oracle Application Server Containers for J2EE Security Guide.

Configuring Timeouts

7-10 Oracle Application Server Containers for J2EE Services Guide

 location="jdbc/OracleDS2"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:1521/db2.ORCL"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK2.machine2.COM"/>
</data-source>

After the two-phase commit engine and all the databases involved in the transaction
are configured, you can start and stop a transaction in the same manner as the
single-phase commit. See "Single-Phase Commit" on page 7-2 for more information.

Limitations of Two-Phase Commit Engine
The following data-sources.xml configuration is supported for two-phase commit
in the OC4J release:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@//localhost:1521/ORCL
/>

Two-phase commit works only with a nonemulated data source configuration, as
shown in the preceding code example. The URLs of all participating nonemulated data
sources must point to an Oracle database instance. Only multiple Oracle resources
participating in a global transaction have ACID (atomicity, consistency, isolation,
durability) semantics after the commit. In summary, two-phase commit is supported
only with Oracle database resources, but full recovery is always supported.

In the emulated configuration, two-phase commit may appear to work, but, because
there is no recovery, it is not supported. The ACID properties of the transaction Are
not guaranteed and may cause problems for an application.

The JTA two-phase commit (2pc) function does not work with Oracle Database version
9.2. Instead, use Oracle Database version 9.2.0.4 or higher to enable the 2pc
functionality.

Configuring Timeouts
You can configure timeouts in the server.xml file in the <transaction-config>
element, which has a timeout attribute. This attribute specifies the maximum amount
of time (in milliseconds) that a transaction can take to finish before it is rolled back due
to a timeout. The default value is 30000. This timeout is a default timeout for all
transactions that are started in OC4J. You can change the value by using the dynamic
API UserTransaction.setTransactionTimeout(milliseconds).

Note: If you change the two-phase commit engine, then you must
update all database links—both within the new two-phase commit
engine as well as within the OrionCMTDataSource <property>
definitions.

Using Transactions With MDBs

Java Transaction API 7-11

The server DTD defines the <transaction-config> element as follows:

<!ELEMENT transaction-config (#PCDATA)>
<!ATTLIST transaction-config timeout CDATA #IMPLIED>

Recovery for CMP Beans when a Database Instance Fails
You should be aware of any failure of the back-end database—especially if the CMP
bean is acting within a transaction. If the database instance fails, then you may have to
retry the operations that you were attempting during the moment of failure. The
following sections detail how to implement recovery whether the CMP bean is within
a container-managed transaction or a bean-managed transaction:

� Connection Recovery for CMP Beans That Use Container-Managed Transactions

� Connection Recovery for CMP Beans That Use Bean-Managed Transactions

Connection Recovery for CMP Beans That Use Container-Managed Transactions
If you define your CMP bean with container-managed transactions, then you can set a
retry count and interval for re-establishing the transaction. Then if the database
instance fails and your connection goes down while interacting within a transaction,
the EJB container automatically retrieves a new connection to the database (within the
specified interval) until the count is reached and re-executes the operations within the
TRY block where the failure occurred.

To set the automatic retry count and interval, set the following optional attributes in
the <entity-deployment> element in the CMP bean orion-ejb-jar.xml file:

� max-tx-retries—This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures. The default is 0.

� tx-retry-wait—This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

Connection Recovery for CMP Beans That Use Bean-Managed Transactions
The EJB container does not manage bean-managed transactional CMP beans or EJB
clients. Therefore, when they receive an exception denoting that the JDBC connection
has failed, each must understand whether the method within the transaction can be
retried.

To determine whether this is a retry scenario, provide the database connection and the
SQL exception as parameters in the DbUtil.oracleFatalError() method, which
determines if you can get a new connection and retry your operations. If this method
returns true, then create a new connection to continue the transaction.

The following code demonstrates how to execute the
DbUtil.oracleFatalError() method.

if ((DbUtil.oracleFatalError(sql_ex, db_conn))
{
 //retrieve the database connection again.
 //re-execute operations in the try block where the failure occurred.
}

Using Transactions With MDBs
Transactions, both BMT and CMT are supported within MDBs. The default transaction
attribute (trans-attribute) for MDBs is NOT_SUPPORTED.

Using Transactions With MDBs

7-12 Oracle Application Server Containers for J2EE Services Guide

In accordance with the specification, MDBs support only the REQUIRED and NOT_
SUPPORTED attributes. If you specify another attribute, such as SUPPORTS, then the
default attribute NOT_SUPPORTED is used. An error is not thrown in this situation.

You can define a transaction timeout, as defined in the transaction-timeout
attribute, in the <message-driven-deployment> element of the ejb-jar.xml
file. This attribute controls the transaction timeout interval (in seconds) for any
container-managed transactional MDB. The default is one day or 86,400 seconds. If the
transaction has not completed in this time frame, then the transaction is rolled back.

Transaction Behavior for MDBs Using OC4J JMS
If you have heterogeneous or multiple resources involved in a single transaction, then
two-phase commit is not supported. For example, if an MDB communicates to a CMP
bean, which uses the database for persistence, and receives messages from a client
through OC4J JMS, then this MDB includes two resources: The database and OC4J
JMS. In this case, two-phase commit it not supported.

If you have no two-phase commit support, then there is no guarantee that when a
transaction commits, all systems committed correctly. The same is true for rollbacks.
You are not guaranteed ACID-quality global transactions without a two-phase commit
engine.

Transaction Behavior for MDBs Using Oracle JMS
Oracle JMS uses a back-end Oracle database as the queue and topic facilitator. Because
Oracle JMS uses database tables for the queues and topics, you may need to grant
two-phase commit database privileges for your user.

OC4J optimizes one-phase commit for you so that it is not necessary to use two-phase
commit unless you have two databases (or more than one data source) involved in the
transaction. If you do use two-phase commit, it is fully supported within Oracle JMS.

You should be aware of any failure of the back-end database—especially if the MDB
bean is acting within a transaction. If the database instance fails, then you may have to
retry the operations that you were attempting during the moment of failure.

The following sections detail how to implement recovery whether the MDB bean is
within a container-managed transaction or a bean-managed transaction:

� Connection Recovery for CMP Beans That Use Container-Managed Transactions

� Connection Recovery for CMP Beans That Use Bean-Managed Transactions

MDBs that Use Container-Managed Transactions
If you define your MDB with container-managed transactions you can set a retry count
and interval for re-establishing the JMS session. Then, if your transaction fails while
interacting with a database, the container automatically retries (within the specified
interval) until the count is reached. To set the automatic retry count and interval, set
the following optional attributes in the <message-driven-deployment> element in
the MDB orion-ejb-jar.xml file:

� dequeue-retry-count—Specifies how often the listener thread tries to
re-acquire the JMS session over a new database connection once database failover
has occurred. The default is "0."

� dequeue-retry-interval—Specifies the interval between retries. The default
is 60 seconds.

Using Transactions With MDBs

Java Transaction API 7-13

MDBs that Use Bean-Managed Transactions and JMS Clients
The container does not manage bean-managed transactional MDBs or JMS clients.
Thus, when they receive an exception denoting that the JDBC connection has failed,
each must understand if this is a scenario where the method within the transaction can
be retried. To determine if this is a retry scenario, input the database connection and
the SQL exception as parameters in the DbUtil.oracleFatalError() method.

You must retrieve the database connection from the JMS session object, and the SQL
exception from the returned JMS exception, as follows:

1. Retrieve the underlying SQL exception from the JMS exception.

2. Retrieve the underlying database connection from the JMS session.

3. Execute the DbUtil.oracleFatalError() method to determine if the
exception indicates an error that you can retry. If this method returns true, then
create a new JMS connection, session, and possible sender to continue the JMS
activity.

The following code demonstrates how to process the JMS exception, jmsexc, to pull
out the SQL exception, sql_ex. In addition, the database connection, db_conn, is
retrieved from the JMS session, session. The SQL exception and database connection
are input parameters for the DbUtil.oracleFatalError method.

try
{
 ..
}
catch(Exception e)
{
 if (exc instanceof JMSException)
 {
 JMSException jmsexc = (JMSException) exc;
 sql_ex = (SQLException)(jmsexc.getLinkedException());
 db_conn = (oracle.jms.AQjmsSession)session.getDBConnection();

 if ((DbUtil.oracleFatalError(sql_ex, db_conn))
 {
 // Since the DBUtil function returned true, regain the JMS objects
 // Look up the Queue Connection Factory.
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup ("java:comp/resource/" + resProvider +
 "/QueueConnectionFactories/myQCF");

 // Lookup the Queue.
 Queue queue = (Queue) ctx.lookup ("java:comp/resource/" + resProvider +
 "/Queues/rpTestQueue");

 // Retrieve a connection and a session on top of the connection.
 // Create queue connection using the connection factory.
 QueueConnection qconn = qcf.createQueueConnection();

 // We’re receiving msgs, so start the connection.
 qconn.start();

 // Create a session over the queue connection.
 QueueSession qsess = qconn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

 //Since this is for a queue, create a sender on top of the session.
 //This is used to send out the message over the queue.

Using Transactions With MDBs

7-14 Oracle Application Server Containers for J2EE Services Guide

 QueueSender snd = sess.createSender (q);

 }
 }
}

J2EE Connector Architecture (J2CA) 8-1

8
J2EE Connector Architecture (J2CA)

This chapter describes how to use the J2EE Connector Architecture (J2CA) 1.0 in an
Oracle Application Server Containers for J2EE (OC4J) application. This chapter covers
the following topics:

� Introduction

� Deploying and Undeploying Resource Adapters

� Quality of Service Contracts

Introduction
The J2EE Connector Architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous Enterprise Information Systems (EISs). Typical EISs
include Enterprise Resource Planning (ERP), database systems, mainframe transaction
processing, and legacy applications that are not written in the Java programming
language. Figure 8–1 shows the J2EE Connector Architecture.

Figure 8–1 J2EE Connector Architecture

Resource Adapters
A resource adapter is a driver that an application server or an application client uses to
connect to a specific EIS. Examples of resource adapters are a JDBC driver to connect
to a relational database, an ERP resource adapter to connect to an ERP system, and a
transaction processing (TP) resource adapter to connect to a TP monitor. The J2EE 1.3
specification requires application servers to support both standalone and embedded
resource adapters.

Introduction

8-2 Oracle Application Server Containers for J2EE Services Guide

Standalone Resource Adapters
A resource adapter module that can be deployed directly into an application server
independent of other applications is called a standalone resource adapter. These adapters,
which are stored in standalone resource adapter archive (RAR) files, are available to all
applications that are deployed in the application server instance. See "Example of RAR
File Structure" on page 8-2 for an example of the contents and structure of an RAR
archive.

Embedded Resource Adapters
A resource adapter module that is deployed as part of a J2EE application that also
contains one or more J2EE modules, is called an embedded resource adapter. These
adapters are available only to the J2EE applications with which they are bundled in an
enterprise application archive (EAR) file.

Example of RAR File Structure
Here is an example of the contents and structure of an RAR archive:

/META-INF/ra.xml
/META-INF/oc4j-ra.xml
/howto.html
/images/icon.jpg
/ra.jar
/cci.jar
/win.dll
/solaris.so

Depending on the resource adapter, applications or application modules might need to
access adapter-specific classes that are bundled with the RAR. In the case of
standalone resource adapters, these custom classes are available to all applications that
are deployed within OC4J. In the case of embedded resource adapters, they are
available only to modules that are part of the same application as the embedded
adapter.

The ra.xml Descriptor
The ra.xml descriptor is the standard J2EE deployment descriptor for resource
adapters. For details, see the J2EE Connector Architecture 1.0 specification.

Application Interface
The client API furnished by a resource adapter can be either a client API that is specific
to the type of a resource adapter and its underlying EIS, or the standard Common
Client Interface (CCI). For more information on CCI, see the J2EE Connector 1.0

Note: The JAR files that are referred to in the RAR file can be
located in any directory within the archive.

Note: The file /META-INF/oc4j-ra.xml is not generally part of
the RAR archive provided by the RAR vendor, and is typically
generated by OC4J during deployment. But a deployer can choose
to add the file oc4j-ra.xml to the RAR archive before
deployment. Alternatively, the deployer can edit the generated file.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture (J2CA) 8-3

Specification. An example of a client API is JDBC, the client API that is specific to
relational database accesses.

You can determine what client interface a resource adapter supports. The client
interface is specified in the <connection-interface> element in the ra.xml file
bundled in the RAR archive.

Quality of Service Contracts
J2EE Connector Architecture also defines three Quality of Service (QoS) contracts
between an application server and an EIS.

� Connection Management enables application components to connect to an EIS and
leverage any connection pooling provided by the application server. Also see
"Configuring Connection Pooling" on page 8-10.

� Transaction Management enables an application server to use a transaction manager
to manage transactions across multiple resource managers.

Transaction management does not require any deployment-time configuration. For
more information, see the J2EE Connector 1.0 Specification.

Support for optional features:

� OC4J does not support the optional connection sharing (section 6.9 in the J2EE
Connector Architecture 1.0 specification) and local transaction optimization
(section 6.12) features.

� OC4J does not support two-phase commit for J2EE Connector Architecture
resource adapters. (For information on the limitations of two-phase commit, see
Chapter 7, "Java Transaction API".)

� Security management provides authentication, authorization, and secure
communication between the J2EE server and the EIS. Also see "Managing EIS
Sign-On" on page 8-11.

All resource adapters must support their side of the QoS contracts to be pluggable into
application servers.

Deploying and Undeploying Resource Adapters
This section discusses the details of deploying and undeploying resource adapters.

Deployment Descriptors
OC4J supports three deployment descriptors: ra.xml, oc4j-ra.xml, and
oc4j-connectors.xml. The ra.xml descriptor is always supplied with the resource
adapter. Whenever you deploy a resource adapter, OC4J generates oc4j-ra.xml if the
file doesn’t already exist in the archive. In addition, for an embedded resource adapter,
OC4J generates oc4j-connectors.xml if it doesn’t exist in the archive.

Note: The J2EE Connector connection pooling interface differs
from the JDBC interface. J2EE Connector connection pools are not
shared with JDBC connection pools, nor do properties set for one
connection pool affect the other.

Deploying and Undeploying Resource Adapters

8-4 Oracle Application Server Containers for J2EE Services Guide

The oc4j-ra.xml Descriptor
The oc4j-ra.xml descriptor provides OC4J-specific deployment information for
resource adapters. The file contains one or more <connector-factory> elements.

You can do the following using oc4j-ra.xml:

� Configure and bind instances of connection factories.

Connection factories are used by application components to obtain connections to
the EIS. The name of the connection factory class is specified in the
connectionfactory-impl-class element, defined in ra.xml. OC4J allows the deployer
to configure instances of this class and to bind them to the Java Naming and
Directory Interface (JNDI) name space.

The deployer can do this by creating <connector-factory> elements and assigning
a JNDI location to each using the location attribute. The deployer can also
configure each instance using <config-property> elements.

The list of configurable properties is specified in ra.xml, as <config-property>
elements. The deployer can either specify or override values for these properties in
oc4j-ra.xml, using <config-property> elements.

Example: Consider a resource adapter with a connection factory implementation
of com.example.eis.ConnectionFactoryImpl. Assume that this adapter has been
deployed standalone with one configured connection factory, whose JNDI location
is myEIS/connFctry1. The <connector-factory> has been configured to connect to
host myMc123 on port 1999. Also assume there is an EJB application that looks up
and use this connection factory, using a logical name of eis/myEIS.

The following are the files that are relevant to this example.

ra.xml: Specification of connection factory implementation (as provided by the
resource adapter vendor).

<resourceadapter>
...
<config-property>

<config-property-name>HostName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
<config-property>

<config-property-name>Port</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>
<config-property-value>2345</config-property-value>

</config-property>
<connectionfactory-impl-class>

com.example.eis.ConnectionFactoryImpl
</connectionfactory-impl-class>
...

</resourceadapter>

oc4j-ra.xml: Specification of connection factory implementation with properties
myMc123 (host) and 1999 (port), to be bound to JNDI location myEIS/connFctry1
(likely generated by OC4J and edited by deployer).

<connector-factory location="myEIS/connFctry1">
...
<config-property>

<config-property-name>HostName</config-property-name>
<config-property-value>myMc123</config-property-value>

</config-property>
<config-property>

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture (J2CA) 8-5

<config-property-name>Port</config-property-name>
<config-property-value>1999</config-property-value>

</config-property>
...

</connector-factory>

ejb-jar.xml: Specification of resource reference (that is, connection factory) accessed
by EJB (as provided by the application vendor).

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

orion-ejb-jar.xml: Mapping of the logical reference name to the real JNDI name
(likely generated by OC4J and edited by deployer).

<resource-ref-mapping name ="eis/myEIS" location ="myEIS/connFctry1"/>

EJB class: Usage of the connection factory (created by developer).

try
{
 Context ic = new InitialContext();
 cf = (ConnectionFactory) ic.lookup("java:comp/env/eis/myEIS");
} catch (NamingException ex) {
 ex.printStackTrace();
}

� Customize connection pooling

The deployer can configure connection pooling for each instance of a connection
factory using the <connection-pooling> element. This element is discussed under
"Configuring Connection Pooling" on page 8-10.

� Manage authentication

The deployer can use the <security-config> element to configure an authentication
scheme for each instance of a connection factory. This element is applicable only if
application components use container-managed sign-on. Also see "Managing EIS
Sign-On" on page 8-11.

� Set up logging

The deployer can set up logging, per connection factory instance, using the <log>
element. Here is an example:

 <connector-factory location="myEIS/connFctry1">
 <log>
 <file path="./logConnFctry1.log" />
 </log>
 </connector-factory>

If the path name is not specified or if the directory does not exist, logging is not
enabled and OC4J prints out a warning message. If the directory exists but the file
does not, OC4J creates the file and enables logging. Because there is no default

Note: The <config-property-type> element does not appear
in the oc4j-ra.xml file because the type cannot be changed.

Deploying and Undeploying Resource Adapters

8-6 Oracle Application Server Containers for J2EE Services Guide

location for the log file, if the <log> element is not specified, logging is not
enabled.

Additionally, the deployer can also add a <description> element to each
<connector-factory> element. The element contains a description of the connection
factory and is not interpreted by OC4J.

The oc4j-connectors.xml Descriptor
The resource adapters that are deployed to OC4J can be configured through the
oc4j-connectors.xml descriptor. There is one oc4j-connectors.xml file for all of the
standalone adapters (as a group) as well as one per application.

The root element is <oc4j-connectors>. Each individual connector is represented by a
<connector> element that specifies the name and path name for the connector. Each
<connector> element contains the following elements:

� <description>: text description of the connector. It is not interpreted by OC4J. This
element is optional.

� <native-library path="pathname">: directory containing native libraries. If you do
not specify this element, OC4J expects the libraries to be located in the directory
containing the decompressed RAR directory. OC4J interprets the pathname
attribute relative to the decompressed RAR directory. This element is optional.

� <security-permission enabled="booleanvalue">: permissions to be granted to each
resource adapter. Each <security-permission> contains a
<security-permission-spec> that conforms to the Java 2 Security policy file syntax.

OC4J automatically generates a <security-permission> element in
oc4j-connectors.xml for each <security-permission> element in ra.xml. Each
generated element has the enabled attribute set to false. Setting the enabled
attribute to true grants the named permission. That is, the deployer has to
explicitly grant the permissions requested by the resource adapter. The default
behavior of OC4J is to not grant those permissions during deployment.

Example:

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 <native-library> path="lib"</native-library>
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary.*"};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Note: The file /META-INF/oc4j-connectors.xml is not generally
part of the EAR archive provided by the EAR vendor, and is
typically generated by OC4J during deployment. But a deployer
can choose to add the file oc4j-connectors.xml to the EAR archive
before deployment. Alternatively, the deployer can edit the
generated file.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture (J2CA) 8-7

Standalone Resource Adapters
During deployment of standalone resource adapters, give each a unique name for
future operations, such as undeployment of the resource adapter. OC4J does not
permit deployment of two standalone resource adapters that have the same name.

The deployment descriptors and decompressed RAR files are located as shown in
Table 8–2.

Deployment
During deployment, OC4J decompresses the RAR file and creates OC4J-specific
deployment descriptor files if they do not exist already. The deployment process
automatically adds <connector> entries in the oc4j-connectors.xml file. Skeleton entries
for <connector-factory> elements are created as well in oc4j-ra.xml. The deployer can
edit these two files for further configuration. For more information, see the Oracle
Application Server Administrator’s Guide.

You deploy standalone resource adapters in one of the following ways:

� Deploying and Undeploying Using dcmctl

� Deploying and Undeploying Using admin.jar

Deploying and Undeploying Using dcmctl To deploy a standalone resource adapter to an
Oracle Application Server instance, use the command-line tool dcmctl with the
deployApplication option. Here is the syntax:

dcmctl deployApplication -f example.rar -a example

The deployApplication switch is supported by additional command-line switches:

� -f myRA.rar: path name of the resource adapter’s RAR file. This switch is required.

� -a myRA: resource adapter’s name. This switch is required.

To remove a deployed resource adapter, dcmctl with the undeployApplication option.
Here is the syntax:

dcmctl undeployApplication -a example

The required -a argument specifies which adapter is being removed.

dcmctl supports RAR files, as well as WAR and EAR files. For more information, see
the Oracle Application Server Administrator’s Guide.

Deploying and Undeploying Using admin.jar To deploy a standalone resource adapter to an
OC4J standalone instance, use the command-line tool admin.jar with the
-deployconnector switch. Here is the syntax:

-deployconnector -file mypath.rar -name myname -nativeLibPath libpathname
-grantAllPermissions

Note: The path attribute of the <native-library> element should
point to the directory in which the .dll or .so files are located. For
the preceding example, here is a possible RAR structure:

/META-INF/ra.xml
/ra.jar
/lib/win.dll
/lib/solaris.so

Deploying and Undeploying Resource Adapters

8-8 Oracle Application Server Containers for J2EE Services Guide

The -deployconnector switch is supported by additional command-line switches:

� -file myRA.rar: path name of the resource adapter’s RAR file. This switch is
required.

� -name myRA: resource adapter’s name. This switch is required.

� -nativeLibPath libpathname : path name for native libraries within the RAR file
(see also the <native-library> element in "The oc4j-connectors.xml Descriptor" on
page 8-6).

� -grantAllPermissions: grants all runtime permissions requested within the RAR
file (see also the <security-permission> element in "The oc4j-connectors.xml
Descriptor" on page 8-6).

Example:
java -jar admin.jar ormi://localhost admin welcome -deployconnector -file
./myRA.rar -name myRA

To remove a deployed resource adapter, use the -undeployconnector switch of
admin.jar. Here is the syntax:

-undeployconnector -name myname

The required -name argument specifies which adapter is being removed. This
command removes all <connector> entries that use the specified resource adapter
from oc4j-connectors.xml and deletes the directories and files that were created during
deployment.

Embedded Resource Adapters
Embedded resource adapters cannot be deployed or undeployed independent of the
application of which they are a part. The name of the adapter can be specified in the
oc4j-connectors.xml file; if not specified in this file, the name used for the adapter is
that of the RAR archive.

The deployment descriptors and decompressed RAR files are located as shown in
Table 8–2.

Deployment
As part of deploying the EAR file that contains the embedded resource adapter, OC4J
decompresses the RAR file and creates OC4J-specific deployment descriptor files if
they do not exist already. The deployment process automatically adds <connector>
entries in the oc4j-connectors.xml file. Skeleton entries for <connector-factory>
elements are created as well in oc4j-ra.xml. The deployer can edit these two files for
further configuration.

Deploy applications that include embedded resource adapters in one of the following
ways:

� Deploying Using dcmctl

Note: For more information about admin.jar, see the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide. You
can download this document when you download the OC4J
standalone product from OTN.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture (J2CA) 8-9

� Deploying Using admin.jar

Deploying Using dcmctl For information on using dcmctl, see the Oracle Application
Server Administrator’s Guide.

Deploying Using admin.jar For more information about admin.jar, see the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide.

Locations of Relevant Files
Table 8–1 shows the paths to various deployment directories that OC4J creates during
deployment that are referenced throughout the guide. The paths are relative to the root
directory of your OC4J installation. The deployment directories can be customized
within server.xml by setting the attributes shown in the table. These attributes belong
to the <application-server> element.

Table 8–2 shows the paths to various files produced during deployment that are
referenced throughout the guide. The paths are relative to the root directory of your
OC4J installation. In Table 8–2, appname is the name under which the application is
deployed.

Table 8–1 Directory Locations

Attribute
Description of
Attribute Default Value

connectors_dir connector-directory The root directory for
all standalone
resource adapters.

connectors

applications_dir applications-directory The root directory for
all applications.

applications

application_
deployments_dir

deployment-directory The root directory for
all files generated at
deployment.

application-deployments

Table 8–2 File Locations

Standalone Resource Adapter Embedded Resource Adapter

Location of decompressed
RAR archive

connectors_dir/deployment_name applications_dir/appname/rar_name

oc4j-connectors.xml config

or

as defined in the <connectors> tag in
application.xml.

application_deployments_
dir/appname/META-INF

or

as defined in the <connectors> tag in
orion-application.xml.

oc4j-ra.xml application_deployments_
dir/default/deployment_name

application_deployments_
dir/appname/rar_name

or

application_deployments_
dir/appname/connector_name if an
oc4j-connectors.xml file is included in
the EAR and you have specified a
connector element with a name
attribute.

Specifying Quality of Service Contracts

8-10 Oracle Application Server Containers for J2EE Services Guide

Specifying Quality of Service Contracts
You can configure connection pooling and authentication mechanisms on a
per-connection basis at deployment time. This section describes the different ways to
accomplish this.

Configuring Connection Pooling
Connection pooling is a J2EE 1.3 feature that allows a set of connections to be reused
within an application. Because the J2EE Connector 1.0 specification is intended to be
general rather than database-specific, the J2EE Connector connection-pooling interface
differs significantly from the JDBC interface.

To set a connection pooling property in oc4j-ra.xml, specify a <property> element
within the optional <connection-pooling> element. If you don’t specify this element,
whenever the application requests a connection, a new connection is created. Here is
the syntax:

 <property name="propname" value="propvalue" />.

The value for propname must be one of:

� maxConnections: maximum number of connections permitted within a pool. If no
value is specified, there is no limit on the number of connections.

� minConnections: minimum number of connections. If minConnections is greater
than 0, the specified number of connections are opened when OC4J is initialized.
OC4J may not be able to open the connections if necessary information is
unavailable at initialization time. For instance, if the connection requires a JNDI
lookup, it cannot be created, because JNDI information is not available until
initialization is complete. The default value is 0.

� scheme: specifies how OC4J handles connection requests after the maximum
permitted number of connections is reached. You must specify one of the
following values:

� dynamic: OC4J always creates a new connection and returns it to the
application, even if this violates the maximum limit. When these
limit-violating connections are closed, they are destroyed instead of being
returned to the connection pool.

� fixed: OC4J raises an exception when the application requests a connection
and the maximum limit has been reached.

� fixed_wait: OC4J blocks the application's connection request until an in-use
connection is returned to the pool. If waitTimeout is specified, OC4J throws an
exception if no connection becomes available within the specified time limit.

� waitTimeout: Maximum number of seconds that OC4J waits for an available
connection if maxConnections has been exceeded and the fixed_wait scheme is in
effect. In all other cases, this property is ignored.

Note: OC4J does not destroy pooled connections upon close
unless the pool size is above the maximum specified in the
maxConnections property.

Specifying Quality of Service Contracts

J2EE Connector Architecture (J2CA) 8-11

Here is an example of a <connection-pooling> element configuration:

<connection-pooling>
 <description>my pooling configuration </description>
 <property name="waitTimeout" value="60" />
 <property name="scheme" value="fixed_wait" />
 <property name="maxConnections" value="3" />
 <property name="minConnections" value="1" />
</connection-pooling>

The example defines a connection pool with a minimum of one connection (OC4J tries
to create one connection during start up) and a maximum of three connections. When
all three connections are in use and a request for connection is issued, the pool with a
fixed_wait scheme tries to wait a maximum of 60 seconds for a connection to be
returned to the pool. If there is still no connection available after 60 seconds, an
exception is thrown to the caller of the API that requested a new connection.

Managing EIS Sign-On
As part of extending the end-to-end security of the J2EE mode to cover integration to
EISs, J2EE Connector architecture allows application components to associate a
security context with connections established to the EIS.

Application components can either sign on to the EIS by themselves, or have OC4J
manage the sign-on. Component-managed sign-on must be implemented
programmatically, while container-managed sign-on can be specified either
declaratively or programmatically. Specify the type of sign-on using the <res-auth>
deployment descriptor element for EJB or Web components.

Component-Managed Sign-On
When deploying applications that manage EIS sign-on by themselves, set <res-auth>
to Application. The application component is responsible for providing explicit
security information for the sign-on.

Figure 8–2 shows the steps involved in component-managed sign-on. The steps are
detailed following the diagram.

Note: If you make no waitTimeout specification, the default
behavior is not to time out.

Note: The remainder of this section assumes that you are familiar
with chapter 7 of the J2EE Connector Architecture 1.0 specification.
The specification uses the terms initiating principal, caller principal,
and resource principal. As used in this section, the incoming
security context refers to either initiating principal or caller
principal, and the outgoing security context refers to resource
principal.

Specifying Quality of Service Contracts

8-12 Oracle Application Server Containers for J2EE Services Guide

Figure 8–2 Component-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context.

2. As part of servicing the request, the application component maps the incoming
security context to an outgoing security context and then uses the outgoing
security context to request a connection to the EIS.

3. As part of the connection acquisition, the resource adapter logs on to the EIS using
the outgoing security context provided by the application component.

4. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that performs
component-managed sign-on.

Example:
Context initctx = new InitialContext();
// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");

// If component-managed sign-on is specified, the code
// should instead provide explicit security
// information in the getConnection call

// We need to get a new ConnectionSpec implementation
// instance for setting login attributes
com.myeis.ConnectionSpecImpl connSpec = ...
connSpec.setUserName("EISuser");
connSpec.setPassword("EISpassword");
javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

Container-Managed Sign-On
When deploying applications that depend on the container for EIS sign-on, set
<res-auth> to Container. The container is responsible for providing security
information for the sign-on. Additionally, the container uses deployment descriptors
or pluggable authentication classes to determine outgoing security context.

Figure 8–3 shows the steps involved in container-managed sign-on. The steps are
detailed following the diagram.

Specifying Quality of Service Contracts

J2EE Connector Architecture (J2CA) 8-13

Figure 8–3 Container-Managed Sign-On

1. The client makes a request, which is associated with an incoming security context.

2. As part of servicing the request, the application component requests a connection
to the EIS.

3. As part of the connection acquisition, the container (the OC4J security context
manager shown in Figure 8–3) maps the incoming security context to outgoing
security context, based on deployment descriptor elements (not shown in the
figure) or authentication class provided.

4. The resource adapter logs on to the EIS using the outgoing security context
provided by the container.

5. Once the connection is acquired, the application component can interact with the
EIS under the established outgoing security context.

The following example is an excerpt from an application that depends on
container-managed sign-on.

Example:
Context initctx = new InitialContext();

// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");

// For container-managed sign-on, no security information is passed in the
// getConnection call
javax.resource.cci.Connection cx = cxf.getConnection();

Specifying Quality of Service Contracts

8-14 Oracle Application Server Containers for J2EE Services Guide

Declarative Container-Managed Sign-On
You can create principal mappings in the oc4j-ra.xml file. To employ the principal
mappings mechanism, use the <principal-mapping-entries> subelement under the
<security-config> element.

Each <principal-mapping-entry> element contains a mapping from initiating principal
to resource principal and password.

Use the <default-mapping> element to specify the user name and password for the
default resource principal. This principal is used to log on to the EIS if there is no
<principal-mapping-entry> element whose initiating user corresponds to the current
initiating principal. If the element <principal-mapping-entries> is not specified, OC4J
may not be able to log in to the EIS.

For example, if the OC4J principal scott should be logged in to the EIS as user name
scott and password tiger, while all other OC4J users should be logged in to the EIS
using user name guest with password guestpw, the <connector-factory> element in
oc4j-ra.xml should look like this:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-entries>
 <default-mapping>
 <res-user>guest</res-user>
 <res-password>guestpw</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>scott</initiating-user>
 <res-user>scott</res-user>
 <res-password>tiger</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 ...
</connector-factory>

Programmatic Container-Managed Sign-On
OC4J supports the use of programmatic authentication—either through the use of an
OC4J-specific mechanism or a standard mechanism like the Java Authentication and
Authorization Service (JAAS). See the Sun JAAS specification for more information.

OC4J-Specific Authentication Classes
OC4J provides the oracle.j2ee.connector.PrincipalMapping interface for
principal mapping. Its methods appear in Table 8–3.

To use OC4J-specific programmatic container-managed sign-on, an implementation of
this interface must be provided.

Note: The <res-password> element supports password
indirection. For more information, refer to the Oracle Application
Server Containers for J2EE Security Guide.

Specifying Quality of Service Contracts

J2EE Connector Architecture (J2CA) 8-15

When a connection to the EIS is created, OC4J invokes the mapping method with the
initiating user as the initiatingPrincipal. The mapping method must return a Subject
containing the resource principal and credential. The Subject that is returned must
adhere to either option A or option B in section 8.2.6 of the Connector Architecture 1.0
specification.

OC4J also provides the abstract class oracle.j2ee.connector.AbstractPrincipalMapping.
This class furnishes a default implementation of the setManagedConnectionFactory()
and setAuthenticationMechanism() methods, as well as utility methods to determine
whether the resource adapter supports the BasicPassword or Kerberos version 5
(Kerbv5) authentication mechanisms, and a method for extracting the Principal from
the application server user Subject. By extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, developers need only
implement the init and mapping methods.

The methods exposed by the
oracle.j2ee.connector.AbstractPrincipalMapping class appear in
Table 8–4.

Table 8–3 Method Description for oracle.j2ee.connector.PrincipalMapping Interface

Method Signature Description

public void init(java.util.Properties prop) Called by OC4J to initialize the settings for the
PrincipalMapping implementation class. OC4J passes the
properties specified in the <config-property> elements in
oc4j-ra.xml to this method. The implementation class can use
the properties for setting default user name and password,
LDAP connection information, or default mapping.

public void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

Used by OC4J to provide the implementation class with the
ManagedConnectionFactory instance that is needed to create a
PasswordCredential.

public void setAuthenticationMechanisms
(java.util.Map authMechanisms)

Called by OC4J to pass the authentication mechanisms
supported by the resource adapter to the PrincipalMapping
implementation class. The key of the map passed is a string
containing the supported mechanism type, such as
BasicPassword or Kerbv5. The value is a string containing the
corresponding credentials interface as declared in ra.xml, such
as javax.resource.spi.security.PasswordCredential. The map can
contain multiple elements if the resource adapter supports
multiple authentication mechanisms.

public javax.security.auth.Subject mapping
(javax.security.auth.Subject initiatingSubject)

Used by OC4J to allow the implementation class to perform the
principal mapping. An application user subject is passed, and
the implementation of this method should return a subject for
use by the resource adapter to log in to the EIS resource per the
J2CA 1.0 specifications. The implementation may return null if
the proper resource principal cannot be determined.

Specifying Quality of Service Contracts

8-16 Oracle Application Server Containers for J2EE Services Guide

Extending AbstractPrincipalMapping This simple example demonstrates how to extend the
oracle.j2ee.connector.AbstractPrincipalMapping abstract class to provide a principal
mapping that always maps the user to the default user and password. Specify the
default user and password by using properties under the
<principal-mapping-interface> element in oc4j-ra.xml.

The PrincipalMapping class is called MyMapping. It is defined as follows:

package com.acme.app;

import java.util.*;

Table 8–4 Method Description for oracle.j2ee.connector.AbstractPrincipalMapping Class

Method Signature Description

public abstract void init (java.util.Properties
prop)

This method must be implemented by the subclasses. See
PrincipalMapping interface, described in Table 8–3, for details.

public void setManagedConnectionFactory
(ManagedConnectionFactory mcf)

Stores the ManagedConnectionFactory instance that is passed
in. Subclasses need not implement this method, and can make
use of the getManagedConnectionFactory object saved by this
method.

public void setAuthenticationMechanisms
(java.util.Map authMechanisms)

Stores the map of authentication mechanisms. Subclasses need
not implement this mechanism. Instead, they can make use of
the isBasicPasswordSupported or isKerbv5Supported methods
to determine which authentication mechanism is supported by
the resource adapter. The method
getAuthenticationMechanisms can be used to retrieve the
authentication mechanisms as well.

public javax.security.auth.Subject mapping
(javax.security.auth. Subject initiatingSubject)

Used by OC4J to allow the implementation class to perform the
principal mapping. An application user subject is passed, and
the implementation of this method should return a subject for
use by the resource adapter to log in to the EIS resource per the
J2EE Connector Architecture specifications. The
implementation may return null if the proper resource
principal cannot be determined.

public abstract javax.security.auth.Subject
mapping (javax.security.auth. Subject
initiatingSubject)

This method must be implemented by the subclasses. See
PrincipalMapping interface, described in Table 8–3, for details.

public ManagedConnectionFactory
getManagedConnectionFactory()

Utility method provided by this abstract class to return the
ManagedConnectionFactory instance that might be required to
create a PasswordCredentials object.

public java.util.Map
getAuthenticationMechanisms()

Utility method to return the map of all authentication
mechanisms supported by this resource adapter, as provided
by OC4J. The key of the map returned is a string containing the
supported mechanism type, such as BasicPassword or Kerbv5.
The value is a string containing the corresponding credentials
interface as declared in ra.xml, such as
javax.resource.spi.security.PasswordCredential.

public boolean isBasicPasswordSupported() Utility method to allow subclass to determine whether the
BasicPassword authentication mechanism is supported by this
resource adapter.

public boolean isKerbv5Supported() Utility method to allow subclass to determine whether the
Kerbv5 authentication mechanism is supported by this
resource adapter.

public java.security.Principal getPrincipal
(javax.security.auth. Subject subject)

Utility method provided to extract the Principal object from the
given application server user subject passed from OC4J

.

Specifying Quality of Service Contracts

J2EE Connector Architecture (J2CA) 8-17

import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;
 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }
 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation only supports BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;
 // Use the utility method to retrieve the Principal from the
 // OC4J user. This code is included here only as an example.
 // The principal obtained is not being used in this method.
 Principal principal = getPrincipal(initiatingSubject);
 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();
 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject per option A in section
 // 8.2.6 in the Connector 1.0 spec.
 PasswordCredential cred =
 new PasswordCredential(m_defaultUser, resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. See Table 8–2 for the location of
the RAR file. After copying the file, edit oc4j-ra.xml to contain a
<principal-mapping-interface> element for the new class.

For example:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-interface>
 <impl-class>com.acme.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...

Specifying Quality of Service Contracts

8-18 Oracle Application Server Containers for J2EE Services Guide

</connector-factory>

JAAS Pluggable Authentication Classes
You can also manage sign-on to the EIS programmatically with JAAS. OC4J furnishes a
JAAS pluggable authentication framework that conforms to Appendix C in the
Connector Architecture 1.0 specification. With this framework, an application server
and its underlying authentication services remain independent from each other, and
new authentication services can be plugged in without requiring modifications to the
application server.

Some examples of authentication modules are:

� Principal Mapping JAAS module

� Credential Mapping JAAS module

� Kerberos JAAS module (for Caller Impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendors, or the
resource adapter vendors. Login modules must implement the
javax.security.auth.spi.LoginModule interface, as documented in the Sun JAAS
specification.

OC4J provides initiating user subjects to login modules by passing an instance of
javax.security.auth.Subject containing any public certificates and an instance of an
implementation of java.security.Principal representing the OC4J user. OC4J can pass a
null Subject if there is no authenticated user (that is, an anonymous user). The
initiating user subject is passed to the initialize method of the JAAS login module.

The JAAS login module’s login method must, based on the initiating user, find the
corresponding resource principal and create new PasswordCredential or
GenericCredential instances for the resource principal. The resource principal and
credential objects are then added to the initiating Subject in the commit method. The
resource credential is passed to the createManagedConnection method in the
javax.resource.spi.ManagedConnectionFactory implementation that is provided by the
resource adapter.

If a null Subject is passed, the JAAS login module is responsible for creating a new
javax.security.auth.Subject containing the resource principal and the appropriate
credential.

JAAS and the <connector-factory> Element Each <connector-factory> element in
oc4j-ra.xml can specify a different JAAS login module. Specify a name for the
connector factory configuration in the <jaas-module> element. Here is an example of a
<connector-factory> element in oc4j-ra.xml that uses JAAS login modules for
container-managed sign-on:

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521:orcl" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

Specifying Quality of Service Contracts

J2EE Connector Architecture (J2CA) 8-19

In JAAS, you must specify which LoginModule to use for a particular application, and
in what order to invoke the LoginModules. JAAS uses the value that are specified in
the <jaas-application-name> element to look up LoginModules. See the Oracle
Application Server Containers for J2EE Security Guide for more information.

Special Features Accessible Via Programmatic Interface
In addition to mapping from OC4J users to EIS users, login modules and OC4J-specific
authentication classes can also map from OC4J groups to EIS users.

The the oracle.j2ee.connector package contains the InitiatingPrincipal class that
represents OC4J users and the InitiatingGroup class that represents OC4J groups. OC4J
creates instances of InitiatingPrincipal and incorporates them into the Subject that is
passed to the initialize method of the login modules as well as to the mapping method
of the OC4J-specific authentication class.

The the oracle.j2ee.connector package also contains the InitiatingPrincipal class that
implements the java.security.Principal interface and adds the method getGroups(). The
getGroups method returns a java.util.Set of oracle.j2ee.connector.InitiatingGroup
objects, representing the OC4J groups or JAZN roles that this OC4J user belongs to.
The group membership is defined in OC4J-specific descriptor files such as
principals.xml or jazn-data.xml, depending on the user manager. The
oracle.j2ee.connector.InitiatingGroup class implements but does not extend the
functionality of the java.security.Principal interface.

Specifying Quality of Service Contracts

8-20 Oracle Application Server Containers for J2EE Services Guide

Java Object Cache 9-1

9
Java Object Cache

This chapter describes the Oracle Application Server Containers for J2EE (OC4J) Java
Object Cache, including its architecture and programming features. This chapter
covers the following topics:

� Java Object Cache Concepts

� Java Object Cache Object Types

� Java Object Cache Environment

� Developing Applications Using Java Object Cache

� Working with Disk Objects

� Working with StreamAccess Objects

� Working with Pool Objects

� Running in Local Mode

� Running in Distributed Mode

Java Object Cache Concepts
Oracle Application Server 10g offers the Java Object Cache to help e-businesses
manage Web site performance issues for dynamically generated content. The Java
Object Cache improves the performance, scalability, and availability of Web sites
running on Oracle Application Server 10g.

By storing frequently accessed or expensive-to-create objects in memory or on disk, the
Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle Application Server 10g cache architecture includes the following cache
components:

� Oracle Application Server Web Cache. The Web Cache sits in front of the
application servers (Web servers), caching their content and providing that content
to Web browsers that request it. When browsers access the Web site, they send
HTTP requests to the Web Cache. The Web Cache, in turn, acts as a virtual server
to the application servers. If the requested content has changed, the Web Cache
retrieves the new content from the application servers.

The Web Cache is an HTTP-level cache, maintained outside the application,
providing fast cache operations. It is a pure, content-based cache, capable of
caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such as
servlet or JSP results). Given that it exists as a flat content-based cache outside the

Java Object Cache Concepts

9-2 Oracle Application Server Containers for J2EE Services Guide

application, it cannot cache objects (such as Java objects or XML DOM—Document
Object Model—objects) in a structured format. In addition, it offers relatively
limited postprocessing abilities on cached data.

� Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects can contain generated pages or can
provide support objects within the program to assist in creating new content. The
Java Object Cache automatically loads and updates objects as specified by the Java
application.

� Web Object Cache. The Web Object Cache is a Web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically, using application programming interface (API) calls (for
servlets) or custom tag libraries (for JSPs). The Web Object Cache is generally used
as a complement to the Web cache. By default, the Web Object Cache uses the Java
Object Cache as its repository.

A custom tag library or API enables you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or XML
text fragments, XML DOM objects, or Java serializable objects. These objects can be
cached conveniently in association with HTTP semantics. Alternatively, they can
be reused outside HTTP, such as in outputting cached XML objects through Simple
Mail Transfer Protocol (SMTP), Java Message Service (JMS), Advanced Queueing
(AQ), or Simple Object Access Protocol (SOAP).

Java Object Cache Basic Architecture
Figure 9–1 shows the basic architecture for the Java Object Cache. The cache delivers
information to a user process. The process could be a servlet application that generates
HTML pages, or any other Java application.

The Java Object Cache is an in-process, process-wide caching service for general
application use. That is, objects are cached within the process memory space, and the
Java Object Cache is a single service that is shared by all threads running in the
process, in contrast to a service that runs in another process. The Java Object Cache can
manage any Java object. To facilitate sharing of cached objects, all objects within the
cache are accessed by name. The caching service does not impose a structure on objects
being cached. The name, structure, type, and original source of the object are all
defined by the application.

To maximize system resources, all objects within the cache are shared. However, access
to cached objects is not serialized by access locks, allowing for a high level of
concurrent access. When an object is invalidated or updated, the invalid version of the
object remains in the cache as long as there are references to that particular version of
the object. It is thus possible to have multiple versions of an object in the cache at the
same time; however, there is never more than one valid version of the object. The old
or invalid versions of an object are visible only to applications that had references to

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Java Object Cache Concepts

Java Object Cache 9-3

the version before it was invalidated. If an object is updated, a new copy of the object
is created in the cache, and the old version is marked as invalid.

Objects are loaded into the cache with a user-provided CacheLoader object. This
loader object is called by the Java Object Cache when a user application requests an
object from the cache and it is not already present. Figure 9–1 is a graphical
representation of the architecture. The application interacts with the cache to retrieve
objects, and the cache interacts through the CacheLoader with the data source. This
process gives a clean division between object creation and object use.

Figure 9–1 Java Object Cache Basic Architecture

Distributed Object Management
The Java Object Cache can be used in an environment in which multiple Java processes
are running the same application or working on behalf of the same application. In this
environment, it is useful to have identical objects cached in different processes. For
simplicity, availability and performance, the Java Object Cache is specific to each
process. There is no centralized control of which objects are loaded into a process.
However, the Java Object Cache coordinates object updating and invalidation between
processes. If an object is updated or invalidated in one process, then it is also updated
or invalidated in all other associated processes. This distributed management allows a
system of processes to stay synchronized without the overhead of centralized control.

Figure 9–2 is a graphical representation of the following:

� How the application interacts with the Java Object Cache to retrieve objects

� How the Java Object Cache interacts with the data source

� How the caches of the Java Object Cache coordinate cache events through the
cache messaging system

Figure 9–2 Java Object Cache Distributed Architecture

Java Object Cache Concepts

9-4 Oracle Application Server Containers for J2EE Services Guide

How the Java Object Cache Works
The Java Object Cache manages Java objects within a process, across processes, and on
a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of Java
objects. There are very few restrictions on the types of Java objects that can be cached
or on the original source of the objects. Programmers use the Java Object Cache to
manage objects that, without cache access, are expensive to retrieve or to create.

The Java Object Cache is easy to integrate into new and existing applications. Objects
can be loaded into the object cache, using a user-defined object, the CacheLoader,
and can be accessed through a CacheAccess object. The CacheAccess object
supports local and distributed object management. Most of the functionality of the
Java Object Cache does not require administration or configuration. Advanced
features support configuration using administration APIs in the Cache class.
Administration includes setting configuration options, such as naming local disk space
or defining network ports. The administration features allow applications to fully
integrate the Java Object Cache.

Each cached Java object has a set of associated attributes that control how the object is
loaded into the cache, where the object is stored, and how the object is invalidated.
Cached objects are invalidated based on time or an explicit request. (Notification can
be provided when the object is invalidated.) Objects can be invalidated by group or
individually.

Figure 9–3 illustrates the basic Java Object Cache APIs. Figure 9–3 does not show
distributed cache management.

Figure 9–3 Java Object Cache Basic APIs

Cache Organization
The Java Object Cache is organized as follows:

� Cache Environment. The cache environment includes cache regions, subregions,
groups, and attributes. Cache regions, subregions, and groups associate objects
and collections of objects. Attributes are associated with cache regions, subregions,
groups, and individual objects. Attributes affect how the Java Object Cache
manages objects.

� Cache Object Types. The cache object types include memory objects, disk objects,
pooled objects, and StreamAccess objects.

User Admin

CacheAccess.class

CacheAccess.class

CacheLoader.class

Cache.class

Attributes.class

Data Source

Cache

O
_1

03
2

Java Object Cache Object Types

Java Object Cache 9-5

Table 9–1 contains a summary of the constructs in the cache environment and the
cache object types.

Java Object Cache Features
The Java Object Cache provides the following features:

� Objects can be updated or invalidated

� Objects can be invalidated either explicitly, or with an attribute specifying the
expiration time or the idle time

� Objects can be coordinated between processes

� Object loading and creation can be automatic

� Object loading can be coordinated between processes

� Objects can be associated in cache regions or groups with similar characteristics

� Cache event notification provides for event handling and special processing

� Cache management attributes can be specified for each object or applied to cache
regions or groups

Java Object Cache Object Types
This section describes the object types that the Java Object Cache manages:

� Memory Objects

� Disk Objects

� StreamAccess Objects

� Pool Objects

Table 9–1 Cache Organizational Construct

Cache Construct Description

Attributes Functionality associated with cache regions, groups, and individual
objects. Attributes affect how the Java Object Cache manages objects.

Cache region An organizational name space for holding collections of cache objects
within the Java Object Cache.

Cache subregion An organizational name space for holding collections of cache objects
within a parent region, subregion, or group.

Cache group An organizational construct used to define an association between
objects. The objects within a region can be invalidated as a group.
Common attributes can be associated with objects within a group.

Memory object An object that is stored and accessed from memory.

Disk object An object that is stored and accessed from disk.

Pooled object A set of identical objects that the Java Object Cache manages. The
objects are checked out of the pool, used, and then returned.

StreamAccess
object

An object that is loaded using a Java OutputStream and accessed
using a Java InputStream. The object is accessed from memory or
disk, depending on the size of the object and the cache capacity.

Java Object Cache Object Types

9-6 Oracle Application Server Containers for J2EE Services Guide

Memory Objects
Memory objects are Java objects that the Java Object Cache manages. Memory objects
are stored in the Java virtual machine (JVM) heap space as Java objects. Memory
objects can hold HTML pages, the results of a database query, or any information that
can be stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object can be external (for
example, using data in a table on the Oracle9i Database Server). The application
supplied loader accesses the source and either creates or updates the memory object.
Without the Java Object Cache, the application would be responsible for accessing the
source directly, rather than using the loader.

You can update a memory object by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using the CacheAccess.replace() method). This replaces the original
memory object.

The CacheAccess.defineObject() method associates attributes with an object. If
attributes are not defined, then the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using the
SPOOL attribute). Setting this attribute allows the Java Object Cache to handle memory
objects that are large, or costly to re-create and seldom updated. When the disk cache
is set up to be significantly larger than the memory cache, objects on disk stay in the
disk cache longer than objects in memory.

Combining memory objects that are spooled to a local disk with the distributed feature
from the DISTRIBUTE attribute provides object persistence (when the Java Object
Cache is running in distributed mode). Object persistence allows objects to survive the
restarting of the JVM.

Disk Objects
Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared across Java Object
Cache processes, or they can be local to a particular process, depending on disk
location specified and the setting for the DISTRIBUTE attribute (and whether the Java
Object Cache is running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the TimeToLive or IdleTime
attributes. When the Java Object Cache requires additional space, disk objects that are
not being referenced can be removed from the cache.

StreamAccess Objects
StreamAccess objects are special cache objects set up to be accessed using the Java
InputStream and OutputStream classes. The Java Object Cache determines how to

Note: Objects are identified by a name that can be any Java object.
The Java object used for the identifying name must override the
default Java object equals method and the default Java object
hashcode method. If the object is distributed, and can be updated
or saved to disk, the Serializable interface must be
implemented.

Java Object Cache Environment

Java Object Cache 9-7

access the StreamAccess object, based on the size of the object and the capacity of
the cache. Smaller objects are accessed from memory; larger objects are streamed
directly from disk. All streamAccess objects are stored on disk.

The cache user’s access to the StreamAccess object is through an InputStream. All
the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not supply a mechanism to
manage a stream—for example, StreamAccess objects cannot manage socket
endpoints. InputStream and OutputStream objects are available to access
fixed-sized, potentially large objects.

Pool Objects
Pool objects are a special class of objects that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects. Individual objects within the
pool can be checked out to be used and then returned to the pool when they are no
longer needed.

Attributes, including TimeToLive or IdleTime can be associated with a pool object.
These attributes apply to the pool object as a whole.

The Java Object Cache instantiates objects within a pool using an application-defined
factory object. The size of a pool decreases or increases based on demand and on the
values of the TimeToLive or IdleTime attributes. A minimum size for the pool is
specified when the pool is created. The minimum size value is interpreted as a request
rather than a guaranteed minimum value. Objects within a pool object are subject to
removal from the cache because of a lack of space, so the pool can decrease below the
requested minimum value. A maximum pool size value can be set by putting a hard
limit on the number of objects available in the pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:

� Cache Regions

� Cache Subregions

� Cache Groups

� Region and Group Size Control

� Cache Object Attributes

This section describes these Java Object Cache environment constructs.

Cache Regions
The Java Object Cache manages objects within a cache region. A cache region defines a
name space within the cache. Each object within a cache region must be uniquely
named, and the combination of the cache region name and the object name must
uniquely identify an object. Thus, cache region names must be unique from other
region names, and all objects within a region must be uniquely named relative to the
region. (Multiple objects can have the same name if they are within different regions or
subregions.)

You can define as many regions as you need to support your application. However,
most applications require only one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Java Object Cache Environment

9-8 Oracle Application Server Containers for J2EE Services Guide

Attributes can be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

Cache Subregions
The Java Object Cache manages objects within a cache region. Specifying a subregion
within a cache region defines a child hierarchy. A cache subregion defines a name space
within a cache region or within a higher cache subregion. Each object within a cache
subregion must be uniquely named, and the combination of the cache region name,
the cache subregion name, and the object name must uniquely identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion’s attributes are
inherited by the objects within the subregion. If a subregion’s parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

Cache Groups
A cache group creates an association between objects within a region. Cache groups
allow related objects to be manipulated together. Objects are typically associated in a
cache group because they must be invalidated together, or they use common
attributes. Any set of cache objects within the same region or subregion can be
associated using a cache group, which can, in turn, include other cache groups.

A Java Object Cache object can belong to only one group at any given time. Before an
object can be associated with a group, the group must be explicitly created. A group is
defined with a name. A group can have its own attributes, or it can inherit its
attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects, but rather to define a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming purposes;
therefore, a region cannot include a group and a memory object with the same name.
You must use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Region and Group Size Control
With the Java Object Cache, you can specify the maximum size of a region or group as
either the number of objects in the region or group, or the maximum number of bytes
allowed. If the number of bytes controls the region capacity, then set the size attribute
for all objects in the region. This can be set either directly by the user when the object is
created, or automatically by setting the Attributes.MEASURE attribute flag. You can
set the size of a region or group at multiple levels in the naming hierarchy—that is, at
the region and subregion level, or at the group level within a region or another group.

When the capacity of a region or group is reached, the CapacityPolicy object
associated with that region or group, if defined, is called. If no capacity policy has been
specified, then the default policy is used. The default policy follows: If a nonreferenced
object of lesser or equal priority is found, then it is invalidated in favor of the new
object. If the priority attribute has not been set for an object, then the priority is
assumed to be Integer.MAX_VALUE. When searching for an object to remove, all
objects in the immediate region or group and all subregions and subgroups are
searched. The first object that can be removed, based on the capacity policy, is

Java Object Cache Environment

Java Object Cache 9-9

removed. So, for example, this may not be the object of lowest priority in the search
area.

Figure 9–4 and Figure 9–5 give examples. In each illustration, the grayed portions
indicate the search area.

The capacity of region A is set to 50 objects, with subregion B and subregion C set to 20
objects each. If the object count of region A reaches 50, with 10 directly in region A and
20 each in subregions B and C, then the capacity policy for region A is called. The
object that is removed can come from region A or from one of its subregions.
Figure 9–4 shows this situation.

If subregion B reaches 20 before the capacity of region A is reached, then the capacity
policy for subregion B is called, and only objects within subregion B are considered for
removal. Figure 9–5 shows this situation.

Figure 9–4 Capacity Policy Example, Part 1

Figure 9–5 Capacity Policy Example, Part 2

Cache Object Attributes
Cache object attributes affect how the Java Object Cache manages objects. Each object,
region, subregion, and group has a set of associated attributes. An object’s applicable
attributes contain either the default attribute values; the attribute values inherited
from the object’s parent region, subregion, or group; or the attribute values that you
select for the object.

Attributes fall into two categories:

� The first category is attributes that must be defined before an object is loaded into
the cache. Table 9–2 summarizes these attributes. None of the attributes shown in
Table 9–2 has a corresponding set or get method, except the LOADER attribute.
Use the Attributes.setFlags() method to set these attributes.

O
–1

00
1

Region A

Contains 10 objects

Subregion B

Contains 20
objects

Subregion C

Contains 20
objects

O
_1

00
2

Region A

Contains 5 objects

Subregion B

Contains 30
objects

Subregion C

Contains 10
objects

Java Object Cache Environment

9-10 Oracle Application Server Containers for J2EE Services Guide

� The second category is attributes that can be modified after an object is stored in
the cache. Table 9–3 summarizes these attributes.

Using Attributes Defined Before Object Loading
The attributes shown in Table 9–2 must be defined for an object before the object is
loaded. These attributes determine an object’s basic management characteristics.

The following list shows the methods that you can use to set the attributes shown in
Table 9–2 (by setting the values of an Attributes object argument).

� CacheAccess.defineRegion()

� CacheAccess.defineSubRegion()

� CacheAccess.defineGroup()

� CacheAccess.defineObject()

� CacheAccess.put()

� CacheAccess.createPool()

� CacheLoader.createDiskObject()

� CacheLoader.createStream()

� CacheLoader.SetAttributes()

Note: Some attributes do not apply to certain types of objects. See
the "Object Types" sections in the descriptions in Table 9–2 and
Table 9–3.

Note: You cannot reset the attributes shown in Table 9–2 by using
the CacheAccess.resetAttributes() method.

Table 9–2 Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

DISTRIBUTE Specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates
and invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the
default value for the DISTRIBUTE attribute for the objects within the region,
subregion, or group unless the objects explicitly set their own DISTRIBUTE
attribute. Because pool objects are always local, this attribute does not apply to pool
objects.

Default Value: All objects are local.

GROUP_TTL_DESTROY Indicates that the associated object, group, or region should be destroyed when the
TimeToLive expires.

Object Types: When set on a region or a group, all the objects within the region or
group, and the region, subregion, or group itself are destroyed when the
TimeToLive expires.

Default Value: Only group member objects are invalidated when the TimeToLive
expires.

Java Object Cache Environment

Java Object Cache 9-11

LOADER Specifies the CacheLoader associated with the object.

Object Types: When set on a region or group, the specified CacheLoader becomes
the default loader for the region, subregion, or group. The LOADER attribute is
specified for each object within the region or the group.

Default Value: Not set.

ORIGINAL Indicates that the object was created in the cache, rather than loaded from an
external source. ORIGINAL objects are not removed from the cache when the
reference count goes to zero. ORIGINAL objects must be explicitly invalidated when
they are no longer useful.

Object Types: When set on a region or group, this attribute sets the default value
for the ORIGINAL attribute for the objects within the region, subregion, or group,
unless the objects set their own ORIGINAL attribute.

Default Value: Not set.

REPLY Specifies that a reply message will be sent from remote caches after a request for an
object update or invalidation has completed. Set this attribute when a high level of
consistency is required between caches. If the DISTRIBUTE attribute is not set, or
the cache is started in non-distributed mode, REPLY is ignored.

Object Types: When set on a region or group, this attribute sets the default value
for the REPLY attribute for the objects within the region, subregion, or group, unless
the objects explicitly set their own REPLY attribute. For memory, StreamAccess,
and disk objects, this attribute applies only when the DISTRIBUTE attribute is set to
the value DISTRIBUTE. Because pool objects are always local, this attribute does
not apply for pool objects.

Default Value: No reply is sent. When DISTRIBUTE is set to local, the REPLY
attribute is ignored.

SPOOL Specifies that a memory object should be stored on disk rather than being lost when
the cache system removes it from memory to regain space. This attribute applies
only to memory objects. If the object is also distributed, the object can survive the
death of the process that spooled it. Local objects are accessible only by the process
that spools them, so if the Java Object Cache is not running in distributed mode, the
spooled object is lost when the process dies.

Note: An object must be serializable to be spooled.

Object Types: When set on a region, subregion, or group, this attribute sets the
default value for the SPOOL attribute for the objects within the region, subregion, or
group unless the objects set their own SPOOL attribute.

Default Value: Memory objects are not stored to disk.

SYNCHRONIZE This attribute indicates that updates to this object must be synchronized. If this flag
is set, only the "owner" of an object can load or replace the object. Ownership is
obtained using the CacheAccess.getOwnership() method. The "owner" of an
object is the CacheAccess object. Setting the SYNCHRONIZE attribute does not
prevent a user from reading or invalidating the object.

Object Types: When set on a region, subregion, or group, the ownership restriction
is applied to the region, subregion, or group as a whole. Pool objects do not use this
attribute.

Default Value: Updates are not synchronized.

Table 9–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

Java Object Cache Environment

9-12 Oracle Application Server Containers for J2EE Services Guide

Using Attributes Defined Before or After Object Loading
A set of Java Object Cache attributes can be modified either before or after object
loading. Table 9–3 lists these attributes. These attributes can be set using the methods
in the list under "Using Attributes Defined Before Object Loading" on page 9-10, and
can be reset using the CacheAccess.resetAttributes() method.

SYNCHRONIZE_DEFAULT Indicates that all objects in a region, subregion, or group should be synchronized.
Each user object in the region, subregion, or group is marked with the
SYNCHRONIZE attribute. Ownership of the object must be obtained before the object
can be loaded or updated.

Setting the SYNCHRONIZE_DEFAULT attribute does not prevent a user from reading
or invalidating objects. Thus, ownership is not required for reads or invalidation of
objects that have the SYNCHRONIZE attribute set.

Object Types: When set on a region, subregion, or group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use
this attribute.

Default Value: Updates are not synchronized.

ALLOWNULL Specifies that the cache accepts null as a valid value for the affected objects. Null
objects that are returned by a cacheLoader object are cached, rather than
generating an ObjectNotFoundException.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless explicitly set for the object.

Default Value: OFF. (Nulls are not allowed.)

MEASURE Specifies that the size attribute of the cached object is calculated, automatically,
when the object is loaded or replaced in the cache. The capacity of the cache or
region can then be accurately controlled based on object size, rather than object
count.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless explicitly set for the object.

Default Value: OFF. (The size of an object is not automatically calculated.)

CapacityPolicy Specifies the CapacityPolicy object to be used to control the size of the region or
group. This attribute is ignored if set for an individual object.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: OFF. (No capacity policy is defined for a region or group. If the
region or group reaches capacity, the first nonreferenced object in the region or
group is invalidated.)

Table 9–3 Java Object Cache Attributes

Attribute Name Description

DefaultTimeToLive Establishes a default value for the TimeToLive attribute that is applied to all
objects individually within the region, subregion, or group. This attribute applies
only to regions, subregions, and groups. This value can be overridden by setting
the TimeToLive on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool unless the
objects explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

Table 9–2 (Cont.) Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

Java Object Cache Environment

Java Object Cache 9-13

IdleTime Specifies the amount of time an object can remain idle, with a reference count of 0,
in the cache before being invalidated. If the TimeToLive or
DefaultTimeToLive attribute is set, the IdleTime attribute is ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless the object explicitly sets IdleTime.

Default Value: No automatic IdleTime invalidation.

CacheEventListener Specifies the CacheEventListener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEventListener becomes the default CacheEventListener for the
region, subregion, or group unless a CacheEventListener is specified
individually on objects within the region, subregion, or group.

Default Value: No CacheEventListener is set.

TimeToLive Establishes the maximum amount of time that an object remains in the cache
before being invalidated. If associated with a region, subregion, or group, all
objects in the region, subregion, or group are invalidated when the time expires. If
the region, subregion, or group is not destroyed (that is, if GROUP_TTL_DESTROY
is not set), the TimeToLive value is reset.

Object Types: When set for a region, subregion, group, or pool, this attribute
applies to the region, subregion, group, or pool, as a whole, unless the objects
explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

Version An application can set a Version for each instance of an object in the cache. The
Version is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool unless the
objects explicitly set their own Version.

Default Value: The default Version is 0.

Priority Controls which objects are removed from the cache or region when its capacity has
been reached. This attribute, an integer, is made available to the
CapacityPolicy object used to control the size of the cache, region, or group.
The larger the number, the higher the priority. For region and group capacity
control, when an object is removed to make room, specifically for another object,
an object of higher priority is never removed to allow an object of lower priority to
be cached. For the cache capacity control, lower priority objects are chosen for
eviction over higher priority.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool
unless explicitly set for the object.

Default Value: integer.MAX_VALUE.

MaxSize Specifies the maximum number of bytes available for a region or group. If this
attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

Table 9–3 (Cont.) Java Object Cache Attributes

Attribute Name Description

Developing Applications Using Java Object Cache

9-14 Oracle Application Server Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
This section describes how to develop applications that use the Java Object Cache. This
section covers the following topics:

� Cache Object Attributes

� Importing Java Object Cache

� Defining a Cache Group

� Defining a Cache Subregion

� Defining and Using Cache Objects

� Implementing a CacheLoader Object

� Invalidating Cache Objects

� Destroying Cache Objects

� Multiple Object Loading and Invalidation

� Java Object Cache Configuration

� Declarative Cache

� Capacity Control

� Implementing a Cache Event Listener

� Restrictions and Programming Pointers

Importing Java Object Cache
The Oracle installer installs the Java Object Cache JAR file cache.jar in the directory
$ORACLE_HOME/javacache/lib on UNIX or in %ORACLE_
HOME%\javacache\lib on Windows.

To use the Java Object Cache, import oracle.ias.cache, as follows:

import oracle.ias.cache.*;

MaxCount Specifies the maximum number of objects that can be stored in a region or group.
If this attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

User-defined attributes Attributes can be defined by the user. These are name-value pairs that are
associated with the object, group, or region. They are intended to be used in
conjunction with a CapacityPolicy object, although they can be defined as
needed by the cache user.

Object Types: When set on a region, subregion, group, or pool, these attributes are
available to each object within the region, subregion, group, or pool unless
explicitly reset for the object.

Default Value: No user-defined attributes are set by default.

Table 9–3 (Cont.) Java Object Cache Attributes

Attribute Name Description

Developing Applications Using Java Object Cache

Java Object Cache 9-15

Defining a Cache Region
All access to the Java Object Cache is through a CacheAccess object, which is
associated with a cache region. You define a cache region, usually associated with the
name of an application, using the CacheAccess.defineRegion()static method. If
the cache has not been initialized, then defineRegion() initializes the Java Object
Cache.

When you define the region, you can also set attributes. Attributes specify how the
Java Object Cache manages objects. The Attributes.setLoader() method sets the
name of a cache loader. Example 9–1 shows this.

Example 9–1 Setting the Name of a CacheLoader

Attributes attr = new Attributes();
MyLoader mloader = new MyLoader;
attr.setLoader(mloader);
attr.setDefaultTimeToLive(10);

final static String APP_NAME_ = "Test Application";
CacheAccess.defineRegion(APP_NAME_, attr);

The first argument for defineRegion uses a String to set the region name. This
static method creates a private region name within the Java Object Cache. The second
argument defines the attributes for the new region using the default cache attributes.

Defining a Cache Group
Create a cache group when you want to create an association between two or more
objects within the cache. Objects are typically associated in a cache group because they
must be invalidated together or because they have a common set of attributes.

Any set of cache objects within the same region or subregion can be associated using a
cache group, including other cache groups. Before an object can be associated with a
cache group, the cache group must be defined. A cache group is defined with a name
and can use its own attributes, or it can inherit attributes from its parent cache group,
subregion, or region. The code in Example 9–2 defines a cache group within the region
named Test Application:

Example 9–2 Defining a Cache Group

final static String APP_NAME_ = "Test Application";
final static String GROUP_NAME_ = "Test Group";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a group
caccess.defineGroup(GROUP_NAME_);
// Close the CacheAccess object
caccess.close();

Defining a Cache Subregion
Define a subregion when you want to create a private name space within a region or
within a previously defined subregion. The name space of a subregion is independent
of the parent name space. A region can contain two objects with the same name, as
long as the objects are within different subregions.

Developing Applications Using Java Object Cache

9-16 Oracle Application Server Containers for J2EE Services Guide

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a subregion,
the subregion must be defined. A cache subregion is defined with a name and can use
its own attributes, or it can inherit attributes from its parent cache region or subregion.
Use the getParent() method to obtain the parent of a subregion.

The code in Example 9–3 defines a cache subregion within the region named
Test Application.

Example 9–3 Defining a Cache Subregion

final static String APP_NAME_ = "Test Application";
final static String SUBREGION_NAME_ = "Test SubRegion";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a SubRegion
caccess.defineSubRegion(SUBREGION_NAME_);
// Close the CacheAccess object
caccess.close();

Defining and Using Cache Objects
You may sometimes want to describe to the Java Object Cache how an individual
object should be managed within the cache before the object is loaded. You can specify
management options when the object is loaded, by setting attributes within the
CacheLoader.load() method. However, you can also associate attributes with an
object by using the CacheAccess.defineObject() method. If attributes are not
defined for an object, then the Java Object Cache uses the default attributes set for the
region, subregion, or group with which the object is associated.

Example 9–4 shows how to set attributes for a cache object. The example assumes that
the region APP_NAME_ has already been defined.

Example 9–4 Setting Cache Attributes

import oracle.ias.cache.*;
final static String APP_NAME_ = "Test Application";
CacheAccess cacc = null;
try
{
 cacc = CacheAccess.getAccess(APP_NAME_);
// set the default IdleTime for an object using attributes
 Attributes attr = new Attributes();
// set IdleTime to 2 minutes
 attr.setIdleTime(120);

// define an object and set its attributes
 cacc.defineObject("Test Object", attr);

// object is loaded using the loader previously defined on the region
// if not already in the cache.
 result = (String)cacc.get("Test Object");
} catch (CacheException ex){
 // handle exception
 } finally {
 if (cacc!= null)
 cacc.close();
}

Developing Applications Using Java Object Cache

Java Object Cache 9-17

Implementing a CacheLoader Object
The Java Object Cache has two mechanisms for loading an object into the cache:

� The object can be put into the cache directly by the application using the
CacheAccess.put() method.

� You can implement a CacheLoader object.

In most cases, implementing the CacheLoader is the preferred method. With a cache
loader, the Java Object Cache automatically determines if an object needs to be loaded
into the cache when the object is requested. And the Java Object Cache coordinates the
load if multiple users request the object at the same time.

A CacheLoader object can be associated with a region, subregion, group, or object.
Using a CacheLoader allows the Java Object Cache to schedule and manage object
loading, and handle the logic for "if the object is not in cache then load."

If an object is not in the cache, then when an application calls the
CacheAccess.get() or CacheAccess.preLoad() method, the cache executes the
CacheLoader.load method. When the load method returns, the Java Object Cache
inserts the returned object into the cache. Using CacheAccess.get(), if the cache is
full, the object is returned from the loader, and the object is immediately invalidated in
the cache. (Therefore, using the CacheAccess.get() method with a full cache does
not generate a CacheFullException.)

When a CacheLoader is defined for a region, subregion, or group, it is taken to be the
default loader for all objects associated with the region, subregion, or group. A
CacheLoader object that is defined for an individual object is used only to load the
object.

Using CacheLoader Helper Methods
The CacheLoader cache provides several helper methods that you can use from
within the load() method implementation. Table 9–4 summarizes the available
CacheLoader methods.

Note: A CacheLoader object that is defined for a region,
subregion, or group or for more than one cache object must be
written with concurrent access in mind. The implementation
should be thread-safe, because the CacheLoader object is shared.

Table 9–4 CacheLoader Methods Used in load()

Method Description

setAttributes() Sets the attributes for the object being loaded.

netSearch() Searches other available caches for the object to load. Objects
are uniquely identified by the region name, subregion name,
and the object name.

getName() Returns the name of the object being loaded.

getRegion() Returns the name of the region associated with the object
being loaded.

createStream() Creates a StreamAccess object.

createDiskObject() Creates a disk object.

exceptionHandler() Converts noncache exceptions into CacheExceptions, with
the base set to the original exception.

Developing Applications Using Java Object Cache

9-18 Oracle Application Server Containers for J2EE Services Guide

Example 9–5 illustrates a CacheLoader object using the
cacheLoader.netSearch() method to check whether the object being loaded is
available in distributed Java Object Cache caches. If the object is not found using
netSearch(), then the load method uses a more expensive call to retrieve the object.
(An expensive call may involve an HTTP connection to a remote Web site or a
connection to the Oracle9i Database Server.) For this example, the Java Object Cache
stores the result as a String.

Example 9–5 Implementing a CacheLoader

import oracle.ias.cache.*;
class YourObjectLoader extends CacheLoader{
 public YourObjectLoader () {
 }
 public Object load(Object handle, Object args) throws CacheException
 {
 String contents;
 // check if this object is loaded in another cache
 try {
 contents = (String)netSearch(handle, 5000);// wait for up to 5 scnds
 return new String(contents);
 } catch(ObjectNotFoundException ex){}

 try {
 contents = expensiveCall(args);
 return new String(contents);
 } catch (Exception ex) {throw exceptionHandler("Loadfailed", ex);}
 }

 private String expensiveCall(Object args) {
 String str = null;
 // your implementation to retrieve the information.
 // str = ...
 return str;
 }
 }

Invalidating Cache Objects
An object can be removed from the cache either by setting the TimeToLive attribute
for the object, group, subregion, or region, or by explicitly invalidating or destroying
the object.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or group invalidates all the individual objects from the region,
subregion, or group, leaving the environment—including all groups, loaders, and
attributes—available in the cache. Invalidating an object does not undefine the object.
The object loader remains associated with the name. To completely remove an object
from the cache, use the CacheAccess.destroy() method.

An object can be invalidated automatically based on the TimeToLive or IdleTime
attribute. When the TimeToLive or IdleTime expires, objects are, by default,
invalidated and not destroyed.

log() Records messages in the cache service log.

Table 9–4 (Cont.) CacheLoader Methods Used in load()

Method Description

Developing Applications Using Java Object Cache

Java Object Cache 9-19

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region, use the
CacheAccess.invalidate() method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.invalidate("Test Object"); // invalidate an individual object
cacc.invalidate("Test Group"); // invalidate all objects associated with a group
cacc.invalidate(); // invalidate all objects associated with the region cacc
cacc.close(); // close the CacheAccess handle

Destroying Cache Objects
An object can be removed from the cache either by setting the TimeToLive attribute
for the object, group, subregion, or region, or by explicitly invalidating or destroying
the object.

Destroying an object marks the object and the associated environment, including any
associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the region,
subregion, or group for removal, including the associated environment.

An object can be destroyed automatically based on the TimeToLive or IdleTime
attributes. By default, objects are invalidated and are not destroyed. If the objects must
be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region also closes
the CacheAccess object used to access the region.

To destroy an object, group, subregion, or region, use the CacheAccess.destroy()
method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.destroy("Test Object"); // destroy an individual object
cacc.destroy("Test Group"); // destroy all objects associated with
 // the group "Test Group"

cacc.destroy(); // destroy all objects associated with the region
 // including groups and loaders

Multiple Object Loading and Invalidation
In most cases, objects are loaded into the cache individually; in some cases, however,
multiple objects can be loaded into the cache as a set. The primary example of this is
when multiple cached objects can be created from a single read from a database. In this
case, it is much more efficient to create multiple objects from a single call to the
CacheLoader.load method.

To support this scenario, the abstract class CacheListLoader and the method
CacheAccess.loadList have been added. The CacheListLoader object extends
the CacheLoader object defining the abstract method loadList and the helper
methods getNextObject, getList, getNamedObject, and saveObject. The
cache user implements the CacheListLoader.loadList method. Employing the
helper methods, the user can iterate through the list of objects, creating each one and
saving it to the cache. If the helper methods defined in CacheLoader are used from
the CacheListLoader method, then getNextObject or getNamedObject should
be called first to set the correct context.

 The CacheAccess.loadList method takes as an argument an array of object
names to be loaded. The cache processes this array of objects. Any objects that are not
currently in the cache are added to a list that is passed to the CacheListLoader

Developing Applications Using Java Object Cache

9-20 Oracle Application Server Containers for J2EE Services Guide

object that is defined for the cached objects. If a CacheListLoader object is not
defined for the objects or the objects have different CacheListLoader objects
defined, then each object is loaded individually, using the CacheLoader.load
method defined.

It is always best to implement both the CacheListLoader.loadList method and
the CacheListLoader.load method. Which method is called depends on the order
of the user requests to the cache. For example, if the CacheAccess.get method is
called before the CacheAccess.loadList method, then the
CacheListLoader.load method is used rather than the CacheAccess.loadList
method.

As a convenience, the invalidate and destroy methods have been overloaded to also
handle an array of objects.

Example 9–6 shows a sample CacheListLoader, and Example 9–7 shows sample
usage.

Example 9–6 Sample CacheListLoader

Public class ListLoader extends CacheListLoader
{
 public void loadList(Object handle, Object args) throws CacheException
 {
 while(getNextObject(handle) != null)
 {
 // create the cached object based on the name of the object
 Object cacheObject = myCreateObject(getName(handle));
 saveObject(handle, cacheObject);
 }
 }

 public Object load(Object handle, Object args) throws CacheException
 {
 return myCreateObject(getName(handle));
 }

 private Object myCreateObject(Object name)
 {
 // do whatever to create the object
 }
}

Example 9–7 Sample Usage

// Assumes the cache has already been initialized

CacheAccess cacc;
Attributes attr;
ListLoader loader = new
ListLoader();
String objList[];
Object obj;

// set the CacheListLoader for the region
attr = new Attributes();
attr.setLoader(loader);

//define the region and get access to the cache
CacheAccess.defineRegion(“region name”, attr);
cacc = CacheAccess.getAccess(“region name”);

Developing Applications Using Java Object Cache

Java Object Cache 9-21

// create the array of object names
objList = new String[3];
for (int j = 0; j < 3; j++)
 objList[j] = “object “ + j;

// load the objects in the cache via the CacheListLoader.loadList method
cacc.loadList(objList);

// retrieve the already loaded object from the cache
obj = cacc.get(objList[0]);

// do something useful with the object

// load an object using the CacheListLoader.load method
obj = cache.get(“another object”)

// do something useful with the object

Java Object Cache Configuration
The Java Object Cache is NOT initialized automatically upon OC4J startup. You can
force OC4J to initialize jcache by using -Doracle.ias.jcache=true in
opmn.xml , as shown in the following example:

 <ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true
-DApplicationServerDebug=true
-Ddatasource.verbose=true
-Djdbc.debug=true -Doracle.ias.jcache=true"/>
 </category>
 <category id="stop-parameters">
 <data id="java-options"
value="-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.
policy -Djava.awt.headless=true"/>
 </category>
 </module-data>
 <start timeout="600" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="720" retry="2"/>
 <port id="ajp" range="3301-3400"/>
 <port id="rmi" range="3201-3300"/>
 <port id="jms" range="3701-3800"/>
 <process-set id="default_island" numprocs="1"/>
 </process-type>
 </ias-component>

The OC4J runtime initializes the Java Object Cache using configuration settings
defined in the file javacache.xml. The file path is specified in the
<javacache-config> tag of the OC4J server.xml file. The default relative path
values of javacache.xml in server.xml are the following:

<javacache-config path="../../../javacache/admin/javacache.xml"/>

Developing Applications Using Java Object Cache

9-22 Oracle Application Server Containers for J2EE Services Guide

The rules for writing javacache.xml and the default configuration values are
specified in an XML schema. The XML schema file ora-cache.xsd and the default
javacache.xml are in the directory $ORACLE_HOME/javacache/admin on UNIX
and in %ORACLE_HOME%\javacache\admin on Windows.

In earlier versions of Java Object Cache (before 9.0.4), configuration was done through
the file javacache.properties. Starting with version 10g (9.0.4), Java Object Cache
configuration is done through javacache.xml.

A sample configuration follows:

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
xmlns=http://www.oracle.com/oracle/ias/cache/configuration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/oracle/ias/cache/configuration
ora-cache.xsd">
 <logging>
 <location>javacache.log</location>
 <level>ERROR</level>
 </logging>
 <communication>
 <isDistributed>true</isDistributed>
 <discoverer discovery-port="7000"/>
 </communication>
 <persistence>
 <location>diskcache</location>
 <disksize>32</disksize>
 </persistence>
 <max-objects>1000</max-objects>
 <max-size>48</max-size>
 <clean-interval>30</clean-interval>
</cache-configuration>

Table 9–5 contains the valid property names and the valid types for each property.

Note: If you install both a release that uses
javacache.properties (before 9.0.4) and a release that uses
javacache.xml (9.0.4 or later) on the same host, then you must
ensure that the javacache.xml discovery-port attribute and
javacache.properties coordinatorAddress attribute are
not configured to the same port. If they are, then you must
manually change the value in one or the other to a different port
number. The default range is 7000-7099.

Developing Applications Using Java Object Cache

Java Object Cache 9-23

Table 9–5 Java Object Cache Configuration Properties

Configuration XML
Element Description Type

clean-interval Specifies the time, in seconds, between each cache cleaning. At the
cache-cleaning interval, the Java Object Cache checks for objects that
have been invalidated by the TimeToLive or IdleTime attributes
that are associated with the object. (Table 9–3 describes these
attributes.)

Default value: 60

Positive
integer

ping-interval Specifies the time, in seconds, between each cache death detection for
determining the availability of the remote cache systems.

Default value: 60

Positive
integer

max-size Specifies the maximum size of the memory, in megabytes, available
to the Java Object Cache.

Default value: 10

Positive
integer

max-objects Specifies the maximum number of in-memory objects that are
allowed in the cache. The count does not include group objects, or
objects that have been spooled to disk and are not currently in
memory.

Default value: 5000

Positive
integer

region-name-separator Specifies the separator between a parent region and a child region
name. See "Examples" on page 9-24.

Default value: /

QQ 125 removed per JB 20040921

String

preload-file Specifies the full path to the declarative cache configuration file. The
format of the file must conform to the declarative cache schema
(cache.xsd). The declarative cache configuration allows the system
to predefine cache regions, groups, objects, attributes, and policies
upon Java Object Cache service initialization. For more information
about the declarative cache, see "Declarative Cache" on page 9-25.
Also see "Examples" on page 9-24.
Note: The file path of the declarative cache XML schema is ORACLE_
HOME/javacache/admin/cache.xsd. Refer to the XML schema
when writing a declarative cache file.

Default value: To not use a declarative cache.

String

Developing Applications Using Java Object Cache

9-24 Oracle Application Server Containers for J2EE Services Guide

Examples
The following example illustrates the use of the <preload-file> element:

� Specify a declarative cache configuration file:

<preload-file>/app/oracle/javacache/admin/decl.xml</preload-file>

The following examples illustrate the use of the <communication> element:

� Turn off distributed cache:

<communication>
 <isDistributed>false</isDistributed>
</communication>

� Distribute cache among multiple JVMs in local machine:

<communication>
 <isDistributed>true</isDistributed>
</communication>

communication Indicates whether the cache is distributed. Specifies the IP address
and port that the Java Object Cache initially contacts to join the
caching system, when using distributed caching.

If the distribute property is set for an object, then updates and
invalidation for that object are propagated to other caches known to
the Java Object Cache.

If the isDistributed subelement of the communication element
is set to false, all objects are treated as local, even when the
attributes set on objects are set to distribute. See "Examples" on
page 9-24.

Default value: Cache is not distributed (isDistributed
subelement is set to false).

complex
(has
subelements
)

logging Specifies the logger attributes such as log file name and log level. The
available options of the log level are OFF, FATAL, ERROR, DEFAULT,
WARNING, TRACE, INFO, and DEBUG. See "Examples" on page 9-24.

Default log file name:

on UNIX:

 $ORACLE_HOME/javacache/admin/logs/javacache.log

on Windows:

 %ORACLE_HOME%\javacache\admin\logs\javacache.log

Default log level: DEFAULT

Complex
(has
subelements
)

persistence Specifies the disk cache configuration, such as absolute path to the
disk cache root and maximum size for the disk cache. If a root path is
specified, the default maximum size of the disk cache is 10 MB. The
unit of the disk cache size is megabytes. See "Examples" on page 9-24.

Default value: Disk caching is not available.

Complex
(has
subelements
)

Note: Configuration properties are distinct from the Java Object
Cache attributes that you specify using the Attributes class.

Table 9–5 (Cont.) Java Object Cache Configuration Properties

Configuration XML
Element Description Type

Developing Applications Using Java Object Cache

Java Object Cache 9-25

� Specify the initial discovery port that the Java Object Cache initially contacts to
join the caching system in the local node:

<communication>
 <isDistributed>true</isDistributed>
 <discoverer discovery-port="7000">
</communication>

� Specify the IP address and initial discovery port that the Java Object Cache
initially contacts to join the caching system.

<communication>
<isDistributed>true</isDistributed>
<discoverer ip="192.10.10.10" discovery-port="7000">
</communication>

� Specify multiple IP addresses and the initial discovery port that the Java Object
Cache initially contacts to join the caching system. If the first specified address is
not reachable, it contacts the next specified address:

<communication>
 <isDistributed>true</isDistributed>
 <discoverer ip="192.10.10.10" discovery-port="7000">
 <discoverer ip="192.11.11.11" discovery-port="7000">
 <discoverer ip="192.22.22.22" discovery-port="7000">
 <discoverer ip="192.22.22.22" discovery-port="8000">
</communication>

The following examples illustrate the use of the <persistence> element:

� Specify a root path for the disk cache using the default disk size:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
</persistence>

� Specify a root path for the disk cache with a disk size of 20 MB:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
 <disksize>20</disksize>
</persistence>

The following examples illustrate the use of the <logging> element:

� Specify a log file name:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
</logging>

� Specify log level as INFO:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
<level>INFO</level>
</logging>

Declarative Cache
With the 10g Release 2 (10.1.2) release of the Java Object Cache, object, group, and
region, as well as cache attributes, can be defined declaratively. You do not need to

Developing Applications Using Java Object Cache

9-26 Oracle Application Server Containers for J2EE Services Guide

write any Java code to define cache objects and attributes in your applications when
using declarative cache.

A declarative cache file can be read automatically during Java Object Cache
initialization. Specify the location of the declarative cache file in the <preload-file>
element of the cache configuration file. (See "Sharing Cached Objects in an OC4J
Servlet" on page 9-50 for cache configuration file syntax.) In addition, the declarative
cache file can be loaded programmatically or explicitly with the public methods in
oracle.ias.cache.Configurator.class. Multiple declarative cache files are
also permitted.

Figure 9–6 shows the declarative cache.

Figure 9–6 Declarative Cache Architecture

You can set up the Java Object Cache to automatically load a declarative cache file
during system initialization. Example 9–8 shows this. Example 9–9 shows how to
programmatically read the declarative cache file.

Example 9–8 Automatically Load Declarative Cache

<!-- Specify declarative cache file:my_decl.xml in javacache.xml -->
<cache-configuration>
 …

nameType

-
string-name

userDefinedObjectType

-
classname

string-name

object-name

0..

parameter

attributes

attributes

attributes

regionType --

regionType

-

groupType

cached-objectType

-

-name

-object

0..

cached-object

0..

group

0..

cached-object

0..

group

0..

region

-

-

Developing Applications Using Java Object Cache

Java Object Cache 9-27

<preload-file>/app/9iAS/javacache/admin/my_decl.xml</preload-file>
 …
</cache-configuration>

Example 9–9 Programmatically Read Declarative Cache File

try {
 String filename = "/app/9iAS/javacache/admin/my_decl.xml";
Configurator config = new Configurator(filename);
Config.defineDeclarable();
} catch (Exception ex) {
}

Declarative Cache File Sample
<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://www.javasoft.com/javax/cache"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/javax/cache">
 <region name="fruit">
 <attributes>
 <time-to-live>3000</time-to-live>
 <max-count>200</max-count>
 <capacity-policy>
 <classname>com.acme.MyPolicy</classname>
 </capacity-policy>
 </attributes>
 <group name="apple">
 <attributes>
 <flag>spool</flag>
 <flag>distribute</flag>
 <cache-loader>
 <classname>com.acme.MyLoader</classname>
 <parameter name="color">red</parameter>
 </cache-loader>
 </attributes>
 </group>
 <cached-object>
 <name>
 <string-name>theme</string-name>
 </name>
 <object>
 <classname>com.acme.DialogHandler</classname>
 <parameter name="prompt">Welcome</parameter>
 </object>
 </cached-object>
 </region>
</cache>

Declarative Cache File Format
The declarative cache file is in XML format. The file contents should conform to the
declarative cache XML schema that is shipped with Oracle Application Server 10g. The
file path of the XML schema is ORACLE_HOME/javacache/admin/cache.xsd.

Table 9–6 lists the elements of the declarative cache schema, their children, and the
valid types for each element. See "Examples" on page 9-29 for code that shows usage
for most elements.

Developing Applications Using Java Object Cache

9-28 Oracle Application Server Containers for J2EE Services Guide

Figure 9–7 shows the attributes of the declarative cache schema.

Table 9–6 Description of Declarative Cache Schema (cache.xsd)

Element Description Children Type

region Declare a cache region or
subregions.

<attributes>
<region>
<group>
<cached-object>

regionType

group Declare a cache group or
subgroup.

<attributes>
<group>
<cached-object>

groupType

cached-object Declare a cache object. <attributes>
<name>
<object>

objectType

name Declare the name for a cached
object. The name can use a simple
string type or it can be a type of a
specified Java object.

<string-name>
<object-name>

nameType

object Declare a user-defined Java object.
The class of the specified object
must implement the declarable
interface of the
oracle.ias.cache package.

<classname>
<parameter>

userDefinedObjectType

attributes Declare an attributes object for a
cache region, group, or cache
object. Each child element
corresponds to each field in the
attributes class of the
oracle.ias.cache package.
See the Javadoc of
Attributes.class for more
details.

<time-to-live>
<default-ttl>
<idle-time>
<version>
<max-count>
<priority>
<size>
<flag>
<event-listener>
<cache-loader>
<capacity-policy>
<user-defined>

attributesType

event-listener Declare a CacheEventListener
object.

<classname> event-listenerType

cache-loader Declare a CacheLoader object. <classname>
<parameter>

userDefinedObjectType

capacity-policy Declare a CapacityPolicy
object.

<classname>
<parameter>

userDefinedObjectType

user-defined Declare user-defined string type
attributes.

<key>
<value>

element

Developing Applications Using Java Object Cache

Java Object Cache 9-29

Figure 9–7 Declarative Cache Schema Attributes

Examples
The following examples show use of elements in Table 9–6:

� Declare cache region and subregions with the <region> element:

<region name=”themes”>
 <region name=”cartoon”>
 <!-- sub region definition -->
 </region>
 <group name=”colors”>
 <!-- group definition -->
 </group>
</region>

time-to-live

default-ttl

idle-time

version

max-count

priority

size

flag

attributes Type --

event-listener Type

event-listener --

--

userDefinedObjectType

userDefinedObjectType

classname

classname
cache-loader

0..∞
parameter

--
classname

capacity-policy

0..∞
parameter

-

0..∞

0..∞

user-defined
key

value
-

O
_1

00
5

Developing Applications Using Java Object Cache

9-30 Oracle Application Server Containers for J2EE Services Guide

� Declare cache group and subgroups with the <group> element:

<group name=”colors”>
 <group name=”dark”>
 <!-- sub group definition -->
 </group>
</group>

� Declare a cached object with the <cached-object> element:

<cached-object>
 <name>
 <string-name>DialogHandler</string-name>
 </name>
 <object>
 <classname>com.acme.ConfigManager</classname>
 <parameter name=”color”>blue</parameter>
 </object>
</cached-object>

� Declare the name for a cached object with the <name> element using a string:

<name>
 <string-name>DialogHandler</string-name>
</name>

Declare the name for a cached object with the <name> element using an object:

<name>
 <object-name>
 <classname>DialogHandler</classname>
 <parameter name="color">green</parameter>
 </object-name>
</name>

� Declare a user-defined Java object with the <object> element:

<object>
 <classname>com.acme.CustomConfigManager</classname>
 <parameter name=”color”>blue</parameter>
</object>

// Implementation of CustomConfigManager.java
package com.acme;
import oracle.ias.cache.Declarable;
public class CustomConfigManager implements Declarable {
}

� Declare an attributes object for a cache region, group, or cache object with the
<attributes> element:

<attributes>
 <time-to-live>4500</time-to-live>
 <default-ttl>6000</default-ttl>
 <version>99</version>
 <max-count>8000</max-count>
 <priority>50</priority>
 <flag>spool</flag>
 <flag>allownull</flag>
 <flag>distribute</flag>
 <flag>reply</flag>
 <cache-loader>

Developing Applications Using Java Object Cache

Java Object Cache 9-31

 <classname>MyLoader</classname>
 <parameter name="debug">false</parameter>
 </cache-loader>
</attributes>

� Declare user-defined string type attributes with the <user-defined> element:

<attributes>
 <user-defined>
 <key>color</key>
 <value>red</value>
 </user-defined>
</attributes>

Declarable User-Defined Objects
The topology of the cache objects, object attributes, and user-defined objects can all be
described in the declarative cache file. For the system to load and instantiate a
user-defined Java object (including CacheLoader, CacheEventListener, and
CapacityPolicy) declared in the declarative cache file, the object must be an
instance of the oracle.ias.cache.Declarable interface. That is, you must
implement the oracle.ias.cache.Declarable interface for any Java objects
declared in the declarative cache file. You must be aware that all user-defined Java
objects are loaded by the JVM’s default class loader instead of the application’s class
loaders. After the declarable object is instantiated, the system implicitly invokes its
init(Properties props) method. The method uses the user-supplied parameters
(name-value pair) defined in the declarative cache file to perform any necessary
initialization task. Example 9–10 shows how to define an object by declaratively
passing in a parameter (color = yellow).

Example 9–10 Define An Object by Declaratively Passing in a Parameter

In the declarative XML file:

<cached-object>
 <name>
 <string-name>Foo</string-name>
 </name>
 <object>
 <classname>com.acme.MyCacheObject</classname>
 <parameter name="color">yellow</parameter>
 </object>
</cached-object>

Declarable object implementation:

package com.acme;

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheObject implements Declarable {

 private String color_;

 /**
 * Object initialization
 */
 public void init(Properties prop) {
 color_ = prop.getProperty(“color”);
 }

Developing Applications Using Java Object Cache

9-32 Oracle Application Server Containers for J2EE Services Guide

}

Declarable CacheLoader, CacheEventListener, and CapacityPolicy
When you specify a CacheLoader, CacheEventListener, or CapacityPolicy
object in the declarative cache file, the object itself must also be an instance of
oracle.ias.cache.Declarable. This requirement is similar to that of the
user-defined object. You must implement a declarable interface for each specified
object in addition to extending the required abstract class. Example 9–11 shows a
declarable CacheLoader implementation.

Example 9–11 Declarable CacheLoader Implementation

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheLoader extends CacheLoader implements Declarable {

 public Object load(Object handle, Object argument) {
 // should return meaningful object based on argument
 return null;
 }

 public void init(Properties prop) {
 }
}

Initializing the Java Object Cache in a Non-OC4J Container
To use the Java Object Cache in any Java application but run it in a non-OC4J runtime,
insert the following reference to where the application (Java class) is initialized:

Cache.open(/path-to-ocnfig-file/javacache.xml);

If you invoke Cache.open() without any parameter in your code, then the Java
Object Cache uses its internal default configuration parameter. You can also initialize
the Java Object Cache by invoking Cache.init(CacheAttributes). This allows
you to derive the configuration parameters from your own configuration file or
generate them programmatically.

If the Java Object Cache is not used in the OC4J runtime, you must include
cache.jar in the classpath where the JVM is launched. You must also initialize the
Java Object Cache explicitly by invoking Cache.open(String config_
filename), where config_filename is the full path to a valid javacache.xml
file, or by invoking Cache.init(CacheAttributes).

Use any of the following method invocations to initialize the Java Object Cache
explicitly in a non-OC4J container:

� Cache.open();

Use the default Java Object Cache configuration stored in the cache.jar file.

� Cache.open(/path-to-oracle-home/javacache/admin/javacache.xml);

Use the configuration defined in the javacache.xml file.

� Cache.open(/path-to-user’s-own-javacache.xml);

Use the configuration defined in the specific javacache.xml file.

Developing Applications Using Java Object Cache

Java Object Cache 9-33

� Cache.init(CacheAttributes);

Use the configuration that is set in a CacheAttributes object.

For J2EE applications running in an OC4J container, the path to the javacache.xml
file can be configured in the OC4J server.xml configuration file. The cache can be
initialized automatically when the OC4J process is started. See OC4J configuration for
details.

In a non-OC4J container, if you do not use any of the preceding method invocations,
the Java Object Cache is initialized implicitly (using default configuration settings
stored in cache.jar) when you invoke Cache.getAccess() or
Cache.defineRegion().

Capacity Control
The new capacity control feature allows the cache user to specify the policy to employ
when determining which objects should be removed from the cache when the capacity
of the cache, region, or group has been reached. To specify the policy, extend the
abstract class CapacityPolicy, and set the instantiated object as an attribute of the
cache, region, or group.

For regions and groups, the CapacityPolicy object is called when the region or
group has reached its capacity and a new object is being loaded. An object in the
region or group must be found to invalidate, or the new object is not saved in the
cache. (It is returned to the user but is immediately invalidated.)

The CapacityPolicy object that is associated with the cache as a whole is called
when capacity of the cache reaches some "high water mark," some percentage of the
configured maximum. When the high water mark is reached, the cache attempts to
remove objects to reduce the load in the cache to 3% below the high water mark. The
high water mark is specified by the capacityBuffer cache attribute. If the
capacityBuffer is set to 5, then the cache begins removing objects from the cache
when it is 95% full (100% -5%) and continues until the cache is 92% full (95% - 3%). The
default value for capacityBuffer is 15.

The capacity policy used for the cache can be different from those used for specific
regions or groups.

By default, the capacity policy for groups and regions is to remove a nonreferenced
object of equal or lesser priority when a new object is added and capacity has been
reached. For the cache, the default policy is to remove objects that have not been
referenced in the last two clean intervals, with preference to objects of priority—that is,
low priority objects that have not been referenced recently are removed first.

To help create a capacity policy, many statistics are kept for objects in the cache and
aggregated across the cache, regions, and groups. The statistics are available to the
CapacityPolicy object. For cache objects, the following statistics are maintained:

� Priority

� Access count—the number of times the object has been referenced

� Size—the size of the object in bytes (if available)

� Last access time—the time in milliseconds that the object was last accessed

� Create time—the time in milliseconds when the object was created

� Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Developing Applications Using Java Object Cache

9-34 Oracle Application Server Containers for J2EE Services Guide

Along with these statistics, all attributes associated with the object are available to the
CapacityPolicy object.

The following aggregated statistics are maintained for the cache, regions, and groups.
For each of these statistics, the low, high, and average value is maintained. These
statistics are recalculated at each clean interval or when Cache.updateStats() is
called.

� Priority

� Access count—the number of times that the object has been referenced

� Size—the size of the object in bytes (if available)

� Last access time—the time in milliseconds that the object was last accessed

� Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Example 9–12 is a sample CapacityPolicy object for a region, based on object size.

Example 9–12 Sample CapacityPolicy Based on Object Size

class SizePolicy extends CapacityPolicy
{
 public boolean policy (Object victimHandle, AggregateStatus aggStatus,
 long currentTime , Object newObjectHandle) throws CacheException
 {
 int newSize;
 int oldSize;

 oldSize = getAttributes(victimHandle).getSize();
 newSize = getAttributes(newObjectHandle).getSize();
 if (newSize >= oldSize)
 return true;
 return false;
 }

Example 9–13 is a sample CapacityPolicy for the cache, based on access time and
reference count. If an object has below-average references and has not been accessed in
the last 30 seconds, then it is removed from the cache.

Example 9–13 Sample CapacityPolicy Based on Access Time and Reference Count

class SizePolicy extends CapacityPolicy
{
public boolean policy (Object victimHandle, AggregateStatus aggStatus, long
 currentTime , Object newObjectHandle) throws CacheException
{
 long lastAccess;
 int accessCount;
 int avgAccCnt;

 lastAccess = getStatus(victimHandle).getLastAccess();
 accessCount = getStatus(victimHandle).getAccessCount();
 avgAccCnt = aggStatus.getAccessCount(AggregateStatus.AVG);

 if (lastAccess + 30000 < currentTime && accessCount < avgAccCnt)
 return true;
 }

}

Developing Applications Using Java Object Cache

Java Object Cache 9-35

Implementing a Cache Event Listener
Many events can occur in the life cycle of a cached object, including object creation and
object invalidation. This section shows how an application can be notified when cache
events occur.

To receive notification of the creation of an object, implement event notification as part
of the cacheLoader. For notification of invalidation or updates, implement a
CacheEventListener, and associate the CacheEventListener with an object,
group, region, or subregion using Attributes.setCacheEventListener().

CacheEventListener is an interface that extends java.util.EventListener.
The cache event listener provides a mechanism to establish a callback method that is
registered and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If an
event listener is associated with a group, region, or subregion, then by default, the
listener runs only when the group, region, or subregion itself is invalidated.
Invalidating a member does not trigger the event. The
Attributes.setCacheEventListener() call takes a boolean argument that, if
true, applies the event listener to each member of the region, subregion, or group,
rather than to the region, subregion, or group itself. In this case, the invalidation of an
object within the region, subregion, or group triggers the event.

The CacheEventListener interface has one method, handleEvent(). This
method takes a single argument, a CacheEvent object that extends
java.util.EventObject. This object has two methods, getID(), which returns
the type of event (OBJECT_INVALIDATION or OBJECT_UPDATED), and
getSource(), which returns the object being invalidated. For groups and regions,
the getSource() method returns the name of the group or region.

The handleEvent() method is executed in the context of a background thread that
the Java Object Cache manages. Avoid using Java Native Interface (JNI) code in this
method, because the expected thread context may not be available.

Example 9–14 illustrates how a CacheEventListener is implemented and
associated with an object or a group.

Example 9–14 Implementing a CacheEventListener

import oracle.ias.cache.*;
 // A CacheEventListener for a cache object
 class MyEventListener implements
 CacheEventListener {

 public void handleEvent(CacheEvent ev)
 {
 MyObject obj = (MyObject)ev.getSource();
 obj.cleanup();
 }

 // A CacheEventListener for a group object
 class MyGroupEventListener implements CacheEventListener {
 public void handleEvent(CacheEvent ev)
 {
 String groupName = (String)ev.getSource();
 app.notify("group " + groupName + " has been invalidated");

 }
 }

Developing Applications Using Java Object Cache

9-36 Oracle Application Server Containers for J2EE Services Guide

Use the Attributes.listener attribute to specify the CacheEventListener for
a region, subregion, group, or object.

Example 9–15 illustrates how to set a cache event listener on an object. Example 9–16
illustrates how to set a cache event listener on a group.

Example 9–15 Setting a Cache Event Listener on an Object

import oracle.ias.cache.*;

 class YourObjectLoader extends CacheLoader
 {
 public YourObjectLoader () {
 }

 public Object load(Object handle, Object args) {
 Object obj = null;
 Attributes attr = new Attributes();
 MyEventListener el = new MyEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, el);

 // your implementation to retrieve or create your object

 setAttributes(handle, attr);
 return obj;
 }
}

Example 9–16 Setting a Cache Event Listener on a Group

import oracle.ias.cache.*;
try
{
 CacheAccess cacc = CacheAccess.getAccess(myRegion);
 Attributes attr = new Attributes ();

 MyGroupEventListener listener = new MyGroupEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, listener);

 cacc.defineGroup("myGroup", attr);
 //....
 cacc.close();

}catch(CacheException ex)
{
 // handle exception
}

Restrictions and Programming Pointers
This section covers restrictions and programming pointers when using the Java Object
Cache.

� Do not share the CacheAccess object between threads. This object represents a
user to the caching system. The CacheAccess object contains the current state of
the user's access to the cache: what object is currently being accessed, what objects
are currently owned, and so on. Trying to share the CacheAccess object is
unnecessary and may result in unpredictable behavior.

Developing Applications Using Java Object Cache

Java Object Cache 9-37

� A CacheAccess object holds a reference to only one cached object at a time. If
multiple cached objects are being accessed concurrently, then use multiple
CacheAccess objects. For objects that are stored in memory, the consequences of
not doing this are minor, because Java prevents the cached object from being
garbage collected, even if the cache believes it is not being referenced. For disk
objects, if the cache reference is not maintained, the underlying file could be
removed by another user or by time-based invalidation, causing unexpected
exceptions. To optimize resource management, keep the cache reference open as
long as the cached object is being used.

� Always close a CacheAccess object when it is no longer being used. The
CacheAccess objects are pooled. They acquire cache resources on behalf of the
user. If the access object is not closed when it is not being used, then these
resources are not returned to the pool and are not cleaned up until they are
garbage collected by the JVM. If CacheAccess objects are continually allocated
and not closed, then degradation in performance may occur.

� When local objects (objects that do not set the Attributes.DISTRIBUTE
attribute) are saved to disk using the CacheAccess.save() method, they do not
survive the termination of the process. By definition, local objects are visible only
to the cache instance where they were loaded. If that cache instance goes away for
any reason, then the objects that it manages, including on disk, are lost. If an object
must survive process termination, then both the object and the cache must be
defined DISTRIBUTE.

� The cache configuration, also called the cache environment, is local to a cache; this
includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. Define the cache
configuration during the initialization of the application.

� If a CacheAccess.waitForResponse() or
CacheAccess.releaseOwnership() method call times out, then you must call
it again until it returns successfully. If CacheAccess.waitForResponse() does
not succeed, then you must call CacheAccess.cancelResponse to free
resources. If CacheAccess.releaseOwnership() doesn't succeed, then you
must call CacheAccess.releaseOwnership with a timeout value of -1 to free
resources.

� When a group or region is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, then all
objects in the group or region are invalidated or destroyed across the entire cache
system, even if the individual objects or associated groups are defined as local. If
the group or region is defined as local, then local objects within the group are
invalidated locally; distributed objects are invalidated throughout the entire cache
system.

� When an object or group is defined with the SYNCHRONIZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

� In general, objects that are stored in the cache should be loaded by the system class
loader that is defined in the classpath when the JVM is initialized, rather than
by a user-defined class loader. Specifically, any objects that are shared between
applications or can be saved or spooled to disk must be defined in the system
classpath. Failure to do so can result in a ClassNotFoundException or a
ClassCastException.

� On some systems, the open file descriptors can be limited by default. On these
systems, you may need to change system parameters to improve performance. On

Working with Disk Objects

9-38 Oracle Application Server Containers for J2EE Services Guide

UNIX systems, for example, a value of 1024 or greater can be an appropriate
value for the number of open file descriptors.

� When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a JVM process (that is, in the program running in
the JVM that uses the Java Object Cache API).

Working with Disk Objects
The Java Object Cache can manage objects on disk as well as in memory.

This section covers the following topics:

� Local and Distributed Disk Cache Objects

� Adding Objects to the Disk Cache

Local and Distributed Disk Cache Objects
This section covers the following topics:

� Local Objects

� Distributed Objects

Local Objects
When operating in local mode, the cache attribute isDistributed is not set and all
objects are treated as local objects (even when the DISTRIBUTE attribute is set for an
object). In local mode, all objects in the disk cache are visible only to the Java Object
Cache cache that loaded them, and they do not survive after process termination. In
local mode, objects stored in the disk cache are lost when the process using the cache
terminates.

Distributed Objects
If the cache attribute isDistributed is set to true, the cache will operate in
distributed mode. Disk cache objects can be shared by all caches that have access to the
file system hosting the disk cache. This is determined by the disk cache location
configured. This configuration allows for better utilization of disk resources and
allows disk objects to persist beyond the life of the Java Object Cache process.

Objects that are stored in the disk cache are identified using the concatenation of the
path that is specified in the diskPath configuration property and an internally
generated String representing the remaining path to the file. Thus, caches that share
a disk cache can have a different directory structure, as long as the diskPath
represents the same directory on the physical disk and is accessible to the Java Object
Cache processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

Adding Objects to the Disk Cache
There are several ways to use the disk cache with the Java Object Cache, including:

� Automatically Adding Objects

� Explicitly Adding Objects

� Using Objects that Reside Only in Disk Cache

Working with Disk Objects

Java Object Cache 9-39

Automatically Adding Objects
The Java Object Cache automatically adds certain objects to the disk cache. Such
objects can reside either in the memory cache or in the disk cache. If an object in the
disk cache is needed, it is copied back to the memory cache. The action of spooling to
disk occurs when the Java Object Cache determines that it requires free space in the
memory cache. Spooling of an object occurs only if the SPOOL attribute is set for the
object.

Explicitly Adding Objects
In some situations, you may want to force one or more objects to be written to the Java
Object Cache disk cache. Using the CacheAccess.save() method, a region,
subregion, group, or object is written to the disk cache. (If the object or objects are
already in the disk cache, they are not written again.)

Calling CacheAccess.save() on a region, subregion, or group saves all the objects
within the region, subregion, or group to the disk cache. During a
CacheAccess.save() method call, if an object is encountered that cannot be written
to disk, either because it is not serializable or for other reasons, then the event is
recorded in the Java Object Cache log, and the save operation continues with the next
object. When individual objects are written to disk, the write is synchronous. If a group
or region is saved, then the write is performed as an asynchronous background task.

Using Objects that Reside Only in Disk Cache
Objects that you access only directly from disk cache are loaded into the disk cache by
calling CacheLoader.createDiskObject() from the CacheLoader.load()
method. The createDiskObject() method returns a File object that the
application can use to load the disk object. If the attributes of the disk object are not
defined for the disk object, then set them using the createDiskObject() method.
The system manages local and distributed disk objects differently; the system
determines if the object is local or distributed when it creates the object, based on the
specified attributes.

When CacheAccess.get() is called on a disk object, the full path name to the file is
returned, and the application can open the file, as needed.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared by all Java Object
Cache processes, or they can be local to a particular process, depending on the setting
for the DISTRIBUTE attribute (and the mode that the Java Object Cache is running in,
either distributed or local).

Example 9–17 shows a loader object that loads a disk object into the cache.

Note: Using CacheAccess.save() saves an object to disk even
when the SPOOL attribute is not set for the object.

Note: If you want to share a disk cache object between distributed
caches in the same cache system, then you must define the
DISTRIBUTE attribute when the disk cache object is created. This
attribute cannot be changed after the object is created.

Working with Disk Objects

9-40 Oracle Application Server Containers for J2EE Services Guide

Example 9–17 Creating a Disk Object in a CacheLoader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 File file;
 FileOutputStream = out;
 Attributes attr = new Attributes();

 attr.setFlags(Attributes.DISTRIBUTE);
 try
 // The distribute attribute must be set on the createDiskObject method
 {
 file = createDiskObject(handle, attr);
 out = new FileOutputStream(file);

 out.write((byte[])getInfofromsomewhere());
 out.close();
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in file handling", ex)
 }
 return file;
 }
 }

Example 9–18 illustrates application code that uses a Java Object Cache disk object.
This example assumes that the region named Stock-Market is already defined with
the YourObjectLoader loader that was set up in Example 9–17 as the default loader
for the region.

Example 9–18 Application Code that Uses a Disk Object

import oracle.ias.cache.*;

try
{
 FileInputStream in;
 File file;
 String filePath;
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");

 filePath = (String)cacc.get("file object");
 file = new File(filePath);
 in = new FileInputStream(filePath);
 in.read(buf);

// do something interesting with the data
 in.close();
 cacc.close();
}
catch (Exception ex)
{
// handle exception
}

Working with StreamAccess Objects

Java Object Cache 9-41

Working with StreamAccess Objects
A StreamAccess object is accessed as a stream and automatically loaded to the disk
cache. The object is loaded as an OutputStream and read as an InputStream.
Smaller StreamAccess objects can be accessed from memory or from the disk cache;
larger StreamAccess objects are streamed directly from the disk. The Java Object
Cache automatically determines where to access the StreamAccess object, based on
the size of the object and the capacity of the cache.

The user is always presented with a stream object, an InputStream for reading and
an OutputStream for writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.

Creating a StreamAccess Object
To create a StreamAccess object, call the CacheLoader.createStream() method
from the CacheLoader.load() method when the object is loaded into the cache.
The createStream() method returns an OutputStream object. Use the
OutputStream object to load the object into the cache.

If the attributes have not already been defined for the object, then set them using the
createStream() method. The system manages local and distributed disk objects
differently; the determination of local or distributed is made when the system creates
the object, based on the attributes.

Example 9–19 shows a loader object that loads a StreamAccess object into the cache.

Example 9–19 Creating a StreamAccess Object in a Cache Loader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 OutputStream = out;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);

 try
 {
 out = createStream(handle, attr);
 out.write((byte[])getInfofromsomewhere());
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in write", ex)
 }
 return out;
 }
}

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, then you must define
the DISTRIBUTE attribute when the StreamAccess object is
created. You cannot change this attribute after the object is created.

Working with Pool Objects

9-42 Oracle Application Server Containers for J2EE Services Guide

Working with Pool Objects
A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects that the Java Object Cache
manages. Users access individual objects within the pool with a check out, using a
pool access object, and then return the objects to the pool when they are no longer
needed.

This section covers the following topics:

� Creating Pool Objects

� Using Objects from a Pool

� Implementing a Pool Object Instance Factory

� Pool Object Affinity

Creating Pool Objects
To create a pool object, use CacheAccess.createPool(). The CreatePool()
method takes as arguments:

� A PoolInstanceFactory

� An Attributes object

� Two integer arguments

The integer arguments specify the maximum pool size and the minimum pool size. By
supplying a group name as an argument to CreatePool(), a pool object is associated
with a group.

Attributes, including TimeToLive or IdleTime, can be associated with a pool object.
These attributes can be applied to the pool object itself, when specified in the attributes
set with CacheAccess.createPool(), or they can be applied to the objects within
the pool individually.

Using CacheAccess.createPool(), specify minimum and maximum sizes with
the integer arguments. Specify the minimum first. It sets the minimum number of
objects to create within the pool. The minimum size is interpreted as a request rather
than a guaranteed minimum. Objects within a pool object are subject to removal from
the cache due to lack of resources, so the pool can decrease the number of objects
below the requested minimum value. The maximum pool size puts a hard limit on the
number of objects available in the pool.

Example 9–20 shows how to create a pool object.

Example 9–20 Creating a Pool Object

import oracle.ias.cache.*;

 try
 {
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");
 Attributes attr = new Attributes();
 QuoteFactory poolFac = new QuoteFactory();

Note: Pool objects and the objects within a pool object are always
treated as local objects.

Working with Pool Objects

Java Object Cache 9-43

 // set IdleTime for an object in the pool to three minutes
 attr.setIdleTime(180);
 // create a pool in the "Stock-Market" region with a minimum of
 // 5 and a maximum of 10 object instances in the pool
 cacc.createPool("get Quote", poolFac, attr, 5, 10);
 cacc.close();
 }
 catch(CacheException ex)
 {
 // handle exception
 }
}

Using Objects from a Pool
To access objects in a pool, use a PoolAccess object. The PoolAccess.getPool()
static method returns a handle to a specified pool. The PoolAccess.get() method
returns an instance of an object from within the pool (this checks out an object from the
pool). When an object is no longer needed, return it to the pool, using the
PoolAccess.returnToPool() method, which checks the object back into the pool.
Finally, call the PoolAccess.close() method when the pool handle is no longer
needed.

Example 9–21 describes the calls that are required to create a PoolAccess object,
check an object out of the pool, and then check the object back in and close the
PoolAccess object.

Example 9–21 Using a PoolAccess Object

PoolAccess pacc = PoolAccess.getPool("Stock-Market", "get Quote");
//get an object from the pool
GetQuote gq = (GetQuote)pacc.get();
// do something useful with the gq object
// return the object to the pool
pacc.returnToPool(gq);
pacc.close();

Implementing a Pool Object Instance Factory
The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object—a PoolInstanceFactory. The
PoolInstanceFactory is an abstract class with two methods that you must
implement: createInstance() and destroyInstance().

The Java Object Cache calls createInstance() to create instances of objects that are
being accumulated within the pool. The Java Object Cache calls
destroyInstance() when an instance of an object is being removed from the pool.
(Object instances from within the pool are passed into destroyInstance().)

The size of a pool object (that is, the number of objects within the pool) is managed
using these PoolInstanceFactory() methods. The system decreases or increases
the size and number of objects in the pool, based on demand, and based on the values
of the TimeToLive or IdleTime attributes.

Example 9–22 shows the calls required when implementing a
PoolInstanceFactory.

Running in Local Mode

9-44 Oracle Application Server Containers for J2EE Services Guide

Example 9–22 Implementing Pool Instance Factory Methods

import oracle.ias.cache.*;
 public class MyPoolFactory implements PoolInstanceFactory
 {
 public Object createInstance()
 {
 MyObject obj = new MyObject();
 obj.init();
 return obj;
 }
 public void destroyInstance(Object obj)
 {
 ((MyObject)obj).cleanup();
 }
 }

Pool Object Affinity
Object pools are a collection of serially reusable objects. A user "checks out" an object
from the pool to perform a function, then "checks in" the object back to the pool when
done. During the time the object is checked out, the user has exclusive use of that
object instance. After the object is checked in, the user gives up all access to the object.
While the object is checked out, the user can apply temporary modifications to the
pool object (add state) to allow it to execute the current task. Since some cost is
incurred to add these modifications, it would be beneficial to allow the user to,
whenever possible, get the same object from the pool with the modifications already in
place. Since the 9.0.2 version of the Java Object Cache, the only way to do this was
never to check in the object, which would then defeat the purpose of the pool. To
support the pool requirement described in this paragraph, the functionality described
in the following two paragraphs has been added to the pool management of the Java
Object Cache.

Objects checked into the pool using the returnToPool method of the PoolAccess
object maintain an association with the last PoolAccess object that referenced the
object. When the PoolAccess handle requests an object instance, the same object it
had previously is returned. This association will be terminated if the PoolAccess
handle is closed, or the PoolAccess.release method is called, or the object is given
to another user. Before the object is given to another user, a callback is made to
determine if the user is willing to give up the association with the object. If the user is
not willing to dissolve the association, then the new user is not given access to the
object. The interface PoolAffinityFactory extends the interface
PoolInstanceFactory, adding the callback method affinityRelease. This
method returns true if the association can be broken, and false otherwise.

If the entire pool is invalidated, the affinityRelease method is not called. Object
instance cleanup is then performed with the
PoolInstanceFactory.instanceDestroy method.

Running in Local Mode
When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same system or remotely
across the network. Object persistence across system shutdowns or program failures is
not supported when running in local mode.

Running in Distributed Mode

Java Object Cache 9-45

By default, the Java Object Cache runs in local mode, and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DISTRIBUTE attribute for all objects.

Running in Distributed Mode
In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same system or remotely across the network.
Object updates and invalidations are propagated between communicating caches.
Distributed mode supports object persistence across system shutdowns and program
failures.

This section covers the following topics:

� Configuring Properties for Distributed Mode

� Using Distributed Objects, Regions, Subregions, and Groups

� Cached Object Consistency Levels

� Sharing Cached Objects in an OC4J Servlet

Configuring Properties for Distributed Mode
To configure the Java Object Cache to run in distributed mode, set the value of the
distribute and discoveryAddress configuration properties in the
javacache.xml file.

Setting the distribute Configuration Property
To start the Java Object Cache in distributed mode, set the isDistributed attribute
to true in the configuration file. "Java Object Cache Configuration" on page 9-21
describes how to do this.

Setting the discoveryAddress Configuration Property
In distributed mode, invalidations, destroys, and replaces are propagated through the
messaging system of the cache. The messaging system requires a known host name
and port address to allow a cache to join the cache system when it is first initialized.
Use the discoverer attribute in the communication section in the javacache.xml
file to specify a list of host name and port addresses.

By default, the Java Object Cache sets the discoverer to the value :12345 (this is
equivalent to localhost:12345). To eliminate conflicts with other software on the
site, have your system administrator set the discoveryAddress.

If the Java Object Cache spans systems, then configure multiple discoverer entries,
with one hostname:port pair specified for each node. Doing this avoids any
dependency on a particular system being available or on the order the processes are
started. Also see "Java Object Cache Configuration" on page 9-21.

Note: All caches cooperating in the same cache system must
specify the same set of host name and port addresses. The address
list, set with the discoverer attributes, defines the caches that make
up a particular cache system. If the address lists vary, then the
cache system could be partitioned into distinct groups, resulting in
inconsistencies between caches.

Running in Distributed Mode

9-46 Oracle Application Server Containers for J2EE Services Guide

Using Distributed Objects, Regions, Subregions, and Groups
When the Java Object Cache runs in distributed mode, individual regions, subregions,
groups, and objects can be either local or distributed. By default, objects, regions,
subregions, and groups are defined as local. To change the default local value, set the
DISTRIBUTE attribute when the object, region, or group is defined.

A distributed cache can contain both local and distributed objects.

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the caches.
Also see "Cached Object Consistency Levels" on page 9-49.

Using the REPLY Attribute with Distributed Objects
When updating, invalidating, or destroying objects across multiple caches, it may be
useful to know when the action has completed at all the participating sites. Setting the
REPLY attribute causes all participating caches to send a reply to the originator when a
requested action has completed for the object. The
CacheAccess.waitForResponse() method allows the user to block until all
remote operations have completed.

To wait for a distributed action to complete across multiple caches, use
CacheAccess.waitForResponse(). To ignore responses, use the
CacheAccess.cancelResponse() method, which frees the cache resources used to
collect the responses.

Both CacheAccess.waitForResponse() and
CacheAccess.cancelResponse() apply to all objects that are accessed by the
CacheAccess object. This feature allows the application to update several objects,
then wait for all the replies.

Example 9–23 illustrates how to set an object as distributed and handle replies when
the REPLY attribute is set. In this example, you can also set the attributes for the entire
region. Additionally, you can set attributes for a group or individual object, as
appropriate for your application.

Example 9–23 Distributed Caching Using Reply

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and have a reply generated
// by the remote caches when the change is completed

attr.setFlags(Attributes.DISTRIBUTE|Attributes.REPLY);
attr.setLoader(loader);

CacheAccess.defineRegion("testRegion",attr);
cacc = CacheAccess.getAccess("testRegion"); // create region with
 //distributed attributes

obj = (String)cacc.get("testObject");
cacc.replace("testObject", obj + "new version"); // change will be
 // propagated to other caches

cacc.invalidate("invalidObject"); // invalidation is propagated to other caches

Running in Distributed Mode

Java Object Cache 9-47

try
{
// wait for up to a second,1000 milliseconds, for both the update
// and the invalidate to complete
 cacc.waitForResponse(1000);

catch (TimeoutException ex)
{
 // tired of waiting so cancel the response
 cacc.cancelResponse();
}
cacc.close();
}

Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT
When updating objects across multiple caches, or when multiple threads access a
single object, you can coordinate the update action. Setting the SYNCHRONIZE
attribute enables synchronized updates, and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONIZE attribute also applies to regions, subregions, and groups. When the
SYNCHRONIZE attribute is applied to a region, subregion, or group, ownership of the
region, subregion, or group must be obtained before an object can be loaded or
replaced in the region, subregion, or group.

Setting the SYNCHRONIZE_DEFAULT attribute on a region, subregion, or group applies
the SYNCHRONIZE attribute to all the objects within the region, subregion, or group.
Ownership must be obtained for the individual objects within the region, subregion, or
group before they can be loaded or replaced.

To obtain ownership of an object, use CacheAccess.getOwnership(). After
ownership is obtained, no other CacheAccess instance is allowed to load or replace
the object. Reads and invalidation of objects are not affected by synchronization.

After ownership has been obtained and the modification to the object is completed,
call CacheAccess.releaseOwnership() to release the object.
CacheAccess.releaseOwnership() waits up to the specified time for the updates
to complete at the remote caches. If the updates complete within the specified time,
ownership is released; otherwise, a TimeoutException is thrown. If the method
times out, call CacheAccess.releaseOwnership() again.
CacheAccess.releaseOwnership()must return successfully for ownership to be
released. If the timeout value is -1, then ownership is released immediately, without
waiting for the responses from the other caches.

Example 9–24 illustrates distributed caching using SYNCHRONIZE and
SYNCHRONIZE_DEFAULT.

Example 9–24 Distributed Caching Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE);
attr.setLoader(loader);

Running in Distributed Mode

9-48 Oracle Application Server Containers for J2EE Services Guide

//create region
CacheAccess.defineRegion("testRegion");
cacc = CacheAccess.getAccess("testRegion");
cacc.defineGroup("syncGroup", attr); //define a distributed synchronized group
cacc.defineObject("syncObject", attr); // define a distributed synchronized object
attr.setFlagsToDefaults() // reset attribute flags

// define a group where SYNCHRONIZE is the default for all objects in the group
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE_DEFAULT);
cacc.defineGroup("syncGroup2", attr);
try
{
// try to get the ownership for the group don't wait more than 5 seconds
 cacc.getOwnership("syncGroup", 5000);
 obj = (String)cacc.get("testObject", "syncGroup"); // get latest object
 // replace the object with a new version
 cacc.replace("testObject", "syncGroup", obj + "new version");
 obj = (String)cacc.get("testObject2", "syncGroup"); // get a second object
 // replace the object with a new version
 cacc.replace("testObject2", "syncGroup", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for group");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncGroup",5000);
}
catch (TimeoutException ex)
{
 // tired of waiting so just release ownership
 cacc.releaseOwnership("syncGroup", -1));
}
try
{
 cacc.getOwnership("syncObject", 5000); // try to get the ownership for the object
 // don't wait more than 5 seconds
 obj = (String)cacc.get("syncObject"); // get latest object
 cacc.replace("syncObject", obj + "new version"); // replace the object with a new version
}
catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncObject", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("syncObject", -1)); // tired of waiting so just release ownership
}
try

Running in Distributed Mode

Java Object Cache 9-49

{
 cacc.getOwnership("Object2", "syncGroup2", 5000); // try to get the ownership for the object
 // where the ownership is defined as the default for the group don't wait more than 5 seconds
 obj = (String)cacc.get("Object2", "syncGroup2"); // get latest object
 // replace the object with new version
 cacc.replace("Object2", "syncGroup2", obj + "new version");
}

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("Object2", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("Object2", -1)); // tired of waiting so just release ownership
}
 cacc.close();
}

Cached Object Consistency Levels
Within the Java Object Cache, each cache manages its own objects locally, within its
JVM process. In distributed mode, when using multiple processes or when the system
is running on multiple sites, a copy of an object can exist in more than one cache.

The Java Object Cache allows you to specify the consistency level that is required
between copies of objects that are available in multiple caches. The consistency level
that you specify depends on the application and the objects being cached. The
supported levels of consistency vary, from none to all copies of objects being consistent
across all communicating caches.

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

� Using Local Objects (No consistency requirements)

� Propagating Changes Without Waiting for a Reply

� Propagating Changes and Waiting for a Reply

� Serializing Changes Across Multiple Caches

Using Local Objects
If there are no consistency requirements between objects in distributed caches, then
define an object as a local object. (When Attributes.DISTRIBUTE is unset, this
specifies a local object.) Local is the default setting for objects. For local objects, all
updates and invalidation are visible to only the local cache.

Propagating Changes Without Waiting for a Reply
To distribute object updates across distributed caches, define an object as distributed
by setting the DISTRIBUTE attribute. All modifications to distributed objects are
broadcast to other caches in the system. Using this level of consistency does not control

Running in Distributed Mode

9-50 Oracle Application Server Containers for J2EE Services Guide

or specify when an object is loaded into the cache or updated, and does not provide
notification as to when the modification has completed in all caches.

Propagating Changes and Waiting for a Reply
To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object’s DISTRIBUTE and REPLY attributes. When
you set these attributes, notification occurs when a modification has completed in all
caches. When you set Attributes.REPLY for an object, replies are sent back to the
modifying cache when the modification has been completed at the remote site. These
replies are returned asynchronously—that is, the CacheAccess.replace() and
CacheAccess.invalidate() methods do not block. Use the
CacheAccess.waitForResponse() method to wait for replies and block.

Serializing Changes Across Multiple Caches
To use the highest level of consistency of the Java Object Cache, set the appropriate
attributes on the region, subregion, group, or object to make objects act as
synchronized objects.

When you set Attributes.SYNCHRONIZE_DEFAULT on a region, subregion, or
group, it sets the SYNCHRONIZE attribute for all the objects within the region,
subregion, or group.

When you set Attributes.SYNCHRONIZE on an object, it forces applications to
obtain ownership of the object before the object can be loaded or modified. Setting this
attribute effectively serializes write access to objects. To obtain ownership of an object,
use the CacheAccess.getOwnership() method. When you set the
Attributes.SYNCHRONIZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess.releaseOwnership() to block until any
outstanding updates have completed and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

When using this level of consistency, with Attributes.SYNCHRONIZE, the
CacheLoader.load() method calls CacheLoader.netSearch() before loading
the object from an external source. Calling CacheLoader.netSearch() in the load
method tells the Java Object Cache to search all other caches for a copy of the object.
This process prevents different versions of the object from being loaded into the cache
from an external source. Proper use of the SYNCHRONIZE attribute, along with the
REPLY attribute and the invalidate method, supports consistency of objects across the
cache system

Sharing Cached Objects in an OC4J Servlet
To take advantage of the distributed functionality of the Java Object Cache or to share
a cached object among servlets, some minor modification to an application’s
deployment may be necessary. Any user-defined objects that will be shared among
servlets or distributed among JVMs must be loaded by the system class loader. By
default, objects that are loaded by a servlet are loaded by the context class loader.

Note: Setting Attributes.SYNCHRONIZE for an object is not the
same as setting synchronized on a Java method. With
Attributes.SYNCHRONIZE set, the Java Object Cache forces the
cache to serialize creates and updates of the object, but does not
prevent the Java programmer from obtaining a reference to the
object and then modifying the object.

Running in Distributed Mode

Java Object Cache 9-51

These objects are visible only to the servlets within the context that loaded them. The
object definition is not available to other servlets or to the cache in another JVM. If the
object is loaded by the system class loader, the object definition is available to other
servlets and to the cache on other JVMs.

With OC4J, the system classpath is derived from the manifest of the oc4j.jar file
and any associated JAR files, including cache.jar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, copy
the class file to ORACLE_HOME/javacache/sharedobjects/classes, or add it to
the JAR file ORACLE_HOME/javacache/cachedobjects/share.jar. Both the
classes directory and the share.jar file have been included in the manifest for
cache.jar.

Using User-Defined Class Loaders
You can place objects in the cache that require user-defined class loaders. The Cache
Service supports user-defined class loaders by providing two methods:
Attributes.setClassLoader() and Attributes.getClassLoader(). Once
you have set a region or a group to use a user-defined class loader, all objects under
that region or group are loaded using this class loader (by inheriting attributes). This
attribute does not apply to objects that are not region or group, and will be ignored if
set.

The following example demonstrates setting user-defined class loader. Object A is
loaded using MyClassLoader.

import oracle.ias.cache.*;
import java.lang.ClassLoader;
Classloader loader = this.getClass().getClassLoader();
CacheAttributes cAttr = new CacheAttributes();
Attributes attr = new Attributes();
CacheAccess cacc;
Cache.init(cAttr);
attr.setClassLoader(loader);
CacheAccess.defineRegion(“region A”, attr);
cacc = CacheAccess.getAccess(“region A”);
cacc.get(“object A”)

Note that user-defined class loaders can only be used for object contents, not object
names. In other words, in the line

cacc.put(name, object);

object can require a user-defined class loader, but name cannot.

HTTP and Security for Distributed Cache
This section discusses HTTP and security for distributed cache.

HTTP
By default, the Cache Service uses a proprietary protocol built on top of TCP to
communicate between caches. In addition to the proprietary protocol, the Cache
Service also supports using HTTP to communicate between caches. While the
proprietary protocol is kept for compatibility reasons, some of the newer
functionalities are implemented exclusively for HTTP. In particular, in a distributed

Running in Distributed Mode

9-52 Oracle Application Server Containers for J2EE Services Guide

cache system, when getting disk or stream objects from remote caches, HTTP mode is
required. CacheAccess.getAllCached(), CacheLoader.getFromRemote(),
and CacheLoader.netSearch() are three example operations where HTTP mode
is required for dealing with disk and stream objects. To enable HTTP mode, you must
set CacheAttributes.transport.

To use HTTP, you must enable it on all of the caches within a distributed system. The
functionality that previously used the proprietary protocol will also work with HTTP
enabled.

The following examples show two ways to enable HTTP mode.

Example 1 - Enabling HTTP in cache_attributes.xml :

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <transport>HTTP</transport>
 </communication>
</cache-configuration>

import oracle.ias.cache.*;
Cache.open(“cache_attributes.xml”);

Example 2 - Enabling HTTP in code:

import oracle.ias.cache.*;
CacheAttributes cAttr = new CacheAttributes();
cAttr.distribute = true;
cAttr.transport = CacheAttributes.HTTP;
Cache.init(cAttr);

SSL

For secure communication between caches, the Cache Service supports the SSL
protocol. The JDK keytool program can be used to generate certificates and set up the
keystore, as documented on Sun’s J2SE 1.4.2 Key and Certificate Management Tool
web page. The same key pair and certificate used for OC4J can be used for the Cache
Service.

To use SSL, you must enable it on all of the caches within a distributed system.

After setting up the keystore, you need to tell the cache where the keystore is with this
command:

java –jar $ORACLE_HOME/javacache/lib/cache.jar sslconfig <cache_attributes.xml>
<keystore_file> <password>

where

� $ORACLE_HOME is the home directory of the Oracle IAS instance.

� cache_attributes.xml is your cache configuration file.

� keystore_file is the full path to your keystore file as generated by keytool.

Running in Distributed Mode

Java Object Cache 9-53

� password is the password you used in keytool to generate the key pair.

This generates an SSL configuration file to be used by the cache, where the name of the
file is as specified in cache_attributes.xml. In addition, you need to set
CacheAttributes.isSSLEnabled to true.

The following examples show two ways to enable SSL:

Example 1 - Enabling SSL in cache_attributes.xml :

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <useSSL>true</useSSL>
 <keyStore>.keyStore</keyStore>
 <sslConfigFile>.sslConfig</sslConfigFile>
 </communication>
</cache-configuration>

import oracle.ias.cache.*;
Cache.open(“cache_attributes.xml”);

Example 2 - Enabling SSL in code:

import oracle.ias.cache.*;
CacheAttributes cAttr = new CacheAttributes();
cAttr.distribute = true;
cAttr.isSSLEnabled = true;
cAttr.keyStoreLocation = “.keyStore”;
cAttr.sslConfigFilePath = “.sslConfig”;
Cache.init(cAttr);

Two caches must be using the same set of keys to communicate with each other. If the
caches in a system reside on multiple machines, then you need to copy the keystore
file to all machines and run the java –jar … command for every cache
configuration file in the system.

Firewall
To make a distributed cache system work across a firewall, the current workaround is
to enable a set of outbound TCP ports at the firewall and to define them in cache_
attributes.xml.

For example, cache_attributes.xml might look something like this if the ports are
within the range of 7100 to 7199:

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <useSSL>false</useSSL>
 <sslConfigFile>.sslConfig</sslConfigFile>
 <port lower=”7100” upper=”7199”/>
 <discoverer discovery-port="7100" original="true" xmlns=""/>

Monitoring and Debugging

9-54 Oracle Application Server Containers for J2EE Services Guide

 </communication>
</cache-configuration>

Make sure that the discovery-port is within the range specified.

Restricting Incoming Connections
For systems that are configured with more than one address to support multiple
network subnets (private and public, for example), you can specify a configuration
element, localAddress, in cache_attributes.xml to restrict incoming
connections to a specified local address. By default, the distributed cache system will
bind the listener socket to the primary host address returned by the operating system.
If localAddress is specified, however, the cache will bind the listener socket to the
specified address. The value specified for localAddress must be a fully qualified
hostname or IP address. For example:

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <localAddress>123.456.78.90</localAddress>
 <discoverer discovery-port="7100" original="true" xmlns=""/>
 </communication>
</cache-configuration>

or

cache_attributes.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication>
 <isDistributed>true</isDistributed>
 <localAddress>computer.oracle.com</localAddress>
 <discoverer discovery-port="7100" original="true" xmlns=""/>
 </communication>
</cache-configuration>

In the latter case, even if the IP underneath a virtual hostname changes, JOC will
remain unaffected.

Monitoring and Debugging
Besides Cache.listCacheObjects() and Cache.dump(), the Cache Service
provides additional methods to reflect the current status of the cache and of the
regions, groups, and individual objects within the cache. These methods can be found
in the classes CacheAccess, Cache, and AggregateStatus.

The methods under Cache reflect the cache’s own status. getActiveHostInfo
returns an array of CacheHostInfo objects for all active caches in a cache system.
getCacheSize estimates total space (bytes) taken up by memory objects in the cache.

Monitoring and Debugging

Java Object Cache 9-55

getDistributedDiskCacheSize and getLocalDiskCacheSize estimate total
space (bytes) taken up by objects in the distributed and local disk caches, respectively.
getObjectCount returns the current total number of objects in the cache.

The methods under CacheAccess reflect region, group, and individual object status.
listNames names all objects under the region. listObjects names all objects
under the region and also provides access to them. listRegions names all
sub-regions under the region. These three methods are not recursive. For example,
listRegions does not list the sub-regions under the sub-regions of the region.

CacheAccess.getStatus() reflects more detailed status information for a named
individual object or group under the region in the form of an ObjectStatus object.
This includes the cached object’s access count, time of creation, size on disk (if stored
on disk), last time of access, loading time (ms), priority (as set by the object’s creator),
and size in cache (bytes). If no object or group name is specified, getStatus returns
the status of the region.

CacheAccess.getAggregateStatus(), on the other hand, returns overall
statistics for a named group or region (sub-region) in the form of an
AggregateStatus object. AggregateStatus reflects the low, average, and high
values of attributes of the objects under the region or group. These attributes include
access count, time of creation, last time of access, loading time, priority, and size in
cache. In addition, the AggregateStatus object also includes the total object count
for the region or group. Reflection methods in the AggregateStatus class allows
you to access all of these numbers individually.

The Cache Service automatically compiles the information reflected by
getAggregateStatus during every clean interval. To obtain the latest information,
you need to call Cache.updateStats() before calling getAggregateStatus.

Here is an example of using getAggregateStatus

import oracle.ias.cache.*;
import java.util.Date;
import java.io.*;

CacheAccess cacc;

// create objects, load objects, etc.
...

AggregateStatus aggStats;
long avgCreateTime;
Date avg;

Cache.updateStats();
aggStats = cacc.getAggregateStatus();
avgCreateTime = aggStats.getCreateTime(AggregateStatus.AVG);
avg = new Date(avgCreateTime);

System.out.println("average creation time: " + avg);

CacheWatchUtil
By default, the Cache Service provides the CacheWatchUtil cache monitoring utility
that can display current caches in the system, display a list of cached objects, display
caches' attributes, reset cache logger severity, dump cache contents to the log, and so
on.

Monitoring and Debugging

9-56 Oracle Application Server Containers for J2EE Services Guide

To invoke CacheWatchUtil, while caches are running, type one of the following
commands:

java oracle.ias.cache.CacheWatchUtil [-config=cache_config.xml] [-help]

or

java –jar $ORACLE_HOME/javacache/lib/cache.jar watch [-config=cache_config.xml]
[-help]

where “-config=” and “-help” are optional parameters, and cache_config.xml
is a cache configuration file.

� “help” gives you a list of commands you can invoke in the cache watcher. Among
these commands,

� “set severity=<level> [CacheId]” sets logger severity level for a
particular cache. The levels are:

� -1 off

� 0 fatal

� 3 error

� 4 default

� 6 warning

� 7 trace

� 10 info

� 15 debug

� “set timeout=<value>” sets group communication timeout for the cache
system to value.

� “dump [CacheId]” dumps the contents of a particular cache to the log file.

� “invalidate” invalidates all objects in the cache system.

� “destroy” destroys all objects in the cache system (include memory, stream, and
disk).

Typing “get config [CacheId]” returns the cache configuration information for a
particular cache. You can retrieve remote cache configurations for verification, as
shown in the following example.

cache> get config 3
ache 3 at localhost:53977
distribute = true
version = 9.0.4
max objects = 200
max cache size = 48
diskSize = 32
diskPath = <disk_path>
clean interval = 3
LogFileName = <log_file_name>
Logger = MyCacheLogger
Log severity = 3
cache address list = [127.0.0.1:22222, pos=-1, uid=0, orig, name=, pri=0
]

Monitoring and Debugging

Java Object Cache 9-57

Typing “list caches” or “lc” lists all of the active caches in the system. The cache
watcher also occupies a spot on the list, as shown in the following example. The UID
column displays every cache’s ID. The cache watcher does not detect caches that have
been configured but are not active.

cache> lc
Current coordinator: [127.0.0.1:53957, pos=0, uid=0, tag=27979955, pri=0]
UID CacheAddress
- --- ---------------------
1 0 localhost:53957
2 1 localhost:53965
3 2 localhost:53974
4 3 localhost:53977
5 4 localhost:53980
6 5 localhost:53997 <-- this cache watcher

Typing

“list objects [CacheId] [region=<region>] [sort=<0...7>]”

or

“lo [CacheId] [region=<region>] [sort=<0...7>]”

 lists all objects in a specified cache, under a specified region, and in the order specified
by the sort option. The sort options are:

� 0 by region name

� 1 by object name

� 2 by group name

� 3 by object type

� 4 by valid status

� 5 by reference count

� 6 by access count

� 7 by expiration

Without any options, lo lists all objects in all caches without sorting. The following
example shows lo for cache 3, A-Region, sorted by object name. Columns have been
adjusted to improve example readability.

cache> lo 3 region=A-Region sort=1
Cache 3 at localhost:53977
 REGION OBJNAME GROUP TYPE REFCNT ACCCNT EXPIRE VALID LOCK
-------- --------- ------- ------ -------- -------- -------- ------- ------
[A-Region] [A-Group] [A-Region] Group 0 1 None true null
[A-Region] [A-Region] [null] Region 0 4 295 Seconds true null
[A-Region] [B-Group] [A-Region] Group 0 3 None true null
[A-Region] [bar] [B-Group] Loader 0 1 None true null

Finally, typing “groupdump” dumps all group communication information for all
caches to the log file. It is unlikely that you will need to use this command or that you

XML Schema for Cache Configuration

9-58 Oracle Application Server Containers for J2EE Services Guide

will find its output useful, but in the event of group communication errors, technical
support might ask you to supply the information for problem diagnosis.

XML Schema for Cache Configuration

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="cache-configuration" type="CacheConfigurationType">
 <xs:annotation>
 <xs:documentation>Oracle JavaCache implementation</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="CacheConfigurationType">
 <xs:sequence>
 <xs:element name="logging" type="loggingType" minOccurs="0"/>
 <xs:element name="communication" type="communicationType" minOccurs="0"/>
 <xs:element name="persistence" type="persistenceType" minOccurs="0"/>
 <xs:element name="preload-file" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="max-objects" type="xs:positiveInteger" default="1000" minOccurs="0"/>
 <xs:element name="max-size" type="xs:positiveInteger" default="1000" minOccurs="0"/>
 <xs:element name="clean-interval" type="xs:positiveInteger" default="60" minOccurs="0"/>
 <xs:element name="ping-interval" type="xs:positiveInteger" default="60" minOccurs="0"/>
 <xs:element name="cacheName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="loggingType">
 <xs:sequence>
 <xs:element name="location" type="xs:string" minOccurs="0"/>
 <xs:element name="level" type="loglevelType" minOccurs="0"/>
 <xs:element name="logger" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="communicationType">
 <xs:sequence>
 <xs:element name="isDistributed" type="xs:boolean" default="false" minOccurs="0"/>
 <xs:element name="transport" type="transportType" minOccurs="0"/>
 <xs:element name="useSSL" type="xs:boolean" minOccurs="0"/>
 <xs:element name="sslConfigFile" type="xs:string" minOccurs="0"/>
 <xs:element name="keyStore" type="xs:string" minOccurs="0"/>
 <xs:element name="port" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="lower" type="xs:nonNegativeInteger" use="optional" default="0"/>
 <xs:attribute name="upper" type="xs:nonNegativeInteger" use="optional" default="0"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="localAddress" type="xs:string" minOccurs="0"/>
 <xs:element name="discoverer" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="discovererType">
 <xs:attribute name="order" type="xs:nonNegativeInteger"/>
 <xs:attribute name="original" type="xs:boolean"/>

XML schema for attribute declaration

Java Object Cache 9-59

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="discovererElection" type="electionType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="discovererType">
 <xs:attribute name="ip" type="xs:string"/>
 <xs:attribute name="discovery-port" type="xs:positiveInteger" use="required"/>
 </xs:complexType>
 <xs:complexType name="persistenceType">
 <xs:sequence>
 <xs:element name="location" type="xs:string"/>
 <xs:element name="disksize" type="xs:positiveInteger" default="30" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="loglevelType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="OFF"/>
 <xs:enumeration value="FATAL"/>
 <xs:enumeration value="ERROR"/>
 <xs:enumeration value="DEFAULT"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="TRACE"/>
 <xs:enumeration value="INFO"/>
 <xs:enumeration value="DEBUG"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="transportType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="HTTP"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="electionType">
 <xs:sequence>
 <xs:element name="useMulticast" type="xs:boolean" minOccurs="0"/>
 <xs:element name="updateInterval" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="resolutionInterval" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="multicastAddress" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="ip" type="xs:string" use="optional"/>
 <xs:attribute name="port" type="xs:string" use="optional"/>
 <xs:attribute name="TTL" type="xs:nonNegativeInteger" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="usePriorityOrder" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

XML schema for attribute declaration
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration/declarative"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration/declarative"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

XML schema for attribute declaration

9-60 Oracle Application Server Containers for J2EE Services Guide

 <xs:complexType name="regionType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="region" type="regionType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="group" type="groupType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="attributesType">
 <xs:sequence>
 <xs:element name="time-to-live" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="default-ttl" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="idle-time" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 <xs:element name="max-count" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="priority" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="size" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="flag" minOccurs="0" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="flagType">
 <xs:enumeration value="distribute"/>
 <xs:enumeration value="reply"/>
 <xs:enumeration value="synchronize"/>
 <xs:enumeration value="spool"/>
 <xs:enumeration value="group_ttl_destroy"/>
 <xs:enumeration value="original"/>
 <xs:enumeration value="synchronize-default"/>
 <xs:enumeration value="allownull"/>
 <xs:enumeration value="measure"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="event-listener" type="event-listenerType" minOccurs="0"/>
 <xs:element name="cache-loader" type="userDefinedObjectType" minOccurs="0"/>
 <xs:element name="capacity-policy" type="userDefinedObjectType" minOccurs="0"/>
 <xs:element name="user-defined" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="flagType">
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:complexType name="userDefinedObjectType">
 <xs:sequence>
 <xs:element name="classname" type="xs:string"/>
 <xs:element name="parameter" type="propertyType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>

XML schema for attribute declaration

Java Object Cache 9-61

 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="event-listenerType">
 <xs:sequence>
 <xs:element name="classname" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="handle-event" type="handle-eventType" use="required"/>
 <xs:attribute name="default" type="xs:boolean"/>
 </xs:complexType>
 <xs:simpleType name="handle-eventType">
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:enumeration value="object-invalidated"/>
 <xs:enumeration value="object-updated"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="groupType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="group" type="groupType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="cached-objectType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="name" type="nameType" minOccurs="0"/>
 <xs:element name="object" type="userDefinedObjectType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="nameType">
 <xs:choice>
 <xs:element name="string-name" type="xs:string"/>
 <xs:element name="object-name" type="userDefinedObjectType"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="cache">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="region" type="regionType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

XML schema for attribute declaration

9-62 Oracle Application Server Containers for J2EE Services Guide

Index-1

Index

Numerics
1pc

See single-phase commit
2pc

See two-phase commit

A
abnormal termination

OC4J JMS, 3-14
AbstractPrincipalMapping

extending, 8-16
administration

OracleAS JMS, 3-21
administration properties

OracleAS JMS, 3-22
admin.jar

resource adapters, deploying, 8-7
resource adaptors, undeploying, 8-7

admin.jar tool, 6-3, 6-4
ALLOWNULL Java Object Cache attribute, 9-12
ApplicationClientInitialContextFactory, 2-4
application-client.jar

JNDI, 2-3, 2-5
application-client.xml, 6-19

JNDI, 2-5
<application-server> element, 8-9
application.xml, 7-8

<data-sources> tag, 4-7
designating data-sources.xml, 4-7
location, 4-7

AQ, 3-24
<as-context> element, 6-16
Attributes.setCacheEventListener() method, 9-35
authentication classes

OC4J-specific, 8-14

B
bean-managed transactions

MDBs, and JMS clients, 7-13
BMT

recovery, 7-11
browse

JMS utility, 3-9

C
cache

concepts, 9-1
cache region, 9-7
CacheAccess

createPool() method, 9-42
CacheAccess.getOwnership() method, 9-47
CacheAccess.releaseOwnership() method, 9-47
CacheAccess.save() method, 9-39
CacheEventListener

Java Object Cache attribute, 9-13
CacheEventListener interface, 9-35
CacheLoader.createStream() method, 9-41
caching scheme, 4-21
CapacityPolicy

Java Object Cache attribute, 9-12
check

JMS utility, 3-9
class

<data-source> attribute, 4-8
clean-available-connections-threshold

<data-source> attribute, 4-10
clean-interval configuration XML element, 9-23
client.sendpassword, 6-15
client.sendpassword property, 6-18
client-side installation requirements

RMI/IIOP, 6-2
RMI/ORMI, 5-2

client-side transaction demarcation, 7-6
clustering

issues, JMS and OracleAS JMS, 3-49
JNDI

enabling, 2-11
limitations, 2-11
overview, 2-11

CMP
connection recovery, 7-11
retry count, 7-11

CMT
recovery, 7-11
retry count, 7-11

com.evermind.server package
ApplicationClientInitialContextFactory, 5-9, 6-19
ApplicationInitialContextFactory, 5-9
JNDI, 2-4

Index-2

RMIInitialContextFactory, 5-9
<commit-class> element, 7-9
Common Secure Interoperability Version 2

See CSIv2
com.oracle.iiop.server package

IIOPInitialContextFactory, 6-19
component-managed sign-on, 8-11
<confidentiality> element, 6-16
configuration

two-phase commit transaction, 7-7
configuration elements

OracleAS JMS hierarchical tree, 3-3
configuration files

data sources, 4-7
configuring

connection pooling, 8-10
high availability, 3-47
high availability, OJMS, 3-47
high availability, OracleAS JMS, 3-41
JMS provider, 3-25
OC4J for interoperability, 6-12
OC4J mount point in RMI/IIOP, 5-12
OC4J to support RMI tunneling, 5-11
Oracle JMS, 3-27
Oracle JMS provider in OC4J XML files, 3-27
OracleAS JMS, 3-2
OracleAS JMS ports, 3-2
resource provider with data sources

property, 3-28
single-phase commit, 7-2
timeouts in server.xml, 7-10
timeouts JTA, 7-10

configuring custom resource provider
JMS, 3-23

configuring resource provider
OJMS, 3-28, 3-29

connection factories
default, in JMS, 3-4

connection factory
configuration examples, 3-20

connection pooling
configuring, 8-10

connection-driver
<data-source> attribute, 4-8

ConnectionFactory
JMS, 3-4

connection-factory element, 3-18
connection-retry-interval

<data-source> attribute, 4-9
connection-retry-interval

<data-source><default>, 4-10
constructing

JNDI contexts, 2-2
JNDI InitialContext, 2-3

container-managed sign-on, 8-12
container-managed transactions

MDBs, 7-12
<container-transaction> element, 7-5
context factory

usage, 5-9, 6-19

Context.bind API call, 2-2
contextFactory

ApplicationClientInitialContextFactory, 6-19
IIOPInitialContextFactory, 6-19

contextFactory property, 6-18
context.SECURITY_CREDENTIAL

JNDI-related environment properties, 2-6
context.SECURITY_PRINCIPAL

JNDI-related environment properties, 2-6
copy

JMS utility, 3-9
CORBA Object Service Naming

See CosNaming
CORBA Transaction Service

see OTS
corbaname URL, 6-10
CosNaming, 6-1, 6-10
createDiskObject() method, 9-17, 9-39
createInstance() method, 9-43
CreatePool() method, 9-42
createStream() method, 9-17
CSIv2, 6-1

and EJBs, 6-14
internal-settings.xml, 6-14
introduction, 6-14
properties in orion-ejb-jar.xml, 6-16
security properties, 6-15, 6-16

D
Data Guard, 4-25
data source

configuration, 4-6
configuration file, 4-7
connection sharing, 4-17
default, 4-11
definition, 4-1
emulated, 4-11
error conditions, 4-18

JDBC driver, 4-19
user name, 4-18

JDBC connections, 4-1
JNDI, 4-1
location of XML file, 4-7
nonemulated, 4-4

behavior, 4-17
JTA transaction, 4-18

Oracle JDBC extensions, 4-21
portable, lookup, 4-15
retrieving connection, 4-15
using DataDirect driver, 4-22
using OCI driver, 4-22

<data-source> attribute
min-connections, 4-9

data source entry
SQLServer, with DataDirect, 4-23

data sources
configuration files, 4-7
defining, 4-6
defining in Enterprise Manager, 4-10

Index-3

emulated, 4-2
introduction, 4-1
mixing, 4-5
native, 4-4
nonemulated, 4-4
summary, 1-2
two-phase commit, 4-19
types, 4-1
using, 4-15

data sources property
configuring resource provider, 3-28

database
caching scheme, 4-21

database configuration, 7-7
database-schema, 4-10, 4-13
DataDirect driver, 4-22
DataDirect JDBC drivers

installing, 4-22
<data-source>

attributes, 4-8
<data-source> attribute

class, 4-8
clean-available-connections-threshold, 4-10
connection-driver, 4-8
connection-retry-interval, 4-9
ejb-location, 4-9
inactivity-timeout, 4-9
location, 4-8
max-connect-attempts, 4-9
max-connections, 4-9
name, 4-8
password, 4-9
rac-enabled, 4-10
schema, 4-10, 4-13
stmt-cache-size, 4-9
URL, 4-9
username, 4-8
wait-timeout, 4-9
xa-location, 4-9

<data-source> attribute
connection-retry-interval, 4-10

DataSource object
look-up, 4-17, 7-3
retrieving, 7-3
types, 4-1

<data-source> tag, 4-8
data-sources.xml, 4-6, 7-9

about, 4-7
designating location, 4-7
EAR file, 4-8
location, 4-7
preinstalled definitions, 4-11
use in JTA, 7-2

DBMS_AQADM package, 3-26
DBMS_AQADM.CREATE_QUEUE, 3-26
DbUtil

oracleFatalError method, 7-11
dcmctl

resource adaptors, deploying, 8-7
resource adaptors, undeploying, 8-7

declarative container-managed sign-on, 8-14
dedicated.rmicontext

JNDI-related environment properties, 2-5
DefaultTimeToLive

Java Object Cache attribute, 9-12
default-web-site.xml, 5-12
defineGroup() method, 9-15
defineObject() method, 9-16
defineRegion() method, 9-15
deployment

and interoperability, 6-12
deployment descriptor

J2EE Connector, 8-3
JTA, 7-5
JTA attribute

Mandatory transaction attribute type, 7-5
Never transaction attribute type, 7-5
NotSupported transaction attribute type, 7-5
Required transaction attribute type, 7-5
RequiresNew transaction attribute type, 7-5
Supports transaction attribute type, 7-5

dequeue-retry-count, 7-12
dequeue-retry-interval, 7-12
destinations

JMS utility, 3-9
destroy() method, 9-19
destroyInstance() method, 9-43
disallowed-field, 4-14
discoveryAddress property, 9-45
DISTRIBUTE

Java Object Cache attribute, 9-10, 9-44, 9-45
distributed transaction coordinator, 4-19
drain

JMS utility, 3-9
DTC, 4-19
DTDs

internal-settings.xml, 6-14
<ior-security-config> element, 6-17

durables
JMS utility, 3-9

E
EJB

CSIv2, 6-14
interoperability, 6-1
making interoperable, 6-3, 6-6
server security properties table, 6-13

EJB interoperability
introduction, 6-1

ejb_sec.properties, 6-15, 6-17
ejb-jar.xml

<message-driven-deployment> element, 7-12
ejb-jar.xml, 8-5
ejb-location

<data-source> attribute, 4-9
emulated data sources, 4-2
Enterprise Information Systems (EISs), 8-1
Enterprise Manager

defining data sources, 4-10

Index-4

<entity-deployment> element, 6-12
environment properties

JNDI-related, 2-5
<establish-trust-in-client> element, 6-16
<establish-trust-in-target> element, 6-16
example

JNDI, servlet retrieves data source, 2-8
examples

connection factory configuration, 3-20
exception queue, predefined

OracleAS JMS, 3-14
exceptionHandler() method, 9-17

F
file-based persistence

OracleAS JMS, 3-10
files

interoperability deployment, 6-12
flags

OC4J, starting interoperably, 6-12

G
generated stub JAR file, 6-3, 6-4
getConnection method, 4-17, 7-3, 7-4
getID() method, 9-35
getName() method, 9-17
getOwnership() method, 9-47
getOwnsership() method, 9-50
getParent() method, 9-16
getRegion() method, 9-17
getSource() method, 9-35
global-web-application.xml, 5-11
GROUP_TTL_DESTROY

Java Object Cache attribute, 9-10
GROUP_TTL_DESTROY attribute, 9-18, 9-19

H
handleEvent() method, 9-35
help

JMS utility, 3-8
HiAvailability

and clustering, JMS, 3-40
hierarchical tree

OracleAS JMS configuration elements, 3-3
High Availability

Data Guard, 4-25
network failover, 4-25
Oracle Maximum Availability Architecture, 4-24
Real Application Clusters, 4-25
SQL exceptions, 4-30
TAF, 4-25

high availability, 3-41, 3-47
configuring, 3-47

High Availability Summary, 3-40
http.tunnel.path

JNDI-related environment properties, 2-5

I
identifying objects, 9-6
IdleTime

Java Object Cache attribute, 9-13
IIOP, 1-2, 6-1
iiopClientJar switch, 6-3, 6-4
IIOPInitialContextFactory, 2-10
import

oracle.ias.cache, 9-14
inactivity-timeout

<data-source> attribute, 4-9
initial context

creating in OC4J, 2-4
JNDI, 2-1

initial context factories
accessing objects in same application, 2-8
accessing objects not in same application, 2-9
JNDI, 2-4

INITIAL_CONTEXT_FACTORY
InitialContext property, 2-3

InitialContext
constructing in JNDI, 2-3
constructors, 2-3

InitialContext object, 2-2
InitialContext properties

INITIAL_CONTEXT_FACTORY, 2-3
PROVIDER_URL, 2-3
SECURITY_CREDENTIAL, 2-4
SECURITY_PRINCIPAL, 2-4

installing
client-side, RMI/IIOP, 6-2
client-side, RMI/ORMI, 5-2
JMS provider, 3-25
OC4J client JAR files, 5-2, 6-2

<integrity> element, 6-16
internal-settings.xml

CSIv2 entities, 6-14
DTD, 6-14
EJB server security properties, 6-12
<sep-property> element, 6-13, 6-14

Internet Inter-ORB Protocol
See IIOP

interoperability
adding to EJB, 6-3, 6-6
advanced, configuring manually, 6-8
advanced, configuring with Oracle Enterprise

Manager, 6-8
advanced, in OracleAS environment, 6-8
configuring OC4J for, 6-12
files configuring, 6-12
naming, 6-1
OC4J flags, 6-12
overview, 1-2, 6-1
security, 6-1
simple, configuring manually, 6-6
simple, configuring with Oracle Enterprise

Manager, 6-5
simple, in OracleAS environment, 6-4
transaction, 6-1
transport, 6-1

Index-5

interoperability, advanced
in standalone environment, 6-4

interoperability, simple
in standalone environment, 6-3

interoperable transport, 6-3
introduction to data sources, 4-1
introduction to OC4J services, 1-1
invalidate() method, 9-18
<ior-security-config> element, 6-12

DTD, 6-17

J
J2EE application clients

JNDI initial contexts, 2-4
J2EE application components

JNDI initial contexts, 2-8
J2EE Connector, 8-1

deployment descriptor, 8-3
resource adapters, 8-1

J2EE Connector Architecture
deployment directory locations, 8-9
file locations, 8-9
summary, 1-2

JAAS
pluggable authentication classes, 8-18

Java Message Service, See JMS
Java Naming and Directory Interface

See JNDI
Java Object Cache, 9-1, 9-2

attributes, 9-9
basic architecture, 9-2
basic interfaces, 9-4
cache consistency levels, 9-49
cache environment, 9-7
classes, 9-4
configuration

clean-interval XML element, 9-23
maxObjects property, 9-23
maxSize property, 9-23
ping-interval XML element, 9-23

consistency levels
distributed with reply, 9-50
distributed without reply, 9-49
local, 9-49
synchronized, 9-50

default region, 9-7
defining a group, 9-15
defining a region, 9-15
defining an object, 9-16
destroy object, 9-19
disk cache

adding objects to, 9-38
disk objects, 9-38

definition of, 9-6
distributed, 9-39
local, 9-39
using, 9-39

distribute property, 9-45
distributed disk objects, 9-38

distributed groups, 9-46
distributed mode, 9-45
distributed objects, 9-46
distributed regions, 9-46
features, 9-5
group, 9-8
identifying objects, 9-6
invalidating objects, 9-18
local disk objects, 9-38
local mode, 9-44
memory objects

definition of, 9-6
local memory object, 9-6
spooled memory object, 9-6
updating, 9-6

naming objects, 9-6
object types, 9-4, 9-5
pool objects

accessing, 9-43
creating, 9-42
definition of, 9-7
using, 9-42

programming restrictions, 9-36
region, 9-7
StreamAccess object, 9-6
subregion, 9-8
summary, 1-2

Java Object Cache attributes
ALLOWNULL, 9-12
CacheEventListener, 9-13
CapacityPolicy, 9-12
DefaultTimeToLive, 9-12
DISTRIBUTE, 9-10, 9-44, 9-45
GROUP_TTL_DESTROY, 9-10
IdleTime, 9-13
LOADER, 9-11
maxCount, 9-14
MaxSize, 9-13
MEASURE, 9-12
ORIGINAL, 9-11
Priority, 9-13
REPLY, 9-11
SPOOL, 9-11
SYNCHRONIZE, 9-11
SYNCHRONIZE_DEFAULT, 9-12
TimeToLive, 9-13
User-defined, 9-14
Version, 9-13

Java Transaction API
See JTA

Java-CORBA exception mapping, 6-11
java.naming.factory.initial property, 2-4, 5-7
java.naming.provider.url

JNDI-related environment properties, 2-5
property, 5-7, 6-18

java.util.Hashtable
JNDI, 2-3

javax.naming package, 2-2
javax.naming.Context interface

JNDI, 2-3

Index-6

javax.sql.DataSource, 4-1
JDBC

Oracle extensions, 4-21
transactions, 7-6

JMD
default connection factories, 3-4

JMS, 3-1
configuring custom resource provider, 3-23
configuring provider, 3-25
ConnectionFactory, 3-4
Destination, 3-26
example, where to download, 3-1
HiAvailability and clustering, 3-40
installing provider, 3-25
OracleAS, 3-2
overview
programming models, 3-1
queue connection factory, 3-3
QueueConnectionFactory, 3-4
receiving a message, JMS steps, 3-6
resource providers, 3-23
sending a message, JMS steps, 3-5
summary, 1-1
system properties, 3-21
topic connection factory, 3-3
TopicConnectionFactory, 3-4
XAConnectionFactory, 3-4
XAQueueConnectionFactory, 3-4
XATopicConnectionFactory, 3-4

JMS provider
configuring, 3-25
installing, 3-25

JMS utility
browse, 3-9
check, 3-9
copy, 3-9
destinations, 3-9
drain, 3-9
durables, 3-9
help, 3-8
knobs, 3-9
move, 3-9
stats, 3-9
subscribe, 3-9
unsubscribe, 3-9

<jms-config> element, 3-2
jms/ConnectionFactory, 3-4
jms/QueueConnectionFactory, 3-4
jms-server element, 3-16
jms/TopicConnectionFactory, 3-4
jms/XAConnectionFactoryXAConnectionFactory

JMS, 3-4
jms/XAQueueConnectionFactory, 3-4
jms/XATopicConnectionFactory, 3-4
jms.xml, 3-2

modifying with Oracle Enterprise Manager, 3-2
persistent-file attribute, 3-11

JNDI, 2-1
application-client.jar, 2-3, 2-5
application-client.xml, 2-5

clustering
enabling, 2-11
limitations, 2-11
overview, 2-11

com.evermind.server package, 2-4
constructing contexts, 2-2
environment, 2-3
example, servlet retrieves data source, 2-8
initial context, 2-1
initial context factories, 2-4
InitialContext constructors, 2-3
java.util.Hashtable, 2-3
javax.naming.Context interface, 2-3
jndi.properties file, 2-3
orion-application-client.xml, 2-5
overview, 2-1
summary, 1-1

JNDI initial components
from J2EE application clients, 2-8

JNDI initial contexts
from J2EE application clients, 2-4

JNDI lookup
properties in orion-ejb-jar.xml, 7-3

jndi.jar file, 2-1
jndi.properties file, 5-7, 6-18

JNDI, 2-3
JNDI-related environment properties, 2-5

context.SECURITY_CREDENTIAL, 2-6
context.SECURITY_PRINCIPAL, 2-6
dedicated.rmicontext, 2-5
http.tunnel.path, 2-5
java.naming.provider.url, 2-5

JTA
bean-managed transaction, 7-1, 7-6
client-side transaction demarcation, 7-6
code download site, 7-1
configuring timeouts, 7-10
container-managed transaction, 7-1, 7-4
demarcation, 7-1, 7-4
deployment descriptor, 7-5
MDBs, 7-11, 7-12
programmatic transaction demarcation, 7-6
resource enlistment, 7-2
retrieving data source, 7-3
retry count, 7-11
single-phase commit

definition, 7-2
single-phase commit, configuring, 7-2
specification web site, 7-1
summary, 1-2
transaction attribute types, 7-5
transactions, 7-6
two-phase commit, 7-6
two-phase commit, configuration, 7-7
two-phase commit, definition, 7-2

K
knobs

JMS utility, 3-9

Index-7

L
LOADER

Java Object Cache attribute, 9-11
location

<data-source> attribute, 4-8
locations

deployment directories, 8-9
J2EE Connector Architecture, 8-9
J2EE Connector Architecture files, 8-9

log element, 3-19
log() method, 9-18

M
MAA, 4-24
Mandatory transaction attribute type, 7-5
max-connect-attempts

<data-source> attribute, 4-9
max-connections

<data-source> attribute, 4-9
maxCount

Java Object Cache attribute, 9-14
maxObjects property, 9-23
MaxSize

Java Object Cache attribute, 9-13
maxSize property, 9-23
max-tx-retries attribute, 7-11
MDBs

and OJMS, 3-39
JTA, 7-11, 7-12
transaction timeout, 7-12
transactions, 7-11
transactions with OC4J JMS, 7-12
transactions with Oracle JMS, 7-12
with bean-managed transactions and JMS

clients, 7-13
with container-managed transactions, 7-12

MEASURE
Java Object Cache attribute, 9-12

message
receiving in JMS, steps, 3-6
sending in JMS, steps, 3-5

message expiration
OracleAS JMS, 3-15

message paging
OracleAS JMS, 3-15

message-driven beans, See MDBs
<message-driven-deployment> element, 7-12
min-connections

<data-source> attribute, 4-9
move

JMS utility, 3-9

N
name

<data-source> attribute, 4-8
nameservice.useSSL property, 6-18
naming interoperability, 6-1
naming objects, 9-6

native data sources, 4-4
netSearch() method, 9-17, 9-50
network failover, 4-25
Never transaction attribute type, 7-5
nonemulated data sources, 4-4

object, behavior, 4-17
NotSupported transaction attribute type, 7-5

O
OBJECT_INVALIDATION event, 9-35
OBJECT_UPDATED event, 9-35
OC4J

configuring to support RMI tunneling, 5-11
OC4J client JAR files, 5-2, 6-2
OC4J JMS

abnormal termination, 3-14
persistence file management, 3-12

OC4J mount point
configuring, 5-12

OC4J sample code page, 3-1
oc4j-connectors.xml, 8-6
OC4J-hosted beans

invoking from non-OC4J container, 6-11
oc4j.iiop.ciphersuites property, 6-18
oc4j.iiop.enable.clientauth property, 6-18
oc4j.iiop.keyStoreLoc property, 6-17
oc4j.iiop.keyStorePass property, 6-17
oc4j.iiop.trustedServers property, 6-18
oc4j.iiop.trustStoreLoc property, 6-18
oc4j.iiop.trustStorePass property, 6-18
oc4j.jms.debug OracleAS JMS control knob, 3-22
oc4j.jms.forceRecovery OracleAS JMS control

knob, 3-23
oc4j.jms.listenerAttempts OracleAS JMS control

knob, 3-22
oc4j.jms.maxOpenFiles OracleAS JMS control

knob, 3-22
oc4j.jms.messagePoll OracleAS JMS control

knob, 3-22
oc4j.jms.noDms OracleAS JMS control knob, 3-22
oc4j.jms.pagingThreshold, 3-23
oc4j.jms.saveAllExpired OracleAS JMS control

knob, 3-22
oc4j.jms.saveAllExpired property, 3-15
oc4j.jms.serverPoll OracleAS JMS control knob, 3-22
oc4j.jms.socketBufsize OracleAS JMS control

knob, 3-22
oc4j-ra.xml, 8-4
OCI driver, 4-22
OJMS

as resource provider, 3-24
configure resource provider with Enterprise

Manager, 3-27
configuring resource provider, 3-28, 3-29
define resource provider, 3-27
resource provider, 3-24
using as a resource provider, 3-24
using as resource provider, 3-24

OJMS configuring, 3-47

Index-8

OPMN, 6-13
OPMN URL, 6-11
opmn.xml file

editing, 5-7
Oracle Application Server Containers for J2EE (OC4J)

interoperability, 6-1
interoperability flags, 6-12

Oracle Enterprise Manager
configuring JMS ports, 3-2
modifying jms.xml, 3-2

Oracle JMS
configuring, 3-27

Oracle JMS provider
configuring in OC4J XML files, 3-27

Oracle JMS, See OJMS
Oracle Maximum Availability Architecture, 4-24
Oracle Process Management Notification

service, 6-13
OracleAS JMS, 3-2

administration, 3-21
administration properties, table, 3-22
configuration elements hierarchical tree, 3-3
configuring, 3-2
control knob oc4j.jms.debug, 3-22
control knob oc4j.jms.forceRecovery, 3-23
control knob oc4j.jms.listenerAttempts, 3-22
control knob oc4j.jms.maxOpenFiles, 3-22
control knob oc4j.jms.messagePoll, 3-22
control knob oc4j.jms.noDms, 3-22
control knob oc4j.jms.saveAllExpired, 3-22
control knob oc4j.jms.serverPoll, 3-22
control knob oc4j.jms.socketBufsize, 3-22
exception queue, predefined, 3-14
file-based persistence, 3-10
message expiration, 3-15
message paging, 3-15
port,

configuring, 3-2
predefined exception queue, 3-14
utilities, 3-8
utilities, table, 3-8

OracleAS JMS configuring, 3-41
OracleAS JMS ports

configuring, 3-2
OracleAS Web Cache, 9-1
oracleFatalError method, 7-11
oracle.ias.cache package, 9-14
oracle.j2ee.connector package

AbstractPrincipalMapping, 8-16
OracleTwoPhaseCommitDriver, 7-9
ORIGINAL

Java Object Cache attribute, 9-11
orion-application-client.xml

JNDI, 2-5
orion-application.xml file

and JNDI resource provider, 3-23
EAR file, 4-8
<resource-provider>, 3-37, 3-38, 3-39

OrionCMTDataSource, 7-9
orion-ejb.jar file

<as-context> element, 6-16
<sas-context> element, 6-17
<transport-config> element, 6-16

orion-ejb-jar.xm file
<entity-deployment> element, 6-12

orion-ejb-jar.xml file
<session-deployment> element, 6-12

, 6-16, 7-3
<confidentiality> element, 6-16
<establish-trust-in-client>element, 6-16
<establish-trust-in-target> element, 6-16
<integrity> element, 6-16
<ior-security-config> element, 6-12
security properties, 6-16

orion-ejb-jar.xml file, 8-5
ORMI, 5-1
ORMI tunneling, 5-11
OTS, 6-1
overview of JMS
overview of OC4J services, 1-1

P
password

<data-source> attribute, 4-9
indirection, 4-11
obfuscation, 4-11

persistence file management
OC4J JMS, 3-12

persistent-file attribute, 3-11
ping-interval configuration XML element, 9-23
pluggable authentication classes, 8-18
PoolAccess

close() method, 9-43
get() method, 9-43
getPool() method, 9-43
object, 9-43
returnToPool() method, 9-43

PoolInstanceFactory
implementing, 9-43

predefined exception queue
OracleAS JMS, 3-14

Priority
Java Object Cache attribute, 9-13

programmatic container-managed sign-on, 8-14
programmatic transaction demarcation, 7-6
programming models

JMS, 3-1
PROVIDER_URL

InitialContext property, 2-3

Q
QoS

see Quality of Service
Quality of Service

contracts, specifying, 8-10
J2CA types, 8-3

queue connection factory
JMS, 3-3

Index-9

queue element, 3-17
QueueConnectionFactory

JMS, 3-4
queue-connection-factory element, 3-18

R
RAC, 4-25
rac-enabled

<data-source> attribute, 4-10
RAR file, 8-2
ra.xml file, 8-4
receiving a message

JMS steps, 3-6
release_Ownsership() method, 9-50
releaseOwnership() method, 9-47
Remote Method Invocation

See RMI
REPLY

Java Object Cache attributes, 9-11
REPLY attribute, 9-46
Required transaction attribute type, 7-5
RequiresNew transaction attribute type, 7-5
resource adapter archive

see RAR file
resource adapters

deploying, 8-3
embedded, 8-2, 8-8
introduction, 8-1
standalone, 8-7
undeploying, 8-3
with admin.jar, 8-7

resource provider
configuring with data sources property, 3-28
OJMS, 3-24
OJMS, configure with Enterprise Manager, 3-27
OJMS, define, 3-27

resource providers
JMS, 3-23

<resource-env-ref> element, 3-33
<resource-provider> element, 3-27, 3-37, 3-38, 3-39
ResourceProvider interface

JMS, 3-23
OJMS, 3-24

<resource-ref> element, 3-33, 4-15
<res-ref-name> element, 4-16
returnToPool() method, 9-43
RMI

IIOP, 6-1
introduction, 5-1
ORMI, 5-1
overview, 1-2, 5-1

RMI tunneling
configuring OC4J to support, 5-11

<rmi-config> element, 5-5
RMI/IIOP

advanced interoperability in OracleAS
environment, 6-8

advanced interoperability in standalone
environment, 6-4

configuring for advanced interoperability
manually, 6-8

configuring for advanced interoperability with
Oracle Enterprise Manager, 6-8

configuring for simple interoperability
manually, 6-6

configuring for simple interoperability with Oracle
Enterprise Manager, 6-5

configuring OC4J mount point, 5-12
contextFactory property, 6-18
Java-CORBA exception mapping, 6-11
java.naming.factory.initial property, 5-7
java.naming.provider.url property, 5-7, 6-18
jndi.properties file, 5-7, 6-18
simple interoperability in OracleAS

environment, 6-4
simple interoperability in standalone

environment, 6-3
RMIInitialContextFactory, 2-10
<rmi-server> element, 5-5
rmi.xml

editing, 5-5

S
sample code page, OC4J, 3-1
<sas-context> element, 6-17
save() method, 9-39
schema

<data-source> attribute, 4-10, 4-13
security interoperability, 6-1
security properties, 6-14
SECURITY_CREDENTIAL

InitialContext property, 2-4
SECURITY_PRINCIPAL

InitialContext property, 2-4
sending a message

JMS steps, 3-5
<sep-config> element, 5-7, 6-12
<sep-property> element, 6-13, 6-14
erver.xml

<sep-config> element, 5-7
server.xml

and RMI, 5-5
configuring timeouts, 7-10
<sep-config> element, 6-12

server.xml
<application-server> element, 8-9

service provider interfaces, 2-1
<session-deployment> element, 6-12
setAttributes() method, 9-17
setCacheEventListener() method, 9-35
single-phase commit

configuring, 7-2
SPIs, 2-1
SPOOL

Java Object Cache attribute, 9-11, 9-38
SQLServer

data source entry with DataDirect, 4-23
standalone resource adapters, 8-2

Index-10

stats
JMS utility, 3-9

stmt-cache-size
<data-source> attribute, 4-9

StreamAccess object, 9-6
InputStream, 9-41
OutputStream, 9-41
using, 9-41

Streams Advanced Queuing (AQ), 3-24
subscribe

JMS utility, 3-9
Supports transaction attribute type, 7-5
SYNCHRONIZE

Java Object Cache attribute, 9-11, 9-47
SYNCHRONIZE_DEFAULT

Java Object Cache attribute, 9-12, 9-47

T
TAF

configuration options, 4-28
configuring, 4-26, 4-27
descriptor, 4-28
exceptions, 4-30

timeouts
configuring, JTA, 7-10

TimeToLive
Java Object Cache attribute, 9-13

topic connection factory
JMS, 3-3

topic element, 3-18
TopicConnectionFactory

JMS, 3-4
topic-connection-factory element, 3-18
transaction

bean managed, 7-1
container-managed, 7-1
demarcation, 7-1, 7-4
resource enlistment, 7-1, 7-2
two-phase commit, 7-7

transaction attribute types, 7-5
transaction demarcation

client-side, JTA, 7-6
programmatic, JTA, 7-6

transaction interoperability, 6-1
transactions

JDBC, 7-6
JTA, 7-6
MDBs, 7-11
MDBs with OC4J JMS, 7-12
MDBs with Oracle JMS, 7-12

transaction-timeout attribute, 7-12
<transaction-type> element, 7-4, 7-6
trans-attribute attribute, 7-11
<trans-attribute> element, 7-4, 7-5
Transparent Application Failover

See TAF
transport interoperability, 6-1
<transport-config> element, 6-16
trust relationships, 6-15

tunneling
ORMI, 5-11

two-phase commit
data sources, 4-19
definition, 7-2
engine limitations, 7-10
OracleTwoPhaseCommitDriver, 7-9
overview, 7-6

tx-retry-wait attribute, 7-11
type-mapping, 4-14

U
unsubscribe

JMS utility, 3-9
URL

<data-source> attribute, 4-9
corbaname, 6-10
OPMN, 6-11

User-defined
Java Object Cache attribute, 9-14

username
<data-source> attribute, 4-8

using resource provider
OJMS, 3-24

utilities
OracleAS JMS, 3-8
OracleAS JMS, table, 3-8

V
Version

Java Object Cache attribute, 9-13

W
wait-timeout

<data-source> attribute, 4-9
Web Cache, 9-1
Web Object Cache, 9-1, 9-2

X
xa-connection-factory element, 3-18
xa-location

<data-source> attribute, 4-9
XAQueueConnectionFactory

JMS, 3-4
xa-queue-connection-factory element, 3-19
XATopicConnectionFactory

JMS, 3-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introduction to OC4J Services
	Java Naming and Directory Interface (JNDI)
	Java Message Service (JMS)
	Remote Method Invocation (RMI)
	Data Sources
	Java Transaction API (JTA)
	J2EE Connector Architecture (J2CA)
	Java Object Cache

	2 Java Naming and Directory Interface
	Introduction
	Initial Context
	Example

	Constructing a JNDI Context
	The JNDI Environment
	Creating the Initial Context in OC4J
	From J2EE Application Clients
	Environment Properties
	Accessing Objects from an Application Client

	From J2EE Application Components
	Objects in the Same Application
	Example

	Objects Not in the Same Application
	RMIInitialContextFactory
	IIOPInitialContextFactory

	JNDI State Replication
	Enabling JNDI State Replication
	JNDI State Replication Limitations
	Multiple Islands on a Given Subnet
	Propagating Changes Across the Cluster
	Binding a Remote Object
	JNDI Lookups in a Multiple-Instance Environment

	3 Java Message Service (JMS)
	Overview
	Oracle Application Server JMS
	Configuring OracleAS JMS Ports
	Configuring OracleAS JMS Destination Objects
	Default Destination Objects
	Default Connection Factories

	Steps for Sending a Message
	Steps for Receiving a Message
	OracleAS JMS Utilities
	OracleAS JMS File-Based Persistence
	Overview
	Enabling Persistence
	Recovery
	Scope of Recoverability
	Persistence File Management
	Reporting Errors to the JMS Client
	OracleAS JMS Recovery Steps

	Abnormal Termination
	Predefined OracleAS JMS Exception Queue
	Message Expiration

	Message Paging
	OracleAS JMS Configuration File Elements for jms.xml
	Examples

	OracleAS JMS System Properties

	Resource Providers
	Configuring a Custom Resource Provider

	Oracle JMS
	Using OJMS as a Resource Provider
	Install and Configure the JMS Provider
	Create User and Assign Privileges
	Create JMS Destination Objects
	Define the OJMS Resource Provider
	Configure the OJMS Provider Through the Oracle Enterprise Manager 10g
	Configure the OJMS Provider in the OC4J XML Files

	Access the OJMS Resources

	Using OJMS with Oracle Application Server and the Oracle Database
	Error When Copying aqapi.jar
	OJMS Certification Matrix

	Map Logical Names in Resource References to JNDI Names
	JNDI Naming for OracleAS JMS
	JNDI Naming for OJMS
	JNDI Naming Property Setup for Java Application Clients
	Client Sends JMS Message Using Logical Names

	Third-Party JMS Providers
	Using WebSphere MQ as a Resource Provider
	Configuring WebSphere MQ

	Using SonicMQ as a Resource Provider
	Configuring SonicMQ

	Using SwiftMQ as a Resource Provider
	Configuring SwiftMQ

	Using Message-Driven Beans
	High Availability and Clustering for JMS
	OracleAS JMS High Availability Configuration
	Terminology
	OracleAS JMS Server Distributed Destinations
	Cold Failover Cluster
	OracleAS Dedicated JMS Server
	Modifying the OPMN Configuration
	Configuring OracleAS JMS
	Queue Connection Factory Definition Example
	Deploying Applications
	High Availability

	OJMS High Availability Configuration
	Failover Scenarios When Using a RAC Database With OJMS
	Using JMS with RAC Network Failover
	Using OJMS With Transparent Application Failover (TAF)

	Server Side Sample Code for Failover for Both JMS Providers
	Clustering Best Practices

	4 Data Sources
	Introduction
	Types of Data Sources
	Emulated Data Sources
	Nonemulated Data Sources
	Native Data Sources

	Mixing Data Sources

	Defining Data Sources
	Configuration Files
	Defining Location of the Data Source XML Configuration File
	Application-Specific Data Source XML Configuration File

	Data Source Attributes
	Defining Data Sources in Oracle Enterprise Manager 10g
	Defining Data Sources in the XML Configuration File
	Password Indirection
	Configuring an Indirect Password with Oracle Enterprise Manager 10g
	Configuring an Indirect Password Manually

	Associating a Database Schema with a Data Source
	The database-schema.xml File
	<type-mapping>
	<disallowed-field>

	Example Configuration

	Using Data Sources
	Portable Data Source Lookup
	Retrieving a Connection from a Data Source
	Retrieving Connections with a Nonemulated Data Source
	Retrieving a Connection Outside a Global Transaction
	Retrieving a Connection Within a Global Transaction

	Connection Retrieval Error Conditions
	Using Different User Names for Two Connections to a Single Data Source
	Improperly configured OCI JDBC Driver

	Using Two-Phase Commits and Data Sources
	Using Oracle JDBC Extensions
	Using Connection Caching Schemes
	Using the OCI JDBC Drivers
	Using DataDirect JDBC Drivers
	Installing and Setting Up DataDirect JDBC Drivers
	Example DataDirect Data Source Entries
	SQLServer
	DB2
	Sybase

	High Availability Support for Data Sources
	Oracle Maximum Availability Architecture (MAA)
	Oracle Data Guard
	Real Application Clusters (RAC)
	Network Failover
	TAF Failover

	High Availability (HA) Support in OC4J
	Configuring Network Failover with OC4J
	Configuring Transparent Application Failover (TAF) with OC4J
	Configuring a TAF Descriptor (tnsnames.ora)
	Connection Pooling
	Acknowledging TAF Exceptions
	SQL Exception Handling

	5 Oracle Remote Method Invocation
	Introduction to RMI/ORMI
	ORMI Enhancements
	Increased RMI Message Throughput
	Enhanced Threading Support
	Co-Located Object Support

	Client-Side Requirements

	Configuring OC4J for RMI
	Configuring RMI Using Oracle Enterprise Manager 10g
	Configuring RMI Manually
	Editing server.xml
	Editing rmi.xml
	Editing opmn.xml

	RMI Configuration Files
	JNDI Properties for RMI
	Naming Provider URL
	Using the opmn Request Port
	Using opmnctl to Show the Selected RMI Port

	Context Factory Usage

	Example Lookups
	OC4J Standalone
	OC4J in Oracle Application Server: Releases Before 9.0.4
	OC4J in Oracle Application Server Since 9.0 4

	Configuring ORMI Tunneling through HTTP
	Configuring an OC4J Mount Point

	6 J2EE Interoperability
	Introduction to RMI/IIOP
	Transport
	Naming
	Security
	Transactions
	Client-Side Requirements
	The rmic.jar Compiler

	Switching to Interoperable Transport
	Simple Interoperability in a Standalone Environment
	Advanced Interoperability in a Standalone Environment
	Simple Interoperability in Oracle Application Server Environment
	Configuring for Interoperability Using Oracle Enterprise Manager 10g
	Configuring for Interoperability Manually

	Advanced Interoperability in Oracle Application Server Environment
	Configuring for Interoperability Using Oracle Enterprise Manager 10g
	Configuring for Interoperability Manually

	The corbaname URL
	The OPMN URL
	Exception Mapping
	Invoking OC4J-Hosted Beans from a Non-OC4J Container

	Configuring OC4J for Interoperability
	Interoperability OC4J Flags
	Interoperability Configuration Files
	EJB Server Security Properties (internal-settings.xml)
	CSIv2 Security Properties
	CSIv2 Security Properties (internal-settings.xml)
	CSIv2 Security Properties (ejb_sec.properties)
	Trust Relationships

	CSIv2 Security Properties (orion-ejb-jar.xml)
	The <transport-config> Element
	The <as-context> element
	The <sas-context> element
	DTD

	EJB Client Security Properties (ejb_sec.properties)
	JNDI Properties for Interoperability (jndi.properties)
	Context Factory Usage

	7 Java Transaction API
	Introduction
	Demarcating Transactions
	Enlisting Resources

	Single-Phase Commit
	Enlisting a Single Resource
	Configure the Data Source
	Retrieve the Data Source Connection
	Perform JNDI Lookup
	Perform JNDI Lookup on Data Source Definition
	Perform JNDI Lookup Using Environment

	Retrieve a Connection

	Demarcating the Transaction
	Container-Managed Transactional Demarcation
	Bean-Managed Transactions
	Programmatic Transaction Demarcation
	Client-Side Transaction Demarcation

	JTA Transactions

	JDBC Transactions

	Two-Phase Commit
	Configuring Two-Phase Commit Engine
	Database Configuration Steps
	OC4J Configuration Steps

	Limitations of Two-Phase Commit Engine

	Configuring Timeouts
	Recovery for CMP Beans when a Database Instance Fails
	Connection Recovery for CMP Beans That Use Container-Managed Transactions
	Connection Recovery for CMP Beans That Use Bean-Managed Transactions

	Using Transactions With MDBs
	Transaction Behavior for MDBs Using OC4J JMS
	Transaction Behavior for MDBs Using Oracle JMS
	MDBs that Use Container-Managed Transactions
	MDBs that Use Bean-Managed Transactions and JMS Clients

	8 J2EE Connector Architecture (J2CA)
	Introduction
	Resource Adapters
	Standalone Resource Adapters
	Embedded Resource Adapters
	Example of RAR File Structure
	The ra.xml Descriptor

	Application Interface
	Quality of Service Contracts

	Deploying and Undeploying Resource Adapters
	Deployment Descriptors
	The oc4j-ra.xml Descriptor
	The oc4j-connectors.xml Descriptor

	Standalone Resource Adapters
	Deployment
	Deploying and Undeploying Using dcmctl
	Deploying and Undeploying Using admin.jar

	Example:

	Embedded Resource Adapters
	Deployment
	Deploying Using dcmctl
	Deploying Using admin.jar

	Locations of Relevant Files

	Specifying Quality of Service Contracts
	Configuring Connection Pooling
	Managing EIS Sign-On
	Component-Managed Sign-On
	Example:
	Container-Managed Sign-On
	Example:

	Declarative Container-Managed Sign-On
	Programmatic Container-Managed Sign-On
	OC4J-Specific Authentication Classes
	Extending AbstractPrincipalMapping

	JAAS Pluggable Authentication Classes
	JAAS and the <connector-factory> Element

	Special Features Accessible Via Programmatic Interface

	9 Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	Distributed Object Management

	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Region and Group Size Control
	Cache Object Attributes
	Using Attributes Defined Before Object Loading
	Using Attributes Defined Before or After Object Loading

	Developing Applications Using Java Object Cache
	Importing Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader Object
	Using CacheLoader Helper Methods

	Invalidating Cache Objects
	Destroying Cache Objects
	Multiple Object Loading and Invalidation
	Java Object Cache Configuration
	Examples

	Declarative Cache
	Declarative Cache File Sample
	Declarative Cache File Format
	Examples
	Declarable User-Defined Objects
	Declarable CacheLoader, CacheEventListener, and CapacityPolicy
	Initializing the Java Object Cache in a Non-OC4J Container

	Capacity Control
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Local and Distributed Disk Cache Objects
	Local Objects
	Distributed Objects

	Adding Objects to the Disk Cache
	Automatically Adding Objects
	Explicitly Adding Objects
	Using Objects that Reside Only in Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory
	Pool Object Affinity

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Setting the distribute Configuration Property
	Setting the discoveryAddress Configuration Property

	Using Distributed Objects, Regions, Subregions, and Groups
	Using the REPLY Attribute with Distributed Objects
	Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

	Cached Object Consistency Levels
	Using Local Objects
	Propagating Changes Without Waiting for a Reply
	Propagating Changes and Waiting for a Reply
	Serializing Changes Across Multiple Caches

	Sharing Cached Objects in an OC4J Servlet
	Using User-Defined Class Loaders
	HTTP and Security for Distributed Cache
	HTTP
	SSL
	Firewall
	Restricting Incoming Connections

	Monitoring and Debugging
	XML Schema for Cache Configuration
	XML schema for attribute declaration

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

