
Oracle9 i Application Server

Migrating From WebSphere

Release 2 (9.0.2)

April 2002

Part No. A95110-01

Oracle9i Application Server Migrating From WebSphere, Release 2 (9.0.2)

Part No. A95110-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Author: Venkata Ravipati

Contributing Authors: Kai Li, Julia Pond

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

Audience ... xiv
Organization... xiv
Related Documentation ... xv
Conventions.. xvi
Documentation Accessibility ... xix

1 Overview

Overview of J2EE .. 1-2
What is the J2EE Application Model?.. 1-2
What is the J2EE Platform?.. 1-3

What is an Application Server?.. 1-4
Overview of Oracle9iAS.. 1-5

J2EE Application Migration Challenges.. 1-5
J2EE Application Architecture ... 1-6
Migration Issues.. 1-7

Portability .. 1-7
Vendor Specificity .. 1-8
Deviations from J2EE 1.2 Specification.. 1-8
Migration Approach... 1-8

Using this Guide ... 1-9
iii

2 Comparison of Oracle9 iAS and WebSphere Features

Application Server Product Offerings Comparison... 2-1
Websphere Product Offerings... 2-1
WebSphere Standard Edition.. 2-1
WebSphere Advanced Edition.. 2-2
WebSphere Enterprise Edition.. 2-2

Oracle9i Application Server.. 2-2
Architecture Comparison .. 2-3

IBM WebSphere Components... 2-3
IBM HTTP Server... 2-4
Web Server Plug-in.. 2-4
Administrative Server... 2-4
Administrative Repository... 2-5
Application Server... 2-5

Oracle9iAS Components and Concepts .. 2-6
Oracle9iAS Instance... 2-6
Oracle HTTP Server... 2-6
OC4J Instances ... 2-7
Oracle Process Management Notification (OPMN) Service.. 2-7
Distributed Configuration Manager (DCM).. 2-8
Oracle9iAS Infrastructure Repository .. 2-8
Oracle9iAS Web Cache ... 2-8

Clustering and Load balancing .. 2-9
What is Clustering? .. 2-9
Benefits of Clustering: Failover Recovery ... 2-9
What is Load Balancing?.. 2-9
WebSphere Suppport for Clustering and Load Balancing ... 2-10

Clustering in WebSphere.. 2-10
Load Balancing in WebSphere... 2-10

Oracle9iAS Support for Clustering and Load Balancing .. 2-11
Oracle9iAS Clusters... 2-11
OC4J Islands ... 2-12

J2EE Support Comparison... 2-13
WebSphere J2EE support... 2-13
Oracle9iAS OC4J J2EE support... 2-14
iv

Java Development and Deployment Tools .. 2-15
WebSphere Development and Deployment Tools .. 2-15

WebSphere Development Tools.. 2-15
Websphere Studio ... 2-15
WebSphere Administrative Console .. 2-16

Oracle9iAS Development and Deployment Tools... 2-16
Development Tools ... 2-16
Assembly Tools.. 2-17
Administration Tools .. 2-17

3 Migrating Servlets

Overview of the Java Servlet API .. 3-1
Servlet Lifecycle .. 3-3

The init() Method... 3-3
The service() Method.. 3-4
The destroy() Method.. 3-4

Session Tracking ... 3-5
Cookies.. 3-5
URL rewriting .. 3-6
Hidden form fields in HTML .. 3-6

The HttpSession object.. 3-6
 J2EE Web Applications ... 3-7

Web Application Archive (WAR) ... 3-7
About the WEB-INF directory ... 3-8

 Differences between Servlet 2.0, 2.1 and 2.2 .. 3-8
Highlights of the Java Servlet API 2.1 .. 3-8
New Features in the Java Servlet API 2.2... 3-9
Servlet API 2.3.. 3-10
Filters and Servlet Chaining .. 3-10
Servlet Chains .. 3-11

WebSphere Servlet API Support .. 3-11
WebSphere Advanced Edition 3.5.3 Compatibility Mode .. 3-11
Full Servlet 2.2 Compliance Mode .. 3-11
Servlet 2.2 API Support .. 3-12
WebSphere Extensions to the Servlet API ... 3-13
v

Oracle9iAS Servlet API Suport ... 3-14
Migrating Standalone Servlets to OC4J ... 3-14

Sample .servlet file: SnoopServlet.servlet .. 3-15
Migrating Cluster-aware applications to OC4J .. 3-16

Configuring an OC4J Island (in OC4J standalone mode).. 3-17
How OC4J Island Works (in OC4J standalone mode) ... 3-19

4 Migrating JSPs

Overview of JSP Pages ... 4-1
Parts of a JSP Page .. 4-2

Directives .. 4-2
What is a JSP container?... 4-3
Life Cycle of a JSP Page.. 4-3

WebSphere Support for the JSP API ... 4-4
WebSphere-Specific Features .. 4-4

Batch JSP Compiler.. 4-4
HTML Template Extensions in JSP 0.91 ... 4-4
WebSphere Extensions to JSP 1.0 .. 4-5

The OracleJSP container... 4-6
The JSP Translator in Oracle9iAS OC4J... 4-6
OracleJSP Extensions.. 4-7

Migrating from WebSphere JSP 0.91... 4-7
The <REPEATGROUP> Tag... 4-7

Migrating WebSphere Extensions to OC4J .. 4-9
<REPEAT> or <tsx:repeat> tag:... 4-9

5 Migrating Enterprise Java Beans

Overview of Enterprise JavaBeans .. 5-1
EJB Migration Considerations.. 5-2
EJB Functionality and Components .. 5-3

The EJB Server ... 5-4
EJB container.. 5-4
EJB Specification Roles... 5-4

Enterprise Bean Provider.. 5-4
Application Assembler ... 5-4
vi

Deployer ... 5-5
EJB Server Provider... 5-5
EJB Container Provider .. 5-5
System Administrator... 5-5

Session Beans... 5-6
Stateful Session Beans... 5-6
Stateless Session Beans ... 5-8

Entity Beans ... 5-9
Container-managed Persistence (CMP) Entity Beans.. 5-9
Bean-managed Persistence (BMP) Entity Beans ... 5-10
The Entity Beans Life Cycle ... 5-10

Object-relational (O-R) Mapping and Persistence ... 5-11
EJB Transactions and Concurrency.. 5-12

The Java Transaction API(JTA) ... 5-13
Transaction Boundaries .. 5-14
Client-Managed Transactions.. 5-14
Container-Managed Transactions (CMT) .. 5-14
Bean Managed Transactions (BMT).. 5-15

Transaction Isolation and Concurrency .. 5-15
EJB Caching ... 5-16

Differences between the EJB 1.0 and EJB 1.1 Specifications .. 5-17
Changes Specific to Entity Beans.. 5-17

WebSphere 3.5.x Support for the EJB API ... 5-20
Read-only Methods .. 5-20
EJB Finder-Helper Interface .. 5-21
CMP in WebSphere .. 5-21
Transactions... 5-21
EJB Inheritance.. 5-22
Distributed exceptions ... 5-22
Access beans .. 5-22
Associations between enterprise beans... 5-23

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J 5-23
EJB Code Changes .. 5-24
Client Level Code Changes ... 5-27
Changes in Transactional Semantics ... 5-29
vii

Object-relational (O-R) Mapping.. 5-30
Deployment of EJBs.. 5-30
OC4J EJB Container Setting... 5-32

6 Migrating JDBC Applications

The JDBC API .. 6-1
Database Drivers ... 6-2

The DriverManager Class .. 6-3
Registering JDBC Drivers ... 6-3

The DataSource Class ... 6-4
Configuring Data Sources ... 6-5
Configuring OC4J with DB2 Database .. 6-7
Obtaining a Data Source Object.. 6-8

Connection Pooling .. 6-9
Migrating WebSphere Connection Pooling to Oracle9i Application Server...................... 6-10

Migrating from Websphere JDBC 2.0 connection pooling: ... 6-10
IBM Extensions.. 6-10

Data Access Beans... 6-10
Connection Pool Manager ... 6-11

A J2EE Server Comparison

Installation and Configuration ... A-1
Code Portability .. A-2
Database Connections.. A-3
Security ... A-3
Performance and Scalability ... A-3

B Migrating from WebSphere 4.0

Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0 B-1
J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle9iAS......

B-2
Migrating WebSphere 4.0 Servlets to Oracle9iAS .. B-3

WebSphere Specific Servlet Extensions ... B-3
WebSphere-Specific Deployment Descriptors.. B-4
viii

Deprecated 3.5.3 API (Supported in WebSphere 4.0).. B-4
Migrating WebSphere 4.0 JSPs to Oracle9iAS .. B-4
Migrating WebSphere 4.0 EJBs to Oracle9iAS .. B-4
Other Considerations ... B-5

Dynamic Fragment Cache ... B-5
Data Access and Sources ... B-5

C Partner Migration Tools

Cacheon... C-1
Features of Cacheon Migrator .. C-1

TogetherSoft... C-2

Index
ix

x

Send Us Your Comments

 Oracle9 i Application Server Migrating From WebSphere, Release 2 (9.0.2)

Part No. A95110-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

Oracle9i Application Server Migrating From WebSphere provides you with the

information required for a successful migration from IBM’s application server,

WebSphere 3.5, to Oracle Corporation’s application server, Oracle9i Application

Server (Oracle9iAS).

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xiii

Audience
Oracle9i Application Server Migrating From WebSphere is intended for those Java

development managers, application developers, and system administrators

responsible for planning and migrating J2EE web applications from WebSphere 3.5

to Oracle9i Application Server (Oracle9iAS).

To use this document, you need an in-depth understanding of the Java platform and

experience in Java application development, configuration, and deployment. In

addition, you need a thorough understanding of the WebSphere Application Server

environment, as well as the Oracle9iAS environment.

Organization
This document contains:

Chapter 1, "Overview"
This chapter provides you with an overview of the J2EE platform, application

servers, and Oracle9iAS. In addition, it provides you with an understanding of

what is involved in migrating from WebSphere 3.5 to Oracle9iAS.

Chapter 2, "Comparison of Oracle9iAS and WebSphere Features"
This chapter provides a comparison between Oracle Corporation’s implementation

of Sun Microsystems’ J2EE platform and component specifications and that of

IBM’s.

Chapter 3, "Migrating Servlets"
This chapter provides you with an overview of Sun Microsystems’ Java Servlet

technology and its implementation in Oracle9iAS. In addition, the issues involved

in migrating servlets from WebSphere 3.5 to Oracle9iAS are presented.

Chapter 4, "Migrating JSPs"
This chapter provides you with an overview of Sun Microsystems’ JavaServer Pages

(JSP) technology and its implementation in Oracle9iAS. In addition, the issues

involved in migrating JSP pages from WebSphere 3.5 to Oracle9iAS are presented.

Chapter 5, "Migrating Enterprise Java Beans"
This chapter provides you with an overview of Sun Microsystems’ Enterprise

JavaBeans (EJB) architecture and its implementation in Oracle9iAS. In addition, the
xiv

issues involved in migrating EJB components from WebSphere 3.5 to Oracle9iAS are

presented.

Chapter 6, "Migrating JDBC Applications"
This chapter provides you with an overview of Sun Microsystems’ JDBC technology

and its implementation in Oracle9iAS. In addition, the issues involved in migrating

database access code from WebSphere 3.5 to Oracle9iAS are presented.

Appendix A, "J2EE Server Comparison"
This chapter compares WebSphere 3.5 to Oracle9iAS as a J2EE server in terms of

installation and configuration, proprietary extensions, database connections,

security, and performance and scalability.

Appendix B, "Migrating from WebSphere 4.0"
This chapter provides the migration strategy and tips for migrating applications

from WebSphere Advanced Edition 4.0 to Oracle9iAS.

Appendix C, "Partner Migration Tools"
This appendix provides an overview of the tools available from Oracle9iAS partners

which aid the migration process.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Concepts Guide

■ Oracle9i Application Server Developer’s Guide

■ Oracle9iAS Containers for J2EE User’s Guide

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

■ Oracle9i JDBC Developer’s Guide and Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
xv

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

For additional information, see:

■ http://ibm.com/ for more information on WebSphere Application Server

■ http://java.sun.com/ for more information on J2EE

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.
xvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xvii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;
xviii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xix

xx

Ove
1

Overview

This chapter provides you with an overview of the J2EE platform, application

servers, and the Oracle9i Application Server (Oracle9iAS). In addition, it provides

you with an understanding of what is involved in migrating from WebSphere

Advanced Edition 3.5.3 to Oracle9iAS.

The chapter contains these topics:

■ Overview of J2EE

■ What is an Application Server?

■ Overview of Oracle9iAS

■ J2EE Application Architecture

■ Migration Issues

■ Using this Guide
rview 1-1

Overview of J2EE
Overview of J2EE
The application server market is evolving rapidly. In particular, the most significant

development over the last few years is the emergence of Sun Microsystems’ Java 2

Platform, Enterprise Edition (J2EE) Specification that promises to create a level of

cross-vendor standardization.

The J2EE platform and component specifications define, among other things, a

standard platform for developing and deploying multi-tier, web-based enterprise

applications.

J2EE provides a solution to the problems encountered by companies moving to a

multi-tier computing model. The problems addressed include reliability, scalability,

security, application deployment, transaction processing, web interface design, and

timely software development. It builds upon the Java 2 Platform, Standard Edition

(J2SE) to enable Sun Microsystems’ "Write Once, Run Anywhere" paradigm for

multi-tier computing.

J2EE consists of the components described in Table 1–1:

What is the J2EE Application Model?
The J2EE application model is a multi-tier application model. Application

components are managed in the middle tier by containers. A container is a standard

runtime environment that provides services, including life cycle management,

deployment, and security services, to application components. This container-based

model separates business logic from system infrastructure.

Table 1–1 J2EE Standard Architecture Components

Component Description

J2EE Application Model An application model for developing
multi-tier, thin client services

J2EE Platform A platform for hosting J2EE applications

J2EE Compatibility Test Suite A compatibility test suite for verifying
that a J2EE platform product meets the
requirements set forth in the J2EE
platform and component specifications

J2EE Reference Implementation A reference implementation of the J2EE
platform
1-2 Oracle9i Application Server Migrating From WebSphere

Overview of J2EE
What is the J2EE Platform?
The J2EE platform consists of a runtime environment and a standard set of services

that provide the necessary functionality for developing multi-tiered, web-based

enterprise applications.

The J2EE platform consists of the components described in Table 1–2.

Table 1–2 J2EE Platform Components

Component Description

J2EE runtime application components

Application clients A Java program, typically used for a GUI,
that executes on a desktop computer

Applets A component of a Java program that
typically executes in a web browser

Servlets A Java program, used to generate
dynamic content, that executes on a web
server

JSPs A technology used to return dynamic
content to a client, typically a web
browser

Enterprise JavaBeans (EJB) An applications architecture for
component-based distributed computing

Containers An entity that provides services for
application components, including life
cycle management, deployment, and
security services

Resource manager drivers A system-level component that enables
network connectivity to external data
sources

Database A set of related files used for the storage
of business data and accessible through
the JDBC API

J2EE standard services

HTTP The standard protocol used by the
Internet to send and receive messages
between web servers and browsers
Overview 1-3

What is an Application Server?
What is an Application Server?
An application server is software that runs between web-based client programs and

back-end databases and legacy applications. They help separate system complexity

from business logic, enabling developers to focus on solving business problems.

They help reduce the size and complexity of client programs by enabling these

programs to share capabilities and resources in an organized and efficient way.

Application servers provide benefits in the areas of usability, flexibility, scalability,

maintainability, and interoperability.

HTTPS A protocol used by the Internet to send
and receive messages securely between
web servers and browsers

Java Transaction API (JTA) An API that allows applications and
application servers to access transactions

RMI-IIOP RMI: A protocol that enables Java objects
to communicate remotely with other Java
objects.

IIOP: A protocol that enables browsers
and servers to exchange things other than
text.

RMI-IIOP is a version of RMI that uses
the CORBA IIOP protocol

JavaIDL A standard language for interface
specification primarily used for CORBA
object interface definition

JDBC An API that provides connectivity
between databases and the J2EE platform

Java Message Service (JMS) An API that enables the use of enterprise
messaging systems

Java Naming and Directory Interface (JNDI) An API that provides directory and
naming services

JavaMail An API that provides the ability to send
and receive e-mail

JavaBeans Activation Framework (JAF) An API required by the JavaMail API

Table 1–2 J2EE Platform Components

Component Description
1-4 Oracle9i Application Server Migrating From WebSphere

Overview of Oracle9iAS
Overview of Oracle9 iAS
Oracle9iAS is a comprehensive, integrated application server that provides all of the

infrastructure and functionality needed to run every successful e-Business. All

development teams face a similar set of challenges—the need to rapidly deliver web

sites and applications that run fast over any network and on every device; while

providing business intelligence to support operational adjustments and strategic

decisions. Oracle9iAS enables teams to address all of these e-business challenges.

Oracle9iAS has generated a great deal of interest in the application server market,

and many organizations are embracing it to deploy their web-based enterprise

applications.

Oracle9iAS offers the only integrated infrastructure to develop and deploy web

sites and applications. It provides a complete J2EE platform for developing

enterprise Java applications. It enables developers to develop web applications in

any language including Java, Perl, PL/SQL, XML, and Oracle Forms. It enables the

reduction of development and deployment costs through a single, unified platform

for Java, XML, and SQL.

The J2EE server implementation in Oracle9iAS is called or OC4J. OC4J is J2EE 1.2

compliant and runs on the standard JDK. It is lightweight, provides high

performance and scalability, and is simple to deploy and manage. OC4J can be

deployed in standalone mode, which is ideal for development environments or

with Oracle Enterprise Manager (OEM) to provide enterprise-level monitoring and

management facilities.

J2EE Application Migration Challenges
The varying degrees of compliance to J2EE standards can make migrating

applications from one application server to another a daunting task. Some of the

challenges in migrating J2EE applications from one application server to another

are:

■ Though in theory any J2EE application can be deployed on any J2EE-compliant

application server, in practice this is not strictly true.

■ Lack of knowledge of the implementation details of the given J2EE application.

■ Ambiguity in the meaning of ’J2EE-compliant’ (usually, this means the

application server has J2EE compliant features, not code-level compatibility

with the J2EE specification).

■ The number of vendor-supplied extensions to the J2EE standards in use, which

differ in deployment methods and reduce portability of Java code from one
Overview 1-5

J2EE Application Architecture
application server to another. (For example, there are Websphere-specific

libraries associated with servlet engines, EJB containers, and JDBC and JNDI

interfaces).

■ Differences in clustering, load balancing, and failover implementations among

application servers. These differences are sparsely documented, and are thus an

even bigger challenge to the migration process.

These challenges make the migration path daunting, uncertain, and difficult to

reliably plan and schedule. This chapter addresses the challenges in migrating your

applications from WebSphere to Oracle9i Application Server, providing an

approach to migration with solutions based on the J2EE version 1.2 specification.

J2EE Application Architecture
The J2EE platform provides a multi-tiered distributed application model. Central to

the J2EE component-based development model is the notion of containers.

Containers are standardized runtime environments that provide specific services to

components. Thus, Enterprise Java Beans (EJB) developed for a specific purpose in

any organization can expect generic services such as transaction and EJB life cycle

management to be available on any J2EE platform from any vendor.

Containers also provide standardized access to enterprise information systems; for

example, providing RDBMS access through the JDBC API. Containers also provide

a mechanism for selecting application behavior at assembly or deployment time.

As shown in Figure 1–1, the J2EE application architecture is a multi-tiered

application model. In the middle tier, components are managed by containers: For

example, J2EE Web containers invoke servlet behavior, and EJB containers manage

life cycle and transactions for EJBs. The container-based model separates business

logic from system infrastructure.
1-6 Oracle9i Application Server Migrating From WebSphere

Migration Issues
Figure 1–1 J2EE Architecture

Migration Issues
An issue is a condition that could cause unplanned work. Given the inherent

challenges outlined above, it is helpful to examine the applications to be migrated

in terms of the following before quantifying the migration effort:

■ Portability

■ Dependence on vendor-specific APIs

■ Adherence to the J2EE specification

Portability
Code may not be portable because it contains embedded references to vendor-

specific extensions to the J2EE specification. In such cases, runtime exceptions, (for

example, "class not found") may occur when applications are migrated and run

from one J2EE-compliant application server to another. In addition, some J2EE
Overview 1-7

Migration Issues
application servers still support deprecated APIs and others are strictly compliant

to the J2EE specifications. WebSphere contains extenstions to servlets, JSPs, EJBs,

JNDI, and JDBC. In such cases, evaluating code and planning for its modification

may be a significant part of the migration effort.

Vendor Specificity
If Websphere-specific services are in use, migration of those components becomes

difficult or unfeasible. These components may need to be redesigned and

reimplemented,instead of being identified as migration candidates. This guide does

not address complete redesign toward J2EE specifications. For example,

applications using Component Broker (IBM ORB) services, CICS or Encina

transaction monitors, MQSeries or DB2 libraries are not candidates for migration as

defined in this guide.

Deviations from J2EE 1.2 Specification
Different application server vendors have different levels of support for J2EE

standards, and some variations in behavior. For example, WebSphere Advanced

Edition 3.5.3 is not fully compliant with the J2EE 1.2 specifications, but Oracle9i
Application Server is. This fact alone raises issues with EJBs, JNDI, and security

migration. This guide addresses those issues and explains how to migrate to

Oracle9i Application Server without major code changes.

Migration Approach
Our approach for this guide is to document our experiences with migrating

components and/or example applications from WebSphere Advanced Edition 3.5.3

to Oracle9i Application Server Release 2. Guidelines for migrating from WebSphere

Advanced Edition 4.0 to Oracle9i Application Server Release 2 is discussed in

Appendix B, "Migrating from WebSphere 4.0".

We selected some of the examples shipped with WebSphere for this migration

excercise.We tested these samples with WebSphere and migrated them to Oracle9i
Application Server. In doing so, we exposed and documented specific migration

issues not identified in the product documentation. As described in "J2EE

Application Migration Challenges" these issues exist because WebSphere Advanced

Edition 3.5.3 does not comply to the J2EE 1.2 specification, and because

Websphere-specific API extensions are used.
1-8 Oracle9i Application Server Migrating From WebSphere

Using this Guide
Using this Guide
This guide details the migration of components from WebSphere Advanced Edition

3.5.3 to Oracle9i Application Server. While it does not claim to be an exhaustive

source of solutions for every possible configuration, it provides solutions for some

of the migration issues listed above, which will surface, along with others, in your

migration effort. The information in this guide helps you to assess the WebSphere

Advanced Edition 3.5.3 applications and plan and execute their migration to

Oracle9i Application Server. The material in this guide supports these high-level

tasks:

■ Survey the components according to the issues listed above

■ Identify migration candidates

■ Prepare the migration environment and tools

■ Migrate and test the candidate components

Note: In this document, unless otherwise specified, any reference

to WebSphere without a version number implies reference to

WebSphere Advanced Edition 3.5.3.
Overview 1-9

Using this Guide
1-10 Oracle9i Application Server Migrating From WebSphere

Comparison of Oracle9iAS and WebSphere Fea
2

Comparison of Oracle9 iAS and WebSphere

Features

WebSphere and Oracle9iAS are created from entirely different architectures.

Websphere is based on the IBM SanFrancisco Java application framework and its

Component Broker, both of which predate J2EE standards. Oracle9iAS has a new

lightweight, robust J2EE container that supports the latest J2EE 1.2 standard.

This chapter identifies major differences between Websphere and Oracle9iAS in

terms of overall product offering, architecture, clustering and load balancing, J2EE

support, and development and deployment tools.

Application Server Product Offerings Comparison
This section describes WebSphere and Oracle9iAS application server products.

Websphere Product Offerings
IBM sells a several technologies under the WebSphere marketing umbrella. The

WebSphere Application Server is the core of the WebSphere extended family of

products, of which there are three versions, described below.

WebSphere Standard Edition
Websphere Standard Edition is a Servlet/JSP container layer that runs on top of an

HTTP server. It works with a number of popular HTTP servers, including IBM

HTTP Server, Microsoft IIS, and Netscape iPlanet server. WebSphere Standard

Edition supports static HTML pages, servlets, JavaServer Pages, and XML .
tures 2-1

Oracle9i Application Server
WebSphere Advanced Edition
WebSphere Advanced Edition contains all the features of Standard Edition, and also

includes:

■ Full support for the Enterprise JavaBeans™ (EJB) component model

■ Workload management (WLM) features to support multiple servers within a

single administrative domain

WebSphere Advanced Edition is IBM’s core J2EE server.

WebSphere Enterprise Edition
WebSphere Enterprise Edition includes all of the features in Advanced Edition, and

also includes:

■ Component Broker (CB), the IBM Object Request Broker

■ TXSeries, the IBM transactional middleware solution with two transaction

processing monitors: CICS and Encina

In WebSphere Enterprise Edition, the Component Broker serves both EJBs and

CORBA objects. TXSeries provides a a pure transactional environment, for

applications that don't require an EJB/component-based/object-oriented

programming model. Depending on your requirements, you could use either or

both.

Oracle9 i Application Server
Like WebSphere, Oracle9iAS is a platform-independent J2EE application server that

can host multi-tier, web-enabled enterprise applications for the Internet and

intranets, and which is accessible from browser and standalone clients. It includes

Oracle9iAS Containers for J2EE (OC4J) a lightweight, scalable J2EE container

written in Java, and is J2EE 1.2 certified. In addition, OC4J provides support for

J2EE 1.3 features such as:

■ Servlets 2.3

■ JSP 1.2

■ EJB 2.0

■ JNDI 1.2

■ JavaMail 1.2
2-2 Oracle9i Application Server Migrating From WebSphere

Architecture Comparison
■ JAF 1.0

■ JAXP 1.1

■ JCA 1.0

■ JAAS 1.0

■ JMS 1.0

■ JTA 1.0

■ JDBC 2.0

Oracle9iAS is designed specifically for running large-scale, distributed Java

enterprise applications, including Internet commerce sites, enterprise portals and

high volume transactional applications. It adds considerable value beyond the J2EE

standards in areas critical to the implementation of real world applications,

providing an entire suite of integrated solutions that encompass:

■ Web services

■ Business intelligence

■ Management and security

■ E-business integration

■ Support for wireless clients

■ Enterprise portals

■ Performance caching

To enable these solutions to be implemented in a reliable and scalable

infrastructure, Oracle9iAS can be deployed in a redundant architecture using

clustering mechanisms. The sections "Architecture Comparison" and "Oracle9iAS

Support for Clustering and Load Balancing" in this chapter details the components

in and characteristics of Oracle9iAS.

Architecture Comparison
This section describes and compares the overall architectures of WebSphere and

Oracle9iAS.

IBM WebSphere Components
The WebSphere Advanced Edition 3.5.3 consists of the following components:
Comparison of Oracle9iAS and WebSphere Features 2-3

Architecture Comparison
IBM HTTP Server
IBM's HTTP Server is the Apache HTTP Server (with official product support) with

SSL capability implemented by IBM, and IBM tools for managing keys, certificates,

and such. The public key technology that SSL uses is patented and requires tracking

for licensing purposes. The SSL support is part of IBM's value-add on top of the

Apache HTTP Server open source distribution. Neither Apache nor the IBM HTTP

Server provide servlet support out-of-the-box.

Web Server Plug-in
The Web Server Plug-in is a module that runs within the web server, using its

native APIs, and forwards requests to the WebSphere Application Server. When you

install Websphere, the installation program installs a hook into the web server that

intercepts HTTP requests that target a servlet (it examines the incoming URL to

determine whether it is a servlet request), and redirects those requests to the servlet

engine for processing. Static content is still handled solely by the HTTP Server.

Administrative Server
The Adminsitrative Server must be running on every node that is running a

WebSphere Application Server component. It performs the following functions:

■ Starting, stopping and monitoring all configured application servers.

■ Providing a location service daemon (LSD).

■ Providing a persistence name server (PNS).

■ Providing a security server.

■ Providing a watchdog process to restart the Administrative Server in case of

failure.
2-4 Oracle9i Application Server Migrating From WebSphere

Architecture Comparison
Figure 2–1 Runtime components of WebSphere Application Server Advanced Edition

Administrative Repository
The WebSphere Application Server version 3.5.x requires an Administrative Server

Repository. The Administrative Server Repository is a relational database

containing configuration information. This database is used to store setup,

configuration, and state information about the WebSphere Application Server.

Before starting the Administrative Server, WebSphere Application Server checks for

the existence of an Administrative Server Repository, which contains descriptive

information about the resources that are configured to run on each node in the

domain, for example, the names of application servers, the node each server is

running on, the enterprise beans installed in each server, and the current state of

each server.

The Administrative Server Repository enables the system administrator to manage

the domain from any machine, because all configuration information is stored in a

central location. Each Administrative Server has a central view of resource

configuration information about in the domain. When the administrator modifies a

resource configuration, the changes are seen by all administrative servers.

Application Server
In WebSphere, an Application Server is the process that runs servlet and/or

EJB-based applications, providing both the servlet run-time components (Servlet

Engine, Web applications) and EJB run-time (EJB container). Like the

Administrative Server, each WebSphere Application Server runs in its own Java

Virtual Machine (JVM).
Comparison of Oracle9iAS and WebSphere Features 2-5

Architecture Comparison
Oracle9 iAS Components and Concepts
This section describes components and several concepts peculiar to Oracle9iAS. The

discussion here provides an overview scope. For more detailed information, refer to

the Oracle9i Application Server Concepts Guide, Oracle9i Application Server
Administrator’s Guide, and Oracle9iAS Containers for J2EE User’s Guide.

Oracle9 iAS Instance
An Oracle9iAS instance is a runtime occurrence of an installation of Oracle9iAS. An

Oracle9iAS installation corresponds to an "Oracle home" where the Oracle9iAS files

are installed. Each Oracle9iAS installation can provide only one Oracle9iAS instance

at runtime. A physical node can have multiple "Oracle homes", and hence, more

than one Oracle9iAS installation and Oracle9iAS instance.

Each Oracle9iAS instance consists of several interoperating components that enable

Oracle9iAS to service user requests in a reliable and scalable manner. These

components are Oracle HTTP Server, OC4J instances, Oracle Process Management

Notification (OPMN) service, and Distributed Configuration Manager (DCM).

Oracle HTTP Server
Oracle9iAS contains two listeners: The Oracle HTTP Server (based on the Apache

open source product) and the listener that is part of OC4J, which runs in a separate

thread of execution. Each Oracle9iAS instance has one Oracle HTTP Server.

The OC4J listener listens to requests coming from the mod_oc4j module of the

Oracle HTTP Server and forwards them to the appropriate OC4J instance. From a

functional viewpoint, the Oracle HTTP Server acts as a proxy server to OC4J,

wherein all servlet or JSP requests are redirected to OC4J instances.

mod_oc4j communicates with the OC4J listener using the Apache JServ Protocol

version 1.3 (AJP 1.3). This protocol load balances JSP and servlet requests between

OC4J instances. mod_oc4j works with the Oracle HTTP Server as an Apache

module. The OC4J listener can also accept HTTP and RMI requests, in addition to

AJP 1.3 requests.

The following diagram depicts the Oracle HTTP Server and other Oracle9iAS

runtime components in a single instance of Oracle9iAS.
2-6 Oracle9i Application Server Migrating From WebSphere

Architecture Comparison
Figure 2–2 Components of an Oracle9iAS instance

OC4J Instances
An OC4J instance is a logical instantiation of the OC4J implementation in

Oracle9iAS. This implementation is Java 2 Enterprise Edition (J2EE) complete and

written entirely in Java. It executes on the standard Java Development Kit (JDK)

1.3.1 Java Virtual Machine. It has a lower disk and memory footprint than the

previous Oracle9iAS Java environment and competitive Java application servers.

Note that each OC4J instance can consist of more than one JVM process where each

process can be executing multiple J2EE containers. The number of JVM processes

can be specified for each OC4J instance using the Oracle Enterprise Manager GUI.

Oracle9iAS allows several OC4J instances to be clustered together for scalability and

high-availibility purposes. When OC4J instances are clustered together, they have

the same configuration and applications deployed amongst them. A more in-depth

discussion on clustering is found in the section "Oracle9iAS Support for Clustering

and Load Balancing" below.

Oracle Process Management Notification (OPMN) Service
Each Oracle9iAS instance has an OPMN service which performs monitoring and

process management functions within that instance. This service communicates

messages between the components in an Oracle9iAS instance to enable startup,

death-detection and recovery of components. This communication extends to other

OPMN services in other Oracle9iAS instances belonging to the same cluster as well,

thereby allowing other instances in a cluster to be aware of active OC4J and Oracle

HTTP Server processes in other Oracle9iAS instances (in the same cluster).
Comparison of Oracle9iAS and WebSphere Features 2-7

Architecture Comparison
The OPMN service also communicates and interfaces with Oracle Enterprise

Manager to provide a consolidated interface for monitoring, configurating, and

managing Oracle9iAS. Oracle9iAS components, Oracle HTTP Server, OC4J

instances, and Distributed Configuration Manager (described below), use a

subscribe-publish messaging mechanism to communicate with the OPMN service.

For failover and availibility, the process that implements the OPMN service has a

shadow process that restarts the OPMN process if it fails.

Distributed Configuration Manager (DCM)
In order to manage and track configuration changes in the various components in

each Oracle9iAS instance, a DCM process exists in each Oracle9iAS instance to

perform those tasks. Each configuration change made to any of the components in a

Oracle9iAS instance is communicated to the DCM. DCM in turn takes note of the

change and records it in the Oracle9iAS metadata repository in the infrastructure

database. This repository contains the configuration information for all the

Oracle9iAS instances connected to it through their respective DCMs. All Oracle9iAS

instances connecting to the same infrastructure repository in this way belong to the

same Oracle9iAS farm. If any of the Oracle9iAS instances fail, the configuration

information can be retrieved from the repository for purposes of restarting the

instance.

Each DCM also communicates with the OPMN in their respective instances to send

notification events on changes in repository data. This allows OPMN to make the

corresponding adjustments to the Oracle9iAS components.

Oracle9 iAS Infrastructure Repository
The Oracle9iAS infrastructure repository maintains metadata about the Oracle9iAS

clusters and standalone Oracle9iAS instances connected to it. A common and

shared infrastructure repository ensures a more robust way of maintaining

configuration information and consistency between the clusters and instances.

Whenever a new instance is added to a cluster, common configuration information

such as the applications deployed is retrieved from the infrastructure repository

and propagated to the new instance so that it will behave uniformly with the other

instances of the cluster. The infrastructure repository is discussed further in the

section "Oracle9iAS Clusters" below.

Oracle9 iAS Web Cache
Oracle9iAS provides a caching solution with the unique capability to cache both

static and dynamically generated web content. The Oracle9iAS Web Cache

significantly improves the performance and scalability of heavily loaded
2-8 Oracle9i Application Server Migrating From WebSphere

Clustering and Load balancing
Oracle9iAS web sites by reducing the number of round trips to the web server. In

addition, it provides a number of features to ensure consistent and predictable

responses. These features include page fragment caching, dynamic content

assembly, web server load balancing, Web Cache clustering, and failover.

Oracle9iAS Web Cache can be used as a load balancer for Oracle9iAS instances in a

cluster. Web Cache can itself be deployed in its own cluster. Refer to the Oracle9iAS
Database Cache Concepts and Administration Guide.

Clustering and Load balancing
This section defines and describes clustering and load balancing and their

importance to application server operation, It compares the methods for clustering

and load balancing used in WebSphere and Oracle9iAS.

What is Clustering?
An application server cluster is a group of independent application server instances

managed as a single system for higher availability and increased scalability. The

main goal of clustering is to minimize response time to user requests and to provide

scalability (the ability to add nodes to an existing system with minimal system

disruption). Clustering improves manageability, since the system administrator can

remotely manage the cluster from a central location. The cluster appears to the

administrator as a single system.

Benefits of Clustering: Failover Recovery
Within a cluster of multiple application server instances, a failed application server

instance can rely on another instance to take over its workload. Two important

characteristics of failover are quick failure detection, and failover without loss of

data. The level of failover support varies among application servers. Oracle9iAS

provides support for both.

What is Load Balancing?
Load balancing is the proportional distribution of client requests (the application

server workload) among the servers in the cluster, enabling the maximum number

of concurrent requests. The primary goals of load balancing are to optimize usage of

available server capacity and provide the most rapid possible response time to

clients.
Comparison of Oracle9iAS and WebSphere Features 2-9

Clustering and Load balancing
WebSphere Suppport for Clustering and Load Balancing
WebSphere provides clustering and load balancing support through its

Administrative Console, with cloning and workload management services.

Clustering in WebSphere
Clustering is implemented in WebSphere with a mechanism called cloning,

available in the Administration system. Cloning enables you to create multiple

copies of an application server, based on a server that you have already configured.

The clone has the same structure and attributes as the application server on which it

is based, but it is not associated with any node, and does not correspond to any real

server process running on any node.

WebSphere Application Server supports cloning for servlet engines, Web

applications, and servlets for workload management, load balancing, and failover.

The servlets, EJBs, and Web resources are shared by the clones, but each clone uses

its own JVM to run the application code. This provides identical, yet independent

processes for the application to run in.

Load Balancing in WebSphere
The workload management service improves the scalability of the application

server environment by grouping multiple application servers into application

server groups. Clients then access these application server groups as if they were a

single server, and the workload management service distributes the workload

among the application servers in the application server groups. An application

server can belong to only one application server group. Websphere workload

management supports load balancing for stateless servlets and stateless session

beans, and provides a failover mechanism for stateful servlets and stateful session

beans.

Servlet load balancing is performed by a servlet redirector. The servlet redirector

runs on the Web server in front of the application servers. The redirector balances

workload across the servlet engines running in multiple application servers behind

the Web server. When a web server HTTP session asks to invoke a servlet, the

redirector transfers the request to a servlet engine.

The EJB component workload manager balances the load between Java objects

(servlets to EJB components, EJB components to EJB components and stand-alone

Java clients to EJB components). For example, when a servlet needs data or begins a

transaction through an EJB component, the EJB component workload manager

transfers the request to an EJB container (an instance of WebSphere Application

Server) or a remote EJB handler.
2-10 Oracle9i Application Server Migrating From WebSphere

Clustering and Load balancing
Oracle9 iAS Support for Clustering and Load Balancing
Oracle9iAS is designed with sophisticated clustering mechanisms. These

mechanisms ensure that failover and scalibility are achieved at the infrastructure

and application levels. This section describes the clustering and load balancing

concepts and capabilities of Oracle9iAS and OC4J.

Oracle9 iAS Clusters
An Oracle9iAS cluster is made up of one or more Oracle9iAS instances (see

Figure 2–3). All Oracle9iAS instances in the cluster have the same configuration.

The first Oracle9iAS instance to join a cluster has its configuration replicated to the

second and later instances when they join. In addition to the configuration,

deployed OC4J applications are also replicated to the newer instances. Information

for the replicated configuration and applications is retrieved from the Oracle9iAS

infrastructure repository used by the cluster.

Within each cluster, there is no mechanism to load balance or failover the

Oracle9iAS instances. That is, there is no internal mechanism in the cluster to load

balance or failover requests to the Oracle HTTP Server component in the instances.

A separate load balancer such as Oracle9iAS Web Cache or hardware load

balancing product can be used to load balance the Oracle9iAS cluster and failover

the Oracle HTTP Server instances in the cluster.

Several Oracle9iAS clusters and standalone Oracle9iAS instances can be further

grouped into an Oracle9iAS farm. The clusters and instances in this farm share the

same Oracle9iAS infrastructure repository. For further information on Oracle9iAS

farms, refer to the Oracle9i Application Server Administrator’s Guide.
Comparison of Oracle9iAS and WebSphere Features 2-11

Clustering and Load balancing
Figure 2–3 An Oracle9iAS cluster using Oracle9iAS Web Cache for load balancing

OC4J Islands
An important function of clustering technology in Oracle9iAS is that of reducing

multicast traffic. With every server sharing its session state with every other server

in the cluster, a lot of CPU cycles is consumed as overhead to replicate the session

state across all nodes in the cluster. Oracle9iAS solves this problem by introducing

the concept of OC4J islands, where OC4J processes (JVMs) in an Oracle9iAS cluster

can be sub-grouped into islands. Session state of applications is replicated only to

OC4J processes belonging to the same island rather than all OC4J processes in the

Oracle9iAS cluster. Hence, state is replicated to a smaller number of processes. OC4J

islands are typically configured to span across physical nodes, thereby allowing

failover of application state if a node goes down.

Consider an Oracle9iAS cluster with four OC4J processes running in two nodes,

two processes per node (see Figure 2–4). When the state of an application changes,

which could occur at every request from the same client, multicast messages are

sent between all four processes to update the state of that application in each

process. If these four processes were to be divided into two islands of two processes

across two nodes, state replication of the application would only have to occur

between processess within the same island. Multicast messages would be required

only between the two processes in the island instead of four, reducing replication

overhead by half. As a result, network traffic and CPU cycles are reduced.
2-12 Oracle9i Application Server Migrating From WebSphere

J2EE Support Comparison
Figure 2–4 OC4J islands

When configuring OC4J islands (using OEM), you can specify the number of OC4J

processes for each node that belong to each island. By doing so, you can increase or

decrease the number of processes based on the capabilities of the hardware and

operating system of each node. For instructions on how to configure Oracle9iAS

clusters and OC4J islands, refer to Oracle9i Application Server Administrator’s Guide.

J2EE Support Comparison
This section outlines the differences in the level of support of J2EE specifications

between WebSphere and Oracle9iAS.

WebSphere J2EE support
WebSphere 3.5.3 is a J2EE server, but is not fully J2EE 1.2 compliant. It supports the

following J2EE API specifications:

■ Servlet 2.1 (and partial support for Servlet 2.2)

■ JSPs - supports .91 and 1.0

■ EJBs 1.0+

■ JTA 1.0
Comparison of Oracle9iAS and WebSphere Features 2-13

J2EE Support Comparison
■ JNDI 1.2

■ JDBC 2.0

■ JMS 1.0

WebSphere is not fully J2EE compliant, since it provides custom extensions to J2EE

standards and includes non-standard packages for supporting J2EE features, such

as servlet filtering and chaining, security, connection pooling and data access beans,

and deployment dersciptors. An application using these extensions and packages

requires code-level changes in order to migrate to Oracle9iAS or any other

J2EE-compliant application server.

Oracle9 iAS OC4J J2EE support
Oracle9iAS OC4J is fully certified with J2EE 1.2.1, having passed Sun Microsystems’

Certification Test Suite (CTS). The CTS includes over 5,000 tests designed to assess

application portability and the overall quality of a J2EE implementation.

Table 2–1 lists the J2EE technologies and the level of support provided by

Oracle9iAS and WebSphere:

Table 2–1 J2EE Technology Support

J2EE Technology
Version Supported by
WebSphere 3.5.3

Version Supported by
Oracle9 iAS

JDK 1.2.2 1.2.2 and 1.3

Servlets 2.1+ 2.2 and 2.3

JSPs 1.0 1.2

EJBs 1.0+ 1.1 and 2.0

JDBC 2.0 2.0

JNDI 1.2 1.2.1

JTA 1.0 1.0.1

JMS 1.0 1.0.1

JavaMail None 1.2

JAF None 1.0.1

JAXP 1.0.1 1.1

JCA 1.0 1.0
2-14 Oracle9i Application Server Migrating From WebSphere

Java Development and Deployment Tools
In addition to supporting these standards, Oracle9iAS provides a well-thought-out,

integrated architecture for building real world J2EE applications, including

implementation of standard deployment archives: JAR files for EJBs, Web Archives

(WARs) for servlets and JSPs, and Enterprise Archives (EARs) for applications. This

ensures smooth server interoperability.

Java Development and Deployment Tools
This section compares the Java tools included with WebSphere and Oracle9iAS.

WebSphere Development and Deployment Tools
The WebSphere development environment, tools, and system administration

console are described below.

WebSphere Development Tools
VisualAge for Java is is IBM’s integrated development environment (IDE) for

building J2EE applications. VisualAge for Java offers remote debugging support for

JSP pages and other server-side Java logic. A new Servlet SmartGuide generates

servlets, JSP components, and HTML prototypes, so that developers can quickly test

their code inside the IDE before deploying to a production server. Integration with

IBM WebSphere Studio allows for quick addition of content to prototypes,

increasing productivity for programmers and web developers. VisualAge also

comes with Persistence Builder, a standalone object-relational mapper tool .

Websphere Studio
The WebSphere Studio provides a tool set for creating, managing and debugging

multiplatform Web applications. It includes the following functionality:

■ Visual Page Designer for Java Server Pages (JSP), HTML and DHTML.

■ Wizards to create database applications, queries, JavaBeans and servlets.

■ Deployment of EJBs, servlets and web applications.

JAAS 1.0 1.0

Table 2–1 J2EE Technology Support

J2EE Technology
Version Supported by
WebSphere 3.5.3

Version Supported by
Oracle9 iAS
Comparison of Oracle9iAS and WebSphere Features 2-15

Java Development and Deployment Tools
WebSphere Administrative Console
The WebSphere Administrative Console provides a GUI for managing the

WebSphere domain. A WebSphere domain consists of one or more WebSphere

instances (where each instance runs one or more applications). The Administrative

Console connects to one of the Administrative servers running in the domain and

can be used change to the configuration or run-time state on any machine in a

domain. The Administrative Console is used to manage the administrative

repository, deploy applications and configure applications.

Oracle9 iAS Development and Deployment Tools
This section describes development and deployment tools for creating J2EE

applications. The tools are part of the Oracle9i Developer Suite.

Development Tools
Application developers can use the tools in Oracle JDeveloper to build J2EE

compliant applications for deployment on OC4J. JDeveloper is a component in

Oracle Internet Developer Suite, a full-featured, integrated development

environment for creating multi-tier Java applications. It enables you to develop,

debug, and deploy Java client applications, dynamic HTML applications, web and

application server components and database stored procedures based on

industry-standard models. For creating multi-tier Java applications, JDeveloper has

the following features:

■ Oracle Business Components for Java (BC4J)

■ Web application development

■ Java client application development

■ Java in the database

■ Component-Based Development with JavaBeans

■ Simplified database access

■ Visual Integrated Development Environment

■ Complete J2EE 1.2 support

■ Automatic generation of .ear files, .war files, EJB JAR file, and deployment

descriptors.

You can build applications with Oracle JDeveloper and deploy them manually,

using Oracle Enterprise Manager. Also note that you are not restricted to using
2-16 Oracle9i Application Server Migrating From WebSphere

Java Development and Deployment Tools
JDeveloper to build applications; you can deploy applications built with IBM

VisualAge or Borland JBuilder on OC4J.

Assembly Tools
Oracle9iAS provides a number of assembly tools to configure and package J2EE

Applications. The output from these tools is compliant with J2EE standards and is

not specific to OC4J. These include:

■ A WAR file assembly tool to assemble JSP, servlets, tag libraries and static

content into WAR files.

■ An EJB assembler, which packages an EJB home, remote interface, deployment

descriptor, and the EJB into a standard JAR file.

■ An EAR File assembly tool, which assembles WAR Files and EJB JARs into

standard EAR files.

■ A tag library assembly tool, which assembles JSP tag libraries into standard JAR

files.

Administration Tools
Oracle9iAS also provides two different administration facilities to configure,

monitor, and administer OC4J.

■ A graphical management console, integrated with Oracle Enterprise Manager,

which provides a single point of administration across Oracle9iAS clusters,

farms, and OC4J containers.

■ A command line tool for performing administrative tasks locally or remotely

from a command prompt. (Oracle Enterprise Manager (OEM) is the preferred

administration environment over this command line tool as OEM provides a

more integrated set of administration services.)
Comparison of Oracle9iAS and WebSphere Features 2-17

Java Development and Deployment Tools
2-18 Oracle9i Application Server Migrating From WebSphere

Migrating Se
3

Migrating Servlets

This chapter discusses key servlet features and APIs, WebSphere support for servlet

APIs and its extensions to standards, and OC4J support for servlet APIs. It also

includes a step-by-step migration path for servlets deployed on WebSphere to

Oracle9iAS OC4J container.

Overview of the Java Servlet API
A servlet is an instance of Java class running with in a web container and servlet

engine. Servlets are used for generating dynamic web pages. Servlets receive and

respond to requests from web clients, usually via the HTTP protocol.

Servlets have several advantages over traditional CGI programming:

■ A servlet does not run in a separate process. This removes the overhead of

creating a new process for each request.

■ A servlet stays in memory between requests. A CGI program (and probably

also an extensive runtime system or interpreter) needs to be loaded and started

for each CGI request.

■ There is only a single instance which answers all requests concurrently. This

saves memory and allows a servlet to easily manage persistent data.

■ A servlet can be run by a servlet engine in a restrictive sandbox (similar to how

an applet runs in a web browser's sandbox), which allows secure use of servlets.

■ Servlets are scalable, providing support for a multi-application server

configuration. Servlets also enable data caching, database access, and data

sharing with other servlets, JSP files and (in some environments) Enterprise

JavaBeans.
rvlets 3-1

Overview of the Java Servlet API
The servlet API is specified in two java extension packages: javax.servlet and

javax.servlet.http . Most servlets, however, extend one of the standard

implementations of that interface, namely javax.servlet.GenericServlet
and javax.servlet.http.HttpServlet . Of these, the classes and interfaces in

javax.servlet are protocol independent, while javax.servlet.http contain

classes specific to HTTP.

The servlet API provides support in four categories:

■ Servlet life cycle management

■ Access to servlet context

■ Utility classes

■ HTTP-specific support classes

Table 3–1 identifies the servlet API classes according to the purpose they serve.

Table 3–1 Servlet API Classes

Purpose Class or Interface

Servlet implementation javax.servlet.Servlet

javax.servlet.SingleThreadModel

javax.servlet.GenericServlet

javax.servlet.httpServlet

Servlet configuration javax.servlet.ServletConfig

Servlet exceptions javax.servlet.ServletException

javax.servlet.UnavailableException

Request/response javax.servlet.ServletRequest

javax.servlet.ServletResponse

javax.servlet.ServletInputStream

javax.servlet.ServletOutputStream

javax.servlet.http.HttpServletRequest

javax.servlet.http.HttpServletResponse
3-2 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
Servlet Lifecycle
Servlets run on the web server platform as part of the same process as the web

server itself. The web server is responsible for initializing, invoking, and destroying

each servlet instance. A web server communicates with a servlet through a simple

interface, javax.servlet.Servlet .

This interface consists of three main methods

■ init()

■ service()

■ destroy()

and two ancillary methods:

■ getServletConfig()

■ getServletInfo()

The init() Method
When a servlet is first loaded, its init() method is invoked, and begins initial

processing such as opening files or establishing connections to servers. If a servlet

has been permanently installed in a server, it is loaded when the server starts.

Otherwise, the server activates a servlet when it receives the first client request for

the services provided by the servlet. The init() method is guaranteed to finish

before any other calls are made to the servlet, such as a call to the service()
method. The init() method is called only once; it is not called again unless the

servlet is reloaded by the server.

Session tracking javax.servlet.http.HttpSession

javax.servlet.http.HttpSessionBindingList
ner

javax.servlet.http.HttpSessionBindingEvent

javax.servlet.http.Cookie

Servlet context javax.servlet.ServletContext

Servlet collaboration javax.servlet.RequestDispatcher

Table 3–1 Servlet API Classes

Purpose Class or Interface
Migrating Servlets 3-3

Overview of the Java Servlet API
The init() method takes one argument, a reference to a ServletConfig object,

which provides initialization arguments for the servlet. This object has a method

getServletContext() that returns a ServletContext object, which contains

information about the servlet's environment.

The service() Method
The service() method is the heart of the servlet. Each request from a client

results in a single call to the servlet's service() method. The service() method

reads the request and produces the response from its two parameters:

■ A ServletRequest object with data from the client. The data consists of

name/value pairs of parameters and an InputStream . Several methods are

provided that return the client's parameter information. The InputStream
from the client can be obtained via the getInputStream() method. This

method returns a ServletInputStream , which can be used to get additional

data from the client. If you are interested in processing character-level data

instead of byte-level data, you can get a BufferedReader instead with

getReader() .

■ A ServletResponse represents the servlet's reply back to the client. When

preparing a response, the method setContentType() is called first to set the

MIME type of the reply. Next, the method getOutputStream() or

getWriter() can be used to obtain a ServletOutputStream or

PrintWriter , respectively, to send data back to the client.

There are two ways for a client to send information to a servlet. The first is to send

parameter values and the second is to send information via the InputStream (or

Reader). Parameter values can be embedded into a URL. The service()
method's job is simple--it creates a response for each client request sent to it from

the host server. However, note that there can be multiple service requests being

processed simultaneously. If a service method requires any outside resources, such

as files, databases, or some external data, resource access must be thread-safe.

The destroy() Method
The destroy() method is called to allow the servlet to clean up any resources

(such as open files or database connections) before the servlet is unloaded. If no

clean-up operations are required, this can be an empty method.

The server waits to call the destroy() method until either all service calls are

complete, or a certain amount of time has passed. This means that the destroy()
method can be called while some longer-running service() methods are still
3-4 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
running. It is important that you write your destroy() method to avoid closing

any necessary resources until all service() calls have completed.

Session Tracking
HTTP is a stateless protocol, which means that every time a client requests a

resource, the protocol opens a separate connection to the server, and the server

doesn't preserve the context from one connection to another; each transaction is a

isolated. However, most web applications aren't stateless. Robust Web applications

need to interact with with users and remember the user the nature of a given user’s

requests, making data collected about the user in one request available to the next

request from the same user. A classic example would be the shopping cart

application, from internet commerce. The Servlet API provides techniques for

identifying a session and associating data with it, even over multiple connections.

These techniques include the following:

■ Cookies

■ URL rewriting

■ Hidden form fields

To eliminate the need for manually managing the session information within

application code (regardless of the technique used), you use the HttpSession
class of the Java Servlet API. The HttpSession interface allows servlets to:

■ View and manage information about a session

■ Preserve information across multiple user connections, to include multiple page

requests as well as connections

Cookies
Cookies are probably the most common approach for session tracking. Cookies

store information about a session in a human-readable file on the client's machine.

Subsequent sessions can access the cookie to extract information. The server

associates a session ID from the cookie with the data from that session. This

becomes more complicated when there are multiple cookies involved, when a

decision must be made about when to expire the cookie, and when many unique

session identifiers are needed. Also, a cookie has a maximum size of 4K, and no

domain can have more than 20 cookies. Cookies pose some privacy concerns for

users. Some people don't like the fact that a program can store and retrieve

information from their local disk, and disable cookies or delete them altogether.

Therefore, they are not dependable as a sole mechanism for session tracking.
Migrating Servlets 3-5

Overview of the Java Servlet API
URL rewriting
The URL rewriting technique works by appending data to the end of each URL that

identifies a session. The server associates the identifier with data it has stored about

the session. The URL is constructed using an HTTP GET, and may include a query

string containing pairs of parameters and values. For example:

 http://www.server.com/getPreferences?uid=username&bgcolor=red&fgcolor=blue.

Hidden form fields in HTML
Hidden form fields are another way to store information about the session. The

hidden data can be retrieved later by using the HTTPServletRequest object. When a

form is submitted, the data is included in the GET or POST. A note of caution

though: form fields can be used only on dynamically generated pages,so their use is

limited. And there are security holes: people can view the HTML source to see the

stored data.

The HttpSession object
No matter the technique(s) used to collect session data, it must be stored

somewhere. The HttpSession object can be used to store the session data from a

servlet and associate it with a user.

The basic steps for using the HttpSession object are:

1. Obtain a session object

2. Read or write to it

3. Terminate the session by expiring it, or allowing it to expire on its own

A session persists for a certain time period, up to forever, depending on the value

set in the servlet. A unique session ID is used to track multiple requests from the

same client to the server. Persistence is valid within the context of the Web

application, which may encompass multiple servlets. A servlet can access an object

stored by another servlet; the object is distinguished by name and is considered

bound to the session. These objects (called attributes when set and get methods are

performed on them) are available to other servlets within the scope of a request, a

session, or an application.

Servlets are used to maintain state between requests, which is cumbersome to

implement in traditional CGI and many CGI alternatives. Only a single instance of

the servlet is created, and each request simply results in a new thread calling the

servlet’s service method (which calls doGet or doPost). So, shared data simply

has to be placed in a regular instance variable (field) of the servlet. Thus,the servlet
3-6 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
can access the appropriate ongoing calculation when the browser reloads the page

and can keep a list of the N most recently requested results, returning them

immediately if a new request specifies the same parameters as a recent one. Of

course, the normal rules that require authors to synchronize multithreaded access to

shared data still apply to servlets.

Servlets can also store persistent data in the ServletContext object, available

through the getServletContext method. ServletContext has

setAttribute and getAttribute methods that enable storage of arbitrary data

associated with specified keys. The difference between storing data in instance

variables and storing it in the ServletContext is that the ServletContext is

shared by all servlets in the servlet engine or in the Web application.

 J2EE Web Applications
A Web application, as defined in the servlet specification, is a collection of servlets,

JavaServer Pages (JSPs), Java utility classes and libraries, static documents such as

HTML pages, images , client side applets, beans, and classes, and other Web

resources that are set up in such a way as to be portably deployed across any

servlet-enabled Web server. A Web applications, can be contained in entirety within

a single archive file and deployed by placing the file into a specific directory.

Web Application Archive (WAR)
Web application archive files have the extension .war . WAR files are .jar files

(created using the jar utility) saved with an alternate extension. The JAR format

allows JAR files to be stored in compressed form and have their contents digitally

signed. The .war file extension was chosen over .jar to distinguish them for

certain operations. An example of a WAR file listing is shown below:

index.html
howto.jsp
feedback.jsp
images/banner.gif
images/jumping.gif
WEB-INF/web.xml
WEB-INF/lib/jspbean.jar
WEB-INF/classes/MyServlet.class
WEB-INF/classes/com/mycorp/frontend/CorpServlet.class
WEB-INF/classes/com/mycorp/frontend/SupportClass.class

On install, a WAR file can be mapped to any URI prefix path on the server. The

WAR file then handles all requests beginning with that prefix. For example, if the
Migrating Servlets 3-7

Overview of the Java Servlet API
WAR file above were installed under the prefix /demo , the server would use it to

handle all requests beginning with /demo . A request for /demo/index.html
would serve the index.html file from the WAR file. A request for

/demo/howto.jsp or /demo/images/banner.gif would also serve content

from the WAR file.

About the WEB-INF directory
The WEB-INF directory is special. The files in it are not served directly to the client;

instead, they contain Java classes and configuration information for the Web

application. The directory behaves like a JAR file's META-INF directory; it contains

metainformation about the archive contents. The WEB-INF/classes directory

contains the class files for the Web application's servlets and supporting classes.

WEB-INF/lib contains classes stored in JAR files. For convenience, web server

class loaders automatically look to WEB-INF/classes and WEB-INF/lib for their

classes—no extra install steps are necessary.

The servlets under WEB-INF in the example Web application listing can be invoked

using URIs like /demo/servlet/MyServlet and

/demo/servlet/com.mycorp.frontend.CorpServlet .

Note that every request for this application begins with /demo , even requests for

servlets.

The web.xml file in the WEB-INF directory defines descriptors for a Web

Application. This file contains configuration information about the Web application

in which it resides and is used to register your servlets, define servlet initialization

parameters, register JSP tag libraries, define security constraints, and other Web

Application parameters .

 Differences between Servlet 2.0, 2.1 and 2.2
The Servlet API in the J2EE specification is continously evolving. In a span of two

years Servlet API 2.0 , 2.1, 2.2 has been published; the most recent version as of this

writing is Servlet API 2.3. The fundamental architecture of servlets has not changed

much, so most of the API is still relevant. However, there are enhancements and

some new functionality, and some APIs have been deprecated.

This section will cover the major difference between Servlet API 2.0 , 2.1 ,2.2 and 2.3

draft specification.

Highlights of the Java Servlet API 2.1
The Servlet 2.1 API highlights include:
3-8 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
■ A request dispatcher wrapper for each resource (servlet)

A request dispatcher is a wrapper for resources that can process HTTP requests

(such as servlets andJSPs) and files related to those resources (such as static

HTML and GIFs). The servlet engine generatesa single request dispatcher for

each servlet or JSP when it is instantiated. The request dispatcher receives client

requests and dispatches the request to the resource.

■ A servlet context for each application

In Servlet API 2.0, the servlet engine generated a single servlet context that was

shared by all servlets. The Servlet API 2.1 provides a single servlet context per

application, which facilitates partitioning applications. As explained in the

description of the application programming model, applications on the same

virtual host can access each other's servlet context.

■ Deprecated HTTP session context

The Servlet API 2.0 HttpSessionContext interface grouped all of the

sessions for a Web server into a single session context. Using the session context

interface methods, a servlet could get a list of the session IDs for the session

context and get the session associated with an ID. As a security safeguard, this

interface has been deprecated in the Servlet API 2.1. The interface methods have

been redefined to return null.

New Features in the Java Servlet API 2.2
The Servlet API 2.2 specification changed the term ’servlet engine’, replacing it with

’servlet container’. This change is indicative of the Java Servlet API is now a

required API of the Java 2 Platform, Enterprise Edition (J2EE) specification and,

throughout J2EE's terminology, container is preferred over engine. Servlet API 2.2

introduced the following new features:

■ Web Applications (as discussed above)

■ References to external data sources, such as JNDI. Enables adding resources

into the JNDI lookup table, such as database connections. Allows the resources

to be located by servlets using a simple name lookup.

■ Parameter information for the application (initiallization parameters for the

application).

■ Registered servlet names. Provides a place to register servlets and give them

names. Previously, each server had a different process for registering servlets,

making deployment difficult.
Migrating Servlets 3-9

Overview of the Java Servlet API
■ Servlet initialization parameters. Enables passing parameters to servlets

parameters at initialization time. This is a new, standard way to accomplish

what used to be a server dependent process.

■ Servlet load order. Specifies which servlets are preloaded, and in what order.

■ Security constraints. Dictate which pages must be protected, and by what

mechanism. Include built-in form-based authentication.

Servlet API 2.3
The Servlet API 2.3 leaves the core of servlets relatively untouched. Additions and

changes include:

■ JDK 1.2 or later is required

■ A filter mechanism has been created

■ Application lifecycle events have been added

■ Additional internationalization support has been added

■ The technique to express inter-JAR dependencies has been formalized

■ Rules for class loading have been clarified

■ Error and security attributes have been added

■ The HttpUtils class has been deprecated

■ Several DTD behaviors have been expanded and clarified

Filters and Servlet Chaining
Filtering support is provided as a part of the Servlet 2.3 API. WebSphere Advanced

Edition 3.5.3 achieves similar filtering functionality with a WebSphere-specific

package. Oracle9iAS Containers for J2EE (OC4J) supports the Java servlet 2.3

filtering specification.

Filtering is a method of loading and invoking servlets in a web server. Both local

and remote servlets can be part of a servlet chain (defined below). There are

restrictions, however, on chaining the local internal servlets, and these restrictions

are specific to the J2EE container used. For example, in WebSphere, if an internal

servlet is used in a chain, it must be the first servlet in the chain. Internal servlets

include: file servlet, pageCompile servlet, ssInclude servlet, and template servlet.
3-10 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
Servlet Chains
For some requests, a chain of ordered servlets can be invoked rather than just one

servlet. The input from the browser is sent to the first servlet in the chain and the

output from the last servlet in the chain is the response sent back to the browser.

Each servlet in the chain receives inputs from, and transmits outputs to, the servlet

before and after it, respectively. A chain of servlets can be triggered for an incoming

request by using:

■ Servlet aliasing to indicate a chain of servlets for a request

■ MIME types to trigger the next servlet in the chain

WebSphere Servlet API Support
WebSphere version 3.5.2 and version 3.5.3 maintain compatibility with existing

applications while simultaneously supporting the Java Servlet API 2.2 specification.

But this support is partial, and you can choose only one. To ensure compatibility, a

new option was added to servlet container properties in the Administrative console.

This new option, the Select Servlet Engine Mode, is located on the Servlet Engine

Properties view. The Select Servlet Engine Mode option toggles between the

following two different ’runtime’ modes:

WebSphere Advanced Edition 3.5.3 Compatibility Mode
This mode maintains behavior with existing WebSphere Application Server v3.5

and v3.5.1 applications at the expense of full compliance with the Java Servlet API

2.2 specification. In compatibility mode, the servlet engine is Servlet 2.2

specification level compliant, except for the method and behavior changes noted

below. This capability is provided to allow existing WebSphere Advanced Edition

v3.5 and v3.5.1 applications to successfully execute until they are migrated to fully

compliant Servlet 2.2 level applications.

Full Servlet 2.2 Compliance Mode
This mode maintains compliance with the Java Servlet API 2.2 specification at the

expense of compatibility with existing WebSphere Application Server v3.5 and

v3.5.1 applications.

The default mode is the Compatibility Mode. You select the desired mode using the

Administrative Console, Servlet Engine General tab.
Migrating Servlets 3-11

Overview of the Java Servlet API
Servlet 2.2 API Support
WebSphere Advanced Edition 3.5.3 has partial support for the Servlet 2.2 API. The

supported API features are:

■ Response Buffering

■ Multiple Error page support

■ Welcome File Lists

■ New request mapping logic

■ Session Timeout per web application

■ Mime mapping table per web application

■ Request Dispatchers by name

■ Request Dispatchers by relative path

■ Duplicate Header support (addHeader() , getHeaders(name) APIs)

■ Initialization parameters on a web application

■ Internationalization improvements (getLocale() , getLocales())

■ New APIs getServletName()

The following Servlet 2.2 API features are not supported:

■ J2EE Security Roles

■ Security deployment information in web.xml

■ isUserInRole()

■ getUserPrincipal() API

■ J2EE-style Form Login

■ J2EE References

■ EJB reference

■ Resource Reference

■ Environment Reference

■ Environment Entry

■ Refrence deployment information in web.xml

■ Security deployment information in web.xml
3-12 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
WebSphere Extensions to the Servlet API
The WebSphere Application Server includes its own packages that extends and

adds to the Java Servlet API. The extensions and additions are provided to manage

session state, create personalized Web pages, generate better servlet error reports,

and access databases.

The Application Server API packages and classes are:

■ com.ibm.servlet.personalization.sessiontracking

Records the referral page that led a visitor to a web site, tracks the visitor's

position within the site, and associates user identification with the session. IBM

has also added session clustering support to the API.

■ com.ibm.websphere.servlet.session.IBMSession interface

Extends HttpSession for session support and increases Web administrators'

control in a session cluster environment.

■ com.ibm.servlet.personalization.userprofile package

Provides an interface for maintaining detailed information about web visitors

and incorporate it in your applications, so that you can provide a personalized

user experience. This information stored it in a database.

■ com.ibm.websphere.userprofile package

User profile enhancements.

■ com.ibm.websphere.servlet.error.ServletErrorReport class

Enables the application to provide more detailed and tailored messages to the

client when errors occur.

■ com.ibm.websphere.servlet.event package

Provides listener interfaces for notifications of application lifecycle events,

servlet lifecycle events, and servlet errors. The package also includes an

interface for registering listeners.

■ com.ibm.websphere.servlet.filter package

Provides classes that support servlet chaining. The package includes the

ChainerServlet , the ServletChain object, and the ChainResponse
object.

■ com.ibm.websphere.servlet.request package
Migrating Servlets 3-13

Overview of the Java Servlet API
Provides an abstract class, HttpServletRequestProxy , for overloading the

servlet engine's HttpServletRequest object. The overloaded request object

is forwarded to another servlet for processing. The package also includes the

ServletInputStreamAdapter class for converting an InputStream into a

ServletInputStream and proxying all method calls to the underlying

InputStream .

■ com.ibm.websphere.servlet.response package

Provides an abstract class, HttpServletResponseProxy , for overloading the

servlet engine's HttpServletResponse object. The overloaded response

object is forwarded to another servlet for processing. The package includes the

ServletOutputStreamAdapter class for converting an OutputStream into

a ServletOutputStream and proxying all method calls to the underlying

OutputStream .

The package also includes the StoredResponse object that is useful for

caching a servlet response that contains data that is not expected to change for a

period of time, for example, a weather forecast.

Oracle9 iAS Servlet API Suport
Oracle9iAS OC4J is a fully compliant implementation of the Java Servlets 2.2 and 2.3

specifications. As such, standard Java Servlets 2.2 code will work correctly.

WebSphere Advanced Edition, on the other hand, has partial support for the Java

Servlets 2.2 specification as described above. In particular, the security support

remains at the Servlet 2.1 level, and there is no support for J2EE references that

would normally be defined in the web.xml file associated with the Web

application. There is also no direct support for J2EE Web Abpplications.

Because of these differences in API support and WebSphere extensions, an

application may require code level changes before it can be migrated if it uses

extensions or deprecated method calls. Since WebSphere does not support J2EE

deployment descriptors, existing applications must be packaged into the J2EE Web

Application structure before deployment on Oracle9iAS OC4J.

Migrating Standalone Servlets to OC4J
We migrated example servlets provided with WebSphere Advanced Edition 3.5.3.

Some of these examples were not migrated because they used WebSphere-specific

extensions. For example, we did not migrate AbstractLoginServlet because it

uses a single sign-on package specific to WebSphere.

We migrated these servlets (located in in WebSphereInstallHome/Servlets):
3-14 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
■ Custom Login Servlet

■ HelloWorldServlet

■ SessionServlet

In addition to these, we migrated packaged Web Applications that use WebSphere-

specific deployment descriptors.

These examples were migrated without code changes. All that was required was to

place these servlets in

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/classes . The

OC4J servlet container loads these servlets automatically. You can invoke these

servlets from a browser using

http://hostname:portnumber/servlet/HelloWorldServlet .

WebSphere provides another way of deploying standalone servlets (that is, servlets

that require initialization parameters and configuration information). These servlets

are deployed in WebSphere using a deployment descriptor whose name is the name

of the servlet and ends with .servlet. This WebSphere-specific deployment

descriptor must be migrated to the J2EE Web application deployment descriptor

before it can be deployed in OC4J.

Example 3–1 SnoopServlet.servlet Deployment Descriptor

<servlet>
<name>snoop</name>
<description>snoop servlet</description>
<code>SnoopServlet</code>
<servlet-path>/servlet/snoop/*</servlet-path>
<servlet-path>/servlet/snoop2/*</servlet-path>
<init-parameter>

<name>param1</name>
<value>test-value1</value>

</init-parameter>
<autostart>false</autostart>

</servlet>

Sample .servlet file: SnoopServlet.servlet

The Snoop Servlet can be migrated by placing Servlet in

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/classes and

editing web.xml located in

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF .
Migrating Servlets 3-15

Overview of the Java Servlet API
Example 3–2 Migrated SnoopServlet Deployment Descriptor

<web-app>
<servlet>

<servlet-name>snoop</servlet-name>
<description>snoop servlet</description>
<servlet-class>SnoopServlet</servlet-class>
<servlet-path>/servlet/snoop/*</servlet-path>
<servlet-path>/servlet/snoop2/*?/servlet-path?
<init-param>

<param-name>param1</param-name>
<param-value>test-value1</param-value>

</init-param>
<autostart>false</autostart>

</servlet>
</web-app>

Migrating Cluster-aware applications to OC4J
Clustering and load balancing are two key features of an enterprise application

server. These features make the application server available, fault tolerant, and

scalable. The load balancer replicates state of an individual node to the cluster of

instances so that if a node fails, the state information is preserved elsewhere. The

cluster configuration provided by OC4J accomplishes the following:

■ Maximizes use of resources

If an application cannot make full use of a machine resources, OC4J can help

make more efficient useof the processing power.

■ Maximize throughput

OC4J can dramatically increase the number of requests an application can serve

concurrently.

■ Minimize risks of single points of failure

OC4J builds redundancy into your configuration. If one instance fails, others

can continue to process requests.

WebSphere and Oracle9iAS OC4J both provide clustering and load balancing

session failover. Oracle9iAS OC4J also supports HTTP tunneling of RMI requests

and responses without clustering. If you have a cluster-aware application running

on WebSphere, it can be migrated to an OC4J instance (a set of OC4J processes,

equivalent to a cluster).
3-16 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
island. The OC4J configuration incorporates the concept of islands. An island is a

set of OC4J processes that have uniform application configuration and replicated

application state. An island is a subset of processes within an OC4J instance.

Configuring an OC4J Island (in OC4J standalone mode)

The following steps explain how to configure an OC4J island:

1. Install your web application on all of the nodes in your cluster.

a. First, make sure that the nodes you are using in your cluster have the same

web application installed. If you do not want to install the application in

two places, you can place it on a shared drive that both servers access.

b. Start all your nodes and check that the web-applications are working

correctly on all of them.

2. Set up your web-application to replicate its state to the cluster.

a. Edit the orion-web.xml deployment descriptor for the web application,

located at:

<ORACLE_HOME>/j2ee/home/application-deployments/
application-name/web-app-name/

b. If you want to add clustering for all web applications in the site, edit the

orion-web.xml of the global web application located at

<ORACLE_HOME>/j2ee/home/config/
global-web-application.xml

Add the following to the main body of the <orion-web-app> tag:

<cluster-config/>

Note: The instructions in this section show you how to configure a

island manually. This can be done in a development environment

where OC4J is running in standalone mode. If you are configuring

an island in an Oracle9iAS cluster, use the Oracle Enterprise
Manager web pages or the dcmctl command line utility.

Information on using these can be found in Oracle9i Application
Server Administrator’s Guide and Oracle9iAS Containers for J2EE
User’s Guide
Migrating Servlets 3-17

Overview of the Java Servlet API
3. Optional: Specify the multicast host and IP address on which to transmit and

receive cluster data.

4. Optional: Specify the port on which to transmit and receive cluster data.

5. Specify the ID (number) of the node to identify itself within the cluster. The

default is localhost.

6. Optional: Repeat steps 4, 5 and 6 for all the nodes in your cluster.

The HTTPSession data will now be replicated (as long as it is serializable, or

an EJB reference). Note, however, that if the EJBs are located on a server that

goes down, the references might become invalid. The ServletContext data is

also replicated.

7. Configure your islands.

Islands are connected to a certain site rather than to a web-application. To

configure an island:

a. Edit the web-site.xml file for the website your web application is

deployed on (for example, default-web-site.xml if you are clustering

the default web-site). Add the following to the <web-site> tag:

cluster-island="1"

If your cluster has more than one island, you will specify different island

values for the servers that belong to different islands. State is shared only

within an island.

b. Specify the host the web-site is serving using the host="<hostname/ip
address>" attribute in the <web-site> tag.

8. Tell the servers about the load balancer. In the same file, the web-site.xml for

your web site, you also specify where the load balancer for the site is located.

a. In the main body of the <website> tag, add:

Note: It is important to understand that load balancing, in this

case, is implemented for the web-component, not the EJB (EJBs

have a different way of load balancing using client stubs). When

using multiple islands, you may want to use different multicast IP

addresses, to enable smart routing of multicast packets in your

network, and just send traffic on certain IP addresses to certain

servers.
3-18 Oracle9i Application Server Migrating From WebSphere

Overview of the Java Servlet API
<frontend host=" balancer hostname " port=" balancer port " />

where balancer hostname and balancer port are the hostname and

port of the server that will be running the load balancer.

9. In the /WEB-INF/web.xml of your application put in the tag

</distributable>

This tag indicates that the application is distributable (a feature of the J2EE 1.2

specification).

10. Access the load balancer's host and port with a browser. You will notice how

the request is sent to a server. If you request the same page again from the same

client, your request will probably be sent to the same server again, but if you

request the same page from different clients, you will see that the client requests

get balanced.

To test the state replication, you can try accessing

<ORACLE_HOME>/j2ee/home/servlet/SessionServlet

Make the request a single time, and check which server becomes the primary

server for the session. Stop that server and make the request again. The desired

result is that the request is part of the same session as before but on a different

node. And, the counter is updated correctly.

How OC4J Island Works (in OC4J standalone mode)
For all of the islands, there is a single load balancer OC4J instance that dispatches

requests to the application clones.

■ If a new request is made from an IP address that has not connected to the site

before, and has no session associated with it, it is sent to a random OC4J

instance. If more than one island in the cluster is capable of serving the same

site, an island is chosen at random. Thereafter, a random node is picked within

the selected island.

■ All state replication occurs within the island of this selected node. If a request is

made from an IP address that has connected to to the website before, the

request will be sent to the same server as the previous request (unless the

configuration specifies that requests not be routed based on IP address).

■ By default, load balancing is based on client, not on request. In other words,

statistically speaking, default load balancing is expected to send off an equal

number of clients to each node in the island. Note that an equal number of
Migrating Servlets 3-19

Overview of the Java Servlet API
clients to nodes in the island does not equate to an equal number of requests to

the server, since each client makes a different number of requests.

■ To make load balancing request based, you can use the "dontuseIP " switch, a

powerful feature of OC4J islands.

■ If a request is made within a keep-alive socket, the request will get sent to the

same server as the previous request, unless you have specified that keep-alives

should not be used (-dontUseKeepalives as command line option or

use-keepalives="false" in load-balancer.xml

■ If a request is made from a user in a session, the request is sent to the primary

server for that session. If the primary server for the session does not respond,

the request will be sent to another server in the same island. Since the state has

been replicated, the other server has the same user state.
3-20 Oracle9i Application Server Migrating From WebSphere

Migrating
4

Migrating JSPs

This chapter describes how to migrate JavaServer Pages(JSPs) from WebSphere

Application Server Advanced Edition to Oracle9iAS OC4J. The JSP API, and the

details of the WebSphere extensions and different JSP engines it supports are

discussed. The process of migrating JSPs from WebSphere to Oracle9iAS is outlined

at the end of the chapter. The chapter is organized as follows:

■ Overview of JSP Pages

■ WebSphere Support for the JSP API

■ Migrating from WebSphere JSP 0.91

■ Migrating WebSphere Extensions to OC4J

Overview of JSP Pages
JavaServer Pages is a technology specified by Sun Microsystems as a method of

generating dynamic content from an application running on a web server. This

technology, which is closely coupled with Java servlet technology, allows you to

include Java code snippets and calls to external Java components within the HTML

code (or other markup code, such as XML) of your Web pages.

A JSP page is translated into a Java servlet before being executed (typically on

demand, but sometimes in advance). As a servlet, it processes HTTP requests and

generates responses. JSP technology offers a more convenient way to code the

servlet instead of embedding HTML tags in the servlets. Furthermore, JSP pages are

fully interoperable with servlets—that is, JSP pages can include output from a

servlet or forward output to a servlet, and servlets can include output from a JSP

page or forward to a JSP page.
 JSPs 4-1

Overview of JSP Pages
Parts of a JSP Page
A JSP page typically consists of the following:

■ Directives - imports and and interfaces

■ Declarations - class-wide variables and methods

■ Expressions - return value substitution

■ Scriptlets - inline Java code

Each is described below.

Directives
Directives are compile-time control tags. They allow you to customize how your JSP

pages are compiled to Java servlets. There are three types of directives:

Page A page directive is placed at the top of a JSP page. Its attributes apply to the

entire page.

Example:

<%@ page language="java" import="com.mycom.*" buffer="16k" %>

Taglib A taglib directive extends the set of tags recognized by the JSP processor. It

requires two attributes, uri and prefix.

Example:

<%@ taglib uri="tag-lib-uri" prefix="tag-prefix" %>

The uri attribute contains the location of the tag library TLD (Tag Library

Descriptor) file.

The prefix attribute specifies the tag prefix you want to use for your custom tag.

Example:

<%@ taglib uri="/WEB-INF/tlds/myapp.tld" prefix="custom" %>

Include The include directive enables you to insert the content of another file into

the JSP page at compilation time. Its syntax is as follows:

<%@ include file="localOrAbsoluteURL" %>
4-2 Oracle9i Application Server Migrating From WebSphere

Overview of JSP Pages
During compilation the content of the file specified in the file attribute will be

added to the current JSP page.

What is a JSP container?
A JSP container is software that stores the JSP files and servlets, converts JSP files

into servlets, compiles the servlets, and runs them (creating HTML). The exact

make-up of a JSP container varies from implementation to implementation, but it

will consist of a servlet or collection of servlets. The JSP container is executed by a

servlet container.

The JSP container creates and compiles a servlet from each JSP file. The container

produces two files for each JSP file:

■ A .java file, which contains the Java language code for the servlet

■ A .class file, which is the compiled servlet

The JSP container puts the .java and the .class file in a path specific to the

container. The .java and the .class file have the same filename. Each container

uses a naming convention for the generated .java and .class files. For example,

WebSphere generates files named _simple_xjsp.java and

_simple_xjsp.class from the JSP file simple.jsp .

Life Cycle of a JSP Page
1. The user requests the JSP page through a URL ending with a .jsp file name.

2. Upon noting the .jsp file name extension in the URL, the servlet container of

the Web server invokes the JSP container.

3. The JSP container locates the JSP page and translates it if this is the first time it

has been requested.

Translation includes producing servlet code in a .java file and then compiling

the .java file to produce a servlet .class file.

4. The servlet class generated by the JSP translator subclasses a class (provided by

the JSP container) that implements the javax.servlet.jsp.HttpJspPage
interface.

5. The servlet class is referred to as the page implementation class. This document

will refer to instances of page implementation classes as JSP page instances.
Migrating JSPs 4-3

WebSphere Support for the JSP API
WebSphere Support for the JSP API
WebSphere Advanced Edition 3.5.3 supports JSP 0.91, JSP 1.0, and, in its latest

service pack, JSP 1.1. However, the support is not backward compatible.

WebSphere specifies two modes of operation for JSPs: Compatibility mode and

Compliance mode. In Compatibility mode, you can choose compatibility with JSP

1.0 or JSP 0.91. For example, if you choose compatibility mode with JSP 0.91 you

cannot use features of JSP 1.0 or JSP 1.1. In compliance mode, your applications are

compliant with JSP 1.1.

These modes of JSP are necessary because WebSphere provides a JSP processor for

each supported level of the JSP specification. Each of these JSP processors is a

servlet that can be added to a web application to handle all JSP requests specific to

the web application. Which JSP processor is used is dependent on the web

application. If a web application includes JSPs of version 1.0, WebSphere loads the

JSP processors for JSP 1.0. These is specified as a part of your web application.

WebSphere-Specific Features
WebSphere provides several JSP features which are available in WebSphere only.

These are:

Batch JSP Compiler
WebSphere provides a batch JSP compiler, enabling faster responses to requests for

the JSP files. The process of batch compilation is different for JSP 0.91 and JSP 1.0.

HTML Template Extensions in JSP 0.91
WebSphere has built-in extensions for JSPs called HTML templates for variable

data. These extensions are supported by the WebSphere JSP engine and are useful

for generating tabular data.These template extensions consist of three additional

tags:

Table 4–1 JSP Processors

JSP
Processor Processor Servlet Name Class Name

JSP 1.0 JSPServlet com.sun.jsp.runtime.JspServlet in jsp10.jar

JSP 0.91 PageCompileServlet com.ibm.servlet.jsp.http.pagecompile.
PageCompileServletinibmwebas.jar
4-4 Oracle9i Application Server Migrating From WebSphere

WebSphere Support for the JSP API
■ <INSERT> - This tag enables developers to insert a value based on a property

name and an object specifier. This object can be a bean name or reference to a

object in request object.

■ <REPEAT> - This tag enables developers to write a "for" loop in a JSP page, as a

HTML element, without embedding Java code. For example, a database query

resulting in a variable result set can be iterated using a <REPEAT>tag instead of

a embedded Java "for" loop. A <REPEAT> tag can contain a block of HTML

tagging that in turn contains the <INSERT> tags, and the HTML tags for

formatting content. The <REPEAT> tag iterates from the start value to the end

value until either the end value is reached or an

ArrayIndexOutofBoundsException is thrown. The output of a <REPEAT>
block is buffered until the block completes. If an exception is thrown before a

block completes, no output is written for that block.

■ <BEAN> - This tag enables the developer to reference a bean in the JSP.

JSP also has tags for database connect, query, and modify: <DBCONNECT>,
<DBQUERY> and <DBMODIFY>. The functionality of these tags has not changed in

JSP 1.0 other than being moved to a new tag library, tsx , with names

<tsx:dbconnect> , <tsx:dbquery> , and <tsx:dbmodify> respectively.

WebSphere Extensions to JSP 1.0
WebSphere Advanced Edition 3.5.3 provides several extensions to the base APIs.

The extensions are categorized as tags for variable data and tags for database

access.

Tags for variable data:

■ <tsx:repeat> - This tag is similar to the <REPEAT> tag described above,

useful in creating HTML tables.

■ <tsx:getProperty> - This tag is an extension of the Sun JSP tag

<jsp:getProperty> . It is similar to <jsp:getProperty> , and adds the

ability to introspect a database bean that was created using the extension

<tsx:dbquery> or <tsx:dbmodify> .

Tags for database access:

(These tags are useful for making database connections from a JSP and then use that

connection to query or update the database. The user ID and password for the

database connection can be provided by the user at request-time or hard coded

within the JSP file.)
Migrating JSPs 4-5

WebSphere Support for the JSP API
■ <tsx:dbconnect> - This tag enables the JSP page to make a database

connection to through JDBC. dbconnect tags are not used directly to establish a

database connection. Instead, the <tsx:dbquery> and <tsx:dbmodify> tags

are used to reference a <tsx:dbconnect> in the same JSP file and establish

the connection to the database. Note that this is different from what is done at

the application server level, where you setup a set of datasources.

■ <tsx:userid> and <tsx:passwd> - These tags enable the JSP page to accept

user input for the values and then add that data to the request object. The

request object can be accessed by a JSP file, for example, Account.jsp , that

requests the database connection.These two tags should be used in within a

<tsx:dbconnect> tag.

■ <tsx:dbquery> - This tag is used to establish a connection to a database using

information specified in the <tsx:dbconnect> tag in the same JSP file, and

query the database and return the result set. This caches the result set in a

results object. At the end of the operation it closes the connection.

■ <tsx:dbmodify>: <tsx:dbconnect> - This tag is used to open a new

connection to a database and then update the database tables. This tag is also

similar to <tsx:dbquery> in that it obtains database connnection information,

and at the end of the operation closes the connection.

The OracleJSP container
Oracle’s JavaServer Pages implementation is highly portable across server

platforms and servlet environments. OracleJSP can run on any servlet environment

that complies with version 2.0 or higher of the Sun Microsystems Java Servlet

Specification.

The JSP Translator in Oracle9 iAS OC4J
OC4J supports two JSP translators: the OC4J JSP translator, which is JSP 1.1

compliant, and the OJSP translator, which is JSP 1.1 compliant. The OC4J JSP

translator is the default translator. Oracle tag libraries and data access beans work

with both translators. You can use OJSP with OC4J if you need features such as NLS

and SQLJ.

Note: In Oracle9iAS Release 2, both the Oracle JSP and OC4J JSP

translator implementations have been consolidated into one

providing the best of both.
4-6 Oracle9i Application Server Migrating From WebSphere

Migrating from WebSphere JSP 0.91
OracleJSP Extensions
OracleJSP provides some very useful functionality through custom tag libraries and

custom JavaBeans, all of which are portable to other JSP environments. The

extended functionality include:

■ Extended data types implemented as JavaBeans that can have a specified scope

integration with XML and XSL

■ Data-access JavaBeans

■ The Oracle JSP Markup Language (JML) custom tag library, which reduces the

level of Java proficiency required for JSP development

■ A custom tag library for SQL functionality

OracleJSP also provides the following Oracle-specific extensions:

Support for SQLJ, a standard syntax for embedding SQL statements directly into

Java code

■ Extended globalization support

■ JspScopeListener for event handling

■ The globals.jsa file for application support

Migrating from WebSphere JSP 0.91
This section explains how to migrate WebSphere JSP 0.91 files to OC4J.

The <REPEATGROUP> Tag
1. If you are migrating JSP 0.91 files that contain <REPEATGROUP> tags, you must

change these tags. This tag is used for repeating a block of HTML, for data that

is already logically grouped in the database.

2. Replace the <SERVLET> tag with the <jsp:include> tag.

For example, change the following:

<SERVLET CODE="com.samples.test.TestServlet"></SERVLET>

to

<jsp:include page="/servlet/com.samples.test.TestServlet" />

3. Replace the WebSphere <BEAN> tag with the <jsp:useBean> tag.
Migrating JSPs 4-7

Migrating from WebSphere JSP 0.91
The example below shows the <BEAN> tag migrated to the JSP standard tag:

<BEAN NAME="AccountDBBean"
TYPE="com.test.AccountDBBean"
CREATE="YES"
INTROSPECT="YES"
SCOPE="request">
<PARAM NAME="userID" VALUE="wsdemo">
</BEAN>

Migrating to OC4J, the above is replaced by:

<jsp:useBean
id="AccountDBBean"
type="com.test.AccountDBBean"
class="com.test.AccountDBBea"
scope="request"/>

<jsp:setProperty
name="AccountDBBean"
property="userID"
value="wasdemo" />

■ Note that the explicit attribute of CREATE="YES" is removed. This is

because, if the bean with the name specified by the id attribute is not found

within the specified scope, then an instance of bean will be created

according to the class attribute. The JSP NAMEattribute corresponds to the

JSP 1.0 id attribute. It is no longer an INTROSPECT attribute. (The JSP 0.91

scope of requests and sessions carries over to JSP 1.0.)

■ The class attribute is not necessary if the bean already exists within the

specified scope . But if the class attribute is not specified and the bean is

not in the specified scope an error will occur when creating a new instance

of the bean.

4. Set the bean properties.

In JSP 0.91, the <PARAM> tag is used within the <BEAN> tag to specify

properties for the bean. In JSP 1.0, you must use the <jsp:setProperty> tag

outside of the <jsp:useBean> tag. You can link to the property settings of an

existing bean using the name attribute within <jsp:setProperty> and

specifying the bean identified by the id attribute in <jsp:useBean> . A similar

way to obtain bean property values can be achieved using the tag

<jsp:getProperty> .
4-8 Oracle9i Application Server Migrating From WebSphere

Migrating WebSphere Extensions to OC4J
Migrating WebSphere Extensions to OC4J
There are two ways to migrate JSPs that use any WebSphere-specific custom tags

defined in the tsx tag library to OC4J.

■ If there are many pages, and it is tedious to modify all the JSP files, you can use

the WebSphere tag library and deploy it on on OC4J.

■ Edit the JSP source files, using the OracleJSP tag library wherever possible.

Following are code examples showing how to migrate WebSphere JSP extensions to

OC4J using the Oracle JSP Markup Language (JML) tag library.

<REPEAT> or <tsx:repeat> tag:
These tags are provided by WebSphere for looping over a HTML block a specified

number of times, as an altenative to writing a Java "for" loop within a JSP page. The

Oracle JML tag library has a <jml:for> tag with the same functionality. The

syntax for this tag is:

<jml:for id = " loopVariable"
from = "<%= jspExpression %>"
to = "<%= jspExpression %>" >
... body of for tag (executed once at each value of range, inclusive)...

</jml:for>

which is similar to the WebSphere tsx:repeat:

<tsx:repeat index=name start=start_index end=end_index >
</tsx:repeat>

The differences are:

■ The id variable in the <jml:for> tag holds the current value in the range and

is local in scope to the tag, whereas the index variable is global in scope to the

JSP page.

■ from and to in <jml:for> are mandatory in OJSP. In WebSphere, start and

end are optional.
Migrating JSPs 4-9

Migrating WebSphere Extensions to OC4J
4-10 Oracle9i Application Server Migrating From WebSphere

Migrating Enterprise Java B
5

Migrating Enterprise Java Beans

This chapter provides you with an overview of Sun Microsystems’ Enterprise

JavaBeans (EJB) architecture and its implementation in Oracle9iAS. In addition, the

issues involved in migrating EJB components from WebSphere Advanced Edition to

Oracle9iAS are presented.

This chapter contains these topics:

■ Overview of Enterprise JavaBeans

■ EJB Migration Considerations

■ EJB Functionality and Components

■ Differences between the EJB 1.0 and EJB 1.1 Specifications

■ WebSphere 3.5.x Support for the EJB API

■ Migrating EJB Applications from WebSphere to Oracle9iAS OC4J

Overview of Enterprise JavaBeans
Enterprise JavaBeans (EJB) is the standard server-side component architecture for

developing and deploying object-oriented Java applications. It enables developers

to quickly and easily build distributed applications.

A major goal of the EJB architecture is to provide component portability at both the

source code level and the binary code level.

EJB components, called enterprise beans, are server-side components, written in

Java, that typically contain the business logic of an application. The different types

of enterprise beans are summarized in Table 5–1.
eans 5-1

EJB Migration Considerations
Although the EJB architecture does provide for component portability, certain

implementation-specific aspects of an EJB component remain non-portable. These

include:

■ Deployment of enterprise beans

■ Runtime support for deployed enterprise beans

■ Container-managed persistence of entity beans

EJB Migration Considerations
One of the goals of the EJB initiative is to deliver component portability between

different environments not only at source-code level, but also at a binary level, to

ensure portability of compiled, packaged components. While it is true that EJB does

offer an appreciable deal of portability, there are still a number of non-portable,

implementation-specific aspects that need to be addressed when migrating

components from one application server to another. Typically, an EJB component

requires low-level interfaces with the container in the form of stubs and skeleton

classes that will probably always need to be container implementation-specific. In

effect, a clear partitioning between portable and non-portable elements of an EJB

component can be drawn from the EJB 1.1 specification:

■ Portable EJB elements include:

■ The actual component implementation classes and interfaces (bean class,

and remote, and home interfaces).

■ The assembly and deployment descriptor that describes generic component

properties such as JNDI names and transactional attributes.

■ Security attributes

■ Implementation-specific elements include:

Table 5–1 Types of EJBs

Type of Enterprise Bean Description

Session bean A component created to provide a service on behalf of a
single client; it lives only for the duration of a single
client/server session.

Entity bean A component representing data maintained in a data store; it
can persist as long as the data it represents.
5-2 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
■ Low-level helper implementation classes (stubs and skeletons) to interface

with the host container.

■ O/R mapping definitions for CMP entity beans, including search logic for

custom finder methods that are declared in an implementation-specific

format proprietary to each application server.

■ Every component has a set of properties that require systematic

configuration at deployment time. For example, mapping of security roles

declared in an EJB component to actual users and groups is a task that is

systematically performed at deployment-time, first, because mappings may

not be known in advance, and secondly, because there are dependencies on

the structure and population of the user directory on the target deployment

server.

■ There are issues specific to migration from WebSphere to Oracle9iAS OC4J

that arise from different levels of EJB standards support, and

WebSphere-specific extensions to APIs. WebSphere Advanced Edition 3.5.3

supports the EJB 1.0 specification, OC4J supports EJB 1.1 specifications, and

some advanced features in the EJB 2.0 specification.

The following sections describe EJB specifications, session beans, and entity beans,

transactions and concurrency, the WebSphere support for these APIs and

WebSphere extensions, the difference between OC4J and WebSphere in the EJB

containers and finally the migration path to OC4J.

EJB Functionality and Components
In brief, the goal of EJB technology surpasses the basic Java object model by

integrating new functionality important for enterprise systems:

■ Automatic management of object life cycle (instantiation, destruction, and

activation)

■ Object security: who can use which object and how

■ Object persistence: how objects are stored on a long-term basis

■ Transaction behavior of the objects

■ Distribution: how can remote applications access objects

■ Scalability: by implementing various technologies

From a developer’s point of view, an EJB is presented as a group of files that brings

together:
Migrating Enterprise Java Beans 5-3

EJB Functionality and Components
■ Java classes

■ Java interfaces,

■ Deployment information,

■ Metadata

The EJB Server
EJB servers manage low-level system resources, allocating resources to the

containers as they are needed. The EJB Server hosts and provides a runtime

environment for the EJB containers. Containers are transparent to the client—there

is no client API to manipulate the container, and there is no way for a client to tell in

which container an enterprise bean is deployed. However, the EJB container and the

EJB servers are not clearly separated constructs. The EJB specification only defines a

bean-container contract and does not define a container-server contract.

EJB container
The EJB container is a specialized service in which enterprise beans are deployed.

EJB containers insulate the deployed enterprise beans from the underlying EJB

server and provide a standard application programming interface (API) between

the beans and the container. This specialized service manages their life cycle,

transactions, security, naming, persistence, and so on, according to a specific

contract and constrained model delineated by the EJB specification. To do this, the

container uses the generic services provided by the server.

EJB Specification Roles
The Enterprise JavaBeans specification identifies the following roles that are

associated with a specific task in the development of distributed applications.

Enterprise Bean Provider
Typically an expert in the application domain; for example, in the financial or

telecommunications industry. The bean provider implements the business task

without being concerned about the distribution, transaction, security, and

other non-business aspects of the application.

Application Assembler
This is also a domain expert. The application assembler composes an application

from various prefabricated building blocks (that is, enterprise beans) and adds
5-4 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
other components such as GUI clients, applets, and servlets to complete the

application. While composing an application, an assembler is only concerned with

the interfaces to enterprise beans, but not with their implementation.

Deployer
The deployer is specialized in the installation of applications. The deployer adapts

an application, composed of a number of enterprise beans, to a target operation

environment by modifying the properties of the enterprise beans. The deployer’s

tasks include, for example, the setting of transaction and security policies,

specifying JNDI names by setting the appropriate properties in the deployment

descriptor, and integration with enterprise management software.

EJB Server Provider
Typically a vendor with expertise in distributed infrastructures and services. The

server provider implements a platform, which facilitates the development of

distributed applications and provides a runtime environment for them. This role

can also provide specialized containers that wrap a certain class of legacy

applications or systems.

EJB Container Provider
An expert in distributed systems, transactions, and security. A container is a

runtime system for one or multiple enterprise beans. It provides the glue between

enterprise beans and the EJB server. A container can be both, prefabricated

code as well as a tool that generates code specific for a particular enterprise bean. A

container also provides tools for the deployment of an enterprise bean and hooks

into the application for monitoring and management.

System Administrator
The system administrator is concerned with a deployed application. The

administrator monitors the running application and takes appropriate action in the

case of abnormal behavior of the application. The administrator ensures that the

hardware and network hosting the application is maintained and serviceable for the

duration of the application’s availibility. Typically, an administrator uses enterprise

management tools that are connected to the application by the deployer through the

hooks provided by the container.
Migrating Enterprise Java Beans 5-5

EJB Functionality and Components
Session Beans
A session bean is an object that executes on behalf of a single client. The container

creates the session bean instance in response to a remote task request from a client.

A session bean has one client; in a sense, a session bean represents its client in the

EJB server. Session beans can also be transaction-aware--they can update shared

data in an underlying database but they do not directly represent the shared

database data. The life of a session bean is transient and relatively short-lived.

Typically, the session bean lives for as long as its client maintains the session

"conversation." When the client terminates, the session bean is no longer associated

to that client. A session bean is considered transient because the session bean

instance is removed should the container crash, and the client must reestablish a

new session object to continue.

There are two types of session beans: Stateful Session Beans (SFSB) and Stateless

Session Beans (SLSB). Both of these beans must implement

javax.ejb.SessionBean . However their life cycles are different within a EJB

container.

Stateful Session Beans
A session bean typically maintains the state of the interaction or conversation with

its client--that is, the session bean holds information about the client across method

invocations and for the duration of the client session. A session bean that maintains

its state is called a stateful session bean. When the client ends its interaction with

the session bean, the session ends and the bean no longer maintains the state values.

The Life Cycle of Stateful Session Beans

A session bean's life cycle begins when a client invokes a create() method

defined in the bean's home interface. In response to this method invocation, the

container does the following:

1. Creates a new memory object for the session bean instance.

2. Invokes the session bean's setSessionContext() method. This method

passes the session bean instance a reference to a session context interface that

can be used by the instance to obtain container services and get information

about the caller of a client-invoked method.

3. Invokes the session bean's ejbCreate() method corresponding to the

create() method called by the EJB client.

Ready State
5-6 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
After a session bean instance is created, it moves to the ready state of its lifecycle. In

this state, EJB clients can invoke the bean's business methods defined in the remote

interface. The actions of the container in this state are determined by whether a

method is invoked transactionally or non-transactionally:

Transactional Method Invocations

When a client invokes a transactional business method, the session bean instance is

associated with a transaction. After a bean instance is associated with a transaction,

it remains associated until that transaction completes. Furthermore, an error results

if an EJB client attempts to invoke another method on the same bean instance and

invoking that method causes the container to associate the bean instance with

another transaction or with no transaction. The container then invokes the

following methods:

1. The afterBegin() method if the session bean implements the

SessionSynchronization interface.

2. The business method in the bean class that corresponds to the business method

defined in the bean's remote interface and called by the EJB client.

3. The bean instance's beforeCompletion() method, if the session bean

implements the SessionSynchronization interface.

The transaction service then attempts to commit the transaction, resulting either in a

commit or a roll back. When the transaction completes, the container invokes the

bean's afterCompletion() method (if the bean implements the

SessionSynchronization interface), passing the completion status of the

transaction (either commit or rollback) to the afterCompletion() method.

If a rollback occurs, a stateful session bean can roll back its conversational state to

the values contained in the bean instance prior to beginning the transaction.

Stateless session beans do not maintain a conversational state, so they do not need

to be concerned about rollbacks.

Non-transactional Method Invocations

When a client invokes a nontransactional business method, the container simply

invokes the corresponding method in the bean class.

Pooled State

The container has a sophisticated algorithm for managing which enterprise bean

instances are retained in memory. When a container determines that a stateful

session bean instance is no longer required in memory, it invokes the bean
Migrating Enterprise Java Beans 5-7

EJB Functionality and Components
instance's ejbPassivate() method and moves the bean instance into a reserve

pool. A stateful session bean instance cannot be passivated (deactivated) when it is

associated with a transaction.

If a client invokes a method on a passivated instance of a stateful session bean, the

container activates the instance by restoring the instance's state and then invoking

the bean instance's ejbActivate() method. When this method returns, the bean

instance is again in the ready state.

Because every stateless session bean instance of a particular type is the same as

every other instance of that type, stateless session bean instances are not passivated

or activated. These instances exist in a ready state at all times until their removal.

Removal

The lifecycle of a stateful session bean ends when an enterprise bean client or the

container calls a remove() method defined in the bean's home interface or remote

interface. In response to this method invocation, the container calls the bean

instance's ejbRemove() method. The container can end stateless session beans by

this method, or it can pool them for later use.

A container can implicitly call a remove method on an instance after the lifetime of

the EJB object has expired. The lifetime of a session EJB object is set in the

deployment descriptor with the timeout attribute.

Stateless Session Beans
A session bean may also be a stateless session bean. A stateless session bean does

not maintain information or state for its client. A client may invoke a method of a

stateless session bean to accomplish some objective, but the bean will hold values in

its instance variables only for the duration of the method call. The stateless session

bean does not retain these values (or state) when the method completes. Thus, all

instances of stateless session beans are identical except when they are in the midst

of a method invocation. As a result, stateless session beans can support multiple

clients. The container can maintain a pool of stateless bean instances, and it can

assign any instance to any client.

The Life Cycle of a Stateless Session Bean

The stateless session bean’s life cycle has two states:

■ The does-not-exist state.

■ The method-ready pool state.
5-8 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
When a bean instance is in the does-not-exist state, this means that it has not yet

been instantiated. When a bean instance is instantiated by the container and is

ready to serve client requests, it is in the method-ready pool state. The container

moves a stateless session bean from the does-not-exist state to the method-ready

pool state by performing the following three operations:

1. Invoke the Class.newInstance() method on the stateless bean class.

2. Invoke the

SessionBean.setSessionContext(SessionContext context)
method on the bean instance.

3. ejbCreate() method is invoked on the bean instance.

Entity Beans
An entity bean represents an object view of persistent data maintained in a domain

model, as well as methods that act on that data. To be more specific, an entity bean

maps to a record in your domain model. In a relational database context, one bean

exists for each row in a table. A primary key identifies each entity bean. Entity

beans are created by using an object factory create() method. Access to entity

beans may be shared by more than one client--multiple clients can simultaneously

access an entity bean. Entities access and update the underlying data within the

context of a transaction so that data integrity is maintained. Entity beans are also

implicitly persistent as an EJB object can manage its own persistence or delegate its

persistence to its container. Based on the type of persistence in entity beans are

divided into two types:

Container-managed Persistence (CMP) Entity Beans
Container Managed Persistence (CMP) allows developers to build EJB components

without having to directly deal with persistence during development. For CMP

Entity Beans, the EJB container is responsible for persisting the state of the entity

beans and synchronization of instance fields within the persistence store (the

database). This means that the container would, for example, manage both

generating and executing SQL code to read and write to the database. Because it is

container-managed, the implementation is independent of the data source. All

container-managed fields need to be specified in the deployment descriptor for the

persistence to be automatically handled by the container. CMP Entity Beans are

wrappers for persistent data—commonly in the form of relational database

tables—with additional support for transaction control and security.
Migrating Enterprise Java Beans 5-9

EJB Functionality and Components
Bean-managed Persistence (BMP) Entity Beans
For BMP Entity Beans, the entity bean is directly responsible for persisting its own

state and the container does not need to generate any database calls. Each BMP EJB

is responsible for storing and retrieving its own state from a backing store in

response to specific "hook" messages (like ejbLoad() and ejbStore()) that are

sent to it at appropriate times during its lifecycle. Consequently, this

implementation is less adaptable than the previous one as the persistence needs to

be hard-coded into the bean.

The Entity Beans Life Cycle
An entity bean is considered to be long-lived and its state is persistent. It lives as

long as the data remains in the database, rather than for the life of the application or

server process. An entity bean survives the crash of the EJB container. Once an

enterprise bean is deployed into a container, clients can create and use instances of

that bean as required. Within the container, instances of an enterprise bean go

through a defined life cycle. The events in an enterprise bean’s life cycle are derived

from actions initiated by either the client or the container. The life cycle of entity

beans has three states:

Does-not-exist State

At this stage, no instances of the bean exist. An entity bean instance’s life cycle

begins when the container creates that instance. After creating a new entity bean

instance, the container invokes the instance’s setEntityContext() method. This

method passes to the bean instance a reference to an entity context interface that can

be used by the instance to obtain container services and to retrieve information

about the caller of the client-invoked method.

Pooled State

Once an entity bean instance is created, it is placed in a pool of available instances

of the specified entity bean class. While the instance is in this pool, it is not

associated with a specific EJBObject . Every instance of the same enterprise bean

class in this pool is identical. While an instance is in this pooled state, the container

can use it to invoke any of the bean’s finder methods.

Ready State

When a client needs to work with a specific entity bean instance, the container picks

an instance from the pool and associates it with the EJBObject initialized by the

client. An entity bean instance is moved from the pooled to the ready state if there

are no available instances in the ready state.
5-10 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
There are two events that cause an entity bean instance to be moved from the

pooled state to the ready state:

■ When a client invokes the create() method in the bean’s home interface to

create a new and unique entity of the entity bean class (and a new record in the

data source). As a result of this method invocation, the container calls the bean

instance’s ejbCreate() and ejbPostCreate() methods. The new

EJBObject is associated with the bean instance.

■ When a client invokes a finder method to manipulate an existing instance of the

entity bean class (associated with an existing record in the data source). In this

case, the container calls the bean instance’s ejbActivate() method to

associate the bean instance with the existing EJBObject .

When an enterprise bean instance is in the ready state, the container can invoke the

instance’s ejbLoad() and ejbStore() methods to synchronize the data in the

instance with the corresponding data in the data source. In addition, the client can

invoke the bean instance’s business methods when the instance is in this state. All

interactions required to handle an entity bean instance’s business methods in the

appropriate transactional (or non-transactional) manner are handled by the

container, unless the EJB developer wrote the bean to handle these interactions

itself. When a container determines that an entity bean instance in the ready state is

no longer required, it moves the instance to the pooled state. This transition to the

pooled state results from either of the following events:

■ When the container invokes the ejbPassivate() method.

■ When the client invokes a remove() method on the EJBObject associated

with the bean instance or on the EJB home object. When the remove() method

is called, the underlying entity is removed permanently from the data source.

The state that an entity bean represents is shared and transactional. In contrast, if a

session bean has state, it must be private and conversational.

Object-relational (O-R) Mapping and Persistence
The problem of persistence is complex, and many research projects are being carried

out on this subject. One of the important points to remember is that at runtime,

objects (as it happens, EJBs) are not isolated entities but referenced mutually.

Therefore, the problem of persistence does not concern isolated objects, but complex

object graphs. There are many questions to answer. How can an object graph in

memory be projected on a disk and vice versa? How can synchronization problems

between the graph on disk and the graph in memory be resolved? How do you go

about loading in memory only the parts of the graph being used at a given
Migrating Enterprise Java Beans 5-11

EJB Functionality and Components
moment? How can the graph be saved in a relational database (object-relational

mapping technologies)?

The EJB specification attempts to render container-managed persistence with a

clean separation between an entity bean and its persistent representation. That is, a

separation between the data logic methods (such as the logic in an entity bean to

add two fields together) and JDBC. The reason this separation is valuable is that the

persistent representation of an entity bean (such as changing from a relational

database to an object database) can be modified without affecting the entity bean

logic.

To achieve this clean separation, container-managed persistent entity bean classes

must be written to be devoid of any JDBC or other persistence logic. The container

then generates the JDBC by subclassing your entity bean class. The generated

subclass inherits from your entity bean class. Thus, all container-managed

persistent entity beans are each broken up into two classes: the superclass (which

the user writes, and contains the entity bean data logic) and the subclass (which the

container generates, and contains the persistence logic). With these two classes, a

clean separation of entity bean logic and persistent representation is achieved. The

actual entity bean is a combination of the superclass and the subclass.

EJB Transactions and Concurrency
A transaction is a set of statements that must be processed as a single unit.

Transactions must have four properties recalled with the acronym ACID: Atomicity,

Consistency, Isolation and Durability.

■ Atomicity is "all or nothing" operation wherein, for example, a transaction

consisting of a debit to one account and a credit to another is not committed

unless both operations are successful. Typically, atomicity is provided by the

database management system.

■ Consistency reflects the state of the system. A system is always consistent based

upon the state invariants and transactions give the opportunity to write code

that checks the consistency of the state.

■ Isolation keeps operations on shared data invisible across transactions.

■ Durability guarantees the effect of completed transaction are permanent and are

not lost.

The EJB specification describes the creation of applications that enforce

transactional consistency on the data manipulated by the enterprise beans.

However, unlike other specifications that support distributed transactions, the EJB

specification does not require enterprise bean and EJB client developers to write any
5-12 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
special code to use transactions. Instead, the container manages transactions based

on two deployment descriptor attributes associated with the EJB module and the

enterprise bean. EJB application developers are freed to deal with the business logic

of their applications.

A J2EE 1.2 compliant EJB container should support flat transactions, the most

common kind of transctions. A flat transaction cannot have any child (nested)

transactions. These are the only transaction types supported by EJBs.

The Java Transaction API(JTA)
The JTA APIs specifies start and end transactions.

interface javax.transaction.UserTransaction
{

public abstract void begin();
public abstract void commit();
public abstract void rollback();
public abstract void setRollbackOnly();
public abstract int getStatus();
public abstract void setTransactionTimeout(int);

}

interface javax.transaction.Status
{

public static final int STATUS_ACTIVE;
public static final int STATUS_MARKED_ROLLBACK;
public static final int STATUS_PREPARED;
public static final int STATUS_COMMITTED;
public static final int STATUS_ROLLEDBACK;
public static final int STATUS_UNKNOWN;
public static final int STATUS_NO_TRANSACTION;
public static final int STATUS_PREPARING;
public static final int STATUS_COMMITTING;
public static final int STATUS_ROLLING_BACK;

}

The JTA UserTransaction interface is actually an interface to the application

server’s transaction manager. It is the public API exposed by the transaction

manager. To get a reference to this, you must look up the interface via JNDI, just like

you use JNDI to lookup EJB homes, JDBC drivers, etc. The application server must

publish the JTA under "java:comp/UserTransaction ".

Context ctx = new InitialContext(...);
javax.transaction.UserTransaction userTran =
Migrating Enterprise Java Beans 5-13

EJB Functionality and Components
(javax.transaction.UserTransaction) PortableRemoteObject.narrow(
ctx.lookup(“javax.transaction.UserTransaction”),
javax.transaction.UserTransaction.class);

Transaction Boundaries
Transaction boundaries mark the beginning and end of transactions. The

application developer chooses the boundaries. The J2EE specification mentions

three ways of controlling transactional boundaries: programmatically inside bean

code (bean-managed transactions), programmatically from client code

(client-managed transactions), and declaratively inside deployment descriptors

(container-managed transactions).

Client-Managed Transactions
A Java client can use the javax.transaction.UserTransaction interface to

explicitly demarcate transaction boundaries. The client program obtains the

javax.transaction.UserTransaction interface using the JNDI API.The EJB

specification does not imply that the javax.transaction.UserTransaction is

available to all Java clients. The J2EE specification specifies the client environments

in which the javax.transaction.UserTransaction interface is available.

Container-Managed Transactions (CMT)
Whenever a client invokes an enterprise bean, the container interposes on the

method invocation. The interposition allows the container to control transaction

demarcation declaratively through the transaction attributes set in the deployment

descriptor.

For example, if an enterprise bean method is configured with the "Required"

transaction attribute, the container behaves as follows: if the client request is not

associated with a transaction context, the container automatically initiates a

transaction whenever a client invokes an enterprise bean method that requires a

transaction context. If the client request contains a transaction context, the container

includes the enterprise bean method in the client transaction.

An entity bean must always be designed with container-managed transaction

demarcation. For entity beans using container-managed persistence, transaction

isolation is managed by the data access classes that are generated by the container

provider’s tools. The tools must ensure that the management of the isolation levels

performed by the data access classes will not result in conflicting isolation level

requests for a resource manager within a transaction.
5-14 Oracle9i Application Server Migrating From WebSphere

EJB Functionality and Components
Bean Managed Transactions (BMT)
The enterprise bean with bean-managed transaction demarcation must be a session

bean. An instance that starts a transaction must complete the transaction before it

starts another new transaction. A session bean can use the EJBContext and the

javax.transaction.UserTransaction object to programmatically demarcate

transactions. For session beans with bean-managed transaction demarcation, the

bean code can specify the desirable isolation level programmatically in the

enterprise bean’s methods using the resource manager specific API. For example,

the bean provider can use the

java.sql.Connection.setTransactionIsolation(...) method to set the

appropriate isolation level for database access.

For transactions, a session bean can either use container-managed transactions or

bean-managed transactions. Entity beans must use container-managed transactions.

Whether an enterprise bean uses bean-managed or container-managed transaction

demarcation, the burden of implementing transaction management is on the EJB

container and server provider.

Transaction Isolation and Concurrency
The transaction isolation attribute tells the container how to limit concurrent reads

in a database. The EJB 1.1 specification removed the guidelines for managing

transaction isolation levels for beans with container-managed transaction

demarcation. But since bean deployers still require mechanisms to govern EJB

concurrency, WebSphere continues to support it along with other mechanisms

discussed in the next section.

Using CMP, different databases need different SQL statements while trying to

acquire a read/write lock at the "database" level as opposed to

optimistic/pessimistic concurrency or locking at the container/bean level. For

example, MS-SQL Server needs a "SELECT ... AT ISLOLATION SERIALIZABLE",

Oracle needs a "SELECT ... FOR UPDATE" as a method of acquiring 'locks' or in

other words at a transaction isolation level 'Serializable' to prevent

dirty/unrepeatable/phantom reads. Hence, it is difficult to use generic SQL clauses

in conjunction with transactions and locks at the database level without resorting to

vendor-specific clauses.

The need is for a simple time stamp/versioning mechanism in EJB 1.1 (even EJB 2.0

seems to imply that acquiring a read/write lock at the database level is up to the

EJB vendor, which vendors may or may not provide). All that the time stamp and

versioning do is compare versions when the client sends data over for modification.

The reading could have been done by different clients in different transactions.
Migrating Enterprise Java Beans 5-15

EJB Functionality and Components
Hence, if another client tries to update the same data in the entity bean instance, the

version numbers will not match if the data has been updated by another client, and

an exception can be raised that effectively tells the client to 'refresh' the information,

i.e. get the data again to see what might have changed since the client first

requested it for modification. This is analogous to performing an "Update <table>

set <fields> where <fields = fields_read_at_transaction_start>". The only difference

is that the above technique works across transactions, i.e. it prevents a client from

overwriting committed changes made by another client.

Session beans that use bean-managed transaction have transaction attributes

associated with each method of the bean. The attribute value tells the container how

it must manage the transactions that involve this bean. There are six different

transaction attributes that can be associated with each method of a bean. This

association is done at deployment time by the application assembler or deployer.

EJB supports distributed flat transactions. The distribution mechanism makes it

possible to involve bean objects on multiple EJB servers or to update data in

multiple databases in a single transaction. Every client method invocation on a bean

is supervised by the bean's container, which makes it possible to manage the

transactions according to the transaction attributes that are specified in the

corresponding bean's deployment descriptor.

A particular transaction attribute can be associated with an entire bean and apply to

all its methods or just to an individual method. The scope of a transaction is defined

by the transaction context that is shared by the participating bean objects.

EJB Caching
EJB containers allow smart caching of entity beans, which allow some operations to

occur in memory rather than at database level. Caching conserves system resources

used in making a database connection by eliminating database accesses to

unchanged data. There are three caching options available for the container in

committing a transaction:

Option A : The container caches a readily available instance between transactions,

which has explicit access to the state of the object in the persistent storage. That is,

each instance of the EJB will be held in memory. This option is supported by

WebSphere and OC4J but should only be used in a single node system. Neither

WebSphere nor OC4J enforce this restriction, hence, it is the bean deployer’s

responsibility to ensure that this restriction is satisfied. This means that the beans

using this option will only be used within a single container. It is thus the

responsibility of all clients of that bean to always direct their requests to the one

bean instance within that specific container.
5-16 Oracle9i Application Server Migrating From WebSphere

Differences between the EJB 1.0 and EJB 1.1 Specifications
Option B: The container caches the instance between transactions which does not

have access to the persistent object state. This option is not supported by

WebSphere nor OC4J.

Option C: The container does not cache the instance between transactions. An

entity bean’s state is read once per transaction at the beginning of each transaction-

even if the value did not change from the last time it was read. The instance is

returned to the pool after the transaction is completed. This is the default option

supported by WebSphere and OC4J and should be used in multiple node

configurations.

Differences between the EJB 1.0 and EJB 1.1 Specifications
This section summarazies differences between versions of the EJB specification.

Changes Specific to Entity Beans
The most obvious change in EJB 1.1 is its mandated support for entity beans which

was optional in EJB 1.0 Specification. This support must be complete, embracing

support for both container-managed and bean-managed persistent entities. The

major changes to entity beans are listed below.

■ Changes to Bean-managed Transactions(BMT) - The transaction attribute TX_
BEAN_MANAGED has been removed from entity beans. This attribute is difficult

to use because it requires explicit transactional control by the developer.

Removing it from entity beans simplifies the EJB architecture. Stateful session

beans, however, still retain the TX_BEAN_MANAGED option. In EJB 1.0, both

stateful session beans and entity beans had the option of using BMT instead of

CMT.

■ Return types from the find methods for entity beans - In EJB 1.0, finder methods

can return a single entity or a collection of entities. Finder methods that return a

single entity return the entity's remote interface type; entities that return a

collection use java.util.Enumeration . In EJB 1.1 a new return type has

been added, java.util.Collection .

■ Changes to ejbCreate() method signature - In the EJB 1.0 container, CMP

and BMP have different values for ejbCreate() method: BMP entity beans

return the unique identity of the bean, the primary key; CMP entity beans

return void. The EJB 1.1 specification changes this so that both bean-managed

and container-managed entities have to return the primary key type from the

ejbCreate() methods.
Migrating Enterprise Java Beans 5-17

Differences between the EJB 1.0 and EJB 1.1 Specifications
■ Changes to primary key classes - For BMP entity beans, EJB 1.1 states that the

primary key class can be any valid Java RMI-IIOP type. In addition, the new

specification requires the primary key class to implement the

Object.equals() and Object.hashCode() methods to ensure that these

methods evaluate properly when comparing keys and storing them in a

java.util.Hashtable . The most significant change regarding primary keys

is the option to defer their definition until deployment time. In other words, the

primary key for an entity bean doesn't have to be defined by the developer, but

can be left to the deployer. This is a significant departure from the previous

specification, which required the bean developer to define the primary keys.

■ The environment-naming context - Enterprise JavaBeans 1.0 provides one

interface to the bean's environment, EJBContext . The EJBContext provides

the bean class with an interface to the container, allowing the bean to discover

and interact with aspects of its environment. The interface provides methods

concerned with caller identity, transactions, and accessing environment

properties.

Enterprise JavaBeans 1.1 introduces a new bean-container interface called the

environment-naming context (ENC). The ENC is a JNDI name space that is specific

to a bean type and its context at runtime. To simplify the bean-container interface,

the ENC is made available, by default, when a JNDI context is created. The JNDI

ENC enhances the bean-container contract by adding new functionality, but it

doesn't completely replace the EJBContext . In EJB 1.1, the JNDI ENC and the

EJBContext together represent the complete bean-container interface.

Example 5–1 is an example of an EJB 1.0 bean using the EJBContext to read an

environment property used to validate a request (the comparison is applicable to

both entity and session beans). Example 5–2 shows an EJB 1.1 bean using the new

JNDI ENC to obtain an environment property to validate a request.

Example 5–1 Using the EJBContext

public class AccountBean implements EntityBean
{

int id;
double balance;
EntityContext ejbContext;
public void setEntityContext(EntityContext ctx)
{

ejbContext = ctx;
}
public void withdraw(Double withdraw)throws WithdrawLimitException
{

5-18 Oracle9i Application Server Migrating From WebSphere

Differences between the EJB 1.0 and EJB 1.1 Specifications
Properties props = ejbContext.getEnvironment();
String value = props.getProperty("withdraw_limit");
Double limit = new Double(value)
if (withdraw.doubleValue() > limit.doubleValue())

throw new WithdrawLimitException(limit);
else

balance = balance - withdraw.doubleValue();
}

...
}

Example 5–2 Using the environment properties in EJB 1.0

public class AccountBean implements EntityBean {
int id;
double balance;
EntityContext ejbContext;
public void setEntityContext(EntityContext ctx)
{

ejbContext = ctx;
}
public void withdraw(Double withdraw) throws WithdrawLimitException
{

InitialContext jndiContext = new InitialContext();
Double limit = (Double)

jndiContext.lookup("java:comp/env/withdraw_limit");
if (withdraw.doubleValue() > limit.doubleValue())

throw new WithdrawLimitException(limit);
else

balance = balance - withdraw.doubleValue();
}

...
}

In EJB 1.0, environment properties are limited to String types and are available

through the EJBContext . In EJB 1.1, environment properties can be of type

String or any one of the primitive numerical wrappers (integer , long , double ,

boolean , byte , and float); they are available through a default JNDI context.

Why the change? EJB 1.1 wanted to extend the bean-container contract to address

many of the issues that would have mandated complicated changes to the

EJBContext interface. To avoid the limitations of EJBContext -- its definition is

fixed and therefore limited -- the JNDI ENC was introduced, which provides a more

dynamic and extensible bean-container interface. The EJBContext still exists with
Migrating Enterprise Java Beans 5-19

WebSphere 3.5.x Support for the EJB API
some changes, but most of the new EJB 1.1 features are realized through the JNDI

ENC.

WebSphere 3.5.x Support for the EJB API
WebSphere supports EJB 1.0 specification with some additional features. WebSphere

supports:

■ Container-managed persistence (CMP)

■ Uses javax.transaction.UserTransaction

■ Restricts bean-managed transactions to session beans (as required by EJB 1.1

specification)

WebSphere Advanced Edition 3.5.3 does not support these EJB 1.1 features:

■ XML deployment descriptors

■ Use of JNDI within EJB environment:

■ Lookup of home interfaces via EJB references and links defined in the EJB's

environment

■ The new HomeHandle class and the associated API changes to EJBHome

■ Use of the javax.security.Principal interface

WebSphere and VisualAge for Java extend the EJB specification with the following

features:

■ Access beans: Simplify client application using EJBs

■ Association: Support relationship between CMP beans

■ Inheritance: Support polymorphism and reuse

Read-only Methods
The EJB specification does not provide a standard mechanism to let the container

check if the bean's state has changed within a unit of work. The specification

assumes that all beans accessed during a transaction are "dirty," and must have their

state written back to the persistent store at the end of a transaction. WebSphere

provides an extension to the EJB specification with the const method flag in the

deployment descriptor of entity beans. It lets the developer tell the container which

methods are const or read-only—in other words, it doesn't change the state of the
5-20 Oracle9i Application Server Migrating From WebSphere

WebSphere 3.5.x Support for the EJB API
bean. For these methods EJB container does not call ejbLoad at the end of the

method call.

EJB Finder-Helper Interface
WebSphere uses a concept called a “FinderHelper” to define the finder logic for

CMP entity beans.The following finder logic is required for each finder method

(other than the findByPrimaryKey method) contained in the home interface of an

entity bean with CMP:

■ The logic must be defined in a public interface named

<Name>BeanFinderHelper , where <Name>is the name of the enterprise bean

(for example, AccountBeanFinderHelper).

■ The logic must be contained in a String constant named

<findMethodName> QueryString , where <findMethodName> is the name

of the finder method. The String constant can contain zero or more question

marks (?) that are replaced from left to right with the value of the finder

method’s arguments when that method is invoked.

Example 5–3 Finder Helper Interface

Public interface AccountBeanFinderHelper
{

String findLargeAccountsQueryString ="select * from ejb.accountbeantblwhere balance > ?";
}

This file contains one static java.lang.String field for each finder method

declared in the EJB home interface. The strings are initialized with SQL queries

executed dynamically when bean instances are retrieved in a finder method. Note

that this file is specific to the WebSphere application server.

CMP in WebSphere
The CMP model in WebSphere allows a set of entity EJBs to be read from a

relational database in the find XXX() method with only single SQL SELECT call.

This is much more efficient then BMP case, which requires N+1 SQL calls to

accomplish the same task.

Transactions
WebSphere supports two-phase commits for distributed transactions for Oracle ,

DB2, and Sybase and MQ Series. Distributed transaction support is also provided

for Oracle and Microsoft SQL Server using the Merant drivers in addition to the
Migrating Enterprise Java Beans 5-21

WebSphere 3.5.x Support for the EJB API
existing support for DB2 and Sybase. WebSphere 3.5.3 also supports distributed

transactions over EJBs and JMS.

WebSphere never passivates an active bean, i.e. a bean participating in a transaction.

WebSphere will throw a ROLLBACK exception back to the client.

WebSphere also makes the UserTransaction interface available to Java clients

including servlets, JSPs, and standalone programs.

EJB Inheritance
WebSphere provides EJB inheritance similar to Java class inheritance.This EJB

inheritance model is specific to the IBM EJB development environment. This is an

extension of the EJB specification. In EJB inheritance, an enterprise bean inherits

properties, such as CMP fields and association roles, methods, and method-level

control descriptor attributes from another enterprise bean that resides in the same

EJB group.

Distributed exceptions
Support for chaining distributed exceptions is provided by the

com.ibm.websphere.exception Java package. The following classes and

interfaces make up this package

■ DistributedException

■ DistributedExceptionEnabled

■ DistributedExceptionInfo

■ ExceptionInstantiationException

Access beans
An access bean adapts an enterprise bean to the JavaBeans programming model by

hiding the home and remote interfaces from the access bean user (that is, an EJB

client developer). This is specific to IBM WebSphere environment. These access

beans are packaged in com.ibm.ivj.ejb.access . There are three types of access

beans:

■ A Java bean wrapper

This facilitates either a session or entity bean to be used like a standard Java

bean. It hides the enterprise bean home and remote interfaces from you. Each
5-22 Oracle9i Application Server Migrating From WebSphere

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
Java bean wrapper that you create extends the

com.ibm.ivj.ejb.access.AccessBean class.

■ Copy helper

A copy helper is similar to Java bean wrapper, but it also incorporates a single

copy helper object that contains a local copy of attributes from a remote entity

bean. A user program can retrieve the entity bean attributes from the local copy

helper object that resides in the access bean, which eliminates the need to access

the attributes from the remote entity bean.

■ Rowset

A rowset access bean has all of characteristics of both the Java bean wrapper

and copy helper access beans. However, instead of a single copy helper object, it

containsmultiplecopyhelperobjects.Eachcopyhelperobjectcorrespondstoa

single enterprise bean instance.

Associations between enterprise beans
WebSphere supports one-to-one and one-to-many associations for CMP beans. The

generated code is specific to WebSphere and VisualAge for Java environment

specific.

In the EJB 1.1 specification, the application would have been required to throw an

EJBException , but this has not yet been implemented in WebSphere Advanced

Edition 3.5.3.

Migrating EJB Applications from WebSphere to Oracle9 iAS OC4J
There are four aspects of an EJB that differ between WebSphere and Oracle9iAS

OC4J:

■ EJB code - The actual bean code, which is mainly well defined in the EJB 1.0

specification and should be compatible across implementations, with some

minor exceptions which we will discuss.

■ EJB-Java archive (JAR) - The EJB-Java Archive (JAR) file, which is also defined

in the standard. This is designed to be a “binary” standard in the sense that

EJB-JARs developed to the EJB specification are meant to be deployable on any

EJB platform. The EJB-JAR file consists of the implementation and interface

classes, a manifest and the serialized deployment descriptor .ser file in

WebSphere 3.5.
Migrating Enterprise Java Beans 5-23

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
■ Client code - The client code is mainly defined and compatible between

implementations with some minor exceptions. The deployment process differs

between EJB implementations.

■ Deployment process - The deployment process takes EJB code, packages it as an

EJB-JAR file, creates support code (e.g. stubs and ties) so that it can be hosted in

a particular EJB container and installs it into the server. When the JAR file is

finally deployed, it has non-standard code in it. Note that different vendors

have varying views on exactly what the “deployment” process is.

The following features cannot be migrated to OC4J:

■ Access beans

■ Object-level Trace (OLT) package of WebSphere

■ XA-transactions across EJB, JMS, and MQ Series.

EJB Code Changes
In general, enterprise beans written to version 1.0 of the EJB specification are mostly

compatible with version 1.1. However, you need to modify or recompile enterprise

bean code in the following cases:

Changes specific to transaction API:

■ IBM-specific transaction packages

Any EJB application code still using the following IBM specific transaction

support packages for user transactions need to be migrated. This involves

finding the import statements in the EJB source files containing

import com.ibm.db2.jdbc.app.jta.javax.transaction.*

 and changing it to:

import javax.transaction.*

■ The bean uses the javax.jts.UserTransaction interface.

The package name of the javax.jts interface has changed to

javax.transaction , and there have been minor changes to the exceptions

thrown by the methods of this interface. An enterprise bean that uses the

javax.jts.UserTransaction interface needs to be modified to use the new

name javax.transaction.UserTransaction .

■ UserTransaction object lookup
5-24 Oracle9i Application Server Migrating From WebSphere

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
The UserTransaction object is obtained differently for enterprise beans

written to version 1.1 of the EJB specification. Under WebSphere version 1.0, it

was obtained as:

initialContext.lookup("jta/UserTransaction")

 This should be changed to the following in OC4J:

initialContext.lookup("java:comp/UserTransaction")

■ The bean uses the getCallerIdentity() or isCallerInRole(Identity
identity) or getEnvironment() methods of the

javax.ejb.EJBContext interface.

These methods of EJBContext class were deprecated in EJB 1.1 because the class

java.security.Identity is deprecated in the Java 2 platform. While OC4J still

provides backward compatibility for implementation of these methods, Oracle

recommends moving to standard methods.

■ An entity bean with container-managed persistence needs to be recompiled

The return value of ejbCreate() is different in EJB 1.1 than in EJB 1.0. A CMP

bean written to the EJB 1.0 specification needs to be recompiled to work with

EJB 1.1 compliant OC4J. The ejbCreate() method has different return values

Table 5–2 Deprecated methods in EJB 1.1

Method Replace with Description

getCallerIdentity() Principal
getCallerPrincipal()

getCallerIdentity() is
deprecated in EJB 1.1. The
container is allowed to always
return null from this method.
The enterprise bean should
use the
getCallerPrincipal()
method instead.

getEnvironment() TheJNDInamingcontext
java:comp/env

If the enterprise bean has no
environment properties, this
method returns an empty
java.util.Properties
object. This method never
returns null.

CallerInRole(java.security.
Identity role())

boolean
isCallerInRole(String

roleName)
Migrating Enterprise Java Beans 5-25

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
for BMP and CMP entity beans in EJB 1.0 specification. BMP entity beans return

the unique identity of the bean, which is the primary key. The CMP Entity Bean

returns void .

The following code shows the different method signatures used for

container-managed and bean-managed ejbCreate() methods in an EJB 1.0.

CMP entity bean:

public class EmployeeCMP implements javax.ejb.EntityBean
{

public int Empid;
public void ejbCreate(int empID)
{

Empid= empID;
}
// more bean code follows
....

}

The code below shows a BMP entity bean, EJB 1.0:

public class EmployeeBMP implements javax.ejb.EntityBean
{

public int Empid;
public EmployeePK ejbCreate(int myID)
{

Empid= empID;
// do a database insert using JDBC
EmployeePK pk = new AccountPK(empID);
return pk;

}
// more bean code follows
...

}

The EJB 1.1 specification changes this so that both bean-managed and

container-managed entities have to return the primary key type from the

ejbCreate() methods. However, container-managed beans are required to

return null instead of a primary key object.

■ CMP EJB finder methods

The OC4J server puts finder queries in XML deployment descriptors using

proprietary query language formats, as compared to the WebSphere finder

helper classes. When deploying CMP entity beans you can ignore finder helper

classes and replace them by manually editing queries into the OC4J deployment
5-26 Oracle9i Application Server Migrating From WebSphere

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
descriptor orion-ejb-jar.xml . For example, the following finder helper in

WebSphere EJB can be migrated to OC4J as follows:

In WebSphere:

public interface AccountBeanFinderHelper
{

String findLargeAccountsQueryString ="select * from ejb.accountbeantbl
where balance > ?";

}

To migrate this functionality to OC4J, change the generated

orion-ejb-jar.xml by modifying the <finder-method/> tag section

with:

public static final String findByOwner_query="full: select "+
"*"+"from from ejb.accountbeantbl"+ "where balance >$1";

Note that this query uses "full: " at the beginning to specify that this is the full

text of the query.

■ Read-only entity bean methods

As pointed out earlier, WebSphere provides an option in its Administration

Console to indicate to the EJB container that a particular method is read-only.

OC4J uses a runtime approach to provide the same feature. In order to migrate

EJBs containing read-only methods you must:

1. Define a method "public boolean isModified() " in the bean code.

2. Ensure that the method returns a boolean flag that is set each time the

bean is modified. This flag should be cleared in ejbStore() .

If isModified() returns false , OC4J knows that it does not need to talk

to the database.

Client Level Code Changes
The following code changes are necessary:

■ Client managed transactions - The EJB programming model allows client

applications and enterprise beans to create transactions (through the

javax.jts.UserTransaction interface) to bound related method

invocations into a single atomic unit of work. The EJB specification does not,

however, define how a client application can create a transaction; it does not

specify how to obtain a reference to the javax.jts.UserTransaction
Migrating Enterprise Java Beans 5-27

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
interface in a client application. In the absence of this specification, the

application server provides a class that may be used to access the JTS

CosTransactions . This is the current interface, which is a superset of the

javax.jts.UserTransaction interface. This interface allows transactions

to be created, suspended and resumed, and committed or aborted. To obtain a

reference to the org.omg.CosTransactions.Current interface, the client

application may simply call the static getCurrent() method in the

com.ibm.ejs.client.EJClient class. For example:

org.omg.CosTransactions.Current current
=com.ibm.ejs.client.EJClient.getCurrent();

current.begin();
// do transactional work
current.commit(false);

OC4J does not support client-managed transactions. Any client-managed

transactions can be deployed as container managed transactions by changing

the transaction properties in the EJB deployment descriptors.

■ JNDI lookup - To lookup an EJB from a client code, you need to create the JNDI

initial naming context InitialContext object. This object will be hooked to

the naming service running in the application server based on two parameters:

host name and port of the naming service (PROVIDER_URL) and the name of

the initial context factory (INITIAL_CONTEXT_FACTORY). This information is

provided to the constructor of the InitialContext as a

java.util.Properties object. When migrating from WebSphere to OC4J,

these values must be changed. For example:

 In WebSphere, the initial naming context is obtained by the following code:

java.util.Properties properties =new java.util.Properties();
properties.put(javax.naming.Context.PROVIDER_URL,"iiop:///");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
javax.naming.InitialContext initialContext =

new javax.naming.InitialContext(properties);
initialContext.lookup("com/ibm/Hello");

The string “/// ” for the PROVIDER_URL property indicates to the runtime

environment to find the naming service at the standard port on the local

machine. The general form of the PROVIDER_URL string is

“iiop:// hostname : port / ”. The value of the second property, INITIAL_
CONTEXT_FACTORY, is the class name of the naming service factory.

To migrate to OC4J, this code must be changed as follows:
5-28 Oracle9i Application Server Migrating From WebSphere

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
■ If the client and the EJB are deployed on the on the same OC4J instance, the

JNDI properties (initial context factory, location, security parameters) are

not needed):

javax.naming.InitialContext initialContext =
new javax.naming.InitialContext();

 Object yourEJBHome = initialContext.lookup("java:comp/env/ejb/Hello")

If the client and EJBs are deployed on different OC4J instances:

java.util.Properties properties = new java.util.Properties();
properties.put(javax.naming.Context.PROVIDER_URL,

"ormi:// <hostname> : <port> /<application>");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.evermind.server.rmi.initialContextFactory");
properties.put(javax.naming.Context.SECURITY_PRINCIPAL,"admin");
properties.put(javax.naming.Context.SECURITY_CRIDENTIALSL,"123");
javax.naming.InitialContext initialContext = new

javax.naming.InitialContext(properties);
Object yourEJBHome = initialContext.lookup("Java:comp/env/ejb/Hello")

The SECURITY_PRINCIPAL and SECURITY_CREDENTIAL properties are

the administrator username and password specified during installation of

OC4J.

Changes in Transactional Semantics
The following should be noted:

■ TRANSACTION_SERIALISABLE has different semantics in OC4J and

WebSphere. In WebSphere, if two transactions both read the same row (entity),

they acquire a read lock on that row.

■ Read-only methods - The EJB specification does not provide a standard

mechanism to allow a container to check if the bean’s state has changed within

a unit of work. As an IBM extension to the EJB specification, VisualAge for Java

allows the bean developer to define the method types (read-only or update).

With the Const Method checkbox in the control descriptor of the bean’s

Properties panel (Method screen), a selected checkbox means read-only, and

non-checked is an update method. When deployed on WebSphere, the

container runtime only stores a bean’s state if at least one non read-only

(update) method has been invoked during a transaction. This eliminates

unnecessary SQL UPDATE queries at commit time, for example, for get

operations that do not change the entity state. When an update (non read-only)
Migrating Enterprise Java Beans 5-29

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
method is invoked on a bean and the bean is not active, the container runtime

will load the bean using the Persister loadForUpdate method. This method

will acquire a lock on the bean’s state in the underlying data store.

■ OC4J provides a complete implementation of the JTA 1.0.1 specification.

Oracle9iAS Release 2 integrates the JTA facilities with a middle-tier Distributed

Commit Coordinator based on the Oracle Database’s Commit Coordinator that

provides highly scalable one-phase commit and two-phase commit facilities

across Oracle and non-Oracle XA compliant Resource Managers.

Object-relational (O-R) Mapping
With EJBs, O-R mapping is done differently according to the EJB container used (in

practice, according to the application server).This means that in order to import an

EJB into a different container, it is necessary to go through this development phase

again. This is the case with WebSphere and OC4J, since they have different ways of

generating O-R mapping classes. WebSphere uses the WebSphere Studio and the

VisualAge for Java development environment to generate code for O-R mapping.

WebSphere supports one-to-one and one-to-many associations among EJBs.

OC4J supports the EJB 2.0 O-R mapping model. EJB 2.0 is not backward compatible

with EJB 1.1, rather, it is a complete break with the old way of doing CMP

persistence. OC4J supports one-to-one and one-to-many associations.

Deployment of EJBs
Since WebSphere 3.5.x is at the EJB 1.0 specification level, the EJB JAR files are

deployed using serialized deployment descriptors. These cannot be directly

deployed on OC4J, which supports the EJB 1.1 XML-based deployment descriptors.

Consequently, the EJB JAR files must be re-archived using the EJB 1.1 deployment

descriptors. Package individual or multiple EJB components in EJB JAR files and

place assembly and deployment properties for EJBs in the standard deployment

descriptor XML file (ejb-jar.xml) within the EJB archive file. The deployment

descriptor contains attribute and environment settings that define how the

container invokes enterprise bean functionality. Every enterprise bean (both session

and entity) must have a deployment descriptor that contains settings for the

following attributes:

■ JNDI home name attribute - Specifies the Java Naming and Directory Interface

(JNDI) home name that is used to locate instances of an EJB home object

■ Transaction attribute - To define the transactional manner in which the

container invokes a method
5-30 Oracle9i Application Server Migrating From WebSphere

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
■ Transaction isolation level attribute - To define the degree to which transactions

are isolated from each other by the container

■ Access control attribute - To define an access control entry that identifies users

or roles that are permitted to access the methods in the enterprise bean. This

value is not used by the WebSphere EJB servers.

■ RunAsMode and RunAsIdentity attributes - the RunAsMode attribute defines

the identity used to invoke the method. If a specific identity is required, the

RunAsIdentity attribute is used to specify that identity. The RunAsMode
attribute is used by the WebSphere EJB servers; the RunAsIdentity attribute

is not.

The deployment descriptor for an entity bean must also contain settings for the

following attributes. These attributes can be set on the bean only. They cannot be set

on a per-method level.

■ Primary key class attribute - identifies the primary key class for the bean.

■ Container-managed fields attribute - lists those persistent variables in the bean

class that the container must synchronize with fields in a corresponding data

source to ensure that this data is persistent and consistent.

■ Reentrant attribute - specifies whether an enterprise bean can invoke methods

on itself or call another bean that invokes a method on the calling bean. Only

entity beans can be reentrant. The deployment descriptor for a session bean

must also contain settings for the following attributes. These attributes can be

set on the bean only; they cannot be set on a per-method level.

■ State management attribute - defines the conversational state of the session

bean. This attribute must be set to either STATEFUL or STATELESS.

■ Timeout attribute - defines the idle timeout value in seconds associated with

this session bean.

These attributes can be set for the entire enterprise bean or for the individual

methods in the bean. The container uses the definition of the bean-level attribute

unless a method-level attribute is defined, in which case the latter is used.

<container-transaction>
<method>

<ejb-name>LogEntEJB</ejb-name>
<method-name>*</method-name>
<trans-attribute>Required</trans-attribute>

</method>
<method>

<ejb-name>EntUtenteEJB</ejb-name>
Migrating Enterprise Java Beans 5-31

Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
<method-name>*</method-name>
<trans-attribute>Required</trans-attribute>

</method>
</container-transaction>

OC4J EJB Container Setting
To cache EJB instances, you specify maximum instance limits for each entity bean in

orion-ejb-jar.xml with your application and place it in the META_INF
directory.

<?xml version="1.0"?>
<orion-ejb-jar>

<enterprise-beans>
<entity-deployment name="BeanName" location="BeanName"

max-instances="5" validity-timeout="3600000"/>
</enterprise-beans>

</orion-ejb-jar>
5-32 Oracle9i Application Server Migrating From WebSphere

Migrating JDBC Applica
6

Migrating JDBC Applications

This chapter introduces the JDBC (Java Database Connectivity) API and describes

how to connect to, and access data from, a database with WebSphere Advanced

Edition 3.5.3. It also discusses ways of migrating WebSphere applications to Oracle

Containers for J2EE (OC4J). The sections in this chapter are:

■ The JDBC API

■ Database Drivers

■ Connection Pooling

■ IBM Extensions

The JDBC API
The JDBC API enables Java programs to create sessions, execute SQL statements,

and retrieve results from relational databases, providing vendor-independent access

to relational data. The JDBC specification delivers a call-level SQL interface for Java

that is based on the X/Open SQL call level interface specification.

The JDBC API consists of four major components: JDBC drivers, connections,

statements, and a result set. Database vendors deliver only the driver, which should

comply with JDBC specifications (for a complete description, see "Database Drivers"

on page 6-2). The connection, statement, and result set components are in the JDBC

API package (that is, the java.sql package).

The JDBC API provides interface classes for working with these components:

■ The java.sql.Driver and java.sql.DriverManager for managing JDBC

drivers

■ The java.sql.Connection for using connections
tions 6-1

Database Drivers
■ The java.sql.Statement , for constructing and executing SQL statements

■ The java.sql.ResultSet for processing the results

The JDBC 2.0 API includes many new features in the java.sql package as well as

the new Standard Extension package, javax.sql Features in the java.sql
package include support for SQL3 data types, scrollable result sets, programmatic

updates, and batch updates.

The new JDBC standard extension APIs, an integral part of Enterprise JavaBeans

(EJB) technology, allows you to write distributed transactions that use connection

pooling and connect to virtually any tabular data source, including files and

spreadsheets.

When you write a JDBC application, the only driver-specific information required is

the database URL. You can build a JDBC application so that it derives the URL

information at runtime. Using the database URL, a user name, and password, your

application first requests a java.sql.Connection from the DriverManager .

A typical JDBC program follows this process:

1. Load the database driver, using the driver's class name

2. Obtain the connection, using the JDBC URL for connection

3. Create and execute statements

4. Use result sets to navigate through the results

5. Close the connection.

Database Drivers
JDBC defines standard API calls to a specified JDBC driver, a piece of software that

performs the actual data interface commands. The driver is considered the lower

level JDBC API. The interfaces to the driver are database client calls, or database

network protocol commands that are serviced by a database server.

Depending on the interface type, there are four types of JDBC drivers that translate

JDBC API calls:

■ Type 1, JDBC-ODBC bridge: Translates calls into ODBC API calls.

■ Type 2, Native API driver: Translates calls into database native API calls. As this

driver uses native APIs, it is vendor dependent. The driver consists of two

parts: a Java language part that performs the translation and a set of native API

libraries.
6-2 Oracle9i Application Server Migrating From WebSphere

Database Drivers
■ Type 3, Network Protocol: Translates calls into DBMS-independent network

protocol calls. The database server interprets these network protocol calls into

specific DBMS operations.

■ Type 4, Native Protocol: Translates calls into DBMS native network protocol

calls. The database server converts these calls into DBMS operations.

The DriverManager Class
Using different drivers, a Java program can create several connections to several

different databases. To manage driver operations, JDBC provides a driver manager

class, the java.sql.DriverManager , which loads drivers and creates new

database connections.

Registering JDBC Drivers
The DriverManager registers any JDBC driver that is going to be used. If a Java

program issues a JDBC operation on a non-registered driver, JDBC raises a "No

Suitable Driver" exception.

There are several ways to register a driver:

■ Register the driver explicitly by using

DriverManager.registerDriver(driver-instance)

where driver-instance is an instance of the JDBC driver class.

■ Load the driver class by using

Class.forName(driver-class)

where driver-class is the JDBC driver class.This loads the driver into the Java

Virtual Machine. When loaded, each driver must register itself implicitly by

using the DriverManager.registerDriver method.

For example, to register the DB2 JDBC Type 2 driver in the

COM.ibm.db2.jdbc.app package, you can use either:

DriverManager.registerDriver(new COM.ibm.db2.jdbc.app.DB2Driver());

or

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

For an Oracle database:
Migrating JDBC Applications 6-3

Database Drivers
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());

or

Class.forName("oracle.jdbc.driver.OracleDriver")

A J2EE server implicitly loads the driver based on the JDBC driver configuration, so

no client-specific code is needed to load the driver. The JNDI (Java Naming and

Directory Interface) tree provides the datatsource object reference.

WebSphere Advanced Edition 3.5.3 supports DB2, Informix, Microsoft SQL Server,

Oracle, Sybase, Versant, and others. However, WebSphere does not support the

Oracle thick JDBC driver. To use the Oracle thick JDBC driver, configure the data

sources in Oracle Containers for J2EE (OC4J), as described in "Configuring Data

Sources". OC4J will automatically load the driver classes during server startup.

The DataSource Class
The JDBC 2.0 specification introduced the java.sql.Datasource class to make

the JDBC program 100% portable. In this version, the vendor-specific connection

URL and machine and port dependencies were removed. This version also

discourages using java.sql.DriverManager , Driver , and

DriverPropertyInfo classes. The data source facility provides a complete

replacement for the previous JDBC DriverManager facility. Instead of explictly

loading the driver manager classes into the runtime of client applications, the

centralized JNDI service lookup obtains the java.sql.Datasource object. The

Datasource object can also be used to connect to the database.

According to the JDBC 2.0 API specification, a data source is registered under the

JDBC subcontext or one of its child contexts. The JDBC context itself is registered

under the root context. A Datasource object is a connection factory to a data

source. WebSphere and OC4J both support the JDBC 2.0 DataSource API.

Note: If you use the Type 3 JDBC driver

(COM.ibm.db2.jdbc.app.DB2Driver - jdcb:db2:DBNAME),

you must install the DB2 CAE (Client Application Enabler) and

then catalog the remote database. OC4J will treat the cataloged

database as a local database.
6-4 Oracle9i Application Server Migrating From WebSphere

Database Drivers
Configuring Data Sources
In WebSphere, you configure data sources using the Administrative Console to

specify the data source name, database name, and JDBC URL string. This

information is stored in a repository database.

OC4J uses flat files to configure data sources for all of its deployed applications.

data sources are specified in the

<ORACLE_HOME>/j2ee/home/config/data-sources.xml file.

Following is a sample data source configuration for an Oracle database. Each data

source in data-sources.xml (xa-location , ejb-location and

pooled-location) must be unique.

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="Oracle"
url="jdbc:oracle:thin@dlsun2058.us.oracle.com:1521:orcl"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
pooled-location="jdbc/OraclePoolDS "
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
schema="database-schemas/oracle.xml"
inactivity-timeout="30"
max-connections="20"
/>

Table 6–1 describes all of the configuration parameters in data-sources.xml .

(Not all of the parameters are shown in the example above).

Table 6–1 data-sources.xml file

Parameter Description

class Class name of the data source.

connection-driver Class name of the JDBC driver

connection-retry-
interval

Number of seconds to wait before retrying a failed connection.
The default is 1.
Migrating JDBC Applications 6-5

Database Drivers
Note that WebSphere does not support subcontexts. For example, you cannot

specify xa/OracleXADS , where xa is subcontext under the JDBC context. Morever,

in WebSphere, the JDBC context is implicit, and you don't specify it (as you specify

ejb-location JNDI path for binding an EJB-aware, pooled version of this
data source; this version will participate in container-managed
transactions. This is the type of data source to use from within
EJBs and similar objects.

This parameter only applies to a ConnectionDataSource .

inactivity-timeout Number of seconds unused connections will be cached before
being closed.

location JNDI path for binding this data source.

max-connect-attempts Number of times to retry a failed connection. The default is 3.

max-connections Maximum number of open connections for pooling data
sources.

min-connections Minimum number of open connections for pooling data
sources. The default is zero.

name Displayed name of the data source.

password User password for accessing the data source (optional).

pooled-location JNDI path for binding a pooled version of this data source.
This parameter only applies to a ConnectionDataSource .

schema Relative or absolute path to a database-schema file for the
database connection.

source-location Underlying data source of this specialized data source.

url JDBC URL for this data source (used by some data sources that
deal with java.sql.Connections)

username User name for accessing the data source (optional).

wait-timeout Number of seconds to wait for a free connection if all
connections are used. Default is 60.

xa-location JNDI path for binding a transactional version of this data
source. This parameter only applies to a
ConnectionDataSource .

xa-source-location Underlying XADataSource of this specialized data source
(used by OrionCMTDataSource)

Table 6–1 data-sources.xml file

Parameter Description
6-6 Oracle9i Application Server Migrating From WebSphere

Database Drivers
it explicitly for OC4J, in data-sources.xml). However, both WebSphere and

OC4J automatically bind the data sources for you.

Configuring OC4J with DB2 Database
If you are using DB2 as your database, you need to create an additional file,

db2.xml , in the

<ORACLE_HOME>/OC4J/j2ee/home/config/database-schema directory to

define DB2 as a data source.

Below is an example of the schema file db2.xml :

<?xml version="1.0"?>
<!DOCTYPE database-schema PUBLIC "-//Evermind//- Database schema"
"http://www.orionserver.com/dtds/database-schemas.dtd">
<database-scheme name="DB2" not-null="not null" null="default null"

primary-key="primary key">
<type-mapping type="java.lang.String" name="varchar(255)" />
<type-mapping type="int" name="integer" />
<type-mapping type="long" name="bigint" />
<type-mapping type="float" name="double" />
<type-mapping type="double" name="double" />
<type-mapping type="byte" name="smallint" />
<type-mapping type="char" name="smallint" />
<type-mapping type="short" name="smallint" />
<type-mapping type="boolean" name="char(1)" />
<type-mapping type="java.util.Date" name="timestamp" />
<type-mapping type="java.io.Serializable" name="blob(1 M)" />
<disallowed-field name="add" />
<disallowed-field name="admin" />
<disallowed-field name="wvarchar" />

</database-scheme>

The following is an example of a corresponding data-sources.xml file with the

db2.xml file specified:

<data-source
name="Default data-source"
class="com.evermind.sql.ConnectionDataSource"
location="jdbc/DefaultDS"
pooled-location="jdbc/DefaultPooledDS"
xa-location="jdbc/xa/DefaultXADS"
ejb-location="jdbc/DefaultEJBDS"
url="jdbc:db2:dbTest"
connection-driver="COM.ibm.db2.jdbc.app.DB2Driver"
Migrating JDBC Applications 6-7

Database Drivers
username="myUserName"
password="myPwd"
inactivity-timeout="30"
schema="database-schemas/db2.xml"
/>

Obtaining a Data Source Object
Obtaining a data source object involves binding to the JNDI initial context and

doing a lookup for the subcontext jdbc/sampleDB . To do this, you have to get a

handle to the intial context javax.naming.InitialContext . IntialContext
is the root context of the JNDI namespace. InitialContext has two constructors:

■ A default constructor that takes no parameters

■ A constructor that takes one parameter, java.util.Properties or

java.util.HashTable

For OC4J, you must change your code to use the constructor that takes a parameter.

The following code example illustrates this:

//WebSphere Code
try
{

java.util.Properties parms = new java.util.Properties();
parms.setProperty(Context.INITIAL_CONTEXT_FACTORY,

" com.ibm.ejs.ns.jndi.CNInitialContextFactory ");
javax.naming.Context ctx = new javax.naming.InitialContext(parms);
javax.sql.DataSource ds = (javax.sql.DataSource)ctx.lookup("jdbc/SampleDB");
java.sql.Connection conn = ds.getConnection();

// process the results
...

}

To migrate from WebSphere, you must change the class that implements the initial

context factory (Context.INITIAL_CONTEXT_FACTORY) of the JNDI tree:

from the Websphere-specific class:

com.ibm.ejs.ns.jndi.CNInitialContextFactory

to the OC4J-specific class:

com.evermind.server.ApplicationClientInitialContextFactory
6-8 Oracle9i Application Server Migrating From WebSphere

Connection Pooling
Connection Pooling
Most web-based resources, such as servlets and application servers, access

information in a database. Each time a resource attempts to access a database, it

must establish a connection to the database using system resources to create the

connection, maintain it, and release it when it is no longer in use. The resource

overhead is particularly high for web-based applications due to the frequency and

volume of web users connecting and disconnecting. Often, more resources are

consumed in connecting and disconnecting than in executing the business logic.

Connection pooling enables you to control connection resource usage by spreading

the connection overhead across many user requests. A connection pool is is a

cached set of connection objects that multiple clients can share when they need to

access a database resource. The resources to create the connections in the pool are

expended only once for a specified number of connections. The connections are left

open and re-used by many client requests instead of each client request consuming

resources to create and close its own connection. Connection pooling improves

overall performance in the following ways:

■ Reducing the load on the middle-tier server

■ Minimizing resource usage by having session-wide create and close operations

■ Eliminating bottlenecks caused by socket and file descriptor limitations and ’n’

user license limitations

The JDBC 2.0 specification allows you to define a pool of JDBC database

connections, with the following objectives:

■ Maximize the availability of connections to resources

■ Minimize the idle connections in the pool

■ Return orphan connections to the pool and make them available for reuse by

other servlets or application servers.

To meet these objectives, you should perform the following:

1. Set the maximum connection pool size property equal to the maximum number

of concurrently active user requests expected

2. Set the minimum connection pool size property equal to the minimum number

of concurrently active user requests expected.

The connection pooling properties ensure that as the number of user requests

decreases, unused connections are gradually removed from the pool. Likewise, as

the number of user requests begins to grow, new connections are created. The
Migrating JDBC Applications 6-9

IBM Extensions
balance of connections is maintained so that connection re-use is maximized and

connection creation overhead minimized. You can also use connection pooling to

control the number of concurrent database connections.

Migrating WebSphere Connection Pooling to Oracle9 i Application Server
WebSphere Advanced Edition 3.5.3 provides two options for accessing database

connections:

■ Connection pooling (model based on JDBC 2.0)

■ Connection manager (model based on JDBC 1.0)

Migrating from Websphere JDBC 2.0 connection pooling:
WebSphere implements JDBC 2.0 connection pooling and data source objects using

the following packages.

import com.ibm.db2.jdbc.app.stdext.javax.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;

To migrate from the WebSphere JDBC 2.0 connection to OC4J you must replace

these import packages with javax.sql.* .

An application component that obtains two or more connections to the same

database manager (using either the same data source or different data source) must

use data sources with JTA-enabled drivers. For more information, refer to

Oracle9iAS Containers for J2EE User’s Guide.

IBM Extensions
WebSphere provides the following extension packages for data access. Applications

using these packages require code level changes for migration.

Data Access Beans
WebSphere Advanced Edition 3.5.3 also provides data access beans (in addition to

access beans for EJBs), which offer a set of features for working with relational

database queries and result sets. The com.ibm.db package contains the data access

JavaBean classes. The classes are in the databeans.jar file (found in the lib
directory under the application server root install directory). You will need this JAR

file in your classpath in order to compile a servlet using the data access JavaBeans.
6-10 Oracle9i Application Server Migrating From WebSphere

IBM Extensions
If you have lot of code using data access beans that need to be migrated to OC4J,

then put databeans.jar in the classpath of OC4J. However, Oracle recommends

that you migrate to JDBC 2.0 APIs.

Connection Pool Manager
As mentioned, IBM WebSphere 3.5.x still supports connection pooling with a

proprietary connection pool manager. Oracle recommends that you develop

connection pooling using IBM's standard extensions for JDBC 2.0.
Migrating JDBC Applications 6-11

IBM Extensions
6-12 Oracle9i Application Server Migrating From WebSphere

J2EE Server Compa
A

J2EE Server Comparison

This chapter compares WebSphere Advanced Edition 3.5.3 to Oracle9iAS OC4J in

the following areas:

■ Installation and Configuration

■ Code Portability

■ Database Connections

■ Security

■ Performance and Scalability

Installation and Configuration
■ Setting up WebSphere is complex and is different on different platforms. The

most stable version of WebSphere is v3.5, but it requires service pack 3 or 4 in

order to be J2EE 1.2 compliant. If there are problems during the installation of

the service pack you cannot un-install or re-apply the service pack; you must

re-install WebSphere.

Oracle9iAS OC4J takes only a few minutes to install and start.

■ WebSphere requires a database repository for installation, and to run

applications. WebSphere stores server and application configuration data in the

database, even for a single instance of WebSphere. Because of this, starting an

application takes an unusually long time, even in a development environment.

DB2 must be installed before installing WebSphere 3.5.x.

OC4J uses standard, easy-to-configure .xml files for server configuration and

J2EE applications deployment. An administration repository (Oracle9iAS

infrastructure) is not required unless a cluster with more than one Oracle9iAS

instance is required.
rison A-1

Code Portability
Code Portability
■ WebSphere requires developers to use proprietary packages for standard J2EE

features. To use servlet chaining or filtering, developers must use

WebSphere-specific packages. These are not WebSphere-specific features but are

part of the J2EE servlet 2.3 API specifications. Hence, WebSphere 4.0 does not

support the Servlet 2.3 API requirements.

OC4J is fully complaint with the latest Servlet 2.3 API

■ WebSphere v3.5.x CMP entitity beans are not portable. The WebSphere EJB

container requires every CMP entity bean to define an interface named

<ejbname>FinderHelper. This is not defined in the J2EE standard and is not

portable.

■ WebSphere-specific access beans are not portable. WebSphere strongly

influences developers to use access beans. These are client side beans to

access EJBs and are not portable. The VisualAge tool generates access beans by

default.

OC4J is fully complaint with EJB 1.1 and also supports advanced features of EJB

2.0 (WebSphere 4.0 does not support the EJB 2.0 spcification).

Table A–1 shows the level of J2EE support provided by versions of WebSphere and

OC4J.

Table A–1 J2EE component specification version support

Technology WebSphere 3.5.3 WebSphere 4.0 Oracle9 iAS OC4J

JDK 1.2.2 1.2.2 and 1.3 1.2.2 and 1.3

Servlets 2.1+ 2.2 2.2 and 2.3

JSPs 1.0 1.1 1.1

EJBs 1.0+ 1.1 1.1 and 2.0

JDBC 2.0 2.0 2.0

JNDI 1.2 1.2 1.2.1

JTA 1.0 1.0 1.01.

JMS 1.0 1.0 1.0.1
A-2 Oracle9i Application Server Migrating From WebSphere

Performance and Scalability
Database Connections
■ WebSphere consumes more memory for each database connection it

opens.Prepared SQL statements are cached across the pool of connections, by

J2EE server, for faster execution. WebSphere connection pooling fails if you try

to create more than one prepared SQL statement simultaneously per

connection.

OC4J supports more than one prepared SQL statement simultaneously. This

significantly improves database access performance in OC4J as compared to

WebSphere.

Security
■ Enabling security on WebSphere degrades performance significantly for EJBs.

Application response times degrade by a factor of two. For each EJB interaction

triggered by a HTTP transaction, WebSphere generates a large log output when

security is enabled. Also, WebSphere is not 100% complaint with J2EE security

APIs. For example, calls such as is CallerInRole does not work (a

NotImplemented exception is thrown).

OC4J is fully compliant with J2EE 1.2 security APIs.

Performance and Scalability
■ WebSphere uses RMI-IIOP to communicate between components. This is

particularly troublesome in the Enterprise Edition in which the Component

Broker performs the dual role of EJB container and Object Request Broker

(ORB) server. WebSphere is known to have performance problems with its

RMI-IIOP implementation due to its use of the CORBA cosNaming service for

object lookup.

OC4J uses a very efficient and optimized RMI (ORMI).

■ Co-located servlets, JSPs, and EJBs have very short code paths in OC4J

compared to WebSphere.

■ Container-managed persistence with associations causes performance problems

in WebSphere. WebSphere support for CMP association does not cache the

InitialContext nor the EJBhome objects. As a framework, it uses lookups

extensively through the homes, with each home lookup equal in performance

cost to executing 4 DB "SELECTs". It is recommended that you build a caching

"HomeFactory" for application use as well as make changes to the association
J2EE Server Comparison A-3

Performance and Scalability
framework so that it also uses the caching "HomeFactory". These functionalities

should be addressed by the EJB server itself (as they are by OC4J).

■ EJB-to-EJB communication is very fast and efficient in OC4J as compared to

WebSphere. OC4J uses local non-RMI calls within a given JVM.

■ WebSphere requires tuning of too many parameters to realize any performance

improvements. The following parameters must be tuned for performance:

■ JVM

■ Transport queues between HTTP listener plug-in- Open Sevlet Engine(OSE)

and Servlet Container.

■ Servlet auto reload (this feature is part of hot deployment and causes

performnce problems since the Administration Server has to update

configuration information in the database).

■ Transport queues between sevlet container and EJB container.

■ ORB (for enterprise edition).

OC4J requires very minimal tuning as compared to WebSphere. The latest

release of WebSphere, version 4.0, replaces support for multiple transport

protocols with a single HTTP-IIOP protocol to commnicate between the HTTP

server and application server.

■ WebSphere consumes more resources (CPU and memory) than OC4J. This not

only true for starting the application server, it is also true for each request.

■ WebSphere clustering performance degrades for more than 3 to 4 nodes in a

cluster.

■ The EJB container in WebSphere Enterprise Edition is based on that in the

WebSphere Advance Edition.
A-4 Oracle9i Application Server Migrating From WebSphere

Migrating from WebSpher
B

Migrating from WebSphere 4.0

This appendix outlines the migration strategy from WebSphere Advanced Edition

4.0 to Oracle9iAS in the following aspects:

■ Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0

■ J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and

Oracle9iAS

■ Migrating WebSphere 4.0 Servlets to Oracle9iAS

■ Migrating WebSphere 4.0 JSPs to Oracle9iAS

■ Migrating WebSphere 4.0 EJBs to Oracle9iAS

■ Other Considerations

Feature Differences Between WebSphere Advanced Edition 3.5.3 and
4.0

WebSphere Advanced Edition 4.0 is an evolution of the 3.5.x version in several areas

including J2EE specification support up to J2EE 1.2 for 4.0. Table B–1 summarizes

the evolved features. The information in the table provides a general reference for

what you can reuse from the other chapters in this book for your migration tasks

from WebSphere Advanced Edition 4.0 tp Oracle9iAS Release 2.
e 4.0 B-1

J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle9iAS
J2EE Specification Differences Between WebSphere Advanced Edition
4.0 and Oracle9 iAS

WebSphere Advanced Edition 4.0 advances on the J2EE specification support from

WebSphere Advanced Edition 3.x. It has more comparable features with Oracle9iAS

in the J2EE specification levels. Table B–2 compares the specification levels

supported by Oracle9iAS Release 2 and WebSphere Advanced Edition 4.0.

Table B–1 Summary of WebSphere 3.5.x and 4.0 feature differences

WebSphere Advanced Edition 3.5.x WebSphere Advanced Edition 4.0

Policy-based authorization J2EE roles-based authorization - method
invocation permissions for enterprise beans
can now be assigned to users through their
respective roles. Roles are specified in an
application’s deployment descriptors.

JSP 1.0 JSP 1.1

Servlet 2.1 Servlet 2.2

EJB 1.0 EJB 1.1

Presentation layer separation - HTML and
CGI requests are served by a separate
product. No implementation of J2EE Web
Application concept.

J2EE Web Application support (support for
.war files)

ServiceInitializer interface CustomService interface - Similar to the
ServiceInitializer interface except that
CustomService does not pass in the
context for the services to use for registration
binding.

Connection Manager V2.0 Connection pooling - JDBC 2.0 or data access
beans is used for connection pooling.

JNDI context interface used:
com.ibm.ejs.ns.jndi.

CNInitialContextFactory

New JNDI context interface used:
com.ibm.websphere.naming.

WsnInitialContextFactory

XML4J V2.0.15 parser XML4J V3.1.1 parser

.servlet file support Servlet extensions are bundled in .war file.

Open Servlet Engine (OSE) remote and
servlet redirector support for remote request
invocations.

HTTP transport plug-ins to communicate
between web server and application server.
B-2 Oracle9i Application Server Migrating From WebSphere

Migrating WebSphere 4.0 Servlets to Oracle9iAS
Migrating WebSphere 4.0 Servlets to Oracle9 iAS
WebSphere 4.0 is compliant with Servlet 2.2 specifications. It has proprietary

mechanisms to enable servlet chaining and filtering and is not fully Servlet

2.3-compliant. The WebSphere 3.5.3 compatibility mode is not available. With those

points in mind and not taking Servlet 2.3 features into consideration, migrating

WebSphere Advanced Edition 4.0 servlets to Oracle9iAS OC4J servlets should be

straightforward as both products support the same level of specifications (Servlets

2.2). However, the following possible incompatibilities should be noted and

resolved if applicable to your servlets:

■ WebSphere Specific Servlet Extensions

■ WebSphere-Specific Deployment Descriptors

■ Deprecated 3.5.3 API (Supported in WebSphere 4.0)

WebSphere Specific Servlet Extensions
The servlet extensions from WebSphere Advanced Edition 3.5.3 are still available in

WebSphere Advanced Edition 4.0. Information in the section "WebSphere

Extensions to the Servlet API" on page 3-13 is still valid when these extensions are

used. If your servlets use any of these extensions, they need to be re-written to

conform with the standard Servlet 2.2 or 2.3 API in order to run in OC4J.

Table B–2 Summary of Oracle9iAS and WebSphere Advanced Edition 4.0 feature
differences

J2EE Specification
WebSphere Advanced
Edition 4.0 Oracle9 iAS

JDK 1.2.2 and 1.3 1.2.2 and 1.3

Servlet 2.2 2.2 and 2.3

JSP 1.1 1.1 and 1.2

EJB 1.1 1.1 and 2.0

JDBC 2.0 2.0

JNDI 1.2 1.2.1

JTA 1.0.1 1.0.1

JMS 1.0 1.0.1
Migrating from WebSphere 4.0 B-3

Migrating WebSphere 4.0 JSPs to Oracle9iAS
WebSphere-Specific Deployment Descriptors
WebSphere Advanced Edition uses non-J2EE compliant deployment descriptors.

WebSphere 4.0’s Application Assembly Tool generates additional descriptor files in

addition to the standard J2EE files. These are the DDL and XMI files used to store

binding and WebSphere-specific extension information.

Since these files apply to WebSphere-specific extensions, they are redundant in

Oracle9iAS and need not be migrated. Ensure that other WebSphere-specific

extensions are not implemented in the migrated application before deploying in

Oracle9iAS.

Deprecated 3.5.3 API (Supported in WebSphere 4.0)
If your servlets deployed in WebSphere 4.0 use the 3.5.3 deprecated API shown in

the following table, you need to re-write them to use the equivalent Servlet 2.2 API

as follows:

Migrating WebSphere 4.0 JSPs to Oracle9 iAS
WebSphere Advanced Edition 4.0 and Oracle9iAS both support JSP 1.1 (with

Oracle9iAS supporting 1.2 as well). Hence, JSP migration between the two products

should be straightforward. In general, the rules and processes that apply when

migrating JSPs from WebSphere Advanced Edition 3.x to Oracle9iAS can also be

applied here. This is especially true for variations deviating from the JSP 1.1

specifications. These are related to the "tsx" family of tags. In OC4J, these should be

replaced with OracleJSP’s JML tags. Refer to the section "Migrating WebSphere

Extensions to OC4J" on page 4-9 for more information.

Migrating WebSphere 4.0 EJBs to Oracle9 iAS
WebSphere Advanced Edition 4.0 complies with EJB 1.1. This is the same

specification level which Oracle9iAS is compliant with (some EJB 2.0 features are

Table B–3 Deprecated 3.5.3 API and their Servlet 2.2 replacement

WebSphere 3.5.3 (supported in 4.0) Servlet 2.2

getValue() getAttribute()

getValueNames() getAttributeNames()

removeValue() removeAttribute()

putValue() setAttribute()
B-4 Oracle9i Application Server Migrating From WebSphere

Other Considerations
also supported by Oracle9iAS). Hence, migrating EJBs between the two application

servers should not pose any significant challenges. We strongly recommend that

you archive your EJBs in a EAR file with any web applications and deploy that file

using OEM or dcmctl to ensure that appropriate stubs are generated by

Oracle9iAS. Copying EJB classes and their WebSphere-compiled stubs manually is

not recommended.

We are investigating the EJB migration process further and will update this

document and information in the Oracle Technology Network website

(http://otn.oracle.com) if we encounter any issues.

Other Considerations
In addition to the migration points above, the following should also be observed:

Dynamic Fragment Cache
Dynamic Fragment Cache is a performance enhancement feature in WebShpere that

caches the output of servlets and JSPs. This feature intercepts calls to the service
method of servlets and determines if the calls can be serviced by its cache. For

servlets or JSPs to use this feature, they have to use the

com.ibm.websphere.servlet.cache package. When migrating to Oracle9iAS,

ensure that this package is removed and any related code modified. For caching

functionality in Oracle9iAS, consider using Oracle9iAS Web Cache and its Edge

Side Includes for Java (JESI) technology.

Data Access and Sources
WebSphere 4.0 provided the com.ibm.db package as a substitute for the standard

JDBC package java.sql . When migrating to Oracle9iAS, replace usage of

com.ibm.db with java.sql (standard JDBC 2.0 package is recommended). If

your application and components also use IBM data access beans, follow the

guidelines in "Data Access Beans" on page 6-10.

In WebSphere 4.0, all data sources must be created using

com.ibm.websphere.advanced.cm.factory.DataSourceFactory . To

migrate to Oracle9iAS, data sources can be obtained using the JDBC 2.0

java.sql.Datasource , which is a connection factory to a data source. A

Datasource object can be obtained by looking it up in the JNDI namespace. Refer

to "The DataSource Class" on page 6-4 for more information.
Migrating from WebSphere 4.0 B-5

Other Considerations
B-6 Oracle9i Application Server Migrating From WebSphere

Partner Migration
C

Partner Migration Tools

Enterprises migrating their applications to Oracle9iAS from other application

servers can now do so easily and more effectiv‘svely using our partner migration

tools.

Cacheon
Cacheon Migrator helps automate and improve the productivity of migrating

existing J2EE applications from BEA WebLogic and IBM WebSphere to Oracle9iAS.

With Cacheon Migrator, developers can automatically convert JSPs, EJB

deployment descriptors, Java source code, JMS settings, WEBINF configuration

files, and third party security features into Oracle9iAS.

Cacheon Migrator automates up to fifty percent of the migration effort. For the

remaining portion, the software highlights areas that may require manual

intervention and offers suggested solutions.

Features of Cacheon Migrator
■ Fast J2EE migration - Accelerate the conversion of EJB deployment descriptors,

Java source code, JSP and tag libraries, JMS settings and configuration files, and

security features.

■ Migration workbench - Manage the conversion of J2EE applications from one

application server platform to another.

■ Issue resolver - Identify and remove application server dependencies and build

an overall schedule for a migration project.

■ Migration reports - Identify all source application modifications and track

problem areas during migration.
Tools C-1

TogetherSoft
■ Customize rules - Customize conversion rules to meet application specific

requirements.

■ Create new rules - Create new rules in a scripting language to extend migration

capabilities.

■ JDeveloper integration - Streamline the migration process by converting

applications directly within Oracle9i JDeveloper.

For more information and resources, visit http://www.cacheon.com.

TogetherSoft
Together ControlCenter, the comprehensive Model-Build-Deploy Platform for

end-to-end software development, enables organizations to not only deploy to

leading application servers, but also lets them migrate their J2EE applications from

other J2EE-compliant application servers to Oracle9iAS.

ControlCenter handles the underlying deployment details so that developers can

focus on the business logic of the application instead of the application server

specifics.

An online viewlet that demonstrates how Together ControlCenter can help migrate

an application from WebSphere to Oracle9iAS can be found at:

http://www.togethersoft.com/developers/integrations/oracle9ias.jsp and

http://otn.oracle.com/products/ias/daily/mar28.html.
C-2 Oracle9i Application Server Migrating From WebSphere

Index

A
access beans, 2-14, 5-20, 5-22

copy helper, 5-23

rowset, 5-23

access control attribute, 5-31

ACID, 5-12

activation, 5-3

administration repository, A-1

Apache

JServ Protocol 1.3, 2-6

Application Assembly Tool, B-4

application state, 2-12

B
batch updates, 6-2

bean-managed transactions, 5-14, 5-15, 5-20

Borland JBuilder, 2-17

business intelligence, 2-3

C
Cacheon, C-1

caching

entity bean, 5-16

Certification Test Suite, 2-14

CICS, 1-8, 2-2

client-managed transactions, 5-14

clustering, 2-9, 2-10, 2-11, 3-16

Component Broker, 1-8, 2-2, A-3

concurrency, 5-3

concurrent database connections, 6-10

connection pool, 2-14, 6-9

properties, 6-9

sizing, 6-9

container, 5-12

container-managed fields attribute, 5-31

container-managed transactions, 5-14

containers, 1-6

cookies, 3-5

CORBA, 2-2, A-3

CPU cycles, 2-12

custom, 5-3

custom finder methods, 5-3

CustomService , B-2

D
data-access JavaBeans, 4-7

database-schema file, 6-6

data-sources.xml , 6-7

configuration example, 6-5

parameters, 6-5

DB2, 1-8, 6-4

Client Application Enabler (CAE), 6-4

db2.xml , 6-7

dcmctl , B-5

DDL, B-4

default-web-site.xml , 3-18

destruction, 5-3

Distributed Commit Coordinator, 5-30

Distributed Configuration Manager, 2-6

E
EAR file, 2-15, 2-17, B-5

ejb-jar.xml , 5-30
Index-1

ejb-location , 6-5

Encina, 1-8, 2-2

Enterprise JavaBeans, 3-1

1.0, 5-17, 5-25

1.1, 5-15, 5-17, 5-18, 5-23, 5-25, A-2, B-4

2.0, 5-3, 5-15, 5-30, A-2

activation, 5-3

application assembler, 5-4

associations, 5-23

bean provider, 5-4

container provider, 5-5

custom finder methods, 5-3

deployer, 5-5, 5-16

destruction, 5-3

helper classes, 5-3

inheritence, 5-22

instantiation, 5-3

non-transactional methods, 5-7

object-relational mapping, 5-3

passivate, 5-8

server provider, 5-5

stateful session bean, 5-6, 5-17

timeout, 5-8

stateless session bean, 5-8

pool, 5-8

system administrator, 5-5

transaction semantics, 5-29

transactional methods, 5-7

enterprise portals, 2-3

entity bean

bean-managed persistence, 5-17

bean-managed transactions, 5-17, 5-20

caching, 5-16

container-managed persistence, 5-3, 5-9, 5-12,

5-15, 5-17, 5-20, 5-25, 5-26, A-3

container-managed transactions, 5-17, 6-6

custom finder methods, 5-3

finder method, 5-11, 5-17, 5-21

finder-helper, 5-26

lifecycle, 5-10

lifecycle states, 5-10

object-relational mapping, 5-3, 5-11

primary keys, 5-18

synchronization, 5-9

transaction isolation, 5-15

transaction management, 5-15

transactions

bean-managed, 5-14, 5-15

client-managed, 5-14

container-managed, 5-14

environment-naming context (ENC), 5-18

F
failover, 2-10, 2-11

failure detection, 2-9

form fields, 3-6

G
globalization support, 4-7

H
helper classes, 5-3

high availability, 2-9

HTTP-IIOP, A-4

I
IBM

HTTP Server, 2-1, 2-4

Object Request Broker, 1-8, 2-2

VisualAge, 2-15, 2-17

Persistence Builder, 2-15

VisualAge for Java, 5-20, 5-23, 5-29, A-2

WebSphere Studio, 2-15, 5-30

Informix, 6-4

initial context factory, 6-8, B-2

INITIAL_CONTEXT_FACTORY, 6-8

instantiation, 5-3

J
J2EE

1.2, 1-6, 1-8, 2-1, 2-13, 2-14, 3-19, A-1, A-3

1.3, 2-2, B-1

application model, 1-2

architecture, 1-6

containers, 1-6

platform components, 1-3
Index-2

JAAS, 2-3

JAF, 2-3

JAR file, 2-15, 2-17, 3-7, 3-8, 5-23

Java Virtual Machine, 6-3, A-4

JavaMail, 2-2

java.sql.Connection , 6-1, 6-2

java.sql.Connections , 6-6

java.sql.Datasource , 6-4

java.sql.Driver , 6-1, 6-4

java.sql.DriverManager , 6-1, 6-2, 6-3, 6-4

java.sql.DriverPropertyInfo , 6-4

java.sql.ResultSet , 6-2

java.sql.Statement , 6-2

JAXP, 2-3

JCA, 2-3

JDBC

1.0

connection manager, 6-10

2.0

connection pooling, 6-9, 6-10, B-2

API, 6-1

description, 6-1

driver registration, 6-3

drivers, 6-2

registering, 6-3

native API driver, 6-2

native protocol, 6-3

network protocol calls, 6-3

ODBC bridge, 6-2

processing, 6-2

sessions, 6-1

JMS, 2-3, 2-14, 5-22

JNDI, 1-8, 2-2, 2-14, 3-9, 5-2, 5-5, 5-14, 5-18, 5-28,

5-30, 6-4, 6-6, B-2

description, 6-4

initial context, 6-8

namespace, 6-8

JSP

0.91, 4-4, 4-8

1.0, 4-4, 4-8

1.1, 4-4

batch compiler, 4-4

Compatibility mode, 4-4

Compliance mode, 4-4

container, 4-3

directives, 4-2

Include, 4-2

Page, 4-2

Taglib, 4-2

Oracle JSP Markup Language (JML), 4-7, 4-9

page implementation classes, 4-3

page instances, 4-3

processor, 4-4

Tag Library Descriptor, 4-2

translation, 4-3

translator, 4-3, 4-6

JTA, 2-3, 2-13, 5-30

JTS, 5-28

JVM, 2-5, 2-7, 2-10, 2-12

L
load balancer, 2-9, 2-11, 3-18

load balancing, 2-9, 2-10, 2-11, 3-16, 3-19

location service daemon, 2-4

M
Microsoft IIS, 2-1

Microsoft SQL Server, 6-4

migration tools, C-1

mod_oc4j, 2-6

MQSeries, 1-8

multicast, 2-12, 3-18

N
Netscape iPlanet, 2-1

O
object request broker, A-4

object-relational mapping, 5-11, 5-30

OC4J, 2-2, 2-6, 6-1

container, 2-17, 3-1

instance, 2-7, 3-16, 3-17

island, 2-12, 2-13

JSP translator, 4-6

load balancer instance, 3-19

process, 2-12, 3-17
Index-3

tag library, 4-9

ODBC API, 6-2

OJSP, 4-6, 4-9

Open Servlet Engine, A-4, B-2

Oracle

Business Components for Java, 2-16

Enterprise Manager, 1-5, 2-7, 2-13, 2-16, 2-17

Internet Developer Suite, 2-16

JDeveloper, 2-16

Oracle HTTP Server, 2-6, 2-11

Oracle Process Management Notification, 2-6, 2-8

Oracle Technology Network, B-5

Oracle9iAS

administration repository, A-1

cluster, 2-8, 2-11, 2-12, 2-17

clustering, 2-11

farm, 2-11, 2-17

infrastructure database, 2-8

installation, 2-6

instance, 2-6, 2-8

JSP translator, 4-6

load balancing, 2-11

metadata repository, 2-8

Oracle JSP Markup Language (JML), 4-7, 4-9

OracleJSP container, 4-6

Web Cache, 2-8, 2-11

OracleJSP

extensions, 4-7

OracleJSP container, 4-6

ORB, A-4

OrionCMTDataSource , 6-6

orion-ejb-jar.xml , 5-27, 5-32

orion-web.xml , 3-17

ORMI, A-3

P
passivate, 5-8

persistence name server, 2-4

policy-based authorization, B-2

polymorphism, 5-20

pooled-location , 6-5

pooling data sources, 6-6

binding to JNDI path, 6-6

portability, 1-7

primary key class attribute, 5-31

primary keys, 5-18

programmatic updates, 6-2

R
reentrant attribute, 5-31

replication, 2-12, 3-19

RMI, 2-6, 3-16, A-3

RMI-IIOP, 5-18, A-3

roles-based authorization, B-2

S
scalability, 1-2, 1-4, 2-7, 2-8, 5-3

scrollable result sets, 6-2

serializable, 3-18

serialized deployment descriptors, 5-30

ServiceInitializer , B-2

servlet

API classes, 3-2

chaining, 2-14, 3-10, 3-13

filtering, 2-14, 3-10

initialization parameters, 3-8, 3-10

lifecycle events, 3-13

sessions, 3-5

specification differences, 3-8

Servlet 2.2, B-3, B-4

Servlet 2.3, A-2, B-3

skeletons, 5-2

SQL, 4-7

SQL3 data types, 6-2

SQLJ, 4-6

state management attribute, 5-31

state replication, 3-19

stateful session bean, 5-6, 5-17

timeout, 5-8

stateless session bean, 5-8

pool, 5-8

stubs, 5-2, B-5

Sybase, 6-4

T
tag libraries, 3-8
Index-4

Tag Library Descriptor file, 4-2

taglib, 4-2

timeout attribute, 5-31

TogetherSoft, C-2

transaction isolation, 5-15, 5-31

transaction management, 5-15

transaction monitors, 1-8

transactions

ACID, 5-12

tsx tags, B-4

TXSeries, 2-2

U
URI prefix, 3-7

URL rewriting, 3-6

V
vendor-specific services, 1-8

Versant, 6-4

VisualAge, 5-20

W
WAR file, 2-15, 2-17, 3-7, 3-8

web server

plug-in, 2-4

web services, 2-3

web-site.xml , 3-18

WebSphere

4.0

Application Assembly Tool, B-4

access beans, 5-20, 5-22, A-2

Administrative Console, 2-10, 2-16, 3-11, 6-5

Administrative Server, 2-4, 2-16

Administrative Server Repository, 2-5

Advanced Edition 4.0, B-1

chaining distributed exceptions, 5-22

cloning, 2-10

clustering, 2-10

Compliance Mode, 3-11

connection pool manager, 6-11

connection pooling, 6-10

container-managed persistence, 5-20, 5-21

fields and associations, 5-22

data access beans, 6-10

domain, 2-16

EJB associations, 5-23

EJB inheritance, 5-22

Enterprise Edition, A-4

entity bean

container-managed persistence, A-2

extensions, 6-10

failover, 2-10

JSP extensions, 4-4, 4-5

load balancing, 2-10

Object-level Trace, 5-24

Servlet API 2.2 support, 3-12

servlet API extensions, 3-13

transactions, 5-21

workload management, 2-10

web.xml , 3-8, 3-12, 3-14

workload management, 2-2, 2-10

X
XADataSource , 6-6

xa-location , 6-5

xa/OracleXADS , 6-6

XA-transactions, 5-24

XMI, B-4

XML4J, B-2

X/Open SQL, 6-1
Index-5

Index-6

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 1 Overview
	Overview of J2EE
	What is the J2EE Application Model?
	What is the J2EE Platform?

	What is an Application Server?
	Overview of Oracle9iAS
	J2EE Application Migration Challenges

	J2EE Application Architecture
	Migration Issues
	Portability
	Vendor Specificity
	Deviations from J2EE 1.2 Specification
	Migration Approach

	Using this Guide

	2 Comparison of Oracle9iAS and WebSphere Features
	Application Server Product Offerings Comparison
	Websphere Product Offerings
	WebSphere Standard Edition
	WebSphere Advanced Edition
	WebSphere Enterprise Edition

	Oracle9i Application Server
	Architecture Comparison
	IBM WebSphere Components
	IBM HTTP Server
	Web Server Plug-in
	Administrative Server
	Administrative Repository
	Application Server

	Oracle9iAS Components and Concepts
	Oracle9iAS Instance
	Oracle HTTP Server
	OC4J Instances
	Oracle Process Management Notification (OPMN) Service
	Distributed Configuration Manager (DCM)
	Oracle9iAS Infrastructure Repository
	Oracle9iAS Web Cache

	Clustering and Load balancing
	What is Clustering?
	Benefits of Clustering: Failover Recovery
	What is Load Balancing?
	WebSphere Suppport for Clustering and Load Balancing
	Clustering in WebSphere
	Load Balancing in WebSphere

	Oracle9iAS Support for Clustering and Load Balancing
	Oracle9iAS Clusters
	OC4J Islands

	J2EE Support Comparison
	WebSphere J2EE support
	Oracle9iAS OC4J J2EE support

	Java Development and Deployment Tools
	WebSphere Development and Deployment Tools
	WebSphere Development Tools
	Websphere Studio
	WebSphere Administrative Console

	Oracle9iAS Development and Deployment Tools
	Development Tools
	Assembly Tools
	Administration Tools

	3 3 Migrating Servlets
	Overview of the Java Servlet API
	Servlet Lifecycle
	The init() Method
	The service() Method
	The destroy() Method

	Session Tracking
	Cookies
	URL rewriting
	Hidden form fields in HTML

	The HttpSession object
	J2EE Web Applications
	Web Application Archive (WAR)
	About the WEB-INF directory

	Differences between Servlet 2.0, 2.1 and 2.2
	Highlights of the Java Servlet API 2.1
	New Features in the Java Servlet API 2.2
	Servlet API 2.3
	Filters and Servlet Chaining
	Servlet Chains

	WebSphere Servlet API Support
	WebSphere Advanced Edition 3.5.3 Compatibility Mode
	Full Servlet 2.2 Compliance Mode
	Servlet 2.2 API Support
	WebSphere Extensions to the Servlet API

	Oracle9iAS Servlet API Suport
	Migrating Standalone Servlets to OC4J
	Sample .servlet file: SnoopServlet.servlet

	Migrating Cluster-aware applications to OC4J
	Configuring an OC4J Island (in OC4J standalone mode)
	How OC4J Island Works (in OC4J standalone mode)

	4 4 Migrating JSPs
	Overview of JSP Pages
	Parts of a JSP Page
	Directives
	Page
	Taglib
	Include

	What is a JSP container?
	Life Cycle of a JSP Page

	WebSphere Support for the JSP API
	WebSphere-Specific Features
	Batch JSP Compiler
	HTML Template Extensions in JSP 0.91
	WebSphere Extensions to JSP 1.0

	The OracleJSP container
	The JSP Translator in Oracle9iAS OC4J
	OracleJSP Extensions

	Migrating from WebSphere JSP 0.91
	The <REPEATGROUP> Tag

	Migrating WebSphere Extensions to OC4J
	<REPEAT> or <tsx:repeat> tag:

	5 5 Migrating Enterprise Java Beans
	Overview of Enterprise JavaBeans
	EJB Migration Considerations
	EJB Functionality and Components
	The EJB Server
	EJB container
	EJB Specification Roles
	Enterprise Bean Provider
	Application Assembler
	Deployer
	EJB Server Provider
	EJB Container Provider
	System Administrator

	Session Beans
	Stateful Session Beans
	The Life Cycle of Stateful Session Beans
	Ready State
	Transactional Method Invocations
	Non-transactional Method Invocations
	Pooled State
	Removal

	Stateless Session Beans
	The Life Cycle of a Stateless Session Bean

	Entity Beans
	Container-managed Persistence (CMP) Entity Beans
	Bean-managed Persistence (BMP) Entity Beans
	The Entity Beans Life Cycle
	Does-not-exist State
	Pooled State
	Ready State

	Object-relational (O-R) Mapping and Persistence
	EJB Transactions and Concurrency
	The Java Transaction API(JTA)
	Transaction Boundaries
	Client-Managed Transactions
	Container-Managed Transactions (CMT)
	Bean Managed Transactions (BMT)

	Transaction Isolation and Concurrency
	EJB Caching

	Differences between the EJB 1.0 and EJB 1.1 Specifications
	Changes Specific to Entity Beans

	WebSphere 3.5.x Support for the EJB API
	Read-only Methods
	EJB Finder-Helper Interface
	CMP in WebSphere
	Transactions
	EJB Inheritance
	Distributed exceptions
	Access beans
	Associations between enterprise beans

	Migrating EJB Applications from WebSphere to Oracle9iAS OC4J
	EJB Code Changes
	Client Level Code Changes
	Changes in Transactional Semantics
	Object-relational (O-R) Mapping
	Deployment of EJBs
	OC4J EJB Container Setting

	6 6 Migrating JDBC Applications
	The JDBC API
	Database Drivers
	The DriverManager Class
	Registering JDBC Drivers

	The DataSource Class
	Configuring Data Sources
	Configuring OC4J with DB2 Database
	Obtaining a Data Source Object

	Connection Pooling
	Migrating WebSphere Connection Pooling to Oracle9i Application Server
	Migrating from Websphere JDBC 2.0 connection pooling:

	IBM Extensions
	Data Access Beans
	Connection Pool Manager

	A J2EE Server Comparison
	Installation and Configuration
	Code Portability
	Database Connections
	Security
	Performance and Scalability

	B Migrating from WebSphere 4.0
	Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0
	J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle9iAS
	Migrating WebSphere 4.0 Servlets to Oracle9iAS
	WebSphere Specific Servlet Extensions
	WebSphere-Specific Deployment Descriptors
	Deprecated 3.5.3 API (Supported in WebSphere 4.0)

	Migrating WebSphere 4.0 JSPs to Oracle9iAS
	Migrating WebSphere 4.0 EJBs to Oracle9iAS
	Other Considerations
	Dynamic Fragment Cache
	Data Access and Sources

	C Partner Migration Tools
	Cacheon
	Features of Cacheon Migrator

	TogetherSoft

	Index

