
Oracle9 i

Database Administrator’s Guide

Release 2 (9.2)

March 2002

Part No. A96521-01

Oracle9i Database Administrator’s Guide, Release 2 (9.2)

Part No. A96521-01

Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

Primary Author: Ruth Baylis

Contributing Authors: Kathy Rich

Graphic Designer: Valarie Moore

Contributors: Lance Ashdown, Allen Brumm, Michele Cyran, Mary Ann Davidson, Harvey Eneman,
Amit Ganesh, Carolyn Gray, Wei Huang, Robert Jenkins, Mark Kennedy, Sushil Kumar, Bill Lee, Yunrui
Li, Diana Lorentz, Sujatha Muthulingam, Gary Ngai, Waleed Ojeil, Lois Price, Ananth Raghavan, Ann
Rhee, Rajiv Sinha, Jags Srinivasan, Anh-Tuan Tran, Deborah Steiner, Janet Stern, Michael Stewart, Alex
Tsukerman, Kothanda Umamageswaran, Steven Wertheimer, Daniel Wong

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, Oracle Names, Oracle Store,
Oracle Transparent Gateway, PL/SQL, SQL*Net, and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... xxxi

Preface .. xxxiii

What’s New in Oracle9 i? ... xlvii

Part I Basic Database Administration

1 The Oracle Database Administrator

Types of Oracle Users... 1-2
Database Administrators... 1-2
Security Officers.. 1-3
Network Administrators ... 1-3
Application Developers ... 1-3
Application Administrators .. 1-4
Database Users.. 1-4

Tasks of a Database Administrator ... 1-4
Task 1: Evaluate the Database Server Hardware... 1-5
Task 2: Install the Oracle Software... 1-5
Task 3: Plan the Database .. 1-5
Task 4: Create and Open the Database.. 1-6
Task 5: Back Up the Database ... 1-7
Task 6: Enroll System Users .. 1-7
Task 7: Implement the Database Design ... 1-7

iv

Task 8: Back Up the Fully Functional Database ... 1-7
Task 9: Tune Database Performance .. 1-8

Identifying Your Oracle Database Software Release... 1-8
Release Number Format .. 1-8
Checking Your Current Release Number ... 1-10

Database Administrator Security and Privileges ... 1-10
The Database Administrator’s Operating System Account ... 1-10
Database Administrator Usernames.. 1-11

Database Administrator Authentication .. 1-13
Administrative Privileges.. 1-13
Selecting an Authentication Method ... 1-15
Using Operating System (OS) Authentication ... 1-17
Using Password File Authentication ... 1-18

Creating and Maintaining a Password File.. 1-20
Using ORAPWD ... 1-20
Setting REMOTE_LOGIN_ PASSWORDFILE.. 1-22
Adding Users to a Password File ... 1-23
Maintaining a Password File... 1-24

Database Administrator Utilities... 1-26
SQL*Loader ... 1-26
Export and Import .. 1-26

2 Creating an Oracle Database

Considerations Before Creating a Database .. 2-2
Planning for Database Creation.. 2-2
Meeting Creation Prerequisites .. 2-4
Deciding How to Create an Oracle Database ... 2-4

Using the Database Configuration Assistant... 2-5
Advantages of Using DBCA ... 2-6
Creating a Database Using DBCA.. 2-7
Configuring Database Options ... 2-9
Deleting a Database Using DBCA.. 2-9
Managing DBCA Templates ... 2-9
Using DBCA Silent Mode .. 2-13

Manually Creating an Oracle Database.. 2-14

v

Step 1: Decide on Your Instance Identifier (SID) ... 2-14
Step 2: Establish the Database Administrator Authentication Method.............................. 2-15
Step 3: Create the Initialization Parameter File .. 2-15
Step 4: Connect to the Instance ... 2-17
Step 5: Start the Instance.. 2-17
Step 6: Issue the CREATE DATABASE Statement .. 2-18
Step 7: Create Additional Tablespaces .. 2-20
Step 8: Run Scripts to Build Data Dictionary Views.. 2-21
Step 9: Run Scripts to Install Additional Options (Optional)... 2-21
Step 10: Create a Server Parameter File (Recommended) .. 2-21
Step 11: Back Up the Database.. 2-22

Understanding the CREATE DATABASE Statement .. 2-22
Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM................ 2-23
Clauses that Simplify Database Creation and Management.. 2-23
Creating a Locally Managed SYSTEM Tablespace .. 2-26
Specifying the Database Time Zone and Time Zone File ... 2-28
Specifying FORCE LOGGING Mode .. 2-29

Troubleshooting Database Creation ... 2-31
Dropping a Database ... 2-31
Considerations After Creating a Database .. 2-31

Some Security Considerations .. 2-32
Installing Oracle’s Sample Schemas... 2-33

Initialization Parameters and Database Creation... 2-34
Determining the Global Database Name .. 2-35
Specifying Control Files... 2-36
Specifying Database Block Sizes... 2-37
Setting Initialization Parameters that Affect the Size of the SGA 2-38
Specifying the Maximum Number of Processes .. 2-41
Specifying the Method of Undo Space Management.. 2-42
Setting License Parameters.. 2-43

Managing Initialization Parameters Using a Server Parameter File 2-44
What is a Server Parameter File?.. 2-44
Migrating to a Server Parameter File... 2-45
Creating a Server Parameter File.. 2-46
The SPFILE Initialization Parameter.. 2-47

vi

Using ALTER SYSTEM to Change Initialization Parameter Values 2-47
Exporting the Server Parameter File .. 2-49
Backing Up the Server Parameter File ... 2-50
Errors and Recovery for the Server Parameter File ... 2-50
Viewing Parameter Settings .. 2-51

3 Using Oracle-Managed Files

What are Oracle-Managed Files? ... 3-2
Who Can Use Oracle-Managed Files? ... 3-2
Benefits of Using Oracle-Managed Files ... 3-3
Oracle-Managed Files and Existing Functionality... 3-4

Enabling the Creation and Use of Oracle-Managed Files... 3-4
Setting the DB_CREATE_FILE_DEST Initialization Parameter... 3-5
Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameter 3-6

Creating Oracle-Managed Files.. 3-6
How Oracle-Managed Files are Named.. 3-7
Creating Oracle-Managed Files at Database Creation .. 3-8
Creating Datafiles for Tablespaces ... 3-14
Creating Tempfiles for Temporary Tablespaces .. 3-16
Creating Control Files .. 3-17
Creating Online Redo Log Files.. 3-19

Behavior of Oracle-Managed Files .. 3-21
Dropping Datafiles and Tempfiles... 3-21
Dropping Online Redo Log Files.. 3-22
Renaming Files .. 3-22
Managing Standby Databases... 3-22

Scenarios for Using Oracle-Managed Files.. 3-22
Scenario 1: Create and Manage a Database with Multiplexed Online Redo Logs............ 3-23
Scenario 2: Add Oracle-Managed Files to an Existing Database ... 3-27

4 Starting Up and Shutting Down

Starting Up a Database .. 4-2
Options for Starting Up a Database ... 4-2
Preparing to Start an Instance... 4-3
Using SQL*Plus to Start Up a Database .. 4-3

vii

Starting an Instance: Scenarios ... 4-5
Altering Database Availability .. 4-9

Mounting a Database to an Instance.. 4-9
Opening a Closed Database .. 4-10
Opening a Database in Read-Only Mode ... 4-10
Restricting Access to an Open Database ... 4-11

Shutting Down a Database ... 4-11
Shutting Down with the NORMAL Option ... 4-12
Shutting Down with the IMMEDIATE Option .. 4-12
Shutting Down with the TRANSACTIONAL Option .. 4-13
Shutting Down with the ABORT Option .. 4-13

Quiescing a Database... 4-14
Placing a Database into a Quiesced State.. 4-15
Restoring the System to Normal Operation ... 4-16
Viewing the Quiesce State of an Instance ... 4-16

Suspending and Resuming a Database .. 4-17

Part II Oracle Server Processes and Storage Structure

5 Managing Oracle Processes

Server Processes .. 5-2
Dedicated Server Processes... 5-2
Shared Server Processes... 5-3

Configuring Oracle for the Shared Server ... 5-5
Initialization Parameters for Shared Server.. 5-5
Setting the Initial Number of Dispatchers (DISPATCHERS)... 5-6
Setting the Initial Number of Shared Servers (SHARED_SERVERS) 5-7
Modifying Dispatcher and Server Processes .. 5-8
Monitoring Shared Server ... 5-10

About Oracle Background Processes .. 5-11
Monitoring the Processes of an Oracle Instance... 5-13

Process and Session Views .. 5-14
Monitoring Locks.. 5-15
Trace Files and the Alert File .. 5-15

Managing Processes for Parallel Execution ... 5-18

viii

Managing the Parallel Execution Servers.. 5-18
Altering Parallel Execution for a Session .. 5-19

Managing Processes for External Procedures .. 5-20
Terminating Sessions ... 5-21

Identifying Which Session to Terminate ... 5-22
Terminating an Active Session ... 5-22
Terminating an Inactive Session... 5-23

6 Managing Control Files

What Is a Control File?... 6-2
Guidelines for Control Files ... 6-2

Provide Filenames for the Control Files .. 6-2
Multiplex Control Files on Different Disks... 6-3
Place Control Files Appropriately.. 6-3
Back Up Control Files... 6-3
Manage the Size of Control Files .. 6-4

Creating Control Files .. 6-4
Creating Initial Control Files... 6-4
Creating Additional Copies, Renaming, and Relocating Control Files 6-5
Creating New Control Files... 6-5

Troubleshooting After Creating Control Files .. 6-9
Checking for Missing or Extra Files ... 6-9
Handling Errors During CREATE CONTROLFILE .. 6-10

Backing Up Control Files .. 6-10
Recovering a Control File Using a Current Copy ... 6-10

Recovering from Control File Corruption Using a Control File Copy 6-10
Recovering from Permanent Media Failure Using a Control File Copy 6-11

Dropping Control Files .. 6-11
Displaying Control File Information .. 6-12

7 Managing the Online Redo Log

What Is the Online Redo Log?.. 7-2
Redo Threads... 7-2
Online Redo Log Contents .. 7-2
How Oracle Writes to the Online Redo Log ... 7-3

ix

Planning the Online Redo Log... 7-5
Multiplexing Online Redo Log Files.. 7-5
Placing Online Redo Log Members on Different Disks .. 7-9
Setting the Size of Online Redo Log Members... 7-9
Choosing the Number of Online Redo Log Files... 7-10
Controlling Archive Lag.. 7-10

Creating Online Redo Log Groups and Members ... 7-12
Creating Online Redo Log Groups .. 7-13
Creating Online Redo Log Members ... 7-13

Relocating and Renaming Online Redo Log Members .. 7-14
Dropping Online Redo Log Groups and Members ... 7-16

Dropping Log Groups.. 7-16
Dropping Online Redo Log Members ... 7-17

Forcing Log Switches ... 7-18
Verifying Blocks in Redo Log Files ... 7-18
Clearing an Online Redo Log File ... 7-19
Viewing Online Redo Log Information ... 7-20

8 Managing Archived Redo Logs

What Is the Archived Redo Log? ... 8-2
Choosing Between NOARCHIVELOG and ARCHIVELOG Mode ... 8-2

Running a Database in NOARCHIVELOG Mode... 8-2
Running a Database in ARCHIVELOG Mode ... 8-3

Controlling Archiving.. 8-4
Setting the Initial Database Archiving Mode ... 8-5
Changing the Database Archiving Mode.. 8-5
Enabling Automatic Archiving... 8-6
Disabling Automatic Archiving ... 8-8
Performing Manual Archiving ... 8-9

Specifying the Archive Destination.. 8-9
Specifying Archive Destinations .. 8-10
Understanding Archive Destination Status.. 8-12

Specifying the Mode of Log Transmission .. 8-14
Normal Transmission Mode ... 8-14
Standby Transmission Mode .. 8-14

x

Managing Archive Destination Failure .. 8-16
Specifying the Minimum Number of Successful Destinations .. 8-16
Re-Archiving to a Failed Destination... 8-18

Tuning Archive Performance by Specifying Multiple ARCn Processes 8-19
Controlling Trace Output Generated by the Archivelog Process .. 8-21
Viewing Information About the Archived Redo Log .. 8-23

Dynamic Performance Views.. 8-23
The ARCHIVE LOG LIST Command .. 8-24

9 Using LogMiner to Analyze Redo Logs

Potential Uses for Data Stored in Redo Logs .. 9-2
Accessing Information Stored in Redo Logs ... 9-3
Redo Logs and Dictionary Files ... 9-4

Redo Logs... 9-4
Dictionary Options ... 9-5
Tracking DDL Statements.. 9-9

LogMiner Recommendations and Restrictions... 9-10
Recommendations .. 9-10
Restrictions... 9-11

Filtering Data That is Returned ... 9-12
Showing Only Committed Transactions ... 9-12
Skipping Redo Corruptions .. 9-14
Filtering Data By Time ... 9-14
Filtering Data By SCN.. 9-15

Accessing LogMiner Information .. 9-15
Querying V$LOGMNR_CONTENTS .. 9-16

Executing Reconstructed SQL Statements .. 9-17
Formatting of Returned Data .. 9-17

Extracting Actual Data Values from Redo Logs .. 9-18
NULL Returns From the MINE_VALUE Function ... 9-18
Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 9-19

Supplemental Logging... 9-19
Database Supplemental Logging.. 9-20
Table Supplemental Logging .. 9-22

Steps in a Typical LogMiner Session .. 9-23

xi

Perform Initial Setup Activities .. 9-24
Extract a Dictionary.. 9-24
Specify Redo Logs for Analysis .. 9-24
Start a LogMiner Session ... 9-26
Query V$LOGMNR_CONTENTS ... 9-28
End a LogMiner Session .. 9-28

Example Uses of LogMiner ... 9-28
Example: Using LogMiner to Track Changes Made By a Specific User............................. 9-28
Example: Using LogMiner to Calculate Table Access Statistics .. 9-30

10 Managing Job Queues

Enabling Processes Used for Executing Jobs... 10-2
Managing Job Queues ... 10-3

The DBMS_JOB Package.. 10-3
Submitting a Job to the Job Queue ... 10-4
How Jobs Execute ... 10-9
Removing a Job from the Job Queue ... 10-10
Altering a Job... 10-11
Broken Jobs .. 10-12
Forcing a Job to Execute... 10-14
Terminating a Job ... 10-14

Viewing Job Queue Information ... 10-15
Displaying Information About a Job ... 10-15
Displaying Information About Running Jobs .. 10-15

11 Managing Tablespaces

Guidelines for Managing Tablespaces ... 11-2
Use Multiple Tablespaces.. 11-2
Specify Tablespace Default Storage Parameters .. 11-3
Assign Tablespace Quotas to Users ... 11-3

Creating Tablespaces.. 11-3
Locally Managed Tablespaces .. 11-5
Dictionary-Managed Tablespaces .. 11-10
Temporary Tablespaces ... 11-12

Coalescing Free Space in Dictionary-Managed Tablespaces ... 11-16

xii

How Oracle Coalesces Free Space.. 11-16
Manually Coalescing Free Space .. 11-17
Monitoring Free Space ... 11-18

Specifying Nonstandard Block Sizes for Tablespaces... 11-19
Controlling the Writing of Redo Records .. 11-20
Altering Tablespace Availability ... 11-21

Taking Tablespaces Offline ... 11-21
Bringing Tablespaces Online... 11-23
Altering the Availability of Datafiles or Tempfiles.. 11-23

Using Read-Only Tablespaces .. 11-24
Making a Tablespace Read-Only.. 11-25
Making a Read-Only Tablespace Writable ... 11-27
Creating a Read-Only Tablespace on a WORM Device .. 11-27
Delaying the Opening of Datafiles in Read Only Tablespaces .. 11-28

Dropping Tablespaces.. 11-29
Diagnosing and Repairing Locally Managed Tablespace Problems 11-30

Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap) 11-32
Scenario 2: Dropping a Corrupted Segment... 11-32
Scenario 3: Fixing Bitmap Where Overlap is Reported... 11-32
Scenario 4: Correcting Media Corruption of Bitmap Blocks .. 11-33
Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace . 11-33

Migrating the SYSTEM Tablespace to a Locally Managed Tablespace................................ 11-34
Transporting Tablespaces Between Databases.. 11-34

Introduction to Transportable Tablespaces .. 11-35
Limitations ... 11-36
Compatibility Considerations for Transportable Tablespaces... 11-36
Transporting Tablespaces Between Databases: A Procedure .. 11-37
Object Behaviors ... 11-43
Using Transportable Tablespaces... 11-46

Viewing Tablespace Information... 11-50
Listing Tablespaces and Default Storage Parameters: Example .. 11-51
Listing the Datafiles and Associated Tablespaces of a Database: Example 11-51
Displaying Statistics for Free Space (Extents) of Each Tablespace: Example................... 11-51

xiii

12 Managing Datafiles

Guidelines for Managing Datafiles... 12-2
Determine the Number of Datafiles... 12-2
Determine the Size of Datafiles .. 12-4
Place Datafiles Appropriately... 12-4
Store Datafiles Separate from Redo Log Files .. 12-4

Creating Datafiles and Adding Datafiles to a Tablespace... 12-5
Changing a Datafile’s Size .. 12-6

Enabling and Disabling Automatic Extension for a Datafile ... 12-6
Manually Resizing a Datafile.. 12-7

Altering Datafile Availability ... 12-8
Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode 12-9
Taking Datafiles Offline in NOARCHIVELOG Mode .. 12-9
Altering the Availability of All Datafiles or Tempfiles in a Tablespace............................. 12-9

Renaming and Relocating Datafiles.. 12-10
Renaming and Relocating Datafiles for a Single Tablespace ... 12-11
Renaming and Relocating Datafiles for Multiple Tablespaces .. 12-13

Dropping Datafiles ... 12-14
Verifying Data Blocks in Datafiles .. 12-14
Mapping Files to Physical Devices ... 12-15

Overview of Oracle’s File Mapping Interface .. 12-16
How Oracle’s File Mapping Interface Works... 12-16
Using Oracle’s File Mapping Interface.. 12-21
File Mapping Examples ... 12-25

 Viewing Datafile Information .. 12-28

13 Managing Undo Space

What is Undo? ... 13-2
Specifying the Mode for Undo Space Management .. 13-3

Starting an Instance in Automatic Undo Management Mode ... 13-3
Starting an Instance in Manual Undo Management Mode .. 13-4

Managing Undo Tablespaces.. 13-5
Creating an Undo Tablespace... 13-6
Altering an Undo Tablespace ... 13-7
Dropping an Undo Tablespace... 13-7

xiv

Switching Undo Tablespaces .. 13-8
Establishing User Quotas for Undo Space .. 13-9
Specifying the Retention Period for Undo Information.. 13-9
Viewing Information About Undo Space.. 13-11

Managing Rollback Segments.. 13-13
Guidelines for Managing Rollback Segments .. 13-13
Creating Rollback Segments.. 13-19
Altering Rollback Segments .. 13-21
Explicitly Assigning a Transaction to a Rollback Segment .. 13-24
Dropping Rollback Segments.. 13-25
Viewing Rollback Segment Information ... 13-25

Part III Schema Objects

14 Managing Space for Schema Objects

Managing Space in Data Blocks... 14-2
Specifying the PCTFREE Parameter .. 14-2
Specifying the PCTUSED Parameter ... 14-5
Selecting Associated PCTUSED and PCTFREE Values .. 14-7
Specifying the Transaction Entry Parameters: INITRANS and MAXTRANS................... 14-8

Setting Storage Parameters ... 14-8
Identifying the Storage Parameters.. 14-9
Setting Default Storage Parameters for Segments in a Tablespace 14-11
Setting Storage Parameters for Data Segments .. 14-11
Setting Storage Parameters for Index Segments... 14-12
Setting Storage Parameters for LOBs, Varrays, and Nested Tables 14-12
Changing Values for Storage Parameters ... 14-13
Understanding Precedence in Storage Parameters.. 14-13
Example of How Storage Parameters Effect Space Allocation .. 14-14

Managing Resumable Space Allocation... 14-14
Resumable Space Allocation Overview... 14-15
Enabling and Disabling Resumable Space Allocation... 14-19
Detecting Suspended Statements ... 14-21
Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger........ 14-23

Deallocating Space.. 14-25

xv

Viewing the High Water Mark ... 14-25
Issuing Space Deallocation Statements ... 14-26
Examples of Deallocating Space... 14-26

Understanding Space Use of Datatypes ... 14-29

15 Managing Tables

Guidelines for Managing Tables ... 15-2
Design Tables Before Creating Them .. 15-2
Specify How Data Block Space Is to Be Used... 15-2
Specify the Location of Each Table .. 15-3
Consider Parallelizing Table Creation... 15-4
Consider Using NOLOGGING When Creating Tables .. 15-4
Estimate Table Size and Set Storage Parameters ... 15-4
Plan for Large Tables ... 15-5
Table Restrictions.. 15-6

Creating Tables.. 15-6
Creating a Table ... 15-7
Creating a Temporary Table ... 15-8
Parallelizing Table Creation.. 15-8
Automatically Collecting Statistics on Tables .. 15-9

Altering Tables .. 15-10
Altering Physical Attributes of a Table ... 15-11
Moving a Table to a New Segment or Tablespace... 15-12
Manually Allocating Storage for a Table .. 15-12
Modifying an Existing Column’s Definition .. 15-13
Adding Table Columns ... 15-13
Renaming Table Columns ... 15-14
Dropping Table Columns.. 15-14

Redefining Tables Online ... 15-16
Features of Online Table Redefinition... 15-16
The DBMS_REDEFINITION Package ... 15-17
Steps for Online Redefinition of Tables... 15-17
Intermediate Synchronization .. 15-19
Abort and Cleanup After Errors... 15-20
Example of Online Table Redefinition .. 15-20

xvi

Restrictions... 15-22
Dropping Tables.. 15-23
Managing Index-Organized Tables ... 15-24

What are Index-Organized Tables.. 15-24
Creating Index-Organized Tables .. 15-25
Maintaining Index-Organized Tables.. 15-30
Analyzing Index-Organized Tables ... 15-32
Using the ORDER BY Clause with Index-Organized Tables ... 15-33
Converting Index-Organized Tables to Regular Tables.. 15-33

Managing External Tables ... 15-33
Creating External Tables.. 15-35
Altering External Tables .. 15-38
Dropping External Tables.. 15-39
System and Object Privileges for External Tables.. 15-39

Viewing Information About Tables .. 15-40

16 Managing Indexes

Guidelines for Managing Indexes ... 16-2
Create Indexes After Inserting Table Data.. 16-3
Index the Correct Tables and Columns ... 16-4
Order Index Columns for Performance... 16-5
Limit the Number of Indexes for Each Table.. 16-5
Drop Indexes That Are No Longer Required .. 16-5
Specify Index Block Space Use.. 16-5
Estimate Index Size and Set Storage Parameters ... 16-6
Specify the Tablespace for Each Index... 16-6
Consider Parallelizing Index Creation .. 16-7
Consider Creating Indexes with NOLOGGING .. 16-7
Consider Costs and Benefits of Coalescing or Rebuilding Indexes..................................... 16-8
Consider Cost Before Disabling or Dropping Constraints ... 16-9

Creating Indexes.. 16-9
Creating an Index Explicitly.. 16-10
Creating a Unique Index Explicitly.. 16-11
Creating an Index Associated with a Constraint ... 16-11
Collecting Incidental Statistics when Creating an Index .. 16-13

xvii

Creating a Large Index .. 16-13
Creating an Index Online .. 16-13
Creating a Function-Based Index ... 16-14
Creating a Key-Compressed Index .. 16-18

Altering Indexes.. 16-19
Altering Storage Characteristics of an Index.. 16-20
Rebuilding an Existing Index.. 16-20
Monitoring Index Usage.. 16-21

Monitoring Space Use of Indexes.. 16-21
Dropping Indexes ... 16-22
Viewing Index Information .. 16-23

17 Managing Partitioned Tables and Indexes

What Are Partitioned Tables and Indexes?.. 17-2
Partitioning Methods ... 17-3

When to Use the Range Partitioning Method... 17-4
When to Use the Hash Partitioning Method .. 17-5
When to Use the List Partitioning Method ... 17-5
When to Use the Composite Range-Hash Partitioning Method.. 17-7
When to Use the Composite Range-List Partitioning Method .. 17-8

Creating Partitioned Tables .. 17-10
Creating Range-Partitioned Tables .. 17-11
Creating Hash-Partitioned Tables.. 17-12
Creating List-Partitioned Tables... 17-13
Creating Composite Range-Hash Partitioned Tables ... 17-14
Creating Composite Range-List Partitioned Tables .. 17-15
Using Subpartition Templates to Describe Composite Partitioned Tables...................... 17-17
Creating Partitioned Index-Organized Tables ... 17-19
Partitioning Restrictions for Multiple Block Sizes ... 17-22

Maintaining Partitioned Tables ... 17-22
Updating Global Indexes Automatically .. 17-26
Adding Partitions ... 17-27
Coalescing Partitions.. 17-31
Dropping Partitions.. 17-32
Exchanging Partitions .. 17-35

xviii

Merging Partitions .. 17-38
Modifying Default Attributes ... 17-43
Modifying Real Attributes of Partitions .. 17-44
Modifying List Partitions: Adding Values.. 17-45
Modifying List Partitions: Dropping Values .. 17-46
Modifying a Subpartition Template... 17-48
Moving Partitions ... 17-48
Rebuilding Index Partitions .. 17-50
Renaming Partitions ... 17-51
Splitting Partitions .. 17-52
Truncating Partitions.. 17-59

Partitioned Tables and Indexes Examples.. 17-61
Moving the Time Window in a Historical Table.. 17-61
Converting a Partition View into a Partitioned Table... 17-62

Viewing Information About Partitioned Tables and Indexes .. 17-64

18 Managing Clusters

Guidelines for Managing Clusters .. 18-2
Choose Appropriate Tables for the Cluster .. 18-4
Choose Appropriate Columns for the Cluster Key ... 18-4
Specify Data Block Space Use ... 18-5
Specify the Space Required by an Average Cluster Key and Its Associated Rows 18-5
Specify the Location of Each Cluster and Cluster Index Rows.. 18-6
Estimate Cluster Size and Set Storage Parameters... 18-6

Creating Clusters... 18-6
Creating Clustered Tables ... 18-7
Creating Cluster Indexes ... 18-8

Altering Clusters ... 18-8
Altering Clustered Tables.. 18-9
Altering Cluster Indexes.. 18-10

Dropping Clusters .. 18-10
Dropping Clustered Tables ... 18-11
Dropping Cluster Indexes ... 18-11

Viewing Information About Clusters ... 18-11

xix

19 Managing Hash Clusters

When to Use Hash Clusters .. 19-2
Situations Where Hashing Is Useful .. 19-3
Situations Where Hashing Is Not Advantageous.. 19-3

Creating Hash Clusters .. 19-4
Creating Single-Table Hash Clusters... 19-5
Controlling Space Use Within a Hash Cluster ... 19-5
Estimating Size Required by Hash Clusters ... 19-8

Altering Hash Clusters .. 19-9
Dropping Hash Clusters.. 19-9
Viewing Information About Hash Clusters .. 19-9

20 Managing Views, Sequences, and Synonyms

Managing Views ... 20-2
Creating Views.. 20-2
Updating a Join View... 20-5
Altering Views .. 20-10
Dropping Views.. 20-10
Replacing Views ... 20-10

Managing Sequences ... 20-11
Creating Sequences .. 20-12
Altering Sequences ... 20-13
Dropping Sequences .. 20-13

Managing Synonyms ... 20-13
Creating Synonyms .. 20-14
Dropping Synonyms .. 20-14

Viewing Information About Views, Synonyms, and Sequences .. 20-15

21 General Management of Schema Objects

Creating Multiple Tables and Views in a Single Operation .. 21-2
Renaming Schema Objects ... 21-3
Analyzing Tables, Indexes, and Clusters ... 21-3

Collecting Statistics for Tables, Indexes, and Clusters .. 21-4
Validating Tables, Indexes, Clusters, and Materialized Views ... 21-6

xx

Listing Chained Rows of Tables and Clusters.. 21-7
Truncating Tables and Clusters .. 21-9

Using DELETE .. 21-10
Using DROP and CREATE.. 21-10
Using TRUNCATE ... 21-10

Enabling and Disabling Triggers ... 21-11
Enabling Triggers.. 21-13
Disabling Triggers .. 21-13

Managing Integrity Constraints... 21-14
Integrity Constraint States... 21-15
Setting Integrity Constraints Upon Definition ... 21-17
Modifying, Renaming, or Dropping Existing Integrity Constraints 21-18
Deferring Constraint Checks... 21-20
Reporting Constraint Exceptions.. 21-21
Viewing Constraint Information .. 21-23

Managing Object Dependencies.. 21-23
Manually Recompiling Views... 21-25
Manually Recompiling Procedures and Functions.. 21-25
Manually Recompiling Packages ... 21-25

Managing Object Name Resolution.. 21-25
Changing Storage Parameters for the Data Dictionary ... 21-27

Structures in the Data Dictionary ... 21-28
Errors that Require Changing Data Dictionary Storage ... 21-30

Displaying Information About Schema Objects .. 21-30
Using PL/SQL Packages to Display Information About Schema Objects 21-30
Using Views to Display Information About Schema Objects .. 21-32

22 Detecting and Repairing Data Block Corruption

Options for Repairing Data Block Corruption.. 22-2
About the DBMS_REPAIR Package.. 22-2

DBMS_REPAIR Procedures .. 22-2
Limitations and Restrictions ... 22-3

Using the DBMS_REPAIR Package .. 22-3
Task 1: Detect and Report Corruptions ... 22-4
Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR 22-5

xxi

Task 3: Make Objects Usable... 22-7
Task 4: Repair Corruptions and Rebuild Lost Data... 22-7

DBMS_REPAIR Examples .. 22-8
Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table 22-9
Using the CHECK_OBJECT Procedure to Detect Corruption ... 22-10
Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure............................. 22-12
Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN_KEYS... 22-13
Rebuilding Free Lists Using the REBUILD_FREELISTS Procedure 22-13
Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT_BLOCKS..... 22-14

Part IV Database Security

23 Establishing Security Policies

System Security Policy... 23-2
Database User Management ... 23-2
User Authentication ... 23-2
Operating System Security.. 23-3

Data Security Policy ... 23-3
User Security Policy ... 23-4

General User Security .. 23-4
End-User Security... 23-6
Administrator Security .. 23-8
Application Developer Security ... 23-10
Application Administrator Security .. 23-12

Password Management Policy ... 23-12
Account Locking... 23-13
Password Aging and Expiration .. 23-14
Password History ... 23-15
Password Complexity Verification .. 23-16

Auditing Policy ... 23-20
A Security Checklist... 23-20

24 Managing Users and Resources

Managing Oracle Users ... 24-2

xxii

Creating Users ... 24-2
Altering Users.. 24-6
Dropping Users ... 24-7

User Authentication Methods .. 24-8
Database Authentication ... 24-9
External Authentication... 24-11
Global Authentication and Authorization .. 24-13
Proxy Authentication and Authorization ... 24-16

Managing Resources with Profiles .. 24-18
Enabling and Disabling Resource Limits .. 24-19
Creating Profiles ... 24-20
Assigning Profiles ... 24-20
Altering Profiles .. 24-21
Using Composite Limits .. 24-21
Dropping Profiles ... 24-23

Viewing Information About Database Users and Profiles ... 24-23
Listing All Users and Associated Information ... 24-25
Listing All Tablespace Quotas .. 24-25
Listing All Profiles and Assigned Limits .. 24-25
Viewing Memory Use for Each User Session ... 24-26

25 Managing User Privileges and Roles

Understanding User Privileges and Roles ... 25-2
System Privileges .. 25-2
Object Privileges.. 25-4
User Roles .. 25-5

Managing User Roles ... 25-6
Creating a Role .. 25-7
Specifying the Type of Role Authorization... 25-8
Dropping Roles ... 25-10

Granting User Privileges and Roles .. 25-11
Granting System Privileges and Roles... 25-11
Granting Object Privileges... 25-12

Revoking User Privileges and Roles ... 25-16
Revoking System Privileges and Roles.. 25-16

xxiii

Revoking Object Privileges ... 25-16
Cascading Effects of Revoking Privileges... 25-19

Granting to and Revoking from the User Group PUBLIC ... 25-20
When Do Grants and Revokes Take Effect? .. 25-20

The SET ROLE Statement .. 25-21
Specifying Default Roles.. 25-21
Restricting the Number of Roles that a User Can Enable... 25-22

Granting Roles Using the Operating System or Network ... 25-22
Using Operating System Role Identification .. 25-23
Using Operating System Role Management .. 25-25
Granting and Revoking Roles When OS_ROLES=TRUE ... 25-25
Enabling and Disabling Roles When OS_ROLES=TRUE ... 25-25
Using Network Connections with Operating System Role Management 25-25

Viewing Privilege and Role Information... 25-26
Listing All System Privilege Grants... 25-27
Listing All Role Grants .. 25-28
Listing Object Privileges Granted to a User.. 25-28
Listing the Current Privilege Domain of Your Session... 25-29
Listing Roles of the Database.. 25-30
Listing Information About the Privilege Domains of Roles... 25-30

26 Auditing Database Use

Guidelines for Auditing .. 26-2
Decide Whether to Use the Database or Operating System Audit Trail 26-2
Keep Audited Information Manageable ... 26-3
Guidelines for Auditing Suspicious Database Activity .. 26-3
Guidelines for Auditing Normal Database Activity ... 26-4

What Information is Contained in the Audit Trail?... 26-4
Information Stored in the Database Audit Trail .. 26-4
Information Stored in an Operating System File ... 26-5

Actions Audited by Default.. 26-6
Auditing Administrative Users.. 26-6
Managing the Audit Trail.. 26-7

Enabling and Disabling Auditing .. 26-8
Setting Auditing Options .. 26-9

xxiv

Auditing in a Multi-Tier Environment .. 26-13
Turning Off Audit Options ... 26-13
Controlling the Growth and Size of the Audit Trail.. 26-15
Protecting the Audit Trail.. 26-18

Fine-Grained Auditing .. 26-18
Viewing Database Audit Trail Information... 26-19

Creating the Audit Trail Views... 26-19
Deleting the Audit Trail Views... 26-20
Using Audit Trail Views to Investigate Suspicious Activities ... 26-20

Part V Database Resource Management

27 Using the Database Resource Manager

What Is the Database Resource Manager? ... 27-2
What Problems Does the Database Resource Manager Address?....................................... 27-2
How Does the Database Resource Manager Address These Problems? 27-2
What are the Elements of the Database Resource Manager? ... 27-3
Understanding Resource Plans... 27-4

Administering the Database Resource Manager .. 27-8
Creating a Simple Resource Plan... 27-10
Creating Complex Resource Plans... 27-11

Using the Pending Area for Creating Plan Schemas ... 27-12
Creating Resource Plans .. 27-14
Creating Resource Consumer Groups ... 27-16
Specifying Resource Plan Directives.. 27-17

Managing Resource Consumer Groups.. 27-20
Assigning an Initial Resource Consumer Group ... 27-21
Changing Resource Consumer Groups... 27-21
Managing the Switch Privilege... 27-22

Enabling the Database Resource Manager .. 27-24
Putting It All Together: Database Resource Manager Examples ... 27-25

Multilevel Schema Example.. 27-25
Example of Using Several Resource Allocation Methods... 27-27
An Oracle Supplied Plan ... 27-28

Monitoring and Tuning the Database Resource Manager .. 27-29

xxv

Creating the Environment... 27-29
Why Is This Necessary to Produce Expected Results?.. 27-30
Monitoring Results ... 27-31

Viewing Database Resource Manager Information... 27-31
Viewing Consumer Groups Granted to Users or Roles.. 27-32
Viewing Plan Schema Information .. 27-33
Viewing Current Consumer Groups for Sessions ... 27-33
Viewing the Currently Active Plans .. 27-34

Part VI Distributed Database Management

28 Distributed Database Concepts

Distributed Database Architecture ... 28-2
Homogenous Distributed Database Systems ... 28-2
Heterogeneous Distributed Database Systems .. 28-5
Client/Server Database Architecture .. 28-6

Database Links .. 28-8
What Are Database Links? .. 28-8
What Are Shared Database Links?... 28-10
Why Use Database Links? ... 28-11
Global Database Names in Database Links .. 28-12
Names for Database Links .. 28-14
Types of Database Links.. 28-15
Users of Database Links... 28-16
Creation of Database Links: Examples .. 28-19
Schema Objects and Database Links.. 28-20
Database Link Restrictions .. 28-22

Distributed Database Administration .. 28-23
Site Autonomy .. 28-24
Distributed Database Security .. 28-24
Auditing Database Links... 28-31
Administration Tools ... 28-31

Transaction Processing in a Distributed System .. 28-33
Remote SQL Statements .. 28-33
Distributed SQL Statements.. 28-34

xxvi

Shared SQL for Remote and Distributed Statements .. 28-34
Remote Transactions .. 28-35
Distributed Transactions.. 28-35
Two-Phase Commit Mechanism... 28-35
Database Link Name Resolution .. 28-36
Schema Object Name Resolution.. 28-38
Global Name Resolution in Views, Synonyms, and Procedures 28-42

Distributed Database Application Development... 28-44
Transparency in a Distributed Database System ... 28-44
Remote Procedure Calls (RPCs) ... 28-46
Distributed Query Optimization .. 28-47

Character Set Support for Distributed Environments ... 28-47
Client/Server Environment .. 28-48
Homogeneous Distributed Environment.. 28-48
Heterogeneous Distributed Environment... 28-49

29 Managing a Distributed Database

Managing Global Names in a Distributed System .. 29-2
Understanding How Global Database Names Are Formed... 29-2
Determining Whether Global Naming Is Enforced ... 29-3
Viewing a Global Database Name.. 29-4
Changing the Domain in a Global Database Name... 29-4
Changing a Global Database Name: Scenario .. 29-5

Creating Database Links ... 29-8
Obtaining Privileges Necessary for Creating Database Links ... 29-8
Specifying Link Types.. 29-9
Specifying Link Users... 29-11
Using Connection Qualifiers to Specify Service Names Within Link Names 29-13

Creating Shared Database Links.. 29-14
Determining Whether to Use Shared Database Links... 29-14
Creating Shared Database Links... 29-15
Configuring Shared Database Links .. 29-16

Managing Database Links... 29-18
Closing Database Links.. 29-19
Dropping Database Links.. 29-19

xxvii

Limiting the Number of Active Database Link Connections... 29-20
Viewing Information About Database Links.. 29-21

Determining Which Links Are in the Database ... 29-21
Determining Which Link Connections Are Open ... 29-24

Creating Location Transparency .. 29-26
Using Views to Create Location Transparency.. 29-26
Using Synonyms to Create Location Transparency .. 29-28
Using Procedures to Create Location Transparency... 29-30

Managing Statement Transparency... 29-32
Managing a Distributed Database: Scenarios ... 29-34

Creating a Public Fixed User Database Link .. 29-34
Creating a Public Fixed User Shared Database Link... 29-35
Creating a Public Connected User Database Link... 29-35
Creating a Public Connected User Shared Database Link.. 29-36
Creating a Public Current User Database Link .. 29-37

30 Developing Applications for a Distributed Database System

Managing the Distribution of an Application’s Data.. 30-2
Controlling Connections Established by Database Links.. 30-2
Maintaining Referential Integrity in a Distributed System... 30-3
Tuning Distributed Queries ... 30-3

Using Collocated Inline Views ... 30-4
Using Cost-Based Optimization ... 30-5
Using Hints.. 30-8
Analyzing the Execution Plan... 30-9

Handling Errors in Remote Procedures.. 30-11

31 Distributed Transactions Concepts

What Are Distributed Transactions? ... 31-2
Session Trees for Distributed Transactions ... 31-4

Clients... 31-5
Database Servers... 31-5
Local Coordinators ... 31-6
Global Coordinator... 31-6
Commit Point Site... 31-6

xxviii

Two-Phase Commit Mechanism ... 31-10
Prepare Phase .. 31-11
Commit Phase ... 31-14
Forget Phase... 31-15

In-Doubt Transactions.. 31-15
Automatic Resolution of In-Doubt Transactions ... 31-16
Manual Resolution of In-Doubt Transactions .. 31-18
Relevance of System Change Numbers for In-Doubt Transactions 31-19

Distributed Transaction Processing: Case Study .. 31-19
Stage 1: Client Application Issues DML Statements.. 31-19
Stage 2: Oracle Determines Commit Point Site .. 31-21
Stage 3: Global Coordinator Sends Prepare Response .. 31-21
Stage 4: Commit Point Site Commits ... 31-23
Stage 5: Commit Point Site Informs Global Coordinator of Commit................................ 31-23
Stage 6: Global and Local Coordinators Tell All Nodes to Commit 31-24
Stage 7: Global Coordinator and Commit Point Site Complete the Commit................... 31-24

32 Managing Distributed Transactions

Specifying the Commit Point Strength of a Node.. 32-2
Naming Transactions.. 32-2
Viewing Information About Distributed Transactions ... 32-3

Determining the ID Number and Status of Prepared Transactions.................................... 32-3
Tracing the Session Tree of In-Doubt Transactions ... 32-5

Deciding How to Handle In-Doubt Transactions... 32-7
Discovering Problems with a Two-Phase Commit.. 32-8
Determining Whether to Perform a Manual Override.. 32-9
Analyzing the Transaction Data ... 32-9

Manually Overriding In-Doubt Transactions ... 32-10
Manually Committing an In-Doubt Transaction ... 32-11
Manually Rolling Back an In-Doubt Transaction... 32-12

Purging Pending Rows from the Data Dictionary ... 32-13
Executing the PURGE_LOST_DB_ENTRY Procedure .. 32-13
Determining When to Use DBMS_TRANSACTION... 32-14

Manually Committing an In-Doubt Transaction: Example .. 32-15
Step 1: Record User Feedback ... 32-16

xxix

Step 2: Query DBA_2PC_PENDING ... 32-16
Step 3: Query DBA_2PC_NEIGHBORS on Local Node ... 32-18
Step 4: Querying Data Dictionary Views on All Nodes.. 32-19
Step 5: Commit the In-Doubt Transaction .. 32-22
Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING 32-22

Data Access Failures Due To Locks ... 32-23
Transaction Timeouts... 32-23
Locks from In-Doubt Transactions .. 32-24

Simulating Distributed Transaction Failure.. 32-24
Managing Read Consistency .. 32-25

Index

xxx

xxxi

Send Us Your Comments

Oracle9 i Database Administrator’s Guide, Release 2 (9.2)

Part No. A96521-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxxii

xxxiii

Preface

This guide is for people who administer the operation of an Oracle database system.

Referred to as database administrators (DBAs), they are responsible for creating

Oracle databases, ensuring their smooth operation, and monitoring their use.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

Note: The Oracle9i Database Administrator’s Guide contains

information that describes the features and functionality of the

Oracle9i [Standard Edition], Oracle9i Enterprise Edition, and

Oracle9i Personal Edition products. These products have the same

basic features. However, several advanced features are available

only with the Oracle9i Enterprise Edition or Oracle9i Personal

Edition, and some of these are optional. For example, to create

partitioned tables and indexes, you must have the Oracle9i
Enterprise Edition or Oracle9i Personal Edition.

For information about the differences between the various editions

of Oracle9i and the features and options that are available to you,

please refer to Oracle9i Database New Features.

xxxiv

Audience
Readers of this guide are assumed to be familiar with relational database concepts.

They are also assumed to be familiar with the operating system environment under

which they are running Oracle.

Readers Interested in Installation and Upgrade Information
Administrators frequently participate in installing the Oracle server software and

upgrading existing Oracle databases to newer formats (for example, version 8

databases to Oracle9i format). This guide is not an installation or upgrade manual.

If your primary interest is installation, see your operating system specific Oracle

installation guide.

If your primary interest is upgrading a database or application, see the Oracle9i
Database Migration manual.

Readers Interested in Application Design Information
In addition to administrators, experienced users of Oracle and advanced database

application designers might also find information in this guide useful.

However, database application developers should also see the Oracle9i Application
Developer’s Guide - Fundamentals and the documentation for the tool or language

product they are using to develop Oracle database applications.

Organization
This document contains:

Part I: Basic Database Administration

Chapter 1, "The Oracle Database Administrator"
This chapter serves as a general introduction to typical tasks performed by database

administrators, such as installing software and planning a database.

Chapter 2, "Creating an Oracle Database"
This chapter discusses considerations for creating a database and takes you through

the steps of creating one. Consult this chapter when in the database planning and

creation stage.

xxxv

Chapter 3, "Using Oracle-Managed Files"
This chapter describes how you can direct the Oracle database server to create and

manage your:

■ Datafiles

■ Tempfiles

■ Online redo log files

■ Control files

Chapter 4, "Starting Up and Shutting Down"
Consult this chapter when you wish to start up a database, alter its availability, or

shut it down. Parameter files related to starting up and shutting down are also

described here.

Part II: Oracle Server Processes and Storage Structure

Chapter 5, "Managing Oracle Processes"
This chapter helps you to identify different Oracle processes, such as dedicated

server processes and shared server processes. Consult this chapter when

configuring, modifying, tracking and managing processes.

Chapter 6, "Managing Control Files"
This chapter describes all aspects of managing control files: naming, creating,

troubleshooting, and dropping control files.

Chapter 7, "Managing the Online Redo Log"
This chapter describes all aspects of managing the online redo log: planning,

creating, renaming, dropping, or clearing online redo log files.

Chapter 8, "Managing Archived Redo Logs"
Consult this chapter for information about archive modes and tuning archiving.

Chapter 9, "Using LogMiner to Analyze Redo Logs"
This chapter describes the use of LogMiner to analyze redo log files.

xxxvi

Chapter 10, "Managing Job Queues"
Consult this chapter before working with job queues. All aspects of submitting,

removing, altering, and fixing job queues are described.

Chapter 11, "Managing Tablespaces"
This chapter provides guidelines to follow as you manage tablespaces, and

describes how to create, manage, alter, drop and move data between tablespaces.

Chapter 12, "Managing Datafiles"
This chapter provides guidelines to follow as you manage datafiles, and describes

how to create, change, alter, rename and view information about datafiles.

Chapter 13, "Managing Undo Space"
Consult this chapter to learn how to manage undo space, either by using an undo

tablespace or rollback segments.

Part III: Schema Objects

Chapter 14, "Managing Space for Schema Objects"
Consult this chapter for descriptions of common tasks, such as setting storage

parameters, deallocating space and managing space.

Chapter 15, "Managing Tables"
Consult this chapter for general table management guidelines, as well as

information about creating, altering, maintaining and dropping tables.

Chapter 16, "Managing Indexes"
Consult this chapter for general guidelines about indexes, including creating,

altering, monitoring and dropping indexes.

Chapter 17, "Managing Partitioned Tables and Indexes"
Consult this chapter to learn about partitioned tables and indexes and how to create

and manage them.

Chapter 18, "Managing Clusters"
Consult this chapter for general guidelines to follow when creating, altering, or

dropping clusters.

xxxvii

Chapter 19, "Managing Hash Clusters"
Consult this chapter for general guidelines to follow when creating, altering, or

dropping hash clusters.

Chapter 20, "Managing Views, Sequences, and Synonyms"
This chapter describes all aspects of managing views, sequences and synonyms.

Chapter 21, "General Management of Schema Objects"
This chapter covers more varied aspects of schema management. The operations

described in this chapter are not unique to any one type of schema objects. Consult

this chapter for information about analyzing objects, truncation of tables and

clusters, database triggers, integrity constraints, and object dependencies.

Chapter 22, "Detecting and Repairing Data Block Corruption"
This chapter describes methods for detecting and repairing data block corruption.

Part IV: Database Security

Chapter 23, "Establishing Security Policies"
This chapter describes all aspects of database security, including system, data and

user security policies, as well as specific tasks associated with password

management.

Chapter 24, "Managing Users and Resources"
This chapter describes session and user licensing, user authentication, and provides

specific examples of tasks associated with managing users and resources.

Chapter 25, "Managing User Privileges and Roles"
This chapter contains information about all aspects of managing user privileges and

roles. Consult this chapter to find out how to grant and revoke privileges and roles.

Chapter 26, "Auditing Database Use"
This chapter describes how to create, manage and view audit information.

xxxviii

Part V: Database Resource Management

Chapter 27, "Using the Database Resource Manager"
This chapter describes how to use the Database Resource Manager to allocate

resources.

Part VI: Distributed Database Management

Chapter 28, "Distributed Database Concepts"
This chapter describes the basic concepts and terminology of Oracle’s distributed

database architecture.

Chapter 29, "Managing a Distributed Database"
This chapter describes how to manage and maintain a distributed database system.

Chapter 30, "Developing Applications for a Distributed Database System"
This chapter describes considerations important when developing an application to

run in a distributed database system.

Chapter 31, "Distributed Transactions Concepts"
This chapter describes what distributed transactions are and how Oracle maintains

their integrity.

Chapter 32, "Managing Distributed Transactions"
This chapter describes how to manage and troubleshoot distributed transactions.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Concepts

Chapter 1 of Oracle9i Database Concepts contains an overview of the concepts

and terminology related to Oracle and provides a foundation for the more

detailed information in this guide. This chapter is a starting point to become

familiar with the Oracle database server, and is recommended reading

before starting Oracle9i Database Administrator’s Guide. The remainder of

Oracle9i Database Concepts explains the Oracle architecture and features, and

how they operate in more detail.

xxxix

■ Oracle9i Backup and Recovery Concepts

This book introduces you to the concepts of backup and recovery.

■ Oracle9i User-Managed Backup and Recovery Guide

This guide contains details of backup and recovery and enables you back

up, copy, restore, and recover datafiles, control files, and archived redo logs.

■ Oracle9i Recovery Manager User’s Guide

This guide contains information for using Recovery Manager (RMAN).

RMAN is an Oracle tool that manages and automates backup and recovery

operations.

■ Oracle9i Database Performance Planning

This book exposes important considerations in setting up a database system

and can help you understand tuning your database. It is mainly conceptual,

defining terms, architecture, and design principles, and then outlines

proactive and reactive tuning methods.

■ Oracle9i Database Performance Tuning Guide and Reference

This book can be used as a reference guide for tuning your Oracle database

system.

■ Oracle9i Application Developer’s Guide - Fundamentals

Many of the tasks done by DBAs are shared by application developers. In

some cases, descriptions of tasks seemed better located in an application

level book, and in those cases, this fundamentals book is the primary

reference.

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

xl

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

xli

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

xlii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

xliii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Convention Meaning Example

xliv

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener

Convention Meaning Example

xlv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xlvi

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

xlvii

What’s New in Oracle9 i?

This section introduces new administrative features of Oracle9i Release 2 (9.2) that

are discussed in this book and provides pointers to additional information.

For a summary of all new features for Oracle9i, see Oracle9i Database New Features.

The following section describes the new features discussed in the Oracle9i Database

Administrator’s Guide.

■ Oracle9i Release 2 (9.2) New Features

■ Oracle9i Release 1 (9.0.1) New Features

xlviii

Oracle9 i Release 2 (9.2) New Features
Oracle9i, Release 2, further advances and refines the goals achieved by Oracle9i,
Release 1.

The following are summaries of the new features of Oracle9i, Release 2, that are

discussed in this book.

■ Specifying Passwords for SYS and SYSTEM at Database Creation

Oracle enables you to specify passwords for users SYS and SYSTEM using the

following CREATE DATABASE clauses:

– USER SYS IDENTIFIED BY password

– USER SYSTEM IDENTIFIED BY password

■ Specifying FORCE LOGGING Mode

The FORCE LOGGING clause of the CREATE DATABASE, CREATE
CONTROLFILE, and CREATE TABLESPACE statement enables you to force

redo log records to be written even when NOLOGGING has been specified in a

DDL statement.

■ Recovery Manager (RMAN) Backup of a Server Parameter File

RMAN can now be used to create backups of a server parameter file.

■ New In LogMiner for Release 9.2

LogMiner release 9.2 has added support for several new features and changed

some default behavior as follows:

See Also: "Protecting Your Database: Specifying Passwords for

Users SYS and SYSTEM" on page 2-23

See Also:

■ "Specifying FORCE LOGGING Mode" on page 2-29

■ "The CREATE CONTROLFILE Statement" on page 6-6

■ "Controlling the Writing of Redo Records" on page 11-20

See Also: "Backing Up the Server Parameter File" on page 2-50

xlix

– LONG and LOB datatypes are supported for redo logs generated on a release

9.2 or later Oracle database.

– Supplemental logging is turned off by default. This is a change from release

9.0.1, in which minimal supplemental logging was turned on by default. In

release 9.2, the level of supplemental logging desired must be specified.

– Different levels of supplemental logging are available: database

supplemental logging and table supplemental logging. Within database

supplemental logging, you have a choice of minimal or identification key

logging. Within table supplemental logging, you have a choice of using

conditional or unconditional log groups.

– Two new options have been added that affect the formatting of returned

data. The DBMS_LOGMNR.NO_SQL_DELIMITER option suppresses the

semi-colon at the end of SQL_REDO and SQL_UNDO statements. The DBMS_
LOGMNR.PRINT_PRETTY_SQL option formats the reconstructed SQL

statements so that they are easier to read.

– A new option, DBMS_LOGMNR.CONTINUOUS_MINE, directs LogMiner to

automatically add and mine redo log files that are archived after the

LogMiner session has started.

– Use of the DBMS_LOGMNR.NO_DICT_RESET_ONSELECT option is no longer

necessary. When DDL tracking is enabled, LogMiner stores old metadata

definitions so that a second select operation has all the needed metadata

versions.

– A new procedure, DBMS_LOGMNR_D.SET_TABLESPACE,recreates all

LogMiner tables in a tablespace other than SYSTEM, which is the default.

■ Creating a Locally Managed SYSTEM Tablespace

You can now create a locally managed SYSTEM tablespace. This can be done at

create database time by specifying the EXTENT MANAGEMENT LOCAL clause of

See Also: Supplemental Logging on page 9-2

See Also: Formatting of Returned Data on page 9-17

See Also: Continuous Mining on page 9-25

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

l

the CREATE DATABASE statement, or you can migrate your existing SYSTEM
tablespace to locally managed by using the DBMS_SPACE_
ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure.

■ Mapping Files to Physical Devices

With the introduction of host based Logical Volume Managers (LVM), and

sophisticated storage subsystems that provide RAID features, it is not easy to

determine file to device mapping. Oracle has created new views and a new

DBMS_STORAGE_MAP package to enable you to map files to physical devices.

■ Renaming Columns

Existing table columns can now be renamed.

■ Renaming Constraints

Existing constraints on tables can now be renamed.

■ Specifying a Default List Partition

You can now use the keyword DEFAULT as the value-list descriptor for a

partition defined for a list-partitioned table. This partition is used for inserting

rows into the list-partitioned table when the partition key column does not

match any of the literal values specified in the value-list descriptor for the

partition.

See Also:

■ "Creating a Locally Managed SYSTEM Tablespace" on

page 2-26

■ "Migrating the SYSTEM Tablespace to a Locally Managed

Tablespace" on page 11-34

See Also: "Mapping Files to Physical Devices" on page 12-15

See Also: "Renaming Table Columns" on page 15-14

See Also: "Renaming Constraints" on page 21-19

See Also: "Creating List-Partitioned Tables" on page 17-13

li

■ Specifying Composite Range-List Partitioning

This release introduces a new type of composite partitioning. You can now

partition tables by the range-list method, where partitions are defined as range

partitions and the subpartitions are defined as list partitions.

■ Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations

Under certain conditions, Oracle can perform a fast split operation that is more

efficient than the normal split operation on a partition or subpartition.

■ Auditing User SYS

All operations done by user SYS (includes all AS SYSDBA and AS SYSOPER
connections) can now be audited.

■ Granting Object Privileges on Behalf of the Object Owner

A new system privilege named GRANT ANY OBJECT PRIVILEGE allows you

to grant object privileges as if you were the owner. It will appear (in views) as if

the object owner granted the privilege, but audit records show the real person

who granted the privilege.

■ Removal of LOB Column Restriction

You can now create LOB columns in tablespaces that specify automatic

segment-space management.

See Also: "When to Use the Composite Range-List Partitioning

Method" on page 17-8

See Also: "Optimizing SPLIT PARTITION and SPLIT

SUBPARTITION Operations" on page 17-58

See Also: "Auditing Administrative Users" on page 26-6

See Also:

■ "Granting Object Privileges on Behalf of the Object Owner" on

page 25-14

■ "Revoking Object Privileges on Behalf of the Object Owner" on

page 25-17

lii

■ Elimination of Certain Distributed Database Initialization Parameters

In earlier releases of Oracle, the DISTRIBUTED_TRANSACTIONS initialization

parameter allowed you to specify a maximum number of distributed

transactions in which a database can concurrently participate. This parameter

has been eliminated and the number of concurrent distributed transactions is

not limited. If specified, the DISTRIBUTED_TRANSACTIONS initialization

parameter is ignored.

Also in earlier releases of Oracle, the max number of branches for each

distributed transaction was specified by the MAX_TRANSACTION_BRANCHES
initialization parameter. This parameter was eliminated in Oracle8i, but the

maximum number of branches of a distributed transaction is still limited to 32.

If specified, the MAX_TRANSACTION_BRANCHES initialization parameter is

ignored.

Oracle9 i Release 1 (9.0.1) New Features
Oracle9i brings a major new release of the Oracle database server. It includes

features to make the database more available. More online operations reduce the

need for offline maintenance. Management of the database requires less effort.

Oracle9i can automatically create and manage the underlying operating system files

required by the database. There is a theme of self management.

Performance is enhanced. The Database Resource Manager has new options that

allow for more granular control of resources. The performance level required of a

resource consumer group can be better sustained. Partitioning enhancements allow

tables and indexes to be better partitioned for performance. Security enhancements

are an important part of this release. Applications have available more and finer

grained methods of implementing security and auditing.

The following are summaries of the new features of Oracle9i that are discussed in

this book.

■ Online redefinition of tables

The new DBMS_REDEFINITION PL/SQL package provides a mechanism to

redefine tables online. When a table is redefined online, it is accessible to DML

during much of the redefinition process. This provides a significant increase in

availability compared to traditional methods of redefining tables that require

tables to be taken offline.

See Also: "Redefining Tables Online" on page 15-16

liii

■ ONLINE option for ANALYZE VALIDATE STRUCTURE statement

The ANALYZE statement can now perform validation while DML is ongoing

within the object being analyzed.

■ Controlling Archive Lag

Oracle now provides a time-based means of switching the current online redo

log group. In a primary/standby configuration, where all noncurrent logs of the

primary site are archived and shipped to the standby database, this effectively

limits the number of redo records, as measured in time, that will not be applied

in the standby database.

■ Suspending a database

Oracle9i includes a database suspend/resume feature. The ALTER SYSTEM
SUSPEND statement suspends a database by halting all input and output (I/O)

to datafiles and control files. When the database is suspended all preexisting

I/O operations are allowed to complete and any new database accesses are

placed in a queued state. The ALTER SYSTEM RESUME statement resumes

normal database operation.

■ Quiescing a database

Oracle9i allows you to place the database into a quiesced state, where only DBA

transactions, queries, or PL/SQL statements are allowed. This quiesced state

allows you to perform administrative actions that cannot safely be done

otherwise. The ALTER SYSTEM QUIESCE RESTRICTED statement places a

database into a quiesced state.

■ Resumable Space Allocation

Oracle provides a means for suspending, and later resuming, the execution of

large database operations in the event of space allocation failures. This enables

you to take corrective action, instead of the Oracle database server returning an

See Also: "Validating Tables, Indexes, Clusters, and Materialized

Views" on page 21-6

See Also: "Controlling Archive Lag" on page 7-10

See Also: "Suspending and Resuming a Database" on page 4-17

See Also: "Quiescing a Database" on page 4-14

liv

error to the user. After the error condition is corrected, the suspended operation

automatically resumes.

■ More archiving destinations

The maximum number of destinations to which you can archive the online redo

log, has been increased from 5 to 10.

■ Automatic segment- space management

Locally managed tablespaces allow extents to be managed automatically by

Oracle. Oracle9i allows free and used space within segments stored in locally

managed tablespaces to also be managed automatically. Using the SEGMENT
SPACE MANAGEMENT clause of CREATE TABLESPACE you specify AUTO or

MANUAL to specify the type of segment space management Oracle will use.

■ Update of global indexes when partition maintenance is performed

By default, many table maintenance operations on partitioned tables invalidate

(mark UNUSABLE) global indexes. You must then rebuild the entire global index

or, if partitioned, all of its partitions. Oracle9i allows you to override this default

behavior. When you specify the UPDATE GLOBAL INDEXclause in your ALTER
TABLE statement for the maintenance operation, the global index is updated in

conjunction with the base table operation.

■ Multiple block sizes

Oracle now supports multiple block sizes. It has a standard block size, as set by

the DB_BLOCK_SIZE initialization parameter, and additionally up to 4

nonstandard block sizes. Nonstandard block sizes are specified when creating

tablespaces. The standard block size is used for the SYSTEM tablespace and

most other tablespaces. Multiple block size support allows for the transporting

of tablespaces with unlike block sizes between databases.

See Also: "Managing Resumable Space Allocation" on page 14-14

See Also: "Specifying the Archive Destination" on page 8-9

See Also: "Specifying Segment Space Management in Locally

Managed Tablespaces" on page 11-8

See Also: "Maintaining Partitioned Tables" on page 17-22

lv

■ Dynamic buffer cache

The size of the buffer cache subcomponent of the System Global Area is now

dynamic. The DB_BLOCK_BUFFERS initialization parameter has been replaced

by a new dynamic parameter, DB_CACHE_SIZE, where the user specifies the

size of the buffer subcache for the standard database block size. The buffer

cache now consists of subcaches when multiple block sizes are specified for the

database. Up to four DB_nK_CACHE_SIZE initialization parameters allow you

to specify the sizes of buffer subcaches for the additional block sizes.

■ Dynamic SGA

The initialization parameters affecting the size of SGA have been made

dynamic. It is possible to alter the size of SGA dynamically through an ALTER
SYSTEM SET statement.

■ Automatic undo management

Historically, Oracle has used rollback segments to store undo. Undo is defined

as information that can be used to roll back, or undo, changes to the database

when necessary. Oracle now enables you to create an undo tablespace to store

undo. Using an undo tablespace eliminates the complexities of managing

rollback segment space, and enables you to exert control over how long undo is

retained before being overwritten.

■ Oracle managed files

The Oracle managed files feature of Oracle9i eliminates the need for you to

directly manage the files comprising an Oracle database. Through the DB_
CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n initialization

parameters, you specify the file system directory to be used for a particular type

of file comprising a tablespace, online redo log file, or control file. Oracle then

See Also: "Specifying Database Block Sizes" on page 2-37

See Also: "Setting Initialization Parameters that Affect the Size of

the SGA" on page 2-38

See Also: "Setting Initialization Parameters that Affect the Size of

the SGA" on page 2-38

See Also: Chapter 13, "Managing Undo Space"

lvi

ensures that a unique file, an Oracle-managed file, is created and deleted when

no longer needed.

■ Automatic deletion of datafiles

Oracle9i provides an option to automatically remove a tablespaces’s operating

system files (datafiles) when the tablespace is dropped using the DROP
TABLESPACE statement. A similar option for the ALTER DATABASE
TEMPFILE statement, causes deletion the operating system files associated with

a temporary file.

■ Metadata API

A new PL/SQL package, DBMS_METADATA.GET_DDL, allows you to obtain

metadata (in the form of DDL used to create the object) about a schema object.

■ External tables

Oracle9i allows you read-only access to data in external tables. External tables

are defined as tables that do not reside in the database, and can be in any format

for which an access driver is provided. The CREATE TABLE ...
ORGANIZATION EXTERNAL statement specifies metadata describing the

external table. Oracle currently provides the ORACLE_LOADER access driver

which provides data mapping capabilities that are a subset of the SQL*Loader

control file syntax.

■ Constraint enhancements

Enhancements to the USING INDEX clause of CREATE TABLE or ALTER
TABLE allow you to specify the creation or use of a specific index when a

See Also: Chapter 3, "Using Oracle-Managed Files"

See Also:

■ "Dropping Tablespaces" on page 11-29

■ "Altering a Locally Managed Temporary Tablespace" on

page 11-14

See Also: "Using PL/SQL Packages to Display Information

About Schema Objects" on page 21-30

See Also: "Managing External Tables" on page 15-33

lvii

unique or primary key constraint is created or enabled. Additionally, you can

prevent the dropping of the index enforcing a unique or primary key constraint

when the constraint is dropped or disabled.

■ Server parameter file

Oracle has traditionally stored initialization parameters in a text initialization

parameter file, often on a client machine. Starting with Oracle9i, you can elect to

maintain initialization parameters in a server parameter file, which is a binary

parameter file stored on the database server. Initialization parameters stored in

a server parameter file are persistent, in that any changes made to the

parameters while an instance is running persist across instance shutdown and

startup.

■ Default temporary tablespace

The new DEFAULT TEMPORARY TABLESPACE clause of the CREATE
DATABASE statement allows you to create a default temporary tablespace at

database creation time. This tablespace is used as the default temporary

tablespace for users who are not otherwise assigned a temporary tablespace.

■ Setting the database time zone

The CREATE DATABASE statement now has a SET TIME_ZONE clause that

allows you to set the time zone of the database as a displacement from UTC

(Coordinated Universal Time—formerly Greenwich Mean Time). Oracle

normalizes all TIMESTAMP WITH LOCAL TIME ZONE data to the time zone of

the database when the data is stored on disk. Additionally, a new session

parameter TIME_ZONE has been added to the SET clause of ALTER SESSION.

See Also:

■ "Creating an Index Associated with a Constraint" on page 16-11

■ "Managing Integrity Constraints" on page 21-14

See Also: "Managing Initialization Parameters Using a Server

Parameter File" on page 2-44

See Also: "Creating a Default Temporary Tablespace" on

page 2-24

See Also: "Step 6: Issue the CREATE DATABASE Statement" on

page 2-18

lviii

■ Transaction Naming

Oracle now allows you to assign a name to a transaction. The transaction name

is helpful in resolving in-doubt distributed transactions, and replaces a COMMIT
COMMENT.

■ Database Configuration Assistant changes

The Database Configuration Assistant has been redesigned. It now provides

templates, which are saved definitions of databases, from which you can

generate your database. Oracle provides templates, or you can create your own

templates by modifying existing ones, defining new ones, or by capturing the

definition of an existing database.

When creating a database with the Database Configuration Assistant, you can

either initially include, or later add as an option, Oracle’s new Sample Schemas.

These schemas are the basis for many of the examples used in Oracle

documentation.

■ Monitoring index usage

A MONITORING USAGE clause has been added for the ALTER INDEX
statement. It allows you to monitor an index to determine if it is actively being

used.

■ List partitioning

Oracle introduces list partitioning, which enables you to specify a list of discrete

values for the partitioning column in the description for each partition. The list

partitioning method is specifically designed for modeling data distributions

that follow discrete values. This cannot be easily done by range or hash

partitioning.

See Also: "Naming Transactions" on page 32-2

See Also: "Using the Database Configuration Assistant" on

page 2-5

See Also: "Monitoring Index Usage" on page 16-21

See Also: Chapter 17, "Managing Partitioned Tables and Indexes"

lix

■ Hash partitioning of index-organized tables

In this release, support has been added for partitioning index-organized tables

by the hash method. Previously, they could be partitioned, but only by the

range method.

■ Dynamic job queue processes

The job queue process creation has been made dynamic so that only the

required number of processes are created to execute the jobs that are ready for

execution. A job queue coordinator background process (CJQ) dynamically

spawns Jnnn processes to execute jobs.

■ New in the Database Resource Manager for Oracle9i

The following new functionality has been added to the Database Resource

Manager:

– Ability to create an active session pool. This pool consists of a specified

maximum number of user sessions allowed to be concurrently active within

a group of users. Additional sessions beyond the maximum are queued for

execution, but you can specify a timeout period, after which queued jobs

will abort.

– Automatic switching of users from one group to another group based on

administrator defined criteria. If a member of a particular group of users

creates a session that executes for longer than a specified amount of time,

that session can be automatically switched to another group of users with

different resource requirements.

– Ability to prevent the execution of operations that are estimated to run for a

longer time than a predefined limit

– Ability to create an undo pool. This pool consists of the amount of undo

space that can be consumed in by a group of users.

See Also: "Creating Partitioned Index-Organized Tables" on

page 17-19

See Also: "Enabling Processes Used for Executing Jobs" on

page 10-2

See Also: Chapter 27, "Using the Database Resource Manager"

lx

■ Proxy authentication and authorization

Oracle9i enables you to authorize a middle-tier server to act on behalf of a

client. The GRANT CONNECT THROUGH clause of the ALTER USER statement

specifies this functionality. You can also specify roles that the middle tier is

permitted to activate when connecting as the client.

■ Application roles

Oracle provides a mechanism by which roles granted to application users are

enabled using a designated PL/SQL package. This feature introduces the

IDENTIFIED USING package clause for the CREATE ROLE statement.

■ Fine-grained auditing

In Oracle’s traditional auditing methods, a fixed set of facts is recorded in the

audit trail. Audit options can only be set to monitor access of objects or

privileges. A new PL/SQL package, DBMS_FGA, allows applications to

implement fine-grained auditing of data access based on content.

■ New in LogMiner for Release 9.0.1

LogMiner release 9.0.1 has added support for many new features. Some of the

new features work with any redo log files from an Oracle 8.0 or later database.

Other features only work with redo log files produced on Oracle9i or later.

New Features for Redo Log Files Generated by Oracle9i or Later

For any redo log files generated by Oracle9i or later, LogMiner now provides

support for the following:

– Index clusters

– Chained and migrated rows

– Direct path inserts (with ARCHIVELOG mode enabled)

– Extracting the data dictionary into the redo log files. See Extracting a

Dictionary to the Redo Logs on page 9-6.

See Also: "Proxy Authentication and Authorization" on

page 24-16

See Also: "Role Authorization by an Application" on page 25-8

See Also: "Fine-Grained Auditing" on page 26-18

lxi

– Using the online catalog as the data dictionary. See "Using the Online

Catalog" on page 9-8.

– Tracking of all data definition language (DDL) operations, which enables

you to monitor schema evolution. See "Tracking DDL Statements" on

page 9-9.

– Viewing user-executed DDL in the SQL_REDO column. Information

regarding the original database user is also returned.

– Generating SQL_REDO and SQL_UNDO with primary key information for

update s. That is, updated rows are identified by primary keys and ROWIDs
(provided supplemental logging is enabled), thereby making it easier to

apply the statements to a different database.

New Features for Redo Log Files Generated by Oracle Release 8.0 or Later

For any redo log files generated by Oracle release 8.0 or later, LogMiner now

provides support for the following:

– Limiting V$LOGMNR_CONTENTS data to rows belonging to committed

transactions only. This option enables you to filter out rolled back

transactions and transactions that are in progress. See the information about

options in "Start a LogMiner Session" on page 9-26.

– Performing queries based on actual data values in the redo log files. See

Extracting Actual Data Values from Redo Logs on page 9-18.

See Also: Chapter 9, "Using LogMiner to Analyze Redo Logs"

lxii

Part I
Basic Database Administration

Part I provides an overview of the responsibilities of a database administrator, and

describes the creation of a database and how to start up and shut down an instance

of the database. It contains the following chapters:

■ Chapter 1, "The Oracle Database Administrator"

■ Chapter 2, "Creating an Oracle Database"

■ Chapter 3, "Using Oracle-Managed Files"

■ Chapter 4, "Starting Up and Shutting Down"

The Oracle Database Administrator 1-1

1
The Oracle Database Administrator

This chapter describes your responsibilities as a database administrator (DBA) who

administers the Oracle database server.

The following topics are discussed:

■ Types of Oracle Users

■ Tasks of a Database Administrator

■ Identifying Your Oracle Database Software Release

■ Database Administrator Security and Privileges

■ Database Administrator Authentication

■ Creating and Maintaining a Password File

■ Database Administrator Utilities

Types of Oracle Users

1-2 Oracle9i Database Administrator’s Guide

Types of Oracle Users
The types of users and their roles and responsibilities at a site can vary. A small site

can have one database administrator who administers the database for application

developers and users. A very large site can find it necessary to divide the duties of a

database administrator among several people, and among several areas of

specialization.

This section contains the following topics:

■ Database Administrators

■ Security Officers

■ Network Administrators

■ Application Developers

■ Application Administrators

■ Database Users

Database Administrators
Each database requires at least one database administrator (DBA) to administer it.

Because an Oracle database system can be large and can have many users, often this

is not a one person job. In such cases, there is a group of DBAs who share

responsibility.

A database administrator’s responsibilities can include the following tasks:

■ Installing and upgrading the Oracle server and application tools

■ Allocating system storage and planning future storage requirements for the

database system

■ Creating primary database storage structures (tablespaces) after application

developers have designed an application

■ Creating primary objects (tables, views, indexes) once application developers

have designed an application

■ Modifying the database structure, as necessary, from information given by

application developers

■ Enrolling users and maintaining system security

■ Ensuring compliance with your Oracle license agreement

Types of Oracle Users

The Oracle Database Administrator 1-3

■ Controlling and monitoring user access to the database

■ Monitoring and optimizing the performance of the database

■ Planning for backup and recovery of database information

■ Maintaining archived data on tape

■ Backing up and restoring the database

■ Contacting Oracle Corporation for technical support

Security Officers
In some cases, a site assigns one or more security officers to a database. A security

officer enrolls users, controls and monitors user access to the database, and

maintains system security. As a DBA, you might not be responsible for these duties

if your site has a separate security officer.

Network Administrators
Some sites have one or more network administrators. A network administrator can

administer Oracle networking products, such as Oracle Net Services.

Application Developers
Application developers design and implement database applications. Their

responsibilities include the following tasks:

■ Designing and developing the database application

■ Designing the database structure for an application

■ Estimating storage requirements for an application

■ Specifying modifications of the database structure for an application

■ Relaying the above information to a database administrator

■ Tuning the application during development

■ Establishing an application’s security measures during development

See Also: Part VI, "Distributed Database Management" for

information on network administration in a distributed

environment

Tasks of a Database Administrator

1-4 Oracle9i Database Administrator’s Guide

Application developers can perform some of these tasks in collaboration with

DBAs.

Application Administrators
An Oracle site can assign one or more application administrators to administrate a

particular application. Each application can have its own administrator.

Database Users
Database users interact with the database through applications or utilities. A typical

user’s responsibilities include the following tasks:

■ Entering, modifying, and deleting data, where permitted

■ Generating reports from the data

Tasks of a Database Administrator
The following tasks present a prioritized approach for designing, implementing,

and maintaining an Oracle Database:

Task 1: Evaluate the Database Server Hardware

Task 2: Install the Oracle Software

Task 3: Plan the Database

Task 4: Create and Open the Database

Task 5: Back Up the Database

Task 6: Enroll System Users

Task 7: Implement the Database Design

Task 8: Back Up the Fully Functional Database

Task 9: Tune Database Performance

These tasks are discussed in succeeding sections.

Note: If upgrading to a new release, back up your existing

production database before installation. For information on

preserving your existing production database, see Oracle9i Database
Migration.

Tasks of a Database Administrator

The Oracle Database Administrator 1-5

Task 1: Evaluate the Database Server Hardware
Evaluate how Oracle and its applications can best use the available computer

resources. This evaluation should reveal the following information:

■ How many disk drives are available to Oracle and its databases

■ How many, if any, dedicated tape drives are available to Oracle and its

databases

■ How much memory is available to the instances of Oracle you will run (see

your system’s configuration documentation)

Task 2: Install the Oracle Software
As the database administrator, you install the Oracle database server software and

any front-end tools and database applications that access the database. In some

distributed processing installations, the database is controlled by a central computer

(database server) and the database tools and applications are executed on remote

computers (clients). In this case, you must also install the Oracle Net components

necessary to connect the remote machines to the computer that executes Oracle.

For more information on what software to install, see "Identifying Your Oracle

Database Software Release" on page 1-8.

Task 3: Plan the Database
As the database administrator, you must plan:

■ The logical storage structure of the database

■ The overall database design

■ A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect

system performance and various database management operations. For example,

before creating any tablespaces for your database, you should know how many

datafiles will make up the tablespace, what type of information will be stored in

See Also: For specific requirements and instructions for

installation, refer to the following documentation:

■ Your operating system specific Oracle documentation

■ Your installation guides for your front-end tools and Oracle Net

drivers.

Tasks of a Database Administrator

1-6 Oracle9i Database Administrator’s Guide

each tablespace, and on which disk drives the datafiles will be physically stored.

When planning the overall logical storage of the database structure, take into

account the effects that this structure will have when the database is actually

created and running. Such considerations include how the logical storage structure

database will affect the following:

■ The performance of the computer executing Oracle

■ The performance of the database during data access operations

■ The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for

each of these objects. By planning the relationship between each object and its

physical storage before creating it, you can directly affect the performance of the

database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important.

The physical location of frequently accessed data dramatically affects application

performance.

During the planning stage, develop a backup strategy for the database. You can

alter the logical storage structure or design of the database to improve backup

efficiency.

It is beyond the scope of this book to discuss relational and distributed database

design. If you are not familiar with such design issues, refer to accepted

industry-standard documentation.

Part II, "Oracle Server Processes and Storage Structure" and Part III, "Schema

Objects" provide specific information on creating logical storage structures, objects,

and integrity constraints for your database.

Task 4: Create and Open the Database
When you complete the database design, you can create the database and open it

for normal use. You can create a database at installation time, using the Database

Configuration Assistant, or you can supply your own scripts for creating a

database.

Either way, refer to Chapter 2, "Creating an Oracle Database", for information on

creating a database and Chapter 4, "Starting Up and Shutting Down" for guidance

in starting up the database.

Tasks of a Database Administrator

The Oracle Database Administrator 1-7

Task 5: Back Up the Database
After you create the database structure, carry out the backup strategy you planned

for the database. Create any additional redo log files, take the first full database

backup (online or offline), and schedule future database backups at regular

intervals.

Task 6: Enroll System Users
After you back up the database structure, you can enroll the users of the database in

accordance with your Oracle license agreement, create appropriate roles for these

users, and grant these roles.

The following chapters will help you in this endeavor:

■ Chapter 23, "Establishing Security Policies"

■ Chapter 24, "Managing Users and Resources"

■ Chapter 25, "Managing User Privileges and Roles"

Task 7: Implement the Database Design
After you create and start the database, and enroll the system users, you can

implement the planned logical structure database by creating all necessary

tablespaces. When you complete this, you can create the objects for the database.

Part II, "Oracle Server Processes and Storage Structure" and Part III, "Schema

Objects" contain information which can help you create logical storage structures

and objects for your database.

Task 8: Back Up the Fully Functional Database
Now that the database is fully implemented, again back up the database. In

addition to regularly scheduled backups, you should always back up your database

immediately after implementing changes to the database structure.

See Also: For instructions on customizing your backup

operations and performing recovery procedures see either of the

following:

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

Identifying Your Oracle Database Software Release

1-8 Oracle9i Database Administrator’s Guide

Task 9: Tune Database Performance
Optimizing the performance of the database is one of your ongoing responsibilities

as a DBA. Additionally, Oracle provides a database resource management feature

that enables you to control the allocation of resources to various user groups.

The database resource manager is described in Chapter 27, "Using the Database

Resource Manager".

Identifying Your Oracle Database Software Release
Because the Oracle database server continues to evolve and can require

maintenance, Oracle periodically produces new releases. Because only some users

initially subscribe to a new release or require specific maintenance, multiple releases

of the product can exist simultaneously.

As many as five numbers may be required to fully identify a release. The

significance of these numbers is discussed below.

Release Number Format
To understand the release level nomenclature used by Oracle, examine the

following example of an Oracle database server labeled "Release 9.2.0.1.0."

See Also: Oracle9i Database Performance Tuning Guide and Reference
contains information about tuning your database and applications.

Identifying Your Oracle Database Software Release

The Oracle Database Administrator 1-9

Figure 1–1 Example of an Oracle Release Number

Major Database Release Number
This is the most general identifier. It represents a major new edition (or version) of

the software that contains significant new functionality.

Database Maintenance Release Number
This digit represents a maintenance release level. Some new features may also be

included.

Application Server Release Number
This digit reflects the release level of the Oracle9i Application Server (Oracle9iAS).

Component Specific Release Number
This digit identifies a release level specific to a component. Different components

can have different numbers in this position depending upon, for example,

component patch sets or interim releases.

Platform Specific Release Number
This digit identifies a platform specific release. Usually this is a patch set. Where

different platforms require the equivalent patch set, this digit will be the same

across the effected platforms.

Note: Starting with release 9.2, maintenance releases of Oracle are

denoted by a change to the second digit of a release number. In

previous releases, the third digit indicated a particular maintenance

release.

9.2.0.1.0
Major database
release number

Database maintenance
release number

Application server
release number

Component specific
release number

Platform specific
release number

Database Administrator Security and Privileges

1-10 Oracle9i Database Administrator’s Guide

Checking Your Current Release Number
To identify the release of the Oracle database server that is currently installed and to

see the release levels of other Oracle components you are using, query the data

dictionary view PRODUCT_COMPONENT_VERSION. A sample query is shown below.

Other product release levels may increment independently of the database server.

COL PRODUCT FORMAT A35
COL VERSION FORMAT A15
COL STATUS FORMAT A15
SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS
----------------------------------- --------------- ---------------
NLSRTL 9.2.0.1.0 Production
Oracle9i Enterprise Edition 9.2.0.1.0 Production
PL/SQL 9.2.0.1.0 Production
TNS for Solaris: 9.2.0.1.0 Production

It’s important to convey to Oracle the information displayed by this query when

you report problems with the software.

Optionally, you can query the V$VERSION view to see component-level

information.

Database Administrator Security and Privileges
To accomplish the administrative tasks of an Oracle DBA, you need extra privileges

both within the database and possibly in the operating system of the server on

which the database runs. Access to a database administrator’s account should be

tightly controlled.

This section contains the following topics:

■ The Database Administrator’s Operating System Account

■ Database Administrator Usernames

The Database Administrator’s Operating System Account
To perform many of the administrative duties for a database, you must be able to

execute operating system commands. Depending on the operating system that

executes Oracle, you might need an operating system account or ID to gain access

to the operating system. If so, your operating system account might require more

operating system privileges or access rights than many database users require (for

Database Administrator Security and Privileges

The Oracle Database Administrator 1-11

example, to perform Oracle software installation). Although you do not need the

Oracle files to be stored in your account, you should have access to them.

Database Administrator Usernames
Two user accounts are automatically created with the database:

■ SYS (default password: CHANGE_ON_INSTALL)

■ SYSTEM (default password: MANAGER)

It is suggested that you create at least one additional administrator user, and grant

that user the DBA role, to use when performing daily administrative tasks. It is

recommended that you do not use SYS and SYSTEM for these purposes.

See Also: Your operating system specific Oracle documentation.

The method of distinguishing a database administrator’s account is

operating system specific.

Note: Oracle recommends that you specify passwords for SYS
and SYSTEM at database creation time, rather that using these

default passwords. This is explained in "Protecting Your Database:

Specifying Passwords for Users SYS and SYSTEM" on page 2-23.

If you use the default passwords, to prevent inappropriate access to

the data dictionary tables or other tampering with the database, it is

important that you change the passwords for the SYS and SYSTEM
usernames immediately after creating an Oracle database.

Database Administrator Security and Privileges

1-12 Oracle9i Database Administrator’s Guide

SYS
When any database is created, the user SYSis automatically created and granted the

DBA role.

All of the base tables and views for the database’s data dictionary are stored in the

schema SYS. These base tables and views are critical for the operation of Oracle. To

maintain the integrity of the data dictionary, tables in the SYS schema are

manipulated only by Oracle. They should never be modified by any user or

database administrator, and no one should create any tables in the schema of user

SYS. (However, you can change the storage parameters of the data dictionary

settings if necessary.)

Ensure that most database users are never able to connect using the SYS account.

SYSTEM
When a database is created, the user SYSTEM is also automatically created and

granted the DBA role.

The SYSTEM username is used to create additional tables and views that display

administrative information, and internal tables and views used by various Oracle

Note Regarding Security Enhancements: In this release of Oracle

and in subsequent releases, several enhancements are being made

to ensure the security of default database user accounts.

■ During initial installation with the Database Configuration

Assistant (DCBA), all default database user accounts except

SYS, SYSTEM, SCOTT, DBSNMP, OUTLN,
AURORAJISUTILITY$, AURORAORBUNAUTHENTICATED
and OSE$HTTP$ADMIN are locked and expired. To activate a

locked account, the DBA must manually unlock it and reassign

it a new password.

■ In addition, the DBCA prompts for passwords for users SYS
and SYSTEM during initial installation of the database rather

than assigning default passwords to them. A CREATE
DATABASE statement issued manually also lets you supply

passwords for these two users.

Database Administrator Authentication

The Oracle Database Administrator 1-13

options and tools. Never create in the SYSTEM schema tables of interest to

individual users.

The DBA Role
A predefined role, named DBA, is automatically created with every Oracle

database. This role contains most database system privileges. Therefore, it is very

powerful and should be granted only to fully functional database administrators.

Database Administrator Authentication
As a DBA, you often perform special operations such as shutting down or starting

up a database. Because only a DBA should perform these operations, the database

administrator usernames require a secure authentication scheme.

This section contains the following topics:

■ Administrative Privileges

■ Selecting an Authentication Method

■ Using Operating System (OS) Authentication

■ Using Password File Authentication

Administrative Privileges
Administrative privileges that are required for an administrator to perform basic

database operations are granted through two special system privileges, SYSDBAand

SYSOPER. You must have one of these privileges granted to you, depending upon

the level of authorization you require.

Note: The DBA role does not include the SYSDBA or SYSOPER
system privileges. These are special administrative privileges that

allow an administrator to perform basic database administration

tasks, such as creating the database and instance startup and

shutdown. These system privileges are discussed in

"Administrative Privileges" on page 1-13.

Database Administrator Authentication

1-14 Oracle9i Database Administrator’s Guide

SYSDBA and SYSOPER
The following are the operations that are authorized by the SYSDBA and SYSOPER
system privileges:

The manor in which you are authorized to use these privileges depends upon the

method of authentication that you choose to use.

Note: The SYSDBA and SYSOPER system privileges allow access

to a database instance even when the database is not open. Control

of these privileges is totally outside of the database itself.

While referred to as system privileges, SYSDBA and SYSOPER, can

also be thought of as types of connections (for example, you

specify: CONNECTAS SYSDBA) that enable you to perform certain

database operations for which privileges cannot be granted in any

other fashion.

System Privilege Operations Authorized

SYSDBA ■ Perform STARTUP and SHUTDOWN operations

■ ALTER DATABASE: open, mount, back up, or change
character set

■ CREATE DATABASE

■ CREATE SPFILE

■ ARCHIVELOG and RECOVERY

■ Includes the RESTRICTED SESSION privilege

Effectively, this system privilege allows a user to connect as user
SYS.

SYSOPER ■ Perform STARTUP and SHUTDOWN operations

■ CREATE SPFILE

■ ALTER DATABASE OPEN/MOUNT/BACKUP

■ ARCHIVELOG and RECOVERY

■ Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks,
but without the ability to look at user data.

Database Administrator Authentication

The Oracle Database Administrator 1-15

When you connect with SYSDBA or SYSOPER privileges, you connect with a default

schema, not with the schema that is generally associated with your username. For

SYSDBA this schema is SYS; for SYSOPER the schema is PUBLIC.

Connecting with Administrative Privileges: Example
This example illustrates that a user is assigned another schema (SYS) when

connecting with the SYSDBA system privilege.

Assume that user scott has issued the following statements:

CONNECT scott/ password
CREATE TABLE admin_test(name VARCHAR2(20));

Later, scott issues these statements:

CONNECT scott/ password AS SYSDBA
SELECT * FROM admin_test;

User scott now receives the following error:

ORA-00942: table or view does not exist

This is because scott now references the SYS schema by default. The table was

created in the scott schema.

Selecting an Authentication Method
The following methods are available for authenticating database administrators:

■ Operating system (OS) authentication

■ Password files

See Also:

■ "Using Operating System (OS) Authentication" on page 1-17

■ "Using Password File Authentication" on page 1-18

Note: These methods replace the CONNECT INTERNAL syntax

provided with earlier versions of Oracle. CONNECT INTERNAL is
no longer allowed.

Database Administrator Authentication

1-16 Oracle9i Database Administrator’s Guide

Your choice will be influenced by whether you intend to administer your database

locally on the same machine where the database resides, or whether you intend to

administer many different databases from a single remote client. Figure 1–2

illustrates the choices you have for database administrator authentication schemes.

Figure 1–2 Database Administrator Authentication Methods

If you are performing remote database administration, you should consult your

Oracle Net documentation to determine if you are using a secure connection. Most

popular connection protocols, such as TCP/IP and DECnet, are not secure.

Non-Secure Remote Connections
To connect to Oracle as a privileged user over a non-secure connection, you must be

authenticated by a password file. When using password file authentication, the

See Also:

■ Oracle9i Database Concepts for additional information about user

authentication

■ "User Authentication" on page 23-2

■ "User Authentication Methods" on page 24-8

■ Oracle9i Net Services Administrator’s Guide

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Use a
password file

Do you
have a secure

connection?

Do you
want to use OS
authentication?

Database Administrator Authentication

The Oracle Database Administrator 1-17

database uses a password file to keep track of database usernames that have been

granted the SYSDBA or SYSOPER system privilege.

This form of authentication is discussed in "Using Password File Authentication" on

page 1-18.

Local Connections and Secure Remote Connections
To connect to Oracle as a privileged user over a local connection or a secure remote

connection, you have the following options:

■ You can connect and be authenticated by a password file, provided the database

has a password file and you have been granted the SYSDBAor SYSOPERsystem

privilege.

■ If the server is not using a password file, or if you have not been granted

SYSDBA or SYSOPER privileges and are therefore not in the password file, you

can use OS authentication. On most operating systems, OS authentication for

database administrators involves placing the OS username of the database

administrator in a special group, generically referred to as OSDBA.

Using Operating System (OS) Authentication
This section describes how to authenticate an administrator using the operating

system.

Preparing to Use OS Authentication
To enable authentication of an administrative user using the operating system you

must do the following:

1. Create an operating system account for the user.

2. Add the user to the OSDBA or OSOPER operating system defined groups.

3. Ensure that the initialization parameter, REMOTE_LOGIN_PASSWORDFILE, is

set to NONE. This is the default value for this parameter.

Connecting Using OS Authentication
A user can be authenticated, enabled as an administrative user, and connected to a

local database by typing one of the following SQL*Plus commands:

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER

Database Administrator Authentication

1-18 Oracle9i Database Administrator’s Guide

For a remote database connection over a secure connection, the user must also

specify the net service name of the remote database:

CONNECT /@net_service_name AS SYSDBA
CONNECT /@net_service_name AS SYSOPER

OSDBA and OSOPER
Two special operating system groups control database administrator connections

when using OS authentication. These groups are generically referred to as OSDBA

and OSOPER. The groups are created and assigned specific names as part of the

database installation process. The specific names vary depending upon your

operating system and are listed in the following table:

The default names assumed by the Oracle Universal Installer can be overridden.

How you create the OSDBA and OSOPER groups is operating system specific.

The following describes how membership in the OSDBA or OSOPER group affects

your connection to Oracle:

■ If you are a member of the OSDBA group, and specify AS SYSDBA when you

connect to the database, you are granted the SYSDBA system privilege.

■ If you are a member of the OSOPER group, and specify AS SYSOPERwhen you

connect to the database, you are granted the SYSOPER system privilege.

■ If you are not a member of the associated operating system group for SYSDBA
or SYSOPER system privileges, the CONNECT command fails.

Using Password File Authentication
This section describes how to authenticate an administrative user using password

file authentication.

See Also: SQL*Plus User’s Guide and Reference for syntax of the

CONNECT command

Operating System Group UNIX Windows

OSDBA dba ORA_DBA

OSOPER oper ORA_OPER

See Also: Your operating system specific Oracle documentation

for information about creating the OSDBA and OSOPER groups

Database Administrator Authentication

The Oracle Database Administrator 1-19

Preparing to Use Password File Authentication
To enable authentication of an administrative user using password file

authentication you must do the following:

1. Create an operating system account for the user.

2. If not already created, Create the password file using the ORAPWD utility:

ORAPWD FILE=filename PASSWORD=password ENTRIES=max_users

3. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to

EXCLUSIVE.

4. Connect to the database as user SYS (or as another user with the administrative

privilege).

5. If the user does not already exist in the database, create the user. Grant the

SYSDBA or SYSOPER system privilege to the user:

GRANT SYSDBA to scott;

This statement adds the user to the password file, thereby enabling connection

AS SYSDBA.

Connecting Using Password File Authentication
Administrative users can be connected and authenticated to a local or remote

database by using the SQL*Plus CONNECTcommand. They must connect using their

username and password and with the AS SYSDBA or AS SYSOPER clause. For

example, user scott has been granted the SYSDBA privilege, so he can connect as

follows:

CONNECT scott/tiger AS SYSDBA

However, since scott has not been granted the SYSOPER privilege, the following

command will fail:

CONNECT scott/tiger AS SYSOPER

See Also: "Creating and Maintaining a Password File" on

page 1-20 for instructions for creating and maintaining a password

file

Creating and Maintaining a Password File

1-20 Oracle9i Database Administrator’s Guide

Creating and Maintaining a Password File
You can create a password file using the password file creation utility, ORAPWD. For

some operating systems, you can create this file as part of your standard

installation.

This section contains the following topics:

■ Using ORAPWD

■ Setting REMOTE_LOGIN_ PASSWORDFILE

■ Adding Users to a Password File

■ Maintaining a Password File

Using ORAPWD
When you invoke the password file creation utility without supplying any

parameters, you receive a message indicating the proper use of the command as

shown in the following sample output:

orapwd
Usage: orapwd file=<fname> password=<password> entries=<users>
where
file - name of password file (mand),
password - password for SYS (mand),

Note: Operating system authentication takes precedence over

password file authentication. Specifically, if you are a member of

the OSDBA or OSOPER group for the operating system, and you

connect as SYSDBA or SYSOPER, you will be connected with

associated administrative privileges regardless of the

username/password that you specify.

If you are not in the OSDBA or OSOPER groups, and you are not in

the password file, then the connection will fail.

See Also: SQL*Plus User’s Guide and Reference for syntax of the

CONNECT command

See Also: Your operating system specific Oracle documentation

for information on using the installer utility to install the password

file

Creating and Maintaining a Password File

The Oracle Database Administrator 1-21

entries - maximum number of distinct DBAs and OPERs (opt),
There are no spaces around the equal-to (=) character.

The following command creates a password file named acct.pwd that allows up to

30 privileged users with different passwords. In this example, the file is initially

created with the password secret for users connecting as SYS.

ORAPWD FILE=acct.pwd PASSWORD=secret ENTRIES=30

Following are descriptions of the parameters in the ORAPWD utility.

FILE
This parameter sets the name of the password file being created. You must specify

the full path name for the file. The contents of this file are encrypted, and the file

cannot be read directly. This parameter is mandatory.

The types of filenames allowed for the password file are operating system specific.

Some operating systems require the password file to be a specific format and

located in a specific directory. Other operating systems allow the use of

environment variables to specify the name and location of the password file. See

your operating system specific Oracle documentation for the names and locations

allowed on your platform.

If you are running multiple instances of Oracle using Oracle9i Real Application

Clusters, the environment variable for each instance should point to the same

password file.

PASSWORD
This parameter sets the password for user SYS. If you issue the ALTER USER
statement to change the password for SYSafter connecting to the database, both the

password stored in the data dictionary and the password stored in the password file

are updated. This parameter is mandatory.

ENTRIES
This parameter specifies the number of entries that you require the password file to

accept. This number corresponds to the number of distinct users allowed to connect

Caution: It is critically important to the security of your system

that you protect your password file and the environment variables

that identify the location of the password file. Any user with access

to these could potentially compromise the security of the

connection.

Creating and Maintaining a Password File

1-22 Oracle9i Database Administrator’s Guide

to the database as SYSDBA or SYSOPER. The actual number of allowable entries can

be higher than the number of users because the ORAPWD utility continues to assign

password entries until an operating system block is filled. For example, if your

operating system block size is 512 bytes, it holds four password entries. The number

of password entries allocated is always multiple of four.

Entries can be reused as users are added to and removed from the password file. If

you intend to specify REMOTE_LOGON_PASSWORDFILE=EXCLUSIVE, and to allow

the granting of SYSDBA and SYSOPER privileges to users, this parameter is

required.

Setting REMOTE_LOGIN_ PASSWORDFILE
In addition to creating the password file, you must also set the initialization

parameter REMOTE_LOGIN_PASSWORDFILE to the appropriate value. The values

recognized are described as follows:

Caution: When you exceed the allocated number of password

entries, you must create a new password file. To avoid this

necessity, allocate a number of entries that is larger than you think

you will ever need.

Value Description

NONE Setting this parameter to NONE causes Oracle to behave as if the
password file does not exist. That is, no privileged connections
are allowed over non-secure connections. NONE is the default
value for this parameter.

EXCLUSIVE An EXCLUSIVE password file can be used with only one
database. Only an EXCLUSIVE file can contain the names of
users other than SYS. Using an EXCLUSIVEpassword file allows
you to grant SYSDBA and SYSOPER system privileges to
individual users and have them connect as themselves.

SHARED A SHARED password file can be used by multiple databases.
However, the only user recognized by a SHAREDpassword file is
SYS. You cannot add users to a SHARED password file. All users
needing SYSDBA or SYSOPER system privileges must connect
using the same name, SYS, and password. This option is useful
if you have a single DBA administering multiple databases.

Creating and Maintaining a Password File

The Oracle Database Administrator 1-23

Adding Users to a Password File
When you grant SYSDBA or SYSOPER privileges to a user, that user’s name and

privilege information are added to the password file. If the server does not have an

EXCLUSIVE password file (that is, if the initialization parameter REMOTE_LOGIN_
PASSWORDFILE is NONE or SHARED) you receive an error message if you attempt to

grant these privileges.

A user’s name remains in the password file only as long as that user has at least one

of these two privileges. If you revoke both of these privileges, the user is removed

from the password file.

To Create a Password File and Add New Users to It
1. Follow the instructions for creating a password file as explained in "Using

ORAPWD" on page 1-20.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to

EXCLUSIVE.

3. Connect with SYSDBA privileges as shown in the following example:

CONNECT SYS/password AS SYSDBA

4. Start up the instance and create the database if necessary, or mount and open an

existing database.

5. Create users as necessary. Grant SYSDBAor SYSOPERprivileges to yourself and

other users as appropriate. See "Granting and Revoking SYSDBA and SYSOPER

Privileges".

Granting the SYSDBA or SYSOPER privilege to a user causes their username to be

added to the password file. This enables the user to connect to the database as

SYSDBA or SYSOPER by specifying username and password (instead of using SYS).

The use of a password file does not prevent OS authenticated users from connecting

if they meet the criteria for OS authentication.

Suggestion: To achieve the greatest level of security, you should

set the REMOTE_LOGIN_PASSWORDFILEinitialization parameter to

EXCLUSIVE immediately after creating the password file.

Creating and Maintaining a Password File

1-24 Oracle9i Database Administrator’s Guide

Granting and Revoking SYSDBA and SYSOPER Privileges
If your server is using an EXCLUSIVE password file, use the GRANT statement to

grant the SYSDBA or SYSOPER system privilege to a user, as shown in the following

example:

GRANT SYSDBA TO scott;

Use the REVOKEstatement to revoke the SYSDBAor SYSOPERsystem privilege from

a user, as shown in the following example:

REVOKE SYSDBA FROM scott;

Because SYSDBA and SYSOPER are the most powerful database privileges, the

ADMIN OPTION is not used. Only a user currently connected as SYSDBA (or

INTERNAL) can grant or revoke another user’s SYSDBA or SYSOPER system

privileges. These privileges cannot be granted to roles, because roles are only

available after database startup. Do not confuse the SYSDBAand SYSOPERdatabase

privileges with operating system roles, which are a completely independent feature.

Viewing Password File Members
Use the V$PWFILE_USERSview to see the users who have been granted SYSDBAor

SYSOPER system privileges for a database. The columns displayed by this view are

as follows:

Maintaining a Password File
This section describes how to:

■ Expand the number of password file users if the password file becomes full

■ Remove the password file

See Also: Chapter 25, "Managing User Privileges and Roles" for

more information on system privileges

Column Description

USERNAME This column contains the name of the user that is recognized by
the password file.

SYSDBA If the value of this column is TRUE, then the user can log on with
SYSDBA system privileges.

SYSOPER If the value of this column is TRUE, then the user can log on with
SYSOPER system privileges.

Creating and Maintaining a Password File

The Oracle Database Administrator 1-25

■ Avoid changing the state of the password file

Expanding the Number of Password File Users
If you receive the file full error (ORA-1996) when you try to grant SYSDBA or

SYSOPER system privileges to a user, you must create a larger password file and

re-grant the privileges to the users.

To Replace a Password File

1. Note the users who have SYSDBA or SYSOPER privileges by querying the

V$PWFILE_USERS view.

2. Shut down the database.

3. Delete the existing password file.

4. Follow the instructions for creating a new password file using the ORAPWD
utility in "Using ORAPWD" on page 1-20. Ensure that the ENTRIES parameter

is set to a number larger than you think you will ever need.

5. Follow the instructions in "Adding Users to a Password File" on page 1-23.

Removing a Password File
If you determine that you no longer require a password file to authenticate users,

you can delete the password file and reset the REMOTE_LOGIN_PASSWORDFILE
initialization parameter to NONE. After you remove this file, only those users who

can be authenticated by the operating system can perform database administration

operations.

Changing the Password File State
The password file state is stored in the password file. When you first create a

password file, its default state is SHARED. You can change the state of the password

file by setting the initialization parameter REMOTE_LOGIN_PASSWORDFILE. When

you start up an instance, Oracle retrieves the value of this parameter from the

Caution: Do not remove or modify the password file if you have a

database or instance mounted using REMOTE_LOGIN_
PASSWORDFILE=EXCLUSIVE (or SHARED). If you do, you will be

unable to reconnect remotely using the password file. Even if you

replace it, you cannot use the new password file, because the

timestamps and checksums will be wrong.

Database Administrator Utilities

1-26 Oracle9i Database Administrator’s Guide

parameter file stored on your client machine. When you mount the database, Oracle

compares the value of this parameter to the value stored in the password file. If the

values do not match, Oracle overwrites the value stored in the file.

Database Administrator Utilities
Several utilities are available to help you maintain the data in your Oracle database.

This section introduces two of these utilities:

■ SQL*Loader

■ Export and Import

SQL*Loader
SQL*Loader is used both by database administrators and by other users of Oracle. It

loads data from standard operating system files (such as, files in text or C data

format) into Oracle database tables.

Export and Import
The Export and Import utilities enable you to move existing data in Oracle format

to and from Oracle databases. For example, export files can archive database data or

move data among different Oracle databases that run on the same or different

operating systems.

Caution: Use caution to ensure that an EXCLUSIVE password file

is not accidentally changed to SHARED. If you plan to allow

instance start up from multiple clients, each of those clients must

have an initialization parameter file, and the value of the parameter

REMOTE_LOGIN_PASSWORDFILEmust be the same in each of these

files. Otherwise, the state of the password file could change

depending upon where the instance was started.

See Also: Oracle9i Database Utilities

 Creating an Oracle Database 2-1

2
Creating an Oracle Database

This chapter discusses the process of creating an Oracle database, and contains the

following topics:

■ Considerations Before Creating a Database

■ Using the Database Configuration Assistant

■ Manually Creating an Oracle Database

■ Understanding the CREATE DATABASE Statement

■ Troubleshooting Database Creation

■ Dropping a Database

■ Considerations After Creating a Database

■ Initialization Parameters and Database Creation

■ Managing Initialization Parameters Using a Server Parameter File

See Also:

■ Chapter 3, "Using Oracle-Managed Files" for information about

creating a database whose underlying operating system files

are automatically created and managed by the Oracle database

server

■ Oracle9i Real Application Clusters Setup and Configuration for

additional information specific to an Oracle Real Application

Clusters environment

Considerations Before Creating a Database

2-2 Oracle9i Database Administrator’s Guide

Considerations Before Creating a Database
Database creation prepares several operating system files to work together as an

Oracle database. You need only create a database once, regardless of how many

datafiles it has or how many instances access it. Creating a database can also erase

information in an existing database and create a new database with the same name

and physical structure.

The following topics can help prepare you for database creation.

■ Planning for Database Creation

■ Meeting Creation Prerequisites

■ Deciding How to Create an Oracle Database

Planning for Database Creation
Prepare to create the database by research and careful planning. The following are

some recommended actions:

Action For more information...

■ Plan the database tables and indexes and estimate the
amount of space they will require.

Part II, "Oracle Server
Processes and Storage
Structure"

Part III, "Schema Objects"

■ Plan the layout of the underlying operating system files that
are to comprise your database. Proper distribution of files
can improve database performance dramatically by
distributing the I/O for accessing the files. There are several
ways to distribute I/O when you install Oracle and create
your database. For example, placing redo log files on
separate disks or striping; placing datafiles to reduce
contention; and controlling density of data (number of rows
to a data block).

Oracle9i Database
Performance Tuning
Guide and Reference

Your Oracle operating
system specific
documentation

■ Consider using the Oracle Managed Files feature to create
and manage the operating system files that comprise your
database storage. This feature eases their administration.

Chapter 3, "Using
Oracle-Managed Files"

■ Select the global database name, which is the name and
location of the database within the network structure.
Create the global database name by setting both the DB_
NAMEand DB_DOMAIN initialization parameters.

"Determining the Global
Database Name" on
page 2-35

Considerations Before Creating a Database

 Creating an Oracle Database 2-3

■ Familiarize yourself with the initialization parameters that
comprise the initialization parameter file. Become familiar
with the concept and operation of a server parameter file. A
server parameter file allows you to store and manage your
initialization parameters persistently in a server-side disk
file.

"Initialization
Parameters and
Database Creation" on
page 2-34

"What is a Server
Parameter File?" on
page 2-44

Oracle9i Database
Reference

■ Select the database character set.

All character data, including data in the data dictionary, is
stored in the database character set. You must specify the
database character set when you create the database.

If clients using different character sets will access the
database, then choose a superset that includes all client
character sets. Otherwise, character conversions may be
necessary at the cost of increased overhead and potential
data loss.

You can also specify an alternate character set.

Oracle9i Database
Globalization Support
Guide

■ Consider what time zones your database must support.

Oracle uses a time zone file, located in the Oracle home
directory, as the source of valid time zones. If you
determine that you need to use a time zone that is not in the
default time zone file (timezone.dat), but that is present
in the larger time zone file (timezlrg.dat), then you must
set the ORA_TZFILE environment variable to point to the
larger file.

"Specifying the Database
Time Zone File" on
page 2-28

Oracle9i Database
Globalization Support
Guide

■ Select the standard database block size. This is specified at
database creation by the DB_BLOCK_SIZE initialization
parameter and cannot be changed after the database is
created.

The SYSTEM tablespace and most other tablespaces use the
standard block size. Additionally, you can specify up to
four non-standard block sizes when creating tablespaces.

"Specifying Database
Block Sizes" on page 2-37

■ Use an undo tablespace to manage your undo records,
rather than rollback segments.

Chapter 13, "Managing
Undo Space"

Action For more information...

Considerations Before Creating a Database

2-4 Oracle9i Database Administrator’s Guide

Meeting Creation Prerequisites
To create a new database, the following prerequisites must be met:

■ The desired Oracle software is installed. This includes setting up various

environment variables unique to your operating system and establishing the

directory structure for software and database files.

■ You have the operating system privileges associated with a fully operational

database administrator. You must be specially authenticated by your operating

system or through a password file, allowing you to start up and shut down an

instance before the database is created or opened. This authentication is

discussed in "Database Administrator Authentication" on page 1-13.

■ There is sufficient memory available to start the Oracle instance.

■ There is sufficient disk storage space for the planned database on the computer

that executes Oracle.

All of these are discussed in the Oracle installation guide specific to your operating

system. Additionally, the Oracle Universal Installer will guide you through your

installation and provide help in setting up environment variables, directory

structure, and authorizations.

Deciding How to Create an Oracle Database
Creating a database includes the following operations:

■ Creating information structures, including the data dictionary, that Oracle

requires to access and use the database

■ Develop a backup and recovery strategy to protect the
database from failure. It is important to protect the control
file by multiplexing, to choose the appropriate backup
mode, and to manage the online and archived redo logs.

Chapter 7, "Managing
the Online Redo Log"

Chapter 8, "Managing
Archived Redo Logs"

Chapter 6, "Managing
Control Files"

Oracle9i Backup and
Recovery Concepts

■ Familiarize yourself with the principles and options of
starting up and shutting down an instance and mounting
and opening a database.

Chapter 4, "Starting Up
and Shutting Down"

Action For more information...

Using the Database Configuration Assistant

 Creating an Oracle Database 2-5

■ Creating and initializing the control files and redo log files for the database

■ Creating new datafiles or erasing data that existed in previous datafiles

You use the CREATE DATABASE statement to perform these operations, but other

actions are necessary before you have an operational database. A few of these

actions are creating users and temporary tablespaces, building views of the data

dictionary tables, and installing Oracle built-in packages. This is why the database

creation process involves executing prepared scripts. But, you do not necessarily

have to prepare this script yourself.

You have the following options for creating your new Oracle database:

■ Use the Database Configuration Assistant (DBCA).

DBCA can be launched by the Oracle Universal Installer, depending upon the

type of install that you select, and provides a graphical user interface (GUI) that

guides you through the creation of a database. You can chose not to use DBCA,

or you can launch it as a standalone tool at any time in the future to create a

database. See "Using the Database Configuration Assistant" on page 2-5.

■ Create the database manually from a script.

If you already have existing scripts for creating your database, you can still

create your database manually. However, consider editing your existing script

to take advantage of new Oracle features. Oracle provides a sample database

creation script and a sample initialization parameter file with the database

software files it distributes, both of which can be edited to suit your needs. See

"Manually Creating an Oracle Database" on page 2-14.

■ Upgrade an existing database.

If you are already using a previous release of Oracle, database creation is

required only if you want an entirely new database. You can upgrade your

existing Oracle database and use it with the new release of the Oracle software.

Database upgrades are not discussed in this book. The Oracle9i Database
Migration manual contains information about upgrading an existing Oracle

database.

Using the Database Configuration Assistant
The Database Configuration Assistant (DBCA) an Oracle supplied tool that enables

you to create an Oracle database, configure database options for an existing Oracle

database, delete an Oracle database, or manage database templates. DBCA is

launched automatically by the Oracle Universal Installer, but it can be invoked

Using the Database Configuration Assistant

2-6 Oracle9i Database Administrator’s Guide

standalone from the Windows operating system start menu (under Configuration

Assistants) or by entering the following on the UNIX command line:

dbca

DBCA can be run in three modes:

DBCA can be used to create single instance databases, or it can be used to create or

add instances in an Oracle Real Application Clusters environment.

This section primarily describes the use of DBCA in interactive mode. It contains

the following topics:

■ Advantages of Using DBCA

■ Creating a Database Using DBCA

■ Configuring Database Options

■ Deleting a Database Using DBCA

■ Managing DBCA Templates

■ Using DBCA Silent Mode

Advantages of Using DBCA
These are a few of the advantages of using DBCA:

Mode Description

Interactive This is the default mode if you do not specify any parameters.
This mode presents a wizard like GUI interface and provides
complete DBCA functionality. Online help is provided.

Progress Only This mode is typically used by other tools to create a database.
For example, it is used by the Oracle Universal Installer, the
Enterprise Manager Configuration Assistant, and the Oracle
Internet Directory Configuration Assistant. In this mode, only a
progress bar is displayed, and it is used when creating databases
and templates.

Silent This mode has only a command-line interface where parameters
are specified. There is no other user interaction. Informational,
error, and warning message are written to a log file. You specify
the template of your choice, for customization or for the creation
of a database.

Using the Database Configuration Assistant

 Creating an Oracle Database 2-7

■ You can use its wizards to guide you through a selection of options providing

an easy means of creating and tailoring your database. It allows you to provide

varying levels of detail. You can provide a minimum of input and allow Oracle

to make decisions for you, eliminating the need to spend time deciding how

best to set parameters or structure the database. Optionally, it allows you to be

very specific about parameter settings and file allocations.

■ It builds efficient and effective databases that take advantage of Oracle’s new

features.

■ It uses Optimal Flexible Architecture (OFA), whereby database files and

administrative files, including initialization files, follow standard naming and

placement practices.

Creating a Database Using DBCA
DBCA enables you to create a database from predefined templates provided by

Oracle or from templates that you or others have created. A template is a

description of a database. Templates are described in more detail in "Managing

DBCA Templates" on page 2-9.

Selecting the Template
DBCA displays the templates that are available, which includes templates that

Oracle ships with the DBCA product. These templates are described in "DBCA

Templates Provided by Oracle" on page 2-11. If you or others have created

templates, those will be displayed also. You select the appropriate template for the

database that you want to create. Clicking the "Show Details..." button displays

specific information about the database defined by a template.

Including Datafiles
When you select a template, you also specify whether the database definition is to

include datafiles. This determines whether you use a seed template (includes

datafiles), or a non-seed template (does not include datafiles), to create your

database.

Specifying Global Database Name and Database Features
The next page that DBCA displays enables you provide a global database name and

SID.

Using the Database Configuration Assistant

2-8 Oracle9i Database Administrator’s Guide

Specifying Database Features
The "Database Features" page is presented only when you select a non-seed

template. It enables you to include optional database features.

The following is a representative list of Oracle features that you can install in your

database. Some of the listed options might already be included depending upon the

database template that you selected. Those options that are already installed are

noted as such (grayed out).

■ Oracle Spatial

■ Oracle Ultra Search

■ Oracle Label Security

■ Oracle Data Mining

■ Oracle OLAP Services

■ Sample Schemas

You can also display a list of standard database features. These are features that

Oracle recommends you always install, but you have the option of excluding them.

These include:

■ Oracle JVM

■ Oracle Text

■ Oracle interMedia

■ XDB Protocol

Specifying Mode, Initialization Parameters, and Datafiles
The next pages enable you to further define your database. You specify mode

(dedicated server of shared server), set initialization parameters, and specify

datafile locations. Oracle can determine specific values for you based upon your

description of the database you are trying to create. For example, Oracle can choose

appropriate settings for SGA memory sizing parameters depending upon whether

you select a typical or custom database.

Completing Database Creation
After you have completed the specification of the parameters that define your

database you can:

Using the Database Configuration Assistant

 Creating an Oracle Database 2-9

■ Create the database now

■ Save the description as a database template

■ Generate database creation scripts

If you choose to generate scripts, you can use them to create the database later

without using DBCA, or you can use them as a checklist

Configuring Database Options
When you elect to configure database options, you can add Oracle options that have

not previously been configured for use with your database. This provides you the

opportunity to add options and features that you did not include when you created

the database. These options are discussed in "Specifying Database Features" on

page 2-8.

Deleting a Database Using DBCA
DBCA enables you to delete a database. When you do so, you delete the database

instance and its control file(s), redo log files, and datafiles. Any server parameter

file (SPFILE) or initialization parameter file used by the database is also deleted.

Managing DBCA Templates
DBCA templates are XML files that contain information required to create a

database. Templates are used in DBCA to create new databases and make clones of

existing databases. The information in templates includes database options,

initialization parameters, and storage attributes (for datafiles, tablespaces, control

files and redo logs).

Templates can be used just like scripts, and they can be used in silent mode. But

they are more powerful than scripts, because you have the option of cloning a

database. This saves time in database creation, because copying an already created

seed database’s files to the correct locations takes less time than creating them as

new.

Templates are stored in the following directory:

$ORACLE_HOME/assistants/dbca/templates

Advantages of Using Templates
The following are some of the advantages of using templates:

Using the Database Configuration Assistant

2-10 Oracle9i Database Administrator’s Guide

■ They save you time. If you use a template you do not have to define the

database.

■ By creating a template containing your database settings, you can easily create a

duplicate database without specifying parameters twice.

■ They are easily edited. You can quickly change database options from the

template settings.

■ Templates are easy to share. They can be copied from one machine to another.

Types of Templates
There are two types of templates:

■ Seed templates

■ Non-seed templates

The characteristics of each are shown in the following table:

Using the Database Configuration Assistant

 Creating an Oracle Database 2-11

DBCA Templates Provided by Oracle
Oracle provides templates for the following environments:

Type
File
Extension

Include
Datafiles? Database Structure

Seed .dbc Yes This type of template contains both the structure
and the physical datafiles of an existing (seed)
database. When you select a seed template, database
creation is faster because the physical files and
schema of the database have already been created.
Your database starts as a copy of the seed database,
rather than having to be built.

You can change only the following:

■ Name of the database

■ Destination of the datafiles

■ Number control files

■ Number redo log groups

■ Initialization parameters

Other changes can be made after database creation
using custom scripts that can be invoked by DBCA,
command line SQL statements, or the Oracle
Enterprise Manager.

The datafiles and redo logs for the seed database are
stored in zipped format in another file with a .dfj
extension. Usually the corresponding .dfj file of a
.dbc file has the same file name, but this is not a
requirement since the corresponding .dfj file’s
location is stored in the .dbc file.

Non-seed .dbt No This type of template is used to create a new
database from scratch. It contains the characteristics
of the database to be created. Seed templates are
more flexible than their seed counterparts because
all datafiles and redo logs are created to your
specification (not copied), and names, sizes, and
other attributes can be changed as required.

Using the Database Configuration Assistant

2-12 Oracle9i Database Administrator’s Guide

Creating Templates Using DBCA
The "Template Management" page provides you with three options that enable you

to modify existing templates or to create your own custom templates. Your choices

are:

■ From an existing template

Using an existing template, you can create a new template based on the

pre-defined template settings. You can add or change any template settings

such as initialization parameters, storage parameters, or use custom scripts.

■ From an existing database (structure only)

You can create a new template that contains structural information about an

existing database, including database options, tablespaces, datafiles, and

initialization parameters specified in the source database. User defined schema

and their data will not be part of the created template. The source database can

be either local or remote.

■ From an existing database (structure as well as data--a seed database)

You can create a new template that has both the structural information and

physical datafiles of an existing database. Databases created using such a

Environment Description of Environment

DSS (Data Warehousing) Users perform numerous, complex queries that process large
volumes of data. Response time, accuracy, and availability are
key issues.

These queries (typically read-only) range from a simple fetch of
a few records to numerous complex queries that sort thousands
of records from many different tables.

OLTP (Online
Transaction Processing)

Many concurrent users performing numerous transactions
requiring rapid access to data. Availability, speed, concurrence,
and recoverability are key issues.

Transactions consist of reading (SELECT statements), writing
(INSERT and UPDATE statements), and deleting (DELETE
statements) data in database tables.

General Purpose This template creates a database designed for general purpose
usage. It combines features of both the DSS and OLTP database
templates.

New Database This template allows you maximum flexibility in defining a
database.

Using the Database Configuration Assistant

 Creating an Oracle Database 2-13

template are identical to the source database. User defined schema and their

data will be part of the created template. The source database must be local.

Oracle saves templates as XML files.

While creating templates from existing databases, you can optionally choose to

translate file paths into OFA (Optimal Flexible Architecture) or maintain existing

file paths. OFA is recommended if the machine on which you plan to create the

database using the template has a different directory structure. Non-OFA can be

used if the target machine has a similar directory structure.

Deleting DBCA Templates
The "Template Management" page also allows you to delete existing templates.

Using DBCA Silent Mode
Silent mode does not have any user interface (other than what you initially input on

the command line) or user interaction. It outputs all messages including

information, errors, and warnings into a log file.

From the command line enter the following command to see all of the DBCA

options that are available when using silent mode:

dbca -help

The following sections contain examples that illustrate the use of silent mode.

DBCA Silent Mode Example 1: Creating a Clone Database
To create a clone database, enter the following on the command line:

% dbca -silent -createDatabase -templateName Transaction_Processing.dbc
-gdbname ora9i -sid ora9i -datafileJarLocation
/private/oracle9i/ora9i/assistants/dbca/templates -datafileDestination
/private/oracle9i/ora9i/oradata -responseFile NO_VALUE
-characterset WE8ISO8859P1

DBCA Silent Mode Example 2: Creating a Seed Template
To create a seed template, enter the following on the command line:

% dbca -silent -createCloneTemplate -sourceDB ora9I -sysDBAUserName
sys -sysDBAPassword change_on_install -templateName copy_of_ora9i.dbc
-datafileJarLocation /private/oracle/ora9i/assistants/dbca/templates

Manually Creating an Oracle Database

2-14 Oracle9i Database Administrator’s Guide

Manually Creating an Oracle Database
This section presents the steps involved when you create a database manually.

These steps should be followed in the order presented. You will previously have

created your environment for creating your Oracle database, including most

operating system dependent environmental variables, as part of the Oracle software

installation process.

Step 1: Decide on Your Instance Identifier (SID)

Step 2: Establish the Database Administrator Authentication Method

Step 3: Create the Initialization Parameter File

Step 4: Connect to the Instance

Step 5: Start the Instance.

Step 6: Issue the CREATE DATABASE Statement

Step 7: Create Additional Tablespaces

Step 8: Run Scripts to Build Data Dictionary Views

Step 9: Run Scripts to Install Additional Options (Optional)

Step 10: Create a Server Parameter File (Recommended)

Step 11: Back Up the Database.

The examples shown in these steps are to create the database mynewdb.

Step 1: Decide on Your Instance Identifier (SID)
Decide on a unique Oracle system identifier (SID) for your instance and set the

ORACLE_SID environment variable accordingly. This identifier is used to avoid

confusion with other Oracle instances that you may create later and run

concurrently on your system.

The following example sets the SID for the instance and database we are about to

create:

Note: At this point, you may not be familiar with all of the

initialization parameters and database structures discussed in this

section. These steps contain many cross references to other parts of

this book to allow you to learn about and understand these

parameters and structures.

Manually Creating an Oracle Database

 Creating an Oracle Database 2-15

% setenv ORACLE_SID mynewdb

The value of the DB_NAME initialization parameter should match the SID setting.

Step 2: Establish the Database Administrator Authentication Method
You must be authenticated and granted appropriate system privileges in order to

create a database. You can use the password file or operating system authentication

method. Database administrator authentication and authorization is discussed in

the following sections of this book:

■ "Database Administrator Security and Privileges" on page 1-10

■ "Database Administrator Authentication" on page 1-13

■ "Creating and Maintaining a Password File" on page 1-20

Step 3: Create the Initialization Parameter File
The instance (System Global Area and background processes) for any Oracle

database is started using an initialization parameter file. One way of getting started

on your initialization parameter file is to edit a copy of the sample initialization

parameter file that Oracle provides on the distribution media, or the sample

presented in this book.

For ease of operation, store your initialization parameter file in Oracle’s default

location, using the default name. That way, when you start your database, it is not

necessary to specify the PFILE parameter because Oracle automatically looks in the

default location for the initialization parameter file.

Default parameter file locations are shown in the following table:

The following is the initialization parameter file used to create the mynewdb
database.

Platform Default Name Default Location

UNIX init$ORACLE_SID.ora

For example, the initialization
parameter file for the
mynewdb database is named:

initmynewdb.ora

$ORACLE_HOME/dbs

For example, the initialization parameter file
for the mynewdb database is stored in the
following location:

/vobs/oracle/dbs/initmynewdb.ora

Windows init$ORACLE_SID.ora $ORACLE_HOME\database

Manually Creating an Oracle Database

2-16 Oracle9i Database Administrator’s Guide

Sample Initialization Parameter File
Cache and I/O
DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=20971520

Cursors and Library Cache
CURSOR_SHARING=SIMILAR
OPEN_CURSORS=300

Diagnostics and Statistics
BACKGROUND_DUMP_DEST=/vobs/oracle/admin/mynewdb/bdump
CORE_DUMP_DEST=/vobs/oracle/admin/mynewdb/cdump
TIMED_STATISTICS=TRUE
USER_DUMP_DEST=/vobs/oracle/admin/mynewdb/udump

Control File Configuration
CONTROL_FILES=("/vobs/oracle/oradata/mynewdb/control01.ctl",
 "/vobs/oracle/oradata/mynewdb/control02.ctl",
 "/vobs/oracle/oradata/mynewdb/control03.ctl")

Archive
LOG_ARCHIVE_DEST_1='LOCATION=/vobs/oracle/oradata/mynewdb/archive'
LOG_ARCHIVE_FORMAT=%t_%s.dbf
LOG_ARCHIVE_START=TRUE

Shared Server
Uncomment and use first DISPATCHES parameter below when your listener is
configured for SSL
(listener.ora and sqlnet.ora)
DISPATCHERS = "(PROTOCOL=TCPS)(SER=MODOSE)",
"(PROTOCOL=TCPS)(PRE=oracle.aurora.server.SGiopServer)"
DISPATCHERS="(PROTOCOL=TCP)(SER=MODOSE)",
 "(PROTOCOL=TCP)(PRE=oracle.aurora.server.SGiopServer)",
 (PROTOCOL=TCP)

Miscellaneous
COMPATIBLE=9.2.0
DB_NAME=mynewdb

Distributed, Replication and Snapshot
DB_DOMAIN=us.oracle.com
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Network Registration
INSTANCE_NAME=mynewdb

Manually Creating an Oracle Database

 Creating an Oracle Database 2-17

Pools
JAVA_POOL_SIZE=31457280
LARGE_POOL_SIZE=1048576
SHARED_POOL_SIZE=52428800

Processes and Sessions
PROCESSES=150

Redo Log and Recovery
FAST_START_MTTR_TARGET=300

Resource Manager
RESOURCE_MANAGER_PLAN=SYSTEM_PLAN

Sort, Hash Joins, Bitmap Indexes
SORT_AREA_SIZE=524288

Automatic Undo Management
UNDO_MANAGEMENT=AUTO
UNDO_TABLESPACE=undotbs

Step 4: Connect to the Instance
Start SQL*Plus and connect to your Oracle instance AS SYSDBA.

$ SQLPLUS /nolog
CONNECT SYS/password AS SYSDBA

Step 5: Start the Instance.
Start an instance without mounting a database. Typically, you do this only during

database creation or while performing maintenance on the database. Use the

STARTUP command with the NOMOUNT option. In this example, because the

initialization parameter file is stored in the default location, you are not required to

specify the PFILE clause:

STARTUP NOMOUNT

See Also:

■ "Initialization Parameters and Database Creation" on page 2-34

for more information on some of these parameters and other

initialization parameters that you decide to include

Manually Creating an Oracle Database

2-18 Oracle9i Database Administrator’s Guide

At this point, there is no database. Only the SGA is created and background

processes are started in preparation for the creation of a new database.

Step 6: Issue the CREATE DATABASE Statement
To create the new database, use the CREATE DATABASE statement. The following

statement creates database mynewdb:

CREATE DATABASE mynewdb
 USER SYS IDENTIFIED BY pz6r58
 USER SYSTEM IDENTIFIED BY y1tz5p
 LOGFILE GROUP 1 ('/vobs/oracle/oradata/mynewdb/redo01.log') SIZE 100M,
 GROUP 2 ('/vobs/oracle/oradata/mynewdb/redo02.log') SIZE 100M,
 GROUP 3 ('/vobs/oracle/oradata/mynewdb/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 MAXINSTANCES 1
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE '/vobs/oracle/oradata/mynewdb/system01.dbf' SIZE 325M REUSE
 EXTENT MANAGEMENT LOCAL
 DEFAULT TEMPORARY TABLESPACE tempts1
 DATAFILE '/vobs/oracle/oradata/mynewdb/temp01.dbf'
 SIZE 20M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/vobs/oracle/oradata/mynewdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED;

A database is created with the following characteristics:

■ The database is named mynewdb. Its global database name is

mynewdb.us.oracle.com . See "DB_NAME Initialization Parameter" and

"DB_DOMAIN Initialization Parameter" on page 2-36.

■ Three control files are created as specified by the CONTROL_FILESinitialization

parameter. See "Specifying Control Files" on page 2-36.

See Also:

■ "Managing Initialization Parameters Using a Server Parameter

File" on page 2-44

■ Chapter 4, "Starting Up and Shutting Down" to learn how to

use the STARTUP command

Manually Creating an Oracle Database

 Creating an Oracle Database 2-19

■ The password for user SYSis pz6r58 and the password for SYSTEMis y1tz5p .

These two clauses that specify the passwords for SYS and SYSTEM are not

mandatory in this release of Oracle9i. However, if you specify either clause, you

must specify both clauses. For further information about the use of these

clauses, see "Protecting Your Database: Specifying Passwords for Users SYS and

SYSTEM" on page 2-23.

■ The new database has three online redo log files as specified in the LOGFILE
clause. MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY define limits

for the redo log. See Chapter 7, "Managing the Online Redo Log".

■ MAXDATAFILES specifies the maximum number of datafiles that can be open in

the database. This number affects the initial sizing of the control file.

■ MAXINSTANCES specifies that only one instance can have this database

mounted and open.

■ The US7ASCII character set is used to store data in this database.

■ The AL16UTF16 character set is specified as the NATIONAL CHARACRTER
SET, used to store data in columns specifically defined as NCHAR, NCLOB, or

NVARCHAR2.

■ The SYSTEM tablespace, consisting of the operating system file

/vobs/oracle/oradata/mynewdb/system01.dbf, is created as specified

by the DATAFILE clause. If the file already exists, it is overwritten.

■ The SYSTEM tablespace is a locally managed tablespace. See "Creating a Locally

Managed SYSTEM Tablespace" on page 2-26.

Note: You can set several limits during database creation. Some of

these limits are also subject to superseding limits of the operating

system and can be affected by them. For example, if you set

MAXDATAFILES, Oracle allocates enough space in the control file to

store MAXDATAFILES filenames, even if the database has only one

datafile initially. However, because the maximum control file size is

limited and operating system dependent, you might not be able to

set all CREATE DATABASE parameters at their theoretical

maximums.

For more information about setting limits during database creation,

see the Oracle9i SQL Reference and your operating system specific

Oracle documentation.

Manually Creating an Oracle Database

2-20 Oracle9i Database Administrator’s Guide

■ The DEFAULT_TEMPORARY_TABLESPACE clause creates and names a default

temporary tablespace for this database. See "Creating a Default Temporary

Tablespace" on page 2-24.

■ The UNDO_TABLESPACE clause creates and names an undo tablespace to be

used to store undo records for this database if you have specified UNDO_
MANAGEMENT=AUTO in the initialization parameter file. See "Using Automatic

Undo Management: Creating an Undo Tablespace" on page 2-24.

■ Because the ARCHIVELOG clause is not specified in this CREATE DATABASE
statement, redo log files will not initially be archived. This is customary during

database creation and an ALTER DATABASE statement can be used later to

switch to ARCHIVELOG mode. The initialization parameters in the initialization

parameter file for mynewdb relating to archiving are LOG_ARCHIVE_DEST_1,
LOG_ARCHIVE_FORMAT, and LOG_ARCHIVE_START. See Chapter 8, "Managing

Archived Redo Logs".

Step 7: Create Additional Tablespaces
To make the database functional, you need to create additional files and tablespaces

for users. The following sample script creates some additional tablespaces:

CONNECT SYS/password AS SYSDBA
-- create a user tablespace to be assigned as the default tablespace for users
CREATE TABLESPACE users LOGGING
 DATAFILE '/vobs/oracle/oradata/mynewdb/users01.dbf'
 SIZE 25M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;
-- create a tablespace for indexes, separate from user tablespace
CREATE TABLESPACE indx LOGGING
 DATAFILE '/vobs/oracle/oradata/mynewdb/indx01.dbf'
 SIZE 25M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;
EXIT

See Also:

■ "Understanding the CREATE DATABASE Statement" on

page 2-22

■ Oracle9i SQL Reference for more information about specifying

the clauses and parameter values for the CREATE DATABASE
statement

Manually Creating an Oracle Database

 Creating an Oracle Database 2-21

For information about creating tablespaces, see Chapter 11, "Managing

Tablespaces".

Step 8: Run Scripts to Build Data Dictionary Views
Run the scripts necessary to build views, synonyms, and PL/SQL packages:

CONNECT SYS/password AS SYSDBA
@/vobs/oracle/rdbms/admin/catalog.sql
@/vobs/oracle/rdbms/admin/catproc.sql
EXIT

The following table contains descriptions of the scripts:

You may want to run other scripts. The scripts that you run are determined by the

features and options you choose to use or install. Many of the scripts available to

you are described in the Oracle9i Database Reference.

See your Oracle installation guide for your operating system for the location of

these scripts.

Step 9: Run Scripts to Install Additional Options (Optional)
If you plan to install other Oracle products to work with this database, see the

installation instructions for those products. Some products require you to create

additional data dictionary tables. Usually, command files are provided to create

and load these tables into the database’s data dictionary.

See your Oracle documentation for the specific products that you plan to install for

installation and administration instructions.

Step 10: Create a Server Parameter File (Recommended)
Oracle recommends you create a server parameter file as a dynamic means of

maintaining initialization parameters. The server parameter file is discussed in

"Managing Initialization Parameters Using a Server Parameter File" on page 2-44.

Script Description

CATALOG.SQL Creates the views of the data dictionary tables, the dynamic
performance views, and public synonyms for many of the views.
Grants PUBLIC access to the synonyms.

CATPROC.SQL Runs all scripts required for or used with PL/SQL.

Understanding the CREATE DATABASE Statement

2-22 Oracle9i Database Administrator’s Guide

The following script creates a server parameter file from the text initialization

parameter file and writes it to the default location. The instance is shut down, then

restarted using the server parameter file (in the default location).

CONNECT SYS/password AS SYSDBA
-- create the server parameter file
CREATE SPFILE='/vobs/oracle/dbs/spfilemynewdb.ora' FROM
 PFILE='/vobs/oracle/admin/mynewdb/scripts/init.ora';
SHUTDOWN
-- this time you will start up using the server parameter file
CONNECT SYS/password AS SYSDBA
STARTUP
EXIT

Step 11: Back Up the Database.
You should make a full backup of the database to ensure that you have a complete

set of files from which to recover if a media failure occurs. For information on

backing up a database, see Oracle9i Backup and Recovery Concepts.

Understanding the CREATE DATABASE Statement
When you execute a CREATE DATABASE statement, Oracle performs (at least) the

following operations. The actual operations performed are in large part determined

by the clauses that you specify in the CREATE DATABASEstatement or initialization

parameters that you have set.

■ Creates the datafiles for the database

■ Creates the control files for the database

■ Creates the redo log files for the database and establishes the ARCHIVELOG
mode.

■ Creates the SYSTEM tablespace and the SYSTEM rollback segment

■ Creates the data dictionary

■ Sets the character set that stores data in the database

■ Sets the database time zone

■ Mounts and opens the database for use

This section discusses several of the clauses of the CREATE DATABASE statement. It

expands upon some of the clauses discussed in "Step 6: Issue the CREATE

DATABASE Statement" on page 2-18 and introduces additional ones.

Understanding the CREATE DATABASE Statement

 Creating an Oracle Database 2-23

The following topics are contained in this section:

■ Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM

■ Clauses that Simplify Database Creation and Management

■ Creating a Locally Managed SYSTEM Tablespace

■ Specifying the Database Time Zone and Time Zone File

■ Specifying FORCE LOGGING Mode

Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM
The clauses of the CREATE DATABASEstatement used for specifying the passwords

for users SYS and SYSTEM are:

■ USER SYS IDENTIFIED BY password

■ USER SYSTEM IDENTIFIED BY password

If not specified, these users are assigned the default passwords change_on_
install and manager , respectively. A record is written to the alert file indicating

that the default passwords were used. To protect your database, you should change

these passwords using the ALTER USER statement after database creation.

While these clauses are optional in this Oracle release, Oracle strongly recommends

that you specify them. The default passwords are commonly known, and if you

neglect to change them later, you leave yourself vulnerable to attack by malicious

users.

Clauses that Simplify Database Creation and Management
In addition to using the Database Configuration Assistant for creating your

database, Oracle9i offers you other options that can simplify the creation, operation,

and management of your database. These options, and their associated CREATE
DATABASE clauses, are discussed briefly in the following sections, and in more

detail in later sections of this book:

■ Using Automatic Undo Management: Creating an Undo Tablespace

■ Creating a Default Temporary Tablespace

■ Using Oracle-Managed Files

See Also: "Some Security Considerations" on page 2-32

Understanding the CREATE DATABASE Statement

2-24 Oracle9i Database Administrator’s Guide

Using Automatic Undo Management: Creating an Undo Tablespace
Oracle recommends that instead of using rollback segments in your database, you

use an undo tablespace. This requires the use of a different set of initialization

parameters, and optionally, the inclusion of the UNDO TABLESPACE clause in your

CREATE DATABASE statement.

You must include the following initialization parameter if you want to operate your

database in automatic undo management mode:

UNDO_MANAGEMENT=AUTO

In this mode, rollback information, referred to as undo, is stored in an undo

tablespace rather than rollback segments and is managed by Oracle. If you want to

create and name a specific tablespace for the undo tablespace, you can include the

UNDO TABLESPACE clause at database creation time. If you omit this clause, and

automatic undo management is specified, Oracle creates a default undo tablespace

named SYS_UNDOTBS.

Creating a Default Temporary Tablespace
The DEFAULT TEMPORARY TABLESPACE clause of the CREATE DATABASE
statement specifies that a temporary tablespace is to be created at database creation

time. This tablespace is used as the default temporary tablespace for users who are

not otherwise assigned a temporary tablespace.

Users can be explicitly assigned a default temporary tablespace in the CREATE
USER statement. But, if no temporary tablespace is specified, they default to using

the SYSTEM tablespace. It is not good practice to store temporary data in the

SYSTEM tablespace. To avoid this problem, and to avoid the need to assign every

user a default temporary tablespace at CREATE USER time, you can use the

DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE.

If you decide later to change the default temporary tablespace, or to create an initial

one after database creation, you can do so. You do this by creating a new temporary

tablespace (CREATE TEMPORARY TABLESPACE), then assign it as the temporary

tablespace using the ALTER DATABASE DEFAULT TEMPORARY TABLESPACE

See Also:

■ "Specifying the Method of Undo Space Management" on

page 2-42

■ Chapter 13, "Managing Undo Space" for information about the

creation and use of undo tablespaces

Understanding the CREATE DATABASE Statement

 Creating an Oracle Database 2-25

statement. Users will automatically be switched (or assigned) to the new temporary

default tablespace.

The following statement assigns a new default temporary tablespace:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE tempts2;

The new default temporary tablespace must be an existing temporary tablespace.

When using a locally managed SYSTEM tablespace, the new default temporary

tablespace must also be locally managed.

You cannot drop a default temporary tablespace, but you can assign a new default

temporary tablespace, then drop the former one. You are not allowed to change a

default temporary tablespace to a permanent tablespace, nor can you take a default

temporary tablespace offline.

Users can obtain the name of the current default temporary tablespace using the

DATABASE_PROPERTIES view. The PROPERTY_NAME column contains the value

"DEFAULT_TEMP_TABLESPACE" and the PROPERTY_VALUE column contains the

default temporary tablespace name.

Using Oracle-Managed Files
You can minimize the number of clauses and parameters that you specify in your

CREATE DATABASE statement by using the Oracle Managed Files feature.

If you include the DB_CREATE_FILE_DESTor DB_CREATE_ONLINE_LOG_DEST_n
initialization parameters in your initialization parameter file, you enable Oracle to

create and manage the underlying operating system files of your database. Oracle

will automatically create and manage the operating system files for the following

database structures, dependent upon the initialization parameters you specify and

how you specify clauses in your CREATE DATABASE statement:

■ Tablespaces

■ Temporary tablespaces

■ Control files

See Also:

■ Oracle9i SQL Reference for the syntax of the DEFAULT
TEMPORARY TABLESPACE clause of CREATE DATABASE and

ALTER DATABASE

■ "Temporary Tablespaces" on page 11-12 for information about

creating and using temporary tablespaces

Understanding the CREATE DATABASE Statement

2-26 Oracle9i Database Administrator’s Guide

■ Online redo log files

Briefly, this is how the Oracle Managed Files feature works, using the following

CREATE DATABASE statement as an example:

CREATE DATABASE rbdb1
 USER SYS IDENTIFIED BY pz6r58
 USER SYSTEM IDENTIFIED BY y1tz5p
 UNDO TABLESPACE undotbs
 DEFAULT TEMPORARY TABLESPACE tempts1;

■ No DATAFILE clause is specified, therefore Oracle creates an Oracle-managed

datafile for the SYSTEM tablespace.

■ No LOGFILE clauses are included, therefore Oracle creates two online redo log

file groups that are Oracle managed.

■ No DATAFILE subclause is specified for the UNDO TABLESPACE clause,

therefore Oracle creates an Oracle-managed datafile for the undo tablespace.

■ No TEMPFILE subclause is specified for the DEFAULT TEMPORARY
TABLESPACE clause, therefore Oracle creates an Oracle-managed tempfile.

■ Additionally, if no CONTROL_FILES initialization parameter is specified in the

initialization parameter file, Oracle creates an Oracle-managed control file.

■ If using a server parameter file (see "Managing Initialization Parameters Using

a Server Parameter File" on page 2-44) the initialization parameters are set

accordingly and automatically.

Creating a Locally Managed SYSTEM Tablespace
When you specify the EXTENT MANAGEMENT LOCAL clause in the CREATE
DATABASE statement, you cause Oracle to create a locally managed SYSTEM
tablespace wherein Oracle determines extent sizes. The COMPATIBLE initialization

parameter must be set to 9.2 or higher for this statement to be successful. If you do

not specify the EXTENT MANAGEMENT LOCAL clause, the default is to create a

dictionary-managed SYSTEM tablespace.

Locally managed tablespaces provide better performance and greater ease of

management over dictionary-managed tablespaces. A locally managed SYSTEM
tablespace is created AUTOALLOCATEby default, meaning that it is system managed

with extent sizes determined and controlled by Oracle. You may notice an increase

See Also: Chapter 3, "Using Oracle-Managed Files" for a complete

description of the Oracle Managed Files feature and how to use it

Understanding the CREATE DATABASE Statement

 Creating an Oracle Database 2-27

in the initial size of objects created in a locally managed SYSTEMtablespace because

of the autoallocate policy. It is not possible to create a locally managed SYSTEM
tablespace and specify UNIFORM extent size.

When you create your database with a locally managed SYSTEM tablespace, ensure

the following conditions are met:

■ There must be a default temporary tablespace, and that tablespace cannot be the

SYSTEM tablespace.

■ You must not create rollback segments in dictionary-managed tablespaces.

Attempting to create a rollback segment in a dictionary-managed tablespace

will fail if the SYSTEM tablespace is locally managed.

To meet the first condition, you can specify the DEFAULT TEMPORARY
TABLESPACE clause in the CREATE DATABASE statement, or you cannot include

the clause and allow Oracle to create the tablespace for you using a default name

and in a default location.

For fulfilling the second condition, Oracle recommends that instead of using

rollback segments to manage the database’s undo records, that you use automatic

undo management. You can include the UNDO TABLESPACE clause in the CREATE
DATABASE statement to create a specific undo tablespace, or if you do not include

the clause, Oracle creates a locally managed undo tablespace for you using the

default name and in a default location.

Note: When your SYSTEMtablespace is locally managed, there are

restrictions on other tablespaces in the database. These restrictions

are:

■ You cannot create any dictionary-managed tablespaces in the

database.

■ You cannot migrate a locally managed tablespace to a

dictionary-managed tablespace.

■ You can transport dictionary-managed tablespaces into the

database, but you are not allowed to alter them to read-write.

■ Preexisting dictionary-managed tablespaces are allowed to

remain in the database, but only in READ ONLY mode. They

cannot be altered to READ WRITE.

Understanding the CREATE DATABASE Statement

2-28 Oracle9i Database Administrator’s Guide

Oracle also allows you to migrate an existing dictionary-managed SYSTEM
tablespace to a locally managed tablespace. using the DBMS_SPACE_ADMIN
package. However, there is no procedure for backward migration.

Specifying the Database Time Zone and Time Zone File
Oracle allows you to specify the database’s default time zone, and provides you

with the option of choosing the size of the supporting time zone file.

Specifying the Database Time Zone
You set the database’s default time zone by specifying the SET TIME_ZONE clause

of the CREATE DATABASE statement. If omitted, the default database time zone is

the operating system time zone. The database time zone can be changed for a

session with an ALTER SESSION statement.

Specifying the Database Time Zone File
Oracle9i enables you to specify the default time zone for your database using the

SET TIME_ZONE clause of the CREATE DATABASE statement. This section

provides information on the time zone files used to support this feature, specifically

on Solaris platforms. Names of directories, filenames, and environment variables

may differ for each platform but will probably be the same for all UNIX platforms.

The time zone files contain the valid time zone names. The following information is

included for each zone (note that abbreviations are only used in conjunction with

the zone names):

■ Offset from UTC

■ Transition times for daylight savings

See Also:

■ Oracle9i SQL Reference for more specific information about the

use of the DEFAULT TEMPORARY TABLESPACE and UNDO
TABLESPACE clauses when EXTENT MANAGEMENT LOCAL is

specified for the SYSTEM tablespace

■ "Locally Managed Tablespaces" on page 11-5

■ "Migrating the SYSTEM Tablespace to a Locally Managed

Tablespace" on page 11-34

See Also: Oracle9i Database Globalization Support Guide for more

information about setting the database time zone

Understanding the CREATE DATABASE Statement

 Creating an Oracle Database 2-29

■ Abbreviation for standard time

■ Abbreviation for daylight savings time

There are 2 time zone files under the Oracle installation directory:

■ $ORACLE_HOME/oracore/zoneinfo/timezone.dat

This is the default. It contains the most commonly used time zones and is

smaller, thus enabling better database performance.

■ $ORACLE_HOME/oracore/zoneinfo/timezlrg.dat

This file contains the larger set of defined time zones and should be used by

users who require zones that are not defined in the default timezone.dat file.

Note that this larger set of zone information may affect performance.

To enable the use of the larger time zone datafile, do the following:

1. Shut down the database.

2. Set the environment variable ORA_TZFILE to the full path name of the location

for the timezlrg.dat file.

3. Restart the database.

Once the larger timezlrg.dat is used, it must continue to be used unless you are

sure that none of the nondefault zones are used for data that is stored in the

database. Also, all databases that share information must use the same time zone

datafile.

To view the time zone names, use the following query:

SELECT * FROM V$TIMEZONE_NAMES;

Specifying FORCE LOGGING Mode
Through the use of the NOLOGGING clause allowed in some DDL statements (for

example, CREATE TABLE), certain database operations will not generate redo

records to the database redo log. Specifying NOLOGGING can speed up operations

that can be easily recovered outside of the database recovery mechanisms, but it

causes problems for media recovery and for a standby database.

Oracle provides a means of forcing the writing of redo records for changes against

the database, even where NOLOGGINGhas been specified in DDL statements. Oracle

never generates redo records for temporary tablespaces and temporary segments,

so forced logging has no affect for these.

Understanding the CREATE DATABASE Statement

2-30 Oracle9i Database Administrator’s Guide

Using the FORCE LOGGING Clause
To put the database into FORCE LOGGING mode, use the FORCE LOGGING clause

in the CREATE DATABASE statement. If you do not specify this clause, the database

is not placed into FORCE LOGGING mode.

Use the ALTER DATABASE statement to place the database into FORCE LOGGING
mode after database creation. This statement can potentially wait a considerable

time for completion because it waits for all unlogged direct writes to complete.

You can cancel FORCE LOGGING mode using the following SQL statement:

ALTER DATABASE NO FORCE LOGGING

Independent of specifying FORCE LOGGING for the database, you can selectively

specify FORCE LOGGING or NO FORCE LOGGING at the tablespace level. However,

if FORCE LOGGING mode is in effect for the database, it takes precedence over the

tablespace mode setting. If it is not in effect for the database, then the individual

tablespace settings are enforced. Oracle recommends that either the entire database

is placed into FORCE LOGGING mode, or individual tablespaces be placed into

FORCE LOGGING mode, but not both.

The FORCE LOGGING mode is a persistent attribute of the database. That is, if the

database is shut down and restarted, it remains in the same logging mode state.

However, if you re-create the control file, the database not restarted in the FORCE
LOGGING mode unless you specify the FORCE LOGGING clause in the CREATE
CONTROL FILE statement.

Performance Considerations of FORCE LOGGING Mode
There is a performance degradation for FORCE LOGGING mode. If there is no

standby database active, but the primary reason for specifying FORCE LOGGING is
to ensure complete media recovery, then consider the following:

See Also:

■ Oracle9i Database Concepts for additional information about

NOLOGGING mode

■ Oracle9i SQL Reference for information about operations that

can be done in NOLOGGING mode

See Also: "Controlling the Writing of Redo Records" on

page 11-20 for information about using the FORCE LOGGINGclause

for tablespace creation.

Considerations After Creating a Database

 Creating an Oracle Database 2-31

■ How many media failures are likely to happen?

■ How serious is the damage if unlogged direct writes cannot be recovered?

■ Is the performance degradation caused by forced logging tolerable?

If the database is running in NOARCHIVELOG mode, then generally there is no

benefit to placing the database in FORCE LOGGING mode. This is because media

recovery is not possible in this mode, thus there is performance degradation with

little benefit.

Troubleshooting Database Creation
If for any reason database creation fails, shut down the instance and delete any files

created by the CREATE DATABASE statement before you attempt to create it once

again. After correcting the error that caused the failure of the database creation, try

running the script again.

Dropping a Database
To drop a database, you must remove its datafiles, redo log files, and all other

associated files (control files, initialization parameter files, archived log files). To

view the names of the database’s datafiles, redo log files, and control files, query the

data dictionary views V$DATAFILE, V$LOGFILE, and V$CONTROLFILE,
respectively.

If the database is in archive log mode, locate the archive log destinations by

inspecting the initialization parameters LOG_ARCHIVE_DEST_n, or LOG_
ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST.

If you used the Database Configuration Assistant to create your database, you can

use that tool to delete your database and clean up the files.

Considerations After Creating a Database
After you create a database, the instance is left running, and the database is open

and available for normal database use. You may want to perform other actions,

some of which are discussed in this section.

See Also: Oracle9i Database Reference for more information about

these views and initialization parameters

Considerations After Creating a Database

2-32 Oracle9i Database Administrator’s Guide

Some Security Considerations
A newly created database has least three users that are useful for administering

your database: SYS, SYSTEM and OUTLN (owner of schema where stored outlines

are stored).

Depending on the features and options installed, other users can also be present.

Some of these users are:

■ MDSYS (interMedia Spatial)

■ ORDSYS (interMedia Audio)

■ ORDPLUGINS (interMedia Audio)

■ CTXSYS (Oracle Text)

■ DBSNMP (Enterprise Manager Intelligent Agent)

To change the password for user DBSNMP refer to Oracle Intelligent Agent User's
Guide.

Caution: To prevent unauthorized access and protect the integrity

of your database, the default passwords for SYS and SYSTEM

should be changed immediately after the database is created.

Note Regarding Security Enhancements: In this release of Oracle

and in subsequent releases, several enhancements are being made

to ensure the security of default database user accounts.

■ During initial installation with the Database Configuration

Assistant (DCBA), all default database user accounts except

SYS, SYSTEM, SCOTT, DBSNMP, OUTLN,
AURORAJISUTILITY$, AURORAORBUNAUTHENTICATED
and OSE$HTTP$ADMIN are locked and expired. To activate a

locked account, the DBA must manually unlock it and reassign

it a new password.

■ In addition, the DBCA prompts for passwords for users SYS
and SYSTEM during initial installation of the database rather

than assigning default passwords to them. A CREATE
DATABASE statement issued manually also lets you supply

passwords for these two users.

Considerations After Creating a Database

 Creating an Oracle Database 2-33

Installing Oracle’s Sample Schemas
The Oracle database server distribution media can include various SQL files that let

you experiment with the system, learn SQL, or create additional tables, views, or

synonyms.

Starting with Oracle9i, Oracle provides sample schemas that enable you to become

familiar with Oracle functionality. Some Oracle documents and books use these

sample schemas for presenting examples. There is an ongoing effort for most Oracle

books to convert to the use of Sample Schemas based examples.

The following table briefly describes the sample schemas:

See Also:

■ "A Security Checklist" on page 23-20 for guidance on

configuring your Oracle database in a secure manner

■ "Database Administrator Usernames" on page 1-11 for more

information about the users SYS and SYSTEM

■ "Altering Users" on page 24-6 to learn how to add new users

and change passwords

■ Oracle9i SQL Reference for the syntax of the ALTER USER
statement used for unlocking user accounts

Schema Description

Human Resources The Human Resources (HR) schema is a basic relational
database schema. There are six tables in the HR schema:
Employees, Departments, Locations, Countries, Jobs, and Job_
History. The Order Entry (OE) schema has links into HR schema

Order Entry The Order Entry (OE) schema builds on the purely relational
Human Relations (HR) schema with some object-relational and
object-oriented features. The OE schema contains seven tables:
Customers, Product_Descriptions, Product_Information, Order_
Items, Orders, Inventories, and Warehouses. The OE schema has
links into the HR schema and PM schema. This schema also has
synonyms defined on HR objects to make access transparent to
users.

Initialization Parameters and Database Creation

2-34 Oracle9i Database Administrator’s Guide

Sample Schemas can be installed automatically for you by the Database

Configuration Assistant or you can install it manually. The schemas and installation

instructions are described in detail in Oracle9i Sample Schemas.

Initialization Parameters and Database Creation
Oracle has attempted to provide appropriate values in the starter initialization

parameter file provided with your database software, or as created for you by the

Database Configuration Assistant. You can edit these Oracle-supplied initialization

parameters and add others, depending upon your configuration and options and

how you plan to tune the database. For any relevant initialization parameters not

specifically included in the initialization parameter file, Oracle supplies defaults.

If you are creating an Oracle database for the first time, it is suggested that you

minimize the number of parameter values that you alter. As you become more

familiar with your database and environment, you can dynamically tune many

initialization parameters using the ALTER SYSTEM statement. If you are using a

traditional text initialization parameter file, your changes are only for the current

instance. To make them permanent, you must update them manually in the

initialization parameter file, otherwise they will be lost over the next shutdown and

startup of the database.

If you are using a server parameter file, initialization parameter file changes made

by the ALTER SYSTEM statement can persist across shutdown and startup. This is

discussed in "Managing Initialization Parameters Using a Server Parameter File" on

page 2-44.

Product Media Product Media (PM) schema includes two tables, online_media
and print_media, one object type, adheader_typ, and one nested
table, textdoc_typ. The PM schema includes interMedia and LOB
column types.

Note: To use Oracle Text you must create an Oracle Text index.

Sales History The Sales History (SH) schema is an example of a relational star
schema. It consists of one big range partitioned fact table sales
and five dimension tables: times, promotions, channels,
products and customers. The additional countries table linked to
customers shows a simple snowflake.

Queued Shipping The Queued Shipping (QS) schema is actually multiple schemas
that contain message queues.

Schema Description

Initialization Parameters and Database Creation

 Creating an Oracle Database 2-35

This section introduced you to some of the initialization parameters you may

choose to add or edit before you create your new database.

The following topics are contained in this section:

■ Determining the Global Database Name

■ Specifying Control Files

■ Specifying Database Block Sizes

■ Setting Initialization Parameters that Affect the Size of the SGA

■ Specifying the Maximum Number of Processes

■ Specifying the Method of Undo Space Management

■ Setting License Parameters

Determining the Global Database Name
A database’s global database name consists of the local database name that you

assign and its location within a network structure. The DB_NAME initialization

parameter determines the local name component of the database’s name, while the

DB_DOMAIN parameter indicates the domain (logical location) within a network

structure. The combination of the settings for these two parameters must form a

database name that is unique within a network.

For example, to create a database with a global database name of

test.us.acme.com , edit the parameters of the new parameter file as follows:

DB_NAME = test
DB_DOMAIN = us.acme.com

You can rename the GLOBAL_NAME of your database using the ALTER DATABASE
RENAME GLOBAL_NAME statement. However, you must also shut down and restart

the database after first changing the DB_NAME and DB_DOMAIN initialization

parameters and re-creating the control file.

See Also: Oracle9i Database Reference for descriptions of all

initialization parameters including their default settings

See Also: Oracle9i Database Utilities for information about using

the DBNEWID utility, which is another means of changing a

database name

Initialization Parameters and Database Creation

2-36 Oracle9i Database Administrator’s Guide

DB_NAME Initialization Parameter
DB_NAME must be set to a text string of no more than eight characters. During

database creation, the name provided for DB_NAMEis recorded in the datafiles, redo

log files, and control file of the database. If during database instance startup the

value of the DB_NAME parameter (in the parameter file) and the database name in

the control file are not the same, the database does not start.

DB_DOMAIN Initialization Parameter
DB_DOMAIN is a text string that specifies the network domain where the database is

created. This is typically the name of the organization that owns the database. If the

database you are about to create will ever be part of a distributed database system,

pay special attention to this initialization parameter before database creation.

Specifying Control Files
Include the CONTROL_FILES initialization parameter in your new parameter file

and set its value to a list of control filenames to use for the new database. When you

execute the CREATE DATABASE statement, the control files listed in the CONTROL_
FILES parameter are created. If no filenames are listed for the CONTROL_FILES
parameter, Oracle uses a default operating system dependent filename.

If you want Oracle to create new operating system files when creating your

database’s control files, the filenames listed in the CONTROL_FILESparameter must

not match any filenames that currently exist on your system. If you want Oracle to

reuse or overwrite existing files when creating your database’s control files, ensure

that the filenames listed in the CONTROL_FILES parameter match the filenames

that are to be reused.

Oracle Corporation strongly recommends you use at least two control files stored

on separate physical disk drives for each database.

See Also: Part VI, "Distributed Database Management" for more

information about distributed databases

Caution: Use extreme caution when setting this option. If you

inadvertently specify a file that you did not intend and execute the

CREATE DATABASE statement, the previous contents of that file

will be overwritten.

See Also: Chapter 6, "Managing Control Files"

Initialization Parameters and Database Creation

 Creating an Oracle Database 2-37

Specifying Database Block Sizes
The DB_BLOCK_SIZE initialization parameter specifies the standard block size for

the database. This block size is used for the SYSTEM tablespace and by default in

other tablespaces. Oracle can support up to four additional non-standard block

sizes.

DB_BLOCK_SIZE Initialization Parameter
The most commonly used block size should be picked as the standard block size. In

many cases, this is the only block size that you need to specify. Typically, DB_
BLOCK_SIZE is set to either 4K or 8K. If not specified, the default data block size is

operating system specific, and is generally adequate.

The block size cannot be changed after database creation, except by re-creating the

database. If a database’s block size is different from the operating system block size,

make the database block size a multiple of the operating system’s block size.

For example, if your operating system’s block size is 2K (2048 bytes), the following

setting for the DB_BLOCK_SIZE initialization parameter is valid:

DB_BLOCK_SIZE=4096

You may want to specify a block size larger than your operating system block size.

A larger data block size provides greater efficiency in disk and memory I/O (access

and storage of data). Such cases include the following scenarios:

■ Oracle is on a large computer system with a large amount of memory and fast

disk drives. For example, databases controlled by mainframe computers with

vast hardware resources typically use a data block size of 4K or greater.

■ The operating system that runs Oracle uses a small operating system block size.

For example, if the operating system block size is 1K and the default data block

size matches this, Oracle may be performing an excessive amount of disk I/O

during normal operation. For best performance in this case, a database block

should consist of multiple operating system blocks.

Non-Standard Block Sizes
Tablespaces of non-standard block sizes can be created using the CREATE
TABLESPACE statement and specifying the BLOCKSIZE clause. These non-standard

block sizes can have any power-of-two value between 2K and 32K: specifically, 2K,

See Also: Your operating system specific Oracle documentation

for details about the default block size.

Initialization Parameters and Database Creation

2-38 Oracle9i Database Administrator’s Guide

4K, 8K, 16K or 32K. Platform-specific restrictions regarding the maximum block size

apply, so some of these sizes may not be allowed on some platforms.

To use non-standard block sizes, you must configure sub-caches within the buffer

cache area of the SGA memory for all of the non-standard block sizes that you

intend to use. The initialization parameters used for configuring these sub-caches

are described in the next section, "Setting Initialization Parameters that Affect the

Size of the SGA".

The ability to specify multiple block sizes for your database is especially useful if

you are transporting tablespaces between databases. You can, for example,

transport a tablespace that uses a 4K block size from an OLTP environment to a

datawarehouse environment that uses a standard block size of 8K.

Setting Initialization Parameters that Affect the Size of the SGA
The initialization parameters discussed in this section affect the amount of memory

that is allocated to the System Global Area. Except for the SGA_MAX_SIZE
initialization parameter, they are dynamic parameters which values can be changed

by the ALTER SYSTEM statement. The size of the SGA is dynamic, and can grow or

shrink by dynamically altering these parameters.

See Also:

■ "Creating Tablespaces" on page 11-3

■ "Transporting Tablespaces Between Databases" on page 11-34

Initialization Parameters and Database Creation

 Creating an Oracle Database 2-39

You can see a summary of information about the dynamic components of the SGA

in the V$SGA_DYNAMIC_COMPONENTS view. Information about on-going SGA

resize operations can be found in the V$SGA_CURRENT_RESIZE_OPS view, and

information about the last 100 completed SGA resize operations can be found in the

V$SGA_RESIZE_OPS view. To find the amount of SGA memory available for

future dynamic SGA resize operations, query the V$SGA_DYNAMIC_FREE_MEMORY
view.

Note: The memory for dynamic components in the SGA is

allocated in the unit of granules. Granule size is determined by total

SGA size. Generally speaking, on most platforms, if the total SGA

size is equal to or less than 128 MB, then granule size is 4 MB.

Otherwise, granule size is 16 MB.

However, there may be some platform dependency. For example,

on 32-bit Windows NT, the granule size is 8 MB for SGAs larger

than 128 MB. Consult your operating system specific

documentation for more details.

You can query the V$SGA_DYNAMIC_COMPONENTS view to see the

granule size that is being used by an instance. The same granule

size is used for all dynamic components in the SGA.

If you specify a size for a component that is not a multiple of

granule size, Oracle will round the specified size up to the nearest

multiple. For example, if the granule size is 4 MB and you specify

DB_CACHE_SIZE as 10 MB, you will actually be allocated 12 MB.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information about the monitoring and tuning of SGA

components

■ Oracle9i Database Reference for descriptions of the dynamic

performance views used for monitoring the size of the SGA

■ Oracle9i Database Concepts for a conceptual discussion of the

SGA

Initialization Parameters and Database Creation

2-40 Oracle9i Database Administrator’s Guide

Limiting the Size of the SGA
The SGA_MAX_SIZE initialization parameter specifies the maximum size of the

System Global Area for the lifetime of the instance. You can dynamically alter the

initialization parameters affecting the size of the buffer caches, shared pool, and

large pool, but only to the extent that the sum of these sizes and the sizes of the

other components of the SGA (fixed SGA, variable SGA, and redo log buffers) does

not exceed the value specified by SGA_MAX_SIZE.

If you do not specify SGA_MAX_SIZE, then Oracle selects a default value that is the

sum of all components specified or defaulted at initialization time.

Setting the Buffer Cache Initialization Parameters
The buffer cache initialization parameters determine the size of the buffer cache

component of the SGA. You use them to specify the sizes of caches for the various

block sizes used by the database. These initialization parameters are all dynamic.

If you intend to use multiple block sizes in your database, you must have the DB_
CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter set. Oracle assigns

an appropriate default value to the DB_CACHE_SIZE parameter, but the DB_nK_
CACHE_SIZE parameters default to 0, and no additional block size caches are

configured.

The size of a buffer cache affects performance. Larger cache sizes generally reduce

the number of disk reads and writes. However, a large cache may take up too much

memory and induce memory paging or swapping.

DB_CACHE_SIZE Initialization Parameter The DB_CACHE_SIZE initialization parameter

replaces the DB_BLOCK_BUFFERS initialization parameter that was used in

previous releases. The DB_CACHE_SIZE parameter specifies the size of the cache of

standard block size buffers, where the standard block size is specified by DB_
BLOCK_SIZE.

For backward compatibility the DB_BLOCK_BUFFERSparameter will still work, but

it remains a static parameter and cannot be combined with any of the dynamic

sizing parameters.

DB_nK_CACHE_SIZE Initialization Parameters The sizes and numbers of non-standard

block size buffers are specified by the following initialization parameters:

■ DB_2K_CACHE_SIZE

■ DB_4K_CACHE_SIZE

■ DB_8K_CACHE_SIZE

Initialization Parameters and Database Creation

 Creating an Oracle Database 2-41

■ DB_16K_CACHE_SIZE

■ DB_32K_CACHE_SIZE.

Each parameter specifies the size of the buffer cache for the corresponding block

size. For example:

DB_BLOCK_SIZE=4096

DB_CACHE_SIZE=12M
DB_2K_CACHE_SIZE=8M
DB_8K_CACHE_SIZE=4M

In the above example, the parameters specify that the standard block size of the

database will be 4K. The size of the cache of standard block size buffers will be 12M.

Additionally, 2K and 8K caches will be configured with sizes of 8M and 4M

respectively.

Adjusting the Size of the Shared Pool
The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that

allows you to specify or adjust the size of the shared pool component of the SGA.

Oracle selects an appropriate default value.

Adjusting the Size of the Large Pool
The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that

allows you to specify or adjust the size of the large pool component of the SGA.

Oracle selects an appropriate default value.

Specifying the Maximum Number of Processes
The PROCESSES initialization parameter determines the maximum number of

operating system processes that can be connected to Oracle concurrently. The value

of this parameter must be 6 or greater (5 for the background processes plus 1 for

each user process). For example, if you plan to have 50 concurrent users, set this

parameter to at least 55.

Note: These parameters cannot be used to size the cache for the

standard block size. For example, if the value of DB_BLOCK_SIZE
is 2K, it is illegal to set DB_2K_CACHE_SIZE. The size of the cache

for the standard block size is always determined from the value of

DB_CACHE_SIZE.

Initialization Parameters and Database Creation

2-42 Oracle9i Database Administrator’s Guide

Specifying the Method of Undo Space Management
Every Oracle database must have a method of maintaining information that is used

to roll back, or undo, changes to the database. Such information consists of records

of the actions of transactions, primarily before they are committed. Oracle refers to

these records collectively as undo. Oracle allows you to store undo in an undo

tablespace or in rollback segments.

UNDO_MANAGEMENT Initialization Parameter
The UNDO_MANAGEMENT initialization parameter determines whether an instance

will start up in automatic undo management mode, where undo is stored in an

undo tablespace, or manual undo management mode, where undo is stored in

rollback segments. A value of AUTO enables automatic undo management mode,

MANUAL enables manual undo management mode. For backward compatibility, the

default is MANUAL.

UNDO_TABLESPACE Initialization Parameter
When the instance starts up in automatic undo management mode, it selects the

first available undo tablespace in the instance for storing undo. A default undo

tablespace named SYS_UNDOTBS is automatically created when you execute a

CREATE DATABASEstatement and the UNDO_MANAGEMENTinitialization parameter

is set to AUTO. This is the undo tablespace that Oracle normally selects whenever

you start up the database.

Optionally, you can specify the UNDO_TABLESPACE initialization parameter. This

causes the instance to use the undo tablespace specified by the parameter. The

UNDO_TABLESPACE parameter can be used to assign a specific undo tablespace to

an instance in an Oracle Real Application Clusters environment.

If there is no undo tablespace available, the instance will start, but uses the SYSTEM
rollback segment. This is not recommended in normal circumstances, and an alert

message is written to the alert file to warn that the system is running without an

undo tablespace.

Oracle recommends using an undo tablespace rather than rollback segments. An

undo tablespace is easier to administer and enables you to explicitly set an undo

retention time.

See Also: Chapter 13, "Managing Undo Space"

Initialization Parameters and Database Creation

 Creating an Oracle Database 2-43

ROLLBACK_SEGMENTS Initialization Parameter
The ROLLBACK_SEGMENTS parameter is a list of the non-system rollback segments

an Oracle instance acquires at database startup if the database is to operate in

manual undo management mode. List your rollback segments as the value of this

parameter. If no rollback segments are specified, the system rollback segment is

used.

The ROLLBACK_SEGMENTS initialization parameter is supported for backward

compatibility. Oracle recommends using an undo tablespace rather than rollback

segments.

Setting License Parameters

If you use named user licensing, Oracle can help you enforce this form of licensing.

You can set a limit on the number of users created in the database. Once this limit is

reached, you cannot create more users.

To limit the number of users created in a database, set the LICENSE_MAX_USERS
initialization parameter in the database’s initialization parameter file, as shown in

the following example:

LICENSE_MAX_USERS = 200

Note: Oracle no longer offers licensing by the number of

concurrent sessions. Therefore the LICENSE_MAX_SESSIONS and

LICENSE_SESSIONS_WARNING initialization parameters have

been deprecated and are no longer discussed in this book.

Note: This mechanism assumes that each person accessing the

database has a unique user name and that no people share a user

name. Therefore, so that named user licensing can help you ensure

compliance with your Oracle license agreement, do not allow

multiple users to log in using the same user name.

Managing Initialization Parameters Using a Server Parameter File

2-44 Oracle9i Database Administrator’s Guide

Managing Initialization Parameters Using a Server Parameter File
Oracle has traditionally stored initialization parameters in a text initialization

parameter file. Starting with Oracle9i, you can choose to maintain initialization

parameters in a binary server parameter file.

This section introduces the server parameter file, and explains how to manage

initialization parameters using either method of storing the parameters. The

following topics are contained in this section.

■ What is a Server Parameter File?

■ Migrating to a Server Parameter File

■ Creating a Server Parameter File

■ The SPFILE Initialization Parameter

■ Using ALTER SYSTEM to Change Initialization Parameter Values

■ Exporting the Server Parameter File

■ Backing Up the Server Parameter File

■ Errors and Recovery for the Server Parameter File

■ Viewing Parameter Settings

What is a Server Parameter File?
A server parameter file (SPFILE) can be thought of as a repository for initialization

parameters that is maintained on the machine where the Oracle database server

executes. It is, by design, a server-side initialization parameter file. Initialization

parameters stored in a server parameter file are persistent, in that any changes

made to the parameters while an instance is running can persist across instance

shutdown and startup. This eliminates the need to manually update initialization

parameters to make changes effected by ALTER SYSTEM statements persistent. It

also provides a basis for self tuning by the Oracle database server.

A server parameter file is initially built from a traditional text initialization

parameter file using the CREATE SPFILE statement. It is a binary file that cannot

be browsed or edited using a text editor. Oracle provides other interfaces for

viewing and modifying parameter settings.

Managing Initialization Parameters Using a Server Parameter File

 Creating an Oracle Database 2-45

At system startup, the default behavior of the STARTUP command is to read a

server parameter file to obtain initialization parameter settings. The STARTUP
command with no PFILE clause, reads the server parameter file from an operating

system specific location. If you choose to use the traditional text initialization

parameter file, you must specify the PFILE clause when issuing the STARTUP
command. Explicit instructions for starting an instance using a server parameter file

are contained in Starting Up a Database on page 4-2.

Migrating to a Server Parameter File
If you are currently using a traditional initialization parameter file, use the

following steps to migrate to a server parameter file.

1. If the initialization parameter file is located on a client machine, transfer the file

(for example, FTP) from the client machine to the server machine.

2. Create a server parameter file using the CREATE SPFILE statement. This

statement reads the initialization parameter file to create a server parameter file.

The database does not have to be started to issue a CREATE SPFILE statement.

3. Start up the instance using the newly created server parameter file.

Caution: Although you can open the binary server parameter file

with a text editor and view its text, do not manually edit it. Doing so

will corrupt the file. You will not be able to start you instance, and

if the instance is running, it could fail.

Note: If you are using Oracle9i Real Application Clusters, you

must combine all of your instance specific initialization parameter

files into a single initialization parameter file. Instructions for doing

this, and other actions unique to using a server parameter file for

Oracle Real Application Cluster instances, are discussed in:

■ Oracle9i Real Application Clusters Setup and Configuration

■ Oracle9i Real Application Clusters Administration

Managing Initialization Parameters Using a Server Parameter File

2-46 Oracle9i Database Administrator’s Guide

Creating a Server Parameter File
The server parameter file must initially be created from a traditional text

initialization parameter file. It must be created prior to its use in the STARTUP
command. The CREATE SPFILEstatement is used to create a server parameter file.

You must have the SYSDBA or the SYSOPER system privilege to execute this

statement.

The following example creates a server parameter file from initialization parameter

file /u01/oracle/dbs/init.ora . In this example no SPFILE name is specified,

so the file is created in a platform-specific default location and is named

spfile$ORACLE_SID.ora .

CREATE SPFILE FROM PFILE='/u01/oracle/dbs/init.ora';

Another example, below, illustrates creating a server parameter file and supplying a

name.

CREATE SPFILE='/u01/oracle/dbs/test_spfile.ora'
 FROM PFILE='/u01/oracle/dbs/test_init.ora';

The server parameter file is always created on the machine running the database

server. If a server parameter file of the same name already exists on the server, it is

overwritten with the new information.

Oracle recommends that you allow the database server to default the name and

location of the server parameter file. This will ease administration of your database.

For example, the STARTUP command assumes this default location to read the

parameter file.

When the server parameter file is created from the initialization parameter file,

comments specified on the same lines as a parameter setting in the initialization

parameter file are maintained in the server parameter file. All other comments are

ignored.

The CREATE SPFILE statement can be executed before or after instance startup.

However, if the instance has been started using a server parameter file, an error is

raised if you attempt to re-create the same server parameter file that is currently

being used by the instance.

Note: When you use the Database Configuration Assistant to

create a database, it can automatically create a server parameter file

for you.

Managing Initialization Parameters Using a Server Parameter File

 Creating an Oracle Database 2-47

The SPFILE Initialization Parameter
The SPFILE initialization parameter contains the name of the current server

parameter file. When the default server parameter file is used by the server (that is,

you issue a STARTUP command and do not specify a PFILE), the value of SPFILE
is internally set by the server. The SQL*Plus command SHOW PARAMETERS
SPFILE (or any other method of querying the value of a parameter) displays the

name of the server parameter file that is currently in use.

The SPFILE parameter can also be set in a traditional parameter file to indicate the

server parameter file to use. You use the SPFILE parameter to specify a server

parameter file located in a nondefault location. Do not use an IFILE initialization

parameter within a traditional initialization parameter file to point to a server

parameter file; instead, use the SPFILE parameter. See "Starting Up a Database" on

page 4-2 for details about:

■ Starting up a database that uses a server parameter file

■ Using the SPFILE parameter to specify the name of a server parameter file to

use at instance startup

Using ALTER SYSTEM to Change Initialization Parameter Values
The ALTER SYSTEM statement allows you to set, change, or delete (restore to

default value) initialization parameter values. When the ALTER SYSTEM statement

is used to alter a parameter setting in a traditional initialization parameter file, the

change affects only the current instance, since there is no mechanism for

automatically updating initialization parameters on disk. They must be manually

updated in order to be passed to a future instance. Using a server parameter file

overcomes this limitation.

Setting or Changing Initialization Parameter Values
Use the SET clause of the ALTER SYSTEM statement to set or change initialization

parameter values. Additionally, the SCOPE clause specifies the scope of a change as

described in the following table:

Managing Initialization Parameters Using a Server Parameter File

2-48 Oracle9i Database Administrator’s Guide

It is an error to specify SCOPE=SPFILE or SCOPE=BOTH if the server is not using a

server parameter file. The default is SCOPE=BOTH if a server parameter file was

used to start up the instance, and MEMORY if a traditional initialization parameter

file was used to start up the instance.

For dynamic parameters, you can also specify the DEFERRED keyword. When

specified, the change is effective only for future sessions.

A COMMENT clause allows a comment string to be associated with the parameter

update. When you specify SCOPEas SPFILE or BOTH, the comment is written to the

server parameter file.

The following statement changes the maximum number of job queue processes

allowed for the instance. It also specifies a comment, and explicitly states that the

change is to be made only in memory (that is, it is not persistent across instance

shutdown and startup).

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=50
 COMMENT='temporary change on Nov 29'
 SCOPE=MEMORY;

SCOPE Clause Description

SCOPE = SPFILE The change is applied in the server parameter file only. The
effect is as follows:

■ For dynamic parameters, the change is effective at the next
startup and is persistent.

■ For static parameters, the behavior is the same as for
dynamic parameters. This is the only SCOPE specification
allowed for static parameters.

SCOPE = MEMORY The change is applied in memory only. The effect is as follows:

■ For dynamic parameters, the effect is immediate, but it is
not persistent because the server parameter file is not
updated.

■ For static parameters, this specification is not allowed.

SCOPE = BOTH The change is applied in both the server parameter file and
memory. The effect is as follows:

■ For dynamic parameters, the effect is immediate and
persistent.

■ For static parameters, this specification is not allowed.

Managing Initialization Parameters Using a Server Parameter File

 Creating an Oracle Database 2-49

Another example illustrates setting a complex initialization parameter that takes a

list of strings. Specifically, the parameter value being set is the LOG_ARCHIVE_
DEST_n initialization parameter. The case could be that either the parameter is

being changed to a new value or a new archive destination is being added.

ALTER SYSTEM
 SET LOG_ARCHIVE_DEST_4='LOCATION=/u02/oracle/rbdb1/',MANDATORY,'REOPEN=2'
 COMMENT='Add new destimation on Nov 29'
 SCOPE=SPFILE;

Note that when a value consists of a list of strings, the syntax of the ALTER SYSTEM
SET statement does not support editing each element of the list of values by the

position or ordinal number. You must specify the complete list of values each time

the parameter is updated, and the new list completely replaces the old list.

Deleting Initialization Parameter Values
For initialization parameters whose values are string values you can restore a

parameter to its default value (effectively deleting it), by using the following syntax:

ALTER SYSTEM SET parameter = '';

For numeric and boolean value parameters, you must specifically set the parameter

back to its original default value.

Exporting the Server Parameter File
You can export a server parameter file to create a traditional text initialization

parameter file. Reasons for doing this include:

■ Creating backups of the server parameter file

■ For diagnostic purposes, listing all of the parameter values currently used by an

instance. This is analogous to the SQL*Plus SHOW PARAMETERS command or

selecting from the V$PARAMETER or V$PARAMETER2 views.

■ Modifying of the server parameter file by first exporting it, editing the output

file, and then re-creating it

The exported file can also be used to start up an instance using the PFILE option.

The CREATE PFILE statement is used to export a server parameter file. You must

have the SYSDBA or the SYSOPER system privilege to execute this statement. The

exported file is created on the database server machine. It contains any comments

associated with the parameter in the same line as the parameter setting.

Managing Initialization Parameters Using a Server Parameter File

2-50 Oracle9i Database Administrator’s Guide

The following example creates a text initialization parameter file from the server

parameter file:

CREATE PFILE FROM SPFILE;

Because no names were specified for the files, a platform-specific name is used for

the initialization parameter file, and it is created from the platform-specific default

server parameter file.

The following example creates a text initialization parameter file from a server

parameter file where the names of the files are specified:

CREATE PFILE='/u01/oracle/dbs/test_init.ora'
 FROM SPFILE='/u01/oracle/dbs/test_spfile.ora';

Backing Up the Server Parameter File
You can create a backup of your server parameter file by exporting it, as described

in "Exporting the Server Parameter File" on page 2-49. If the backup and recovery

strategy for your database is implemented using Recovery Manager (RMAN), then

you can use RMAN to create a backup. The server parameter file is backed up

automatically by RMAN when you back up your database, but RMAN also allows

you to specifically create a backup of the currently active server parameter file.

Errors and Recovery for the Server Parameter File
If an error occurs while reading the server parameter file (during startup or an

export operation), or while writing the server parameter file during its creation, the

operation terminates with an error reported to the user.

If an error occurs while reading or writing the server parameter file during a

parameter update, the error is reported in the alert file and all subsequent

parameter updates to the server parameter file are ignored. At this point, you have

the following options:

■ Shut down the instance, recover the server parameter file, then restart the

instance

■ Continue to run without caring that subsequent parameter updates will not be

persistent

See Also: Oracle9i Recovery Manager User’s Guide

Managing Initialization Parameters Using a Server Parameter File

 Creating an Oracle Database 2-51

Viewing Parameter Settings
You have several options for viewing parameter settings.

Method Description

SHOW PARAMETERS This SQL*Plus command displays the currently in use
parameter values.

CREATE PFILE This SQL statement creates a text initialization parameter file
from the binary server parameter file.

V$PARAMETER This view displays the currently in effect parameter values.

V$PARAMETER2 This view displays the currently in effect parameter values. It is
easier to distinguish list parameter values in this view because
each list parameter value appears as a row.

V$SPPARAMETER This view displays the current contents of the server parameter
file. The view returns NULL values if a server parameter file is
not being used by the instance.

See Also: Oracle9i Database Reference for a complete description of

views

Managing Initialization Parameters Using a Server Parameter File

2-52 Oracle9i Database Administrator’s Guide

 Using Oracle-Managed Files 3-1

3
Using Oracle-Managed Files

This chapter discusses the use of the Oracle-managed files and contains the

following topics:

■ What are Oracle-Managed Files?

■ Enabling the Creation and Use of Oracle-Managed Files

■ Creating Oracle-Managed Files

■ Behavior of Oracle-Managed Files

■ Scenarios for Using Oracle-Managed Files

What are Oracle-Managed Files?

3-2 Oracle9i Database Administrator’s Guide

What are Oracle-Managed Files?
Using Oracle-managed files simplifies the administration of an Oracle database.

Oracle-managed files eliminate the need for you, the DBA, to directly manage the

operating system files comprising an Oracle database. You specify operations in

terms of database objects rather than filenames. Oracle internally uses standard file

system interfaces to create and delete files as needed for the following database

structures:

■ Tablespaces

■ Online redo log files

■ Control files

Through initialization parameters, you specify the file system directory to be used

for a particular type of file. Oracle then ensures that a unique file, an

Oracle-managed file, is created and deleted when no longer needed.

This feature does not affect the creation or naming of administrative files such as

trace files, audit files, alert files, and core files.

Who Can Use Oracle-Managed Files?
Oracle-managed files are most useful for the following types of databases:

■ Databases that are supported by the following:

– A logical volume manager that supports striping/RAID and dynamically

extensible logical volumes

– A file system that provides large, extensible files

■ Low end or test databases

The Oracle Managed Files feature is not intended to ease administration of systems

that use raw disks. This feature provides better integration with operating system

functionality for disk space allocation. Since there is no operating system support

for allocation of raw disks (it is done manually), this feature cannot help. On the

other hand, because Oracle-managed files require that you use the operating system

file system (unlike raw disks), you lose control over how files are laid out on the

disks and thus, you lose some I/O tuning ability.

What is a Logical Volume Manager?
A logical volume manager (LVM) is a software package available with most

operating systems. Sometimes it is called a logical disk manager (LDM). It allows

What are Oracle-Managed Files?

 Using Oracle-Managed Files 3-3

pieces of multiple physical disks to be combined into a single contiguous address

space that appears as one disk to higher layers of software. An LVM can make the

logical volume have better capacity, performance, reliability, and availability

characteristics than any of the underlying physical disks. It uses techniques such as

mirroring, striping, concatenation, and RAID 5 to implement these characteristics.

Some LVMs allow the characteristics of a logical volume to be changed after it is

created, even while it is in use. The volume may be resized or mirrored, or it may be

relocated to different physical disks.

What is a File System?
A file system is a data structure built inside a contiguous disk address space. A file

manager (FM) is a software package that manipulates file systems, but it is

sometimes called the file system. All operating systems have file managers. The

primary task of a file manager is to allocate and deallocate disk space into files

within a file system.

A file system allows the disk space to be allocated to a large number of files. Each

file is made to appear as a contiguous address space to applications such as Oracle.

The files may not actually be contiguous within the disk space of the file system.

Files can be created, read, written, resized, and deleted. Each file has a name

associated with it that is used to refer to the file.

A file system is commonly built on top of a logical volume constructed by an LVM.

Thus all the files in a particular file system have the same performance, reliability,

and availability characteristics inherited from the underlying logical volume. A file

system is a single pool of storage that is shared by all the files in the file system. If a

file system is out of space, then none of the files in that file system can grow. Space

available in one file system does not affect space in another file system. However

some LVM/FM combinations allow space to be added or removed from a file

system.

An operating system can support multiple file systems. Multiple file systems are

constructed to give different storage characteristics to different files as well as to

divide the available disk space into pools that do not affect each other.

Benefits of Using Oracle-Managed Files
Consider the following benefits of using Oracle-managed files:

■ They make the administration of the database easier.

Enabling the Creation and Use of Oracle-Managed Files

3-4 Oracle9i Database Administrator’s Guide

There is no need to invent filenames and define specific storage requirements. A

consistent set of rules is used to name all relevant files. The file system defines

the characteristics of the storage and the pool where it is allocated.

■ They reduce corruption caused by administrators specifying the wrong file.

Each Oracle-managed file and filename is unique. Using the same file in two

different databases is a common mistake that can cause very large down times

and loss of committed transactions. Using two different names that refer to the

same file is another mistake that causes major corruptions.

■ They reduce wasted disk space consumed by obsolete files.

Oracle automatically removes old Oracle-managed files when they are no

longer needed. Much disk space is wasted in large systems simply because no

one is sure if a particular file is still required. This also simplifies the

administrative task of removing files that are no longer required on disk and

prevents the mistake of deleting the wrong file.

■ They simplify creation of test and development databases.

You can minimize the time spent making decisions regarding file structure and

naming, and you have fewer file management tasks. You can focus better on

meeting the actual requirements of your test or development database.

■ Oracle-managed files make development of portable third-party tools easier.

Oracle-managed files eliminate the need to put operating system specific file

names in SQL scripts.

Oracle-Managed Files and Existing Functionality
Using Oracle-managed files does not eliminate any existing functionality. Existing

databases are able to operate as they always have. New files can be created as

managed files while old ones are administered in the old way. Thus, a database can

have a mixture of Oracle-managed and unmanaged files.

Enabling the Creation and Use of Oracle-Managed Files
The following initialization parameters allow the database server to use the Oracle

Managed Files feature:

Enabling the Creation and Use of Oracle-Managed Files

 Using Oracle-Managed Files 3-5

The file system directory specified by either of these parameters must already exist:

Oracle does not create it. The directory must also have permissions to allow Oracle

to create the files in it.

The default location is used whenever a location is not explicitly specified for the

operation creating the file. Oracle creates the filename, and a file thus created is an

Oracle-managed file.

Both of these initialization parameters are dynamic, and can be set using the ALTER
SYSTEM or ALTER SESSION statement.

Setting the DB_CREATE_FILE_DEST Initialization Parameter
Include the DB_CREATE_FILE_DEST initialization parameter in your initialization

parameter file to identify the default location for the database server to create:

■ Datafiles

■ Tempfiles

■ Online redo log files

■ Control files

Parameter Description

DB_CREATE_FILE_DEST Defines the location of the default file system
directory where Oracle creates datafiles or tempfiles
when no file specification is given in the creation
operation. Also used as the default file system
directory for online redo log and control files if DB_
CREATE_ONLINE_LOG_DEST_n is not specified.

DB_CREATE_ONLINE_LOG_DEST_n Defines the location of the default file system
directory for online redo log files and control file
creation when no file specification is given in the
creation operation. You can use this initialization
parameter multiple times, where n specifies a
multiplexed copy of the online redo log or control
file. You can specify up to five multiplexed copies.

See Also:

■ Oracle9i Database Reference for additional information about

initialization parameters

■ "How Oracle-Managed Files are Named" on page 3-7

Creating Oracle-Managed Files

3-6 Oracle9i Database Administrator’s Guide

You specify the name of a file system directory that becomes the default location for

the creation of the operating system files for these entities. The following example

sets /u01/oradata/payroll as the default directory to use when creating

Oracle-managed files:

DB_CREATE_FILE_DEST = '/u01/oradata/payroll'

Setting the DB_CREATE_ONLINE_LOG_DEST_ n Initialization Parameter
Include the DB_CREATE_ONLINE_LOG_DEST_n initialization parameter in your

initialization parameter file to identify the default location for the database server to

create:

■ Online redo log files

■ Control files

You specify the name of a file system directory that becomes the default location for

the creation of the operating system files for these entities. You can specify up to

five multiplexed locations.

For the creation of online redo log files and control files only, this parameter overrides any

default location specified in the DB_CREATE_FILE_DEST initialization parameter.

If you do not specify a DB_CREATE_FILE_DEST parameter, but you do specify this

parameter, then only online redo log files and control files can be created as

Oracle-managed files.

It is recommended that you specify at least two parameters. For example:

DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata/payroll'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata/payroll'

This allows multiplexing, which provides greater fault-tolerance for the online redo

log and control file if one of the destinations fails.

Creating Oracle-Managed Files
If you have met any of the following conditions, then Oracle creates

Oracle-managed files for you, as appropriate, when no file specification is given in

the creation operation:

■ You have included either or both of the DB_CREATE_FILE_DEST and DB_
CREATE_ONLINE_LOG_DEST_n initialization parameters in your initialization

parameter file.

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-7

■ You have issued the ALTER SYSTEM or ALTER SESSION statement to

dynamically set either or both the DB_CREATE_FILE_DEST and DB_CREATE_
ONLINE_LOG_DEST_n initialization parameters.

If a statement that creates an Oracle-managed file finds an error or does not

complete due to some failure, then any Oracle-managed files created by the

statement are automatically deleted as part of the recovery of the error or failure.

However, because of the large number of potential errors that can occur with file

systems and storage subsystems, there can be situations where you must manually

remove the files using operating system commands. When an Oracle-managed file

is created, its filename is written to the alert file. This information can be used to

find the file if it is necessary to manually remove the file.

The following topics are discussed in this section:

■ How Oracle-Managed Files are Named

■ Creating Oracle-Managed Files at Database Creation

■ Creating Datafiles for Tablespaces

■ Creating Tempfiles for Temporary Tablespaces

■ Creating Control Files

■ Creating Online Redo Log Files

How Oracle-Managed Files are Named
The filenames of Oracle-managed files comply with the Oracle Flexible Architecture

(OFA) standard for file naming. The assigned names are intended to meet the

following requirements:

■ Database files are easily distinguishable from all other files.

■ Control files, online redo log files, and datafiles are identifiable as such.

■ The association of datafile to tablespace is clearly indicated.

No two Oracle-managed files are given the same name. The name that is used for

creation of an Oracle-managed file is constructed from three sources.

■ The default file system directory location

■ A port-specific file name template that is chosen based on the type of file

See Also: Oracle9i SQL Reference

Creating Oracle-Managed Files

3-8 Oracle9i Database Administrator’s Guide

■ A unique string created by the Oracle database server or the operating system.

This ensures that file creation does not damage an existing file and that the file

cannot be mistaken for some other file.

As a specific example, filenames for Oracle-managed files have the following format

on Solaris:

where:

■ %t is the tablespace name. At most, eight characters of the tablespace name are

used. If eight characters causes the name to be too long, then the tablespace

name is truncated. Placing the tablespace name before the uniqueness string

means that all the datafiles for a tablespace appear next to each other in an

alphabetic file listing.

■ %u is an eight character string that guarantees uniqueness

■ %g is the online redo log file group number

On other platforms the names are similar, subject to the constraints of the platform’s

naming rules.

Creating Oracle-Managed Files at Database Creation
The behavior of the CREATE DATABASE statement for creating database structures

when using Oracle-managed files is discussed in this section.

Specifying Control Files at Database Creation
At database creation, the control file is created in the files specified by the

CONTROL_FILES initialization parameter. If the CONTROL_FILES parameter is not

File Type Format Example

Datafile o1_mf_%t_%u_.dbf /u01/oradata/payroll/o1_mf_tbs1_2ixfh90q_.dbf

Tempfile o1_mf_%t_%u_.tmp /u01/oradata/payroll/o1_mf_temp1_6dygh80r_.tmp

Redo log file o1_mf_%g_%u_.log /u01/oradata/payroll/o1_mf_1_wo94n2xi_.log

Control file o1_mf_%u_.ctl /u01/oradata/payroll/o1_mf_cmr7t30p_.ctl

Caution: Do not rename an Oracle-managed file. Oracle identifies

an Oracle-managed file based on its name. If you rename the file,

Oracle is no longer able to recognize it as an Oracle-managed file

and will not manage the file accordingly.

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-9

set and at least one of the initialization parameters required for the creation of

Oracle-managed files is set, then an Oracle-managed control file is created in the

default control file destinations. In order of precedence, the default destination is

defined as follows:

■ If DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then an Oracle-managed control file copy is created in each directory specified.

The file in the first directory is the primary control file.

■ If the DB_CREATE_FILE_DEST initialization parameter is specified, and no

DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then an Oracle-managed control file is created in the directory specified.

If the CONTROL_FILES parameter is not set and none of the above initialization

parameters are set, then Oracle’s default behavior is operating system dependent.

At least one copy of a control file is created in an operating system dependent

default location. Any copies of control files created in this fashion are not

Oracle-managed files, and you must add a CONTROL_FILES initialization

parameter to any initialization parameter file.

If Oracle creates an Oracle-managed control file, and if there is a server parameter

file, then Oracle creates a CONTROL_FILES initialization parameter entry in the

server parameter file. If there is no server parameter file, then you must manually

include a CONTROL_FILES initialization parameter entry in the text initialization

parameter file.

Specifying Online Redo Log Files at Database Creation
The LOGFILE clause is not required in the CREATE DATABASE statement, and

omitting it provides a simple means of creating Oracle-managed online redo log

files. If the LOGFILE clause is omitted, then online redo log files are created in the

default online redo log file destinations. In order of precedence, the default

destination is defined as follows:

■ If DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then Oracle creates two online redo files in each directory specified. More

specifically, Oracle creates two online redo groups with corresponding members

in each directory specified. These online redo log files are Oracle-managed files.

■ If the DB_CREATE_FILE_DEST initialization parameter is specified, but no

DB_CREATE_ONLINE_LOG_DEST_n parameters are specified, then two online

redo log files (two groups with one member each) are created in the directory

specified. These online redo log files are Oracle-managed files.

See Also: Chapter 6, "Managing Control Files"

Creating Oracle-Managed Files

3-10 Oracle9i Database Administrator’s Guide

■ If the LOGFILE clause is omitted and neither of the above initialization

parameters are specified, then two online redo log files are created in operating

system dependent default locations. Any online redo log files created in this

fashion are not Oracle-managed files.

The default size of an Oracle-managed online redo log file is 100 (MB).

Optionally, you can create Oracle-managed online redo log files, and override

default attributes, by including the LOGFILE clause but omitting a filename. Online

redo log files are created as above, except for the following: If no filename is

provided in the LOGFILE clause of CREATE DATABASE, and none of the

initialization parameters required for creating Oracle-managed files are provided,

then the CREATE DATABASE statement fails.

Specifying the SYSTEM Tablespace Datafile at Database Creation
The DATAFILE clause is not required in the CREATE DATABASE statement, and

omitting it provides a simple means of creating an Oracle-managed datafile for the

SYSTEM tablespace. If the DATAFILE clause is omitted, then one of the following

actions occurs:

■ If DB_CREATE_FILE_DEST is set, then an Oracle-managed datafile for the

SYSTEM tablespace is created in the DB_CREATE_FILE_DEST directory.

■ If DB_CREATE_FILE_DEST is not set, then Oracle creates one SYSTEM
tablespace datafile whose name and size are operating system dependent. Any

SYSTEM tablespace datafile created in this manner is not an Oracle-managed

file.

The default size for an Oracle-managed datafile is 100 MB and the file is

autoextensible with an unlimited maximum size.

Optionally, you can create an Oracle-managed datafile for the SYSTEM tablespace

and override default attributes. This is done by including the DATAFILE clause,

omitting a filename, but specifying overriding attributes. When a filename is not

supplied and the DB_CREATE_FILE_DEST parameter is set, an Oracle-managed

datafile for the SYSTEM tablespace is created in the DB_CREATE_FILE_DEST
directory with the specified attributes being overridden. However, if a filename is

not supplied and the DB_CREATE_FILE_DEST parameter is not set, then the

CREATE DATABASE statement fails.

See Also: Chapter 7, "Managing the Online Redo Log"

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-11

When overriding the default attributes of an Oracle-managed file, if a SIZE value is

specified but no AUTOEXTEND clause is specified, then the datafile is not
autoextensible.

Specifying the Undo Tablespace Datafile at Database Creation
The DATAFILE subclause of the UNDO TABLESPACE clause is optional and a

filename is not required in the file specification. If a filename is not supplied and the

DB_CREATE_FILE_DEST parameter is set, then an Oracle-managed datafile is

created in the DB_CREATE_FILE_DEST directory. If DB_CREATE_FILE_DEST is
not set, then the statement fails with a syntax error.

The UNDO TABLESPACE clause itself is optional in the CREATE DATABASE
statement. If it is not supplied, and automatic undo management mode is enabled,

then a default undo tablespace named SYS_UNDOTBS is created and a 10 MB

datafile that is autoextensible is allocated as follows:

■ If DB_CREATE_FILE_DESTis set, then an Oracle-managed datafile is created in

the indicated directory.

■ If DB_CREATE_FILE_DEST is not set, then the datafile location is operating

system specific.

Specifying the Default Temporary Tablespace Tempfile at Database Creation
The TEMPFILE subclause is optional for the DEFAULT TEMPORARY TABLESPACE
clause and a filename is not required in the file specification. If a filename is not

supplied and the DB_CREATE_FILE_DEST parameter set, then an Oracle-managed

tempfile is created in the DB_CREATE_FILE_DEST directory. If DB_CREATE_FILE_
DEST is not set, then the CREATE DATABASE statement fails with a syntax error.

The DEFAULT TEMPORARY TABLESPACE clause itself is optional. If it is not

specified, then no default temporary tablespace is created.

The default size for an Oracle-managed tempfile is 100 MB and the file is

autoextensible with an unlimited maximum size.

CREATE DATABASE Statement Using Oracle-Managed Files: Examples
This section contains examples of the CREATE DATABASEstatement when using

the Oracle Managed Files feature.

See Also: Chapter 13, "Managing Undo Space"

Creating Oracle-Managed Files

3-12 Oracle9i Database Administrator’s Guide

CREATE DATABASE: Example 1
This example creates a database with the following Oracle-managed files:

■ A SYSTEM tablespace datafile in directory /u01/oradata/sample that is 100

MB and autoextensible up to an unlimited size

■ Two online log groups with two members of 100 MB each, one each in

/u02/oradata/sample and /u03/oradata/sample

■ If automatic undo management mode is enabled, then an undo tablespace

datafile in directory /u01/oradata/sample2 that is 10 MB and

autoextensible up to an unlimited size. An undo tablespace named SYS_
UNDOTBS is created.

■ If no CONTROL_FILES initialization parameter is specified, then two control

files, one each in /u02/oradata/sample and /u03/oradata/sample . The

control file in /u02/oradata/sample is the primary control file.

The following parameter settings are included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata/sample'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata/sample'

The following statement is issued at the SQL prompt:

SQL> CREATE DATABASE sample;

CREATE DATABASE: Example 2
This example creates a database with the following Oracle-managed files:

■ A 100 MB SYSTEM tablespace datafile in directory /u01/oradata/sample2
that is autoextensible up to an unlimited size.

■ Two online redo log files of 100 MB each in directory

/u01/oradata/sample2. They are not multiplexed.

■ An undo tablespace datafile in directory /u01/oradata/sample2 that is 10

MB and autoextensible up to an unlimited size. An undo tablespace named

SYS_UNDOTBS is created.

■ A control file in /u01/oradata/sample2

In this example, it is assumed that:

■ No DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified

in the initialization parameter file.

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-13

■ No CONTROL_FILES initialization parameter was specified in the initialization

parameter file.

■ Automatic undo management mode is enabled.

The following statements are issued at the SQL prompt:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata/sample2';
SQL> CREATE DATABASE sample2;

This database configuration is not recommended for a production database. The

example illustrates how a very low-end database or simple test database can easily

be created. To better protect this database from failures, at least one more control file

should be created and the online redo log should be multiplexed.

CREATE DATABASE: Example 3
In this example, the file size for the Oracle-managed files for the default temporary

tablespace and undo tablespace are specified. A database with the following

Oracle-managed files is created:

■ A 400 MB SYSTEM tablespace datafile in directory /u01/oradata/sample3 .

Because SIZE is specified, the file in not autoextensible.

■ Two online redo log groups with two members of 100 MB each, one each in

directories /u02/oradata/sample3 and /u03/oradata/sample3

■ For the default temporary tablespace dflt_ts , a 10 MB tempfile in directory

/u01/oradata/sample3 . Because SIZE is specified, the file in not

autoextensible.

■ For the undo tablespace undo_ts , a 10 MB datafile in directory

/u01/oradata/sample3 . Because SIZE is specified, the file in not

autoextensible.

■ If no CONTROL_FILES initialization parameter was specified, then two control

files, one each in directories /u02/oradata/sample3 and

/u03/oradata/sample3 . The control file in /u02/oradata/sample3 is the

primary control file.

The following parameter settings are included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample3'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata/sample3'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata/sample3'

The following statement is issued at the SQL prompt:

Creating Oracle-Managed Files

3-14 Oracle9i Database Administrator’s Guide

SQL> CREATE DATABASE sample3 DATAFILE SIZE 400M
2> DEFAULT TEMPORARY TABLESPACE dflt_ts TEMPFILE SIZE 10M
3> UNDO TABLESPACE undo_ts DATAFILE SIZE 10M;

Creating Datafiles for Tablespaces
The following statements that can create datafiles are relevant to the discussion in

this section:

■ CREATE TABLESPACE

■ CREATE UNDO TABLESPACE

■ ALTER TABLESPACE ... ADD DATAFILE

When creating a tablespace, either a regular tablespace or an undo tablespace, the

DATAFILE clause is optional. When you include the DATAFILE clause the filename

is optional. If the DATAFILE clause or filename is not provided, then the following

rules apply:

■ If the DB_CREATE_FILE_DEST initialization parameter is specified, then an

Oracle-managed datafile is created in the location specified by the parameter.

■ If the DB_CREATE_FILE_DEST initialization parameter is not specified, then

the statement creating the datafile fails.

When you add a datafile to a tablespace with the ALTER TABLESPACE ... ADD
DATAFILE statement the filename is optional. If the filename is not specified, then

the same rules apply as discussed in the previous paragraph.

By default, an Oracle-managed datafile for a regular tablespace is 100 MB and is

autoextensible with an unlimited maximum size. However, if in your DATAFILE
clause you override these defaults by specifying a SIZE value (and no

AUTOEXTEND clause), then the datafile is not autoextensible.

CREATE TABLESPACE: Examples
The following are some examples of creating tablespaces with Oracle-managed files.

See Also:

■ "Specifying the SYSTEM Tablespace Datafile at Database

Creation" on page 3-10

■ "Specifying the Undo Tablespace Datafile at Database Creation"

on page 3-11

■ Chapter 11, "Managing Tablespaces"

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-15

CREATE TABLESPACE: Example 1
The following example sets the default location for datafile creations to

/u01/oradata/sample and then creates a tablespace tbs_1 with a datafile in

that location. The datafile is 100 MB and is autoextensible with an unlimited

maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata/sample';
SQL> CREATE TABLESPACE tbs_1;

CREATE TABLESPACE: Example 2
This example creates a tablespace named tbs_2 with a datafile in the directory

/u01/oradata/sample2 . The datafile’s initial size is 400 MB and it is not

autoextensible.

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample2'

The following statement is issued at the SQL prompt:

SQL> CREATE TABLESPACE tbs_2 DATAFILE SIZE 400M AUTOEXTEND OFF;

CREATE TABLESPACE: Example 3
This example creates a tablespace named tbs_3 with an autoextensible datafile in

the directory /u01/oradata/sample3 with a maximum size of 800 MB and an

initial size of 100 MB:

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample3'

The following statement is issued at the SQL prompt:

SQL> CREATE TABLESPACE tbs_3 DATAFILE AUTOEXTEND ON MAXSIZE 800M;

CREATE TABLESPACE: Example 4
The following example sets the default location for datafile creations to

/u01/oradata/sample4 and then creates a tablespace named tbs_4 in that

directory with two datafiles. Both datafiles have an initial size of 200 MB, and

because a SIZE value is specified, they are not autoextensible

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata/sample4';
SQL> CREATE TABLESPACE tbs_4 DATAFILE SIZE 200M, SIZE 200M;

Creating Oracle-Managed Files

3-16 Oracle9i Database Administrator’s Guide

CREATE UNDO TABLESPACE: Example
The following example creates an undo tablespace named undotbs_1 with a

datafile in the directory /u01/oradata/sample . The datafile for the undo

tablespace is 100 MB and is autoextensible with an unlimited maximum size.

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample'

The following statement is issued at the SQL prompt:

SQL> CREATE UNDO TABLESPACE undotbs_1;

ALTER TABLESPACE: Example
This example adds an Oracle-managed autoextensible datafile to the tbs_1
tablespace. The datafile has an initial size of 100 MB and a maximum size of 800

MB.

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata/sample'

The following statement is entered at the SQL prompt:

SQL> ALTER TABLESPACE tbs_1 ADD DATAFILE AUTOEXTEND ON MAXSIZE 800M;

Creating Tempfiles for Temporary Tablespaces
The following statements that create tempfiles are relevant to the discussion in this

section:

■ CREATE TEMPORARY TABLESPACE

■ ALTER TABLESPACE ... ADD TEMPFILE

When creating a temporary tablespace the TEMPFILE clause is optional. If you

include the TEMPFILE clause, then the filename is optional. If the TEMPFILE clause

or filename is not provided, then the following rules apply:

■ If the DB_CREATE_FILE_DEST initialization parameter is specified, then an

Oracle-managed tempfile is created in the location specified by the parameter.

■ If the DB_CREATE_FILE_DEST initialization parameter is not specified, then

the statement creating the tempfile fails.

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-17

When you add a tempfile to a tablespace with the ALTER TABLESPACE ... ADD
TEMPFILE statement the filename is optional. If the filename is not specified, then

the same rules apply as discussed in the previous paragraph.

When overriding the default attributes of an Oracle-managed file, if a SIZE value is

specified but no AUTOEXTEND clause is specified, then the datafile is not
autoextensible.

CREATE TEMPORARY TABLESPACE: Example
The following example sets the default location for datafile creations to

/u01/oradata/sample and then creates a tablespace named temptbs_1 with a

tempfile in that location. The tempfile is 100 MB and is autoextensible with an

unlimited maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata/sample';
SQL> CREATE TEMPORARY TABLESPACE temptbs_1;

ALTER TABLESPACE ... ADD TEMPFILE: Example
The following example sets the default location for datafile creations to

/u03/oradata/sample and then adds a tempfile in the default location to a

tablespace named temptbs_1 . The tempfile’s initial size is 100 MB. It is

autoextensible with an unlimited maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u03/oradata/sample';
SQL> ALTER TABLESPACE TBS_1 ADD TEMPFILE;

Creating Control Files
When you issue the CREATE CONTROLFILE statement, a control file is created (or

reused, if REUSE is specified) in the files specified by the CONTROL_FILES
initialization parameter. If the CONTROL_FILES parameter is not set, then the

control file is created in the default control file destinations. In order of precedence,

the default destination is defined as follows:

■ If DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then an Oracle-managed control file copy is created in each directory specified.

The file in the first directory is the primary control file.

See Also: "Specifying the Default Temporary Tablespace Tempfile

at Database Creation" on page 3-11

Creating Oracle-Managed Files

3-18 Oracle9i Database Administrator’s Guide

■ If the DB_CREATE_FILE_DEST initialization parameter is specified, and no

DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then an Oracle-managed control file is created in the directory specified.

■ If neither DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_ONLINE_LOG_
DEST_n initialization parameters are specified, then a control file is created in

an operating system specific default location. This control file is not an

Oracle-managed file.

If Oracle creates an Oracle-managed control file, and there is a server parameter file,

then Oracle creates a CONTROL_FILES initialization parameter for the server

parameter file. If there is no server parameter file, then you must create a CONTROL_
FILES initialization parameter manually and include it in the initialization

parameter file.

If the datafiles in the database are Oracle-managed files, then the Oracle generated

filenames for the files must be supplied in the DATAFILE clause of the statement.

If the online redo log files are Oracle-managed files, then the NORESETLOGS or

RESETLOGS keyword determines what can be supplied in the LOGFILE clause:

■ If the NORESETLOGS keyword is used, then the Oracle generated filenames for

the Oracle-managed online redo log files must be supplied in the LOGFILE
clause.

■ If the RESETLOGS keyword is used, then the online redo log file names can be

supplied as with the CREATE DATABASE statement. See "Specifying Online

Redo Log Files at Database Creation" on page 3-9.

The sections that follow contain examples of using the CREATE CONTROLFILE
statement with Oracle-managed files.

CREATE CONTROLFILE Using NORESETLOGS Keyword: Example
The following CREATE CONTROLFILEstatement is generated by an ALTER
DATABASE BACKUP CONTROLFILE TO TRACE statement for a database with

Oracle-managed datafiles and online redo log files:

CREATE CONTROLFILE
 DATABASE sample
 LOGFILE GROUP 1 ('/u01/oradata/sample/ora_1_o220rtt9.log',
 '/u02/oradata/sample/ora_1_v2o0b2i3.log') SIZE 100M,
 GROUP 2 ('/u01/oradata/sample/ora_2_p22056iw.log',

See Also: "Specifying Control Files at Database Creation" on

page 3-8

Creating Oracle-Managed Files

 Using Oracle-Managed Files 3-19

 '/u02/oradata/sample/ora_2_p02rcyg3.log') SIZE 100M
 NORESETLOGS
 DATAFILE '/u01/oradata/sample/ora_system_xu34ybm2.dbf' SIZE 100M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG;

CREATE CONTROLFILE Using RESETLOGS Keyword: Example
The following is an example of a CREATE CONTROLFILE statement with the

RESETLOGS option. Either DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_
FILE_DEST must be set.

CREATE CONTROLFILE
 DATABASE sample
 RESETLOGS
 DATAFILE '/u01/oradata/sample/ora_system_aawbmz51.dbf' SIZE 100M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG;

Later, you must issue the ALTER DATABASE OPEN RESETLOGS statement to

re-create the online redo log files. This is discussed in "Using the ALTER

DATABASE OPEN RESETLOGS Statement" on page 3-20. If the previous log files

are Oracle-managed files, then they are not deleted.

Creating Online Redo Log Files
Online redo log files are created at database creation time. They can also be created

when you issue either of the following statements:

■ ALTER DATABASE ADD LOGFILE

■ ALTER DATABASE OPEN RESETLOGS

Using the ALTER DATABASE ADD LOGFILE Statement
The ALTER DATABASE ADD LOGFILE statement allows you to later add a new

group to your current online redo log. The filename in the ADD LOGFILE clause is

optional if you are using Oracle-managed files. If a filename is not provided, then a

Creating Oracle-Managed Files

3-20 Oracle9i Database Administrator’s Guide

redo log file is created in the default log file destination. In order of precedence, the

default destination is defined as follows:

■ If DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified,

then an Oracle-managed log file member is created in each directory specified

in the parameters (up to MAXLOGMEMBERS for the database).

■ If the DB_CREATE_FILE_DEST initialization parameter is specified and no DB_
CREATE_ONLINE_LOG_DEST_n initialization parameters are specified, then an

Oracle-managed log file member is created in the directory specified in the

parameter.

If a filename is not provided and you have not provided one of the initialization

parameters required for creating Oracle-managed files, then the statement returns

an error.

The default size for an Oracle-managed log file is 100 MB.

You continue to add and drop online redo log file members by specifying complete

filenames.

Adding New Online Redo Log Files: Example
The following example creates a log file with a member in

/u01/oradata/sample and another member in /u02/oradata/sample . The

size of the log file is 100 MB.

The following parameter settings are included in the initialization parameter file:

DB_CREATE_ONLINE_LOG_DEST_1 = '/u01/oradata/sample'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u02/oradata/sample'

The following statement is issued at the SQL prompt:

SQL> ALTER DATABASE ADD LOGFILE;

Using the ALTER DATABASE OPEN RESETLOGS Statement
If you previously created a control file specifying RESETLOGS and either did not

specify filenames or specified non-existent filenames, then Oracle creates online

redo log files for you when you issue the ALTER DATABASE OPEN RESETLOGS

See Also:

■ "Specifying Online Redo Log Files at Database Creation" on

page 3-9

■ "Creating Control Files" on page 3-17

Behavior of Oracle-Managed Files

 Using Oracle-Managed Files 3-21

statement. The rules for determining the directories in which to store redo log files,

when none are specified in the control file, are the same as those discussed in

"Specifying Online Redo Log Files at Database Creation" on page 3-9.

Behavior of Oracle-Managed Files
The filenames of Oracle-managed files are accepted in SQL statements wherever a

filename is used to identify an existing file. These filenames, like other filenames,

are stored in the control file and, if using Recovery Manager (RMAN) for backup

and recovery, in the RMAN catalog. They are visible in all of the usual fixed and

dynamic performance views that are available for monitoring datafiles and

tempfiles (for example, V$DATAFILE or DBA_DATA_FILES).

The following are some examples of statements using Oracle generated filenames:

SQL> ALTER DATABASE RENAME FILE 'ora_tbs01_ziw3bopb.dbf' TO 'tbs0101.dbf';

SQL> ALTER DATABASE DROP LOGFILE 'ora_1_wo94n2xi.log';

SQL> ALTER TABLE emp ALLOCATE EXTENT (DATAFILE 'ora_tbs1_2ixfh90q.dbf');

You can backup and restore Oracle-managed datafiles, tempfiles, and control files as

you would corresponding non Oracle-managed files. Using Oracle generated

filenames does not impact the use of logical backup files such as export files. This is

particularly important for tablespace point-in-time recovery (TSPITR) and

transportable tablespace export files.

There are some cases where Oracle-managed files behave differently. These are

discussed in the sections that follow.

Dropping Datafiles and Tempfiles
Unlike files that are not Oracle managed, when an Oracle-managed datafile or

tempfile is dropped, the filename is removed from the control file and the file is

automatically deleted from the file system. The statements that delete

Oracle-managed files when they are dropped are:

■ DROP TABLESPACE

■ ALTER DATABASE TEMPFILE ... DROP

Scenarios for Using Oracle-Managed Files

3-22 Oracle9i Database Administrator’s Guide

Dropping Online Redo Log Files
When an Oracle-managed online redo log file is dropped its Oracle-managed files

are deleted. You specify the group or members to be dropped. The following

statements drop and delete online redo log files:

■ ALTER DATABASE DROP LOGFILE

■ ALTER DATABASE DROP LOGFILE MEMBER

Renaming Files
The following statements are used to rename files:

■ ALTER DATABASE RENAME FILE

■ ALTER TABLESPACE ... RENAME DATAFILE

These statements do not actually rename the files on the operating system, but

rather, the names in the control file are changed. If the old file is an Oracle-managed

file and it exists, then it is deleted. You must specify each filename using the

conventions for filenames on your operating system when you issue this statement.

Managing Standby Databases
The datafiles, control files, and online redo log files in a standby database can be

Oracle managed. This is independent of whether Oracle-managed files are used on

the primary database.

When recovery of a standby database encounters redo for the creation of a datafile,

if the datafile is an Oracle-managed file, then the recovery process creates an empty

file in the local default file system location. This allows the redo for the new file to

be applied immediately without any human intervention.

When recovery of a standby database encounters redo for the deletion of a

tablespace, it deletes any Oracle-managed datafiles in the local file system. Note

that this is independent of the INCLUDING DATAFILES option issued at the

primary database.

Scenarios for Using Oracle-Managed Files
This section further demonstrates the use of Oracle-managed files by presenting

scenarios of their use.

Scenarios for Using Oracle-Managed Files

 Using Oracle-Managed Files 3-23

Scenario 1: Create and Manage a Database with Multiplexed Online Redo Logs
In this scenario, a DBA creates a database where the datafiles and online redo log

files are created in separate directories. The online redo log files and control files are

multiplexed. The database uses an undo tablespace, and has a default temporary

tablespace. The following are tasks involved with creating and maintaining this

database.

1. Setting the initialization parameters

The DBA includes three generic file creation defaults in the initialization

parameter file before creating the database. Automatic undo management mode

is also specified.

DB_CREATE_FILE_DEST = '/u01/oradata/sample'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata/sample'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata/sample'
UNDO_MANAGEMENT = AUTO

The DB_CREATE_FILE_DEST parameter sets the default file system directory

for the datafiles and tempfiles.

The DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_
DEST_2parameters set the default file system directories for online redo log file

and control file creation. Each online redo log file and control file is multiplexed

across the two directories.

2. Creating a database

Once the initialization parameters are set, the database can be created by using

this statement:

SQL> CREATE DATABASE sample
2> DEFAULT TEMPORARY TABLESPACE dflt_tmp;

Because a DATAFILE clause is not present and the DB_CREATE_FILE_DEST
initialization parameter is set, the SYSTEM tablespace datafile is created in the

default file system (/u01/oradata/sample in this scenario). The filename is

uniquely generated by Oracle. The file is autoextensible with an initial size of

100 MB and an unlimited maximum size. The file is an Oracle-managed file.

Because a LOGFILE clause is not present, two online redo log groups are

created. Each log group has two members, with one member in the DB_
CREATE_ONLINE_LOG_DEST_1 location and the other member in the DB_
CREATE_ONLINE_LOG_DEST_2location. The filenames are uniquely generated

Scenarios for Using Oracle-Managed Files

3-24 Oracle9i Database Administrator’s Guide

by Oracle. The log files are created with a size of 100 MB. The log file members

are Oracle-managed files.

Similarly, because the CONTROL_FILES initialization parameter is not present,

and two DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are

specified, two control files are created. The control file located in the DB_
CREATE_ONLINE_LOG_DEST_1 location is the primary control file; the control

file located in the DB_CREATE_ONLINE_LOG_DEST_2 location is a multiplexed

copy. The filenames are uniquely generated by Oracle. They are

Oracle-managed files. Assuming there is a server parameter file, a CONTROL_
FILES initialization parameter is generated.

Automatic undo management mode is specified, but because an undo

tablespace is not specified and the DB_CREATE_FILE_DEST initialization

parameter is set, a default undo tablespace named SYS_UNDOTBSis created in

the directory specified by DB_CREATE_FILE_DEST. The datafile is a 10 MB

datafile that is autoextensible. It is an Oracle-managed file.

Lastly, a default temporary tablespace named dflt_tmp is specified. Because

DB_CREATE_FILE_DEST is included in the parameter file, the tempfile for

dflt_tmp is created in the directory specified by that parameter. The tempfile

is 100 MB and is autoextensible with an unlimited maximum size. It is an

Oracle-managed file.

The resultant file tree, with generated filenames, is as follows:

/u01
 /oradata
 /sample
 /ora_system_cmr7t30p.dbf
 /ora_sys_undo_2ixfh90q.dbf
 /ora_dflt_tmp_157se6ff.tmp
/u02
 /oradata
 /sample
 /ora_1_0orrm31z.log
 /ora_2_2xyz16am.log
 /ora_cmr7t30p.ctl
/u03
 /oradata
 /sample
 /ora_1_ixfvm8w9.log
 /ora_2_q89tmp28.log
 /ora_x1sr8t36.ctl

Scenarios for Using Oracle-Managed Files

 Using Oracle-Managed Files 3-25

The internally generated filenames can be seen when selecting from the usual

views. For example:

SQL> SELECT NAME FROM V$DATAFILE;

NAME
--
/u01/oradata/sample/ora_system_cmr7t30p.dbf
/u01/oradata/sample/ora_sys_undo_2ixfh90q.dbf

2 rows selected

The name is also printed to the alert file when the file is created.

3. Managing control files

The control file was created when generating the database, and a CONTROL_
FILES initialization parameter was added to the parameter file. If needed, then

the DBA can re-create the control file or build a new one for the database using

the CREATE CONTROLFILE statement.

The correct Oracle-managed filenames must be used in the DATAFILE and

LOGFILE clauses. The ALTER DATABASE BACKUP CONTROLFILE TO TRACE
statement generates a script with the correct filenames. Alternatively, the

filenames can be found by selecting from the V$DATAFILE, V$TEMPFILE, and

V$LOGFILE views. The following example re-creates the control file for the

sample database:

SQL> CREATE CONTROLFILE REUSE
2> DATABASE sample
3> LOGFILE GROUP 1('/u02/oradata/sample/ora_1_0orrm31z.log',
4> '/u03/oradata/sample/ora_1_ixfvm8w9.log'),
5> GROUP 2('/u02/oradata/sample/ora_2_2xyz16am.log',
6> '/u03/oradata/sample/ora_2_q89tmp28.log')
7> NORESETLOGS
8> DATAFILE '/u01/oradata/sample/ora_system_cmr7t30p.dbf',
9> '/u01/oradata/sample/ora_sys_undo_2ixfh90q.dbf',
10> '/u01/oradata/sample/ora_dflt_tmp_157se6ff.tmp'
11> MAXLOGFILES 5
12> MAXLOGHISTORY 100
13> MAXDATAFILES 10
14> MAXINSTANCES 2
15> ARCHIVELOG;

The control file created by this statement is located as specified by the

CONTROL_FILES initialization parameter that was generated when the

Scenarios for Using Oracle-Managed Files

3-26 Oracle9i Database Administrator’s Guide

database was created. The REUSE clause causes any existing files to be

overwritten.

4. Managing the online redo log

To create a new group of online redo log files, the DBA can use the ALTER
DATABASE ADD LOGFILE statement. The following statement adds a log file

with a member in the DB_CREATE_ONLINE_LOG_DEST_1 location and a

member in the DB_CREATE_ONLINE_LOG_DEST_2 location. These files are

Oracle-managed files.

SQL> ALTER DATABASE ADD LOGFILE;

Log file members continue to be added and dropped by specifying complete

filenames.

The GROUP clause can be used to drop a log file. In the following example the

operating system file associated with each Oracle-managed log file member is

automatically deleted.

SQL> ALTER DATABASE DROP LOGFILE GROUP 3;

5. Managing tablespaces

The default storage for all datafiles for future tablespace creations in the

sample database is the location specified by the DB_CREATE_FILE_DEST
initialization parameter (/u01/oradata/sample in this scenario). Any

datafiles for which no filename is specified, are created in the file system

specified by the initialization parameter DB_CREATE_FILE_DEST. For

example:

SQL> CREATE TABLESPACE tbs_1;

The preceding statement creates a tablespace whose storage is in

/u01/oradata/sample . A datafile is created with an initial size of 100 MB

and it is autoextensible with an unlimited maximum size. The datafile is an

Oracle-managed file.

When the tablespace is dropped, the Oracle-managed files for the tablespace are

automatically removed. The following statement drops the tablespace and all

the Oracle-managed files used for its storage:

SQL> DROP TABLESPACE tbs_1;

Once the first datafile is full, Oracle does not automatically create a new

datafile. More space can be added to the tablespace by adding another

Scenarios for Using Oracle-Managed Files

 Using Oracle-Managed Files 3-27

Oracle-managed datafile. The following statement adds another datafile in the

location specified by DB_CREATE_FILE_DEST:

SQL> ALTER TABLESPACE tbs_1 ADD DATAFILE;

The default file system can be changed by changing the initialization parameter.

This does not change any existing datafiles. It only affects future creations. This

can be done dynamically using the following statement:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST='/u04/oradata/sample';

6. Archiving redo information

Archiving of online redo log files is no different for Oracle-managed files, than

it is for unmanaged files. A file system location for the archived log files can be

specified using the LOG_ARCHIVE_DEST_n initialization parameters. The

filenames are formed based on the LOG_ARCHIVE_FORMAT parameter or its

default. The archived logs are not Oracle-managed files

7. Backup, restore, and recover

Since an Oracle-managed file is compatible with standard operating system

files, you can use operating system utilities to backup or restore

Oracle-managed files. All existing methods for backing up, restoring, and

recovering the database work for Oracle-managed files.

Scenario 2: Add Oracle-Managed Files to an Existing Database
Assume in this case that an existing database does not have any Oracle-managed

files, but the DBA would like to create new tablespaces with Oracle-managed files

and locate them in directory /u03/oradata/sample2 .

1. Setting the initialization parameters

To allow automatic datafile creation, set the DB_CREATE_FILE_DEST
initialization parameter to the file system directory in which to create the

datafiles. This can be done dynamically as follows:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u03/oradata/sample2';

2. Creating tablespaces

Once DB_CREATE_FILE_DEST is set, the DATAFILE clause can be omitted

from a CREATE TABLESPACE statement. The datafile is created in the location

specified by DB_CREATE_FILE_DEST by default. For example:

SQL> CREATE TABLESPACE tbs_2;

Scenarios for Using Oracle-Managed Files

3-28 Oracle9i Database Administrator’s Guide

When the tbs_2 tablespace is dropped, its datafiles are automatically deleted.

Starting Up and Shutting Down 4-1

4
Starting Up and Shutting Down

This chapter describes the procedures for starting up and shutting down an Oracle

database, and contains the following topics:

■ Starting Up a Database

■ Altering Database Availability

■ Shutting Down a Database

■ Quiescing a Database

■ Suspending and Resuming a Database

See Also: For additional information specific to an Oracle Real

Application Clusters environment:

■ Oracle9i Real Application Clusters Administration

■ Oracle9i Real Application Clusters Setup and Configuration

Starting Up a Database

4-2 Oracle9i Database Administrator’s Guide

Starting Up a Database
When you start up a database, you create an instance of that database, and you

choose the state in which the database starts. Normally, you would start up an

instance by mounting and opening the database, thus making it available for any

valid user to connect to and perform typical data access operations. However, there

are other options and these are also discussed in this section.

This section contains the following topics relating to starting up an instance of a

database:

■ Options for Starting Up a Database

■ Preparing to Start an Instance

■ Using SQL*Plus to Start Up a Database

■ Starting an Instance: Scenarios

Options for Starting Up a Database
There are options as to the method you use for starting up (and administering) an

instance of your database.

Using SQL*Plus
To start up a database use SQL*Plus to connect to Oracle with administrator

privileges and then issue the STARTUP command. While three methods are

presented, using SQL*Plus is the only method that is within the scope of this book.

Using Recovery Manager
You can also use Recovery Manager (RMAN) to execute STARTUP (and SHUTDOWN)
commands. You may prefer to do this if your are within the RMAN environment

and do not want to invoke SQL*Plus.

Using Oracle Enterprise Manager
You can choose to use the Oracle Enterprise Manager for administering your

database, including starting it up and shutting it down. The Oracle Enterprise

Manager is a separate Oracle product, that combines a graphical console, agents,

common services, and tools to provide an integrated and comprehensive systems

management platform for managing Oracle products. It enables you to perform the

functions discussed in this book using a GUI interface, rather than command lines.

See Also: Oracle9i Recovery Manager User’s Guide

Starting Up a Database

Starting Up and Shutting Down 4-3

Preparing to Start an Instance
You must perform some preliminary steps before attempting to start an instance of

your database using SQL*Plus.

1. Start SQL*Plus without connecting to the database:

SQLPLUS /NOLOG

2. Connect to Oracle as SYSDBA:

CONNECTusername/password AS SYSDBA

Now you are connected to Oracle and ready to start up an instance of your

database.

Using SQL*Plus to Start Up a Database
You use the STARTUP command to start up a database instance. To start an

instance, Oracle must read instance configuration parameters (the initialization

parameters) from either a server parameter file or a traditional text initialization

parameter file.

When you issue the STARTUP command with no PFILE clause, Oracle reads the

initialization parameters from a server parameter file (SPFILE) in a platform-specific

default location.

See Also:

■ Oracle Enterprise Manager Concepts Guide

■ Oracle Enterprise Manager Administrator’s Guide

See Also: SQL*Plus User’s Guide and Reference for descriptions and

syntax for the CONNECT, STARTUP, and SHUTDOWN commands.

These commands are SQL*Plus commands.

Note: For UNIX, the platform-specific default location (directory)

for the server parameter file (or text initialization parameter file) is:

$ORACLE_HOME/dbs

For Windows NT and Windows 2000 the location is:

$ORACLE_HOME\database

Starting Up a Database

4-4 Oracle9i Database Administrator’s Guide

In the platform-specific default location, Oracle locates your initialization parameter

file by examining filenames in the following order:

1. spfile$ORACLE_SID.ora

2. spfile.ora

3. init$ORACLE_SID.ora

You can direct Oracle to read initialization parameters from a traditional text

initialization parameter file, by using the PFILE clause of the STARTUP command.

For example:

STARTUP PFILE = /u01/oracle/dbs/init.ora

Further, you can use this PFILE clause to start an instance with a nondefault server

parameter file as follows:

1. Create a one line text initialization parameter file that contains only the SPFILE
parameter. The value of the parameter is the nondefault server parameter file

location.

For example, create a text initialization parameter file

/u01/oracle/dbs/spf_init.ora that contains only the following

parameter:

SPFILE = /u01/oracle/dbs/test_spfile.ora

2. Start up the instance pointing to this initialization parameter file.

Note: The spfile.ora file is included in this search path

because in a Real Application Clusters environment one server

parameter file is used to store the initialization parameter settings

for all instances. There is no instance specific location for storing a

server parameter file.

For more information about the server parameter file for a Real

Application Clusters environment, see Oracle9i Real Application
Clusters Administration.

Note: You cannot use the IFILE initialization parameter within a

text initialization parameter file to point to a server parameter file.

In this context, you must use the SPFILE initialization parameter.

Starting Up a Database

Starting Up and Shutting Down 4-5

STARTUP PFILE = /u01/oracle/dbs/spf_init.ora

Since the server parameter file must reside on the machine running the database

server, the above method also provides a means for a client machine to start a

database that uses a server parameter file. It also eliminates the need for a client

machine to maintain a client-side initialization parameter file. When the client

machine reads the initialization parameter file containing the SPFILE parameter, it

passes the value to the server where the specified server parameter file is read.

You can start an instance in various modes:

■ Start the instance without mounting a database. This does not allow access to

the database and usually would be done only for database creation or the

re-creation of control files.

■ Start the instance and mount the database, but leave it closed. This state allows

for certain DBA activities, but does not allow general access to the database.

■ Start the instance, and mount and open the database. This can be done in

unrestricted mode, allowing access to all users, or in restricted mode, allowing

access for database administrators only.

In addition, you can force the instance to start, or start the instance and have

complete media recovery begin immediately. The STARTUP command options that

you specify to achieve these states are illustrated in the following section.

Starting an Instance: Scenarios
The following scenarios describe and illustrate the various states in which you can

start up an instance. Some restrictions apply when combining options of the

STARTUP command.

Note: You cannot start a database instance if you are connected to

the database through a shared server process.

See Also: Chapter 2, "Creating an Oracle Database" for more

information about initialization parameters, initialization

parameter files, and server parameter files

Starting Up a Database

4-6 Oracle9i Database Administrator’s Guide

Starting an Instance, and Mounting and Opening a Database
Normal database operation means that an instance is started and the database is

mounted and open. This mode allows any valid user to connect to the database and

perform typical data access operations.

Start an instance, read the initialization parameters from the default server

parameter file location, and then mount and open the database by using the

STARTUP command by itself (you can, of course, optionally specify a PFILE or

SPFILE clause):

STARTUP

Starting an Instance Without Mounting a Database
You can start an instance without mounting a database. Typically, you do so only

during database creation. Use the STARTUP command with the NOMOUNT option:

STARTUP NOMOUNT

Starting an Instance and Mounting a Database
You can start an instance and mount a database without opening it, allowing you to

perform specific maintenance operations. For example, the database must be

mounted but not open during the following tasks:

Note: It is possible to encounter problems starting up an instance

if control files, database files, or redo log files are not available. If

one or more of the files specified by the CONTROL_FILES
initialization parameter does not exist or cannot be opened when

you attempt to mount a database, Oracle returns a warning

message and does not mount the database. If one or more of the

datafiles or redo log files is not available or cannot be opened when

attempting to open a database, Oracle returns a warning message

and does not open the database.

See Also: SQL*Plus User’s Guide and Reference for information

about the restrictions that apply when combining options of the

STARTUP command

Starting Up a Database

Starting Up and Shutting Down 4-7

Start an instance and mount the database, but leave it closed by using the STARTUP
command with the MOUNT option:

STARTUP MOUNT

Restricting Access to a Database at Startup
You can start an instance and mount and open a database in restricted mode so that

the database is available only to administrative personnel (not general database

users). Use this mode of database startup when you need to accomplish one of the

following tasks:

■ Perform an export or import of database data

■ Perform a data load (with SQL*Loader)

■ Temporarily prevent typical users from using data

■ During certain migration and upgrade operations

Typically, all users with the CREATE SESSION system privilege can connect to an

open database. Opening a database in restricted mode allows database access only

to users with both the CREATE SESSION and RESTRICTED SESSION system

privilege. Only database administrators should have the RESTRICTED SESSION
system privilege.

Start an instance (and, optionally, mount and open the database) in restricted mode

by using the STARTUP command with the RESTRICT option:

STARTUP RESTRICT

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION
feature:

Task For more information...

Renaming datafiles Chapter 12, "Managing Datafiles"

Adding, dropping, or renaming redo
log files

Chapter 7, "Managing the Online Redo
Log"

Enabling and disabling redo log
archiving options

Chapter 8, "Managing Archived Redo
Logs"

Performing full database recovery Oracle9i User-Managed Backup and
Recovery Guide

Oracle9i Recovery Manager User’s Guide

Starting Up a Database

4-8 Oracle9i Database Administrator’s Guide

ALTER SYSTEM DISABLE RESTRICTED SESSION;

If you open the database in nonrestricted mode and later find you need to restrict

access, you can use the ALTER SYSTEM statement to do so, as described in

"Restricting Access to an Open Database" on page 4-11.

Forcing an Instance to Start
In unusual circumstances, you might experience problems when attempting to start

a database instance. You should not force a database to start unless you are faced

with the following:

■ You cannot shut down the current instance with the SHUTDOWN NORMAL,

SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

■ You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new

instance (and optionally mounting and opening the database) using the STARTUP
command with the FORCE option:

STARTUP FORCE

If an instance is running, STARTUP FORCE shuts it down with mode ABORT before

restarting it.

Starting an Instance, Mounting a Database, and Starting Complete Media
Recovery
If you know that media recovery is required, you can start an instance, mount a

database to the instance, and have the recovery process automatically start by using

the STARTUP command with the RECOVER option:

STARTUP OPEN RECOVER

If you attempt to perform recovery when no recovery is required, Oracle issues an

error message.

See Also: Oracle9i SQL Reference for more information on the

ALTER SYSTEM statement

See Also: "Shutting Down with the ABORT Option" on page 4-13

to understand the side effects of aborting the current instance

Altering Database Availability

Starting Up and Shutting Down 4-9

Automatic Database Startup at Operating System Start
Many sites use procedures to enable automatic startup of one or more Oracle

instances and databases immediately following a system start. The procedures for

performing this task are specific to each operating system. For information about

automatic startup, see your operating system specific Oracle documentation.

Starting Remote Instances
If your local Oracle server is part of a distributed database, you might want to start

a remote instance and database. Procedures for starting and stopping remote

instances vary widely depending on communication protocol and operating

system.

Altering Database Availability
You can alter the availability of a database. You may want to do this in order to

restrict access for maintenance reasons or to make the database read only. The

following sections explain how to alter a database’s availability:

■ Mounting a Database to an Instance

■ Opening a Closed Database

■ Opening a Database in Read-Only Mode

■ Restricting Access to an Open Database

Mounting a Database to an Instance
When you need to perform specific administrative operations, the database must be

started and mounted to an instance, but closed. You can achieve this scenario by

starting the instance and mounting the database.

To mount a database to a previously started, but not opened instance, use the SQL

statement ALTER DATABASE with the MOUNT option as follows:

ALTER DATABASE MOUNT

See Also: "Starting an Instance and Mounting a Database" on

page 4-6 for a list of operations that require the database to be

mounted and closed (and procedures to start an instance and

mount a database in one step)

Altering Database Availability

4-10 Oracle9i Database Administrator’s Guide

Opening a Closed Database
You can make a mounted but closed database available for general use by opening

the database. To open a mounted database, use the ALTER DATABASE statement

with the OPEN option:

ALTER DATABASE OPEN

After executing this statement, any valid Oracle user with the CREATE SESSION
system privilege can connect to the database.

Opening a Database in Read-Only Mode
Opening a database in read-only mode enables you to query an open database

while eliminating any potential for online data content changes. While opening a

database in read-only mode guarantees that datafile and redo log files are not

written to, it does not restrict database recovery or operations that change the state

of the database without generating redo. For example, you can take datafiles offline

or bring them online since these operations do not effect data content.

If a query against a database in read-only mode uses temporary tablespace, for

example to do disk sorts, then the issuer of the query must have a locally managed

tablespace assigned as the default temporary tablespace. Otherwise, the query will

fail. This is explained in "Creating a Locally Managed Temporary Tablespace" on

page 11-13.

Ideally, you open a database in read-only mode when you alternate a standby

database between read-only and recovery mode. Be aware that these are mutually

exclusive modes.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

You can also open a database in read-write mode as follows:

ALTER DATABASE OPEN READ WRITE;

However, read-write is the default mode.

Note: You cannot use the RESETLOGS clause with a READ ONLY
clause.

Shutting Down a Database

Starting Up and Shutting Down 4-11

Restricting Access to an Open Database
To place an instance in restricted mode, use the SQL statement ALTER SYSTEM
with the ENABLE RESTRICTED SESSION clause. After placing an instance in

restricted mode, you should consider killing all current user sessions before

performing any administrative tasks. To lift an instance from restricted mode, use

ALTER SYSTEM with the DISABLE RESTRICTED SESSION option.

Shutting Down a Database
To initiate database shutdown, use the SQL*Plus SHUTDOWN command. Control is

not returned to the session that initiates a database shutdown until shutdown is

complete. Users who attempt connections while a shutdown is in progress receive a

message like the following:

ORA-01090: shutdown in progress - connection is not permitted

To shut down a database and instance, you must first connect as SYSOPER or

SYSDBA. There are several modes for shutting down a database. These are

discussed in the following sections:

■ Shutting Down with the NORMAL Option

■ Shutting Down with the IMMEDIATE Option

■ Shutting Down with the TRANSACTIONAL Option

■ Shutting Down with the ABORT Option

See Also: Oracle9i SQL Reference for more information about the

ALTER DATABASE statement

See Also: "Restricting Access to a Database at Startup" on

page 4-7 to learn some reasons for placing an instance in restricted

mode

Note: You cannot shut down a database if you are connected to

the database through a shared server process.

Shutting Down a Database

4-12 Oracle9i Database Administrator’s Guide

Shutting Down with the NORMAL Option
To shut down a database in normal situations, use the SHUTDOWN command with

the NORMAL option:

SHUTDOWN NORMAL

Normal database shutdown proceeds with the following conditions:

■ No new connections are allowed after the statement is issued.

■ Before the database is shut down, Oracle waits for all currently connected users

to disconnect from the database.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the IMMEDIATE Option
Use immediate database shutdown only in the following situations:

■ To initiate an automated and unattended backup

■ When a power shutdown is going to occur soon

■ When the database or one of its applications is functioning irregularly and you

cannot contact users to ask them to log off or they are unable to log off

To shut down a database immediately, use the SHUTDOWN command with the

IMMEDIATE option:

SHUTDOWN IMMEDIATE

Immediate database shutdown proceeds with the following conditions:

■ No new connections are allowed, nor are new transactions allowed to be

started, after the statement is issued.

■ Any uncommitted transactions are rolled back. (If long uncommitted

transactions exist, this method of shutdown might not complete quickly,

despite its name.)

■ Oracle does not wait for users currently connected to the database to

disconnect. Oracle implicitly rolls back active transactions and disconnects all

connected users.

The next startup of the database will not require any instance recovery procedures.

Shutting Down a Database

Starting Up and Shutting Down 4-13

Shutting Down with the TRANSACTIONAL Option
When you want to perform a planned shutdown of an instance while allowing

active transactions to complete first, use the SHUTDOWN command with the

TRANSACTIONAL option:

SHUTDOWN TRANSACTIONAL

Transactional database shutdown proceeds with the following conditions:

■ No new connections are allowed, nor are new transactions allowed to be

started, after the statement is issued.

■ After all transactions have completed, any client still connected to the instance

is disconnected.

■ At this point, the instance shuts down just as it would when a SHUTDOWN
IMMEDIATE statement is submitted.

 The next startup of the database will not require any instance recovery procedures.

A transactional shutdown prevents clients from losing work, and at the same time,

does not require all users to log off.

Shutting Down with the ABORT Option
You can shut down a database instantaneously by aborting the database’s instance.

If possible, perform this type of shutdown only in the following situations:

■ The database or one of its applications is functioning irregularly and none of the

other types of shutdown works.

■ You need to shut down the database instantaneously (for example, if you know

a power shutdown is going to occur in one minute).

■ You experience problems when starting a database instance.

When you must do a database shutdown by aborting transactions and user

connections, issue the SHUTDOWN command with the ABORT option:

SHUTDOWN ABORT

An aborted database shutdown proceeds with the following conditions:

■ No new connections are allowed, nor are new transactions allowed to be

started, after the statement is issued.

Quiescing a Database

4-14 Oracle9i Database Administrator’s Guide

■ Current client SQL statements being processed by Oracle are immediately

terminated.

■ Uncommitted transactions are not rolled back.

■ Oracle does not wait for users currently connected to the database to

disconnect. Oracle implicitly disconnects all connected users.

The next startup of the database will require instance recovery procedures.

Quiescing a Database
There are times when there is a need to put a database into a state where only DBA

transactions, queries, fetches, or PL/SQL statements are allowed. This is called a

quiesced state, in the sense that there are no ongoing non-DBA transactions,

queries, fetches, or PL/SQL statements in the system. This quiesced state allows

you or other administrators to perform actions that cannot safely be done

otherwise. These actions are categorized as follows:

■ Actions that can fail if concurrent user transactions access the same object. For

example, changing the schema of a database table or adding a column to an

existing table where a no-wait lock is required.

■ Actions whose undesirable intermediate effect can be seen by concurrent user

transactions. For example, a multistep procedure for reorganizing a table where

the table is first exported, then dropped, and finally imported. A concurrent

user who attempted to access the table after it was dropped, but before import,

would see disturbing results.

Without the ability to quiesce the database, you would be required to shut down

the database and reopen it in restricted mode. This is a serious restriction, especially

for systems requiring 24 x 7 availability. Quiescing a database is much less of a

restriction because it eliminates the disruption to users and downtime associated

with shutting down and restarting the database.

Note: For this release of Oracle9i, in the quiesce database context a

DBA is defined as user SYS or SYSTEM. Other users, including

those with the DBA role are not allowed to issue the ALTER
SYSTEM QUIESCE DATABASE statement or proceed after the

database is quiesced.

Quiescing a Database

Starting Up and Shutting Down 4-15

Placing a Database into a Quiesced State
To place a database into a quiesced state, issue the following statement:

ALTER SYSTEM QUIESCE RESTRICTED;

Any non-DBA active sessions will proceed until they become inactive. An active

session is defined as a session that is currently inside of a transaction, a query, a

fetch, or a PL/SQL statement; or a session that is currently holding any shared

resources (for example, enqueues). No inactive sessions are allowed to become

active. If a user, for example, issues a SQL query in an attempt to force an inactive

session to become active, the query will appear to be hung. When the database is

later unquiesced, the session is resumed, and the blocked action (for example, the

previously mentioned SQL query) will be processed.

Once all non-DBA sessions become inactive, the ALTER SYSTEM QUIESCE
RESTRICTED statement finishes, and the database is considered as in a quiesced

state. In an Oracle Real Application Clusters environment, this statement affects all

instances, not just the one that issues the statement.

The ALTER SYSTEM QUIESCE RESTRICTED statement may wait a long time for

active sessions to become inactive. If you interrupt the request, or if your session

abnormally terminates for some reason before all active sessions are quiesced,

Oracle will automatically undo any partial effects of the statement.

If a query is carried out by successive multiple Oracle Call Interface (OCI) fetches,

the ALTER SYSTEM QUIESCE RESTRICTEDstatement does not wait for all fetches

to finish; it only waits for the current fetch to finish.

Note: You must have the Database Resource Manager feature

activated, and it must have been activated since instance startup

(all instances in an Oracle Real Application Clusters environment)

to successfully issue the ALTER SYSTEM QUIESCE RESTRICTED
statement. It is through the facilities of the Database Resource

Manager that non-DBA sessions are prevented from becoming

active. Also, while this statement is in effect, any attempt to change

the current resource plan will be queued until after the system is

unquiesced.

For information about the Database Resource Manager, see

Chapter 27, "Using the Database Resource Manager".

Quiescing a Database

4-16 Oracle9i Database Administrator’s Guide

For both dedicated and shared server connections, all non-DBA logins after this

statement is issued are queued by the Database Resource Manager, and are not

allowed to proceed. To the user, it appears as if the login is hung. The login will

resume when the database is unquiesced.

The database remains in the quiesced state even if the session that issued the

statement exits. A DBA must log in to the database to issue the statement that

specifically unquiesces the database.

While in the quiesced state, you cannot use file system copy to backup the

database’s datafiles as cold backups, even if you do a checkpoint on every instance.

The reason for this is that in the quiesced state the file headers of online datafiles

continue to look like they are being accessed. They do not look the same as if a clean

shutdown were done. Similarly, to perform a hot backup of the datafiles of any

online tablespace while the database is in a quiesced state, you are still required to

first place the tablespace into backup mode using the ALTER TABLESPACE...
BEGIN BACKUP statement.

Restoring the System to Normal Operation
The following statement restores the database to normal operation:

ALTER SYSTEM UNQUIESCE;

All non-DBA activity is allowed to proceed. In an Oracle Real Application Clusters

environment, this statement is not required to be issued from the same session, or

even the same instance, as that which imposed the quiesce state. If the session

issuing the ALTER SYSTEM UNQUIESCE statement should terminate abnormally,

the Oracle database server ensures that the unquiesce operation finishes.

Viewing the Quiesce State of an Instance
The V$INSTANCE view can be queried to see the current state of an instance. It

contains a column named ACTIVE_STATE, whose values are shown in the

following table:

ACTIVE_STATE Description

NORMAL Normal unquiesced state

QUIESCING Being quiesced, but there are still active non-DBA sessions
running

QUIESCED Quiesced, no active non-DBA sessions are active or allowed

Suspending and Resuming a Database

Starting Up and Shutting Down 4-17

Suspending and Resuming a Database
The ALTER SYSTEM SUSPEND statement suspends a database by halting all input

and output (I/O) to datafiles (file header and file data) and control files, thus

allowing a database to be backed up without I/O interference. When the database is

suspended all preexisting I/O operations are allowed to complete and any new

database accesses are placed in a queued state.

The suspend command suspends the database, and is not specific to an instance.

Therefore, in an Oracle Real Application Clusters environment, if the suspend

command is entered on one system, then internal locking mechanisms will

propagate the halt request across instances, thereby quiescing all active instances in

a given cluster. However, do not start a new instance while you suspend another

instance, since the new instance will not be suspended.

Use the ALTER SYSTEM RESUME statement to resume normal database operations.

You can specify the SUSPEND and RESUME from different instances. For example, if

instances 1, 2, and 3 are running, and you issue an ALTER SYSTEM SUSPEND
statement from instance 1, then you can issue a RESUMEfrom instance 1, 2, or 3 with

the same effect.

The suspend/resume feature is useful in systems that allow you to mirror a disk or

file and then split the mirror, providing an alternative backup and restore solution.

If you use a system that is unable to split a mirrored disk from an existing database

while writes are occurring, then you can use the suspend/resume feature to

facilitate the split.

The suspend/resume feature is not a suitable substitute for normal shutdown

operations, however, since copies of a suspended database can contain

uncommitted updates.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage. The

V$INSTANCE view is queried to confirm database status.

SQL> ALTER SYSTEM SUSPEND;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

Caution: Do not use the ALTER SYSTEM SUSPENDstatement as a

substitute for placing a tablespace in hot backup mode. Precede any

database suspend operation by an ALTER TABLESPACE BEGIN
BACKUP statement.

Suspending and Resuming a Database

4-18 Oracle9i Database Administrator’s Guide

SUSPENDED

SQL> ALTER SYSTEM RESUME;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

ACTIVE

See Also: Oracle9i User-Managed Backup and Recovery Guide for

details about backing up a database using the database

suspend/resume feature

Part II
 Oracle Server Processes and Storage

Structure

Part II presents the Oracle database server processes and underlying database

storage structures that support its operation. It contains the following chapters:

■ Chapter 5, "Managing Oracle Processes"

■ Chapter 6, "Managing Control Files"

■ Chapter 7, "Managing the Online Redo Log"

■ Chapter 8, "Managing Archived Redo Logs"

■ Chapter 9, "Using LogMiner to Analyze Redo Logs"

■ Chapter 10, "Managing Job Queues"

■ Chapter 11, "Managing Tablespaces"

■ Chapter 12, "Managing Datafiles"

■ Chapter 13, "Managing Undo Space"

Managing Oracle Processes 5-1

5
Managing Oracle Processes

This chapter describes how to manage the processes of an Oracle instance, and

contains the following topics:

■ Server Processes

■ Configuring Oracle for the Shared Server

■ About Oracle Background Processes

■ Monitoring the Processes of an Oracle Instance

■ Managing Processes for Parallel Execution

■ Managing Processes for External Procedures

■ Terminating Sessions

Server Processes

5-2 Oracle9i Database Administrator’s Guide

Server Processes
Oracle creates server processes to handle the requests of user processes connected to

an instance. A server process can be either a dedicated server process, where one

server process services only one user process, or if your database server is

configured for shared server, it can be a shared server process, where a server

process can service multiple user processes.

Dedicated Server Processes
Figure 5–1, "Oracle Dedicated Server Processes" illustrates how dedicated server

processes work. In this diagram two user processes are connected to Oracle through

dedicated server processes.

In general, it is better to be connected through a dispatcher and use a shared server

process. This is illustrated in Figure 5–2, "Oracle Shared Server Processes". A shared

server process can be more efficient because it keeps the number of processes

required for the running instance low.

In the following situations, however, users and administrators should explicitly

connect to an instance using a dedicated server process:

■ To submit a batch job (for example, when a job can allow little or no idle time

for the server process)

■ To use Recovery Manager to back up, restore, or recover a database

To request a dedicated server connection when Oracle is configured for shared

server, users must connect using a net service name that is configured to use a

dedicated server. Specifically, the net service name value should include the

SERVER=DEDICATED clause in the connect descriptor.

See Also: Oracle9i Database Concepts

See Also: Oracle9i Net Services Administrator’s Guide for more

information about requesting a dedicated server connection

Server Processes

Managing Oracle Processes 5-3

Figure 5–1 Oracle Dedicated Server Processes

Shared Server Processes
Consider an order entry system with dedicated server processes. A customer places

an order as a clerk enters the order into the database. For most of the transaction,

the clerk is on the telephone talking to the customer and the server process

dedicated to the clerk’s user process remains idle. The server process is not needed

during most of the transaction, and the system is slower for other clerks entering

orders because the idle server process is holding system resources.

The shared server architecture eliminates the need for a dedicated server process for

each connection (see Figure 5–2).

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code

Server Processes

5-4 Oracle9i Database Administrator’s Guide

Figure 5–2 Oracle Shared Server Processes

In a shared server configuration, client user processes connect to a dispatcher. A

dispatcher can support multiple client connections concurrently. Each client

connection is bound to a virtual circuit. A virtual circuit is a piece of shared memory

used by the dispatcher for client database connection requests and replies. The

dispatcher places a virtual circuit on a common queue when a request arrives.

System Global Area

CodeCodeCodeCodeCodeCode

User
Process

Database Server

Client Workstation

CodeCodeApplication
Code

Dispatcher Processes

Shared
server
processes

1

2

3
4

5

6

7

Response

Oracle
Server CodeOracle

Server Code
Oracle

Server CodeOracle
Server Code

Request
Queue

Queues

Configuring Oracle for the Shared Server

Managing Oracle Processes 5-5

An idle shared server picks up the virtual circuit from the common queue, services

the request, and relinquishes the virtual circuit before attempting to retrieve another

virtual circuit from the common queue. This approach enables a small pool of

server processes to serve a large number of clients. A significant advantage of

shared server architecture over the dedicated server model is the reduction of

system resources, enabling the support of an increased number of users.

The shared server architecture requires Oracle Net Services. User processes

targeting the shared server must connect through Oracle Net Services, even if they

are on the same machine as the Oracle instance.

There are several things that must be done to configure your system for shared

server. These are discussed in the next section.

Configuring Oracle for the Shared Server
You activate shared server by setting database initialization parameters. Shared

server requires that an Oracle Net Services listener process be active. This section

discusses setting shared server initialization parameters and how to alter them.

This section contains the following topics:

■ Initialization Parameters for Shared Server

■ Setting the Initial Number of Dispatchers (DISPATCHERS)

■ Setting the Initial Number of Shared Servers (SHARED_SERVERS)

■ Modifying Dispatcher and Server Processes

■ Monitoring Shared Server

Initialization Parameters for Shared Server
The initialization parameters controlling shared server are:

See Also: Oracle9i Net Services Administrator’s Guide for more

information about shared server, including additional features such

as connection pooling

Parameter Description

The following parameter is required by shared server:

DISPATCHERS Configures dispatcher processes in the shared server
architecture.

Configuring Oracle for the Shared Server

5-6 Oracle9i Database Administrator’s Guide

Setting the Initial Number of Dispatchers (DISPATCHERS)
The number of dispatcher processes started at instance startup is controlled by the

DISPATCHERS initialization parameter. You can specify multiple DISPATCHERS
parameters in the initialization file, but they must be adjacent to each other.

Internally, Oracle will assign an INDEX value to each DISPATCHERS parameter, so

that you can later specifically refer to that DISPATCHERS parameter in an ALTER
SYSTEM statement.

The appropriate number of dispatcher processes for each instance depends upon

the performance you want from your database, the host operating system’s limit on

the number of connections for each process (which is operating system dependent),

The following parameters are optional (if not specified, Oracle selects defaults):

MAX_DISPATCHERS Specifies the maximum number of dispatcher processes
that can run simultaneously.

SHARED_SERVERS Specifies the number of shared server processes created
when an instance is started up.

MAX_SHARED_SERVERS Specifies the maximum number of shared server
processes that can run simultaneously.

CIRCUITS Specifies the total number of virtual circuits that are
available for inbound and outbound network sessions.

SHARED_SERVER_SESSIONS Specifies the total number of shared server user
sessions to allow. Setting this parameter enables you to
reserve user sessions for dedicated servers.

Other parameters affected by shared server that may require adjustment:

LARGE_POOL_SIZE Specifies the size in bytes of the large pool allocation
heap. Shared server may force the default value to be
set too high, causing performance problems or
problems starting the database.

SESSIONS Specifies the maximum number of sessions that can be
created in the system. May need to be adjusted for
shared server.

See Also:

■ Oracle9i Net Services Reference Guide

■ Oracle9i Database Reference

Parameter Description

Configuring Oracle for the Shared Server

Managing Oracle Processes 5-7

and the number of connections required for each network protocol. The instance

must be able to provide as many connections as there are concurrent users on the

database system. After instance startup, you can start more dispatcher processes if

needed. This is discussed in "Adding and Removing Dispatcher Processes" on

page 5-8.

A ratio of 1 dispatcher for every 1000 connections works well for typical systems,

but round up to the next integer. For example, if you anticipate 1500 connections at

peak time, then you may want to configure 2 dispatchers. Being too aggressive in

your estimates is not beneficial, because configuring too many dispatchers can

degrade performance. Use this ratio as your guide, but tune according to your

particular circumstances.

The following are some examples of setting the DISPATCHERS initialization

parameter.

Example: Typical
This is a typical example of setting the DISPATCHERS initialization parameter.

DISPATCHERS="(PROTOCOL=TCP)"

Example: Forcing the IP Address Used for Dispatchers
To force the IP address used for the dispatchers, enter the following:

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)\
 (HOST=144.25.16.201))(DISPATCHERS=2)"

This will start two dispatchers that will listen in on the IP address, which must be a

valid IP address for the host that the instance is on.

Example: Forcing the Port Used by Dispatchers
To force the exact location of dispatchers, add the PORT as follows:

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5000))"
DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5001))"

Setting the Initial Number of Shared Servers (SHARED_SERVERS)
The SHARED_SERVERS initialization parameter specifies the number of shared

server processes that you want to create when an instance is started up. Oracle

dynamically adjusts the number of shared server processes based on the length of

the request queue. The number of shared server processes that can be created

Configuring Oracle for the Shared Server

5-8 Oracle9i Database Administrator’s Guide

ranges between the values of the initialization parameters SHARED_SERVERS and

MAX_SHARED_SERVERS. Typical systems seem to stabilize at a ratio of one shared

server for every ten connections.

For OLTP applications, the connections-to-servers ratio could be higher. This could

happen when the rate of requests is low, or when the ratio of server usage to request

is low. On the other hand, in applications where the rate of requests is high, or the

server usage-to-request ratio is high, the connections-to-server ratio could be lower.

Set MAX_SHARED_SERVERSto a reasonable value based on your application. Oracle

provides good defaults for SHARED_SERVERS and MAX_SHARED_SERVERS for a

typical configuration, but the optimal values for these settings can be different

depending upon your application.

MAX_SHARED_SERVERS is a static initialization parameter, so you cannot change it

without shutting down your database. However, SHARED_SERVERS is a dynamic

initialization parameter and can be changed using an ALTER SYSTEM statement.

Modifying Dispatcher and Server Processes
You can modify the settings for DISPATCHERSand SHARED_SERVERSdynamically

when an instance is running. If you have the ALTER SYSTEMprivilege, you can use

the ALTER SYSTEM statement to make such changes.

Adding and Removing Dispatcher Processes
You can control the number of dispatcher processes in the instance. If monitoring

the V$QUEUE, V$DISPATCHER and V$DISPATCHER_RATE views indicates that the

load on the dispatcher processes is consistently high, starting additional dispatcher

processes to route user requests may improve performance. In contrast, if the load

on dispatchers is consistently low, reducing the number of dispatchers may

improve performance.

To change the number of dispatcher processes, use the SQL statement ALTER
SYSTEM. You can start new dispatcher processes for an existing DISPATCHERS

Note: On Windows NT, take care when setting MAX_SHARED_
SERVERS to a high value because each server is a thread in a

common process.

See Also: Oracle9i SQL Reference for information about the ALTER
SYSTEM statement

Configuring Oracle for the Shared Server

Managing Oracle Processes 5-9

value, or you can add new DISPATCHERS values. Dispatchers can be added up to

the limit specified by MAX_DISPATCHERS.

If you reduce the number of dispatchers for a particular shared server dispatcher

value, the dispatchers are not immediately removed. Rather, as users disconnect,

Oracle is eventually able to terminate dispatchers down to the limit you specify in

DISPATCHERS.

The following statement dynamically changes the number of dispatcher processes

for the TCP/IP protocol to 5, and adds dispatcher processes for the TCP/IP with

SSL (TCPS) protocol. There was no DISPATCHERS initialization parameter for the

TCPS protocol (the only DISPATCHERS parameter was the one for the TCP

protocol), so this statement effectively adds one.

ALTER SYSTEM
SET DISPATCHERS =
'(PROTOCOL=TCP)(DISPATCHERS=5) (INDEX=0)',
'(PROTOCOL=TCPS)(DISPATCHERS=2) (INDEX=1)';

If there are currently fewer than five dispatcher processes for TCP, Oracle creates

new ones. If there are currently more than five, Oracle terminates some of them

after the connected users disconnect.

Shutting Down Specific Dispatcher Processes
It is possible to shut down specific dispatcher processes. To identify the name of the

specific dispatcher process to shut down, use the V$DISPATCHER dynamic

performance view.

SELECT NAME, NETWORK FROM V$DISPATCHER;

NAME NETWORK
---- ---

Note: The INDEX keyword can be used to identify which

DISPATCHERS parameter to modify. The INDEX value can range

from 0 to n, where n is one less than the defined number of

DISPATCHERS parameters. If your ALTER SYSTEM statement

specifies an INDEX value equal to n+1, where n is the current

number of dispatchers, a new DISPATCHERS parameter is added.

To identify the index number assigned to an DISPATCHERS
parameter, query the CONF_INDX value in the V$DISPATCHER
view.

Configuring Oracle for the Shared Server

5-10 Oracle9i Database Administrator’s Guide

D000 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3499))
D001 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3531))
D002 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3532))

Each dispatcher is uniquely identified by a name of the form Dnnn.

To shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002';

The IMMEDIATEkeyword stops the dispatcher from accepting new connections and

Oracle immediately terminates all existing connections through that dispatcher.

After all sessions are cleaned up, the dispatcher process shuts down. If IMMEDIATE
were not specified, the dispatcher would wait until all of its users disconnected and

all of its connections terminated before shutting down.

Changing the Minimum Number of Shared Server Processes
After starting an instance, you can change the minimum number of shared server

processes by using the SQL statement ALTER SYSTEM. Oracle will eventually

terminate servers that are idle when there are more shared servers than the

minimum limit you specify.

If you set SHARED_SERVERS to 0, Oracle terminates all current servers when they

become idle and does not start any new servers until you increase SHARED_
SERVERS. Thus, setting SHARED_SERVERS to 0 may be used to effectively disable

shared server.

The following statement dynamically sets the minimum number of shared server

processes to two:

ALTER SYSTEM SET SHARED_SERVERS = 2;

Monitoring Shared Server
The following are useful views for obtaining information about your shared server

configuration and for monitoring performance.

View Description

V$DISPATCHER Provides information on the dispatcher processes,
including name, network address, status, various
usage statistics, and index number.

V$DISPATCHER_RATE Provides rate statistics for the dispatcher processes.

About Oracle Background Processes

Managing Oracle Processes 5-11

About Oracle Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle

system uses some additional processes called background processes. Background

processes consolidate functions that would otherwise be handled by multiple

Oracle programs running for each user process. Background processes

asynchronously perform I/O and monitor other Oracle processes to provide

increased parallelism for better performance and reliability.

The following are some basic Oracle background processes, many of which are

discussed in more detail elsewhere in this book. The use of additional Oracle

database server features or options can cause more background processes to be

present. For example, if you use Advanced Queuing, the queue monitor (QMNn)

background process is present, or if you specified the FILE_MAPPING initialization

parameter for mapping datafiles to physical devices on a storage subsystem, then

the LMON process is present.

V$QUEUE Contains information on the shared server message
queues.

V$SHARED_SERVER Contains information on the shared server processes.

V$CIRCUIT Contains information about virtual circuits, which are
user connections to the database through dispatchers
and servers.

V$SHARED_SERVER_MONITOR Contains information for tuning shared server.

V$SGA Contains size information about various system global
area (SGA) groups. May be useful when tuning shared
server.

V$SGASTAT Detailed statistical information about the SGA, useful
for tuning.

V$SHARED_POOL_RESERVED Lists statistics to help tune the reserved pool and space
within the shared pool.

See Also:

■ Oracle9i Database Reference for a detailed description of these

views

■ Oracle9i Database Performance Tuning Guide and Reference for

specific information about monitoring and tuning shared server

View Description

About Oracle Background Processes

5-12 Oracle9i Database Administrator’s Guide

Process Name Description

Database writer (DBWn) The database writer writes modified blocks from the database buffer cache to
the datafiles. Oracle allows a maximum of 20 database writer processes
(DBW0-DBW9 and DBWa-DBWj). The initialization parameter DB_WRITER_
PROCESSES specifies the number of DBWn processes. Oracle selects an
appropriate default setting for this initialization parameter (or might adjust a
user specified setting) based upon the number of CPUs and the number of
processor groups.

For more information about setting the DB_WRITER_PROCESSES initialization
parameter, see the Oracle9i Database Performance Tuning Guide and Reference.

Log writer (LGWR) The log writer process writes redo log entries to disk. Redo log entries are
generated in the redo log buffer of the system global area (SGA), and LGWR
writes the redo log entries sequentially into an online redo log file. If the
database has a multiplexed redo log, LGWR writes the redo log entries to a
group of online redo log files. See Chapter 7, "Managing the Online Redo Log"
for information about the log writer process.

Checkpoint (CKPT) At specific times, all modified database buffers in the system global area are
written to the datafiles by DBWn. This event is called a checkpoint. The
checkpoint process is responsible for signalling DBWn at checkpoints and
updating all the datafiles and control files of the database to indicate the most
recent checkpoint.

System monitor (SMON) The system monitor performs crash recovery when a failed instance starts up
again. In a cluster database (Oracle9i Real Application Clusters), the SMON
process of one instance can perform instance recovery for other instances that
have failed. SMON also cleans up temporary segments that are no longer in use
and recovers dead transactions skipped during crash and instance recovery
because of file-read or offline errors. These transactions are eventually recovered
by SMON when the tablespace or file is brought back online.

SMON also coalesces free extents within the database’s dictionary-managed
tablespaces to make free space contiguous and easier to allocate (see
"Coalescing Free Space in Dictionary-Managed Tablespaces" on page 11-16).

Process monitor (PMON) The process monitor performs process recovery when a user process fails.
PMON is responsible for cleaning up the cache and freeing resources that the
process was using. PMON also checks on the dispatcher processes (see below)
and server processes and restarts them if they have failed.

Archiver (ARCn) One or more archiver processes copy the online redo log files to archival storage
when they are full or a log switch occurs. Archiver processes are the subject of
Chapter 8, "Managing Archived Redo Logs".

Monitoring the Processes of an Oracle Instance

Managing Oracle Processes 5-13

Monitoring the Processes of an Oracle Instance
This section lists some of the data dictionary views that you can use to monitor an

Oracle instance. These views are more general in their scope. There are other views,

more specific to a process, that are discussed in the section of this book where the

Recoverer (RECO) The recoverer process is used to resolve distributed transactions that are
pending due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and
automatically complete the commit or rollback of the local portion of any
pending distributed transactions. For information about this process and how to
start it, see Chapter 32, "Managing Distributed Transactions".

Dispatcher (Dnnn) Dispatchers are optional background processes, present only when the shared
server configuration is used. Shared server was discussed previously in
"Configuring Oracle for the Shared Server" on page 5-5.

Global Cache Service (LMS) In an Oracle Real Application Clusters environment, this process manages
resources and provides inter-instance resource control. See:

■ Oracle9i Real Application Clusters Concepts

■ Oracle9i Real Application Clusters Setup and Configuration.

Coordinator job queue
process (CJQ0)

This is the coordinator of job queue processes for an instance. It monitors the
JOB$ table (table of jobs in the job queue) and starts job queue processes (Jnnn)
as needed to execute jobs The Jnnn processes execute job requests created by the
DBMS_JOBS package. This is the subject of Chapter 10, "Managing Job Queues"

Additionally, up to 1000 Jnnn processes can automatically refresh materialized
views. They wake up periodically and refresh any materialized views that are
scheduled to be refreshed. For information about creating and refreshing
materialized views, see:

■ Oracle9i Replication

■ Oracle9i Replication Management API Reference.

Yet another function of the Jnnn processes is to propagate queued messages to
queues on other databases. See Oracle9i Application Developer’s Guide - Advanced
Queuing for information on propagating queued messages.

Unlike many Oracle background processes, if a job queue process or the
coordinator (CJQ0) fails, it does not cause instance failure.

See Also: Oracle9i Database Concepts for more information about

Oracle’s background processes

Process Name Description

Monitoring the Processes of an Oracle Instance

5-14 Oracle9i Database Administrator’s Guide

process is described. Also presented are scripts and a view for monitoring the status

of locks.

Process and Session Views
These views provide process and session specific information:

See Also:

■ Oracle9i Database Reference contains detailed descriptions of

these views

■ Oracle9i Database Performance Tuning Guide and Reference
provides information for resolving performance problems and

conflicts that may be revealed through the monitoring of these

views

View Description

V$PROCESS Contains information about the currently active processes

V$SESSION Lists session information for each current session

V$SESS_IO Contains I/O statistics for each user session

V$SESSION_LONGOPS This view displays the status of various operations that run for
longer than 6 seconds (in absolute time). These operations
currently include many backup and recovery functions,
statistics gathering, and query execution. More operations are
added for every Oracle release.

V$SESSION_WAIT Lists the resources or events for which active sessions are
waiting

V$SYSSTAT Contains session statistics

V$RESOURCE_LIMIT Provides information about current and maximum global
resource utilization for some system resources

V$SQLAREA Contains statistics about shared SQL area and contains one row
for each SQL string. Also provides statistics about SQL
statements that are in memory, parsed, and ready for execution

V$LATCH Contains statistics for non-parent latches and summary statistics
for parent latches

Monitoring the Processes of an Oracle Instance

Managing Oracle Processes 5-15

Monitoring Locks
The utllockt.sql script displays, in tree-structured fashion, the sessions in the

system that are waiting for locks and the locks that they are waiting for. Using an ad

hoc query tool, such as SQL*Plus, the script prints the sessions in the system that

are waiting for locks and the corresponding blocking locks. The location of this

script file is operating system dependent; see your operating system specific Oracle

documentation. A second script, catblock.sql , creates the lock views that

utllockt.sql needs, so you must run it before running utllockt.sql .

The following view can be used for monitoring locks:

Trace Files and the Alert File
Each server and background process can write to an associated trace file. When an

internal error is detected by a process, it dumps information about the error to its

trace file. Some of the information written to a trace file is intended for the database

administrator, while other information is for Oracle Support Services. Trace file

information is also used to tune applications and instances.

The alert file, or alert log, is a special trace file. The alert file of a database is a

chronological log of messages and errors, which includes the following:

■ All internal errors (ORA-600), block corruption errors (ORA-1578), and

deadlock errors (ORA-60) that occur

■ Administrative operations, such as CREATE, ALTER, and DROP statements and

STARTUP, SHUTDOWN, and ARCHIVELOG statements

■ Several messages and errors relating to the functions of shared server and

dispatcher processes

■ Errors occurring during the automatic refresh of a materialized view

■ The values of all initialization parameters at the time the database and instance

start

Oracle uses the alert file to keep a log of these special operations as an alternative to

displaying such information on an operator’s console (although many systems

display information on the console). If an operation is successful, a "completed"

message is written in the alert file, along with a timestamp.

View Description

V$LOCK Lists the locks currently held by the Oracle server and
outstanding requests for a lock or latch

Monitoring the Processes of an Oracle Instance

5-16 Oracle9i Database Administrator’s Guide

Initialization parameters controlling the location and size of trace files are:

■ BACKGROUND_DUMP_DEST

■ USER_DUMP_DEST

■ MAX_DUMP_FILE_SIZE

These parameters are discussed in the sections that follow.

Using the Trace Files
You should periodically check the alert file and other trace files of an instance to see

if the background processes have encountered errors. For example, when the Log

Writer process (LGWR) cannot write to a member of a group, an error message

indicating the nature of the problem is written to the LGWR trace file and the

database’s alert file. If you see such error messages, a media or I/O problem has

occurred, and should be corrected immediately.

Oracle also writes values of initialization parameters to the alert file, in addition to

other important statistics. For example, when you shut down an instance normally

or immediately, Oracle writes the highest number of sessions concurrently

connected to the instance, since the instance started, to the alert file. You can use this

number to see if you need to upgrade your Oracle session license.

Specifying the Location of Trace Files
All trace files for background processes and the alert file are written to the

destination directory specified by the initialization parameter BACKGROUND_DUMP_
DEST. All trace files for server processes are written to the destination directory

specified by the initialization parameter USER_DUMP_DEST. The names of trace files

are operating system specific, but each file usually includes the name of the process

writing the file (such as LGWR and RECO).

Controlling the Size of Trace Files
You can control the maximum size of all trace files (excluding the alert file) using

the initialization parameter MAX_DUMP_FILE_SIZE. This limit is set as a number of

operating system blocks. To control the size of an alert file, you must manually

delete the file when you no longer need it; otherwise Oracle continues to append to

See Also: Oracle9i Database Reference for information about

initialization parameters that control the writing to trace files

See Also: Your operating system specific Oracle documentation

for information about the names of trace files

Monitoring the Processes of an Oracle Instance

Managing Oracle Processes 5-17

the file. You can safely delete the alert file while the instance is running, although

you might want to make an archived copy of it first.

Controlling When Oracle Writes to Trace Files
Background processes always write to a trace file when appropriate. In the case of

the ARCn background process, it is possible, through an initialization parameter, to

control the amount and type of trace information that is produced. This is described

in "Controlling Trace Output Generated by the Archivelog Process" on page 8-21.

Other background processes do not have this flexibility.

Trace files are written on behalf of server processes whenever internal errors occur.

Additionally, setting the initialization parameter SQL_TRACE = TRUE causes the

SQL trace facility to generate performance statistics for the processing of all SQL

statements for an instance and write them to the USER_DUMP_DEST directory.

Optionally, trace files can be generated for server processes at user request.

Regardless of the current value of the SQL_TRACE initialization parameter, each

session can enable or disable trace logging on behalf of the associated server process

by using the SQL statement ALTER SESSION SET SQL_TRACE. This example

enables the SQL trace facility for a specific session:

ALTER SESSION SET SQL_TRACE TRUE;

For shared server, each session using a dispatcher is routed to a shared server

process, and trace information is written to the server’s trace file only if the session

has enabled tracing (or if an error is encountered). Therefore, to track tracing for a

specific session that connects using a dispatcher, you might have to explore several

shared server’s trace files.

The DBMS_SESSION and DBMS_SYSTEM packages can also be used to control SQL

tracing for a session.

Caution: Because the SQL trace facility for server processes can

cause significant system overhead resulting in severe performance

impact, enable this feature only when collecting statistics.

See Also: Oracle9i Database Performance Tuning Guide and Reference
contains information about using the SQL trace facility and using

TKPROF to interpret the generated trace files.

Managing Processes for Parallel Execution

5-18 Oracle9i Database Administrator’s Guide

Managing Processes for Parallel Execution
This section describes how to manage parallel processing of SQL statements. In this

configuration Oracle can divide the work of processing an SQL statement among

multiple parallel processes.

The execution of many SQL statements can be parallelized. The degree of
parallelism is the number of parallel execution servers that can be associated with a

single operation. The degree of parallelism is determined by any of the following:

■ A PARALLEL clause in a statement

■ For objects referred to in a query, the PARALLEL clause that was used when the

object was created or altered

■ A parallel hint inserted into the statement

■ A default determined by Oracle

An example of using parallel execution is contained in "Parallelizing Table

Creation" on page 15-8.

The following topics are contained in this section:

■ Managing the Parallel Execution Servers

■ Altering Parallel Execution for a Session

Managing the Parallel Execution Servers
With the parallel execution feature, a process known as the parallel execution
coordinator dispatches the execution of a pool of parallel execution servers and

coordinates the sending of results from all of these parallel execution servers back to

the user. Parallel execution server processes remain associated with a statement

Note: The parallel execution feature described in this section is

available with the Oracle9i Enterprise Edition and Oracle9i
Personal Edition.

See Also:

■ Oracle9i Database Concepts and Oracle9i Data Warehousing Guide
for additional information about parallel execution

■ Oracle9i Database Performance Tuning Guide and Reference for

information about using parallel hints

Managing Processes for Parallel Execution

Managing Oracle Processes 5-19

throughout its execution phase. When the statement is completely processed, these

processes become available to process other statements.

Parallel execution can be tuned for you automatically by setting the initialization

parameter PARALLEL_AUTOMATIC_TUNING = TRUE. With this setting, Oracle

determines the default values for other initialization parameters that affect the

performance of parallel execution.

Altering Parallel Execution for a Session
The ALTER SESSION statement can be used to control parallel execution for a

session.

Disabling Parallel Execution
All subsequent DML (INSERT, UPDATE, DELETE), DDL (CREATE, ALTER), or query

(SELECT) statements will not be parallelized after an ALTER SESSION DISABLE
PARALLEL DML|DDL|QUERY statement is issued. They will be executed serially,

regardless of any PARALLEL clause or parallel hints associated with the statement.

The following statement disables parallel DDL:

ALTER SESSION DISABLE PARALLEL DDL;

Enabling Parallel Execution
Where a PARALLEL clause or parallel hint is associated with a statement, those

DML, DDL, or query statements will execute in parallel after an ALTER SESSION
ENABLE PARALLEL DML|DDL|QUERY statement is issued. This is the default for

DDL and query statements.

A DML statement can be parallelized only if you specifically issue this statement.

The following statement enables parallel processing of DML statements:

ALTER SESSION ENABLE PARALLEL DML;

Forcing Parallel Execution
You can force parallel execution of all subsequent DML, DDL, or query statements

for which parallelization is possible with the ALTER SESSION FORCE PARALLEL
DML|DDL|QUERY statement. Additionally you can force a specific degree of

Note: Parallel DML is available only if you have installed Oracle’s

Partitioning Option.

Managing Processes for External Procedures

5-20 Oracle9i Database Administrator’s Guide

parallelism to be in effect, overriding any PARALLEL clause associated with

subsequent statements. If you do not specify a degree of parallelism in this

statement, the default degree of parallelism is used. However, a degree of

parallelism specified in a statement through a hint will override the degree being

forced.

The following statement forces parallel execution of subsequent statements and sets

the overriding degree of parallelism to 5:

ALTER SESSION FORCE PARALLEL DDL PARALLEL 5;

To force the parallelization of DML, it must also be enabled as shown in "Enabling

Parallel Execution".

Managing Processes for External Procedures
External procedures, are procedures that are called from another program, but are

written in a different language. An example would be a PL/SQL program calling

one or more C routines that are required to perform special-purpose processing.

These callable routines are stored in a dynamic link library (DLL), or libunit in the

case of a Java class method, and are registered with the base language. Oracle

provides a special-purpose interface, the call specification (call spec), that enables

users to call external procedures from other languages.

Very briefly, to call an external procedure, the application must know the DLL or

shared library in which the external procedure resides. It alerts a network listener

process, which in turn starts an external procedure agent, which by default is

named extproc . Using the network connection established by the listener, the

application passes to the external procedure agent the name of the DLL, the name of

the external procedure, and any parameters passed in by the application. Then, the

external procedure agent loads the DLL and runs the external procedure and passes

back to the application any values returned by the external procedure.

The agent must reside on the same computer as the database server.

To control access to DLLs, the database administrator grants execute privileges for

the appropriate DLLs to application developers. The application developers write

the external procedures and grant execute privilege on specific external procedures

to other users.

Terminating Sessions

Managing Oracle Processes 5-21

The environment for calling external procedures, consisting of tnsnames.or a and

listener.ora entries, is configured by default during the install of your database.

You may need to perform additional network configuration steps for a higher level

of security. These are documented in the Oracle9i Net Services Administrator’s Guide.

Terminating Sessions
In some situations, you might want to terminate current user sessions. For example,

you might want to perform an administrative operation and need to terminate all

non-administrative sessions.

This section describes the various aspects of terminating sessions, and contains the

following topics:

■ Identifying Which Session to Terminate

■ Terminating an Active Session

■ Terminating an Inactive Session

When a session is terminated, the session’s transaction is rolled back and resources

(such as locks and memory areas) held by the session are immediately released and

available to other sessions.

Terminate a current session using the SQL statement ALTER SYSTEM KILL
SESSION.

The following statement terminates the session whose system identifier is 7 and

serial number is 15:

ALTER SYSTEM KILL SESSION '7,15';

Note: The external library (DLL file) must be statically linked. In

other words, it must not reference any external symbols from other

external libraries (DLL files). These symbols are not resolved and

can cause your external procedure to fail.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

information about external procedures

Terminating Sessions

5-22 Oracle9i Database Administrator’s Guide

Identifying Which Session to Terminate
To identify which session to terminate, specify the session’s index number and

serial number. To identify the system identifier (sid) and serial number of a session,

query the V$SESSION dynamic performance view.

The following query identifies all sessions for the user jward :

SELECT SID, SERIAL#, STATUS
 FROM V$SESSION
 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS
----- --------- --------
 7 15 ACTIVE
 12 63 INACTIVE

A session is ACTIVE when it is making a SQL call to Oracle. A session is INACTIVE
if it is not making a SQL call to Oracle.

Terminating an Active Session
If a user session is processing a transaction (ACTIVE status) when it is terminated,

the transaction is rolled back and the user immediately receives the following

message:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements

before reconnecting to the database, Oracle returns the following message:

ORA-01012: not logged on

If an active session cannot be interrupted (it is performing network I/O or rolling

back a transaction), the session cannot be terminated until the operation completes.

In this case, the session holds all resources until it is terminated. Additionally, the

session that issues the ALTER SYSTEM statement to terminate a session waits up to

60 seconds for the session to be terminated. If the operation that cannot be

interrupted continues past one minute, the issuer of the ALTER SYSTEM statement

receives a message indicating that the session has been "marked" to be terminated.

A session marked to be terminated is indicated in V$SESSION with a status of

KILLED and a server that is something other than PSEUDO.

See Also: Oracle9i Database Reference for a description of the

status values for a session

Terminating Sessions

Managing Oracle Processes 5-23

Terminating an Inactive Session
If the session is not making a SQL call to Oracle (is INACTIVE) when it is

terminated, the ORA-00028 message is not returned immediately. The message is

not returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, STATUS in the V$SESSION view is

KILLED . The row for the terminated session is removed from V$SESSION after the

user attempts to use the session again and receives the ORA-00028 message.

In the following example, an inactive session is terminated. First, V$SESSION is

queried to identify the SID and SERIAL# of the session, then the session is

terminated.

SELECT SID,SERIAL#,STATUS,SERVER
 FROM V$SESSION
 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
----- -------- --------- ---------
 7 15 INACTIVE DEDICATED
 12 63 INACTIVE DEDICATED
2 rows selected.

ALTER SYSTEM KILL SESSION '7,15';
Statement processed.

SELECT SID, SERIAL#, STATUS, SERVER
 FROM V$SESSION
 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
----- -------- --------- ---------
 7 15 KILLED PSEUDO
 12 63 INACTIVE DEDICATED
2 rows selected.

Terminating Sessions

5-24 Oracle9i Database Administrator’s Guide

Managing Control Files 6-1

6
Managing Control Files

This chapter explains how to create and maintain the control files for your database

and contains the following topics:

■ What Is a Control File?

■ Guidelines for Control Files

■ Creating Control Files

■ Troubleshooting After Creating Control Files

■ Backing Up Control Files

■ Recovering a Control File Using a Current Copy

■ Dropping Control Files

■ Displaying Control File Information

See Also: Chapter 3, "Using Oracle-Managed Files" for

information about creating control files that are both created and

managed by the Oracle database server

What Is a Control File?

6-2 Oracle9i Database Administrator’s Guide

What Is a Control File?
Every Oracle database has a control file. A control file is a small binary file that

records the physical structure of the database and includes:

■ The database name

■ Names and locations of associated datafiles and online redo log files

■ The timestamp of the database creation

■ The current log sequence number

■ Checkpoint information

The control file must be available for writing by the Oracle database server

whenever the database is open. Without the control file, the database cannot be

mounted and recovery is difficult.

The control file of an Oracle database is created at the same time as the database. By

default, at least one copy of the control file is created during database creation. On

some operating systems the default is to create multiple copies. You should create

two or more copies of the control file during database creation. You might also need

to create control files later, if you lose control files or want to change particular

settings in the control files.

Guidelines for Control Files
This section describes guidelines you can use to manage the control files for a

database, and contains the following topics:

■ Provide Filenames for the Control Files

■ Multiplex Control Files on Different Disks

■ Place Control Files Appropriately

■ Back Up Control Files

■ Manage the Size of Control Files

Provide Filenames for the Control Files
You specify control file names using the CONTROL_FILES initialization parameter

in the database’s initialization parameter file (see "Creating Initial Control Files" on

page 6-4). The instance startup procedure recognizes and opens all the listed files.

Guidelines for Control Files

Managing Control Files 6-3

The instance writes to and maintains all listed control files during database

operation.

If you do not specify files for CONTROL_FILES before database creation, and you are
not using the Oracle Managed Files feature, Oracle creates a control file and uses a

default filename. The default name is operating system specific.

Multiplex Control Files on Different Disks
Every Oracle database should have at least two control files, each stored on a

different disk. If a control file is damaged due to a disk failure, the associated

instance must be shut down. Once the disk drive is repaired, the damaged control

file can be restored using the intact copy of the control file from the other disk and

the instance can be restarted. In this case, no media recovery is required.

The following describes the behavior of multiplexed control files:

■ Oracle writes to all filenames listed for the initialization parameter CONTROL_
FILES in the database’s initialization parameter file.

■ The first file listed in the CONTROL_FILES parameter is the only file read by the

Oracle database server during database operation.

■ If any of the control files become unavailable during database operation, the

instance becomes inoperable and should be aborted.

Place Control Files Appropriately
As already suggested, each copy of a control file should be stored on a different disk

drive. One practice is to store a control file copy on every disk drive that stores

members of online redo log groups, if the online redo log is multiplexed. By storing

control files in these locations, you minimize the risk that all control files and all

groups of the online redo log will be lost in a single disk failure.

Back Up Control Files
It is very important that you back up your control files. This is true initially, and at

any time after you change the physical structure of your database. Such structural

changes include:

Note: Oracle strongly recommends that your database has a

minimum of two control files and that they are located on separate

disks.

Creating Control Files

6-4 Oracle9i Database Administrator’s Guide

■ Adding, dropping, or renaming datafiles

■ Adding or dropping a tablespace, or altering the read-write state of the

tablespace

■ Adding or dropping redo log files or groups

The methods for backing up control files are discussed in "Backing Up Control

Files" on page 6-10.

Manage the Size of Control Files
The main determinants of a control file’s size are the values set for the

MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and

MAXINSTANCES parameters in the CREATE DATABASE statement that created the

associated database. Increasing the values of these parameters increases the size of a

control file of the associated database.

Creating Control Files
This section describes ways to create control files, and contains the following topics:

■ Creating Initial Control Files

■ Creating Additional Copies, Renaming, and Relocating Control Files

■ Creating New Control Files

Creating Initial Control Files
The initial control files of an Oracle database are created when you issue the

CREATE DATABASE statement. The names of the control files are specified by the

CONTROL_FILES parameter in the initialization parameter file used during

database creation. The filenames specified in CONTROL_FILES should be fully

specified and are operating system specific. The following is an example of a

CONTROL_FILES initialization parameter:

CONTROL_FILES = (/u01/oracle/prod/control01.ctl,

See Also:

■ Your operating system specific Oracle documentation contains

more information about the maximum control file size.

■ Oracle9i SQL Reference for a description of the CREATE
DATABASE statement

Creating Control Files

Managing Control Files 6-5

 /u02/oracle/prod/control02.ctl,
 /u03/oracle/prod/control03.ctl)

If files with the specified names currently exist at the time of database creation, you

must specify the CONTROLFILE REUSE clause in the CREATE DATABASE
statement, or else an error occurs. Also, if the size of the old control file differs from

the SIZE parameter of the new one, you cannot use the REUSE option.

The size of the control file changes between some releases of Oracle, as well as when

the number of files specified in the control file changes. Configuration parameters

such as MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and

MAXINSTANCES affect control file size.

You can subsequently change the value of the CONTROL_FILES initialization

parameter to add more control files or to change the names or locations of existing

control files.

Creating Additional Copies, Renaming, and Relocating Control Files
You can create an an additional control file copy by copying an existing control file

to a new location and adding the file’s name to the list of control files. Similarly, you

rename an existing control file by copying the file to its new name or location, and

changing the file’s name in the control file list. In both cases, to guarantee that

control files do not change during the procedure, shut down the instance before

copying the control file.

To Multiplex or Move Additional Copies of the Current Control Files

1. Shut down the database.

2. Copy an existing control file to a different location, using operating system

commands.

3. Edit the CONTROL_FILES parameter in the database’s initialization parameter

file to add the new control file’s name, or to change the existing control

filename.

4. Restart the database.

Creating New Control Files
This section discusses when and how to create new control files.

See Also: Your operating system specific Oracle documentation

contains more information about specifying control files.

Creating Control Files

6-6 Oracle9i Database Administrator’s Guide

When to Create New Control Files
It is necessary for you to create new control files in the following situations:

■ All control files for the database have been permanently damaged and you do

not have a control file backup.

■ You want to change one of the permanent database parameter settings

originally specified in the CREATE DATABASEstatement. These settings include

the database’s name and the following parameters: MAXLOGFILES,
MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

For example, you would change a database’s name if it conflicted with another

database’s name in a distributed environment. Or, as another example, you can

change the value of MAXLOGFILES if the original setting is too low.

The CREATE CONTROLFILE Statement
You can create a new control file for a database using the CREATE CONTROLFILE
statement. The following statement creates a new control file for the prod database

(formerly a database that used a different database name):

CREATE CONTROLFILE
 SET DATABASE prod
 LOGFILE GROUP 1 ('/u01/oracle/prod/redo01_01.log',
 '/u01/oracle/prod/redo01_02.log'),
 GROUP 2 ('/u01/oracle/prod/redo02_01.log',
 '/u01/oracle/prod/redo02_02.log'),
 GROUP 3 ('/u01/oracle/prod/redo03_01.log',
 '/u01/oracle/prod/redo03_02.log')
 NORESETLOGS
 DATAFILE '/u01/oracle/prod/system01.dbf' SIZE 3M,
 '/u01/oracle/prod/rbs01.dbs' SIZE 5M,
 '/u01/oracle/prod/users01.dbs' SIZE 5M,
 '/u01/oracle/prod/temp01.dbs' SIZE 5M
 MAXLOGFILES 50
 MAXLOGMEMBERS 3
 MAXLOGHISTORY 400
 MAXDATAFILES 200
 MAXINSTANCES 6
 ARCHIVELOG;

Creating Control Files

Managing Control Files 6-7

Steps for Creating New Control Files
Complete the following steps to create a new control file.

1. Make a list of all datafiles and online redo log files of the database.

If you follow recommendations for control file backups as discussed in "Backing

Up Control Files" on page 6-10, you will already have a list of datafiles and

online redo log files that reflect the current structure of the database. However,

if you have no such list, executing the following statements will produce one.

SELECT MEMBER FROM V$LOGFILE;
SELECT NAME FROM V$DATAFILE;
SELECT VALUE FROM V$PARAMETER WHERE NAME = 'CONTROL_FILES';

If you have no such lists and your control file has been damaged so that the

database cannot be opened, try to locate all of the datafiles and online redo log

files that constitute the database. Any files not specified in Step 5 are not

recoverable once a new control file has been created. Moreover, if you omit any

of the files that make up the SYSTEM tablespace, you might not be able to

recover the database.

2. Shut down the database.

If the database is open, shut down the database normally if possible. Use the

IMMEDIATE or ABORT options only as a last resort.

Cautions:

■ The CREATE CONTROLFILE statement can potentially damage

specified datafiles and online redo log files. Omitting a

filename can cause loss of the data in that file, or loss of access

to the entire database. Employ caution when using this

statement and be sure to follow the instructions in "Steps for

Creating New Control Files".

■ If the database had forced logging enabled before creating the

new control file, and you want it to continue to be enabled,

then you must specify the FORCE LOGGING clause in the

CREATE CONTROLFILE statement. See "Specifying FORCE

LOGGING Mode" on page 2-29.

See Also: Oracle9i SQL Reference describes the complete syntax of

the CREATE CONTROLFILEstatement

Creating Control Files

6-8 Oracle9i Database Administrator’s Guide

3. Back up all datafiles and online redo log files of the database.

4. Start up a new instance, but do not mount or open the database:

STARTUP NOMOUNT

5. Create a new control file for the database using the CREATE CONTROLFILE
statement.

When creating a new control file, select the RESETLOGS option if you have lost

any online redo log groups in addition to control files. In this case, you will

need to recover from the loss of the redo logs (Step 8). You must also specify the

RESETLOGS option if you have renamed the database. Otherwise, select the

NORESETLOGS option.

6. Store a backup of the new control file on an offline storage device. See "Backing

Up Control Files" on page 6-10 for instructions for creating a backup.

7. Edit the CONTROL_FILES initialization parameter for the database to indicate

all of the control files now part of your database as created in Step 5 (not

including the backup control file). If you are renaming the database, edit the

DB_NAME parameter to specify the new name.

8. Recover the database if necessary. If you are not recovering the database, skip

to Step 9.

If you are creating the control file as part of recovery, recover the database. If the

new control file was created using the NORESETLOGS option (Step 5), you can

recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS option, you must

specify USING BACKUP CONTROL FILE. If you have lost online or archived

redo logs or datafiles, use the procedures for recovering those files.

9. Open the database using one of the following methods:

■ If you did not perform recovery, or you performed complete, closed

database recovery in Step 8, open the database normally.

ALTER DATABASE OPEN;

■ If you specified RESETLOGS when creating the control file, use the ALTER
DATABASE statement, indicating RESETLOGS.

ALTER DATABASE OPEN RESETLOGS;

The database is now open and available for use.

Troubleshooting After Creating Control Files

Managing Control Files 6-9

Troubleshooting After Creating Control Files
After issuing the CREATE CONTROLFILE statement, you may encounter some

common errors. This section describes the most common control file usage errors,

and contains the following topics:

■ Checking for Missing or Extra Files

■ Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files
After creating a new control file and using it to open the database, check the alert

file to see if Oracle has detected inconsistencies between the data dictionary and the

control file, such as a datafile that the data dictionary includes but the control file

does not list.

If a datafile exists in the data dictionary but not in the new control file, Oracle

creates a placeholder entry in the control file under the name MISSINGnnnn (where

nnnn is the file number in decimal). MISSINGnnnn is flagged in the control file as

being offline and requiring media recovery.

The actual datafile corresponding to MISSINGnnnn can be made accessible by

renaming MISSINGnnnn so that it points to the datafile only if the datafile was

read-only or offline normal. If, on the other hand, MISSINGnnnn corresponds to a

datafile that was not read-only or offline normal, then the rename operation cannot

be used to make the datafile accessible, because the datafile requires media recovery

that is precluded by the results of RESETLOGS. In this case, you must drop the

tablespace containing the datafile.

In contrast, if a datafile indicated in the control file is not present in the data

dictionary, Oracle removes references to it from the new control file. In both cases,

Oracle includes an explanatory message in the alert.log file to let you know what

was found.

See Also: Oracle9i User-Managed Backup and Recovery Guide
contains additional information about:

■ Listing database files

■ Backing up all datafiles and online redo log files of the database

■ Recovering online or archived redo log files

■ Performing closed database recovery

Backing Up Control Files

6-10 Oracle9i Database Administrator’s Guide

Handling Errors During CREATE CONTROLFILE
If Oracle sends you an error (usually error ORA-01173 , ORA-01176 , ORA-01177 ,

ORA-01215 , or ORA-01216) when you attempt to mount and open the database

after creating a new control file, the most likely cause is that you omitted a file from

the CREATE CONTROLFILE statement or included one that should not have been

listed. In this case, you should restore the files you backed up in Step 3 on page 6-8

and repeat the procedure from Step 4, using the correct filenames.

Backing Up Control Files
Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your

control files. You have two options:

1. Back up the control file to a binary file (duplicate of existing control file) using

the following statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';

2. Produce SQL statements that can later be used to re-create your control file:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This command writes a SQL script to the database’s trace file where it can be

captured and edited to reproduce the control file.

Recovering a Control File Using a Current Copy
This section presents ways that you can recover your control file from a current

backup or from a multiplexed copy.

Recovering from Control File Corruption Using a Control File Copy
This procedure assumes that one of the control files specified in the CONTROL_
FILES parameter is corrupted, the control file directory is still accessible, and you

have a multiplexed copy of the control file.

See Also: For more information on backing up your control files,

depending upon your backup stratagy refer to one of the following

books:

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

Dropping Control Files

Managing Control Files 6-11

1. With the instance shut down, use an operating system command to overwrite

the bad control file with a good copy:

% cp /u01/oracle/prod/control03.ctl /u01/oracle/prod/control02.ctl

2. Start SQL*Plus and open the database:

SQL> STARTUP

Recovering from Permanent Media Failure Using a Control File Copy
This procedure assumes that one of the control files specified in the CONTROL_
FILES parameter is inaccessible due to a permanent media failure, and you have a

multiplexed copy of the control file.

1. With the instance shut down, use an operating system command to copy the

current copy of the control file to a new, accessible location:

% cp /u01/oracle/prod/control01.ctl /u04/oracle/prod/control03.ctl

2. Edit the CONTROL_FILES parameter in the initialization parameter file to

replace the bad location with the new location:

CONTROL_FILES = (/u01/oracle/prod/control01.ctl,
 /u02/oracle/prod/control02.ctl,
 /u04/oracle/prod/control03.ctl)

3. Start SQL*Plus and open the database:

SQL> STARTUP

In any case where you have multiplexed control files, and you must get the

database up in minimum time, you can do so by editing the CONTROL_FILES
initialization parameter to remove the bad control file and restarting the database

immediately. Then you can perform the reconstruction of the bad control file and at

some later time shut down and restart the database after editing the CONTROL_
FILES initialization parameter to include the recovered control file.

Dropping Control Files
You can drop control files from the database. For example, you might want to do so

if the location of a control file is no longer appropriate. Remember that the database

must have at least two control files at all times.

1. Shut down the database.

Displaying Control File Information

6-12 Oracle9i Database Administrator’s Guide

2. Edit the CONTROL_FILES parameter in the database’s initialization parameter

file to delete the old control file’s name.

3. Restart the database.

Displaying Control File Information
The following views display information about control files:

This example lists the names of the control files.

SQL> SELECT NAME FROM V$CONTROLFILE;

NAME

/u01/oracle/prod/control01.ctl
/u02/oracle/prod/control02.ctl
/u03/oracle/prod/control03.ctl

Note: This operation does not physically delete the unwanted

control file from the disk. Use operating system commands to

delete the unnecessary file after you have dropped the control file

from the database.

View Description

V$DATABASE Displays database information from the control
file

V$CONTROLFILE Lists the names of control files

V$CONTROLFILE_RECORD_SECTION Displays information about control file record
sections

V$PARAMETER Can be used to display the names of control files
as specified in the CONTROL_FILESinitialization
parameter

Managing the Online Redo Log 7-1

7
Managing the Online Redo Log

This chapter explains how to manage the online redo log and contains the following

topics:

■ What Is the Online Redo Log?

■ Planning the Online Redo Log

■ Creating Online Redo Log Groups and Members

■ Relocating and Renaming Online Redo Log Members

■ Dropping Online Redo Log Groups and Members

■ Forcing Log Switches

■ Verifying Blocks in Redo Log Files

■ Clearing an Online Redo Log File

■ Viewing Online Redo Log Information

See Also:

■ Chapter 3, "Using Oracle-Managed Files" for information about

creating online redo log files that are both created and managed

by the Oracle database server

■ Oracle9i Real Application Clusters Administration for more

information about managing the online redo logs of instances

when using Oracle Real Application Clusters

■ Oracle9i Database Performance Tuning Guide and Reference to learn

how checkpoints and the redo log impact instance recovery

What Is the Online Redo Log?

7-2 Oracle9i Database Administrator’s Guide

What Is the Online Redo Log?
The most crucial structure for recovery operations is the online redo log, which

consists of two or more preallocated files that store all changes made to the database

as they occur. Every instance of an Oracle database has an associated online redo

log to protect the database in case of an instance failure.

Redo Threads
Each database instance has its own online redo log groups. These online redo log

groups, multiplexed or not, are called an instance’s thread of online redo. In typical

configurations, only one database instance accesses an Oracle database, so only one

thread is present. When running Oracle Real Application Clusters, however, two or

more instances concurrently access a single database and each instance has its own

thread.

This chapter describes how to configure and manage the online redo log when the

Oracle9i Real Application Clusters feature is not used. Hence, the thread number

can be assumed to be 1 in all discussions and examples of statements.

Online Redo Log Contents
Online redo log files are filled with redo records. A redo record, also called a redo
entry, is made up of a group of change vectors, each of which is a description of a

change made to a single block in the database. For example, if you change a salary

value in an employee table, you generate a redo record containing change vectors

that describe changes to the data segment block for the table, the rollback segment

data block, and the transaction table of the rollback segments.

Redo entries record data that you can use to reconstruct all changes made to the

database, including the rollback segments. Therefore, the online redo log also

protects rollback data. When you recover the database using redo data, Oracle reads

the change vectors in the redo records and applies the changes to the relevant

blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA (see

"How Oracle Writes to the Online Redo Log") and are written to one of the online

redo log files by the Oracle background process Log Writer (LGWR). Whenever a

transaction is committed, LGWR writes the transaction’s redo records from the redo

log buffer of the SGA to an online redo log file, and a system change number (SCN)

is assigned to identify the redo records for each committed transaction. Only when

all redo records associated with a given transaction are safely on disk in the online

logs is the user process notified that the transaction has been committed.

What Is the Online Redo Log?

Managing the Online Redo Log 7-3

Redo records can also be written to an online redo log file before the corresponding

transaction is committed. If the redo log buffer fills, or another transaction commits,

LGWR flushes all of the redo log entries in the redo log buffer to an online redo log

file, even though some redo records may not be committed. If necessary, Oracle can

roll back these changes.

How Oracle Writes to the Online Redo Log
The online redo log of a database consists of two or more online redo log files.

Oracle requires a minimum of two files to guarantee that one is always available for

writing while the other is being archived (if in ARCHIVELOG mode).

LGWR writes to online redo log files in a circular fashion. When the current online

redo log file fills, LGWR begins writing to the next available online redo log file.

When the last available online redo log file is filled, LGWR returns to the first online

redo log file and writes to it, starting the cycle again. Figure 7–1 illustrates the

circular writing of the online redo log file. The numbers next to each line indicate

the sequence in which LGWR writes to each online redo log file.

Filled online redo log files are available to LGWR for reuse depending on whether

archiving is enabled.

■ If archiving is disabled (NOARCHIVELOG mode), a filled online redo log file is

available once the changes recorded in it have been written to the datafiles.

■ If archiving is enabled (ARCHIVELOG mode), a filled online redo log file is

available to LGWR once the changes recorded in it have been written to the

datafiles and once the file has been archived.

What Is the Online Redo Log?

7-4 Oracle9i Database Administrator’s Guide

Figure 7–1 Circular Use of Online Redo Log Files by LGWR

Active (Current) and Inactive Online Redo Log Files
At any given time, Oracle uses only one of the online redo log files to store redo

records written from the redo log buffer. The online redo log file that LGWR is

actively writing to is called the current online redo log file.

Online redo log files that are required for instance recovery are called active online

redo log files. Online redo log files that are not required for instance recovery are

called inactive.

If you have enabled archiving (ARCHIVELOG mode), Oracle cannot reuse or

overwrite an active online log file until ARCn has archived its contents. If archiving

is disabled (NOARCHIVELOG mode), when the last online redo log file fills writing

continues by overwriting the first available active file.

LGWR

1, 4, 7, ...

3, 6, 9, ...

2, 5, 8, ...

Online redo
log file

#3

Online redo
log file

#2

Online redo
log file

#1

Planning the Online Redo Log

Managing the Online Redo Log 7-5

Log Switches and Log Sequence Numbers
A log switch is the point at which Oracle ends writing to one online redo log file

and begins writing to another. Normally, a log switch occurs when the current

online redo log file is completely filled and writing must continue to the next online

redo log file. However, you can specify that a log switch occurs in a time-based

manner, regardless of whether the current online redo log file is completely filled.

You can also force log switches manually.

Oracle assigns each online redo log file a new log sequence number every time that

a log switch occurs and LGWR begins writing to it. If Oracle archives online redo

log files, the archived log retains its log sequence number. The online redo log file

that is cycled back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence

number. During crash, instance, or media recovery, Oracle properly applies redo log

files in ascending order by using the log sequence number of necessary archived

and online redo log files.

Planning the Online Redo Log
This section describes guidelines you should consider when configuring a database

instance’s online redo log, and contains the following topics:

■ Multiplexing Online Redo Log Files

■ Placing Online Redo Log Members on Different Disks

■ Setting the Size of Online Redo Log Members

■ Choosing the Number of Online Redo Log Files

■ Controlling Archive Lag

Multiplexing Online Redo Log Files
Oracle provides the capability to multiplex an instance’s online redo log files to

safeguard against damage to its online redo log files. When multiplexing online

redo log files, LGWR concurrently writes the same redo log information to multiple

identical online redo log files, thereby eliminating a single point of redo log failure.

Note: Oracle recommends that you multiplex your redo log files.

The loss of the log file data can be catastrophic if recovery is

required.

Planning the Online Redo Log

7-6 Oracle9i Database Administrator’s Guide

Figure 7–2 Multiplexed Online Redo Log Files

The corresponding online redo log files are called groups. Each online redo log file

in a group is called a member. In Figure 7–2, A_LOG1 and B_LOG1 are both

members of Group 1, A_LOG2 and B_LOG2 are both members of Group 2, and so

forth. Each member in a group must be exactly the same size.

Notice that each member of a group is concurrently active, or, concurrently written

to by LGWR, as indicated by the identical log sequence numbers assigned by

LGWR. In Figure 7–2, first LGWR writes to A_LOG1 in conjunction with B_LOG1,

then A_LOG2 in conjunction with B_LOG2, and so on. LGWR never writes

concurrently to members of different groups (for example, to A_LOG1 and B_

LOG2).

Responding to Online Redo Log Failure
Whenever LGWR cannot write to a member of a group, Oracle marks that member

as INVALID and writes an error message to the LGWR trace file and to the

database’s alert file to indicate the problem with the inaccessible files. LGWR reacts

differently when certain online redo log members are unavailable, depending on

the reason for the unavailability.

Disk BDisk A

1, 3, 5, ...

2, 4, 6, ...

��
����

Group 1

Group 2

����B_LOG1��
��

B_LOG2

����A_LOG1��
��

A_LOG2

LGWR

Group 1

Group 2

Planning the Online Redo Log

Managing the Online Redo Log 7-7

Legal and Illegal Configurations
To safeguard against a single point of online redo log failure, a multiplexed online

redo log is ideally symmetrical: all groups of the online redo log have the same

number of members. Nevertheless, Oracle does not require that a multiplexed online

redo log be symmetrical. For example, one group can have only one member, while

other groups have two members. This configuration protects against disk failures

that temporarily affect some online redo log members but leave others intact.

The only requirement for an instance’s online redo log is that it have at least two

groups. Figure 7–3 shows legal and illegal multiplexed online redo log

configurations. The second configuration is illegal because it has only one group.

If Then

LGWR can successfully write to at
least one member in a group

Writing proceeds as normal. LGWR simply writes to
the available members of a group and ignores the
unavailable members.

LGWR cannot access the next
group at a log switch because the
group needs to be archived

Database operation temporarily halts until the group
becomes available, or, until the group is archived.

All members of the next group are
inaccessible to LGWR at a log
switch because of media failure

Oracle returns an error and the database instance
shuts down. In this case, you may need to perform
media recovery on the database from the loss of an
online redo log file.

If the database checkpoint has moved beyond the lost
redo log, media recovery is not necessary since
Oracle has saved the data recorded in the redo log to
the datafiles. Simply drop the inaccessible redo log
group. If Oracle did not archive the bad log, use
ALTER DATABASE CLEAR UNARCHIVED LOG to
disable archiving before the log can be dropped.

If all members of a group suddenly
become inaccessible to LGWR
while it is writing to them

Oracle returns an error and the database instance
immediately shuts down. In this case, you may need
to perform media recovery. If the media containing
the log is not actually lost—for example, if the drive
for the log was inadvertently turned off—media
recovery may not be needed. In this case, you only
need to turn the drive back on and let Oracle perform
instance recovery.

Planning the Online Redo Log

7-8 Oracle9i Database Administrator’s Guide

Figure 7–3 Legal and Illegal Multiplexed Online Redo Log Configuration

��
��

A_LOG3Group 3

��
�

Group 1

Group 2

��
Group 3

Group 1

Group 2

ILLEGAL

LEGAL
Disk A

��A_LOG1

��A_LOG2

��
��

B_LOG3

��B_LOG2

Group 3

Group 1

Group 2

Disk A

��A_LOG1

Disk B

��B_LOG1

Disk B

��B_LOG1

Planning the Online Redo Log

Managing the Online Redo Log 7-9

Placing Online Redo Log Members on Different Disks
When setting up a multiplexed online redo log, place members of a group on

different disks. If a single disk fails, then only one member of a group becomes

unavailable to LGWR and other members remain accessible to LGWR, so the

instance can continue to function.

If you archive the redo log, spread online redo log members across disks to

eliminate contention between the LGWR and ARCn background processes. For

example, if you have two groups of duplexed online redo log members, place each

member on a different disk and set your archiving destination to a fifth disk.

Consequently, there is never contention between LGWR (writing to the members)

and ARCn (reading the members).

Datafiles and online redo log files should also be on different disks to reduce

contention in writing data blocks and redo records.

Setting the Size of Online Redo Log Members
When setting the size of online redo log files, consider whether you will be

archiving the redo log. Online redo log files should be sized so that a filled group

can be archived to a single unit of offline storage media (such as a tape or disk),

with the least amount of space on the medium left unused. For example, suppose

only one filled online redo log group can fit on a tape and 49% of the tape’s storage

capacity remains unused. In this case, it is better to decrease the size of the online

redo log files slightly, so that two log groups could be archived for each tape.

With multiplexed groups of online redo logs, all members of the same group must

be the same size. Members of different groups can have different sizes. However,

there is no advantage in varying file size between groups. If checkpoints are not set

to occur between log switches, make all groups the same size to guarantee that

checkpoints occur at regular intervals.

See Also: Oracle9i Backup and Recovery Concepts for more

information about how the online redo log affects backup and

recovery

See Also: Your operating system specific Oracle documentation.

The default size of online redo log files is operating system

dependent.

Planning the Online Redo Log

7-10 Oracle9i Database Administrator’s Guide

Choosing the Number of Online Redo Log Files
The best way to determine the appropriate number of online redo log files for a

database instance is to test different configurations. The optimum configuration has

the fewest groups possible without hampering LGWR’s writing redo log

information.

In some cases, a database instance may require only two groups. In other situations,

a database instance may require additional groups to guarantee that a recycled

group is always available to LGWR. During testing, the easiest way to determine if

the current online redo log configuration is satisfactory is to examine the contents of

the LGWR trace file and the database’s alert log. If messages indicate that LGWR

frequently has to wait for a group because a checkpoint has not completed or a

group has not been archived, add groups.

Consider the parameters that can limit the number of online redo log files before

setting up or altering the configuration of an instance’s online redo log. The

following parameters limit the number of online redo log files that you can add to a

database:

■ The MAXLOGFILES parameter used in the CREATE DATABASE statement

determines the maximum number of groups of online redo log files for each

database. Group values can range from 1 to MAXLOGFILES. The only way to

override this upper limit is to re-create the database or its control file. Thus, it is

important to consider this limit before creating a database. If MAXLOGFILES is not

specified for the CREATE DATABASE statement, Oracle uses an operating system

specific default value.

■ The MAXLOGMEMBERS parameter used in the CREATE DATABASE statement

determines the maximum number of members for each group. As with

MAXLOGFILES, the only way to override this upper limit is to re-create the

database or control file. Thus, it is important to consider this limit before creating

a database. If no MAXLOGMEMBERS parameter is specified for the CREATE
DATABASE statement, Oracle uses an operating system default value.

Controlling Archive Lag
You can force all enabled online redo log threads to switch their current logs in a

time-based fashion. In a primary/standby configuration, changes are made

available to the standby database by archiving and shipping logs of the primary site

See Also: Your operating system specific Oracle documentation

for the default and legal values of the MAXLOGFILES and

MAXLOGMEMBERS parameters

Planning the Online Redo Log

Managing the Online Redo Log 7-11

to the standby database. The changes that are being applied by the standby

database can lag the changes that are occurring on the primary database.

This lag can happen because the standby database must wait for the changes in the

primary database’s online redo log to be archived (into the archived redo log) and

then shipped to it. To control or limit this lag, you set the ARCHIVE_LAG_TARGET
initialization parameter. Setting this parameter allows you to limit, measured in

time, how long the lag can become.

Setting the ARCHIVE_LAG_TARGET Initialization Parameter
When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause

Oracle to examine an instance’s current online redo log periodically. If the following

conditions are met the instance will switch the log:

■ The current log was created prior to n seconds ago, and the estimated archival

time for the current log is m seconds (proportional to the number of redo blocks

used in the current log), where n + m exceeds the value of the ARCHIVE_LAG_
TARGET initialization parameter.

■ The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also nudges other

threads into switching and archiving logs if they are falling behind. This can be

particularly useful when one instance in the cluster is more idle than the other

instances (as when you are running a 2-node primary/secondary configuration of

Oracle Real Application Clusters).

Initialization parameter ARCHIVE_LAG_TARGET specifies the target of how many

seconds of redo the standby could lose in the event of a primary shutdown or crash

if the Data Guard environment is not configured in a no-data-loss mode. It also

provides an upper limit of how long (in the number of seconds) the current log of

the primary database can span. Because the estimated archival time is also

considered, this is not the exact log switch time.

The following initialization parameter setting sets the log switch interval to 30

minutes (a typical value).

ARCHIVE_LAG_TARGET = 1800

A value of 0 disables this time-based log switching functionality. This is the default

setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no

standby database. For example, the ARCHIVE_LAG_TARGET parameter can be set

specifically to force logs to be switched and archived.

Creating Online Redo Log Groups and Members

7-12 Oracle9i Database Administrator’s Guide

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER
SYSTEM SET statement.

Factors Affecting the Setting of ARCHIVE_LAG_TARGET
Consider the following factors when determining if you want to set the ARCHIVE_

LAG_TARGET parameter and in determining the value for this parameter.

■ Overhead of switching (as well as archiving) logs

■ How frequently normal log switches occur as a result of log full conditions

■ How much redo loss is tolerated in the standby database

Setting ARCHIVE_LAG_TARGET may not be very useful if natural log switches

already occur more frequently than the interval specified. However, in the case of

irregularities of redo generation speed, the interval does provide an upper limit for

the time range each current log covers.

If the ARCHIVE_LAG_TARGET initialization parameter is set to a very low value,

there can be a negative impact on performance. This can force frequent log switches.

Set the parameter to a reasonable value so as not to degrade the performance of the

primary database.

Creating Online Redo Log Groups and Members
Plan the online redo log of a database and create all required groups and members

of online redo log files during database creation. However, there are situations

where you might want to create additional groups or members. For example,

adding groups to an online redo log can correct redo log group availability

problems.

To create new online redo log groups and members, you must have the ALTER
DATABASEsystem privilege. A database can have up to MAXLOGFILES groups.

Caution: The ARCHIVE_LAG_TARGET parameter must be set to

the same value in all instances of an Oracle Real Application

Clusters environment. Failing to do so results in unspecified

behavior and is strongly discouraged.

See Also: Oracle9i SQL Reference for a complete description of the

ALTER DATABASE statement

Creating Online Redo Log Groups and Members

Managing the Online Redo Log 7-13

Creating Online Redo Log Groups
To create a new group of online redo log files, use the SQL statement ALTER
DATABASE with the ADD LOGFILE clause.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE
 ADD LOGFILE ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo') SIZE 500K;

You can also specify the number that identifies the group using the GROUP option:

ALTER DATABASE
 ADD LOGFILE GROUP 10 ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo')
 SIZE 500K;

Using group numbers can make administering redo log groups easier. However, the

group number must be between 1 and MAXLOGFILES. Do not skip redo log file

group numbers (that is, do not number your groups 10, 20, 30, and so on), or you

will consume space in the control files of the database.

Creating Online Redo Log Members
In some cases, it might not be necessary to create a complete group of online redo

log files. A group could already exist, but not be complete because one or more

members of the group were dropped (for example, because of a disk failure). In this

case, you can add new members to an existing group.

To create new online redo log members for an existing group, use the SQL

statement ALTER DATABASEwith the ADD LOG MEMBERparameter. The following

statement adds a new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER' /oracle/dbs/log2b.rdo ' TO GROUP 2;

Notice that filenames must be specified, but sizes need not be. The size of the new

members is determined from the size of the existing members of the group.

Note: Use fully specify filenames of new log members to indicate

where the operating system file should be created. Otherwise, the

files will be created in either the default or current directory of the

database server, depending upon your operating system.

Relocating and Renaming Online Redo Log Members

7-14 Oracle9i Database Administrator’s Guide

When using the ALTER DATABASE statement, you can alternatively identify the

target group by specifying all of the other members of the group in the TO
parameter, as shown in the following example:

ALTER DATABASE ADD LOGFILE MEMBER' /oracle/dbs/log2c.rdo '

 TO (' /oracle/dbs/log2a.rdo ' , ' /oracle/dbs/log2b.rdo ');

Relocating and Renaming Online Redo Log Members
You can use operating system commands to relocate online redo logs, then use the

ALTER DATABASE statement to make their new names (locations) known to the

database. This procedure is necessary, for example, if the disk currently used for

some online redo log files is going to be removed, or if datafiles and a number of

online redo log files are stored on the same disk and should be separated to reduce

contention.

To rename online redo log members, you must have the ALTER DATABASE system

privilege. Additionally, you might also need operating system privileges to copy

files to the desired location and privileges to open and back up the database.

Before relocating your redo logs, or making any other structural changes to the

database, completely back up the database in case you experience problems while

performing the operation. As a precaution, after renaming or relocating a set of

online redo log files, immediately back up the database’s control file.

 Use the following steps for relocating redo logs. The example used to illustrate

these steps assumes:

■ The log files are located on two disks: diska and diskb .

■ The online redo log is duplexed: one group consists of the members

/diska/logs/log1a.rdo and /diskb/logs/log1b.rdo , and the second

group consists of the members /diska/logs/log2a.rdo and

/diskb/logs/log2b.rdo .

Note: Fully specify the filenames of new log members to indicate

where the operating system files should be created. Otherwise, the

files will be created in either the default or current directory of the

database server, depending upon your operating system. You may

also note that the status of the new log member is shown as

INVALID . This is normal and it will change to active (blank) when

it is first used.

Relocating and Renaming Online Redo Log Members

Managing the Online Redo Log 7-15

■ The online redo log files located on diska must be relocated to diskc . The

new filenames will reflect the new location: /diskc/logs/log1c.rdo and

/diskc/logs/log2c.rdo .

Steps for Renaming Online Redo Log Members

1. Shut down the database.

SHUTDOWN

2. Copy the online redo log files to the new location.

Operating system files, such as online redo log members, must be copied using

the appropriate operating system commands. See your operating system

specific documentation for more information about copying files.

The following example uses operating system commands (UNIX) to move the

online redo log members to a new location:

mv /diska/logs/log1a.rdo /diskc/logs/log1c.rdo
mv /diska/logs/log2a.rdo /diskc/logs/log2c.rdo

3. Startup the database, mount, but do not open it.

CONNECT / as SYSDBA
STARTUP MOUNT

4. Rename the online redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to rename

the database’s online redo log files.

ALTER DATABASE
 RENAME FILE '/diska/logs/log1a.rdo', '/diska/logs/log2a.rdo'
 TO '/diskc/logs/log1c.rdo', '/diskc/logs/log2c.rdo';

5. Open the database for normal operation.

The online redo log alterations take effect when the database is opened.

Note: You can execute an operating system command to copy a

file (or perform other operating system commands) without exiting

SQL*Plus by using the HOST command. Some operating systems

allow you to use a character in place of the word HOST. For

example, you can use ! in UNIX.

Dropping Online Redo Log Groups and Members

7-16 Oracle9i Database Administrator’s Guide

ALTER DATABASE OPEN;

Dropping Online Redo Log Groups and Members
In some cases, you may want to drop an entire group of online redo log members.

For example, you want to reduce the number of groups in an instance’s online redo

log. In a different case, you may want to drop one or more specific online redo log

members. For example, if a disk failure occurs, you may need to drop all the online

redo log files on the failed disk so that Oracle does not try to write to the

inaccessible files. In other situations, particular online redo log files become

unnecessary. For example, a file might be stored in an inappropriate location.

Dropping Log Groups
To drop an online redo log group, you must have the ALTER DATABASE system

privilege. Before dropping an online redo log group, consider the following

restrictions and precautions:

■ An instance requires at least two groups of online redo log files, regardless of

the number of members in the groups. (A group is one or more members.)

■ You can drop an online redo log group only if it is inactive. If you need to drop

the current group, first force a log switch to occur.

■ Make sure an online redo log group is archived (if archiving is enabled) before

dropping it. To see whether this has happened, use the V$LOG view.

SELECT GROUP#, ARCHIVED, STATUS FROM V$LOG;

 GROUP# ARC STATUS
--------- --- ----------------
 1 YES ACTIVE
 2 NO CURRENT
 3 YES INACTIVE
 4 YES INACTIVE

Drop an online redo log group with the SQL statement ALTER DATABASE with the

DROP LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, and you are not

using the Oracle Managed Files feature, the operating system files are not deleted

Dropping Online Redo Log Groups and Members

Managing the Online Redo Log 7-17

from disk. Rather, the control files of the associated database are updated to drop

the members of the group from the database structure. After dropping an online

redo log group, make sure that the drop completed successfully, and then use the

appropriate operating system command to delete the dropped online redo log files.

When using Oracle-managed files, the cleanup of operating systems files is done

automatically for you.

Dropping Online Redo Log Members
To drop an online redo log member, you must have the ALTER DATABASE system

privilege. Consider the following restrictions and precautions before dropping

individual online redo log members:

■ It is permissible to drop online redo log files so that a multiplexed online redo

log becomes temporarily asymmetric. For example, if you use duplexed groups

of online redo log files, you can drop one member of one group, even though all

other groups have two members each. However, you should rectify this

situation immediately so that all groups have at least two members, and

thereby eliminate the single point of failure possible for the online redo log.

■ An instance always requires at least two valid groups of online redo log files,

regardless of the number of members in the groups. (A group is one or more

members.) If the member you want to drop is the last valid member of the

group, you cannot drop the member until the other members become valid. To

see a redo log file’s status, use the V$LOGFILE view. A redo log file becomes

INVALID if Oracle cannot access it. It becomes STALE if Oracle suspects that it

is not complete or correct. A stale log file becomes valid again the next time its

group is made the active group.

■ You can drop an online redo log member only if it is not part of an active or

current group. If you want to drop a member of an active group, first force a log

switch to occur.

■ Make sure the group to which an online redo log member belongs is archived

(if archiving is enabled) before dropping the member. To see whether this has

happened, use the V$LOG view.

To drop specific inactive online redo log members, use the ALTER DATABASE
statement with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo :

ALTER DATABASE DROP LOGFILE MEMBER' /oracle/dbs/log3c.rdo ' ;

Forcing Log Switches

7-18 Oracle9i Database Administrator’s Guide

When an online redo log member is dropped from the database, the operating

system file is not deleted from disk. Rather, the control files of the associated

database are updated to drop the member from the database structure. After

dropping an online redo log file, make sure that the drop completed successfully,

and then use the appropriate operating system command to delete the dropped

online redo log file.

To drop a member of an active group, you must first force a log switch.

Forcing Log Switches
A log switch occurs when LGWR stops writing to one online redo log group and

starts writing to another. By default, a log switch occurs automatically when the

current online redo log file group fills.

You can force a log switch to make the currently active group inactive and available

for online redo log maintenance operations. For example, you want to drop the

currently active group, but are not able to do so until the group is inactive. You may

also wish to force a log switch if the currently active group needs to be archived at a

specific time before the members of the group are completely filled. This option is

useful in configurations with large online redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. Use the ALTER
SYSTEM statement with the SWITCH LOGFILE clause.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Verifying Blocks in Redo Log Files
You can configure Oracle to use checksums to verify blocks in the redo log files. If

you set the initialization parameter DB_BLOCK_CHECKSUM to TRUE, block checking

is enabled for all Oracle database blocks written to disk, including redo log blocks.

The default value of DB_BLOCK_CHECKSUM is FALSE.

If you enable block checking, Oracle computes a checksum for each redo log block

written to the current log. Oracle writes the checksum in the header of the block.

Oracle uses the checksum to detect corruption in a redo log block. Oracle tries to

verify the redo log block when it writes the block to an archive log file and when the

block is read from an archived log during recovery.

Clearing an Online Redo Log File

Managing the Online Redo Log 7-19

If Oracle detects a corruption in a redo log block while trying to archive it, the

system attempts to read the block from another member in the group. If the block is

corrupted in all members the redo log group, then archiving cannot proceed.

Clearing an Online Redo Log File
An online redo log file might become corrupted while the database is open, and

ultimately stop database activity because archiving cannot continue. In this

situation the ALTER DATABASE CLEAR LOGFILE statement can be used

reinitialize the file without shutting down the database.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

This statement overcomes two situations where dropping redo logs is not possible:

■ If there are only two log groups

■ The corrupt redo log file belongs to the current group

If the corrupt redo log file has not been archived, use the UNARCHIVED keyword in

the statement.

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

This statement clears the corrupted redo logs and avoids archiving them. The

cleared redo logs are available for use even though they were not archived.

If you clear a log file that is needed for recovery of a backup, then you can no longer

recover from that backup. Oracle writes a message in the alert log describing the

backups from which you cannot recover.

Note: There is some overhead and decrease in database

performance with DB_BLOCK_CHECKSUM enabled. Monitor your

database performance to decide if the benefit of using data block

checksums to detect corruption outweights the performance

impact.

See Also: Oracle9i Database Reference for a description of the DB_
BLOCK_CHECKSUM initialization parameter

Viewing Online Redo Log Information

7-20 Oracle9i Database Administrator’s Guide

If you want to clear an unarchived redo log that is needed to bring an offline

tablespace online, use the UNRECOVERABLE DATAFILE clause in the ALTER
DATABASE CLEAR LOGFILE statement.

If you clear a redo log needed to bring an offline tablespace online, you will not be

able to bring the tablespace online again. You will have to drop the tablespace or

perform an incomplete recovery. Note that tablespaces taken offline normal do not

require recovery.

Viewing Online Redo Log Information
Use the following views to display online redo log information.

The following query returns the control file information about the online redo log

for a database.

SELECT * FROM V$LOG;

GROUP# THREAD# SEQ BYTES MEMBERS ARC STATUS FIRST_CHANGE# FIRST_TIM
------ ------- ----- ------- ------- --- --------- ------------- ---------
 1 1 10605 1048576 1 YES ACTIVE 11515628 16-APR-00
 2 1 10606 1048576 1 NO CURRENT 11517595 16-APR-00
 3 1 10603 1048576 1 YES INACTIVE 11511666 16-APR-00
 4 1 10604 1048576 1 YES INACTIVE 11513647 16-APR-00

To see the names of all of the member of a group, use a query similar to the

following:

SELECT * FROM V$LOGFILE;

GROUP# STATUS MEMBER
------ ------- ----------------------------------

Note: If you clear an unarchived redo log file, you should make

another backup of the database.

View Description

V$LOG Displays the redo log file information from the control file

V$LOGFILE Identifies redo log groups and members and member status

V$LOG_HISTORY Contains log history information

Viewing Online Redo Log Information

Managing the Online Redo Log 7-21

 1 D:\ORANT\ORADATA\IDDB2\REDO04.LOG
 2 D:\ORANT\ORADATA\IDDB2\REDO03.LOG
 3 D:\ORANT\ORADATA\IDDB2\REDO02.LOG
 4 D:\ORANT\ORADATA\IDDB2\REDO01.LOG

If STATUS is blank for a member, then the file is in use.

See Also: Oracle9i Database Reference for detailed information

about these views

Viewing Online Redo Log Information

7-22 Oracle9i Database Administrator’s Guide

Managing Archived Redo Logs 8-1

8
Managing Archived Redo Logs

This chapter describes how to archive redo data. It contains the following topics:

■ What Is the Archived Redo Log?

■ Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

■ Controlling Archiving

■ Specifying the Archive Destination

■ Specifying the Mode of Log Transmission

■ Managing Archive Destination Failure

■ Tuning Archive Performance by Specifying Multiple ARCn Processes

■ Controlling Trace Output Generated by the Archivelog Process

■ Viewing Information About the Archived Redo Log

See Also: Oracle9i Real Application Clusters Administration for

information specific to archiving in the Oracle Real Application

Clusters environment

What Is the Archived Redo Log?

8-2 Oracle9i Database Administrator’s Guide

What Is the Archived Redo Log?
Oracle enables you to save filled groups of online redo log files to one or more

offline destinations, known collectively as the archived redo log, or more simply

archive log. The process of turning online redo log files into archived redo log files

is called archiving. This process is only possible if the database is running in

ARCHIVELOG mode. You can choose automatic or manual archiving.

An archived redo log file is a copy of one of the identical filled members of an

online redo log group. It includes the redo entries present in the identical member

of a redo log group and also preserves the group’s unique log sequence number. For

example, if you are multiplexing your online redo log, and if Group 1 contains

member files a_log1 and b_log1 , then the archiver process (ARCn) will archive

one of these identical members. Should a_log1 become corrupted, then ARCn can

still archive the identical b_log1 . The archived redo log contains a copy of every

group created since you enabled archiving.

When running in ARCHIVELOGmode, the log writer process (LGWR) is not allowed

to reuse and hence overwrite an online redo log group until it has been archived.

The background process ARCn automates archiving operations when automatic

archiving is enabled. Oracle starts multiple archiver processes as needed to ensure

that the archiving of filled online redo logs does not fall behind.

You can use archived redo logs to:

■ Recover a database

■ Update a standby database

■ Gain information about the history of a database using the LogMiner utility

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
This section describes the issues you must consider when choosing to run your

database in NOARCHIVELOG or ARCHIVELOG mode, and contains these topics:

■ Running a Database in NOARCHIVELOG Mode

■ Running a Database in ARCHIVELOG Mode

Running a Database in NOARCHIVELOG Mode
When you run your database in NOARCHIVELOGmode, you disable the archiving of

the online redo log. The database’s control file indicates that filled groups are not

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Managing Archived Redo Logs 8-3

required to be archived. Therefore, when a filled group becomes inactive after a log

switch, the group is available for reuse by LGWR.

The choice of whether to enable the archiving of filled groups of online redo log

files depends on the availability and reliability requirements of the application

running on the database. If you cannot afford to lose any data in your database in

the event of a disk failure, use ARCHIVELOG mode. The archiving of filled online

redo log files can require you to perform extra administrative operations.

NOARCHIVELOG mode protects a database only from instance failure, but not from

media failure. Only the most recent changes made to the database, which are stored

in the groups of the online redo log, are available for instance recovery. In other

words, if a media failure occurs while in NOARCHIVELOGmode, you can only restore
(not recover) the database to the point of the most recent full database backup. You

cannot recover subsequent transactions.

Also, in NOARCHIVELOG mode you cannot perform online tablespace backups.

Furthermore, you cannot use online tablespace backups previously taken while the

database operated in ARCHIVELOG mode. You can only use whole database

backups taken while the database is closed to restore a database operating in

NOARCHIVELOG mode. Therefore, if you decide to operate a database in

NOARCHIVELOG mode, take whole database backups at regular, frequent intervals.

Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, you specify the archiving of the

online redo log. The database control file indicates that a group of filled online redo

log files cannot be used by LGWR until the group is archived. A filled group is

immediately available for archiving after a redo log switch occurs.

The archiving of filled groups has these advantages:

■ A database backup, together with online and archived redo log files, guarantees

that you can recover all committed transactions in the event of an operating

system or disk failure.

■ You can use a backup taken while the database is open and in normal system

use if you keep an archived log.

■ You can keep a standby database current with its original database by

continually applying the original’s archived redo logs to the standby.

Decide how you plan to archive filled groups of the online redo log. You can

configure an instance to archive filled online redo log files automatically, or you can

archive manually. For convenience and efficiency, automatic archiving is usually

Controlling Archiving

8-4 Oracle9i Database Administrator’s Guide

best. Figure 8–1 illustrates how the archiver process (ARC0 in this illustration)

writes filled online redo log files to the database’s archived redo log.

If all databases in a distributed database operate in ARCHIVELOG mode, you can

perform coordinated distributed database recovery. If any database in a distributed

database uses NOARCHIVELOG mode, however, recovery of a global distributed

database (to make all databases consistent) is limited by the last full backup of any

database operating in NOARCHIVELOG mode.

Figure 8–1 Online Redo Log File Use in ARCHIVELOG Mode

Controlling Archiving
This section describes how to control the archiving mode of the database, and how

to control the archiving process. The following topics are discussed:

LGWR

ARC0 ARC0 ARC0

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log
0004

Log
0003

Log
0002

0001 0002

0001

0003

0002

0001

Log
0001

Controlling Archiving

Managing Archived Redo Logs 8-5

■ Setting the Initial Database Archiving Mode

■ Changing the Database Archiving Mode

■ Enabling Automatic Archiving

■ Disabling Automatic Archiving

■ Performing Manual Archiving

Setting the Initial Database Archiving Mode
You set a database’s initial archiving mode as part of database creation in the

CREATE DATABASE statement. Usually, you can use the default of NOARCHIVELOG
mode at database creation because there is no need to archive the redo information

generated then. After creating the database, decide whether to change from the

initial archiving mode.

Changing the Database Archiving Mode
To switch a database’s archiving mode, use the ALTER DATABASE statement with

the ARCHIVELOG or NOARCHIVELOG option. The following steps switch a

database’s archiving mode from NOARCHIVELOG to ARCHIVELOG:

1. Shut down the database instance.

SHUTDOWN

An open database must first be closed and any associated instances shut down

before you can switch the database’s archiving mode. You cannot disable

archiving if any datafiles need media recovery.

2. Back up the database.

Before making any major change to a database, always back up the database to

protect against any problems. This will be your final backup of the database in

NOARCHIVELOG mode and can be used if something goes wrong while

See Also: Your Oracle operating system specific documentation

contains additional information on controlling archiving modes.

Note: If a database is automatically created during Oracle

installation, the initial archiving mode of the database is operating

system specific.

Controlling Archiving

8-6 Oracle9i Database Administrator’s Guide

trying to change to ARCHIVELOG mode. See Oracle9i User-Managed Backup and
Recovery Guide or Oracle9i Recovery Manager User’s Guide.

3. Edit the initialization parameter file to include initialization parameters

specifying whether automatic archiving is enabled (see "Enabling Automatic

Archiving" on page 8-6) and the destinations for the archive log files (see

"Specifying Archive Destinations" on page 8-10).

4. Start a new instance and mount, but do not open, the database.

STARTUP MOUNT

To enable or disable archiving, the database must be mounted but not open.

5. Switch the database’s archiving mode. Then open the database for normal

operations.

ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

6. Shut down the database.

SHUTDOWN IMMEDIATE

7. Back up the database.

Changing the database archiving mode updates the control file. After changing

the database archiving mode, you must back up all of your database files and

control file. Any previous backup is no longer usable because it was taken in

NOARCHIVELOG mode.

Enabling Automatic Archiving
You can enable automatic archiving of the online redo log. When automatic

archiving is enabled, no action is required to copy a group after it fills: Oracle

automatically archives it. However, even when automatic archiving is enabled, you

can still perform manual archiving as described in "Performing Manual Archiving"

on page 8-9.

You can enable automatic archiving before or after instance startup. To enable

automatic archiving after instance startup, you must be connected to Oracle with

See Also: Oracle9i Real Application Clusters Administration for more

information about switching the archiving mode when using

Oracle9i Real Application Clusters

Controlling Archiving

Managing Archived Redo Logs 8-7

administrator privileges (AS SYSDBA), or have the ALTER SYSTEM system

privilege.

Ensure that an archived redo log destination and file name format have been

specified before enabling automatic archiving. This is described in "Specifying

Archive Destinations" on page 8-10.

Enabling Automatic Archiving at Instance Startup
To enable automatic archiving of filled groups each time an instance is started,

include the initialization parameter LOG_ARCHIVE_START in the database’s

initialization parameter file and set it to TRUE:

LOG_ARCHIVE_START=TRUE

The new value takes effect the next time you start the database.

Enabling Automatic Archiving After Instance Startup
To enable automatic archiving of filled online redo log groups without shutting

down the current instance, use the ALTER SYSTEM statement specifying the

ARCHIVE LOG START clause. For example:

ALTER SYSTEM ARCHIVE LOG START;

You can optionally include the archiving destination.

Controlling the Number of Archiver Processes
Oracle starts additional archiver processes (ARCn) as needed to ensure that the

automatic processing of filled redo log files does not fall behind. However, to avoid

Caution: Oracle does not automatically archive log files unless the

database is also in ARCHIVELOG mode.

Note: If an instance is shut down and restarted after automatic

archiving is enabled using the ALTER SYSTEM statement, the

instance is reinitialized using the settings of the initialization

parameter file. Those settings may or may not enable automatic

archiving. If your intent is to always archive redo log files

automatically, then you should include LOG_ARCHIVE_START =
TRUE in your initialization parameters.

Controlling Archiving

8-8 Oracle9i Database Administrator’s Guide

any runtime overhead of invoking additional ARCn processes, you can specify the

number of processes to be started at instance startup using the LOG_ARCHIVE_
MAX_PROCESSES initialization parameter. Up to 10 ARCn processes can be started.

This parameter also limits the number of ARCn processes that can be started for the

instance. No more than the specified number of processes can ever be started.

The LOG_ARCHIVE_MAX_PROCESSES is dynamic, and can be changed using the

ALTER SYSTEM statement. The following statement increases (or decreases) the

number of ARCn processes currently running:

ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=3;

There is usually no need to change the LOG_ARCHIVE_MAX_PROCESSES
initialization parameter from its default value of 2, because Oracle will adequately

adjust ARCn processes according to system workload.

Disabling Automatic Archiving
You can disable automatic archiving of the online redo log groups at any time. After

having disabled automatic archiving, you must manually archive groups of online

redo log files in a timely fashion. If you run a database in ARCHIVELOG mode and

disable automatic archiving, and if all groups of online redo log files are filled but

not archived, then LGWR cannot reuse any inactive groups of online redo log

groups. Therefore, database operation is temporarily suspended until you perform

the necessary archiving.

You can disable automatic archiving at or after instance startup. To disable

automatic archiving after instance startup, you must be connected with

administrator privileges or have the ALTER SYSTEM privilege.

Disabling Automatic Archiving at Instance Startup
To disable the automatic archiving of filled online redo log groups at database

startup, set the LOG_ARCHIVE_START initialization parameter to FALSE:

LOG_ARCHIVE_START=FALSE

Disabling Automatic Archiving after Instance Startup
To disable the automatic archiving of filled online redo log groups without shutting

down the current instance, use the SQL statement ALTER SYSTEM with the

ARCHIVE LOG STOP parameter. The following statement stops archiving:

ALTER SYSTEM ARCHIVE LOG STOP;

Specifying the Archive Destination

Managing Archived Redo Logs 8-9

If ARCn is archiving a redo log group when you attempt to disable automatic

archiving, ARCn finishes archiving the current group, but does not begin archiving

the next filled online redo log group.

The instance does not have to be shut down to disable automatic archiving. If an

instance is shut down and restarted after automatic archiving is disabled, however,

the instance is reinitialized using the settings of the initialization parameter file,

which may or may not enable automatic archiving.

Performing Manual Archiving
If you operate your database in ARCHIVELOG mode, but do not have automatic

archiving enabled, then you must archive inactive groups of filled online redo log

files or your database operation can be temporarily suspended.

You can also use manual archiving, even when automatic archiving is enabled, for

such action as rearchiving an inactive group of filled online redo log members to

another location. In this case, however, it is possible that the instance can reuse the

redo log group before you have finished manually archiving, and thereby overwrite

the files. If this happens, Oracle will write an error message to the alert file.

To archive a filled online redo log group manually, connect with administrator

privileges. Use the ALTER SYSTEM statement with the ARCHIVE LOG clause to

manually archive filled online redo log files. The following statement archives all

unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL;

Specifying the Archive Destination
When archiving redo logs, determine the destination to which you will archive and

familiarize yourself with the various destination states. Develop a practice of using

dynamic performance (V$) views, listed in "Viewing Information About the

Archived Redo Log" on page 8-23, to access archive information.

The following topics are contained in this section

■ Specifying Archive Destinations

■ Understanding Archive Destination Status

Specifying the Archive Destination

8-10 Oracle9i Database Administrator’s Guide

Specifying Archive Destinations
You must decide whether to make a single destination for the logs or multiplex
them. When you multiplex them, you archive the logs to more than one location.

You specify your choice by setting initialization parameters according to one of the

following methods.

Method 1: Using the LOG_ARCHIVE_DEST_ n Parameter
The first method is to use the LOG_ARCHIVE_DEST_n parameter (where n is an

integer from 1 to 10) to specify from one to ten different destinations for archival.

Each numerically-suffixed parameter uniquely identifies an individual destination.

You specify the location for LOG_ARCHIVE_DEST_n using these keywords:

Method Initialization Parameter Host Example

1 LOG_ARCHIVE_DEST_n

where:

n is an integer from 1 to 10

Local
or
remote

LOG_ARCHIVE_DEST_1 = 'LOCATION=/disk1/arc'

LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1'

2 LOG_ARCHIVE_DEST and

LOG_ARCHIVE_DUPLEX_DEST

Local
only

LOG_ARCHIVE_DEST = '/disk1/arc'

LOG_ARCHIVE_DUPLEX_DEST = '/disk2/arc'

See Also:

■ Oracle9i Database Reference for additional information about the

initialization parameters used to control the archiving of redo

logs

■ Oracle9i Data Guard Concepts and Administration for information

about using the LOG_ARCHIVE_DEST_n initialization

parameter for specifying a standby destination. There are

additional keywords that can be specified with this

initialization parameter and that are not discussed in this book.

Keyword Indicates Example

LOCATION A local file system
location.

LOG_ARCHIVE_DEST_1 = 'LOCATION=/disk1/arc'

SERVICE Remote archival
through Oracle
Net service name.

LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1'

Specifying the Archive Destination

Managing Archived Redo Logs 8-11

If you use the LOCATION keyword, specify a valid path name for your operating

system. If you specify SERVICE, Oracle translates the net service name through the

tnsnames.ora file to a connect descriptor. The descriptor contains the information

necessary for connecting to the remote database. The service name must have an

associated database SID, so that Oracle correctly updates the log history of the

control file for the standby database.

Perform the following steps to set the destination for archived redo logs using the

LOG_ARCHIVE_DEST_n initialization parameter:

1. Use SQL*Plus to shut down the database.

SHUTDOWN

2. Edit the LOG_ARCHIVE_DEST_n parameter to specify from one to ten archiving

locations. The LOCATION keyword specifies an operating system specific path

name. For example, enter:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /disk1/archive '

LOG_ARCHIVE_DEST_2 = 'LOCATION = /disk2/archive '

LOG_ARCHIVE_DEST_3 = 'LOCATION = /disk3/archive '

If you are archiving to a standby database, use the SERVICEkeyword to specify

a valid net service name from the tnsnames.ora file. For example, enter:

LOG_ARCHIVE_DEST_4 = 'SERVICE = standby1 '

3. Edit the LOG_ARCHIVE_FORMAT initialization parameter, using %s to include

the log sequence number as part of the file name and %t to include the thread

number. Use capital letters (%S and %T) to pad the file name to the left with

zeroes. For example, enter:

LOG_ARCHIVE_FORMAT = arch%s.arc

These settings will generate archived logs as follows for log sequence numbers

100, 101, and 102:

/disk1/archive/arch100.arc, /disk1/archive/arch101.arc,
/disk1/archive/arch102.arc

/disk2/archive/arch100.arc, /disk2/archive/arch101.arc,
/disk2/archive/arch102.arc

/disk3/archive/arch100.arc, /disk3/archive/arch101.arc,
/disk3/archive/arch102.arc

Specifying the Archive Destination

8-12 Oracle9i Database Administrator’s Guide

Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST
The second method, which allows you to specify a maximum of two locations, is to

use the LOG_ARCHIVE_DEST parameter to specify a primary archive destination

and the LOG_ARCHIVE_DUPLEX_DEST to specify an optional secondary archive

destination. Whenever Oracle archives a redo log, it archives it to every destination

specified by either set of parameters.

Perform the following steps to use method 2:

1. Use SQL*Plus to shut down the database.

SHUTDOWN

2. Specify destinations for the LOG_ARCHIVE_DEST and LOG_ARCHIVE_
DUPLEX_DEST parameter (you can also specify LOG_ARCHIVE_DUPLEX_DEST
dynamically using the ALTER SYSTEM statement). For example, enter:

LOG_ARCHIVE_DEST ='/disk1/archive '

LOG_ARCHIVE_DUPLEX_DEST ='/disk2/archive '

3. Edit the LOG_ARCHIVE_FORMAT parameter, using %s to include the log

sequence number as part of the file name and %t to include the thread number.

Use capital letters (%S and %T) to pad the file name to the left with zeroes. For

example, enter:

LOG_ARCHIVE_FORMAT = arch_%t_%s.arc

For example, the above settings generates archived logs as follows for log

sequence numbers 100 and 101 in thread 1:

/disk1/archive/arch_1_100.arc, /disk1/archive/arch_1_101.arc
/disk2/archive/arch_1_100.arc, /disk2/archive/arch_1_101.arc

Understanding Archive Destination Status
Each archive destination has the following variable characteristics that determine its

status:

See Also: The following books contain more information about

archiving and standby databases:

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

■ Oracle9i Data Guard Concepts and Administration.

Specifying the Archive Destination

Managing Archived Redo Logs 8-13

■ Valid/Invalid—indicates whether the disk location or service name information

is specified and valid

■ Enabled/Disabled—indicates the availability state of the location and whether

Oracle can use the destination

■ Active/Inactive—indicates whether there was a problem accessing the

destination

Several combinations of these characteristics are possible. To obtain the current

status and other information about each destination for an instance, query the

V$ARCHIVE_DEST view.

The characteristics determining a locations status that appear in the view are shown

in Table 8–1. Note that for a destination to be used, its characteristics must be valid,

enabled, and active.

Table 8–1 Destination Status

Characteristics

STATUS Valid Enabled Active Meaning

VALID True True True The user has properly initialized the
destination, which is available for
archiving.

INACTIVE False n/a n/a The user has not provided or has
deleted the destination information.

ERROR True True False An error occurred creating or
writing to the destination file; refer
to error data.

FULL True True False Destination is full (no disk space).

DEFERRED True False True The user manually and temporarily
disabled the destination.

DISABLED True False False The user manually and temporarily
disabled the destination following
an error; refer to error data.

BAD PARAM n/a n/a n/a A parameter error occurred; refer to
error data. Usually this state is only
seen when the LOG_ARCHIVE_
STARTinitialization parameter is not
set.

Specifying the Mode of Log Transmission

8-14 Oracle9i Database Administrator’s Guide

The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 10)

initialization parameter allows you to control the availability state of the specified

destination (n). The destination state can have three values: ENABLE,DEFER, or

ALTERNATE. The value ENABLE indicates that Oracle can use the destination,

whereas DEFER indicates that the location is temporarily disabled. The third value,

ALTERNATE, means that the destination is an alternate. It’s availability state is

DEFER, unless there is a failure of its parent destination, in which case its state

becomes ENABLE.

Specifying the Mode of Log Transmission
There are two modes of transmitting archived logs to their destination: normal
archiving transmission and standby transmission mode. Normal transmission

involves transmitting files to a local disk. Standby transmission involves

transmitting files through a network to either a local or remote standby database.

Normal Transmission Mode
In normal transmission mode, the archiving destination is another disk drive of the

database server. In this configuration archiving does not contend with other files

required by the instance and can complete more quickly. Specify the destination

with either the LOG_ARCHIVE_DEST_n or LOG_ARCHIVE_DEST parameters.

Ideally, you should permanently move archived redo log files and corresponding

database backups from the local disk to inexpensive offline storage media such as

tape. Because a primary value of archived logs is database recovery, you want to

ensure that these logs are safe should disaster strike your primary database.

Standby Transmission Mode
In standby transmission mode, the archiving destination is either a local or remote

standby database.

If you are operating your standby database in managed recovery mode, you can

keep your standby database in sync with your source database by automatically

applying transmitted archive logs.

Caution: You can maintain a standby database on a local disk, but

Oracle strongly encourages you to maximize disaster protection by

maintaining your standby database at a remote site.

Specifying the Mode of Log Transmission

Managing Archived Redo Logs 8-15

To transmit files successfully to a standby database, either ARCn or a server process

must do the following:

■ Recognize a remote location

■ Transmit the archived logs in conjunction with a remote file server (RFS)

process that resides on the remote server

Each ARCn process has a corresponding RFS for each standby destination. For

example, if three ARCn processes are archiving to two standby databases, then

Oracle establishes six RFS connections.

You can transmit archived logs through a network to a remote location by using

Oracle Net. Indicate a remote archival by specifying a Oracle Net service name as

an attribute of the destination. Oracle then translates the service name, through the

tnsnames.ora file to a connect descriptor. The descriptor contains the information

necessary for connecting to the remote database. The service name must have an

associated database SID, so that Oracle correctly updates the log history of the

control file for the standby database.

The RFS process, which runs on the destination node, acts as a network server to

the ARCn client. Essentially, ARCn pushes information to RFS, which transmits it to

the standby database.

The RFS process, which is required when archiving to a remote destination, is

responsible for the following tasks:

■ Consuming network I/O from the ARCn process

■ Creating file names on the standby database by using the STANDBY_ARCHIVE_
DEST parameter

■ Populating the log files at the remote site

■ Updating the standby database’s control file (which Recovery Manager can

then use for recovery)

Archived redo logs are integral to maintaining a standby database, which is an

exact replica of a database. You can operate your database in standby archiving

mode, which automatically updates a standby database with archived redo logs

from the original database.

See Also:

■ Oracle9i Data Guard Concepts and Administration

■ Oracle9i Net Services Administrator’s Guide for informationn

about connecting to a remote database using a service name

Managing Archive Destination Failure

8-16 Oracle9i Database Administrator’s Guide

Managing Archive Destination Failure
Sometimes archive destinations can fail, causing problems when you operate in

automatic archiving mode. To minimize the problems associated with destination

failure, Oracle provides you with options. Discussions of these options are

contained in the following sections:

■ Specifying the Minimum Number of Successful Destinations

■ Re-Archiving to a Failed Destination

Specifying the Minimum Number of Successful Destinations
The optional initialization parameter LOG_ARCHIVE_MIN_SUCCEED_DEST=n
(where n is an integer from 1 to 10, or 1 to 2 if you choose to use duplexing)

determines the minimum number of destinations to which Oracle must successfully

archive a redo log group before it can reuse online log files. The default value is 1.

Specifying Mandatory and Optional Destinations
Using the LOG_ARCHIVE_DEST_n parameter, you can specify whether a

destination has the attributes OPTIONAL (default) or MANDATORY. The LOG_
ARCHIVE_MIN_SUCCEED_DEST=n parameter uses all MANDATORY destinations

plus some number of OPTIONAL non-standby destinations to determine whether

LGWR can overwrite the online log.

When determining how to set your parameters, note the following:

■ Not specifying MANDATORY for a destination is the same as specifying

OPTIONAL.

■ You must have at least one local destination, which you can declare OPTIONAL
or MANDATORY.

■ When using LOG_ARCHIVE_MIN_SUCCEED_DEST=n at least one local

destination will operationally be treated as MANDATORY, since the minimum

value for LOG_ARCHIVE_MIN_SUCCEED_DEST is 1.

■ The failure of any MANDATORY destination, including a MANDATORY standby

destination, makes the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter

irrelevant.

■ The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the

number of destinations, nor greater than the number of MANDATORY
destinations plus the number of OPTIONAL local destinations.

Managing Archive Destination Failure

Managing Archived Redo Logs 8-17

■ If you DEFER a MANDATORY destination, and Oracle overwrites the online log

without transferring the archived log to the standby site, then you must transfer

the log to the standby manually.

You can also establish which destinations are mandatory or optional by using the

LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. Note the

following rules:

■ Any destination declared by LOG_ARCHIVE_DEST is mandatory.

■ Any destination declared by LOG_ARCHIVE_DUPLEX_DEST is optional if LOG_
ARCHIVE_MIN_SUCCEED_DEST = 1 and mandatory if LOG_ARCHIVE_MIN_
SUCCEED_DEST = 2.

Sample Scenarios: Specifying the Number of Successful Destinations
You can see the relationship between the LOG_ARCHIVE_DEST_n and LOG_
ARCHIVE_MIN_SUCCEED_DEST parameters most easily through sample scenarios.

Scenario 1 In this scenario, you archive to three local destinations, each of which you

declare as OPTIONAL. Table 8–2 illustrates the possible values for LOG_ARCHIVE_
MIN_SUCCEED_DEST=n in this case.

This scenario shows that even though you do not explicitly set any of your

destinations to MANDATORY using the LOG_ARCHIVE_DEST_n parameter, Oracle

must successfully archive to one or more of these locations when LOG_ARCHIVE_
MIN_SUCCEED_DEST is set to 1, 2, or 3.

Scenario 2 In this scenario, consider a case in which:

■ You specify two MANDATORY destinations.

Table 8–2 LOG_ARCHIVE_MIN_SECCEED_DEST Values for Scenario 1

Value Meaning

1 Oracle can reuse log files only if at least one of the OPTIONAL
destinations succeeds.

2 Oracle can reuse log files only if at least two of the OPTIONAL
destinations succeed.

3 Oracle can reuse log files only if all of the OPTIONAL destinations
succeed.

4 or greater ERROR: The value is greater than the number of destinations.

Managing Archive Destination Failure

8-18 Oracle9i Database Administrator’s Guide

■ You specify two OPTIONAL destinations.

■ No destination is a standby database.

Table 8–3 shows the possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n.

This case shows that Oracle must archive to the destinations you specify as

MANDATORY, regardless of whether you set LOG_ARCHIVE_MIN_SUCCEED_DESTto

archive to a smaller number of destinations.

Re-Archiving to a Failed Destination
Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to specify

whether and when ARCn attempts to rearchive to a failed destination following an

error. REOPEN applies to all errors, not just OPEN errors.

REOPEN=n sets the minimum number of seconds before ARCn should try to reopen

a failed destination. The default value for n is 300 seconds. A value of 0 is the same

as turning off the REOPEN option. In other words, ARCn will not attempt to archive

after a failure. If you do not specify the REOPENkeyword, ARCn will never reopen a

destination following an error.

You cannot use REOPEN to specify a limit on the number of attempts to reconnect

and transfer archived logs. The REOPEN attempt either succeeds or fails, in which

case the REOPEN information is reset.

If you specify REOPEN for an OPTIONAL destination, Oracle can overwrite online

logs if there is an error. If you specify REOPEN for a MANDATORY destination, Oracle

stalls the production database when it cannot successfully archive. In this situation,

consider the following options:

■ Archive manually to the failed destination.

Table 8–3 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 2

Value Meaning

1 Oracle ignores the value and uses the number of MANDATORY
destinations (in this example, 2).

2 Oracle can reuse log files even if no OPTIONAL destination succeeds.

3 Oracle can reuse logs only if at least one OPTIONAL destination
succeeds.

4 Oracle can reuse logs only if both OPTIONAL destinations succeed.

5 or greater ERROR: The value is greater than the number of destinations.

Tuning Archive Performance by Specifying Multiple ARCn Processes

Managing Archived Redo Logs 8-19

■ Change the destination by deferring the destination, specifying the destination

as optional, or changing the service.

■ Drop the destination.

When using the REOPEN keyword, note the following:

■ ARCn reopens a destination only when starting an archive operation from the

beginning of the log file, never during a current operation. ARCn always retries

the log copy from the beginning.

■ If a REOPEN time was specified or defaulted, ARCn checks to see whether the

time of the recorded error plus the REOPENinterval is less than the current time.

If it is, ARCn retries the log copy.

■ The REOPENclause successfully affects the ACTIVE=TRUEdestination state. The

VALID and ENABLED states are not changed.

Tuning Archive Performance by Specifying Multiple ARC n Processes
For most databases, ARCn has no effect on overall system performance. On some

large database sites, however, archiving can have an impact on system performance.

On one hand, if ARCn works very quickly, overall system performance can be

reduced while ARCn runs, since CPU cycles are being consumed in archiving. On

the other hand, if ARCn runs extremely slowly, it has little detrimental effect on

system performance, but it takes longer to archive redo log files, and can create a

bottleneck if all redo log groups are unavailable because they are waiting to be

archived.

You can specify up to ten ARCn processes for each database instance. Enable the

multiple processing feature at startup or at runtime by setting the initialization

parameter LOG_ARCHIVE_MAX_PROCESSES=n (where n is any integer from 1 to

10). By default, the parameter is set to 2.

Because LGWR automatically increases the number of ARCn processes should the

current number be insufficient to handle the current workload, the parameter is

intended to allow you to specify the initial number of ARCn processes or to increase

or decrease the current number. Assuming the initial number of ARCn processes

was set to 4, the following statement will decrease the number of processes to 2.

ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=2;

When decreasing the number of ARCn processes, it is not determinate exactly

which process will be stopped. Also, you are not allowed to alter the value of the

parameter to 0, so at least one ARCn process is always active. Query the

Tuning Archive Performance by Specifying Multiple ARCn Processes

8-20 Oracle9i Database Administrator’s Guide

V$ARCHIVE_PROCESSES view to see information about the state of each archive

process. Processes that have stopped show as being in the IDLE state.

Creating multiple processes is especially useful when you:

■ Use more than two online redo logs

■ Archive to more than one destination

Multiple ARCn processing prevents the bottleneck that occurs when LGWR

switches through the multiple online redo logs faster than a single ARCn process

can write inactive logs to multiple destinations. Each ARCn process works on only

one inactive log at a time, but must archive to each specified destination.

For example, if you maintain five online redo log files, then you may decide to start

the instance using three ARCn processes. As LGWR actively writes to one of the log

files, the ARCn processes can simultaneously archive up to three of the inactive log

files to various destinations. As Figure 8–2 illustrates, each instance of ARCn
assumes responsibility for a single log file and archives it to all of the defined

destinations.

Controlling Trace Output Generated by the Archivelog Process

Managing Archived Redo Logs 8-21

Figure 8–2 Using Multiple ARCn Processes

Controlling Trace Output Generated by the Archivelog Process
As discussed in "Trace Files and the Alert File" on page 5-15, background processes

always write to a trace file when appropriate. In the case of the archivelog process,

it is possible to control the output that is generated.

The LOG_ARCHIVE_TRACE initialization parameter can be set to specify a trace
level. The following values can be specified:

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about tuning the archiving process

Destination
1

Destination
2

LOG4
(inactive)

LOG3
(inactive)

LOG2
(inactive)

LOG1
(inactive)

LGWR

LOG5
(active)

ARC1ARC0 ARC2

Controlling Trace Output Generated by the Archivelog Process

8-22 Oracle9i Database Administrator’s Guide

You can combine tracing levels by specifying a value equal to the sum of the

individual levels that you would like to trace. For example, setting LOG_ARCHIVE_
TRACE=12, will generate trace level 8 and 4 output. You can set different values for

the primary and any standby database.

The default value for the LOG_ARCHIVE_TRACE parameter is 0, and at this level,

error conditions still generate the appropriate alert and trace entries.

You can change the value of this parameter dynamically using the ALTER SYSTEM
statement. For example:

ALTER SYSTEM SET LOG_ARCHIVE_TRACE=12;

Changes initiated in this manner will take effect at the start of the next archiving

operation.

Trace Level Meaning

0 Disable archivelog tracing - default setting.

1 Track archival of redo log file.

2 Track archival status for each archivelog destination.

4 Track archival operational phase.

8 Track archivelog destination activity.

16 Track detailed archivelog destination activity.

32 Track archivelog destination parameter modifications.

64 Track ARCn process state activity

128 Track FAL (fetch archived log) server releated activities

256 Supported in a future release

512 Tracks asynchronous LGWR activity

1024 RFS physical client tracking

2048 ARCn/RFS heartbeat tracking

See Also: Oracle9i Data Guard Concepts and Administration for

information about using this parameter with a standby database

Viewing Information About the Archived Redo Log

Managing Archived Redo Logs 8-23

Viewing Information About the Archived Redo Log
You can display information about the archived redo logs using the following:

■ Dynamic Performance Views

■ The ARCHIVE LOG LIST Command

Dynamic Performance Views
There are several dynamic performance views that contain useful information about

archived redo logs.

For example, the following query displays which online redo log group requires

archiving:

SELECT GROUP#, ARCHIVED

Dynamic Performance View Description

V$DATABASE Identifies whether the database is in
ARCHIVELOG or NOARCHIVELOG mode.

V$ARCHIVED_LOG Displays historical archived log information from
the control file. If you use a recovery catalog, the
RC_ARCHIVED_LOG view contains similar
information.

V$ARCHIVE_DEST Describes the current instance, all archive
destinations, and the current value, mode, and
status of these destinations.

V$ARCHIVE_PROCESSES Displays information about the state of the
various archive processes for an instance.

V$BACKUP_REDOLOG Contains information about any backups of
archived logs. If you use a recovery catalog, the
RC_BACKUP_REDOLOG contains similar
information.

V$LOG Displays all online redo log groups for the
database and indicates which need to be
archived.

V$LOG_HISTORY Contains log history information such as which
logs have been archived and the SCN range for
each archived log.

Viewing Information About the Archived Redo Log

8-24 Oracle9i Database Administrator’s Guide

 FROM SYS.V$LOG;

GROUP# ARC
-------- ---
 1 YES
 2 NO

To see the current archiving mode, query the V$DATABASE view:

SELECT LOG_MODE FROM SYS.V$DATABASE;

LOG_MODE

NOARCHIVELOG

The ARCHIVE LOG LIST Command
The SQL*Plus command ARCHIVE LOG LIST can be used to show archiving

information for the connected instance. For example:

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination D:\ORANT\oradata\IDDB2\archive
Oldest online log sequence 11160
Next log sequence to archive 11163
Current log sequence 11163

This display tells you all the necessary information regarding the archived redo log

settings for the current instance:

■ The database is currently operating in ARCHIVELOG mode.

■ Automatic archiving is enabled.

■ The archived redo log’s destination is D:\ORANT\oradata\IDDB2\archive .

■ The oldest filled online redo log group has a sequence number of 11160.

■ The next filled online redo log group to archive has a sequence number of 11163.

■ The current online redo log file has a sequence number of 11163.

See Also: Oracle9i Database Reference for detailed descriptions of

data dictionary views

Viewing Information About the Archived Redo Log

Managing Archived Redo Logs 8-25

See Also: SQL*Plus User’s Guide and Reference for more

information on the ARCHIVE LOG LIST command

Viewing Information About the Archived Redo Log

8-26 Oracle9i Database Administrator’s Guide

Using LogMiner to Analyze Redo Logs 9-1

9
Using LogMiner to Analyze Redo Logs

The Oracle LogMiner utility enables you to query redo logs through a SQL

interface. Redo logs contain information about the history of activity on a database.

This chapter contains the following sections:

■ Potential Uses for Data Stored in Redo Logs

■ Accessing Information Stored in Redo Logs

■ Redo Logs and Dictionary Files

■ LogMiner Recommendations and Restrictions

■ Filtering Data That is Returned

■ Accessing LogMiner Information

■ Querying V$LOGMNR_CONTENTS

■ Extracting Actual Data Values from Redo Logs

■ Supplemental Logging

■ Steps in a Typical LogMiner Session

■ Example Uses of LogMiner

This chapter describes LogMiner functionality as it is used from the command line.

You also have the option of accessing LogMiner functionality through the Oracle

LogMiner Viewer graphical user interface (GUI). The LogMiner Viewer is a part of

Oracle Enterprise Manager.

Potential Uses for Data Stored in Redo Logs

9-2 Oracle9i Database Administrator’s Guide

Potential Uses for Data Stored in Redo Logs
All changes made to user data or to the data dictionary are recorded in the Oracle

redo logs. Therefore, redo logs contain all the necessary information to perform

recovery operations. Because redo log data is often kept in archived files, the data is

already available. To ensure that redo logs contain useful information, you should

enable at least minimal supplemental logging.

The following are some of the potential uses for data contained in redo logs:

■ Pinpointing when a logical corruption to a database, such as errors made at the

application level, may have begun. An example of an error made at the

application level could be if a user mistakenly updated a database to give all

employees 100 percent salary increases rather than 10 percent increases. It is

important to know exactly when corruption began so that you know when to

initiate time-based or change-based recovery. This enables you to restore the

database to the state it was in just before corruption.

■ Detecting and whenever possible, correcting user error, which is a more likely

scenario than logical corruption. User errors include deleting the wrong rows

because of incorrect values in a WHERE clause, updating rows with incorrect

values, dropping the wrong index, and so forth.

■ Determining what actions you would have to take to perform fine-grained

recovery at the transaction level. If you fully understand and take into account

existing dependencies, it may be possible to perform a table-based undo

operation to roll back a set of changes. Normally you would have to restore the

table to its previous state, and then apply an archived redo log to roll it

forward.

■ Performance tuning and capacity planning through trend analysis. You can

determine which tables get the most updates and inserts. That information

provides a historical perspective on disk access statistics, which can be used for

tuning purposes.

See Also: Supplemental Logging on page 9-19

See Also: See Extracting Actual Data Values from Redo Logs on

page 9-18 for details about how you can use LogMiner to

accomplish this.

Accessing Information Stored in Redo Logs

Using LogMiner to Analyze Redo Logs 9-3

■ Performing post-auditing. The redo logs contain all the information necessary

to track any DML and DDL statements executed on the database, the order in

which they were executed, and who executed them.

Accessing Information Stored in Redo Logs
Oracle Corporation provides SQL access to the redo logs through LogMiner, which

is part of the Oracle database server. LogMiner presents the information in the redo

logs through the V$LOGMNR_CONTENTS fixed view. This view contains historical

information about changes made to the database including, but not limited to, the

following:

■ The type of change made to the database (INSERT, UPDATE, DELETE, or DDL).

■ The SCN at which a change was made (SCN column).

■ The SCN at which a change was committed (COMMIT_SCN column).

■ The transaction to which a change belongs (XIDUSN, XIDSLT, and XIDSQN
columns).

■ The table and schema name of the modified object (SEG_NAME and SEG_OWNER
columns).

■ The name of the user who issued the DDL or DML statement to make the

change (USERNAME column).

■ Reconstructed SQL statements showing SQL that is equivalent (but not

necessarily identical) to the SQL used to generate the redo records (SQL_REDO
column). If a password is part of the statement in a SQL_REDO column, the

password is encrypted.

■ Reconstructed SQL statements showing the SQL statements needed to undo the

change (SQL_UNDO column). SQL_UNDO columns that correspond to DDL

statements are always NULL. Similarly, the SQL_UNDO column may be NULL

for some datatypes and for rolled back operations.

The redo logs contain internally generated numerical identifiers to identify tables

and their associated columns. To reconstruct SQL statements, LogMiner needs to

know how the internal identifiers map to user-defined names. This mapping

information is stored in the data dictionary for the database. LogMiner provides a

procedure (DBMS_LOGMNR_D.BUILD) that lets you extract the data dictionary.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

a complete description of the DBMS_LOGMNR_D.BUILD procedure

Redo Logs and Dictionary Files

9-4 Oracle9i Database Administrator’s Guide

 The following section describes redo logs and dictionary files in further detail.

Redo Logs and Dictionary Files
Before you begin using LogMiner, it is important to understand how LogMiner

works with redo logs and dictionary files. This will help you to get accurate results

and to plan the use of your system resources. The following concepts are discussed

in this section:

■ Redo Logs

■ Dictionary Options

■ Tracking DDL Statements

Redo Logs
When you run LogMiner, you specify the names of redo logs that you want to

analyze. LogMiner retrieves information from those redo logs and returns it

through the V$LOGMNR_CONTENTS view. To ensure that the redo logs contain

information of value to you, you must enable at least minimal supplemental

logging. See Supplemental Logging on page 9-19.

You can then use SQL to query the V$LOGMNR_CONTENTS view, as you would any

other view. Each select operation that you perform against the V$LOGMNR_
CONTENTS view causes the redo logs to be read sequentially.

Keep the following things in mind about redo logs:

■ The redo logs must be from a release 8.0 or later Oracle database. However,

several of the LogMiner features introduced as of release 9.0.1 only work with

redo logs produced on an Oracle9i or later database. See Restrictions on

page 9-11.

■ Support for LOB and LONG datatypes is available as of release 9.2, but only for

redo logs generated on a release 9.2 Oracle database.

■ The redo logs must use a database character set that is compatible with the

character set of the database on which LogMiner is running.

■ In general, the analysis of redo logs requires a dictionary that was generated

from the same database that generated the redo logs.

■ If you are using a dictionary that is in flat file format or that is stored in the redo

logs, then the redo logs you want to analyze can be from either the database on

which LogMiner is running or from other databases.

Redo Logs and Dictionary Files

Using LogMiner to Analyze Redo Logs 9-5

■ If you are using the online catalog as the LogMiner dictionary, you can only

analyze redo logs from the database on which LogMiner is running.

■ LogMiner must be running on the same hardware platform that generated the

redo logs being analyzed. However, it does not have to be on the same system.

■ It is important to specify the correct redo logs when running LogMiner. If you

omit redo logs that contain some of the data you need, you will get inaccurate

results when you query the V$LOGMNR_CONTENTS view.

To determine which redo logs are being analyzed in the current LogMiner session

you can look at the V$LOGMNR_LOGS view, which contains one row for each redo

log.

Dictionary Options
To fully translate the contents of redo logs, LogMiner requires access to a database

dictionary.

LogMiner uses the dictionary to translate internal object identifiers and datatypes to

object names and external data formats. Without a dictionary, LogMiner returns

internal object IDs and presents data as hex bytes.

For example, instead of the SQL statement:

INSERT INTO emp(name, salary) VALUES ('John Doe', 50000);

LogMiner will display:

insert into Object#2581(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

A LogMiner dictionary file contains information that identifies the database it was

created from and the time it was created. This information is used to validate the

dictionary against the selected redo logs, automatically detecting any mismatch

between LogMiner’s internal dictionary and the redo logs.

The dictionary file must have the same database character set and be created from

the same database as the redo logs being analyzed. However, once the dictionary is

extracted, you can use it to mine the redo logs of that database in a separate

database instance without being connected to the source database.

Extracting a dictionary file also prevents problems that can occur when the current

data dictionary contains only the newest table definitions. For instance, if a table

See Also: "Specify Redo Logs for Analysis" on page 9-24

Redo Logs and Dictionary Files

9-6 Oracle9i Database Administrator’s Guide

you are searching for was dropped sometime in the past, the current dictionary will

not contain any references to it.

LogMiner gives you three choices for your source dictionary:

■ Extracting the Dictionary to a Flat File

■ Extracting a Dictionary to the Redo Logs

■ Using the Online Catalog

Extracting the Dictionary to a Flat File
When the dictionary is in a flat file, fewer system resources are used than when it is

contained in the redo logs. It is recommended that you regularly back up the

dictionary extracts to ensure correct analysis of older redo logs.

To extract database dictionary information to a flat file, use the DBMS_LOGMNR_
D.BUILD procedure with the STORE_IN_FLAT_FILE option.

Be sure that no DDL operations occur while the dictionary is being built.

The following steps describe how to extract a dictionary to a flat file (including

extra steps you must take if you are using Oracle8). Steps 1 through 4 are

preparation steps. You only need to do them once, and then you can extract a

dictionary to a flat file as many times as you wish.

1. The DBMS_LOGMNR_D.BUILD procedure requires access to a directory where it

can place the dictionary file. Because PL/SQL procedures do not normally

access user directories, you must specify a directory for use by the DBMS_
LOGMNR_D.BUILD procedure or the procedure will fail. To specify a directory,

set the initialization parameter, UTL_FILE_DIR , in the init.ora file.

For example, to set UTL_FILE_DIR to use /oracle/database as the

directory where the dictionary file is placed, enter the following in the

init .ora file:

UTL_FILE_DIR = /oracle/database

Remember that for the changes to the init .ora file to take effect, you must

stop and restart the database.

2. For Oracle8 only. Otherwise, go to the next step: Use your operating system’s

copy command to copy the dbmslmd.sql script, which is contained in the

See Also: Oracle9i Database Reference for more information about

the init .ora file

Redo Logs and Dictionary Files

Using LogMiner to Analyze Redo Logs 9-7

$ORACLE_HOME/rdbms/admin directory on the Oracle8i database, to the same

directory in the Oracle8 database. For example, enter:

% cp /8.1/oracle/rdbms/admin/dbmslmd.sql /8.0/oracle/rdbms/admin/dbmslmd.sql

3. If the database is closed, use SQL*Plus to mount and then open the database

whose redo logs you want to analyze. For example, entering the STARTUP
command mounts and opens the database:

SQL> STARTUP

4. For Oracle8 only. Otherwise, go to the next step: Execute the copied

dbmslmd.sql script on the 8.0 database to install the DBMS_LOGMNR_D
package. For example, enter:

@dbmslmd.sql

You may need to enter the complete path to the script.

5. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify a filename

for the dictionary and a directory path name for the file. This procedure creates

the dictionary files. For example, enter the following to create the file

dictionary.ora in /oracle/database :

SQL> EXECUTE DBMS_LOGMNR_D.BUILD(’dictionary.ora’, -
 2 ’/oracle/database/’, -
 3 OPTIONS => DBMS_LOGMNR_D.STORE_IN_FLAT_FILE);

You could also specify a filename and location without specifying the STORE_
IN_FLAT_FILE option. The result would be the same.

Extracting a Dictionary to the Redo Logs
To extract a dictionary to the redo logs, the database must be open and in

ARCHIVELOG mode and archiving must be enabled. While the dictionary is being

extracted to the redo log stream, no DDL statements can be executed. Therefore, the

dictionary snapshot extracted to the redo logs is guaranteed to be consistent,

whereas the dictionary extracted to a flat file is not.

To extract database dictionary information to the redo logs, use the DBMS_LOGMNR_
D.BUILD procedure with the STORE_IN_REDO_FILES option. Do not specify a

filename or location.

SQL> EXECUTE DBMS_LOGMNR_D.BUILD (-
 2 OPTIONS=>DBMS_LOGMNR_D.STORE_IN_REDO_LOGS);

Redo Logs and Dictionary Files

9-8 Oracle9i Database Administrator’s Guide

To ensure that the redo logs contain information of value to you, you must enable at

least minimal supplemental logging. See Supplemental Logging on page 9-19.

The process of extracting the dictionary to the redo logs does consume database

resources, but if you limit the extraction to off-peak hours, this should not be a

problem and it is faster than extracting to a flat file. Depending on the size of the

dictionary, it may be contained in multiple redo logs. Provided the relevant redo

logs have been archived, you can find out which redo logs contain the start and end

of an extracted dictionary. To do so, query the V$ARCHIVED_LOG view, as follows:

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_BEGIN=’YES’;
SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_END=’YES’;

The names of the start and end redo logs, and possibly other logs in between them,

are specified with the ADD_LOGFILE procedure when you are preparing to start a

LogMiner session.

It is recommended that you periodically back up the redo logs so that the

information is saved and available at a later date. Ideally, this will not involve any

extra steps because if your database is being properly managed, there should

already be a process in place for backing up and restoring archived redo logs.

Again, because of the time required, it is good practice to do this during off-peak

hours.

Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify

the online catalog as your dictionary source when you start LogMiner, as follows:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 2 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

Using the online catalog means that you do not have to bother extracting a

dictionary to a flat file or to the redo logs. In addition to using the online catalog to

analyze online redo logs, you can use it to analyze archived redo logs provided you

are on the same system that generated the archived redo logs.

The online catalog contains the latest information about the database and may be

the fastest way to start your analysis. Because DDL operations that change

See Also: Oracle9i Recovery Manager User’s Guide for more

information about ARCHIVELOG mode

Redo Logs and Dictionary Files

Using LogMiner to Analyze Redo Logs 9-9

important tables are somewhat rare, the online catalog generally contains the

information you need for your analysis.

Remember, however, that the online catalog can only reconstruct SQL statements

that are executed on the latest version of a table. As soon as the table is altered, the

online catalog no longer reflects the previous version of the table. This means that

LogMiner will not be able to reconstruct any SQL statements that were executed on

the previous version of the table. Instead, LogMiner generates nonexecutable SQL

in the SQL_REDOcolumn (including hex-to-raw formatting of binary values) similar

to the following example:

insert into Object#2581(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

The online catalog option requires that the database be open.

The online catalog option is not valid with the DDL_DICT_TRACKING option.

Tracking DDL Statements
LogMiner automatically builds its own internal dictionary from the source

dictionary that you specify when you start LogMiner (either a flat file dictionary, a

dictionary in the redo logs, or an online catalog).

If your source dictionary is a flat file dictionary or a dictionary in the redo logs, you

can use the DDL_DICT_TRACKING option to direct LogMiner to track data

definition language (DDL) statements. DDL tracking is disabled by default. To

enable it, use the OPTIONS parameter to specify DDL_DICT_TRACKING when you

start LogMiner. For example:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 2 DBMS_LOGMNR.DDL_DICT_TRACKING);

With this option set, LogMiner applies any DDL statements seen in the redo logs to

its internal dictionary. For example, to see all the DDLs executed by user SYS, you

could issue the following query:

SQL> SELECT USERNAME, SQL_REDO
 2 FROM V$LOGMNR_CONTENTS
 3 WHERE USERNAME = ’SYS’ AND OEPRATION = ’DDL’;

The information returned might be similar to the following, although the actual

information and how it is displayed will be different on your screen.

USERNAME SQL_REDO
SYS ALTER TABLE SCOTT.ADDRESS ADD CODE NUMBER;

LogMiner Recommendations and Restrictions

9-10 Oracle9i Database Administrator’s Guide

SYS CREATE USER KATHY IDENTIFIED BY VALUES ’E4C8B920449B4C32’ DEFAULT
 TABLESPACE TS1;

Keep the following in mind when you use the DDL_DICT_TRACKING option:

■ The DDL_DICT_TRACKING option is not valid with the DICT_FROM_ONLINE_
CATALOG option.

■ The DDL_DICT_TRACKING option requires that the database be open.

The ability to track DDL statements helps you monitor schema evolution because

SQL statements used to change the logical structure of a table (because of DDL

operations such as adding or dropping of columns) can be reconstructed. In

addition, data manipulation language (DML) operations performed on new tables

created after the dictionary was extracted can also be shown.

Because LogMiner automatically assigns versions to the database metadata, it will

detect and notify you of any mismatch between its internal dictionary and the redo

logs.

LogMiner Recommendations and Restrictions
When you are using LogMiner, keep the recommendations and restrictions

described in the following sections in mind.

Recommendations
Oracle Corporation recommends that you take the following into consideration

when you are using LogMiner:

Note: In general, it is a good idea to keep the DDL tracking

feature enabled because if it is not enabled and a DDL event occurs,

LogMiner returns some of the redo data as hex bytes. Also, a

metadata version mismatch could occur.

Note: It is important to understand that the LogMiner internal

dictionary is not the same as the LogMiner dictionary contained in

a flat file or in redo logs. LogMiner does update its internal

dictionary, but it does not update the dictionary that is contained in

a flat file or in redo logs.

LogMiner Recommendations and Restrictions

Using LogMiner to Analyze Redo Logs 9-11

■ All databases should employ an alternate tablespace for LogMiner tables. By

default all LogMiner tables are created to use the SYSTEMtablespace. Use the

DBMS_LOGMNR_D.SET_TABLESPACE routine to re-create all LogMiner tables in

an alternate tablespace. For example, the following statement will re-create all

LogMiner tables to use the logmnrts$ tablespace:

SQL> EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE(’logmnrts$’);

Restrictions
The following restrictions apply when you are using LogMiner:

■ The following are not supported:

– Simple and nested abstract datatypes (ADTs)

– Collections (nested tables and VARRAYs)

– Object Refs

– Index organized tables (IOTs)

– CREATE TABLE AS SELECT of a table with a clustered key

■ LogMiner runs only on databases of release 8.1 or higher, but you can use it to

analyze redo logs from release 8.0 databases. However, the information that

LogMiner is able to retrieve from a redo log depends on the version of the log,

not the version of the database in use. For example, redo logs for Oracle9i can

be augmented to capture additional information when supplemental logging is

enabled. This allows LogMiner functionality to be used to its fullest advantage.

Redo logs created with older releases of Oracle will not have that additional

data and may therefore have limitations on the operations and datatypes

supported by LogMiner.

For example, the following features require that supplemental logging be turned on.
(Note that in Oracle9i release 9.0.1, supplemental logging was always on (it was

not available at all in releases prior to 9.0.1). But in release 9.2, you must

specifically turn on supplemental logging; otherwise it will not be enabled.)

– Support for index clusters, chained rows, and migrated rows (for chained

rows, supplemental logging is required, regardless of the compatibility

level to which the database is set).

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for a full description of the DBMS_LOGMNR_D.SET_TABLESPACE
routine

Filtering Data That is Returned

9-12 Oracle9i Database Administrator’s Guide

– Support for direct-path inserts (also requires that ARCHIVELOG mode be

enabled).

– Extracting the data dictionary into the redo logs.

– DDL tracking.

– Generating SQL_REDO and SQL_UNDO with primary key information for

updates.

– LONG and LOB datatypes are supported only if supplemental logging is

enabled.

Filtering Data That is Returned
LogMiner can potentially be dealing with large amounts of information. There are

several methods you can use to limit the information that is returned to the

V$LOGMNR_CONTENTS view, as well as the speed at which it is returned. These

options are specified when you start LogMiner.

■ Showing Only Committed Transactions

■ Skipping Redo Corruptions

■ Filtering Data By Time

■ Filtering Data By SCN

Showing Only Committed Transactions
When you use the COMMITTED_DATA_ONLY option, only rows belonging to

committed transactions are shown in the V$LOGMNR_CONTENTS view. This enables

you to filter out rolled back transactions, transactions that are in progress, and

internal operations.

To enable this option, you specify it when you start LogMiner, as follows:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 2 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

When you specify the COMMITTED_DATA_ONLY option, LogMiner groups together

all DML operations that belong to the same transaction. Transactions are returned

in the order in which they were committed.

See Also: Supplemental Logging on page 9-19

Filtering Data That is Returned

Using LogMiner to Analyze Redo Logs 9-13

If long-running transactions are present in the redo logs being analyzed, use of this

option may cause an "Out of Memory" error.

The default is for LogMiner to show rows corresponding to all transactions and to

return them in the order in which they are encountered in the redo logs.

For example, suppose you start LogMiner without specifying COMMITTED_DATA_
ONLY and you execute the following query:

SQL> SELECT (XIDUSN || ’.’ || XIDSLT || ’.’ || XIDSQN) AS XID,
 2 USERNAME AS USER,
 3 SQL_REDO AS SQL_REDO
 4 FROM V$LOGMNR_CONTENTS;

The output would be as follows. Both committed and uncommitted transactions are

returned and rows from different transactions are interwoven.

XID USER SQL_REDO
1.5.123 SCOTT SET TRANSACTION READ WRITE;
1.5.123 SCOTT INSERT INTO "SCOTT"."EMP"("EMPNO","ENAME")
 VALUES (8782, ’Frost’);
1.6.124 KATHY SET TRANSACTION READ WRITE;
1.6.124 KATHY INSERT INTO "SCOTT"."CUSTOMER"("ID","NAME","PHONE_DAY")
 VALUES (8839, ’Cummings’, ’415-321-1234’);
1.6.124 KATHY INSERT INTO "SCOTT"."CUSTOMER"("ID","NAME","PHONE_DAY")
 VALUES (7934, ’Yeats’, ’033-334-1234’);
1.5.123 SCOTT INSERT INTO "SCOTT"."EMP" ("EMPNO","ENAME")
 VALUES (8566, ’Browning’);
1.6.124 KATHY COMMIT;
1.7.234 GOUTAM SET TRANSACTION READ WRITE;
1.5.123 SCOTT COMMIT;
1.7.234 GOUTAM INSERT INTO "SCOTT"."CUSTOMER"("ID","NAME","PHONE_DAY")
 VALUES (8499, ’Emerson’, ’202-334-1234’);

Now suppose you start LogMiner, but this time you specify the COMMITTED_
DATA_ONLY option. If you executed the previous query again, the output would

look as follows:

1.6.124 KATHY SET TRANSACTION READ WRITE;
1.6.124 KATHY INSERT INTO "SCOTT"."CUSTOMER"("ID","NAME","PHONE_DAY")
 VALUES (8839, ’Cummings’, ’415-321-1234’);
1.6.124 KATHY INSERT INTO "SCOTT"."CUSTOMER"("ID","NAME","PHONE_DAY")
 VALUES (7934, ’Yeats’, ’033-334-1234’);
1.6.124 KATHY COMMIT;
1.5.123 SCOTT SET TRANSACTION READ WRITE;
1.5.123 SCOTT INSERT INTO "SCOTT"."EMP" ("EMPNO","ENAME")

Filtering Data That is Returned

9-14 Oracle9i Database Administrator’s Guide

 VALUES (8566, ’Browning’);
1.5.123 SCOTT INSERT INTO "SCOTT"."EMP"("EMPNO","ENAME")
 VALUES (8782, ’Frost’);
1.5.123 SCOTT COMMIT;

Because the commit for the 1.6.124 transaction happened before the commit for the

1.5.123 transaction, the entire 1.6.124 transaction is returned first. This is true even

though the 1.5.123 transaction started before the 1.6.124 transaction. None of the

1.7.234 transaction is returned because a commit was never issued for it.

Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option, any corruptions in the redo logs are

skipped during select operations from the V$LOGMNR_CONTENTS view. Rows that

are retrieved after the corruption are flagged with a "Log File Corruption

Encountered" message. Additionally, for every corrupt redo record encountered, an

informational row is returned that indicates how many blocks were skipped.

The default is for the select operation to terminate at the first corruption it

encounters in the redo log.

To enable this option, you specify it when you start LogMiner, as follows:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 2 DBMS_LOGMNR.SKIP_CORRUPTION);

Filtering Data By Time
To filter data by time, set the STARTTIME and ENDTIME parameters. The procedure

expects date values. Use the TO_DATE function to specify date and time, as in this

example:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 2 DICTFILENAME => '/oracle/dictionary.ora', -
 3 STARTTIME => TO_DATE('01-Jan-1998 08:30:00', 'DD-MON-YYYY HH:MI:SS'), -
 4 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

If no STARTTIME or ENDTIME parameters are specified, the entire redo log is read

from start to end, for each SELECT statement issued.

The timestamps should not be used to infer ordering of redo records. You can infer

the order of redo records by using the SCN.

Accessing LogMiner Information

Using LogMiner to Analyze Redo Logs 9-15

Filtering Data By SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN
parameters, as in this example:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 2 DICTFILENAME => '/oracle/dictionary.ora', -
 3 STARTSCN => 100, -
 4 ENDSCN => 150);

The STARTSCN and ENDSCN parameters override the STARTTIME and ENDTIME
parameters in situations where all are specified.

If no STARTSCN or ENDSCN parameters are specified, the entire redo log is read

from start to end, for each SELECT statement issued.

Accessing LogMiner Information
LogMiner information is contained in the following views. You can use SQL to

query them as you would any other view.

■ V$LOGMNR_CONTENTS

Shows changes made to user and table information.

■ V$LOGMNR_DICTIONARY

Shows information about the LogMiner dictionary file, provided the dictionary

was created using the STORE_IN_FLAT_FILE option. The information shown

includes the database name and status information.

■ V$LOGMNR_LOGS

Shows information about specified redo logs. There is one row for each redo

log.

■ V$LOGMNR_PARAMETERS

Shows information about optional LogMiner parameters, including starting and

ending system change numbers (SCNs) and starting and ending times.

The rest of this section discusses the following topics with regard to accessing

LogMiner information:

See Also: Oracle9i Database Reference for detailed information

about the contents of these views

Querying V$LOGMNR_CONTENTS

9-16 Oracle9i Database Administrator’s Guide

■ Querying V$LOGMNR_CONTENTS

■ Extracting Actual Data Values from Redo Logs

Querying V$LOGMNR_CONTENTS
LogMiner output is contained in the V$LOGMNR_CONTENTS view. After LogMiner

is started, you can issue SQL statements at the command line to query the data

contained in V$LOGMNR_CONTENTS.

When a SQL select operation is executed against the V$LOGMNR_CONTENTS view,

the redo logs are read sequentially. Translated information from the redo logs is

returned as rows in the V$LOGMNR_CONTENTS view. This continues until either the

filter criteria specified at startup are met or the end of the redo log is reached.

LogMiner returns all the rows in SCN order unless you have used the COMMITTED_
DATA_ONLYoption to specify that only committed transactions should be retrieved.

SCN order is the order normally applied in media recovery.

For example, suppose you wanted to find out about any delete operations that a

user named Ron had performed on the scott.orders table. You could issue a

query similar to the following:

SQL> SELECT OPERATION, SQL_REDO, SQL_UNDO
 2 FROM V$LOGMNR_CONTENTS
 3 WHERE SEG_OWNER = ’SCOTT’ AND SEG_NAME = ’ORDERS’ AND
 4 OPERATION = ’DELETE’ AND USERNAME = ’RON’;

The following output would be produced. The formatting may be different on your

display than that shown here.

OPERATION SQL_REDO SQL_UNDO

DELETE delete from "SCOTT"."ORDERS" insert into "SCOTT"."ORDERS"
 where "ORDER_NO" = 2 and ("ORDER_NO", "QTY", "EXPR_SHIP")
 "QTY" = 3 and values(2,3,’Y’);
 "EXPR_SHIP" = ’Y’ and
 ROWID = ’AAABM8AABAAALm/AAA’
DELETE delete from "SCOTT"."ORDERS" insert into "SCOTT"."ORDERS"
 where "ORDER_NO" = 4 and ("ORDER_NO",’QTY","EXPR_SHIP")
 "QTY" = 7 and values(4,7,’Y’);
 "EXPR_SHIP" = ’Y’ and
 ROWID = ’AAABM8AABAAALm/AAC’;

Querying V$LOGMNR_CONTENTS

Using LogMiner to Analyze Redo Logs 9-17

This output shows that user Ron deleted two rows from the scott.orders table.

The reconstructed SQL statements are equivalent, but not necessarily identical, to

the actual statement that Ron issued. The reason for this is that the original WHERE
clause is not logged in the redo logs, so LogMiner can only show deleted (or

updated or inserted) rows individually.

Therefore, even though a single DELETE statement may have been responsible for

the deletion of both rows, the output in V$LOGMNR_CONTENTSdoes not reflect that.

Thus, the actual DELETEstatement may have been DELETE FROM SCOTT.ORDERS
WHERE EXPR_SHIP = ’Y ’ or it might have been DELETE FROM SCOTT.ORDERS
WHERE QTY < 8.

Executing Reconstructed SQL Statements
By default, SQL_REDO and SQL_UNDO statements are ended with a semicolon.

Depending on how you plan to use the reconstructed statements, you may or may

not want them to include the semicolon. To suppress the semicolon, specify the

DBMS_LOGMNR.NO_SQL_DELIMITER option when you start LogMiner.

Note that if the STATUS field of V$LOGMNR_CONTENTS contains dbms_
logmnr .invalid_sql , then the SQL cannot be executed.

Formatting of Returned Data
Sometimes a query can result in a large number of columns containing

reconstructed SQL statements, which can be visually busy and hard to read.

LogMiner provides the DBMS_LOGMNR.PRINT_PRETTY_SQL option to address this

problem. The PRINT_PRETTY_SQL option formats the reconstructed SQL

statements as follows, which makes them easier to read:

insert into "SCOTT"."EMP" values
 "EMPNO": 5505,
 "ENAME": "Parker",
 "SAL": 9000
 "DEPTNO": NULL;
update "SCOTT"."EMP"
 set
 "EMPNO" = 5505 and
 "SAL" = 9000
 where
 "EMPNO" = 5505 and
 "SAL" = 9000 and
 "ROWID" = AABBCEXFGHA;

Extracting Actual Data Values from Redo Logs

9-18 Oracle9i Database Administrator’s Guide

SQL statements that are reconstructed when the PRINT_PRETTY_SQL option is

enabled are not executable because they do not use standard SQL syntax.

Extracting Actual Data Values from Redo Logs
LogMiner lets you make queries based on actual data values. For instance, you

could perform a query to show all updates to scott.emp that increased sal more

than a certain amount. Data such as this can be used to analyze system behavior

and to perform auditing tasks.

LogMiner data extraction from redo logs is performed using two mine functions:

DBMS_LOGMNR.MINE_VALUE and DBMS_LOGMNR.COLUMN_PRESENT. These

functions are part of the DBMS_LOGMNR package. Support for these mine functions

is provided by the REDO_VALUE and UNDO_VALUE columns in the V$LOGMNR_
CONTENTS view.

The following is an example of how you could use the MINE_VALUE function to

select all updates to scott.emp that increased the sal column to more than twice

its original value:

SQL> SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 2 WHERE
 3 SEG_NAME = ’emp’ AND
 4 SEG_OWNER = ’SCOTT’ AND
 5 OPERATION = ’UPDATE’ AND
 6 DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, ’SCOTT.EMP.SAL’) >
 7 2*DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, ’SCOTT.EMP.SAL’);

As shown in this example, the MINE_VALUEfunction takes two arguments. The first

one specifies whether to mine the redo (REDO_VALUE) or undo (UNDO_VALUE)
portion of the data. The second argument is a string that specifies the fully-qualified

name of the column to be mined (in this case, SCOTT.EMP.SAL). The MINE_VALUE
function always returns a string that can be converted back to the original datatype.

NULL Returns From the MINE_VALUE Function
If the MINE_VALUE function returns a NULL value, it can mean either:

■ The specified column is not present in the redo or undo portion of the data.

■ The specified column is present and has a null value.

To distinguish between these two cases, use the DBMS_LOGMNR.COLUMN_PRESENT
function which returns a 1 if the column is present in the redo or undo portion of

the data. Otherwise, it returns a 0. For example, suppose you wanted to find out the

Supplemental Logging

Using LogMiner to Analyze Redo Logs 9-19

increment by which the values in the sal column were modified and the

corresponding transaction identifier. You could issue the following query:

SQL> SELECT
 2 (XIDUSN || ’.’ || XIDSLT || ’.’ || XIDSQN) AS XID,
 3 (DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, ’SCOTT.EMP.SAL’) -
 4 DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, ’SCOTT.EMP.SAL’)) AS INCR_SAL
 5 FROM V$LOGMNR_CONTENTS
 6 WHERE
 7 DBMS_LOGMNR.COLUMN_PRESENT(REDO_VALUE, ’SCOTT.EMP.SAL’) = 1 AND
 8 DBMS_LOGMNR.COLUMN_PRESENT(UNDO_VALUE, ’SCOTT.EMP.SAL’) = 1 AND
 9 OPERATION = ’UPDATE’;

Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
The following usage rules apply to the MINE_VALUE and COLUMN_PRESENT
functions:

■ They can only be used within a LogMiner session.

■ They must be invoked in the context of a select operation from the V$LOGMNR_
CONTENTS view.

■ They do not support LONG, LOB, ADT, or COLLECTION datatypes.

■ When the column argument is of type DATE, the string that is returned is

formatted in canonical form (DD-MON-YYYY HH24:MI:SS.SS) regardless of the

date format of the current session.

Supplemental Logging
Redo logs are generally used for instance recovery and media recovery. The data

needed for such operations is automatically recorded in the redo logs. However, a

redo-based application may require that additional information be logged in the

redo logs. The following are examples of situations in which supplemental data

may be needed:

■ An application that wanted to apply the reconstructed SQL statements to a

different database would need to identify the update statement by its primary

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for a description of the DBMS_LOGMNR package, which contains the

MINE_VALUE and COLUMN_PRESENT functions

Supplemental Logging

9-20 Oracle9i Database Administrator’s Guide

key, not by its ROWID which is the usual method used by LogMiner. (Primary

keys are not, by default, logged in the redo logs unless the key itself is changed

by the update.)

■ To make tracking of row changes more efficient, an application may require

that the before image of the whole row be logged, not just the modified

columns.

The default behavior of the Oracle database server is to not provide any

supplemental logging at all, which means that certain features will not be

supported (see Restrictions on page 9-11). If you want to make full use of LogMiner
support, you must enable supplemental logging.

The use of LogMiner with minimal supplemental logging enabled does not have

any significant performance impact on the instance generating the redo logs.

However, the use of LogMiner with database-wide supplemental logging enabled

does impose significant overhead and effects performance.

There are two types of supplemental logging: database supplemental logging and

table supplemental logging. Each of these is described in the following sections.

Database Supplemental Logging
There are two types of database supplemental logging: minimal and identification

key logging.

Minimal supplemental logging logs the minimal amount of information needed for

LogMiner to identify, group, and merge the REDO operations associated with DML

changes. It ensures that LogMiner (and any products building on LogMiner

technology) have sufficient information to support chained rows and various

storage arrangements such as cluster tables. In most situations, you should at least

enable minimal supplemental logging. To do so, execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

Identification key logging enables database-wide before-image logging of primary

keys or unique indexes (in the absence of primary keys) for all updates. With this

type of logging, an application can identify updated rows logically rather than

resorting to ROWIDs.

Note: In LogMiner release 9.0.1, minimal supplemental logging

was the default behavior. In release 9.2, the default is no
supplemental logging. It must be specifically enabled.

Supplemental Logging

Using LogMiner to Analyze Redo Logs 9-21

Identification key logging is necessary when supplemental log data will be the

source of change in another database, such as a logical standby.

To enable identification key logging, execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX)
COLUMNS;

This statement results in all primary key values, database-wide, being logged

regardless of whether or not any of them are modified.

If a table does not have a primary key, but has one or more non-null unique key

constraints, one of the constraints is chosen arbitrarily for logging as a means of

identifying the row getting updated.

If the table has neither a primary key nor a unique index, then all columns except

LONG and LOB are supplementally logged. Therefore, Oracle Corporation

recommends that when you use supplemental logging, all or most tables be defined

to have primary or unique keys.

To disable either minimal or identification key logging, execute the following

statement.

SQL> ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Usage Notes for Identification Key Logging
Keep the following in mind when you use identification key logging:

■ Identification key logging is not required for delete operations because DELETE
statements contain all the column values required to identify a row.

■ If the database is open when you enable identification key logging, all DML

cursors in the cursor cache are invalidated. This can have a performance impact

until the cache is repopulated.

Note: Regardless of whether or not identification key logging is

enabled, the SQL statements returned by LogMiner always contain

the ROWID clause. You can filter out the ROWID clause by using the

RTRIM function and appropriate arguments on the reconstructed

SQL statement.

Supplemental Logging

9-22 Oracle9i Database Administrator’s Guide

Table Supplemental Logging
Table supplemental logging uses log groups to log supplemental information. There

are two types of log groups:

■ Unconditional log groups - The before images of specified columns are logged

any time the table is updated, regardless of whether the update affected any of

the specified columns. This is sometimes referred to as an ALWAYS log group.

■ Conditional log groups - The before images of all specified columns are logged

only if at least one of the columns in the log group is updated.

Unconditional Log Groups
To enable supplemental logging that uses unconditional log groups, use the

ALWAYS clause as shown in the following example:

SQL> ALTER TABLE scott.emp
 2 ADD SUPPLEMENTAL LOG GROUP emp_parttime (empno, ename, deptno) ALWAYS;

This creates a log group named emp_parttime on scott.emp that consists of the

columns empno, ename, and deptno . These columns will be logged every time an

UPDATE statement is executed on scott.emp , regardless of whether or not the

update affected them. If you wanted to have the entire row image logged any time

an update was made, you could create a log group that contained all the columns in

the table.

Conditional Log Groups
To enable supplemental logging that uses conditional log groups, omit the ALWAYS
clause from your ALTER TABLE statement, as shown in the following example:

SQL> ALTER TABLE scott.emp
 2 ADD SUPPLEMENTAL LOG GROUP emp_fulltime (empno, ename, deptno);

This creates a log group named emp_fulltime on scott.emp. Just like the previous

example, it consists of the columns empno, ename, and deptno . But because the

ALWAYS clause was omitted, before images of the columns will be logged only if at

least one of the columns is updated.

Usage Notes for Log Groups
Keep the following in mind when you use log groups:

Note: LOBs, LONGs, and ADTs cannot be part of a log group

Steps in a Typical LogMiner Session

Using LogMiner to Analyze Redo Logs 9-23

■ A column can belong to more than one log group. However, the before image of

the columns gets logged only once.

■ Redo logs do not contain any information about which log group a column is

part of or whether a column’s before image is being logged because of log

group logging or identification key logging.

■ If you specify the same columns to be logged both conditionally and

unconditionally, the columns are logged unconditionally.

Steps in a Typical LogMiner Session
This section describes the steps in a typical LogMiner session. Each step is described

in its own subsection.

1. Perform Initial Setup Activities

2. Extract a Dictionary (unless you plan to use the online catalog)

3. Specify Redo Logs for Analysis

4. Start a LogMiner Session

5. Query V$LOGMNR_CONTENTS

6. End a LogMiner Session

To run LogMiner, you use the DBMS_LOGMNR PL/SQL package. Additionally, you

might also use the DBMS_LOGMNR_D package if you choose to extract a dictionary

rather than use the online catalog.

The DBMS_LOGMNR package contains the procedures used to initialize and run

LogMiner, including interfaces to specify names of redo logs, filter criteria, and

session characteristics. The DBMS_LOGMNR_D package queries the dictionary tables

of the current database to create a LogMiner dictionary file.

The LogMiner packages are owned by the SYS schema. Therefore, if you are not

connected as user SYS, you must include SYS in your call. For example:

EXECUTE SYS.DBMS_LOGMNR.END_LOGMNR

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for details

about syntax and parameters for these LogMiner packages

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about executing PL/SQL procedures

Steps in a Typical LogMiner Session

9-24 Oracle9i Database Administrator’s Guide

Perform Initial Setup Activities
There are initial setup activities that you must perform before using LogMiner for

the first time. You only need to perform these activities once, not every time you

use LogMiner:

■ Enable the type of supplemental logging you want to use. At the very least,

Oracle Corporation recommends that you enable minimal supplemental

logging, as follows:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

See Supplemental Logging on page 9-19 for more information.

■ Use the DBMS_LOGMNR_D.SET_TABLESPACE routine to re-create all LogMiner

tables in an alternate tablespace. For example:

SQL> EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE(’logmnrts$’);

See Recommendations on page 9-10 for more information.

Extract a Dictionary

To use LogMiner you must supply it with a dictionary by doing one of the

following:

■ Extract database dictionary information to a flat file. See Extracting the

Dictionary to a Flat File on page 9-6.

■ Extract database dictionary information to the redo logs. See Extracting a

Dictionary to the Redo Logs on page 9-7.

■ Specify use of the online catalog by using the DICT_FROM_ONLINE_CATALOG
option when you start LogMiner. See Using the Online Catalog on page 9-8.

Specify Redo Logs for Analysis
Before you can start LogMiner, you must specify the redo logs that you want to

analyze. To do so, execute the DBMS_LOGMNR.ADD_LOGFILE procedure, as

demonstrated in the following steps. You can add and remove redo logs in any

order.

Steps in a Typical LogMiner Session

Using LogMiner to Analyze Redo Logs 9-25

1. Use SQL*Plus to start an Oracle instance, with the database either mounted or

unmounted. For example, enter:

SQL> STARTUP

2. Create a list of redo logs. Specify the NEW option of the DBMS_LOGMNR.ADD_
LOGFILE procedure to signal that this is the beginning of a new list. For

example, enter the following to specify /oracle/logs/log1.f :

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME => '/oracle/logs/log1.f', -
 3 OPTIONS => DBMS_LOGMNR.NEW);

3. If desired, add more redo logs by specifying the ADDFILE option of the DBMS_
LOGMNR.ADD_LOGFILE procedure. For example, enter the following to add

/oracle/logs/log2.f :

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME => '/oracle/logs/log2.f', -
 3 OPTIONS => DBMS_LOGMNR.ADDFILE);

The OPTIONS parameter is optional when you are adding additional redo logs.

For example, you could simply enter the following:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME=>’/oracle/logs/log2.f’);

4. If desired, remove redo logs by specifying the REMOVEFILE option of the

DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following to

remove /oracle/logs/log2.f :

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME => '/oracle/logs/log2.f', -
 3 OPTIONS => DBMS_LOGMNR.REMOVEFILE);

Continuous Mining
The continuous mining option is useful if you are mining in the same instance that

is generating the redo logs. When you plan to use the continuous mining option,

Note: If you will be mining in the same instance that is generating

the redo logs, you only need to specify one archived redo log and

the CONTINUOUS_MINE option when you start LogMiner. See

Continuous Mining on page 9-25.

Steps in a Typical LogMiner Session

9-26 Oracle9i Database Administrator’s Guide

you only need to specify one archived redo log before starting LogMiner. Then,

when you start LogMiner specify the DBMS_LOGMNR.CONTINUOUS_MINE option,

which directs LogMiner to automatically add and mine subsequent archived redo

logs and also the online catalog.

Start a LogMiner Session
After you have created a dictionary file and specified which redo logs to analyze,

you can start a LogMiner session. Take the following steps:

1. Execute the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

It is recommended that you specify a dictionary option. If you do not, LogMiner

cannot translate internal object identifiers and datatypes to object names and

external data formats. Therefore, it would return internal object IDs and present

data as hex bytes. Additionally, the MINE_VALUE and COLUMN_PRESENT
functions cannot be used without a dictionary.

If you are specifying the name of a flat file dictionary, you must supply a fully

qualified filename for the dictionary file. For example, to start LogMiner using

/oracle/database/dictionary.ora , issue the following command:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 2 DICTFILENAME =>'/oracle/database/dictionary.ora');

If you are not specifying a flat file dictionary name, then use the OPTIONS
parameter to specify either the DICT_FROM_REDO_LOGS or DICT_FROM_
ONLINE_CATALOG option.

If you specify DICT_FROM_REDO_LOGS, LogMiner expects to find a dictionary

in the redo logs that you specified with the DBMS_LOGMNR.ADD_LOGFILE
procedure. To determine which redo logs contain a dictionary, look at the

V$ARCHIVED_LOG view. See Extracting a Dictionary to the Redo Logs on

page 9-7 for an example.

Note: Continuous mining is not available in a Real Application

Clusters environment.

Note: If you add additional redo logs after your LogMiner session

has been started, you must restart LogMiner. You can specify new

startup parameters if desired. Otherwise, LogMiner uses the

parameters you specified for the previous session.

Steps in a Typical LogMiner Session

Using LogMiner to Analyze Redo Logs 9-27

For more information on using the online catalog, see Using the Online Catalog

on page 9-8.

2. Optionally, you can filter your query by time or by SCN. See Filtering Data By

Time on page 9-14 or Filtering Data By SCN on page 9-15.

3. You can also use the OPTIONS parameter to specify additional characteristics of

your LogMiner session. For example, you might decide to use the online catalog

as your dictionary and to have only committed transactions shown in the

V$LOGMNR_CONTENTS view, as follows:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 2 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 3 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

The following list is a summary of LogMiner settings that you can specify with

the OPTIONS parameter and where to find more information about them.

■ DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG — See Using the Online

Catalog on page 9-8

■ DBMS_LOGMNR.DICT_FROM_REDO_LOGS — See step 1 in this list

■ DBMS_LOGMNR.COMMITTED_DATA_ONLY— See Showing Only Committed

Transactions on page 9-12

■ DBMS_LOGMNR.SKIP_CORRUPTION — See Skipping Redo Corruptions on

page 9-14

■ DBMS_LOGMNR.DDL_DICT_TRACKING— See Tracking DDL Statements on

page 9-9

■ DBMS_LOGMNR.NEW, DBMS_LOGMNR.ADDFILE, and DBMS_
LOGMNR.REMOVEFILE — See Specify Redo Logs for Analysis on page 9-24

■ DBMS_LOGMNR.NO_SQL_DELIMITER — See Formatting of Returned Data

on page 9-17

■ DBMS_LOGMNR.PRINT_PRETTY_SQL — See Formatting of Returned Data

on page 9-17

■ DBMS_LOGMNR.CONTINUOUS_MINE — See Continuous Mining on

page 9-25

You can execute the DBMS_LOGMNR.START_LOGMNR procedure multiple times,

specifying different options each time. This can be useful for example, if you

did not get the desired results from a query of V$LOGMNR_CONTENTS, and

Example Uses of LogMiner

9-28 Oracle9i Database Administrator’s Guide

want to restart LogMiner with different options. You do not need to re-add

redo logs that were already added for a previous session.

Query V$LOGMNR_CONTENTS
At this point, LogMiner is started and you can perform queries against the

V$LOGMNR_CONTENTSview. See Querying V$LOGMNR_CONTENTS on page 9-16

for examples of this.

End a LogMiner Session
To properly end a LogMiner session, use the DBMS_LOGMNR.END_LOGMNR
procedure, as follows:

SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR;

This procedure closes all the redo logs and allows all the database and system

resources allocated by LogMiner to be released.

If this procedure is not executed, LogMiner retains all its allocated resources until

the end of the Oracle session in which it was invoked. It is particularly important to

use this procedure to end LogMiner if either the DDL_DICT_TRACKING option or

the DICT_FROM_REDO_LOGS option was used.

Example Uses of LogMiner
This section provides the following example uses of LogMiner.

■ Example: Using LogMiner to Track Changes Made By a Specific User

■ Example: Using LogMiner to Calculate Table Access Statistics

Example: Using LogMiner to Track Changes Made By a Specific User
This example shows how to see all changes made to the database in a specific time

range by one of your users: joedevo. Connect to the database and then take the

following steps:

■ Step 1: Creating the Dictionary File

■ Step 2: Adding Redo Logs

■ Step 3: Starting LogMiner and Limiting the Search Range

■ Step 4: Querying V$LOGMNR_CONTENTS

Example Uses of LogMiner

Using LogMiner to Analyze Redo Logs 9-29

Step 1: Creating the Dictionary File To use LogMiner to analyze joedevo ’s data, you

must either create a dictionary file before joedevo makes any changes or specify

use of the online catalog at LogMiner startup. See Extract a Dictionary on page 9-24

for examples of creating dictionaries.

Step 2: Adding Redo Logs Assume that joedevo has made some changes to the

database. You can now specify the names of the redo logs that you want to analyze,

as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME => 'log1orc1.ora', -
 3 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add additional redo logs, as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 2 LOGFILENAME => 'log2orc1.ora', -
 3 OPTIONS => DBMS_LOGMNR.ADDFILE);

Step 3: Starting LogMiner and Limiting the Search Range Start LogMiner and limit the

search to the specified time range:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 2 DICTFILENAME => 'orcldict.ora', -
 3 STARTTIME => TO_DATE('01-Jan-1998 08:30:00', 'DD-MON-YYYY HH:MI:SS'), -
 4 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

Step 4: Querying V$LOGMNR_CONTENTS At this point, the V$LOGMNR_CONTENTSview

is available for queries. You decide to find all of the changes made by user joedevo
to the salary table. Execute the following SELECT statement:

SQL> SELECT SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS
 2 WHERE USERNAME = 'joedevo' AND SEG_NAME = 'salary';

For both the SQL_REDOand SQL_UNDOcolumns, two rows are returned (the format

of the data display will be different on your screen). You discover that joedevo
requested two operations: he deleted his old salary and then inserted a new, higher

salary. You now have the data necessary to undo this operation.

SQL_REDO SQL_UNDO
-------- --------
delete * from SALARY insert into SALARY(NAME, EMPNO, SAL)
where EMPNO = 12345 values ('JOEDEVO', 12345, 500)
and ROWID = 'AAABOOAABAAEPCABA';

Example Uses of LogMiner

9-30 Oracle9i Database Administrator’s Guide

insert into SALARY(NAME, EMPNO, SAL) delete * from SALARY
values('JOEDEVO',12345, 2500) where EMPNO = 12345
 and ROWID = 'AAABOOAABAAEPCABA';
2 rows selected

Example: Using LogMiner to Calculate Table Access Statistics
In this example, assume you manage a direct marketing database and want to

determine how productive the customer contacts have been in generating revenue

for a two week period in August. Assume that you have already created the

dictionary and added the redo logs you want to search (as demonstrated in the

previous example). Take the following steps:

1. Start LogMiner and specify a range of times:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 2 STARTTIME => TO_DATE('07-Aug-1998 08:30:00', 'DD-MON-YYYY HH:MI:SS'), -
 3 ENDTIME => TO_DATE('21-Aug-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'), -
 4 DICTFILENAME => '/usr/local/dict.ora');

2. Query the V$LOGMNR_CONTENTS view to determine which tables were

modified in the time range you specified, as shown in the following example.

(This query filters out system tables that traditionally have a $ in their name.)

SQL> SELECT SEG_OWNER, SEG_NAME, COUNT(*) AS Hits FROM
 2 V$LOGMNR_CONTENTS WHERE SEG_NAME NOT LIKE '%$' GROUP BY
 3 SEG_OWNER, SEG_NAME;

3. The following data is displayed. (The format of your display may be different.)

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
SCOTT EMP 12
SYS DONOR 12
UNIV DONOR 234
UNIV EXECDONOR 325
UNIV MEGADONOR 32

The values in the Hits column show the number of times that the named table

had an insert, delete, or update operation performed on it during the two week

period specified in the query.

Managing Job Queues 10-1

10
Managing Job Queues

This chapter describes how to use job queues to schedule the periodic execution of

user jobs, and contains the following topics:

■ Enabling Processes Used for Executing Jobs

■ Managing Job Queues

■ Viewing Job Queue Information

Enabling Processes Used for Executing Jobs

10-2 Oracle9i Database Administrator’s Guide

Enabling Processes Used for Executing Jobs
You can schedule routines (jobs) to be run periodically using the job queue. To

schedule a job you submit it to the job queue, using the Oracle supplied DBMS_JOB
package, and specify the frequency at which the job is to be run. Additional

functionality enables you to alter, disable, or delete a job that you previously

submitted.

Job queue (Jnnn) processes execute jobs in the job queue. For each instance, these job

queue processes are dynamically spawned by a coordinator job queue (CJQ0)

background process. The coordinator periodically selects jobs that are ready to run

from the jobs shown in the DBA_JOBS view. It orders them by time, and then

spawns Jnnn processes to run the selected jobs. Each Jnnn process executes one of

the selected jobs.

The JOB_QUEUE_PROCESSES initialization parameter controls whether a

coordinator job queue process is started by an instance. If this parameter is set to 0,

no coordinator job queue process is started at database startup, and consequently

no job queue jobs are executed. The JOB_QUEUE_PROCESSES initialization

parameter also specifies the maximum number of Jnnn processes that can

concurrently run on an instance. The maximum number of processes that can be

specified is 1000.

The following initialization parameter setting causes the coordinator job queue

process to start at database startup, and allows the spawning of a maximum of 60

concurrent Jnnn processes.

JOB_QUEUE_PROCESSES = 60

In any given period that the coordinator job queue process scans the jobs shown in

the DBA_JOBS view, it spawns at most only the number of Jnnn processes required

to execute the jobs it has selected. While the above example allows for 60 concurrent

Jnnn processes, if only 20 jobs are selected for execution, then the coordinator

spawns, or reuses, only the number of Jnnn processes necessary to execute the 20

jobs (at least, 20). Any idle existing Jnnn processes are considered available for

reuse.

When a Jnnn process finishes execution of a job, it polls for another job to execute. If

there are no jobs selected for execution, it enters an idle state, but wakes up

periodically to poll again. If, after a predetermined number of tries, it still finds no

jobs to execute, it terminates.

The JOB_QUEUE_PROCESSES initialization parameter is dynamic and it can be

modified by an ALTER SYSTEM statement. For example, the following statement

sets the maximum number of concurrent Jnnn processes allowed to 20.

Managing Job Queues

Managing Job Queues 10-3

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 20;

If the new value is lower than the previous setting and less than the number of

currently executing Jnnn processes, the excess processes are allowed to complete

before they are terminated.

Jnnn processes will not execute jobs if the instance is running in restricted mode.

Managing Job Queues
This section describes the various aspects of managing job queues and contains the

following topics:

■ The DBMS_JOB Package

■ Submitting a Job to the Job Queue

■ How Jobs Execute

■ Removing a Job from the Job Queue

■ Altering a Job

■ Broken Jobs

■ Forcing a Job to Execute

■ Terminating a Job

The DBMS_JOB Package
To schedule and manage jobs in the job queue, use the procedures in the DBMS_JOB
package. There are no database privileges associated with using job queues. Any

user who can execute the job queue procedures can use the job queue.

The following are procedures of the DBMS_JOB package. They are described in this

section as noted.

See also: "Restricting Access to an Open Database" on page 4-11

for information about enabling and disabling restricted mode

Procedure Description

SUBMIT Submits a job to the job queue. See "Submitting a Job to the Job
Queue" on page 10-4.

Managing Job Queues

10-4 Oracle9i Database Administrator’s Guide

Submitting a Job to the Job Queue
To submit a new job to the job queue, use the SUBMIT procedure in the DBMS_JOB
package. You specify the following parameters with the SUBMIT procedure:

REMOVE Removes a specified job from the job queue. See "Removing a
Job from the Job Queue" on page 10-10.

CHANGE Alters a specified job that has already been submitted to the job
queue. You can alter the job description, the time at which the
job will be run, or the interval between executions of the job. See
"Altering a Job" on page 10-11.

WHAT Alters the job description for a specified job. See "Altering a Job"
on page 10-11.

NEXT_DATE Alters the next execution time for a specified job. See "Altering a
Job" on page 10-11.

INTERVAL Alters the interval between executions for a specified job. See
"Altering a Job" on page 10-11.

BROKEN Sets or resets the job broken flag. If a job is marked as broken,
Oracle does not attempt to execute it. See "Broken Jobs" on
page 10-12.

RUN Forces a specified job to run. See "Forcing a Job to Execute" on
page 10-14.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for syntax

information for the DBMS_JOB package, and for information

about other options available when using the DBMS_JOB
package in an Oracle Real Application Clusters environment

Parameter Description

JOB An output parameter. This is the identifier assigned to the job
you are creating. You must use this job number whenever you
want to alter or remove the job. See "Job Number" on page 10-7.

WHAT This is the PL/SQL code you want to have executed. See "Job
Definition" on page 10-7.

Procedure Description

Managing Job Queues

Managing Job Queues 10-5

For example, consider the following statements that submit a new job to the job

queue, then prints the job number. The job calls the procedure DBMS_
DDL.ANALYZE_OBJECT to generate statistics for the table hr.employees . The

statistics are based on a sample of half the rows of the employees table. The job is

run every 24 hours.

VARIABLE jobno NUMBER
BEGIN
 DBMS_JOB.SUBMIT(:jobno,
 'DBMS_DDL.ANALYZE_OBJECT(''TABLE'',
 ''HR'', ''EMPLOYEES'',
 ''ESTIMATE'', NULL, 50);',
 SYSDATE, 'SYSDATE + 1');
 COMMIT;
END;
/
PRINT jobno

JOBNO

14144

NEXT_DATE This is the next date when the job will be run. The default value
is SYSDATE.

INTERVAL This is the date function that calculates the next time to execute
the job. The default value is NULL. INTERVAL must evaluate to a
future point in time or NULL. See "Job Execution Interval" on
page 10-8.

NO_PARSE This is a flag. If NO_PARSE is set to FALSE (the default), Oracle
parses the procedure associated with the job. If NO_PARSE is set
to TRUE, Oracle parses the procedure associated with the job the
first time that the job is executed. If, for example, you want to
submit a job before you have created the tables associated with
the job, set NO_PARSE to TRUE.

Note: For the submitted job to run, you must issue a COMMIT
statement immediately after the DBMS_JOB.SUBMIT statement.

Parameter Description

Managing Job Queues

10-6 Oracle9i Database Administrator’s Guide

Job Environment
When you submit a job to the job queue or alter a job’s definition, Oracle records the

following environment characteristics:

■ The current user

■ The user submitting or altering a job

■ The current schema (may be different from current user or submitting user if

ALTER SESSION SET CURRENT_SCHEMA statement has been issued)

Oracle also records the following NLS parameters:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_NUMERIC_CHARACTERS

■ NLS_DATE_FORMAT

■ NLS_DATE_LANGUAGE

■ NLS_SORT

Oracle restores all of these environment characteristics every time a job is executed.

NLS_LANGUAGE and NLS_TERRITORY parameters determine the defaults for

unspecified NLS parameters.

You can change a job’s environment by using the DBMS_SQL package and the

ALTER SESSION statement.

Jobs and Import/Export
Jobs can be exported and imported. Thus, if you define a job in one database, you

can transfer it to another database. When exporting and importing jobs, the job’s

number, environment, and definition remain unchanged.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_SQL package

■ Oracle9i SQL Reference for information about use of the ALTER
SESSION statement to alter a job’s environment

Managing Job Queues

Managing Job Queues 10-7

Job Owner
When you submit a job to the job queue, Oracle identifies you as the owner of the

job. Only a job’s owner can alter the job, force the job to run, or remove the job from

the queue.

Job Number
A queued job is identified by its job number. When you submit a job, its job number

is automatically generated from the JOBSEQ sequence owned by user SYS. Once a

job is assigned a job number, that number does not change. Even if the job is

exported and imported, its job number remains the same.

Job Definition
The job definition is the PL/SQL code specified in the WHAT parameter of the SUBMIT
procedure. Normally, the job definition is a single call to a procedure. The procedure

call can have any number of parameters.

The following are examples of valid job definitions:

■ 'myproc(''10-JAN-99'', next_date, broken);'

■ 'scott.emppackage.give_raise(''JFEE'', 3000.00);'

■ 'dbms_job.remove(job);'

Note: If the job number of a job you want to import matches the

number of a job already existing in the database, you will not be

allowed to import that job. Submit the job as a new job in the

database.

Note: In the job definition, use two single quotation marks around

strings. Always include a semicolon at the end of the job definition.

Managing Job Queues

10-8 Oracle9i Database Administrator’s Guide

Job Execution Interval
If a job should be executed periodically at a set interval, use a date expression

similar to 'SYSDATE + 7' in the INTERVAL parameter. Below are shown some

common date expressions used for job execution intervals.

The INTERVAL date function is evaluated immediately before a job is executed.

When the job completes successfully, the date calculated from INTERVAL becomes

the new NEXT_DATE. For example, if you set the execution interval to 'SYSDATE +
7' on Monday, but for some reason (such as a network failure) the job is not

executed until Thursday, 'SYSDATE + 7' then executes every Thursday, not

Monday. If the INTERVAL date function evaluates to NULL and the job completes

successfully, the job is deleted from the queue.

Note: Running a job from a job is not supported. You will receive

an error message if you attempt to do so. For example, the

following statements produce the "ORA-32317 cannot run a
job from another job " error message in the alert file:

DECLARE
 jobno number;
BEGIN
 DBMS_JOB.SUBMIT(jobno, 'DBMS_JOB.RUN(23587);');
 DBMS_JOB.RUN(jobno);
END;
/

Date Expression Evaluation

'SYSDATE + 7' Exactly seven days from the last
execution

'SYSDATE + 1/48' Every half hour

'NEXT_DAY(TRUNC(SYSDATE), ''MONDAY'') + 15/24' Every Monday at 3PM

'NEXT_DAY(ADD_MONTHS(TRUNC(SYSDATE, ''Q''), 3), ''THURSDAY'')' First Thursday of each quarter

Note: When specifying NEXT_DATE or INTERVAL, remember that

date literals and strings must be enclosed in single quotation marks.

Also, the value of INTERVAL must be enclosed in single quotation

marks.

Managing Job Queues

Managing Job Queues 10-9

If you always want to automatically execute a job at a specific time, regardless of the

last execution (for example, every Monday), the INTERVAL and NEXT_DATE
parameters should specify a date expression similar to 'NEXT_
DAY(TRUNC(SYSDATE), ''MONDAY'')' .

Database Links and Jobs
If you submit a job that uses a database link, the link must include a username and

password. Anonymous database links will not succeed.

How Jobs Execute
Jnnn processes execute jobs. To execute a job, the process creates a session to run the

job. When a Jnnn process runs a job, the job is run in the same environment in which

it was submitted and with the owner’s default privileges. The owner must be

explicitly granted the necessary object privileges for all objects referenced within the

job definition.

When you force a job to run using the procedure DBMS_JOB.RUN, the job is run by

your user process and with your default privileges only. Privileges granted to you

through roles are unavailable. You must be explicitly granted the necessary object

privileges for all objects referenced within the job definition.

Job Queue Locks
Oracle uses job queue locks to ensure that a job is executed in only one session at a

time. When a job is being run, its session acquires a job queue (JQ) lock for that job.

You can use the locking views in the data dictionary to examine information about

locks currently held by sessions.

The following query lists the session identifier, lock type, and lock identifiers for all

sessions holding JQ locks:

SELECT SID, TYPE, ID1, ID2
 FROM V$LOCK
 WHERE TYPE = 'JQ';

 SID TY ID1 ID2
--------- -- --------- ---------
 12 JQ 0 14144
1 row selected.

In the query above, the identifier for the session holding the lock is 12. The ID1
column is always 0 for JQ locks. The ID2 column is the job number of the job the

Managing Job Queues

10-10 Oracle9i Database Administrator’s Guide

session is running. This view can be joined with the DBA_JOBS_RUNNING view to

obtain more information about the job.

Job Execution Errors
When a job fails, information about the failure is recorded in a trace file and the

alert log. Oracle writes message number ORA-12012 and includes the job number

of the failed job.

The following can prevent the successful execution of queued jobs:

■ A network or instance failure

■ An exception when executing the job

If a job returns an error while Oracle is attempting to execute it, Oracle tries to

execute it again. The first attempt is made after one minute, the second attempt after

two minutes, the third after four minutes, and so on, with the interval doubling

between each attempt. If the job fails 16 times, Oracle automatically marks the job as

broken and no longer tries to execute it. However, between attempts, you have the

opportunity to correct the problem that is preventing the job from running. This will

not disturb the retry cycle, and Oracle will eventually attempt to run the job again.

Removing a Job from the Job Queue
To remove a job from the job queue, use the REMOVE procedure in the DBMS_JOB
package.

The following statements remove job number 14144 from the job queue:

BEGIN
DBMS_JOB.REMOVE(14144);
END;
/

See Also:

■ "Viewing Job Queue Information" on page 10-15 for more

information about views

■ Oracle9i Database Reference for more information about the

V$LOCK view

■ Oracle9i Database Concepts for more information about locking

Managing Job Queues

Managing Job Queues 10-11

Restrictions:
■ You can remove currently executing jobs from the job queue. However, the job

will not be interrupted, and the current execution will be completed.

■ You can remove only jobs you own. If you try to remove a job that you do not

own, you receive a message that states the job is not in the job queue.

Altering a Job
To alter a job that has been submitted to the job queue, use the procedures CHANGE,
WHAT, NEXT_DATE, or INTERVAL in the DBMS_JOB package.

Restriction:
■ You can alter only jobs that you own. If you try to alter a job that you do not

own, you receive a message that states the job is not in the job queue.

CHANGE
You can alter any of the user-definable parameters associated with a job by calling

the DBMS_JOB.CHANGE procedure.

In this example, job number 14144 is altered to execute every three days:

BEGIN
DBMS_JOB.CHANGE(14144, NULL, NULL, 'SYSDATE + 3');
END;
/

If you specify NULL for WHAT, NEXT_DATE, or INTERVAL when you call the

procedure DBMS_JOB.CHANGE, the current value remains unchanged.

WHAT
You can alter the definition of a job by calling the DBMS_JOB.WHAT procedure.

The following example changes the definition for job number 14144:

BEGIN
DBMS_JOB.WHAT(14144,

Note: When you change a job’s definition using the WHAT
parameter in the procedure DBMS_JOB.CHANGE, Oracle records

your current environment. This becomes the new environment for

the job.

Managing Job Queues

10-12 Oracle9i Database Administrator’s Guide

 'DBMS_DDL.ANALYZE_OBJECT(''TABLE'',
 ''HR'', ''DEPARTMENTS'',
 ''ESTIMATE'', NULL, 50);');
END;
/

NEXT_DATE
You can alter the next execution time for a job by calling the DBMS_JOB.NEXT_
DATE procedure, as shown in the following example:

BEGIN
DBMS_JOB.NEXT_DATE(14144, SYSDATE + 4);
END;
/

INTERVAL
The following example illustrates changing the execution interval for a job by

calling the DBMS_JOB.INTERVAL procedure:

BEGIN
DBMS_JOB.INTERVAL(14144, 'NULL');
END;
/

In this case, the job will not run again after it successfully executes and it will be

deleted from the job queue.

Broken Jobs
A job is labeled as either broken or not broken. Oracle does not attempt to run

broken jobs. However, you can force a broken job to run by calling the procedure

DBMS_JOB.RUN.

How a Job Becomes Broken
When you submit a job it is considered not broken.

There are two ways a job can break:

Note: When you execute the procedure DBMS_JOB.WHAT, Oracle

records your current environment. This becomes the new

environment for the job.

Managing Job Queues

Managing Job Queues 10-13

■ Oracle has failed to successfully execute the job after 16 attempts.

■ You have marked the job as broken, using the procedure DBMS_JOB.BROKEN:

BEGIN
DBMS_JOB.BROKEN(14144, TRUE);
END;
/

Once a job has been marked as broken, Oracle will not attempt to execute the job

until you either mark the job as not broken, or force the job to be executed by calling

the procedure DBMS_JOB.RUN.

The following example marks job 14144 as not broken and sets its next execution

date to the following Monday:

BEGIN
DBMS_JOB.BROKEN(14144, FALSE, NEXT_DAY(SYSDATE, 'MONDAY'));
END;
/

Restriction:
■ You can mark as broken only jobs that you own. If you call DBMS_JOB.BROKEN

for a job that you do not own, you receive a message stating that the job is not

in the job queue.

Running Broken Jobs
If a problem has caused a job to fail 16 times, Oracle marks the job as broken. Once

you have fixed this problem, you can run the job by either:

■ Forcing the job to run by calling DBMS_JOB.RUN

■ Marking the job as not broken by calling DBMS_JOB.BROKEN and waiting for

Oracle to execute the job

If you force the job to run by calling the procedure DBMS_JOB.RUN, Oracle runs the

job immediately. If the job succeeds, then Oracle labels the job as not broken and

resets its count of the number of failed executions for the job to zero.

Once you reset a job’s broken flag (by calling either RUN or BROKEN), job execution

resumes according to the scheduled execution intervals set for the job.

Managing Job Queues

10-14 Oracle9i Database Administrator’s Guide

Forcing a Job to Execute
There may be times when you would like to manually execute a job. For example, if

you have fixed a broken job, you may want to test the job immediately by forcing it

to execute. To force a job to execute immediately, use the procedure RUN in the

DBMS_JOB package.

When you run a job using DBMS_JOB.RUN, Oracle recomputes the next execution

date. For example, if you create a job on a Monday with a NEXT_DATE value of

SYSDATE and an INTERVAL value of 'SYSDATE + 7' , the job is run every 7 days

starting on Monday. However, if you execute RUNon Wednesday, the next execution

date will be set to the next Wednesday.

The following statement runs job 14144 in your session and recomputes the next

execution date:

BEGIN
DBMS_JOB.RUN(14144);
END;
/

Restrictions:
■ You can only run jobs that you own. If you try to run a job that you do not own,

you receive a message that states the job is not in the job queue.

■ The procedure RUN contains an implicit commit. Once you execute a job using

RUN, you cannot roll back.

Terminating a Job
You can terminate a running job by marking the job as broken, identifying the

session running the job, and disconnecting that session. You should mark the job as

broken, so that Oracle does not attempt to run the job again.

After you have identified the session running the job (using V$SESSION or

V$LOCK, as shown earlier), you can disconnect the session using the SQL statement

ALTER SYSTEM. For examples of viewing information about jobs and sessions, see

the next section, "Viewing Job Queue Information".

Note: When you force a job to run, the job is executed in your

current session. Running the job reinitializes your session’s

packages.

Viewing Job Queue Information

Managing Job Queues 10-15

Viewing Job Queue Information
You can view information about jobs in the job queue using the data dictionary

views listed below:

Displaying Information About a Job
The following query creates a listing of the job number, next execution time, failure

count, and broken status for each job you have submitted:

SELECT JOB, NEXT_DATE, NEXT_SEC, FAILURES, BROKEN
 FROM DBA_JOBS;

JOB NEXT_DATE NEXT_SEC FAILURES B
------- --------- -------- -------- -
 9125 01-JUN-01 00:00:00 4 N
 14144 24-OCT-01 16:35:35 0 N
 9127 01-JUN-01 00:00:00 16 Y
3 rows selected.

Displaying Information About Running Jobs
You can also display information about only the jobs currently running. The

following query lists the session identifier, job number, user who submitted the job,

and the start times for all currently running jobs:

SELECT SID, r.JOB, LOG_USER, r.THIS_DATE, r.THIS_SEC
 FROM DBA_JOBS_RUNNING r, DBA_JOBS j
 WHERE r.JOB = j.JOB;

See Also:

■ Oracle9i Database Reference for more information on V$SESSION

■ "Terminating Sessions" on page 10-2

View Description

DBA_JOBS

ALL_JOBS

USER_JOBS

DBA view describes all the jobs in the database. ALL view
describes all jobs that are accessible to the current user. USER
view describes all jobs owned by the current user.

DBA_JOBS_RUNNING Lists all jobs in the database that are currently running. This
view can be joined with V$LOCKto identify jobs that have locks.

Viewing Job Queue Information

10-16 Oracle9i Database Administrator’s Guide

SID JOB LOG_USER THIS_DATE THIS_SEC
----- ---------- ------------- --------- --------
 12 14144 HR 24-OCT-94 17:21:24
 25 8536 QS 24-OCT-94 16:45:12
2 rows selected.

See Also: Oracle9i Database Reference for more information on data

dictionary views

Managing Tablespaces 11-1

11
Managing Tablespaces

This chapter describes the various aspects of tablespace management, and contains

the following topics:

■ Guidelines for Managing Tablespaces

■ Creating Tablespaces

■ Coalescing Free Space in Dictionary-Managed Tablespaces

■ Specifying Nonstandard Block Sizes for Tablespaces

■ Controlling the Writing of Redo Records

■ Altering Tablespace Availability

■ Using Read-Only Tablespaces

■ Dropping Tablespaces

■ Diagnosing and Repairing Locally Managed Tablespace Problems

■ Migrating the SYSTEM Tablespace to a Locally Managed Tablespace

■ Transporting Tablespaces Between Databases

■ Viewing Tablespace Information

See Also: Chapter 3, "Using Oracle-Managed Files" for

information about creating datafiles and tempfiles that are both

created and managed by the Oracle database server

Guidelines for Managing Tablespaces

11-2 Oracle9i Database Administrator’s Guide

Guidelines for Managing Tablespaces
Before working with tablespaces of an Oracle database, familiarize yourself with the

guidelines provided in the following sections:

■ Use Multiple Tablespaces

■ Specify Tablespace Default Storage Parameters

■ Assign Tablespace Quotas to Users

Use Multiple Tablespaces
Using multiple tablespaces allows you more flexibility in performing database

operations. For example, when a database has multiple tablespaces, you can

perform the following tasks:

■ Separate user data from data dictionary data to reduce contention among

dictionary objects and schema objects for the same datafiles.

■ Separate one application’s data from another’s to prevent multiple applications

from being affected if a tablespace must to be taken offline.

■ Store different tablespaces’ datafiles on separate disk drives to reduce I/O

contention.

■ Separate rollback segment data from user data, preventing a single disk failure

from causing permanent loss of data.

■ Take individual tablespaces offline while others remain online, providing better

overall availability.

■ Reserve a tablespace for a particular type of database use, such as high update

activity, read-only activity, or temporary segment storage. This enables you to

optimize usage of the tablespace.

■ Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be

simultaneously open. These limits can affect the number of tablespaces that can be

simultaneously online. To avoid exceeding your operating system’s limit, plan your

tablespaces efficiently. Create only enough tablespaces to fill your needs, and create

these tablespaces with as few files as possible. If you need to increase the size of a

See Also: Oracle9i Database Concepts for a complete discussion of

database structure, space management, tablespaces, and datafiles

Creating Tablespaces

Managing Tablespaces 11-3

tablespace, add one or two large datafiles, or create datafiles with the autoextend

option set on, rather than many small datafiles.

Review your data in light of these factors and decide how many tablespaces you

need for your database design.

Specify Tablespace Default Storage Parameters
When you create a new dictionary-managed tablespace, you can specify default

storage parameters for objects that will be created in the tablespace. Storage

parameters specified when an object is created override the default storage

parameters of the tablespace containing the object. If you do not specify storage

parameters when creating an object, the object’s segment automatically uses the

default storage parameters for the tablespace.

Set the default storage parameters for a tablespace to account for the size of a

typical object that the tablespace will contain (you estimate this size). You can

specify different storage parameters for an unusual or exceptional object when

creating that object. You can also alter your default storage parameters at a later

time.

You cannot specify default storage parameters for tablespaces that are specifically

created as locally managed.

Assign Tablespace Quotas to Users
Grant to users who will be creating tables, clusters, materialized views, indexes, and

other objects the privilege to create the object and a quota (space allowance or limit)

in the tablespace intended to hold the object’s segment. The security administrator

is responsible for granting the required privileges to create objects to database users

and for assigning tablespace quotas, as necessary, to database users.

Creating Tablespaces
Before you can create a tablespace you must create a database to contain it. The first

tablespace in any database is always the SYSTEM tablespace, and the first datafiles

Note: If you do not specify the default storage parameters for a

new dictionary-managed tablespace, Oracle chooses default storage

parameters appropriate for your operating system.

See Also: "Assigning Tablespace Quotas" on page 24-4

Creating Tablespaces

11-4 Oracle9i Database Administrator’s Guide

of any database are automatically allocated in the SYSTEM tablespace during

database creation.

The steps for creating tablespaces vary by operating system. In all cases, however,

you should create through your operating system a directory structure in which

your datafiles will be allocated. On most operating systems you indicate the size

and fully specified filenames when creating a new tablespace or altering a

tablespace by adding datafiles. In each situation Oracle automatically allocates and

formats the datafiles as specified.

To create a new tablespace, use the SQL statement CREATE TABLESPACEor

CREATE TEMPORARY TABLESPACE. You must have the CREATE TABLESPACE
system privilege to create a tablespace. Later, you can use the ALTER TABLESPACE
or ALTER DATABASE statements to alter the tablespace. You must have the ALTER
TABLESPACE or ALTER DATABASE system privilege, correspondingly.

Prior to Oracle8i, all tablespaces were created as dictionary-managed.

Dictionary-managed tablespaces rely on data dictionary tables to track space

utilization. Beginning with Oracle8i, you were able to create locally managed
tablespaces, which use bitmaps (instead of data dictionary tables) to track used and

free space. These locally managed tablespaces provide better performance and

greater ease of management.

You can also create a special type of tablespace called an undo tablespace. This

tablespace is specifically designed to contain undo records. These are records

generated by Oracle that are used to roll back, or undo, changes to the database for

recovery, read consistency, or as requested by a ROLLBACK statement. Creating

and managing undo tablespaces is the subject of Chapter 13, "Managing Undo

Space".

Permanent and temporary tablespaces are discussed in the following sections:

■ Locally Managed Tablespaces

■ Dictionary-Managed Tablespaces

Note: Beginning in Oracle9i the default for non-SYSTEM
permanent tablespaces is locally managed whenever both of the

following criteria are met:

■ The EXTENT MANAGEMENT clause is not specified

■ The COMPATIBLE initialization parameter is set to 9.0.0 or

higher

Creating Tablespaces

Managing Tablespaces 11-5

■ Temporary Tablespaces

Locally Managed Tablespaces
Locally managed tablespaces track all extent information in the tablespace itself,

using bitmaps, resulting in the following benefits:

■ Improved concurrency and speed of space operations, because space allocations

and deallocations predominantly modify locally managed resources (bitmaps

stored in header files) rather than requiring centrally managed resources such

as enqueues

■ Improved performance, because recursive operations that are sometimes

required during dictionary-managed space allocation are eliminated

■ Readable standby databases are allowed, because locally managed temporary

tablespaces (used, for example, for sorts) are locally managed and thus do not

generate any undo or redo.

■ Simplified space allocation—when the AUTOALLOCATE clause is specified,

appropriate extent size is automatically selected

■ Reduced user reliance on the data dictionary because necessary information is

stored in file headers and bitmap blocks

All tablespaces, including the SYSTEM tablespace, can be locally managed.

Additionally, the DBMS_SPACE_ADMIN package provides maintenance procedures

for locally managed tablespaces.

See Also:

■ Chapter 2, "Creating an Oracle Database" and your Oracle

installation documentation for your operating system for

information about tablespaces that are created at database

creation

■ Oracle9i SQL Reference for more information about the syntax

and use of the CREATE TABLESPACE, CREATE TEMPORARY
TABLESPACE, ALTER TABLESPACE, and ALTER DATABASE
statements.

■ "Specifying Database Block Sizes" on page 2-37 for information

about initialization parameters necessary to create tablespaces

with nonstandard block sizes

Creating Tablespaces

11-6 Oracle9i Database Administrator’s Guide

Creating a Locally Managed Tablespace
To create a locally managed tablespace, specify LOCAL in the EXTENT
MANAGEMENT clause of the CREATE TABLESPACE statement. You then have two

options. You can have Oracle manage extents for you automatically with the

AUTOALLOCATE option (the default), or you can specify that the tablespace is

managed with uniform extents of a specific size (UNIFORM SIZE).

If the tablespace is expected to contain objects of varying sizes requiring different

extent sizes and having many extents, then AUTOALLOCATEis the best choice. If it is

not important to you to have a lot of control over space allocation and deallocation,

AUTOALLOCATE presents a simplified way for you to manage a tablespace. Some

space may be wasted but the benefit of having Oracle manage your space most

likely outweighs this drawback.

On the other hand, if you want exact control over unused space, and you can

predict exactly the space to be allocated for an object or objects and the number and

size of extents, then UNIFORM is a good choice. This ensures that you will never

have an unusable amount of space in your tablespace.

See Also:

■ "Creating a Locally Managed SYSTEM Tablespace" on

page 2-26

■ "Diagnosing and Repairing Locally Managed Tablespace

Problems" on page 11-30

Creating Tablespaces

Managing Tablespaces 11-7

The following statement creates a locally managed tablespace named lmtbsb and

specifies AUTOALLOCATE:

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

AUTOALLOCATE causes the tablespace to be system managed with the smallest

extent size being 64K. There is an increase in initial space allocated for objects in

autoallocated tablespaces. This is because the objects have a minimum size of two

blocks in dictionary-managed tablespaces, whereas in autoallocated locally

managed tablespaces, the minimum object size is 64K.

Alternatively, this tablespace could be created specifying the UNIFORM clause. If

UNIFORM SIZE is specified, then the tablespace is managed with uniform size

extents of the specified SIZE . The default SIZE is 1M.

Note: When you do not explicitly specify the type of extent

management, and the default is to create a locally managed

tablespace, Oracle determines extent management as described

below.

If your CREATE TABLESPACE statement does not include a

DEFAULT storage clause, then Oracle creates a locally managed

autoallocated tablespace.

If your CREATE TABLESPACE statement does include a DEFAULT
storage clause, then Oracle considers the following:

■ If you specified the MINIMUM EXTENT clause, Oracle evaluates

whether the values of MINIMUM EXTENT, INITIAL , and NEXT
are equal and the value of PCTINCREASE is 0. If so, Oracle

creates a locally managed uniform tablespace with extent size =

INITIAL . If the MINIMUM EXTENT, INITIAL , and NEXT
parameters are not equal, or if PCTINCREASE is not 0, Oracle

ignores any extent storage parameters you may specify and

creates a locally managed, autoallocated tablespace.

■ If you did not specify MINIMUM EXTENT clause, Oracle

evaluates only whether the storage values of INITIAL and

NEXT are equal and PCTINCREASE is 0. If so, the tablespace is

locally managed and uniform. Otherwise, the tablespace is

locally managed and autoallocated.

Creating Tablespaces

11-8 Oracle9i Database Administrator’s Guide

In the following example, a 128K extent size is specified. Each 128K extent (which, if

the tablespace block size is 2K, is equivalent to 64 Oracle blocks) is represented by a

bit in the extent bitmap for this file.

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

You cannot specify the DEFAULT storage clause, MINIMUM EXTENT, or TEMPORARY
when you explicitly specify EXTENT MANAGEMENT LOCAL. If you want to create a

temporary locally managed tablespace, use the CREATE TEMPORARY TABLESPACE
statement.

Specifying Segment Space Management in Locally Managed Tablespaces
When you create a locally managed tablespace using the CREATE TABLESPACE
statement, the SEGMENT SPACE MANAGEMENT clause allows you to specify how

free and used space within a segment is to be managed. Your choices are:

■ MANUAL

Specifying MANUAL tells Oracle that you want to use free lists for managing free

space within segments. Free lists are lists of data blocks that have space

available for inserting rows. This form of managing space within segments is

called manual segment-space management because of the need to specify and

tune the PCTUSED, FREELISTS, and FREELISTS GROUPS storage parameters

for schema objects created in the tablespace.

MANUAL is the default.

■ AUTO

This keyword tells Oracle that you want to use bitmaps to manage the free

space within segments. A bitmap, in this case, is a map that describes the status

of each data block within a segment with respect to the amount of space in the

block available for inserting rows. As more or less space becomes available in a

Note: When you allocate a datafile for a locally managed

tablespace, you should allow space for metadata used for space

management (the extent bitmap or space header segment) which

are part of user space. For example, if you do not specify the SIZE
parameter in the extent management clause when UNIFORM is
specified, the default extent size is 1MB. Therefore, in this case, the

size specified for the datafile must be larger (at least one block plus

space for the bitmap) than 1MB.

Creating Tablespaces

Managing Tablespaces 11-9

data block, its new state is reflected in the bitmap. Bitmaps allow Oracle to

manage free space more automatically, and thus, this form of space

management is called automatic segment-space management.

Automatic segment-space management is a simpler and more efficient way of

managing space within a segment. It completely eliminates any need to specify and

tune the PCTUSED, FREELISTS, and FREELISTS GROUPS storage parameters for

schema objects created in the tablespace. If such attributes should be specified, they

are ignored.

Automatic segment-space management delivers better space utilization than

manual segment-space management, and it is self tuning in that it scales with

increasing the number of users, as well as instances. For a Real Application Clusters

environment, automatic segment-space management allows for a dynamic affinity

of space to instances, thus avoiding the hard partitioning of space inherent with

using free list groups.

For many standard workloads, application performance when using automatic

segment space management is better than the performance of a well tuned

application using manual segment-space management.

The following statement creates tablespace lmtbsb with automatic segment-space

management:

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

Your specification at tablespace creation time of your method for managing

available space in segments, applies to all segments subsequently created in the

tablespace. Also, your choice of method cannot be subsequently altered. Only

permanent, locally managed tablespaces can specify automatic segment-space

management.

Altering a Locally Managed Tablespace
You cannot alter a locally managed tablespace to a locally managed temporary

tablespace, nor can you change its method of segment space management.

Some reasons for using the ALTER TABLESPACE statement for locally managed

tablespaces include:

■ Adding a datafile. For example:

ALTER TABLESPACE lmtbsb
 ADD DATAFILE '/u02/oracle/data/lmtbsb02.dbf' SIZE 1M;

Creating Tablespaces

11-10 Oracle9i Database Administrator’s Guide

■ Altering a tablespace’s availability (ONLINE/OFFLINE). See "Altering

Tablespace Availability" on page 11-21.

■ Making a tablespace read-only or read-write. See "Using Read-Only

Tablespaces" on page 11-24.

■ Renaming a datafile, or enabling/disabling the autoextension of the size of a

datafile in the tablespace. See Chapter 12, "Managing Datafiles".

Coalescing free extents is unnecessary for locally managed tablespaces.

Dictionary-Managed Tablespaces
Starting with Oracle9i, the default for extent management when creating a

tablespace is locally managed. However, you can explicitly specify that you want to

create a dictionary-managed tablespace. For dictionary-managed tablespaces,

Oracle updates the appropriate tables in the data dictionary whenever an extent is

allocated, or freed for reuse.

Creating a Dictionary-Managed Tablespace
As an example, the following statement creates the tablespace tbsa , with the

following characteristics:

■ The data of the new tablespace is contained in a single datafile, 50M in size.

■ The tablespace is explicitly created as a dictionary-managed tablespace by

specifying EXTENT MANAGEMENT DICTIONARY.

■ The default storage parameters for any segments created in this tablespace are

specified.

The following statement creates the tablespace tbsb :

CREATE TABLESPACE tbsb
 DATAFILE '/u02/oracle/data/tbsa01.dbf' SIZE 50M
 EXTENT MANAGEMENT DICTIONARY
 DEFAULT STORAGE (
 INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 50
 PCTINCREASE 0);

The following parameters, included in the above example, determine segment

storage allocation in the tablespace. These parameters affect both how long it takes

Creating Tablespaces

Managing Tablespaces 11-11

to access data stored in the database and how efficiently space in the database is

used. They are referred to as storage parameters.

Another parameter on the CREATE TABLESPACEstatement, MIMIMUM EXTENT,
also influences segment allocation. If specified, it ensures that all free and allocated

extents in the tablespace are at least as large as, and a multiple of, a specified

number of bytes (K or M). This provides one means of controlling free space

fragmentation in the tablespace.

Altering a Dictionary-Managed Tablespace
One reason for using an ALTER TABLESPACE statement is to add a datafile. The

following statement creates a new datafile for the tbsa tablespace:

ALTER TABLESPACE tbsa
 ADD DATAFILE '/u02/oracle/data/tbsa02.dbf' SIZE 1M;

You might also want to change the default storage parameters.

You can change the default storage parameters of a tablespace using the ALTER
TABLESPACE statement, as illustrated in the following example:

Storage Parameter Description

INITIAL Defines the size in bytes (K or M) of the first extent in the
segment

NEXT Defines the size of the second extent in bytes (K or M)

PCTINCREASE Specifies the percent by which each extent, after the second
(NEXT) extent, grows

MINEXTENTS Specifies the number of extents allocated when a segment is first
created in the tablespace

MAXEXTENTS Determines the maximum number of extents that a segment can
have. Can also be specified as UNLIMITED.

See Also:

■ "Setting Storage Parameters" on page 14-8

■ Oracle9i Database Performance Tuning Guide and Reference for

more discussion of the effects of these parameters

■ Oracle9i SQL Reference for a complete description of storage

parameters

Creating Tablespaces

11-12 Oracle9i Database Administrator’s Guide

ALTER TABLESPACE users
 DEFAULT STORAGE (
 NEXT 100K
 MAXEXTENTS 20
 PCTINCREASE 0);

New values for the default storage parameters of a tablespace affect only future

objects that are created, or extents allocated for existing segments within the

tablespace.

Other reasons for issuing an ALTER TABLESPACE statement include, but are not

limited to:

■ Coalescing free space in a tablespace. See "Coalescing Free Space in

Dictionary-Managed Tablespaces" on page 11-16.

■ Altering a tablespace’s availability (ONLINE/OFFLINE). See "Altering

Tablespace Availability" on page 11-21.

■ Making a tablespace read-only or read-write. See "Using Read-Only

Tablespaces" on page 11-24.

■ Adding or renaming a datafile, or enabling/disabling the autoextension of the

size of a datafile in the tablespace. See Chapter 12, "Managing Datafiles".

Temporary Tablespaces
To improve the concurrence of multiple sort operations, reduce their overhead, or

avoid Oracle space management operations altogether, create temporary
tablespaces. A temporary tablespace can be shared by multiple users and can be

assigned to users with the CREATE USER statement when you create users in the

database.

Within a temporary tablespace, all sort operations for a given instance and

tablespace share a single sort segment. Sort segments exist for every instance that

performs sort operations within a given tablespace. The sort segment is created by

the first statement that uses a temporary tablespace for sorting, after startup, and is

released only at shutdown. An extent cannot be shared by multiple transactions.

You can view the allocation and deallocation of space in a temporary tablespace

sort segment using the V$SORT_SEGMENT view. The V$TEMPSEG_USAGE view

identifies the current sort users in those segments.

You cannot explicitly create objects in a temporary tablespace.

Creating Tablespaces

Managing Tablespaces 11-13

Creating a Locally Managed Temporary Tablespace
Because space management is much simpler and more efficient in locally managed

tablespaces, they are ideally suited for temporary tablespaces. Locally managed

temporary tablespaces use tempfiles, which do not modify data outside of the

temporary tablespace or generate any redo for temporary tablespace data.

Therefore, they can be used in standby or read-only databases.

You also use different views for viewing information about tempfiles than you

would for datafiles. The V$TEMPFILE and DBA_TEMP_FILES views are analogous

to the V$DATAFILE and DBA_DATA_FILES views.

To create a locally managed temporary tablespace, you use the CREATE
TEMPORARY TABLESPACE statement, which requires that you have the CREATE
TABLESPACE system privilege.

The following statement creates a temporary tablespace in which each extent is

16M. Each 16M extent (which is the equivalent of 8000 blocks when the standard

block size is 2K) is represented by a bit in the bitmap for the file.

CREATE TEMPORARY TABLESPACE lmtemp TEMPFILE '/u02/oracle/data/lmtemp01.dbf'
 SIZE 20M REUSE
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

The extent management clause is optional for temporary tablespaces because all

temporary tablespaces are created with locally managed extents of a uniform size.

The Oracle default for SIZE is 1M. But if you want to specify another value for SIZE,

you can do so as shown in the above statement.

The AUTOALLOCATE clause is not allowed for temporary tablespaces.

See Also:

■ Chapter 24, "Managing Users and Resources" for information

about assigning temporary tablespaces to users

■ Oracle9i Database Reference for more information about the

V$SORT_SEGMENT and V$TEMPSEG_USAGE views

■ Oracle9i Database Performance Tuning Guide and Reference for a

discussion on tuning sorts

Creating Tablespaces

11-14 Oracle9i Database Administrator’s Guide

Altering a Locally Managed Temporary Tablespace
Except for adding a tempfile, as illustrated in the following example, you cannot

use the ALTER TABLESPACE statement for a locally managed temporary

tablespace.

ALTER TABLESPACE lmtemp
 ADD TEMPFILE '/u02/oracle/data/lmtemp02.dbf' SIZE 2M REUSE;

However, the ALTER DATABASE statement can be used to alter tempfiles.

The following statements take offline and bring online temporary files:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' OFFLINE;
ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' ONLINE;

The following statement resizes a temporary file:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' RESIZE 4M;

The following statement drops a temporary file and deletes the operating system

file:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' DROP
 INCLUDING DATAFILES;

Note: On some operating systems, Oracle does not allocate space

for the tempfile until the tempfile blocks are actually accessed. This

delay in space allocation results in faster creation and resizing of

tempfiles, but it requires that sufficient disk space is available when

the tempfiles are later used. Please refer to your operating system

documentation to determine whether Oracle allocates tempfile

space in this way on your system.

Note: You cannot use the ALTER TABLESPACE statement, with

the TEMPORARY keyword, to change a locally managed permanent

tablespace into a locally managed temporary tablespace. You must

use the CREATE TEMPORARY TABLESPACE statement to create a

locally managed temporary tablespace.

Creating Tablespaces

Managing Tablespaces 11-15

The tablespace to which this tempfile belonged remains. A message is written to the

alert file for the datafile that was deleted. If an operating system error prevents the

deletion of the file, the statement still succeeds, but a message describing the error is

written to the alert file.

It is also possible, but not shown, to use the ALTER DATABASE statement to enable

or disable the automatic extension of an existing tempfile, and to rename (RENAME
FILE) a tempfile.

Creating a Dictionary-Managed Temporary Tablespace
To identify a tablespace as temporary during tablespace creation, specify the

TEMPORARY keyword on the CREATE TABLESPACE statement. You cannot specify

EXTENT MANAGEMENT LOCAL for a temporary tablespace created in this fashion.

To create a locally managed temporary tablespace, use the CREATE TEMPORARY
TABLESPACE statement, which is the preferred method of creating a temporary

tablespace.

The following statement creates a temporary dictionary-managed tablespace:

CREATE TABLESPACE sort
 DATAFILE '/u02/oracle/data/sort01.dbf' SIZE 50M
 DEFAULT STORAGE (
 INITIAL 2M
 NEXT 2M
 MINEXTENTS 1
 PCTINCREASE 0)
 EXTENT MANAGEMENT DICTIONARY
 TEMPORARY;

Altering a Dictionary-Managed Temporary Tablespace
You can issue the ALTER TABLESPACE statement against a dictionary-managed

temporary tablespace using many of the same keywords and clauses as for a

permanent dictionary-managed tablespace. Any restrictions are noted in the

Oracle9i SQL Reference.

You can change an existing permanent dictionary-managed tablespace to a

temporary tablespace, using the ALTER TABLESPACE statement. For example:

Note: When you take dictionary-managed temporary tablespaces

offline with the ALTER TABLESPACE ... OFFLINE statement,

returning them online does not affect their temporary status.

Coalescing Free Space in Dictionary-Managed Tablespaces

11-16 Oracle9i Database Administrator’s Guide

ALTER TABLESPACE tbsa TEMPORARY;

Coalescing Free Space in Dictionary-Managed Tablespaces
Over time, the free space in a dictionary-managed tablespace can become

fragmented, making it difficult to allocate new extents. Ways of defragmenting this

free space are discussed in this section.

The following topics are contained in this section:

■ How Oracle Coalesces Free Space

■ Manually Coalescing Free Space

■ Monitoring Free Space

How Oracle Coalesces Free Space
A free extent in a dictionary-managed tablespace is comprised of a collection of

contiguous free blocks. When allocating new extents to a tablespace segment, the

free extent closest in size to the required extent is used. In some cases, when

segments are dropped, their extents are deallocated and marked as free, but any

adjacent free extents are not immediately recombined into larger free extents. The

result is fragmentation that makes allocation of larger extents more difficult.

This fragmentation is addressed in several ways:

■ When attempting to allocate a new extent for a segment, Oracle first tries to find

a free extent large enough for the new extent. If no free extent that is large

enough is found, Oracle then coalesces adjacent free extents in the tablespace

and looks again. This coalescing is always performed by Oracle whenever it

cannot find a free extent into which the new extent will fit.

■ The SMON background process periodically coalesces neighboring free extents

when the PCTINCREASE value for a tablespace in nonzero. If you set

PCTINCREASE=0, no coalescing of free extents will occur. If you are concerned

about the overhead of SMON’s ongoing coalescing, an alternative is to set

PCTINCREASE=0, and periodically coalesce free space manually.

■ When a segment is dropped or truncated, a limited form of coalescing is

performed if the PCTINCREASE value for the segment is not zero. This is done

even if PCTINCREASE=0 for the tablespace containing the segment.

■ You can use the ALTER TABLESPACE ... COALESCE statement to manually

coalesce any adjacent free extents.

Coalescing Free Space in Dictionary-Managed Tablespaces

Managing Tablespaces 11-17

The process of coalescing free space is illustrated in the following figure.

Figure 11–1 Coalescing Free Space

Manually Coalescing Free Space
If you find that fragmentation of space in a tablespace is high (contiguous space on

your disk appears as noncontiguous), you can coalesce any free space using the

ALTER TABLESPACE ... COALESCE statement. You must have the ALTER
TABLESPACE system privilege to coalesce tablespaces.

You might want to use this statement if PCTINCREASE=0, or you can use it to

supplement SMON and extent allocation coalescing. If all extents within the

tablespace are of the same size, coalescing is not necessary. This would be the case if

the default PCTINCREASE value for the tablespace were set to zero, all segments

used the default storage parameters of the tablespace, and

INITIAL=NEXT=MINIMUM EXTENT .

The following statement coalesces free space in the tablespace tabsp_4 :

ALTER TABLESPACE tabsp_4 COALESCE;

Note: Coalescing free space is not necessary for locally managed

tablespaces because bitmaps automatically track adjacent free

space.

See Also: Oracle9i Database Concepts for detailed information on

allocating extents and coalescing free space

U

U

F

F

U

U

F

F U F

FU

U

FF U

F

TABSP_2

Input

Output

F = free extent
U = used extent

F F

Coalescing Free Space in Dictionary-Managed Tablespaces

11-18 Oracle9i Database Administrator’s Guide

Like other options of the ALTER TABLESPACE statement, the COALESCE option is

exclusive: when specified, it must be the only option.

This statement does not coalesce free extents that are separated by data extents. If

you observe that there are many free extents located between data extents, you

must reorganize the tablespace (for example, by exporting and importing its data)

to create useful free space extents.

Monitoring Free Space
You can use the following views for monitoring free space in a tablespace:

■ DBA_FREE_SPACE

■ DBA_FREE_SPACE_COALESCED

The following statement displays the free space in tablespace tabsp_4 :

SELECT BLOCK_ID, BYTES, BLOCKS
 FROM DBA_FREE_SPACE
 WHERE TABLESPACE_NAME = 'TABSP_4'
 ORDER BY BLOCK_ID;

BLOCK_ID BYTES BLOCKS
---------- ---------- ----------
 2 16384 2
 4 16384 2
 6 81920 10
 16 16384 2
 27 16384 2
 29 16384 2
 31 16384 2
 33 16384 2
 35 16384 2
 37 16384 2
 39 8192 1
 40 8192 1
 41 196608 24
13 rows selected.

This view shows that there is adjacent free space in tabsp_4 (for example, blocks

starting with BLOCK_IDs 2, 4, 6, 16) that has not been coalesced. After coalescing

the tablespace using the ALTER TABLESPACE statement shown previously, the

results of this query would read:

BLOCK_ID BYTES BLOCKS

Specifying Nonstandard Block Sizes for Tablespaces

Managing Tablespaces 11-19

---------- ---------- ----------
 2 131072 16
 27 311296 38
2 rows selected.

The DBA_FREE_SPACE_COALESCED view displays statistics for coalescing activity.

It is also useful in determining if you need to coalesce space.

Specifying Nonstandard Block Sizes for Tablespaces
You can create tablespaces of different block sizes than the standard database block

size specified by the DB_BLOCK_SIZE initialization parameter. This feature enables

the transporting of tablespaces with unlike block sizes between databases.

The BLOCKSIZE clause of the CREATE TABLESPACE statement enables you to

create a tablespace with a block size other than the database’s standard block size.

However, your buffer cache in SGA memory must be configured for the

nonstandard block sizes.

 The following statement creates tablespace lmtbsb , but specifies a block size that

differs from the standard database block size (as specified by the DB_BLOCK_SIZE
initialization parameter):

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;
 BLOCKSIZE 8K;

See Also: Oracle9i Database Reference for more information about

these views

Note: In order for the BLOCKSIZE clause to succeed, you must

have the DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE
initialization parameter set, and the integer you specify in this

clause must correspond with the setting of one DB_nK_CACHE_
SIZE parameter setting. Although redundant, specifying a

BLOCKSIZE equal to the standard block size, as specified by the

DB_BLOCK_SIZE initialization parameter, is allowed.

For information about these parameters, see "Setting the Buffer

Cache Initialization Parameters" on page 2-40.

Controlling the Writing of Redo Records

11-20 Oracle9i Database Administrator’s Guide

Controlling the Writing of Redo Records
For some database operations, it is possible to control whether redo records are

generated. Suppressing redo generation can improve performance, and may be

appropriate for easily recoverable operations. This might include a CREATE
TABLE...AS SELECT statement, where the operation can be repeated if there is a

database or instance failure. Without redo, no media recovery is possible.

Specify the NOLOGGING clause in the CREATE TABLESPACE statement if you wish

to suppress redo when these operations are performed for objects within the

tablespace. If you do not include this clause, or specify LOGGING instead, then redo

is generated when changes are made to objects in the tablespace. Redo is never

generated for temporary segments or in temporary tablespaces, regardless of the

logging attribute.

The logging attribute specified at the tablespace level is the default attribute for

objects created within the tablespace. You can override this default logging attribute

by specifying LOGGING or NOLOGGING at the schema object level; for example, in a

CREATE TABLE statement.

In the case where you have a standby database, specifying NOLOGGING causes

problems with the availablity and accuracy of the standby database. To overcome

this problem, you can specify FORCE LOGGING mode. When you include the

FORCE LOGGING clause in the CREATE TABLESPACE statement, you force the

generation of redo records for all operations that make changes to objects in a

tablespace. This overrides any specification made at the object level.

If you transport a tablespace that is in FORCE LOGGING mode to another database,

the new tablespace will not maintain the FORCE LOGGING mode.

See Also:

■ "Specifying Database Block Sizes" on page 2-37

■ "Transporting Tablespaces Between Databases" on page 11-34

Altering Tablespace Availability

Managing Tablespaces 11-21

Altering Tablespace Availability
You can take an online tablespace offline so that this portion of the database is

temporarily unavailable for general use. The rest of the database is open and

available for users to access data. Conversely, you can bring an offline tablespace

online to make the schema objects within the tablespace available to database users.

The database must be open.

To alter the availability of a tablespace, use the SQL statement ALTER
TABLESPACE. You must have the ALTER TABLESPACE or MANAGE TABLESPACE
system privilege to perform this action.

You can also take all of the datafiles or tempfiles in a tablespace offline, and bring

them back online, without affecting the OFFLINE or ONLINE status of the

tablespace itself.

Taking Tablespaces Offline
You may want to take a tablespace offline for any of the following reasons:

■ To make a portion of the database unavailable while allowing normal access to

the remainder of the database

■ To perform an offline tablespace backup (even though a tablespace can be

backed up while online and in use)

■ To make an application and its group of tables temporarily unavailable while

updating or maintaining the application

When a tablespace is taken offline, Oracle takes all the associated files offline. The

SYSTEM tablespace can never be taken offline.

You can specify any of the following options when taking a tablespace offline:

See Also:

■ Oracle9i Database Concepts for additional information about

NOLOGGING mode

■ Oracle9i SQL Reference for information about operations that

can be done in NOLOGGING mode

■ "Specifying FORCE LOGGING Mode" on page 2-29 for more

information about FORCE LOGGING mode and for information

about the effects of the FORCE LOGGING clause used with the

CREATE DATABASE statement

Altering Tablespace Availability

11-22 Oracle9i Database Administrator’s Guide

Specify TEMPORARY only when you cannot take the tablespace offline normally. In

this case, only the files taken offline because of errors need to be recovered before

the tablespace can be brought online. Specify IMMEDIATE only after trying both the

normal and temporary options.

The following example takes the users tablespace offline normally:

Option Description

NORMAL A tablespace can be taken offline normally if no error conditions
exist for any of the datafiles of the tablespace. No datafile in the
tablespace can be currently offline as the result of a write error.
When OFFLINE NORMALis specified, Oracle takes a checkpoint
for all datafiles of the tablespace as it takes them offline.
NORMAL is the default.

TEMPORARY A tablespace can be taken offline temporarily, even if there are
error conditions for one or more files of the tablespace. When
OFFLINE TEMPORARY is specified, Oracle takes offline the
datafiles that are not already offline, checkpointing them as it
does so.

If no files are offline, but you use the temporary option, media
recovery is not required to bring the tablespace back online.
However, if one or more files of the tablespace are offline
because of write errors, and you take the tablespace offline
temporarily, the tablespace requires recovery before you can
bring it back online.

IMMEDIATE A tablespace can be taken offline immediately, without Oracle
taking a checkpoint on any of the datafiles. When you specify
OFFLINE IMMEDIATE , media recovery for the tablespace is
required before the tablespace can be brought online. You
cannot take a tablespace offline immediately if the database is
running in NOARCHIVELOG mode.

FOR RECOVER Takes the database tablespaces in the recovery set offline for
tablespace point-in-time recovery. For additional information,
see Oracle9i User-Managed Backup and Recovery Guide.

Caution: If you must take a tablespace offline, use the NORMAL
option (the default) if possible. This guarantees that the tablespace

will not require recovery to come back online. It will not require

recovery, even if after incomplete recovery you reset the redo log

sequence using an ALTER DATABASE OPEN RESETLOGS
statement.

Altering Tablespace Availability

Managing Tablespaces 11-23

ALTER TABLESPACE users OFFLINE NORMAL;

Before taking an online tablespace offline, consider taking the following actions:

■ Verify that the tablespace contains no active rollback segments. Such a

tablespace cannot be taken offline.

■ You may want to alter the tablespace allocation of any users who have been

assigned the tablespace as either a default or temporary tablespace. This is

advisable because they will not be able to access objects or sort areas in the

tablespace while it is offline.

Bringing Tablespaces Online
You can bring any tablespace in an Oracle database online whenever the database is

open. A tablespace is normally online so that the data contained within it is

available to database users.

The following statement brings the users tablespace online:

ALTER TABLESPACE users ONLINE;

Altering the Availability of Datafiles or Tempfiles
Clauses of the ALTER TABLESPACE statement enable you to change the online or

offline status of all of the datafiles or tempfiles within a tablespace. Specifically, the

statements that affect online/offline status are:

■ ALTER TABLESPACE ... DATAFILE {ONLINE|OFFLINE}

See Also: "Taking Rollback Segments Offline" on page 13-23

Note: If a tablespace to be brought online was not taken offline

"cleanly" (that is, using the NORMAL option of the ALTER
TABLESPACE OFFLINE statement), you must first perform media

recovery on the tablespace before bringing it online. Otherwise,

Oracle returns an error and the tablespace remains offline.

Depending upon your archiving strategy, refer to one of the

following books for information about performing media recovery:

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

Using Read-Only Tablespaces

11-24 Oracle9i Database Administrator’s Guide

■ ALTER TABLESPACE ... TEMPFILE {ONLINE|OFFLINE}

You are required only to enter the tablespace name, not the individual datafiles or

tempfiles. All of the datafiles or tempfiles are affected, but the online/offline status

of the tablespace itself is not changed.

In most cases the above ALTER TABLESPACE statements can be issued whenever

the database is mounted, even if it is not open. The database must not be open if the

tablespace is the SYSTEM tablespace, an undo tablespace, or the default temporary

tablespace. The ALTER DATABASE DATAFILE and ALTER DATABASE TEMPFILE
statements also have ONLINE/OFFLINE clauses, however in those statements

require that you enter all of the filenames for the tablespace.

The syntax is different from the ALTER TABLESPACE ... ONLINE|OFFLINE
statement that alters a tablespace’s availability, because that is a different operation.

The ALTER TABLESPACE statement takes datafiles offline as well as the tablespace,

but it cannot be used to alter the status of a temporary tablespace or its tempfile(s).

Using Read-Only Tablespaces
Making a tablespace read-only prevents write operations on the datafiles in the

tablespace. The primary purpose of read-only tablespaces is to eliminate the need to

perform backup and recovery of large, static portions of a database, but they also

provide a means of completely protecting historical data so that no one can modify

the data after the fact. Making a tablespace read-only prevents updates on all tables

in the tablespace, regardless of a user’s update privilege level.

You can drop items, such as tables or indexes, from a read-only tablespace, but you

cannot create or alter objects in the tablespace. You can execute statements that

update the file description in the data dictionary, such as ALTER TABLE ... ADD
or ALTER TABLE ... MODIFY , but you will not be able to utilize the new

description until the tablespace is made read-write.

Read-only tablespaces can be transported to other databases. And, since read-only

tablespaces can never be updated, they can reside on CD-ROM or WORM (Write

Once-Read Many) devices.

Note: Making a tablespace read-only cannot in itself be used to

satisfy archiving or data publishing requirements, because the

tablespace can only be brought online in the database in which it

was created. However, you can meet such requirements by using

the transportable tablespace feature.

Using Read-Only Tablespaces

Managing Tablespaces 11-25

The following topics are discussed in this section:

■ Making a Tablespace Read-Only

■ Making a Read-Only Tablespace Writable

■ Creating a Read-Only Tablespace on a WORM Device

■ Delaying the Opening of Datafiles in Read Only Tablespaces

Making a Tablespace Read-Only
All tablespaces are initially created as read-write. Use the READ ONLY clause in the

ALTER TABLESPACE statement to change a tablespace to read-only. You must have

the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

Before you can make a tablespace read-only, the following conditions must be met.

■ The tablespace must be online.

This is necessary to ensure that there is no undo information that needs to be

applied to the tablespace.

■ The tablespace must not contain any active rollback segments (this would be

the normal situation, as a data tablespace should not contain rollback

segments).

For this reason, the SYSTEM tablespace can never be made read-only, since it

contains the SYSTEM rollback segment. Additionally, because any rollback

segments of a read-only tablespace would not be accessible, you would have to

drop the rollback segments before you made a tablespace read-only.

■ The tablespace must not currently be involved in an online backup, since the

end of a backup updates the header file of all datafiles in the tablespace.

For better performance while accessing data in a read-only tablespace, you can issue

a query that accesses all of the blocks of the tables in the tablespace just before

making it read-only. A simple query, such as SELECT COUNT (*) , executed

against each table ensures that the data blocks in the tablespace can be subsequently

accessed most efficiently. This eliminates the need for Oracle to check the status of

the transactions that most recently modified the blocks.

See Also:

■ Oracle9i Database Concepts for more information about

read-only tablespaces

■ "Transporting Tablespaces Between Databases" on page 11-34

Using Read-Only Tablespaces

11-26 Oracle9i Database Administrator’s Guide

The following statement makes the flights tablespace read-only:

ALTER TABLESPACE flights READ ONLY;

You do not have to wait for transactions to complete before issuing the ALTER
TABLESPACE ... READ ONLYstatement. When the statement is issued, the target

tablespace goes into a transitional read-only mode in which no further write

operations (DML statements) are allowed against the tablespace. Existing

transactions that modified the tablespace are allowed to commit or rollback. Once

all transactions (in the database) have completed, the tablespace becomes read-only.

If you find it is taking a long time for the tablespace to quiesce, it is possible to

identify the transactions which are preventing the read-only state from taking

effect. The owners of these transactions can be notified and a decision can be made

to terminate the transactions, if necessary. The following example illustrates how

you might identify the blocking transactions:

■ Identify the transaction entry for the ALTER TABLESPACE ... READ ONLY
statement and note its session address (saddr).

SELECT SQL_TEXT, SADDR
 FROM V$SQLAREA,V$SESSION
 WHERE V$SQLAREA.ADDRESS = V$SESSION.SQL_ADDRESS
 AND SQL_TEXT LIKE 'alter tablespace%';

SQL_TEXT SADDR
-- --------
alter tablespace tbs1 read only 80034AF0

■ The start SCN of each active transaction is stored in the V$TRANSACTION view.

Displaying this view sorted by ascending start SCN lists the transactions in

execution order. Since you know the session address of the transaction entry for

the read-only statement, it can be located in the V$TRANSACTION view. All

transactions with lesser start SCN can potentially hold up the quiesce and

subsequent read-only state of the tablespace.

SELECT SES_ADDR, START_SCNB
 FROM V$TRANSACTION

Note: This transitional read-only state only occurs if the value of

the initialization parameter COMPATIBLE is 8.1.0 or greater. If this

parameter is set to a value less than 8.1.0, the ALTER TABLESPACE
... READ ONLY statement fails if any active transactions exist.

Using Read-Only Tablespaces

Managing Tablespaces 11-27

 ORDER BY START_SCNB;

SES_ADDR START_SCNB
-------- ----------
800352A0 3621 --> waiting on this txn
80035A50 3623 --> waiting on this txn
80034AF0 3628 --> this is the ALTER TABLESPACE statement
80037910 3629 --> don’t care about this txn

After making the tablespace read-only, it is advisable to back it up immediately. As

long as the tablespace remains read-only, no further backups of the tablespace are

necessary since no changes can be made to it.

Making a Read-Only Tablespace Writable
Use the READ WRITE keywords in the ALTER TABLESPACE statement to change a

tablespace to allow write operations. You must have the ALTER TABLESPACE or

MANAGE TABLESPACE system privilege.

A prerequisite to making the tablespace read-write is that all of the datafiles in the

tablespace, as well as the tablespace itself, must be online. Use the DATAFILE ...
ONLINE clause of the ALTER DATABASE statement to bring a datafile online. The

V$DATAFILE view lists the current status of datafiles.

The following statement makes the flights tablespace writable:

ALTER TABLESPACE flights READ WRITE;

Making a read-only tablespace writable updates the control file entry for the

datafiles, so that you can use the read-only version of the datafiles as a starting

point for recovery.

Creating a Read-Only Tablespace on a WORM Device
Follow these steps to create a read-only tablespace on a CD-ROM or WORM (Write

Once-Read Many) device.

See Also: Depending upon your backup and recovery strategy,

refer to one of the following books for information about

recovering a database with read-only datafiles:

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

Using Read-Only Tablespaces

11-28 Oracle9i Database Administrator’s Guide

1. Create a writable tablespace on another device. Create the objects that belong in

the tablespace and insert your data.

2. Alter the tablespace to make it read-only.

3. Copy the datafiles of the tablespace onto the WORM device. Use operating

system commands to copy the files.

4. Take the tablespace offline.

5. Rename the datafiles to coincide with the names of the datafiles you copied

onto your WORM device. Use ALTER TABLESPACE with the RENAME
DATAFILE clause. Renaming the datafiles changes their names in the control

file.

6. Bring the tablespace back online.

Delaying the Opening of Datafiles in Read Only Tablespaces
When substantial portions of a very large database are stored in read-only

tablespaces that are located on slow-access devices or hierarchical storage, you

should consider setting the READ_ONLY_OPEN_DELAYEDinitialization parameter to

TRUE. This speeds certain operations, primarily opening the database, by causing

datafiles in read-only tablespaces to be accessed for the first time only when an

attempt is made to read data stored within them.

Setting READ_ONLY_OPEN_DELAYED=TRUE has the following side-effects:

■ A missing or bad read-only file is not detected at open time. It is only

discovered when there is an attempt to access it.

■ ALTER SYSTEM CHECK DATAFILES does not check read-only files.

■ ALTER TABLESPACE ... ONLINE and ALTER DATABASE DATAFILE ...
ONLINE does not check read-only files. They are checked only upon the first

access.

■ V$RECOVER_FILE, V$BACKUP, and V$DATAFILE_HEADER do not access

read-only files. Read-only files are indicated in the results list with the error

"DELAYED OPEN", with zeroes for the values of other columns.

■ V$DATAFILE does not access read-only files. Read-only files have a size of "0"

listed.

■ V$RECOVER_LOG does not access read-only files. Logs they could need for

recovery are not added to the list.

Dropping Tablespaces

Managing Tablespaces 11-29

■ ALTER DATABASE NOARCHIVELOG does not access read-only files.It proceeds

even if there is a read-only file that requires recovery.

Dropping Tablespaces
You can drop a tablespace and its contents (the segments contained in the

tablespace) from the database if the tablespace and its contents are no longer

required. Any tablespace in an Oracle database, except the SYSTEM tablespace, can

be dropped. You must have the DROP TABLESPACEsystem privilege to drop a

tablespace.

When you drop a tablespace, the file pointers in the control file of the associated

database are removed. You can optionally direct Oracle to delete the operating

system files (datafiles) that constituted the dropped tablespace. If you do not direct

Oracle to delete the datafiles at the same time that it deletes the tablespace, you

must later use the appropriate commands of your operating system to delete them.

Notes:

■ RECOVER DATABASE and ALTER DATABASE OPEN
RESETLOGScontinue to access all read-only datafiles

regardless of the parameter value. If you want to avoid

accessing read-only files for these operations, those files should

be taken offline.

■ If a backup control file is used, the read-only status of some

files may be inaccurate. This can cause some of these operations

to return unexpected results. Care should be taken in this

situation.

Caution: Once a tablespace has been dropped, the tablespace’s

data is not recoverable. Therefore, make sure that all data contained

in a tablespace to be dropped will not be required in the future.

Also, immediately before and after dropping a tablespace from a

database, back up the database completely. This is strongly
recommended so that you can recover the database if you mistakenly

drop a tablespace, or if the database experiences a problem in the future

after the tablespace has been dropped.

Diagnosing and Repairing Locally Managed Tablespace Problems

11-30 Oracle9i Database Administrator’s Guide

You cannot drop a tablespace that contains any active segments. For example, if a

table in the tablespace is currently being used or the tablespace contains an active

rollback segment, you cannot drop the tablespace. The tablespace can be online or

offline, but it is best to take the tablespace offline before dropping it.

To drop a tablespace, use the DROP TABLESPACE statement. The following

statement drops the users tablespace, including the segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other structures),

you do not need to specify the INCLUDING CONTENTSoption. Use the CASCADE
CONSTRAINTS option to drop all referential integrity constraints from tables

outside the tablespace that refer to primary and unique keys of tables inside the

tablespace.

To delete the datafiles associated with a tablespace at the same time that the

tablespace is dropped, use the INCLUDING CONTENTS AND DATAFILES clause.

The following statement drops the USER tablespace and its associated datafiles:

DROP TABLESPACE users INCLUDING CONTENTS AND DATAFILES;

A message is written to the alert file for each datafile that is deleted. If an operating

system error prevents the deletion of a file, the DROP TABLESPACE statement still

succeeds, but a message describing the error is written to the alert file.

Diagnosing and Repairing Locally Managed Tablespace Problems

The DBMS_SPACE_ADMIN package contains the following procedures:

Note: The DBMS_SPACE_ADMIN package provides administrators

with defect diagnosis and repair functionality for locally managed

tablespaces. It cannot be used in this capacity for

dictionary-managed tablespaces.

It also provides procedures for migrating from dictionary-

managed tablespaces to locally managed tablespaces, and the

reverse.

Procedure Description

SEGMENT_VERIFY Verifies the consistency of the extent map of the segment.

Diagnosing and Repairing Locally Managed Tablespace Problems

Managing Tablespaces 11-31

The following scenarios describe typical situations in which you can use the DBMS_
SPACE_ADMIN package to diagnose and resolve problems.

SEGMENT_CORRUPT Marks the segment corrupt or valid so that appropriate
error recovery can be done. Cannot be used for a locally
managed SYSTEM tablespace.

SEGMENT_DROP_CORRUPT Drops a segment currently marked corrupt (without
reclaiming space). Cannot be used for a locally managed
SYSTEM tablespace.

SEGMENT_DUMP Dumps the segment header and extent map of a given
segment.

TABLESPACE_VERIFY Verifies that the bitmaps and extent maps for the segments
in the tablespace are in sync.

TABLESPACE_REBUILD_BITMAPS Rebuilds the appropriate bitmap. Cannot be used for a
locally managed SYSTEM tablespace.

TABLESPACE_FIX_BITMAPS Marks the appropriate data block address range (extent) as
free or used in bitmap. Cannot be used for a locally
managed SYSTEM tablespace.

TABLESPACE_REBUILD_QUOTAS Rebuilds quotas for given tablespace.

TABLESPACE_MIGRATE_FROM_LOCAL Migrates a locally managed tablespace to
dictionary-managed tablespace. Cannot be used to migrate
a locally managed SYSTEM tablespace to a
dictionary-managed SYSTEM tablespace.

TABLESPACE_MIGRATE_TO_LOCAL Migrates a tablespace from dictionary-managed format to
locally managed format.

TABLESPACE_RELOCATE_BITMAPS Relocates the bitmaps to the destination specified. Cannot
be used for a locally managed system tablespace.

TABLESPACE_FIX_SEGMENT_STATES Fixes the state of the segments in a tablespace in which
migration was aborted.

Note: Some of these procedures can result in lost and

unrecoverable data if not used properly. You should work with

Oracle Support Services if you have doubts about these procedures.

Procedure Description

Diagnosing and Repairing Locally Managed Tablespace Problems

11-32 Oracle9i Database Administrator’s Guide

Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)
The TABLESPACE_VERIFYprocedure discovers that a segment has allocated blocks

that are marked free in the bitmap, but no overlap between segments is reported.

In this scenario, perform the following tasks:

1. Call the SEGMENT_DUMP procedure to dump the ranges that the administrator

allocated to the segment.

2. For each range, call the TABLESPACE_FIX_BITMAPS procedure with the

TABLESPACE_EXTENT_MAKE_USED option to mark the space as used.

3. Call TABLESPACE_REBUILD_QUOTAS to fix up quotas.

Scenario 2: Dropping a Corrupted Segment
You cannot drop a segment because the bitmap has segment blocks marked "free".

The system has automatically marked the segment corrupted.

In this scenario, perform the following tasks:

1. Call the SEGMENT_VERIFY procedure with the SEGMENT_VERIFY_EXTENTS_
GLOBAL option. If no overlaps are reported, then proceed with steps 2 through

5.

2. Call the SEGMENT_DUMP procedure to dump the DBA ranges allocated to the

segment.

3. For each range, call TABLESPACE_FIX_BITMAPS with the TABLESPACE_
EXTENT_MAKE_FREE option to mark the space as free.

4. Call SEGMENT_DROP_CORRUPT to drop the SEG$ entry.

5. Call TABLESPACE_REBUILD_QUOTAS to fix up quotas.

Scenario 3: Fixing Bitmap Where Overlap is Reported
The TABLESPACE_VERIFY procedure reports some overlapping. Some of the real

data must be sacrificed based on previous internal errors.

After choosing the object to be sacrificed, in this case say, table t1 , perform the

following tasks:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for details about the DBMS_SPACE_ADMIN package

Diagnosing and Repairing Locally Managed Tablespace Problems

Managing Tablespaces 11-33

1. Make a list of all objects that t1 overlaps.

2. Drop table t1 . If necessary, follow up by calling the SEGMENT_DROP_CORRUPT
procedure.

3. Call the SEGMENT_VERIFY procedure on all objects that t1 overlapped. If

necessary, call the TABLESPACE_FIX_BITMAPSprocedure to mark appropriate

bitmap blocks as used.

4. Rerun the TABLESPACE_VERIFY procedure to verify the problem is resolved.

Scenario 4: Correcting Media Corruption of Bitmap Blocks
A set of bitmap blocks has media corruption.

In this scenario, perform the following tasks:

1. Call the TABLESPACE_REBUILD_BITMAPS procedure, either on all bitmap

blocks, or on a single block if only one is corrupt.

2. Call the TABLESPACE_REBUILD_QUOTAS procedure to rebuild quotas.

3. Call the TABLESPACE_VERIFY procedure to verify that the bitmaps are

consistent.

Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace
You migrate a dictionary-managed tablespace to a locally managed tablespace. You

use the TABLESPACE_MIGRATE_TO_LOCAL procedure.

Let us assume that the database block size is 2K, and the existing extent sizes in

tablespace tbs_1 are 10, 50, and 10,000 blocks (used, used, and free). The MINIMUM
EXTENT value is 20K (10 blocks). In this scenario, you allow the bitmap allocation

unit to be chosen by the system. The value of 10 blocks is chosen, because it is the

highest common denominator and does not exceed MINIMUM EXTENT.

The statement to convert tbs_1 to a locally managed tablespace is as follows:

EXEC DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL ('tbs_1');

If you choose to specify a allocation unit size, it must be a factor of the unit size

calculated by the system, otherwise an error message is issued.

Migrating the SYSTEM Tablespace to a Locally Managed Tablespace

11-34 Oracle9i Database Administrator’s Guide

Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
Use the DBMS_SPACE_ADMIN package to migrate the SYSTEM tablespace from

dictionary-managed to locally managed. The following statement performs the

migration:

SQL> EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL('SYSTEM');

Before performing the migration the following conditions must be met:

■ The database has a default temporary tablespace that is not SYSTEM.

■ There are no rollback segments in dictionary-managed tablespaces.

■ There is at least one online rollback segment in a locally managed tablespace, or

if using automatic undo management, an undo tablespace is online.

■ All tablespaces other than the tablespace containing the undo space (that is, the

tablespace containing the rollback segment or the undo tablespace) are in

read-only mode.

■ There is a cold backup of the database.

■ The system is in restricted mode.

All of these conditions, except for the cold backup, are enforced by the

TABLESPACE_MIGRATE_TO_LOCAL procedure.

Transporting Tablespaces Between Databases
This section describes how to transport tablespaces between databases, and

contains the following topics:

■ Introduction to Transportable Tablespaces

■ Limitations

■ Compatibility Considerations for Transportable Tablespaces

■ Transporting Tablespaces Between Databases: A Procedure

Note: After the SYSTEM tablespace is migrated to locally

managed, any dictionary-managed tablespaces in the database

cannot be made READ WRITE. If you want to be able to use the

dictionary-managed tablespaces in READ-WRITE mode, Oracle

recommends that you first migrate these tablespaces to locally

managed before migrating the SYSTEM tablespace.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-35

■ Object Behaviors

■ Using Transportable Tablespaces

Introduction to Transportable Tablespaces

You can use the transportable tablespaces feature to move a subset of an Oracle

database and "plug" it in to another Oracle database, essentially moving tablespaces

between the databases. The tablespaces being transported can be either dictionary

managed or locally managed. Starting with Oracle9i, the transported tablespaces

are not required to be of the same block size as the target database’s standard block

size. Transporting tablespaces is particularly useful for:

■ Moving data from OLTP systems to data warehouse staging systems

■ Updating data warehouses and data marts from staging systems

■ Loading data marts from central data warehouses

■ Archiving OLTP and data warehouse systems efficiently

■ Data publishing to internal and external customers

■ Performing Tablespace Point-in-Time Recovery (TSPITR)

Moving data using transportable tablespaces can be much faster than performing

either an export/import or unload/load of the same data, because transporting a

tablespace only requires the copying of datafiles and integrating the tablespace

structural information. You can also use transportable tablespaces to move index

data, thereby avoiding the index rebuilds you would have to perform when

importing or loading table data.

Note: You must be using the Enterprise Edition of Oracle8i (or

higher) to generate a transportable tablespace set. However, you

can use any edition of Oracle8i (or higher) to plug a transportable

tablespace set into an Oracle database.

See "Compatibility Considerations for Transportable Tablespaces"

on page 11-36 for a discussion of database compatibility for

transporting tablespaces across release levels.

Transporting Tablespaces Between Databases

11-36 Oracle9i Database Administrator’s Guide

Limitations
Be aware of the following limitations as you plan for transportable tablespace use:

■ The source and target database must be on the same hardware platform. For

example, you can transport tablespaces between Sun Solaris Oracle databases,

or you can transport tablespaces between Windows NT Oracle databases.

However, you cannot transport a tablespace from a Sun Solaris Oracle database

to an Windows NT Oracle database.

■ The source and target database must use the same character set and national

character set.

■ You cannot transport a tablespace to a target database in which a tablespace

with the same name already exists.

■ Transportable tablespaces do not support:

– Materialized views/replication

– Function-based indexes

– Scoped REFs

– 8.0-compatible advanced queues with multiple recipients

Compatibility Considerations for Transportable Tablespaces
To use the transportable tablespaces feature, the COMPATIBLE initialization

parameter for both the source and target databases must be set to 8.1 or higher. If

the block size of any tablespace being transported is different from the standard

block size for the target database, the COMPATIBLEinitialization parameter must be

set to 9.0 or higher for the target database. You are not required to be running the

See Also:

■ Oracle9i Database Concepts for more details about transportable

tablespaces and their use in data marts and data warehousing

■ Oracle9i Database Migration for information about transportable

tablespace compatibility issues between different Oracle

releases

■ Oracle9i Recovery Manager User’s Guide for information about

using RMAN to transport an RMAN tablespace backup into

another database. Using this method, you are not required to

make the tablespace in the original database read-only.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-37

same release of Oracle for both the source and target database. Oracle guarantees

that the transportable tablespace set is compatible with the target database. If not,

an error is signaled at the beginning of the plug-in operation.

It is always possible to transport a tablespace from a database running an older
release of Oracle (starting with Oracle8i) to a database running a newer release of

Oracle (for example, Oracle9i).

When creating a transportable tablespace set, Oracle computes the lowest

compatibility level at which the target database must run. This is referred to as the

compatibility level of the transportable set. When plugging the transportable set

into a target database, Oracle signals an error if the compatibility level of the

transportable set is greater than the compatibility level of the target database.

Transporting Tablespaces Between Databases: A Procedure
To move or copy a set of tablespaces, perform the following steps. These steps are

illustrated more fully in succeeding sections that detail transporting tablespaces

sales_1 and sales_2 between databases.

1. Pick a self-contained set of tablespaces.

2. Generate a transportable tablespace set.

A transportable tablespace set consists of datafiles for the set of tablespaces

being transported and a file containing structural information for the set of

tablespaces.

3. Transport the tablespace set.

Copy the datafiles and the export file to the target database. You can do this

using any facility for copying flat files (for example, an operating system copy

utility, ftp, or publishing on CDs).

4. Plug in the tablespace.

Invoke the Import utility to plug the set of tablespaces into the target database.

Step 1: Pick a Self-Contained Set of Tablespaces
There may be logical or physical dependencies between objects in the transportable

set and those outside of the set. You can only transport a set of tablespaces that is

self-contained. In this context "self-contained" means that there are no references

from inside the set of tablespaces pointing outside of the tablespaces. Some

examples of self contained tablespace violations are:

Transporting Tablespaces Between Databases

11-38 Oracle9i Database Administrator’s Guide

■ An index inside the set of tablespaces is for a table outside of the set of

tablespaces.

■ A partitioned table is partially contained in the set of tablespaces.

The tablespace set you want to copy must contain either all partitions of a

partitioned table, or none of the partitions of a partitioned table. If you want to

transport a subset of a partition table, you must exchange the partitions into

tables.

■ A referential integrity constraint points to a table across a set boundary.

When transporting a set of tablespaces, you can choose to include referential

integrity constraints. However, doing so can affect whether or not a set of

tablespaces is self-contained. If you decide not to transport constraints, then the

constraints are not considered as pointers.

■ A table inside the set of tablespaces contains a LOB column that points to LOBs

outside the set of tablespaces.

To determine whether a set of tablespaces is self-contained, you can invoke the

TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.
You must have been granted the EXECUTE_CATALOG_ROLE role (initially signed to

SYS) to execute this procedure.

When you invoke the DBMS_TTS package, you specify the list of tablespaces in the

transportable set to be checked for self containment. You can optionally specify if

constraints must be included. For strict or full containment, you must additionally

set the TTS_FULL_CHECK parameter to TRUE.

The strict or full containment check is for cases that require capturing not only

references going outside the transportable set, but also those coming into the set.

Tablespace Point-in-Time Recovery (TSPITR) is one such case where dependent

objects must be fully contained or fully outside the transportable set.

For example, it is a violation to perform TSPITR on a tablespace containing a table t
but not its index i because the index and data will be inconsistent after the

transport. A full containment check ensures that there are no dependencies going

outside or coming into the transportable set. See the example for TSPITR in the

Oracle9i User-Managed Backup and Recovery Guide.

Note: It is not a violation if a corresponding index for a table is

outside of the set of tablespaces.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-39

Here we determine whether tablespaces sales_1 and sales_2 are self-contained,

with referential integrity constraints taken into consideration (indicated by TRUE).

EXECUTE dbms_tts.transport_set_check('sales_1,sales_2', TRUE);

After invoking this PL/SQL package, you can see all violations by selecting from

the TRANSPORT_SET_VIOLATIONS view. If the set of tablespaces is self-contained,

this view is empty. The following query shows a case where there are two

violations: a foreign key constraint, dept_fk , across the tablespace set boundary,

and a partitioned table, jim.sales , that is partially contained in the tablespace set.

SELECT * FROM TRANSPORT_SET_VIOLATIONS;

VIOLATIONS

Constraint DEPT_FK between table JIM.EMP in tablespace SALES_1 and table
JIM.DEPT in tablespace OTHER
Partitioned table JIM.SALES is partially contained in the transportable set

These violations must be resolved before sales_1 and sales_2 are transportable.

As noted in the next step, one choice for bypassing the integrity constrain violation

is to not export the integrity constraints.

Object references (such as REFs) across the tablespace set are not considered

violations. REFs are not checked by the TRANSPORT_SET_CHECK routine. When a

tablespace containing dangling REFs is plugged into a database, queries following

that dangling REF indicate user error.

Note: The default for transportable tablespaces is to check for self

containment rather than full containment.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about REFs

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_TTS package

■ Oracle9i User-Managed Backup and Recovery Guide for

information specific to using the DBMS_TTS package for

TSPITR

Transporting Tablespaces Between Databases

11-40 Oracle9i Database Administrator’s Guide

Step 2: Generate a Transportable Tablespace Set
After ensuring you have a self-contained set of tablespaces that you want to

transport, generate a transportable tablespace set by performing the following tasks:

1. Make all tablespaces in the set you are copying read-only.

ALTER TABLESPACE sales_1 READ ONLY;
ALTER TABLESPACE sales_2 READ ONLY;

2. Invoke the Export utility and specify which tablespaces are in the transportable

set, as follows:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=(sales_1,sales_2)
 TRIGGERS=y CONSTRAINTS=n GRANTS=n FILE=expdat.dmp

When prompted, connect as SYS (or other administrative user) with the

SYSDBA system privilege:

CONNECT SYS/password AS SYSDBA

You must always specify TABLESPACES. In this example, we also specify that:

■ Triggers are to be exported.

If you set TRIGGERS=y, triggers are exported without a validity check.

Invalid triggers cause compilation errors during the subsequent import.If

you set TRIGGERS=n, triggers are not exported.

■ Referential integrity constraints are not to be exported

■ Grants are not to be exported.

■ The name of the structural information export file to be created is

expdat.dmp .

If you are performing TSPITR or transport with a strict containment check, use:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=(sales_1,sales_2)
 TTS_FULL_CHECK=Y FILE=expdat.dmp

Note: Although the Export utility is used, only data dictionary

structural information (metadata) for the tablespaces is exported.

Hence, this operation goes quickly even for a large tablespace.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-41

If the tablespace sets being transported are not self-contained, export fails and

indicate that the transportable set is not self-contained. You must then return to

Step 1 to resolve all violations.

Step 3: Transport the Tablespace Set
Transport both the datafiles and the export file of the tablespaces to a place accessible to

the target database. You can use any facility for copying flat files (for example, an

operating system copy utility, ftp, or publishing on CDs).

Step 4: Plug In the Tablespace Set

To plug in a tablespace set, perform the following tasks:

1. Plug in the tablespaces and integrate the structural information using the

Import utility.

IMP TRANSPORT_TABLESPACE=y FILE=expdat.dmp
 DATAFILES=('/db/sales_jan','/db/sales_feb',...)
 TABLESPACES=(sales_1,sales_2) TTS_OWNERS=(dcranney,jfee)
 FROMUSER=(dcranney,jfee) TOUSER=(smith,williams)

When prompted, connect as SYS (or other administrative user) with the

SYSDBA system privilege:

See Also: Oracle9i Database Utilities for information about using

the Export utility

Note: If you are transporting a tablespace of a different block size

than the standard block size of the database receiving the

tablespace set, then you must first have a DB_nK_CACHE_SIZE
initialization parameter entry in the receiving database’s parameter

file.

For example, if you are transporting a tablespace with an 8K block

size into a database with a 4K standard block size, then you must

include a DB_8K_CACHE_SIZEinitialization parameter entry in the

parameter file. If it is not already included in the parameter file, this

parameter can be set using the ALTER SYSTEM SET statement.

See Oracle9i SQL Reference for information about specifying values

for the DB_nK_CACHE_SIZE initialization parameter.

Transporting Tablespaces Between Databases

11-42 Oracle9i Database Administrator’s Guide

CONNECT SYS/password AS SYSDBA

In this example we specify the following:

■ TRANSPORT_TABLESPACE=y tells the Export utility that we are

transporting a tablespace.

■ The exported file containing the metadata for the tablespaces is

expdat.dmp .

■ DATAFILES specifies the datafiles of the transported tablespaces and must

be specified.

■ The tablespace names are sales_1 and sales_2 .

When you specify TABLESPACES, the supplied tablespace names are

compared to those in the export file. Import returns an error if there is any

mismatch. Otherwise, tablespace names are extracted from the export file.

■ TTS_OWNERS lists all users who own data in the tablespace set.

When you specify TTS_OWNERS, the user names are compared to those in

the export file. Import returns an error if there is any mismatch. Otherwise,

owner names are extracted from the export file.

■ FROMUSER and TOUSER are specified to change the ownership of database

objects.

If you do not specify FROMUSER and TOUSER, all database objects (such as

tables and indexes) are created under the same user as in the source

database. Those users must already exist in the target database. If not,

import returns an error indicating that some required users do not exist in

the target database.

You can use FROMUSERand TOUSERto change the owners of objects. In this

example we specify FROMUSER=(dcranney,jfee) and

TOUSER=(smith, williams). Objects in the tablespace set owned by

dcranney in the source database will be owned by smith in the target

database after the tablespace set is plugged in. Similarly, objects owned by

jfee in the source database will be owned by williams in the target

database. In this case, the target database is not required to have users

dcranney and jfee , but must have users smith and williams .

After this statement successfully executes, all tablespaces in the set being copied

remain in read-only mode. Check the import logs to ensure no error has

occurred.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-43

When dealing with a large number of datafiles, specifying the list of datafile

names in the statement line can be a laborious process. It can even exceed the

statement line limit. In this situation, you can use an import parameter file. For

example, you can invoke the Import utility as follows:

IMP PARFILE='par.f'

The file par.f file contains the following:

TRANSPORT_TABLESPACE=y
FILE=expdat.dmp
DATAFILES=('/db/sales_jan','/db/sales_feb',...)
TABLESPACES=(sales_1,sales_2)
TTS_OWNERS=(dcranney,jfee)
FROMUSER=(dcranney,jfee)
TOUSER=(smith,williams)

2. If necessary, put the tablespaces in the copied space back into read-write mode

as follows:

ALTER TABLESPACE sales_1 READ WRITE
ALTER TABLESPACE sales_1 READ WRITE

Object Behaviors
Most objects, whether data in a tablespace or structural information associated with

the tablespace, behave normally after being transported to a different database.

However, the following objects are exceptions:

■ ROWIDs

■ REFs

■ Privileges

■ Partitioned Tables

■ Objects

■ Advanced Queues

■ Indexes

■ Triggers

See Also: Oracle9i Database Utilities for information about using

the Import utility

Transporting Tablespaces Between Databases

11-44 Oracle9i Database Administrator’s Guide

■ Materialized Views/Replication

ROWIDs
When a database contains tablespaces that have been plugged in (from other

databases), the ROWIDs in that database are no longer unique. A ROWID is
guaranteed unique only within a table.

REFs
REFs are not checked when Oracle determines if a set of tablespaces is

self-contained. As a result, a plugged-in tablespace may contain dangling REFs.

Any query following dangling REFs returns a user error.

Privileges
Privileges are transported if you specify GRANTS=y during export. During import,

some grants may fail. For example, the user being granted a certain right may not

exist, or a role being granted a particular right may not exist.

Partitioned Tables
You cannot move a partitioned table using transportable tablespaces when only a

subset of the partitioned table is contained in the set of tablespaces. You must

ensure that all partitions in a table are in the tablespace set, or exchange the

partitions into tables before copying the tablespace set. However, you should note

that exchanging partitions with tables invalidates the global index of the partitioned

table.

At the target database, you can exchange the tables back into partitions if there is

already a partitioned table that exactly matches the column in the target database. If

all partitions of that table come from the same foreign database, the exchange

operation is guaranteed to succeed. If they do not, in rare cases, the exchange

operation may return an error indicating that there is a data object number conflict.

If you receive a data object number conflict error when exchanging tables back into

partitions, you can move the offending partition using the ALTER TABLE MOVE
PARTITION statement. After doing so, retry the exchange operation.

If you specify the WITHOUT VALIDATION option of the exchange statement, the

statement returns immediately because it only manipulates structural information.

Moving partitions, however, may be slow because the data in the partition can be

copied.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-45

Objects
A transportable tablespace set can contain:

■ Tables

■ Indexes

■ Domain indexes

■ Bitmap indexes

■ Index-organized tables

■ LOBs

■ Nested tables

■ Varrays

■ Tables with user-defined type columns

If the tablespace set contains a pointer to a BFILE , you must move the BFILE and

set the directory correctly in the target database.

Advanced Queues
You can use transportable tablespaces to move or copy Oracle advanced queues, as

long as these queues are not 8.0 compatible queues with multiple recipients. After a

queue is transported to a target database, the queue is initially disabled. After

making the transported tablespaces read-write in the target database, you can

enable the queue by starting it up using the built-in PL/SQL routine DBMS_
AQADM.START_QUEUE.

Indexes
You can transport regular indexes, domain indexes, and bitmap indexes. When the

transportable set fully contains a partitioned table, you can also transport the global

index of the partitioned table.

Function-based indexes are not supported. If they exist in a tablespace, you must

drop them before you can transport the tablespace.

See Also: "Transporting and Attaching Partitions for Data

Warehousing" on page 11-46 for an example of transporting a

partitioned table

Transporting Tablespaces Between Databases

11-46 Oracle9i Database Administrator’s Guide

Triggers
Triggers are exported without a validity check. In other words, Oracle does not

verify that the trigger refers only to objects within the transportable set. Invalid

triggers cause a compilation error during the subsequent import.

Materialized Views/Replication
Transporting materialized views or replication structural information is not

supported. When transporting a tablespace, the materialized view or replication

metadata associated with the tables in the tablespace is not exported and, thus, is

not be available to the target database.

Using Transportable Tablespaces
The following are some possible applications for transportable tablespaces.

Transporting and Attaching Partitions for Data Warehousing
Typical enterprise data warehouses contain one or more large fact tables. These fact

tables can be partitioned by date, making the enterprise data warehouse a historical

database. You can build indexes to speed up star queries. In fact, Oracle

recommends that you build local indexes for such historically partitioned tables to

avoid rebuilding global indexes every time you drop the oldest partition from the

historical database.

Suppose every month you would like to load one month’s worth of data into the

data warehouse. There is a large fact table in the data warehouse called sales ,

which has the following columns:

CREATE TABLE sales (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (partition jan98 VALUES LESS THAN (1998, 2, 1),
 partition feb98 VALUES LESS THAN (1998, 3, 1),
 partition mar98 VALUES LESS THAN (1998, 4, 1),
 partition apr98 VALUES LESS THAN (1998, 5, 1),
 partition may98 VALUES LESS THAN (1998, 6, 1),
 partition jun98 VALUES LESS THAN (1998, 7, 1));

You create a local nonprefixed index:

CREATE INDEX sales_index ON sales(invoice_no) LOCAL;

Transporting Tablespaces Between Databases

Managing Tablespaces 11-47

Initially, all partitions are empty, and are in the same default tablespace. Each

month, you want to create one partition and attach it to the partitioned sales table.

Suppose it is July 1998, and you would like to load the July sales data into the

partitioned table. In a staging database, you create a new tablespace, ts_jul . You

also create a table, jul_sales , in that tablespace with exactly the same column

types as the sales table. You can create the table jul_sales using the CREATE
TABLE ... AS SELECT statement. After creating and populating jul_sales ,

you can also create an index, jul_sale_index , for the table, indexing the same

column as the local index in the sales table. After building the index, transport the

tablespace ts_jul to the data warehouse.

In the data warehouse, add a partition to the sales table for the July sales data.

This also creates another partition for the local nonprefixed index:

ALTER TABLE sales ADD PARTITION jul98 VALUES LESS THAN (1998, 8, 1);

Attach the transported table jul_sales to the table sales by exchanging it with

the new partition:

ALTER TABLE sales EXCHANGE PARTITION jul98 WITH TABLE jul_sales
 INCLUDING INDEXES
 WITHOUT VALIDATION;

This statement places the July sales data into the new partition jul98 , attaching the

new data to the partitioned table. This statement also converts the index jul_
sale_index into a partition of the local index for the sales table. This statement

should return immediately, because it only operates on the structural information

and it simply switches database pointers. If you know that the data in the new

partition does not overlap with data in previous partitions, you are advised to

specify the WITHOUT VALIDATION option. Otherwise, the statement goes through

all the new data in the new partition in an attempt to validate the range of that

partition.

If all partitions of the sales table came from the same staging database (the staging

database is never destroyed), the exchange statement always succeeds. In general,

however, if data in a partitioned table comes from different databases, it’s possible

that the exchange operation may fail. For example, if the jan98 partition of sales
did not come from the same staging database, the above exchange operation can

fail, returning the following error:

ORA-19728: data object number conflict between table JUL_SALES and partition
JAN98 in table SALES

Transporting Tablespaces Between Databases

11-48 Oracle9i Database Administrator’s Guide

To resolve this conflict, move the offending partition by issuing the following

statement:

ALTER TABLE sales MOVE PARTITION jan98;

Then retry the exchange operation.

After the exchange succeeds, you can safely drop jul_sales and jul_sale_
index (both are now empty). Thus you have successfully loaded the July sales data

into your data warehouse.

Publishing Structured Data on CDs
Transportable tablespaces provide a way to publish structured data on CDs. A data

provider can load a tablespace with data to be published, generate the transportable

set, and copy the transportable set to a CD. This CD can then be distributed.

When customers receive this CD, they can plug it into an existing database without

having to copy the datafiles from the CD to disk storage. For example, suppose on a

Windows NT machine D: drive is the CD drive. You can plug in a transportable set

with datafile catalog.f and export file expdat.dmp as follows:

IMP TRANSPORT_TABLESPACE=y DATAFILES='D:\catalog.f' FILE='D:\expdat.dmp'

You can remove the CD while the database is still up. Subsequent queries to the

tablespace return an error indicating that Oracle cannot open the datafiles on the

CD. However, operations to other parts of the database are not affected. Placing the

CD back into the drive makes the tablespace readable again.

Removing the CD is the same as removing the datafiles of a read-only tablespace. If

you shut down and restart the database, Oracle indicates that it cannot find the

removed datafile and does not open the database (unless you set the initialization

parameter READ_ONLY_OPEN_DELAYED to TRUE). When READ_ONLY_OPEN_
DELAYED is set to TRUE, Oracle reads the file only when someone queries the

plugged-in tablespace. Thus, when plugging in a tablespace on a CD, you should

always set the READ_ONLY_OPEN_DELAYED initialization parameter to TRUE,
unless the CD is permanently attached to the database.

Mounting the Same Tablespace Read-Only on Multiple Databases
You can use transportable tablespaces to mount a tablespace read-only on multiple

databases. In this way, separate databases can share the same data on disk instead

of duplicating data on separate disks. The tablespace datafiles must be accessible by

all databases. To avoid database corruption, the tablespace must remain read-only

in all the databases mounting the tablespace.

Transporting Tablespaces Between Databases

Managing Tablespaces 11-49

You can mount the same tablespace read-only on multiple databases in either of the

following ways:

■ Plug the tablespace into each of the databases on which you want to mount the

tablespace. Generate a transportable set in a single database. Put the datafiles in

the transportable set on a disk accessible to all databases. Import the structural

information into each database.

■ Generate the transportable set in one of the databases and plug it into other

databases. If you use this approach, it is assumed that the datafiles are already

on the shared disk, and they belong to an existing tablespace in one of the

databases. You can make the tablespace read-only, generate the transportable

set, and then plug the tablespace in to other databases while the datafiles

remain in the same location on the shared disk.

You can make the disk accessible by multiple computers in several ways. You can

use either a cluster file system or raw disk, because that is required by Oracle9i Real

Application Clusters. Because Oracle reads only these type of datafiles on shared

disk, you can also use NFS. Be aware, however, that if a user queries the shared

tablespace while NFS is down, the database will hang until the NFS operation times

out.

Later, you can drop the read-only tablespace in some of the databases. Doing so

does not modify the datafiles for the tablespace. Thus, the drop operation does not

corrupt the tablespace. Do not make the tablespace read-write unless only one

database is mounting the tablespace.

Archive Historical Data Using Transportable Tablespaces
Since a transportable tablespace set is a self-contained set of files that can be

plugged into any Oracle database, you can archive old/historical data in an

enterprise data warehouse using the transportable tablespace procedures described

in this chapter.

Using Transportable Tablespaces to Perform TSPITR
You can use transportable tablespaces to perform tablespace point-in-time recovery

(TSPITR).

See Also: Oracle9i Data Warehousing Guide for more details

See Also: Oracle9i User-Managed Backup and Recovery Guide for

information about how to perform TSPITR using transportable

tablespaces

Viewing Tablespace Information

11-50 Oracle9i Database Administrator’s Guide

Viewing Tablespace Information
The following data dictionary and dynamic performance views provide useful

information about the tablespaces of a database.

The following are just a few examples of using some of these views.

View Description

V$TABLESPACE Name and number of all tablespaces from the control file.

DBA_TABLESPACES, USER_TABLESPACES Descriptions of all (or user accessible) tablespaces.

DBA_SEGMENTS, USER_SEGMENTS Information about segments within all (or user accessible)
tablespaces.

DBA_EXTENTS, USER_EXTENTS Information about data extents within all (or user accessible)
tablespaces.

DBA_FREE_SPACE, USER_FREE_SPACE Information about free extents within all (or user accessible)
tablespaces.

V$DATAFILE Information about all datafiles, including tablespace number
of owning tablespace.

V$TEMPFILE Information about all tempfiles, including tablespace number
of owning tablespace.

DBA_DATA_FILES Shows files (datafiles) belonging to tablespaces.

DBA_TEMP_FILES Shows files (tempfiles) belonging to temporary tablespaces.

V$TEMP_EXTENT_MAP Information for all extents in all locally managed temporary
tablespaces.

V$TEMP_EXTENT_POOL For locally managed temporary tablespaces: the state of
temporary space cached and used for by each instance.

V$TEMP_SPACE_HEADER Shows space used/free for each tempfile.

DBA_USERS Default and temporary tablespaces for all users.

DBA_TS_QUOTAS Lists tablespace quotas for all users.

V$SORT_SEGMENT Information about every sort segment in a given instance. The
view is only updated when the tablespace is of the
TEMPORARY type.

V$SORT_USER Temporary sort space usage by user and
temporary/permanent tablespace.

Viewing Tablespace Information

Managing Tablespaces 11-51

Listing Tablespaces and Default Storage Parameters: Example
To list the names and default storage parameters of all tablespaces in a database,

use the following query on the DBA_TABLESPACES view:

SELECT TABLESPACE_NAME "TABLESPACE",
 INITIAL_EXTENT "INITIAL_EXT",
 NEXT_EXTENT "NEXT_EXT",
 MIN_EXTENTS "MIN_EXT",
 MAX_EXTENTS "MAX_EXT",
 PCT_INCREASE
 FROM DBA_TABLESPACES;

TABLESPACE INITIAL_EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE
---------- ----------- -------- ------- ------- ------------
RBS 1048576 1048576 2 40 0
SYSTEM 106496 106496 1 99 1
TEMP 106496 106496 1 99 0
TESTTBS 57344 16384 2 10 1
USERS 57344 57344 1 99 1

Listing the Datafiles and Associated Tablespaces of a Database: Example
To list the names, sizes, and associated tablespaces of a database, enter the

following query on the DBA_DATA_FILES view:

SELECT FILE_NAME, BLOCKS, TABLESPACE_NAME
 FROM DBA_DATA_FILES;

FILE_NAME BLOCKS TABLESPACE_NAME
------------ ---------- -------------------
/U02/ORACLE/IDDB3/RBS01.DBF 1536 RBS
/U02/ORACLE/IDDB3/SYSTEM01.DBF 6586 SYSTEM
/U02/ORACLE/IDDB3/TEMP01.DBF 6400 TEMP
/U02/ORACLE/IDDB3/TESTTBS01.DBF 6400 TESTTBS
/U02/ORACLE/IDDB3/USERS01.DBF 384 USERS

Displaying Statistics for Free Space (Extents) of Each Tablespace: Example
To produce statistics about free extents and coalescing activity for each tablespace in

the database, enter the following query:

See Also: Oracle9i Database Reference for complete description of

these views

Viewing Tablespace Information

11-52 Oracle9i Database Administrator’s Guide

SELECT TABLESPACE_NAME "TABLESPACE", FILE_ID,
 COUNT(*) "PIECES",
 MAX(blocks) "MAXIMUM",
 MIN(blocks) "MINIMUM",
 AVG(blocks) "AVERAGE",
 SUM(blocks) "TOTAL"
 FROM DBA_FREE_SPACE
GROUP BY TABLESPACE_NAME, FILE_ID;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE TOTAL
---------- ------- ------ ------- ------- ------- ------
RBS 2 1 955 955 955 955
SYSTEM 1 1 119 119 119 119
TEMP 4 1 6399 6399 6399 6399
TESTTBS 5 5 6364 3 1278 6390
USERS 3 1 363 363 363 363

PIECES shows the number of free space extents in the tablespace file, MAXIMUMand

MINIMUMshow the largest and smallest contiguous area of space in database blocks,

AVERAGE shows the average size in blocks of a free space extent, and TOTAL shows

the amount of free space in each tablespace file in blocks. This query is useful when

you are going to create a new object or you know that a segment is about to extend,

and you want to make sure that there is enough space in the containing tablespace.

Managing Datafiles 12-1

12
Managing Datafiles

This chapter describes the various aspects of datafile management, and contains the

following topics:

■ Guidelines for Managing Datafiles

■ Creating Datafiles and Adding Datafiles to a Tablespace

■ Changing a Datafile’s Size

■ Altering Datafile Availability

■ Renaming and Relocating Datafiles

■ Dropping Datafiles

■ Verifying Data Blocks in Datafiles

■ Mapping Files to Physical Devices

■ Viewing Datafile Information

See Also: Chapter 3, "Using Oracle-Managed Files" for

information about creating datafiles and tempfiles that are both

created and managed by the Oracle database server

Guidelines for Managing Datafiles

12-2 Oracle9i Database Administrator’s Guide

Guidelines for Managing Datafiles
Datafiles are physical files of the operating system that store the data of all logical

structures in the database. They must be explicitly created for each tablespace.

Oracle assigns each datafile two associated file numbers, an absolute file number

and a relative file number, that are used to uniquely identify it. These numbers are

described in the following table:

File numbers are displayed in many data dictionary views. You can optionally use

file numbers instead of file names to identify datafiles or tempfiles in SQL

statements. When using a file number, specify the file number that is displayed in

the FILE# column of the V$DATAFILE or V$TEMPFILE view. This file number is

also displayed in the FILE_ID column of the DBA_DATA_FILES or DBA_TEMP_
FILES view.

This section describes aspects of managing datafiles, and contains the following

topics:

■ Determine the Number of Datafiles

■ Determine the Size of Datafiles

■ Place Datafiles Appropriately

■ Store Datafiles Separate from Redo Log Files

Determine the Number of Datafiles
At least one datafile is required for the SYSTEM tablespace of a database. A small

system might have a single datafile. The following are some guidelines to consider

when determining the number of datafiles for your database.

Type of File Number Description

Absolute Uniquely identifies a datafile in the database. In earlier
releases of Oracle, the absolute file number may have
been referred to as simply, the "file number."

Relative Uniquely identifies a datafile within a tablespace. For
small and medium size databases, relative file numbers
usually have the same value as the absolute file number.
However, when the number of datafiles in a database
exceeds a threshold (typically 1023), the relative file
number differs from the absolute file number.

Guidelines for Managing Datafiles

Managing Datafiles 12-3

Determine the Value of the DB_FILES Initialization Parameter
When starting an Oracle instance, the DB_FILES initialization parameter indicates

the amount of SGA space to reserve for datafile information and thus, the

maximum number of datafiles that can be created for the instance. This limit applies

for the life of the instance. You can change the value of DB_FILES (by changing the

initialization parameter setting), but the new value does not take effect until you

shut down and restart the instance.

When determining a value for DB_FILES , take the following into consideration:

■ If the value of DB_FILES is too low, you cannot add datafiles beyond the DB_
FILES limit without first shutting down the database.

■ If the value of DB_FILES is too high, memory is unnecessarily consumed.

Limitations When Adding Datafiles to a Tablespace
You can add datafiles to tablespaces, subject to the following limitations:

■ Operating systems often impose a limit on the number of files a process can

open simultaneously. More datafiles cannot be created when the operating

system limit of open files is reached.

■ Operating systems impose limits on the number and size of datafiles.

■ Oracle imposes a maximum limit on the number of datafiles for any Oracle

database opened by any instance. This limit is operating system specific.

■ You cannot exceed the number of datafiles specified by the DB_FILES
initialization parameter.

■ When you issue CREATE DATABASE or CREATE CONTROLFILE statements,

the MAXDATAFILES parameter specifies an initial size of the datafile portion of

the control file. However, if you attempt to add a new file whose number is

greater than MAXDATAFILES, but less than or equal to DB_FILES , the control

file will expand automatically so that the datafiles section can accommodate

more files.

Consider the Performance Impact
The number of datafiles comprising a tablespace, and ultimately the database, can

have an impact upon performance.

Note: The default value of DB_FILES is operating system specific.

Guidelines for Managing Datafiles

12-4 Oracle9i Database Administrator’s Guide

Oracle allows more datafiles in the database than the operating system defined

limit. Oracle’s DBWn processes can open all online datafiles. Oracle is capable of

treating open file descriptors as a cache, automatically closing files when the

number of open file descriptors reaches the operating system-defined limit. This can

have a negative performance impact. When possible, adjust the operating system

limit on open file descriptors so that it is larger than the number of online datafiles

in the database.

Determine the Size of Datafiles
The first datafile (in the original SYSTEM tablespace) must be at least 150M to

contain the initial data dictionary and rollback segment. If you install other Oracle

products, they may require additional space in the SYSTEM tablespace. See the

installation instructions for these products for information about their space

requirements.

Place Datafiles Appropriately
Tablespace location is determined by the physical location of the datafiles that

constitute that tablespace. Use the hardware resources of your computer

appropriately.

For example, if several disk drives are available to store the database, consider

placing potentially contending datafiles on separate disks.This way, when users

query information, both disk drives can work simultaneously, retrieving data at the

same time.

Store Datafiles Separate from Redo Log Files
Datafiles should not be stored on the same disk drive that stores the database’s redo

log files. If the datafiles and redo log files are stored on the same disk drive and that

disk drive fails, the files cannot be used in your database recovery procedures.

If you multiplex your redo log files, then the likelihood of losing all of your redo log

files is low, so you can store datafiles on the same drive as some redo log files.

See Also:

■ Your operating system specific Oracle documentation for more

information on operating system limits

■ Oracle9i SQL Reference for more information about the

MAXDATAFILES parameter of the CREATE DATABASE or

CREATE CONTROLFILE statement

Creating Datafiles and Adding Datafiles to a Tablespace

Managing Datafiles 12-5

Creating Datafiles and Adding Datafiles to a Tablespace
When creating a tablespace, you should estimate the potential size of database

objects and create sufficient datafiles. Later, if needed, you can create additional

datafiles and add them to a tablespace to increase the total amount of disk space

allocated to it, and consequently the database. Preferably, place datafiles on

multiple devices, so as to ensure that data is spread evenly across all devices.

You can create datafiles and associate them with a tablespace using any of the

statements listed in the following table. In all cases, you can either specify the file

specifications for the datafiles being created, or you can use the Oracle Managed

Files feature to create files that are created and managed by the database server. The

table includes a brief description of the statement, as used to create datafiles, and

references the section of this book where use of the statement is most completely

described:

If you add new datafiles to a tablespace and do not fully specify the filenames,

Oracle creates the datafiles in the default database directory or the current

SQL Statement Description For more information...

CREATE TABLESPACE Creates a tablespace and the
datafiles that comprise it

"Creating Tablespaces"
on page 11-3

CREATE TEMPORARY TABLESPACE Creates a locally-managed
temporary tablespace and the
tempfiles (tempfiles are a special
kind of datafile) that comprise it

"Creating a Locally
Managed Temporary
Tablespace" on
page 11-13

ALTER TABLESPACE ... ADD DATAFILE Creates and adds a datafile to a
tablespace

"Altering a
Dictionary-Managed
Tablespace" on
page 11-11

ALTER TABLESPACE ... ADD TEMPFILE Creates and adds a tempfile to a
temporary tablespace

"Creating a Locally
Managed Temporary
Tablespace" on
page 11-13

CREATE DATABASE Creates a database and associated
datafiles

"Manually Creating an
Oracle Database" on
page 2-14

ALTER DATABASE ... CREATE DATAFILE Creates a new empty datafile in
place of an old one--useful to
re-create a datafile that was lost
with no backup.

Not discussed in this
book. See Oracle9i
User-Managed Backup and
Recovery Guide.

Changing a Datafile’s Size

12-6 Oracle9i Database Administrator’s Guide

directory, depending upon your operating system. Oracle recommends you always

specify a fully qualified name for a datafile. Unless you want to reuse existing files,

make sure the new filenames do not conflict with other files. Old files that have

been previously dropped will be overwritten.

If a statement that creates a datafile fails, Oracle removes any created operating

system files. However, because of the large number of potential errors that can

occur with file systems and storage subsystems, there can be situations where you

must manually remove the files using operating system commands.

Changing a Datafile’s Size
This section describes the various ways to alter the size of a datafile, and contains

the following topics:

■ Enabling and Disabling Automatic Extension for a Datafile

■ Manually Resizing a Datafile

Enabling and Disabling Automatic Extension for a Datafile
You can create datafiles or alter existing datafiles so that they automatically increase

in size when more space is needed in the database. The files increase in specified

increments up to a specified maximum.

Setting your datafiles to extend automatically provides these advantages:

■ Reduces the need for immediate intervention when a tablespace runs out of

space

■ Ensures applications will not halt because of failures to allocate extents

To determine whether a datafile is auto-extensible, query the DBA_DATA_FILES
view and examine the AUTOEXTENSIBLE column.

You can specify automatic file extension by specifying an AUTOEXTEND ON clause

when you create datafiles using the following SQL statements:

■ CREATE DATABASE

■ CREATE TABLESPACE

■ ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles, or

manually resize a datafile using the ALTER DATABASE statement.

Changing a Datafile’s Size

Managing Datafiles 12-7

The following example enables automatic extension for a datafile added to the

users tablespace:

ALTER TABLESPACE users
 ADD DATAFILE '/u02/oracle/rbdb1/users03.dbf' SIZE 10M
 AUTOEXTEND ON
 NEXT 512K
 MAXSIZE 250M;

The value of NEXT is the minimum size of the increments added to the file when it

extends. The value of MAXSIZE is the maximum size to which the file can

automatically extend.

The next example disables the automatic extension for the datafile.

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/users03.dbf'
 AUTOEXTEND OFF;

Manually Resizing a Datafile
You can manually increase or decrease the size of a datafile using the ALTER
DATABASE statement.

Because you can change the sizes of datafiles, you can add more space to your

database without adding more datafiles. This is beneficial if you are concerned

about reaching the maximum number of datafiles allowed in your database.

Manually reducing the sizes of datafiles enables you to reclaim unused space in the

database. This is useful for correcting errors in estimates of space requirements.

In the next example, assume that the datafile /u02/oracle/rbdb1/stuff01.dbf has

extended up to 250M. However, because its tablespace now stores smaller objects,

the datafile can be reduced in size.

The following statement decreases the size of datafile

/u02/oracle/rbdb1/stuff01.dbf :

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf'
 RESIZE 100M;

See Also: Oracle9i SQL Reference for more information about the

SQL statements for creating or altering datafiles

Note: It is not always possible to decrease the size of a file to a

specific value.

Altering Datafile Availability

12-8 Oracle9i Database Administrator’s Guide

Altering Datafile Availability
You can take individual datafiles or tempfiles of a tablespace offline or similarly,

bring them online. Offline datafiles are unavailable to the database and cannot be

accessed until they are brought back online.You also have the option of taking all

datafiles or tempfiles comprising a tablespace offline or online simply by specifying

the name of a tablespace.

One example of where you might be required to alter the availability of a datafile is

when Oracle has problems writing to a datafile and automatically takes the datafile

offline. Later, after resolving the problem, you can bring the datafile back online

manually.

The files of a read-only tablespace can independently be taken offline or brought

online just as for read-write tablespaces. Bringing a datafile online in a read-only

tablespace makes the file readable. No one can write to the file unless its associated

tablespace is returned to the read-write state.

To take a datafile offline, or bring it online, you must have the ALTER DATABASE
system privilege. To take all datafiles or tempfiles offline using the ALTER
TABLESPACE statement, you must have the ALTER TABLESPACE or MANAGE
TABLESPACE system privilege. In an Oracle Real Application Clusters

environment, the database must be open in exclusive mode.

This section describes ways to alter datafile availability, and contains the following

topics:

■ Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode

■ Taking Datafiles Offline in NOARCHIVELOG Mode

■ Altering the Availability of All Datafiles or Tempfiles in a Tablespace

Note: You can make all datafiles in any tablespace, except the files

in the SYSTEM tablespace, temporarily unavailable by taking the

tablespace offline. You must leave these files in the tablespace to

bring the tablespace back online.

For more information about taking a tablespace offline, see "Taking

Tablespaces Offline" on page 11-21.

Altering Datafile Availability

Managing Datafiles 12-9

Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode
To bring an individual datafile online, issue the ALTER DATABASE statement and

include the DATAFILE clause.The following statement brings the specified datafile

online:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf' ONLINE;

To take the same file offline, issue the following statement:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf' OFFLINE;

Taking Datafiles Offline in NOARCHIVELOG Mode
To take a datafile offline when the database is in NOARCHIVELOG mode, use the

ALTER DATABASE statement with both the DATAFILE and OFFLINE DROP
clauses. This enables you to take the datafile offline and drop it immediately. It is

useful, for example, if the datafile contains only data from temporary segments and

has not been backed up and the database is in NOARCHIVELOG mode.

The following statement takes the specified datafile offline:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/users03.dbf' OFFLINE DROP;

Altering the Availability of All Datafiles or Tempfiles in a Tablespace
Clauses of the ALTER TABLESPACE statement allow you to change the online or

offline status of all of the datafiles or tempfiles within a tablespace. Specifically, the

statements that affect online/offline status are:

■ ALTER TABLESPACE ... DATAFILE {ONLINE|OFFLINE}

■ ALTER TABLESPACE ... TEMPFILE {ONLINE|OFFLINE}

You are required only to enter the tablespace name, not the individual datafiles or

tempfiles. All of the datafiles or tempfiles are affected, but the online/offline status

of the tablespace itself is not changed.

Note: To use this form of the ALTER DATABASE statement, the

database must be in ARCHIVELOG mode. This requirement

prevents you from accidentally losing the datafile, since taking the

datafile offline while in NOARCHIVELOG mode is likely to result in

losing the file.

Renaming and Relocating Datafiles

12-10 Oracle9i Database Administrator’s Guide

In most cases the above ALTER TABLESPACE statements can be issued whenever

the database is mounted, even if it is not open. However, the database must not be

open if the tablespace is the system tablespace, an undo tablespace, or the default

temporary tablespace. The ALTER DATABASE DATAFILE and ALTER DATABASE
TEMPFILE statements also have ONLINE/OFFLINE clauses, however in those

statements you must enter all of the filenames for the tablespace.

The syntax is different from the ALTER TABLESPACE ... ONLINE|OFFLINE
statement that alters a tablespace’s availability, because that is a different operation.

The ALTER TABLESPACE statement takes datafiles offline as well as the tablespace,

but it cannot be used to alter the status of a temporary tablespace or its tempfile(s).

Renaming and Relocating Datafiles
You can rename datafiles to either change their names or relocate them. Some

options, and procedures which you can follow, are described in the following

sections:

■ Renaming and Relocating Datafiles for a Single Tablespace

For example, renaming filename1 and filename2 in tablespace1, while the rest of

the database is open.

■ Renaming and Relocating Datafiles for Multiple Tablespaces

For example, renaming filename1 in tablespace1 and filename2 in tablespace2, while

the database is mounted but closed.

When you rename and relocate datafiles with these procedures, only the pointers to

the datafiles, as recorded in the database’s control file, are changed. The procedures

do not physically rename any operating system files, nor do they copy files at the

operating system level. Renaming and relocating datafiles involves several steps.

Read the steps and examples carefully before performing these procedures.

Note: To rename or relocate datafiles of the SYSTEM tablespace,

you must use the second option, because you cannot take the

SYSTEM tablespace offline.

Renaming and Relocating Datafiles

Managing Datafiles 12-11

Renaming and Relocating Datafiles for a Single Tablespace
The section offers some procedures for renaming and relocating datafiles in a single

tablespace. You must have the ALTER TABLESPACE system privilege to rename

datafiles of a single tablespace.

Renaming Datafiles in a Single Tablespace
To rename datafiles from a single tablespace, complete the following steps:

1. Take the non-SYSTEM tablespace that contains the datafiles offline.

For example:

ALTER TABLESPACE users OFFLINE NORMAL;

2. Rename the datafiles using the operating system.

3. Use the ALTER TABLESPACE statement with the RENAME DATAFILE clause to

change the filenames within the database.

For example, the following statement renames the datafiles

/u02/oracle/rbdb1/user1.dbf and /u02/oracle/rbdb1/user2.dbf

to/u02/oracle/rbdb1/users01.dbf and /u02/oracle/rbdb1/users02.dbf ,

respectively:

ALTER TABLESPACE users
 RENAME DATAFILE '/u02/oracle/rbdb1/user1.dbf',
 '/u02/oracle/rbdb1/user2.dbf'
 TO '/u02/oracle/rbdb1/users01.dbf',
 '/u02/oracle/rbdb1/users02.dbf';

The new files must already exist; this statement does not create the files. Also,

always provide complete filenames (including their paths) to properly identify

the old and new datafiles. In particular, specify the old datafile name exactly as

it appears in the DBA_DATA_FILES view of the data dictionary.

4. Back up the database. After making any structural changes to a database,

always perform an immediate and complete backup.

Relocating and Renaming Datafiles in a Single Tablespace
Here is an example that illustrates the steps involved for relocating a datafile.

Assume the following conditions:

■ An open database has a tablespace named users that is made up of datafiles

all located on the same disk.

Renaming and Relocating Datafiles

12-12 Oracle9i Database Administrator’s Guide

■ The datafiles of the users tablespace are to be relocated to different and

separate disk drives.

■ You are currently connected with administrator privileges to the open database.

■ You have a current backup of the database.

Complete the following steps:

1. Identify the datafile names of interest.

The following query of the data dictionary view DBA_DATA_FILES lists the

datafile names and respective sizes (in bytes) of the users tablespace:

SELECT FILE_NAME, BYTES FROM DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'USERS';

FILE_NAME BYTES
-- ----------------
/U02/ORACLE/RBDB1/USERS01.DBF 102400000
/U02/ORACLE/RBDB1/USERS02.DBF 102400000

2. Take the tablespace containing the datafiles offline, or shut down the database

and restart and mount it, leaving it closed. Either option closes the datafiles of

the tablespace.

3. Copy the datafiles to their new locations and rename them using the operating

system.

4. Rename the datafiles within Oracle.

The datafile pointers for the files that make up the users tablespace, recorded

in the control file of the associated database, must now be changed from the old

names to the new names.

If the tablespace is offline but the database is open, use the ALTER
TABLESPACE ... RENAME DATAFILE statement. If the database is mounted

but closed, use the ALTER DATABASE ... RENAME FILE statement.

ALTER TABLESPACE users
 RENAME DATAFILE '/u02/oracle/rbdb1/users01.dbf',
 '/u02/oracle/rbdb1/users02.dbf'
 TO '/u03/oracle/rbdb1/users01.dbf',

Note: You can execute an operating system command to copy a

file by using the SQL*Plus HOST command.

Renaming and Relocating Datafiles

Managing Datafiles 12-13

 '/u04/oracle/rbdb1/users02.dbf';

5. Bring the tablespace online, or open the database.

If the users tablespace is offline and the database is open, bring the tablespace

back online. If the database is mounted but closed, open the database.

6. Back up the database. After making any structural changes to a database,

always perform an immediate and complete backup.

Renaming and Relocating Datafiles for Multiple Tablespaces
You can rename and relocate datafiles of one or more tablespaces using ALTER
DATABASE statement with the RENAME FILE clause. This option is the only choice

if you want to rename or relocate datafiles of several tablespaces in one operation,

or rename or relocate datafiles of the SYSTEM tablespace. If the database must

remain open, consider instead the procedure outlined in the previous section.

To rename datafiles of several tablespaces in one operation or to rename datafiles of

the SYSTEM tablespace, you must have the ALTER DATABASE system privilege.

To rename datafiles in multiple tablespaces, follow these steps.

1. Ensure that the database is mounted but closed.

2. Copy the datafiles to be renamed to their new locations and new names, using

the operating system.

3. Use ALTER DATABASE to rename the file pointers in the database’s control file.

For example, the following statement renames the

datafiles/u02/oracle/rbdb1/sort01.dbf and /u02/oracle/rbdb1/user3.dbf to

/u02/oracle/rbdb1/temp01.dbf and /u02/oracle/rbdb1/users03.dbf , respectively:

ALTER DATABASE
 RENAME FILE '/u02/oracle/rbdb1/sort01.dbf',
 '/u02/oracle/rbdb1/user3.dbf'
 TO '/u02/oracle/rbdb1/temp01.dbf',
 '/u02/oracle/rbdb1/users03.dbf;

The new files must already exist; this statement does not create the files. Also,

always provide complete filenames (including their paths) to properly identify

the old and new datafiles. In particular, specify the old datafile name exactly as

it appears in the DBA_DATA_FILES view of the data dictionary.

4. Back up the database. After making any structural changes to a database,

always perform an immediate and complete backup.

Dropping Datafiles

12-14 Oracle9i Database Administrator’s Guide

Dropping Datafiles
There is no SQL statement that specifically drops a datafile. The only means of

dropping a datafile is to drop the tablespace that contains the datafile. For example,

if you want to remove a datafile from a tablespace, you could do the following:

1. Create a new tablespace

2. Move the data from the old tablespace to the new one

3. Drop the old tablespace

You can, however, drop a tempfile using the ALTER DATABASE statement. For

example:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' DROP
 INCLUDING DATAFILES;

Verifying Data Blocks in Datafiles
If you want to configure Oracle to use checksums to verify data blocks, set the

initialization parameter DB_BLOCK_CHECKSUM to TRUE. The value of this

parameter can be changed dynamically, or set in the initialization parameter file.

The default value of DB_BLOCK_CHECKSUM is FALSE. Regardless of the setting of

this parameter, checksums are always used to verify data blocks in the system

tablespace.

When you enable block checking, Oracle computes a checksum for each block

written to disk. Checksums are computed for all data blocks, including temporary

blocks.

The DBWn process calculates the checksum for each block and stores it in the

block’s header. Checksums are also computed by the direct loader.

The next time Oracle reads a data block, it uses the checksum to detect corruption in

the block. If a corruption is detected, Oracle returns message ORA-01578 and

writes information about the corruption to a trace file.

See Also: Dropping Tablespaces on page 11-29

Caution: Setting DB_BLOCK_CHECKSUM to TRUE can cause

performance overhead. Set this parameter to TRUE only under the

advice of Oracle Support personnel to diagnose data corruption

problems.

Mapping Files to Physical Devices

Managing Datafiles 12-15

Mapping Files to Physical Devices
In an environment where datafiles are simply file system files or are created directly

on a raw device, it is relatively straight forward to see the association between a

tablespace and the underlying device. Oracle provides views, such as DBA_
TABLESPACES, DBA_DATA_FILES, and V$DATAFILE, that provide a mapping of

files onto devices. These mappings, along with device statistics can be used to

evaluate I/O performance.

However, with the introduction of host based Logical Volume Managers (LVM),

and sophisticated storage subsystems that provide RAID (Redundant Array of

Independent Disks) features, it is not easy to determine file to device mapping. This

poses a problem because it becomes difficult to determine your "hottest" files when

they are hidden behind a "black box". This section presents Oracle’s approach to

resolving this problem.

The following topics are contained in this section:

■ Overview of Oracle’s File Mapping Interface

■ How Oracle’s File Mapping Interface Works

■ Using Oracle’s File Mapping Interface

■ File Mapping Examples

See Also: Oracle9i Database Reference for information about

checksums and the DB_BLOCK_CHECKSUM initialization parameter

Note: This section presents an overview of Oracle’s file mapping

interface and explains how to use the DBMS_STORAGE_MAP
package and dynamic performance views to expose the mapping of

files onto physical devices. You can more easily access this

functionality through the Oracle Enterprise Manager (OEM). It

provides an easy to use graphical interface for mapping files to

physical devices.

See the Oracle Enterprise Manager documentation set for more

information.

Mapping Files to Physical Devices

12-16 Oracle9i Database Administrator’s Guide

Overview of Oracle’s File Mapping Interface
To acquire an understanding of I/O performance, one must have detailed

knowledge of the storage hierarchy in which files reside. Oracle provides a

mechanism to show a complete mapping of a file to intermediate layers of logical

volumes to actual physical devices. This is accomplished though a set of dynamic

performance views (V$ views). Using these views, you can locate the exact disk on

which any block of a file resides.

To build these views, storage vendors must provide mapping libraries that are

responsible for mapping their particular I/O stack elements. Oracle communicates

with these libraries through an external non-Oracle process that is spawned by an

Oracle background process called FMON. FMON is responsible for managing the

mapping information. Oracle provides a PL/SQL package, DBMS_STORAGE_MAP,

that you use to invoke mapping operations that populate the mapping views.

How Oracle’s File Mapping Interface Works
This section describes the components of Oracle’s file mapping interface and how

the interface works. It contains the following topics:

■ Components of File Mapping

■ Mapping Structures

■ Example of Mapping Structures

■ Configuration ID

Components of File Mapping
The following figure shows the components of the file mapping mechanism.

Mapping Files to Physical Devices

Managing Datafiles 12-17

Figure 12–1 Components of File Mapping

The following sections briefly describes these components and how they work

together to populate the mapping views:

■ FMON

■ External Process (FMPUTL)

■ Mapping Libraries

FMON FMON is a background process started by Oracle whenever the FILE_
MAPPING initialization parameter is set to TRUE. FMON is responsible for:

■ Building mapping information, which is stored in the SGA. This information is

composed of the following structures:

– Files

– File system extents

– Elements

– Subelements

These structures are explained in "Mapping Structures" on page 12-18.

■ Refreshing mapping information when a change occurs because of:

– Changes to Oracle datafiles (size)

– Addition or deletion of datafiles

– Changes to the storage configuration (not frequent)

■ Saving mapping information in the data dictionary to maintain a view of the

information that is persistent across startup and shutdown operations

FMON mapping lib1

mapping libn

mapping lib0

SGA

Oracle Instance

FMPUTL

External
Process

.

.

.

Mapping Files to Physical Devices

12-18 Oracle9i Database Administrator’s Guide

■ Restoring mapping information into the SGA at instance startup. This avoids

the need for a potentially expensive complete rebuild of the mapping

information on every instance startup.

You help control this mapping using procedures that are invoked with the DBMS_
STORAGE_MAP package.

External Process (FMPUTL) FMON spawns an external non-Oracle process called

FMPUTL, that communicates directly with the vendor supplied mapping libraries.

This process obtains the mapping information through all levels of the I/O stack,

assuming that mapping libraries exist for all levels. On some platforms the external

process requires that the SETUID bit is set to ON because root privileges are needed

to map through all levels of the I/O mapping stack.

The external process is responsible for discovering the mapping libraries and

dynamically loading them into its address space.

Mapping Libraries Oracle uses mapping libraries to discover mapping information for

the elements that are owned by a particular mapping library. Through these

mapping libraries information about individual I/O stack elements is

communicated. This information is used to populate dynamic performance views

that can be queried by users.

Mapping libraries need to exist for all levels of the stack for the mapping to be

complete, and different libraries may own their own parts of the I/O mapping

stack. For example, a VERITAS VxVM library would own the stack elements related

to the VERITAS Volume Manager, and an EMC library would own all EMC storage

specific layers of the I/O mapping stack.

Mapping libraries are vendor supplied. However, Oracle currently supplies a

mapping library for EMC storage. The mapping libraries available to a database

server are identified in a special file named filemap.ora .

Mapping Structures
The mapping structures and Oracle’s representation of these structures are

described in this section. You will need to understand this information in order to

interpret the information in the mapping views.

The following are the primary structures that compose the mapping information:

■ Files

A file mapping structure provides a set of attributes for a file, including file

size, number of file system extents that the file is composed of, and the file type.

Mapping Files to Physical Devices

Managing Datafiles 12-19

■ File system extents

A file system extent mapping structure describes a contiguous chunk of blocks

residing on one element. This includes the device offset, the extent size, the file

offset, the type (data or parity), and the name of the element where the extent

resides.

■ Elements

An element mapping structure is the abstract mapping structure that describes

a storage component within the I/O stack. Elements may be mirrors, stripes,

partitions, RAID5, concatenated elements, and disks. These structures are the

mapping building blocks.

■ Subelements

A subelement mapping structure describes the link between an element and the

next elements in the I/O mapping stack. This structure contains the subelement

number, size, the element name where the subelement exists, and the element

offset.

All of these mapping structures are illustrated in the following example.

Example of Mapping Structures
Consider an Oracle database which is composed of two data files X and Y. Both files

X and Y reside on a file system mounted on volume A. File X is composed of two

extents while file Y is composed of only one extent. Element A is striped over two

elements B and C. Element B is a partition of element D and element C is mirrored

over elements E and F. Note that elements D, E, and F are physical disks.

Subelement B0 connects the parent element A to element B, subelement C1 connects

A to C,

All of the mapping structures are illustrated in Figure 12–2.

Note: File system extents are not the same as Oracle extents. File

system extents are physical contiguous blocks of data written to a

device as managed by the file system. Oracle extents are logical

structures managed by Oracle, such as tablespace extents.

Mapping Files to Physical Devices

12-20 Oracle9i Database Administrator’s Guide

Figure 12–2 Illustration of Mapping Structures

Note that the mapping structures represented are sufficient to describe the entire

mapping information for the Oracle instance and consequently to map every logical

block within the file into a (element name, element offset) tuple (or more in case of

mirroring) at each level within the I/O stack.

Configuration ID
The configuration ID captures the version information associated with elements or

files. The vendor library provides the configuration ID and updates it whenever a

change occurs. Without a configuration ID, there is no way for Oracle to tell

whether the mapping has changed.

There are two kinds of configuration IDs:

■ Persistent

These configuration IDs are persistent across instance shutdown

File X File Extent 2

Element A

File YFile Extent 1 File Extent 1

Element B

Element D

Element C

Element E Element F

Sub B0 Sub C1

Sub D0 Sub E0 Sub F1

Mapping Files to Physical Devices

Managing Datafiles 12-21

■ Non-persistent

The configuration IDs are not persistent across instance shutdown. Oracle is

only capable of refreshing the mapping information while the instance is up.

Using Oracle’s File Mapping Interface
This section discusses how to use Oracle’s file mapping interface. It contains the

following topics:

■ Enabling File Mapping

■ Using the DBMS_STORAGE_MAP Package

■ Obtaining Information from the File Mapping Views

Enabling File Mapping
The following steps enable the file mapping feature:

1. Ensure that a valid filemap.ora file exists in the $ORACLE_
HOME/rdbms/filemap/etc directory.

The filemap.ora file is the configuration file that describes all of the available

mapping libraries. FMON requires that a filemap.ora file exists and that it

points to a valid path to mapping libraries. Otherwise, it will not start

successfully.

The following row needs to be included for each library :

lib= vendor_name : mapping_library_path

where:

– vendor_name should be Oracle for the EMC Symmetric library

– mapping_library_path is the full path of the mapping library

Caution: While the format and content of the filemap.ora file is

discussed here, it is for informational reasons only. The filemap.ora

file is created by Oracle when your system is installed. Until such

time that vendors supply there own libraries, there will be only one

entry in the filemap.ora file, and that is the Oracle supplied EMC

library. This file should be modified manually by uncommenting

this entry only if an EMC Symmetrix array is available.

Mapping Files to Physical Devices

12-22 Oracle9i Database Administrator’s Guide

Note that the ordering of the libraries in this file is extremely important. The

libraries are queried based on their order in the configuration file.

The file mapping service can be even started even if no mapping libraries are

available. The filemap.ora file still needs to be present even though it is

empty. In this case, the mapping service is constrained in the sense that new

mapping information cannot be discovered. Only restore and drop operations

are allowed in such a configuration.

2. Set the FILE_MAPPING initialization parameter to TRUE.

FILE_MAPPING=TRUE

The instance does not have to be shut down to set this parameter. It can be set

using an ALTER SYSTEM statement.

3. Invoke the appropriate DBMS_STORAGE_MAP mapping procedure. You have

two options:

■ In a cold startup scenario, the Oracle database is just started and no

mapping operation has been invoked yet. You execute the DBMS_
STORAGE_MAP.MAP_ALL procedure to build the mapping information for

the entire I/O subsystem associated with the Oracle database.

■ In a warm start scenario where the mapping information is already built,

you have the option to invoke the DBMS_STORAGE_MAP.MAP_SAVE
procedure to save the mapping information in the data dictionary. (Note

that this procedure is invoked in DBMS_STORAGE_MAP.MAP_ALL() by

default.) This forces all of the mapping information in the SGA to be

flushed to disk.

Once you restart the database, use DBMS_STORAGE_MAP.RESTORE() to

restore the mapping information into the SGA. If needed, DBMS_STORAGE_
MAP.MAP_ALL() can be called to refresh the mapping information.

Using the DBMS_STORAGE_MAP Package
The DBMS_STORAGE_MAP package enables you control the mapping operations.

The various procedures available to you are described in the following table.

Procedure Use to:

MAP_OBJECT Build the mapping information for the Oracle object identified
by object name, owner, and type

MAP_ELEMENT Build mapping information for the specified element

Mapping Files to Physical Devices

Managing Datafiles 12-23

Obtaining Information from the File Mapping Views
Mapping information generated by DBMS_STORAGE_MAP package is captured in

dynamic performance views. Brief descriptions of these views are presented here.

MAP_FILE Build mapping information for the specified filename

MAP_ALL Build entire mapping information for all types of Oracle files
(excluding archive logs)

DROP_ELEMENT Drop the mapping information for a specified element

DROP_FILE Drop the file mapping information for the specified filename

DROP_ALL Drop all mapping information in the SGA for this instance

SAVE Save into the data dictionary the required information
needed to regenerate the entire mapping

RESTORE Load the entire mapping information from the data
dictionary into the shared memory of the instance

LOCK_MAP Lock the mapping information in the SGA for this instance

UNLOCK_MAP Unlock the mapping information in the SGA for this instance

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for a

description of the DBMS_STORAGE_MAP package

■ "File Mapping Examples" on page 12-25 for an example of

using the DBMS_STORAGE_MAP package

View Description

V$MAP_LIBRARY Contains a list of all mapping libraries that have been
dynamically loaded by the external process

V$MAP_FILE Contains a list of all file mapping structures in the shared
memory of the instance

V$MAP_FILE_EXTENT Contains a list of all file system extent mapping structures in
the shared memory of the instance

V$MAP_ELEMENT Contains a list of all element mapping structures in the SGA
of the instance

Procedure Use to:

Mapping Files to Physical Devices

12-24 Oracle9i Database Administrator’s Guide

However, the information generated by the DBMS_STORAGE_MAP.MAP_OBJECT
procedure is captured in a global temporary table named MAP_OBJECT. This table

displays the hierarchical arrangement of storage containers for objects. Each row in

the table represents a level in the hierarchy. A description of the MAP_OBJECTtable

follows.

V$MAP_EXT_ELEMENT Contains supplementary information for all element
mapping

V$MAP_SUBELEMENT Contains a list of all subelement mapping structures in the
shared memory of the instance

V$MAP_COMP_LIST Contains supplementary information for all element
mapping structures.

V$MAP_FILE_IO_STACK The hierarchical arrangement of storage containers for the
file displayed as a series of rows. Each row represents a level
in the hierarchy.

See Also: Oracle9i Database Reference contains complete

descriptions of the dynamic performance views

Column Datatype Description

OBJECT_NAME VARCHAR2(2000)Name of the object

OBJECT_OWNER VARCHAR2(2000)Owner of the object

OBJECT_TYPE VARCHAR2(2000) Object type

FILE_MAP_IDX NUMBER File index (corresponds to FILE_MAP_IDX in
V$MAP_FILE)

DEPTH NUMBER Element depth within the I/O stack

ELEM_IDX NUMBER Index corresponding to element

CU_SIZE NUMBER Contiguous set of logical blocks of the file, in HKB
units, that is resident contiguously on the element

STRIDE NUMBER Number of HKB between contiguous units (CU) in
the file that are contiguous on this element. Used in
RAID5 and striped files.

View Description

Mapping Files to Physical Devices

Managing Datafiles 12-25

File Mapping Examples
The following examples illustrates some of the powerful capabilities of Oracle’s file

mapping feature. This includes :

■ The ability to map all Oracle files that span a particular device

■ The ability to map a particular file into its corresponding devices

■ The ability to map a particular Oracle object, including its block distribution at

all levels within the I/O stack

Consider an Oracle instance which is composed of two datafiles:

■ t_db1.f

■ t_db2.f

These files are created on a Solaris UFS file system mounted on a VERITAS VxVM

host based striped volume, /dev/vx/dsk/ipfdg/ipf-vol1 , that consists of the

following host devices as externalized from an EMC Symmetrix array:

■ /dev/vx/rdmp/c2t1d0s2

■ /dev/vx/rdmp/c2t1d1s2

Note that the following examples require the execution of a MAP_ALL() operation.

NUM_CU NUMBER Number of contiguous units that are adjacent to
each other on this element that are separated by
STRIDE HKB in the file. In RAID5, the number of
contiguous units also include the parity stripes.

ELEM_OFFSET NUMBER Element offset in HKB units

FILE_OFFSET NUMBER Offset in HKB units from the start of the file to the
first byte of the contiguous units

DATA_TYPE VARCHAR2(2000) Datatype (DATA, PARITY, or DATA AND PARITY)

PARITY_POS NUMBER Position of the parity. Only for RAID5. This field is
needed to distinguish the parity from the data part.

PARITY_PERIOD NUMBER Parity period. Only for RAID5.

Column Datatype Description

Mapping Files to Physical Devices

12-26 Oracle9i Database Administrator’s Guide

Example 1: Map All Oracle Files that Span a Device
The following query returns all Oracle files associated with the

/dev/vx/rdmp/c2t1d1s2 host device:

SELECT UNIQUE me.ELEM_NAME, mf.FILE_NAME
 FROM V$MAP_FILE_IO_STACK fs, V$MAP_FILE mf, V$MAP_ELEMENT me
 WHERE mf.FILE_MAP_IDX = fs.FILE_MAP_IDX
 AND me.ELEM_IDX = fs.ELEM_IDX
 AND me.ELEM_NAME = /dev/vx/rdmp/c2t1d1s2;

The query results are:

ELEM_NAME FILE_NAME
------------------------ --------------------------------
/dev/vx/rdmp/c2t1d1s2 /oracle/dbs/t_db1.f
/dev/vx/rdmp/c2t1d1s2 /oracle/dbs/t_db2.f

Example 2: Map a File into Its Corresponding Devices
The following query displays a topological graph of the /oracle/dbs/t_db1.f
datafile:

WITH fv AS
 (SELECT FILE_MAP_IDX, FILE_NAME FROM V$MAP_FILE
 WHERE FILE_NAME = /oracle/dbs/t_db1.f)
SELECT fv.FILE_NAME, LPAD(' ', 4 * (LEVEL - 1)) || el.ELEM_NAME ELEM_NAME
 FROM V$MAP_SUBELEMENT sb, V$MAP_ELEMENT el, fv,
 (SELECT UNIQUE ELEM_IDX FROM V$MAP_FILE_IO_STACK io, fv
 WHERE io.FILE_MAP_IDX = fv.FILE_MAP_IDX) fs
 WHERE el.ELEM_IDX = sb.CHILD_IDX
 AND fs.ELEM_IDX = el.ELEM_IDX
 START WITH sb.PARENT_IDX IN
 (SELECT DISTINCT ELEM_IDX
 FROM V$MAP_FILE_EXTENT fe, fv
 WHERE fv.FILE_MAP_IDX = fe.FILE_MAP_IDX)
 CONNECT BY PRIOR sb.CHILD_IDX = sb.PARENT_IDX;

The resulting topological graph is:

FILE_NAME ELEM_NAME
----------------------- ---
/oracle/dbs/t_db1.f _sym_plex_/dev/vx/rdsk/ipfdg/ipf-vol1_-1_-1
/oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipfdg/ipf-vol1_0_0_0
/oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d0s2
/oracle/dbs/t_db1.f _sym_symdev_000183600407_00C
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00C_0

Mapping Files to Physical Devices

Managing Datafiles 12-27

/oracle/dbs/t_db1.f _sym_hyper_000183600407_00C_1
/oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipfdg/ipf-vol1_0_1_0
/oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d1s2
/oracle/dbs/t_db1.f _sym_symdev_000183600407_00D
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_0
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_1

Example 3: Map an Oracle Object
This example displays the block distribution at all levels within the I/O stack for

the scott.bonus table.

A MAP_OBJECT() operation must first be executed as follows:

EXECUTE DBMS_STORAGE_MAP.MAP_OBJECT('BONUS','SCOTT','TABLE');

The query is as follows:

SELECT io.OBJECT_NAME o_name, io.OBJECT_OWNER o_owner, io.OBJECT_TYPE o_type,
 mf.FILE_NAME, me.ELEM_NAME, io.DEPTH,
 (SUM(io.CU_SIZE * (io.NUM_CU - DECODE(io.PARITY_PERIOD, 0, 0,
 TRUNC(io.NUM_CU / io.PARITY_PERIOD)))) / 2) o_size
 FROM MAP_OBJECT io, V$MAP_ELEMENT me, V$MAP_FILE mf
 WHERE io.OBJECT_NAME = 'BONUS'
 AND io.OBJECT_OWNER = 'SCOTT'
 AND io.OBJECT_TYPE = 'TABLE'
 AND me.ELEM_IDX = io.ELEM_IDX
 AND mf.FILE_MAP_IDX = io.FILE_MAP_IDX
 GROUP BY io.ELEM_IDX, io.FILE_MAP_IDX, me.ELEM_NAME, mf.FILE_NAME, io.DEPTH,
 io.OBJECT_NAME, io.OBJECT_OWNER, io.OBJECT_TYPE
 ORDER BY io.DEPTH;

The following is the result of the query. Note that the o_size column is expressed

in KB.

O_NAME O_OWNER O_TYPE FILE_NAME ELEM_NAME DEPTH O_SIZE
------ ------- ------ ------------------- ----------------------------- ------ ------
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/dsk/ipfdg/ipf-vol1 0 20
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_plex_/dev/vx/rdsk/ipf 1 20
 pdg/if-vol1_-1_-1
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ 2 12
 ipfdg/ipf-vol1_0_1_0
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipf 2 8
 dg/ipf-vol1_0_2_0
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d1s2 3 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d2s2 3 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_symdev_000183600407_00D 4 12

Viewing Datafile Information

12-28 Oracle9i Database Administrator’s Guide

BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_symdev_000183600407_00E 4 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_0 5 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_1 5 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00E_0 6 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00E_1 6 8

 Viewing Datafile Information
The following data dictionary views provide useful information about the datafiles

of a database:

This example illustrates the use of one of these views, V$DATAFILE.

SELECT NAME,
 FILE#,
 STATUS,
 CHECKPOINT_CHANGE# "CHECKPOINT"
 FROM V$DATAFILE;

NAME FILE# STATUS CHECKPOINT
-------------------------------- ----- ------- ----------
/u01/oracle/rbdb1/system01.dbf 1 SYSTEM 3839
/u02/oracle/rbdb1/temp01.dbf 2 ONLINE 3782
/u02/oracle/rbdb1/users03.dbf 3 OFFLINE 3782

FILE# lists the file number of each datafile; the first datafile in the SYSTEM
tablespace created with the database is always file 1. STATUSlists other information

View Description

DBA_DATA_FILES Provides descriptive information about each datafile,
including the tablespace to which it belongs and the file id.
The file id can be used to join with other views for detail
information.

DBA_EXTENTS

USER_EXTENTS

DBA view describes the extents comprising all segments in the
database. Contains the file id of the datafile containing the
extent. USERview describes extents of the segments belonging
to objects owned by the current user.

DBA_FREE_SPACE

USER_FREE_SPACE

DBA view lists the free extents in all tablespaces. Includes the
file id of the datafile containing the extent. USER view lists the
free extents in the tablespaces accessible to the current user.

V$DATAFILE Contains datafile information from the control file

V$DATAFILE_HEADER Contains information from datafile headers

Viewing Datafile Information

Managing Datafiles 12-29

about a datafile. If a datafile is part of the SYSTEM tablespace, its status is SYSTEM
(unless it requires recovery). If a datafile in a non-SYSTEM tablespace is online, its

status is ONLINE. If a datafile in a non-SYSTEMtablespace is offline, its status can be

either OFFLINE or RECOVER. CHECKPOINT lists the final SCN (system change

number) written for a datafile’s most recent checkpoint.

See Also: Oracle9i Database Reference for a complete descriptions

of these views

Viewing Datafile Information

12-30 Oracle9i Database Administrator’s Guide

Managing Undo Space 13-1

13
Managing Undo Space

This chapter describes how to manage undo space, either by using undo tablespaces

or by using rollback segments. It contains the following topics:

■ What is Undo?

■ Specifying the Mode for Undo Space Management

■ Managing Undo Tablespaces

■ Managing Rollback Segments

See Also:

■ Chapter 3, "Using Oracle-Managed Files" for information about

creating an undo tablespace whose datafiles are both created

and managed by the Oracle database server

■ Oracle9i Real Application Clusters Administration for information

about managing undo space in an Oracle Real Application

Clusters environment.

What is Undo?

13-2 Oracle9i Database Administrator’s Guide

What is Undo?
Every Oracle database must have a method of maintaining information that is used

to roll back, or undo, changes to the database. Such information consists of records

of the actions of transactions, primarily before they are committed. Oracle refers to

these records collectively as undo.

Undo records are used to:

■ Roll back transactions when a ROLLBACK statement is issued

■ Recover the database

■ Provide read consistency

When a rollback statement is issued, undo records are used to undo changes that

were made to the database by the uncommitted transaction. During database

recovery, undo records are used to undo any uncommitted changes applied from

the redo log to the datafiles. Undo records provide read consistency by maintaining

the before image of the data for users who are accessing the data at the same time

that another user is changing it.

Historically, Oracle has used rollback segments to store undo. Space management

for these rollback segments has proven to be quite complex. Oracle now offers

another method of storing undo that eliminates the complexities of managing

rollback segment space, and enables DBAs to exert control over how long undo is

retained before being overwritten. This method uses an undo tablespace. Both of

these methods of managing undo space are discussed in this chapter.

You cannot use both methods in the same database instance, although for migration

purposes it is possible, for example, to create undo tablespaces in a database that is

using rollback segments, or to drop rollback segments in a database that is using

undo tablespaces. However, you must shut down and restart your database in order

to effect the switch to another method of managing undo.

Note: Oracle always uses a SYSTEM rollback segment for

performing system transactions. There is only one SYSTEM rollback

segment and it is created automatically at CREATE DATABASE
time and is always brought online at instance startup. You are not

required to perform any operations to manage the SYSTEMrollback

segment.

Specifying the Mode for Undo Space Management

Managing Undo Space 13-3

Specifying the Mode for Undo Space Management
If you use the rollback segment method of managing undo space, you are said to be

operating in the manual undo management mode. If you use the undo tablespace

method, you are operating in the automatic undo management mode. You

determine the mode at instance startup using the UNDO_MANAGEMENT initialization

parameter.

Starting an Instance in Automatic Undo Management Mode
The following initialization parameter setting causes the STARTUP command to

start an instance in automatic undo management mode:

UNDO_MANAGEMENT = AUTO

An undo tablespace must be available, into which Oracle will store undo records.

The default undo tablespace is created at database creation, or an undo tablespace

can be created explicitly. The methods of creating an undo tablespace are explained

in "Creating an Undo Tablespace" on page 13-6

When the instance starts up, Oracle automatically selects for use the first available

undo tablespace. If there is no undo tablespace available, the instance starts, but

uses the SYSTEM rollback segment. This is not recommended in normal

circumstances, and an alert message is written to the alert file to warn that the

system is running without an undo tablespace.

You can optionally specify at startup that you want an Oracle instance to use a

specific undo tablespace. This is done by setting the UNDO_TABLESPACE
initialization parameter. For example:

UNDO_TABLESPACE = undotbs_01

In this case, if you have not already created the undo tablespace (in this example,

undotbs_01), the STARTUP command will fail. The UNDO_TABLESPACE
parameter can be used to assign a specific undo tablespace to an instance in an

Oracle Real Application Clusters environment.

The following is a summary of the initialization parameters for automatic undo

management mode:

See Also: Oracle9i Database Concepts for more information about

undo and managing undo space

Specifying the Mode for Undo Space Management

13-4 Oracle9i Database Administrator’s Guide

If the initialization parameter file contains parameters relating to manual undo

management, they are ignored.

To learn how to manage undo tablespaces, see "Managing Undo Tablespaces" on

page 13-5.

Starting an Instance in Manual Undo Management Mode
The following initialization parameter setting causes the STARTUP command to

start an instance in manual undo management mode:

UNDO_MANAGEMENT = MANUAL

If the UNDO_MANAGEMENT initialization parameter is not specified, the instance

starts in manual undo management mode. If an UNDO_TABLESPACE initialization

parameter is found, it is ignored. For DBAs who want to run their databases in

manual undo management mode, their existing initialization parameter file can be

used without any changes.

When the instance starts up, it brings online a number of rollback segments as

determined by either of the following:

■ The ROLLBACK_SEGMENTS initialization parameter

■ The TRANSACTIONS and TRANSACTIONS_PER_ROLLBACK_SEGMENT
initialization parameters

Initialization Parameter Description

UNDO_MANAGEMENT If AUTO, use automatic undo management mode. If
MANUAL, use manual undo management mode.

UNDO_TABLESPACE A dynamic parameter specifying the name of an undo
tablespace to use.

UNDO_RETENTION A dynamic parameter specifying the length of time to
retain undo. Default is 900 seconds.

UNDO_SUPPRESS_ERRORS If TRUE, suppress error messages if manual undo
management SQL statements are issued when operating
in automatic undo management mode. If FALSE, issue
error message. This is a dynamic parameter.

See Also: Oracle9i Database Reference for complete descriptions of

initialization parameters used in automatic undo management

mode

Managing Undo Tablespaces

Managing Undo Space 13-5

The following is a summary of initialization parameters that can be specified with

manual undo management mode.

To learn how to manage rollback segments, see "Managing Rollback Segments" on

page 13-13.

Managing Undo Tablespaces
Oracle strongly recommends operating in automatic undo management mode. The

database server can manage undo more efficiently, and automatic undo

management mode is less complex to implement and manage. The following

sections guide you in the management of undo tablespaces:

■ Creating an Undo Tablespace

■ Altering an Undo Tablespace

■ Dropping an Undo Tablespace

■ Switching Undo Tablespaces

■ Establishing User Quotas for Undo Space

■ Specifying the Retention Period for Undo Information

■ Viewing Information About Undo Space

Initialization Parameter Description

ROLLBACK_SEGMENTS Specifies the rollback segments to be acquired at instance
startup

TRANSACTIONS Specifies the maximum number of concurrent transactions

TRANSACTIONS_PER_ROLLBACK_SEGMENT Specifies the number of concurrent transactions that each
rollback segment is expected to handle

MAX_ROLLBACK_SEGMENTS Specifies the maximum number of rollback segments that
can be online for any instance

See Also: Oracle9i Database Reference for complete descriptions of

initialization parameters used in manual undo management mode

See Also: Oracle9i SQL Reference for complete descriptions of the

SQL statements discussed in the following sections

Managing Undo Tablespaces

13-6 Oracle9i Database Administrator’s Guide

Creating an Undo Tablespace
There are two methods of creating an undo tablespace. The first method creates the

undo tablespace when the CREATE DATABASE statement is issued. This occurs

when you are creating a new database, and the instance is started in automatic

undo management mode (UNDO_MANAGEMENT = AUTO). The second method is

used with an existing database. It uses the CREATE UNDO TABLESPACE statement.

You cannot create database objects in an undo tablespace. It is reserved for

system-managed undo data.

Using CREATE DATABASE to Create an Undo Tablespace
You can create a specific undo tablespace using the UNDO TABLESPACE clause of

the CREATE DATABASE statement. But, this clause is not required.

If the UNDO TABLESPACE clause is not specified and the CREATE DATABASE
statement is executed in automatic undo management mode, a default undo

tablespace is created with the name SYS_UNDOTBS. This tablespace is allocated

from the default set of files used by the CREATE DATABASE statement and its

attributes are determined by Oracle. The initial size is 10M, and it is autoextensible.

This method of creating an undo tablespace is only recommended to users who do

not have any specific requirements for allocation of undo space.

The following statement illustrates using the UNDO TABLESPACE clause in a

CREATE DATABASE statement. The undo tablespace is named undotbs_01 and

one datafile, /u01/oracle/rbdb1/undo0101.dbf , is allocated for it.

CREATE DATABASE rbdb1
 CONTROLFILE REUSE
 .
 .
 .
 UNDO TABLESPACE undotbs_01 DATAFILE '/u01/oracle/rbdb1/undo0101.dbf';

If the undo tablespace cannot be created successfully during CREATE DATABASE,
the entire CREATE DATABASE operation fails. You must clean up the database files,

correct the error and retry the CREATE DATABASE operation.

Using the CREATE UNDO TABLESPACE Statement
The CREATE UNDO TABLESPACEstatement is the same as the CREATE
TABLESPACE statement, but the UNDO keyword is specified. Oracle determines

most of the attributes of the undo tablespace, you can specify only the DATAFILE
clause.

Managing Undo Tablespaces

Managing Undo Space 13-7

This example creates the undotbs_02 undo tablespace:

CREATE UNDO TABLESPACE undotbs_02
 DATAFILE '/u01/oracle/rbdb1/undo0201.dbf' SIZE 2M REUSE AUTOEXTEND ON;

Altering an Undo Tablespace
Undo tablespaces are altered using the ALTER TABLESPACE statement. However,

since most aspects of undo tablespaces are system managed, you need only be

concerned with the following actions:

■ Adding a datafile

■ Renaming a datafile

■ Bringing a datafile online or taking it offline

■ Beginning or ending an open backup on a datafile

These are also the only attributes you are permitted to alter.

If an undo tablespace runs out of space, or you want to prevent it from doing so,

you can add more files to it or resize existing datafiles.

The following example adds another datafile to undo tablespace undotbs_01:

ALTER TABLESPACE undotbs_01
 ADD DATAFILE '/u01/oracle/rbdb1/undo0102.dbf' AUTOEXTEND ON NEXT 1M
 MAXSIZE UNLIMITED;

You can use the ALTER DATABASE ... DATAFILE statement to resize or extend a

datafile.

Dropping an Undo Tablespace
Use the DROP TABLESPACE statement to drop an undo tablespace. The following

example drops the undo tablespace undotbs_01 :

DROP TABLESPACE undotbs_01;

An undo tablespace can only be dropped if it is not currently used by any instance.

If the undo tablespace contains any outstanding transactions (for example, a

transaction died but has not yet been recovered), the DROP TABLESPACEstatement

fails. However, since DROP TABLESPACE drops an undo tablespace even if it

contains unexpired undo information (within retention period), you must be careful

See Also: "Changing a Datafile’s Size" on page 12-6

Managing Undo Tablespaces

13-8 Oracle9i Database Administrator’s Guide

not to drop an undo tablespace if undo information is needed by some existing

queries.

DROP TABLESPACE for undo tablespaces behaves like DROP TABLESPACE ...
INCLUDING CONTENTS. All contents of the undo tablespace are removed.

Switching Undo Tablespaces
You can switch from using one undo tablespace to another. Because the UNDO_
TABLESPACE initialization parameter is a dynamic parameter, the ALTER SYSTEM
SET statement can be used to assign a new undo tablespace.

The following statement effectively switches to a new undo tablespace:

ALTER SYSTEM SET UNDO_TABLESPACE = undotbs_02;

Assuming undotbs_01 is the current undo tablespace, after this command

successfully executes, the instance uses undotbs_02 in place of undotbs_01 as its

undo tablespace.

If any of the following conditions exist for the tablespace being switched to, an error

is reported and no switching occurs:

■ The tablespace does not exist,

■ The tablespace is not an undo tablespace

■ The tablespace is already being used by another instance

The database is online while the switch operation is performed, and user

transactions can be executed while this command is being executed. When the

switch operation completes successfully, all transactions started after the switch

operation began are assigned to transaction tables in the new undo tablespace.

The switch operation does not wait for transactions in the old undo tablespace to

commit. If there are any pending transactions in the old undo tablespace, the old

undo tablespace enters into a PENDING OFFLINE mode (status). In this mode,

existing transactions can continue to execute, but undo records for new user

transactions cannot be stored in this undo tablespace.

An undo tablespace can exist in this PENDING OFFLINE mode, even after the

switch operation completes successfully. A PENDING OFFLINE undo tablespace

cannot used by another instance, nor can it be dropped. Eventually, after all active

transactions have committed, the undo tablespace automatically goes from the

PENDING OFFLINE mode to the OFFLINE mode. From then on, the undo

Managing Undo Tablespaces

Managing Undo Space 13-9

tablespace is available for other instances (in an Oracle Real Application Cluster

environment).

If the parameter value for UNDO TABLESPACE is set to '' (two single quotes), the

current undo tablespace will be switched out without switching in any other undo

tablespace. This can be used, for example, to unassign an undo tablespace in the

event that you want to revert to manual undo management mode.

The following example unassigns the current undo tablespace:

ALTER SYSTEM SET UNDO_TABLESPACE = '';

Establishing User Quotas for Undo Space
Oracle’s Database Resource Manager can be used to establish user quotas for undo

space. The Database Resource Manager directive, UNDO_POOL, allows DBAs to limit

the amount of undo space consumed by a group of users (resource consumer

group).

You can specify an undo pool for each consumer group. An undo pool controls the

amount of total undo that can be generated by a consumer group. When the total

undo generated by a consumer group exceeds its undo limit, the current UPDATE
transaction generating the redo is terminated. No other members of the consumer

group can perform further updates until undo space is freed from the pool.

When no UNDO_POOL directive is explicitly defined, users are allowed unlimited

undo space.

Specifying the Retention Period for Undo Information
Committed undo information normally is lost when its undo space is overwritten

by a newer transaction. But for consistent read purposes, long running queries

might require old undo information for undoing changes and producing older

images of data blocks. The initialization parameter, UNDO_RETENTION, provides a

means of explicitly specifying the amount of undo information to retain. With a

proper setting, long running queries can complete without risk of receiving the

"snapshot too old" error.

Setting the UNDO_RETENTION Initialization Parameter
Retention is specified in units of seconds, for example 500 seconds. It is persistent

and can survive system crashes. That is, undo generated before an instance crash, is

retained until its retention time has expired even across restarting the instance.

See Also: Chapter 27, "Using the Database Resource Manager"

Managing Undo Tablespaces

13-10 Oracle9i Database Administrator’s Guide

When the instance is recovered, undo information will be retained based on the

current setting of the UNDO_RETENTION initialization parameter.

The UNDO_RETENTION parameter can be set initially in the initialization parameter

file that is used by the STARTUP process:

UNDO_RETENTION = 10

The UNDO_RETENTION parameter value can be changed dynamically at any time

using the ALTER SYSTEM command:

ALTER SYSTEM SET UNDO_RETENTION = 5;

The effect of the UNDO_RETENTION parameter is immediate, but it can only be

honored if the current undo tablespace has enough space for the active transactions.

If an active transaction requires undo space and the undo tablespace does not have

available space, the system starts reusing unexpired undo space. Such action can

potentially cause some queries to fail with the "snapshot too old" error.

If the UNDO_RETENTION initialization parameter is not specified, the default value

is 900 seconds.

Choosing the Retention Period for Flashback Queries
The retention period for undo information is an important factor in the execution of

flashback queries. Oracle’s flashback query feature enables you to see a consistent

version of the database as of a specified time in the past. You can execute queries, or

even applications, as of a previous time in the database. The Oracle supplied DBMS_
FLASHBACKpackage implements this functionality at the session level. At the object

level, flashback queries use the AS OF clause of the SELECT statement to specify

the previous point in time for which you wish to view data.

The retention period determines how far back in time a database version can be

established for flashback queries. Specifically, you must choose an undo retention

interval that is long enough that it enables you to construct a snapshot of the

database for the oldest version of the database that you are interested in. For

example, if an application requires that a version of the database be available

reflecting its content 12 hours previously, then UNDO_RETENTION must be set to

43200.

When using automatic undo management, the RETENTION value for LOB columns

is set to the value of UNDO_RETENTION.

Managing Undo Tablespaces

Managing Undo Space 13-11

Calculating the Space Requirements For Undo Retention
Given a specific UNDO_RETENTION parameter setting and some system statistics,

the amount of undo space required to satisfy the undo retention requirement can be

estimated using the following formula:

UndoSpace = UR * UPS + overhead

where:

■ UndoSpace is the number of undo blocks

■ UR is UNDO_RETENTION in seconds

■ UPS is undo blocks for each second

■ overhead is the small overhead for metadata (transaction tables, bitmaps, and

so forth)

As an example, if UNDO_RETENTIONis set to 2 hours, and the transaction rate (UPS)

is 200 undo blocks for each second, with a 4K block size, the required undo space is

computed as follows:

(2 * 3600 * 200 * 4K) = 5.8GBs.

Such computation can be performed by using information in the V$UNDOSTAT
view. In the steady state, you can query the view to obtain the transaction rate. The

overhead figure can also be obtained from the view.

Viewing Information About Undo Space
This section lists views that are useful for viewing information about undo space in

the automatic undo management mode. In addition to views listed here, you can

obtain information from the views available for viewing tablespace and datafile

information.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about using the flashback query feature

■ Oracle9i Supplied PL/SQL Packages and Types Reference for a

description of the DBMS_FLASHBACK package

■ Oracle9i SQL Reference for a description of the AS OF clause of

the SELECT statement

Managing Undo Tablespaces

13-12 Oracle9i Database Administrator’s Guide

Undo Space Views
The following views are available for obtaining undo space information:

Monitoring Undo Space
The V$UNDOSTAT view is useful for monitoring the effects of transaction execution

on undo space in the current instance. Statistics are available for undo space

consumption, transaction concurrency, and length of queries in the instance.

Each row in the view contains statistics collected in the instance for a ten-minute

interval. The rows are in descending order by the BEGIN_TIME column value. Each

row belongs to the time interval marked by (BEGIN_TIME, END_TIME). Each

column represents the data collected for the particular statistic in that time interval.

The first row of the view contains statistics for the (partial) current time period. The

view contains a total of 1008 rows, spanning a 7 day cycle.

The following example shows the results of a query on the V$UNDOSTAT view.

SELECT BEGIN_TIME, END_TIME, UNDOTSN, UNDOBLKS, TXNCOUNT,
 MAXCONCURRENCY AS "MAXCON"

See Also:

■ "Viewing Tablespace Information" on page 11-50

■ "Viewing Datafile Information" on page 12-28

View Description

V$UNDOSTAT Contains statistics for monitoring and tuning undo space.
Use this view to help estimate the amount of undo space
required for the current workload. Oracle also uses this
information to help tune undo usage in the system. This
view is available in both the automatic undo management
and the manual undo management modes.

V$ROLLSTAT For automatic undo management mode, information reflects
behavior of the undo segments in the undo tablespace

V$TRANSACTION Contains undo segment information

DBA_UNDO_EXTENTS Shows the commit time for each extent in the undo
tablespace.

See Also: Oracle9i Database Reference for complete descriptions of

the views used in automatic undo management mode

Managing Rollback Segments

Managing Undo Space 13-13

 FROM V$UNDOSTAT;

The results are:

BEGIN_TIME END_TIME UNDOTSN UNDOBLKS TXNCOUNT MAXCON
-------------------- -------------------- ------- -------- -------- ------
07/28/2000 18:26:28 07/28/2000 18:32:13 2 709 55 2
07/28/2000 18:16:28 07/28/2000 18:26:28 2 448 12 2
07/28/2000 14:36:28 07/28/2000 18:16:28 1 0 0 0
07/28/2000 14:26:28 07/28/2000 14:36:28 1 1 1 1
07/28/2000 14:16:28 07/28/2000 14:26:28 1 10 1 1
...

The above example shows how undo space is consumed in the system for the

previous 24 hours from the time 18:32:13.

Managing Rollback Segments
If you choose to use rollback segments to store undo, the following sections guide

you in their management:

■ Guidelines for Managing Rollback Segments

■ Creating Rollback Segments

■ Altering Rollback Segments

■ Explicitly Assigning a Transaction to a Rollback Segment

■ Dropping Rollback Segments

■ Viewing Rollback Segment Information

Guidelines for Managing Rollback Segments
This section describes guidelines to consider before creating or managing the

rollback segments of your databases, and contains the following topics:

■ Use Multiple Rollback Segments

Note: The use of rollback segments for managing undo space will

be deprecated in a future release. Oracle strongly recommends that

you use automatic undo management and manage undo space

using an UNDO_TABLESPACE.

Managing Rollback Segments

13-14 Oracle9i Database Administrator’s Guide

■ Choose Between Public and Private Rollback Segments

■ Specify Rollback Segments to Acquire Automatically

■ Approximate Rollback Segment Sizes

■ Create Rollback Segments with Many Equally Sized Extents

■ Set an Optimal Number of Extents for Each Rollback Segment

■ Place Rollback Segments in a Separate Tablespace

Use Multiple Rollback Segments
Using multiple rollback segment distributes rollback segment contention across

many segments and improves system performance. Oracle assigns transactions to

rollback segments in round-robin fashion. This results in a fairly even distribution

of the number of transactions for each rollback segment. It is also possible to assign

a transaction to a specific rollback segment, but this is usually not done.

When a database is created, a single rollback segment named SYSTEM is created in

the SYSTEM tablespace. This rollback segment is used in special ways by the Oracle

database server, and is not intended for general use. Before you write to objects

created in non-SYSTEM tablespaces, you must create and bring online at least one

additional rollback segment in a non-SYSTEM tablespace.

At startup, an instance always acquires (brings online) the SYSTEM rollback

segment in addition to any other rollback segments it needs or is directed to

acquire. When there are multiple rollback segments, Oracle tries to use the SYSTEM
rollback segment only for special system transactions and distributes user

transactions among other rollback segments. If there are too many transactions for

the non-SYSTEM rollback segments, Oracle uses the SYSTEM segment; plan your

number of rollback segments to avoid this.

See Also: Oracle9i Database Concepts for additional information

about rollback segments

Note: When you are initially creating the database, and in order to

create additional tablespaces and rollback segments, you must

create a second rollback segment in the SYSTEM tablespace. Once

these additional rollback segments are created, you should activate

the new rollback segments and make the second rollback segment

unavailable.

Managing Rollback Segments

Managing Undo Space 13-15

There are a couple of options for activating multiple rollback segments when you

start up an instance:

■ Use public rollback segments and include the TRANSACTIONS and

TRANSACTIONS_PER_ROLLBACK_SEGMENT initialization parameters in your

initialization parameter file

■ Use private or public rollback segments and specify their names in the

ROLLBACK_SEGMENTS initialization parameter

These options are discussed in other guidelines that follow.

There is a limit on the number of rollback segments that can be open

simultaneously. This limit is set by the MAX_ROLLBACK_SEGMENTS initialization

parameter. Ensure that this parameter is set to a value higher than the number of

rollback segments specified in the ROLLBACK_SEGMENTS initialization parameter.

Choose Between Public and Private Rollback Segments
A private rollback segment must be acquired explicitly by an instance. This can

occur at database startup when the rollback segments name is included in the

ROLLBACK_SEGMENTS parameter in the initialization parameter file. A private

rollback segment can also be acquired by specifically bringing it online by manually

issuing the statement to do so. In an Oracle Real Application Clusters environment,

private rollback segments allow an instance to acquire specific rollback segments.

Public rollback segments form a pool of rollback segments that any instance

requiring a rollback segment can use. An instance decides how many of these

rollback segments to automatically acquire at instance startup based on the values

of the TRANSACTIONS and TRANSACTIONS_PER_ROLLBACK_SEGMENT
initialization parameters. Public rollback segments can be shared between Oracle

Real Application Cluster instances.

If you are not using the Oracle9i Real Application Clusters feature, private and

public rollback segments function similarly.

Specify Rollback Segments to Acquire Automatically
When many transactions are concurrently proceeding, they simultaneously

generate rollback information. A way of specifying that an appropriate number of

rollback segments be acquired automatically at instance startup is to include the

See Also: Oracle9i Database Reference for additional information

about the TRANSACTIONS, TRANSACTIONS_PER_ROLLBACK_
SEGMENT, and ROLLBACK_SEGMENT initialization parameters

Managing Rollback Segments

13-16 Oracle9i Database Administrator’s Guide

TRANSACTIONS and TRANSACTIONS_PER_ROLLBACK_SEGMENT initialization

parameters. You must also be using public rollback segments.

You can indicate the number of concurrent transactions you expect for the instance

with the initialization parameter TRANSACTIONS, and the number of transactions

you expect each rollback segment will need to handle with the initialization

parameter TRANSACTIONS_PER_ROLLBACK_SEGMENT. Then, when an instance

opens a database, it attempts to acquire at least n rollback segments, where

n=TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT. When creating

your database, or subsequently, you should have created at least n public rollback

segments.

If you choose to use private rollback segments, these rollback segments will be

acquired automatically by an instance at startup if you specify the rollback

segments by name in the ROLLBACK_SEGMENTS initialization parameter in the

instance’s parameter file.

If you use both private and public rollback segments the following might occur. An

instance acquires all the rollback segments listed in the ROLLBACK_SEGMENTS
initialization parameter, even if more than TRANSACTIONS/TRANSACTIONS_PER_
ROLLBACK_SEGMENT segments are specified.

Approximate Rollback Segment Sizes
Total rollback segment size should be set based on the size of the most common

transactions issued against a database. In general, short transactions experience

better performance when the database has many smaller rollback segments, while

long-running transactions, like batch jobs, perform better with larger rollback

segments. Generally, rollback segments can handle transactions of any size easily.

However, in extreme cases when a transaction is either very short or very long, a

user might want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should be small so

that they are always cached in main memory. If the rollback segments are small

enough, they are more likely to be cached in the SGA according to the LRU

algorithm, and database performance is improved because less disk I/O is

necessary. The main disadvantage of small rollback segments is the increased

likelihood of the error "snapshot too old" when running a long query involving

records that are frequently updated by other transactions. This error occurs because

the rollback entries needed for read consistency are overwritten as other update

entries wrap around the rollback segment. Consider this issue when designing an

application’s transactions, and make them short atomic units of work so that you

can avoid this problem.

Managing Rollback Segments

Managing Undo Space 13-17

In contrast, long-running transactions work better with larger rollback segments,

because the rollback entries for a long-running transaction can fit in preallocated

extents of a large rollback segment.

When database systems applications concurrently issue a mix of very short and

very long transactions, performance can be optimized if transactions are explicitly

assigned to a rollback segment based on the transaction/rollback segment size. You

can minimize dynamic extent allocation and truncation for rollback segments. This

is not required for most systems and is intended for extremely large or small

transactions.

To optimize performance when issuing a mix of extremely small and large

transactions, make a number of rollback segments of appropriate size for each type

of transaction (such as small, medium, and large). Most rollback segments should

correspond to the typical transactions, with a fewer number of rollback segments

for the atypical transactions. Then set OPTIMAL for each such rollback segment so

that the rollback segment returns to its intended size if it has to grow.

You should tell users about the different sets of rollback segments that correspond

to the different types of transactions. Often, it is not beneficial to assign a transaction

explicitly to a specific rollback segment. However, you can assign an atypical

transaction to an appropriate rollback segment created for such transactions. For

example, you can assign a transaction that contains a large batch job to a large

rollback segment.

When a mix of transactions is not prevalent, each rollback segment should be 10%

of the size of the database’s largest table because most SQL statements affect 10% or

less of a table. A rollback segment of this size should be sufficient to store the

actions performed by most SQL statements.

Generally speaking, you should set a high MAXEXTENTSfor rollback segments. This

allows a rollback segment to allocate subsequent extents as it needs them.

Create Rollback Segments with Many Equally Sized Extents
Each rollback segment’s total allocated space should be divided among many

equally sized extents. In general, optimal rollback I/O performance is observed if

each rollback segment for an instance has 10 to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and the number

of initial extents for the segment, use the following formula to calculate the size (s)

of each extent of the rollback segment:

s = T / n

Managing Rollback Segments

13-18 Oracle9i Database Administrator’s Guide

where:

s = calculated size, in bytes, of each extent initially allocated

T = total initial rollback segment size, in bytes

n = number of extents initially allocated

After s is calculated, create the rollback segment and specify the storage parameters

INITIAL and NEXT as s, and MINEXTENTS to n. PCTINCREASE cannot be specified

for rollback segments and therefore defaults to 0. Also, if the size s of an extent is

not an exact multiple of the data block size, it is rounded up to the next multiple.

Set an Optimal Number of Extents for Each Rollback Segment
You should carefully assess the kind of transactions the system runs when setting

the OPTIMAL parameter for each rollback segment. For a system that executes

long-running transactions frequently, OPTIMAL should be large so that Oracle does

not have to shrink and allocate extents frequently. Also, for a system that executes

long queries on active data, OPTIMAL should be large to avoid "snapshot too old"

errors. OPTIMAL should be smaller for a system that mainly executes short

transactions and queries so that the rollback segments remain small enough to be

cached in memory, thus improving system performance.

The V$ROLLNAME and V$ROLLSTAT dynamic performance views can be monitored

to collect statistics useful in determining appropriate settings for OPTIMAL. See

"Monitoring Rollback Segment Statistics" on page 13-27.

Place Rollback Segments in a Separate Tablespace
If possible, create one or more tablespaces specifically to hold all rollback segments.

This way, all rollback segment data is stored separately from other types of data.

Creating this "rollback segment" tablespace can provide the following benefits:

■ A tablespace holding rollback segments can always be kept online, thus

maximizing the combined storage capacity of rollback segments at all times. If

some rollback segments are not available, the overall database operation can be

affected.

■ Because tablespaces with active rollback segments cannot be taken offline,

designating a tablespace to hold all rollback segments of a database ensures that

the data stored in other tablespaces can be taken offline without concern for the

database’s rollback segments.

■ A tablespace’s free extents are likely to be more fragmented if the tablespace

contains rollback segments that frequently allocate and deallocate extents.

Managing Rollback Segments

Managing Undo Space 13-19

Creating Rollback Segments
To create rollback segments, you must have the CREATE ROLLBACK SEGMENT
system privilege. You use the CREATE ROLLBACK SEGMENT statement. The

tablespace to contain the new rollback segments must be online. Rollback segments

are usually created as part of the database creation script or process, but you may

add more at a later time.

The following topics relating to creating rollback segments are contained in this

section:

■ The CREATE ROLLBACK SEGMENT Statement

■ Bringing New Rollback Segments Online

■ Setting Storage Parameters When Creating a Rollback Segment

The CREATE ROLLBACK SEGMENT Statement
The following statement creates a rollback segment named rbs_02 in the

rbsspace tablespace, using the default storage parameters of that tablespace. Since

this is not an Oracle Real Application Clusters environment, it is not necessary to

specify PRIVATE or PUBLIC. The default is PRIVATE.

CREATE ROLLBACK SEGMENT rbs_02 TABLESPACE rbsspace;

Bringing New Rollback Segments Online
New rollback segments are initially offline. You must issue an ALTER ROLLBACK
SEGMENT statement to bring them online and make them available for use by

transactions of an instance. This is described in "Changing the ONLINE/OFFLINE

Status of Rollback Segments" on page 13-22.

If you create a private rollback segment, add the name of this new rollback segment

to the ROLLBACK_SEGMENTSinitialization parameter in the initialization parameter

file for the database. Doing so enables the private rollback segment to be acquired

automatically by the instance at instance startup. For example, if two new private

rollback segments are created and named rbs_01 and rbs_02 , then the

ROLLBACK_SEGMENTS initialization parameter can be specified as follows:

ROLLBACK_SEGMENTS = (rbs_01, rbs_02)

See Also: Oracle9i SQL Reference for exact syntax, restrictions, and

authorization requirements for the SQL statements used in

managing rollback segments

Managing Rollback Segments

13-20 Oracle9i Database Administrator’s Guide

Setting Storage Parameters When Creating a Rollback Segment
Suppose you wanted to create a rollback segment rbs_01 with storage parameters

and optimal size set as follows:

■ The rollback segment is allocated an initial extent of 100K.

■ The rollback segment is allocated the second extent of 100K.

■ The optimal size of the rollback segment is 4M.

■ The minimum number of extents and the number of extents initially allocated

when the segment is created is 20.

■ The maximum number of extents that the rollback segment can allocate,

including the initial extent, is 100.

The following statement creates a rollback segment with these characteristics:

CREATE ROLLBACK SEGMENT rbs_01
 TABLESPACE rbsspace
 STORAGE (
 INITIAL 100K
 NEXT 100K
 OPTIMAL 4M
 MINEXTENTS 20
 MAXEXTENTS 100);

You cannot set a value for the storage parameter PCTINCREASE. It is always 0 for

rollback segments. The OPTIMAL storage parameter is unique to rollback segments.

For a discussion of storage parameters see "Setting Storage Parameters" on

page 14-8.

Oracle Corporation makes the following recommendations:

■ Set INITIAL and NEXT to the same value to ensure that all extents are the same

size.

■ Create a large number of initial extents to minimize the possibility of dynamic

extension. MINEXTENTS = 20 is a good value.

■ Avoid setting MAXEXTENTS = UNLIMITED as this could cause unnecessary

extension of a rollback segment and possibly of data files due to a programming

error. If you do specify UNLIMITED, be aware that extents for that segment

must have a minimum of four data blocks. Also, if you later want to convert a

rollback segment whose MAXEXTENTS are limited to UNLIMITED, that rollback

segment cannot be converted if it has less than four data blocks in any extent. If

you want to convert from limited to UNLIMITED, and have less than four data

Managing Rollback Segments

Managing Undo Space 13-21

blocks in an extent, your only choice is to drop and re-create the rollback

segment.

Altering Rollback Segments
This section discusses various actions you can take to maintain your rollback

segments. All of these maintenance activities use the ALTER ROLLBACK SEGMENT
statement. You must have the ALTER ROLLBACK SEGMENT system privilege to use

this statement.

The following topics are discussed:

■ Changing Rollback Segment Storage Parameters

■ Shrinking a Rollback Segment Manually

■ Changing the ONLINE/OFFLINE Status of Rollback Segments

Changing Rollback Segment Storage Parameters
You can change some of a rollback segment’s storage parameters after creating it.

You may want to change the values of OPTIMAL or MAXEXTENTS. The following

statement alters the maximum number of extents that the rbs_01 rollback segment

can allocate:

ALTER ROLLBACK SEGMENT rbs_01
 STORAGE (MAXEXTENTS 120);

You can alter the settings for the SYSTEM rollback segment, including the OPTIMAL
parameter, just as you can alter those of any rollback segment.

Shrinking a Rollback Segment Manually
You can manually decrease the size of a rollback segment using the ALTER
ROLLBACK SEGMENT statement. The rollback segment you are trying to shrink

must be online.

The following statement shrinks rollback segment rbs1 to 100K:

ALTER ROLLBACK SEGMENT rbs1 SHRINK TO 100K;

This statement attempts to reduce the size of the rollback segment to the specified

size, but stops short if an extent cannot be deallocated because it is active.

See Also: Oracle9i SQL Reference for a detailed description of

storage parameters

Managing Rollback Segments

13-22 Oracle9i Database Administrator’s Guide

Changing the ONLINE/OFFLINE Status of Rollback Segments
This section describes aspects of bringing rollback segments online and taking them

offline, and contains the following topics:

■ Bringing Rollback Segments Online Manually

■ Bringing Rollback Segment Online Automatically

■ Taking Rollback Segments Offline

A rollback segment is either online and available to transactions, or offline and

unavailable to transactions. Generally, rollback segments are online and available

for use by transactions.

You may want to take online rollback segments offline in the following situations:

■ You want to take a tablespace offline, and the tablespace contains rollback

segments. You cannot take a tablespace offline if it contains rollback segments

that transactions are currently using. To prevent associated rollback segments

from being used, you can take them offline before taking the tablespace offline.

■ You want to drop a rollback segment, but cannot because transactions are

currently using it. To prevent the rollback segment from being used, you can

take it offline before dropping it.

You might later want to bring an offline rollback segment back online so that

transactions can use it. When a rollback segment is created, it is initially offline, and

you must explicitly bring a newly created rollback segment online before it can be

used by an instance’s transactions. You can bring an offline rollback segment online

using any instance accessing the database that contains the rollback segment.

Bringing Rollback Segments Online Manually You can only bring a rollback segment

online if its current status (as shown in the DBA_ROLLBACK_SEGS data dictionary

view) is OFFLINE or PARTLY AVAILABLE. To bring an offline rollback segment

online, use the ALTER ROLLBACK SEGMENT statement with the ONLINE option.

The following statement brings the rollback segment user_rs_2 online:

ALTER ROLLBACK SEGMENT user_rs_2 ONLINE;

Note: You cannot take the SYSTEM rollback segment offline.

Managing Rollback Segments

Managing Undo Space 13-23

After you bring a rollback segment online, its status in the data dictionary view

DBA_ROLLBACK_SEGS is ONLINE. To see a query for checking rollback segment

status, see "Displaying Rollback Segment Information" on page 13-26.

A rollback segment in the PARTLY AVAILABLE state contains data for an in-doubt

or recovered distributed transaction, or for yet to be recovered transactions. You can

view its status in the data dictionary view DBA_ROLLBACK_SEGS as PARTLY
AVAILABLE. The rollback segment usually remains in this state until the transaction

is resolved either automatically by RECO, or manually by a DBA.

You might find that all rollback segments are PARTLY AVAILABLE. In this case,

you can bring the PARTLY AVAILABLE segment online. Some resources used by

the rollback segment for the in-doubt transaction remain inaccessible until the

transaction is resolved. As a result, the rollback segment may have to grow if other

transactions assigned to it need additional space.

As an alternative to bringing a PARTLY AVAILABLE segment online, you might

find it more efficient to create a new rollback segment temporarily, until the

in-doubt transaction is resolved.

Bringing Rollback Segment Online Automatically If you would like a rollback segment to

be automatically brought online whenever you start up the database, add the

segment’s name to the ROLLBACK_SEGMENTS parameter in the database’s

parameter file. Or, you can use public rollback segments and use the

TRANSACTIONS and TRANSACTIONS_PER_ROLLBACK_SEGMENT initialization

parameters.

These options are discussed in "Specify Rollback Segments to Acquire

Automatically" on page 13-15.

Taking Rollback Segments Offline To take an online rollback segment offline, use the

ALTER ROLLBACK SEGMENT statement with the OFFLINE option. The rollback

segment’s status in the DBA_ROLLBACK_SEGS data dictionary view must be

ONLINE, and the rollback segment must be acquired by the current instance.

The following example takes the rollback segment user_rs_2 offline:

ALTER ROLLBACK SEGMENT user_rs_2 OFFLINE;

If you attempt to take a rollback segment that does not contain active rollback

entries offline, Oracle immediately takes the segment offline and changes its status

to OFFLINE.

In contrast, if you try to take a rollback segment that contains rollback data for

active transactions (local, remote, or distributed) offline, Oracle makes the rollback

Managing Rollback Segments

13-24 Oracle9i Database Administrator’s Guide

segment unavailable to future transactions and takes it offline after all the active

transactions using the rollback segment complete. Until the transactions complete,

the rollback segment cannot be brought online by any instance other than the one

that was trying to take it offline.

During this period that the rollback segment is waiting to go offline, the rollback

segment’s status in the view DBA_ROLLBACK_SEGSremains ONLINE. However, the

rollback segment’s status in the view V$ROLLSTAT is PENDING OFFLINE. For

information on viewing rollback segment status, see "Displaying Rollback Segment

Information" on page 13-26.

The instance that tried to take a rollback segment offline and caused it to change to

PENDING OFFLINE can bring it back online at any time. If the rollback segment is

brought back online, it functions normally.

After you take a public or private rollback segment offline, it remains offline until

you explicitly bring it back online or you restart the instance.

Explicitly Assigning a Transaction to a Rollback Segment
A transaction can be explicitly assigned to a specific rollback segment. Reasons for

doing this include:

■ You can predict the amount of rollback information generated by a transaction.

You can assign the transaction to a rollback segment where you know that the

rollback information will fit in the current extents of the segment. Thus, you can

reduce the overhead of additional extents being dynamically allocated, and

subsequently truncated.

■ You know that no long running queries are concurrently reading the same

tables, so if you assign small transactions to small rollback segments, those

segments will most likely remain in memory.

■ You have transactions that modify tables that are concurrently being read by

long-running queries. You can assign these transactions to large rollback

segments so that the rollback information needed for the read-consistent

queries is not overwritten.

To assign a transaction to a rollback segment explicitly, use the SET TRANSACTION
statement with the USE ROLLBACK SEGMENT clause. The rollback segment must

be online for the current instance, and the SET TRANSACTION USE ROLLBACK
SEGMENT statement must be the first statement of the transaction. If a specified

rollback segment is not online or a SET TRANSACTION USE ROLLBACK SEGMENT
clause is not the first statement in a transaction, an error is returned.

Managing Rollback Segments

Managing Undo Space 13-25

For example, if you are about to begin a transaction that contains a significant

amount of work (more than most transactions), you can assign the transaction to a

large rollback segment, as follows:

SET TRANSACTION USE ROLLBACK SEGMENT large_rs1;

After the transaction is committed, Oracle automatically assigns the next

transaction to any available rollback segment unless the new transaction is

explicitly assigned to a specific rollback segment by the user.

Dropping Rollback Segments
You can drop rollback segments when the extents of a segment become too

fragmented on disk, or the segment needs to be relocated in a different tablespace.

Before dropping a rollback segment, make sure that the status of the rollback

segment is OFFLINE. If the rollback segment that you want to drop is any other

status, you cannot drop it. If the status is INVALID , the segment has already been

dropped.

To drop a rollback segment, use the DROP ROLLBACK SEGMENT statement. You

must have the DROP ROLLBACK SEGMENT system privilege. The following

statement drops the rbs1 rollback segment:

DROP ROLLBACK SEGMENT rbs1;

After a rollback segment is dropped, its status changes to INVALID . The next time a

rollback segment is created, it takes the row vacated by a dropped rollback segment,

if one is available, and the dropped rollback segment’s row no longer appears in the

DBA_ROLLBACK_SEGS view.

Viewing Rollback Segment Information
This section presents views that can be used to obtain and monitor rollback segment

information, and provides information and examples relating to their use.

Note: If a rollback segment specified in ROLLBACK_SEGMENTS is

dropped, be sure to edit the parameter files of the database to

remove the name of the dropped rollback segment from the list in

the ROLLBACK_SEGMENTS parameter. If this step is not performed

before the next instance startup, startup fails because it cannot

acquire the dropped rollback segment.

Managing Rollback Segments

13-26 Oracle9i Database Administrator’s Guide

The following topics are included:

■ Rollback Segment Views

■ Displaying Rollback Segment Information

■ Monitoring Rollback Segment Statistics

■ Displaying All Rollback Segments

■ Displaying Whether a Rollback Segment Has Gone Offline

Rollback Segment Views
The following views are useful for displaying information about rollback segments:

Displaying Rollback Segment Information
The DBA_ROLLBACK_SEGS data dictionary view stores information about the

rollback segments of a database. For example, the following query lists the name,

associated tablespace, and status of each rollback segment in a database:

SELECT SEGMENT_NAME, TABLESPACE_NAME, STATUS
 FROM DBA_ROLLBACK_SEGS;

SEGMENT_NAME TABLESPACE_NAME STATUS
------------- ---------------- ------
SYSTEM SYSTEM ONLINE
PUBLIC_RS SYSTEM ONLINE
USERS_RS USERS ONLINE

See Also: Oracle9i Database Reference for more information about

the data dictionary views discussed in this chapter

View Description

DBA_ROLLBACK_SEGS Describes the rollback segments, including names and
tablespaces

DBA_SEGMENTS Identifies a segment as a rollback segment and contains
additional segment information

V$ROLLNAME Lists the names of all online rollback segments

V$ROLLSTAT Contains rollback segment statistics

V$TRANSACTION Contains undo segment information

Managing Rollback Segments

Managing Undo Space 13-27

In addition, the following data dictionary views contain information about the

segments of a database, including rollback segments:

■ USER_SEGMENTS

■ DBA_SEGMENTS

Monitoring Rollback Segment Statistics
The V$ROLLSTAT dynamic performance view can be queried to monitor rollback

segment statistics. It must be joined with the V$ROLLNAME view to map its segment

number to its name.

Some specific columns of interest in the V$ROLLSTAT view include:

These statistics are reset at system startup.

Name Description

USN Rollback segment number. If this view is joined with the
V$ROLLNAME view, the rollback segment name can be
determined.

WRITES The number of bytes of entries written to the rollback segment.

XACTS The number of active transactions.

GETS The number of rollback segment header requests.

WAITS The number of rollback segment header requests that resulted in
waits.

OPTSIZE The value of the optimal parameter for the rollback segment.

HWMSIZE The highest value (high water mark), in bytes, of the rollback
segment size reached during usage.

SHRINKS The number of shrinks that the rollback segment has had to
perform in order to stay at the optimal size.

WRAPS The number of times a rollback segment entry has wrapped
from one extent to another.

EXTENDS The number of times that the rollback segment had to acquire a
new extent.

AVESHRINK The average number of bytes freed during a shrink.

AVEACTIVE The average number of bytes in active extents in the rollback
segment, measured over time.

Managing Rollback Segments

13-28 Oracle9i Database Administrator’s Guide

Ad hoc querying of this view can help in determining the most advantageous

setting for the OPTIMAL parameter. Assuming that an instance has equally sized

rollback segments with comparably sized extents, OPTIMAL for a given rollback

segment should be set slightly higher than AVEACTIVE. The following chart

provides additional information on how to interpret the statistics given in this view.

Displaying All Rollback Segments
The following query returns the name of each rollback segment, the tablespace that

contains it, and its size:

SELECT SEGMENT_NAME, TABLESPACE_NAME, BYTES, BLOCKS, EXTENTS
 FROM DBA_SEGMENTS
 WHERE SEGMENT_TYPE = 'ROLLBACK';

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- ------- ------ -------
SYSTEM SYSTEM 409600 200 8
RB_TEMP SYSTEM 1126400 550 11
RB1 RBS 614400 300 3
RB2 RBS 614400 300 3
RB3 RBS 614400 300 3
RB4 RBS 614400 300 3
RB5 RBS 614400 300 3
RB6 RBS 614400 300 3
RB7 RBS 614400 300 3
RB8 RBS 614400 300 3
10 rows selected.

SHRINKS AVESHRINK Analysis and Recommendation

Low Low If AVEACTIVEis close to OPTSIZE, then the OPTIMAL
setting is correct. Otherwise, OPTIMAL is too large (not
many shrinks are being performed.)

Low High Excellent: a good setting for OPTIMAL.

High Low OPTIMAL is too small: too many shrinks are being
performed.

High High Periodic long transactions are probably causing these
statistics. Set the OPTIMAL parameter higher until
SHRINKS is low.

Managing Rollback Segments

Managing Undo Space 13-29

Displaying Whether a Rollback Segment Has Gone Offline
When you take a rollback segment offline, it does not actually go offline until all

active transactions in it have completed. Between the time when you attempt to

take it offline and when it actually is offline, its status in V$ROLLSTAT is PENDING
OFFLINE and it is not used for new transactions. To determine whether any

rollback segments for an instance are in this state, use the following query:

SELECT NAME, XACTS "ACTIVE TRANSACTIONS"
 FROM V$ROLLNAME, V$ROLLSTAT
 WHERE STATUS = 'PENDING OFFLINE'
 AND V$ROLLNAME.USN = V$ROLLSTAT.USN;

NAME ACTIVE TRANSACTIONS
---------- --------------------
RS2 3

If your instance is part of an Oracle Real Application Clusters configuration, this

query displays information for rollback segments of the current instance only, not

those of other instances.

Managing Rollback Segments

13-30 Oracle9i Database Administrator’s Guide

Part III
 Schema Objects

Part III describes the creation and maintenace of schema objects in the Oracle

database. It includes the following chapters:

■ Chapter 14, "Managing Space for Schema Objects"

■ Chapter 15, "Managing Tables"

■ Chapter 16, "Managing Indexes"

■ Chapter 17, "Managing Partitioned Tables and Indexes"

■ Chapter 18, "Managing Clusters"

■ Chapter 19, "Managing Hash Clusters"

■ Chapter 20, "Managing Views, Sequences, and Synonyms"

■ Chapter 21, "General Management of Schema Objects"

■ Chapter 22, "Detecting and Repairing Data Block Corruption"

Managing Space for Schema Objects 14-1

14
Managing Space for Schema Objects

This chapter offers guidelines for managing space for schema objects. It contains the

following topics:

■ Managing Space in Data Blocks

■ Setting Storage Parameters

■ Managing Resumable Space Allocation

■ Deallocating Space

■ Understanding Space Use of Datatypes

You should familiarize yourself with the concepts in this chapter before attempting

to manage specific schema objects as described in later chapters.

Managing Space in Data Blocks

14-2 Oracle9i Database Administrator’s Guide

Managing Space in Data Blocks
This section describes aspects of managing space in data blocks. Data blocks are the

finest level of granularity of the structure in which database data is stored on disk.

The size of a data block is specified (or defaulted) at database creation.

The PCTFREEand PCTUSEDparameters are physical attributes that can be specified

when a schema object is created or altered. These parameters allow you to control

the use of the free space within a data block. This free space is available for inserts

and updates of rows of data.

The PCTFREE and PCTUSED parameters allow you to:

■ Improve performance when writing and retrieving data

■ Decrease the amount of unused space in data blocks

■ Decrease the amount of row chaining between data blocks

The INITRANS and MAXTRANS parameters are also physical attributes that can be

specified when schema objects are created or altered. These parameters control the

number of concurrent update transactions allocated for data blocks of a schema

object, which in turn affects space usage in data block headers and can have an

impact upon data block free space.

The following topics are contained in this section:

■ Specifying the PCTFREE Parameter

■ Specifying the PCTUSED Parameter

■ Selecting Associated PCTUSED and PCTFREE Values

■ Specifying the Transaction Entry Parameters: INITRANS and MAXTRANS

Specifying the PCTFREE Parameter
The PCTFREE parameter is used to set the percentage of a block to be reserved for

possible updates to rows that already are contained in that block. For example,

See Also:

■ Oracle9i Database Concepts for more information on data blocks

■ Oracle9i SQL Reference for syntax and other details of the

PCTFREE, PCTUSED, INITRANS , and MAXTRANS physical

attributes parameters

Managing Space in Data Blocks

Managing Space for Schema Objects 14-3

assume that you specify the following parameter within a CREATE TABLE
statement:

PCTFREE 20

This indicates that 20% of each data block used for this table’s data segment will be

kept free and available for possible updates to the existing rows already within each

block. Figure 14–1 illustrates PCTFREE.

Figure 14–1 PCTFREE

Notice that before the block reaches PCTFREE, the free space of the data block is

filled by both the insertion of new rows and by the growth of the data block header.

Ensure that you understand the nature of a table or index data before setting

PCTFREE. Updates can cause rows to grow. New values might not be the same size

as values they replace. If there are many updates in which data values get larger,

PCTFREE should be increased. If updates to rows do not affect the total row width,

PCTFREE can be low. Your goal is to find a satisfactory trade-off between densely

packed data and good update performance.

PCTFREE = 20

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Database Block

Managing Space in Data Blocks

14-4 Oracle9i Database Administrator’s Guide

The default for PCTFREE is 10 percent. You can use any integer between 0 and 99,

inclusive, as long as the sum of PCTFREE and PCTUSED does not exceed 100.

Effects of Specifying a Smaller PCTFREE
A smaller PCTFREE has the following effects:

■ Reserves less room for updates to expand existing table rows

■ Allows inserts to fill the block more completely

■ May save space, because the total data for a table or index is stored in fewer

blocks (more rows or entries for each block)

A small PCTFREE might be suitable, for example, for a segment that is rarely

changed.

Effects of Specifying a Larger PCTFREE
A larger PCTFREE has the following effects:

■ Reserves more room for future updates to existing table rows

■ May require more blocks for the same amount of inserted data (inserting fewer

rows for each block)

■ May improve update performance, because Oracle does not need to chain row

pieces as frequently, if ever

A large PCTFREE is suitable, for example, for segments that are frequently updated.

PCTFREE for Nonclustered Tables
If the data in the rows of a nonclustered table is likely to increase in size over time,

reserve some space for these updates. Otherwise, updated rows are likely to be

chained among blocks.

PCTFREE for Clustered Tables
The discussion for nonclustered tables also applies to clustered tables. However, if

PCTFREE is reached, new rows from any table contained in the same cluster key go

into a new data block that is chained to the existing cluster key.

PCTFREE for Indexes
You can specify PCTFREE only when initially creating an index.

Managing Space in Data Blocks

Managing Space for Schema Objects 14-5

Specifying the PCTUSED Parameter

After a data block becomes full as determined by PCTFREE, Oracle does not

consider the block for the insertion of new rows until the percentage of the block

being used falls below the parameter PCTUSED. Before this value is achieved, Oracle

uses the free space of the data block only for updates to rows already contained in

the data block. For example, assume that you specify the following parameter

within a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is not considered for the

insertion of any new rows until the amount of used space in the block falls to 39%

or less (assuming that the block’s used space has previously reached PCTFREE).
Figure 14–2 illustrates this.

Note: The PCTUSED parameter is ignored for objects created in

locally managed tablespaces with segment space management

specified as AUTO. This form of segment space management is

discussed in "Specifying Segment Space Management in Locally

Managed Tablespaces" on page 11-8.

Managing Space in Data Blocks

14-6 Oracle9i Database Administrator’s Guide

Figure 14–2 PCTUSED

The default value for PCTUSED is 40 percent. After the free space in a data block

reaches PCTFREE, no new rows are inserted in that block until the percentage of

space used falls below PCTUSED. The percent value is for the block space available

for data after overhead is subtracted from total space.

You can specify any integer between 0 and 99 (inclusive) for PCTUSED, as long as

the sum of PCTUSED and PCTFREE does not exceed 100.

Effects of Specifying a Smaller PCTUSED
A smaller PCTUSED has the following effects:

■ Reduces processing costs incurred during UPDATE and DELETE statements for

moving a block to the free list when it has fallen below that percentage of usage

■ Increases the unused space in a database

Effects of Specifying a Larger PCTUSED
A larger PCTUSED has the following effects:

■ Improves space efficiency

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Database Block

60% unused
space

Managing Space in Data Blocks

Managing Space for Schema Objects 14-7

■ Increases processing cost during INSERT and UPDATE

Selecting Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE or PCTUSED, keep the

following guidelines in mind:

■ The sum of PCTFREE and PCTUSED must be equal to or less than 100.

■ If the sum equals 100, then Oracle attempts to keep no more than PCTFREE free

space, and processing costs are highest.

■ The smaller the difference between 100 and the sum of PCTFREE and PCTUSED
(as in PCTUSEDof 75, PCTFREEof 20), the more efficient space usage is, at some

performance cost.

The following table contains examples that show how and why specific values for

PCTFREE and PCTUSED are specified for tables.

Example Scenario Settings Explanation

1 Common activity includes
UPDATE statements that
increase the size of the rows.

PCTFREE=20

PCTUSED=40

PCTFREE is set to 20 to allow
enough room for rows that
increase in size as a result of
updates. PCTUSEDis set to 40
so that less processing is
done during high update
activity, thus improving
performance.

2 Most activity includes
INSERT and DELETE
statements, and UPDATE
statements that do not
increase the size of affected
rows.

PCTFREE=5

PCTUSED=60

PCTFREE is set to 5 because
most UPDATE statements do
not increase row sizes.
PCTUSED is set to 60 so that
space freed by DELETE
statements is used soon, yet
processing is minimized.

3 The table is very large and
storage is a primary concern.
Most activity includes
read-only transactions.

PCTFREE=5

PCTUSED=40

PCTFREE is set to 5 because
this is a large table and you
want to completely fill each
block.

Setting Storage Parameters

14-8 Oracle9i Database Administrator’s Guide

Specifying the Transaction Entry Parameters: INITRANS and MAXTRANS
INITRANS specifies the number of DML transaction entries for which space is

initially reserved in the data block header. Space is reserved in the headers of all

data blocks in the associated segment.

As multiple transactions concurrently access the rows of the same data block, space

is allocated for each DML transaction’s entry in the block. Once the space reserved

by INITRANS is depleted, space for additional transaction entries is allocated out of

the free space in a block, if available. Once allocated, this space effectively becomes

a permanent part of the block header. The MAXTRANS parameter limits the number

of transaction entries that can concurrently use data in a data block. Therefore, you

can limit the amount of free space that can be allocated for transaction entries in a

data block using MAXTRANS.

The INITRANS and MAXTRANSparameters for the data blocks allocated to a specific

schema object should be set individually for each schema object based on the

following criteria:

■ The space you would like to reserve for transaction entries compared to the

space you would reserve for database data

■ The number of concurrent transactions that are likely to touch the same data

blocks at any given time

For example, if a table is very large and only a small number of users

simultaneously access the table, the chances of multiple concurrent transactions

requiring access to the same data block is low. Therefore, INITRANS can be set low,

especially if space is at a premium in the database.

Alternatively, assume that a table is usually accessed by many users at the same

time. In this case, you might consider preallocating transaction entry space by using

a high INITRANS . This eliminates the overhead of having to allocate transaction

entry space, as required when the object is in use. Also, allow a higher MAXTRANSso

that no user has to wait to access necessary data blocks.

Setting Storage Parameters
This section describes the storage parameters that you can set for various data

structures. These storage parameters apply to the following types of structures and

schema objects:

■ Tablespaces (used as storage parameter defaults for all segments)

Setting Storage Parameters

Managing Space for Schema Objects 14-9

■ Tables, partitions, clusters, materialized views, and materialized view logs (data

segments)

■ Indexes (index segments)

■ Rollback segments

The following topics are discussed:

■ Identifying the Storage Parameters

■ Setting Default Storage Parameters for Segments in a Tablespace

■ Setting Storage Parameters for Data Segments

■ Setting Storage Parameters for Index Segments

■ Setting Storage Parameters for LOBs, Varrays, and Nested Tables

■ Changing Values for Storage Parameters

■ Understanding Precedence in Storage Parameters

■ Example of How Storage Parameters Effect Space Allocation

Identifying the Storage Parameters
Storage parameters determine space allocation for objects when they are created in

a dictionary-managed tablespace. Locally managed tablespaces provide a simpler

means of space allocation, and most storage parameters have no meaning in their

context.

When you create a dictionary-managed tablespace you can specify default storage

parameters. These values override the system defaults to become the defaults for

objects created in that tablespace only. You specify the default storage values in the

DEFAULT STORAGE clause of a CREATE or ALTER TABLESPACE statement.

Furthermore, for objects created in dictionary-managed tablespaces, you can specify

storage parameters for each individual schema object. These parameter settings

override any default storage settings. Use the STORAGE clause of the CREATE or

ALTER statement for specifying storage parameters for the individual object. The

following example illustrates specifying storage parameters when a table is being

created:

CREATE TABLE players
 (code NUMBER(10) PRIMARY KEY,
 lastname VARCHAR(20),
 firstname VARCHAR(15),

Setting Storage Parameters

14-10 Oracle9i Database Administrator’s Guide

 position VARCHAR2(20),
 team VARCHAR2(20))
 PCTFREE 10
 PCTUSED 40
 STORAGE
 (INITIAL 25K
 NEXT 10K
 MAXEXTENTS 10
 MINEXTENTS 3);

Not all storage parameters can be specified for every type of database object, and

not all storage parameters can be specified in both the CREATE and ALTER
statements.

The following table contains a brief description of each storage parameter. For a

complete description of these parameters, including their default, minimum, and

maximum settings, see the Oracle9i SQL Reference.

Parameter Description

INITIAL The size, in bytes, of the first extent allocated when a segment is
created. This parameter cannot be specified in an ALTER
statement.

NEXT The size, in bytes, of the next incremental extent to be allocated
for a segment. The second extent is equal to the original setting
for NEXT. From there forward, NEXTis set to the previous size of
NEXT multiplied by (1 + PCTINCREASE/100).

PCTINCREASE The percentage by which each incremental extent grows over
the last incremental extent allocated for a segment. If
PCTINCREASE is 0, then all incremental extents are the same
size. If PCTINCREASE is greater than zero, then each time NEXT
is calculated, it grows by PCTINCREASE. PCTINCREASE cannot
be negative.

The new NEXT equals 1 + PCTINCREASE/100, multiplied by
the size of the last incremental extent (the old NEXT) and
rounded up to the next multiple of a block size.

MINEXTENTS The total number of extents to be allocated when the segment is
created. This allows for a large allocation of space at creation
time, even if contiguous space is not available.

MAXEXTENTS The total number of extents, including the first, that can ever be
allocated for the segment.

Setting Storage Parameters

Managing Space for Schema Objects 14-11

Setting Default Storage Parameters for Segments in a Tablespace
You can set default storage parameters for each tablespace of a database. Any

storage parameter that you do not explicitly set when creating or subsequently

altering a segment in a tablespace automatically is set to the corresponding default

storage parameter for the tablespace in which the segment resides.

When specifying MINEXTENTS at the tablespace level, any extent allocated in the

tablespace is rounded to a multiple of the number of minimum extents.

Setting Storage Parameters for Data Segments
You set the storage parameters for the data segment of a nonclustered table,

materialized view, or materialized view log using the STORAGE clause of the

CREATE or ALTER statement for tables, materialized views, or materialized view

logs.

In contrast, you set the storage parameters for the data segments of a cluster using

the STORAGE clause of the CREATE CLUSTER or ALTER CLUSTER statement,

FREELIST GROUPS The number of groups of free lists for the database object you
are creating. Oracle uses the instance number of Oracle Real
Application Cluster instances to map each instance to one free
list group. For information on the use of this parameter, see

Oracle9i Real Application Clusters Administration.

Note: This parameter is ignored for objects created in locally
managed tablespaces with segment space management
specified as AUTO.

FREELISTS Specifies the number of free lists for each of the free list groups
for the schema object. Not valid for tablespaces.The use of this
parameter is discussed in Oracle9i Database Performance Tuning
Guide and Reference.

Note: This parameter is ignored for objects created in locally
managed tablespaces with segment space management
specified as AUTO.

OPTIMAL Relevant only to rollback segments. See Chapter 13, "Managing
Undo Space" for information on the use of this parameter.

BUFFER POOL Defines a default buffer pool (cache) for a schema object. Not
valid for tablespaces or rollback segments. For information on
the use of this parameter, see Oracle9i Database Performance
Tuning Guide and Reference.

Parameter Description

Setting Storage Parameters

14-12 Oracle9i Database Administrator’s Guide

rather than the individual CREATE or ALTER statements that put tables and

materialized views into the cluster. Storage parameters specified when creating or

altering a clustered table or materialized view are ignored. The storage parameters

set for the cluster override the table’s storage parameters.

With partitioned tables, you can set default storage parameters at the table level.

When creating a new partition of the table, the default storage parameters are

inherited from the table level (unless you specify them for the individual partition).

If no storage parameters are specified at the table level, then they are inherited from

the tablespace.

Setting Storage Parameters for Index Segments
Storage parameters for an index segment created for a table index can be set using

the STORAGE clause of the CREATE INDEX or ALTER INDEX statement.

Storage parameters of an index segment created for the index used to enforce a

primary key or unique key constraint can be set in either of the following ways:

■ In the ENABLE ... USING INDEX clause of the CREATE TABLE or ALTER
TABLE statement

■ In the STORAGE clause of the ALTER INDEX statement

Setting Storage Parameters for LOBs, Varrays, and Nested Tables
A table or materialized view can contain LOB, varray, or nested table column types.

These entities can be stored in their own segments. LOBs and varrays are stored in

LOB segments, while a nested table is stored in a storage table. You can specify a

STORAGE clause for these segments that will override storage parameters specified

at the table level.

See Also:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i SQL Reference

All of the above books contain more information about creating

tables containing LOBs, varrays, and nested tables.

Setting Storage Parameters

Managing Space for Schema Objects 14-13

Changing Values for Storage Parameters
You can alter default storage parameters for tablespaces and specific storage

parameters for individual segments if you so choose. Default storage parameters

can be reset for a tablespace. However, changes affect only new objects created in

the tablespace, or new extents allocated for a segment.

The INITIAL and MINEXTENTS storage parameters cannot be altered for an

existing table, cluster, index, or rollback segment. If only NEXT is altered for a

segment, the next incremental extent is the size of the new NEXT, and subsequent

extents can grow by PCTINCREASE as usual.

If both NEXT and PCTINCREASE are altered for a segment, the next extent is the

new value of NEXT, and from that point forward, NEXT is calculated using

PCTINCREASE as usual.

Understanding Precedence in Storage Parameters
The storage parameters in effect at a given time are determined by the following

types of SQL statements, listed in order of precedence (where higher numbers take

precedence over lower numbers):

1. ALTER [TABLE |CLUSTER|MATERIALIZED VIEW|MATERIALIZED VIEW
LOG|INDEX|ROLLBACK] SEGMENT statement

2. CREATE [TABLE|CLUSTER|MATERIALIZED VIEW|MATERIALIZED VIEW
LOG|INDEX|ROLLBACK] SEGMENT statement

3. ALTER TABLESPACE statement

4. CREATE TABLESPACE statement

5. Oracle default values

Any storage parameter specified at the object level overrides the corresponding

option set at the tablespace level. When storage parameters are not explicitly set at

the object level, they default to those at the tablespace level. When storage

parameters are not set at the tablespace level, Oracle system defaults apply. If

storage parameters are altered, the new options apply only to the extents not yet

allocated.

Note: The storage parameters for temporary segments always use

the default storage parameters set for the associated tablespace.

Managing Resumable Space Allocation

14-14 Oracle9i Database Administrator’s Guide

Example of How Storage Parameters Effect Space Allocation
Assume the following statement has been executed:

CREATE TABLE test_storage
 (. . .)
 STORAGE (INITIAL 100K NEXT 100K
 MINEXTENTS 2 MAXEXTENTS 5
 PCTINCREASE 50);

Also assume that the initialization parameter DB_BLOCK_SIZE is set to 2K. The

following table shows how extents are allocated for the TEST_STORAGE table. Also

shown is the value for the incremental extent, as can be seen in the NEXT column of

the USER_SEGMENTS or DBA_SEGMENTS data dictionary views:

If you change the NEXT or PCTINCREASE storage parameters with an ALTER
statement (such as ALTER TABLE), the specified value replaces the current value

stored in the data dictionary. For example, the following statement modifies the

NEXT storage parameter of the test_storage table before the third extent is

allocated for the table:

ALTER TABLE test_storage STORAGE (NEXT 500K);

As a result, the third extent is 500K when allocated, the fourth is (500K*1.5)=750K,

and so forth.

Managing Resumable Space Allocation
Oracle provides a means for suspending, and later resuming, the execution of large

database operations in the event of space allocation failures. This enables you to

take corrective action instead of the Oracle database server returning an error to the

user. After the error condition is corrected, the suspended operation automatically

Table 14–1 Extent Allocations

Extent# Extent Size Value for NEXT

1 50 blocks or 102400 bytes 50 blocks or 102400 bytes

2 50 blocks or 102400 bytes 75 blocks or153600 bytes

3 75 blocks or 153600 bytes 113 blocks or 231424 bytes

4 115 blocks or 235520 bytes 170 blocks or 348160 bytes

5 170 blocks or 348160 bytes No next value, MAXEXTENTS=5

Managing Resumable Space Allocation

Managing Space for Schema Objects 14-15

resumes. This feature is called resumable space allocation. The statements that are

affected are called resumable statements.

This section contains the following topics:

■ Resumable Space Allocation Overview

■ Enabling and Disabling Resumable Space Allocation

■ Detecting Suspended Statements

■ Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

Resumable Space Allocation Overview
This section provides an overview of resumable space allocation. It describes how

resumable statements work, and specifically defines qualifying statements and error

conditions.

How Resumable Statements Work
The following is an overview of how resumable statements work. Details are

contained in later sections.

1. A statement executes in a resumable mode only when the client explicitly

enables resumable semantics for the session using the ALTER SESSION
statement.

2. A resumable statement is suspended when one of the following conditions

occur (these conditions result in corresponding errors being signalled for

nonresumable statements):

■ Out of space condition

■ Maximum extents reached condition

■ Space quota exceeded condition.

3. On suspending a resumable statement’s execution, there are mechanisms to

perform user supplied operations, log errors, and to query the status of the

statement execution. When a resumable statement is suspended the following

actions are taken:

■ The error is reported in the alert log.

■ If the user registered a trigger on the AFTER SUSPEND system event, the

user trigger is executed. A user supplied PL/SQL procedure can access the

Managing Resumable Space Allocation

14-16 Oracle9i Database Administrator’s Guide

error message data using the DBMS_RESUMABLE package and DBA/USER_
RESUMABLE view.

4. Suspending a statement automatically results in suspending the transaction.

Thus all transactional resources are held through a statement suspend and

resume.

5. When the error condition disappears (for example, as a result of user

intervention or perhaps sort space released by other queries), the suspended

statement automatically resumes execution.

6. A suspended statement can be forced to throw the exception using the DBMS_
RESUMABLE.ABORT()procedure. This procedure can be called by a DBA, or by

the user who issued the statement.

7. A suspension time out interval is associated with resumable statements. A

resumable statement that is suspended for the timeout interval (the default is

two hours) wakes up and returns the exception to the user.

8. A resumable statement can be suspended and resumed multiple times during

execution.

What Operations are Resumable?

The following operations are resumable:

■ Queries

SELECT statements that run out of temporary space (for sort areas) are

candidates for resumable execution. When using OCI, the calls

LNOCIStmtExecute() and LNOCIStmtFetch() are candidates.

■ DML

INSERT, UPDATE, and DELETE statements are candidates. The interface used to

execute them does not matter; it can be OCI, JSQL, PL/SQL, or another

interface. Also, INSERT INTO ... SELECT from external tables can be

resumable.

Note: Resumable space allocation is fully supported when using

locally managed tablespaces. There are certain limitations when

using dictionary-managed tablespaces. See "Resumable Space

Allocation Limitations for Dictionary-Managed Tablespaces" on

page 14-18 for details.

Managing Resumable Space Allocation

Managing Space for Schema Objects 14-17

■ Import/Export

As for SQL*Loader, a command line parameter controls whether statements are

resumable after recoverable errors.

■ DDL

The following statements are candidates for resumable execution:

– CREATE TABLE ... AS SELECT

– CREATE INDEX

– ALTER INDEX ... REBUILD

– ALTER TABLE ... MOVE PARTITION

– ALTER TABLE ... SPLIT PARTITION

– ALTER INDEX ... REBUILD PARTITION

– ALTER INDEX ... SPLIT PARTITION

– CREATE MATERIALIZED VIEW

– CREATE MATERIALIZED VIEW LOG

What Errors are Correctable?
There are three classes of correctable errors:

■ Out of space condition

The operation cannot acquire any more extents for a table/index/temporary

segment/rollback segment/undo segment/cluster/LOB/table partition/index

partition in a tablespace. For example, the following errors fall in this category:

ORA-1650 unable to extend rollback segment ... in tablespace ...
ORA-1653 unable to extend table ... in tablespace ...
ORA-1654 unable to extend index ... in tablespace ...

■ Maximum extents reached condition

The number of extents in a table/index/temporary segment/rollback

segment/undo segment/cluster/LOB/table partition/index partition equals

the maximum extents defined on the object. For example, the following errors

fall in this category:

ORA-1628 max # extents ... reached for rollback segment ...
ORA-1631 max # extents ... reached in table ...
ORA-1654 max # extents ... reached in index ...

Managing Resumable Space Allocation

14-18 Oracle9i Database Administrator’s Guide

■ Space quota exceeded condition

The user has exceeded his assigned space quota in the tablespace. Specifically,

this is noted by the following error:

ORA-1536 space quote exceeded for tablespace string

Resumable Space Allocation Limitations for Dictionary-Managed Tablespaces
There are certain limitations of resumable space allocation when using

dictionary-managed tablespaces. These limitations are listed below:

1. If a DDL operation such as CREATE TABLEor CREATE INDEXis executed with

an explicit MAXEXTENTS setting which causes an out of space error during its

execution, the operation will not be suspended. Instead, it will be aborted. This

error is treated as not repairable because the properties of an object (for

example, MAXEXTENTS) cannot be altered before its creation. However if a DML

operation causes an already existing table or index to reach the MAXEXTENTS
limit, it will be suspended and can be resumed later. This restriction can be

overcome either by setting the MAXEXTENTS clause to UNLIMITED or by using

locally managed tablespaces.

2. If rollback segments are located in dictionary managed tablespaces, then space

allocation for rollback segments is not resumable. However, space allocation for

user objects(tables, indexes, and the likes) would still be resumable. To

workaround the limitation, we recommend using automatic undo management

or placing the rollback segments in locally managed tablespaces.

Resumable Statements and Distributed Operations
Remote operations are not supported in resumable mode.

Parallel Execution and Resumable Statements
In parallel execution, if one of the parallel execution server processes encounters a

correctable error, that server process suspends its execution. Other parallel

execution server processes will continue executing their respective tasks, until either

they encounter an error or are blocked (directly or indirectly) by the suspended

server process. When the correctable error is resolved, the suspended process

resumes execution and the parallel operation continues execution. If the suspended

operation is terminated, the parallel operation aborts, throwing the error to the user.

Different parallel execution server processes may encounter one or more correctable

errors. This may result in firing an AFTER SUSPEND trigger multiple times, in

Managing Resumable Space Allocation

Managing Space for Schema Objects 14-19

parallel. Also, if a parallel execution server process encounters a noncorrectable

error while another parallel execution server process is suspended, the suspended

statement is immediately aborted.

For parallel execution, every parallel execution coordinator and server process has

its own entry in DBA/USER_RESUMABLE view.

Enabling and Disabling Resumable Space Allocation
Resumable space allocation is only possible when statements are executed within a

session that has resumable mode enabled.

To enable resumable mode for a session, use the following SQL statement:

ALTER SESSION ENABLE RESUMABLE;

Because suspended statements can hold up some system resources, users must be

granted the RESUMABLE system privilege before they are allowed to enable and

execute resumable statements.

To disable resumable mode, issue the following statement:

ALTER SESSION DISABLE RESUMABLE;

The default for a new session is resumable mode disabled.

You can also specify a timeout interval, and you can provide a name used to

identify a resumable statement. These are discussed separately in following

sections.

Specifying a Timeout Interval
When you enable resumable mode for a session, you can also specify a timeout

interval, after which a suspended statement will error if no intervention has taken

place. The following statement specifies that resumable transactions will time out

and error after 3600 seconds:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600;

The value of TIMEOUT remains in effect until it is changed by another ALTER
SESSION ENABLE RESUMABLE statement, it is changed by another means, or the

session ends. The default timeout interval is 7200 seconds.

See Also: "Setting Default Resumable Mode" on page 14-20

Managing Resumable Space Allocation

14-20 Oracle9i Database Administrator’s Guide

Naming Resumable Statements
Resumable statements can be identified by name. The following statement assigns a

name to resumable statements:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600 NAME 'insert into table';

The NAME value remains in effect until it is changed by another ALTER SESSION
ENABLE RESUMABLE statement, or the session ends. The default value for NAME is:

User USERNAME(USERID), Session SESSIONID, Instance INSTANCEID

The name of the statement is used to identify the resumable statement in the DBA_
RESUMABLE and USER_RESUMABLE views.

Setting Default Resumable Mode
To set default resumable mode, a DBA can register a database level LOGONtrigger to

alter a user’s session to enable resumable and set a timeout interval.

Changing the Timeout Interval
In addition to the ALTER SESSION ENABLE RESUMABLE statement, there are

other methods for setting or changing the timeout interval.

The DBMS_RESUMABLE package contains procedures for setting the timeout period

for a specific session or for the current session. A DBA can change the default

system timeout by creating a system wide AFTER SUSPENDtrigger that calls

DBMS_RESUMABLE to set it. For example, the following code sample sets a system

wide default timeout to one hour:

CREATE OR REPLACE TRIGGER resumable_default_timeout
AFTER SUSPEND
ON DATABASE
BEGIN
 DBMS_RESUMABLE.SET_TIMEOUT(3600);

See Also: "Changing the Timeout Interval" on page 14-20 for

other methods of changing the timeout interval for resumable

statements

Note: If there are multiple triggers registered that change default

mode and timeout for resumable statements, the result will be

unspecified because Oracle does not guarantee the order of trigger

invocation.

Managing Resumable Space Allocation

Managing Space for Schema Objects 14-21

END;

Detecting Suspended Statements
When a resumable statement is suspended, the error is not raised to the client. In

order for corrective action to be taken, Oracle provides alternative methods for

notifying users of the error and for providing information about the circumstances.

AFTER SUSPEND System Event and Trigger
When a resumable statement encounter a correctable error, the system internally

generates the AFTER SUSPEND system event. Users can register triggers for this

event at both the database and schema level. If a user registers a trigger to handle

this system event, the trigger is executed after a SQL statement has been suspended.

SQL statements executed within a AFTER SUSPEND trigger are always

nonresumable and are always autonomous. Transactions started within the trigger

use the SYSTEM rollback segment. These conditions are imposed to overcome

deadlocks and reduce the chance of the trigger experiencing the same error

condition as the statement.

Users can use the USER_RESUMABLE or DBA_RESUMABLE views, or the DBMS_
RESUMABLE.SPACE_ERROR_INFO function, within triggers to get information

about the resumable statements.

Triggers can also call the DBMS_RESUMABLEpackage to abort suspended statements

and modify resumable timeout values.

Views Containing Information About Resumable Statements
The following views can be queried to obtain information about the status of

resumable statements:

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

information about system events, triggers, and attribute functions

View Description

DBA_RESUMABLE

USER_RESUMABLE

These views contain rows for all currently executing or
suspended resumable statements. They can be used by a DBA,
AFTER SUSPEND trigger, or another session to monitor the
progress of, or obtain specific information about, resumable
statements.

Managing Resumable Space Allocation

14-22 Oracle9i Database Administrator’s Guide

DBMS_RESUMABLE Package
The DBMS_RESUMABLE package helps control resumable statements. The following

procedures are available:

V$SESSION_WAIT When a statement is suspended the session invoking the
statement is put into a wait state. A row is inserted into this
view for the session with the EVENT column containing
"statement suspended, wait error to be cleared".

See Also: Oracle9i Database Reference for specific information

about the columns contained in these views

Procedure Description

ABORT(sessionID) This procedure aborts a suspended resumable statement. The
parameter sessionID is the session ID in which the statement
is executing. For parallel DML/DDL, sessionID is any
session ID which participates in the parallel DML/DDL.

Oracle guarantees that the ABORT operation always succeeds. It
may be called either inside or outside of the AFTER SUSPEND
trigger.

The caller of ABORT must be the owner of the session with
sessionID , have ALTER SYSTEM privilege, or have DBA
privileges.

GET_SESSION_
TIMEOUT(sessionID)

This function returns the current timeout value of resumable
statements for the session with sessionID . This returned
timeout is in seconds. If the session does not exist, this function
returns -1.

SET_SESSION_
TIMEOUT(sessionID,
timeout)

This procedure sets the timeout interval of resumable
statements for the session with sessionID . The parameter
timeout is in seconds. The new timeout setting will applies
to the session immediately. If the session does not exist, no
action is taken.

GET_TIMEOUT() This function returns the current timeout value of resumable
statements for the current session. The returned value is in
seconds.

SET_
TIMEOUT(timeout)

This procedure sets a timeout value for resumable statements
for the current session. The parameter timeout is in seconds.
The new timeout setting applies to the session immediately.

View Description

Managing Resumable Space Allocation

Managing Space for Schema Objects 14-23

Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger
In the following example, a system wide AFTER SUSPEND trigger is created and

registered as user SYS at the database level. Whenever a resumable statement is

suspended in any session, this trigger can have either of two effects:

■ If the rollback segment has reached its space limit, then a message is sent to the

DBA and the statement is aborted.

■ If any other recoverable error has occurred, the timeout interval is reset to 8

hours.

Here are the statements for this example:

CREATE OR REPLACE TRIGGER resumable_default
AFTER SUSPEND
ON DATABASE
DECLARE
 /* declare transaction in this trigger is autonomous */
 /* this is not required because transactions within a trigger
 are always autonomous */
 PRAGMA AUTONOMOUS_TRANSACTION;
 cur_sid NUMBER;
 cur_inst NUMBER;
 errno NUMBER;
 err_type VARCHAR2;
 object_owner VARCHAR2;
 object_type VARCHAR2;
 table_space_name VARCHAR2;
 object_name VARCHAR2;
 sub_object_name VARCHAR2;
 error_txt VARCHAR2;
 msg_body VARCHAR2;
 ret_value BOOLEAN;
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 -- Get session ID
 SELECT DISTINCT(SID) INTO cur_SID FROM V$MYSTAT;

 -- Get instance number
 cur_inst := userenv('instance');

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

Managing Resumable Space Allocation

14-24 Oracle9i Database Administrator’s Guide

 -- Get space error information
 ret_value :=
 DBMS_RESUMABLE.SPACE_ERROR_INFO(err_type,object_type,object_owner,
 table_space_name,object_name, sub_object_name);
 /*
 -- If the error is related to rollback segments, log error, send email
 -- to DBA, and abort the statement. Otherwise, set timeout to 8 hours.
 --
 -- sys.rbs_error is created by DBA manually and defined as
 -- sql_text VARCHAR2(1000), error_msg VARCHAR2(4000),
 -- suspend_time DATE)
 */

 IF OBJECT_TYPE = 'ROLLBACK SEGMENT' THEN
 /* LOG ERROR */
 INSERT INTO sys.rbs_error (
 SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME
 FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid AND INSTANCE_ID = cur_inst
);
 SELECT ERROR_MSG INTO error_txt FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid and INSTANCE_ID = cur_inst;

 -- Send email to receipient via UTL_SMTP package
 msg_body:='Subject: Space Error Occurred

 Space limit reached for rollback segment ' || object_name ||
 on ' || TO_CHAR(SYSDATE, 'Month dd, YYYY, HH:MIam') ||
 '. Error message was ' || error_txt;

 mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
 UTL_SMTP.HELO(mail_conn, 'localhost');
 UTL_SMTP.MAIL(mail_conn, 'sender@localhost');
 UTL_SMTP.RCPT(mail_conn, 'recipient@localhost');
 UTL_SMTP.DATA(mail_conn, msg_body);
 UTL_SMTP.QUIT(mail_conn);

 -- Abort the statement
 DBMS_RESUMABLE.ABORT(cur_sid);
 ELSE
 -- Set timeout to 8 hours
 DBMS_RESUMABLE.SET_TIMEOUT(28800);
 END IF;

 /* commit autonomous transaction */

Deallocating Space

Managing Space for Schema Objects 14-25

 COMMIT;
END;

Deallocating Space
It is not uncommon to allocate space to a segment, only to find out later that it is not

being used. For example, you can set PCTINCREASE to a high value, which could

create a large extent that is only partially used. Or, you could explicitly overallocate

space by issuing the ALTER TABLE ... ALLOCATE EXTENT statement. If you

find that you have unused or overallocated space, you can release it so that the

unused space can be used by other segments.

This section describes aspects of deallocating unused space.

Viewing the High Water Mark
Prior to deallocation, you can use the DBMS_SPACE package, which contains a

procedure (UNUSED_SPACE) that returns information about the position of the high

water mark and the amount of unused space in a segment.

Within a segment, the high water mark indicates the amount of used space, or space

that had been formatted to receive data.You cannot release space below the high

water mark (even if there is no data in the space you want to deallocate). However,

if the segment is completely empty, you can release space using the TRUNCATE ...
DROP STORAGEstatement.

For segments in locally managed tablespaces with segment space management

specified as AUTO, the following output parameters still determine the high water

mark, put their meaning is somewhat altered:

■ LAST_USED_EXTENT_FILE_ID

■ LAST_USED_EXTENT_BLOCK_ID

■ LAST_USED_BLOCK

Specifically, it is possible for some blocks below the high water mark to be

unformatted. Neither the UNUSED_SPACE nor the FREE_SPACE procedure of

DBMS_SPACE accurately accounts for unused space when segment space

management is specified as AUTO. Use the SPACE_USAGE procedure instead.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
contains the description of the DBMS_SPACE package

Deallocating Space

14-26 Oracle9i Database Administrator’s Guide

Issuing Space Deallocation Statements
The following statements deallocate unused space in a segment (table, index or

cluster). The KEEP clause is optional.

ALTER TABLE table DEALLOCATE UNUSED KEEPinteger ;
ALTER INDEX index DEALLOCATE UNUSED KEEPinteger ;
ALTER CLUSTERcluster DEALLOCATE UNUSED KEEPinteger ;

When you explicitly identify an amount of unused space to KEEP, this space is

retained while the remaining unused space is deallocated. If the remaining number

of extents becomes smaller than MINEXTENTS, the MINEXTENTS value changes to

reflect the new number. If the initial extent becomes smaller, the INITIAL value

changes to reflect the new size of the initial extent.

If you do not specify the KEEP clause, all unused space (everything above the high

water mark) is deallocated, as long as the size of the initial extent and MINEXTENTS
are preserved. Thus, even if the high water mark occurs within the MINEXTENTS
boundary, MINEXTENTS remains and the initial extent size is not reduced.

You can verify the deallocated space is freed by examining the DBA_FREE_SPACE
view.

Examples of Deallocating Space
This section provides some space deallocation examples.

Deallocating Space Example 1:
A table consists of three extents. The first extent is 10K, the second is 20K, and the

third is 30K. The high water mark is in the middle of the second extent, and there is

40K of unused space. Figure 14–3 illustrates the effect of issuing the following

statement:

ALTER TABLE dquon DEALLOCATE UNUSED;

All unused space is deallocated, leaving table dquon with two remaining extents.

The third extent disappears, and the second extent size is 10K.

See Also:

■ Oracle9i SQL Reference for details on the syntax and options

associated with deallocating unused space

■ Oracle9i Database Reference for more information about the DBA_
FREE_SPACE view

Deallocating Space

Managing Space for Schema Objects 14-27

Figure 14–3 Deallocating All Unused Space

But, if you had issued the following statement specifying the KEEP keyword, then

10K above the high water mark would be kept, and the rest of the unused space

would be deallocated from dquon .

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 10K;

In effect, the third extent is deallocated and the second extent remains intact.

Figure 14–4 illustrates this situation.

Table DQUON

10K

Extent 1

30K

Unused space = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED;

High water mark

Table DQUON

10K

Extent 1

10K

Extent 2

Before

After

Deallocating Space

14-28 Oracle9i Database Administrator’s Guide

Figure 14–4 Deallocating Unused Space, KEEP 10K

Further, if you deallocate all unused space from dquon and keep 20K, as specified

in the following statement, the third extent is cut to 10K, and the size of the second

extent remains the same.

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 20K;

Deallocating Space Example 2:
Consider the situation illustrated by Figure 14–3. Extent 3 is completely deallocated,

and the second extent is left with 10K. Further, the size of the next allocated extent

defaults to the size of the last completely deallocated extent, which in this case, is

30K. If this is not what you want, you can explicitly set the size of the next extent

using the ALTER TABLE statement, specifying a new value for NEXT in the storage

clause.

The following statement sets the next extent size for table dquon to 20K:

ALTER TABLE dquon STORAGE (NEXT 20K);

Table DQUON

Before

10K

Extent 1

After

30K

Unused space = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 10K;

High water mark

Table DQUON

10K

Extent 1

20K

Extent 2

High water mark

Understanding Space Use of Datatypes

Managing Space for Schema Objects 14-29

Deallocating Space Example 3:
To preserve the MINEXTENTS number of extents, DEALLOCATE can retain extents

that were originally allocated to a segment. This capacity is influenced by the KEEP
parameter and was explained earlier.

If table dquon has a MINEXTENTS value of 2, the statements illustrated in

Figure 14–3 and Figure 14–4 still yield the same results as shown, and further, the

initial value of MINEXTENTS is preserved.

However, if the MINEXTENTS value is 3, then the statement illustrated in

Figure 14–4 produces the same result as shown (the third extent is removed), but

the value of MINEXTENTS is changed to 2. However, the statement illustrated in

Figure 14–3 does not produce the same result. In this case, the statement has no

effect.

Understanding Space Use of Datatypes
When creating tables and other data structures, you need to know how much space

they will require. Each datatype has different space requirements. The PL/SQL
User’s Guide and Reference and Oracle9i SQL Reference contain extensive descriptions

of datatypes and their space requirements.

Understanding Space Use of Datatypes

14-30 Oracle9i Database Administrator’s Guide

Managing Tables 15-1

15
Managing Tables

This chapter describes the various aspects of managing tables, and includes the

following topics:

■ Guidelines for Managing Tables

■ Creating Tables

■ Altering Tables

■ Redefining Tables Online

■ Dropping Tables

■ Managing Index-Organized Tables

■ Managing External Tables

■ Viewing Information About Tables

See Also:

■ Chapter 14, "Managing Space for Schema Objects" is

recommended reading before attempting tasks in this chapter.

■ Chapter 21, "General Management of Schema Objects" presents

additional aspects of managing tables, such as specifying

integrity constraints and analyzing tables.

■ Chapter 17, "Managing Partitioned Tables and Indexes"

discusses partitioned tables.

Guidelines for Managing Tables

15-2 Oracle9i Database Administrator’s Guide

Guidelines for Managing Tables
This section describes guidelines to follow when managing tables. Following these

guidelines can make the management of your tables easier, and improve

performance both when creating the table and later querying or updating it.

The following topics are discussed:

■ Design Tables Before Creating Them

■ Specify How Data Block Space Is to Be Used

■ Specify the Location of Each Table

■ Consider Parallelizing Table Creation

■ Consider Using NOLOGGING When Creating Tables

■ Estimate Table Size and Set Storage Parameters

■ Plan for Large Tables

■ Table Restrictions

Design Tables Before Creating Them
Usually, the application developer is responsible for designing the elements of an

application, including the tables. Database administrators are responsible for setting

storage parameters and defining clusters for tables, based on information from the

application developer about how the application works and the types of data

expected.

Working with your application developer, carefully plan each table so that the

following occurs:

■ Tables are normalized.

■ Each column is of the proper datatype.

■ Columns that allow nulls are defined last, to conserve storage space.

■ Tables are clustered whenever appropriate, to conserve storage space and

optimize performance of SQL statements. Clustered tables are the subject of

Chapter 18, "Managing Clusters".

Specify How Data Block Space Is to Be Used
By specifying the PCTFREE and PCTUSED parameters during the creation of each

table, you can affect the efficiency of space utilization and amount of space reserved

Guidelines for Managing Tables

Managing Tables 15-3

for updates to the current data in the data blocks of a table’s data segment. The

PCTFREE and PCTUSED parameters are discussed in "Managing Space in Data

Blocks" on page 14-2.

Specify the Location of Each Table
If you have the proper privileges and tablespace quota, you can create a new table

in any tablespace that is currently online. It is advisable to specify the TABLESPACE
clause in a CREATE TABLE statement to identify the tablespace that is to store the

new table. If you do not specify a tablespace in a CREATE TABLE statement, the

table is created in your default tablespace.

When specifying the tablespace to contain a new table, make sure that you

understand implications of your selection. By properly specifying a tablespace

during the creation of each table, you can:

■ Increase the performance of the database system

■ Decrease the time needed for database administration

The following situations illustrate how specifying incorrect storage locations for

schema objects can affect a database:

■ If users’ objects are created in the SYSTEMtablespace, the performance of Oracle

can suffer, since both data dictionary objects and user objects must contend for

the same datafiles.

■ If an application’s associated tables are arbitrarily stored in various tablespaces,

the time necessary to complete administrative operations (such as backup and

recovery) for that application’s data can be increased.

Note: When you create a table in a locally managed tablespace for

which automatic segment-space management is enabled, the need

to specify the PCTFREE (or FREELISTS) parameter is eliminated.

Automatic segment-space management is specified at the

tablespace level. The Oracle database server automatically and

efficiently manages free and used space within objects created in

such tablespaces.

Locally managed tablespaces and automatic segment space

management are discussed in "Locally Managed Tablespaces" on

page 15-2.

Guidelines for Managing Tables

15-4 Oracle9i Database Administrator’s Guide

Chapter 24, "Managing Users and Resources" contains information about assigning

default tablespaces and tablespace quotas to users.

Consider Parallelizing Table Creation
You can utilize parallel execution when creating tables using a subquery (AS
SELECT) in the CREATE TABLE statement. Because multiple processes work

together to create the table, performance of the table creation operation is improved.

Parallelizing table creation is discussed in the section "Parallelizing Table Creation"

on page 15-8.

Consider Using NOLOGGING When Creating Tables
To create a table most efficiently use the NOLOGGING clause in the CREATE TABLE
... AS SELECT statement. The NOLOGGING clause causes minimal redo

information to be generated during the table creation. This has the following

benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the table is decreased.

■ Performance improves for parallel creation of large tables.

The NOLOGGING clause also specifies that subsequent direct loads using

SQL*Loader and direct load INSERT operations are not logged. Subsequent DML

statements (UPDATE, DELETE, and conventional path insert) are unaffected by the

NOLOGGING attribute of the table and generate redo.

If you cannot afford to lose the table after you have created it (for example, you will

no longer have access to the data used to create the table) you should take a backup

immediately after the table is created. In some situations, such as for tables that are

created for temporary use, this precaution may not be necessary.

In general, the relative performance improvement of specifying NOLOGGING is
greater for larger tables than for smaller tables. For small tables, NOLOGGING has

little effect on the time it takes to create a table. However, for larger tables the

performance improvement can be significant, especially when you are also

parallelizing the table creation.

Estimate Table Size and Set Storage Parameters
Estimating the sizes of tables before creating them is useful for the following

reasons:

Guidelines for Managing Tables

Managing Tables 15-5

■ You can use the combined estimated size of tables, along with estimates for

indexes, undo space, and redo log files, to determine the amount of disk space

that is required to hold an intended database. From these estimates, you can

make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual table to better manage the disk

space that the table will use. When a table is created, you can set appropriate

storage parameters and improve I/O performance of applications that use the

table. For example, assume that you estimate the maximum size of a table

before creating it. If you then set the storage parameters when you create the

table, fewer extents are allocated for the table’s data segment, and all of the

table’s data is stored in a relatively contiguous section of disk space. This

decreases the time necessary for disk I/O operations involving this table.

Whether or not you estimate table size before creation, you can explicitly set storage

parameters when creating each table. (Clustered tables, discussed in Chapter 18,

"Managing Clusters", automatically use the storage parameters of the cluster.) Any

storage parameter that you do not explicitly set when creating or subsequently

altering a table automatically uses the corresponding default storage parameter set

for the tablespace in which the table resides. Storage parameters are discussed in

"Setting Storage Parameters" on page 14-8.

If you explicitly set the storage parameters for the extents of a table’s data segment,

try to store the table’s data in a small number of large extents rather than a large

number of small extents.

Plan for Large Tables
There are no limits on the physical size of tables and extents. You can specify the

keyword UNLIMITED for MAXEXTENTS, thereby simplifying your planning for large

objects, reducing wasted space and fragmentation, and improving space reuse.

However, when the number of extents in a table grows very large, you can see an

impact on performance when performing any operation requiring that table.

If you have large tables in your database, consider the following recommendations:

■ Separate the table from its indexes.

Note: You cannot alter data dictionary tables to have

MAXEXTENTS greater than the allowed block maximum.

Creating Tables

15-6 Oracle9i Database Administrator’s Guide

Place indexes in separate tablespaces from other objects, and on separate disks

if possible. If you ever must drop and re-create an index on a very large table

(such as when disabling and enabling a constraint, or re-creating the table),

indexes isolated into separate tablespaces can often find contiguous space more

easily than those in tablespaces that contain other objects.

■ Allocate sufficient temporary space.

If applications that access the data in a very large table perform large sorts,

ensure that enough space is available for large temporary segments (temporary

segments always use the default STORAGE settings for their tablespaces).

Table Restrictions
Here are some restrictions to be aware of before you create tables:

■ Tables containing object types cannot be imported into a pre-Oracle8 database.

■ You cannot move types and extent tables to a different schema when the

original data still exists in the database.

■ You cannot merge an exported table into a preexisting table having the same

name in a different schema.

■ Oracle has a limit on the total number of columns that a table (or attributes that

an object type) can have. See Oracle9i Database Reference for this limit.

Further, when you create a table that contains user-defined type data, Oracle

maps columns of user-defined type to relational columns for storing the

user-defined type data. This causes additional relational columns to be created.

This results in "hidden" relational columns that are not visible in a DESCRIBE
table statement and are not returned by a SELECT * statement. Therefore,

when you create an object table, or a relational table with columns of REF,
varray, nested table, or object type, be aware that the total number of columns

that Oracle actually creates for the table can be more than those you specify.

Creating Tables
To create a new table in your schema, you must have the CREATE TABLE system

privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLE system privilege. Additionally, the owner of the table must have a

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about user-defined types

Creating Tables

Managing Tables 15-7

quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE
system privilege.

Create tables using the SQL statement CREATE TABLE.

This section contains the following topics:

■ Creating a Table

■ Creating a Temporary Table

■ Parallelizing Table Creation

■ Automatically Collecting Statistics on Tables

Creating a Table
When you issue the following statement, you create a table named admin_emp in

the hr schema and store it in the admin_tbs tablespace:

CREATE TABLE hr.admin_emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT admin_dept_fkey REFERENCES hr.departments
 (department_id))
 TABLESPACE admin_tbs
 STORAGE (INITIAL 50K
 NEXT 50K
 MAXEXTENTS 10
 PCTINCREASE 25);

In this example, integrity constraints are defined on several columns of the table.

Integrity constraints are discussed in "Managing Integrity Constraints" on

page 21-14. Several segment attributes are also explicitly specified for the table.

These are explained in Chapter 14, "Managing Space for Schema Objects".

See Also: Oracle9i SQL Reference for exact syntax of the CREATE
TABLE and other SQL statements discussed in this chapter

Creating Tables

15-8 Oracle9i Database Administrator’s Guide

Creating a Temporary Table
It is also possible to create a temporary table. The definition of a temporary table is

visible to all sessions, but the data in a temporary table is visible only to the session

that inserts the data into the table. You use the CREATE GLOBAL TEMPORARY
TABLE statement to create a temporary table. The ON COMMIT keywords indicate if

the data in the table is transaction-specific (the default) or session-specific:

■ ON COMMIT DELETE ROWS specifies that the temporary table is transaction

specific and Oracle truncates the table (delete all rows) after each commit.

■ ON COMMIT PRESERVE ROWS specifies that the temporary table is session

specific and Oracle truncates the table when you terminate the session.

This example creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE admin_work_area
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT DELETE ROWS;

Indexes can be created on temporary tables. They are also temporary and the data

in the index has the same session or transaction scope as the data in the underlying

table.

Parallelizing Table Creation
When you specify the AS SELECT clause when creating a table, you can utilize

parallel execution. The CREATE TABLE ... AS SELECT statement contains two

parts: a CREATE part (DDL) and a SELECT part (query). Oracle can parallelize both

parts of the statement. The CREATE part is parallelized if one of the following is true:

■ A PARALLEL clause is included in the CREATE TABLE ... AS SELECT
statement

■ An ALTER SESSION FORCE PARALLEL DDL statement is specified

The query part is parallelized if all of the following are true:

See Also:

■ Oracle9i Database Concepts for more information about

temporary tables

■ Oracle9i Application Developer’s Guide - Fundamentals for more

examples of temporary table use

Creating Tables

Managing Tables 15-9

■ The query includes a parallel hint specification (PARALLEL or PARALLEL_
INDEX) or the CREATEpart includes the PARALLELclause or the schema objects

referred to in the query have a PARALLEL declaration associated with them.

■ At least one of the tables specified in the query requires either a full table scan

or an index range scan spanning multiple partitions.

If you parallelize the creation of a table, that table then has a parallel declaration

(the PARALLEL clause) associated with it. Any subsequent DML or queries on the

table, for which parallelization is possible, will attempt to use parallel execution.

The following simple example parallelizes the creation of a table:

CREATE TABLE hr.admin_emp_dept
 PARALLEL
 AS SELECT * FROM hr.employees
 WHERE department_id = 10;

In this example the PARALLEL clause tells Oracle to select an optimum number of

parallel execution servers when creating the table.

Automatically Collecting Statistics on Tables
The PL/SQL package DBMS_STATS lets you generate and manage statistics for

cost-based optimization. You can use this package to gather, modify, view, export,

import, and delete statistics. You can also use this package to identify or name

statistics that have been gathered.

You enable DBMS_STATS to automatically gather statistics for a table by specifying

the MONITORING clause in the CREATE (or ALTER) TABLE statement. Then, you can

effect automated statistics gathering by, for example, setting up a recurring job

(perhaps by using job queues) that invokes DBMS_STATS.GATHER_TABLE_STATS
with the GATHER STALE option at an appropriate interval for your application.

Monitoring tracks the approximate number of INSERT, UPDATE, and DELETE
operations for the table since the last time statistics were gathered. Information

See Also:

■ Oracle9i Database Concepts for more information about parallel

execution

■ Oracle9i Data Warehousing Guide for a more detailed discussion

about using parallel execution

■ "Managing Processes for Parallel Execution" on page 5-18

Altering Tables

15-10 Oracle9i Database Administrator’s Guide

about how many rows are affected is maintained in the SGA, until periodically

(about every three hours) SMON incorporates the data into the data dictionary. This

data dictionary information is made visible through the DBA_TAB_
MODIFICATIONS,ALL_TAB_MODIFICATIONS, or USER_TAB_MODIFICATIONS
views. Oracle uses these views to identify tables with stale statistics.

Using the MONITORINGclause and the DBMS_STATSpackage enables the optimizer

to generate accurate execution plans.

To disable monitoring of a table, specify the NOMONITORING clause.

Altering Tables
You alter a table using the ALTER TABLE statement. To alter a table, the table must

be contained in your schema, or you must have either the ALTERobject privilege for

the table or the ALTER ANY TABLE system privilege.

The following are many of the reasons for altering a table:

■ To modify physical characteristics (PCTFREE, PCTUSED, INITRANS , MAXTRANS,
or storage parameters)

■ To move the table to a new segment or tablespace

■ To explicitly allocate an extent or deallocate unused space

■ To add, drop, or rename columns, or modify an existing column’s definition

(datatype, length, default value, and NOT NULL integrity constraint)

■ To modify the logging attributes of the table

■ To modify the CACHE/NOCACHE attributes

■ To add, modify or drop integrity constraints associated with the table

■ To enable or disable integrity constraints or triggers associated with the table

■ To modify the degree of parallelism for the table

■ To enable or disable statistics collection (MONITORING/NOMONITORING)

■ To rename a table

■ To add or modify index-organized table characteristics

See Also: Oracle9i Database Performance Tuning Guide and Reference
for a discussion of the exact mechanism for using the MONITORING
clause and the DBMS_STATS package for gathering statistics

Altering Tables

Managing Tables 15-11

■ To alter the characteristics of an external table

■ To add or modify LOB columns

■ To add or modify object type, nested table, or varray columns

Some of the usages of the ALTER TABLE statement are presented in the following

sections:

■ Altering Physical Attributes of a Table

■ Moving a Table to a New Segment or Tablespace

■ Manually Allocating Storage for a Table

■ Modifying an Existing Column’s Definition

■ Adding Table Columns

■ Renaming Table Columns

■ Dropping Table Columns

Altering Physical Attributes of a Table
When altering the data block space usage parameters (PCTFREE and PCTUSED) of a

table, note that new settings apply to all data blocks used by the table, including

blocks already allocated and subsequently allocated for the table. However, the

blocks already allocated for the table are not immediately reorganized when space

usage parameters are altered, but as necessary after the change. The data block

storage parameters are described in "Managing Space in Data Blocks" on page 14-2.

When altering the transaction entry settings (INITRANS , MAXTRANS) of a table, note

that a new setting for INITRANS applies only to data blocks subsequently allocated

Caution: Before altering a table, familiarize yourself with the

consequences of doing so. The Oracle9i SQL Reference lists many of

these consequences in the descriptions of the ALTER TABLE
clauses.

If a view, materialized view, trigger, domain index, function-based

index, check constraint, function, procedure of package depends on

a base table, the alteration of the base table or its columns can affect

the dependent object. See "Managing Object Dependencies" on

page 21-23 for information about how Oracle manages

dependencies.

Altering Tables

15-12 Oracle9i Database Administrator’s Guide

for the table, while a new setting for MAXTRANS applies to all blocks (already and

subsequently allocated blocks) of a table. To better understand these transaction

entry setting parameters, see "Specifying the Transaction Entry Parameters:

INITRANS and MAXTRANS" on page 14-8.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters (for example, NEXT, PCTINCREASE) affect

only extents subsequently allocated for the table. The size of the next extent

allocated is determined by the current values of NEXT and PCTINCREASE, and is

not based on previous values of these parameters. Storage parameters are discussed

in "Setting Storage Parameters" on page 14-8.

Moving a Table to a New Segment or Tablespace
The ALTER TABLE ... MOVE statement enables you to relocate data of a

nonpartitioned table into a new segment, and optionally into a different tablespace

for which you have quota. This statement also allows you to modify any of the

table’s storage attributes, including those which cannot be modified using ALTER
TABLE.

The following statement moves the hr.admin_emp table to a new segment,

specifying new storage parameters:

ALTER TABLE hr.admin_emp MOVE
 STORAGE (INITIAL 20K
 NEXT 40K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 0);

If the table includes LOB column(s), this statement can be used to move the table

along with LOB data and LOB index segments (associated with this table) which the

user explicitly specifies. If not specified, the default is to not move the LOB data and

LOB index segments.

Manually Allocating Storage for a Table
Oracle dynamically allocates additional extents for the data segment of a table, as

required. However, perhaps you want to allocate an additional extent for a table

explicitly. For example, in an Oracle Real Application Clusters environment, an

extent of a table can be allocated explicitly for a specific instance.

A new extent can be allocated for a table using the ALTER TABLE ... ALLOCATE
EXTENT clause.

Altering Tables

Managing Tables 15-13

You can also explicitly deallocate unused space using the DEALLOCATE UNUSED
clause of ALTER TABLE. This is described in "Deallocating Space" on page 14-25.

Modifying an Existing Column’s Definition
Use the ALTER TABLE ... MODIFY statement to modify an existing column’s

definition. You can modify a column’s datatype, default value, or column

constraint.

You can increase the length of an existing column, or decrease it, if all existing data

satisfies the new length. You can change a column from byte semantics to CHAR
semantics or vice versa. You must set the initialization parameter BLANK_
TRIMMING=TRUE to decrease the length of a nonempty CHAR column.

If you are modifying a table to increase the length of a column of datatype CHAR,
realize that this can be a time consuming operation and can require substantial

additional storage, especially if the table contains many rows. This is because the

CHAR value in each row must be blank-padded to satisfy the new column length.

Adding Table Columns
To add a column to an existing table, use the ALTER TABLE ... ADD statement.

The following statement alters the hr.admin_emp table to add a new column

named bonus :

ALTER TABLE hr.admin_emp
 ADD (bonus NUMBER (7,2));

If a new column is added to a table, the column is initially NULL unless you specify

the DEFAULT clause. When you specify a default value, Oracle updates each row in

the new column with the values specified.

You can add a column with a NOT NULL constraint to a table only if the table does

not contain any rows, or you specify a default value.

See Also: Oracle9i Real Application Clusters Administration for

information about using the ALLOCATE EXTENT clause in an

Oracle Real Application Clusters environment

See Also: Oracle9i SQL Reference for additional information about

modifying table columns and additional restrictions

See Also: Oracle9i SQL Reference for additional information about

adding table columns and additional restrictions

Altering Tables

15-14 Oracle9i Database Administrator’s Guide

Renaming Table Columns
Oracle allows you to rename existing columns in a table. Use the RENAME COLUMN
clause of the ALTER TABLEstatement to rename a column. The new name must not

conflict with the name of any existing column in the table. No other clauses are

allowed in conjunction with the RENAME COLUMN clause.

The following statement renames the comm column of the hr.admin_emp table.

ALTER TABLE hr.admin_emp
 RENAME COLUMN comm TO commission;

As noted earlier, altering a table’s column can invalidate dependent objects.

However, when you rename a column, Oracle updates associated data dictionary

tables to ensure that function-based indexes and check constraints remain valid.

Oracle also allows you to rename column constraints. This is discussed in

"Renaming Constraints" on page 21-19.

Dropping Table Columns
You can drop columns that are no longer needed from a table, including an

index-organized table. This provides a convenient means to free space in a

database, and avoids your having to export/import data then re-create indexes and

constraints.

You cannot drop all columns from a table, nor can you drop columns from a table

owned by SYS. Any attempt to do so results in an error.

Removing Columns from Tables
When you issue an ALTER TABLE ... DROP COLUMN statement, the column

descriptor and the data associated with the target column are removed from each

row in the table. You can drop multiple columns with one statement. The following

statements are examples of dropping columns from the hr.admin_emp table.

This statement drops only the sal column:

Note: The RENAME TOclause of ALTER TABLEappears similar in

syntax to the RENAME COLUMN clause, but is used for renaming the

table itself.

See Also: Oracle9i SQL Reference for information about additional

restrictions and options for dropping columns from a table

Altering Tables

Managing Tables 15-15

ALTER TABLE hr.admin_emp DROP COLUMN sal;

The following statement drops both the bonus and comm columns:

ALTER TABLE hr.admin_emp DROP (bonus, commission);

Marking Columns Unused
If you are concerned about the length of time it could take to drop column data

from all of the rows in a large table, you can use the ALTER TABLE ... SET
UNUSED statement. This statement marks one or more columns as unused, but does

not actually remove the target column data or restore the disk space occupied by

these columns. However, a column that is marked as unused is not displayed in

queries or data dictionary views, and its name is removed so that a new column can

reuse that name. All constraints, indexes, and statistics defined on the column are

also removed.

To mark the hiredate and mgr columns as unused, execute the following

statement:

ALTER TABLE hr.admin_emp SET UNUSED (hiredate, mgr);

You can later remove columns that are marked as unused by issuing an ALTER
TABLE ... DROP UNUSED COLUMNS statement. Unused columns are also

removed from the target table whenever an explicit drop of any particular column

or columns of the table is issued.

The data dictionary views USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, or

DBA_UNUSED_COL_TABS can be used to list all tables containing unused columns.

The COUNT field shows the number of unused columns in the table.

SELECT * FROM DBA_UNUSED_COL_TABS;

OWNER TABLE_NAME COUNT
--------------------------- --------------------------- -----
HR ADMIN_EMP 2

Removing Unused Columns
The ALTER TABLE ... DROP UNUSED COLUMNS statement is the only action

allowed on unused columns. It physically removes unused columns from the table

and reclaims disk space.

In the example that follows the optional keyword CHECKPOINT is specified. This

option causes a checkpoint to be applied after processing the specified number of

rows, in this case 250. Checkpointing cuts down on the amount of undo logs

Redefining Tables Online

15-16 Oracle9i Database Administrator’s Guide

accumulated during the drop column operation to avoid a potential exhaustion of

undo space.

ALTER TABLE hr.admin_emp DROP UNUSED COLUMNS CHECKPOINT 250;

Redefining Tables Online
In highly available systems, it is occasionally necessary to redefine large "hot" tables

to improve the performance of queries or DML performed against these tables.

Oracle provide a mechanism to redefine tables online. This mechanism provides a

significant increase in availability compared to traditional methods of redefining

tables that require tables to be taken offline.

When a table is redefined online, it is accessible to DML during much of the

redefinition process. The table is locked in the exclusive mode only during a very

small window which is independent of the size of the table and the complexity of

the redefinition.

This section contains the following topics:

■ Features of Online Table Redefinition

■ The DBMS_REDEFINITION Package

■ Steps for Online Redefinition of Tables

■ Intermediate Synchronization

■ Abort and Cleanup After Errors

■ Example of Online Table Redefinition

■ Restrictions

Features of Online Table Redefinition
Online table redefinition enables you to:

■ Modify the storage parameters of the table

■ Move the table to a different tablespace in the same schema

■ Add support for parallel queries

■ Add or drop partitioning support

■ Re-create the table to reduce fragmentation

Redefining Tables Online

Managing Tables 15-17

■ Change the organization of a normal table (heap organized) to an

index-organized table and vice versa

■ Add or drop a column

The DBMS_REDEFINITION Package
The mechanism for performing online redefinition is the PL/SQL package DBMS_
REDEFINITION . Execute privileges on this package is granted to EXECUTE_
CATALOG_ROLE. In addition to having execute privileges on this package, you must

be granted the following privileges:

■ CREATE ANY TABLE

■ ALTER ANY TABLE

■ DROP ANY TABLE

■ LOCK ANY TABLE

■ SELECT ANY TABLE

Steps for Online Redefinition of Tables
In order to perform an online redefinition of a table the user must perform the

following steps.

1. Choose one of the following two methods of redefinition:

■ The first method of redefinition, and the preferred method, is to use the

primary keys to perform the redefinition. For this method, the

pre-redefinition and the post-redefinition versions of the tables should have

the same primary key columns. This is the default method of redefinition.

■ The second method of redefinition is to use ROWIDs. For this method, the

table to be redefined should not be an index organized table. Also, in this

method of redefinition, a hidden column (M_ROW$$) is added to the

post-redefined version of the table and it is recommended that this column

be marked as unused or dropped after the redefinition is completed.

2. Verify that the table can be online redefined by invoking the DBMS_
REDEFINITION.CAN_REDEF_TABLE() procedure and specifying the method

of redefinition to be used. If the table is not a candidate for online redefinition,

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

Redefining Tables Online

15-18 Oracle9i Database Administrator’s Guide

then this procedure raises an error indicating why the table cannot be online

redefined.

3. Create an empty interim table (in the same schema as the table to be redefined)

with all of the desired attributes. If columns are to be dropped, do not include

them in the definition of the interim table. If a column is to be added, then add

the column definition to the interim table.

It is possible to perform table redefinition in parallel. If you specify a degree of

parallelism on both of the tables and you ensure that parallel execution is

enabled for the session, Oracle will use parallel execution whenever possible to

perform the redefinition.

4. Start the redefinition process by calling DBMS_REDEFINITION.START_
REDEF_TABLE(), providing the following:

■ The table to be redefined

■ The interim table name

■ The column mapping

■ The method of redefinition

If the column mapping information is not supplied, then it is assumed that all

the columns (with their names unchanged) are to be included in the interim

table. If the column mapping is supplied, then only those columns specified

explicitly in the column mapping are considered. If the method of redefinition

is not specified, then the default method of redefinition using primary keys is

assumed.

5. Create any triggers, indexes, grants and constraints on the interim table. Any

referential constraints involving the interim table (that is, the interim table is

either a parent or a child table of the referential constraint) must be created

disabled. Until the redefinition process is either completed or aborted, any

trigger defined on the interim table will not execute.

When the redefinition is completed, the triggers, constraints, indexes and grants

associated with the interim table replace those on the table being redefined. The

referential constraints involving the interim table (created disabled) transfer to

the table being redefined and become enabled after the redefinition is complete.

6. Execute the DBMS_REDEFINITION.FINISH_REDEF_TABLE() procedure to

complete the redefinition of the table. During this procedure, the original table

is locked in the exclusive mode for a very small window. This window is

independent of the amount of data in the original table. Also, as part of this

procedure, the following occurs:

Redefining Tables Online

Managing Tables 15-19

a. The original table is redefined such that it has all the attributes, indexes,

constraints, grants and triggers of the interim table

b. The referential constraints involving the interim table now involve the post

redefined table and are enabled.

7. Optionally, rename any indexes, triggers, and constraints that were created on

the interim table and that are now defined on the redefined table. If the

redefinition was done using ROWIDs, the post-redefined table will have a

hidden column (M_ROW$$) and it is recommended that the user set this

hidden column to unused as follows:

ALTER TABLE table_name SET UNUSED (M_ROW$$)

8. The following is the end result of the redefinition process:

■ The original table is redefined with the attributes and features of the

interim table.

■ The triggers, grants, indexes and constraints defined on the interim table

after START_REDEF_TABLE() and before FINISH_REDEF_TABLE() are

now defined on the post-redefined table. Any referential constraints

involving the interim table before the redefinition process was finished now

involve the post-redefinition table and are enabled.

■ Any indexes, triggers, grants and constraints defined on the original table

(prior to redefinition) are transferred to the interim table and are dropped

when the user drops the interim table. Any referential constraints involving

the original table before the redefinition now involve the interim table and

are disabled.

■ Any PL/SQL procedures and cursors defined on the original table (prior to

redefinition) are invalidated. They are automatically revalidated (this

revalidation can fail if the shape of the table was changed as a result of the

redefinition process) whenever they are used next.

Intermediate Synchronization
After the redefinition process has been started by calling START_REDEF_TABLE()
and before FINISH_REDEF_TABLE() has been called, it is possible that a large

number of DML statements have been executed on the original table. If you know

this is the case, it is recommended that you periodically synchronize the interim

table with the original table. This is done by calling the DBMS_
REDEFINITION.SYNC_INTERIM_TABLE() procedure. Calling this procedure

Redefining Tables Online

15-20 Oracle9i Database Administrator’s Guide

reduces the time taken by FINISH_REDEF_TABLE() to complete the redefinition

process.

The small amount of time that the original table is locked during FINISH_REDEF_
TABLE() is independent of whether SYNC_INTERIM_TABLE() has been called.

Abort and Cleanup After Errors
In the event that an error is raised during the redefinition process, or if you choose

to abort the redefinition process, call DBMS_REDEFINITION.ABORT_REDEF_
TABLE() . This procedure drops temporary logs and tables associated with the

redefinition process. After this procedure is called, the user can drop the interim

table and its associated objects.

Example of Online Table Redefinition
This example illustrates online redefinition of the previously created table

hr.admin_emp , which at this point only contains columns: empno, ename, job ,

deptno . The table is redefined as follows:

■ New columns mgr, hiredate , sal , and bonus (these existed in the original

table but were dropped in previous examples) are added.

■ The new column bonus is initialized to 0

■ The column deptno has it’s value increased by 10.

■ The redefined table is partitioned by range on empno.

The steps in this redefinition are illustrated below.

1. Verify that the table is a candidate for online redefinition.

BEGIN
DBMS_REDEFINITION.CAN_REDEF_TABLE('hr','admin_emp',
 dbms_redefinition.cons_use_pk);
END;
/

2. Create an interim table hr.int_admin_emp .

CREATE TABLE hr.int_admin_emp
 (empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),

Redefining Tables Online

Managing Tables 15-21

 sal NUMBER(7,2),
 deptno NUMBER(3) NOT NULL,
 bonus NUMBER (7,2) DEFAULT(1000))
 PARTITION BY RANGE(empno)
 (PARTITION emp1000 VALUES LESS THAN (1000) TABLESPACE admin_tbs,
 PARTITION emp2000 VALUES LESS THAN (2000) TABLESPACE admin_tbs2);

3. Start the redefinition process.

BEGIN
DBMS_REDEFINITION.START_REDEF_TABLE('hr', 'admin_emp','int_admin_emp',
 'empno empno, ename ename, job job, deptno+10 deptno, 0 bonus',
 dbms_redefinition.cons_use_pk);
END;
/

4. Create any triggers, indexes and constraints on hr.int_admin_emp . During

the final step of redefinition, these are transferred back to the original table.

Any referential constraints involved on hr.int_admin_emp should be

disabled. You can define any grants associated with the interim table. These

replace the grants on the original table after the redefinition.

ALTER TABLE hr.int_admin_emp ADD CONSTRAINT admin_dept_fkey2
 FOREIGN KEY (deptno) REFERENCES hr.departments (department_id);
ALTER TABLE hr.int_admin_emp MODIFY CONSTRAINT admin_dept_fkey2
 DISABLE KEEP INDEX;

The disabled constraint, admin_dept_fkey2 , will be enabled automatically as

part of the finish redefinition process and will then involve the newly redefined

admin_emp table.

5. Optionally, synchronize the interim table hr.int_admin_emp .

BEGIN
DBMS_REDEFINITION.SYNC_INTERIM_TABLE('hr', 'admin_emp', 'int_admin_emp');
END;
/

6. Complete the redefinition.

BEGIN
DBMS_REDEFINITION.FINISH_REDEF_TABLE('hr', 'admin_emp', 'int_admin_emp');
END;
/

Redefining Tables Online

15-22 Oracle9i Database Administrator’s Guide

The table hr.admin_emp is locked in the exclusive mode only for a small

window toward the end of this step. After this call the table hr.admin_emp is

redefined such that it has all the attributes of the hr.int_admin_emp table.

7. Drop the interim table.

Restrictions
The following restrictions apply to the online redefinition of tables:

■ If the table is to be redefined using primary keys, then the table to be redefined

and the post-redefinition table must have the same primary key columns. If the

table is to be redefined using ROWIDs, then the table must not be an

index-organized table.

■ Tables that have materialized views and materialized view logs defined on

them cannot be online redefined.

■ Tables that are materialized view container tables and Advanced Queuing

tables cannot be online redefined.

■ The overflow table of an index-organized table cannot be online redefined.

■ Tables with user-defined types (objects, REFs, collections, typed tables) cannot

be online redefined.

■ Tables with BFILE columns cannot be online redefined.

■ Tables with LONG columns cannot be online redefined. Tables with LOB
columns are acceptable.

■ The table to be redefined cannot be part of a cluster.

■ Tables in the SYS and SYSTEM schema cannot be online redefined.

■ Temporary tables cannot be redefined.

■ There is no horizontal subsetting support.

■ Only simple deterministic expressions can be used when mapping the columns

in the interim table to those of the original table. For example, subqueries are

not allowed.

■ If new columns (which are not instantiated with existing data for the original

table) are being added as part of the redefinition, then they must not be

declared NOT NULL until the redefinition is complete.

■ There cannot be any referential constraints between the table being redefined

and the interim table.

Dropping Tables

Managing Tables 15-23

■ Table redefinition cannot be done NOLOGGING.

Dropping Tables
To drop a table, the table must be contained in your schema or you must have the

DROP ANY TABLE system privilege.

 To drop a table that is no longer needed, use the DROP TABLE statement. The

following statement drops the hr.int_admin_emp table:

DROP TABLE hr.int_admin_emp;

If the table to be dropped contains any primary or unique keys referenced by

foreign keys of other tables and you intend to drop the FOREIGN KEY constraints

of the child tables, include the CASCADE clause in the DROP TABLE statement, as

shown below:

DROP TABLE hr.admin_emp CASCADE CONSTRAINTS;

Perhaps instead of dropping a table, you want to truncate it. The TRUNCATE
statement provides a fast, efficient method for deleting all rows from a table, but it

Caution: Before dropping a table, familiarize yourself with the

consequences of doing so:

■ Dropping a table removes the table definition from the data

dictionary. All rows of the table are no longer accessible.

■ All indexes and triggers associated with a table are dropped.

■ All views and PL/SQL program units dependent on a dropped

table remain, yet become invalid (not usable). See "Managing

Object Dependencies" on page 21-23 for information about how

Oracle manages dependencies.

■ All synonyms for a dropped table remain, but return an error

when used.

■ All extents allocated for a table that is dropped are returned to

the free space of the tablespace and can be used by any other

object requiring new extents or new objects. All rows

corresponding to a clustered table are deleted from the blocks

of the cluster. Clustered tables are the subject of Chapter 18,

"Managing Clusters".

Managing Index-Organized Tables

15-24 Oracle9i Database Administrator’s Guide

does not affect any structures associated with the table being truncated (column

definitions, constraints, triggers, and so forth) or authorizations. The TRUNCATE
statement is discussed in "Truncating Tables and Clusters" on page 21-9.

Managing Index-Organized Tables
This section describes aspects of managing index-organized tables, and includes the

following topics:

■ What are Index-Organized Tables

■ Creating Index-Organized Tables

■ Maintaining Index-Organized Tables

■ Analyzing Index-Organized Tables

■ Using the ORDER BY Clause with Index-Organized Tables

■ Converting Index-Organized Tables to Regular Tables

What are Index-Organized Tables
An index-organized table has a storage organization that is a variant of a primary

B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an

unordered collection (heap), data for an index-organized table is stored in a B-tree

index structure in a primary key sorted manner. Besides storing the primary key

column values of an index-organized table row, each index entry in the B-tree stores

the nonkey column values as well.

Why use Index-Organized Tables
Index-organized tables provide fast key-based access to table data for queries

involving exact match and range searches. Changes to the table data (such as

adding new rows, updating rows, or deleting rows) result only in updating the

index structure (because there is no separate table storage area).

Also, storage requirements are reduced because key columns are not duplicated in

the table and index. The remaining nonkey columns are stored in the index

structure.

Index-organized tables are particularly useful when you are using applications that

must retrieve data based on a primary key. Index-organized tables are also suitable

for modeling application-specific index structures. For example, content-based

Managing Index-Organized Tables

Managing Tables 15-25

information retrieval applications containing text, image and audio data require

inverted indexes that can be effectively modeled using index-organized tables.

Differences Between Index Organized and Regular Tables
As shown in Figure 15–1, the index-organized table is somewhat similar to a

configuration consisting of an ordinary table and an index on one or more of the

table columns, but instead of maintaining two separate storage structures, one for

the table and one for the B-tree index, the database system maintains only a single

B-tree index. Also, rather than having a row's rowid stored in the index entry, the

nonkey column values are stored. Thus, each B-tree index entry contains:

primary_key_value, non_primary_key_column_values

Figure 15–1 Structure of Regular Table versus an Index-Organized Table

Applications manipulate the index-organized table just like an ordinary table, using

SQL statements. However, the database system performs all operations by

manipulating the corresponding B-tree index.

Creating Index-Organized Tables
You use the CREATE TABLE statement to create index-organized tables, but you

must provide the following additional information:

See Also:

■ Oracle9i Database Concepts for more details about

index-organized tables

■ Oracle9i SQL Reference for details of the syntax involved in

creating index-organized tables

Finance
Invest

5543
6879

Table
Finance 5543
Invest 6879

Index

Regular Table and Index Index-Organized Table

Finance ROWID
Invest ROWID

Index

Table Data Stored
in Index

Managing Index-Organized Tables

15-26 Oracle9i Database Administrator’s Guide

■ An ORGANIZATION INDEX qualifier, which indicates that this is an

index-organized table

■ A primary key, specified through a column constraint clause (for a single

column primary key) or a table constraint clause (for a multiple-column

primary key). A primary key must be specified for index-organized tables.

■ An optional row overflow specification clause (OVERFLOW), which preserves

dense clustering of the B-tree index by storing the row column values exceeding

a specified threshold in a separate overflow data segment. An INCLUDING
clause can also be specified to specify what (nonkey) columns are to be stored in

the overflow data segment.

■ A PCTTHRESHOLD value which defines the percentage of space reserved in the

index block for an index-organized table. Any portion of the row that exceeds

the specified threshold is stored in the overflow segment. In other words, the

row is broken at a column boundary into two pieces, a head piece and tail piece.

The head piece fits in the specified threshold and is stored along with the key in

the index leaf block. The tail piece is stored in the overflow area as one or more

row pieces. Thus, the index entry contains the key value, the nonkey column

values that fit the specified threshold, and a pointer to the rest of the row.

The following example creates an index-organized table:

CREATE TABLE admin_docindex(
 token char(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(512),
 CONSTRAINT pk_admin_docindex PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 OVERFLOW TABLESPACE admin_tbs2;

The above example shows that the ORGANIZATION INDEX qualifier specifies an

index-organized table, where the key columns and nonkey columns reside in an

index defined on columns that designate the primary key (token, doc_id) for

the table.

Index-organized tables can store object types. The following example creates object

type admin_typ , then creates an index-organized table containing a column of

object type admin_typ :

CREATE OR REPLACE TYPE admin_typ AS OBJECT
 (col1 NUMBER, col2 VARCHAR2(6));

Managing Index-Organized Tables

Managing Tables 15-27

CREATE TABLE admin_iot (c1 NUMBER primary key, c2 admin_typ)
 ORGANIZATION INDEX;

You can also create an index-organized table of object types. For example:

CREATE TABLE admin_iot2 OF admin_typ (col1 PRIMARY KEY)
 ORGANIZATION INDEX;

Using the AS Subquery
You can create an index-organized table using the ASsubquery. Creating an

index-organized table in this manner enables you to load the table in parallel by

using the PARALLEL option.

The following statement creates an index-organized table (in parallel) by selecting

rows from the conventional table hr.jobs :

CREATE TABLE admin_iot3(i PRIMARY KEY, j, k, l)
 ORGANIZATION INDEX PARALLEL (DEGREE 2)
 AS SELECT * FROM hr.jobs;

Using the Overflow Clause
The overflow clause specified in the earlier example indicates that any nonkey

columns of rows exceeding 20% of the block size are placed in a data segment

stored in the admin_tbs2 tablespace. The key columns should fit the specified

threshold.

If an update of a nonkey column causes the row to decrease in size, Oracle identifies

the row piece (head or tail) to which the update is applicable and rewrites that

piece.

If an update of a nonkey column causes the row to increase in size, Oracle identifies

the piece (head or tail) to which the update is applicable and rewrites that row

piece. If the update’s target turns out to be the head piece, note that this piece can

again be broken into 2 to keep the row size below the specified threshold.

The nonkey columns that fit in the index leaf block are stored as a row head-piece

that contains a ROWID field linking it to the next row piece stored in the overflow

data segment. The only columns that are stored in the overflow area are those that

do not fit.

See Also: "Creating Partitioned Index-Organized Tables" on

page 17-19 for information about creating partitioned

index-organized tables

Managing Index-Organized Tables

15-28 Oracle9i Database Administrator’s Guide

Choosing and Monitoring a Threshold Value You should choose a threshold value that

can accommodate your key columns, as well as the first few nonkey columns (if

they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value

you specified is appropriate. You can use the ANALYZE TABLE ... LIST
CHAINED ROWSstatement to determine the number and identity of rows exceeding

the threshold value.

Using the INCLUDING clause In addition to specifying PCTTHRESHOLD, you can use

the INCLUDING clause to control which nonkey columns are stored with the key

columns. Oracle accommodates all nonkey columns up to the column specified in

the INCLUDING clause in the index leaf block, provided it does not exceed the

specified threshold. All nonkey columns beyond the column specified in the

INCLUDING clause are stored in the overflow area.

The example presented earlier can be modified to create an index-organized table

where the token_offsets column value is always stored in the overflow area:

CREATE TABLE admin_docindex2(
 token CHAR(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(512),
 CONSTRAINT pk_admin_docindex2 PRIMARY KEY (token, doc_id))

See Also: Oracle9i SQL Reference for details about this use of the

ANALYZE statement

Note: Oracle moves all primary key columns of an

indexed-organized table to the beginning of the table (in their key

order), in order to provide efficient primary key based access. As an

example:

CREATE TABLE admin_iot4(a INT, b INT, c INT, d INT,
 primary key(c,b))
 ORGANIZATION INDEX;

The stored column order is: c b a d (instead of: a b c d). The

last primary key column is b, based on the stored column order.

The INCLUDING column can be the last primary key column (b in

this example), or any nonkey column (that is, any column after b in

the stored column order).

Managing Index-Organized Tables

Managing Tables 15-29

 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 INCLUDING token_frequency
 OVERFLOW TABLESPACE admin_tbs2;

Here, only nonkey columns prior to token_offsets (in this case a single column

only) are stored with the key column values in the index leaf block.

Using Key Compression
Creating an index-organized table using key compression enables you to eliminate

repeated occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression

is achieved by sharing the prefix entries among all the suffix entries in an index

block. This sharing can lead to huge savings in space, allowing you to store more

keys in each index block while improving performance.

You can enable key compression using the COMPRESS clause while:

■ creating an index-organized table

■ moving an index-organized table

You can also specify the prefix length (as the number of key columns), which

identifies how the key columns are broken into a prefix and suffix entry.

CREATE TABLE admin_iot5(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS;

The preceding statement is equivalent to the following statement:

CREATE TABLE admin_iot6(i INT, j INT, k INT, l INT, PRIMARY KEY(i, j, k))
 ORGANIZATION INDEX COMPRESS 2;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated

occurrences of (1,2), (1,3) are compressed away.

You can also override the default prefix length used for compression as follows:

CREATE TABLE admin_iot7(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS 1;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4), the repeated

occurrences of 1 are compressed away.

You can disable compression as follows:

Managing Index-Organized Tables

15-30 Oracle9i Database Administrator’s Guide

ALTER TABLE admin_iot5 MOVE NOCOMPRESS;

Maintaining Index-Organized Tables
Index-organized tables differ from regular tables only in physical organization;

logically, they are manipulated in the same manner. You can use an

index-organized table in place of a regular table in INSERT, SELECT, DELETE, and

UPDATE statements.

Altering Index-Organized Tables
You can use the ALTER TABLE statement to modify physical and storage attributes

for both primary key index and overflow data segments. All the attributes specified

prior to the OVERFLOW keyword are applicable to the primary key index segment.

All attributes specified after the OVERFLOW key word are applicable to the overflow

data segment. For example, you can set the INITRANS of the primary key index

segment to 4 and the overflow of the data segment INITRANS to 6 as follows:

ALTER TABLE admin_docindex INITRANS 4 OVERFLOW INITRANS 6;

You can also alter PCTTHRESHOLDand INCLUDING column values. A new setting is

used to break the row into head and overflow tail pieces during subsequent

operations. For example, the PCTHRESHOLD and INCLUDING column values can be

altered for the admin_docindex table as follows:

ALTER TABLE admin_docindex PCTTHRESHOLD 15 INCLUDING doc_id;

By setting the INCLUDING column to doc_id , all the columns that follow token_
frequency and token_offsets , are stored in the overflow data segment.

For index-organized tables created without an overflow data segment, you can add

an overflow data segment by using the ADD OVERFLOW clause. For example, you

can add an overflow segment to table admin_iot3 as follows:

ALTER TABLE admin_iot3 ADD OVERFLOW TABLESPACE admin_tbs2;

Moving (Rebuilding) Index-Organized Tables
Because index-organized tables are primarily stored in a B-tree index, you can

encounter fragmentation as a consequence of incremental updates. However, you

can use the ALTER TABLE ... MOVE statement to rebuild the index and reduce

this fragmentation.

See Also: Oracle9i Database Concepts for more details about key

compression

Managing Index-Organized Tables

Managing Tables 15-31

The following statement rebuilds the index-organized table admin_docindex :

ALTER TABLE admin_docindex MOVE;

You can rebuild index-organized tables online using the ONLINE keyword. The

overflow data segment, if present, is rebuilt when the OVERFLOW keyword is

specified. For example, to rebuild the admin_docindex table but not the overflow

data segment, perform a move online as follows:

ALTER TABLE admin_docindex MOVE ONLINE;

To rebuild the admin_docindex table along with its overflow data segment

perform the move online as shown in the following statement. This statement also

illustrates moving both the table and overflow data segment to new tablespaces.

ALTER TABLE admin_docindex MOVE TABLESPACE admin_tbs2
 OVERFLOW TABLESPACE admin_tbs3;

In this last example, an index organized table with a LOB column (CLOB) is built.

Then the table is moved while the LOB index and data segment are rebuilt and

moved to a new tablespace.

CREATE TABLE admin_iot_lob
 (c1 number (6) primary key,
 admin_lob CLOB)
 ORGANIZATION INDEX
 LOB (admin_lob) STORE AS (TABLESPACE admin_tbs2);
ALTER TABLE admin_iot_lob MOVE LOB (admin_lob) STORE AS (TABLESPACE admin_tbs3);

Updating the Key Column
A key column update is logically equivalent to deleting the row with the old key

value and inserting the row with the new key value at the appropriate place to

maintain the primary key order.

Logically, in the following example, the admin_docindex table row for

token='coins' and doc_id=10 is deleted and a new row for token='medals'
and doc_id=10 is inserted:

UPDATE admin_docindex
 SET token='medals'
 WHERE token='coins' and doc_id=10;

Managing Index-Organized Tables

15-32 Oracle9i Database Administrator’s Guide

Analyzing Index-Organized Tables
Just like conventional tables, index-organized tables are analyzed using the

ANALYZE statement. For example, the following statement gathers statistics for the

admin_docindex table:

ANALYZE TABLE admin_docindex COMPUTE STATISTICS;

The ANALYZE statement analyzes both the primary key index segment and the

overflow data segment, and computes logical as well as physical statistics for the

table.

■ The logical statistics can be queried using USER_TABLES, ALL_TABLES or

DBA_TABLES.

■ You can query the physical statistics of the primary key index segment using

USER_INDEXES, ALL_INDEXES or DBA_INDEXES (and using the primary key

index name). For example, you can obtain the primary key index segment’s

physical statistics for the table admin_docindex as follows:

SELECT LAST_ANALYZED, BLEVEL,LEAF_BLOCKS, DISTINCT_KEYS
 FROM DBA_INDEXES WHERE INDEX_NAME= 'PK_ADMIN_DOCINDEX';

■ You can query the physical statistics for the overflow data segment using the

USER_TABLES, ALL_TABLES or DBA_TABLES. You can identify the overflow

entry by searching for IOT_TYPE = 'IOT_OVERFLOW' . For example, you can

obtain overflow data segment physical attributes associated with the admin_
docindex table as follows:

SELECT LAST_ANALYZED, NUM_ROWS, BLOCKS, EMPTY_BLOCKS
 FROM DBA_TABLES WHERE IOT_TYPE='IOT_OVERFLOW'
 and IOT_NAME= 'ADMIN_DOCINDEX';

Note: Oracle recommends that the DBMS_STATS package be used

for collecting optimizer statistics. See "Analyzing Tables, Indexes,

and Clusters" on page 21-3 for information about collecting

optimizer statistics, and for information about using the ANALYZE

statement to collect non-optimizer statistics, validate object

structure, and list chained rows.

Managing External Tables

Managing Tables 15-33

Using the ORDER BY Clause with Index-Organized Tables
If an ORDER BY clause only references the primary key column or a prefix of it,

then the optimizer avoids the sorting overhead as the rows are returned sorted on

the primary key columns.

The following queries avoid sorting overhead because the data is already sorted on

the primary key:

SELECT * FROM admin_docindex2 ORDER BY token, doc_id;
SELECT * FROM admin_docindex2 ORDER BY token;

If, however, you have an ORDER BYclause on a suffix of the primary key column or

non-primary key columns, additional sorting is required (assuming no other

secondary indexes are defined).

SELECT * FROM admin_docindex2 ORDER BY doc_id;
SELECT * FROM admin_docindex2 ORDER BY token_frequency

Converting Index-Organized Tables to Regular Tables
You can convert index-organized tables to regular tables using the Oracle IMPORT
or EXPORT utilities, or the CREATE TABLE ... AS SELECT statement.

To convert an index-organized table to a regular table:

■ Export the index-organized table data using conventional path.

■ Create a regular table definition with the same definition.

■ Import the index-organized table data, making sure IGNORE=y (ensures that

object exists error is ignored).

Managing External Tables
Oracle allows you read-only access to data in external tables. External tables are

defined as tables that do not reside in the database, and can be in any format for

Note: Before converting an index-organized table to a regular

table, be aware that index-organized tables cannot be exported

using pre-Oracle8 versions of the Export utility.

See Also: Oracle9i Database Utilities for more details about using

the IMPORT and EXPORT utilities

Managing External Tables

15-34 Oracle9i Database Administrator’s Guide

which an access driver is provided. By providing Oracle with metadata describing

an external table, Oracle is able to expose the data in the external table as if it were

data residing in a regular database table. The external data can be queried directly

and in parallel using SQL.

You can, for example, select, join, or sort external table data. You can also create

views and synonyms for external tables. However, no DML operations (UPDATE,
INSERT, or DELETE) are possible, and no indexes can be created, on external tables.

The means of defining the metadata for external tables is through the CREATE
TABLE ... ORGANIZATION EXTERNAL statement. This external table definition

can be thought of as a view that allows running any SQL query against external

data without requiring that the external data first be loaded into the database. An

access driver is the actual mechanism used to read the external data in the table.

Oracle provides an access driver for external tables. It allows the reading of data

from external files using the Oracle loader technology. The ORACLE_LOADER access

driver provides data mapping capabilities which are a subset of the control file

syntax of SQL*Loader utility.

Oracle’s external tables feature provides a valuable means for performing basic

extraction, transformation, and transportation (ETT) tasks that are common for

datawarehousing.

These following sections discuss the DDL statements that are supported for external

tables. Only DDL statements discussed are supported, and not all clauses of these

statements are supported.

■ Creating External Tables

■ Altering External Tables

■ Dropping External Tables

■ System and Object Privileges for External Tables

Note: The DBMS_STATS package can be used for gathering

statistics for external tables. The ANALYZE statement is not

supported for gathering statistics for external tables.

For information about using the DBMS_STATSpackage, see Oracle9i
Database Performance Tuning Guide and Reference

Managing External Tables

Managing Tables 15-35

Creating External Tables
You create external tables using the ORGANIZATION EXTERNAL clause of the

CREATE TABLE statement. You are not in fact creating a table; that is, an external

table does not have any extents associated with it. Rather, you are creating

metadata in the data dictionary that enables you to access external data.

The following example creates an external table, then uploads the data to a database

table.

EXAMPLE: Creating an External Table and Loading Data
The file empxt1.dat contains the following sample data:

360,Jane,Janus,ST_CLERK,121,17-MAY-2001,3000,0,50,jjanus
361,Mark,Jasper,SA_REP,145,17-MAY-2001,8000,.1,80,mjasper
362,Brenda,Starr,AD_ASST,200,17-MAY-2001,5500,0,10,bstarr
363,Alex,Alda,AC_MGR,145,17-MAY-2001,9000,.15,80,aalda

The file empxt2.dat contains the following sample data:

401,Jesse,Cromwell,HR_REP,203,17-MAY-2001,7000,0,40,jcromwel
402,Abby,Applegate,IT_PROG,103,17-MAY-2001,9000,.2,60,aapplega
403,Carol,Cousins,AD_VP,100,17-MAY-2001,27000,.3,90,ccousins
404,John,Richardson,AC_ACCOUNT,205,17-MAY-2001,5000,0,110,jrichard

The following SQL statements create an external table in the hr schema named

admin_ext_employees and load its data into the hr.employees table.

CONNECT / AS SYSDBA;
-- Set up directories and grant access to hr
CREATE OR REPLACE DIRECTORY admin_dat_dir
 AS '/net/dlsun301/private6/examples/submitted/ADMIN/flatfiles/data';
CREATE OR REPLACE DIRECTORY admin_log_dir
 AS '/net/dlsun301/private6/examples/submitted/ADMIN/flatfiles/log';
CREATE OR REPLACE DIRECTORY admin_bad_dir
 AS '/net/dlsun301/private6/examples/submitted/ADMIN/flatfiles/bad';

See Also:

■ Oracle9i Database Utilities contains more information about

external tables and describes the access driver and its access

parameters

■ Oracle9i Data Warehousing Guide for information about using

external tables in a datawarehousing environment

Managing External Tables

15-36 Oracle9i Database Administrator’s Guide

GRANT READ ON DIRECTORY admin_dat_dir TO hr;
GRANT WRITE ON DIRECTORY admin_log_dir TO hr;
GRANT WRITE ON DIRECTORY admin_bad_dir TO hr;
-- hr connects
CONNECT hr/hr
-- create the external table
CREATE TABLE admin_ext_employees
 (employee_id NUMBER(4),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 job_id VARCHAR2(10),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 department_id NUMBER(4),
 email VARCHAR2(25)
)
 ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY admin_dat_dir
 ACCESS PARAMETERS
 (
 records delimited by newline
 badfile admin_bad_dir:'empxt%a_%p.bad'
 logfile admin_log_dir:'empxt%a_%p.log'
 fields terminated by ','
 missing field values are null
 (employee_id, first_name, last_name, job_id, manager_id,
 hire_date char date_format date mask "dd-mon-yyyy",
 salary, commission_pct, department_id, email
)
)
 LOCATION ('empxt1.dat', 'empxt2.dat')
)
 PARALLEL
 REJECT LIMIT UNLIMITED;
-- enable parallel for loading (good if lots of data to load)
ALTER SESSION ENABLE PARALLEL DML;
-- load the data in hr employees table
INSERT INTO employees (employee_id, first_name, last_name, job_id, manager_id,
 hire_date, salary, commission_pct, department_id, email)
 SELECT * FROM admin_ext_employees;

Managing External Tables

Managing Tables 15-37

The following paragraphs contain descriptive information about this example.

The first few statements in this example create the directory objects for the

operating system directories that contain the data sources, and for the bad record

and log files specified in the access parameters. You must also grant READ or WRITE
directory object privileges, as appropriate.

The TYPE specification is given only to illustrate its use. If not specified, ORACLE_
LOADERis the default access driver. The access parameters, specified in the ACCESS
PARAMETERS clause, are opaque to Oracle. These access parameters are defined by

the access driver, and are provided to the access driver by Oracle when the external

table is accessed. See Oracle9i Database Utilities for a description of the ORACLE_
LOADER access parameters.

The PARALLEL clause enables parallel query on the data sources. The granule of

parallelism is by default a data source, but parallel access within a data source is

implemented whenever possible. For example, if PARALLEL=3 were specified, then

more than one parallel execution server could be working on a data source. But,

parallel access within a data source is provided by the access driver only if all of the

following conditions are met:

■ The media allows random positioning within a data source

■ It is possible to find a record boundary from a random position

■ The data files are large enough to make it worthwhile to break up into multiple

chunks

Note: When creating a directory object or BFILEs, ensure that the

following conditions are met:

■ The operating system file must not be a symbolic or hard link.

■ The operating system directory path named in the Oracle

DIRECTORY object must be an existing OS directory path.

■ The operating system directory path named in the Oracle

DIRECTORY object should not contain any symbolic links in its

components.

Note: Specifying a PARALLELclause is of value only when dealing

with large amounts of data. Otherwise, it is not advisable to specify

a PARALLEL clause, and doing so can be detrimental.

Managing External Tables

15-38 Oracle9i Database Administrator’s Guide

The REJECT LIMIT clause specifies that there is no limit on the number of errors

that can occur during a query of the external data. For parallel access, this limit

applies to each parallel execution server independently. For example, if REJECT
LIMIT 10 is specified, each parallel query process is allowed 10 rejections. Hence,

the only precisely enforced values for REJECT LIMIT on parallel query are 0 and

UNLIMITED.

In this example, the INSERT INTO TABLEstatement generates a dataflow from the

external data source to the Oracle SQL engine where data is processed. As data is

parsed by the access driver from the external table sources and provided to the

external table interface, the external data is converted from its external

representation to its Oracle internal data type.

Altering External Tables
You can use any of the following ALTER TABLE clauses to change the

characteristics of an external table. No other clauses are permitted.

See Also: Oracle9i SQL Reference provides details of the syntax of

the CREATE TABLE statement for creating external tables and

specifies restrictions on the use of clauses

ALTER TABLE Clause Description Example

REJECT LIMIT Changes the reject limit ALTER TABLE admin_ext_employees
REJECT LIMIT 100;

DEFAULT DIRECTORY Changes the default directory
specification

ALTER TABLE admin_ext_employees
 DEFAULT DIRECTORY admin_dat2_dir;

ACCESS PARAMETERS Allows access parameters to be
changed without dropping and
re-creating the external table
metadata

ALTER TABLE admin_ext_employees
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ';');

LOCATION Allows data sources to be
changed without dropping and
re-creating the external table
metadata

ALTER TABLE admin_ext_employees
LOCATION ('empxt3.txt',
 'empxt4.txt');

PARALLEL No difference from regular tables.
Allows degree of parallelism to
be changed.

No new syntax

ADD COLUMN No difference from regular tables.
Allows a column to be added to
an external table.

No new syntax

Managing External Tables

Managing Tables 15-39

Dropping External Tables
For an external table, the DROP TABLE statement removes only the table metadata

in the database. It has no affect on the actual data, which resides outside of the

database.

System and Object Privileges for External Tables
System and object privileges for external tables are a subset of those for regular

table. Only the following system privileges are applicable to external tables:

■ CREATE ANY TABLE

■ ALTER ANY TABLE

■ DROP ANY TABLE

■ SELECT ANY TABLE

Only the following object privileges are applicable to external tables:

■ ALTER

■ SELECT

However, object privileges associated with a directory are:

■ READ

■ WRITE

For external tables, READ privileges are required on directory objects that contain

data sources, while WRITE privileges are required for directory objects containing

bad, log, or discard files.

MODIFY COLUMN No difference from regular tables.
Allows an external table column
to be modified.

No new syntax

DROP COLUMN No difference from regular tables.
Allows an external table column
to be dropped.

No new syntax

RENAME TO No difference from regular tables.
Allows external table to be
renamed.

No new syntax

ALTER TABLE Clause Description Example

Viewing Information About Tables

15-40 Oracle9i Database Administrator’s Guide

Viewing Information About Tables
The following views allow you to access information about tables.

View Description

DBA_TABLES

ALL_TABLES

USER_TABLES

DBAview describes all relational tables in the database. ALL view describes all
tables accessible to the user. USER view is restricted to tables owned by the
user. Some columns in these views contain statistics that are generated by the
DBMS_STATS package or ANALYZE statement.

DBA_TAB_COLUMNS

ALL_TAB_COLUMNS

USER_TAB_COLUMNS

These views describe the columns of tables, views, and clusters in the
database. Some columns in these views contain statistics that are generated
by the DBMS_STATS package or ANALYZE statement.

DBA_ALL_TABLES

ALL_ALL_TABLES

USER_ALL_TABLES

These views describe all relational and object tables in the database. Object
tables are not specifically discussed in this book.

DBA_TAB_COMMENTS

ALL_TAB_COMMENTS

USER_TAB_COMMENTS

These views display comments for tables and views. Comments are entered
using the COMMENT statement.

DBA_COL_COMMENTS

ALL_COL_COMMENTS

USER_COL_COMMENTS

These views display comments for table and view columns. Comments are
entered using the COMMENT statement.

DBA_EXTERNAL_TABLES

ALL_EXTERNAL_TABLES

USER_EXTERNAL_TABLES

These views list the specific attributes of external tables in the database.

DBA_EXTERNAL_LOCATIONS

ALL_EXTERNAL_LOCATIONS

USER_EXTERNAL_LOCATIONS

These views list the data sources for external tables.

DBA_TAB_HISTOGRAMS

ALL_TAB_HISTOGRAMS

USER_TAB_HISTOGRAMS

These views describe histograms on tables and views.

DBA_TAB_COL_STATISTICS

ALL_TAB_COL_STATISTICS

USER_TAB_COL_STATISTICS

These views provide column statistics and histogram information extracted
from the related TAB_COLUMNS views.

Viewing Information About Tables

Managing Tables 15-41

DBA_TAB_MODIFICATIONS

ALL_TAB_MODIFICATIONS

USER_TAB_MODIFICATIONS

These views describe tables that have been modified since the last time table
statistics were gathered on them. The views are populated only for tables
with the MONITORING attribute. They are not populated immediately, but
after a time lapse (usually 3 hours).

DBA_UNUSED_COL_TABS

ALL_UNUSED_COL_TABS

USER_UNUSED_COL_TABS

These views list tables with unused columns, as marked by the ALTER
TABLE ... SET UNUSED statement.

DBA_PARTIAL_DROP_TABS

ALL_PARTIAL_DROP_TABS

USER_PARTIAL_DROP_TABS

These views list tables that have partially completed DROP COLUMN
operations. These operations could be incomplete because the operation was
interrupted by the user or a system crash.

See Also:

■ "Viewing Information About Tables" on page 15-40

■ Oracle9i Database Reference for complete descriptions of these

views

■ Oracle9i Application Developer’s Guide - Object-Relational Features
for information about object tables

■ Oracle9i Database Performance Tuning Guide and Reference for

information about histograms and generating statistics for

tables

■ "Analyzing Tables, Indexes, and Clusters" on page 21-3

View Description

Viewing Information About Tables

15-42 Oracle9i Database Administrator’s Guide

Managing Indexes 16-1

16
Managing Indexes

This chapter discusses the management of indexes, and contains the following

topics:

■ Guidelines for Managing Indexes

■ Creating Indexes

■ Altering Indexes

■ Monitoring Space Use of Indexes

■ Dropping Indexes

■ Viewing Index Information

See Also: Chapter 14, "Managing Space for Schema Objects" is

recommended reading before attempting tasks described in this

chapter.

Guidelines for Managing Indexes

16-2 Oracle9i Database Administrator’s Guide

Guidelines for Managing Indexes
Indexes are optional structures associated with tables and clusters that allow SQL

statements to execute more quickly against a table. Just as the index in this manual

helps you locate information faster than if there were no index, an Oracle index

provides a faster access path to table data. You can use indexes without rewriting

any queries. Your results are the same, but you see them more quickly.

Oracle provides several indexing schemes that provide complementary

performance functionality. These are:

■ B-tree indexes—the default and the most common

■ B-tree cluster indexes—defined specifically for cluster

■ Hash cluster indexes—defined specifically for a hash cluster

■ Global and local indexes—relate to partitioned tables and indexes

■ Reverse key indexes—most useful for Oracle Real Application Cluster

applications

■ Bitmap indexes—compact; work best for columns with a small set of values

■ Function-based indexes—contain the precomputed value of a

function/expression

■ Domain indexes—specific to an application or cartridge.

Indexes are logically and physically independent of the data in the associated table.

Being independent structures, they require storage space. You can create or drop an

index without affecting the base tables, database applications, or other indexes.

Oracle automatically maintains indexes when you insert, update, and delete rows of

the associated table. If you drop an index, all applications continue to work.

However, access to previously indexed data might be slower.

This section discusses guidelines for managing indexes and contains the following

topics:

■ Create Indexes After Inserting Table Data

■ Index the Correct Tables and Columns

■ Order Index Columns for Performance

■ Limit the Number of Indexes for Each Table

■ Drop Indexes That Are No Longer Required

■ Specify Index Block Space Use

Guidelines for Managing Indexes

Managing Indexes 16-3

■ Estimate Index Size and Set Storage Parameters

■ Specify the Tablespace for Each Index

■ Consider Parallelizing Index Creation

■ Consider Creating Indexes with NOLOGGING

■ Consider Costs and Benefits of Coalescing or Rebuilding Indexes

■ Consider Cost Before Disabling or Dropping Constraints

Create Indexes After Inserting Table Data
Data is often inserted or loaded into a table using the either the SQL*Loader or

Import utility. It is more efficient to create an index for a table after inserting or

loading the data. If you create one or more indexes before loading data, Oracle then

must update every index as each row is inserted.

Creating an index on a table that already has data requires sort space. Some sort

space comes from memory allocated for the index’s creator. The amount for each

user is determined by the initialization parameter SORT_AREA_SIZE. Oracle also

swaps sort information to and from temporary segments that are only allocated

during the index creation in the users temporary tablespace.

Under certain conditions, data can be loaded into a table with SQL*Loader’s direct

path load and an index can be created as data is loaded.

See Also:

■ Oracle9i Database Concepts for conceptual information about

indexes and indexing, including descriptions of the various

indexing schemes offered by Oracle

■ Oracle9i Database Performance Tuning Guide and Reference and

Oracle9i Data Warehousing Guide for information about bitmap

indexes

■ Oracle9i Data Cartridge Developer’s Guide for information about

defining domain-specific operators and indexing schemes and

integrating them into the Oracle database server

See Also: Oracle9i Database Utilities for information about using

SQL*Loader for direct path load

Guidelines for Managing Indexes

16-4 Oracle9i Database Administrator’s Guide

Index the Correct Tables and Columns
Use the following guidelines for determining when to create an index:

■ Create an index if you frequently want to retrieve less than 15% of the rows in a

large table. The percentage varies greatly according to the relative speed of a

table scan and how clustered the row data is about the index key. The faster the

table scan, the lower the percentage; the more clustered the row data, the higher

the percentage.

■ To improve performance on joins of multiple tables, index columns used for

joins.

■ Small tables do not require indexes. If a query is taking too long, then the table

might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the

following characteristics are candidates for indexing:

■ Values are relatively unique in the column.

■ There is a wide range of values (good for regular indexes).

■ There is a small range of values (good for bitmap indexes).

■ The column contains many nulls, but queries often select all rows having a

value. In this case, use the following phrase:

WHERE COL_X > -9.99 * power(10,125)

Using the above phrase is preferable to:

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (assuming that COL_X is a

numeric column).

Columns with the following characteristics are less suitable for indexing:

■ There are many nulls in the column and you do not search on the non-null

values.

LONG and LONG RAW columns cannot be indexed.

Note: Primary and unique keys automatically have indexes, but

you might want to create an index on a foreign key.

Guidelines for Managing Indexes

Managing Indexes 16-5

The size of a single index entry cannot exceed roughly one-half (minus some

overhead) of the available space in the data block.

Order Index Columns for Performance
The order of columns in the CREATE INDEX statement can affect query

performance. In general, specify the most frequently used columns first.

If you create a single index across columns to speed up queries that access, for

example, col1 , col2 , and col3 ; then queries that access just col1 , or that access

just col1 and col2 , are also speeded up. But a query that accessed just col2 , just

col3 , or just col2 and col3 does not use the index.

Limit the Number of Indexes for Each Table
A table can have any number of indexes. However, the more indexes there are, the

more overhead is incurred as the table is modified. Specifically, when rows are

inserted or deleted, all indexes on the table must be updated as well. Also, when a

column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the

speed of updating the table. For example, if a table is primarily read-only, having

more indexes can be useful; but if a table is heavily updated, having fewer indexes

could be preferable.

Drop Indexes That Are No Longer Required
Consider dropping an index if:

■ It does not speed up queries. The table could be very small, or there could be

many rows in the table but very few index entries.

■ The queries in your applications do not use the index.

■ The index must be dropped before being rebuilt.

Specify Index Block Space Use
When an index is created for a table, data blocks of the index are filled with the

existing values in the table up to PCTFREE. The space reserved by PCTFREE for an

index block is only used when a new row is inserted into the table and the

See Also: "Monitoring Index Usage" on page 16-21

Guidelines for Managing Indexes

16-6 Oracle9i Database Administrator’s Guide

corresponding index entry must be placed in the correct index block (that is,

between preceding and following index entries).

If no more space is available in the appropriate index block, the indexed value is

placed where it belongs (based on the lexical set ordering). Therefore, if you plan on

inserting many rows into an indexed table, PCTFREE should be high to

accommodate the new index values. If the table is relatively static without many

inserts, PCTFREE for an associated index can be low so that fewer blocks are

required to hold the index data.

PCTUSED cannot be specified for indexes.

Estimate Index Size and Set Storage Parameters
Estimating the size of an index before creating one can facilitate better disk space

planning and management. You can use the combined estimated size of indexes,

along with estimates for tables, rollback segments, and redo log files, to determine

the amount of disk space that is required to hold an intended database. From these

estimates, you can make correct hardware purchases and other decisions.

Use the estimated size of an individual index to better manage the disk space that

the index uses. When an index is created, you can set appropriate storage

parameters and improve I/O performance of applications that use the index. For

example, assume that you estimate the maximum size of an index before creating it.

If you then set the storage parameters when you create the index, fewer extents are

allocated for the table’s data segment, and all of the index’s data is stored in a

relatively contiguous section of disk space. This decreases the time necessary for

disk I/O operations involving this index.

The maximum size of a single index entry is approximately one-half the data block

size.

Specify the Tablespace for Each Index
Indexes can be created in any tablespace. An index can be created in the same or

different tablespace as the table it indexes. If you use the same tablespace for a table

and its index, it can be more convenient to perform database maintenance (such as

See Also: "Managing Space in Data Blocks" on page 14-2 for

information about the PCTFREE parameter

See Also: "Setting Storage Parameters" on page 14-8 for specific

information about storage parameters

Guidelines for Managing Indexes

Managing Indexes 16-7

tablespace or file backup) or to ensure application availability. All the related data is

always online together.

Using different tablespaces (on different disks) for a table and its index produces

better performance than storing the table and index in the same tablespace. Disk

contention is reduced. But, if you use different tablespaces for a table and its index

and one tablespace is offline (containing either data or index), then the statements

referencing that table are not guaranteed to work.

Consider Parallelizing Index Creation
You can parallelize index creation, much the same as you can parallelize table

creation. Because multiple processes work together to create the index, Oracle can

create the index more quickly than if a single server process created the index

sequentially.

When creating an index in parallel, storage parameters are used separately by each

query server process. Therefore, an index created with an INITIAL value of 5M

and a parallel degree of 12 consumes at least 60M of storage during index creation.

Consider Creating Indexes with NOLOGGING
You can create an index and generate minimal redo log records by specifying

NOLOGGING in the CREATE INDEX statement.

Creating an index with NOLOGGING has the following benefits:

■ Space is saved in the redo log files.

■ The time it takes to create the index is decreased.

■ Performance improves for parallel creation of large indexes.

See Also:

■ Oracle9i Database Concepts for more information about parallel

execution

■ Oracle9i Data Warehousing Guide for information about utilizing

parallel execution in a datawarehousing environment

Note: Because indexes created using NOLOGGING are not

archived, perform a backup after you create the index.

Guidelines for Managing Indexes

16-8 Oracle9i Database Administrator’s Guide

In general, the relative performance improvement is greater for larger indexes

created without LOGGING than for smaller ones. Creating small indexes without

LOGGING has little affect on the time it takes to create an index. However, for larger

indexes the performance improvement can be significant, especially when you are

also parallelizing the index creation.

Consider Costs and Benefits of Coalescing or Rebuilding Indexes
Improper sizing or increased growth can produce index fragmentation. To

eliminate or reduce fragmentation, you can rebuild or coalesce the index. But before

you perform either task weigh the costs and benefits of each option and choose the

one that works best for your situation. Table 16–1 is a comparison of the costs and

benefits associated with rebuilding and coalescing indexes.

In situations where you have B-tree index leaf blocks that can be freed up for reuse,

you can merge those leaf blocks using the following statement:

ALTER INDEX vmoore COALESCE;

Figure 16–1 illustrates the effect of an ALTER INDEX COALESCE on the index

vmoore . Before performing the operation, the first two leaf blocks are 50% full. This

means you have an opportunity to reduce fragmentation and completely fill the

first block, while freeing up the second. In this example, assume that PCTFREE=0.

Table 16–1 To Rebuild or Coalesce ... That Is the Question

Rebuild Index Coalesce Index

Quickly moves index to another tablespace Cannot move index to another tablespace

Higher costs: requires more disk space Lower costs: does not require more disk space

Creates new tree, shrinks height if
applicable

Coalesces leaf blocks within same branch of
tree

Enables you to quickly change storage and
tablespace parameters without having to
drop the original index.

Quickly frees up index leaf blocks for use.

Creating Indexes

Managing Indexes 16-9

Figure 16–1 Coalescing Indexes

Consider Cost Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the

cost of dropping and creating indexes when considering whether to disable or drop

a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key or

PRIMARY KEY constraint is extremely large, you can save time by leaving the

constraint enabled rather than dropping and re-creating the large index. You also

have the option of explicitly specifying that you want to keep or drop the index

when dropping or disabling a UNIQUE or PRIMARY KEY constraint.

Creating Indexes
This section describes how to create indexes. To create an index in your own

schema, at least one of the following conditions must be true:

■ The table or cluster to be indexed is in your own schema.

■ You have INDEX privilege on the table to be indexed.

■ You have CREATE ANY INDEX system privilege.

To create an index in another schema, all of the following conditions must be true:

■ You have CREATE ANY INDEX system privilege.

See Also: "Managing Integrity Constraints" on page 21-14

B-tree Index

Before ALTER INDEX vmoore COALESCE;

B-tree Index

After ALTER INDEX vmoore COALESCE;

Creating Indexes

16-10 Oracle9i Database Administrator’s Guide

■ The owner of the other schema has a quota for the tablespaces to contain the

index or index partitions, or UNLIMITED TABLESPACE system privilege.

This section contains the following topics:

■ Creating an Index Explicitly

■ Creating a Unique Index Explicitly

■ Creating an Index Associated with a Constraint

■ Collecting Incidental Statistics when Creating an Index

■ Creating a Large Index

■ Creating an Index Online

■ Creating a Function-Based Index

■ Creating a Key-Compressed Index

Creating an Index Explicitly
You can create indexes explicitly (outside of integrity constraints) using the SQL

statement CREATE INDEX. The following statement creates an index named emp_
ename for the ename column of the emp table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k
 PCTINCREASE 75)
 PCTFREE 0;

Notice that several storage settings and a tablespace are explicitly specified for the

index. If you do not specify storage options (such as INITIAL and NEXT) for an

index, the default storage options of the default or specified tablespace are

automatically used.

See Also: Oracle9i SQL Reference for syntax and restrictions on the

use of the CREATE INDEX, ALTER INDEX, and DROP INDEX
statements

Creating Indexes

Managing Indexes 16-11

Creating a Unique Index Explicitly
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of

a table have duplicate values in the key column (or columns). Nonunique indexes

do not impose this restriction on the column values.

Use the CREATE UNIQUE INDEXstatement to create a unique index. The following

example creates a unique index:

CREATE UNIQUE INDEX dept_unique_index ON dept (dname)
 TABLESPACE indx;

Alternatively, you can define UNIQUE integrity constraints on the desired columns.

Oracle enforces UNIQUE integrity constraints by automatically defining a unique

index on the unique key. This is discussed in the following section. However, it is

advisable that any index that exists for query performance, including unique

indexes, be created explicitly

Creating an Index Associated with a Constraint
Oracle enforces a UNIQUE key or PRIMARY KEY integrity constraint on a table by

creating a unique index on the unique key or primary key. This index is

automatically created by Oracle when the constraint is enabled. No action is

required by you when you issue the CREATE TABLEor ALTER TABLEstatement to

create the index, but you can optionally specify a USING INDEX clause to exercise

control over its creation. This includes both when a constraint is defined and

enabled, and when a defined but disabled constraint is enabled.

To enable a UNIQUE or PRIMARY KEY constraint, thus creating an associated index,

the owner of the table must have a quota for the tablespace intended to contain the

index, or the UNLIMITED TABLESPACE system privilege. A constraint’s associated

index always assumes the name of the constraint, unless you optionally specify

otherwise.

Specifying Storage Options for an Index Associated with a Constraint
You can set the storage options for the indexes associated with UNIQUE and

PRIMARY KEY constraints using the USING INDEX clause. The following CREATE
TABLE statement enables a PRIMARY KEY constraint and specifies the associated

index’s storage options:

CREATE TABLE emp (

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about creating an index for performance

Creating Indexes

16-12 Oracle9i Database Administrator’s Guide

 empno NUMBER(5) PRIMARY KEY, age INTEGER)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users
 PCTFREE 0;

Specifying the Index Associated with a Constraint
If you require more explicit control over the indexes associated with UNIQUE and

PRIMARY KEY constraints, Oracle allows you to:

■ Specify an existing index that Oracle is to use to enforce the constraint

■ Specify a create index statement that Oracle is to use to create the index and

enforce the constraint

These options are specified using the USING INDEX clause. The following

statements present some examples.

Example 1:

CREATE TABLE a (
 a1 INT PRIMARY KEY USING INDEX (create index ai on a (a1)));

Example 2:

CREATE TABLE b(
 b1 INT,
 b2 INT,
 CONSTRAINT bu1 UNIQUE (b1, b2)
 USING INDEX (create unique index bi on b(b1, b2)),
 CONSTRAINT bu2 UNIQUE (b2, b1) USING INDEX bi);

Example 3:

CREATE TABLE c(c1 INT, c2 INT);
CREATE INDEX ci ON c (c1, c2);
ALTER TABLE c ADD CONSTRAINT cpk PRIMARY KEY (c1) USING INDEX ci;

If a single statement creates an index with one constraint and also uses that index

for another constraint, the system will attempt to rearrange the clauses to create the

index before reusing it.

See Also: "Managing Integrity Constraints" on page 21-14

Creating Indexes

Managing Indexes 16-13

Collecting Incidental Statistics when Creating an Index
Oracle provides you with the opportunity to collect statistics at very little resource

cost during the creation or rebuilding of an index. These statistics are stored in the

data dictionary for ongoing use by the optimizer in choosing a plan for the

execution of SQL statements. The following statement computes index, table, and

column statistics while building index emp_ename on column ename of table emp:

CREATE INDEX emp_ename ON emp(ename)
 COMPUTE STATISTICS;

Creating a Large Index
When creating an extremely large index, consider allocating a larger temporary

tablespace for the index creation using the following procedure:

1. Create a new temporary tablespace using the CREATE TABLESPACEor CREATE
TEMPORARY TABLESPACE statement.

2. Use the TEMPORARY TABLESPACEoption of the ALTER USER statement to

make this your new temporary tablespace.

3. Create the index using the CREATE INDEX statement.

4. Drop this tablespace using the DROP TABLESPACE statement. Then use the

ALTER USER statement to reset your temporary tablespace to your original

temporary tablespace.

Using this procedure can avoid the problem of expanding your usual, and usually

shared, temporary tablespace to an unreasonably large size that might affect future

performance.

Creating an Index Online
You can create and rebuild indexes online. This enables you to update base tables at

the same time you are building or rebuilding indexes on that table. You can perform

DML operations while the index build is taking place, but DDL operations are not

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information about collecting statistics and their use by the

optimizer

■ "Analyzing Tables, Indexes, and Clusters" on page 21-3

Creating Indexes

16-14 Oracle9i Database Administrator’s Guide

allowed. Parallel execution is not supported when creating or rebuilding an index

online.

The following statements illustrate online index build operations:

CREATE INDEX emp_name ON emp (mgr, emp1, emp2, emp3) ONLINE;

Creating a Function-Based Index
Function-based indexes facilitate queries that qualify a value returned by a

function or expression. The value of the function or expression is precomputed and

stored in the index.

Features of Function-Based Indexes
Function-based indexes allow you to:

■ Create more powerful sorts

You can perform case-insensitive sorts with the UPPER and LOWER functions,

descending order sorts with the DESC keyword, and linguistic-based sorts with

the NLSSORT function.

Note: While you can perform DML operations during an online

index build, Oracle recommends that you do not perform

major/large DML operations during this procedure. This is because

while the DML on the base table is taking place it holds a lock on

that resource. The DDL to build the index cannot proceed until the

transaction acting on the base table commits or rolls back, thus

releasing the lock.

For example, if you want to load rows that total up to 30% of the

size of an existing table, you should perform this load before the

online index build.

See Also: Rebuilding an Existing Index on page 16-20

See Also:

■ Oracle9i Database Concepts

■ Oracle9i Data Warehousing Guide

These books provide additional information about function-based

indexes.

Creating Indexes

Managing Indexes 16-15

■ Precompute the value of a computationally intensive function and store it in the

index

An index can store computationally intensive expression that you access often.

When you need to access a value, it is already computed, greatly improving

query execution performance.

■ Increase the number of situations where the optimizer can perform a range scan

instead of a full table scan

For example, consider the expression in the WHERE clause below:

CREATE INDEX idx ON Example_tab(column_a + column_b);
SELECT * FROM example_tab WHERE column_a + column_b < 10;

The optimizer can use a range scan for this query because the index is built on

(column_a + column_b). Range scans typically produce fast response times if

the predicate selects less than 15% of the rows of a large table. The optimizer

can estimate how many rows are selected by expressions more accurately if the

expressions are materialized in a function-based index. (Expressions of

function-based indexes are represented as virtual columns and analyze

operation using the DBMS_STATS package can build histograms on such

columns.)

■ Enable true descending order indexes

They are treated as a special case of function-based indexes.

■ Create indexes on object columns and REF columns

Methods that describe objects can be used as functions on which to build

indexes. For example, you can use the MAPmethod to build indexes on an object

type column.

Note: Oracle sorts columns with the DESCkeyword in descending

order. Such indexes are treated as function-based indexes.

Descending indexes cannot be bitmapped or reverse, and cannot be

used in bitmapped optimizations. To get the pre-Oracle 8.1 release

DESC behavior, remove the DESC keyword from the CREATE
INDEX statement.

Creating Indexes

16-16 Oracle9i Database Administrator’s Guide

How Function-Based Indexes Work
For the creation of a function-based index in your own schema, you must be

granted the QUERY REWRITE system privileges. To create the index in another

schema or on another schema’s tables, you must have the CREATE ANY INDEXand

GLOBAL QUERY REWRITE privileges.

You must have the following initialization parameters defined to create a

function-based index:

■ QUERY_REWRITE_INTEGRITY set to TRUSTED

■ QUERY_REWRITE_ENABLED set to TRUE

■ COMPATIBLE set to 8.1.0.0.0 or a greater value

Additionally, to use a function-based index:

■ The table must be analyzed after the index is created.

■ The query must be guaranteed not to need any NULL values from the indexed

expression, since NULL values are not stored in indexes.

To illustrate a function-based index, lets consider the following statement that

defines a function-based index (area_index) defined on the function area(geo) :

See Also:

■ Oracle9i Database Globalization Support Guide for information

about the NLSSORT function

■ Oracle9i Database Performance Tuning Guide and Reference for

information about the optimizer

■ Oracle9i Application Developer’s Guide - Object-Relational Features
for information about object and REF columns

Note: CREATE INDEX stores the timestamp of the most recent

function used in the function-based index. This timestamp is

updated when the index is validated. When performing tablespace

point-in-time recovery of a function-based index, if the timestamp

on the most recent function used in the index is newer than the

timestamp stored in the index, then the index is marked invalid.

You must use the ANALYZE INDEX ... VALIDATE STRUCTURE
statement to validate this index.

Creating Indexes

Managing Indexes 16-17

CREATE INDEX area_index ON rivers (area(geo));

In the following SQL statement, when area(geo) is referenced in the WHERE
clause, the optimizer considers using the index area_index .

SELECT id, geo, area(geo), desc
 FROM rivers
 WHERE Area(geo) >5000;

Table owners should have EXECUTE privileges on the functions used in

function-based indexes.

Because a function-based index depends upon any function it is using, it can be

invalidated when a function changes. If the function is valid, you can use an ALTER
INDEX ... ENABLE statement to enable a function-based index that has been

disabled. The ALTER INDEX ... DISABLE statement allows you to disable the

use of a function-based index. Consider doing this if you are working on the body

of the function.

Examples of Function-Based Indexes
Some examples of using function-based indexes follow.

Example: Function-Based Index for Case-Insensitive Searches The following statement

creates function-based index idx on table emp based on an uppercase evaluation of

the ename column:

CREATE INDEX idx ON emp (UPPER(ename));

Now the SELECT statement uses the function-based index on UPPER(ename) to

retrieve all employees with names that start with JOH:

SELECT * FROM emp WHERE UPPER(ename) LIKE 'JOH%';

This example also illustrates a case-insensitive search.

Example: Precomputing Arithmetic Expressions with a Function-Based Index This statement

creates a function-based index on an expression:

CREATE INDEX idx ON t (a + b * (c - 1), a, b);

SELECT statements can use either an index range scan (in the following SELECT
statement the expression is a prefix of the index) or index full scan (preferable when

the index specifies a high degree of parallelism).

SELECT a FROM t WHERE a + b * (c - 1) < 100;

Creating Indexes

16-18 Oracle9i Database Administrator’s Guide

Examples: Function-Based Index for Language-Dependent Sorting You can use

function-based indexes to support a linguistic sort index. NLSSORT is a function

that returns a sort key that has been given a string. Thus, if you want to build an

index on name using NLSSORT, issue the following statement:

CREATE INDEX nls_index ON t_table (NLSSORT(name, 'NLS_SORT = German'));

This statement creates index nls_index on table t_table with the collation sequence

German.

Now, the following statement selects from t_table using the NLS_SORT index:

SELECT * FROM t_table ORDER BY name;

Rows are ordered using the collation sequence in German.

The following example combines a case-insensitive sort and a language sort:

CREATE INDEX empi ON emp
 UPPER ((ename), NLSSORT(ename));

Here, an NLS_SORT specification does not appear in the NLSSORT argument

because NLSSORT looks at the session setting for the language of the linguistic sort

key. The previous example illustrated a case where NLS_SORT was specified.

Creating a Key-Compressed Index
Creating an index using key compression enables you to eliminate repeated

occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression

is achieved by sharing the prefix entries among all the suffix entries in an index

block. This sharing can lead to huge savings in space, allowing you to store more

keys for each index block while improving performance.

Key compression can be useful in the following situations:

■ You have a non-unique index where ROWID is appended to make the key

unique. If you use key compression here, the duplicate key is stored as a prefix

entry on the index block without the ROWID. The remaining rows become suffix

entries consisting of only the ROWID.

■ You have a unique multi-column index.

You enable key compression using the COMPRESS clause. The prefix length (as the

number of key columns) can also be specified to identify how the key columns are

Altering Indexes

Managing Indexes 16-19

broken into a prefix and suffix entry. For example, the following statement

compresses duplicate occurrences of a key in the index leaf block:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 COMPRESS 1;

The COMPRESS clause can also be specified during rebuild. For example, during

rebuild you can disable compression as follows:

ALTER INDEX emp_ename REBUILD NOCOMPRESS;

Altering Indexes
To alter an index, your schema must contain the index or you must have the ALTER
ANY INDEX system privilege. Among the actions allowed by the ALTER INDEX
statement are:

■ Rebuild or coalesce an existing index

■ Deallocate unused space or allocate a new extent

■ Specify parallel execution (or not) and alter the degree of parallelism

■ Alter storage parameters or physical attributes

■ Specify LOGGING or NOLOGGING

■ Enable or disable key compression

■ Mark the index unusable

■ Start or stop the monitoring of index usage

You cannot alter an index’s column structure.

More detailed discussions of some of these operations are contained in the

following sections:

■ Altering Storage Characteristics of an Index

■ Rebuilding an Existing Index

■ Monitoring Index Usage

See Also: Oracle9i Database Concepts for a more detailed

discussion of key compression

Altering Indexes

16-20 Oracle9i Database Administrator’s Guide

Altering Storage Characteristics of an Index
Alter the storage parameters of any index, including those created by Oracle to

enforce primary and unique key integrity constraints, using the ALTER INDEX
statement. For example, the following statement alters the emp_ename index:

ALTER INDEX emp_ename
 STORAGE (PCTINCREASE 50);

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters affect only extents subsequently allocated

for the index.

For indexes that implement integrity constraints, you can choose to adjust storage

parameters by issuing an ALTER TABLEstatement that includes the USING INDEX
subclause of the ENABLE clause. For example, the following statement changes the

storage options of the index created on table emp to enforce the primary key

constraint:

ALTER TABLE emp
 ENABLE PRIMARY KEY USING INDEX
 PCTFREE 5;

Rebuilding an Existing Index
Before rebuilding an existing index, compare the costs and benefits associated with

rebuilding to those associated with coalescing indexes as described in Table 16–1 on

page 16-8.

When you rebuild an index, you use an existing index as the data source. Creating

an index in this manner enables you to change storage characteristics or move to a

new tablespace. Rebuilding an index based on an existing data source removes

intra-block fragmentation. Compared to dropping the index and using the CREATE
INDEX statement, re-creating an existing index offers better performance.

The following statement rebuilds the existing index emp_name:

ALTER INDEX emp_name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any

other options. It cannot be used in conjunction with the DEALLOCATE UNUSED
clause.

If have the option of rebuilding the index online. The following statement rebuilds

the emp_name index online:

Monitoring Space Use of Indexes

Managing Indexes 16-21

ALTER INDEX REBUILD ONLINE;

If you do not have the space required to rebuild an index, you can choose instead to

coalesce the index. Coalescing an index can also be done online.

Monitoring Index Usage
Oracle provides a means of monitoring indexes to determine if they are being used

or not used. If it is determined that an index is not being used, then it can be

dropped, thus eliminating unnecessary statement overhead.

To start monitoring an index’s usage, issue this statement:

ALTER INDEX index MONITORING USAGE;

Later, issue the following statement to stop the monitoring:

ALTER INDEX index NOMONITORING USAGE;

The view V$OBJECT_USAGE can be queried for the index being monitored to see if

the index has been used. The view contains a USED column whose value is YES or

NO, depending upon if the index has been used within the time period being

monitored. The view also contains the start and stop times of the monitoring

period, and a MONITORING column (YES/NO) to indicate if usage monitoring is

currently active.

Each time that you specify MONITORING USAGE, the V$OBJECT_USAGE view is

reset for the specified index. The previous usage information is cleared or reset, and

a new start time is recorded. When you specify NOMONITORING USAGE, no further

monitoring is performed, and the end time is recorded for the monitoring period.

Until the next ALTER INDEX ... MONITORING USAGE statement is issued, the

view information is left unchanged.

Monitoring Space Use of Indexes
If key values in an index are inserted, updated, and deleted frequently, the index

can lose its acquired space efficiently over time. Monitor an index’s efficiency of

space usage at regular intervals by first analyzing the index’s structure, using the

See Also:

■ "Creating an Index Online" on page 16-13

■ "Monitoring Space Use of Indexes" on page 16-21

Dropping Indexes

16-22 Oracle9i Database Administrator’s Guide

ANALYZE INDEX ... VALIDATE STRUCTURE statement, and then querying the

INDEX_STATS view:

SELECT PCT_USED FROM INDEX_STATS WHERE NAME = 'index ';

The percentage of an index’s space usage varies according to how often index keys

are inserted, updated, or deleted. Develop a history of an index’s average efficiency

of space usage by performing the following sequence of operations several times:

■ Analyzing statistics

■ Validating the index

■ Checking PCTUSED

■ Dropping and rebuilding (or coalescing) the index

When you find that an index’s space usage drops below its average, you can

condense the index’s space by dropping the index and rebuilding it, or coalescing it.

Dropping Indexes
To drop an index, the index must be contained in your schema, or you must have

the DROP ANY INDEX system privilege.

Some reasons for dropping an index include:

■ The index is no longer required.

■ The index is not providing anticipated performance improvements for queries

issued against the associated table. For example, the table might be very small,

or there might be many rows in the table but very few index entries.

■ Applications do not use the index to query the data.

■ The index has become invalid and must be dropped before being rebuilt.

■ The index has become too fragmented and must be dropped before being

rebuilt.

When you drop an index, all extents of the index’s segment are returned to the

containing tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with a

CREATE INDEX statement, or implicitly by defining a key constraint on a table. If

you created the index explicitly with the CREATE INDEX statement, then you can

See Also: "Analyzing Tables, Indexes, and Clusters" on page 21-3

Viewing Index Information

Managing Indexes 16-23

drop the index with the DROP INDEXstatement. The following statement drops the

emp_ename index:

DROP INDEX emp_ename;

You cannot drop only the index associated with an enabled UNIQUE key or

PRIMARY KEY constraint. To drop a constraint’s associated index, you must disable

or drop the constraint itself.

Viewing Index Information
The following views display information about indexes:

Note: If a table is dropped, all associated indexes are dropped

automatically.

See Also: "Managing Integrity Constraints" on page 21-14

View Description

DBA_INDEXES

ALL_INDEXES

USER_INDEXES

DBA view describes indexes on all tables in the database. ALL view describes
indexes on all tables accessible to the user. USER view is restricted to indexes
owned by the user. Some columns in these views contain statistics that are
generated by the DBMS_STATS package or ANALYZE statement.

DBA_IND_COLUMNS

ALL_IND_COLUMNS

USER_IND_COLUMNS

These views describe the columns of indexes on tables. Some columns in these
views contain statistics that are generated by the DBMS_STATS package or
ANALYZE statement.

DBA_IND_EXPRESSIONS

ALL_IND_EXPRESSIONS

USER_IND_EXPRESSIONS

These views describe the expressions of function-based indexes on tables.

INDEX_STATS Stores information from the last ANALYZE INDEX ... VALIDATE
STRUCTURE statement.

INDEX_HISTOGRAM Stores information from the last ANALYZE INDEX ... VALIDATE
STRUCTURE statement.

V$OBJECT_USAGE Contains index usage information produced by the ALTER INDEX ...
MONITORING USAGE functionality.

Viewing Index Information

16-24 Oracle9i Database Administrator’s Guide

See Also: Oracle9i Database Reference for a complete description of

these views

Managing Partitioned Tables and Indexes 17-1

17
Managing Partitioned Tables and Indexes

This chapter describes various aspects of managing partitioned tables and indexes,

and contains the following topics:

■ What Are Partitioned Tables and Indexes?

■ Partitioning Methods

■ Creating Partitioned Tables

■ Maintaining Partitioned Tables

■ Partitioned Tables and Indexes Examples

■ Viewing Information About Partitioned Tables and Indexes

See Also: Chapter 14, "Managing Space for Schema Objects" is

recommended reading before attempting tasks described in this

chapter.

What Are Partitioned Tables and Indexes?

17-2 Oracle9i Database Administrator’s Guide

What Are Partitioned Tables and Indexes?
Today’s enterprises frequently run mission critical databases containing upwards of

several hundred gigabytes and, in many cases, several terabytes of data. These

enterprises are challenged by the support and maintenance requirements of very

large databases (VLDB), and must devise methods to meet those challenges.

One way to meet VLDB demands is to create and use partitioned tables and
indexes. Partitioned tables allow your data to be broken down into smaller, more

manageable pieces called partitions, or even subpartitions. Indexes can be

partitioned in similar fashion. Each partition is stored in its own segment and can

be managed individually. It can function independently of the other partitions, thus

providing a structure that can be better tuned for availability and performance.

If you are using parallel execution, partitions provide another means of

parallelization. Operations on partitioned tables and indexes are performed in

parallel by assigning different parallel execution servers to different partitions of

the table or index.

Partitions and subpartitions of a table or index all share the same logical attributes.

For example, all partitions (or subpartitions) in a table share the same column and

constraint definitions, and all partitions (or subpartitions) of an index share the

same index options. They can, however, have different physical attributes (such as

TABLESPACE).

Although you are not required to keep each table or index partition (or

subpartition) in a separate tablespace, it is to your advantage to do so. Storing

partitions in separate tablespaces enables you to:

■ Reduce the possibility of data corruption in multiple partitions

■ Back up and recover each partition independently

■ Control the mapping of partitions to disk drives (important for balancing I/O

load)

■ Improve manageability, availability, and performance

Partitioning is transparent to existing applications and standard DML statements

run against partitioned tables. However, an application can be programmed to take

advantage of partitioning by using partition-extended table or index names in

DML.

You can use the SQL*Loader, Import, and Export utilities to load or unload data

stored in partitioned tables. These utilities are all partition and subpartition aware.

Partitioning Methods

Managing Partitioned Tables and Indexes 17-3

Partitioning Methods
There are several partitioning methods offered by Oracle:

■ Range partitioning

■ Hash partitioning

■ List partitioning

■ Composite range-hash partitioning

■ Composite range-list partitioning

Indexes, as well as tables, can be partitioned. A global index can only be partitioned

by range, but it can be defined on any type of partitioned, or nonpartitioned, table.

It can require more maintenance than a local index.

A local index is constructed so that it reflects the structure of the underlying table. It

is equipartitioned with the underlying table, meaning that it is partitioned on the

same columns as the underlying table, creates the same number of partitions or

subpartitions, and gives them the same partition bounds as corresponding

partitions of the underlying table. For local indexes, index partitioning is

maintained automatically when partitions are affected by maintenance activity. This

ensures that the index remains equipartitioned with the underlying table.

The following sections can help you decide on a partitioning method appropriate

for your needs:

■ When to Use the Range Partitioning Method

■ When to Use the Hash Partitioning Method

■ When to Use the List Partitioning Method

See Also:

■ Oracle9i Database Concepts contains more information about

partitioning. Before the first time you attempt to create a

partitioned table or index, or perform maintenance operations

on any partitioned table, it is recommended that you review the

information contained in that book.

■ Oracle9i Data Warehousing Guide and Oracle9i Database Concepts
contain information about parallel execution

■ Oracle9i Database Utilities describes the SQL*Loader, Import,

and Export utilities.

Partitioning Methods

17-4 Oracle9i Database Administrator’s Guide

■ When to Use the Composite Range-Hash Partitioning Method

■ When to Use the Composite Range-List Partitioning Method

When to Use the Range Partitioning Method
Use range partitioning to map rows to partitions based on ranges of column values.

This type of partitioning is useful when dealing with data that has logical ranges

into which it can be distributed; for example, months of the year. Performance is

best when the data evenly distributes across the range. If partitioning by range

causes partitions to vary dramatically in size because of unequal distribution, you

may want to consider one of the other methods of partitioning.

When creating range partitions, you must specify:

■ Partitioning method: range

■ Partitioning column(s)

■ Partition descriptions identifying partition bounds

The example below creates a table of four partitions, one for each quarter’s sales.

The columns sale_year , sale_month , and sale_day are the partitioning
columns, while their values constitute a specific row’s partitioning key. The

VALUES LESS THAN clause determines the partition bound: rows with

partitioning key values that compare less than the ordered list of values specified by

the clause are stored in the partition. Each partition is given a name (sales_q1 ,

sales_q2 , ...), and each partition is contained in a separate tablespace (tsa , tsb ,

...).

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1999, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1999, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1999, 10, 01)
 TABLESPACE tsc,
 PARTITION sales_q4 VALUES LESS THAN (2000, 01, 01)
 TABLESPACE tsd);

Partitioning Methods

Managing Partitioned Tables and Indexes 17-5

A row with sale_year=1999 , sale_month=8 , and sale_day=1 has a

partitioning key of (1999, 8, 1) and would be stored in partition sales_q3 .

When to Use the Hash Partitioning Method
Use hash partitioning if your data does not easily lend itself to range partitioning,

but you would like to partition for performance and manageability reasons. Hash

partitioning provides a method of evenly distributing data across a specified

number of partitions. Rows are mapped into partitions based on a hash value of the

partitioning key. Creating and using hash partitions gives you a highly tunable

method of data placement, because you can influence availability and performance

by spreading these evenly sized partitions across I/O devices (striping).

To create hash partitions you specify the following:

■ Partitioning method: hash

■ Partitioning columns(s)

■ Number of partitions or individual partition descriptions

The following example creates a hash-partitioned table. The partitioning column is

id , four partitions are created and assigned system generated names, and they are

placed in four named tablespaces (gear1 , gear2 , ...).

CREATE TABLE scubagear
 (id NUMBER,
 name VARCHAR2 (60))
 PARTITION BY HASH (id)
 PARTITIONS 4
 STORE IN (gear1, gear2, gear3, gear4);

When to Use the List Partitioning Method
Use list partitioning when you require explicit control over how rows map to

partitions. You can specify a list of discrete values for the partitioning column in the

description for each partition. This is different from range partitioning, where a

range of values is associated with a partition, and from hash partitioning, where the

user has no control of the row to partition mapping.

The list partitioning method is specifically designed for modeling data distributions

that follow discrete values. This cannot be easily done by range or hash partitioning

because:

■ Range partitioning assumes a natural range of values for the partitioning

column. It is not possible to group together out-of-range values partitions.

Partitioning Methods

17-6 Oracle9i Database Administrator’s Guide

■ Hash partitioning allows no control over the distribution of data because the

data is distributed over the various partitions using the system hash function.

Again, this makes it impossible to logically group together discrete values for

the partitioning columns into partitions.

Further, list partitioning allows unordered and unrelated sets of data to be grouped

and organized together very naturally.

Unlike the range and hash partitioning methods, multi-column partitioning is not

supported for list partitioning. If a table is partitioned by list, the partitioning key

can consist only of a single column of the table. Otherwise all columns that can be

partitioned by the range or hash methods can be partitioned by the list partitioning

method.

When creating list partitions, you must specify:

■ Partitioning method: list

■ Partitioning column

■ Partition descriptions, each specifying a list of literal values (a value list), which

are the discrete values of the partitioning column that qualify a row to be

included in the partition

The following example creates a list-partitioned table. It creates table q1_sales_
by_region which is partitioned by regions consisting of groups of states.

CREATE TABLE q1_sales_by_region
 (deptno number,
 deptname varchar2(20),
 quarterly_sales number(10, 2),
 state varchar2(2))
 PARTITION BY LIST (state)
 (PARTITION q1_northwest VALUES ('OR', 'WA'),
 PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'),
 PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ'),
 PARTITION q1_southeast VALUES ('FL', 'GA'),
 PARTITION q1_northcentral VALUES ('SD', 'WI'),
 PARTITION q1_southcentral VALUES ('OK', 'TX'));

A row is mapped to a partition by checking whether the value of the partitioning

column for a row matches a value in the value list that describes the partition.

For example, some sample rows are inserted as follows:

■ (10, 'accounting', 100, 'WA') maps to partition q1_northwest

■ (20, 'R&D', 150, 'OR') maps to partition q1_northwest

Partitioning Methods

Managing Partitioned Tables and Indexes 17-7

■ (30, 'sales', 100, 'FL') maps to partition q1_southeast

■ (40, 'HR', 10, 'TX') maps to partition q1_southwest

■ (50, 'systems engineering', 10, 'CA') does not map to any partition in the table

and returns an error

One of the interesting things to note about list partitioning is that there is no

apparent sense of ordering between partitions (unlike range partitioning). You can

also specify a default partition into which rows that do not map to any other

partition are mapped. If a default partition were specified in the above example, the

state CA would map to that partition.

When to Use the Composite Range-Hash Partitioning Method
Range-hash partitioning partitions data using the range method, and within each

partition, subpartitions it using the hash method. These composite partitions are

ideal for both historical data and striping, and provide improved manageability of

range partitioning and data placement, as well as the parallelism advantages of

hash partitioning.

When creating range-hash partitions, you specify the following:

■ Partitioning method: range

■ Partitioning column(s)

■ Partition descriptions identifying partition bounds

■ Subpartitioning method: hash

■ Subpartitioning column(s)

■ Number of subpartitions for each partition or descriptions of subpartitions

The following statement creates a range-hash partitioned table. In this example,

three range partitions are created, each containing eight subpartitions. Because the

subpartitions are not named, system generated names are assigned, but the STORE
IN clause distributes them across the 4 specified tablespaces (ts1 , ...,ts4).

CREATE TABLE scubagear (equipno NUMBER, equipname VARCHAR(32), price NUMBER)
 PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)
 SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Partitioning Methods

17-8 Oracle9i Database Administrator’s Guide

The partitions of a range-hash partitioned table are logical structures only, as their

data is stored in the segments of their subpartitions. As with partitions, these

subpartitions share the same logical attributes. Unlike range partitions in a

range-partitioned table, the subpartitions cannot have different physical attributes

from the owning partition, although they are not required to reside in the same

tablespace.

When to Use the Composite Range-List Partitioning Method
Like the composite range-hash partitioning method, the composite range-list

partitioning method provides for partitioning based on a two level hierarchy. The

first level of partitioning is based on a range of values, as for range partitioning; the

second level is based on discrete values, as for list partitioning. This form of

composite partitioning is well suited for historical data, but allows you to further

group the rows of data based on unordered or unrelated column values.

When creating range-list partitions, you specify the following:

■ Partitioning method: range

■ Partitioning column(s)

■ Partition descriptions identifying partition bounds

■ Subpartitioning method: list

■ Subpartitioning column

■ Subpartition descriptions, each specifying a list of literal values (a value list),
which are the discrete values of the subpartitioning column that qualify a row

to be included in the subpartition

The following example illustrates how range-list partitioning might be used. The

example tracks sales data of products by quarters and within each quarter, groups it

by specified states.

CREATE TABLE quarterly_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 TABLESPACE ts4
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE(’1-APR-1999’,’DD-MON-YYYY’))
 (SUBPARTITION q1_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q1_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q1_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q1_1999_southeast VALUES (’FL’, ’GA’),

Partitioning Methods

Managing Partitioned Tables and Indexes 17-9

 SUBPARTITION q1_1999_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q1_1999_southcentral VALUES (’OK’, ’TX’)
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE(’1-JUL-1999’,’DD-MON-YYYY’))
 (SUBPARTITION q2_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q2_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q2_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q2_1999_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q2_1999_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q2_1999_southcentral VALUES (’OK’, ’TX’)
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE(’1-OCT-1999’,’DD-MON-YYYY’))
 (SUBPARTITION q3_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q3_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q3_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q3_1999_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q3_1999_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q3_1999_southcentral VALUES (’OK’, ’TX’)
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE(’1-JAN-2000’,’DD-MON-YYYY’))
 (SUBPARTITION q4_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q4_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q4_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q4_1999_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q4_1999_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q4_1999_southcentral VALUES (’OK’, ’TX’)
)
);
A row is mapped to a partition by checking whether the value of the partitioning

column for a row falls within a specific partition range. The row is then mapped to

a subpartition within that partition by identifying the subpartition whose descriptor

value list contains a value matching the subpartition column value.

For example, some sample rows are inserted as follows:

■ (10, 4532130, ’23-Jan-1999’, 8934.10, ’WA’) maps to subpartition q1_1999_
northwest

■ (20, 5671621, ’15-May-1999’, 49021.21, ’OR’) maps to subpartition q2_1999_
northeast

■ (30, 9977612, ,’07-Sep-1999’, 30987.90, ’FL’) maps to subpartition q3_1999_
southeast

■ (40, 9977612, ’29-Nov-1999’, 67891.45, ’TX’) maps to subpartition q4_1999_
southwest

Creating Partitioned Tables

17-10 Oracle9i Database Administrator’s Guide

■ (40, 4532130, ’5-Jan-2000’, 897231.55, ’TX’) does not map to any partition in the

table and raises an error

■ (50, 5671621, ’17-Dec-1999’, 76123.35, ’CA’) does not map to any subpartition in

the table and raises an error

The partitions of a range-list partitioned table are logical structures only, as their

data is stored in the segments of their subpartitions. The list subpartitions have the

same characteristics as list partitions. You can specify a default subpartition, just as

you specify a default partition for list partitioning.

Creating Partitioned Tables
Creating a partitioned table or index is very similar to creating a non-partitioned

table or index (as described in Chapter 15, "Managing Tables"), but you include a

partitioning clause. The partitioning clause, and subclauses, that you include

depend upon the type of partitioning you want to achieve.

You can partition both regular (heap organized) tables and index-organized tables,

including those containing LOB columns. You can create nonpartitioned global

indexes, range-partitioned global indexes, and local indexes on partitioned tables.

When you create (or alter) a partitioned table, a row movement clause, either

ENABLE ROW MOVEMENT or DISABLE ROW MOVEMENT can be specified. This

clause either enables or disables the migration of a row to a new partition if its key

is updated. The default is DISABLE ROW MOVEMENT.

The following sections present details and examples of creating partitions for the

various types of partitioned tables and indexes:

■ Creating Range-Partitioned Tables

■ Creating Hash-Partitioned Tables

■ Creating List-Partitioned Tables

■ Creating Composite Range-Hash Partitioned Tables

■ Creating Composite Range-List Partitioned Tables

■ Using Subpartition Templates to Describe Composite Partitioned Tables

■ Creating Partitioned Index-Organized Tables

■ Partitioning Restrictions for Multiple Block Sizes

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-11

Creating Range-Partitioned Tables
The PARTITION BY RANGE clause of the CREATE TABLE statement specifies that

the table is to be range-partitioned. The PARTITION clauses identify the individual

partition ranges, and optional subclauses of a PARTITION clause can specify

physical and other attributes specific to a partition’s segment. If not overridden at

the partition level, partitions inherit the attributes of their underlying table.

In this example, more complexity is added to the example presented earlier for a

range-partitioned table. Storage parameters and a LOGGING attribute are specified

at the table level. These replace the corresponding defaults inherited from the

tablespace level for the table itself, and are inherited by the range partitions.

However, since there was little business in the first quarter, the storage attributes

for partition sales_q1 are made smaller. The ENABLE ROW MOVEMENT clause is

specified to allow the migration of a row to a new partition if an update to a key

value is made that would place the row in a different partition.

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 STORAGE (INITIAL 100K NEXT 50K) LOGGING
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1999, 04, 01)
 TABLESPACE tsa STORAGE (INITIAL 20K, NEXT 10K),
 PARTITION sales_q2 VALUES LESS THAN (1999, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1999, 10, 01)
 TABLESPACE tsc,
 PARTITION sales q4 VALUES LESS THAN (2000, 01, 01)
 TABLESPACE tsd)

See Also:

■ Oracle9i SQL Reference for the exact syntax of the partitioning

clauses for creating and altering partitioned tables and indexes,

any restrictions on their use, and specific privileges required

for creating and altering tables

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) and

Oracle9i Application Developer’s Guide - Fundamentals for

information about creating partitioned tables containing

columns with LOBs or other objects stored as LOBs

Creating Partitioned Tables

17-12 Oracle9i Database Administrator’s Guide

 ENABLE ROW MOVEMENT;

The rules for creating range-partitioned global indexes are similar to those for

creating range-partitioned tables. The following is an example of creating a

range-partitioned global index on sales_month for the above table. Each index

partition is named but is stored in the default tablespace for the index.

CREATE INDEX month_ix ON sales(sales_month)
 GLOBAL PARTITION BY RANGE(sales_month)
 (PARTITION pm1_ix VALUES LESS THAN (2)
 PARTITION pm2_ix VALUES LESS THAN (3)
 PARTITION pm3_ix VALUES LESS THAN (4)
 PARTITION pm4_ix VALUES LESS THAN (5)
 PARTITION pm5_ix VALUES LESS THAN (6)
 PARTITION pm6_ix VALUES LESS THAN (7)
 PARTITION pm7_ix VALUES LESS THAN (8)
 PARTITION pm8_ix VALUES LESS THAN (9)
 PARTITION pm9_ix VALUES LESS THAN (10)
 PARTITION pm10_ix VALUES LESS THAN (11)
 PARTITION pm11_ix VALUES LESS THAN (12)
 PARTITION pm12_ix VALUES LESS THAN (MAXVALUE));

Creating Hash-Partitioned Tables
The PARTITION BY HASH clause of the CREATE TABLE statement identifies that

the table is to be hash-partitioned. The PARTITIONS clause can then be used to

specify the number of partitions to create, and optionally, the tablespaces to store

them in. Alternatively, you can use PARTITION clauses to name the individual

partitions and their tablespaces.

The only attribute you can specify for hash partitions is TABLESPACE. All of the

hash partitions of a table must share the same segment attributes (except

TABLESPACE), which are inherited from the table level.

The following examples illustrate two methods of creating a hash-partitioned table

named dept . In the first example the number of partitions is specified, but system

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns,

because the sort sequence of characters is not identical in all

character sets. For more information, see Oracle9i Database
Globalization Support Guide.

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-13

generated names are assigned to them and they are stored in the default tablespace

of the table.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
 PARTITION BY HASH(deptno) PARTITIONS 16;

In this second example, names of individual partitions, and tablespaces in which

they are to reside, are specified. The initial extent size for each hash partition

(segment) is also explicitly stated at the table level, and all partitions inherit this

attribute.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
 STORAGE (INITIAL 10K)
 PARTITION BY HASH(deptno)
 (PARTITION p1 TABLESPACE ts1, PARTITION p2 TABLESPACE ts2,
 PARTITION p3 TABLESPACE ts1, PARTITION p4 TABLESPACE ts3);

If you create a local index for the above table, Oracle constructs the index so that it

is equipartitioned with the underlying table. Oracle also ensures that the index is

maintained automatically when maintenance operations are performed on the

underlying table. The following is an example of creating a local index on the table

dept :

CREATE INDEX loc_dept_ix ON dept(deptno) LOCAL;

You can optionally name the hash partitions and tablespaces into which the local

index partitions are to be stored, but if you do not do so, Oracle uses the name of

the corresponding base partition as the index partition name, and stores the index

partition in the same tablespace as the table partition.

Creating List-Partitioned Tables
The semantics for creating list partitions are very similar to those for creating range

partitions. However, to create list partitions, you specify a PARTITION BY LIST
clause in the CREATE TABLE statement, and the PARTITION clauses specify lists of

literal values, which are the discrete values of the partitioning columns that qualify

rows to be included in the partition. For list partitioning, the partitioning key can

only be a single column name from the table.

Available only with list partitioning, you can use the keyword DEFAULT to describe

the value list for a partition. This identifies a partition that will accommodate rows

that do not map into any of the other partitions.

Creating Partitioned Tables

17-14 Oracle9i Database Administrator’s Guide

Like for range partitions, optional subclauses of a PARTITION clause can specify

physical and other attributes specific to a partition’s segment. If not overridden at

the partition level, partitions inherit the attributes of their underlying table.

The following example creates table sales_by_region and partitions it using the

list method. The first two PARTITION clauses specify physical attributes, which

override the table-level defaults. The remaining PARTITION clauses do not specify

attributes and those partitions inherit their physical attributes from table-level

defaults. A default partition is specified.

CREATE TABLE sales_by_region (item# INTEGER, qty INTEGER,
 store_name VARCHAR(30), state_code VARCHAR(2),
 sale_date DATE)
 STORAGE(INITIAL 10K NEXT 20K) TABLESPACE tbs5
 PARTITION BY LIST (state_code)
 (
 PARTITION region_east
 VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')
 STORAGE (INITIAL 20K NEXT 40K PCTINCREASE 50)
 TABLESPACE tbs8,
 PARTITION region_west
 VALUES ('CA','AZ','NM','OR','WA','UT','NV','CO')
 PCTFREE 25 NOLOGGING,
 PARTITION region_south
 VALUES ('TX','KY','TN','LA','MS','AR','AL','GA'),
 PARTITION region_central
 VALUES ('OH','ND','SD','MO','IL','MI','IA'),
 PARTITION region_null
 VALUES (NULL),
 PARTITION region_unknown
 VALUES (DEFAULT)
);

Creating Composite Range-Hash Partitioned Tables
To create a range-hash partitioned table, you start by using the PARTITION BY
RANGE clause of a CREATE TABLE statement. Next, you specify a SUBPARTITION
BY HASH clause that follows similar syntax and rules as the PARTITION BY HASH
clause. The individual PARTITION and SUBPARTITION or SUBPARTITIONS
clauses, and optionally a SUBPARTITION TEMPLATE clause, follow.

Attributes specified for a range partition apply to all subpartitions of that partition.

You can specify different attributes for each range partition, and you can specify a

STORE IN clause at the partition level if the list of tablespaces across which that

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-15

partition’s subpartitions should be spread is different from those of other partitions.

All of this is illustrated in the following example.

CREATE TABLE emp (deptno NUMBER, empname VARCHAR(32), grade NUMBER)
 PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
 SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
 (PARTITION p1 VALUES LESS THAN (1000) PCTFREE 40,
 PARTITION p2 VALUES LESS THAN (2000)
 STORE IN (ts2, ts4, ts6, ts8),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
 (SUBPARTITION p3_s1 TABLESPACE ts4,
 SUBPARTITION p3_s2 TABLESPACE ts5));

To learn how using a subpartition template can simplify the specification of a

composite partitioned table, see "Using Subpartition Templates to Describe

Composite Partitioned Tables" on page 17-17.

The following statement is an example of creating a local index on the emp table

where the index segments are spread across tablespaces ts7 , ts8 , and ts9 .

CREATE INDEX emp_ix ON emp(deptno)
 LOCAL STORE IN (ts7, ts8, ts9);

This local index is equipartitioned with the base table as follows:

■ It consists of as many partitions as the base table.

■ Each index partition consists of as many subpartitions as the corresponding

base table partition.

■ Index entries for rows in a given subpartition of the base table are stored in the

corresponding subpartition of the index.

Creating Composite Range-List Partitioned Tables
The concept of range-list partitioning is similar to that of the other composite

partitioning method, range-hash, but this time you specify that the subpartitions are

to be list rather than hash. Specifically, after the CREATE TABLE ...
PARTITION BY RANGE clause, you include a SUBPARTITION BY LIST clause

that follows similar syntax and rules as the PARTITION BY LIST clause. The

individual PARTITION and SUBPARTITION clauses, and optionally a

SUBPARTITION TEMPLATE clause, follow.

The range partitions of the composite partitioned table are described as for

noncomposite range partitioned tables. This allows that optional subclauses of a

PARTITION clause can specify physical and other attributes, including tablespace,

Creating Partitioned Tables

17-16 Oracle9i Database Administrator’s Guide

specific to a partition’s segment. If not overridden at the partition level, partitions

inherit the attributes of their underlying table.

The list subpartition’s descriptions, in the SUBPARTITION clauses, are described as

for noncomposite list partitions, except the only physical attribute that can be

specified is a tablespace (optional). Subpartitions inherit all other physical attributes

from the partition description.

The following example of creates a table that specifies a tablespace at the partition

and subpartition levels. The number of subpartitions within each partition varies,

and default subpartitions are specified.

CREATE TABLE sample_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE(’1-APR-1999’,’DD-MON-YYYY’))
 TABLESPACE tbs_1
 (SUBPARTITION q1_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q1_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q1_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q1_1999_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q1_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE(’1-JUL-1999’,’DD-MON-YYYY’))
 TABLESPACE tbs_2
 (SUBPARTITION q2_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q2_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q2_1999_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q2_1999_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q2_1999_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q2_1999_southcentral VALUES (’OK’, ’TX’)
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE(’1-OCT-1999’,’DD-MON-YYYY’))
 TABLESPACE tbs_3
 (SUBPARTITION q3_1999_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q3_1999_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q3_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE(’1-JAN-2000’,’DD-MON-YYYY’))
 TABLESPACE tbs_4
);

This example results in the following subpartition descriptions:

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-17

■ All subpartitions inherit their physical attributes, other than tablespace, from

tablespace level defaults. This is because the only physical attribute that has

been specified for partitions or subpartitions is tablespace. There are no table

level physical attributes specified, thus tablespace level defaults are inherited at

all levels.

■ The first 4 subpartitions of partition q1_1999 are all contained in tbs_1 ,

except for the subpartition q1_others , which is stored in tbs_4 and contains

all rows that do not map to any of the other partitions.

■ The 6 subpartitions of partition q2_1999 are all stored in tbs_2 .

■ The first 2 subpartitions of partition q3_1999 are all contained in tbs_3 ,

except for the subpartition q3_others , which is stored in tbs_4 and contains

all rows that do not map to any of the other partitions.

■ There is no subpartition description for partition q4_1999 . This results in one

default subpartition being created and stored in tbs_4 . The subpartition’s

name is system generated in the form SYS_SUBPn.

To learn how using a subpartition template can simplify the specification of a

composite partitioned table, see "Using Subpartition Templates to Describe

Composite Partitioned Tables".

Using Subpartition Templates to Describe Composite Partitioned Tables
You can create subpartitions in a composite partitioned table using a subpartition

template. A subpartition template simplifies the specification of subpartitions by

not requiring that a subpartition descriptor be specified for every partition in the

table. Instead, you describe subpartitions only once in a template, then apply that

subpartition template to every partition in the table.

The subpartition template is used whenever a subpartition descriptor is not

specified for a partition. If a subpartition descriptor is specified, then it is used

instead of the subpartition template for that partition. If no subpartition template is

specified, and no subpartition descriptor is supplied for a partition, then a single

default subpartition is created.

Specifying a Subpartition Template for a Range-Hash Partitioned Table
In the case of range-hash partitioned tables, the subpartition template can describe

the subpartitions in detail, or it can specify just the number of hash subpartitions.

The following example creates a range-hash partitioned table using a subpartition

template:

Creating Partitioned Tables

17-18 Oracle9i Database Administrator’s Guide

CREATE TABLE emp_sub_template (deptno NUMBER, empname VARCHAR(32), grade NUMBER)
 PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
 SUBPARTITION TEMPLATE
 (SUBPARTITION a TABLESPACE ts1,
 SUBPARTITION b TABLESPACE ts2,
 SUBPARTITION c TABLESPACE ts3,
 SUBPARTITION d TABLESPACE ts4
)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

This example produces the following table description:

■ Every partition has four subpartitions as described in the subpartition template.

■ Each subpartition has a tablespace specified. It is required that if a tablespace is

specified for one subpartition in a subpartition template, then one must be

specified for all.

■ The names of the subpartitions are generated by concatenating the partition

name with the subpartition name in the form:

partition name_subpartition name

The following query displays the subpartition names and tablespaces:

SQL> SELECT TABLESPACE_NAME, PARTITION_NAME, SUBPARTITION_NAME
 2 FROM DBA_TAB_SUBPARTITIONS WHERE TABLE_NAME=’EMP_SUB_TEMPLATE’
 3 ORDER BY TABLESPACE_NAME;

TABLESPACE_NAME PARTITION_NAME SUBPARTITION_NAME
--------------- --------------- ------------------
TS1 P1 P1_A
TS1 P2 P2_A
TS1 P3 P3_A
TS2 P1 P1_B
TS2 P2 P2_B
TS2 P3 P3_B
TS3 P1 P1_C
TS3 P2 P2_C
TS3 P3 P3_C
TS4 P1 P1_D
TS4 P2 P2_D
TS4 P3 P3_D

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-19

12 rows selected.

Specifying a Subpartition Template for a Range-List Partitioned Table
The following example, for a range-list partitioned table, illustrates how using a

subpartition template can help you stripe data across tablespaces. In this example a

table is created where the table subpartitions are vertically striped, meaning that

subpartition n from every partition is in the same tablespace.

CREATE TABLE stripe_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 SUBPARTITION TEMPLATE
 (SUBPARTITION northwest VALUES (’OR’, ’WA’) TABLESPACE tbs_1,
 SUBPARTITION southwest VALUES (’AZ’, ’UT’, ’NM’) TABLESPACE tbs_2,
 SUBPARTITION northeast VALUES (’NY’, ’VM’, ’NJ’) TABLESPACE tbs_3,
 SUBPARTITION southeast VALUES (’FL’, ’GA’) TABLESPACE tbs_4,
 SUBPARTITION midwest VALUES (’SD’, ’WI’) TABLESPACE tbs_5,
 SUBPARTITION south VALUES (’AL’, ’AK’) TABLESPACE tbs_6,
 SUBPARTITION others VALUES (DEFAULT) TABLESPACE tbs_7
)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE(’01-APR-1999’,’DD-MON-YYYY’)),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE(’01-JUL-1999’,’DD-MON-YYYY’)),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE(’01-OCT-1999’,’DD-MON-YYYY’)),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE(’1-JAN-2000’,’DD-MON-YYYY’))
);

If you specified the tablespaces at the partition level (for example, tbs_1 for

partition q1_1999 , tbs_2 for partition q1_1999 , tbs_3 for partition q3_1999 ,

and tbs_4 for partition q4_1999) and not in the subpartition template, then the

table would be horizontally striped. All subpartitions would be in the tablespace of

the owning partition.

Creating Partitioned Index-Organized Tables
For index-organized tables, you can use the range or hash partitioning method.

However, only range partitioned index-organized tables can contain columns with

LOBs. The semantics for creating range or hash-partitioned index-organized tables

is similar to that for regular tables with these differences:

■ When you create the table you specify the ORGANIZATION INDEX clause, and

INCLUDING and OVERFLOW clauses as necessary.

Creating Partitioned Tables

17-20 Oracle9i Database Administrator’s Guide

■ The PARTITION or PARTITIONS clauses can have OVERFLOW subclauses that

allow you to specify attributes of the overflow segments at the partition level.

Specifying an OVERFLOW clause results in the overflow data segments themselves

being equi-partitioned with the primary key index segments. Thus, for partitioned

index-organized tables with overflow, each partition has an index segment and an

overflow data segment.

For index-organized tables, the set of partitioning columns must be a subset of the

primary key columns. Since rows of an index-organized table are stored in the

primary key index for the table, the partitioning criterion has an effect on the

availability. By choosing the partition key to be a subset of the primary key, an

insert operation only needs to verify uniqueness of the primary key in a single

partition, thereby maintaining partition independence.

Support for secondary indexes on index-organized tables is similar to the support

for regular tables, however, certain maintenance operations do not mark global

indexes UNUSABLE, as is the case for regular tables.

Creating Range-Partitioned Index-Organized Tables
You can partition index-organized tables, and their secondary indexes, by the range

method. In the following example, a range-partitioned index-organized table sales
is created. The INCLUDING clause specifies all columns after week_no are stored in

an overflow segment. There is one overflow segment for each partition, all stored in

the same tablespace (overflow_here). Optionally, OVERFLOW TABLESPACE
could be specified at the individual partition level, in which case some or all of the

overflow segments could have separate TABLESPACE attributes.

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX

See Also:

■ "Managing Index-Organized Tables" on page 15-24

■ "Maintaining Partitioned Tables" on page 17-22

■ Oracle9i Application Developer’s Guide - Fundamentals and

Oracle9i Database Concepts for more information about

index-organized tables

Creating Partitioned Tables

Managing Partitioned Tables and Indexes 17-21

 INCLUDING week_no
 OVERFLOW TABLESPACE overflow_here
 PARTITION BY RANGE (week_no)
 (PARTITION VALUES LESS THAN (5)
 TABLESPACE ts1,
 PARTITION VALUES LESS THAN (9)
 TABLESPACE ts2 OVERFLOW TABLESPACE overflow_ts2,
 ...
 PARTITION VALUES LESS THAN (MAXVALUE)
 TABLESPACE ts13);

Creating Hash-Partitioned Index-Organized Tables
The other option for partitioning index-organized tables is to use the hash method.

In the following example the index-organized table, sales , is partitioned by the

hash method.

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW

PARTITION BY HASH (week_no)
 PARTITIONS 16
 STORE IN (ts1, ts2, ts3, ts4)
 OVERFLOW STORE IN (ts3, ts6, ts9);

Note: Since a well designed hash function is supposed to

distribute rows in a well balanced fashion among the partitions,

updating the primary key column(s) of a row is very likely to move

that row to a different partition. Therefore it is recommended that a

hash-partitioned index-organized table with a changeable

partitioning key be created with the ROW MOVEMENT ENABLE
clause explicitly specified. The default is that ROW MOVEMENT
ENABLE is disabled.

Maintaining Partitioned Tables

17-22 Oracle9i Database Administrator’s Guide

Partitioning Restrictions for Multiple Block Sizes
Use caution when creating partitioned objects in a database with tablespaces of

multiple block size. The storage of partitioned objects in such tablespaces is subject

to some restrictions. Specifically, all partitions of the following entities must reside

in tablespaces of the same block size:

■ Conventional tables

■ Indexes

■ Primary key index segments of index-organized tables

■ Overflow segments of index-organized tables

■ LOB columns stored out of line

Therefore:

■ For each conventional table, all partitions of that table must be stored in

tablespaces with the same block size.

■ For each index-organized table, all primary key index partitions must reside in

tablespaces of the same block size, and all overflow partitions of that table must

reside in tablespaces of the same block size. However, index partitions and

overflow partitions can reside in tablespaces of different block size.

■ For each index (global or local), each partition of that index must reside in

tablespaces of the same block size. However, partitions of different indexes

defined on the same object can reside in tablespaces of different block sizes.

■ For each LOB column, each partition of that column must be stored in

tablespaces of equal block sizes. However, different LOB columns can be stored

in tablespaces of different block sizes.

When you create or alter a partitioned table or index, all tablespaces you explicitly
specify for the partitions and subpartitions of each entity must be of the same block

size. If you do not explicitly specify tablespace storage for an entity, the tablespaces

Oracle uses by default must be of the same block size. Therefore you must be aware

of the default tablespaces at each level of the partitioned object.

Maintaining Partitioned Tables
This section describes how to perform partition and subpartition maintenance

operations for both tables and indexes.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-23

Table 17–1 lists maintenance operations that can be performed on table partitions

(or subpartitions) and, for each type of partitioning, lists the specific clause of the

ALTER TABLE statement that is used to perform that maintenance operation.

Table 17–1 ALTER TABLE Maintenance Operations for Table Partitions (Page 1 of 2)

Maintenance
Operation Range Hash List

Composite:
Range/Hash

Composite:
Range/List

Adding Partitions ADD
PARTITION

ADD
PARTITION

ADD
PARTITION

ADD PARTITION

MODIFY
PARTITION...ADD
SUBPARTITION

ADD PARTITION

MODIFY
PARTITION...ADD
SUBPARTITION

Coalescing Partitions n/a COALESCE
PARTITION

n/a MODIFY
PARTITION...
COALESCE
SUBPARTITION

n/a

Dropping Partitions DROP
PARTITION

n/a DROP
PARTITION

DROP PARTITION DROP PARTITION

DROP SUBPARTITION

Exchanging
Partitions

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
SUBPARTITION

EXCHANGE
PARTITION

EXCHANGE
SUBPARTITION

Merging Partitions MERGE
PARTITIONS

n/a MERGE
PARTITIONS

MERGE PARTITIONS MERGE PARTITIONS

MERGE
SUBPARTITIONS

Modifying Default
Attributes

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of
Partitions

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY PARTITION

MODIFY
SUBPARTITION

MODIFY PARTITION

MODIFY
SUBPARTITION

Modifying List
Partitions: Adding
Values

n/a n/a MODIFY
PARTITION...
ADD VALUES

n/a MODIFY
SUBPARTITION...
ADD VALUES

Modifying List
Partitions: Dropping
Values

n/a n/a MODIFY
PARTITION...
DROP VALUES

n/a MODIFY
SUBPARTITION...
DROP VALUES

Modifying a
Subpartition
Template

n/a n/a n/a SET SUBPARTITION
TEMPLATE

SET SUBPARTITION
TEMPLATE

Maintaining Partitioned Tables

17-24 Oracle9i Database Administrator’s Guide

Table 17–2 lists maintenance operations that can be performed on index partitions,

and indicates on which type of index (global or local) they can be performed. The

ALTER INDEX clause used for the maintenance operation is shown.

Global indexes do not reflect the structure of the underlying table, and if

partitioned, they can only be partitioned by range. Range-partitioned indexes share

some, but not all, of the partition maintenance operations that can be performed on

range-partitioned tables.

Moving Partitions MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE SUBPARTITION MOVE SUBPARTITION

Renaming Partitions RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME PARTITION

RENAME
SUBPARTITION

RENAME PARTITION

RENAME
SUBPARTITION

Splitting Partitions SPLIT
PARTITION

n/a SPLIT
PARTITION

SPLIT PARTITION SPLIT PARTITION

SPLIT
SUBPARTITION

Truncating Partitions TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
SUBPARTITION

TRUNCATE
PARTITION

TRUNCATE
SUBPARTITION

Note: The first time you introduce a compressed partition into a

partitioned table that has bitmap indexes and that currently

contains only uncompressed partitions, you must do the following:

■ Either drop all existing bitmap indexes and bitmap index

partitions, or mark them UNUSABLE.

■ Set the compression attribute.

■ Rebuild the indexes.

These actions are independent of whether any partitions contain

data and of the operation that introduces the compressed partition.

This does not apply partitioned tables with B-tree indexes.

For more information, see the Oracle9i Data Warehousing Guide.

Table 17–1 ALTER TABLE Maintenance Operations for Table Partitions (Page 2 of 2)

Maintenance
Operation Range Hash List

Composite:
Range/Hash

Composite:
Range/List

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-25

Because local indexes reflect the underlying structure of the table, partitioning is

maintained automatically when table partitions and subpartitions are affected by

maintenance activity. Therefore, partition maintenance on local indexes is less

necessary and there are fewer options.

Table 17–2 ALTER INDEX Maintenance Operations for Index Partitions

Maintenance
Operation

Type
of
Index

Type of Index Partitioning

Range Hash and List Composite

Dropping Index
Partitions

Global DROP PARTITION - -

Local n/a n/a n/a

Modifying Default
Attributes of Index
Partitions

Global MODIFY DEFAULT
ATTRIBUTES

- -

Local MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of Index
Partitions

Global MODIFY PARTITION - -

Local MODIFY PARTITION MODIFY PARTITION MODIFY PARTITION

MODIFY SUBPARTITION

Rebuilding Index
Partitions

Global REBUILD PARTITION - -

Local REBUILD PARTITION REBUILD PARTITION REBUILD SUBPARTITION

Renaming Index
Partitions

Global RENAME PARTITION - -

Local RENAME PARTITION RENAME PARTITION RENAME PARTITION

RENAME SUBPARTITION

Splitting Index
Partitions

Global SPLIT PARTITION - -

Local n/a n/a n/a

Maintaining Partitioned Tables

17-26 Oracle9i Database Administrator’s Guide

Updating Global Indexes Automatically
Before discussing the individual maintenance operations for partitioned tables and

indexes, it is important to discuss the effects of the UPDATE GLOBAL INDEXES
clause that can be specified in the ALTER TABLE statement.

By default, many table maintenance operations on partitioned tables invalidate

(mark UNUSABLE) global indexes. You must then rebuild the entire global index or,

if partitioned, all of its partitions. Oracle enables you to override this default

behavior if you specify UPDATE GLOBAL INDEXES in your ALTER TABLE
statement for the maintenance operation. Specifying this clause tells Oracle to

update the global index at the time it executes the maintenance operation DDL

statement. This provides the following benefits:

■ The global index is updated in conjunction with the base table operation. You

are not required to later and independently rebuild the global index.

■ There is higher availability for global indexes, since they do not get marked

UNUSABLE. The index remains available even while the partition DDL is

executing and it can be used to access other partitions in the table.

■ You avoid having to look up the names of all invalid global indexes used for

rebuilding them.

But also consider the following performance implications when you specify

UPDATE GLOBAL INDEXES:

■ The partition DDL statement takes longer to execute since indexes which were

previously marked UNUSABLE are updated. However, this must be compared

against the time it takes to execute DDL without updating indexes, and then

rebuilding all indexes. A rule of thumb is that it is faster to update indexes if the

size of the partition is less that 5% of the size of the table.

Note: The following sections discuss maintenance operations on

partitioned tables. Where the usability of indexes or index

partitions affected by the maintenance operation is discussed,

consider the following:

■ Only indexes and index partitions that are not empty are

candidates for being marked UNUSABLE. If they are empty, the

USABLE/UNUSABLEstatus is left unchained.

■ Only indexes or index partitions with USABLE status are

updated by subsequent DML.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-27

■ The DROP, TRUNCATE, and EXCHANGE operations are no longer fast operations.

Again, one must compare the time it takes to do the DDL and then rebuild all

global indexes.

■ Updates to the index are logged, and redo and undo records are generated. If

the entire index is being rebuilt, it can optionally be done NOLOGGING.

■ Rebuilding the entire index creates a more efficient index, since it is more

compact with space better utilized. Further rebuilding the index allows you

change storage options.

The following operations support the UPDATE GLOBAL INDEXES clause:

■ ADD PARTITION|SUBPARTITION (hash only)

■ COALESCE PARTITION|SUBPARTITION

■ DROP PARTITION

■ EXCHANGE PARTITION|SUBPARTITIO

■ MERGE PARTITION

■ MOVE PARTITION|SUBPARTITION

■ SPLIT PARTITION

■ TRUNCATE PARTITION|SUBPARTITION

Adding Partitions
This section describes how to add new partitions to a partitioned table and explains

why partitions cannot be specifically added to global partitioned or local indexes.

Adding a Partition to a Range-Partitioned Table
Use the ALTER TABLE ... ADD PARTITION statement to add a new partition to

the "high" end (the point after the last existing partition). To add a partition at the

beginning or in the middle of a table, use the SPLIT PARTITION clause.

For example, consider the table, sales , which contains data for the current month

in addition to the previous 12 months. On January 1, 1999, you add a partition for

January, which is stored in tablespace tsx .

Note: The UPDATE GLOBAL INDEXESclause is not supported for

partitioned index-organized tables.

Maintaining Partitioned Tables

17-28 Oracle9i Database Administrator’s Guide

ALTER TABLE sales
 ADD PARTITION jan96 VALUES LESS THAN ('01-FEB-1999')
 TABLESPACE tsx;

Local and global indexes associated with the range-partitioned table remain usable.

Adding a Partition to a Hash-Partitioned Table
When you add a partition to a hash-partitioned table, Oracle populates the new

partition with rows rehashed from an existing partition (selected by Oracle) as

determined by the hash function.

The following statements show two ways of adding a hash partition to table

scubagear . Choosing the first statement adds a new hash partition whose

partition name is system generated, and which is placed in the table’s default

tablespace. The second statement also adds a new hash partition, but that partition

is explicitly named p_named and is created in tablespace gear5 .

ALTER TABLE scubagear ADD PARTITION;

ALTER TABLE scubagear
 ADD PARTITION p_named TABLESPACE gear5;

Indexes may be marked UNUSABLE as explained in the following table:

Adding a Partition to a List-Partitioned Table
The following statement illustrates adding a new partition to a list-partitioned table.

In this example physical attributes and NOLOGGING are specified for the partition

being added.

ALTER TABLE q1_sales_by_region

Table Type Index Behavior

Regular (Heap) ■ The local indexes for the new partition, and for the existing
partition from which rows were redistributed, are marked

UNUSABLE and must be rebuilt.

■ Unless you specify UPDATE GLOBAL INDEXES, all global
indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized ■ For local indexes, the behavior is the same as for heap
tables.

■ All global indexes remain usable.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-29

 ADD PARTITION q1_nonmainland VALUES ('HI', 'PR')
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE tbs_3
 NOLOGGING;

Any value in the set of literal values that describe the partition being added must

not exist in any of the other partitions of the table.

You cannot add a partition to a list-partitioned table that has a default partition, but

you can split the default partition. By doing so, you effectively create a new

partition defined by the values that you specify, and a second partition that remains

the default partition.

Local and global indexes associated with the list-partitioned table remain usable.

Adding Partitions to a Range-Hash Partitioned Table
Partitions can be added at both the range partition level and the hash subpartition

level.

Adding a Partition to a Range-Hash Partitioned Table Adding a new range partition to a

range-hash partitioned table is as described previously in "Adding a Partition to a

Range-Partitioned Table". However, you can specify a SUBPARTITIONS clause that

allows you to add a specified number of subpartitions, or a SUBPARTITION clause

for naming specific subpartitions. If no SUBPARTITIONS or SUBPARTITION clause

is specified, the partition inherits table level defaults for subpartitions.

This example adds a range partition q1_2000 to table sales , which will be

populated with data for the first quarter of the year 2000. There are eight

subpartitions stored in tablespace tbs5 .

ALTER TABLE sales ADD PARTITION q1_2000
 VALUES LESS THAN (2000, 04, 01)
 SUBPARTITIONS 8 STORE IN tbs5;

Adding a Subpartition to a Range-Hash Partitioned Table You use the MODIFY
PARTITION ... ADD SUBPARTITION clause of the ALTER TABLE statement to

add a hash subpartition to a range-hash partitioned table. The newly added

subpartition is populated with rows rehashed from other subpartitions of the same

partition as determined by the hash function.

In the following example, a new hash subpartition us_loc5 , stored in tablespace

us1 , is added to range partition locations_us in table diving .

ALTER TABLE diving MODIFY PARTITION locations_us
 ADD SUBPARTITION us_locs5 TABLESPACE us1;

Maintaining Partitioned Tables

17-30 Oracle9i Database Administrator’s Guide

Local index subpartitions corresponding to the added and rehashed subpartitions

must be rebuilt. Unless you specify UPDATE GLOBAL INDEXES, all global indexes,

or all partitions of partitioned global indexes, are marked UNUSABLE and must be

rebuilt.

Adding Partitions to a Range-List Partitioned Table
Partitions can be added at both the range partition level and the list subpartition

level.

Adding a Partition to a Range-List Partitioned Table Adding a new range partition to a

range-list partitioned table is as described previously in "Adding a Partition to a

Range-Partitioned Table". However, you can specify SUBPARTITION clauses for

naming and providing value lists for the subpartitions. If no SUBPARTITION

clauses are specified, then the partition inherits the subpartition template. If there is

no subpartition template, then a single default subpartition is created.

This following statement statements adds a new partition to the quarterly_
regional_sales table that is partitioned by the range-list method. Some new

physical attributes are specified for this new partition while table-level defaults are

inherited for those that are not specified.

ALTER TABLE quarterly_regional_sales
 ADD PARTITION q1_2000 VALUES LESS THAN (TO_DATE(’1-APR-2000’,’DD-MON-YYYY’))
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE ts3 NOLOGGING
 (
 SUBPARTITION q1_2000_northwest VALUES (’OR’, ’WA’),
 SUBPARTITION q1_2000_southwest VALUES (’AZ’, ’UT’, ’NM’),
 SUBPARTITION q1_2000_northeast VALUES (’NY’, ’VM’, ’NJ’),
 SUBPARTITION q1_2000_southeast VALUES (’FL’, ’GA’),
 SUBPARTITION q1_2000_northcentral VALUES (’SD’, ’WI’),
 SUBPARTITION q1_2000_southcentral VALUES (’OK’, ’TX’)
);

Adding a Subpartition to a Range-List Partitioned Table You use the MODIFY PARTITION
... ADD SUBPARTITION clause of the ALTER TABLE statement to add a list

subpartition to a range-list partitioned table.

The following statement adds a new subpartition to the existing set of subpartitions

in range-list partitioned table quarterly_regional_sales . The new

subpartition is created in tablespace ts2 .

ALTER TABLE quarterly_regional_sales
 MODIFY PARTITION q1_1999

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-31

 ADD SUBPARTITION q1_1999_south
 VALUES (’AR’,’MS’,’AL’) tablespace ts2;

Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, a new partition is

added to a local index only when you add a partition to the underlying table.

Specifically, when there is a local index defined on a table and you issue the ALTER
TABLE statement to add a partition, a matching partition is also added to the local

index. Oracle assigns names and default physical storage attributes to the new

index partitions, but you can rename or alter them after the ADD PARTITION
operation is complete.

You can effectively specify a new tablespace for an index partition in an ADD
PARTITION operation by first modifying the default attributes for the index. For

example, assume that a local index, q1_sales_by_region_locix , was created

for list partitioned table q1_sales_by_region . If before adding the new partition

q1_nonmainland , as shown in "Adding a Partition to a List-Partitioned Table" on

page 17-28, you had issued the following statement, then the corresponding index

partition would be created in tablespace tbs_4 .

ALTER INDEX q1_sales_by_region_locix
 MODIFY DEFAULT ATTRIBUTES TABLESPACE tbs_4;

Otherwise, it would be necessary for you to use the following statement to move

the index partition to tbs_4 after adding it:

ALTER INDEX q1_sales_by_region_locix
 REBUILD PARTITION q1_nonmainland TABLESPACE tbs_4;

You cannot add a partition to a global index because the highest partition always

has a partition bound of MAXVALUE. If you want to add a new highest partition, use

the ALTER INDEX ... SPLIT PARTITION statement.

Coalescing Partitions
Coalescing partitions is a way of reducing the number of partitions in a

hash-partitioned table, or the number of subpartitions in a range-hash partitioned

table. When a hash partition is coalesced, its contents are redistributed into one or

more remaining partitions determined by the hash function. The specific partition

that is coalesced is selected by Oracle, and is dropped after its contents have been

redistributed.

Indexes may be marked UNUSABLE as explained in the following table:

Maintaining Partitioned Tables

17-32 Oracle9i Database Administrator’s Guide

Coalescing a Partition in a Hash-Partitioned Table
The ALTER TABLE ... COALESCE PARTITION statement is used to coalesce a

partition in a hash-partitioned table. The following statement reduces by one the

number of partitions in a table by coalescing a partition.

ALTER TABLE ouu1
 COALESCE PARTITION;

Coalescing a Subpartition in a Range-Hash Partitioned Table
The following statement distributes the contents of a subpartition of partition us_
locations into one or more remaining subpartitions (determined by the hash

function) of the same partition. Basically, this operation is the inverse of the MODIFY
PARTITION ... ADD SUBPARTITION clause discussed in "Adding a

Subpartition to a Range-Hash Partitioned Table" on page 17-29.

ALTER TABLE diving MODIFY PARTITION us_locations
 COALESCE SUBPARTITION;

Dropping Partitions
You can drop partitions from range, composite, list, or composite range-list

partitioned tables. For hash-partitioned tables, or hash subpartitions of range-hash

partitioned tables, you must perform a coalesce operation instead.

Dropping a Table Partition
Use one of the following statements to drop a table partition or subpartition:

■ ALTER TABLE ... DROP PARTITION to drop a table partition

Table Type Index Behavior

Regular (Heap) ■ Any local index partition corresponding to the selected
partition is also dropped. Local index partitions
corresponding to the one or more absorbing partitions are

marked UNUSABLE and must be rebuilt.

■ Unless you specify UPDATE GLOBAL INDEXES, all global
indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized ■ Some local indexes are marked UNUSABLEas noted above.

■ All global indexes remain usable.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-33

■ ALTER TABLE ... DROP SUBPARTITION to drop a subpartition of a

range-list partitioned table

If you want to preserve the data in the partition, use the MERGE PARTITION
statement instead of the DROP PARTITION statement.

If there are local indexes defined for the table, this statement also drops the

matching partition or subpartitions from the local index. All global indexes, or all

partitions of partitioned global indexes, are marked UNUSABLE unless either of the

following are true:

■ You specify UPDATE GLOBAL INDEXES (cannot be specified for

index-organized tables)

■ The partition being dropped or its subpartitions are empty

The following sections contain some scenarios for dropping table partitions.

Dropping a Partition from a Table that Contains Data and Global Indexes If the partition

contains data and one or more global indexes are defined on the table, use one of

the following methods to drop the table partition.

Method 1:

Leave the global indexes in place during the ALTER TABLE ... DROP
PARTITION statement. Afterward, you must rebuild any global indexes

(whether partitioned or not) because the index (or index partitions) will have

been marked UNUSABLE. The following statements provide and example of

dropping partition dec98 from the sales table, then rebuilding its global

nonpartitioned index.

ALTER TABLE sales DROP PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

If index sales_area_ix were a range-partitioned global index, then all

partitions of the index would require rebuilding. Further, it is not possible to

rebuild all partitions of an index in one statement. You must write a separate

REBUILD statement for each partition in the index. The following statements

rebuild the index partitions jan99_ix , feb99_ix , mar99_ix , ..., dec99_ix .

ALTER INDEX sales_area_ix REBUILD PARTITION jan99_ix;

Note: You cannot drop the only partition in a table. Instead, you

must drop the table.

Maintaining Partitioned Tables

17-34 Oracle9i Database Administrator’s Guide

ALTER INDEX sales_area_ix REBUILD PARTITION feb99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION mar99_ix;
...
ALTER INDEX sales_area_ix REBUILD PARTITION nov99_ix;

This method is most appropriate for large tables where the partition being

dropped contains a significant percentage of the total data in the table.

Method 2:

Issue the DELETE statement to delete all rows from the partition before you

issue the ALTER TABLE ... DROP PARTITION statement. The DELETE
statement updates the global indexes, and also fires triggers and generates redo

and undo logs.

For example, to drop the first partition, which has a partition bound of 10000,

issue the following statements:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec98;

This method is most appropriate for small tables, or for large tables when the

partition being dropped contains a small percentage of the total data in the

table.

Method 3:

Specify UPDATE GLOBAL INDEXES in the ALTER TABLE statement. This

causes the global index to be updated at the time the partition is dropped.

ALTER TABLE sales DROP PARTITION dec98
 UPDATE GLOBAL INDEXES;

Dropping a Partition Containing Data and Referential Integrity Constraints If a partition

contains data and the table has referential integrity constraints, choose either of the

following methods to drop the table partition. This table has a local index only, so it

is not necessary to rebuild any indexes.

Method 1:

Disable the integrity constraints, issue the ALTER TABLE ... DROP
PARTITION statement, then enable the integrity constraints:

ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales DROP PARTITTION dec98;
ALTER TABLE sales

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-35

 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being

dropped contains a significant percentage of the total data in the table.

Method 2:

Issue the DELETE statement to delete all rows from the partition before you

issue the ALTER TABLE ... DROP PARTITION statement. The DELETE
statement enforces referential integrity constraints, and also fires triggers and

generates redo and undo log.

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the

partition being dropped contains a small percentage of the total data in the

table.

Dropping Index Partitions
You cannot explicitly drop a partition of a local index. Instead, local index partitions

are dropped only when you drop a partition from the underlying table.

If a global index partition is empty, you can explicitly drop it by issuing the ALTER
INDEX ... DROP PARTITION statement. But, if a global index partition contains

data, dropping the partition causes the next highest partition to be marked

UNUSABLE. For example, you would like to drop the index partition P1, and P2 is

the next highest partition. You must issue the following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Exchanging Partitions
You can convert a partition (or subpartition) into a nonpartitioned table, and a

nonpartitioned table into a partition (or subpartition) of a partitioned table by

exchanging their data segments. You can also convert a hash-partitioned table into a

partition of a range-hash partitioned table, or convert the partition of the

range-hash partitioned table into a hash-partitioned table. Similarly, you can

convert a list-partitioned table into a partition of a range-list partitioned table, or

convert the partition of the range-list partitioned table into a list-partitioned table

Note: You cannot drop the highest partition in a global index.

Maintaining Partitioned Tables

17-36 Oracle9i Database Administrator’s Guide

Exchanging table partitions is most useful when you have an application using

nonpartitioned tables that you want to convert to partitions of a partitioned table.

For example, you could already have partition views that you want to migrate into

partitioned tables. Exchanging partitions also facilitates high-speed data loading

when used with transportable tablespaces.

When you exchange partitions, logging attributes are preserved. You can optionally

specify if local indexes are also to be exchanged (INCLUDING INDEXES clause),

and if rows are to be validated for proper mapping (WITH VALIDATION clause).

Unless you specify UPDATE GLOBAL INDEXES (this cannot be specified for

index-organized tables), Oracle marks UNUSABLE the global indexes, or all global

index partitions, on the table whose partition is being exchanged. Any global

indexes, or global index partitions, on the table being exchanged are marked

UNUSABLE.

Note: When you specify WITHOUT VALIDATIONfor the exchange

partition operation, this is normally a fast operation because it

involves only data dictionary updates. However, if the table or

partitioned table involved in the exchange operation has a primary

key or unique constraint enabled, then the exchange operation will

be performed as if WITH VALIDATION were specified. This is in

order to maintain the integrity of the constraints.

To avoid the overhead of this validation activity, issue the

following statement for each constraint before doing the exchange

partition operation:

ALTER TABLE table_name
 DISABLE CONSTRAINT constraint_name KEEP INDEX

Then, enable the constraints after the exchange.

See Also:

■ "Converting a Partition View into a Partitioned Table" on

page 17-62

■ "Using Transportable Tablespaces" on page 11-46 for

information about transportable tablespaces

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-37

Exchanging a Range, Hash, or List Partition
To exchange a partition of a range, hash, or list-partitioned table with a

nonpartitioned table, or the reverse, use the ALTER TABLE ... EXCHANGE
PARTITION statement. An example of converting a partition into a nonpartitioned

table follows. In this example, table stocks can be range, hash, or list partitioned.

ALTER TABLE stocks
 EXCHANGE PARTITION p3 WITH stock_table_3;

Exchanging a Hash-Partitioned Table with a Range-Hash Partition
In this example, you are exchanging a whole hash-partitioned table, with all of its

partitions, with a range-hash partitioned table’s range partition and all of its hash

subpartitions. This is illustrated in the following example.

First, create a hash-partitioned table:

CREATE TABLE t1 (i NUMBER, j NUMBER)
 PARTITION BY HASH(i)
 (PARTITION p1, PARTITION p2);

Populate the table, then create a range-hash partitioned table as shown:

CREATE TABLE t2 (i NUMBER, j NUMBER)
 PARTITION BY RANGE(j)
 SUBPARTITION BY HASH(i)
 (PARTITION p1 VALUES LESS THAN (10)
 SUBPARTITION t2_pls1
 SUBPARTITION t2_pls2,
 PARTITION p2 VALUES LESS THAN (20)
 SUBPARTITION t2_p2s1
 SUBPARTITION t2_p2s2));

It is important that the partitioning key in table t1 is the same as the

subpartitioning key in table t2 .

To migrate the data in t1 to t2 , and validate the rows, use the following statement:

ALTER TABLE t1 EXCHANGE PARTITION p1 WITH TABLE t2
 WITH VALIDATION;

Exchanging a Subpartition of a Range-Hash Partitioned Table
Use the ALTER TABLE ... EXCHANGE SUBPARTITION statement to convert a

hash subpartition of a range-hash partitioned table into a nonpartitioned table, or

the reverse. The following example converts the subpartition q3_1999_s1 of table

Maintaining Partitioned Tables

17-38 Oracle9i Database Administrator’s Guide

sales into the nonpartitioned table q3_1999 . Local index partitions are exchanged

with corresponding indexes on q3_1999 .

ALTER TABLE sales EXCHANGE SUBPARTITION q3_1999_s1
 WITH TABLE q3_1999 INCLUDING INDEXES;

Exchanging a List-Partitioned Table with a Range-List Partition
The semantics of the ALTER TABLE ... EXCHANGE PARTITION statement are

the same as described previously in "Exchanging a Hash-Partitioned Table with a

Range-Hash Partition". In the example shown there, the syntax of the CREATE
TABLE statements would only need to be modified to create a list-partitioned table

and a range-list partitioned table, respectively. The actions involved remain the

same.

Exchanging a Subpartition of a Range-List Partitioned Table
The semantics of the ALTER TABLE ... EXCHANGE SUBPARTITION are the

same as described previously in "Exchanging a Subpartition of a Range-Hash

Partitioned Table".

Merging Partitions
Use the ALTER TABLE ... MERGE PARTITIONS statement to merge the contents

of two partitions into one partition. The two original partitions are dropped, as are

any corresponding local indexes.

You cannot use this statement for a hash-partitioned table or for hash subpartitions

of a range-hash partitioned table.

Unless the involved partitions or subpartitions are empty, indexes may be marked

UNUSABLE as explained in the following table:

Table Type Index Behavior

Regular (Heap) ■ Oracle marks UNUSABLE all resulting corresponding local
index partitions or subpartitions.

■ Unless you specify UPDATE GLOBAL INDEXES, all global
indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized ■ Oracle marks UNUSABLE all resulting corresponding local
index partitions or subpartitions.

■ All global indexes remain usable.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-39

Merging Range Partitions
You are allowed to merge the contents of two adjacent range partitions into one

partition. Non adjacent range partitions cannot be merged. The resulting partition

inherits the higher upper bound of the two merged partitions.

One reason for merging range partitions is to keep historical data online in larger

partitions. For example, you can have daily partitions, with the oldest partition

rolled up into weekly partitions, which can then be rolled up into monthly

partitions, and so on.

The following scripts create an example of merging range partitions.

First, create a partitioned table and create local indexes.

-- Create a Table with four partitions each on its own tablespace
-- Partitioned by range on the data column.
--
CREATE TABLE four_seasons
(
 one DATE,
 two VARCHAR2(60),
 three NUMBER
)
PARTITION BY RANGE (one)
(
PARTITION quarter_one
 VALUES LESS THAN (TO_DATE('01-apr-1998','dd-mon-yyyy'))
 TABLESPACE quarter_one,
PARTITION quarter_two
 VALUES LESS THAN (TO_DATE('01-jul-1998','dd-mon-yyyy'))
 TABLESPACE quarter_two,
PARTITION quarter_three
 VALUES LESS THAN (TO_DATE('01-oct-1998','dd-mon-yyyy'))
 TABLESPACE quarter_three,
PARTITION quarter_four
 VALUES LESS THAN (TO_DATE('01-jan-1999','dd-mon-yyyy'))
 TABLESPACE quarter_four
);
--
-- Create local PREFIXED index on Four_Seasons
-- Prefixed because the leftmost columns of the index match the
-- Partition key
--
CREATE INDEX i_four_seasons_l ON four_seasons (one,two)
LOCAL (

Maintaining Partitioned Tables

17-40 Oracle9i Database Administrator’s Guide

PARTITION i_quarter_one TABLESPACE i_quarter_one,
PARTITION i_quarter_two TABLESPACE i_quarter_two,
PARTITION i_quarter_three TABLESPACE i_quarter_three,
PARTITION i_quarter_four TABLESPACE i_quarter_four
);

Next, merge partitions.

--
-- Merge the first two partitions
--
ALTER TABLE four_seasons
MERGE PARTITIONS quarter_one, quarter_two INTO PARTITION quarter_two;

Then, rebuild the local index for the affected partition.

-- Rebuild index for quarter_two, which has been marked unusable
-- because it has not had all of the data from Q1 added to it.
-- Rebuilding the index will correct this.
--
ALTER TABLE four_seasons MODIFY PARTITION
quarter_two REBUILD UNUSABLE LOCAL INDEXES;

Merging List Partitions
When you merge list partitions, the partitions being merged can be any two

partitions. They do not need to be adjacent, as for range partitions, since list

partitioning does not assume any order for partitions. The resulting partition

consists of all of the data from the original two partitions. If you merge a default list

partition with any other partition, the resulting partition will be the default

partition.

The statement below merges two partitions of a table partitioned using the list

method into a partition that inherits all of its attributes from the table-level default

attributes, except for PCTFREE and MAXEXTENTS, which are specified in the

statement.

ALTER TABLE q1_sales_by_region
 MERGE PARTITIONS q1_northcentral, q1_southcentral
 INTO PARTITION q1_central
 PCTFREE 50 STORAGE(MAXEXTENTS 20);

The value lists for the two original partitions were specified as:

PARTITION q1_northcentral VALUES ('SD','WI')
PARTITION q1_southcentral VALUES ('OK','TX')

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-41

The resulting sales_west partition’s value list comprises the set that represents

the union of these two partition value lists, or specifically:

■ ('SD','WI','OK','TX')

Merging Range-Hash Partitions
When you merge range-hash partitions, the subpartitions are rehashed into either

the number of subpartitions specified in a SUBPARTITIONS or SUBPARTITION
clause, or, if no such clause is included, table-level defaults are used.

Note that the inheritance of properties is different when a range-hash partition is

split (discussed in "Splitting a Range-Hash Partition" on page 17-54), verses when

two range-hash partitions are merged. When a partition is split, the new partitions

can inherit properties from the original partition since there is only one parent.

However, when partitions are merged, properties must be inherited from table level
defaults because there are two parents and the new partition cannot inherit from

either at the expense of the other.

The following example merges two range-hash partitions:

ALTER TABLE all_seasons
 MERGE PARTITIONS quarter_1, quarter_2 INTO PARTITION quarter_2
 SUBPARTITIONS 8;

Merging Range-List Partitions
Partitions can be merged at the range partition level and subpartitions can be

merged at the list subpartition level.

Merging Partitions in a Range-List Partitioned Table Merging range partitions in a

range-list partitioned table is as described previously in "Merging Range Partitions"

on page 17-39. However, when you merge two range-list partitions, the resulting

new partition inherits the subpartition descriptions from the subpartition template,

if one exists. If no subpartition template exists, then a single default subpartition is

created for the new partition.

This following statement merges two partitions in the range-list partitioned

stripe_regional_sales table. A subpartition template exists for the table.

ALTER TABLE stripe_regional_sales
 MERGE PARTITIONS q1_1999, q2_1999 INTO PARTITION q1_q2_1999
 PCTFREE 50 STORAGE(MAXEXTENTS 20);

Maintaining Partitioned Tables

17-42 Oracle9i Database Administrator’s Guide

Some new physical attributes are specified for this new partition while table-level

defaults are inherited for those that are not specified. The new resulting partition

q1_q2_1999 inherits the high-value bound of the partition q2_1999 and the

subpartition value-list descriptions from the subpartition template description of

the table.

The data in the resulting partitions consists of data from both the partitions.

However, there may be cases where Oracle returns an error. This can occur because

data may map out of the new partition when both of the following conditions exist:

■ Some of the merged subpartitions’ literal values were not included in the

subpartition template

■ The subpartition template does not contain a default partition definition.

This error condition can be eliminated by always specifying a default partition in

the default subpartition template.

Merging Subpartitions in a Range-List Partitioned Table You can merge the contents of

any two arbitrary list subpartitions belonging to the same range partition. The

resulting subpartition’s value-list descriptor includes all of the literal values in the

value lists for the partitions being merged.

The following statement merges two subpartitions of a table partitioned using

range-list method into a new subpartition located in tablespace ts4 :

ALTER TABLE quarterly_regional_sales
 MERGE SUBPARTITIONS q1_1999_northwest, q1_1999_southwest
 INTO SUBPARTITION q1_1999_west
 TABLESPACE ts4;

The value lists for the original two partitions were:

■ Subpartition q1_1999_northwest was described as (’WA’,’OR’)

■ Subpartition q1_1999_southwest was described as (’AZ’,’NM’,’UT’)

The resulting subpartition’s value list comprises the set that represents the union of

these two subpartition value lists:

■ Subpartition q1_1999_west has a value list described as

(’WA’,’OR’,’AZ’,’NM’,’UT’)

The tablespace in which the resulting subpartition is located and the subpartition’s

attributes are determined by the partition-level default attributes, except for those

specified explicitly. If any of the existing subpartition names are being reused, then

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-43

the new subpartition inherits the subpartition attributes of the subpartition whose

name is being reused.

Modifying Default Attributes
You can modify the default attributes of a table, or for a partition of a composite

partitioned table. When you modify default attributes, the new attributes affect only

future partitions, or subpartitions, that are created. The default values can still be

specifically overridden when creating a new partition or subpartition.

Modifying Default Attributes of a Table
You modify the default attributes that will be inherited for range, list, or hash

partitions using the MODIFY DEFAULT ATTRIBUTESclause of ALTER TABLE. The

following example changes the default value of PCTFREE in table emp for any new

partitions that are created.

ALTER TABLE emp
 MODIFY DEFAULT ATTRIBUTES PCTFREE 25;

For hash-partitioned tables, only the TABLESPACE attribute can be modified.

Modifying Default Attributes of a Partition
To modify the default attributes inherited when creating subpartitions, use the

ALTER TABLE ... MODIFY DEFAULT ATTRIBUTES FOR PARTITION . The

following statement modifies the TABLESPACE in which future subpartitions of

partition p1 in range-hash partitioned table emp will reside.

ALTER TABLE emp
 MODIFY DEFAULT ATTRIBUTES FOR PARTITION p1 TABLESPACE ts1;

Since all subpartitions of a range-hash partitioned table must share the same

attributes, except TABLESPACE, it is the only attribute that can be changed.

Modifying Default Attributes of Index Partitions
In similar fashion to table partitions, you can alter the default attributes that will be

inherited by partitions of a range-partitioned global index, or local index partitions

of partitioned tables. For this you use the ALTER INDEX ... MODIFY DEFAULT
ATTRIBUTES statement. Use the ALTER INDEX ... MODIFY DEFAULT
ATTRIBUTES FOR PARTITION statement if you are altering default attributes to

be inherited by subpartitions of a composite partitioned table.

Maintaining Partitioned Tables

17-44 Oracle9i Database Administrator’s Guide

Modifying Real Attributes of Partitions
It is possible to modify attributes of an existing partition of a table or index.

You cannot change the TABLESPACE attribute. Use ALTER TABLESPACE ...
MOVE PARTITION/SUBPARTITION to move a partition or subpartition to a new

tablespace.

Modifying Real Attributes for a Range or List Partition
Use the ALTER TABLE ... MODIFY PARTITION statement to modify existing

attributes of a range partition or list partition. You can modify segment attributes

(except TABLESPACE), or you can allocate and deallocate extents, mark local index

partitions UNUSABLE, or rebuild local indexes that have been marked UNUSABLE.

If this is a range partition of a range-hash partitioned table, note the following:

■ If you allocate or deallocate an extent, this action is performed for every

subpartition of the specified partition.

■ Likewise, changing any other attributes results in corresponding changes to

those attributes of all the subpartitions for that partition. The partition level

default attributes are changed as well. To avoid changing attributes of existing

subpartitions, use the FOR PARTITION clause of the MODIFY DEFAULT
ATTRIBUTES statement.

The following are some examples of modifying the real attributes of a partition.

This example modifies the MAXEXTENTS storage attribute for the range partition

sales_q1 of table sales :

ALTER TABLE sales MODIFY PARTITION sales_Q1
 STORAGE (MAXEXTENTS 10);

All of the local index subpartitions of partition ts1 in range-hash partitioned table

scubagear are marked UNUSABLE in the following example:

ALTER TABLE scubagear MPDIFY PARTITION ts1 UNUSABLE LOCAL INDEXES;

Modifying Real Attributes for a Hash Partition
You also use the ALTER TABLE ... MODIFY PARTITION statement to modify

attributes of a hash partition. However, since the physical attributes of individual

hash partitions must all be the same (except for TABLESPACE), you are restricted to:

■ Allocating a new extent

■ Deallocating an unused extent

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-45

■ Marking a local index subpartition UNUSABLE

■ Rebuilding local index subpartitions that are marked UNUSABLE

The following example rebuilds any unusable local index partitions associated with

hash partition P1 of table dept :

ALTER TABLE dept MODIFY PARTITION p1
 REBUILD UNUSABLE LOCAL INDEXES;

Modifying Real Attributes of a Subpartition
With the MODIFY SUBPARTITION clause of ALTER TABLE you can perform the

same actions as listed previously for partitions, but at the specific composite

partitioned table subpartition level. For example:

ALTER TABLE emp MODIFY SUBPARTITION p3_s1
 REBUILD UNUSABLE LOCAL INDEXES;

Modifying Real Attributes of Index Partitions
The MODIFY PARTITION clause of ALTER INDEX allows you to modify the real

attributes of an index partition or its subpartitions. The rules are very similar to

those for table partitions, but unlike the MODIFY PARTITION clause for ALTER
TABLE, there is no subclause to rebuild an unusable index partition, but there is a

subclause to coalesce an index partition or its subpartitions. In this context, coalesce

means to merge index blocks where possible to free them for reuse.

You can also allocate or deallocate storage for a subpartition of a local index, or

mark it UNUSABLE, using the MODIFY SUBPARTITION clause.

Modifying List Partitions: Adding Values
List partitioning allows you the option of adding literal values from the defining

value list.

Adding Values for a List Partition
Use the MODIFY PARTITION ... ADD VALUES clause of the ALTER TABLE
statement to extend the value list of an existing partition. Literal values being added

must not have been included in any other partition’s value list. The partition value

list for any corresponding local index partition is correspondingly extended, and

any global index, or global or local index partitions, remain usable.

The following statement adds a new set of state codes (' OK' , ' KS') to an existing

partition list.

Maintaining Partitioned Tables

17-46 Oracle9i Database Administrator’s Guide

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 ADD VALUES ('OK', 'KS');

The existence of a default partition can have a performance impact when adding

values to other partitions. This is because in order to add values to a list partition,

Oracle must check that the values being added do not already exist in the default

partition. If any of the values do exist in the default partition, an error is raised.

You cannot add values to a default list partition.

Adding Values for a List Subpartition
This operation is essentially the same as described for "Modifying List Partitions:

Adding Values", however, you use a MODIFY SUBPARTITION clause instead of the

MODIFY PARTITION clause. For example, to extend the range of literal values in

the value list for subpartition q1_1999_southeast use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 ADD VALUES (’KS’);

Literal values being added must not have been included in any other subpartition’s

value list within the owning partition. However, they can be duplicates of literal

values in the subpartition value lists of other partitions within the table.

Modifying List Partitions: Dropping Values
List partitioning allows you the option of dropping literal values from the defining

value list.

Dropping Values from a List Partition
Use the MODIFY PARTITION ... DROP VALUES clause of the ALTER TABLE
statement to remove literal values from the value list of an existing partition. The

statement is always executed with validation, meaning that it checks to see if any

Note: Because a query is executed to check for the existence of

rows in the default partition that correspond to the literal values

being added, it is advisable to create a local prefixed index on the

table. This speeds up the execution of the query and the overall

operation.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-47

rows exist in the partition that correspond to the set of values being dropped. If any

such rows are found then Oracle returns an error message and the operation fails.

When necessary, use a DELETE statement to delete corresponding rows from the

table before attempting to drop values.

The partition value list for any corresponding local index partition reflects the new

value list, and any global index, or global or local index partitions, remain usable.

The statement below drops a set of state codes (' OK' and ' KS') from an existing

partition value list.

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 DROP VALUES ('OK', 'KS');

You cannot drop values from a default list partition.

Dropping Values from a List Subpartition
This operation is essentially the same as described for "Modifying List Partitions:

Dropping Values", however, you use a MODIFY SUBPARTITION clause instead of

the MODIFY PARTITION clause. For example, to remove a set of literal values in

the value list for subpartition q1_1999_southeast use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 DROP VALUES (’KS’);

Note: You cannot drop all literal values from the value list

describing the partition. You must use the ALTER TABLE ...
DROP PARTITION statement instead.

Note: Because a query is executed to check for the existence of

rows in the partition that correspond to the literal values being

dropped, it is advisable to create a local prefixed index on the table.

This speeds up the execution of the query and the overall

operation.

Maintaining Partitioned Tables

17-48 Oracle9i Database Administrator’s Guide

Modifying a Subpartition Template
You can modify a subpartition template of a composite partitioned table by

replacing it with a new subpartition template. Any subsequent operations that use

the subpartition template (such as ADD PARTITION or MERGE PARTITIONS) will

now use the new subpartition template. Existing subpartitions remain unchanged.

Use the ALTER TABLE ... SET SUBPARTITION TEMPLATE statement to

specify a new subpartition template. For example:

ALTER TABLE emp_sub_template
 SET SUBPARTITION TEMPLATE
 (SUBPARTITION e, TABLESPACE ts1,
 SUBPARTITION f, TABLESPACE ts2,
 SUBPARTITION g, TABLESPACE ts3,
 SUBPARTITION h, TABLESPACE ts4
);

You can drop a subpartition template by specifying an empty list:

ALTER TABLE emp_sub_template
 SET SUBPARTITION TEMPLATE ();

Moving Partitions
Use the MOVE PARTITION clause of the ALTER TABLE statement to:

■ Re-cluster data and reduce fragmentation

■ Move a partition to another tablespace

■ Modify create-time attributes

Typically, you can change the physical storage attributes of a partition in a single

step using an ALTER TABLE/INDEX ... MODIFY PARTITION statement.

However, there are some physical attributes, such as TABLESPACE, that you cannot

modify using MODIFY PARTITION . In these cases, use the MOVE PARTITION
clause.

Unless the partition being moved does not contain any data, indexes may be

marked UNUSABLE according to the following table:

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-49

Moving Table Partitions
Use the MOVE PARTITION clause to move a partition. For example, to move the

most active partition to a tablespace that resides on its own disk (in order to balance

I/O) and to not log the action, issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new segment,

even if you do not specify a new tablespace.

Moving Subpartitions
The following statement shows how to move data in a subpartition of a table. In this

example, a PARALLEL clause has also been specified.

ALTER TABLE scuba_gear MOVE SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

Moving Index Partitions
The ALTER TABLE ... MOVE PARTITION statement for regular tables, marks all

partitions of a global index UNUSABLE. You can rebuild the entire index by

rebuilding each partition individually using the ALTER INDEX ... REBUILD
PARTITION statement. You can perform these rebuilds concurrently.

You can also simply drop the index and re-create it.

Table Type Index Behavior

Regular (Heap) ■ The matching partition in each local index is marked
UNUSABLE. You must rebuild these index partitions after
issuing MOVE PARTITION.

■ Unless you specify UPDATE GLOBAL INDEXES, any global
indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE.

Index-organized Any local or global indexes defined for the partition being
moved remain usable because they are primary-key based
logical rowids. However, the guess information for these rowids
becomes incorrect.

Maintaining Partitioned Tables

17-50 Oracle9i Database Administrator’s Guide

Rebuilding Index Partitions
Some reasons for rebuilding index partitions include:

■ To recover space and improve performance

■ To repair a damaged index partition caused by media failure

■ To rebuild a local index partition after loading the underlying table partition

with Import or SQL*Loader

■ To rebuild index partitions that have been marked UNUSABLE

The following sections discuss your options for rebuilding index partitions and

subpartitions.

Rebuilding Global Index Partitions
You can rebuild global index partitions in two ways:

1. Rebuild each partition by issuing the ALTER INDEX ... REBUILD
PARTITION statement (you can run the rebuilds concurrently).

2. Drop the entire global index and re-create it.

For most maintenance operations on partitioned tables with global indexes, you can

optionally avoid the need to rebuild the global index by specifying UPDATE
GLOBAL INDEXES on your DDL statement.

Rebuilding Local Index Partitions
Rebuild local indexes using either ALTER INDEX or ALTER TABLE as follows:

■ ALTER INDEX ... REBUILD PARTITION/SUBPARTITION

This statement rebuilds an index partition or subpartition unconditionally.

■ ALTER TABLE ... MODIFY PARTITION/SUBPARTITION ... REBUILD
UNUSABLE LOCAL INDEXES

This statement finds all of the unusable indexes for the given table partition or

subpartition and rebuilds them. It only rebuilds an index partition if it has been

marked UNUSABLE.

Note: This second method is more efficient because the table is

scanned only once.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-51

Using Alter Index to Rebuild a Partition The ALTER INDEX ... REBUILD
PARTITION statement rebuilds one partition of an index. It cannot be used on a

range-hash partitioned table. When you re-create the index, you can also choose to

move the partition to a new tablespace or change attributes.

For range-hash partitioned tables, use ALTER INDEX ... REBUILD
SUBPARTITION to rebuild a subpartition of an index. You can move the

subpartition to another tablespace or specify a parallel clause. The following

statement rebuilds a subpartition of a local index on a table and moves the index

subpartition is another tablespace.

ALTER INDEX scuba
 REBUILD SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

Using Alter Table to Rebuild an Index Partition The REBUILD UNUSABLE LOCAL
INDEXES clause of ALTER TABLE ... MODIFY PARTITION does not allow you

to specify any new attributes for the rebuilt index partition. The following example

finds and rebuilds any unusable local index partitions for table scubagear ,

partition p1 .

ALTER TABLE scubagear
 MODIFY PARTITION p1 REBUILD UNUSABLE LOCAL INDEXES;

There is a corresponding ALTER TABLE ... MODIFY SUBPARTITION clause for

rebuilding unusable local index subpartitions.

Renaming Partitions
It is possible to rename partitions and subpartitions of both tables and indexes. One

reason for renaming a partition might be to assign a meaningful name, as opposed

to a default system name that was assigned to the partition in another maintenance

operation.

Renaming a Table Partition
Rename a range, hash, or list partition, using the ALTER TABLE ... RENAME
PARTITION statement. For example:

ALTER TABLE scubagear RENAME PARTITION sys_p636 TO tanks;

Renaming a Table Subpartition
Likewise, you can assign new names to subpartitions of a table. In this case you

would use the ALTER TABLE ... RENAME SUBPARTITION syntax.

Maintaining Partitioned Tables

17-52 Oracle9i Database Administrator’s Guide

Renaming Index Partitions
Index partitions and subpartitions can be renamed in similar fashion, but the ALTER
INDEX syntax is used.

Renaming an Index Partition Use the ALTER INDEX ... RENAME PARTITION
statement to rename an index partition.

Renaming an Index Subpartition This next statement simply shows how to rename a

subpartition that has a system generated name that was a consequence of adding a

partition to an underlying table:

ALTER INDEX scuba RENAME SUBPARTITION sys_subp3254 TO bcd_types;

Splitting Partitions
The SPLIT PARTITION clause of the ALTER TABLEor ALTER INDEXstatement is

used to redistribute the contents of a partition into two new partitions. Consider

doing this when a partition becomes too large and causes backup, recovery, or

maintenance operations to take a long time to complete. You can also use the SPLIT
PARTITION clause to redistribute the I/O load.

This clause cannot be used for hash partitions or subpartitions.

Unless the partition you are splitting does not contain any data, indexes may be

marked UNUSABLE as explained in the following table:

Splitting a Partition of a Range-Partitioned Table
You split a range partition using the ALTER TABLE ... SPLIT PARTITION
statement. You specify a value of the partitioning key column within the range of

the partition at which to split the partition. The first of the resulting two new

partitions includes all rows in the original partition whose partitioning key column

Table Type Index Behavior

Regular (Heap) ■ Oracle marks UNUSABLE the new partitions (there are two)
in each local index.

■ Unless you specify UPDATE GLOBAL INDEXES, any global
indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized ■ Oracle marks UNUSABLE the new partitions (there are two)
in each local index.

■ All global indexes remain usable.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-53

values map lower that the specified value. The second partition contains all rows

whose partitioning key column values map greater than or equal to the specified

value.

You can optionally specify new attributes for the two partitions resulting from the

split. If there are local indexes defined on the table, this statement also splits the

matching partition in each local index.

In the following example fee_katy is a partition in the table vet_cats , which has

a local index, jaf1 . There is also a global index, vet on the table. vet contains two

partitions, vet_parta , and vet_partb .

To split the partition fee_katy , and rebuild the index partitions, issue the

following statements:

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1 ..., PARTITION fee_katy2 ...);
ALTER INDEX JAF1 REBUILD PARTITION fee_katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_katy2;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_partb;

Splitting a Partition of a List-Partitioned Table
You split a list partition using the ALTER TABLE ... SPLIT PARTITION
statement. The SPLIT PARTITION clause allows you to specify a value list of

literal values that define a partition into which rows with corresponding

partitioning key values are inserted. The remaining rows of the original partition

are inserted into a second partition whole value list is the remaining values from the

original partition.

You can optionally specify new attributes for the two partitions resulting from the

split.

The following statement splits the partition region_east into 2 partitions:

ALTER TABLE sales_by_region
 SPLIT PARTITION region_east VALUES ('CT', 'VA', 'MD')

Note: If you do not specify new partition names, Oracle assigns

names of the form SYS_Pn. You can examine the data dictionary to

locate the names assigned to the new local index partitions. You

may want to rename them. Any attributes you do not specify are

inherited from the original partition.

Maintaining Partitioned Tables

17-54 Oracle9i Database Administrator’s Guide

 INTO
 (PARTITION region_east_1
 PCTFREE 25 TABLESPACE tbs2,
 PARTITION region_east_2
 STORAGE (NEXT 2M PCTINCREASE 25))
 PARALLEL 5;

The literal-value list for the original region_east partition was specified as:

PARTITION region_east VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')

The two new partition’s are:

■ region_east_1 with a literal-value list of (' CT' , ' VA' , ' MD')

■ region_east_2 inheriting the remaining literal-value list of

(' NY' , ' NH' , ' ME' , ' VA' , ' PA' , ' NJ')

The individual partitions have new physical attributes specified at the partition

level. The operation is executed with parallelism of degree 5.

You can split a default list partition just like you split any other list partition. This is

also the only means of adding a partition to list-partitioned table that contains a

default partition. When you split the default partition, you create a new partition

defined by the values that you specify, and a second partition that remains the

default partition.

The following example splits the default partition of sales_by_region , thereby

creating a new partition.

ALTER TABLE sales_by_region
 SPLIT PARTITION region_unknown VALUES ('MT', 'WY', 'ID')
 INTO
 (PARTITION region_wildwest,
 PARTITION region_unknown);

Splitting a Range-Hash Partition
This is the opposite of merging range-hash partitions. When you split range-hash

partitions, the new subpartitions are rehashed into either the number of

subpartitions specified in a SUBPARTITIONS or SUBPARTITION clause. Or, if no

such clause is included, the new partitions inherit the number of subpartitions (and

tablespaces) from the partition being split.

Note that the inheritance of properties is different when a range-hash partition is

split, verses when two range-hash partitions are merged. When a partition is split,

the new partitions can inherit properties from the original partition since there is

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-55

only one parent. However, when partitions are merged, properties must be

inherited from table level defaults because there are two parents and the new

partition cannot inherit from either at the expense of the other.

The following example splits a range-hash partition:

ALTER TABLE all_seasons SPLIT PARTITION quarter_1
 AT (TO_DATE('16-dec-1997','dd-mon-yyyy'))
 INTO (PARTITION q1_1997_1 SUBPARTITIONS 4 STORE IN (ts1,ts3),
 PARTITION q1_1997_2);

Splitting Partitions in a Range-List Partitioned Table
Partitions can be split at both the range partition level and at the list subpartition

level.

Splitting a Range-List Partition Splitting a range partition of a range-list partitioned

table is similar to what is described in "Splitting a Partition of a Range-Partitioned

Table" on page 17-52. No subpartition literal value list can be specified for either of

the new partitions. The new partitions inherit the subpartition descriptions from the

original partition being split.

The following example splits the q1_1999 partition of the quarterly_
regional_sales table:

ALTER TABLE quarterly_regional_sales SPLIT PARTITION q1_1999
 AT (to_date(’15-Feb-1999’,’dd-mon-yyyy’))
 INTO (PARTITION q1_1999_jan_feb
 PCTFREE 25 TABLESPACE ts1,
 PARTITION q1_1999_feb_mar
 STORAGE (NEXT 2M PCTINCREASE 25) TABLESPACE ts2)
 PARALLEL 5;

This operation splits the partition q1_1999 into two resulting partitions: q1_1999_
jan_feb and q1_1999_feb_mar . Both partitions inherit their subpartition

descriptions from the original partition. The individual partitions have new

physical attributes, including tablespaces, specified at the partition level. These new

attributes become the default attributes of the new partitions. This operation is run

with parallelism of degree 5.

The ALTER TABLE ... SPLIT PARTITION statement provides no means of

specifically naming subpartitions resulting from the split of a partition in a

composite partitioned table. However, for those subpartitions in the parent partition

with names of the form "partition name_subpartition name", Oracle generates

corresponding names in the newly created subpartitions using the new partition

Maintaining Partitioned Tables

17-56 Oracle9i Database Administrator’s Guide

names. All other subpartitions are assigned system generated names of the form

SYS_SUBPn. System generated names are also assigned for the subpartitions of any

partition resulting from the split for which a name is not specified. Unnamed

partitions are assigned a system generated partition name of the form SYS_Pn.

The following query displays the subpartition names resulting from the previous

split partition operation on table quarterly_regional_sales . It also reflects the

results of other operations performed on this table in preceding sections of this

chapter since it’s creation in "When to Use the Composite Range-List Partitioning

Method" on page 17-8.

SQL> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLESPACE_NAME
 2 FROM DBA_TAB_SUBPARTITIONS WHERE TABLE_NAME='QUARTERLY_REGIONAL_SALES'
 3 ORDER BY PARTITION_NAME;

PARTITION_NAME SUBPARTITION_NAME TABLESPACE_NAME
-------------------- ------------------------------ ---------------
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_WEST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTH TS2
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_WEST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTH TS1
Q1_2000 Q1_2000_NORTHWEST TS3
Q1_2000 Q1_2000_SOUTHWEST TS3
Q1_2000 Q1_2000_NORTHEAST TS3
Q1_2000 Q1_2000_SOUTHEAST TS3
Q1_2000 Q1_2000_NORTHCENTRAL TS3
Q1_2000 Q1_2000_SOUTHCENTRAL TS3
Q2_1999 Q2_1999_NORTHWEST TS4
Q2_1999 Q2_1999_SOUTHWEST TS4
Q2_1999 Q2_1999_NORTHEAST TS4
Q2_1999 Q2_1999_SOUTHEAST TS4
Q2_1999 Q2_1999_NORTHCENTRAL TS4
Q2_1999 Q2_1999_SOUTHCENTRAL TS4
Q3_1999 Q3_1999_NORTHWEST TS4
Q3_1999 Q3_1999_SOUTHWEST TS4
Q3_1999 Q3_1999_NORTHEAST TS4
Q3_1999 Q3_1999_SOUTHEAST TS4

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-57

Q3_1999 Q3_1999_NORTHCENTRAL TS4
Q3_1999 Q3_1999_SOUTHCENTRAL TS4
Q4_1999 Q4_1999_NORTHWEST TS4
Q4_1999 Q4_1999_SOUTHWEST TS4
Q4_1999 Q4_1999_NORTHEAST TS4
Q4_1999 Q4_1999_SOUTHEAST TS4
Q4_1999 Q4_1999_NORTHCENTRAL TS4
Q4_1999 Q4_1999_SOUTHCENTRAL TS4

36 rows selected.

Splitting a Range-List Subpartition Splitting a list subpartition of a range-list

partitioned table is similar to what is described in "Splitting a Partition of a

List-Partitioned Table" on page 17-53, but the syntax is that of SUBPARTITION
rather than PARTITION. For example, the following statement splits a subpartition

of the quarterly_regional_sales table:

ALTER TABLE quarterly_regional_sales SPLIT SUBPARTITION q2_1999_southwest
 VALUES ('UT') INTO
 (SUBPARTITION q2_1999_utah
 TABLESPACE ts2,
 SUBPARTITION q2_1999_southwest
 TABLESPACE ts3
)
 PARALLEL;

This operation splits the subpartition q2_1999_southwest into two subpartitions:

■ q2_1999_utah with literal-value list of ('UT')

■ q2_1999_southwest which inherits the remaining literal-value list of

('AZ','NM')

The individual subpartitions have new physical attributes that are inherited from

the subpartition being split.

Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split

only when you split a partition in the underlying table. However, you can split a

global index partition as is done in the following example:

ALTER INDEX quon1 SPLIT
 PARTITION canada AT (100) INTO
 PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;

Maintaining Partitioned Tables

17-58 Oracle9i Database Administrator’s Guide

ALTER INDEX quon1 REBUILD PARTITION canada2;

The index being split can contain index data, and the resulting partitions do not

require rebuilding, unless the original partition was previously marked UNUSABLE.

Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations
Oracle implements a SPLIT PARTITION operation by creating two new partitions

and redistributing the rows from the partition being split into the two new

partitions. This is an expensive operation because it is necessary to scan all the rows

of the partition being split and then insert them one-by-one into the new partitions.

Local index partitions corresponding to the new partitions also need to be rebuilt.

Further if you do not use the UPDATE GLOBAL INDEXES clause, global indexes

also require rebuilding.

Sometimes after a split operation, one of the new partitions contains all of the rows

from the partition being split, while the other partition contains no rows. This is

often the case when splitting the first partition of a table. Oracle can detect such

situations and optimize the split operation. This optimization results in a fast split

operation that behaves like an add partition operation.

Specifically, Oracle can optimize and speed up SPLIT PARTITION operations if

two conditions are met:

■ One of the two resulting partitions must be empty.

■ The non-empty resulting partition must have storage characteristics identical to

those of the partition being split. Specifically:

– If the partition being split is composite, then the storage characteristics of

each subpartition in the new non-empty resulting partition must be

identical to those of the subpartitions of the partition being split.

– If the partition being split contains a LOB column, then the storage

characteristics of each LOB (sub)partition in the new non-empty resulting

partition must be identical to those of the LOB (sub)partitions of the

partition being split.

If both of these conditions are met after the split, then all global indexes remain

usable, even if you did not specify the UPDATE GLOBAL INDEXESclause. Local index

(sub)partitions associated with both resulting partitions remain usable if they were

usable before the split. Local index (sub)partition(s) corresponding to the

non-empty resulting partition will be identical to the local index (sub)partition(s) of

the partition that was split.

The same optimization holds for SPLIT SUBPARTITION operations.

Maintaining Partitioned Tables

Managing Partitioned Tables and Indexes 17-59

Truncating Partitions
Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows

from a table partition. Truncating a partition is similar to dropping a partition,

except that the partition is emptied of its data, but not physically dropped.

You cannot truncate an index partition. However, if there are local indexes defined

for the table, the ALTER TABLE TRUNCATE PARTITION statement truncates the

matching partition in each local index. Unless you specify UPDATE GLOBAL
INDEXES (cannot be specified for index-organized tables), any global indexes, or all

partitions of partitioned global indexes, are marked UNUSABLE and must be rebuilt.

Truncating a Table Partition
Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows

from a table partition, with or without reclaiming space.

Truncating Table Partitions Containing Data and Global Indexes If the partition contains

data and global indexes, use one of the following methods to truncate the table

partition.

Method 1:

Leave the global indexes in place during the ALTER TABLE TRUNCATE
PARTITION statement. In this example, table sales has a global index sales_
area_ix , which is rebuilt.

ALTER TABLE sales TRUNCATE PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

This method is most appropriate for large tables where the partition being

truncated contains a significant percentage of the total data in the table.

Method 2:

Issue the DELETE statement to delete all rows from the partition before you

issue the ALTER TABLE ... TRUNCATE PARTITION statement. The DELETE
statement updates the global indexes, and also fires triggers and generates redo

and undo logs.

For example, to truncate the first partition, which has a partition bound of

10000, issue the following statements:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales TRUNCATE PARTITION dec98;

Maintaining Partitioned Tables

17-60 Oracle9i Database Administrator’s Guide

This method is most appropriate for small tables, or for large tables when the

partition being truncated contains a small percentage of the total data in the

table.

Method 3:

Specify UPDATE GLOBAL INDEXES in the ALTER TABLE statement. This

causes the global index to be truncated at the time the partition is truncated.

ALTER TABLE sales TRUNCATE PARTITION dec98
 UPDATE GLOBAL INDEXES;

Truncating a Partition Containing Data and Referential Integrity Constraints If a partition

contains data and has referential integrity constraints, choose either of the following

methods to truncate the table partition.

Method 1:

Disable the integrity constraints, issue the ALTER TABLE ... TRUNCATE
PARTITION statement, then re-enable the integrity constraints:

ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales TRUNCATE PARTITTION dec94;
ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

This method is most appropriate for large tables where the partition being

truncated contains a significant percentage of the total data in the table.

Method 2:

Issue the DELETE statement to delete all rows from the partition before you

issue the ALTER TABLE ... TRUNCATE PARTITION statement. The DELETE
statement enforces referential integrity constraints, and also fires triggers and

generates redo and undo log.

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales TRUNCATE PARTITION dec94;

Note: You can substantially reduce the amount of logging by

setting the NOLOGGING attribute (using ALTER TABLE ...
MODIFY PARTITION ... NOLOGGING) for the partition before

deleting all of its rows.

Partitioned Tables and Indexes Examples

Managing Partitioned Tables and Indexes 17-61

This method is most appropriate for small tables, or for large tables when the

partition being truncated contains a small percentage of the total data in the

table.

Truncating a Subpartition
You use the ALTER TABLE ... TRUNCATE SUBPARTITION statement to

remove all rows from a subpartition of a composite partitioned table.

Corresponding local index subpartitions are also truncated.

The following statement shows how to truncate data in a subpartition of a table. In

this example, the space occupied by the deleted rows is made available for use by

other schema objects in the tablespace.

ALTER TABLE diving
 TRUNCATE SUBPARTITION us_locations
 DROP STORAGE;

Partitioned Tables and Indexes Examples
This section presents some examples for working with partitioned tables and

indexes.

Moving the Time Window in a Historical Table
A historical table describes the business transactions of an enterprise over intervals

of time. Historical tables can be base tables, which contain base information; for

example, sales, checks, and orders. Historical tables can also be rollup tables, which

contain summary information derived from the base information using operations

such as GROUP BY, AVERAGE, or COUNT.

The time interval in a historical table is often a rolling window. DBAs periodically

delete sets of rows that describe the oldest transactions, and in turn allocate space

for sets of rows that describe the most recent transactions. For example, at the close

of business on April 30, 1995, the DBA deletes the rows (and supporting index

entries) that describe transactions from April 1994, and allocates space for the April

1995 transactions.

Now consider a specific example. You have a table, order , which contains 13

months of transactions: a year of historical data in addition to orders for the current

month. There is one partition for each month. These monthly partitions are named

order_ yymm, as are the tablespaces in which they reside.

Partitioned Tables and Indexes Examples

17-62 Oracle9i Database Administrator’s Guide

The order table contains two local indexes, order_ix_onum , which is a local,

prefixed, unique index on the order number, and order_ix_supp , which is a

local, non-prefixed index on the supplier number. The local index partitions are

named with suffixes that match the underlying table. There is also a global unique

index, order_ix_cust , for the customer name. order_ix_cust contains three

partitions, one for each third of the alphabet. So on October 31, 1994, change the

time window on order as follows:

1. Back up the data for the oldest time interval.

ALTER TABLESPACE order_9310 BEGIN BACKUP;
...
ALTER TABLESPACE order_9310 END BACKUP;

2. Drop the partition for the oldest time interval.

ALTER TABLE order DROP PARTITION order_9310;

3. Add the partition to the most recent time interval.

ALTER TABLE order ADD PARTITION order_9411;

4. Recreate the global index partitions.

ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_AH;
ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_IP;
ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_QZ;

Ordinarily, Oracle acquires sufficient locks to ensure that no operation (DML, DDL,

or utility) interferes with an individual DDL statement, such as ALTER TABLE ...
DROP PARTITION. However, if the partition maintenance operation requires

several steps, it is the DBA’s responsibility to ensure that applications (or other

maintenance operations) do not interfere with the multi-step operation in progress.

Some methods for doing this are:

■ Bring down all user-level applications during a well-defined batch window.

■ Ensure that no one is able to access table order by revoking access privileges

from a role that is used in all applications.

Converting a Partition View into a Partitioned Table
This scenario describes how to convert a partition view (also called "manual

partition") into a partitioned table. The partition view is defined as follows:

CREATE VIEW accounts AS

Partitioned Tables and Indexes Examples

Managing Partitioned Tables and Indexes 17-63

 SELECT * FROM accounts_jan98
 UNION ALL
 SELECT * FROM accounts_feb98
 UNION ALL
 ...
 SELECT * FROM accounts_dec98;

To incrementally migrate the partition view to a partitioned table, follow these

steps:

1. Initially, only the two most recent partitions, accounts_nov98 and

accounts_dec98 , will be migrated from the view to the table by creating the

partitioned table. Each partition gets a segment of two blocks (as a placeholder).

CREATE TABLE accounts_new (...)
 TABLESPACE ts_temp STORAGE (INITIAL 2)
 PARTITION BY RANGE (opening_date)
 (PARTITION jan98 VALUES LESS THAN ('01-FEB-1998'),
 ...
 PARTITION dec98 VALUES LESS THAN ('01-JAN-1999'));

2. Use the EXCHANGE PARTITION statement to migrate the tables to the

corresponding partitions.

ALTER TABLE accounts_new
 EXCHANGE PARTITION nov98 WITH TABLE
 accounts_nov98 WITH VALIDATION;

ALTER TABLE accounts_new
 EXCHANGE PARTITION dec98 WITH TABLE
 accounts_dec98 WITH VALIDATION;

So now the placeholder data segments associated with the nov98 and dec98
partitions have been exchanged with the data segments associated with the

accounts_nov98 and accounts_dec98 tables.

3. Redefine the accounts view.

CREATE OR REPLACE VIEW accounts AS
 SELECT * FROM accounts_jan98
 UNION ALL
 SELECT * FROM accounts_feb_98
 UNION ALL
 ...
 UNION ALL
 SELECT * FROM accounts_new PARTITION (nov98)

Viewing Information About Partitioned Tables and Indexes

17-64 Oracle9i Database Administrator’s Guide

 UNION ALL
 SELECT * FROM accounts_new PARTITION (dec98);

4. Drop the accounts_nov98 and accounts_dec98 tables, which own the

placeholder segments that were originally attached to the nov98 and dec98
partitions.

5. After all the tables in the UNION ALL view are converted into partitions, drop

the view and rename the partitioned to the name of the view being dropped.

DROP VIEW accounts;
RENAME accounts_new TO accounts;

Viewing Information About Partitioned Tables and Indexes
The following views display information specific to partitioned tables and indexes:

View Description

DBA_PART_TABLES

ALL_PART_TABLES

USER_PART_TABLES

DBA view displays partitioning information for all partitioned tables
in the database. ALL view displays partitioning information for all
partitioned tables accessible to the user. USER view is restricted to
partitioning information for partitioned tables owned by the user.

DBA_TAB_PARTITIONS

ALL_TAB_PARTITIONS

USER_TAB_PARTITIONS

Display partition-level partitioning information, partition storage
parameters, and partition statistics generated by the DBMS_STATS
package or the ANALYZE statement.

DBA_TAB_SUBPARTITIONS

ALL_TAB_SUBPARTITIONS

USER_TAB_SUBPARTITIONS

Display subpartition-level partitioning information, subpartition
storage parameters, and subpartition statistics generated by the
DBMS_STATS package or the ANALYZE statement.

DBA_PART_KEY_COLUMNS

ALL_PART_KEY_COLUMNS

USER_PART_KEY_COLUMNS

Display the partitioning key columns for partitioned tables.

DBA_SUBPART_KEY_COLUMNS

ALL_SUBPART_KEY_COLUMNS

USER_SUBPART_KEY_COLUMNS

Display the subpartitioning key columns for composite-partitioned
tables (and local indexes on composite-partitioned tables).

DBA_PART_COL_STATISTICS

ALL_PART_COL_STATISTICS

USER_PART_COL_STATISTICS

Display column statistics and histogram information for the partitions
of tables.

Viewing Information About Partitioned Tables and Indexes

Managing Partitioned Tables and Indexes 17-65

DBA_SUBPART_COL_STATISTICS

ALL_SUBPART_COL_STATISTICS

USER_SUBPART_COL_STATISTICS

Display column statistics and histogram information for subpartitions
of tables.

DBA_PART_HISTOGRAMS

ALL_PART_HISTOGRAMS

USER_PART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table partitions.

DBA_SUBPART_HISTOGRAMS

ALL_SUBPART_HISTOGRAMS

USER_SUBPART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table subpartitions.

DBA_PART_INDEXES

ALL_PART_INDEXES

USER_PART_INDEXES

Display partitioning information for partitioned indexes.

DBA_IND_PARTITIONS

ALL_IND_PARTITIONS

USER_IND_PARTITIONS

Display the following for index partitions: partition-level partitioning
information, storage parameters for the partition, statistics collected
by the DBMS_STATS package or the ANALYZE statement.

DBA_IND_SUBPARTITIONS

ALL_IND_SUBPARTITIONS

USER_IND_SUBPARTITIONS

Display the following for index subpartitions: partition-level
partitioning information, storage parameters for the partition,
statistics collected by the DBMS_STATS package or the ANALYZE
statement.

See Also:

■ Oracle9i Database Reference for complete descriptions of these

views

■ Oracle9i Database Performance Planning and Oracle9i Database
Performance Tuning Guide and Reference for information about

histograms and generating statistics for tables

■ "Analyzing Tables, Indexes, and Clusters" on page 21-3

View Description

Viewing Information About Partitioned Tables and Indexes

17-66 Oracle9i Database Administrator’s Guide

Managing Clusters 18-1

18
Managing Clusters

This chapter describes aspects of managing clusters. It contains the following topics

relating to the management of indexed clusters, clustered tables, and cluster

indexes:

■ Guidelines for Managing Clusters

■ Creating Clusters

■ Altering Clusters

■ Dropping Clusters

■ Viewing Information About Clusters

See Also:

■ Chapter 19, "Managing Hash Clusters" for a description of

another type of cluster: a hash cluster

■ Chapter 14, "Managing Space for Schema Objects" is

recommended reading before attempting tasks described in this

chapter

Guidelines for Managing Clusters

18-2 Oracle9i Database Administrator’s Guide

Guidelines for Managing Clusters
A cluster provides an optional method of storing table data. A cluster is made up of

a group of tables that share the same data blocks. The tables are grouped together

because they share common columns and are often used together. For example, the

empand dept table share the deptno column. When you cluster the empand dept
tables (see Figure 18–1), Oracle physically stores all rows for each department from

both the emp and dept tables in the same data blocks.

Because clusters store related rows of different tables together in the same data

blocks, properly used clusters offer two primary benefits:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ The cluster key is the column, or group of columns, that the clustered tables

have in common. You specify the columns of the cluster key when creating the

cluster. You subsequently specify the same columns when creating every table

added to the cluster. Each cluster key value is stored only once each in the

cluster and the cluster index, no matter how many rows of different tables

contain the value.

Therefore, less storage might be required to store related table and index data in

a cluster than is necessary in non-clustered table format. For example, in

Figure 18–1, notice how each cluster key (each deptno) is stored just once for

many rows that contain the same value in both the emp and dept tables.

After creating a cluster, you can create tables in the cluster. However, before any

rows can be inserted into the clustered tables, a cluster index must be created. Using

clusters does not affect the creation of additional indexes on the clustered tables;

they can be created and dropped as usual.

 You should not use clusters for tables that are frequently accessed individually.

Guidelines for Managing Clusters

Managing Clusters 18-3

Figure 18–1 Clustered Table Data

Related data stored
together, more

efficiently

Related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTO)

ENAMEEMPNO

932
1000
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table

Guidelines for Managing Clusters

18-4 Oracle9i Database Administrator’s Guide

The following sections describe guidelines to consider when managing clusters, and

contains the following topics:

■ Choose Appropriate Tables for the Cluster

■ Choose Appropriate Columns for the Cluster Key

■ Specify Data Block Space Use

■ Specify the Space Required by an Average Cluster Key and Its Associated Rows

■ Specify the Location of Each Cluster and Cluster Index Rows

■ Estimate Cluster Size and Set Storage Parameters

Choose Appropriate Tables for the Cluster
Use clusters for tables for which the following conditions are true:

■ The tables are primarily queried--that is, tables that are not predominantly

inserted into or updated.

■ Records from the tables are frequently queried together or joined.

Choose Appropriate Columns for the Cluster Key
Choose cluster key columns carefully. If multiple columns are used in queries that

join the tables, make the cluster key a composite key. In general, the characteristics

that indicate a good cluster index are the same as those for any index. For

information about characteristics of a good index, see "Guidelines for Managing

Indexes" on page 16-2.

A good cluster key has enough unique values so that the group of rows

corresponding to each key value fills approximately one data block. Having too few

rows for each cluster key value can waste space and result in negligible

performance gains. Cluster keys that are so specific that only a few rows share a

common value can cause wasted space in blocks, unless a small SIZE was specified

at cluster creation time (see "Specify the Space Required by an Average Cluster Key

and Its Associated Rows" on page 18-5).

See Also:

■ Oracle9i Database Concepts for more information about clusters

■ Oracle9i Database Performance Tuning Guide and Reference for

guidelines on when to use clusters

Guidelines for Managing Clusters

Managing Clusters 18-5

Too many rows for each cluster key value can cause extra searching to find rows for

that key. Cluster keys on values that are too general (for example, male and

female) result in excessive searching and can result in worse performance than

with no clustering.

A cluster index cannot be unique or include a column defined as long .

Specify Data Block Space Use
By specifying the PCTFREE and PCTUSED parameters during the creation of a

cluster, you can affect the space utilization and amount of space reserved for

updates to the current rows in the data blocks of a cluster’s data segment. PCTFREE
and PCTUSED parameters specified for tables created in a cluster are ignored;

clustered tables automatically use the settings specified for the cluster.

Specify the Space Required by an Average Cluster Key and Its Associated Rows
The CREATE CLUSTER statement has an optional argument, SIZE , which is the

estimated number of bytes required by an average cluster key and its associated

rows. Oracle uses the SIZE parameter when performing the following tasks:

■ Estimating the number of cluster keys (and associated rows) that can fit in a

clustered data block

■ Limiting the number of cluster keys placed in a clustered data block. This

maximizes the storage efficiency of keys within a cluster.

SIZE does not limit the space that can be used by a given cluster key. For example,

if SIZE is set such that two cluster keys can fit in one data block, any amount of the

available data block space can still be used by either of the cluster keys.

By default, Oracle stores only one cluster key and its associated rows in each data

block of the cluster’s data segment. Although block size can vary from one

operating system to the next, the rule of one key for each block is maintained as

clustered tables are imported to other databases on other machines.

If all the rows for a given cluster key value cannot fit in one block, the blocks are

chained together to speed access to all the values with the given key. The cluster

index points to the beginning of the chain of blocks, each of which contains the

cluster key value and associated rows. If the cluster SIZE is such that more than

one key fits in a block, blocks can belong to more than one chain.

See Also: "Managing Space in Data Blocks" on page 14-2 for

information about setting the PCTFREE and PCTUSED parameters

Creating Clusters

18-6 Oracle9i Database Administrator’s Guide

Specify the Location of Each Cluster and Cluster Index Rows
If you have the proper privileges and tablespace quota, you can create a new cluster

and the associated cluster index in any tablespace that is currently online. Always

specify the TABLESPACE option in a CREATE CLUSTER/INDEX statement to

identify the tablespace to store the new cluster or index.

The cluster and its cluster index can be created in different tablespaces. In fact,

creating a cluster and its index in different tablespaces that are stored on different

storage devices allows table data and index data to be retrieved simultaneously

with minimal disk contention.

Estimate Cluster Size and Set Storage Parameters
The following are benefits of estimating a cluster’s size before creating it:

■ You can use the combined estimated size of clusters, along with estimates for

indexes, rollback segments, and redo log files, to determine the amount of disk

space that is required to hold an intended database. From these estimates, you

can make correct hardware purchases and other decisions.

■ You can use the estimated size of an individual cluster to better manage the

disk space that the cluster will use. When a cluster is created, you can set

appropriate storage parameters and improve I/O performance of applications

that use the cluster.

Whether or not you estimate table size before creation, you can explicitly set storage

parameters when creating each non-clustered table. Any storage parameter that you

do not explicitly set when creating or subsequently altering a table automatically

uses the corresponding default storage parameter set for the tablespace in which the

table resides. Clustered tables also automatically use the storage parameters of the

cluster.

Creating Clusters
To create a cluster in your schema, you must have the CREATE CLUSTER system

privilege and a quota for the tablespace intended to contain the cluster or the

UNLIMITED TABLESPACE system privilege.

To create a cluster in another user’s schema you must have the CREATE ANY
CLUSTER system privilege, and the owner must have a quota for the tablespace

intended to contain the cluster or the UNLIMITED TABLESPACE system privilege.

Creating Clusters

Managing Clusters 18-7

You create a cluster using the CREATE CLUSTER statement. The following

statement creates a cluster named emp_dept , which stores the emp and dept
tables, clustered by the deptno column:

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 PCTUSED 80
 PCTFREE 5
 SIZE 600
 TABLESPACE users
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 33);

If no INDEX keyword is specified, as is true in this example, an index cluster is

created by default. You can also create a HASH cluster, when hash parameters

(HASHKEYS, HASH IS , or SINGLE TABLE HASHKEYS) are specified. Hash clusters

are described in Chapter 19, "Managing Hash Clusters".

Creating Clustered Tables
To create a table in a cluster, you must have either the CREATE TABLE or CREATE
ANY TABLE system privilege. You do not need a tablespace quota or the

UNLIMITED TABLESPACE system privilege to create a table in a cluster.

You create a table in a cluster using the CREATE TABLE statement with the

CLUSTER option. The emp and dept tables can be created in the emp_dept cluster

using the following statements:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 . . .
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY, . . .)
 CLUSTER emp_dept (deptno);

See Also: Oracle9i SQL Reference for a more complete description

of syntax, restrictions, and authorizations required for the SQL

statements presented in this chapter

Altering Clusters

18-8 Oracle9i Database Administrator’s Guide

Creating Cluster Indexes
To create a cluster index, one of the following conditions must be true:

■ Your schema contains the cluster.

■ You have the CREATE ANY INDEX system privilege.

In either case, you must also have either a quota for the tablespace intended to

contain the cluster index, or the UNLIMITED TABLESPACE system privilege.

A cluster index must be created before any rows can be inserted into any clustered

table. The following statement creates a cluster index for the emp_dept cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept
 INITRANS 2
 MAXTRANS 5
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33)
 PCTFREE 5;

The cluster index clause (ON CLUSTER) identifies the cluster, emp_dept , for which

the cluster index is being created. The statement also explicitly specifies several

storage settings for the cluster and cluster index.

Altering Clusters
To alter a cluster, your schema must contain the cluster or you must have the ALTER
ANY CLUSTER system privilege. You can alter an existing cluster to change the

following settings:

■ Physical attributes (PCTFREE, PCTUSED, INITRANS , MAXTRANS, and storage

characteristics)

Note: You can specify the schema for a clustered table in the

CREATE TABLE statement. A clustered table can be in a different

schema than the schema containing the cluster. Also, the names of

the columns are not required to match, but their structure must

match.

Altering Clusters

Managing Clusters 18-9

■ The average amount of space required to store all the rows for a cluster key

value (SIZE)

■ The default degree of parallelism

Additionally, you can explicitly allocate a new extent for the cluster, or deallocate

any unused extents at the end of the cluster. Oracle dynamically allocates additional

extents for the data segment of a cluster as required. In some circumstances,

however, you might want to explicitly allocate an additional extent for a cluster. For

example, when using Oracle9i Real Application Clusters, you can allocate an extent

of a cluster explicitly for a specific instance. You allocate a new extent for a cluster

using the ALTER CLUSTER statement with the ALLOCATE EXTENT clause.

When you alter data block space usage parameters (PCTFREE and PCTUSED) or the

cluster size parameter (SIZE) of a cluster, the new settings apply to all data blocks

used by the cluster, including blocks already allocated and blocks subsequently

allocated for the cluster. Blocks already allocated for the table are reorganized when

necessary (not immediately).

When you alter the transaction entry settings (INITRANS and MAXTRANS) of a

cluster, a new setting for INITRANS applies only to data blocks subsequently

allocated for the cluster, while a new setting for MAXTRANS applies to all blocks

(already and subsequently allocated blocks) of a cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new

settings for the other storage parameters affect only extents subsequently allocated

for the cluster.

To alter a cluster, use the ALTER CLUSTER statement. The following statement

alters the emp_dept cluster:

ALTER CLUSTER emp_dept
 PCTFREE 30
 PCTUSED 60;

Altering Clustered Tables
You can alter clustered tables using the ALTER TABLE statement. However, any

data block space parameters, transaction entry parameters, or storage parameters

you set in an ALTER TABLE statement for a clustered table generate an error

message (ORA-01771, illegal option for a clustered table). Oracle

See Also: Oracle9i Real Application Clusters Administration for

specific uses of the ALTER CLUSTER statement in an Oracle Real

Application Clusters environment

Dropping Clusters

18-10 Oracle9i Database Administrator’s Guide

uses the parameters of the cluster for all clustered tables. Therefore, you can use the

ALTER TABLE statement only to add or modify columns, drop non-cluster key

columns, or add, drop, enable, or disable integrity constraints or triggers for a

clustered table. For information about altering tables, see "Altering Tables" on

page 15-10.

Altering Cluster Indexes
You alter cluster indexes exactly as you do other indexes. See "Altering Indexes" on

page 16-19.

Dropping Clusters
A cluster can be dropped if the tables within the cluster are no longer necessary.

When a cluster is dropped, so are the tables within the cluster and the

corresponding cluster index. All extents belonging to both the cluster’s data

segment and the index segment of the cluster index are returned to the containing

tablespace and become available for other segments within the tablespace.

To drop a cluster that contains no tables, and its cluster index, use the DROP
CLUSTER statement. For example, the following statement drops the empty cluster

named emp_dept :

DROP CLUSTER emp_dept;

If the cluster contains one or more clustered tables and you intend to drop the tables

as well, add the INCLUDING TABLES option of the DROP CLUSTER statement, as

follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

If the INCLUDING TABLES option is not included and the cluster contains tables,

an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced

by FOREIGN KEY constraints of tables outside the cluster, the cluster cannot be

dropped unless the dependent FOREIGN KEY constraints are also dropped. This

Note: When estimating the size of cluster indexes, remember that

the index is on each cluster key, not the actual rows. Therefore, each

key appears only once in the index.

Viewing Information About Clusters

Managing Clusters 18-11

can be easily done using the CASCADE CONSTRAINTS option of the DROP
CLUSTER statement, as shown in the following example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Oracle returns an error if you do not use the CASCADE CONSTRAINTS option and

constraints exist.

Dropping Clustered Tables
To drop a cluster, your schema must contain the cluster or you must have the DROP
ANY CLUSTER system privilege. You do not need additional privileges to drop a

cluster that contains tables, even if the clustered tables are not owned by the owner

of the cluster.

Clustered tables can be dropped individually without affecting the table’s cluster,

other clustered tables, or the cluster index. A clustered table is dropped just as a

non-clustered table is dropped—with the DROP TABLE statement. See "Dropping

Tables" on page 15-23.

Dropping Cluster Indexes
A cluster index can be dropped without affecting the cluster or its clustered tables.

However, clustered tables cannot be used if there is no cluster index; you must

re-create the cluster index to allow access to the cluster. Cluster indexes are

sometimes dropped as part of the procedure to rebuild a fragmented cluster index.

For information about dropping an index, see "Dropping Indexes" on page 16-22.

Viewing Information About Clusters
The following views display information about clusters:

Note: When you drop a single table from a cluster, Oracle deletes

each row of the table individually. To maximize efficiency when

you intend to drop an entire cluster, drop the cluster including all

tables by using the DROP CLUSTERstatement with the INCLUDING
TABLES option. Drop an individual table from a cluster (using the

DROP TABLE statement) only if you want the rest of the cluster to

remain.

Viewing Information About Clusters

18-12 Oracle9i Database Administrator’s Guide

View Description

DBA_CLUSTERS

ALL_CLUSTERS

USER_CLUSTERS

DBA view describes all clusters in the database. ALL view describes all
clusters accessible to the user. USER view is restricted to clusters owned by
the user. Some columns in these views contain statistics that are generated by
the DBMS_STATS package or ANALYZE statement.

DBA_CLU_COLUMNS

USER_CLU_COLUMNS

These views map table columns to cluster columns

See Also: Oracle9i Database Reference for complete descriptions of

these views

Managing Hash Clusters 19-1

19
Managing Hash Clusters

This chapter describes how to manage hash clusters, and contains the following

topics:

■ When to Use Hash Clusters

■ Creating Hash Clusters

■ Altering Hash Clusters

■ Dropping Hash Clusters

■ Viewing Information About Hash Clusters

See Also: Chapter 14, "Managing Space for Schema Objects" is

recommended reading before attempting tasks described in this

chapter.

When to Use Hash Clusters

19-2 Oracle9i Database Administrator’s Guide

When to Use Hash Clusters
Storing a table in a hash cluster is an optional way to improve the performance of

data retrieval. A hash cluster provides an alternative to a nonclustered table with an

index or an index cluster. With an indexed table or index cluster, Oracle locates the

rows in a table using key values that Oracle stores in a separate index. To use

hashing, you create a hash cluster and load tables into it. Oracle physically stores

the rows of a table in a hash cluster and retrieves them according to the results of a

hash function.

Oracle uses a hash function to generate a distribution of numeric values, called

hash values, that are based on specific cluster key values. The key of a hash cluster,

like the key of an index cluster, can be a single column or composite key (multiple

column key). To find or store a row in a hash cluster, Oracle applies the hash

function to the row’s cluster key value. The resulting hash value corresponds to a

data block in the cluster, which Oracle then reads or writes on behalf of the issued

statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are

usually more) I/Os must be performed:

■ One or more I/Os to find or store the key value in the index

■ Another I/O to read or write the row in the table or cluster

In contrast, Oracle uses a hash function to locate a row in a hash cluster; no I/O is

required. As a result, a minimum of one I/O operation is necessary to read or write

a row in a hash cluster.

This section helps you decide when to use hash clusters by contrasting situations

where hashing is most useful against situations where there is no advantage. If you

find your decision is to use indexing rather than hashing, then you should consider

whether to store a table individually or as part of a cluster.

Note: Even if you decide to use hashing, a table can still have

separate indexes on any columns, including the cluster key.

See Also:

■ Oracle9i Database Concepts for more information about hash

clusters

■ Oracle9i Application Developer’s Guide - Fundamentals for

additional recommendations on the use of hash clusters

When to Use Hash Clusters

Managing Hash Clusters 19-3

Situations Where Hashing Is Useful
Hashing is useful when you have the following conditions:

■ Most queries are equality queries on the cluster key:

SELECT ... WHERE cluster_key = ...;

In such cases, the cluster key in the equality condition is hashed, and the

corresponding hash key is usually found with a single read. In comparison, for

an indexed table the key value must first be found in the index (usually several

reads), and then the row is read from the table (another read).

■ The tables in the hash cluster are primarily static in size so that you can

determine the number of rows and amount of space required for the tables in

the cluster. If tables in a hash cluster require more space than the initial

allocation for the cluster, performance degradation can be substantial because

overflow blocks are required.

Situations Where Hashing Is Not Advantageous
Hashing is not advantageous in the following situations:

■ Most queries on the table retrieve rows over a range of cluster key values. For

example, in full table scans or queries such as the following, a hash function

cannot be used to determine the location of specific hash keys. Instead, the

equivalent of a full table scan must be done to fetch the rows for the query.

SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that

satisfy the WHERE clause of a query can be found with relatively few I/Os.

■ The table is not static, but instead is continually growing. If a table grows

without limit, the space required over the life of the table (its cluster) cannot be

predetermined.

■ Applications frequently perform full-table scans on the table and the table is

sparsely populated. A full-table scan in this situation takes longer under

hashing.

■ You cannot afford to preallocate the space that the hash cluster will eventually

need.

Creating Hash Clusters

19-4 Oracle9i Database Administrator’s Guide

Creating Hash Clusters
A hash cluster is created using a CREATE CLUSTER statement, but you specify a

HASHKEYS clause. The following example contains a statement to create a cluster

named trial_cluster that stores the trial table, clustered by the trialno
column (the cluster key); and another statement creating a table in the cluster.

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
 PCTUSED 80
 PCTFREE 5
 TABLESPACE users
 STORAGE (INITIAL 250K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 3
 PCTINCREASE 0)
 HASH IS trialno HASHKEYS 150;

CREATE TABLE trial (
 trialno NUMBER(5,0) PRIMARY KEY,
 ...)
 CLUSTER trial_cluster (trialno);

As with index clusters, the key of a hash cluster can be a single column or a

composite key (multiple column key). In this example, it is a single column.

The HASHKEYS value, in this case 150, specifies and limits the number of unique

hash values that can be generated by the hash function used by the cluster. Oracle

rounds the number specified to the nearest prime number.

If no HASH IS clause is specified, Oracle uses an internal hash function. If the

cluster key is already a unique identifier that is uniformly distributed over its range,

you can bypass the internal hash function and specify the cluster key as the hash

value, as is the case in the above example. You can also use the HASH IS clause to

specify a user-defined hash function.

You cannot create a cluster index on a hash cluster, and you need not create an

index on a hash cluster key.

For additional information about creating tables in a cluster, guidelines for setting

parameters of the CREATE CLUSTERstatement common to index and hash

clusters, and the privileges required to create any cluster, see Chapter 18,

"Managing Clusters". The following sections explain and provide guidelines for

setting the parameters of the CREATE CLUSTER statement specific to hash clusters:

■ Creating Single-Table Hash Clusters

■ Controlling Space Use Within a Hash Cluster

Creating Hash Clusters

Managing Hash Clusters 19-5

■ Estimating Size Required by Hash Clusters

Creating Single-Table Hash Clusters
You can also create a single-table hash cluster, which provides fast access to rows

in a table. However, this table must be the only table in the hash cluster. Essentially,

there must be a one-to-one mapping between hash keys and data rows. The

following statement creates a single-table hash cluster named peanut with the

cluster key variety :

CREATE CLUSTER peanut (variety NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;

Oracle rounds the HASHKEY value up to the nearest prime number, so this cluster

has a maximum of 503 hash key values, each of size 512 bytes.

Controlling Space Use Within a Hash Cluster
When creating a hash cluster, it is important to choose the cluster key correctly and

set the HASH IS , SIZE , and HASHKEYS parameters so that performance and space

use are optimal. The following guidelines describe how to set these parameters.

Choosing the Key
Choosing the correct cluster key is dependent on the most common types of queries

issued against the clustered tables. For example, consider the emp table in a hash

cluster. If queries often select rows by employee number, the empno column should

be the cluster key. If queries often select rows by department number, the deptno
column should be the cluster key. For hash clusters that contain a single table, the

cluster key is typically the entire primary key of the contained table.

See Also:

■ Oracle9i Database Concepts for a discussion of hash functions

and specifying user-defined hash functions

■ Oracle9i SQL Reference for a more complete description of

syntax, restrictions, and authorizations required for the SQL

statements CREATE CLUSTER and CREATE TABLE

Note: The SINGLE TABLE option is valid only for hash clusters.

HASHKEYS must also be specified.

Creating Hash Clusters

19-6 Oracle9i Database Administrator’s Guide

The key of a hash cluster, like that of an index cluster, can be a single column or a

composite key (multiple column key). A hash cluster with a composite key must

use Oracle’s internal hash function.

Setting HASH IS
Specify the HASH IS parameter only if the cluster key is a single column of the

NUMBER datatype, and contains uniformly distributed integers. If the above

conditions apply, you can distribute rows in the cluster so that each unique cluster

key value hashes, with no collisions (two cluster key values having the same hash

value), to a unique hash value. If these conditions do not apply, omit this option so

that you use the internal hash function.

Setting SIZE
SIZE should be set to the average amount of space required to hold all rows for any

given hash key. Therefore, to properly determine SIZE , you must be aware of the

characteristics of your data:

■ If the hash cluster is to contain only a single table and the hash key values of the

rows in that table are unique (one row for each value), SIZE can be set to the

average row size in the cluster.

■ If the hash cluster is to contain multiple tables, SIZE can be set to the average

amount of space required to hold all rows associated with a representative hash

value.

Further, once you have determined a (preliminary) value for SIZE , consider the

following. If the SIZE value is small (more than four hash keys can be assigned for

each data block) you can use this value for SIZE in the CREATE CLUSTER
statement. However, if the value of SIZE is large (four or fewer hash keys can be

assigned for each data block), then you should also consider the expected frequency

of collisions and whether performance of data retrieval or efficiency of space usage

is more important to you.

■ If the hash cluster does not use the internal hash function (if you specified HASH
IS) and you expect few or no collisions, you can use your preliminary value of

SIZE . No collisions occur and space is used as efficiently as possible.

■ If you expect frequent collisions on inserts, the likelihood of overflow blocks

being allocated to store rows is high. To reduce the possibility of overflow

blocks and maximize performance when collisions are frequent, you should

adjust SIZE as shown in the following chart.

Creating Hash Clusters

Managing Hash Clusters 19-7

Overestimating the value of SIZE increases the amount of unused space in the

cluster. If space efficiency is more important than the performance of data

retrieval, disregard the above adjustments and use the original value for SIZE .

Setting HASHKEYS
For maximum distribution of rows in a hash cluster, Oracle rounds the HASHKEYS
value up to the nearest prime number.

Controlling Space in Hash Clusters: Examples
The following examples show how to correctly choose the cluster key and set the

HASH IS , SIZE , and HASHKEYS parameters. For all examples, assume that the data

block size is 2K and that on average, 1950 bytes of each block is available data space

(block size minus overhead).

Example 1 You decide to load the emp table into a hash cluster. Most queries retrieve

employee records by their employee number. You estimate that the maximum

number of rows in the emptable at any given time is 10000 and that the average row

size is 55 bytes.

In this case, empno should be the cluster key. Since this column contains integers

that are unique, the internal hash function can be bypassed. SIZE can be set to the

average row size, 55 bytes. Note that 34 hash keys are assigned for each data block.

HASHKEYS can be set to the number of rows in the table, 10000. Oracle rounds this

value up to the next highest prime number: 10007.

CREATE CLUSTER emp_cluster (empno
NUMBER)
. . .
SIZE 55
HASH IS empno HASHKEYS 10000;

Available Space for
each Block/Calculated
SIZE Setting for SIZE

1 SIZE

2 SIZE + 15%

3 SIZE + 12%

4 SIZE + 8%

>4 SIZE

Creating Hash Clusters

19-8 Oracle9i Database Administrator’s Guide

Example 2 Conditions similar to the previous example exist. In this case, however,

rows are usually retrieved by department number. At most, there are 1000

departments with an average of 10 employees for each department. Department

numbers increment by 10 (0, 10, 20, 30, . . .).

In this case, deptno should be the cluster key. Since this column contains integers

that are uniformly distributed, the internal hash function can be bypassed. A

preliminary value of SIZE (the average amount of space required to hold all rows

for each department) is 55 bytes * 10, or 550 bytes. Using this value for SIZE , only

three hash keys can be assigned for each data block. If you expect some collisions

and want maximum performance of data retrieval, slightly alter your estimated

SIZE to prevent collisions from requiring overflow blocks. By adjusting SIZE by

12%, to 620 bytes (refer to "Setting SIZE" on page 19-6), there is more space for rows

from expected collisions.

HASHKEYS can be set to the number of unique department numbers, 1000. Oracle

rounds this value up to the next highest prime number: 1009.

CREATE CLUSTER emp_cluster (deptno NUMBER)
. . .
SIZE 620
HASH IS deptno HASHKEYS 1000;

Estimating Size Required by Hash Clusters
As with index clusters, it is important to estimate the storage required for the data

in a hash cluster.

Oracle guarantees that the initial allocation of space is sufficient to store the hash

table according to the settings SIZE and HASHKEYS. If settings for the storage

parameters INITIAL , NEXT, and MINEXTENTS do not account for the hash table

size, incremental (additional) extents are allocated until at least SIZE*HASHKEYS is

reached. For example, assume that the data block size is 2K, the available data space

for each block is approximately 1900 bytes (data block size minus overhead), and

that the STORAGE and HASH parameters are specified in the CREATE CLUSTER
statement as follows:

STORAGE (INITIAL 100K
 NEXT 150K
 MINEXTENTS 1
 PCTINCREASE 0)
SIZE 1500
HASHKEYS 100

Viewing Information About Hash Clusters

Managing Hash Clusters 19-9

In this example, only one hash key can be assigned for each data block. Therefore,

the initial space required for the hash cluster is at least 100*2K or 200K. The settings

for the storage parameters do not account for this requirement. Therefore, an initial

extent of 100K and a second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial

space required for the hash cluster is at least 34*2K or 68K. The initial settings for

the storage parameters are sufficient for this requirement (an initial extent of 100K is

allocated to the hash cluster).

Altering Hash Clusters
You can alter a hash cluster with the ALTER CLUSTER statement:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for altering an

index cluster, described in "Altering Clusters" on page 18-8. However, the SIZE ,

HASHKEYS, and HASH IS parameters cannot be specified in an ALTER CLUSTER
statement. To change these parameters, you must re-create the cluster, then copy the

data from the original cluster.

Dropping Hash Clusters
You can drop a hash cluster using the DROP CLUSTER statement:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the DROP TABLE statement. The

implications of dropping hash clusters and tables in hash clusters are the same as

those for dropping index clusters.

Viewing Information About Hash Clusters
The following views display information about hash clusters:

See Also: "Dropping Clusters" on page 18-10

Viewing Information About Hash Clusters

19-10 Oracle9i Database Administrator’s Guide

View Description

DBA_CLUSTERS

ALL_CLUSTERS

USER_CLUSTERS

DBA view describes all clusters (including hash clusters) in the
database. ALL view describes all clusters accessible to the user.
USER view is restricted to clusters owned by the user. Some
columns in these views contain statistics that are generated by the
DBMS_STATS package or ANALYZE statement.

DBA_CLU_COLUMNS

USER_CLU_COLUMNS

These views map table columns to cluster columns.

DBA_CLUSTER_HASH_EXPRESSIONS

ALL_CLUSTER_HASH_EXPRESSIONS

USER_CLUSTER_HASH_EXPRESSIONS

These views list hash functions for hash clusters.

See Also: Oracle9i Database Reference for complete descriptions of

these views

Managing Views, Sequences, and Synonyms 20-1

20
Managing Views, Sequences, and

Synonyms

This chapter describes the management of views, sequences, and synonyms and

contains the following topics:

■ Managing Views

■ Managing Sequences

■ Managing Synonyms

■ Viewing Information About Views, Synonyms, and Sequences

Managing Views

20-2 Oracle9i Database Administrator’s Guide

Managing Views
A view is a tailored presentation of the data contained in one or more tables (or

other views), and takes the output of a query and treats it as a table. You can think

of a view as a "stored query" or a "virtual table." You can use views in most places

where a table can be used.

This section describes aspects of managing views, and contains the following topics:

■ Creating Views

■ Updating a Join View

■ Altering Views

■ Dropping Views

■ Replacing Views

Creating Views
To create a view, you must meet the following requirements:

■ To create a view in your schema, you must have the CREATE VIEW privilege.

To create a view in another user’s schema, you must have the CREATE ANY
VIEW system privilege. You can acquire these privileges explicitly or through a

role.

■ The owner of the view (whether it is you or another user) must have been

explicitly granted privileges to access all objects referenced in the view

definition. The owner cannot have obtained these privileges through roles. Also,

the functionality of the view is dependent on the privileges of the view’s owner.

For example, if the owner of the view has only the INSERT privilege for Scott’s

emp table, the view can only be used to insert new rows into the emp table, not

to SELECT, UPDATE, or DELETE rows.

■ If the owner of the view intends to grant access to the view to other users, the

owner must have received the object privileges to the base objects with the

GRANT OPTION or the system privileges with the ADMIN OPTION.

You can create views using the CREATE VIEW statement. Each view is defined by a

query that references tables, materialized views, or other views. As with all

subqueries, the query that defines a view cannot contain the FOR UPDATE clause.

The following statement creates a view on a subset of data in the emp table:

CREATE VIEW sales_staff AS
 SELECT empno, ename, deptno

Managing Views

Managing Views, Sequences, and Synonyms 20-3

 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

The query that defines the sales_staff view references only rows in department

10. Furthermore, the CHECK OPTION creates the view with the constraint (named

sales_staff_cnst) that INSERT and UPDATEstatements issued against the view

cannot result in rows that the view cannot select. For example, the following

INSERT statement successfully inserts a row into the emp table by means of the

sales_staff view, which contains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, 'OSTER', 10);

However, the following INSERT statement returns an error because it attempts to

insert a row for department number 30, which cannot be selected using the sales_
staff view:

INSERT INTO sales_staff VALUES (7591, 'WILLIAMS', 30);

The view could optionally have been constructed specifying the WITH READ ONLY
clause, which prevents any updates, inserts, or deletes from being done to the base

table through the view. If no WITH clause is specified, the view, with some

restrictions, is inherently updatable.

Join Views
You can also create views that specify more than one base table or view in the FROM
clause. These are called join views. The following statement creates the

division1_staff view that joins data from the emp and dept tables:

CREATE VIEW division1_staff AS
 SELECT ename, empno, job, dname
 FROM emp, dept
 WHERE emp.deptno IN (10, 30)
 AND emp.deptno = dept.deptno;

An updatable join view is a join view where UPDATE, INSERT, and DELETE
operations are allowed. See "Updating a Join View" on page 20-5 for further

discussion.

See Also: Oracle9i SQL Reference for detailed syntax, restriction,

and authorization information relating to creating and maintaining

views

Managing Views

20-4 Oracle9i Database Administrator’s Guide

Expansion of Defining Queries at View Creation Time
When a view is created, Oracle expands any wildcard (*) in a top-level view query

into a column list. The resulting query is stored in the data dictionary; any

subqueries are left intact. The column names in an expanded column list are

enclosed in quote marks to account for the possibility that the columns of the base

object were originally entered with quotes and require them for the query to be

syntactically correct.

As an example, assume that the dept view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the dept view as:

SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept;

Views created with errors do not have wildcards expanded. However, if the view is

eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors
If there are no syntax errors in a CREATE VIEW statement, Oracle can create the

view even if the defining query of the view cannot be executed. In this case, the

view is considered "created with errors." For example, when a view is created that

refers to a nonexistent table or an invalid column of an existing table, or when the

view owner does not have the required privileges, the view can be created anyway

and entered into the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE option of the CREATE
VIEW statement.

CREATE FORCE VIEW AS ...;

By default, views with errors are not created as VALID . When you try to create such

a view, Oracle returns a message indicating the view was created with errors. The

status of a view created with errors is INVALID . If conditions later change so that

the query of an invalid view can be executed, the view can be recompiled and be

made valid (usable). For information changing conditions and their impact on

views, see "Managing Object Dependencies" on page 21-23.

Managing Views

Managing Views, Sequences, and Synonyms 20-5

Updating a Join View
An updatable join view (also referred to as a modifiable join view) is a view that

contains more than one table in the top-level FROM clause of the SELECT statement,

and is not restricted by the WITH READ ONLY clause.

The rules for updatable join views are as follows:

Note: There are some restrictions and conditions which can affect

whether a join view is updatable. Specifics are listed in the

description of the CREATE VIEW statement in the Oracle9i SQL
Reference.

Additionally, if a view is a join on other nested views, then the

other nested views must be mergeable into the top level view. For a

discussion of mergeable and unmergeable views, and more

generally, how the optimizer optimizes statements referencing

views, see Oracle9i Database Concepts and Oracle9i Database
Performance Tuning Guide and Reference.

There are data dictionary views that indicate whether the columns

in a join view are updatable. See "Using the UPDATABLE_

COLUMNS Views" on page 20-9 for descriptions of these views.

Rule Description

General Rule Any INSERT, UPDATE, or DELETE operation on a join view can
modify only one underlying base table at a time.

UPDATE Rule All updatable columns of a join view must map to columns of a
key-preserved table. See "Key-Preserved Tables" on page 20-6
for a discussion of key-preserved tables. If the view is defined
with the WITH CHECK OPTION clause, then all join columns
and all columns of repeated tables are non-updatable.

DELETE Rule Rows from a join view can be deleted as long as there is exactly
one key-preserved table in the join. If the view is defined with
the WITH CHECK OPTION clause and the key preserved table is
repeated, then the rows cannot be deleted from the view.

INSERT Rule An INSERT statement must not explicitly or implicitly refer to
the columns of a nonkey preserved table. If the join view is
defined with the WITH CHECK OPTION clause, INSERT
statements are not permitted.

Managing Views

20-6 Oracle9i Database Administrator’s Guide

Examples illustrating these rules, and a discussion of key-preserved tables, are

presented in succeeding sections.

The examples given work only if you explicitly define the primary and foreign keys

in the tables, or define unique indexes. Following are the appropriately constrained

table definitions for emp and dept .

CREATE TABLE dept (
 deptno NUMBER(4) PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));

You could also omit the primary and foreign key constraints listed above, and create

a UNIQUE INDEX on dept (deptno) to make the following examples work.

The following statement created the emp_dept join view which is referenced in the

examples:

CREATE VIEW emp_dept AS
 SELECT emp.empno, emp.ename, emp.deptno, emp.sal, dept.dname, dept.loc
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dept.loc IN ('DALLAS', 'NEW YORK', 'BOSTON');

Key-Preserved Tables
The concept of a key-preserved table is fundamental to understanding the

restrictions on modifying join views. A table is key preserved if every key of the

table can also be a key of the result of the join. So, a key-preserved table has its keys

preserved through a join.

Note: It is not necessary that the key or keys of a table be selected

for it to be key preserved. It is sufficient that if the key or keys were

selected, then they would also be key(s) of the result of the join.

Managing Views

Managing Views, Sequences, and Synonyms 20-7

The key-preserving property of a table does not depend on the actual data in the

table. It is, rather, a property of its schema. For example, if in the emp table there

was at most one employee in each department, then deptno would be unique in

the result of a join of emp and dept , but dept would still not be a key-preserved

table.

If you SELECT all rows from emp_dept , the results are:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- ------- -------------- -----------
 7782 CLARK 10 ACCOUNTING NEW YORK
 7839 KING 10 ACCOUNTING NEW YORK
 7934 MILLER 10 ACCOUNTING NEW YORK
 7369 SMITH 20 RESEARCH DALLAS
 7876 ADAMS 20 RESEARCH DALLAS
 7902 FORD 20 RESEARCH DALLAS
 7788 SCOTT 20 RESEARCH DALLAS
 7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, emp is a key-preserved table, because empno is a key of the emp table,

and also a key of the result of the join. dept is not a key-preserved table, because

although deptno is a key of the dept table, it is not a key of the join.

DML Statements and Join Views
The general rule is that any UPDATE, DELETE, orINSERT statement on a join view

can modify only one underlying base table. The following examples illustrate rules

specific to UPDATE, DELETE, and INSERT statements.

UPDATE Statements The following example shows an UPDATE statement that

successfully modifies the emp_dept view:

UPDATE emp_dept
 SET sal = sal * 1.10
 WHERE deptno = 10;

The following UPDATE statement would be disallowed on the emp_dept view:

UPDATE emp_dept
 SET loc = 'BOSTON'
 WHERE ename = 'SMITH';

This statement fails with an error (ORA-01779 cannot modify a column
which maps to a non key-preserved table), because it attempts to

Managing Views

20-8 Oracle9i Database Administrator’s Guide

modify the base dept table, and the dept table is not key preserved in the emp_
dept view.

In general, all updatable columns of a join view must map to columns of a

key-preserved table. If the view is defined using the WITH CHECK OPTION clause,

then all join columns and all columns taken from tables that are referenced more

than once in the view are not modifiable.

So, for example, if the emp_dept view were defined using WITH CHECK OPTION,

the following UPDATE statement would fail:

UPDATE emp_dept
 SET deptno = 10
 WHERE ename = 'SMITH';

The statement fails because it is trying to update a join column.

DELETE Statements You can delete from a join view provided there is one and only
one key-preserved table in the join.

The following DELETE statement works on the emp_dept view:

DELETE FROM emp_dept
 WHERE ename = 'SMITH';

This DELETE statement on the emp_dept view is legal because it can be translated

to a DELETE operation on the base emp table, and because the emp table is the only

key-preserved table in the join.

If you were to create the following view, a DELETE operation could not be

performed on the view because both e1 and e2 are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.ename, e2.empno, deptno
 FROM emp e1, emp e2
 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved

table is repeated, then rows cannot be deleted from such a view.

CREATE VIEW emp_mgr AS
 SELECT e1.ename, e2.ename mname
 FROM emp e1, emp e2
 WHERE e1.mgr = e2.empno
 WITH CHECK OPTION;

Managing Views

Managing Views, Sequences, and Synonyms 20-9

No deletion can be performed on this view because the view involves a self-join of

the table that is key preserved.

INSERT Statements The following INSERT statement on the emp_dept view

succeeds:

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES ('KURODA', 9010, 40);

This statement works because only one key-preserved base table is being modified

(emp), and 40 is a valid deptno in the dept table (thus satisfying the FOREIGN
KEY integrity constraint on the emp table).

An INSERT statement, such as the following, would fail for the same reason that

such an UPDATE on the base emp table would fail: the FOREIGN KEY integrity

constraint on the emp table is violated (because there is no deptno 77).

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES ('KURODA', 9010, 77);

The following INSERT statement would fail with an error (ORA-01776 cannot
modify more than one base table through a view):

INSERT INTO emp_dept (empno, ename, loc)
 VALUES (9010, 'KURODA', 'BOSTON');

An INSERT cannot implicitly or explicitly refer to columns of a nonkey-preserved

table. If the join view is defined using the WITH CHECK OPTION clause, then you

cannot perform an INSERT to it.

Using the UPDATABLE_ COLUMNS Views
The views described in the following table can assist you when modifying join

views.

View Description

DBA_UPDATABLE_
COLUMNS

Shows all columns in all tables and views that are modifiable.

ALL_UPDATABLE_
COLUMNS

Shows all columns in all tables and views accessible to the user
that are modifiable.

USER_UPDATABLE_
COLUMNS

Shows all columns in all tables and views in the user’s schema
that are modifiable.

Managing Views

20-10 Oracle9i Database Administrator’s Guide

The updatable columns in view emp_dept are shown below.

SELECT COLUMN_NAME, UPDATABLE
 FROM USER_UPDATABLE_COLUMNS
 WHERE TABLE_NAME = 'EMP_DEPT';

COLUMN_NAME UPD
------------------------------ ---
EMPNO YES
ENAME YES
DEPTNO YES
SAL YES
DNAME NO
LOC NO

6 rows selected.

Altering Views
You use the ALTER VIEW statement only to explicitly recompile a view that is

invalid. If you want to change the definition of a view, see "Replacing Views" on

page 20-10.

The ALTER VIEW statement allows you to locate recompilation errors before run

time. To ensure that the alteration does not affect the view or other objects that

depend on it, you can explicitly recompile a view after altering one of its base

tables.

To use the ALTER VIEW statement, the view must be in your schema, or you must

have the ALTER ANY TABLE system privilege.

Dropping Views
You can drop any view contained in your schema. To drop a view in another user’s

schema, you must have the DROP ANY VIEW system privilege. Drop a view using

the DROP VIEW statement. For example, the following statement drops the emp_
dept view:

DROP VIEW emp_dept;

Replacing Views
To replace a view, you must have all the privileges required to drop and create a

view. If the definition of a view must change, the view must be replaced; you cannot

change the definition of a view. You can replace views in the following ways:

Managing Sequences

Managing Views, Sequences, and Synonyms 20-11

■ You can drop and re-create the view.

■ You can redefine the view with a CREATE VIEWstatement that contains the OR
REPLACE option. The OR REPLACE option replaces the current definition of a

view and preserves the current security authorizations. For example, assume

that you created the sales_staff view as shown earlier, and, in addition, you

granted several object privileges to roles and other users. However, now you

need to redefine the sales_staff view to change the department number

specified in the WHERE clause. You can replace the current version of the

sales_staff view with the following statement:

CREATE OR REPLACE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Before replacing a view, consider the following effects:

■ Replacing a view replaces the view’s definition in the data dictionary. All

underlying objects referenced by the view are not affected.

■ If a constraint in the CHECK OPTION was previously defined but not included

in the new view definition, the constraint is dropped.

■ All views and PL/SQL program units dependent on a replaced view become

invalid (not usable). See "Managing Object Dependencies" on page 21-23 for

more information on how Oracle manages such dependencies.

Managing Sequences
Sequences are database objects from which multiple users can generate unique

integers. You can use sequences to automatically generate primary key values. This

section describes various aspects of managing sequences, and contains the

following topics:

■ Creating Sequences

■ Altering Sequences

Caution: When a view is dropped, all grants of corresponding

object privileges are revoked from roles and users. After the view is

re-created, privileges must be re-granted.

Managing Sequences

20-12 Oracle9i Database Administrator’s Guide

■ Dropping Sequences

Creating Sequences
To create a sequence in your schema, you must have the CREATE SEQUENCE
system privilege. To create a sequence in another user’s schema, you must have the

CREATE ANY SEQUENCE privilege.

Create a sequence using the CREATE SEQUENCE statement. For example, the

following statement creates a sequence used to generate employee numbers for the

empno column of the emp table:

CREATE SEQUENCE emp_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;

The CACHE option pre-allocates a set of sequence numbers and keeps them in

memory so that sequence numbers can be accessed faster. When the last of the

sequence numbers in the cache has been used, Oracle reads another set of numbers

into the cache.

Oracle might skip sequence numbers if you choose to cache a set of sequence

numbers. For example, when an instance abnormally shuts down (for example,

when an instance failure occurs or a SHUTDOWN ABORT statement is issued),

sequence numbers that have been cached but not used are lost. Also, sequence

numbers that have been used but not saved are lost as well. Oracle might also skip

cached sequence numbers after an export and import. See Oracle9i Database Utilities
for details.

See Also:

■ Oracle9i Database Concepts for more information about

sequences

■ Oracle9i SQL Reference for statement syntax and information

about accessing sequence numbers using CURRVAL and

NEXTVAL pseudocolumns

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about using sequences in applications

Managing Synonyms

Managing Views, Sequences, and Synonyms 20-13

Altering Sequences
To alter a sequence, your schema must contain the sequence, or you must have the

ALTER ANY SEQUENCEsystem privilege. You can alter a sequence to change any of

the parameters that define how it generates sequence numbers except the

sequence’s starting number. To change the starting point of a sequence, drop the

sequence and then re-create it.

Alter a sequence using the ALTER SEQUENCE statement. For example, the

following statement alters the emp_sequence :

ALTER SEQUENCE emp_sequence
 INCREMENT BY 10
 MAXVALUE 10000
 CYCLE
 CACHE 20;

Dropping Sequences
You can drop any sequence in your schema. To drop a sequence in another schema,

you must have the DROP ANY SEQUENCE system privilege. If a sequence is no

longer required, you can drop the sequence using the DROP SEQUENCE statement.

For example, the following statement drops the order_seq sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data dictionary.

Any synonyms for the sequence remain, but return an error when referenced.

Managing Synonyms
A synonym is an alias for a schema object. Synonyms can provide a level of security

by masking the name and owner of an object and by providing location

See Also:

■ Oracle9i Real Application Clusters Deployment and Performance for

information about how caching sequence numbers improves

performance in an Oracle Real Application Clusters

environment

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about using sequences in your applications, and

performance considerations when caching sequence numbers

Managing Synonyms

20-14 Oracle9i Database Administrator’s Guide

transparency for remote objects of a distributed database. Also, they are convenient

to use and reduce the complexity of SQL statements for database users.

Synonyms allow underlying objects to be renamed or moved, where only the

synonym needs to be redefined and applications based on the synonym continue to

function without modification.

You can create both public and private synonyms. A public synonym is owned by

the special user group named PUBLIC and is accessible to every user in a database.

A private synonym is contained in the schema of a specific user and available only

to the user and the user’s grantees.

This section contains the following synonym management information:

■ Creating Synonyms

■ Dropping Synonyms

Creating Synonyms
To create a private synonym in your own schema, you must have the CREATE
SYNONYM privilege. To create a private synonym in another user’s schema, you

must have the CREATE ANY SYNONYM privilege. To create a public synonym, you

must have the CREATE PUBLIC SYNONYM system privilege.

Create a synonym using the CREATE SYNONYM statement. The underlying schema

object need not exist, nor do you need privileges to access the object. The following

statement creates a public synonym named public_emp on the emp table

contained in the schema of jward :

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;

Dropping Synonyms
You can drop any private synonym in your own schema. To drop a private

synonym in another user’s schema, you must have the DROP ANY SYNONYM
system privilege. To drop a public synonym, you must have the DROP PUBLIC
SYNONYM system privilege.

See Also:

■ Oracle9i Database Concepts for more information about

synonyms

■ Oracle9i SQL Reference for statement syntax

Viewing Information About Views, Synonyms, and Sequences

Managing Views, Sequences, and Synonyms 20-15

Drop a synonym that is no longer required using DROP SYNONYM statement. To

drop a private synonym, omit the PUBLIC keyword. To drop a public synonym,

include the PUBLIC keyword.

For example, the following statement drops the private synonym named emp:

DROP SYNONYM emp;

The following statement drops the public synonym named public_emp :

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All

objects that reference a dropped synonym remain. However, they become invalid

(not usable). For more information about how dropping synonyms can affect other

schema objects, see "Managing Object Dependencies".

Viewing Information About Views, Synonyms, and Sequences
The following views display information about views, synonyms, and sequences:

View Description

DBA_VIEWS

ALL_VIEWS

USER_VIEWS

DBA view describes all views in the database. ALL view is restricted to
views accessible to the current user. USER view is restricted to views
owned by the current user.

DBA_SYNONYMS

ALL_SYNONYMS

USER_SYNONYMS

These views describe synonyms.

DBA_SEQUENCES

ALL_SEQUENCES

USER_SEQUENCES

These views describe sequences.

DBA_UPDATABLE_COLUMNS

ALL_UPDATABLE_COLUMNS

USER_UPDATABLE_COLUMNS

These views describe all columns in join views that are updatable.

See Also: Oracle9i Database Reference for complete descriptions of

these views

Viewing Information About Views, Synonyms, and Sequences

20-16 Oracle9i Database Administrator’s Guide

General Management of Schema Objects 21-1

21
General Management of Schema Objects

This chapter describes schema object management issues that are common across

multiple types of schema objects. The following topics are presented:

■ Creating Multiple Tables and Views in a Single Operation

■ Renaming Schema Objects

■ Analyzing Tables, Indexes, and Clusters

■ Truncating Tables and Clusters

■ Enabling and Disabling Triggers

■ Managing Integrity Constraints

■ Managing Object Dependencies

■ Managing Object Name Resolution

■ Changing Storage Parameters for the Data Dictionary

■ Displaying Information About Schema Objects

See Also: Oracle9i SQL Reference for more information about

syntax, authorizations, and restrictions for the SQL statements

discussed in this chapter

Creating Multiple Tables and Views in a Single Operation

21-2 Oracle9i Database Administrator’s Guide

Creating Multiple Tables and Views in a Single Operation
You can create several tables and views and grant privileges in one operation using

the CREATE SCHEMA statement. The CREATE SCHEMA statement is useful if you

want to guarantee the creation of several tables, views, and grants in one operation.

If an individual table, view or grant fails, the entire statement is rolled back. None

of the objects are created, nor are the privileges granted.

Specifically, the CREATE SCHEMAstatement can include only CREATE TABLE,
CREATE VIEW, and GRANT statements. You must have the privileges necessary to

issue the included statements. You are not actually creating a schema, that is done

when the user is created with a CREATE USER statement. Rather, you are

populating the schema.

The following statement creates two tables and a view that joins data from the two

tables:

CREATE SCHEMA AUTHORIZATION scott
 CREATE TABLE dept (
 deptno NUMBER(3,0) PRIMARY KEY,
 dname VARCHAR2(15),
 loc VARCHAR2(25)
 CREATE TABLE emp (
 empno NUMBER(5,0) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5,0),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3,0) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 CREATE VIEW sales_staff AS
 SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst
 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA statement does not support Oracle extensions to the ANSI

CREATE TABLE and CREATE VIEW statements, including the STORAGE clause.

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 21-3

Renaming Schema Objects
To rename an object, it must be in your schema. You can rename schema objects in

either of the following ways:

■ Drop and re-create the object

■ Rename the object using the RENAME statement

If you drop and re-create an object, all privileges granted for that object are lost.

Privileges must be regranted when the object is re-created.

Alternatively, a table, view, sequence, or a private synonym of a table, view, or

sequence can be renamed using the RENAME statement. When using the RENAME
statement, integrity constraints, indexes, and grants made for the object are carried

forward for the new name. For example, the following statement renames the

sales_staff view:

RENAME sales_staff TO dept_30;

Before renaming a schema object, consider the following effects:

■ All views and PL/SQL program units dependent on a renamed object become

invalid, and must be recompiled before next use.

■ All synonyms for a renamed object return an error when used.

Analyzing Tables, Indexes, and Clusters
You analyze a schema object (table, index, or cluster) to:

■ Collect and manage statistics for it

■ Verify the validity of its storage format

■ Identify migrated and chained rows of a table or cluster

Note: You cannot use RENAME for stored PL/SQL program unit,

public synonym, index, or cluster. To rename such an object, you

must drop and re-create it.

See Also: "Managing Object Dependencies" on page 21-23 for

more information about how Oracle manages object dependencies

Analyzing Tables, Indexes, and Clusters

21-4 Oracle9i Database Administrator’s Guide

The following topics are discussed in this section:

■ Collecting Statistics for Tables, Indexes, and Clusters

■ Validating Tables, Indexes, Clusters, and Materialized Views

■ Listing Chained Rows of Tables and Clusters

Collecting Statistics for Tables, Indexes, and Clusters
You can use the DBMS_STATSpackage or the ANALYZEstatement to gather statistics

about the physical storage characteristics of a table, index, or cluster. These statistics

are stored in the data dictionary and can be used by the optimizer to choose the

most efficient execution plan for SQL statements accessing analyzed objects.

Oracle recommends using the more versatile DBMS_STATS package for gathering

optimizer statistics, but you must use the ANALYZE statement to collect

non-optimizer statistics, such as empty blocks, average space, and so forth.

Computing Statistics Using the DBMS_STATS Package
The DBMS_STATS package allows both the gathering of statistics, including

utilizing parallel execution, and the external manipulation of statistics. Statistics can

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer, which

depends upon statistics, will eventually use only statistics that have

been collected by DBMS_STATS. See Oracle9i Supplied PL/SQL
Packages and Types Reference for more information on this package.

However, you must use the ANALYZE statement (rather than DBMS_
STATS) for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks

See Also: "Analyzing Index-Organized Tables" on page 15-32 for

information specific to analyzing index-organized tables

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 21-5

be stored in tables outside of the data dictionary, where they can be manipulated

without affecting the optimizer. Statistics can be copied between databases or

backup copies can be made.

The following DBMS_STATS procedures enable the gathering of optimizer statistics:

■ GATHER_INDEX_STATS

■ GATHER_TABLE_STATS

■ GATHER_SCHEMA_STATS

■ GATHER_DATABASE_STATS

Computing Statistics Using the ANALYZE Statement
The following statement computes statistics for the emp table:

ANALYZE TABLE emp COMPUTE STATISTICS;

The following query estimates statistics on the emp table, using the default

statistical sample of 1064 rows:

ANALYZE TABLE emp ESTIMATE STATISTICS;

To specify the statistical sample that Oracle should use, include the SAMPLE option

with the ESTIMATE STATISTICS option. You can specify an integer that indicates

either a number of rows or index values, or a percentage of the rows or index values

in the table. The following statements show examples of each option:

ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 2000 ROWS;

ANALYZE TABLE emp
 ESTIMATE STATISTICS
 SAMPLE 33 PERCENT;

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information about using DBMS_STATS to gather statistics for

the optimizer

■ Oracle9i Supplied PL/SQL Packages and Types Reference for a

description of the DBMS_STATS package

Analyzing Tables, Indexes, and Clusters

21-6 Oracle9i Database Administrator’s Guide

In either case, if you specify a percentage greater than 50, or a number of rows or

index values that is greater than 50% of those in the object, Oracle computes the

exact statistics, rather than estimating.

If the data dictionary currently contains statistics for the specified object when an

ANALYZE statement is issued, the new statistics replace the old statistics in the data

dictionary.

Some Optional Means of Computing Statistics
There are some PL/SQL packaged procedures that effectively allow you to execute

an ANALYZE statement. These are:

■ DBMS_UTILITY.ANALYZE_SCHEMA

■ DBMS_UTILITY.ANALYZE_DATABASE

■ DBMS_DDL.ANALYZE_OBJECT

It is recommended that these packaged procedures only be used for collecting

non-optimizer statistics.

Validating Tables, Indexes, Clusters, and Materialized Views
To verify the integrity of the structure of a table, index, cluster, or materialized

view, use the ANALYZE statement with the VALIDATE STRUCTURE option. If the

structure is valid, no error is returned. However, if the structure is corrupt, you

receive an error message.

For example, in rare cases such as hardware or other system failures, an index can

become corrupted and not perform correctly. When validating the index, you can

confirm that every entry in the index points to the correct row of the associated

table. If the index is corrupt, you can drop and re-create it.

If a table, index, or cluster is corrupt, you should drop it and re-create it. If a

materialized view is corrupt, perform a complete refresh and ensure that you have

remedied the problem. If the problem is not corrected, drop and re-create the

materialized view.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_UTILITY package

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_DDL package

Analyzing Tables, Indexes, and Clusters

General Management of Schema Objects 21-7

The following statement analyzes the emp table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all related objects (for example, indexes) by

including the CASCADEoption. The following statement validates the emp table and

all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

You can specify that you want to perform structure validation online while DML is

occurring against the object being validated. There can be a slight performance

impact when validating with ongoing DML affecting the object, but this is offset by

the flexibility of being able to perform ANALYZE online. The following statement

validates the emp table and all associated indexes online:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE ONLINE;

Listing Chained Rows of Tables and Clusters
You can look at the chained and migrated rows of a table or cluster using the

ANALYZE statement with the LIST CHAINED ROWS clause. The results of this

statement are stored in a specified table created explicitly to accept the information

returned by the LIST CHAINED ROWS clause. These results are useful in

determining whether you have enough room for updates to rows. For example, this

information can show whether PCTFREE is set appropriately for the table or cluster.

Creating a CHAINED_ROWS Table
To create the table to accept data returned by an ANALYZE ... LIST CHAINED
ROWS statement, execute the UTLCHAIN.SQL or UTLCHN1.SQL script. These scripts

are provided by Oracle. They create a table named CHAINED_ROWSin the schema of

the user submitting the script.

After a CHAINED_ROWS table is created, you specify it in the INTO clause of the

ANALYZE statement. For example, the following statement inserts rows containing

Note: Your choice of script to execute for creating the CHAINED_
ROWS table is dependent upon the compatibility level of your

database and the type of table you are analyzing. See the Oracle9i
SQL Reference for more information.

Analyzing Tables, Indexes, and Clusters

21-8 Oracle9i Database Administrator’s Guide

information about the chained rows in the emp_dept cluster into the CHAINED_
ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO CHAINED_ROWS;

Eliminating Migrated or Chained Rows in a Table
You can use the information in the CHAINED_ROWS table to reduce or eliminate

migrated and chained rows in an existing table. Use the following procedure.

1. Use the ANALYZE statement to collect information about migrated and chained

rows.

ANALYZE TABLE order_hist LIST CHAINED ROWS;

2. Query the output table:

SELECT *
FROM CHAINED_ROWS
WHERE TABLE_NAME = ’ORDER_HIST’;

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

3. If the output table shows that you have many migrated or chained rows, then

you can eliminate migrated rows by continuing through the following steps:

4. Create an intermediate table with the same columns as the existing table to hold

the migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = ’ORDER_HIST’);

5. Delete the migrated and chained rows from the existing table:

See Also: Oracle9i Database Reference for a description of the

CHAINED_ROWS table

Truncating Tables and Clusters

General Management of Schema Objects 21-9

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = ’ORDER_HIST’);

6. Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
 SELECT *
 FROM int_order_hist;

7. Drop the intermediate table:

DROP TABLE int_order_history;

8. Delete the information collected in step 1 from the output table:

DELETE FROM CHAINED_ROWS
 WHERE TABLE_NAME = ’ORDER_HIST’;

9. Use the ANALYZE statement again, and query the output table.

10. Any rows that appear in the output table are chained. You can eliminate

chained rows only by increasing your data block size. It might not be possible

to avoid chaining in all situations. Chaining is often unavoidable with tables

that have a LONG column or long CHAR or VARCHAR2 columns.

Truncating Tables and Clusters
You can delete all rows of a table or all rows in a group of clustered tables so that

the table (or cluster) still exists, but is completely empty. For example, consider a

table that contains monthly data, and at the end of each month, you need to empty

it (delete all rows) after archiving its data.

To delete all rows from a table, you have the following options:

■ Use the DELETE statement.

■ Use the DROP and CREATE statements.

■ Use the TRUNCATE statement.

Each of these options are discussed in the following sections

Truncating Tables and Clusters

21-10 Oracle9i Database Administrator’s Guide

Using DELETE
You can delete the rows of a table using the DELETE statement. For example, the

following statement deletes all rows from the emp table:

DELETE FROM emp;

If there are many rows present in a table or cluster when using the DELETE
statement, significant system resources are consumed as the rows are deleted. For

example, CPU time, redo log space, and rollback segment space from the table and

any associated indexes require resources. Also, as each row is deleted, triggers can

be fired. The space previously allocated to the resulting empty table or cluster

remains associated with that object. With DELETE you can choose which rows to

delete, whereas TRUNCATE and DROP affect the entire object.

Using DROP and CREATE
You can drop a table and then re-create the table. For example, the following

statements drop and then re-create the emp table:

DROP TABLE emp;
CREATE TABLE emp (...);

When dropping and re-creating a table or cluster, all associated indexes, integrity

constraints, and triggers are also dropped, and all objects that depend on the

dropped table or clustered table are invalidated. Also, all grants for the dropped

table or clustered table are dropped.

Using TRUNCATE
You can delete all rows of the table using the TRUNCATE statement. For example,

the following statement truncates the emp table:

TRUNCATE TABLE emp;

Using the TRUNCATE statement provides a fast, efficient method for deleting all

rows from a table or cluster. A TRUNCATE statement does not generate any rollback

information and it commits immediately. It is a DDL statement and cannot be rolled

back. A TRUNCATE statement does not affect any structures associated with the

table being truncated (constraints and triggers) or authorizations. A TRUNCATE
statement also specifies whether space currently allocated for the table is returned

to the containing tablespace after truncation.

Enabling and Disabling Triggers

General Management of Schema Objects 21-11

You can truncate any table or cluster in your own schema. Any user who has the

DROP ANY TABLE system privilege can truncate a table or cluster in any schema.

Before truncating a table or clustered table containing a parent key, all referencing

foreign keys in different tables must be disabled. A self-referential constraint does

not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers associated with the

table are not fired. Also, a TRUNCATE statement does not generate any audit

information corresponding to DELETE statements if auditing is enabled. Instead, a

single audit record is generated for the TRUNCATE statement being issued. See

Chapter 26, "Auditing Database Use" for information about auditing.

A hash cluster cannot be truncated, nor can tables within a hash or index cluster be

individually truncated. Truncation of an index cluster deletes all rows from all

tables in the cluster. If all the rows must be deleted from an individual clustered

table, use the DELETE statement or drop and re-create the table.

The REUSE STORAGE or DROP STORAGE options of the TRUNCATE statement

control whether space currently allocated for a table or cluster is returned to the

containing tablespace after truncation. The default option, DROP STORAGE, reduces

the number of extents allocated to the resulting table to the original setting for

MINEXTENTS. Freed extents are then returned to the system and can be used by

other objects.

Alternatively, the REUSE STORAGE option specifies that all space currently

allocated for the table or cluster remains allocated to it. For example, the following

statement truncates the emp_dept cluster, leaving all extents previously allocated

for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

The REUSEor DROP STORAGEoption also applies to any associated indexes. When

a table or cluster is truncated, all associated indexes are also truncated. The storage

parameters for a truncated table, cluster, or associated indexes are not changed as a

result of the truncation.

Enabling and Disabling Triggers
Database triggers are procedures that are stored in the database and activated

("fired") when specific conditions occur, such as adding a row to a table. You can

use triggers to supplement the standard capabilities of Oracle to provide a highly

customized database management system. For example, you can create a trigger to

Enabling and Disabling Triggers

21-12 Oracle9i Database Administrator’s Guide

restrict DML operations against a table, allowing only statements issued during

regular business hours.

Database triggers can be associated with a table, schema, or database. They are

implicitly fired when:

■ DML statements are executed (INSERT, UPDATE, DELETE) against an associated

table

■ Certain DDL statements are executed (for example: ALTER, CREATE, DROP) on

objects within a database or schema

■ A specified database event occurs (for example: STARTUP, SHUTDOWN,
SERVERERROR)

This is not a complete list. See the Oracle9i SQL Reference for a full list of statements

and database events that cause triggers to fire

Create triggers with the CREATE TRIGGER statement. They can be defined as firing

BEFORE or AFTER the triggering event, or INSTEAD OF it. The following statement

creates a trigger scott.emp_permit_changes on table scott.emp . The trigger

fires before any of the specified statements are executed.

CREATE TRIGGER scott.emp_permit_changes
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON scott.emp
 .
pl/sql block
 .

You can later remove a trigger from the database by issuing the DROP TRIGGER
statement.

A trigger can be in either of two distinct modes:

■ Enabled

An enabled trigger executes its trigger body if a triggering statement is issued

and the trigger restriction, if any, evaluates to true. By default, triggers are

enabled when first created.

■ Disabled

A disabled trigger does not execute its trigger body, even if a triggering

statement is issued and the trigger restriction (if any) evaluates to true.

Enabling and Disabling Triggers

General Management of Schema Objects 21-13

To enable or disable triggers using the ALTER TABLE statement, you must own the

table, have the ALTERobject privilege for the table, or have the ALTER ANY TABLE
system privilege. To enable or disable an individual trigger using the ALTER
TRIGGER statement, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Enabling Triggers
You enable a disabled trigger using the ALTER TRIGGER statement with the

ENABLE option. To enable the disabled trigger named reorder on the inventory
table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE statement

with the ENABLE ALL TRIGGERS option. To enable all triggers defined for the

INVENTORY table, enter the following statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

Disabling Triggers
Consider temporarily disabling a trigger if one of the following conditions is true:

■ An object that the trigger references is not available.

■ You must perform a large data load and want it to proceed quickly without

firing triggers.

■ You are loading data into the table to which the trigger applies.

See Also:

■ Oracle9i Database Concepts for a more detailed description of

triggers

■ Oracle9i SQL Reference for syntax, restrictions, and specific

authorization requirements for the SQL statements used to

create and manage triggers

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about creating and using triggers

Managing Integrity Constraints

21-14 Oracle9i Database Administrator’s Guide

You disable a trigger using the ALTER TRIGGER statement with the DISABLE
option. To disable the trigger reorder on the inventory table, enter the

following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time using the

ALTER TABLE statement with the DISABLE ALL TRIGGERS option. For example,

to disable all triggers defined for the inventory table, enter the following

statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;

Managing Integrity Constraints
Integrity constraints are rules that restrict the values for one or more columns in a

table. Constraint clauses can appear in either CREATE TABLE or ALTER TABLE
statements, and identify the column or columns affected by the constraint and

identify the conditions of the constraint.

This section discusses the concepts of constraints and identifies the SQL statements

used to define and manage integrity constraints. The following topics are contained

in this section:

■ Integrity Constraint States

■ Setting Integrity Constraints Upon Definition

■ Modifying, Renaming, or Dropping Existing Integrity Constraints

■ Deferring Constraint Checks

■ Reporting Constraint Exceptions

■ Viewing Constraint Information

See Also:

■ Oracle9i Database Concepts for a more thorough discussion of

integrity constraints

■ Oracle9i Application Developer’s Guide - Fundamentals for detailed

information and examples of using integrity constraints in

applications

Managing Integrity Constraints

General Management of Schema Objects 21-15

Integrity Constraint States
You can specify that a constraint is enabled (ENABLE) or disabled (DISABLE). If a

constraint is enabled, data is checked as it is entered or updated in the database,

and data that does not conform to the constraint’s rule is prevented from being

entered. If a constraint is disabled, then data that does not conform can be allowed

to enter the database.

Additionally, you can specify that existing data in the table must conform to the

constraint (VALIDATE). Conversely, if you specify NOVALIDATE, you are not

ensured that existing data conforms.

An integrity constraint defined on a table can be in one of the following states:

■ ENABLE, VALIDATE

■ ENABLE, NOVALIDATE

■ DISABLE, VALIDATE

■ DISABLE, NOVALIDATE

For details about the meaning of these states and an understanding of their

consequences, see the Oracle9i SQL Reference. Some of these consequences are

discussed here.

Disabling Constraints
To enforce the rules defined by integrity constraints, the constraints should always

be enabled. However, consider temporarily disabling the integrity constraints of a

table for the following performance reasons:

■ When loading large amounts of data into a table

■ When performing batch operations that make massive changes to a table (for

example, changing every employee’s number by adding 1000 to the existing

number)

■ When importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the

performance of the operation, especially in data warehouse configurations.

It is possible to enter data that violates a constraint while that constraint is disabled.

Thus, you should always enable the constraint after completing any of the

operations listed in the bullets above.

Managing Integrity Constraints

21-16 Oracle9i Database Administrator’s Guide

Enabling Constraints
While a constraint is enabled, no row violating the constraint can be inserted into

the table. However, while the constraint is disabled such a row can be inserted. This

row is known as an exception to the constraint. If the constraint is in the enable

novalidated state, violations resulting from data entered while the constraint was

disabled remain. The rows that violate the constraint must be either updated or

deleted in order for the constraint to be put in the validated state.

You can identify exceptions to a specific integrity constraint while attempting to

enable the constraint. See "Reporting Constraint Exceptions" on page 21-21. All

rows violating constraints are noted in an EXCEPTIONS table, which you can

examine.

Enable Novalidate Constraint State
When a constraint is in the enable novalidate state, all subsequent statements are

checked for conformity to the constraint. However, any existing data in the table is

not checked. A table with enable novalidated constraints can contain invalid data,

but it is not possible to add new invalid data to it. Enabling constraints in the

novalidated state is most useful in data warehouse configurations that are

uploading valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate

is much faster than enabling and validating a constraint. Also, validating a

constraint that is already enabled does not require any DML locks during validation

(unlike validating a previously disabled constraint). Enforcement guarantees that

no violations are introduced during the validation. Hence, enabling without

validating enables you to reduce the downtime typically associated with enabling a

constraint.

Integrity Constraint States: Procedures and Benefits
Using integrity constraint states in the following order can ensure the best benefits:

1. Disable state.

2. Perform the operation (load, export, import).

3. Enable novalidate state.

4. Enable state.

Some benefits of using constraints in this order are:

■ No locks are held.

Managing Integrity Constraints

General Management of Schema Objects 21-17

■ All constraints can go to enable state concurrently.

■ Constraint enabling is done in parallel.

■ Concurrent activity on table is permitted.

Setting Integrity Constraints Upon Definition
When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE
statement, it can be enabled, disabled, or validated or not validated as determined

by your specification of the ENABLE/DISABLE clause. If the ENABLE/DISABLE
clause is not specified in a constraint’s definition, Oracle automatically enables and

validates the constraint.

Disabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and

disable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp
 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraint never

fails because of rows in the table that violate the integrity constraint. The definition

of the constraint is allowed because its rule is not enforced.

Enabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and

enable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, . . . ;

ALTER TABLE emp
 ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity

constraint can fail because rows of the table violate the integrity constraint. If this

case, the statement is rolled back and the constraint definition is not stored and not

enabled.

Managing Integrity Constraints

21-18 Oracle9i Database Administrator’s Guide

When you enable a UNIQUE or PRIMARY KEY constraint an associated index is

created.

Modifying, Renaming, or Dropping Existing Integrity Constraints
You can use the ALTER TABLE statement to enable, disable, modify, or drop a

constraint. When Oracle is using a UNIQUE or PRIMARY KEY index to enforce a

constraint, and constraints associated with that index are dropped or disabled, the

index is dropped, unless you specify otherwise.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot

disable or drop the PRIMARY or UNIQUE key constraint or the index.

Disabling Enabled Constraints
The following statements disable integrity constraints. The second statement

specifies that the associated indexes are to be kept.

ALTER TABLE dept
 DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
 DISABLE PRIMARY KEY KEEP INDEX,
 DISABLE UNIQUE (dname, loc) KEEP INDEX;

The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
 ENABLE NOVALIDATE CONSTRAINT dname_ukey;

ALTER TABLE dept
 ENABLE NOVALIDATE PRIMARY KEY,
 ENABLE NOVALIDATE UNIQUE (dname, loc);

The following statements enable or validate disabled integrity constraints:

ALTER TABLE dept
 MODIFY CONSTRAINT dname_key VALIDATE;
ALTER TABLE dept
 MODIFY PRIMARY KEY ENABLE NOVALIDATE;

The following statements enable disabled integrity constraints:

See Also: "Creating an Index Associated with a Constraint" on

page 16-11

Managing Integrity Constraints

General Management of Schema Objects 21-19

ALTER TABLE dept
 ENABLE CONSTRAINT dname_ukey;
ALTER TABLE dept
 ENABLE PRIMARY KEY,
 ENABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent

FOREIGN KEYconstraints in a single step, use the CASCADEoption of the DISABLE
or DROP clauses. For example, the following statement disables a PRIMARY KEY
constraint and any FOREIGN KEY constraints that depend on it:

ALTER TABLE dept
 DISABLE PRIMARY KEY CASCADE;

Renaming Constraints
The ALTER TABLE ... RENAME CONSTRAINT statement enables you to rename

any currently existing constraint for a table. The new constraint name must not

conflict with any existing constraint names for a user.

The following statement renames the dname_ukey constraint for table dept :

ALTER TABLE dept
 RENAME CONSTRAINT dname_ukey TO dname_unikey;

When you rename a constraint, all dependencies on the base table remain valid.

The RENAME CONSTRAINT clause provides a means of renaming system generated

constraint names.

Dropping Constraints
You can drop an integrity constraint if the rule that it enforces is no longer true, or if

the constraint is no longer needed. You can drop the constraint using the ALTER
TABLE statement with one of the following clauses:

■ DROP PRIMARY KEY

■ DROP UNIQUE

■ DROP CONSTRAINT

The following two statements drop integrity constraints. The second statement

keeps the index associated with the PRIMARY KEY constraint:

ALTER TABLE dept
 DROP UNIQUE (dname, loc);

Managing Integrity Constraints

21-20 Oracle9i Database Administrator’s Guide

ALTER TABLE emp
 DROP PRIMARY KEY KEEP INDEX,
 DROP CONSTRAINT dept_fkey;

If FOREIGN KEYs reference a UNIQUE or PRIMARY KEY, you must include the

CASCADE CONSTRAINTS clause in the DROP statement, or you cannot drop the

constraint.

Deferring Constraint Checks
When Oracle checks a constraint, it signals an error if the constraint is not satisfied.

You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode

lasts for the duration of the transaction, or until another SET CONSTRAINTS
statement resets the mode.

Set All Constraints Deferred
Within the application being used to manipulate the data, you must set all

constraints deferred before you actually begin processing any data. Use the

following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Check the Commit (Optional)
You can check for constraint violations before committing by issuing the SET
CONSTRAINTS ALL IMMEDIATE statement just before issuing the COMMIT. If there

Notes:

■ You cannot issue a SET CONSTRAINT statement inside a

trigger.

■ Deferrable unique and primary keys must use nonunique

indexes.

Note: The SET CONSTRAINTS statement applies only to the

current transaction. The defaults specified when you create a

constraint remain as long as the constraint exists. The ALTER
SESSION SET CONSTRAINTS statement applies for the current

session only.

Managing Integrity Constraints

General Management of Schema Objects 21-21

are any problems with a constraint, this statement fails and the constraint causing

the error is identified. If you commit while constraints are violated, the transaction

is rolled back and you receive an error message.

Reporting Constraint Exceptions
If exceptions exist when a constraint is validated, an error is returned and the

integrity constraint remains novalidated. When a statement is not successfully

executed because integrity constraint exceptions exist, the statement is rolled back.

If exceptions exist, you cannot validate the constraint until all exceptions to the

constraint are either updated or deleted.

You cannot use the CREATE TABLE statement to determine which rows are in

violation. To determine which rows violate the integrity constraint, issue the ALTER
TABLE statement with the EXCEPTIONS option in the ENABLE clause. The

EXCEPTIONS option places the ROWID, table owner, table name, and constraint

name of all exception rows into a specified table.

You must create an appropriate exceptions report table to accept information from

the EXCEPTIONS option of the ENABLE clause before enabling the constraint. You

can create an exception table by executing the UTLEXCPT.SQL script or the

UTLEXPT1.SQL script.

Both of these scripts create a table named EXCEPTIONS. You can create additional

exceptions tables with different names by modifying and resubmitting the script.

The following statement attempts to validate the PRIMARY KEY of the dept table,

and if exceptions exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO EXCEPTIONS;

If duplicate primary key values exist in the dept table and the name of the

PRIMARY KEY constraint on dept is sys_c00610 , the following rows might be

placed in the table EXCEPTIONS by the previous statement:

SELECT * FROM EXCEPTIONS;

ROWID OWNER TABLE_NAME CONSTRAINT

Note: Your choice of script to execute for creating the

EXCEPTIONS table is dependent upon the compatibility level of

your database and the type of table you are analyzing. See the

Oracle9i SQL Reference for more information.

Managing Integrity Constraints

21-22 Oracle9i Database Administrator’s Guide

------------------ --------- -------------- -----------
AAAAZ9AABAAABvqAAB SCOTT DEPT SYS_C00610
AAAAZ9AABAAABvqAAG SCOTT DEPT SYS_C00610

A more informative query would be to join the rows in an exception report table

and the master table to list the actual rows that violate a specific constraint, as

shown in the following example:

SELECT deptno, dname, loc FROM dept, EXCEPTIONS
 WHERE EXCEPTIONS.constraint = 'SYS_C00610'
 AND dept.rowid = EXCEPTIONS.row_id;

DEPTNO DNAME LOC
---------- -------------- -----------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table

containing the constraint. When updating exceptions, you must change the value

violating the constraint to a value consistent with the constraint or to a null. After

the row in the master table is updated or deleted, the corresponding rows for the

exception in the exception report table should be deleted to avoid confusion with

later exception reports. The statements that update the master table and the

exception report table should be in the same transaction to ensure transaction

consistency.

To correct the exceptions in the previous examples, you might issue the following

transaction:

UPDATE dept SET deptno = 20 WHERE dname = 'RESEARCH';
DELETE FROM EXCEPTIONS WHERE constraint = 'SYS_C00610';
COMMIT;

When managing exceptions, the goal is to eliminate all exceptions in your exception

report table.

Note: While you are correcting current exceptions for a table with

the constraint disabled, it is possible for other users to issue

statements creating new exceptions. You can avoid this by enable

novalidating the constraint before you start eliminating exceptions.

See Also: Oracle9i Database Reference for a description of the

EXCEPTIONS table

Managing Object Dependencies

General Management of Schema Objects 21-23

Viewing Constraint Information
Oracle provides the following views that enable you to see constraint definitions on

tables and to identify columns that are specified in constraints:

Managing Object Dependencies
This section describes the various object dependencies, and contains the following

topics:

■ Manually Recompiling Views

■ Manually Recompiling Procedures and Functions

■ Manually Recompiling Packages

First, review Table 21–1, which shows how objects are affected by changes to other

objects on which they depend.

View Description

DBA_CONSTRAINTS

ALL_CONSTRAINTS

USER_CONSTRAINTS

DBA view describes all constraint definitions in the database.
ALL view describes constraint definitions accessible to current
user. USER view describes constraint definitions owned by the
current user.

DBA_CONS_COLUMNS

ALL_CONS_COLUMNS

USER_CONS_COLUMNS

DBA view describes all columns in the database that are
specified in constraints. ALL view describes only those columns
accessible to current user that are specified in constraints. USER
view describes only those columns owned by the current user
that are specified in constraints.

See Also: Oracle9i Database Reference contains descriptions of the

columns in these views

Table 21–1 Operations that Affect Object Status

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects

CREATE [TABLE|SEQUENCE|SYNONYM] VALID if there are
no errors

No change1

ALTER TABLE (ADD, RENAME, MODIFY
columns)

RENAME [TABLE|SEQUENCE|SYNONYM|VIEW]

VALID if there no
errors

INVALID

Managing Object Dependencies

21-24 Oracle9i Database Administrator’s Guide

Oracle automatically recompiles an invalid view or PL/SQL program unit the next

time it is used. In addition, a user can force Oracle to recompile a view or program

unit using the appropriate SQL statement with the COMPILE clause. Forced

compilations are most often used to test for errors when a dependent view or

DROP [TABLE|SEQUENCE|SYNONYM|VIEW|
PROCEDURE|FUNCTION|PACKAGE]

None. The object is
dropped.

INVALID

CREATE [VIEW|PROCEDURE]2 VALID if there are
no errors; INVALID
if there are syntax
or authorization
errors

No change1

CREATE OR REPLACE[VIEW|PROCEDURE]2 VALID if there are
no errors; INVALID
if there are syntax
or authorization
errors

INVALID

REVOKEobject privilege 3 ONobject
TO|FROMuser

No change All objects of user
that depend on
object are

INVALID 3

REVOKEobject privilege 3 ONobject
TO|FROM PUBLIC

No change All objects in the
database that
depend on object

are INVALID 3

REVOKEsystem privilege 4 TO|FROM
user

No change All objects of user

are INVALID 4

REVOKEsystem privilege 4 TO|FROM
PUBLIC

No change All objects in the
database are

INVALID 4

1 Can cause dependent objects to be made INVALID , if object did not exist earlier.
2 Standalone procedures and functions, packages, and triggers.
3 Only DML object privileges, including SELECT, INSERT, UPDATE, DELETE , and EXECUTE;
revalidation does not require recompiling.
4 Only DML system privileges, including SELECT, INSERT, UPDATE, DELETE ANY TABLE, and
EXECUTE ANY PROCEDURE; revalidation does not require recompiling.

Table 21–1 Operations that Affect Object Status (Cont.)

Operation
Resulting Status
of Object

Resulting Status
of Dependent
Objects

Managing Object Name Resolution

General Management of Schema Objects 21-25

program unit is invalid, but is not currently being used. In these cases, automatic

recompilation would not otherwise occur until the view or program unit was

executed. To identify invalid dependent objects, query the views USER/ALL/DBA_
OBJECTS.

Manually Recompiling Views
To recompile a view manually, you must have the ALTER ANY TABLE system

privilege or the view must be contained in your schema. Use the ALTER VIEW
statement with the COMPILE clause to recompile a view. The following statement

recompiles the view emp_dept contained in your schema:

ALTER VIEW emp_dept COMPILE;

Manually Recompiling Procedures and Functions
To recompile a standalone procedure manually, you must have the ALTER ANY
PROCEDURE system privilege or the procedure must be contained in your schema.

Use the ALTER PROCEDURE/FUNCTION statement with the COMPILE clause to

recompile a standalone procedure or function. The following statement recompiles

the stored procedure update_salary contained in your schema:

ALTER PROCEDURE update_salary COMPILE;

Manually Recompiling Packages
To recompile a package manually, you must have the ALTER ANY PROCEDURE
system privilege or the package must be contained in your schema. Use the ALTER
PACKAGEstatement with the COMPILE clause to recompile either a package body

or both a package specification and body. The following statement recompiles just

the body of the package acct_mgmt :

ALTER PACKAGE acct_mgmt COMPILE BODY;

The next example compiles both the body and specification of the package acct_
mgmt:

ALTER PACKAGE acct_mgmt COMPILE PACKAGE;

Managing Object Name Resolution
Object names referenced in SQL statements can consist of several pieces, separated

by periods. The following describes how Oracle resolves an object name.

Managing Object Name Resolution

21-26 Oracle9i Database Administrator’s Guide

1. Oracle attempts to qualify the first piece of the name referenced in the SQL

statement. For example, in scott.emp , scott is the first piece. If there is only

one piece, the one piece is considered the first piece.

a. In the current schema, Oracle searches for an object whose name matches

the first piece of the object name. If it does not find such an object, it

continues with Step b.

b. Oracle searches for a public synonym that matches the first piece of the

name. If it does not find one, it continues with Step c.

c. Oracle searches for a schema whose name matches the first piece of the

object name. If it finds one, it returns to Step b, now using the second piece

of the name as the object to find in the qualified schema. If the second piece

does not correspond to an object in the previously qualified schema or there

is not a second piece, Oracle returns an error.

If no schema is found in Step c, the object cannot be qualified and Oracle

returns an error.

2. A schema object has been qualified. Any remaining pieces of the name must

match a valid part of the found object. For example, if scott.emp.deptno is

the name, scott is qualified as a schema, emp is qualified as a table, and

deptno must correspond to a column (because emp is a table). If emp is

qualified as a package, deptno must correspond to a public constant, variable,

procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or

indirectly within a synonym, the local Oracle resolves the reference locally. For

example, it resolves a synonym to a remote table’s global object name. The partially

resolved statement is shipped to the remote database, and the remote Oracle

completes the resolution of the object as described here.

Because of how Oracle resolves references, it is possible for an object to depend on

the nonexistence of other objects. This situation occurs when the dependent object

uses a reference that would be interpreted differently were another object present.

For example, assume the following:

■ At the current point in time, the company schema contains a table named emp.

■ A PUBLIC synonym named emp is created for company.emp and the SELECT
privilege for company.emp is granted to the PUBLIC role.

■ The jward schema does not contain a table or private synonym named emp.

■ The user jward creates a view in his schema with the following statement:

Changing Storage Parameters for the Data Dictionary

General Management of Schema Objects 21-27

CREATE VIEW dept_salaries AS
 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp
 GROUP BY deptno
 ORDER BY deptno;

When jward creates the dept_salaries view, the reference to emp is resolved by

first looking for jward.emp as a table, view, or private synonym, none of which is

found, and then as a public synonym named emp, which is found. As a result,

Oracle notes that jward.dept_salaries depends on the nonexistence of

jward.emp and on the existence of public.emp .

Now assume that jward decides to create a new view named emp in his schema

using the following statement:

CREATE VIEW emp AS
 SELECT empno, ename, mgr, deptno
 FROM company.emp;

Notice that jward.emp does not have the same structure as company.emp .

As it attempts to resolve references in object definitions, Oracle internally makes

note of dependencies that the new dependent object has on "nonexistent"

objects--schema objects that, if they existed, would change the interpretation of the

object's definition. Such dependencies must be noted in case a nonexistent object is

later created. If a nonexistent object is created, all dependent objects must be

invalidated so that dependent objects can be recompiled and verified and all

dependent function-based indexes must be marked unusable.

Therefore, in the previous example, as jward.emp is created, jward.dept_
salaries is invalidated because it depends on jward.emp . Then when

jward.dept_salaries is used, Oracle attempts to recompile the view. As Oracle

resolves the reference to emp, it finds jward.emp (public.emp is no longer the

referenced object). Because jward.emp does not have a sal column, Oracle finds

errors when replacing the view, leaving it invalid.

In summary, you must manage dependencies on nonexistent objects checked

during object resolution in case the nonexistent object is later created.

Changing Storage Parameters for the Data Dictionary
If your database is very large or contains an unusually large number of objects,

columns in tables, constraint definitions, users, or other definitions, the tables that

make up the data dictionary might at some point be unable to acquire additional

extents. For example, a data dictionary table could require an additional extent, but

Changing Storage Parameters for the Data Dictionary

21-28 Oracle9i Database Administrator’s Guide

there is not enough contiguous space in the SYSTEMtablespace. If this happens, you

cannot create new objects, even though the tablespace intended to hold the objects

has sufficient space. To remedy this situation, you can change the storage

parameters of the underlying data dictionary tables, just as you can change the

storage settings for user-created segments. This allows the data dictionary tables to

be allocated more extents. For example, you can adjust the values of NEXT or

PCTINCREASE for a data dictionary table.

This section describes aspects of changing data dictionary storage parameters, and

contains the following topics:

■ Structures in the Data Dictionary

■ Errors that Require Changing Data Dictionary Storage

Structures in the Data Dictionary
The following tables and clusters contain the definitions of all the user-created

objects in the database:

Caution: Exercise caution when changing the storage settings for

the data dictionary objects. If you choose inappropriate settings,

you could damage the structure of the data dictionary and be

forced to re-create your entire database. For example, if you set

PCTINCREASEfor the data dictionary table USER$to 0 and NEXTto

2K, that table will quickly reach the maximum number of extents

for a segment. At that point you will not be able to create any more

users or roles without exporting, re-creating, and importing the

entire database.

Table or Cluster Contains definitions for:

SEG$ Segments defined in the database (including temporary segments)

OBJ$ User-defined objects in the database (including clustered tables);
indexed by I_OBJ1 and I_OBJ2

UNDO$ Rollback segments defined in the database; indexed by I_UNDO1

FET$ Available free extents not allocated to any segment

UET$ Extents allocated to segments

TS$ Tablespaces defined in the database

Changing Storage Parameters for the Data Dictionary

General Management of Schema Objects 21-29

Of all of the data dictionary segments, the following are the most likely to require

change:

FILE$ Files that make up the database; indexed by I_FILE1

FILEXT$ Datafiles with the AUTOEXTEND option set on

TAB$ Tables defined in the database (includes clustered tables); indexed by
I_TAB1

CLU$ Clusters defined in the database

IND$ Indexes defined in the database; indexed by I_IND1

ICOL$ Columns that have indexes defined on them (includes individual
entries for each column in a composite index); indexed by I_ICOL1

COL$ Columns defined in tables in the database; indexed by I_COL1 and I_
COL2

CON$ Constraints defined in the database (includes information on
constraint owner); indexed by I_CON1 and I_CON2

CDEF$ Definitions of constraints in CON$; indexed by I_CDEF1 , I_CDEF2 ,
and I_CDEF3

CCOL$ Columns that have constraints defined on them (includes individual
entries for each column in a composite key); indexed by I_CCOL1

USER$ Users and roles defined in the database; indexed by I_USER1

TSQ$ Tablespace quotas for users (contains one entry for each tablespace
quota defined for each user)

C_OBJ# Cluster containing TAB$, CLU$, ICOL$, IND$, and COL$: indexed by
I_OBJ#

C_TS# Cluster containing FET$, TS$, and FILE$; indexed by I_TS#

C_USER# Cluster containing USER and TSQ$$; indexed by I_USER#

C_COBJ# Cluster containing CDEF$ and CCOL$; indexed by I_COBJ#

Table or Cluster Comments

C_TS# If the free space in your database is very fragmented

C_OBJ# If you have many indexes or many columns in your tables

CON$, C_COBJ# If you use integrity constraints heavily

Table or Cluster Contains definitions for:

Displaying Information About Schema Objects

21-30 Oracle9i Database Administrator’s Guide

For the clustered tables, you must change the storage settings for the cluster, not for

the table.

Errors that Require Changing Data Dictionary Storage
Oracle returns an error if a user tries to create a new object that requires Oracle to

allocate an additional extent to the data dictionary when it is unable to allocate an

extent. The following error message indicates this kind of problem.

ORA-1653 unable to extend table name by num in tablespace name

If you receive this error message and the segment you were trying to change (such

as a table or rollback segment) has not reached the limits specified for it in its

definition, check the storage settings for the object that contains its definition.

For example, if you received an ORA-1653 while trying to define a new PRIMARY
KEY constraint on a table and there is sufficient space for the index that Oracle must

create for the key, check if CON$ or C_COBJ# cannot be allocated another extent. To

do this, query DBA_SEGMENTS. If another extent cannot be allocated, consider

changing the storage parameters for CON$ or C_COBJ#. See "Example 7: Displaying

Segments that Cannot Allocate Additional Extents" on page 21-36.

Displaying Information About Schema Objects
Oracle provides data dictionary views and PL/SQL packages that allow you to

display information about schema objects. Views and packages that are unique to a

particular schema object are described in the chapter of this book associated with

that object. This section describes views and packages that are generic in nature and

apply to multiple schema objects.

Using PL/SQL Packages to Display Information About Schema Objects
These Oracle supplied PL/SQL packages provide information about schema

objects:

C_USER# If you have a large number of users defined in your database

Table or Cluster Comments

Displaying Information About Schema Objects

General Management of Schema Objects 21-31

The following sections contain examples of using some of these packages.

Example 1: Using the DBMS_METADATA Package
The DBMS_METADATA package is a powerful tool for obtaining the complete

definition of a schema object. It enables you to obtain all of the attributes of an

object in one pass. The object is described as DDL that can be used to (re)create it.

In this example the GET_DDL function is used to fetch the DDL for all tables in the

current schema, filtering out nested tables and overflow segments. The SET_
TRANSFORM_PARAM (with the handle value equal to DBMS_METADATA.SESSION_
TRANSFORM meaning "for the current session") is used to specify that storage

clauses are not to be returned in the SQL DDL. Afterwards, the session-level

transform parameters are reset to their defaults. Once set, transform parameter

values remain in effect until specifically reset to their defaults.

EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,’STORAGE’,false);
SELECT DBMS_METADATA.GET_DDL(’TABLE’,u.table_name)
 FROM USER_ALL_TABLES u
 WHERE u.nested=’NO’
 AND (u.iot_type is null or u.iot_type=’IOT’);
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,’DEFAULT’);

Package and Procedure/Function Description

DBMS_METADATA.GET_DDL Use to obtain metadata (in the form of DDL used to
create the object) about a schema object.

The following package procedures provide information about space usage and free
blocks in schema objects:

DBMS_SPACE.UNUSED_SPACE Returns information about unused space in an
object (table, index, or cluster).

DBMS_SPACE.FREE_BLOCKS Returns information about free data blocks in an
object (table, index, or cluster) whose segment free
space is managed by free lists (segment space
management is MANUAL).

DBMS_SPACE.SPACE_USAGE Returns information about free data blocks in an
object (table, index, or cluster) whose segment space
management is AUTO.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

a description of PL/SQL packages

Displaying Information About Schema Objects

21-32 Oracle9i Database Administrator’s Guide

Example 2: Using DBMS_SPACE.UNUSED_SPACE
The following SQL*Plus example uses the DBMS_SPACE package to obtain unused

space information.

SQL> VARIABLE total_blocks NUMBER
SQL> VARIABLE total_bytes NUMBER
SQL> VARIABLE unused_blocks NUMBER
SQL> VARIABLE unused_bytes NUMBER
SQL> VARIABLE lastextf NUMBER
SQL> VARIABLE last_extb NUMBER
SQL> exec DBMS_SPACE.UNUSED_SPACE('SCOTT', 'EMP', 'TABLE', :total_blocks, -
> :total_bytes,:unused_blocks, :unused_bytes, :lastextf, -
> :last_extb, :lastusedblock);

PL/SQL procedure successfully completed.

SQL> PRINT

TOTAL_BLOCKS

 5

TOTAL_BYTES

 10240

...

LASTUSEDBLOCK

 3

Using Views to Display Information About Schema Objects
These views display information about schema objects:

See Also: Oracle9i XML Developer’s Kits Guide - XDK for detailed

information and further examples relating to the use of the DBMS_
METADATA package

Displaying Information About Schema Objects

General Management of Schema Objects 21-33

The following sections contain examples of using some of these views.

Example 1: Displaying Schema Objects By Type
The following query lists all of the objects owned by the user issuing the query:

SELECT OBJECT_NAME, OBJECT_TYPE
 FROM USER_OBJECTS;

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE

View Description

DBA_OBJECTS

ALL_OBJECTS

USER_OBJECTS

DBAview describes all schema objects in the database. ALL view
describes objects accessible to current user. USERview describes
objects owned by the current user.

DBA_CATALOG

ALL_CATALOG

USER_CATALOG

List the name, type, and owner (USER view does not display
owner) for all tables, views, synonyms, and sequences in the
database.

DBA_DEPENDENCIES

ALL_DEPENDENCIES

USER_DEPENDENCIES

Describe all dependencies between procedures, packages,
functions, package bodies, and triggers, including dependencies
on views without any database links.

The following views contain information about segments of the database:

DBA_SEGMENTS

USER_SEGMENTS

Describe storage allocated for all database segments, or for
segments for the current user.

The following views contain information about extents of the database:

DBA_EXTENTS

USER_EXTENTS

Describe extents comprising all segments either in the database,
or segments for the current user.

DBA_FREE_SPACE

USER_FREE_SPACE

List free extents in all tablespaces, or tablespaces owned by the
current user.

See Also: Oracle9i Database Reference for a complete description of

data dictionary views

Displaying Information About Schema Objects

21-34 Oracle9i Database Administrator’s Guide

DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Displaying Column Information
Column information, such as name, datatype, length, precision, scale, and default

data values can be listed using one of the views ending with the _COLUMNS suffix.

For example, the following query lists all of the default column values for the emp
and dept tables:

SELECT TABLE_NAME, COLUMN_NAME, DATA_DEFAULT
 FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = 'DEPT' OR TABLE_NAME = 'EMP';

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- ------------- --------------------
DEPT DEPTNO
DEPT DNAME
DEPT LOC 'NEW YORK'
EMP EMPNO
EMP ENAME
EMP JOB
EMP MGR
EMP HIREDATE SYSDATE
EMP SAL
EMP COMM
EMP DEPTNO

Notice that not all columns have user-specified defaults. These columns

automatically have NULL as the default.

Example 3: Displaying Dependencies of Views and Synonyms
When you create a view or a synonym, the view or synonym is based on its

underlying base object. The ALL/USER/DBA_DEPENDENCIES data dictionary

views can be used to reveal the dependencies for a view. The ALL/USER/DBA_
SYNONYMS data dictionary views can be used to list the base object of a synonym.

For example, the following query lists the base objects for the synonyms created by

the user jward :

SELECT TABLE_OWNER, TABLE_NAME, SYNONYM_NAME
 FROM DBA_SYNONYMS
 WHERE OWNER = 'JWARD';

Displaying Information About Schema Objects

General Management of Schema Objects 21-35

TABLE_OWNER TABLE_NAME SYNONYM_NAME
---------------------- ----------- -----------------
SCOTT DEPT DEPT
SCOTT EMP EMP

Example 4: Displaying General Segment Information
The following query returns the name of each rollback segment, the tablespace that

contains each, and the size of each rollback segment:

SELECT SEGMENT_NAME, TABLESPACE_NAME, BYTES, BLOCKS, EXTENTS
 FROM DBA_SEGMENTS
 WHERE SEGMENT_TYPE = 'ROLLBACK';

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------ --------------- --------- ------- ---------
RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Example 5: Displaying General Extent Information
General information about the currently allocated extents in a database is stored in

the DBA_EXTENTS data dictionary view. For example, the following query

identifies the extents associated with rollback segments and the size of each of those

extents:

SELECT SEGMENT_NAME, BYTES, BLOCKS
 FROM DBA_EXTENTS
 WHERE SEGMENT_TYPE = 'ROLLBACK';

SEGMENT_NAME BYTES BLOCKS
--------------- --------- --------
RS1 10240 5
RS1 10240 5
SYSTEM 51200 25
SYSTEM 51200 25
SYSTEM 51200 25

Notice that the rs1 rollback segment is comprised of two extents, both 10K, while

the SYSTEM rollback segment is comprised of three equally sized extents of 50K.

Displaying Information About Schema Objects

21-36 Oracle9i Database Administrator’s Guide

Example 6: Displaying the Free Space (Extents) of a Database
Information about the free extents (extents not allocated to any segment) in a

database is stored in the DBA_FREE_SPACE data dictionary view. For example, the

following query reveals the amount of free space available as free extents in each

tablespace:

SELECT TABLESPACE_NAME, FILE_ID, BYTES, BLOCKS
 FROM DBA_FREE_SPACE;

TABLESPACE_NAME FILE_ID BYTES BLOCKS
------------------- --------- -------- ----------
SYSTEM 1 8120320 3965
SYSTEM 1 10240 5
TS1 2 10432512 5094

Example 7: Displaying Segments that Cannot Allocate Additional Extents
You can also use DBA_FREE_SPACE, in combination with the views DBA_
SEGMENTS, DBA_TABLES, DBA_CLUSTERS, DBA_INDEXES, and DBA_ROLLBACK_
SEGS, to determine if any other segment is unable to allocate additional extents for

data dictionary objects only.

 A segment may not be allocated to an extent for any of the following reasons:

■ The tablespace containing the segment does not have enough room for the next

extent.

■ The segment has the maximum number of extents, as recorded in the data

dictionary (in SEG.MAX_EXTENTS).

■ The segment has the maximum number of extents allowed by the data block

size, which is operating system specific.

The following query returns the names, owners, and tablespaces of all segments

that satisfy any of the above criteria:

SELECT a.SEGMENT_NAME, a.SEGMENT_TYPE, a.TABLESPACE_NAME, a.OWNER
 FROM DBA_SEGMENTS a
 WHERE a.NEXT_EXTENT >= (SELECT MAX(b.BYTES)

Note: While the STORAGE clause value for MAXEXTENTS can be

UNLIMITED, data dictionary tables cannot have MAXEXTENTS
greater than the allowed block maximum. Thus, data dictionary

tables cannot be converted to unlimited format.

Displaying Information About Schema Objects

General Management of Schema Objects 21-37

 FROM DBA_FREE_SPACE b
 WHERE b.TABLESPACE_NAME = a.TABLESPACE_NAME)
 OR a.EXTENTS = a.MAX_EXTENTS
 OR a.EXTENTS = ' data_block_size ' ;

Once you have identified a segment that cannot allocate additional extents, you can

solve the problem in either of two ways, depending on its cause:

■ If the tablespace is full, add datafiles to the tablespace.

■ If the segment has too many extents, and you cannot increase MAXEXTENTSfor

the segment, perform the following steps.

1. Export the data in the segment

2. Drop and re-create the segment, giving it a larger INITIAL setting so that it

does not need to allocate so many extents

3. Import the data back into the segment.

Note: When you use this query, replace data_block_size with the

data block size for your system.

Displaying Information About Schema Objects

21-38 Oracle9i Database Administrator’s Guide

Detecting and Repairing Data Block Corruption 22-1

22
Detecting and Repairing Data Block

Corruption

This chapter explains using the DBMS_REPAIR PL/SQL package to repair data

block corruption in database schema objects. It contains the following topics:

■ Options for Repairing Data Block Corruption

■ About the DBMS_REPAIR Package

■ Using the DBMS_REPAIR Package

■ DBMS_REPAIR Examples

Note: If you are not familiar with the DBMS_REPAIRpackage, it is

recommended that you work with an Oracle Support Services

analyst when performing any of the repair procedures included in

this package.

Options for Repairing Data Block Corruption

22-2 Oracle9i Database Administrator’s Guide

Options for Repairing Data Block Corruption
Oracle provides different methods for detecting and correcting data block

corruption. One method of correction is to drop and re-create an object after the

corruption is detected. However, this is not always possible or desirable. If data

block corruption is limited to a subset of rows, another option is to rebuild the table

by selecting all data except for the corrupt rows.

Yet another way to manage data block corruption is to use the DBMS_REPAIR
package. You can use DBMS_REPAIR to detect and repair corrupt blocks in tables

and indexes. Using this approach, you can address corruptions where possible, and

also continue to use objects while you attempt to rebuild or repair them.

About the DBMS_REPAIR Package
This section describes the DBMS_REPAIR procedures contained in the package and

notes some limitations and restrictions on their use.

DBMS_REPAIR Procedures
The following table lists the procedures included in the DBMS_REPAIR package.

Note: Any corruption that involves the loss of data requires

analysis and understanding of how that data fits into the overall

database system. DBMS_REPAIR is not a magic wand—you must

still determine whether the repair approach provided by this

package is the appropriate tool for each specific corruption

problem. Depending on the nature of the repair, you might lose

data and logical inconsistencies can be introduced. Thus, you must

weigh the gains and losses associated with using DBMS_REPAIR.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on the syntax, restrictions, and exceptions for the

DBMS_REPAIR procedures

Procedure Name Description

CHECK_OBJECT Detects and reports corruptions in a table or index

FIX_CORRUPT_BLOCKS Marks blocks (that were previously identified by the
CHECK_OBJECT procedure) as software corrupt

Using the DBMS_REPAIR Package

Detecting and Repairing Data Block Corruption 22-3

These procedures are further described, with examples of their use, in "DBMS_

REPAIR Examples" on page 22-8.

Limitations and Restrictions
DBMS_REPAIR procedures have the following limitations:

■ Tables with LOBs, nested tables, and varrays are supported, but the out of line

columns are ignored.

■ Clusters are supported in the SKIP_CORRUPT_BLOCKS and REBUILD_
FREELISTS procedures, but not in the CHECK_OBJECT procedure.

■ Index-organized tables and LOB indexes are not supported.

■ The DUMP_ORPHAN_KEYS procedure does not operate on bitmap indexes or

function-based indexes.

■ The DUMP_ORPHAN_KEYS procedure processes keys that are, at most, 3,950

bytes long.

Using the DBMS_REPAIR Package
The following approach is recommended when considering DBMS_REPAIR for

addressing data block corruption:

Task 1: Detect and Report Corruptions

Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR

DUMP_ORPHAN_KEYS Reports index entries (into an orphan key table) that point
to rows in corrupt data blocks

REBUILD_FREELISTS Rebuilds an object’s free lists

SEGMENT_FIX_STATUS Provides the capability to fix the corrupted state of a
bitmap entry when segment space management is AUTO

SKIP_CORRUPT_BLOCKS When used, ignores blocks marked corrupt during table
and index scans. If not used, you get error ORA-1578
when encountering blocks marked corrupt.

ADMIN_TABLES Provides administrative functions (create, drop, purge) for
repair or orphan key tables.

Note: These tables are always created in the SYS schema.

Procedure Name Description

Using the DBMS_REPAIR Package

22-4 Oracle9i Database Administrator’s Guide

Task 3: Make Objects Usable

Task 4: Repair Corruptions and Rebuild Lost Data

These tasks are discussed in succeeding sections.

Task 1: Detect and Report Corruptions
Your first task, before using DBMS_REPAIR, should be the detection and reporting

of corruptions. Reporting not only indicates what is wrong with a block, but also

identifies the associated repair directive. You have several options, in addition to

DBMS_REPAIR, for detecting corruptions. Table 22–1 describes the different

detection methodologies.

DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES Procedures
The CHECK_OBJECT procedure checks and reports block corruptions for a specified

object. Similar to the ANALYZE ... VALIDATE STRUCTURE statement for

indexes and tables, block checking is performed for index and data blocks.

Not only does CHECK_OBJECT report corruptions, but it also identifies any fixes

that would occur if FIX_CORRUPT_BLOCKSis subsequently run on the object. This

information is made available by populating a repair table, which must first be

created by the ADMIN_TABLES procedure.

After you run the CHECK_OBJECT procedure, a simple query on the repair table

shows the corruptions and repair directives for the object. With this information,

you can assess how best to address the problems reported.

Table 22–1 Comparison of Corruption Detection Methods

Detection Method Description

DBMS_REPAIR Performs block checking for a specified table, partition, or
index. Populates a repair table with results.

DB_VERIFY External command-line utility that performs block checking on
an offline database.

ANALYZE Used with the VALIDATE STRUCTURE option, verifies the
integrity of the structure of an index, table, or cluster; checks or
verifies that your tables and indexes are in sync.

DB_BLOCK_CHECKING Performed when the initialization parameter DB_BLOCK_
CHECKING=TRUE. Identifies corrupt blocks before they actually
are marked corrupt. Checks are performed when changes are
made to a block.

Using the DBMS_REPAIR Package

Detecting and Repairing Data Block Corruption 22-5

DB_VERIFY: Performing an Offline Database Check
Typically, you use DB_VERIFY as an offline diagnostic utility when you encounter

data corruption problems.

ANALYZE: Corruption Reporting
The ANALYZE TABLE ... VALIDATE STRUCTURE statement validates the

structure of the analyzed object. If Oracle successfully validates the structure, a

message confirming its validation is returned to you. If Oracle encounters

corruption in the structure of the object, an error message is returned to you. In this

case, drop and re-create the object.

DB_BLOCK_CHECKING (Block Checking Initialization Parameter)
You can set block checking for instances using the DB_BLOCK_CHECKING
initialization parameter (the default value is FALSE). This checks data and index

blocks whenever they are modified. DB_BLOCK_CHECKINGis a dynamic parameter,

modifiable by the ALTER SYSTEM SET statement. Block checking is always

enabled for the system tablespace.

Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
Before using DBMS_REPAIR you must weigh the benefits of its use in relation to the

liabilities. You should also examine other options available for addressing corrupt

objects.

A first step is to answer the following questions:

1. What is the extent of the corruption?

To determine if there are corruptions and repair actions, execute the CHECK_
OBJECT procedure, and query the repair table.

2. What other options are available for addressing block corruptions? Consider

the following:

See Also: Oracle9i Database Utilities for more information about

DB_VERIFY

See Also: Oracle9i SQL Reference for more information about the

ANALYZE statement

See Also: Oracle9i Database Reference for more information about

the DB_BLOCK_CHECKING initialization parameter

Using the DBMS_REPAIR Package

22-6 Oracle9i Database Administrator’s Guide

■ Assuming the data is available from another source, drop, re-create and

re-populate the object.

■ Issue the CREATE TABLE ... AS SELECT statement from the corrupt

table to create a new one.

■ Ignore the corruption by excluding corrupt rows from select statements.

■ Perform media recovery.

3. What logical corruptions or side effects are introduced when you use DBMS_
REPAIR to make an object usable? Can these be addressed? What is the effort

required to do so?

It is possible that you do not have access to rows in blocks marked corrupt.

However, a block could be marked corrupt even though there are still rows that

you can validly access.

It is also possible that referential integrity constraints are broken when blocks

are marked corrupt. If this occurs, disable and re-enable the constraint; any

inconsistencies are reported. After fixing all problems, you should be able to

successfully re-enable the constraint.

Logical corruption can occur when there are triggers defined on the table. For

example, if rows are re-inserted, should insert triggers be fired or not? You can

address these issues only if you understand triggers and their use in your

installation.

Free list blocks can become inaccessible. If a corrupt block is at the head or tail

of a free list, space management reinitializes the free list. There then can be

blocks that should be on a free list, but are not. You can address this by

running the REBUILD_FREELISTS procedure.

Indexes and tables are out of sync. You can address this by first executing the

DUMP_ORPHAN_KEYS procedure (to obtain information from the keys that

might be useful in rebuilding corrupted data). Then issue the ALTER INDEX
... REBUILD ONLINE statement to get the table and its indexes back in sync.

4. If repair involves loss of data, can this data be retrieved?

You can retrieve data from the index when a data block is marked corrupt. The

DUMP_ORPHAN_KEYS procedure can help you retrieve this information. Of

course, retrieving data in this manner depends on the amount of redundancy

between the indexes and the table.

Using the DBMS_REPAIR Package

Detecting and Repairing Data Block Corruption 22-7

Task 3: Make Objects Usable
In this task DBMS_REPAIR makes the object usable by ignoring corruptions during

table and index scans.

Corruption Repair: Using the FIX_CORRUPT_BLOCKS and SKIP_CORRUPT_
BLOCKS Procedures
You make a corrupt object usable by establishing an environment that skips

corruptions that remain outside the scope of DBMS_REPAIR’s repair capabilities.

If corruptions involve a loss of data, such as a bad row in a data block, all such

blocks are marked corrupt by the FIX_CORRUPT_BLOCKSprocedure. Then, you can

run the SKIP_CORRUPT_BLOCKS procedure, which skips blocks marked corrupt

for the object. When skip is set, table and index scans skip all blocks marked

corrupt. This applies to both media and software corrupt blocks.

Implications when Skipping Corrupt Blocks
If an index and table are out of sync, then a SET TRANSACTION READ ONLY
transaction can be inconsistent in situations where one query probes only the index,

and then a subsequent query probes both the index and the table. If the table block

is marked corrupt, then the two queries return different results, thereby breaking

the rules of a read-only transaction. One way to approach this is to not skip

corruptions when in a SET TRANSACTION READ ONLY transaction.

A similar issue occurs when selecting rows that are chained. Essentially, a query of

the same row may or may not access the corruption, thereby producing different

results.

Task 4: Repair Corruptions and Rebuild Lost Data
After making an object usable, you can perform the following repair activities.

Recover Data Using the DUMP_ORPHAN_KEYS Procedure s
The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows in

corrupt data blocks. All such index entries are inserted into an orphan key table that

stores the key and rowid of the corruption.

After the index entry information has been retrieved, you can rebuild the index

using the ALTER INDEX ... REBUILD ONLINE statement.

DBMS_REPAIR Examples

22-8 Oracle9i Database Administrator’s Guide

Repair Free Lists Using the REBUILD_FREELISTS Procedure
Use this procedure if free space in segments is being managed using free lists

(SEGMENT SPACE MANAGEMENT MANUAL).

When a block marked "corrupt" is found at the head or tail of a free list, the free list

is reinitialized and an error is returned. Although this takes the offending block off

the free list, it causes you to lose free list access to all blocks that followed the

corrupt block.

You can use the REBUILD_FREELISTS procedure to reinitialize the free lists. The

object is scanned, and if it is appropriate for a block to be on the free list, it is added

to the master free list. Free list groups are handled by distributing blocks in an

equitable fashion, one block at a time. Any blocks marked "corrupt" in the object are

ignored during the rebuild.

Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure
Use this procedure if free space in segments is being managed using bitmaps

(SEGMENT SPACE MANAGEMENT AUTO).

This procedure either recalculates the state of a bitmap entry based on the

corresponding block’s current contents, or you can specify that a bitmap entry be

set to a specific value. Usually, the state is recalculated correctly and there is no need

to force a setting.

DBMS_REPAIR Examples
In this section, examples are presented reflecting the use of the DBMS_REPAIR
procedures.

■ Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table

■ Using the CHECK_OBJECT Procedure to Detect Corruption

■ Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure

■ Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN_

KEYS

■ Rebuilding Free Lists Using the REBUILD_FREELISTS Procedure

■ Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT_

BLOCKS

DBMS_REPAIR Examples

Detecting and Repairing Data Block Corruption 22-9

Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table
A repair table provides information about what corruptions were found by the

CHECK_OBJECT procedure and how these will be addressed if the FIX_CORRUPT_
BLOCKS procedure is run. Further, it is used to drive the execution of the FIX_
CORRUPT_BLOCKS procedure.

An orphan key table is used when the DUMP_ORPHAN_KEYS procedure is executed

and it discovers index entries that point to corrupt rows. The DUMP_ORPHAN_KEYS
procedure populates the orphan key table by logging its activity and providing the

index information in a usable manner.

The ADMIN_TABLE procedure is used to create, purge, or drop a repair table or an

orphan key table.

Creating a Repair Table
The following example creates a repair table for the users tablespace.

BEGIN
DBMS_REPAIR.ADMIN_TABLES (
 TABLE_NAME => 'REPAIR_TABLE',
 TABLE_TYPE => dbms_repair.repair_table,
 ACTION => dbms_repair.create_action,
 TABLESPACE => 'USERS');
END;
/

For each repair or orphan key table, a view is also created that eliminates any rows

that pertain to objects that no longer exist. The name of the view corresponds to the

name of the repair or orphan key table, but is prefixed by DBA_ (for example DBA_
REPAIR_TABLE or DBA_ORPHAN_KEY_TABLE).

The following query describes the repair table created in the previous example.

SQL> DESC REPAIR_TABLE
 Name Null? Type
 ---------------------------- -------- --------------
 OBJECT_ID NOT NULL NUMBER
 TABLESPACE_ID NOT NULL NUMBER
 RELATIVE_FILE_ID NOT NULL NUMBER
 BLOCK_ID NOT NULL NUMBER
 CORRUPT_TYPE NOT NULL NUMBER
 SCHEMA_NAME NOT NULL VARCHAR2(30)
 OBJECT_NAME NOT NULL VARCHAR2(30)
 BASEOBJECT_NAME VARCHAR2(30)

DBMS_REPAIR Examples

22-10 Oracle9i Database Administrator’s Guide

 PARTITION_NAME VARCHAR2(30)
 CORRUPT_DESCRIPTION VARCHAR2(2000)
 REPAIR_DESCRIPTION VARCHAR2(200)
 MARKED_CORRUPT NOT NULL VARCHAR2(10)
 CHECK_TIMESTAMP NOT NULL DATE
 FIX_TIMESTAMP DATE
 REFORMAT_TIMESTAMP DATE

Creating an Orphan Key Table
This example illustrates the creation of an orphan key table for the users
tablespace.

BEGIN
DBMS_REPAIR.ADMIN_TABLES (
 TABLE_NAME => 'ORPHAN_KEY_TABLE',
 TABLE_TYPE => dbms_repair.orphan_table,
 ACTION => dbms_repair.create_action,
 TABLESPACE => 'USERS');
END;
/

The orphan key table is described in the following query:

SQL> DESC ORPHAN_KEY_TABLE

 Name Null? Type
 ---------------------------- -------- -----------------
 SCHEMA_NAME NOT NULL VARCHAR2(30)
 INDEX_NAME NOT NULL VARCHAR2(30)
 IPART_NAME VARCHAR2(30)
 INDEX_ID NOT NULL NUMBER
 TABLE_NAME NOT NULL VARCHAR2(30)
 PART_NAME VARCHAR2(30)
 TABLE_ID NOT NULL NUMBER
 KEYROWID NOT NULL ROWID
 KEY NOT NULL ROWID
 DUMP_TIMESTAMP NOT NULL DATE

Using the CHECK_OBJECT Procedure to Detect Corruption
The CHECK_OBJECT procedure checks the specified objects, and populates the

repair table with information about corruptions and repair directives. You can

optionally specify a range, partition name, or subpartition name when you would

like to check a portion of an object.

DBMS_REPAIR Examples

Detecting and Repairing Data Block Corruption 22-11

Validation consists of checking all blocks in the object that have not previously been

marked corrupt. For each block, the transaction and data layer portions are checked

for self consistency. During CHECK_OBJECT, if a block is encountered that has a

corrupt buffer cache header, then that block is skipped.

Here is an example of executing the CHECK_OBJECT procedure for the

scott.dept table.

SET SERVEROUTPUT ON
DECLARE num_corrupt INT;
BEGIN
num_corrupt := 0;
DBMS_REPAIR.CHECK_OBJECT (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'DEPT',
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 CORRUPT_COUNT => num_corrupt);
DBMS_OUTPUT.PUT_LINE('number corrupt: ' || TO_CHAR (num_corrupt));
END;
/

SQL*PLUS outputs the following line, indicating one corruption:

number corrupt: 1

Querying the repair table produces information describing the corruption and

suggesting a repair action.

SELECT OBJECT_NAME, BLOCK_ID, CORRUPT_TYPE, MARKED_CORRUPT,
 CORRUPT_DESCRIPTION, REPAIR_DESCRIPTION
 FROM REPAIR_TABLE;

OBJECT_NAME BLOCK_ID CORRUPT_TYPE MARKED_COR
------------------------------ ---------- ------------ ----------
CORRUPT_DESCRIPTION
--
REPAIR_DESCRIPTION
--
DEPT 3 1 FALSE
kdbchk: row locked by non-existent transaction
 table=0 slot=0
 lockid=32 ktbbhitc=1
mark block software corrupt

DBMS_REPAIR Examples

22-12 Oracle9i Database Administrator’s Guide

At this point, the corrupted block has not yet been marked corrupt, so this is the

time to extract any meaningful data. After the block is marked corrupt, the entire

block must be skipped.

Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure
Use the FIX_CORRUPT_BLOCKS procedure to fix the corrupt blocks in specified

objects based on information in the repair table that was previously generated by

the CHECK_OBJECT procedure. Prior to effecting any change to a block, the block is

checked to ensure the block is still corrupt. Corrupt blocks are repaired by marking

the block software corrupt. When a repair is performed, the associated row in the

repair table is updated with a fix timestamp.

This example fixes the corrupt block in table scott.dept that was reported by the

CHECK_OBJECT procedure.

SET SERVEROUTPUT ON
DECLARE num_fix INT;
BEGIN
num_fix := 0;
DBMS_REPAIR.FIX_CORRUPT_BLOCKS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME=> 'DEPT',
 OBJECT_TYPE => dbms_repair.table_object,
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 FIX_COUNT=> num_fix);
DBMS_OUTPUT.PUT_LINE('num fix: ' || TO_CHAR(num_fix));
END;
/

SQL*Plus outputs the following line:

num fix: 1

To following query confirms that the repair was done.

SELECT OBJECT_NAME, BLOCK_ID, MARKED_CORRUPT
 FROM REPAIR_TABLE;

OBJECT_NAME BLOCK_ID MARKED_COR
------------------------------ ---------- ----------
DEPT 3 TRUE

DBMS_REPAIR Examples

Detecting and Repairing Data Block Corruption 22-13

Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN_KEYS
The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows in

corrupt data blocks. For each such index entry encountered, a row is inserted into

the specified orphan key table. The orphan key table must have been previously

created.

This information can be useful for rebuilding lost rows in the table and for

diagnostic purposes.

In this example, pk_dept is an index on the scott.dept table. It is scanned to

determine if there are any index entries pointing to rows in the corrupt data block.

SET SERVEROUTPUT ON
DECLARE num_orphans INT;
BEGIN
num_orphans := 0;
DBMS_REPAIR.DUMP_ORPHAN_KEYS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'PK_DEPT',
 OBJECT_TYPE => dbms_repair.index_object,
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 ORPHAN_TABLE_NAME=> 'ORPHAN_KEY_TABLE',
 KEY_COUNT => num_orphans);
DBMS_OUTPUT.PUT_LINE('orphan key count: ' || TO_CHAR(num_orphans));
END;
/

The following line is output, indicating there are three orphan keys:

orphan key count: 3

Index entries in the orphan key table implies that the index should be rebuilt. This

guarantees that a table probe and an index probe return the same result set.

Rebuilding Free Lists Using the REBUILD_FREELISTS Procedure
The REBUILD_FREELISTS procedure rebuilds the free lists for the specified object.

All free blocks are placed on the master free list. All other free lists are zeroed. If the

Note: This should be run for every index associated with a table

identified in the repair table.

DBMS_REPAIR Examples

22-14 Oracle9i Database Administrator’s Guide

object has multiple free list groups, then the free blocks are distributed among all

free lists, allocating to the different groups in round-robin fashion.

This example rebuilds the free lists for the table scott.dept .

BEGIN
DBMS_REPAIR.REBUILD_FREELISTS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'DEPT',
 OBJECT_TYPE => dbms_repair.table_object);
END;
/

Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT_BLOCKS
The SKIP_CORRUPT_BLOCKSprocedure enables or disables the skipping of corrupt

blocks during index and table scans of the specified object. When the object is a

table, skip applies to the table and its indexes. When the object is a cluster, it applies

to all of the tables in the cluster, and their respective indexes.

The following example enables the skipping of software corrupt blocks for the

scott.dept table:

BEGIN
DBMS_REPAIR.SKIP_CORRUPT_BLOCKS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'DEPT',
 OBJECT_TYPE => dbms_repair.table_object,
 FLAGS => dbms_repair.skip_flag);
END;
/

Querying scott ’s tables using the DBA_TABLES view shows that SKIP_CORRUPT
is enabled for table scott.dept .

SELECT OWNER, TABLE_NAME, SKIP_CORRUPT FROM DBA_TABLES
 WHERE OWNER = 'SCOTT';

OWNER TABLE_NAME SKIP_COR
------------------------------ ------------------------------ --------
SCOTT ACCOUNT DISABLED
SCOTT BONUS DISABLED
SCOTT DEPT ENABLED
SCOTT DOCINDEX DISABLED
SCOTT EMP DISABLED
SCOTT RECEIPT DISABLED

DBMS_REPAIR Examples

Detecting and Repairing Data Block Corruption 22-15

SCOTT SALGRADE DISABLED
SCOTT SCOTT_EMP DISABLED
SCOTT SYS_IOT_OVER_12255 DISABLED
SCOTT WORK_AREA DISABLED

10 rows selected.

DBMS_REPAIR Examples

22-16 Oracle9i Database Administrator’s Guide

Part IV
 Database Security

Part IV addresses issues of user and privilege management affecting the security of

the database. It includes the following chapters:

■ Chapter 23, "Establishing Security Policies"

■ Chapter 24, "Managing Users and Resources"

■ Chapter 25, "Managing User Privileges and Roles"

■ Chapter 26, "Auditing Database Use"

Establishing Security Policies 23-1

23
Establishing Security Policies

This chapter provides guidelines for developing security policies for database

operation, and contains the following topics:

■ System Security Policy

■ Data Security Policy

■ User Security Policy

■ Password Management Policy

■ Auditing Policy

■ A Security Checklist

System Security Policy

23-2 Oracle9i Database Administrator’s Guide

System Security Policy
This section describes aspects of system security policy, and contains the following

topics:

■ Database User Management

■ User Authentication

■ Operating System Security

Each database has one or more administrators who are responsible for maintaining

all aspects of the security policy: the security administrators. If the database system

is small, the database administrator may have the responsibilities of the security

administrator. However, if the database system is large, a special person or group of

people may have responsibilities limited to those of a security administrator.

After deciding who will manage the security of the system, a security policy must

be developed for every database. A database’s security policy should include

several sub-policies, as explained in the following sections.

Database User Management
Database users are the access paths to the information in an Oracle database.

Therefore, tight security should be maintained for the management of database

users. Depending on the size of a database system and the amount of work required

to manage database users, the security administrator may be the only user with the

privileges required to create, alter, or drop database users. On the other hand, there

may be a number of administrators with privileges to manage database users.

Regardless, only trusted individuals should have the powerful privileges to

administer database users.

User Authentication
Database users can be authenticated (verified as the correct person) by Oracle using

database passwords, the host operating system, network services, or by Secure

Sockets Layer (SSL).

Note: To be authenticated using network authentication services

or SSL, requires that you have installed Oracle Advanced Security.

Refer to the Oracle Advanced Security Administrator’s Guide for

information about these types of authentication.

Data Security Policy

Establishing Security Policies 23-3

User authentication and how it is specified is discussed in "User Authentication

Methods" on page 24-8.

Operating System Security
If applicable, the following security issues must also be considered for the operating

system environment executing Oracle and any database applications:

■ Database administrators must have the operating system privileges to create

and delete files.

■ Typical database users should not have the operating system privileges to

create or delete files related to the database.

■ If the operating system identifies database roles for users, the security

administrators must have the operating system privileges to modify the

security domain of operating system accounts.

Data Security Policy
Data security includes the mechanisms that control the access to and use of the

database at the object level. Your data security policy determines which users have

access to a specific schema object, and the specific types of actions allowed for each

user on the object. For example, user scott can issue SELECT and INSERT
statements but not DELETE statements using the emp table. Your data security

policy should also define the actions, if any, that are audited for each schema object.

Your data security policy is determined primarily by the level of security you want

to establish for the data in your database. For example, it may be acceptable to have

little data security in a database when you want to allow any user to create any

schema object, or grant access privileges for their objects to any other user of the

system. Alternatively, it might be necessary for data security to be very controlled

when you want to make a database or security administrator the only person with

the privileges to create objects and grant access privileges for objects to roles and

users.

Overall data security should be based on the sensitivity of data. If information is not

sensitive, then the data security policy can be more lax. However, if data is

sensitive, a security policy should be developed to maintain tight control over

access to objects.

See Also: Your operating system specific Oracle documentation

contains more information about operating system security issues

User Security Policy

23-4 Oracle9i Database Administrator’s Guide

Some means of implementing data security include system and object privileges,

and through roles. A role is a set of privileges grouped together that can be granted

to users. Privileges and roles are discussed in Chapter 25, "Managing User

Privileges and Roles".

Views can also implement data security because their definition can restrict access

to table data. They can exclude columns containing sensitive data. Views are

discussed in Chapter 20, "Managing Views, Sequences, and Synonyms".

Another means of implementing data security is through fine-grained access control

and use of an associated application context. Fine-grained access control is a feature

of Oracle that enables you to implement security policies with functions, and to

associate those security policies with tables or views. In effect, the security policy

function generates a WHERE condition that is appended to a SQL statement, thereby

restricting the users access to rows of data in the table or view. An application

context is a secure data cache for storing information used to make access control

decisions.

User Security Policy
This section describes aspects of user security policy, and contains the following

topics:

■ General User Security

■ End-User Security

■ Administrator Security

■ Application Developer Security

■ Application Administrator Security

General User Security
For all types of database users, consider the following general user security issues:

■ Password Security

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Supplied PL/SQL Packages and Types Reference

The above manuals contain information about implementing

fine-grained access control and an application context.

User Security Policy

Establishing Security Policies 23-5

■ Privilege Management

Password Security
If user authentication is managed by the database, security administrators should

develop a password security policy to maintain database access security. For

example, database users should be required to change their passwords at regular

intervals, and of course, when their passwords are revealed to others. By forcing a

user to modify passwords in such situations, unauthorized database access can be

reduced.

To better protect the confidentiality of your password, Oracle can be configured to

use encrypted passwords for client/server and server/server connections.

By setting the following values, you can require that the password used to verify a

connection always be encrypted:

■ Set the ORA_ENCRYPT_LOGIN environment variable to TRUE on the client

machine.

■ Set the DBLINK_ENCRYPT_LOGIN server initialization parameter to TRUE.

If enabled at both the client and server, passwords will not be sent across the

network "in the clear", but will be encrypted using a modified DES (Data

Encryption Standard) algorithm.

The DBLINK_ENCRYPT_LOGIN initialization parameter is used for connections

between two Oracle servers (for example, when performing distributed queries). If

you are connecting from a client, Oracle checks the ORA_ENCRYPT_LOGIN
environment variable.

Whenever you attempt to connect to a server using a password, Oracle encrypts the

password before sending it to the server. If the connection fails and auditing is

enabled, the failure is noted in the audit log. Oracle then checks the appropriate

DBLINK_ENCRYPT_LOGIN or ORA_ENCRYPT_LOGIN value. If it set to FALSE,

Oracle attempts the connection again using an unencrypted version of the

password. If the connection is successful, the connection replaces the previous

Note: It is strongly recommended that you configure Oracle to

encrypt passwords in client/server and server/server connections.

Otherwise, a malicious user "snooping" on the network can grab an

unencrypted password, and use it to connect to the database as

another user, thereby "impersonating" that user.

User Security Policy

23-6 Oracle9i Database Administrator’s Guide

failure in the audit log, and the connection proceeds. To prevent malicious users

from forcing Oracle to re-attempt a connection with an unencrypted version of the

password, you must set the appropriate values to TRUE.

Privilege Management
Security administrators should consider issues related to privilege management for

all types of users. For example, in a database with many usernames, it may be

beneficial to use roles (which are named groups of related privileges that you grant

to users or other roles) to manage the privileges available to users. Alternatively, in

a database with a handful of usernames, it may be easier to grant privileges

explicitly to users and avoid the use of roles.

Security administrators managing a database with many users, applications, or

objects should take advantage of the benefits offered by roles. Roles greatly simplify

the task of privilege management in complicated environments.

End-User Security
Security administrators must define a policy for end-user security. If a database has

many users, the security administrator can decide which groups of users can be

categorized into user groups, and then create user roles for these groups. The

security administrator can grant the necessary privileges or application roles to each

user role, and assign the user roles to the users. To account for exceptions, the

security administrator must also decide what privileges must be explicitly granted

to individual users.

Using Roles for End-User Privilege Management
Roles are the easiest way to grant and manage the common privileges needed by

different groups of database users.

Consider a situation where every user in the accounting department of a company

needs the privileges to run the accts_receivable and accts_payable
database applications. Roles are associated with both applications, and they contain

the object privileges necessary to execute those applications.

The following actions, performed by the database or security administrator, address

this simple security situation:

1. Create a role named accountant .

2. Grant the roles for the accts_receivable and accts_payable database

applications to the accountant role.

User Security Policy

Establishing Security Policies 23-7

3. Grant each user of the accounting department the accountant role.

This security model is illustrated in Figure 23–1.

Figure 23–1 User Role

This plan addresses the following potential situations:

■ If accountants subsequently need a role for a new database application, that

application’s role can be granted to the accountant role, and all users in the

accounting department will automatically receive the privileges associated with

the new database application. The application’s role does not need to be

granted to individual users requiring use of the application.

■ Similarly, if the accounting department no longer requires the need for a specific

application, the application’s role can be dropped from the accountant role.

■ If the privileges required by the accts_receivable or accts_payable
applications change, the new privileges can be granted to, or revoked from, the

application’s role. The security domain of the accountant role, and all users

granted the accountant role, automatically reflect the privilege modification.

Utilize roles in all possible situations to make end-user privilege management

efficient and simple.

Users

User Roles

Application Roles

Application Privileges

ACCOUNTANT
Role

ACCTS_PAY
Role

ACCTS_REC
Role

Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

User Security Policy

23-8 Oracle9i Database Administrator’s Guide

Using a Directory Service for End-User Privilege Management
You can also manage users and their authorizations centrally, in a directory service,

through the enterprise user and enterprise role features of Oracle Advanced

Security. See the Oracle Advanced Security Administrator’s Guide for information

about this functionality.

Administrator Security
Security administrators should have a policy addressing database administrator

security. For example, when the database is large and there are several types of

database administrators, the security administrator may decide to group related

administrative privileges into several administrative roles. The administrative roles

can then be granted to appropriate administrator users. Alternatively, when the

database is small and has only a few administrators, it may be more convenient to

create one administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM
After database creation, and if you used the default passwords for SYS and

SYSTEM, immediately change the passwords for the SYS and SYSTEM administrative

usernames. Connecting as SYS or SYSTEM gives a user powerful privileges to

modify a database. For example, connecting as SYS allows a user to alter data

dictionary tables. The privileges associated with these usernames are extremely

sensitive, and should only be available to select database administrators.

If you have installed options that have caused other administrative usernames to be

created, such username accounts are initially created locked. To unlock these

accounts, use the ALTER USER statement. The ALTER USER statement should also

be used to change the associated passwords for these accounts.

The passwords for these accounts can be modified using the procedures described

in "Altering Users" on page 24-6.

Protection for Administrator Connections
Only database administrators should have the capability to connect to a database

with administrative privileges. For example:

CONNECTusername/password AS SYSDBA/SYSOPER

See Also: Chapter 1, "The Oracle Database Administrator"

contains a more thorough discussion of administrator security

User Security Policy

Establishing Security Policies 23-9

Connecting as SYSOPER gives a user the ability to perform basic operational tasks

(such as STARTUP, SHUTDOWN, and recovery operations). Connecting as SYSDBA
gives the user these abilities plus unrestricted privileges to do anything to a

database or the objects within a database (including, CREATE, DROP, and DELETE).
Connecting as SYSDBA places a user in the SYS schema, where they can alter data

dictionary tables.

Using Roles for Administrator Privilege Management
Roles are the easiest way to restrict the powerful system privileges and roles

required by personnel administrating the database.

Consider a scenario where the database administrator responsibilities at a large

installation are shared among several database administrators, each responsible for

the following specific database management jobs:

■ Object creation and maintenance

■ Database tuning and performance

■ Creation of new users and granting roles and privileges to database users

■ Routine database operation (for example: STARTUP, SHUTDOWN, and backup

and recovery operations)

■ Emergency situations, such as database recovery

There are also new, inexperienced database administrators needing limited

capabilities to experiment with database management

In this scenario, the security administrator should structure the security for

administrative personnel as follows:

1. Define six roles to contain the distinct privileges required to accomplish each

type of job (for example, dba_objects , dba_tune , dba_security , dba_
maintain , dba_recov , dba_new).

2. Grant each role the appropriate privileges.

3. Grant each type of database administrator the corresponding role.

This plan diminishes the likelihood of future problems in the following ways:

■ If a database administrator’s job description changes to include more

responsibilities, that database administrator can be granted other

administrative roles corresponding to the new responsibilities.

User Security Policy

23-10 Oracle9i Database Administrator’s Guide

■ If a database administrator’s job description changes to include fewer

responsibilities, that database administrator can have the appropriate

administrative roles revoked.

■ The data dictionary always stores information about each role and each user, so

information is available to disclose the task of each administrator.

Application Developer Security
Security administrators must define a special security policy for the application

developers using a database. A security administrator could grant the privileges to

create necessary objects to application developers. Or, alternatively, the privileges to

create objects could be granted only to a database administrator, who then receives

requests for object creation from developers.

Application Developers and Their Privileges
Database application developers are unique database users who require special

groups of privileges to accomplish their jobs. Unlike end users, developers need

system privileges, such as CREATE TABLE, CREATE PROCEDURE, and so on.

However, only specific system privileges should be granted to developers to restrict

their overall capabilities in the database.

The Application Developer’s Environment: Test and Production Databases
In many cases, application development is restricted to test databases and is not

allowed on production databases. This restriction ensures that application

developers do not compete with end users for database resources, and that they

cannot detrimentally affect a production database.

After an application has been thoroughly developed and tested, it is permitted

access to the production database and made available to the appropriate end users

of the production database.

Free Versus Controlled Application Development
The database administrator can define the following options when determining

which privileges should be granted to application developers:

■ Free development

An application developer is allowed to create new schema objects, including

tables, indexes, procedures, packages, and so on. This option allows the

application developer to develop an application independent of other objects.

User Security Policy

Establishing Security Policies 23-11

■ Controlled Development

An application developer is not allowed to create new schema objects. All

required tables, indexes, procedures, and so on are created by a database

administrator, as requested by an application developer. This option allows the

database administrator to completely control a database’s space usage and the

access paths to information in the database.

Although some database systems use only one of these options, other systems could

mix them. For example, application developers can be allowed to create new stored

procedures and packages, but not allowed to create tables or indexes. A security

administrator’s decision regarding this issue should be based on the following:

■ The control desired over a database’s space usage

■ The control desired over the access paths to schema objects

■ The database used to develop applications—if a test database is being used for

application development, a more liberal development policy would be in order

Roles and Privileges for Application Developers
Security administrators can create roles to manage the privileges required by the

typical application developer. For example, a typical role named APPLICATION_
DEVELOPER might include the CREATE TABLE, CREATE VIEW, and CREATE
PROCEDURE system privileges. Consider the following when defining roles for

application developers:

■ CREATE system privileges are usually granted to application developers so that

they can create their own objects. However, CREATE ANY system privileges,

which allow a user to create an object in any user’s schema, are not usually

granted to developers. This restricts the creation of new objects only to the

developer’s user account.

■ Object privileges are rarely granted to roles used by application developers.

This is because granting object privileges through roles often restricts their

usability in the creation of other objects (primarily views and stored

procedures). It is more practical to allow application developers to create their

own objects for development purposes.

Space Restrictions Imposed on Application Developers
While application developers are typically given the privileges to create objects as

part of the development process, security administrators must maintain limits on

what and how much database space can be used by each application developer. For

Password Management Policy

23-12 Oracle9i Database Administrator’s Guide

example, as the security administrator, you should specifically set or restrict the

following limits for each application developer:

■ The tablespaces in which the developer can create tables or indexes

■ The quota for each tablespace accessible to the developer

Both limitations can be set by altering a developer’s security domain. This is

discussed in "Altering Users" on page 24-6.

Application Administrator Security
In large database systems with many database applications, you might consider

assigning application administrators. An application administrator is responsible

for the following types of tasks:

■ Creating roles for an application and managing the privileges of each

application role

■ Creating and managing the objects used by a database application

■ Maintaining and updating the application code and Oracle procedures and

packages, as necessary

Often, an application administrator is also the application developer who designed

an application. However, an application administrator could be any individual

familiar with the database application.

Password Management Policy
Database security systems that are dependent on passwords require that passwords

be kept secret at all times. But, passwords are vulnerable to theft, forgery, and

misuse. To allow for greater control over database security, Oracle’s password

management policy is controlled by DBAs and security officers through user

profiles.

You use the CREATE PROFILE statement to create a user profile. The profile is

assigned to a user with the CREATE USER or ALTER USER statement. Details of

creating and altering database users are not discussed in this section. This section is

concerned with the password parameters that can be specified using the CREATE
PROFILE (or ALTER PROFILE) statement.

This section contains the following topics relating to password management:

This section describes the following aspects of Oracle password management:

Password Management Policy

Establishing Security Policies 23-13

■ Account Locking

■ Password Aging and Expiration

■ Password History

■ Password Complexity Verification

Account Locking
When a particular user exceeds a designated number of failed login attempts, the

server automatically locks that user’s account. You specify the permissible number

of failed login attempts using the CREATE PROFILE statement. You can also

specify the amount of time accounts remain locked.

In the following example, the maximum number of failed login attempts for the

user ashwini is four, and the amount of time the account will remain locked is 30

days. The account will unlock automatically after the passage of 30 days.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30;
ALTER USER ashwini PROFILE prof;

If you do not specify a time interval for unlocking the account, PASSWORD_LOCK_
TIME assumes the value specified in a default profile. If you specify PASSWORD_
LOCK_TIME as UNLIMITED, the account must be explicitly unlocked using an

ALTER USER statement. For example, assuming that PASSWORD_LOCK_TIME
UNLIMITED is specified for ashwini , then the following statement must be used to

unlock the account:

ALTER USER ashwini ACCOUNT UNLOCK;

After a user successfully logs into an account, that user’s unsuccessful login attempt

count, if there is one, is reset to 0.

The security officer can also explicitly lock user accounts. When this occurs, the

account cannot be unlocked automatically, and only the security officer should

See Also:

■ "Managing Resources with Profiles" on page 24-18

■ "Managing Oracle Users" on page 24-2

■ Oracle9i SQL Reference for syntax and specific information about

SQL statements discussed in this section

Password Management Policy

23-14 Oracle9i Database Administrator’s Guide

unlock the account. The CREATE USER or ALTER USER statements are used to

explicitly lock or unlock user accounts. For example, the following statement locks

user account susan :

ALTER USER susan ACCOUNT LOCK;

Password Aging and Expiration
Use the CREATE PROFILEstatement to specify a maximum lifetime for passwords.

When the specified amount of time passes and the password expires, the user or

DBA must change the password. The following statements create and assign a

profile to user ashwini , and the PASSWORD_LIFE_TIME clause specifies that

ashwini can use the same password for 90 days before it expires.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 90;
ALTER USER ashwini PROFILE prof;

You can also specify a grace period for password expiration. Users enter the grace

period upon the first attempt to log in to a database account after their password

has expired. During the grace period, a warning message appears each time users

try to log in to their accounts, and continues to appear until the grace period

expires. Users must change the password within the grace period. If the password is

not changed within the grace period, thereafter users are prompted for a new

password each time an attempt is made to access their accounts. Access to an

account is denied until a new password is supplied.

Figure 23–2 shows the chronology of the password lifetime and grace period.

Figure 23–2 Chronology of Password Lifetime and Grace Period

In the following example, the profile assigned to ashwini includes the specification

of a grace period: PASSWORD_GRACE_TIME = 3. The first time ashwini tries to

Password
Life time

last password
change

1st login after
password lifetime

Expires ...

.Grace period

Password Management Policy

Establishing Security Policies 23-15

log in to the database after 90 days (this can be any day after the 90th day; that is,

the 70th day, 100th day, or another day), she receives a warning message that her

password will expire in three days. If three days pass, and she does not change her

password, the password expires. Thereafter, she receives a prompt to change her

password on any attempt to log in, and cannot log in until she does so.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;
ALTER USER ashwini PROFILE prof;

Oracle provides a means of explicitly expiring a password. The CREATE USER and

ALTER USER statements provide this functionality. The following statement creates

a user with an expired password. This setting forces the user to change the

password before the user can log in to the database.

CREATE USER jbrown
 IDENTIFIED BY zX83yT
 ...
 PASSWORD EXPIRE;

Password History
Use the CREATE PROFILE statement to specify a time interval during which users

cannot reuse a password. In the following statement, a profile is defined where the

PASSWORD_REUSE_TIME clause specifies that the user cannot reuse the password

for 60 days.

CREATE PROFILE prof LIMIT
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX UNLIMITED;

In the next statement, the PASSWORD_REUSE_MAX clause specifies that the number

of password changes the user must make before the current password can be used

again is three.

CREATE PROFILE prof LIMIT
 PASSWORD_REUSE_MAX 3
 PASSWORD_REUSE_TIME UNLIMITED;

Password Management Policy

23-16 Oracle9i Database Administrator’s Guide

Password Complexity Verification
Oracle’s password complexity verification routine can be specified using a PL/SQL

script (UTLPWDMG.SQL), which sets the default profile parameters.

The password complexity verification routine performs the following checks:

■ The password has a minimum length of four.

■ The password is not the same as the username.

■ The password has at least one alpha, one numeric, and one punctuation mark

character.

■ The password is not a simple or obvious word, such as welcome , account ,

database , or user .

■ The password differs from the previous password by at least 3 characters.

Password Verification Routine Formatting Guidelines
You can enhance the existing password verification complexity routine or create

other password verification routines using PL/SQL or third-party tools.

The PL/SQL call must adhere to the following format:

routine_name
(
userid_parameter IN VARCHAR(30),
password_parameter IN VARCHAR (30),
old_password_parameter IN VARCHAR (30)
)
RETURN BOOLEAN

Note: If you specify PASSWORD_REUSE_TIME or PASSWORD_
REUSE_MAX, you must set the other to UNLIMITED or not specify it

at all.

Note: Oracle recommends that you do not change passwords

using the ALTER USER statement because it does not fully support

the password verification function. Instead, you should use

LNOCIPasswordChange() to change passwords.

Password Management Policy

Establishing Security Policies 23-17

After a new routine is created, it must be assigned as the password verification

routine using the user’s profile or the system default profile.

CREATE/ALTER PROFILE profile_name LIMIT
PASSWORD_VERIFY_FUNCTIONroutine_name

The password verify routine must be owned by SYS.

Sample Password Verification Routine
You can use this sample password verification routine as a model when developing

your own complexity checks for a new password.

The default password complexity function performs the following minimum

complexity checks:

■ The password satisfies minimum length requirements.

■ The password is not the username. You can modify this function based on your

requirements.

This function must be created in SYS schema, and you must connect
SYS/password AS SYSDBA before running the script.

CREATE OR REPLACE FUNCTION verify_function
(username varchar2,
 password varchar2,
 old_password varchar2)
 RETURN boolean IS
 n boolean;
 m integer;
 differ integer;
 isdigit boolean;
 ischar boolean;
 ispunct boolean;
 digitarray varchar2(20);
 punctarray varchar2(25);
 chararray varchar2(52);

BEGIN
 digitarray:= '0123456789';
 chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
 punctarray:='!"#$%&()’’*+,-/:;<=>?_';

--Check if the password is same as the username
IF password = username THEN
 raise_application_error(-20001, 'Password same as user');

Password Management Policy

23-18 Oracle9i Database Administrator’s Guide

END IF;

--Check for the minimum length of the password
IF length(password) < 4 THEN
 raise_application_error(-20002, 'Password length less than 4');
END IF;

--Check if the password is too simple. A dictionary of words may be
--maintained and a check may be made so as not to allow the words
--that are too simple for the password.
IF NLS_LOWER(password) IN ('welcome', 'database', 'account', 'user',
 'password', 'oracle', 'computer', 'abcd')
 THEN raise_application_error(-20002, 'Password too simple');
END IF;

--Check if the password contains at least one letter,
--one digit and one punctuation mark.
--1. Check for the digit
--You may delete 1. and replace with 2. or 3.
isdigit:=FALSE;
m := length(password);
FOR i IN 1..10 LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(digitarray,i,1) THEN
 isdigit:=TRUE;
 GOTO findchar;
 END IF;
 END LOOP;
END LOOP;
IF isdigit = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one \
 digit, one character and one punctuation');
END IF;
--2. Check for the character

<<findchar>>
ischar:=FALSE;
FOR i IN 1..length(chararray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(chararray,i,1) THEN
 ischar:=TRUE;
 GOTO findpunct;
 END IF;
 END LOOP;
END LOOP;

Password Management Policy

Establishing Security Policies 23-19

IF ischar = FALSE THEN
 raise_application_error(-20003, 'Password should contain at least one digit,\
 one character and one punctuation');
END IF;
--3. Check for the punctuation

<<findpunct>>
ispunct:=FALSE;
FOR i IN 1..length(punctarray) LOOP
 FOR j IN 1..m LOOP
 IF substr(password,j,1) = substr(punctarray,i,1) THEN
 ispunct:=TRUE;
 GOTO endsearch;
 END IF;
 END LOOP;
END LOOP;
IF ispunct = FALSE THEN raise_application_error(-20003, 'Password should \
 contain at least one digit, one character and one punctuation');
END IF;

<<endsearch>>
--Check if the password differs from the previous password by at least 3 letters
IF old_password = '' THEN
 raise_application_error(-20004, 'Old password is null');
END IF;
--Everything is fine; return TRUE ;
differ := length(old_password) - length(password);
IF abs(differ) < 3 THEN
 IF length(password) < length(old_password) THEN
 m := length(password);
 ELSE
 m:= length(old_password);
 END IF;
 differ := abs(differ);
 FOR i IN 1..m LOOP
 IF substr(password,i,1) != substr(old_password,i,1) THEN
 differ := differ + 1;
 END IF;
 END LOOP;
 IF differ < 3 THEN
 raise_application_error(-20004, 'Password should differ by at \
 least 3 characters');
 END IF;
 END IF;
--Everything is fine; return TRUE ;

Auditing Policy

23-20 Oracle9i Database Administrator’s Guide

 RETURN(TRUE);
END;

Auditing Policy
Security administrators should define a policy for the auditing procedures of each

database. You may, for example, decide to have database auditing disabled unless

questionable activities are suspected. When auditing is required, the security

administrator must decide what level of detail to audit the database; usually,

general system auditing is followed by more specific types of auditing after the

origins of suspicious activity are determined. Auditing is discussed in Chapter 26,

"Auditing Database Use".

A Security Checklist
Information security and privacy and protection of corporate assets and data are of

pivotal importance in any business. Oracle9i comprehensively addresses the need

for information security by offering cutting-edge security features such as deep data

protection, auditing, scalable security, secure hosting and data exchange.

The Oracle9i database server leads the industry in security. However, in order to

fully maximize the security features offered by Oracle9i in any business

environment, it is imperative that Oracle9i itself is well-protected. Furthermore,

proper use of its security features and adherence to basic security practices will help

protect against database-related threats and attacks and provide a much more

secure operating environment for the Oracle9i database.

This security checklist provides guidance on configuring Oracle9i in a secure

manner by adhering to and recommending industry-standard "best security

practices" for operational database deployments.

Details on specific database-related tasks and actions can be found throughout the

Oracle documentation set.

1. INSTALL ONLY WHAT IS REQUIRED

The Oracle9i CD pack contains a host of options and products in addition to

the database server. Install additional products and options only as necessary.

Or, following a typical installation (if avoiding a custom installation), deinstall

options and products that are not necessary. There is no need to maintain the

additional products and options if they are not being used. They can always be

properly and easily reinstalled as required.

2. LOCK AND EXPIRE DEFAULT USER ACCOUNTS

A Security Checklist

Establishing Security Policies 23-21

Oracle9i installs with a number of default (preset) database server user

accounts. The Database Client Administration tool (DBCA) automatically locks

and expires all default database user accounts except the following upon

successful installation of the database server:

■ SYS

■ SYSTEM

■ SCOTT

■ DBSNMP

■ OUTLN

■ The three JSERV users

If a manual (not utilizing DBCA) installation of Oracle9i is performed, none of

the default database users are locked upon successful installation of the

database server. If left open in their default states, these user accounts can be

exploited to gain unauthorized access to data or disrupt database operations.

Lock and expire all default database user accounts except SYS, SYSTEM, SCOTT,
DBSNMP, OUTLN and the three JSERV database users after performing any kind

of initial installation that does not utilize DBCA. Oracle9i provides SQL to

perform such operations.

Provided below is the table of database users after a typical Oracle9i installation

utilizing DBCA.

USERNAME ACCOUNT_STATUS

ADAMS EXPIRED & LOCKED

AURORAJISUTILITY$ OPEN

AURORAORBUNAUTHENTICATED OPEN

BLAKE EXPIRED & LOCKED

CLARK EXPIRED & LOCKED

CTXSYS EXPIRED & LOCKED

DBSNMP OPEN

HR EXPIRED & LOCKED

JONES EXPIRED & LOCKED

LBACSYS EXPIRED & LOCKED

A Security Checklist

23-22 Oracle9i Database Administrator’s Guide

If any default database server user account other the ones left open is required

for any reason, a database administrator (DBA) need simply unlock and

activate that account with a new, meaningful password.

3. CHANGE DEFAULT USER PASSWORDS

MDSYS EXPIRED & LOCKED

OE EXPIRED & LOCKED

OLAPDBA EXPIRED & LOCKED

OLAPSVR EXPIRED & LOCKED

OLAPSYS EXPIRED & LOCKED

ORDPLUGINS EXPIRED & LOCKED

ORDSYS EXPIRED & LOCKED

OSE$HTTP$ADMIN OPEN

OUTLN OPEN

PM EXPIRED & LOCKED

QS EXPIRED & LOCKED

QS_ADM EXPIRED & LOCKED

QS_CB EXPIRED & LOCKED

QS_CBADM EXPIRED & LOCKED

QS_CS EXPIRED & LOCKED

QS_ES EXPIRED & LOCKED

QS_OS EXPIRED & LOCKED

QS_WS EXPIRED & LOCKED

SCOTT OPEN

SH EXPIRED & LOCKED

SYS OPEN

SYSTEM OPEN

USERNAME ACCOUNT_STATUS

A Security Checklist

Establishing Security Policies 23-23

The most trivial method by which Oracle9i can be compromised is a default

database server user account which still has a default password associated with

it even after installation.

a. Change default passwords of administrative users

In Oracle9i, SYS installs with a default password of CHANGE_ON_INSTALL
and SYSTEM installs with a default password of MANAGER. Change the

default passwords associated with users SYS and SYSTEM immediately

upon installation of the database server.

b. Change default passwords of all users

In Oracle9i, SCOTT installs with default password TIGER and the three

JSERV accounts (AURORAJISUTILITY$,

AURORAORBUNAUTHENTICATED and OSE$HTTP$ADMIN) each install

with randomly-generated passwords. Each of the other accounts install

with a default password that is exactly the same as that user account (for

example, user MDSYS installs with password MDSYS).

Change the passwords for SCOTT, DBSNMP, OUTLN and the three JSERV
user accounts immediately upon installation as well. If any of the other

default user accounts that were locked and expired upon installation need

to be activated, assign a new meaningful password to that user account.

Even though Oracle does not explicitly mandate changing the default

password for user SCOTT, Oracle nevertheless recommends that this user

account also be locked unless it is being actively used.

c. Enforce password management

Oracle recommends that basic password management rules (such as

password length, history, complexity, and so forth) as provided by the

database be applied to all user passwords and that all users be required to

change their passwords periodically.

Oracle also recommends, if possible, utilizing Oracle Advanced Security (an

option to the Enterprise Edition of Oracle9i) with network authentication

services (such as Kerberos), token cards, smart cards or X.509 certificates.

These services enable strong authentication of users to provide better

protection against unauthorized access to Oracle9i.

4. ENABLE DATA DICTIONARY PROTECTION

Oracle recommends that customers implement data dictionary protection to

prevent users having the ANY system privileges from using such privileges on

the data dictionary.

A Security Checklist

23-24 Oracle9i Database Administrator’s Guide

To enable dictionary protection, set the O7_DICTIONARY_ACCESSIBILITY
initialization parameter, in the following manner:

O7_DICTIONARY_ACCESSIBILITY = FALSE

By doing so, only those authorized users making DBA-privileged (for example

CONNECT / AS SYSDBA) connections can use the ANY system privilege on the

data dictionary. If this parameter is not set to the value recommended above,

any user with a DROP ANY TABLE (for example) system privilege will be able

to maliciously drop parts of the data dictionary.

However, if a user requires view access to the data dictionary, it is permissible

to grant that user the SELECT ANY DICTIONARY system privilege.

Note that in Oracle9i, O7_DICTIONARY_ACCESSIBILITY = FALSE by

default; in Oracle8i, the parameter is set to TRUE by default and must

specifically be changed to FALSE to enable this security feature.

5. PRACTICE PRINCIPLE OF LEAST PRIVILEGE

a. Grant necessary privileges only

Do not provide database users more privileges than are necessary. In other

words, principle of least privilege is that a user be given only those privileges

that are actually required to efficiently and succinctly perform his or her

job.

To implement least privilege, restrict: 1) the number of SYSTEM and

OBJECT privileges granted to database users, and 2) the number of

SYS-privileged connections to the database as much as possible. For

example, there is generally no need to grant CREATE ANY TABLE to any

non DBA-privileged user.

b. Revoke unnecessary privileges from PUBLIC

Revoke all unnecessary privileges and roles from the database server user

group PUBLIC. PUBLIC acts as a default role granted to every user in an

Oracle database. Any database user can exercise privileges that are granted

to PUBLIC. Such privileges include EXECUTE on various PL/SQL packages

that may permit a minimally privileged user to access and execute packages

that he may not directly be permitted to access. The more powerful

packages that may potentially be misused are listed in the following table:

A Security Checklist

Establishing Security Policies 23-25

These packages are extremely useful to some applications that need them

and require proper configuration and usage. These packages may not be

suitable for other applications. Thus, unless absolutely necessary, revoke

them from PUBLIC.

c. Restrict permissions on run-time facilities

Do not assign "all permissions" to any database server run-time facility such

as the Oracle Java Virtual Machine (OJVM). Grant specific permissions to

the explicit document root file paths for such facilities that may execute files

and packages outside the database server.

An example of a vulnerable run-time call:

call dbms_java.grant_permission('SCOTT',
'SYS:java.io.FilePermission','<<ALL FILES>>','read');

An example of a better (more secure) run-time call:

call dbms_java.grant_permission('SCOTT',

Package Description

UTL_SMTP This package permits arbitrary mail messages to be sent from
one arbitrary user to another arbitrary user. Granting this
package to PUBLIC may permit unauthorized exchange of mail
messages.

UTL_TCP This package permits outgoing network connections to be
established by the database server to any receiving (or waiting)
network service. Thus, arbitrary data may be sent between the
database server and any waiting network service.

UTL_HTTP This package allows the database server to request and retrieve
data using HTTP. Granting this package to PUBLIC may permit
data to be sent using HTML forms to a malicious Web site.

UTL_FILE If configured improperly, this package allows text level access to
any file on the host operating system. Even when properly
configured, this package does not distinguish between its calling
applications with the result that one application with access to
UTL_FILE may write arbitrary data into the same location that
is written to by another application.

DBMS_RANDOMThis package can be used to encrypt stored data. Generally, most
users should not have the privilege to encrypt data since
encrypted data may be non-recoverable if the keys are not
securely generated, stored, and managed.

A Security Checklist

23-26 Oracle9i Database Administrator’s Guide

'SYS:java.io.FilePermission','<<actual directory path>>','read');

6. ENFORCE ACCESS CONTROLS EFFECTIVELY

Authenticate clients properly.

Remote authentication is a security feature provided by Oracle9i such that if

turned on (TRUE), it defers authentication of users to the remote client

connecting to an Oracle database. Thus, the database implicitly trusts any client

to have authenticated itself properly. Note that clients, in general, such as PCs,

are not trusted to perform operating system authentication properly and

therefore, it is very poor security practice to turn on this feature.

In a more secure configuration where this feature is turned off (FALSE), it

enforces proper, server-based authentication of clients connecting to an Oracle

database.

To restrict remote authentication and thereby defer client trust to the database,

set the REMOTE_OS_AUTHENT initialization parameter in the following manner:

REMOTE_OS_AUTHENT = FALSE

7. RESTRICT OPERATING SYSTEM ACCESS

Limit the number of operating system users.

Limit the privileges of the operating system accounts (administrative,

root-privileged or DBA) on the Oracle9i host (physical machine) to the least

required for the user.

Oracle also recommends:

■ Restricting the ability to modify the default file and directory permissions

for the Oracle9i home (installation) directory or its contents. Even

privileged operating system users and the Oracle owner should not modify

these permissions, unless instructed otherwise by Oracle Corporation.

■ Ensuring that when providing a path or file to the database, neither the file

nor any part of the path is modifiable by an untrusted user. The file and all

components of the path should be owned by the DBA or some trusted

account, such as root. This recommendation applies to all types of files: data

files, log files, trace files, external tables, bfiles, etc.

8. RESTRICT NETWORK ACCESS

a. Utilize a firewall

A Security Checklist

Establishing Security Policies 23-27

Keep the database server behind a firewall. Oracle9i's network

infrastructure, Oracle Net (formerly known as Net8 and SQL*Net), offers

support for a variety of firewalls from various vendors. Supported

proxy-enabled firewalls include Network Associates' Gauntlet and Axent's

Raptor. Supported packet-filtered firewalls include Cisco's PIX Firewall and

supported stateful inspection firewalls (more sophisticated packet-filtered

firewalls) include CheckPoint's Firewall-1.

b. Never poke a hole through a firewall

If Oracle9i is behind a firewall, do not, under any circumstances, poke a

hole through the firewall; for example, do not leave open Oracle Listener's

1521 port to make a connection to the Internet or vice versa.

Doing so will introduce a number of significant security vulnerabilities

including more port openings through the firewall, multi-threaded

operating system server issues and revelation of crucial information on

database(s) behind the firewall. Furthermore, an Oracle Listener running

without an established password may be probed for critical details about

the database(s) on which it is listening such as trace and logging

information, banner information and database descriptors and service

names.

Such a plethora of information and the availability of an ill-configured

firewall will provide an attacker ample opportunity to launch malicious

attacks on the target database(s).

c. Prevent unauthorized administration of the Oracle Listener

Always establish a meaningful, well-formed password for the Oracle

Listener to prevent remote configuration of the Oracle Listener.

Additionally, set the listener.ora (Oracle Listener control file) security

configuration parameter in the following manner:

ADMIN_RESTRICTIONS_listener_name = ON

Doing so will also prevent unauthorized administration of the Oracle

Listener.

d. Check network IP addresses

Utilize the Oracle Net "valid node checking" security feature to allow or

deny access to Oracle server processes from network clients with specified

IP addresses. To use this feature, set the following protocol.ora (Oracle

Net configuration file) parameters:

A Security Checklist

23-28 Oracle9i Database Administrator’s Guide

tcp.validnode_checking = YES

tcp.excluded_nodes = {list of IP addresses}

tcp.invited_nodes = {list of IP addresses}

The first parameter turns on the feature whereas the latter two parameters

respectively deny or allow specific client IP addresses from making

connections to the Oracle Listener (and thereby preventing potential Denial

of Service attacks).

e. Encrypt network traffic

If possible, utilize Oracle Advanced Security to encrypt network traffic

between clients, databases and application servers. (Note that Oracle

Advanced Security is available only with the Enterprise Edition of the

Oracle database).

f. Harden the operating system

Harden the host operating system by disabling all unnecessary operating

system services. Both UNIX and Windows platforms provide a variety of

operating system services, most of which are not necessary for most

deployments. Such services include FTP, TFTP, TELNET, and so forth. Be

sure to close both the UDP and TCP ports for each service that is being

disabled. Disabling one type of port and not the other does not make the

operating system more secure.

9. APPLY ALL SECURITY PATCHES AND WORKAROUNDS

Always apply all relevant and current security patches for both the operating

system on which Oracle9i resides and Oracle9i itself, and for all installed

Oracle9i options and components thereof.

Periodically check the security site on Oracle Technology Network for details

on security alerts released by Oracle Corporation.

http://otn.oracle.com/deploy/security/alerts.htm

Also check Oracle Worldwide Support Service's site, Metalink, for details on

available and upcoming security-related patches.

http://metalink.oracle.com

10. CONTACT ORACLE SECURITY PRODUCTS

A Security Checklist

Establishing Security Policies 23-29

If you believe that you have found a security vulnerability in Oracle9i, submit

an iTAR to Oracle Worldwide Support Services using Metalink, or e-mail a

complete description of the problem, including product version and platform,

together with any exploit scripts and examples to the following address:

secalert_us@oracle.com

A Security Checklist

23-30 Oracle9i Database Administrator’s Guide

Managing Users and Resources 24-1

24
Managing Users and Resources

This chapter describes how to control access to an Oracle database, and contains the

following topics:

■ Managing Oracle Users

■ User Authentication Methods

■ Managing Resources with Profiles

■ Viewing Information About Database Users and Profiles

See Also:

■ Chapter 23, "Establishing Security Policies"

■ Chapter 25, "Managing User Privileges and Roles"

Managing Oracle Users

24-2 Oracle9i Database Administrator’s Guide

Managing Oracle Users
Each Oracle database has a list of valid database users. To access a database, a user

must run a database application and connect to the database instance using a valid

user name defined in the database. This section explains how to manage users for a

database, and contains the following topics:

■ Creating Users

■ Altering Users

■ Dropping Users

Creating Users
You create a database user with the CREATE USER statement.To create a user, you

must have the CREATE USER system privilege. Because it is a powerful privilege, a

DBA or security administrator is normally the only user who has the CREATE USER
system privilege.

The following example creates a user and specifies that user’s password, default

tablespace, temporary tablespace where temporary segments are created, tablespace

quotas, and profile.

CREATE USER jward
 IDENTIFIED BY aZ7bC2
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;
GRANT connect TO jward;

A newly created user cannot connect to the database until granted the CREATE
SESSIONsystem privilege. Usually, a newly created user is granted a role similar to

the predefined roll CONNECT (used in this example) that specifies the CREATE
SESSION and other basic privileges required to access a database.

This section refers to the above example as it discusses the following aspects of

creating a user:

■ Specifying a Name

■ Setting a User’s Authentication

See Also: Oracle9i SQL Reference for more information about SQL

statements used for managing users

Managing Oracle Users

Managing Users and Resources 24-3

■ Assigning a Default Tablespace

■ Assigning Tablespace Quotas

■ Assigning a Temporary Tablespace

■ Specifying a Profile

■ Setting Default Roles

Specifying a Name
Within each database a user name must be unique with respect to other user names

and roles. A user and role cannot have the same name. Furthermore, each user has

an associated schema. Within a schema, each schema object must have a unique

name.

Setting a User’s Authentication
In the previous CREATE USER statement, the new user is to be authenticated using

the database. In this case, the connecting user must supply the correct password to

the database to connect successfully.

Selecting and specifying the method of user authentication is discussed in "User

Authentication Methods" on page 24-8.

Assigning a Default Tablespace
Each user should have a default tablespace. When a user creates a schema object

and specifies no tablespace to contain it, Oracle stores the object in the user’s default

tablespace.

The default setting for every user’s default tablespace is the SYSTEM tablespace. If a

user does not create objects, and has no privileges to do so, this default setting is

fine. However, if a user creates any type of object, you should specifically assign the

user a default tablespace. Using a tablespace other than SYSTEM reduces contention

between data dictionary objects and user objects for the same datafiles. In general, it

is not advisable for user data to be stored in the SYSTEM tablespace.

You can set a user’s default tablespace during user creation, and change it later with

the ALTER USER statement. Changing the user’s default tablespace affects only

objects created after the setting is changed.

When you specify the user’s default tablespace, also specify a quota on that

tablespace.

See Also: "Granting System Privileges and Roles" on page 25-11

Managing Oracle Users

24-4 Oracle9i Database Administrator’s Guide

In the previous CREATE USER statement, jward ’s default tablespace is data_ts ,

and his quota on that tablespace is 500K.

Assigning Tablespace Quotas
You can assign each user a tablespace quota for any tablespace (except a temporary

tablespace). Assigning a quota does two things:

■ Users with privileges to create certain types of objects can create those objects in

the specified tablespace.

■ Oracle limits the amount of space that can be allocated for storage of a user’s

objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the

privilege to create a schema object, you must assign a quota to allow the user to

create objects. Minimally, assign users a quota for the default tablespace, and

additional quotas for other tablespaces in which they can create objects.

You can assign a user either individual quotas for a specific amount of disk space in

each tablespace or an unlimited amount of disk space in all tablespaces. Specific

quotas prevent a user’s objects from consuming too much space in the database.

You can assign a user’s tablespace quotas when you create the user, or add or

change quotas later. If a new quota is less than the old one, then the following

conditions hold true:

■ If a user has already exceeded a new tablespace quota, the user’s objects in the

tablespace cannot be allocated more space until the combined space of these

objects falls below the new quota.

■ If a user has not exceeded a new tablespace quota, or if the space used by the

user’s objects in the tablespace falls under a new tablespace quota, the user’s

objects can be allocated space up to the new quota.

Revoking Users Ability to Create Objects in a Tablespace You can revoke a user’s ability

to create objects in a tablespace by changing the user’s current quota to zero. After a

quota of zero is assigned, the user’s objects in the tablespace remain, but new

objects cannot be created and existing objects cannot be allocated any new space.

UNLIMITED TABLESPACE System Privilege To permit a user to use an unlimited

amount of any tablespace in the database, grant the user the UNLIMITED
TABLESPACE system privilege. This overrides all explicit tablespace quotas for the

user. If you later revoke the privilege, explicit quotas again take effect. You can

grant this privilege only to users, not to roles.

Managing Oracle Users

Managing Users and Resources 24-5

Before granting the UNLIMITED TABLESPACE system privilege, consider the

consequences of doing so.

Advantage:

■ You can grant a user unlimited access to all tablespaces of a database with one

statement.

Disadvantages:

■ The privilege overrides all explicit tablespace quotas for the user.

■ You cannot selectively revoke tablespace access from a user with the

UNLIMITED TABLESPACEprivilege. You can grant access selectively only after

revoking the privilege.

Assigning a Temporary Tablespace
Each user also should be assigned a temporary tablespace. When a user executes a

SQL statement that requires a temporary segment, Oracle stores the segment in the

user’s temporary tablespace. These temporary segments are created by the system

when doing sorts or joins and are owned by SYS, which has resource privileges in

all tablespaces.

In the previous CREATE USER statement, jward ’s temporary tablespace is temp_
ts , a tablespace created explicitly to contain only temporary segments. Such a

tablespace is created using the CREATE TEMPORARY TABLESPACE statement.

If a user’s temporary tablespace is not explicitly set, the user is assigned the default

temporary tablespace that was specified at database creation, or by an ALTER
DATABASE statement at a later time. If there is no default temporary tablespace, the

default is the SYSTEM tablespace. It is not advisable for user data to be stored in the

SYSTEM tablespace. Also, assigning a tablespace to be used specifically as a

temporary tablespace eliminates file contention among temporary segments and

other types of segments.

You can set a user’s temporary tablespace at user creation, and change it later using

the ALTER USER statement. Do not set a quota for temporary tablespaces.

Note: If your SYSTEM tablespace is a locally managed tablespace,

then users must by assigned a specific default (locally managed)

temporary tablespace and not be allowed to default to using the

SYSTEM tablespace. This is because temporary objects cannot be

placed in permanent locally managed tablespaces.

Managing Oracle Users

24-6 Oracle9i Database Administrator’s Guide

Specifying a Profile
You also specify a profile when you create a user. A profile is a set of limits on

database resources and password access to the database. If no profile is specified,

the user is assigned a default profile.

Setting Default Roles
You cannot set a user’s default roles in the CREATE USERstatement. When you first

create a user, the user’s default role setting is ALL, which causes all roles

subsequently granted to the user to be default roles. Use the ALTER USER
statement to change the user’s default roles.

Altering Users
Users can change their own passwords. However, to change any other option of a

user’s security domain, you must have the ALTER USER system privilege. Security

administrators are normally the only users that have this system privilege, as it

allows a modification of any user’s security domain. This privilege includes the

ability to set tablespace quotas for a user on any tablespace in the database, even if

the user performing the modification does not have a quota for a specified

tablespace.

You can alter a user’s security settings with the ALTER USERstatement. Changing a

user’s security settings affects the user’s future sessions, not current sessions.

The following statement alters the security settings for user avyrros :

ALTER USER avyrros
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts

See Also:

■ "Temporary Tablespaces" on page 11-12

■ "Creating a Default Temporary Tablespace" on page 2-24

See Also:

■ "Managing Resources with Profiles" on page 24-18

■ "Password Management Policy" on page 23-12

See Also: "Specifying Default Roles" on page 25-21

Managing Oracle Users

Managing Users and Resources 24-7

 QUOTA 0 ON test_ts
 PROFILE clerk;

The ALTER USER statement here changes avyrros ’s security settings as follows:

■ Authentication is changed to use avyrros ’s operating system account.

■ avyrros ’s default and temporary tablespaces are explicitly set.

■ avyrros is given a 100M quota for the data_ts tablespace.

■ avyrros ’s quota on the test_ts is revoked.

■ avyrros is assigned the clerk profile.

Changing a User’s Authentication Mechanism
Most non-DBA users can still change their own passwords with the ALTER USER
statement, as follows:

ALTER USER andy
 IDENTIFIED BY swordfish;

No special privileges (other than those to connect to the database) are required for a

user to change passwords. Users should be encouraged to change their passwords

frequently.

Users must have the ALTER USER privilege to switch between methods of

authentication. Usually, only an administrator has this privilege.

Changing a User’s Default Roles
A default role is one that is automatically enabled for a user when the user creates a

session. You can assign a user zero or more default roles.

Dropping Users
When a user is dropped, the user and associated schema are removed from the data

dictionary and all schema objects contained in the user’s schema, if any, are

immediately dropped.

See Also: "User Authentication Methods" on page 24-8 for

information about the authentication methods that are available for

Oracle users

See Also: Chapter 25, "Managing User Privileges and Roles" for

information about changing users’ default roles

User Authentication Methods

24-8 Oracle9i Database Administrator’s Guide

A user that is currently connected to a database cannot be dropped. To drop a

connected user, you must first terminate the user’s sessions using the SQL

statement ALTER SYSTEM with the KILL SESSION clause.

You can drop a user from a database using the DROP USER statement. To drop a

user and all the user’s schema objects (if any), you must have the DROP USER
system privilege. Because the DROP USER system privilege is so powerful, a

security administrator is typically the only type of user that has this privilege.

If the user’s schema contains any schema objects, use the CASCADE option to drop

the user and all associated objects and foreign keys that depend on the tables of the

user successfully. If you do not specify CASCADE and the user’s schema contains

objects, an error message is returned and the user is not dropped. Before dropping a

user whose schema contains objects, thoroughly investigate which objects the user’s

schema contains and the implications of dropping them. Pay attention to any

unknown cascading effects. For example, if you intend to drop a user who owns a

table, check whether any views or procedures depend on that particular table.

The following statement drops user jones and all associated objects and foreign

keys that depend on the tables owned by jones .

DROP USER jones CASCADE;

User Authentication Methods
Oracle provides several means for users to be authenticated before they are allowed

to create a database session:

1. You can define users such that the database performs both identification and

authentication of users. This is called database authentication.

2. You can define users such that authentication is performed by the operating

system or network service. This is called external authentication.

3. You can define users such that they are authenticated globally by SSL (Secure

Sockets Layer). These users are called global users. For global users, an

Note: If a user’s schema and associated objects must remain but

the user must be denied access to the database, revoke the CREATE
SESSION privilege from the user.

See Also: "Terminating Sessions" on page 5-21 for more

information about terminating sessions

User Authentication Methods

Managing Users and Resources 24-9

enterprise directory can be used to authorize their access to the database

through global roles.

4. You can specify users who are allowed to connect through a middle-tier server.

The middle-tier server authenticates and assumes the identity of the user and is

allowed to enable specific roles for the user. This is called proxy authentication
and authorization.

These means of authentication are discussed in the following sections:

■ Database Authentication

■ External Authentication

■ Global Authentication and Authorization

■ Proxy Authentication and Authorization

Database Authentication
If you choose database authentication for a user, administration of the user account

including authentication of that user is performed entirely by Oracle. To have

Oracle authenticate a user, specify a password for the user when you create or alter

the user. Users can change their password at any time. Passwords are stored in an

encrypted format. Each password must be made up of single-byte characters, even

if your database uses a multibyte character set.

User Authentication Methods

24-10 Oracle9i Database Administrator’s Guide

To enhance security when using database authentication, Oracle recommends the

use of password management, including account locking, password aging and

expiration, password history, and password complexity verification.

Creating a User Who is Authenticated by the Database
The following statement creates a user who is identified and authenticated by

Oracle. User scott must specify the password tiger whenever connecting to

Oracle.

CREATE USER scott IDENTIFIED BY tiger;

Advantages of Database Authentication
Following are advantages of database authentication:

Note: Oracle Corporation recommends that you encode user

names and passwords in ASCII or EBCDIC characters only,

depending on your platform. This will maintain compatibility for

supporting future changes to your database character set.

If user names or passwords are created based on characters that

will have size expansion when migrating to a new target character

set, then users can experience login difficulties due to

authentication failures after the migration. This is because the

encrypted user names and passwords stored in the data dictionary

do not get updated during the migration to the new database

character set.

For example, assuming the current database character set is

WE8MSWIN1252 and the target database character set is UTF8, the

user name scött (o with an umlaut) will change from 5 bytes to 6

bytes in UTF8. the user scött will no longer be able to log in.

If user names and passwords are not based on ASCII or EBCDIC

characters, then the affected user names and passwords will need

to be reset upon the migration to a new character set.

See Also: "Password Management Policy" on page 23-12

See Also: Oracle9i SQL Reference for more information about

valid passwords, and how to specify the IDENTIFIED BY clause in

the CREATE USER and ALTER USER statements

User Authentication Methods

Managing Users and Resources 24-11

■ User accounts and all authentication are controlled by the database. There is no

reliance on anything outside of the database.

■ Oracle provides strong password management features to enhance security

when using database authentication.

■ It is easier to administer when there are small user communities.

External Authentication
When you choose external authentication for a user, the user account is maintained

by Oracle, but password administration and user authentication is performed by an

external service. This external service can be the operating system or a network

service, such as Oracle Net.

With external authentication, your database relies on the underlying operating

system or network authentication service to restrict access to database accounts. A

database password is not used for this type of login. If your operating system or

network service permits, you can have it authenticate users. If you do so, set the

initialization parameter OS_AUTHENT_PREFIX, and use this prefix in Oracle user

names. The OS_AUTHENT_PREFIX parameter defines a prefix that Oracle adds to

the beginning of every user’s operating system account name. Oracle compares the

prefixed user name with the Oracle user names in the database when a user

attempts to connect.

For example, assume that OS_AUTHENT_PREFIX is set as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named tsmith is to connect to an

Oracle database and be authenticated by the operating system, Oracle checks that

there is a corresponding database user OPS$tsmith and, if so, allows the user to

connect. All references to a user authenticated by the operating system must

include the prefix, as seen in OPS$tsmith .

The default value of this parameter is OPS$ for backward compatibility with

previous versions of Oracle. However, you might prefer to set the prefix value to

some other string or a null string (an empty set of double quotes: ""). Using a null

Note: The text of the OS_AUTHENT_PREFIX initialization

parameter is case sensitive on some operating systems. See your

operating system specific Oracle documentation for more

information about this initialization parameter.

User Authentication Methods

24-12 Oracle9i Database Administrator’s Guide

string eliminates the addition of any prefix to operating system account names, so

that Oracle user names exactly match operating system user names.

After you set OS_AUTHENT_PREFIX, it should remain the same for the life of a

database. If you change the prefix, any database user name that includes the old

prefix cannot be used to establish a connection, unless you alter the user name to

have it use password authentication.

Creating a User Who is Authenticated Externally
The following statement creates a user who is identified by Oracle and

authenticated by the operating system or a network service. This example assumes

that OS_AUTHENT_PREFIX = "".

CREATE USER scott IDENTIFIED EXTERNALLY;

Using CREATE USER ... IDENTIFIED EXTERNALLY , you create database

accounts that must be authenticated by the operating system or network service.

Oracle relies on this external login authentication to ensure that a specific operating

system user has access to a specific database user.

Operating System Authentication
By default, Oracle only allows operating system authenticated logins over secure

connections. Therefore, if you want the operating system to authenticate a user, by

default that user cannot connect to the database over Oracle Net. This means the

user cannot connect using a shared server configuration, since this connection uses

Oracle Net. This default restriction prevents a remote user from impersonating

another operating system user over a network connection.

If you are not concerned about remote users impersonating another operating

system user over a network connection, and you want to use operating system user

authentication with network clients, set the initialization parameter REMOTE_OS_
AUTHENT (default is FALSE) to TRUE in the database’s initialization parameter file.

Setting the initialization parameter REMOTE_OS_AUTHENT to TRUE allows the

RDBMS to accept the client operating system user name received over a nonsecure

connection and use it for account access. The change take effect the next time you

start the instance and mount the database.

Generally, user authentication through the host operating system offers the

following benefits:

See Also: Oracle Advanced Security Administrator’s Guide for more

information about external authentication

User Authentication Methods

Managing Users and Resources 24-13

■ Users can connect to Oracle faster and more conveniently without specifying a

separate database user name or password.

■ User entries in the database and operating system audit trails correspond.

Network Authentication
Network authentication is performed using Oracle Advanced Security, which can

be configured to use a third party service such as Kerberos. If you are using Oracle

Advanced Security as your only external authentication service, the setting of the

parameter REMOTE_OS_AUTHENT is irrelevant, since Oracle Advanced Security

only allows secure connections.

Advantages of External Authentication
Following are advantages of external authentication:

■ More choices of authentication mechanism are available, such as smart cards,

fingerprints, Kerberos, or the operating system.

■ Many network authentication services, such as Kerberos and DCE, support

single sign-on. This means that users have fewer passwords to remember.

■ If you are already using some external mechanism for authentication, such as

one of those listed above, there may be less administrative overhead to use that

mechanism with the database as well.

Global Authentication and Authorization
Oracle Advanced Security enables you to centralize management of user-related

information, including authorizations, in an LDAP-based directory service. Users

can be identified in the database as global users, meaning that they are

authenticated by SSL and that the management of these users is done outside of the

database by the centralized directory service. Global roles are defined in a database

and are known only to that database, but authorizations for such roles is done by

the directory service.

Note: You can also have users authenticated by SSL, whose

authorizations are not managed in a directory; that is, they have

local database roles only. See the Oracle Advanced Security
Administrator’s Guide for details.

User Authentication Methods

24-14 Oracle9i Database Administrator’s Guide

This centralized management enables the creation of enterprise users and

enterprise roles. Enterprise users are defined and managed in the directory. They

have unique identities across the enterprise, and can be assigned enterprise roles

that determine their access privileges across multiple databases. An enterprise role

consists of one or more global roles, and might be thought of as a container for

global roles.

Creating a User Who is Authorized by a Directory Service
You have a couple of options as to how you specify users who are authorized by a

directory service.

Creating a Global User The following statement illustrates the creation of a global

user, who is authenticated by SSL and authorized by the enterprise directory

service:

CREATE USER scott
IDENTIFIED GLOBALLY AS 'CN=scott,OU=division1,O=oracle,C=US';

The string provided in the AS clause provides an identifier (distinguished name, or

DN) meaningful to the enterprise directory.

In this case, scott is truly a global user. But, the disadvantage here is that user

scott must then be created in every database that he must access, plus the

directory.

Creating a Schema-Independent User Creating schema-independent users allows

multiple enterprise users to access a shared schema in the database. A

schema-independent user is:

■ Authenticated by SSL or passwords

■ Not created in the database with a CREATE USER statement of any type

■ A user whose privileges are managed in a directory

■ A user who connects to a shared schema

The process of creating a schema-independent user is as follows:

1. Create a shared schema in the database as follows.

CREATE USER appschema INDENTIFIED GLOBALLY AS '';

2. In the directory, you now create multiple enterprise users, and a mapping

object.

User Authentication Methods

Managing Users and Resources 24-15

The mapping object tells the database how you want to map users’ DNs to the

shared schema. You can either do a full DN mapping (one directory entry for

each unique DN), or you can map, for example, every user containing the

following DN components to the appschema :

OU=division,O=Oracle,C=US

See the Oracle Internet Directory Administrator’s Guide for an explanation of these

mappings.

Most users do not need their own schemas, and implementing schema-independent

users divorces users from databases. You create multiple users who share the same

schema in a database, and as enterprise users, they can access shared schemas in

other databases as well.

Advantages of Global Authentication and Global Authorization
Some of the advantages of global user authentication and authorization are the

following:

■ Provides strong authentication using SSL or Windows NT native authentication

■ Enables centralized management of users and privileges across the enterprise

■ Is easy to administer—for every user you do not have to create a schema in

every database in the enterprise

■ Facilitates single sign-on—users only need to sign on once to access multiple

databases and services. Further, users using passwords can have a single

password to access databases accepting password authenticated enterprise

users.

■ Because it provides password based access, previously defined password

authenticated database users can be migrated to the directory (using the User

Migration Utility) to be centrally administered. This makes global

authentication and authorization available for prior Oracle release clients that

are still supported.

■ CURRENT_USER database links connect as a global user. A local user can

connect as a global user in the context of a stored procedure—without storing

the global user’s password in a link definition.

User Authentication Methods

24-16 Oracle9i Database Administrator’s Guide

Proxy Authentication and Authorization
It is possible to design a middle-tier server to proxy clients in a secure fashion.

Oracle provides three forms of proxy authentication:

■ The middle-tier server authenticates itself with the database server and a client,

in this case an application user or another application, authenticates itself with

the middle-tier server. Client identities can be maintained all the way through

to the database.

■ The client, in this case a database user, is not authenticated by the middle-tier

server. The clients identity and database password are passed through the

middle-tier server to the database server for authentication.

■ The client, in this case a global user, is authenticated by the middle-tier server,

and passes one of the following through the middle tier for retrieving the

client’s user name.

– Distinguished name (DN)

– Certificate

In all cases, the middle-tier server must be authorized to act on behalf of the client

by the administrator.

To authorize a middle-tier server to proxy a client use the GRANT CONNECT
THROUGH clause of the ALTER USER statement. You can also specify roles that the

middle tier is permitted to activate when connecting as the client.

Operations done on behalf of a client by a middle-tier server can be audited.

The PROXY_USERS data dictionary view can be queried to see which users are

currently authorized to connect through a middle tier.

Use the REVOKE CONNECT THROUGH clause of ALTER USER to disallow a proxy

connection.

See Also: The following books contain additional information

about global authentication and authorization, and enterprise users

and roles:

■ Oracle Advanced Security Administrator’s Guide

■ Oracle Internet Directory Administrator’s Guide

User Authentication Methods

Managing Users and Resources 24-17

Authorizing a Middle Tier to Proxy and Authenticate a User
The following statement authorizes the middle-tier server appserve to connect as

user bill . It uses the WITH ROLEclause to specify that appserve activate all roles

associated with bill , except payroll .

ALTER USER bill
 GRANT CONNECT THROUGH appserve
 WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server’s (appserve) authorization to connect as user

bill , the following statement is used:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
Use the AUTHENTICATED USING clause of the ALTER USER ... GRANT
CONNECT THROUGH statement to authorize a user to be proxied, but not

authenticated, by a middle tier. Currently, PASSWORD is the only means supported.

The following statement illustrates this form of authentication:

ALTER USER mary
 GRANT CONNECT THROUGH midtier
 AUTHENTICATED USING PASSWORD;

In the above statement, middle-tier server midtier is authorized to connect as

mary, and midtier must also pass mary ’s password to the database server for

authorization.

See Also:

■ Oracle Call Interface Programmer’s Guide and Oracle9i Application
Developer’s Guide - Fundamentals for details about designing a

middle-tier server to proxy users

■ Oracle9i SQL Reference for a description and syntax of the proxy

clause for ALTER USER

■ "Auditing in a Multi-Tier Environment" on page 26-13 for

details of auditing operations done on behalf of a user by a

middle tier

Managing Resources with Profiles

24-18 Oracle9i Database Administrator’s Guide

Authorizing a Middle Tier to Proxy a User Identified by a Distinguished Name
In this case, the following statement authorizes the middle-tier server WebDB to
present the distinguished name for global user jeff to the database server. The

distinguished name is used to retrieve the user name. User jeff has been

authenticated by the middle-tier server WebDB.

ALTER USER jeff
 GRANT CONNECT THROUGH WebDB
 AUTHENTICATED USING DISTINGUISHED NAME;

Optionally, the middle-tier server can be authorized to present an entire certificate

(containing the distinguished name). This is illustrated in the following statement:

ALTER USER jeff
 GRANT CONNECT THROUGH WebDB
 AUTHENTICATED USING CERTIFICATE;

Passing the entire certificate costs time in authentication. However, some

applications use other information contained in the certificate.

Managing Resources with Profiles
A profile is a named set of resource limits. A user’s profile limits database usage

and instance resources as defined in the profile. You can assign a profile to each

user, and a default profile to all users who do not have specific profiles. For profiles

to take effect, resource limits must be turned on for the database as a whole.

This section describes aspects of profile management, and contains the following

topics:

■ Enabling and Disabling Resource Limits

■ Creating Profiles

■ Assigning Profiles

■ Altering Profiles

■ Using Composite Limits

■ Dropping Profiles

See Also: Oracle9i SQL Reference.for more information about the

SQL statements used for managing profiles

Managing Resources with Profiles

Managing Users and Resources 24-19

Enabling and Disabling Resource Limits
A profile can be created, assigned to users, altered, and dropped at any time by any

authorized database user, but the resource limits set for a profile are enforced only

when you enable resource limitation for the associated database. Resource

limitation enforcement can be enabled or disabled by two different methods, as

described in the next two sections.

To alter the enforcement of resource limitation while the database remains open,

you must have the ALTER SYSTEM system privilege.

Enabling and Disabling Resource Limits Before Startup
If a database can be temporarily shut down, resource limitation can be enabled or

disabled by the RESOURCE_LIMIT initialization parameter in the database’s

initialization parameter file. Valid values for the parameter are TRUE (enables

enforcement) and FALSE. By default, this parameter’s value is set to FALSE. Once

the initialization parameter file has been edited, the database instance must be

restarted to take effect. Every time an instance is started, the new parameter value

enables or disables the enforcement of resource limitation.

Enabling and Disabling Resource Limits While the Database is Open
If a database cannot be temporarily shut down or the resource limitation feature

must be altered temporarily, you can enable or disable the enforcement of resource

limitation using the SQL statement ALTER SYSTEM. After an instance is started, an

ALTER SYSTEM statement overrides the value set by the RESOURCE_LIMIT
initialization parameter. For example, the following statement enables the

enforcement of resource limitation for a database:

ALTER SYSTEM
 SET RESOURCE_LIMIT = TRUE;

An ALTER SYSTEM statement does not permanently determine the enforcement of

resource limitation. If the database is shut down and restarted, the enforcement of

resource limits is determined by the value set for the RESOURCE_LIMIT parameter.

Note: This does not apply to password parameters.

Managing Resources with Profiles

24-20 Oracle9i Database Administrator’s Guide

Creating Profiles
To create a profile, you must have the CREATE PROFILE system privilege. You can

create profiles using the SQL statement CREATE PROFILE. At the same time, you

can explicitly set particular resource limits.

The following statement creates the profile clerk :

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 2
 CPU_PER_SESSION unlimited
 CPU_PER_CALL 6000
 LOGICAL_READS_PER_SESSION unlimited
 LOGICAL_READS_PER_CALL 100
 IDLE_TIME 30
 CONNECT_TIME 480;

All unspecified resource limits for a new profile take the limit set by a DEFAULT
profile.

Each database has a DEFAULT profile, and its limits are used in two cases:

■ If a user is not explicitly assigned a profile, then the user conforms to all the

limits of the DEFAULT profile.

■ All unspecified limits of any profile use the corresponding limit of the DEFAULT
profile.

Initially, all limits of the DEFAULT profile are set to UNLIMITED. However, to

prevent unlimited resource consumption by users of the DEFAULT profile, the

security administrator should change the default limits using the ALTER PROFILE
statement:

ALTER PROFILE default LIMIT
 ...;

Any user with the ALTER PROFILE system privilege can adjust the limits in the

DEFAULT profile. The DEFAULT profile cannot be dropped.

Assigning Profiles
After a profile has been created, you can assign it to database users. Each user can

be assigned only one profile at any given time. If a profile is assigned to a user who

already has a profile, the new profile assignment overrides the previously assigned

profile. Profile assignments do not affect current sessions. Profiles can be assigned

only to users and not to roles or other profiles.

Managing Resources with Profiles

Managing Users and Resources 24-21

Profiles can be assigned to users with the CREATE USER and ALTER USER
statements.

Altering Profiles
You can alter the resource limit settings of any profile using the SQL statement

ALTER PROFILE. To alter a profile, you must have the ALTER PROFILE system

privilege.

Any adjusted profile limit overrides the previous setting for that profile limit. By

adjusting a limit with a value of DEFAULT, the resource limit reverts to the default

limit set for the database. All profiles not adjusted when altering a profile retain the

previous settings. Any changes to a profile do not affect current sessions. New

profile settings are used only for sessions created after a profile is modified.

The following statement alters the clerk profile:

ALTER PROFILE clerk LIMIT
 CPU_PER_CALL default
 LOGICAL_READS_PER_SESSION 20000;

Using Composite Limits
In addition to being able to use the CREATE or ALTER PROFILE statements to

assign resource limits to specific resources, you can limit the total resource cost for a

session by using composite limits. A composite limit is expressed as a weighted

sum, measured in service units, of certain resources.

You can set a profile’s composite limit using the COMPOSITE_LIMIT clause of a

CREATE PROFILE or ALTER PROFILE statement. The following CREATE
PROFILE statement specifies the COMPOSITE_LIMIT clause:

CREATE PROFILE clerk LIMIT
 COMPOSITE_LIMIT 20000
 SESSIONS_PER_USER 2
 CPU_PER_CALL 1000;

Notice that both explicit resource limits and a composite limit can exist concurrently

for a profile. The limit that is reached first stops the activity in a session. Composite

limits allow additional flexibility when limiting the use of system resources.

See Also:

■ "Creating Users" on page 24-2

■ "Altering Users" on page 24-6

Managing Resources with Profiles

24-22 Oracle9i Database Administrator’s Guide

Determining the Value of the Composite Limit
The correct composite limit depends on the total amount of resource used by an

average profile user. As with each specific resource limit, historical information

should be gathered to determine the normal range of composite resource usage for

a typical profile user.

Setting Resource Costs
Each Oracle database server environment has its own characteristics. Some system

resources can be more valuable in one environment than another. Oracle enables

you to assign the following resources a weight, which then affects their contribution

to a total resource cost:

■ CPU_PER_SESSION

■ LOGICAL_READS_PER_SESSION

■ CONNECT_TIME

■ PRIVATE_SGA.

If you do not assign a weight to a resource, its weight defaults to 0, and the use of

the resource does not contribute to the total resource cost.

Oracle calculates the total resource cost by first multiplying the amount of each

resource used in the session by the resource’s weight, and then summing the

products for all four resources. For any session, this cost is limited by the value of

the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the

total cost are expressed in units called service units.

To set weights for resources, use the ALTER RESOURCE COSTstatement .You

must have the ALTER RESOURCE system privilege.The following example assigns

weights to the CPU_PER_SESSION and LOGICAL_READS_PER_SESSION
resources.

ALTER RESOURCE COST
 CPU_PER_SESSION 1
 LOGICAL_READS_PER_SESSION 50;

The weights establish this cost formula for a session:

cost = (1 * CPU_PER_SESSION) + (50 * LOGICAL_READS_PER_SESSION)

See Also: Oracle9i SQL Reference for information on how to

calculate the composite limit

Viewing Information About Database Users and Profiles

Managing Users and Resources 24-23

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SESSION are

either values in the DEFAULT profile or in the profile of the user of the session.

Because the above statement assigns no weight to the resources CONNECT_TIME
and PRIVATE_SGA, these resources do not appear in the formula.

Dropping Profiles
To drop a profile, you must have the DROP PROFILE system privilege. You can

drop a profile using the SQL statement DROP PROFILE. To successfully drop a

profile currently assigned to a user, use the CASCADE option.

The following statement drops the profile clerk , even though it is assigned to a

user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically assigned to

the DEFAULT profile. The DEFAULT profile cannot be dropped. When a profile is

dropped, the drop does not affect currently active sessions. Only sessions created

after a profile is dropped abide by any modified profile assignments.

Viewing Information About Database Users and Profiles
The following data dictionary views contain information about database users and

profiles:

See Also:

■ Oracle9i SQL Reference

■ Your operating system specific Oracle documentation

The above sources provide additional information and

recommendations on setting resource costs

View Description

DBA_USERS

ALL_USERS

USER_USERS

DBA view describes all users of the database. ALL view lists
users visible to the current user, but does not describe

them. USER view describes only the current user.

DBA_TS_QUOTAS

USER_TS_QUOTAS

Describes tablespace quotas for users.

Viewing Information About Database Users and Profiles

24-24 Oracle9i Database Administrator’s Guide

The following sections present some example of using these views, and assume a

database in which the following statements have been executed:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 IDENTIFIED BY wildcat
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA 500K ON users
 PROFILE clerk;

CREATE USER dcranney
 IDENTIFIED BY bedrock
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA unlimited ON users;

CREATE USER userscott
 IDENTIFIED BY scott1;

USER_PASSWORD_LIMITS Describes the password profile parameters that are
assigned to the user.

USER_RESOURCE_LIMITS Displays the resource limits for the current user.

DBA_PROFILES Displays all profiles and their limits.

RESOURCE_COST Lists the cost for each resource.

V$SESSION Lists session information for each current session. Includes
user name.

V$SESSTAT Lists user session statistics.

V$STATNAME Displays decoded statistic names for the statistics shown in
the V$SESSTAT view.

PROXY_USERS Describes users who can assume the identity of other users.

See Also: Oracle9i SQL Reference for complete descriptions of the

above data dictionary and dynamic performance views

View Description

Viewing Information About Database Users and Profiles

Managing Users and Resources 24-25

Listing All Users and Associated Information
The following query lists users and their associated information as defined in the

database:

SELECT USERNAME, PROFILE, ACCOUNT_STATUS FROM DBA_USERS;

USERNAME PROFILE ACCOUNT_STATUS
--------------- --------------- ---------------
SYS DEFAULT OPEN
SYSTEM DEFAULT OPEN
USERSCOTT DEFAULT OPEN
JFEE CLERK OPEN
DCRANNEY DEFAULT OPEN

All passwords are encrypted to preserve security. If a user queries the PASSWORD
column, that user is not be able to determine another user’s password.

Listing All Tablespace Quotas
The following query lists all tablespace quotas specifically assigned to each user:

SELECT * FROM DBA_TS_QUOTAS;

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
USERS JFEE 0 512000 0 250
USERS DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES
column. Note that this number is always a multiple of the database block size, so if

you specify a tablespace quota that is not a multiple of the database block size, it is

rounded up accordingly. Unlimited quotas are indicated by "-1".

Listing All Profiles and Assigned Limits
The following query lists all profiles in the database and associated settings for each

limit in each profile:

SELECT * FROM DBA_PROFILES
 ORDER BY PROFILE;

PROFILE RESOURCE_NAME RESOURCE LIMIT
----------------- --------------- ---------- --------------
CLERK COMPOSITE_LIMIT KERNEL DEFAULT

Viewing Information About Database Users and Profiles

24-26 Oracle9i Database Administrator’s Guide

CLERK FAILED_LOGIN_ATTEMPTS PASSWORD DEFAULT
CLERK PASSWORD_LIFE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_MAX PASSWORD DEFAULT
CLERK PASSWORD_VERIFY_FUNCTION PASSWORD DEFAULT
CLERK PASSWORD_LOCK_TIME PASSWORD DEFAULT
CLERK PASSWORD_GRACE_TIME PASSWORD DEFAULT
CLERK PRIVATE_SGA KERNEL DEFAULT
CLERK CONNECT_TIME KERNEL 600
CLERK IDLE_TIME KERNEL 30
CLERK LOGICAL_READS_PER_CALL KERNEL DEFAULT
CLERK LOGICAL_READS_PER_SESSION KERNEL DEFAULT
CLERK CPU_PER_CALL KERNEL DEFAULT
CLERK CPU_PER_SESSION KERNEL DEFAULT
CLERK SESSIONS_PER_USER KERNEL 1
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD UNLIMITED
DEFAULT PASSWORD_LIFE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_GRACE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
32 rows selected.

Viewing Memory Use for Each User Session
The following query lists all current sessions, showing the Oracle user and current

UGA (user global area) memory use for each session:

SELECT USERNAME, VALUE || 'bytes' "Current UGA memory"
 FROM V$SESSION sess, V$SESSTAT stat, V$STATNAME name
WHERE sess.SID = stat.SID
 AND stat.STATISTIC# = name.STATISTIC#
 AND name.NAME = 'session uga memory';

Viewing Information About Database Users and Profiles

Managing Users and Resources 24-27

USERNAME Current UGA memory
------------------------------ ---
 18636bytes
 17464bytes
 19180bytes
 18364bytes
 39384bytes
 35292bytes
 17696bytes
 15868bytes
USERSCOTT 42244bytes
SYS 98196bytes
SYSTEM 30648bytes

11 rows selected.

To see the maximum UGA memory ever allocated to each session since the instance

started, replace ' session uga memory ' in the query above with ' session uga

memory max '.

Viewing Information About Database Users and Profiles

24-28 Oracle9i Database Administrator’s Guide

Managing User Privileges and Roles 25-1

25
Managing User Privileges and Roles

This chapter explains how to use privileges and roles to control access to schema

objects and to control the ability to execute system operations. The following topics

are discussed:

■ Understanding User Privileges and Roles

■ Managing User Roles

■ Granting User Privileges and Roles

■ Revoking User Privileges and Roles

■ Granting to and Revoking from the User Group PUBLIC

■ When Do Grants and Revokes Take Effect?

■ Granting Roles Using the Operating System or Network

■ Viewing Privilege and Role Information

See Also:

■ Chapter 24, "Managing Users and Resources" for information

about controlling access to a database

■ Chapter 23, "Establishing Security Policies" for suggested

general database security policies

Understanding User Privileges and Roles

25-2 Oracle9i Database Administrator’s Guide

Understanding User Privileges and Roles
A user privilege is a right to execute a particular type of SQL statement, or a right to

access another user’s object. The types of privileges are defined by Oracle.

Roles, on the other hand, are created by users (usually administrators) and are used to

group together privileges or other roles. They are a means of facilitating the granting of

multiple privileges or roles to users.

This section describes Oracle user privileges, and contains the following topics:

■ System Privileges

■ Object Privileges

■ User Roles

System Privileges
There are over 100 distinct system privileges. Each system privilege allows a user to

perform a particular database operation or class of database operations.

Restricting System Privileges
Because system privileges are so powerful, Oracle recommends that you configure

your database to prevent regular (non-DBA) users exercising ANY system privileges

(such as UPDATE ANY TABLE) on the data dictionary. In order to secure the data

dictionary, ensure that the O7_DICTIONARY_ACCESSIBILITY initialization

parameter is set to FALSE. This feature is called the dictionary protection

mechanism.

See Also: Oracle9i Database Concepts for additional information

about privileges and roles

Caution: System privileges can be very powerful, and should be

granted only when necessary to roles and trusted users of the

database.

See Also: Oracle9i SQL Reference. for the complete list of system

privileges and their descriptions

Understanding User Privileges and Roles

Managing User Privileges and Roles 25-3

If you enable dictionary protection (O7_DICTIONARY_ACCESSIBILITY is FALSE),

access to objects in the SYSschema (dictionary objects) is restricted to users with the

SYS schema. These users are SYS and those who connect as SYSDBA. System

privileges providing access to objects in other schemas do not give other users

access to objects in the SYS schema. For example, the SELECT ANY TABLE
privilege allows users to access views and tables in other schemas, but does not

enable them to select dictionary objects (base tables of dynamic performance views,

views, packages, and synonyms). These users can, however, be granted explicit

object privileges to access objects in the SYS schema.

Accessing Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative

privileges (SYSDBA) can access objects in the SYS schema. Another means of

allowing access to objects in the SYS schema is by granting users any of the

following roles:

■ SELECT_CATALOG_ROLE

This role can be granted to users to allow SELECT privileges on all data

dictionary views.

■ EXECUTE_CATALOG_ROLE

Note: The O7_DICTIONARY_ACCESSIBILITY initialization

parameter controls restrictions on system privileges when you

upgrade from Oracle7 to Oracle8i and higher releases. If the

parameter is set to TRUE, access to objects in the SYS schema is

allowed (Oracle7 behavior). If this parameter is set to FALSE,

system privileges that allow access to objects in "any schema" do

not allow access to objects in SYS schema. The default for O7_
DICTIONARY_ACCESSIBILITY is FALSE.

When this parameter is not set to FALSE, the ANY privilege applies

to the data dictionary, and a malicious user with ANY privilege

could access or alter data dictionary tables.

See the Oracle9i Database Reference for more information on the O7_
DICTIONARY_ACCESSIBILITY initialization parameter and

Oracle9i Database Migration to understand its usage.

Understanding User Privileges and Roles

25-4 Oracle9i Database Administrator’s Guide

This role can be granted to users to allow EXECUTE privileges for packages and

procedures in the data dictionary.

■ DELETE_CATALOG_ROLE

This role can be granted to users to allow them to delete records from the

system audit table (AUD$).

Additionally, the following system privilege can be granted to users who require

access to tables created in the SYS schema:

■ SELECT ANY DICTIONARY

This system privilege allows query access to any object in the SYS schema,

including tables created in that schema. It must be granted individually to each

user requiring the privilege. It is not included in GRANT ALL PRIVILEGES ,

nor can it be granted through a role.

Object Privileges
Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges

for an object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or

revoking all object privileges with one word in GRANT and REVOKE statements.

Note that if all object privileges are granted using the ALL shortcut, individual

privileges can still be revoked.

Likewise, all individually granted privileges can be revoked by specifying ALL.

However, if you REVOKE ALL, and revoking causes integrity constraints to be

deleted (because they depend on a REFERENCES privilege that you are revoking),

you must include the CASCADE CONSTRAINTS option in the REVOKE statement.

Caution: You should grant these roles and the SELECT ANY
DICTIONARY system privilege with extreme care, since the

integrity of your system can be compromised by their misuse.

See Also: Oracle9i SQL Reference. for the complete list of object

privileges

Understanding User Privileges and Roles

Managing User Privileges and Roles 25-5

User Roles
A role groups several privileges and roles, so that they can be granted to and revoked

from users simultaneously. A role must be enabled for a user before it can be used by the

user.

Oracle provides some predefined roles to help in database administration. These

roles, listed in Table 25–1, are automatically defined for Oracle databases when you

run the standard scripts that are part of database creation. You can grant privileges

and roles to, and revoke privileges and roles from, these predefined roles in the

same way as you do with any role you define.

Table 25–1 Predefined Roles (Page 1 of 2)

Role Name Created By (Script) Description

CONNECT SQL.BSQ Includes the following system privileges:
ALTER SESSION, CREATE CLUSTER,
CREATE DATABASE LINK, CREATE
SEQUENCE, CREATE SESSION, CREATE
SYNONYM, CREATE TABLE, CREATE VIEW

RESOURCE SQL.BSQ Includes the following system privileges:
CREATE CLUSTER, CREATE INDEXTYPE,
CREATE OPERATOR, CREATE PROCEDURE,
CREATE SEQUENCE, CREATE TABLE,
CREATE TRIGGER, CREATE TYPE

DBA SQL.BSQ All system privileges WITH ADMIN
OPTION

Note: The previous three roles are provided to maintain compatibility with previous versions of Oracle
and may not be created automatically in future versions of Oracle. Oracle Corporation recommends
that you design your own roles for database security, rather than relying on these roles.

EXP_FULL_DATABASE CATEXP.SQL Provides the privileges required to perform
full and incremental database exports.
Includes: SELECT ANY TABLE, BACKUP
ANY TABLE, EXECUTE ANY PROCEDURE,
EXECUTE ANY TYPE, ADMINISTER
RESOURCE MANAGER, and INSERT,
DELETE, and UPDATE on the tables
SYS.INCVID , SYS.INCFIL , and
SYS.INCEXP. Also the following roles:
EXECUTE_CATALOG_ROLE and SELECT_
CATALOG_ROLE.

IMP_FULL_DATABASE CATEXP.SQL Provides the privileges required to perform
full database imports. Includes an extensive
list of system privileges (use view DBA_
SYS_PRIVS to view privileges) and the
following roles: EXECUTE_CATALOG_ROLE
and SELECT_CATALOG_ROLE.

Managing User Roles

25-6 Oracle9i Database Administrator’s Guide

If you install other options or products, other predefined roles may be created.

Managing User Roles
This section describes aspects of managing roles, and contains the following topics:

■ Creating a Role

■ Specifying the Type of Role Authorization

DELETE_CATALOG_ROLE SQL.BSQ Provides DELETE privilege on the system
audit table (AUD$)

EXECUTE_CATALOG_ROLE SQL.BSQ Provides EXECUTE privilege on objects in
the data dictionary. Also, HS_ADMIN_ROLE.

SELECT_CATALOG_ROLE SQL.BSQ Provides SELECTprivilege on objects in the
data dictionary. Also, HS_ADMIN_ROLE.

RECOVERY_CATALOG_OWNER CATALOG.SQL Provides privileges for owner of the
recovery catalog. Includes: CREATE
SESSION, ALTER SESSION, CREATE
SYNONYM, CREATE VIEW, CREATE
DATABASE LINK, CREATE TABLE,
CREATE CLUSTER, CREATE SEQUENCE,
CREATE TRIGGER, and CREATE
PROCEDURE

HS_ADMIN_ROLE CATHS.SQL Used to protect access to the HS
(Heterogeneous Services) data dictionary
tables (grants SELECT) and packages
(grants EXECUTE). It is granted to SELECT_
CATALOG_ROLE and EXECUTE_CATALOG_
ROLE such that users with generic data
dictionary access also can access the HS
data dictionary.

AQ_USER_ROLE CATQUEUE.SQL Obsoleted, but kept mainly for release 8.0
compatibility. Provides execute privilege on
DBMS_AQ and DBMS_AQIN.

AQ_ADMINISTRATOR_ROLE CATQUEUE.SQL Provides privileges to administer Advance
Queuing. Includes ENQUEUE ANY QUEUE,
DEQUEUE ANY QUEUE, and MANAGE ANY
QUEUE, SELECT privileges on AQ tables
and EXECUTE privileges on AQ packages.

SNMPAGENT CATSNMP.SQL This role is used by Enterprise
Manager/Intelligent Agent. Includes
ANALYZE ANY and grants SELECT on
various views.

Table 25–1 Predefined Roles (Page 2 of 2)

Role Name Created By (Script) Description

Managing User Roles

Managing User Privileges and Roles 25-7

■ Dropping Roles

Creating a Role
You can create a role using the CREATE ROLE statement, but you must have the

CREATE ROLE system privilege to do so. Typically, only security administrators

have this system privilege.

You must give each role you create a unique name among existing usernames and

role names of the database. Roles are not contained in the schema of any user. In a

database that uses a multibyte character set, Oracle recommends that each role

name contain at least one single-byte character. If a role name contains only

multibyte characters, the encrypted role name/password combination is

considerably less secure.

The following statement creates the clerk role, which is authorized by the

database using the password bicentennial :

CREATE ROLE clerk IDENTIFIED BY bicentennial;

The IDENTIFIED BY clause specifies how the user must be authorized before the

role can be enabled for use by a specific user to which it has been granted. If this

clause is not specified, or NOT IDENTIFIED is specified, then no authorization is

required when the role is enabled. Roles can be specified to be authorized by:

■ The database using a password

■ An application using a specified package

■ Externally by the operating system, network, or other external source

■ Globally by an enterprise directory service

These authorizations are discussed in following sections.

Later, you can set or change the authorization method for a role using the ALTER
ROLE statement. The following statement alters the clerk role to specify that the

user must have been authorized by an external source before enabling the role:

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

Note: Immediately after creation, a role has no privileges

associated with it. To associate privileges with a new role, you must

grant privileges or other roles to the new role.

Managing User Roles

25-8 Oracle9i Database Administrator’s Guide

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with the ADMIN OPTION.

Specifying the Type of Role Authorization
The methods of authorizing roles are presented in this section. A role must be

enabled for you to use it.

Role Authorization by the Database
The use of a role authorized by the database can be protected by an associated

password. If you are granted a role protected by a password, you can enable or

disable the role by supplying the proper password for the role in a SET ROLE
statement. However, if the role is made a default role and enabled at connect time,

the user is not required to enter a password.

The following statement creates a role manager . When it is enabled, the password

morework must be supplied.

CREATE ROLE manager IDENTIFIED BY morework;

Role Authorization by an Application
The INDENTIFIED USING package_name clause lets you create an application

role, which is a role that can be enabled only by applications using an authorized

package. Application developers do not need to secure a role by embedding

passwords inside applications. Instead, they can create an application role and

specify which PL/SQL package is authorized to enable the role.

See Also: Oracle9i SQL Reference for syntax, restrictions, and

authorization information about the SQL statements used to

manage roles and privileges

See Also: "When Do Grants and Revokes Take Effect?" on

page 25-20 for a discussion about enabling roles

Note: In a database that uses a multibyte character set, passwords

for roles must include only singlebyte characters. Multibyte

characters are not accepted in passwords. See the Oracle9i SQL
Reference for information about specifying valid passwords.

Managing User Roles

Managing User Privileges and Roles 25-9

The following example indicates that the role admin_role is an application role

and the role can only be enabled by any module defined inside the PL/SQL

package hr.admin .

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

When enabling the user’s default roles at login as specified in the user’s profile, no

checking is performed for application roles.

Role Authorization by an External Source
The following statement creates a role named accts_rec and requires that the

user be authorized by an external source before it can be enabled:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Role Authorization by the Operating System Role authentication through the operating

system is useful only when the operating system is able to dynamically link

operating system privileges with applications. When a user starts an application,

the operating system grants an operating system privilege to the user. The granted

operating system privilege corresponds to the role associated with the application.

At this point, the application can enable the application role. When the application

is terminated, the previously granted operating system privilege is revoked from

the user’s operating system account.

If a role is authorized by the operating system, you must configure information for

each user at the operating system level. This operation is operating system

dependent.

If roles are granted by the operating system, you do not need to have the operating

system authorize them also; this is redundant.

Role Authorization and Network Clients If users connect to the database over Oracle Net,

by default their roles cannot be authenticated by the operating system. This

includes connections through a shared server configuration, as this connection

requires Oracle Net. This restriction is the default because a remote user could

impersonate another operating system user over a network connection.

If you are not concerned with this security risk and want to use operating system

role authentication for network clients, set the initialization parameter REMOTE_OS_

See Also: "Granting Roles Using the Operating System or

Network" on page 25-22 for more information about roles granted

by the operating system

Managing User Roles

25-10 Oracle9i Database Administrator’s Guide

ROLES in the database’s initialization parameter file to TRUE. The change will take

effect the next time you start the instance and mount the database. The parameter is

FALSE by default.

Role Authorization by an Enterprise Directory Service
A role can be defined as a global role, whereby a (global) user can only be

authorized to use the role by an enterprise directory service. You define the global

role locally in the database by granting privileges and roles to it, but you cannot

grant the global role itself to any user or other role in the database. When a global

user attempts to connect to the database, the enterprise directory is queried to

obtain any global roles associated with the user.

The following statement creates a global role:

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Global roles are one component of enterprise user management. A global role only

applies to one database, but it can be granted to an enterprise role defined in the

enterprise directory. An enterprise role is a directory structure which contains

global roles on multiple databases, and which can be granted to enterprise users.

A general discussion of global authentication and authorization of users, and its

role in enterprise user management, was presented earlier in "Global

Authentication and Authorization" on page 24-13.

Dropping Roles
In some cases, it may be appropriate to drop a role from the database. The security

domains of all users and roles granted a dropped role are immediately changed to

reflect the absence of the dropped role’s privileges. All indirectly granted roles of

the dropped role are also removed from affected security domains. Dropping a role

automatically removes the role from all users’ default role lists.

Because the creation of objects is not dependent on the privileges received through a

role, tables and other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must

have the DROP ANY ROLE system privilege or have been granted the role with the

ADMIN OPTION.

See Also: Oracle Advanced Security Administrator’s Guide and

Oracle Internet Directory Administrator’s Guide for information about

enterprise user management and how to implement it

Granting User Privileges and Roles

Managing User Privileges and Roles 25-11

The following statement drops the role CLERK:

DROP ROLE clerk;

Granting User Privileges and Roles
This section describes the granting of privileges and roles, and contains the

following topics:

■ Granting System Privileges and Roles

■ Granting Object Privileges

■ Granting Privileges on Columns

It is also possible to grant roles to a user connected through a middle tier or proxy.

This is discussed in "Proxy Authentication and Authorization" on page 24-16.

Granting System Privileges and Roles
You can grant system privileges and roles to other users and roles using the GRANT
statement. The following privileges are required:

■ To grant a system privilege, you must have been granted the system privilege

with the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE
system privilege.

■ To grant a role, you must have been granted the role with the ADMIN OPTION
or have been granted the GRANT ANY ROLE system privilege.

The following statement grants the system privilege CREATE SESSION and the

accts_pay role to the user jward :

GRANT CREATE SESSION, accts_pay TO jward;

Note: You cannot grant a roll that is IDENTIFIED GLOBALLY to

anything. The granting (and revoking) of global roles is controlled

entirely by the enterprise directory service.

Note: Object privileges cannot be granted along with system

privileges and roles in the same GRANT statement.

Granting User Privileges and Roles

25-12 Oracle9i Database Administrator’s Guide

Granting the ADMIN OPTION
A user or role that is granted a privilege or role specifying the WITH ADMIN
OPTION clause has several expanded capabilities:

■ The grantee can grant or revoke the system privilege or role to or from any user

or other role in the database. Users cannot revoke a role from themselves.

■ The grantee can further grant the system privilege or role with the ADMIN
OPTION.

■ The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the new_dba role to

michael :

GRANT new_dba TO michael WITH ADMIN OPTION;

The user michael cannot only use all of the privileges implicit in the new_dba
role, but can grant, revoke, or drop the new_dba role as deemed necessary. Because

of these powerful capabilities, exercise caution when granting system privileges or

roles with the ADMIN OPTION. Such privileges are usually reserved for a security

administrator and rarely granted to other administrators or users of the system.

When a user creates a role, the role is automatically granted to the creator with the

ADMIN OPTION

Creating a New User with the GRANT Statement
Oracle allows you to create a new user with the GRANT statement. If you specify a

password using the IDENTIFIED BY clause, and the username/password does not

exist in the database, a new user with that username and password is created. The

following example creates ssmith as a new user while granting ssmith the

CONNECT system privilege:

GRANT CONNECT TO ssmith IDENTIFIED BY p1q2r3;

Granting Object Privileges
You also use the GRANT statement to grant object privileges to roles and users. To

grant an object privilege, you must fulfill one of the following conditions:

■ You own the object specified.

See Also: "Creating Users" on page 24-2

Granting User Privileges and Roles

Managing User Privileges and Roles 25-13

■ You possess the GRANT ANY OBJECT PRIVILEGE system privilege that

enables you to grant and revoke privileges on behalf of the object owner.

■ The WITH GRANT OPTION clause was specified when you were granted the

object privilege by its owner.

The following statement grants the SELECT, INSERT, and DELETE object privileges

for all columns of the emp table to the users jfee and tsmith :

GRANT SELECT, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to the user jfee , use the ALL
keyword, as shown in the following example:

GRANT ALL ON salary TO jfee;

Specifying the GRANT OPTION
Specify WITH GRANT OPTION to enable the grantee to grant the object privileges

to other users and roles. The user whose schema contains an object is automatically

granted all associated object privileges with the GRANT OPTION. This special

privilege allows the grantee several expanded privileges:

■ The grantee can grant the object privilege to any users in the database, with or

without the GRANT OPTION, or to any role in the database.

■ If both of the following are true, the grantee can create views on the table and

grant the corresponding privileges on the views to any user or role in the

database.

– The grantee receives object privileges for the table with the GRANT
OPTION.

– The grantee has the CREATE VIEW or CREATE ANY VIEW system

privilege.

The GRANT OPTIONis not valid when granting an object privilege to a role. Oracle

prevents the propagation of object privileges through roles so that grantees of a role

cannot propagate object privileges received by means of roles.

Note: System privileges and roles cannot be granted along with

object privileges in the same GRANT statement.

Granting User Privileges and Roles

25-14 Oracle9i Database Administrator’s Guide

Granting Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege allows users to grant and

revoke any object privilege on behalf of the object owner. This provides a

convenient means for database and application administrators to grant access to

objects in any schema without requiring that they connect to the schema. This

eliminates the need to maintain login credentials for schema owners so that they

can grant access to objects, and it reduces the number of connections required

during configuration.

This system privilege is part of the Oracle supplied DBA role and is thus granted

(with the ADMIN OPTION) to any user connecting AS SYSDBA (user SYS). As with

other system privileges, the GRANT ANY OBJECT PRIVILEGE system privilege

can only be granted by a user who possesses the ADMIN OPTION.

When you exercise the GRANT ANY OBJECT PRIVILEGEsystem privilege to grant

an object privilege to a user, if you already possess the object privilege with the

GRANT OPTION, then the grant is performed in the usual way. In this case, you

become the grantor of the grant. If you do not possess the object privilege, then the

object owner is shown as the grantor, even though you, with the GRANT ANY

OBJECTPRIVILEGE system privilege, actually performed the grant.

For example, consider the following. User adams possesses the GRANT ANY
OBJECT PRIVILEGE system privilege. He does not possess any other grant

privileges. He issues the following statement:

GRANT SELECT ON hr.employees TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, you will see that hr is shown as being

the grantor of the privilege:

SQL> SELECT GRANTEE, OWNER, GRANTOR, PRIVILEGE, GRANTABLE
 2> FROM DBA_TAB_PRIVS
 3> WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- ------- ----------- ----------
BLAKE HR HR SELECT YES

Note: The audit record generated by the GRANT statement will

always show the real user who performed the grant.

Granting User Privileges and Roles

Managing User Privileges and Roles 25-15

Now assume that blake also has the GRANT ANY OBJECT PRIVILEGE system.

He, issues the following statement:

GRANT SELECT ON hr.employees TO clark;

In this case, when you again query the DBA_TAB_PRIVS view, you see that blake
is shown as being the grantor of the privilege:

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- -------- -------- ----------
BLAKE HR HR SELECT YES
CLARK HR BLAKE SELECT NO

This is because blake already possesses the SELECT privilege on hr.employees
with the GRANT OPTION.

Granting Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns

in a table.

The following statement grants INSERT privilege on the acct_no column of the

accounts table to scott :

GRANT INSERT (acct_no) ON accounts TO scott;

In another example, object privilege for the ename and job columns of the emp
table are granter to the users jfee and tsmith :

GRANT INSERT(ename, job) ON emp TO jfee, tsmith;

See Also: "Revoking Object Privileges on Behalf of the Object

Owner" on page 25-17

Caution: Before granting a column-specific INSERT privilege,

determine if the table contains any columns on which NOT NULL
constraints are defined. Granting selective insert capability without

including the NOT NULL columns prevents the user from inserting

any rows into the table. To avoid this situation, make sure that each

NOT NULL column is either insertable or has a non-NULL default

value. Otherwise, the grantee will not be able to insert rows into the

table and will receive an error.

Revoking User Privileges and Roles

25-16 Oracle9i Database Administrator’s Guide

Revoking User Privileges and Roles
This section describes aspects of revoking user privileges and roles, and contains

the following topics:

■ Revoking System Privileges and Roles

■ Revoking Object Privileges

■ Cascading Effects of Revoking Privileges

Revoking System Privileges and Roles
You can revoke system privileges and roles using the SQL statement REVOKE.

Any user with the ADMIN OPTION for a system privilege or role can revoke the

privilege or role from any other database user or role. The revoker does not have to

be the user that originally granted the privilege or role. Users with GRANT ANY
ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the

accts_rec role from tsmith :

REVOKE CREATE TABLE, accts_rec FROM tsmith;

Revoking Object Privileges
The REVOKE statement is used to revoke object privileges. To revoke an object

privilege, you must fulfill one of the following conditions:

■ You previously granted the object privilege to the user or role.

■ You possess the GRANT ANY OBJECT PRIVILEGE system privilege that

enables you to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the grantor, directly authorized, not

the grants made by other users to whom you granted the GRANT OPTION.

However, there is a cascading effect. The object privilege grants propagated using

the GRANT OPTION are revoked if a grantor’s object privilege is revoked.

Assuming you are the original grantor, the following statement revokes the SELECT
and INSERT privileges on the emp table from the users jfee and tsmith :

Note: The ADMIN OPTIONfor a system privilege or role cannot be

selectively revoked. The privilege or role must be revoked and then

the privilege or role re-granted without the ADMIN OPTION.

Revoking User Privileges and Roles

Managing User Privileges and Roles 25-17

REVOKE SELECT, insert ON emp FROM jfee, tsmith;

The following statement revokes all object privileges for the dept table that you

originally granted to the human_resource role

REVOKE ALL ON dept FROM human_resources;

Revoking Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege allows you to revoke any

specified object privilege where the object owner is the grantor. This occurs when

the object privilege is granted by the object owner, or on behalf of the owner by any

user holding the GRANT ANY OBJECT PRIVILEGE system privilege.

In a situation where the object privilege has been granted by both the owner of the

object and the user executing the REVOKE statement (who has both the specific

object privilege and the GRANT ANY OBJECT PRIVILEGE system privilege),

Oracle only revokes the object privilege granted by the user issuing the REVOKE.
This can be illustrated by continuing the example started in "Granting Object

Privileges on Behalf of the Object Owner" on page 25-14.

At this point, blake has granted the SELECT privilege on hr.employees to

clark . Even though blake possesses the GRANT ANY OBJECT PRIVILEGE
system privilege, he also holds the specific object privilege, thus this grant is

attributed to him. Assume that hr also grants the SELECT privilege on

hr.employees to clark . A query of the DBA_TAB_PRIVS view shows that the

following grants are in effect for the hr.employees table:

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- ------- ----------- ----------
BLAKE HR HR SELECT YES
CLARK HR BLAKE SELECT NO
CLARK HR HR SELECT NO

User blake now issues the following REVOKE statement:

REVOKE SELECT ON hr.employees FROM clark;

Note: The GRANT OPTION for an object privilege cannot be

selectively revoked. The object privilege must be revoked and then

re-granted without the GRANT OPTION. Users cannot revoke object

privileges from themselves.

Revoking User Privileges and Roles

25-18 Oracle9i Database Administrator’s Guide

Only the object privilege for clark granted by blake is removed. The grant by the

object owner, hr , remains.

GRANTEE OWNER GRANTOR PRIVILEGE GRANTABLE
-------- ----- ------- ----------- ----------
BLAKE HR HR SELECT YES
CLARK HR HR SELECT NO

If blake issues the REVOKE statement again, this time the effect will be to remove

the object privilege granted by hr .

Revoking Column-Selective Object Privileges
Although users can grant column-selective INSERT, UPDATE, and REFERENCES
privileges for tables and views, they cannot selectively revoke column specific

privileges with a similar REVOKE statement. Instead, the grantor must first revoke

the object privilege for all columns of a table or view, and then selectively re-grant

the column-specific privileges that should remain.

For example, assume that role human_resources has been granted the UPDATE
privilege on the deptno and dname columns of the table dept . To revoke the

UPDATE privilege on just the deptno column, issue the following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes UPDATE privilege on all columns of the dept table

from the role human_resources . The GRANT statement re-grants UPDATE privilege on

the dname column to the role human_resources .

Revoking the REFERENCES Object Privilege
If the grantee of the REFERENCES object privilege has used the privilege to create a

foreign key constraint (that currently exists), the grantor can revoke the privilege

only by specifying the CASCADE CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS clause is specified.

See Also: "Granting Object Privileges on Behalf of the Object

Owner" on page 25-14

Revoking User Privileges and Roles

Managing User Privileges and Roles 25-19

Cascading Effects of Revoking Privileges
Depending on the type of privilege, there may be cascading effects when a privilege

is revoked.

System Privileges
There are no cascading effects when revoking a system privilege related to DDL

operations, regardless of whether the privilege was granted with or without the

ADMIN OPTION. For example, assume the following:

1. The security administrator grants the CREATE TABLEsystem privilege to jfee
with the ADMIN OPTION.

2. User jfee creates a table.

3. User jfee grants the CREATE TABLE system privilege to tsmith .

4. User tsmith creates a table.

5. The security administrator revokes the CREATE TABLE system privilege from

jfee .

6. User jfee ’s table continues to exist. tsmith still has the table and the CREATE
TABLE system privilege.

Cascading effects can be observed when revoking a system privilege related to a

DML operation. If SELECT ANY TABLE is revoked from a user, then all procedures

contained in the users schema relying on this privilege will fail until the privilege is

reauthorized.

Object Privileges
Revoking an object privilege can have cascading effects that should be investigated

before issuing a REVOKE statement.

■ Object definitions that depend on a DML object privilege can be affected if the

DML object privilege is revoked. For example, assume the procedure body of

the test procedure includes a SQL statement that queries data from the emp
table. If the SELECTprivilege on the emp table is revoked from the owner of the

test procedure, the procedure can no longer be executed successfully.

■ When a REFERENCES privilege for a table is revoked from a user, any foreign

key integrity constraints defined by the user that require the dropped

REFERENCES privilege are automatically dropped. For example, assume that

the user jward is granted the REFERENCESprivilege for the deptno column of

the dept table and creates a foreign key on the deptno column in the emptable

Granting to and Revoking from the User Group PUBLIC

25-20 Oracle9i Database Administrator’s Guide

that references the deptno column. If the references privilege on the

deptno column of the dept table is revoked, the foreign key constraint on the

deptno column of the emp table is dropped in the same operation.

■ The object privilege grants propagated using the GRANT OPTIONare revoked if

a grantor’s object privilege is revoked. For example, assume that user1 is

granted the SELECT object privilege with the GRANT OPTION, and grants the

SELECT privilege on emp to user2 . Subsequently, the SELECT privilege is

revoked from user1 . This REVOKE is cascaded to user2 as well. Any objects

that depended on user1 ’s and user2 ’s revoked SELECT privilege can also be

affected, as described in previous bullet items.

Object definitions that require the ALTER and INDEX DDL object privileges are not

affected if the ALTER or INDEX object privilege is revoked. For example, if the

INDEX privilege is revoked from a user that created an index on someone else’s

table, the index continues to exist after the privilege is revoked.

Granting to and Revoking from the User Group PUBLIC
Privileges and roles can also be granted to and revoked from the user group

PUBLIC. Because PUBLIC is accessible to every database user, all privileges and

roles granted to PUBLIC are accessible to every database user.

Security administrators and database users should grant a privilege or role to

PUBLIC only if every database user requires the privilege or role. This

recommendation reinforces the general rule that at any given time, each database

user should only have the privileges required to accomplish the group’s current

tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading effects. If any

privilege related to a DML operation is revoked from PUBLIC (for example,

SELECT ANY TABLE, UPDATE ON emp), all procedures in the database,

including functions and packages, must be reauthorized before they can be used again.

Therefore, exercise caution when granting and revoking DML-related privileges to

PUBLIC.

When Do Grants and Revokes Take Effect?
Depending on what is granted or revoked, a grant or revoke takes effect at different

times:

See Also: "Managing Object Dependencies" on page 21-23 for

more information about object dependencies

When Do Grants and Revokes Take Effect?

Managing User Privileges and Roles 25-21

■ All grants/revokes of system and object privileges to anything (users, roles, and

PUBLIC) are immediately observed.

■ All grants/revokes of roles to anything (users, other roles, PUBLIC) are only

observed when a current user session issues a SET ROLEstatement to re-enable

the role after the grant/revoke, or when a new user session is created after the

grant/revoke.

You can see which roles are currently enabled by examining the SESSION_ROLES
data dictionary view.

The SET ROLE Statement
During the session, the user or an application can use the SET ROLE statement any

number of times to change the roles currently enabled for the session. You must

already have been granted the roles that you name in the SET ROLEstatement. The

number of roles that can be concurrently enabled is limited by the initialization

parameter MAX_ENABLED_ROLES.

This example enables the role clerk , which you have already been granted, and

specifies the password.

SET ROLE clerk IDENTIFIED BY bicentennial;

You can disable all roles with the following statement:

SET ROLE NONE;

Specifying Default Roles
When a user logs on, Oracle enables all privileges granted explicitly to the user and

all privileges in the user’s default roles.

A user’s list of default roles can be set and altered using the ALTER USER
statement. The ALTER USER statement allows you to specify roles that are to be

enabled when a user connects to the database, without requiring the user to specify

the roles’ passwords. The user must have already been directly granted the roles

with a GRANT statement. You cannot specify as a default role any role managed by

an external service including a directory service (external roles or global roles).

The following example establishes default roles for user jane :

ALTER USER jane DEFAULT ROLE payclerk, pettycash;

You cannot set a user’s default roles in the CREATE USERstatement. When you first

create a user, the user’s default role setting is ALL, which causes all roles

Granting Roles Using the Operating System or Network

25-22 Oracle9i Database Administrator’s Guide

subsequently granted to the user to be default roles. Use the ALTER USER
statement to limit the user’s default roles.

Restricting the Number of Roles that a User Can Enable
A user can enable as many roles as specified by the initialization parameter MAX_
ENABLED_ROLES. All indirectly granted roles enabled as a result of enabling a primary

role are included in this count. The database administrator can alter this limitation by

modifying the value for this parameter. Higher values permit each user session to have

more concurrently enabled roles. However, the larger the value for this parameter, the

more memory space is required on behalf of each user session; this is because the PGA

size is affected for each user session, and requires four bytes for each role. Determine the

highest number of roles that will be concurrently enabled by any one user and use this

value for the MAX_ENABLED_ROLES parameter.

Granting Roles Using the Operating System or Network
This section describes aspects of granting roles through your operating system or

network, and contains the following topics:

■ Using Operating System Role Identification

■ Using Operating System Role Management

■ Granting and Revoking Roles When OS_ROLES=TRUE

■ Enabling and Disabling Roles When OS_ROLES=TRUE

■ Using Network Connections with Operating System Role Management

Instead of a security administrator explicitly granting and revoking database roles

to and from users using GRANT and REVOKE statements, the operating system that

operates Oracle can grant roles to users at connect time. Roles can be administered

using the operating system and passed to Oracle when a user creates a session. As

part of this mechanism, each user’s default roles and the roles granted to a user

Caution: When you create a role (other than a user role), it is

granted to you implicitly and added as a default role. You receive

an error at login if you have more than MAX_ENABLED_ROLES. You

can avoid this error by altering the user’s default roles to be less

than MAX_ENABLED_ROLES. Thus, you should change the

DEFAULT ROLE settings of SYS and SYSTEM before creating user

roles.

Granting Roles Using the Operating System or Network

Managing User Privileges and Roles 25-23

with the ADMIN OPTION can be identified. Even if the operating system is used to

authorize users for roles, all roles must be created in the database and privileges

assigned to the role with GRANT statements.

Roles can also be granted through a network service.

The advantage of using the operating system to identify a user’s database roles is

that privilege management for an Oracle database can be externalized. The security

facilities offered by the operating system control a user’s privileges. This option

may offer advantages of centralizing security for a number of system activities, such

as the following situation:

■ MVS Oracle administrators want RACF groups to identify a database user’s

roles.

■ UNIX Oracle administrators want UNIX groups to identify a database user’s

roles.

■ VMS Oracle administrators want to use rights identifiers to identify a database

user’s roles.

The main disadvantage of using the operating system to identify a user’s database

roles is that privilege management can only be performed at the role level.

Individual privileges cannot be granted using the operating system, but can still be

granted inside the database using GRANT statements.

A secondary disadvantage of using this feature is that by default users cannot

connect to the database through the shared server, or any other network connection,

if the operating system is managing roles. However, you can change this default;

see "Using Network Connections with Operating System Role Management" on

page 25-25.

Using Operating System Role Identification
To operate a database so that it uses the operating system to identify each user’s

database roles when a session is created, set the initialization parameter OS_ROLES
to TRUE(and restart the instance, if it is currently running). When a user attempts to

create a session with the database, Oracle initializes the user’s security domain

using the database roles identified by the operating system.

Note: The features described in this section are available only on

some operating systems. See your operating system specific Oracle

documentation to determine if you can use these features.

Granting Roles Using the Operating System or Network

25-24 Oracle9i Database Administrator’s Guide

To identify database roles for a user, each Oracle user’s operating system account

must have operating system identifiers (these may be called groups, rights

identifiers, or other similar names) that indicate which database roles are to be

available for the user. Role specification can also indicate which roles are the default

roles of a user and which roles are available with the ADMIN OPTION. No matter

which operating system is used, the role specification at the operating system level

follows the format:

ora_ ID_ROLE[_[d][a]]

where:

■ ID has a definition that varies on different operating systems. For example, on

VMS, ID is the instance identifier of the database; on MVS, it is the machine

type; on UNIX, it is the system ID .

■ ROLE is the name of the database role.

■ d is an optional character that indicates this role is to be a default role of the

database user.

■ a is an optional character that indicates this role is to be granted to the user

with the ADMIN OPTION. This allows the user to grant the role to other roles

only. Roles cannot be granted to users if the operating system is used to manage

roles.

For example, an operating system account might have the following roles identified

in its profile:

ora_PAYROLL_ROLE1
ora_PAYROLL_ROLE2_a
ora_PAYROLL_ROLE3_d
ora_PAYROLL_ROLE4_da

Note: ID is case sensitive to match your ORACLE_SID. ROLE is
not case sensitive.

Note: If either the d or a characters are specified, they must be

preceded by an underscore.

Granting Roles Using the Operating System or Network

Managing User Privileges and Roles 25-25

When the corresponding user connects to the payroll instance of Oracle, role3
and role4 are defaults, while role2 and role4 are available with the ADMIN
OPTION.

Using Operating System Role Management
When you use operating system managed roles, it is important to note that database

roles are being granted to an operating system user. Any database user to which the

OS user is able to connect will have the authorized database roles enabled. For this

reason, you should consider defining all Oracle users as IDENTIFIED
EXTERNALLY if you are using OS_ROLES = TRUE, so that the database accounts

are tied to the OS account that was granted privileges.

Granting and Revoking Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, the operating system completely manages the grants

and revokes of roles to users. Any previous grants of roles to users using GRANT
statements do not apply; however, they are still listed in the data dictionary. Only the role

grants made at the operating system level to users apply. Users can still grant privileges

to roles and users.

Enabling and Disabling Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, any role granted by the operating system can be

dynamically enabled using the SET ROLE statement. This still applies, even if the

role was defined to require a password or operating system authorization.

However, any role not identified in a user’s operating system account cannot be

specified in a SET ROLE statement, even if a role has been granted using a GRANT
statement when OS_ROLES = FALSE. (If you specify such a role, Oracle ignores it.)

When OS_ROLES = TRUE, a user can enable as many roles as specified by the

initialization parameter MAX_ENABLED_ROLES.

Using Network Connections with Operating System Role Management
If you choose to have the operating system to manage roles, by default users cannot

connect to the database through the shared server. This restriction is the default

Note: If the operating system grants a role to a user with the

ADMIN OPTION, the user can grant the role only to other roles.

Viewing Privilege and Role Information

25-26 Oracle9i Database Administrator’s Guide

because a remote user could impersonate another operating system user over a

non-secure connection.

If you are not concerned with this security risk and want to use operating system

role management with the shared server, or any other network connection, set the

initialization parameter REMOTE_OS_ROLES in the database’s initialization

parameter file to TRUE. The change will take effect the next time you start the

instance and mount the database. The default setting of this parameter is FALSE.

Viewing Privilege and Role Information
To access information about grants of privileges and roles, you can query the

following data dictionary views:

View Description

DBA_COL_PRIVS

ALL_COL_PRIVS

USER_COL_PRIVS

DBA view describes all column object grants in the database. ALL view
describes all column object grants for which the current user or PUBLIC is the
object owner, grantor, or grantee. USER view describes column object grants
for which the current user is the object owner, grantor, or grantee.

ALL_COL_PRIVS_MADE

USER_COL_PRIVS_MADE

ALL view lists column object grants for which the current user is object owner
or grantor. USER view describes column object grants for which the current
user is the grantor.

ALL_COL_PRIVS_RECD

USER_COL_PRIVS_RECD

ALL view describes column object grants for which the current user or
PUBLIC is the grantee. USER view describes column object grants for which
the current user is the grantee.

DBA_TAB_PRIVS

ALL_TAB_PRIVS

USER_TAB_PRIVS

DBA view lists all grants on all objects in the database. ALL view lists the
grants on objects where the user or PUBLIC is the grantee. USER view lists
grants on all objects where the current user is the grantee.

ALL_TAB_PRIVS_MADE

USER_TAB_PRIVS_MADE

ALL view lists the all object grants made by the current user or made on the
objects owned by the current user. USERview lists grants on all objects owned
by the current user.

ALL_TAB_PRIVS_RECD

USER_TAB_PRIVS_RECD

ALL view lists object grants for which the user or PUBLIC is the grantee.
USER view lists object grants for which the current user is the grantee.

DBA_ROLES This view lists all roles that exist in the database.

DBA_ROLE_PRIVS

USER_ROLE_PRIVS

DBA view lists roles granted to users and roles. USER view lists roles granted
to the current user.

Viewing Privilege and Role Information

Managing User Privileges and Roles 25-27

Some examples of using these views follow. For these examples, assume the

following statements have been issued:

CREATE ROLE security_admin IDENTIFIED BY honcho;

GRANT CREATE PROFILE, ALTER PROFILE, DROP PROFILE,
 CREATE ROLE, DROP ANY ROLE, GRANT ANY ROLE, AUDIT ANY,
 AUDIT SYSTEM, CREATE USER, BECOME USER, ALTER USER, DROP USER
 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON SYS.AUD$ TO security_admin;

GRANT security_admin, CREATE SESSION TO swilliams;

GRANT security_admin TO system_administrator;

GRANT CREATE SESSION TO jward;

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

Listing All System Privilege Grants
The following query returns all system privilege grants made to roles and users:

DBA_SYS_PRIVS

USER_SYS_PRIVS

DBA view lists system privileges granted to users and roles. USER view lists
system privileges granted to the current user.

ROLE_ROLE_PRIVS This view describes roles granted to other roles. Information is provided only
about roles to which the user has access.

ROLE_SYS_PRIVS This view contains information about system privileges granted to roles.
Information is provided only about roles to which the user has access.

ROLE_TAB_PRIVS This view contains information about object privileges granted to roles.
Information is provided only about roles to which the user has access.

SESSION_PRIVS This view lists the privileges that are currently enabled for the user.

SESSION_ROLES This view lists the roles that are currently enabled to the user.

See Also: Oracle9i Database Reference for a detailed description of

these data dictionary views

View Description

Viewing Privilege and Role Information

25-28 Oracle9i Database Administrator’s Guide

SELECT * FROM DBA_SYS_PRIVS;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

Listing All Role Grants
The following query returns all the roles granted to users and other roles:

SELECT * FROM DBA_ROLE_PRIVS;

GRANTEE GRANTED_ROLE ADM
------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

Listing Object Privileges Granted to a User
The following query returns all object privileges (not including column-specific

privileges) granted to the specified user:

SELECT TABLE_NAME, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
 WHERE GRANTEE = 'JWARD';

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO
EMP DELETE NO

To list all the column-specific privileges that have been granted, use the following

query:

Viewing Privilege and Role Information

Managing User Privileges and Roles 25-29

SELECT GRANTEE, TABLE_NAME, COLUMN_NAME, PRIVILEGE
 FROM DBA_COL_PRIVS;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

Listing the Current Privilege Domain of Your Session
The following query lists all roles currently enabled for the issuer:

SELECT * FROM SESSION_ROLES;

If swilliams has enabled the security_admin role and issues this query, Oracle

returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the issuer’s

security domain, both from explicit privilege grants and from enabled roles:

SELECT * FROM SESSION_PRIVS;

If swilliams has the security_admin role enabled and issues this query, Oracle

returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE

Viewing Privilege and Role Information

25-30 Oracle9i Database Administrator’s Guide

If the security_admin role is disabled for swilliams , the first query would

have returned no rows, while the second query would only return a row for the

CREATE SESSION privilege grant.

Listing Roles of the Database
The DBA_ROLES data dictionary view can be used to list all roles of a database and

the authentication used for each role. For example, the following query lists all the

roles in the database:

SELECT * FROM DBA_ROLES;

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

Listing Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data

dictionary views contain information on the privilege domains of roles.

For example, the following query lists all the roles granted to the system_admin
role:

SELECT GRANTED_ROLE, ADMIN_OPTION
 FROM ROLE_ROLE_PRIVS
 WHERE ROLE = 'SYSTEM_ADMIN';

GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO

The following query lists all the system privileges granted to the security_admin
role:

SELECT * FROM ROLE_SYS_PRIVS WHERE ROLE = 'SECURITY_ADMIN';

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES

Viewing Privilege and Role Information

Managing User Privileges and Roles 25-31

SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the security_admin
role:

SELECT TABLE_NAME, PRIVILEGE FROM ROLE_TAB_PRIVS
 WHERE ROLE = 'SECURITY_ADMIN';

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT

Viewing Privilege and Role Information

25-32 Oracle9i Database Administrator’s Guide

Auditing Database Use 26-1

26
Auditing Database Use

This chapter describes how to use the Oracle database server’s auditing facilities,

and contains these topics:

■ Guidelines for Auditing

■ What Information is Contained in the Audit Trail?

■ Actions Audited by Default

■ Auditing Administrative Users

■ Managing the Audit Trail

■ Fine-Grained Auditing

■ Viewing Database Audit Trail Information

Guidelines for Auditing

26-2 Oracle9i Database Administrator’s Guide

Guidelines for Auditing
This section describes guidelines for auditing and contains the following topics:

■ Decide Whether to Use the Database or Operating System Audit Trail

■ Keep Audited Information Manageable

■ Guidelines for Auditing Suspicious Database Activity

■ Guidelines for Auditing Normal Database Activity

Decide Whether to Use the Database or Operating System Audit Trail
The data dictionary of every database has a table named SYS.AUD$, commonly

referred to as the database audit trail, that is designed to store entries auditing

database statements, privileges, or schema objects.

You can optionally choose to store the database audit information to an operating

system file. If your operating system has an audit trail that stores audit records

generated by the operating system auditing facility, and Oracle is allowed to write

to it, you can choose to direct the database audit entries to this file. For example, the

Windows operating system allows Oracle to write audit records as events to the

application event log.

Consider the advantages and disadvantages of using either the database or

operating system audit trail to store database audit records.

Using the database audit trail offers the following advantages:

■ You can view selected portions of the audit trail with the predefined audit trail

views of the data dictionary.

■ You can use Oracle tools (such as Oracle Reports) to generate audit reports.

Alternatively, your operating system audit trail may allow you to consolidate audit

records from multiple sources including Oracle and other applications. Therefore,

examining system activity might be more efficient because all audit records are in

one place.

See Also: Your operating system specific documentation for

information about its auditing capabilities

Guidelines for Auditing

Auditing Database Use 26-3

Keep Audited Information Manageable
Although auditing is relatively inexpensive, limit the number of audited events as

much as possible. This minimizes the performance impact on the execution of

statements that are audited, and minimizes the size of the audit trail.

Use the following general guidelines when devising an auditing strategy:

■ Evaluate your purpose for auditing.

After you have a clear understanding of the reasons for auditing, you can

devise an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database

activity. This information by itself is not specific enough. What types of

suspicious database activity do you suspect or have you noticed? A more

focused auditing purpose might be to audit unauthorized deletions from

arbitrary tables in the database. This purpose narrows the type of action being

audited and the type of object being affected by the suspicious activity.

■ Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the

targeted information. This prevents unnecessary audit information from

cluttering the meaningful information and consuming valuable space in the

SYSTEM tablespace. Balance your need to gather sufficient security information

with your ability to store and process it.

For example, if you are auditing to gather information about database activity,

determine exactly what types of activities you are tracking, audit only the

activities of interest, and audit only for the amount of time necessary to gather

the information you desire. Do not audit objects if you are only interested in

each session’s logical I/O information.

Guidelines for Auditing Suspicious Database Activity
When you audit to monitor suspicious database activity, use the following

guidelines:

■ Audit generally, then specifically.

When starting to audit for suspicious database activity, it is common that not

much information is available to target specific users or schema objects.

Therefore, audit options must be set more generally at first. Once preliminary

audit information is recorded and analyzed, the general audit options should be

turned off and more specific audit options enabled. This process should

What Information is Contained in the Audit Trail?

26-4 Oracle9i Database Administrator’s Guide

continue until enough evidence is gathered to make concrete conclusions about

the origin of the suspicious database activity.

■ Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that

audit information cannot be added, changed, or deleted without being audited.

Guidelines for Auditing Normal Database Activity
When your purpose for auditing is to gather historical information about particular

database activities, use the following guidelines:

■ Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit records and

reduce the amount of audit trail administration, only audit the targeted

database activities.

■ Archive audit records and purge the audit trail.

After you have collected the required information, archive the audit records of

interest and purge the audit trail of this information.

What Information is Contained in the Audit Trail?
Oracle can write records to either the database audit trail, an operating system file,

or both. This section describes the makeup of this audit trail information.

Information Stored in the Database Audit Trail
The database audit trail, stored in the SYS.AUD$ table, contains different types of

information, depending on the events audited and the auditing options set. The

following information is always included in each audit trail record:

■ Operating system login user name

■ User name

■ Session identifier

■ Terminal identifier

■ Name of the schema object accessed

See Also: "Protecting the Audit Trail" on page 26-18

What Information is Contained in the Audit Trail?

Auditing Database Use 26-5

■ Operation performed or attempted

■ Completion code of the operation

■ Date and time stamp

The audit trail does not store information about any data values that might be

involved in the audited statement. For example, old and new data values of

updated rows are not stored when an UPDATE statement is audited. However, this

specialized type of auditing can be performed using fine-grained auditing methods.

Information Stored in an Operating System File
The operating system file that contains the audit trail can contain any of the

following:

■ Audit records generated by the operating system

■ Database audit trail records

■ Database actions that are always audited

■ Audit records for administrative users (SYS)

Audit trail records written to an operating system audit trail may contain encoded

information, but this information can be decoded using data dictionary tables and

error messages as follows:

See Also: "Fine-Grained Auditing" on page 26-18 for more

information about methods of fine-grained auditing

Encoded Information How to Decode

Action code This describes the operation performed or attempted. The
AUDIT_ACTIONS data dictionary table contains a list of these
codes and their descriptions.

Privileges used This describes any system privileges used to perform the
operation. The SYSTEM_PRIVILEGE_MAP table lists all of these
codes and their descriptions.

Completion code This describes the result of the attempted operation. Successful
operations return a value of zero; unsuccessful operations return
the Oracle error code describing why the operation was
unsuccessful. These codes are listed in Oracle9i Database Error
Messages.

Actions Audited by Default

26-6 Oracle9i Database Administrator’s Guide

Actions Audited by Default
Regardless of whether database auditing is enabled, Oracle always audits certain

database-related operations and writes them to the operating system audit file.

These operations include the following:

■ Connections to the instance with administrator privileges

An audit record is generated that lists the operating system user connecting to

Oracle as SYSOPER or SYSDBA. This provides for accountability of users with

administrative privileges. Full auditing for these users can be enabled as

explained in "Auditing Administrative Users" on page 26-6.

■ Database startup

An audit record is generated that lists the operating system user starting the

instance, the user’s terminal identifier, the date and time stamp, and whether

database auditing was enabled or disabled. This is stored in the operating

system audit trail because the database audit trail is not available until after

startup has successfully completed. Recording the state of database auditing at

startup helps detect when an administrator has restarted a database with

database auditing disabled (thus enabling the administrator to perform

unaudited actions).

■ Database shutdown

An audit record is generated that lists the operating system user shutting down

the instance, the user’s terminal identifier, and the date and time stamp.

Auditing Administrative Users
Sessions for users who connect as SYS, this includes all users connecting as SYSDBA
or SYSOPER, can be fully audited. Use the AUDIT_SYS_OPERATIONS initialization

parameter to specify if user SYS is audited. For example, the following setting

specifies that SYS is to be audited:

AUDIT_SYS_OPERATIONS = TRUE

A value of FALSE, which is the default, disables SYS auditing.

All audit records for SYS are written to the operating system file that contains the

audit trail, and not to SYS.AUD$. All SYS issued SQL statements are audited

indiscriminately and regardless of the setting of the AUDIT_TRAIL initialization

parameter.

Consider the following SYS session:

Managing the Audit Trail

Auditing Database Use 26-7

CONNECT / AS SYSDBA;
ALTER SYSTEM FLUSH SHARED_POOL;
UPDATE salary SET base=1000 WHERE name='myname';

When SYS auditing is enabled, both the ALTER SYSTEM and UPDATE statements

are displayed in the operating system audit file as follows:

Thu Jan 24 12:58:00 2002
ACTION: 'CONNECT'
DATABASE USER: '/'
OSPRIV: SYSDBA
CLIENT USER: scott
CLIENT TERMINAL: pts/2
STATUS: 0

Thu Jan 24 12:58:00 2002
ACTION: 'alter system flush shared_pool'
DATABASE USER: ''
OSPRIV: SYSDBA
CLIENT USER: scott
CLIENT TERMINAL: pts/2
STATUS: 0

Thu Jan 24 12:58:00 2002
ACTION: 'update salary set base=1000 where name='myname''
DATABASE USER: ''
OSPRIV: SYSDBA
CLIENT USER: scott
CLIENT TERMINAL: pts/2
STATUS: 0

Because of the superuser privileges available to users who connect as SYSDBA,
Oracle recommends that DBAs rarely use this connection and only when necessary.

Normal day to day maintenance activity can usually be done by DBAs assigned the

DBA role.

Managing the Audit Trail
This section describes various aspects of managing audit trail information, and

contains the following topics:

■ Enabling and Disabling Auditing

■ Setting Auditing Options

Managing the Audit Trail

26-8 Oracle9i Database Administrator’s Guide

■ Auditing in a Multi-Tier Environment

■ Turning Off Audit Options

■ Controlling the Growth and Size of the Audit Trail

■ Protecting the Audit Trail

Enabling and Disabling Auditing
Any authorized database user can set statement, privilege, and object auditing

options at any time, but Oracle does not generate audit information for the database

audit trail unless database auditing is enabled. The security administrator is

normally responsible for controlling auditing.

This section discusses the initialization parameters that enable and disable auditing.

Setting the AUDIT_TRAIL Initialization Parameter
Database auditing is enabled and disabled by the AUDIT_TRAIL initialization

parameter in the database’s initialization parameter file. The parameter can be set to

the following values:

Setting the AUDIT_FILE_DEST Initialization Parameter
The AUDIT_FILE_DEST initialization parameter specifies an operating system

directory into which the audit trail is written when AUDIT_TRAIL=OS is specified.

It is also the location to which mandatory auditing information is written and, if so

Note: All of the initialization parameters affecting auditing are

static. This means that is you change the values for the AUDIT_
SYS_OPERATIONS, AUDIT_TRAIL , and AUDIT_FILE_DEST
initialization parameters, you must shut down and restart your

database for the new values to take effect.

Parameter Value Meaning

DB Enables database auditing and directs all audit records to the
database audit trail, except for records that are always written to
the operating system audit trail

OS Enables database auditing and directs all audit records to an
operating system file

NONE Disables auditing (This value is the default.)

Managing the Audit Trail

Auditing Database Use 26-9

specified by the AUDIT_SYS_OPERATIONS initialization parameter, audit records

for user SYS.

If the AUDIT_FILE_DEST parameter is not specified, the default location is

$ORACLE_HOME/rdbms/audit .

Setting Auditing Options
You specify auditing options using the AUDIT statement. The AUDIT statement

allows you to set audit options at three levels:

Notes:

■ If your operating system supports an audit trail, then its

location is operating system specific. For example, the

Windows operating systems writes audit records as events to

the application event log. You can view and manage these

events using Event Viewer. You are not allowed to specify the

AUDIT_FILE_DEST initialization parameter for Windows

platforms. For more information, see Oracle9i Database
Administrator’s Guide for Windows.

■ For some operating systems, an audit record for instance

connection and database startup is always logged to the default

location $ORACLE_HOME/rdbms/audit regardless of the

setting for AUDIT_FILE_DEST. This is because until the

database is mounted, the parameter setting is not known.

Level Effect

Statement Causes auditing of specific SQL statements or groups of
statements that affect a particular type of database object. For
example, AUDIT TABLEaudits the CREATE TABLE, TRUNCATE
TABLE, COMMENT ON TABLE, and DELETE [FROM] TABLE
statements.

Privilege Audits SQL statements that are authorized by the specified
system privilege. For Example, AUDIT CREATE ANY TRIGGER
audits statements issued using the CREATE ANY TRIGGER
system privilege.

Object Audits specific statements on specific objects, such as ALTER
TABLE on the emp table

Managing the Audit Trail

26-10 Oracle9i Database Administrator’s Guide

To use the AUDIT statement to set statement and privilege options, you must have

the AUDIT SYSTEM privilege. To use it to set object audit options, you must own

the object to be audited or have the AUDIT ANY privilege.

Audit statements that set statement and privilege audit options can include a BY
clause to specify a list of users or application proxies to limit the scope of the

statement and privilege audit options.

When setting auditing options, you can also specify the following conditions for

auditing:

■ BY SESSION/BY ACCESS

BY SESSION causes Oracle to write a single record for all SQL statements of

the same type issued in the same session. BY ACCESS causes Oracle to write

one record for each access.

■ WHENEVER SUCCESSFUL/WHENEVER NOT SUCCESSFUL

WHENEVER SUCCESSFUL chooses auditing only for statements that succeed.

WHENEVER NOT SUCCESSFUL chooses auditing only for statements that fail or

result in errors.

The implications of your choice of auditing option and specification of AUDIT
statement clauses is discussed in subsequent sections.

A new database session picks up auditing options from the data dictionary when

the session is created. These auditing options remain in force for the duration of the

database connection. Setting new system or object auditing options causes all

subsequent database sessions to use these options; existing sessions continue using

the audit options in place at session creation.

Note: If you are using an operating system file for the audit trail

(AUDIT_FILE_DEST=OS), multiple records may still be written to

the audit trail when BY SESSIONis specified. This is because while

Oracle can write to the operating system file, it is unable to read it

to detect that it has already written an audit entry for the action.

Managing the Audit Trail

Auditing Database Use 26-11

Specifying Statement Auditing
Valid statement audit options that can be included in AUDIT and NOAUDIT
statements are listed in the Oracle9i SQL Reference.

Two special cases of statement auditing are discussed in the following sections.

Auditing Connections and Disconnections The SESSION statement option is unique

because it does not generate an audit record when a particular type of statement is

issued; this option generates a single audit record for each session created by

connections to an instance. An audit record is inserted into the audit trail at connect

time and updated at disconnect time. Cumulative information about a session such

as connection time, disconnection time, logical and physical I/Os processed, and

more is stored in a single audit record that corresponds to the session.

To audit all successful and unsuccessful connections to and disconnections from the

database, regardless of user, BY SESSION (the default and only value for this

option), enter the following statement:

AUDIT SESSION;

You can set this option selectively for individual users also, as in the next example:

AUDIT SESSION
BY scott, lori;

Auditing Statements That Fail Because an Object Does Not Exist The NOT EXISTS
statement option specifies auditing of all SQL statements that fail because the target

object does not exist.

Specifying Privilege Auditing
Privilege audit options exactly match the corresponding system privileges. For

example, the option to audit use of the DELETE ANY TABLE privilege is DELETE

Caution: The AUDIT statement only specifies auditing options; it

does not enable auditing as a whole. To turn auditing on and

control whether Oracle generates audit records based on the audit

options currently set, set the initialization parameter AUDIT_TRAIL
as described in "Enabling and Disabling Auditing" on page 26-8.

See Also: Oracle9i SQL Reference for a complete description of the

AUDIT statement

Managing the Audit Trail

26-12 Oracle9i Database Administrator’s Guide

ANY TABLE. To turn this option on, you use a statement similar to the following

example:

AUDIT DELETE ANY TABLE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Oracle’s system privileges are listed in the Oracle9i SQL Reference.

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system

privilege, enter the following statement:

AUDIT DELETE ANY TABLE;

To audit all unsuccessful SELECT, INSERT, and DELETE statements on all tables

and unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all

database users, and by individual audited statement, issue the following statement:

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

The AUDIT SYSTEM system privilege is required to set any statement or privilege

audit option. Normally, the security administrator is the only user granted this

system privilege.

Specifying Object Auditing
The Oracle9i SQL Reference lists valid object audit options and the schema object

types for which each option is available.

A user can set any object audit option for the objects contained in the user’s schema.

The AUDIT ANY system privilege is required to set an object audit option for an

object contained in another user’s schema or to set the default object auditing

option. Normally, the security administrator is the only user granted the AUDIT
ANY privilege.

To audit all successful and unsuccessful DELETE statements on the scott.emp
table, BY SESSION (the default value), enter the following statement:

AUDIT DELETE ON scott.emp;

To audit all successful SELECT, INSERT, and DELETE statements on the dept table

owned by user jward , BY ACCESS, enter the following statement:

AUDIT SELECT, INSERT, DELETE
 ON jward.dept

Managing the Audit Trail

Auditing Database Use 26-13

 BY ACCESS
 WHENEVER SUCCESSFUL;

To set the default object auditing options to audit all unsuccessful SELECT
statements, BY SESSION (the default), enter the following statement:

AUDIT SELECT
 ON DEFAULT
 WHENEVER NOT SUCCESSFUL;

Auditing in a Multi-Tier Environment
In a multi-tier environment, Oracle preserves the identity of the client through all

tiers. This enables auditing of actions taken on behalf of the client. To do so, you use

the BY proxy clause in your AUDIT statement.

This clause allows you a few options. You can:

■ Audit SQL statements issued by the specified proxy on its own behalf

■ Audit statements executed on behalf of a specified user or users

■ Audit all statements executed on behalf of any user

The following example audits SELECT TABLE statements issued on behalf of client

jackson by the proxy application server appserve .

AUDIT SELECT TABLE
 BY appserve ON BEHALF OF jackson;

Turning Off Audit Options
The NOAUDIT statement turns off the various audit options of Oracle. Use it to reset

statement and privilege audit options, and object audit options. A NOAUDIT
statement that sets statement and privilege audit options can include the BY user
or BY proxy option to specify a list of users to limit the scope of the statement and

privilege audit options.

You can use a NOAUDIT statement to disable an audit option selectively using the

WHENEVER clause. If the clause is not specified, the auditing option is disabled

entirely, for both successful and unsuccessful cases.

See Also: Oracle9i Database Concepts and Oracle9i Application
Developer’s Guide - Fundamentals for more information on proxies

and multi-tier applications

Managing the Audit Trail

26-14 Oracle9i Database Administrator’s Guide

The BY SESSION/BY ACCESS option pair is not supported by the NOAUDIT
statement; audit options, no matter how they were turned on, are turned off by an

appropriate NOAUDIT statement.

Turning Off Statement and Privilege Auditing
The following statements turn off the corresponding audit options:

NOAUDIT session;
NOAUDIT session BY scott, lori;
NOAUDIT DELETE ANY TABLE;
NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,
 EXECUTE PROCEDURE;

The following statement turns off all statement audit options:

NOAUDIT ALL;

The following statement turns off all privilege audit options:

NOAUDIT ALL PRIVILEGES;

To disable statement or privilege auditing options, you must have the AUDIT
SYSTEM system privilege.

Turning Off Object Auditing
The following statements turn off the corresponding auditing options:

NOAUDIT DELETE
 ON emp;
NOAUDIT SELECT, INSERT, DELETE
 ON jward.dept;

Caution: The NOAUDIT statement only specifies auditing options;

it does not disable auditing as a whole. To turn auditing off and

stop Oracle from generating audit records, set the initialization

parameter AUDIT_TRAIL in the database’s initialization parameter

file as described in "Enabling and Disabling Auditing" on

page 26-8.

See Also: Oracle9i SQL Reference for a complete syntax listing of

the NOAUDIT statement

Managing the Audit Trail

Auditing Database Use 26-15

Furthermore, to turn off all object audit options on the emp table, enter the

following statement:

NOAUDIT ALL
 ON emp;

To turn off all default object audit options, enter the following statement:

NOAUDIT ALL
 ON DEFAULT;

All schema objects created before this NOAUDIT statement is issued continue to use

the default object audit options in effect at the time of their creation, unless

overridden by an explicit NOAUDIT statement after their creation.

To disable object audit options for a specific object, you must be the owner of the

schema object. To disable the object audit options of an object in another user’s

schema or to disable default object audit options, you must have the AUDIT ANY
system privilege. A user with privileges to disable object audit options of an object

can override the options set by any user.

Controlling the Growth and Size of the Audit Trail
If the audit trail becomes completely full and no more audit records can be inserted,

audited statements cannot be successfully executed until the audit trail is purged.

Warnings are returned to all users that issue audited statements. Therefore, the

security administrator must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail

grows according to two factors:

■ The number of audit options turned on

■ The frequency of execution of audited statements

To control the growth of the audit trail, you can use the following methods:

■ Enable and disable database auditing. If it is enabled, audit records are

generated and stored in the audit trail; if it is disabled, audit records are not

generated.

■ Be very selective about the audit options that are turned on. If more selective

auditing is performed, useless or unnecessary audit information is not

generated and stored in the audit trail.

■ Tightly control the ability to perform object auditing. This can be done two

different ways:

Managing the Audit Trail

26-16 Oracle9i Database Administrator’s Guide

– A security administrator owns all objects and the AUDIT ANY system

privilege is never granted to any other user. Alternatively, all schema

objects can belong to a schema for which the corresponding user does not

have CREATE SESSION privilege.

– All objects are contained in schemas that do not correspond to real database

users (that is, the CREATE SESSION privilege is not granted to the

corresponding user) and the security administrator is the only user granted

the AUDIT ANY system privilege.

In both scenarios, object auditing is controlled entirely by the security

administrator.

The maximum size of the database audit trail (SYS.AUD$ table) is determined by

the default storage parameters of the SYSTEM tablespace, in which it is stored. You

should not move SYS.AUD$ to another tablespace as a means of controlling the

growth and size of the audit trail. However, you can modify the storage parameters

for SYS.AUD$.

Purging Audit Records from the Audit Trail
After auditing is enabled for some time, the security administrator may want to

delete records from the database audit trail both to free audit trail space and to

facilitate audit trail management.

For example, to delete all audit records from the audit trail, enter the following

statement:

DELETE FROM SYS.AUD$;

Alternatively, to delete all audit records from the audit trail generated as a result of

auditing the table emp, enter the following statement:

DELETE FROM SYS.AUD$

Note: Moving the SYS.AUD$ table out of the SYSTEM tablespace

is not supported because the Oracle code makes implicit

assumptions about the data dictionary tables, such as SYS.AUD$,

which could cause problems with upgrades and backup/recovery

scenarios.

See Also: Your operating system specific Oracle documentation

for more information about managing the operating system audit

trail when you are directing audit records to that location

Managing the Audit Trail

Auditing Database Use 26-17

 WHERE obj$name='EMP';

If audit trail information must be archived for historical purposes, the security

administrator can copy the relevant records to a normal database table (for

example, using INSERT INTO table SELECT ... FROM SYS.AUD$...) or

export the audit trail table to an operating system file.

Only the user SYS, a user who has the DELETE ANY TABLE privilege, or a user to

whom SYShas granted DELETEprivilege on SYS.AUD$can delete records from the

database audit trail.

Reducing the Size of the Audit Trail
As with any database table, after records are deleted from the database audit trail,

the extents allocated for this table still exist.

If the database audit trail has many extents allocated for it, but many of them are

not being used, the space allocated to the database audit trail can be reduced by

following these steps:

1. If you want to save information currently in the audit trail, copy it to another

database table or export it using the EXPORT utility.

2. Connect as a user with administrator privileges.

3. Truncate SYS.AUD$ using the TRUNCATE statement.

4. Reload archived audit trail records generated from Step 1.

The new version of SYS.AUD$ is allocated only as many extents as are necessary to

contain current audit trail records.

Note: If the audit trail is completely full and connections are being

audited (that is, if the SESSION option is set), typical users cannot

connect to the database because the associated audit record for the

connection cannot be inserted into the audit trail. In this case, the

security administrator must connect as SYS (operations by SYS are

not audited) and make space available in the audit trail.

See Also: Oracle9i Database Utilities for information about

exporting tables

Fine-Grained Auditing

26-18 Oracle9i Database Administrator’s Guide

Protecting the Audit Trail
When auditing for suspicious database activity, protect the integrity of the audit

trail’s records to guarantee the accuracy and completeness of the auditing

information.

To protect the database audit trail from unauthorized deletions, grant the DELETE
ANY TABLE system privilege to security administrators only.

To audit changes made to the database audit trail, use the following statement:

AUDIT INSERT, UPDATE, DELETE
 ON sys.aud$
 BY ACCESS;

Audit records generated as a result of object audit options set for the SYS.AUD$

table can only be deleted from the audit trail by someone connected with

administrator privileges, which itself has protection against unauthorized use.

Fine-Grained Auditing
In the auditing methods discussed so far, a fixed set of facts is recorded in the audit

trail. Additionally, audit options can only be set to monitor access of objects or

privileges. No support has been discussed for obtaining more specific information

about the environment or query results, nor any mechanism to specify audit

conditions in order to minimize false audits. For these purposes, Oracle offers

fine-grained auditing.

Fine-grained auditing allows the monitoring of data access based on content. For

example, a central tax authority needs to track access to tax returns to guard against

employee snooping. Enough detail is wanted to be able to determine what data was

accessed, not just that SELECT privilege was used by a specific user on a particular

table. Fine-grained auditing provides this functionality.

In general, fine-grained auditing policy is based on simple user-defined SQL

predicates on table objects as conditions for selective auditing. During fetching,

whenever policy conditions are met for a returning row, the query is audited. Later,

Oracle executes user-defined audit event handlers using autonomous transactions

to process the event.

Note: SYS.AUD$ is the only SYS object that should ever be

directly modified.

Viewing Database Audit Trail Information

Auditing Database Use 26-19

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

Viewing Database Audit Trail Information
The database audit trail (SYS.AUD$) is a single table in each Oracle database’s data

dictionary. To help you meaningfully view auditing information in this table,

several predefined views are available. They must be created by you. You can later

delete them if you decide not to use auditing.

Creating the Audit Trail Views
The following views (except STMT_AUDIT_OPTION_MAP) are created by the

CATALOG.SQL and CATAUDIT.SQL scripts:

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

information about using fine-grained auditing

View Description

STMT_AUDIT_OPTION_MAP Contains information about auditing option type
codes. Created by the SQL.BSQscript at CREATE
DATABASE time.

AUDIT_ACTIONS Contains descriptions for audit trail action type
codes

ALL_DEF_AUDIT_OPTS Contains default object-auditing options that will
be applied when objects are created

DBA_STMT_AUDIT_OPTS Describes current system auditing options across
the system and by user

DBA_PRIV_AUDIT_OPTS Describes current system privileges being audited
across the system and by user

DBA_OBJ_AUDIT_OPTS

USER_OBJ_AUDIT_OPTS

Describes auditing options on all objects. USER
view describes auditing options on all objects
owned by the current user.

DBA_AUDIT_TRAIL

USER_AUDIT_TRAIL

Lists all audit trail entries. USER view shows
audit trail entries relating to current user.

DBA_AUDIT_OBJECT

USER_AUDIT_OBJECT

Contains audit trail records for all objects in the
system. USER view lists audit trail records for
statements concerning objects that are accessible
to the current user.

Viewing Database Audit Trail Information

26-20 Oracle9i Database Administrator’s Guide

Deleting the Audit Trail Views
If you disable auditing and no longer need the audit trail views, delete them by

connecting to the database as SYS and running the script file CATNOAUD.SQL. The

name and location of the CATNOAUD.SQL script are operating system dependent.

Using Audit Trail Views to Investigate Suspicious Activities
This section offers examples that demonstrate how to examine and interpret the

information in the audit trail. Consider the following situation.

You would like to audit the database for the following suspicious activities:

■ Passwords, tablespace settings, and quotas for some database users are being

altered without authorization.

■ A high number of deadlocks are occurring, most likely because of users

acquiring exclusive table locks.

■ Rows are arbitrarily being deleted from the emp table in scott ’s schema.

You suspect the users jward and swilliams of several of these detrimental

actions.

DBA_AUDIT_SESSION

USER_AUDIT_SESSION

Lists all audit trail records concerning CONNECT
and DISCONNECT. USER view lists all audit trail
records concerning connections and
disconnections for the current user.

DBA_AUDIT_STATEMENT

USER_AUDIT_STATEMENT

Lists audit trail records concerning GRANT,
REVOKE, AUDIT, NOAUDIT, and ALTER SYSTEM
statements throughout the database, or for the
USER view, issued by the user

DBA_AUDIT_EXISTS Lists audit trail entries produced BY AUDIT NOT
EXISTS

The following views are used for fine-grained auditing:

DBA_AUDIT_POLICIES Shows all the auditing policies on the system.

DBA_FGA_AUDIT_TRAIL Lists audit trail records for value-based auditing.

See Also: Oracle9i Database Reference for more detailed

descriptions of the Oracle provided predefined views

View Description

Viewing Database Audit Trail Information

Auditing Database Use 26-21

To enable your investigation, you issue the following statements (in order):

AUDIT ALTER, INDEX, RENAME ON DEFAULT
 BY SESSION;
CREATE VIEW scott.employee AS SELECT * FROM scott.emp;
AUDIT SESSION BY jward, swilliams;
AUDIT ALTER USER;
AUDIT LOCK TABLE
 BY ACCESS
 WHENEVER SUCCESSFUL;
AUDIT DELETE ON scott.emp
 BY ACCESS
 WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user jward :

ALTER USER tsmith QUOTA 0 ON users;
DROP USER djones;

The following statements are subsequently issued by the user swilliams :

LOCK TABLE scott.emp IN EXCLUSIVE MODE;
DELETE FROM scott.emp WHERE mgr = 7698;
ALTER TABLE scott.emp ALLOCATE EXTENT (SIZE 100K);
CREATE INDEX scott.ename_index ON scott.emp (ename);
CREATE PROCEDURE scott.fire_employee (empid NUMBER) AS
 BEGIN
 DELETE FROM scott.emp WHERE empno = empid;
 END;
/

EXECUTE scott.fire_employee(7902);

The following sections display the information relevant to your investigation that

can be viewed using the audit trail views in the data dictionary:

■ Listing Active Statement Audit Options

■ Listing Active Privilege Audit Options

■ Listing Active Object Audit Options for Specific Objects

■ Listing Default Object Audit Options

■ Listing Audit Records

■ Listing Audit Records for the AUDIT SESSION Option

Viewing Database Audit Trail Information

26-22 Oracle9i Database Administrator’s Guide

Listing Active Statement Audit Options
The following query returns all the statement audit options that are set:

SELECT * FROM DBA_STMT_AUDIT_OPTS;

USER_NAME AUDIT_OPTION SUCCESS FAILURE
-------------------- ------------------- ---------- ---------
JWARD SESSION BY SESSION BY SESSION
SWILLIAMS SESSION BY SESSION BY SESSION
 LOCK TABLE BY ACCESS NOT SET

Notice that the view reveals the statement audit options set, whether they are set for

success or failure (or both), and whether they are set for BY SESSION or BY
ACCESS.

Listing Active Privilege Audit Options
The following query returns all the privilege audit options that are set:

SELECT * FROM DBA_PRIV_AUDIT_OPTS;

USER_NAME PRIVILEGE SUCCESS FAILURE
------------------- -------------------- --------- ----------
ALTER USER BY SESSION BY SESSION

Listing Active Object Audit Options for Specific Objects
The following query returns all audit options set for any objects whose name starts

with the characters emp and which are contained in scott ’s schema:

SELECT * FROM DBA_OBJ_AUDIT_OPTS
 WHERE OWNER = ’SCOTT’ AND OBJECT_NAME LIKE ’EMP%’;

OWNER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...
----- ----------- --------- --- --- --- --- --- --- --- --- ...
SCOTT EMP TABLE S/S -/- -/- A/- -/- S/S -/- -/- ...
SCOTT EMPLOYEE VIEW -/- -/- -/- A/- -/- S/S -/- -/- ...

Notice that the view returns information about all the audit options for the specified

object. The information in the view is interpreted as follows:

■ The character "-" indicates that the audit option is not set.

■ The character "S" indicates that the audit option is set, BY SESSION.

■ The character "A" indicates that the audit option is set, BY ACCESS.

Viewing Database Audit Trail Information

Auditing Database Use 26-23

■ Each audit option has two possible settings, WHENEVER SUCCESSFUL and

WHENEVER NOT SUCCESSFUL, separated by "/". For example, the DELETE
audit option for scott.emp is set BY ACCESS for successful delete statements

and not set at all for unsuccessful delete statements.

Listing Default Object Audit Options
The following query returns all default object audit options:

SELECT * FROM ALL_DEF_AUDIT_OPTS;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE
--- --- --- --- --- --- --- --- --- --- --- --- ---
S/S -/- -/- -/- -/- S/S -/- -/- S/S -/- -/- -/- -/-

Notice that the view returns information similar to the USER_OBJ_AUDIT_OPTS
and DBA_OBJ_AUDIT_OPTS views (see previous example).

Listing Audit Records
The following query lists audit records generated by statement and object audit

options:

 SELECT * FROM DBA_AUDIT_OBJECT;

Listing Audit Records for the AUDIT SESSION Option
The following query lists audit information corresponding to the AUDIT SESSION
statement audit option:

SELECT USERNAME, LOGOFF_TIME, LOGOFF_LREAD, LOGOFF_PREAD,
 LOGOFF_LWRITE, LOGOFF_DLOCK
 FROM DBA_AUDIT_SESSION;

USERNAME LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO
---------- --------- ---------- ---------- ---------- ----------
JWARD 02-AUG-91 53 2 24 0
SWILLIAMS 02-AUG-91 3337 256 630 0

Viewing Database Audit Trail Information

26-24 Oracle9i Database Administrator’s Guide

Part V
 Database Resource Management

Part V discusses database resource management. It includes the following chapter:

■ Chapter 27, "Using the Database Resource Manager"

Using the Database Resource Manager 27-1

27
Using the Database Resource Manager

Oracle provides database resource management capability through its Database

Resource Manager. This chapter introduces you to its use.

The following topics are discussed:

■ What Is the Database Resource Manager?

■ Administering the Database Resource Manager

■ Creating a Simple Resource Plan

■ Creating Complex Resource Plans

■ Managing Resource Consumer Groups

■ Enabling the Database Resource Manager

■ Putting It All Together: Database Resource Manager Examples

■ Monitoring and Tuning the Database Resource Manager

■ Viewing Database Resource Manager Information

Note: This chapter discusses the use of the Oracle supplied DBMS_
RESOURCE_MANAGER and DBMS_RESOURCE_MANAGER_PRIVS
packages to administer the Database Resource Manager. You can

more easily administer the Database Resource Manager through the

Oracle Enterprise Manager (OEM). It provides an easy to use

graphical interface for administering the Database Resource

Manager.

See the Oracle Enterprise Manager documentation set for more

information.

What Is the Database Resource Manager?

27-2 Oracle9i Database Administrator’s Guide

What Is the Database Resource Manager?
The main goal of the Database Resource Manager is to give the Oracle database

server more control over resource management decisions, thus circumventing

problems resulting from inefficient operating system management.

This section contains the following topics:

■ What Problems Does the Database Resource Manager Address?

■ How Does the Database Resource Manager Address These Problems?

■ What are the Elements of the Database Resource Manager?

■ Understanding Resource Plans

What Problems Does the Database Resource Manager Address?
When database resource allocation decisions are left to the operating system, you

may encounter the following problems:

■ Excessive overhead

Excessive overhead results from operating system context switching between

Oracle server processes when the number of server processes is high.

■ Inefficient scheduling

The operating system deschedules Oracle database servers while they hold

latches, which is inefficient.

■ Inappropriate allocation of resources

The operating system distributes resources equally among all active processes

and is unable to prioritize one task over another.

■ Inability to manage database-specific resources, such as parallel execution

servers and active sessions

How Does the Database Resource Manager Address These Problems?
Oracle’s Database Resource Manager helps to overcome these problems by allowing

the database more control over how machine resources are allocated.

Specifically, using the Database Resource Manager, you can:

■ Guarantee certain users a minimum amount of processing resources regardless

of the load on the system and the number of users

What Is the Database Resource Manager?

Using the Database Resource Manager 27-3

■ Distribute available processing resources by allocating percentages of CPU time

to different users and applications. In a data warehouse, a higher percentage

may be given to ROLAP (relational on-line analytical processing) applications

than to batch jobs.

■ Limit the degree of parallelism of any operation performed by members of a

group of users

■ Create an active session pool. This pool consists of a specified maximum

number of user sessions allowed to be concurrently active within a group of

users. Additional sessions beyond the maximum are queued for execution, but

you can specify a timeout period, after which queued jobs will abort.

■ Allow automatic switching of users from one group to another group based on

administrator defined criteria. If a member of a particular group of users creates

a session that executes for longer than a specified amount of time, that session

can be automatically switched to another group of users with different resource

requirements.

■ Prevent the execution of operations that are estimated to run for a longer time

than a predefined limit

■ Create an undo pool. This pool consists of the amount of undo space that can

be consumed in by a group of users.

■ Configure an instance to use a particular method of allocating resources. You

can dynamically change the method, for example, from a daytime setup to a

nighttime setup, without having to shut down and restart the instance.

What are the Elements of the Database Resource Manager?
The elements of Oracle’s database resource management, which you define through

the Database Resource Manager packages, are described below.

Element Description

Resource consumer group User sessions grouped together based on resource processing
requirements.

Resource plan Contains directives that specify how resources are allocated
to resource consumer groups.

What Is the Database Resource Manager?

27-4 Oracle9i Database Administrator’s Guide

You will learn how to create and use these elements in later sections of this chapter.

Understanding Resource Plans
This section briefly introduces the concept of resource plans. Included are some

illustrations of simple resource plans. More complex plans are included in the

examples presented later ("Putting It All Together: Database Resource Manager

Examples" on page 27-25), after it has been explained how to build and maintain the

elements of the Database Resource Manager.

Resource plans specify the resource consumer groups belonging to the plan and

contain directives for how resources are to be allocated among these groups. You

use the DBMS_RESOURCE_MANAGER package to create and maintain these elements

of the Database Resource Manager: resource plans, resource consumer groups, and

resource plan directives. Plan information is stored in tables in the data dictionary.

Several views are available for viewing plan data.

A Single-Level Resource Plan
The first illustration, shown in Figure 27–1, is of a single-level plan, where the plan

allocates resources among resource consumer groups. The Great Bread Company

has a plan called great_bread that allocates CPU resources among three resource

consumer groups. Specifically, sales is allotted 60% of the CPU time, market is

allotted 20%, and develop receives the remaining 20%.

Resource allocation method The method/policy used by the Database Resource Manager
when allocating for a particular resource; used by resource
consumer groups and resource plans. Oracle provides the
resource allocation methods that are available, but you
determine which method to use.

Resource plan directive Used by administrators to associate resource consumer
groups with particular plans and allocate resources among
resource consumer groups.

See Also: Oracle9i Database Concepts for more information about

the Database Resource Manager

"Viewing Database Resource Manager Information" on page 27-31

Element Description

What Is the Database Resource Manager?

Using the Database Resource Manager 27-5

Figure 27–1 A Simple Resource Management Plan

Oracle provides a procedure (CREATE_SIMPLE_PLAN) that enables you to quickly

create a simple resource plan. This procedure is discussed in "Creating a Simple

Resource Plan" on page 27-10.

A Multilevel Resource Plan
But a plan cannot only contain resource consumer groups, it can also contain other

plans, called subplans. Maybe the Great Bread Company chooses to divide their

CPU resource as shown in Figure 27–2.

Figure 27–2 A Multilevel Plan With Subplans

In this case, the great_bread plan still allocates CPU resources to the consumer

group market , but now it allocates CPU resources to subplans sales_team and

develop_team , who in turn allocate resources to consumer groups. Figure 27–2

GREAT_BREAD
plan

SALES
group

DEVELOP
group

MARKET
group

20%
CPU

60%
CPU

20%
CPU

GREAT_BREAD
plan

SALES_TEAM
plan

DEVELOP_TEAM
plan

MARKET
group

50%
CPU

50%
CPU

50%
CPU

50%
CPU

20%
CPU

WHOLESALE
group

BREAD
group

MUFFIN
group

60%
CPU

RETAIL
group

20%
CPU

What Is the Database Resource Manager?

27-6 Oracle9i Database Administrator’s Guide

illustrates a plan schema, which contains a top plan (great_bread) and all of its

descendents.

It is possible for a subplan or consumer group to have more than one parent

(owning plan), but there cannot be any loops in a plan schema. An example of a

subplan having more that one parent would be if the Great Bread Company had a

night plan and a day plan. Both the night plan and the day plan contain the sales
subplan as a member, but perhaps with a different CPU resource allocation in each

instance.

Resource Consumer Groups
Resource consumer groups are groups of users, or sessions, that are grouped

together based on their processing needs. Resource plan directives, discussed next,

specify how resources are allocated among consumer groups and subplans in a plan

schema.

Resource Plan Directives
How resources are allocated to resource consumer groups is specified in resource

allocation directives. The Database Resource Manager provides several means of

allocating resources.

CPU Method This method enables you to specify how CPU resources are to be

allocated among consumer groups or subplans. The multiple levels of CPU resource

allocation (up to eight levels) provide a means of prioritizing CPU usage within a

plan schema. Level 2 gets resources only after level 1 is unable to use all of its

resources. Multiple levels not only provide a way of prioritizing, but they provide a

way of explicitly specifying how all primary and leftover resources are to be used.

Active Session Pool with Queuing You can control the maximum number of

concurrently active sessions allowed within a consumer group. This maximum

designates the active session pool. When a session cannot be initiated because the

pool is full, the session is placed into a queue. When an active session completes,

the first session in the queue can then be scheduled for execution. You can also

specify a timeout period after which a job in the execution queue (waiting for

execution) will timeout, causing it to terminate with an error.

Note: As explained later, the above plans should also contain a

plan directive for OTHER_GROUPS. To present a simplified view,

however, this plan directive is not shown.

What Is the Database Resource Manager?

Using the Database Resource Manager 27-7

An entire parallel execution session is counted as one active session.

Degree of Parallelism Limit Specifying a parallel degree limit enables you to control the

maximum degree of parallelism for any operation within a consumer group.

Automatic Consumer Group Switching This method enables you to control resources by

specifying criteria that, if met, causes the automatic switching of sessions to another

consumer group. The criteria used to determine switching are:

■ Switch group—specifies the consumer group to which this session is switched if

the other (following) criteria are met

■ Switch time—specifies the length of time that a session can execute before it is

switched to another consumer group

■ Use estimate—specifies whether Oracle is to use its own estimate of how long

an operation will execute

The Database Resource Manager switches a running session to switch group if the

session is active for more than switch time seconds. Active means that the session is

running and consuming resources, not waiting idly for user input or waiting for

CPU cycles. The session is allowed to continue running, even if the active session

pool for the new group is full. Under these conditions a consumer group can have

more sessions running than specified by its active session pool. Once the session

finishes its operation and becomes idle, it is switched back to its original group.

If use estimate is set to TRUE, the Database Resource Manager uses a predicted

estimate of how long the operation will take to complete. If Oracle’s predicted

estimate is longer than the value specified as the switch time, then Oracle switches

the session before execution starts. If this parameter is not set, the operation starts

normally and only switches groups when other switch criteria are met.

Execution Time Limit You can specify a maximum execution time allowed for an

operation. If Oracle estimates that an operation will run longer than the specified

maximum execution time, the operation is terminated with an error. This error can

be trapped and the operation rescheduled.

Undo Pool You can specify an undo pool for each consumer group. An undo pool

controls the amount of total undo that can be generated by a consumer group.

When the total undo generated by a consumer group exceeds it’s undo limit, the

current DML statement generating the redo is terminated. No other members of the

consumer group can perform further data manipulation until undo space is freed

from the pool.

Administering the Database Resource Manager

27-8 Oracle9i Database Administrator’s Guide

Administering the Database Resource Manager
You must have the system privilege ADMINISTER_RESOURCE_MANAGER to

administer the Database Resource Manager. Typically, database administrators have

this privilege with the ADMIN option as part of the DBA (or equivalent) role.

Being an administrator for the Database Resource Manager allows you to execute

all of the procedures in the DBMS_RESOURCE_MANAGERpackage. These are listed in

the following table, and their use is explained in succeeding sections of this chapter.

See Also: Oracle9i Database Concepts for additional conceptual

information about the Database Resource Manager.

Procedure Description

CREATE_SIMPLE_PLAN Creates a simple resource plan, containing up to eight
consumer groups, in one step. This is the quickest way to get
started when you use this package.

CREATE_PLAN Creates a resource plan and specifies its allocation methods.

UPDATE_PLAN Updates a resource plan’s comment information.

DELETE_PLAN Deletes a resource plan and its directives.

DELETE_PLAN_CASCADE Deletes a resource plan and all of its descendents.

CREATE_CONSUMER_GROUP Creates a resource consumer group.

UPDATE_CONSUMER_GROUP Updates a consumer group’s comment information.

DELETE_CONSUMER_GROUP Deletes a consumer group.

CREATE_PLAN_DIRECTIVE Specifies the resource plan directives that allocate resources to
resource consumer groups within a plan or among subplans in
a multilevel plan schema.

UPDATE_PLAN_DIRECTIVE Updates plan directives.

DELETE_PLAN_DIRECTIVE Deletes plan directives.

CREATE_PENDING_AREA Creates a pending area (scratch area) within which changes
can be made to a plan schema.

VALIDATE_PENDING_AREA Validates the pending changes to a plan schema.

CLEAR_PENDING_AREA Clears all pending changes from the pending area.

SUBMIT_PENDING_AREA Submits all changes to a plan schema.

SET_INITIAL_CONSUMER_GROUP Sets the initial consumer group for a user.

Administering the Database Resource Manager

Using the Database Resource Manager 27-9

You may, as an administrator with the ADMIN option, choose to grant the

administrative privilege to other users or roles. This is possible using the DBMS_
RESOURCE_MANAGER_PRIVS package. This package contains the procedures listed

in the table below.

The following example grants the administrative privilege to user scott , but does

not grant scott the ADMIN option. Therefore, scott can execute all of the

procedures in the DBMS_RESOURCE_MANAGER package, but scott cannot use the

GRANT_SYSTEM_PRIVILEGE procedure to grant the administrative privilege to

others.

EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE -
 (GRANTEE_NAME => 'scott', PRIVILEGE_NAME => 'ADMINISTER_RESOURCE_MANAGER', -
 ADMIN_OPTION => FALSE);

You can revoke this privilege using the REVOKE_SYSTEM_PRVILEGE procedure.

SWITCH_CONSUMER_GROUP_FOR_SESS Switches the consumer group of a specific session.

SWITCH_CONSUMER_GROUP_FOR_USER Switches the consumer group of all sessions belonging to a
specific user.

Procedure Description

GRANT_SYSTEM_PRIVILEGE Grants ADMINISTER_RESOURCE_MANAGER system privilege
to a user or role.

REVOKE_SYSTEM_PRIVILEGE Revokes ADMINISTER_RESOURCE_MANAGERsystem privilege
from a user or role.

GRANT_SWITCH_CONSUMER_GROUP Grants permission to a user, role, or PUBLIC to switch to a
specified resource consumer group.

REVOKE_SWITCH_CONSUMER_GROUP Revokes permission for a user, role, or PUBLIC to switch to a
specified resource consumer group.

Note: The ADMINISTER_RESOURCE_MANAGER system privilege

can only be granted or revoked by using the DBMS_RESOURCE_
MANAGER_PRIVSpackage. It cannot be granted or revoked through

the SQL GRANT or REVOKE statements.

Procedure Description

Creating a Simple Resource Plan

27-10 Oracle9i Database Administrator’s Guide

The other procedures in the DBMS_RESOURCE_MANAGER_PRIVS package are

discussed in "Managing the Switch Privilege" on page 27-22.

Creating a Simple Resource Plan
You can quickly create a simple resource plan that will be adequate for many

situations using the CREATE_SIMPLE_PLANprocedure. This procedure enables you

to create consumer groups and allocate resources to them by executing a single

statement. Using this procedure, you are not required to invoke the procedures that

are described in succeeding sections for creating a pending area, creating each

consumer group individually, and specifying resource plan directives.

You can specify the following parameters for the CREATE_SIMPLE_PLAN
procedure:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference.
contains detailed information about the Database Resource

Manager packages:

■ DBMS_RESOURCE_MANAGER

■ DBMS_RESOURCE_MANAGER_PRIVS

Parameter Description

SIMPLE_PLAN Name of the plan

CONSUMER_GROUP1 Consumer group name for first group

GROUP1_CPU CPU resource allocated to this group

CONSUMER_GROUP2 Consumer group name for second group

GROUP2_CPU CPU resource allocated to this group

CONSUMER_GROUP3 Consumer group name for third group

GROUP3_CPU CPU resource allocated to this group

CONSUMER_GROUP4 Consumer group name for fourth group

GROUP4_CPU CPU resource allocated to this group

CONSUMER_GROUP5 Consumer group name for fifth group

GROUP5_CPU CPU resource allocated to this group

CONSUMER_GROUP6 Consumer group name for sixth group

GROUP6_CPU CPU resource allocated to this group

Creating Complex Resource Plans

Using the Database Resource Manager 27-11

Up to eight consumer groups can be specified using this procedure and the only

plan directive that can be specified is for CPU. Each consumer group specified in

the plan is allocated its CPU percentage at level 2. Also included in the plan are

SYS_GROUP (an Oracle defined groups that is the initial consumer group for the

users SYS and SYSTEM) and OTHER_GROUPS.

Example: Using the CREATE_SIMPLE_PLAN Procedure
BEGIN
DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN(SIMPLE_PLAN => 'simple_plan1',
 CONSUMER_GROUP1 => 'mygroup1', GROUP1_CPU => 80,
 CONSUMER_GROUP2 => 'mygroup2', GROUP2_CPU => 20);
END;

Executing the above statements creates the following plan:

Creating Complex Resource Plans
This section describes the actions and DBMS_RESOURCE_MANAGER procedures that

you can use when your situation requires that you create more complex resource

plans. It contains the following sections:

■ Using the Pending Area for Creating Plan Schemas

■ Creating Resource Plans

■ Creating Resource Consumer Groups

CONSUMER_GROUP7 Consumer group name for seventh group

GROUP7_CPU CPU resource allocated to this group

CONSUMER_GROUP8 Consumer group name for eighth group

GROUP8_CPU CPU resource allocated to this group

Consumer Group Level 1 Level 2 Level 3

SYS_GROUP 100% - -

mygroup1 - 80% -

mygroup2 - 20% -

OTHER_GROUPS - - 100%

Parameter Description

Creating Complex Resource Plans

27-12 Oracle9i Database Administrator’s Guide

■ Specifying Resource Plan Directives

Using the Pending Area for Creating Plan Schemas
The first thing you must do to create or modify plan schemas is to create a pending
area. This is a scratch area allowing you to stage your changes and to validate them

before they are made active.

Creating a Pending Area
To create a pending area, you use the following statement:

EXEC DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA;

In effect, what is really happening here is that you are making the pending area

active and "loading" all existing, or active, plan schemas into the pending area so

that they can be updated or new plans added. Active plan schemas are those

schemas already stored in the data dictionary for use by the Database Resource

Manager. If you attempt to update a plan or add a new plan without first activating

(creating) the pending area, you will receive an error message notifying you that the

pending area is not active.

Views are available for inspecting all active resource plan schemas as well as the

pending ones. These views are listed in Viewing Database Resource Manager

Information on page 27-31.

Validating Changes
At any time when you are making changes in the pending area you can call the

validate procedure as shown here.

EXEC DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA;

This procedure checks whether changes that have been made are valid. The

following rules must be adhered to, and are checked by the validate procedure:

1. No plan schema can contain any loops.

2. All plans and resource consumer groups referred to by plan directives must

exist.

3. All plans must have plan directives that point to either plans or resource

consumer groups.

4. All percentages in any given level must not add up to greater than 100.

Creating Complex Resource Plans

Using the Database Resource Manager 27-13

5. A plan that is currently being used as a top plan by an active instance cannot be

deleted.

6. The following plan directive parameters can appear only in plan directives that

refer to resource consumer groups (not other resource plans):

■ PARALLEL_DEGREE_LIMIT_P1

■ ACTIVE_SESS_POOL_P1

■ QUEUEING_P1

■ SWITCH_GROUP

■ SWITCH_TIME

■ SWITCH_ESTIMATE

■ MAX_EST_EXEC_TIME

■ UNDO_POOL

7. There can be no more than 32 resource consumer groups in any active plan

schema. Also, at most, a plan can have 32 children. All leaves of a top plan must

be resource consumer groups; at the lowest level in a plan schema the plan

directives must refer to consumer groups.

8. Plans and resource consumer groups cannot have the same name.

9. There must be a plan directive for OTHER_GROUPS somewhere in any active

plan schema. This ensures that a session which is not part of any of the

consumer groups included in the currently active plan is allocated resources (as

specified by the OTHER_GROUPS directive).

You will receive an error message if any of the above rules are violated. You can

then make changes to fix any problems and call the validate procedure again.

It is possible to create "orphan" consumer groups that have no plan directives

referring to them. This allows the creation of consumer groups that will not

currently be used, but may be part of some plan to be implemented in the future.

Submitting Changes
After you have validated your changes, call the submit procedure to make your

changes active.

EXEC DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA;

Creating Complex Resource Plans

27-14 Oracle9i Database Administrator’s Guide

The submit procedure also performs validation, so you do not necessarily need to

make separate calls to the validate procedure. However, if you are making major

changes to plan schemas, debugging problems is often easier if you incrementally

validate your changes. No changes are submitted (made active) until validation is

successful on all of the changes in the pending area.

The SUBMIT_PENDING_AREA procedure clears (deactivates) the pending area after

successfully validating and committing the changes.

Clearing the Pending Area
There is also a procedure for clearing the pending area at any time. This statement

causes all of your changes to be cleared from the pending area:

EXEC DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA;

You must call the CREATE_PENDING_AREAprocedure before you can again attempt

to make changes.

Creating Resource Plans
When you create a resource plan, you can specify the following parameters:

Note: A call to SUBMIT_PENDING_AREA may fail even if

VALIDATE_PENDING_AREA succeeds. This can happen if, for

example, a plan being deleted is loaded by an instance after a call to

VALIDATE_PENDING_AREA, but before a call to SUBMIT_
PENDING_AREA.

Parameter Description

PLAN Name of the plan.

COMMENT Any comment. This field is optional.

The following parameters are not required to be specified. The defaults are appropriate
and the only values allowed at this time.

CPU_MTH CPU resource allocation method. EMPHASIS is
the default and the only CPU method allowed
at the resource plan level.

Creating Complex Resource Plans

Using the Database Resource Manager 27-15

Oracle provides one resource plan, SYSTEM_PLAN, that contains a simple structure

that may be adequate for some environments. It is illustrated later in "An Oracle

Supplied Plan" on page 27-28.

Creating a Plan
You create a plan using the CREATE_PLAN procedure. The following creates a plan

called great_bread . You choose to use the default resource allocation methods.

EXEC DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'great_bread', -
 COMMENT => 'great plan');

Updating a Plan
Use the UPDATE_PLAN procedure to update plan information. If you do not specify

the arguments for the UPDATE_PLANprocedure, they remain unchanged in the data

dictionary. The following statement updates the COMMENT parameter.

EXEC DBMS_RESOURCE_MANAGER.UPDATE_PLAN(PLAN => 'great_bread', -
 NEW_COMMENT => 'great plan for great bread');

Deleting a Plan
The DELETE_PLAN procedure deletes the specified plan as well as all the plan

directives associated with it. The following statement deletes the great_bread
plan and its directives.

ACTIVE_SESS_POOL_MTH Active session pool resource allocation method.
Controls maximum concurrent users. ACTIVE_
SESS_POOL_ABSOLUTE is the default and only
method available.

PARALLEL_DEGREE_LIMIT_MTH Resource allocation method for specifying a
limit on the degree of parallelism of any
operation. PARALLEL_DEGREE_LIMIT_
ABSOLUTE is the default and only method
available.

QUEUEING_MTH Queuing resource allocation method. Controls
order in which queued sessions will execute.
FIFO_TIMEOUT is the default and only method
available.

See Also: Oracle9i Database Concepts contains detailed

descriptions of the resource allocation methods

Parameter Description

Creating Complex Resource Plans

27-16 Oracle9i Database Administrator’s Guide

EXEC DBMS_RESOURCE_MANAGER.DELETE_PLAN(PLAN => 'great_bread');

The resource consumer groups themselves are not deleted, but they are no longer

associated with the great_bread plan.

The DELETE_PLAN_CASCADE procedure deletes the specified plan as well as all its

descendants (plan directives, subplans, resource consumer groups). If DELETE_
PLAN_CASCADE encounters an error, it will roll back, leaving the plan schema

unchanged.

Creating Resource Consumer Groups
When you create a resource consumer group, you can specify the following

parameters:

There are two special consumer groups that are always present in the data

dictionary, and they cannot be modified or deleted. These are:

■ DEFAULT_CONSUMER_GROUP

This is the initial consumer group for all users/sessions that have not been

explicitly assigned an initial consumer group. DEFAULT_CONSUMER_GROUPhas

switch privileges granted to PUBLIC; therefore, all users are automatically

granted switch privilege for this consumer group (see "Managing the Switch

Privilege" on page 27-22).

■ OTHER_GROUPS

This consumer group cannot can be explicitly assigned to a user. OTHER_
GROUPS must have a resource directive specified in the schema of any active

plan. This group applies collectively to all sessions that belong to a consumer

group that is not part of the currently active plan schema, including DEFAULT_
CONSUMER_GROUP.

Parameter Description

CONSUMER_GROUP Name of the consumer group.

COMMENT Any comment.

CPU_MTH The CPU resource allocation method for
consumer groups. The default is
ROUND-ROBIN. This is the only method
currently available for resource consumer
groups.

Creating Complex Resource Plans

Using the Database Resource Manager 27-17

Additionally, two other groups, SYS_GROUP and LOW_GROUP, are provided as part

of the Oracle supplied SYSTEM_PLAN that is described in "An Oracle Supplied

Plan" on page 27-28.

Creating a Consumer Group
You create a consumer group using the CREATE_CONSUMER_GROUPprocedure. The

following creates a consumer group called sales . Remember, the pending area

must be active to execute this statement successfully.

EXEC DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (CONSUMER_GROUP => 'sales', -
 COMMENT => 'retail and wholesale sales');

Updating a Consumer Group
Use the UPDATE_CONSUMER_GROUP procedure to update consumer group

information. If you do not specify the arguments for the UPDATE_CONSUMER_
GROUP procedure, they remain unchanged in the data dictionary.

Deleting a Consumer Group
The DELETE_CONSUMER_GROUP procedure deletes the specified consumer group.

Upon deletion of a consumer group, all users having the deleted group as their

initial consumer group will have the DEFAULT_CONSUMER_GROUP set as their

initial consumer group. All currently running sessions belonging to a deleted

consumer group will be switched to DEFAULT_CONSUMER_GROUP.

Specifying Resource Plan Directives
Resource plan directives assign consumer groups to resource plans and provide the

parameters for each resource allocation method. When you create a resource plan

directive, you can specify the following parameters

Parameter Description

PLAN Name of the resource plan.

GROUP_OR_SUBPLAN Name of the consumer group or subplan.

COMMENT Any comment.

CPU_P1 Specifies CPU percentage at the first level.
Default is NULL for all CPU parameters.

CPU_P2 Specifies CPU percentage at the second level.

Creating Complex Resource Plans

27-18 Oracle9i Database Administrator’s Guide

Creating a Resource Plan Directive
You use the CREATE_PLAN_DIRECTIVE to create a resource plan directive. The

following statement creates a resource plan directive for plan great_bread .

EXEC DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (PLAN => 'great_bread', -

CPU_P3 Specifies CPU percentage at the third level.

CPU_P4 Specifies CPU percentage at the fourth level.

CPU_P5 Specifies CPU percentage at the fifth level.

CPU_P6 Specifies CPU percentage at the sixth level.

CPU_P7 Specifies CPU percentage at the seventh level.

CPU_P8 Specifies CPU percentage at the eighth level.

ACTIVE_SESS_POOL_P1 Specifies maximum number of concurrently
active sessions for a consumer group. Default is
UNLIMITED.

QUEUEING_P1 Specified time (in seconds) after which a job in
the execution queue (waiting for execution) will
timeout. Default is UNLIMITED.

PARALLEL_DEGREE_LIMIT_P1 Specifies a limit on the degree of parallelism for
any operation. Default is UNLIMITED.

SWITCH_GROUP Specifies consumer group to which this session
is switched if other switch criteria is met.
Default is NULL.

SWITCH_TIME Specifies time (in seconds) that a session can
execute before it is switched to another
consumer group. Default in UNLIMITED.

SWITCH_ESTIMATE If TRUE, tells Oracle to use its execution time
estimate to automatically switch the consumer
group of an operation prior to beginning its
execution. Default is FALSE.

MAX_EST_EXEC_TIME Specifies the maximum execution time (in
seconds) allowed for a session. Default is
UNLIMITED.

UNDO_POOL Sets a maximum in kilobytes (K) on the total
amount of undo generated by a consumer
group. Default is UNLIMITED.

Parameter Description

Creating Complex Resource Plans

Using the Database Resource Manager 27-19

 GROUP_OR_SUBPLAN => 'sales', COMMENT => 'sales group', -
 CPU_P1 => 60, PARALLEL_DEGREE_LIMIT_P1 => 4);

To complete the plan, similar to that shown in Figure 27–1, execute the following

statements:

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (PLAN => 'great_bread',
 GROUP_OR_SUBPLAN => 'market', COMMENT => 'marketing group',
 CPU_P1 => 20);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (PLAN => 'great_bread',
 GROUP_OR_SUBPLAN => 'develop', COMMENT => 'development group',
 CPU_P1 => 20);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (PLAN => 'great_bread',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS', COMMENT => 'this one is required',
 CPU_P1 => 0, CPU_P2 => 100);
END;

In this plan, consumer group sales has a maximum degree of parallelism of 4 for

any operation, while none of the other consumer groups are limited in their degree

of parallelism. Also, whenever there are leftover level 1 CPU resources, they are

allocated (100%) to OTHER_GROUPS.

Updating Resource Plan Directives
Use the UPDATE_PLAN_DIRECTIVE procedure to update plan directives. This

example changes CPU allocation for resource consumer group develop .

EXEC DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE (PLAN => 'great_bread', -
 GROUP_OR_SUBPLAN => 'develop', NEW_CPU_P1 => 15);

If you do not specify the arguments for the UPDATE_PLAN_DIRECTIVE procedure,

they remain unchanged in the data dictionary.

Deleting Resource Plan Directives
To delete a resource plan directive, use the DELETE_PLAN_DIRECTIVE procedure

How Resource Plan Directives Interact
If there are multiple resource plan directives that refer to the same consumer group,

then the following rules apply for specific cases:

1. The parallel degree limit for the consumer group will be the minimum of all the

incoming values.

Managing Resource Consumer Groups

27-20 Oracle9i Database Administrator’s Guide

2. The active session pool for the consumer group will be the sum of all the

incoming values and the queue timeout will be the minimum of all incoming

timeout values.

3. If there is more than one switch group and more than one switch time, the

Database Resource Manager will choose the most restrictive of all incoming

values. Specifically:

■ SWITCH_TIME = min (all incoming over_switch_time values)

■ SWITCH_ESTIMATE = TRUE overrides SWITCH_ESTIMATE = FALSE

4. If a session is switched to another consumer group because it exceeds its switch

time, that session will execute even if the active session pool for the new

consumer group is full.

5. The maximum estimated execution time will be the most restrictive of all

incoming values. Specifically:

■ max_estimated_exec_time = min (all incoming max_estimated_exec_time

values)

Managing Resource Consumer Groups
Before you enable the Database Resource Manager, you must assign resource

consumer groups to users. In addition to providing procedures to create, update, or

delete the elements used by the Database Resource Manager, the DBMS_RESOURCE_
MANAGER package contains the procedure to assign resource consumer groups to

users. It also provides procedures that allow you to temporarily switch a user

session to another consumer group.

The DBMS_RESOURCE_MANAGER_PRIVSpackage, described earlier for granting the

Database Resource Manager system privilege, can also be used to grant the switch

privilege to another user, who can then alter their own consumer group.

You do not use a pending area for any of the procedures discussed below.

Note: If both plan directives specify the same switch time, but

different switch group’s, then the choice as to which group to

switch to will be statically, yet arbitrarily, decided by the Database

Resource Manager.

Managing Resource Consumer Groups

Using the Database Resource Manager 27-21

Assigning an Initial Resource Consumer Group
The initial consumer group of a user is the consumer group to which any session

created by that user initially belongs. The user’s initial consumer group is

automatically set to DEFAULT_CONSUMER_GROUP when the user is created.

A user (or PUBLIC) must be granted permission to switch to a specific consumer

group before that consumer group can become the user’s initial consumer group.

This permission is called the switch privilege, and is explained in "Managing the

Switch Privilege" on page 27-22. The switch privilege to an initial consumer group

cannot come from a role granted to that user.

The following statements illustrate setting a user’s initial consumer group.

EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP ('scott', 'sales',-
 TRUE);
EXEC DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP('scott', 'sales');

Changing Resource Consumer Groups
There are two procedures, which are part of the DBMS_RESOURCE_MANAGER
package, that allow administrators to change the resource consumer group of

running sessions. Both of these procedures can also change the consumer group of

any parallel execution server sessions associated with the coordinator’s session. The

changes made by these procedures pertain to current sessions only; they are not

persistent. They also do not change the initial consumer groups for users.

Instead of killing a session of a user who is using excessive CPU, an administrator

can instead change that user’s consumer group to one that is allowed less CPU. Or,

this switching can be enforced automatically, using automatic consumer group

switching resource plan directives.

Switching a Session
The SWITCH_CONSUMMER_GROUP_FOR_SESS causes the specified session to

immediately be moved into the specified resource consumer group. In effect, this

statement can raise or lower priority. The following statement changes the resource

consumer group of a specific session to a new consumer group. The session

identifier (SID) is 17, the session serial number (SERIAL#) is 12345, and the session

is to be changed to the high_priority consumer group.

EXEC DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS ('17', '12345', -
 'high_priorty');

Managing Resource Consumer Groups

27-22 Oracle9i Database Administrator’s Guide

The SID , session serial number, and current resource consumer group for a session

are viewable using the V$SESSION data dictionary view.

Switching Sessions for a User
The SWITCH_CONSUMER_GROUP_FOR_USER procedure changes the resource

consumer group for all sessions with a given user name.

EXEC DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER ('scott', -
 'low_group');

Managing the Switch Privilege
Using the DBMS_RESOURCE_MANAGER_PRIVS package, you can grant or revoke

the switch privilege to a user, role, or PUBLIC. The switch privilege gives users the

privilege to switch their current resource consumer group to a specified resource

consumer group. The package also enables you to revoke the switch privilege.

The actual switching is done by executing a procedure in the DBMS_SESSION
package. A user who has been granted the switch privilege (or a procedure owned

by that user) can use the SWITCH_CURRENT_CONSUMER_GROUP procedure to

switch to another resource consumer group. The new group must be one to which

the user has been specifically authorized to switch.

Granting the Switch Privilege
The following example grants the privilege to switch to a consumer group. User

scott is granted the privilege to switch to consumer group bug_batch_group .

EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP ('scott', -
 'bug_batch_group', TRUE);

User scott is also granted permission to grant switch privileges for bug_batch_
group to others.

If you grant a user permission to switch to a particular consumer group, then that

user can switch their current consumer group to the new consumer group.

If you grant a role permission to switch to a particular resource consumer group,

then any users who have been granted that role and have enabled that role can

immediately switch their current consumer group to the new consumer group.

If you grant PUBLIC the permission to switch to a particular consumer group, then

any user can switch to that group.

Managing Resource Consumer Groups

Using the Database Resource Manager 27-23

If the GRANT_OPTIONargument is TRUE, then users granted switch privilege for the

consumer group can also grant switch privileges for that consumer group to others.

Revoking Switch Privileges
The following example revokes user scott ’s privilege to switch to consumer group

bug_batch_group .

EXEC DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP ('scott', -
 'bug_batch_group');

If you revoke a user’s switch privileges to a particular consumer group, then any

subsequent attempts by that user to switch to that consumer group will fail. If you

revoke the initial consumer group from a user, then that user will automatically be

part of the DEFAULT_CONSUMER_GROUP when logging in.

If you revoke a role’s switch privileges to a consumer group, then any users who

only had switch privilege for the consumer group through that role will not be able

to subsequently switch to that consumer group.

If you revoke switch privileges to a consumer group from PUBLIC, then any users

other than those who are explicitly assigned switch privileges either directly or

through PUBLIC, will not be able to subsequently switch to that consumer group.

Using the DBMS_SESSION Package to Switch Consumer Group
If granted the switch privilege, users can switch their current consumer group using

the SWITCH_CURRENT_CONSUMER_GROUP procedure in the DBMS_SESSION
package.

This procedure enables users to switch to a consumer group for which they have

the switch privilege. If the caller is another procedure, then this procedure enables

users to switch to a consumer group for which the owner of that procedure has

switch privileges.

The parameters for this procedure are:

Parameter Description

NEW_CONSUMER_GROUP The consumer group to which the user is
switching.

OLD_CONSUMER_GROUP An output parameter. Stores the name of the
consumer group from which the user switched.
Can be used to switch back later.

Enabling the Database Resource Manager

27-24 Oracle9i Database Administrator’s Guide

The following example illustrates switching to a new consumer group. By printing

the value of the output parameter old_group , we illustrate how the old consumer

group name has been saved.

SET serveroutput on
DECLARE
 old_group varchar2(30);
BEGIN
DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP('sales', old_group, FALSE);
DBMS_OUTPUT.PUT_LINE('OLD GROUP = ' || old_group);
END;

The following line is output:

OLD GROUP = DEFAULT_CONSUMER_GROUP

The DBMS_SESSION package can be used from within a PL/SQL application, thus

allowing the application to change consumer groups, or effectively priority,

dynamically.

Enabling the Database Resource Manager
You enable the Database Resource Manager by setting the RESOURCE_MANAGER_
PLAN initialization parameter. This parameter specifies the top plan, identifying the

INITIAL_GROUP_ON_ERROR Controls behavior if a switching error occurs.

If TRUE, in the event of an error, the user is
switched to the initial consumer group.

If FALSE, raise an error.

Note: The Database Resource Manager also works in

environments where a generic database user name is used to log on

to an application. The DBMS_SESSION package can be called to

switch a session’s consumer group assignment at session startup, or

as particular modules are called.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

additional examples and more information about the DBMS_
SESSION package

Parameter Description

Putting It All Together: Database Resource Manager Examples

Using the Database Resource Manager 27-25

plan schema to be used for this instance. If no plan is specified with this parameter,

the Database Resource Manager is not activated. The following example activates

the Database Resource Manager and assigns the top plan as mydb_plan .

RESOURCE_MANAGER_PLAN = mydb_plan

You can also activate or deactivate the Database Resource Manager, or change the

current top plan, using the ALTER SYSTEM statement. In this example, the top

plan is specified as mydb_plan .

ALTER SYSTEM SET RESOURCE _MANAGER_PLAN = mydb_plan;

An error message is returned if the specified plan does not exist in the data

dictionary.

To deactivate the Database Resource Manager, issue the following statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

Putting It All Together: Database Resource Manager Examples
This section provides some examples of resource plan schemas. The following

examples are presented:

■ Multilevel Schema Example

■ Example of Using Several Resource Allocation Methods

■ An Oracle Supplied Plan

Multilevel Schema Example
The following statements create a multilevel schema as illustrated in Figure 27–3.

They use default plan and resource consumer group methods.

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' bugdb_plan ' ,
 COMMENT => ' Resource plan/method for bug users sessions ');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' maildb_plan ' ,
 COMMENT => ' Resource plan/method for mail users sessions ');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' mydb_plan ' ,
 COMMENT => ' Resource plan/method for bug and mail users sessions ');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Online_group ' ,
 COMMENT => ' Resource consumer group/method for online bug users sessions ');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Batch_group ' ,
 COMMENT => ' Resource consumer group/method for batch job bug users sessions ');

Putting It All Together: Database Resource Manager Examples

27-26 Oracle9i Database Administrator’s Guide

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Maintenance_group ' ,
 COMMENT => ' Resource consumer group/method for users sessions for bug db maint');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_users_group ' ,
 COMMENT => ' Resource consumer group/method for mail users sessions ');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_Postman_group ' ,
 COMMENT => ' Resource consumer group/method for mail postman ');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_Maintenance_group ' ,
 COMMENT => ' Resource consumer group/method for users sessions for mail db maint’);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' ,
 GROUP_OR_SUBPLAN => ' Bug_Online_group ' ,
 COMMENT => ' online bug users sessions at level 1 ' , CPU_P1 => 80, CPU_P2=> 0,
 PARALLEL_DEGREE_LIMIT_P1 => 8);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' ,
 GROUP_OR_SUBPLAN => ' Bug_Batch_group ' ,
 COMMENT => ' batch bug users sessions at level 1 ' , CPU_P1 => 20, CPU_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' ,
 GROUP_OR_SUBPLAN => ' Bug_Maintenance_group ' ,
 COMMENT => ' bug maintenance users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 100,
 PARALLEL_DEGREE_LIMIT_P1 => 3);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' ,
 GROUP_OR_SUBPLAN => ' OTHER_GROUPS' ,
 COMMENT => ' all other users sessions at level 3 ' , CPU_P1 => 0, CPU_P2 => 0,
 CPU_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' ,
 GROUP_OR_SUBPLAN => ' Mail_Postman_group ' ,
 COMMENT => ' mail postman at level 1 ' , CPU_P1 => 40, CPU_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' ,
 GROUP_OR_SUBPLAN => ' Mail_users_group ' ,
 COMMENT => ' mail users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 80,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' ,
 GROUP_OR_SUBPLAN => ' Mail_Maintenance_group ' ,
 COMMENT => ' mail maintenance users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 20,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' ,
 GROUP_OR_SUBPLAN => ' OTHER_GROUPS' ,
 COMMENT => ' all other users sessions at level 3 ' , CPU_P1 => 0, CPU_P2 => 0,
 CPU_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' mydb_plan ' ,
 GROUP_OR_SUBPLAN => ' maildb_plan ' ,
 COMMENT=> ' all mail users sessions at level 1 ' , CPU_P1 => 30);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' mydb_plan ' ,
 GROUP_OR_SUBPLAN => ' bugdb_plan ' ,
 COMMENT => ' all bug users sessions at level 1 ' , CPU_P1 => 70);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;

Putting It All Together: Database Resource Manager Examples

Using the Database Resource Manager 27-27

The preceding call to VALIDATE_PENDING_AREAis optional because the validation

is implicitly performed in SUBMIT_PENDING_AREA.

Figure 27–3 Multilevel Schema

Example of Using Several Resource Allocation Methods
The example presented here could represent a plan for a database supporting a

packaged ERP (Enterprise Resource Planning) or CRM (Customer Relationship

Management). The work in such an environment can be highly varied. There may

be a mix of short transactions and quick queries, in combination with longer

running batch jobs that include large parallel queries. The goal is to give good

response time to OLTP (Online Transaction Processing), while allowing batch jobs

to run in parallel.

The plan is summarized in the following table.

Group

CPU
Resource
Allocation %

ActiveSession
Pool
Parameters

Automatic Switching
Parameters

Max
Estimated
Execution
Time Undo Pool

oltp Level 1: 80% Switch to group: batch

Switch time: 3

Use estimate: TRUE

Size: 200K

MYDB
PLAN

MAILDB
PLAN

BUGDB
PLAN

100% @
Level 2

20% @
Level 1

80% @
Level 1

100% @
Level 3

100% @
Level 3

40% @
Level 1

20% @
Level 2

80% @
Level 2

70% @
Level 1

MAIL MAINT
GROUP

ONLINE
GROUP

BATCH
GROUP

BUG MAINT
GROUP

USERS
GROUP

POSTMAN
GROUP

30% @
Level 1

OTHER
GROUPS

Putting It All Together: Database Resource Manager Examples

27-28 Oracle9i Database Administrator’s Guide

The following statements create the above plan, which is named erp_plan :

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'erp_plan',
 COMMENT => 'Resource plan/method for ERP Database');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'oltp',
 COMMENT => 'Resource consumer group/method for OLTP jobs');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'batch',
 COMMENT => 'Resource consumer group/method for BATCH jobs');
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'oltp', COMMENT => 'OLTP sessions', CPU_P1 => 80,
 SWITCH_GROUP => 'batch', SWITCH_TIME => 3,SWITCH_ESTIMATE => TRUE,
 UNDO_POOL => 200);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'batch', COMMENT => 'BATCH sessions', CPU_P2 => 100,
 ACTIVE_SESS_POOL_P1 => 5, QUEUEING_P1 => 600,
 MAX_EST_EXEC_TIME => 3600);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS', COMMENT => 'mandatory', CPU_P3 => 100);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;

An Oracle Supplied Plan
Oracle provides one default resource manager plan, SYSTEM_PLAN, which gives

priority to system sessions. SYSTEM_PLAN is defined as follows:

batch Level 2: 100% Pool size: 5

Timeout: 600

Time: 3600

OTHER_GROUPS Level 3: 100%

CPU Resource Allocation

Resource Consumer Group Level 1 Level 2 Level 3

SYS_GROUP 100% 0% 0%

OTHER_GROUPS 0% 100% 0%

Group

CPU
Resource
Allocation %

ActiveSession
Pool
Parameters

Automatic Switching
Parameters

Max
Estimated
Execution
Time Undo Pool

Monitoring and Tuning the Database Resource Manager

Using the Database Resource Manager 27-29

The Oracle provided groups in this plan are:

■ SYS_GROUP is the initial consumer group for the users SYS and SYSTEM.

■ OTHER_GROUPS applies collectively to all sessions that belong to a consumer

group that is not part of the currently active plan schema.

■ LOW_GROUP provides a group having lower priority than SYS_GROUP and

OTHER_GROUPS in this plan. It is up to you to decide which user sessions will

be part of LOW_GROUP. Switch privilege is granted to PUBLIC for this group.

These groups can be used, or not used, and can be modified or deleted.

You can use this simple Oracle provided plan if it is appropriate for your

environment.

Monitoring and Tuning the Database Resource Manager
To effectively monitor and tune the Database Resource Manager, you must design a

representative environment. The Database Resource Manager works best in large

production environments in which system utilization is high. If a test places

insufficient load on the system, measured CPU allocations can be very different

from the allocations specified in the active resource plan.

Creating the Environment
To create a representative environment, there must be sufficient load (demand for

CPU resources) to make CPU resources scarce. If the following rules are followed,

the test environment should generate actual (measured) resource allocations that

match those specified in the active resource plan.

1. Create the minimum number of concurrently running processes required to

generate sufficient load. This is the larger of:

■ Four processes for each consumer group

■ 1.5 * (number of processors) for each consumer group. If the result is not an

integer, round up.

LOW_GROUP 0% 0% 100%

CPU Resource Allocation

Resource Consumer Group Level 1 Level 2 Level 3

Monitoring and Tuning the Database Resource Manager

27-30 Oracle9i Database Administrator’s Guide

2. Each and every process must be capable of consuming all of the CPU

resources allocated to the consumer group in which it runs. Write resource

intensive programs that continue to spin no matter what happens. This can be

as simple as:

BEGIN
DECLARE
 m NUMBER;
 BEGIN
 FOR i IN 1..100000 LOOP
 FOR j IN 1..100000 LOOP
 m := sqrt(4567);
 END LOOP;
 END LOOP;
 END;
END;
/

Why Is This Necessary to Produce Expected Results?
When every group can secure as much CPU resources as it demands, the Database

Resource Manager first seeks to maximize system throughput, not to enforce

allocation percentages. For example, consider the following conditions:

■ There is only one process available to run for each consumer group.

■ Each process runs continuously.

■ There are four CPUs.

In this case, the measured CPU allocation to each consumer group will be 25%, no

matter what the allocations specified in the active resource plan.

Another factor determines the calculation in (1) above. Processor affinity scheduling

at the operating system level can distort CPU allocation on underutilized systems.

This is explained in the following paragraphs.

Until the number of concurrently running processes reaches a certain level, typical

operating system scheduling algorithms will prevent full utilization. The Database

Resource Manager controls CPU usage by restricting the number of running

processes. By deciding which processes are allowed to run and for what duration,

the Database Resource Manager controls CPU resource allocation. When a CPU has

resources available, and other processors are fully utilized, the operating system

migrates processes to the underutilized processor, but not immediately.

Viewing Database Resource Manager Information

Using the Database Resource Manager 27-31

With processor affinity, the operating system waits (for a time) to migrate processes,

"hoping" that another process will be dispatched to run instead of forcing process

migration from one CPU to another. On a fully loaded system with enough

processes waiting, this strategy will work. In large production environments,

processor affinity increases performance significantly, because invalidating the

current CPU cache and then loading the new one is quite expensive. Since processes

have processor affinity on most platforms, more processes than CPUs for each

consumer group must be run. Otherwise, full system utilization is not possible.

Monitoring Results
Use the V$RSRC_CONSUMER_GROUP view to monitor CPU usage. It provides the

cumulative amount of CPU time consumed by all sessions in each consumer group.

It also provides a number of other measures helpful for tuning.

SQL> SELECT NAME, CONSUMED_CPU_TIME FROM V$RSRC_CONSUMER_GROUP;

NAME CONSUMED_CPU_TIME
-------------------------------- -----------------
OTHER_GROUPS 14301
TEST_GROUP 8802
TEST_GROUP2 0

3 rows selected.

Viewing Database Resource Manager Information
The following table lists views that are associated with Database Resource Manager:

View Description

DBA_RSRC_CONSUMER_GROUP_PRIVS

USER_RSRC_CONSUMER_GROUP_PRIVS

DBA view lists all resource consumer groups and the users
and roles to which they have been granted. USER view lists
all resource consumer groups granted to the user.

DBA_RSRC_CONSUMER_GROUPS Lists all resource consumer groups that exist in the database.

DBA_RSRC_MANAGER_SYSTEM_PRIVS

USER_RSRC_MANAGER_SYSTEM_PRIVS

DBA view lists all users and roles that have been granted
Database Resource Manager system privileges. USER view
lists all the users that are granted system privileges for the
DBMS_RESOURCE_MANAGER package.

DBA_RSRC_PLAN_DIRECTIVES Lists all resource plan directives that exist in the database.

DBA_RSRC_PLANS List all resource plans that exist in the database.

Viewing Database Resource Manager Information

27-32 Oracle9i Database Administrator’s Guide

You can use these views for viewing privileges, viewing plan schemas, or you can

monitor them to gather information for tuning the Database Resource Manager.

Some examples of their use follow.

Viewing Consumer Groups Granted to Users or Roles
The DBA_RSRC_CONSUMER_GROUP_PRIVS view displays the consumer groups

granted to users or roles. Specifically, it displays the groups to which a user or role

is allowed to belong or be switched. For example, in the view shown below, user

scott can belong to the consumer groups market or sales , he has the ability to

assign (grant) other users to the sales group but not the market group. Neither

group is his initial consumer group.

DBA_USERS

USERS_USERS

DBA view contains information about all users of the
database. Specifically, for the Database Resource Manager, it
contains the initial resource consumer group for the user.
USER view contains information about the current user, and
specifically, for the Database Resource Manager, it contains
the current user’s initial resource consumer group.

V$ACTIVE_SESS_POOL_MTH Displays all available active session pool resource allocation
methods.

V$PARALLEL_DEGREE_LIMIT_MTH Displays all available parallel degree limit resource
allocation methods.

V$QUEUEING Displays all available queuing resource allocation methods.

V$RSRC_CONSUMER_GROUP Displays information about active resource consumer
groups. This view can be used for tuning.

V$RSRC_CONSUMER_GROUP_CPU_MTH Displays all available CPU resource allocation methods for
resource consumer groups.

V$RSRC_PLAN Displays the names of all currently active resource plans.

V$RSRC_PLAN_CPU_MTH Displays all available CPU resource allocation methods for
resource plans.

V$SESSION Lists session information for each current session.
Specifically, lists the name of each current session’s resource
consumer group.

See Also: Oracle9i Database Reference for detailed information

about the contents of each of these views

View Description

Viewing Database Resource Manager Information

Using the Database Resource Manager 27-33

SQL> SELECT * FROM DBA_RSRC_CONSUMER_GROUP_PRIVS;

GRANTEE GRANTED_GROUP GRA INI
------------------------------ ------------------------------ --- ---
PUBLIC DEFAULT_CONSUMER_GROUP YES YES
PUBLIC LOW_GROUP NO NO
SCOTT MARKET NO NO
SCOTT SALES YES NO
SYSTEM SYS_GROUP NO YES

Scott was granted the ability to switch to these groups using the DBMS_RESOURCE_
MANAGER_PRIVS package.

Viewing Plan Schema Information
This example shows using the DBA_RSRC_PLANS view to display all of the resource

plans defined in the database. All of the plans displayed are active, meaning they

are not staged in the pending area

SQL> SELECT PLAN,COMMENTS,STATUS FROM DBA_RSRC_PLANS;

PLAN COMMENTS STATUS
----------- --- ------
SYSTEM_PLAN Plan to give system sessions priority ACTIVE
BUGDB_PLAN Resource plan/method for bug users sessions ACTIVE
MAILDB_PLAN Resource plan/method for mail users sessions ACTIVE
MYDB_PLAN Resource plan/method for bug and mail users sessions ACTIVE
GREAT_BREAD Great plan for great bread ACTIVE
ERP_PLAN Resource plan/method for ERP Database ACTIVE

6 rows selected.

Viewing Current Consumer Groups for Sessions
You can use the V$SESSIONview to display the consumer groups that are currently

assigned to sessions.

SQL> SELECT SID,SERIAL#,USERNAME,RESOURCE_CONSUMER_GROUP FROM V$SESSION;

SID SERIAL# USERNAME RESOURCE_CONSUMER_GROUP
----- ------- ------------------------ --------------------------------
.
.
.
 11 136 SYS SYS_GROUP

Viewing Database Resource Manager Information

27-34 Oracle9i Database Administrator’s Guide

 13 16570 SCOTT SALES

10 rows selected.

Viewing the Currently Active Plans
This example sets mydb_plan , as created by the statements shown earlier in

"Multilevel Schema Example" on page 27-25, as the top level plan. The V$RSRC_
PLAN view is queried to display the currently active plans.

SQL> ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = mydb_plan;

System altered.

SQL> SELECT * FROM V$RSRC_PLAN;

NAME

MYDB_PLAN
MAILDB_PLAN
BUGDB_PLAN

Part VI
 Distributed Database Management

Part VI discusses the management of a distributed database environment. It

contains the following sections:

■ Chapter 28, "Distributed Database Concepts"

■ Chapter 29, "Managing a Distributed Database"

■ Chapter 30, "Developing Applications for a Distributed Database System"

■ Chapter 31, "Distributed Transactions Concepts"

■ Chapter 32, "Managing Distributed Transactions"

Distributed Database Concepts 28-1

28
Distributed Database Concepts

This chapter describes the basic concepts and terminology of Oracle’s distributed

database architecture. It contains the following topics:

■ Distributed Database Architecture

■ Database Links

■ Distributed Database Administration

■ Transaction Processing in a Distributed System

■ Distributed Database Application Development

■ Character Set Support for Distributed Environments

Distributed Database Architecture

28-2 Oracle9i Database Administrator’s Guide

Distributed Database Architecture
A distributed database system allows applications to access data from local and

remote databases. In a homogenous distributed database system, each database is

an Oracle database. In a heterogeneous distributed database system, at least one of

the databases is a non-Oracle database. Distributed databases use a client/server
architecture to process information requests.

This section contains the following topics:

■ Homogenous Distributed Database Systems

■ Heterogeneous Distributed Database Systems

■ Client/Server Database Architecture

Homogenous Distributed Database Systems
A homogenous distributed database system is a network of two or more Oracle

databases that reside on one or more machines. Figure 28–1 illustrates a distributed

system that connects three databases: hq , mfg , and sales . An application can

simultaneously access or modify the data in several databases in a single

distributed environment. For example, a single query from a Manufacturing client

on local database mfg can retrieve joined data from the products table on the local

database and the dept table on the remote hq database.

For a client application, the location and platform of the databases are transparent.

You can also create synonyms for remote objects in the distributed system so that

users can access them with the same syntax as local objects. For example, if you are

connected to database mfg but want to access data on database hq , creating a

synonym on mfg for the remote dept table enables you to issue this query:

SELECT * FROM dept;

In this way, a distributed system gives the appearance of native data access. Users

on mfg do not have to know that the data they access resides on remote databases.

Distributed Database Architecture

Distributed Database Concepts 28-3

Figure 28–1 Homogeneous Distributed Database

An Oracle distributed database system can incorporate Oracle databases of different

versions. All supported releases of Oracle can participate in a distributed database

system. Nevertheless, the applications that work with the distributed database must

understand the functionality that is available at each node in the system. A

distributed database application cannot expect an Oracle7 database to understand

the SQL extensions that are only available with Oracle9i.

Distributed Databases Versus Distributed Processing
The terms distributed database and distributed processing are closely related, yet

have distinct meanings. There definitions are as follows:

Oracle Oracle

Oracle

Distributed Database Headquarters

MFG.ACME.COM HQ.ACME.COM

SALES.ACME.COM

Manufacturing

.

.

.

.

.

.
Sales

. . .

Distributed Database Architecture

28-4 Oracle9i Database Administrator’s Guide

■ Distributed database

A set of databases in a distributed system that can appear to applications as a

single data source.

■ Distributed processing

The operations that occurs when an application distributes its tasks among

different computers in a network. For example, a database application typically

distributes front-end presentation tasks to client computers and allows a

back-end database server to manage shared access to a database. Consequently,

a distributed database application processing system is more commonly

referred to as a client/server database application system.

Oracle distributed database systems employ a distributed processing architecture.

For example, an Oracle database server acts as a client when it requests data that

another Oracle database server manages.

Distributed Databases Versus Replicated Databases
The terms distributed database system and database replication are related, yet

distinct. In a pure (that is, not replicated) distributed database, the system manages

a single copy of all data and supporting database objects. Typically, distributed

database applications use distributed transactions to access both local and remote

data and modify the global database in real-time.

The term replication refers to the operation of copying and maintaining database

objects in multiple databases belonging to a distributed system. While replication

relies on distributed database technology, database replication offers applications

benefits that are not possible within a pure distributed database environment.

Most commonly, replication is used to improve local database performance and

protect the availability of applications because alternate data access options exist.

For example, an application may normally access a local database rather than a

remote server to minimize network traffic and achieve maximum performance.

Furthermore, the application can continue to function if the local server experiences

a failure, but other servers with replicated data remain accessible.

Note: This book discusses only pure distributed databases.

See Also: Oracle9i Replication for more information about Oracle’s

replication features

Distributed Database Architecture

Distributed Database Concepts 28-5

Heterogeneous Distributed Database Systems
In a heterogeneous distributed database system, at least one of the databases is a

non-Oracle system. To the application, the heterogeneous distributed database

system appears as a single, local, Oracle database. The local Oracle database server

hides the distribution and heterogeneity of the data.

The Oracle database server accesses the non-Oracle system using Oracle

Heterogeneous Services in conjunction with an agent. If you access the non-Oracle

data store using an Oracle Transparent Gateway, then the agent is a system-specific

application. For example, if you include a Sybase database in an Oracle distributed

system, then you need to obtain a Sybase-specific transparent gateway so that the

Oracle databases in the system can communicate with it.

Alternatively, you can use generic connectivity to access non-Oracle data stores so

long as the non-Oracle system supports the ODBC or OLE DB protocols.

Heterogeneous Services
Heterogeneous Services (HS) is an integrated component within the Oracle

database server and the enabling technology for the current suite of Oracle

Transparent Gateway products. HS provides the common architecture and

administration mechanisms for Oracle gateway products and other heterogeneous

access facilities. Also, it provides upwardly compatible functionality for users of

most of the earlier Oracle Transparent Gateway releases.

Transparent Gateway Agents
For each non-Oracle system that you access, Heterogeneous Services can use a

transparent gateway agent to interface with the specified non-Oracle system. The

agent is specific to the non-Oracle system, so each type of system requires a

different agent.

The transparent gateway agent facilitates communication between Oracle and

non-Oracle databases and uses the Heterogeneous Services component in the

Oracle database server. The agent executes SQL and transactional requests at the

non-Oracle system on behalf of the Oracle database server.

Note: Other than the introductory material presented in this

chapter, this book does not discuss Oracle Heterogeneous Services.

See Oracle9i Heterogeneous Connectivity Administrator’s Guide for

more detailed information about Heterogeneous Services.

Distributed Database Architecture

28-6 Oracle9i Database Administrator’s Guide

Generic Connectivity
Generic connectivity enables you to connect to non-Oracle data stores by using

either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB

agent—both are included with your Oracle product as a standard feature. Any data

source compatible with the ODBC or OLE DB standards can be accessed using a

generic connectivity agent.

The advantage to generic connectivity is that it may not be required for you to

purchase and configure a separate system-specific agent. You use an ODBC or OLE

DB driver that can interface with the agent. However, some data access features are

only available with transparent gateway agents.

Client/Server Database Architecture
A database server is the Oracle software managing a database, and a client is an

application that requests information from a server. Each computer in a network is a

node that can host one or more databases. Each node in a distributed database

system can act as a client, a server, or both, depending on the situation.

In Figure 28–2, the host for the hq database is acting as a database server when a

statement is issued against its local data (for example, the second statement in each

transaction issues a statement against the local dept table), but is acting as a client

when it issues a statement against remote data (for example, the first statement in

each transaction is issued against the remote table emp in the sales database).

See Also: Your Oracle supplied gateway-specific documentation

for information about transparent gateways

Distributed Database Architecture

Distributed Database Concepts 28-7

Figure 28–2 An Oracle Distributed Database System

A client can connect directly or indirectly to a database server. A direct connection

occurs when a client connects to a server and accesses information from a database

contained on that server. For example, if you connect to the hq database and access

the dept table on this database as in Figure 28–2, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and

then accesses information contained in a database on a different server. For

example, if you connect to the hq database but access the emp table on the remote

sales database as in Figure 28–2, you can issue the following:

SELECT * FROM emp@sales;

Network

Application

Server Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ
Database

Sales
Database

CONNECT TO...
IDENTIFIED BY ...

Database Link

Oracle
Net

Oracle
Net

Database Links

28-8 Oracle9i Database Administrator’s Guide

This query is indirect because the object you are accessing is not on the database to

which you are directly connected.

Database Links
The central concept in distributed database systems is a database link. A database

link is a connection between two physical database servers that allows a client to

access them as one logical database.

This section contains the following topics:

■ What Are Database Links?

■ Why Use Database Links?

■ Global Database Names in Database Links

■ Names for Database Links

■ Types of Database Links

■ Users of Database Links

■ Creation of Database Links: Examples

■ Schema Objects and Database Links

■ Database Link Restrictions

What Are Database Links?
A database link is a pointer that defines a one-way communication path from an

Oracle database server to another database server. The link pointer is actually

defined as an entry in a data dictionary table. To access the link, you must be

connected to the local database that contains the data dictionary entry.

A database link connection is one-way in the sense that a client connected to local

database A can use a link stored in database A to access information in remote

database B, but users connected to database B cannot use the same link to access

data in database A. If local users on database B want to access data on database A,

then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database.

For this connection to occur, each database in the distributed system must have a

unique global database name in the network domain. The global database name

uniquely identifies a database server in a distributed system.

Database Links

Distributed Database Concepts 28-9

Figure 28–3 shows an example of user scott accessing the emp table on the remote

database with the global name hq.acme.com :

Figure 28–3 Database Link

Database links are either private or public. If they are private, then only the user

who created the link has access; if they are public, then all database users have

access.

One principal difference among database links is the way that connections to a

remote database occur. Users access a remote database through the following types

of links:

Type of Link Description

Connected user link Users connect as themselves, which means that they must have
an account on the remote database with the same username as
their account on the local database.

Local
database

User Scott

Remote
database

Select *
FROM emp

Database
link
(unidirectional)

EMP table

PUBLIC SYNONYM
emp -> emp@HQ.ACME.COM

Database Links

28-10 Oracle9i Database Administrator’s Guide

Create database links using the CREATE DATABASE LINKstatement. After a link is

created, you can use it to specify schema objects in SQL statements.

What Are Shared Database Links?
A shared database link is a link between a local server process and the remote

database. The link is shared because multiple client processes can use the same link

simultaneously.

When a local database is connected to a remote database through a database link,

either database can run in dedicated or shared server mode. The following table

illustrates the possibilities:

Fixed user link Users connect using the username and password referenced in
the link. For example, if Jane uses a fixed user link that connects
to the hq database with the username and password scott/tiger,
then she connects as scott, Jane has all the privileges in hq
granted to scott directly, and all the default roles that scott has
been granted in the hq database.

Current user link A user connects as a global user. A local user can connect as a
global user in the context of a stored procedure—without
storing the global user’s password in a link definition. For
example, Jane can access a procedure that Scott wrote, accessing
Scott’s account and Scott’s schema on the hq database. Current

user links are an aspect of Oracle Advanced Security.

See Also:

■ Oracle9i SQL Reference for syntax of the CREATE DATABASE
statement

■ Oracle Advanced Security Administrator’s Guide for information

about Oracle Advanced Security

Local Database Mode Remote Database Mode

Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server

Type of Link Description

Database Links

Distributed Database Concepts 28-11

A shared database link can exist in any of these four configurations. Shared links

differ from standard database links in the following ways:

■ Different users accessing the same schema object through a database link can

share a network connection.

■ When a user needs to establish a connection to a remote server from a particular

server process, the process can reuse connections already established to the

remote server. The reuse of the connection can occur if the connection was

established on the same server process with the same database link—possibly

in a different session. In a non-shared database link, a connection is not shared

across multiple sessions.

■ When you use a shared database link in a shared server configuration, a

network connection is established directly out of the shared server process in

the local server. For a non-shared database link on a local shared server, this

connection would have been established through the local dispatcher, requiring

context switches for the local dispatcher, and requiring data to go through the

dispatcher.

Why Use Database Links?
The great advantage of database links is that they allow users to access another

user’s objects in a remote database so that they are bounded by the privilege set of

the object’s owner. In other words, a local user can access a link to a remote

database without having to be a user on the remote database.

For example, assume that employees submit expense reports to Accounts Payable

(A/P), and further suppose that a user using an A/P application needs to retrieve

information about employees from the hq database. The A/P users should be able

to connect to the hq database and execute a stored procedure in the remote hq
database that retrieves the desired information. The A/P users should not need to

be hq database users to do their jobs; they should only be able to access hq
information in a controlled way as limited by the procedure.

Database links allow you to grant limited access on remote databases to local users.

By using current user links, you can create centrally managed global users whose

password information is hidden from both administrators and non-administrators.

For example, A/P users can access the hq database as scott , but unlike fixed user

links, scott ’s credentials are not stored where database users can see them.

See Also: Oracle9i Net Services Administrator’s Guide for

information about shared server

Database Links

28-12 Oracle9i Database Administrator’s Guide

By using fixed user links, you can create non-global users whose password

information is stored in unencrypted form in the LINK$ data dictionary table. Fixed

user links are easy to create and require low overhead because there are no SSL or

directory requirements, but a security risk results from the storage of password

information in the data dictionary.

Global Database Names in Database Links
To understand how a database link works, you must first understand what a global

database name is. Each database in a distributed database is uniquely identified by

its global database name. Oracle forms a database’s global database name by

prefixing the database’s network domain, specified by the DB_DOMAINinitialization

parameter at database creation, with the individual database name, specified by the

DB_NAME initialization parameter.

For example, Figure 28–4 illustrates a representative hierarchical arrangement of

databases throughout a network.

See Also:

■ "Users of Database Links" on page 28-16 for an explanation of

database link users

■ "Viewing Information About Database Links" for an

explanation of how to hide passwords from non-administrators

Database Links

Distributed Database Concepts 28-13

Figure 28–4 Hierarchical Arrangement of Networked Databases

The name of a database is formed by starting at the leaf of the tree and following a

path to the root. For example, the mfg database is in division3 of the acme_
tools branch of the com domain. The global database name for mfg is created by

concatenating the nodes in the tree as follows:

■ mfg.division3.acme_tools.com

While several databases can share an individual name, each database must have a

unique global database name. For example, the network domains

us.americas.acme_auto.com and uk.europe.acme_auto.com each contain

a sales database. The global database naming system distinguishes the sales
database in the americas division from the sales database in the europe
division as follows:

Other Non–Commercial
Companies Organizations

COM ORGEDU

Employees (HR)

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

Employees (HR)

Educational
Institutions

SalesSalesSalesSalesHQSales

mfgSalesFinanceHQ

Database Links

28-14 Oracle9i Database Administrator’s Guide

■ sales.us.americas.acme_auto.com

■ sales.uk.europe.acme_auto.com

Names for Database Links
Typically, a database link has the same name as the global database name of the

remote database that it references. For example, if the global database name of a

database is sales.us.oracle.com , then the database link is also called

sales.us.oracle.com .

When you set the initialization parameter GLOBAL_NAMES to TRUE, Oracle ensures

that the name of the database link is the same as the global database name of the

remote database. For example, if the global database name for hq is hq.acme.com ,

and GLOBAL_NAMES is TRUE, then the link name must be called hq.acme.com .

Note that Oracle checks the domain part of the global database name as stored in

the data dictionary, not the DB_DOMAIN setting in the initialization parameter file

(see "Changing the Domain in a Global Database Name" on page 29-4).

If you set the initialization parameter GLOBAL_NAMES to FALSE, then you are not

required to use global naming. You can then name the database link whatever you

want. For example, you can name a database link to hq.acme.com as foo .

After you have enabled global naming, database links are essentially transparent to

users of a distributed database because the name of a database link is the same as

the global name of the database to which the link points. For example, the following

statement creates a database link in the local database to remote database sales :

CREATE PUBLIC DATABASE LINK sales.division3.acme.com USING 'sales1';

See Also: "Managing Global Names in a Distributed System" on

page 29-2 to learn how to specify and change global database

names

Note: Oracle Corporation recommends that you use global

naming because many useful features, including Replication,

require global naming.

See Also: Oracle9i Database Reference for more information about

specifying the initialization parameter GLOBAL_NAMES

Database Links

Distributed Database Concepts 28-15

Types of Database Links
Oracle lets you create private, public, and global database links. These basic link

types differ according to which users are allowed access to the remote database:

Determining the type of database links to employ in a distributed database depends

on the specific requirements of the applications using the system. Consider these

features when making your choice:

Type Owner Description

Private User who created the link.
View ownership data
through:

■ DBA_DB_LINKS

■ ALL_DB_LINKS

■ USER_DB_LINKS

Creates link in a specific schema of the local
database. Only the owner of a private database
link or PL/SQL subprograms in the schema
can use this link to access database objects in
the corresponding remote database.

Public User called PUBLIC. View
ownership data through
views shown above.

Creates a database-wide link. All users and
PL/SQL subprograms in the database can use
the link to access database objects in the
corresponding remote database.

Global User called PUBLIC. View
ownership data through
views shown above.

Creates a network-wide link. When an Oracle
network uses Oracle Names, the names servers
in the system automatically create and manage
global database links for every Oracle database
in the network. Users and PL/SQL
subprograms in any database can use a global
link to access objects in the corresponding
remote database.

Type of Link Features

Private database link This link is more secure than a public or global link, because
only the owner of the private link, or subprograms within the
same schema, can use the link to access the remote database.

Public database link When many users require an access path to a remote Oracle
database, you can create a single public database link for all
users in a database.

Global database link When an Oracle network uses Oracle Names, an administrator
can conveniently manage global database links for all databases
in the system. Database link management is centralized and
simple.

Database Links

28-16 Oracle9i Database Administrator’s Guide

Users of Database Links
When creating the link, you determine which user should connect to the remote

database to access the data. The following table explains the differences among the

categories of users involved in database links:

Connected User Database Links
Connected user links have no connect string associated with them. The advantage

of a connected user link is that a user referencing the link connects to the remote

See Also:

■ "Specifying Link Types" on page 29-9 to learn how to create

different types of database links

■ "Viewing Information About Database Links" on page 29-21 to

learn how to access information about links

User Type Meaning
Sample Link
Creation Syntax

Connected user A local user accessing a database link in which no fixed username
and password have been specified. If SYSTEM accesses a public link
in a query, then the connected user is SYSTEM, and Oracle connects
to the SYSTEM schema in the remote database.

Note: A connected user does not have to be the user who created the
link, but is any user who is accessing the link.

CREATE PUBLIC
DATABASE LINK hq
USING 'hq';

Current user A global user in a CURRENT_USER database link. The global user
must be authenticated by an X.509 certificate (an SSL-authenticated
enterprise user) or a password (a password-authenticated enterprise
user), and be a user on both databases involved in the link. Current
user links are an aspect of the Oracle Advanced Security option.

See Oracle Advanced Security Administrator’s Guide for information
about global security

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO
CURRENT_USER
using 'hq';

Fixed user A user whose username/password is part of the link definition. If a
link includes a fixed user, then the fixed user’s username and
password are used to connect to the remote database.

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO jane
IDENTIFIED BY
doe USING 'hq';

See Also: "Specifying Link Users" on page 29-11 to learn how to

specify users where creating links

Database Links

Distributed Database Concepts 28-17

database as the same user. Furthermore, because no connect string is associated

with the link, no password is stored in clear text in the data dictionary.

Connected user links have some disadvantages. Because these links require users to

have accounts and privileges on the remote databases to which they are attempting

to connect, they require more privilege administration for administrators. Also,

giving users more privileges than they need violates the fundamental security

concept of least privilege: users should only be given the privileges they need to

perform their jobs.

The ability to use a connected user database link depends on several factors, chief

among them whether the user is authenticated by Oracle using a password, or

externally authenticated by the operating system or a network authentication

service. If the user is externally authenticated, then the ability to use a connected

user link also depends on whether the remote database accepts remote

authentication of users, which is set by the REMOTE_OS_AUTHENT initialization

parameter.

The REMOTE_OS_AUTHENT parameter operates as follows:

Fixed User Database Links
A benefit of a fixed user link is that it connects a user in a primary database to a

remote database with the security context of the user specified in the connect string.

For example, local user joe can create a public database link in joe ’s schema that

specifies the fixed user scott with password tiger . If jane uses the fixed user

link in a query, then jane is the user on the local database, but she connects to the

remote database as scott/tiger .

Fixed user links have a username and password associated with the connect string.

The username and password are stored in unencrypted form in the data dictionary

in the LINK$ table.

If REMOTE_OS_AUTHENT is... Then...

TRUE for the remote database An externally-authenticated user can connect to the
remote database using a connected user database link.

FALSE for the remote database An externally-authenticated user cannot connect to the
remote database using a connected user database link
unless a secure protocol or a network authentication
service supported by the Oracle Advanced Security
option is used.

Database Links

28-18 Oracle9i Database Administrator’s Guide

For an example of this security problem, assume that jane does not have privileges

to use a private link that connects to the hq database as scott/tiger , but has

SELECT ANY TABLE privilege on a database in which the O7_DICTIONARY_
ACCESSIBILITY initialization parameter is set to TRUE. She can select from LINK$
and read that the connect string to hq is scott/tiger . If jane has an account on

the host on which hq resides, then she can connect to the host and then connect to

hq as scott using the password tiger . She will have all scott ’s privileges if she

connects locally and any audit records will be recorded as if she were scott .

Current User Database Links
Current user database links make use of a global user. A global user must be

authenticated by an X.509 certificate or a password, and be a user on both databases

involved in the link.

The user invoking the CURRENT_USER link does not have to be a global user. For

example, if jane is authenticated (not as a global user) by password to the

Accounts Payable database, she can access a stored procedure to retrieve data from

the hq database. The procedure uses a current user database link, which connects

her to hq as global user scott. User scott is a global user and authenticated

through a certificate over SSL, but jane is not.

Note that current user database links have these consequences:

■ If the current user database link is not accessed from within a stored object, then

the current user is the same as the connected user accessing the link. For

Caution: The fact that the username and password are stored in

unencrypted form in the data dictionary creates a potential security

weakness of fixed user database links.

If the O7_DICTIONARY_ACCESSIBILITY initialization parameter

is set to TRUE, a user with the SELECT ANY TABLE system

privilege has access to the data dictionary, and thus the

authentication associated with a fixed user is compromised.

The default for the O7_DICTIONARY_ACCESSIBILITY
initialization parameter is FALSE.

See Also: "System Privileges" on page 25-2 for more information

about system privileges and the O7_DICTIONARY_
ACCESSIBILITY initialization parameter

Database Links

Distributed Database Concepts 28-19

example, if scott issues a SELECT statement through a current user link, then

the current user is scott .

■ When executing a stored object such as a procedure, view, or trigger that

accesses a database link, the current user is the user that owns the stored object,

and not the user that calls the object. For example, if jane calls procedure

scott.p (created by scott), and a current user link appears within the called

procedure, then scott is the current user of the link.

■ If the stored object is an invoker-rights function, procedure, or package, then

the invoker's authorization ID is used to connect as a remote user. For example,

if user jane calls procedure scott.p (an invoker-rights procedure created by

scott), and the link appears inside procedure scott.p , then jane is the

current user.

■ You cannot connect to a database as an enterprise user and then use a current

user link in a stored procedure that exists in a shared, global schema. For

example, if user jane accesses a stored procedure in the shared schema guest
on database hq , she cannot use a current user link in this schema to log on to a

remote database.

Creation of Database Links: Examples
Create database links using the CREATE DATABASE LINK statement. The table

gives examples of SQL statements that create database links in a local database to

the remote sales.us.americas.acme_auto.com database:

See Also:

■ "Distributed Database Security" on page 28-24 for more

information about security issues relating to database links

■ Oracle Advanced Security Administrator’s Guide

SQL Statement Connects To Database Connects As Link Type

CREATE DATABASE LINK
sales.us.americas.acme_
auto.com USING 'sales_us';

sales using net service
name sales_us

Connected user Private
connected
user

CREATE DATABASE LINK foo
CONNECT TO CURRENT_USER USING
'am_sls';

sales using service
name am_sls

Current global user Private
current user

Database Links

28-20 Oracle9i Database Administrator’s Guide

Schema Objects and Database Links
After you have created a database link, you can execute SQL statements that access

objects on the remote database. For example, to access remote object emp using

database link foo , you can issue:

SELECT * FROM emp@foo;

You must also be authorized in the remote database to access specific remote

objects.

Constructing properly formed object names using database links is an essential

aspect of data manipulation in distributed systems.

Naming of Schema Objects Using Database Links
Oracle uses the global database name to name the schema objects globally using the

following scheme:

CREATE DATABASE LINK
sales.us.americas.acme_
auto.com CONNECT TO scott
IDENTIFIED BY tiger USING
'sales_us';

sales using net service
name sales_us

scott using password
tiger

Private fixed
user

CREATE PUBLIC DATABASE LINK
sales CONNECT TO scott
IDENTIFIED BY tiger USING
'rev';

sales using net service
name rev

scott using password
tiger

Public fixed
user

CREATE SHARED PUBLIC DATABASE
LINK sales.us.americas.acme_
auto.com CONNECT TO scott
IDENTIFIED BY tiger
AUTHENTICATED BY anupam
IDENTIFIED BY bhide USING
'sales';

sales using net service
name sales

scott using password
tiger , authenticated as
anupam using password
bhide

Shared
public fixed
user

See Also:

■ "Creating Database Links" on page 29-8 to learn how to create

link

■ Oracle9i SQL Reference for information about the CREATE
DATABASE LINK statement syntax

SQL Statement Connects To Database Connects As Link Type

Database Links

Distributed Database Concepts 28-21

schema.schema_object@global_database_name

where:

■ schema is a collection of logical structures of data, or schema objects. A schema

is owned by a database user and has the same name as that user. Each user

owns a single schema.

■ schema_object is a logical data structure like a table, index, view, synonym,

procedure, package, or a database link.

■ global_database_name is the name that uniquely identifies a remote database.

This name must be the same as the concatenation of the remote database’s

initialization parameters DB_NAME and DB_DOMAIN, unless the parameter

GLOBAL_NAMES is set to FALSE, in which case any name is acceptable.

For example, using a database link to database sales.division3.acme.com , a

user or application can reference remote data as follows:

SELECT * FROM scott.emp@sales.division3.acme.com; # emp table in scott’s schema
SELECT loc FROM scott.dept@sales.division3.acme.com;

If GLOBAL_NAMES is set to FALSE, then you can use any name for the link to

sales.division3.acme.com . For example, you can call the link foo . Then, you

can access the remote database as follows:

SELECT name FROM scott.emp@foo; # link name different from global name

Authorization for Accessing Remote Schema Objects
To access a remote schema object, you must be granted access to the remote object

in the remote database. Further, to perform any updates, inserts, or deletes on the

remote object, you must be granted the SELECT privilege on the object, along with

the UPDATE, INSERT, or DELETEprivilege. Unlike when accessing a local object, the

SELECT privilege is necessary for accessing a remote object because Oracle has no

remote describe capability. Oracle must do a SELECT * on the remote object in

order to determine its structure.

Synonyms for Schema Objects
Oracle lets you create synonyms so that you can hide the database link name from

the user. A synonym allows access to a table on a remote database using the same

syntax that you would use to access a table on a local database. For example,

assume you issue the following query against a table in a remote database:

SELECT * FROM emp@hq.acme.com;

Database Links

28-22 Oracle9i Database Administrator’s Guide

You can create the synonym emp for emp@hq.acme.com so that you can issue the

following query instead to access the same data:

SELECT * FROM emp;

Schema Object Name Resolution
To resolve application references to schema objects (a process called name
resolution), Oracle forms object names hierarchically. For example, Oracle

guarantees that each schema within a database has a unique name, and that within

a schema each object has a unique name. As a result, a schema object’s name is

always unique within the database. Furthermore, Oracle resolves application

references to an object’s local name.

In a distributed database, a schema object such as a table is accessible to all

applications in the system. Oracle extends the hierarchical naming model with

global database names to effectively create global object names and resolve

references to the schema objects in a distributed database system. For example, a

query can reference a remote table by specifying its fully qualified name, including

the database in which it resides.

For example, assume that you connect to the local database as user SYSTEM:

CONNECT SYSTEM/password @sales1

You then issue the following statements using database link hq.acme.com to

access objects in the scott and jane schemas on remote database hq :

SELECT * FROM scott.emp@hq.acme.com;
INSERT INTO jane.accounts@hq.acme.com (acc_no, acc_name, balance)
 VALUES (5001, 'BOWER', 2000);
UPDATE jane.accounts@hq.acme.com
 SET balance = balance + 500;
DELETE FROM jane.accounts@hq.acme.com
 WHERE acc_name = 'BOWER';

Database Link Restrictions
You cannot perform the following operations using database links:

■ Grant privileges on remote objects

See Also: "Using Synonyms to Create Location Transparency" on

page 29-28 to learn how to create synonyms for objects specified

using database links

Distributed Database Administration

Distributed Database Concepts 28-23

■ Execute DESCRIBE operations on some remote objects. The following remote

objects, however, do support DESCRIBE operations:

– Tables

– Views

– Procedures

– Functions

■ Analyze remote objects

■ Define or enforce referential integrity

■ Grant roles to users in a remote database

■ Obtain nondefault roles on a remote database. For example, if jane connects to

the local database and executes a stored procedure that uses a fixed user link

connecting as scott , jane receives scott ’s default roles on the remote

database. Jane cannot issue SET ROLE to obtain a nondefault role.

■ Execute hash query joins that use shared server connections

■ Use a current user link without authentication through SSL, password, or NT

native authentication

Distributed Database Administration
The following sections explain some of the topics relating to database management

in an Oracle distributed database system:

■ Site Autonomy

■ Distributed Database Security

■ Auditing Database Links

■ Administration Tools

See Also:

■ Chapter 29, "Managing a Distributed Database" to learn how to

administer homogenous systems

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide to learn

about heterogeneous services concepts

Distributed Database Administration

28-24 Oracle9i Database Administrator’s Guide

Site Autonomy
Site autonomy means that each server participating in a distributed database is

administered independently from all other databases. Although several databases

can work together, each database is a separate repository of data that is managed

individually. Some of the benefits of site autonomy in an Oracle distributed

database include:

■ Nodes of the system can mirror the logical organization of companies or groups

that need to maintain independence.

■ Local administrators control corresponding local data. Therefore, each database

administrator’s domain of responsibility is smaller and more manageable.

■ Independent failures are less likely to disrupt other nodes of the distributed

database. No single database failure need halt all distributed operations or be a

performance bottleneck.

■ Administrators can recover from isolated system failures independently from

other nodes in the system.

■ A data dictionary exists for each local database—a global catalog is not

necessary to access local data.

■ Nodes can upgrade software independently.

Although Oracle permits you to manage each database in a distributed database

system independently, you should not ignore the global requirements of the system.

For example, you may need to:

■ Create additional user accounts in each database to support the links that you

create to facilitate server-to-server connections.

■ Set additional initialization parameters such as COMMIT_POINT_STRENGTH,

and OPEN_LINKS.

Distributed Database Security
Oracle supports all of the security features that are available with a nondistributed

database environment for distributed database systems, including:

■ Password authentication for users and roles

■ Some types of external authentication for users and roles including:

– Kerberos version 5 for connected user links

– DCE for connected user links

Distributed Database Administration

Distributed Database Concepts 28-25

■ Login packet encryption for client-to-server and server-to-server connections

The following sections explain some additional topics to consider when configuring

an Oracle distributed database system:

■ Authentication Through Database Links

■ Authentication Without Passwords

■ Supporting User Accounts and Roles

■ Centralized User and Privilege Management

■ Data Encryption

Authentication Through Database Links
Database links are either private or public, authenticated or non-authenticated.

You create public links by specifying the PUBLIC keyword in the link creation

statement. For example, you can issue:

CREATE PUBLIC DATABASE LINK foo USING 'sales';

You create authenticated links by specifying the CONNECT TO clause,

AUTHENTICATED BY clause, or both clauses together in the database link creation

statement. For example, you can issue:

CREATE DATABASE LINK sales CONNECT TO scott IDENTIFIED BY tiger USING 'sales';
CREATE SHARED PUBLIC DATABASE LINK sales CONNECT TO mick IDENTIFIED BY jagger
 AUTHENTICATED BY david IDENTIFIED BY bowie USING 'sales';

This table describes how users access the remote database through the link:

See Also: Oracle Advanced Security Administrator’s Guide for more

information about external authentication

Link Type Authenticated? Security Access

Private No When connecting to the remote database, Oracle uses
security information (userid/password) taken from the
local session. Hence, the link is a connected user database
link. Passwords must be synchronized between the two
databases.

Distributed Database Administration

28-26 Oracle9i Database Administrator’s Guide

Authentication Without Passwords
When using a connected user or current user database link, you can use an external

authentication source such as Kerberos to obtain end-to-end security. In end-to-end

authentication, credentials are passed from server to server and can be

authenticated by a database server belonging to the same domain. For example, if

jane is authenticated externally on a local database, and wants to use a connected

user link to connect as herself to a remote database, the local server passes the

security ticket to the remote database.

Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and

roles that are necessary to support applications using the system. Note that:

■ The user accounts necessary to establish server-to-server connections must be

available in all databases of the distributed database system.

■ The roles necessary to make available application privileges to distributed

database application users must be present in all databases of the distributed

database system.

As you create the database links for the nodes in a distributed database system,

determine which user accounts and roles each site needs to support server-to-server

connections that use the links.

Private Yes The userid/password is taken from the link definition
rather than from the local session context. Hence, the link
is a fixed user database link.

This configuration allows passwords to be different on the
two databases, but the local database link password must
match the remote database password. The password is
stored in clear text on the local system catalog, adding a
security risk.

Public No Works the same as a private non-authenticated link,
except that all users can reference this pointer to the
remote database.

Public Yes All users on the local database can access the remote
database and all use the same userid/password to make
the connection. Also, the password is stored in clear text
in the local catalog, so you can see the password if you
have sufficient privileges in the local database.

Link Type Authenticated? Security Access

Distributed Database Administration

Distributed Database Concepts 28-27

In a distributed environment, users typically require access to many network

services. When you must configure separate authentications for each user to access

each network service, security administration can become unwieldy, especially for

large systems.

Centralized User and Privilege Management
Oracle provides different ways for you to manage the users and privileges involved

in a distributed system. For example, you have these options:

■ Enterprise user management. You can create global users who are authenticated

through SSL or by using passwords, then manage these users and their

privileges in a directory through an independent enterprise directory service.

■ Network authentication service. This common technique simplifies security

management for distributed environments. You can use the Oracle Advanced

Security option to enhance Oracle Net and the security of an Oracle distributed

database system. Windows NT native authentication is an example of a

non-Oracle authentication solution.

Schema-Dependent Global Users One option for centralizing user and privilege

management is to create the following:

■ A global user in a centralized directory

■ A user in every database that the global user must connect to

For example, you can create a global user called fred with the following SQL

statement:

CREATE USER fred IDENTIFIED GLOBALLY AS 'CN=fred adams,O=Oracle,C=England';

This solution allows a single global user to be authenticated by a centralized

directory.

The schema-dependent global user solution has the consequence that you must

create a user called fred on every database that this user must access. Because most

users need permission to access an application schema but do not need their own

See Also: "Creating Database Links" on page 29-8 for more

information about the user accounts that must be available to

support different types of database links in the system

See Also: Oracle Advanced Security Administrator’s Guide for more

information about global user security

Distributed Database Administration

28-28 Oracle9i Database Administrator’s Guide

schemas, the creation of a separate account in each database for every global user

creates significant overhead. Because of this problem, Oracle also supports

schema-independent users, which are global users that an access a single, generic

schema in every database.

Schema-Independent Global Users Oracle supports functionality that allows a global

user to be centrally managed by an enterprise directory service. Users who are

managed in the directory are called enterprise users. This directory contains

information about:

■ Which databases in a distributed system an enterprise user can access

■ Which role on each database an enterprise user can use

■ Which schema on each database an enterprise user can connect to

The administrator of each database is not required to create a global user account

for each enterprise user on each database to which the enterprise user needs to

connect. Instead, multiple enterprise users can connect to the same database

schema, called a shared schema.

For example, suppose jane , bill , and scott all use a human resources

application. The hq application objects are all contained in the guest schema on

the hq database. In this case, you can create a local global user account to be used as

a shared schema. This global username, that is, shared schema name, is guest .

jane , bill , and scott are all created as enterprise users in the directory service.

They are also mapped to the guest schema in the directory, and can be assigned

different authorizations in the hq application.

Figure 28–5 illustrates an example of global user security using the enterprise

directory service:

Note: You cannot access a current user database link in a shared

schema.

Distributed Database Administration

Distributed Database Concepts 28-29

Figure 28–5 Global User Security

Assume that the enterprise directory service contains the following information on

enterprise users for hq and sales :

Also, assume that the local administrators for hq and sales have issued statements

as follows:

Database Role Schema Enterprise Users

hq clerk1 guest bill

scott

sales clerk2 guest jane

scott

Database CREATE Statements

hq CREATE USER guest IDENTIFIED GLOBALLY AS '';
CREATE ROLE clerk1 GRANT select ON emp;
CREATE PUBLIC DATABASE LINK sales_link CONNECT AS CURRENT_USER
USING 'sales';

sales CREATE USER guest IDENTIFIED GLOBALLY AS '';
CREATE ROLE clerk2 GRANT select ON dept;

HQ

SCOTT

LDAP

SALES

SSL
SSL

SSL password

SSL

Distributed Database Administration

28-30 Oracle9i Database Administrator’s Guide

Assume that enterprise user scott requests a connection to local database hq in

order to execute a distributed transaction involving sales . The following steps

occur (not necessarily in this exact order):

1. Enterprise user scott is authenticated using SSL or a password.

2. User scott issues the following statement:

SELECT e.ename, d.loc
FROM emp e, dept@sales_link d
WHERE e.deptno=d.deptno;

3. Databases hq and sales mutually authenticate one another using SSL.

4. Database hq queries the enterprise directory service to determine whether

enterprise user scott has access to hq , and discovers scott can access local

schema guest using role clerk1 .

5. Database sales queries the enterprise directory service to determine whether

enterprise user scott has access to sales , and discovers scott can access

local schema guest using role clerk2 .

6. Enterprise user scott logs into sales to schema guest with role clerk2 and

issues a SELECT to obtain the required information and transfer it to hq .

7. Database hq receives the requested data from sales and returns it to the client

scott .

Data Encryption
The Oracle Advanced Security option also enables Oracle Net and related products

to use network data encryption and checksumming so that data cannot be read or

altered. It protects data from unauthorized viewing by using the RSA Data Security

RC4 or the Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during

transmission, the security services of the Oracle Advanced Security option can

generate a cryptographically secure message digest and include it with each packet

sent across the network.

See Also: Oracle Advanced Security Administrator’s Guide for more

information about enterprise user security

See Also: Oracle Advanced Security Administrator’s Guide for more

information about these and other features of the Oracle Advanced

Security option

Distributed Database Administration

Distributed Database Concepts 28-31

Auditing Database Links
You must always perform auditing operations locally. That is, if a user acts in a local

database and accesses a remote database through a database link, the local actions

are audited in the local database, and the remote actions are audited in the remote

database—provided appropriate audit options are set in the respective databases.

The remote database cannot determine whether a successful connect request and

subsequent SQL statements come from another server or from a locally connected

client. For example, assume the following:

■ Fixed user link hq.acme.com connects local user jane to the remote hq
database as remote user scott.

■ User scott is audited on the remote database.

Actions performed during the remote database session are audited as if scott were

connected locally to hq and performing the same actions there. You must set audit

options in the remote database to capture the actions of the username—in this case,

scott on the hq database—embedded in the link if the desired effect is to audit

what jane is doing in the remote database.

You cannot set local auditing options on remote objects. Therefore, you cannot audit

use of a database link, although access to remote objects can be audited on the

remote database.

Administration Tools
The database administrator has several choices for tools to use when managing an

Oracle distributed database system:

■ Enterprise Manager

■ Third-Party Administration Tools

■ SNMP Support

Enterprise Manager
Enterprise Manager is Oracle’s database administration tool that provides a

graphical user interface (GUI). Enterprise Manager provides administrative

Note: You can audit the global username for global users.

Distributed Database Administration

28-32 Oracle9i Database Administrator’s Guide

functionality for distributed databases through an easy-to-use interface. You can use

Enterprise Manager to:

■ Administer multiple databases. You can use Enterprise Manager to administer a

single database or to simultaneously administer multiple databases.

■ Centralize database administration tasks. You can administer both local and

remote databases running on any Oracle platform in any location worldwide. In

addition, these Oracle platforms can be connected by any network protocols

supported by Oracle Net.

■ Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You

can use Enterprise Manager to enter, edit, and execute statements. Enterprise

Manager also maintains a history of statements executed.

Thus, you can reexecute statements without retyping them, a particularly useful

feature if you need to execute lengthy statements repeatedly in a distributed

database system.

■ Manage security features such as global users, global roles, and the enterprise

directory service.

Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help

manage Oracle databases and networks, providing a truly open environment.

SNMP Support
Besides its network administration capabilities, Oracle Simple Network
Management Protocol (SNMP) support allows an Oracle database server to be

located and queried by any SNMP-based network management system. SNMP is

the accepted standard underlying many popular network management systems

such as:

■ HP’s OpenView

■ Digital’s POLYCENTER Manager on NetView

■ IBM’s NetView/6000

■ Novell’s NetWare Management System

■ SunSoft’s SunNet Manager

See Also: Oracle SNMP Support Reference Guide for more

information about SNMP

Transaction Processing in a Distributed System

Distributed Database Concepts 28-33

Transaction Processing in a Distributed System
A transaction is a logical unit of work constituted by one or more SQL statements

executed by a single user. A transaction begins with the user’s first executable SQL

statement and ends when it is committed or rolled back by that user.

A remote transaction contains only statements that access a single remote node. A

distributed transaction contains statements that access more than one node.

The following sections define important concepts in transaction processing and

explain how transactions access data in a distributed database:

■ Remote SQL Statements

■ Distributed SQL Statements

■ Shared SQL for Remote and Distributed Statements

■ Remote Transactions

■ Distributed Transactions

■ Two-Phase Commit Mechanism

■ Database Link Name Resolution

■ Schema Object Name Resolution

Remote SQL Statements
A remote query statement is a query that selects information from one or more

remote tables, all of which reside at the same remote node. For example, the

following query accesses data from the dept table in the scott schema of the

remote sales database:

SELECT * FROM scott.dept@sales.us.americas.acme_auto.com;

A remote update statement is an update that modifies data in one or more tables,

all of which are located at the same remote node. For example, the following query

updates the dept table in the scott schema of the remote sales database:

UPDATE scott.dept@mktng.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;

Transaction Processing in a Distributed System

28-34 Oracle9i Database Administrator’s Guide

Distributed SQL Statements
A distributed query statement retrieves information from two or more nodes. For

example, the following query accesses data from the local database as well as the

remote sales database:

SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update statement modifies data on two or more nodes. A distributed

update is possible using a PL/SQL subprogram unit such as a procedure or trigger

that includes two or more remote updates that access data on different nodes. For

example, the following PL/SQL program unit updates tables on the local database

and the remote sales database:

BEGIN
 UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;
COMMIT;

Oracle sends statements in the program to the remote nodes, and their execution

succeeds or fails as a unit.

Shared SQL for Remote and Distributed Statements
The mechanics of a remote or distributed statement using shared SQL are

essentially the same as those of a local statement. The SQL text must match, and the

referenced objects must match. If available, shared SQL areas can be used for the

local and remote handling of any statement or decomposed query.

Note: A remote update can include a subquery that retrieves data

from one or more remote nodes, but because the update happens at

only a single remote node, the statement is classified as a remote

update.

Transaction Processing in a Distributed System

Distributed Database Concepts 28-35

Remote Transactions
A remote transaction contains one or more remote statements, all of which reference

a single remote node. For example, the following transaction contains two

statements, each of which accesses the remote sales database:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp@sales.us.americas.acme_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Distributed Transactions
A distributed transaction is a transaction that includes one or more statements that,

individually or as a group, update data on two or more distinct nodes of a

distributed database. For example, this transaction updates the local database and

the remote sales database:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Two-Phase Commit Mechanism
A database must guarantee that all statements in a transaction, distributed or

nondistributed, either commit or roll back as a unit. The effects of an ongoing

transaction should be invisible to all other transactions at all nodes; this

transparency should be true for transactions that include any type of operation,

including queries, updates, or remote procedure calls.

See Also: Oracle9i Database Concepts for more information about

shared SQL

Note: If all statements of a transaction reference only a single

remote node, the transaction is remote, not distributed.

Transaction Processing in a Distributed System

28-36 Oracle9i Database Administrator’s Guide

The general mechanisms of transaction control in a nondistributed database are

discussed in the Oracle9i Database Concepts. In a distributed database, Oracle must

coordinate transaction control with the same characteristics over a network and

maintain data consistency, even if a network or system failure occurs.

Oracle’s two-phase commit mechanism guarantees that all database servers

participating in a distributed transaction either all commit or all roll back the

statements in the transaction. A two-phase commit mechanism also protects

implicit DML operations performed by integrity constraints, remote procedure

calls, and triggers.

Database Link Name Resolution
A global object name is an object specified using a database link. The essential

components of a global object name are:

■ Object name

■ Database name

■ Domain

The following table shows the components of an explicitly specified global database

object name:

Whenever a SQL statement includes a reference to a global object name, Oracle

searches for a database link with a name that matches the database name specified

in the global object name. For example, if you issue the following statement:

SELECT * FROM scott.emp@orders.us.acme.com;

Oracle searches for a database link called orders.us.acme.com . Oracle performs

this operation to determine the path to the specified remote database.

Oracle always searches for matching database links in the following order:

See Also: Chapter 31, "Distributed Transactions Concepts" for

more information about Oracle’s two-phase commit mechanism

Statement Object Database Domain

SELECT * FROM
joan.dept@sales.acme.com

dept sales acme.com

SELECT * FROM
emp@mktg.us.acme.com

emp mktg us.acme.com

Transaction Processing in a Distributed System

Distributed Database Concepts 28-37

1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if an Oracle Names Server is available).

Name Resolution When the Global Database Name Is Complete
Assume that you issue the following SQL statement, which specifies a complete

global database name:

SELECT * FROM emp@prod1.us.oracle.com;

In this case, both the database name (prod1) and domain components

(us.oracle.com) are specified, so Oracle searches for private, public, and global

database links. Oracle searches only for links that match the specified global

database name.

Name Resolution When the Global Database Name Is Partial
If any part of the domain is specified, Oracle assumes that a complete global

database name is specified. If a SQL statement specifies a partial global database

name (that is, only the database component is specified), Oracle appends the value

in the DB_DOMAIN initialization parameter to the value in the DB_NAME
initialization parameter to construct a complete name. For example, assume you

issue the following statements:

CONNECT scott/tiger@locdb
SELECT * FROM scott.emp@orders;

If the network domain for locdb is us.acme.com , then Oracle appends this

domain to orders to construct the complete global database name of

orders.us.acme.com . Oracle searches for database links that match only the

constructed global name. If a matching link is not found, Oracle returns an error

and the SQL statement cannot execute.

Name Resolution When No Global Database Name Is Specified
If a global object name references an object in the local database and a database link

name is not specified using the @ symbol, then Oracle automatically detects that the

object is local and does not search for or use database links to resolve the object

reference. For example, assume that you issue the following statements:

CONNECT scott/tiger@locdb
SELECT * from scott.emp;

Transaction Processing in a Distributed System

28-38 Oracle9i Database Administrator’s Guide

Because the second statement does not specify a global database name using a

database link connect string, Oracle does not search for database links.

Terminating the Search for Name Resolution
Oracle does not necessarily stop searching for matching database links when it finds

the first match. Oracle must search for matching private, public, and network

database links until it determines a complete path to the remote database (both a

remote account and service name).

The first match determines the remote schema as illustrated in the following table:

After Oracle determines a complete path, it creates a remote session—assuming that

an identical connection is not already open on behalf of the same local session. If a

session already exists, Oracle reuses it.

Schema Object Name Resolution
After the local Oracle database connects to the specified remote database on behalf

of the local user that issued the SQL statement, object resolution continues as if the

remote user had issued the associated SQL statement. The first match determines

the remote schema according to the following rules:

If you... Then Oracle... As in the example...

Do not specify the
CONNECT clause

Uses a connected user
database link

CREATE DATABASE LINK k1 USING
'prod'

Do specify the
CONNECT TO ...
IDENTIFIED BY
clause

Uses a fixed user
database link

CREATE DATABASE LINK k2
CONNECT TO scott IDENTIFIED BY
tiger USING 'prod'

Specify the CONNECT
TO CURRENT_USER
clause

Uses a current user
database link

CREATE DATABASE LINK k3
CONNECT TO CURRENT_USER USING
'prod'

Do not specify the
USING clause

Searches until it finds a
link specifying a
database string. If
matching database
links are found and a
string is never
identified, Oracle
returns an error.

CREATE DATABASE LINK k4
CONNECT TO CURRENT_USER

Transaction Processing in a Distributed System

Distributed Database Concepts 28-39

If Oracle cannot find the object, then it checks public objects of the remote database.

If it cannot resolve the object, then the established remote session remains but the

SQL statement cannot execute and returns an error.

The following are examples of global object name resolution in a distributed

database system. For all the following examples, assume that:

Example of Global Object Name Resolution: Complete Object Name
This example illustrates how Oracle resolves a complete global object name and

determines the appropriate path to the remote database using both a private and

public database link. For this example, assume the following:

■ The remote database is named sales.division3.acme.com .

■ The local database is named hq.division3.acme.com .

■ An Oracle Names Server (and therefore, global database links) is not available.

■ A remote table emp is contained in the schema tsmith .

Consider the following statements issued by scott at the local database:

CONNECT scott/tiger@hq

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Later, JWARD connects and issues the following statements:

CONNECT jward/bronco@hq

CREATE DATABASE LINK sales.division3.acme.com
 CONNECT TO tsmith IDENTIFIED BY radio;

UPDATE tsmith.emp@sales.division3.acme.com
 SET deptno = 40
 WHERE deptno = 10;

If you use... Then object resolution proceeds in the...

A fixed user database link Schema specified in the link creation statement

A connected user database link Connected user’s remote schema

A current user database link Current user’s schema

Transaction Processing in a Distributed System

28-40 Oracle9i Database Administrator’s Guide

Oracle processes the final statement as follows:

1. Oracle determines that a complete global object name is referenced in jward ’s

update statement. Therefore, the system begins searching in the local database

for a database link with a matching name.

2. Oracle finds a matching private database link in the schema jward .

Nevertheless, the private database link

jward.sales.division3.acme.com does not indicate a complete path to

the remote sales database, only a remote account. Therefore, Oracle now

searches for a matching public database link.

3. Oracle finds the public database link in scott ’s schema. From this public

database link, Oracle takes the service name dbstring .

4. Combined with the remote account taken from the matching private fixed user

database link, Oracle determines a complete path and proceeds to establish a

connection to the remote sales database as user tsmith/radio .

5. The remote database can now resolve the object reference to the emp table.

Oracle searches in the tsmith schema and finds the referenced emp table.

6. The remote database completes the execution of the statement and returns the

results to the local database.

Example of Global Object Name Resolution: Partial Object Name
This example illustrates how Oracle resolves a partial global object name and

determines the appropriate path to the remote database using both a private and

public database link.

For this example, assume that:

■ The remote database is named sales.division3.acme.com .

■ The local database is named hq.division3.acme.com .

■ An Oracle Names Server (and therefore, global database links) is not available.

■ A table emp on the remote database sales is contained in the schema tsmith ,

but not in schema scott .

■ A public synonym named emp resides at remote database sales and points to

tsmith.emp in the remote database sales .

■ The public database link in "Example of Global Object Name Resolution:

Complete Object Name" on page 28-39 is already created on local database hq :

Transaction Processing in a Distributed System

Distributed Database Concepts 28-41

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Consider the following statements issued at local database hq :

CONNECT scott/tiger@hq

CREATE DATABASE LINK sales.division3.acme.com;

DELETE FROM emp@sales
 WHERE empno = 4299;

Oracle processes the final DELETE statement as follows:

1. Oracle notices that a partial global object name is referenced in scott 's DELETE
statement. It expands it to a complete global object name using the domain of

the local database as follows:

DELETE FROM emp@sales.division3.acme.com
 WHERE empno = 4299;

2. Oracle searches the local database for a database link with a matching name.

3. Oracle finds a matching private connected user link in the schema scott , but

the private database link indicates no path at all. Oracle uses the connected

username/password as the remote account portion of the path and then

searches for and finds a matching public database link:

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

4. Oracle takes the database net service name dbstring from the public database

link. At this point, Oracle has determined a complete path.

5. Oracle connects to the remote database as scott/tiger and searches for and

does not find an object named emp in the schema scott .

6. The remote database searches for a public synonym named emp and finds it.

7. The remote database executes the statement and returns the results to the local

database.

Transaction Processing in a Distributed System

28-42 Oracle9i Database Administrator’s Guide

Global Name Resolution in Views, Synonyms, and Procedures
A view, synonym, or PL/SQL program unit (for example, a procedure, function, or

trigger) can reference a remote schema object by its global object name. If the global

object name is complete, then Oracle stores the definition of the object without

expanding the global object name. If the name is partial, however, Oracle expands

the name using the domain of the local database name.

The following table explains when Oracle completes the expansion of a partial

global object name for views, synonyms, and program units:

What Happens When Global Names Change
Global name changes can affect views, synonyms, and procedures that reference

remote data using partial global object names. If the global name of the referenced

database changes, views and procedures may try to reference a nonexistent or

incorrect database. On the other hand, synonyms do not expand database link

names at runtime, so they do not change.

Scenarios for Global Name Changes
For example, consider two databases named sales.uk.acme.com and

hq.uk.acme.com . Also, assume that the sales database contains the following

view and synonym:

CREATE VIEW employee_names AS
 SELECT ename FROM scott.emp@hr;

CREATE SYNONYM employee FOR scott.emp@hr;

Oracle expands the employee synonym definition and stores it as:

scott.emp@hr.uk.acme.com

If you... Then Oracle...

Create a view Does not expand partial global names—the data dictionary
stores the exact text of the defining query. Instead, Oracle
expands a partial global object name each time a statement that
uses the view is parsed.

Create a synonym Expands partial global names. The definition of the synonym
stored in the data dictionary includes the expanded global
object name.

Compile a program unit Expands partial global names.

Transaction Processing in a Distributed System

Distributed Database Concepts 28-43

Scenario 1: Both Databases Change Names First, consider the situation where both the

Sales and Human Resources departments are relocated to the United States.

Consequently, the corresponding global database names are both changed as

follows:

The following table describes query expansion before and after the change in global

names:

Scenario 2: One Database Changes Names Now consider that only the Sales department

is moved to the United States; Human Resources remains in the UK. Consequently,

the corresponding global database names are both changed as follows:

The following table describes query expansion before and after the change in global

names:

Old Global Name New Global Name

sales.uk.acme.com sales.us.oracle.com

hq.uk.acme.com hq.us.acme.com

Query on sales Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.us.acme.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.uk.acme.com

Old Global Name New Global Name

sales.uk.acme.com sales.us.oracle.com

hq.uk.acme.com no change

Query on sales Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.us.acme.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.acme.com

SELECT * FROM
scott.emp@hr.uk.acme.com

Distributed Database Application Development

28-44 Oracle9i Database Administrator’s Guide

In this case, the defining query of the employee_names view expands to a

non-existent global database name. On the other hand, the employee synonym

continues to reference the correct database, hq.uk.acme.com .

Distributed Database Application Development
Application development in a distributed system raises issues that are not

applicable in a nondistributed system. This section contains the following topics

relevant for distributed application development:

■ Transparency in a Distributed Database System

■ Remote Procedure Calls (RPCs)

■ Distributed Query Optimization

Transparency in a Distributed Database System
With minimal effort, you can develop applications that make an Oracle distributed

database system transparent to users that work with the system. The goal of

transparency is to make a distributed database system appear as though it is a

single Oracle database. Consequently, the system does not burden developers and

users of the system with complexities that would otherwise make distributed

database application development challenging and detract from user productivity.

The following sections explain more about transparency in a distributed database

system.

Location Transparency
An Oracle distributed database system has features that allow application

developers and administrators to hide the physical location of database objects from

applications and users. Location transparency exists when a user can universally

refer to a database object such as a table, regardless of the node to which an

application connects. Location transparency has several benefits, including:

■ Access to remote data is simple, because database users do not need to know

the physical location of database objects.

■ Administrators can move database objects with no impact on end-users or

existing database applications.

See Also: Chapter 30, "Developing Applications for a Distributed

Database System" to learn how to develop applications for

distributed systems

Distributed Database Application Development

Distributed Database Concepts 28-45

Typically, administrators and developers use synonyms to establish location

transparency for the tables and supporting objects in an application schema. For

example, the following statements create synonyms in a database for tables in

another, remote database.

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.acme_auto.com;
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.acme_auto.com;

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.acme_auto.com e,
 scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

An application can issue a much simpler query that does not have to account for the

location of the remote tables.

SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to

establish location transparency for applications that work in a distributed database

system.

SQL and COMMIT Transparency
Oracle’s distributed database architecture also provides query, update, and

transaction transparency. For example, standard SQL statements such as SELECT,
INSERT, UPDATE, and DELETE work just as they do in a nondistributed database

environment. Additionally, applications control transactions using the standard

SQL statements COMMIT, SAVEPOINT, and ROLLBACK—there is no requirement for

complex programming or other special operations to provide distributed

transaction control.

■ The statements in a single transaction can reference any number of local or

remote tables.

■ Oracle guarantees that all nodes involved in a distributed transaction take the

same action: they either all commit or all roll back the transaction.

■ If a network or system failure occurs during the commit of a distributed

transaction, the transaction is automatically and transparently resolved globally.

Distributed Database Application Development

28-46 Oracle9i Database Administrator’s Guide

Specifically, when the network or system is restored, the nodes either all

commit or all roll back the transaction.

Internal to Oracle, each committed transaction has an associated system change
number (SCN) to uniquely identify the changes made by the statements within that

transaction. In a distributed database, the SCNs of communicating nodes are

coordinated when:

■ A connection is established using the path described by one or more database

links.

■ A distributed SQL statement is executed.

■ A distributed transaction is committed.

Among other benefits, the coordination of SCNs among the nodes of a distributed

database system allows global distributed read-consistency at both the statement

and transaction level. If necessary, global distributed time-based recovery can also

be completed.

Replication Transparency
Oracle also provide many features to transparently replicate data among the nodes

of the system. For more information about Oracle’s replication features, see Oracle9i
Replication.

Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that

work with a distributed database. Applications can make local procedure calls to

perform work at the local database and remote procedure calls (RPCs) to perform

work at a remote database.

When a program calls a remote procedure, the local server passes all procedure

parameters to the remote server in the call. For example, the following PL/SQL

program unit calls the packaged procedure del_emp located at the remote sales
database and passes it the parameter 1257:

BEGIN
 emp_mgmt.del_emp@sales.us.americas.acme_auto.com(1257);
END;

In order for the RPC to succeed, the called procedure must exist at the remote site,

and the user being connected to must have the proper privileges to execute the

procedure.

Character Set Support for Distributed Environments

Distributed Database Concepts 28-47

When developing packages and procedures for distributed database systems,

developers must code with an understanding of what program units should do at

remote locations, and how to return the results to a calling application.

Distributed Query Optimization
Distributed query optimization is an Oracle feature that reduces the amount of

data transfer required between sites when a transaction retrieves data from remote

tables referenced in a distributed SQL statement.

Distributed query optimization uses Oracle’s cost-based optimization to find or

generate SQL expressions that extract only the necessary data from remote tables,

process that data at a remote site or sometimes at the local site, and send the results

to the local site for final processing. This operation reduces the amount of required

data transfer when compared to the time it takes to transfer all the table data to the

local site for processing.

Using various cost-based optimizer hints such as DRIVING_SITE , NO_MERGE, and

INDEX, you can control where Oracle processes the data and how it accesses the

data.

Character Set Support for Distributed Environments
Oracle supports environments in which clients, Oracle database servers, and

non-Oracle servers use different character sets. In Oracle, NCHAR support is

provided for heterogeneous environments. You can set a variety of National

Language Support (NLS) and Heterogeneous Services (HS) environment variables

and initialization parameters to control data conversion between different character

sets.

Character settings are defined by the following NLS and HS parameters:

See Also: "Using Cost-Based Optimization" on page 30-5 for more

information about cost-based optimization

Parameters Environment Defined For

NLS_LANG
(environment variable)

Client-Server Client

NLS_LANGUAGE

NLS_CHARACTERSET

NLS_TERRITORY

Client-Server

Non-Heterogeneous Distributed

Heterogeneous Distributed

Oracle database server

Character Set Support for Distributed Environments

28-48 Oracle9i Database Administrator’s Guide

Client/Server Environment
In a client/server environment, set the client character set to be the same as or a

subset of the Oracle database server character set, as illustrated in Figure 28–6:

Figure 28–6 NLS Parameter Settings in a Client-Server Environment

Homogeneous Distributed Environment
In a non-heterogeneous environment, the client and server character sets should be

either the same as or subsets of the main server character set, as illustrated in

Figure 28–7:

HS_LANGUAGE Heterogeneous Distributed Non-Oracle server

Transparent gateway

NLS_NCHAR
(environment variable)

HS_NLS_NCHAR

Heterogeneous Distributed Oracle database server

Transparent gateway

See Also:

■ Oracle9i Database Globalization Support Guide for information

about NLS parameters

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide for

information about HS parameters

Parameters Environment Defined For

Oracle

NLS_LANG =
NLS settings of
Oracle server or
subset of it

Character Set Support for Distributed Environments

Distributed Database Concepts 28-49

Figure 28–7 NLS Parameter Settings in a Homogeneous Environment

Heterogeneous Distributed Environment
In a heterogeneous environment, the NLS settings of the client, the transparent

gateway, and the non-Oracle data source should be either the same or a subset of

the Oracle database server character set as illustrated in Figure 28–8. Transparent

gateways have full globalization support.

Oracle Oracle

NLS_LANG =
NLS settings of Oracle
server(s) or subset(s)
of it

NLS setting similar or
subset of the other
Oracle server

Character Set Support for Distributed Environments

28-50 Oracle9i Database Administrator’s Guide

Figure 28–8 NLS Parameter Settings in a Heterogeneous Environment

In a heterogeneous environment, only transparent gateways built with HS

technology support complete NCHAR capabilities. Whether a specific transparent

gateway supports NCHAR depends on the non-Oracle data source it is targeting. For

information on how a particular transparent gateway handles NCHAR support,

consult the system-specific transparent gateway documentation.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more detailed information about Heterogeneous Services

Oracle

Non-Oracle

Gateway
Agent

NLS settings to be the
same or the subset
of Oracle server
NLS setting

NLS_LANG =
NLS settings of Oracle
server or subset of it

Managing a Distributed Database 29-1

29
Managing a Distributed Database

This chapter describes how to manage and maintain a distributed database system

and contains the following topics:

■ Managing Global Names in a Distributed System

■ Creating Database Links

■ Creating Shared Database Links

■ Managing Database Links

■ Viewing Information About Database Links

■ Creating Location Transparency

■ Managing Statement Transparency

■ Managing a Distributed Database: Scenarios

Managing Global Names in a Distributed System

29-2 Oracle9i Database Administrator’s Guide

Managing Global Names in a Distributed System
In a distributed database system, each database should have a unique global
database name. Global database names uniquely identify a database in the system.

A primary administration task in a distributed system is managing the creation and

alteration of global database names.

This section contains the following topics:

■ Understanding How Global Database Names Are Formed

■ Determining Whether Global Naming Is Enforced

■ Viewing a Global Database Name

■ Changing the Domain in a Global Database Name

■ Changing a Global Database Name: Scenario

Understanding How Global Database Names Are Formed
A global database name is formed from two components: a database name and a

domain. The database name and the domain name are determined by the following

initialization parameters at database creation:

These are examples of valid global database names:

Component Parameter Requirements Example

Database name DB_NAME Must be eight characters or less. sales

Domain
containing the
database

DB_DOMAIN Must follow standard Internet
conventions. Levels in domain
names must be separated by dots
and the order of domain names is
from leaf to root, left to right.

us.acme.com

DB_NAME DB_DOMAIN Global Database Name

sales au.oracle.com sales.au.oracle.com

sales us.oracle.com sales.us.oracle.com

mktg us.oracle.com mktg.us.oracle.com

payroll nonprofit.org payroll.nonprofit.org

Managing Global Names in a Distributed System

Managing a Distributed Database 29-3

The DB_DOMAINinitialization parameter is only important at database creation time

when it is used, together with the DB_NAME parameter, to form the database’s

global name. At this point, the database’s global name is stored in the data

dictionary. You must change the global name using an ALTER DATABASE
statement, not by altering the DB_DOMAIN parameter in the initialization parameter

file. It is good practice, however, to change the DB_DOMAIN parameter to reflect the

change in the domain name before the next database startup.

Determining Whether Global Naming Is Enforced
The name that you give to a link on the local database depends on whether the

remote database that you want to access enforces global naming. If the remote

database enforces global naming, then you must use the remote database’s global

database name as the name of the link. For example, if you are connected to the

local hq server and want to create a link to the remote mfg database, and mfg
enforces global naming, then you must use mfg ’s global database name as the link

name.

You can also use service names as part of the database link name. For example, if

you use the service names sn1 and sn2 to connect to database hq.acme.com , and

hq enforces global naming, then you can create the following link names to hq :

■ HQ.ACME.COM@SN1

■ HQ.ACME.COM@SN2

To determine whether global naming on a database is enforced on a database, either

examine the database’s initialization parameter file or query the V$PARAMETER
view. For example, to see whether global naming is enforced on mfg , you could

start a session on mfg and then create and execute the following

globalnames.sql script (sample output included):

COL NAME FORMAT A12
COL VALUE FORMAT A6
SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'global_names'
/

See Also: "Using Connection Qualifiers to Specify Service Names

Within Link Names" on page 29-13 for more information about

using services names in link names

Managing Global Names in a Distributed System

29-4 Oracle9i Database Administrator’s Guide

SQL> @globalnames

NAME VALUE
------------ ------
global_names FALSE

Viewing a Global Database Name
Use the data dictionary view GLOBAL_NAME to view the database’s global name.

For example, issue the following:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME

SALES.AU.ORACLE.COM

Changing the Domain in a Global Database Name
Use the ALTER DATABASE statement to change the domain in a database’s global

name. Note that after the database is created, changing the initialization parameter

DB_DOMAIN has no effect on the global database name or on the resolution of

database link names.

The following example shows the syntax for the renaming statement, where database
is a database name and domain is the network domain:

ALTER DATABASE RENAME GLOBAL_NAME TOdatabase.domain ;

Use the following procedure to change the domain in a global database name:

1. Determine the current global database name. For example, issue:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.AU.ORACLE.COM

2. Rename the global database name using an ALTER DATABASE statement. For

example, enter:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.oracle.com;

3. Query the GLOBAL_NAME table to check the new name. For example, enter:

SELECT * FROM GLOBAL_NAME;

Managing Global Names in a Distributed System

Managing a Distributed Database 29-5

GLOBAL_NAME
--
SALES.US.ORACLE.COM

Changing a Global Database Name: Scenario
In this scenario, you change the domain part of the global database name of the

local database. You also create database links using partially-specified global names

to test how Oracle resolves the names. You discover that Oracle resolves the partial

names using the domain part of the current global database name of the local

database, not the value for the initialization parameter DB_DOMAIN.

1. You connect to SALES.US.ACME.COM and query the GLOBAL_NAME data

dictionary view to determine the database’s current global name:

CONNECT SYSTEM/password @sales.us.acme.com
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.US.ACME.COM

2. You query the V$PARAMETER view to determine the current setting for the DB_
DOMAIN initialization parameter:

SELECT NAME, VALUE FROM V$PARAMETER WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.ACME.COM

3. You then create a database link to a database called hq , using only a

partially-specified global name:

CREATE DATABASE LINK hq USING 'sales';

Oracle expands the global database name for this link by appending the domain

part of the global database name of the local database to the name of the

database specified in the link.

4. You query USER_DB_LINKS to determine which domain name Oracle uses to

resolve the partially specified global database name:

SELECT DB_LINK FROM USER_DB_LINKS;

Managing Global Names in a Distributed System

29-6 Oracle9i Database Administrator’s Guide

DB_LINK

HQ.US.ACME.COM

This result indicates that the domain part of the global database name of the

local database is us.acme.com . Oracle uses this domain in resolving partial

database link names when the database link is created.

5. Because you have received word that the sales database will move to Japan,

you rename the sales database to sales.jp.acme.com :

ALTER DATABASE RENAME GLOBAL_NAME TO sales.jp.acme.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.JP.ACME.COM

6. You query V$PARAMETER again and discover that the value of DB_DOMAIN is
not changed, although you renamed the domain part of the global database

name:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.ACME.COM

This result indicates that the value of the DB_DOMAINinitialization parameter is

independent of the ALTER DATABASE RENAME GLOBAL_NAMEstatement. The

ALTER DATABASE statement determines the domain of the global database

name, not the DB_DOMAIN initialization parameter (although it is good practice

to alter DB_DOMAIN to reflect the new domain name).

7. You create another database link to database supply , and then query USER_
DB_LINKS to see how Oracle resolves the domain part of supply ’s global

database name:

CREATE DATABASE LINK supply USING 'supply';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.ACME.COM
SUPPLY.JP.ACME.COM

Managing Global Names in a Distributed System

Managing a Distributed Database 29-7

This result indicates that Oracle resolves the partially specified link name by

using the domain jp.acme.com. This domain is used when the link is created

because it is the domain part of the global database name of the local database.

Oracle does not use the DB_DOMAIN initialization parameter setting when

resolving the partial link name.

8. You then receive word that your previous information was faulty: sales will

be in the ASIA.JP.ACME.COM domain, not the JP.ACME.COM domain.

Consequently, you rename the global database name as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.asia.jp.acme.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.ASIA.JP.ACME.COM

9. You query V$PARAMETER to again check the setting for the parameter DB_
DOMAIN:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

NAME VALUE
---------- -----------
db_domain US.ACME.COM

The result indicates that the domain setting in the parameter file is exactly the

same as it was before you issued either of the ALTER DATABASE RENAME
statements.

10. Finally, you create a link to the warehouse database and again query USER_
DB_LINKS to determine how Oracle resolves the partially-specified global

name:

CREATE DATABASE LINK warehouse USING 'warehouse';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.ACME.COM
SUPPLY.JP.ACME.COM
WAREHOUSE.ASIA.JP.ACME.COM

Creating Database Links

29-8 Oracle9i Database Administrator’s Guide

Again, you see that Oracle uses the domain part of the global database name of

the local database to expand the partial link name during link creation.

Creating Database Links
To support application access to the data and schema objects throughout a

distributed database system, you must create all necessary database links. This

section contains the following topics:

■ Obtaining Privileges Necessary for Creating Database Links

■ Specifying Link Types

■ Specifying Link Users

■ Using Connection Qualifiers to Specify Service Names Within Link Names

Obtaining Privileges Necessary for Creating Database Links
A database link is a pointer in the local database that allows you to access objects on

a remote database. To create a private database link, you must have been granted

the proper privileges. The following table illustrates which privileges are required

on which database for which type of link:

To see which privileges you currently have available, query ROLE_SYS_PRIVS. For

example, you could create and execute the following privs.sql script (sample

output included):

SELECT DISTINCT PRIVILEGE AS "Database Link Privileges"

Note: In order to correct the supply database link, it must be

dropped and re-created.

See Also: Oracle9i Database Reference for more information about

specifying the DB_NAME and DB_DOMAIN initialization parameters

Privilege Database Required For

CREATE DATABASE LINK Local Creation of a private database link.

CREATE PUBLIC DATABASE LINK Local Creation of a public database link.

CREATE SESSION Remote Creation of any type of database link.

Creating Database Links

Managing a Distributed Database 29-9

FROM ROLE_SYS_PRIVS
WHERE PRIVILEGE IN ('CREATE SESSION','CREATE DATABASE LINK',
 'CREATE PUBLIC DATABASE LINK')
/

SQL> @privs

Database Link Privileges
--
CREATE DATABASE LINK
CREATE PUBLIC DATABASE LINK
CREATE SESSION

Specifying Link Types
When you create a database link, you must decide who will have access to it. The

following sections describe how to create the three basic types of links:

■ Creating Private Database Links

■ Creating Public Database Links

■ Creating Global Database Links

Creating Private Database Links
To create a private database link, specify the following (where link_name is the

global database name or an arbitrary link name):

CREATE DATABASE LINK link_name ...;

Following are examples of private database links:

This SQL Statement... Creates...

CREATE DATABASE LINK
supply.us.acme.com;

A private link using the global database name to the
remote supply database.

The link uses the userid/password of the connected
user. So if scott (identified by tiger) uses the link
in a query, the link establishes a connection to the
remote database as scott/tiger .

CREATE DATABASE LINK link_2
CONNECT TO jane IDENTIFIED
BY doe USING 'us_supply';

A private fixed user link called link_2 to the
database with service name us_supply . The link
connects to the remote database with the
userid/password of jane/doe regardless of the
connected user.

Creating Database Links

29-10 Oracle9i Database Administrator’s Guide

Creating Public Database Links
To create a public database link, use the keyword PUBLIC (where link_name is the

global database name or an arbitrary link name):

CREATE PUBLIC DATABASE LINK link_name ...;

Following are examples of public database links:

CREATE DATABASE LINK link_1
CONNECT TO CURRENT_USER
USING 'us_supply';

A private link called link_1 to the database with
service name us_supply . The link uses the
userid/password of the current user to log onto the
remote database.

Note: The current user may not be the same as the
connected user, and must be a global user on both
databases involved in the link (see "Users of
Database Links" on page 28-16). Current user links
are part of the Oracle Advanced Security option.

See Also: Oracle9i SQL Reference for CREATE DATABASE LINK
syntax

This SQL Statement... Creates...

CREATE PUBLIC DATABASE LINK
supply.us.acme.com;

A public link to the remote supply database.
The link uses the userid/password of the
connected user. So if scott (identified by
tiger) uses the link in a query, the link
establishes a connection to the remote database
as scott/tiger .

CREATE PUBLIC DATABASE LINK
pu_link CONNECT TO
CURRENT_USER USING 'supply';

A public link called pu_link to the database
with service name supply . The link uses the
userid/password of the current user to log
onto the remote database.

Note: The current user may not be the same as
the connected user, and must be a global user
on both databases involved in the link (see
"Users of Database Links" on page 28-16).

CREATE PUBLIC DATABASE LINK
sales.us.acme.com
CONNECT TO jane IDENTIFIED BY
doe;

A public fixed user link to the remote sales
database. The link connects to the remote
database with the userid/password of
jane/doe .

This SQL Statement... Creates...

Creating Database Links

Managing a Distributed Database 29-11

Creating Global Database Links
You must define global database links in the Oracle Names Server. See the Oracle9i
Net Services Administrator’s Guide to learn how to create global database links.

Specifying Link Users
A database link defines a communication path from one database to another. When

an application uses a database link to access a remote database, Oracle establishes a

database session in the remote database on behalf of the local application request.

When you create a private or public database link, you can determine which

schema on the remote database the link will establish connections to by creating

fixed user, current user, and connected user database links.

Creating Fixed User Database Links
To create a fixed user database link, you embed the credentials (in this case, a

username and password) required to access the remote database in the definition of

the link:

CREATE DATABASE LINK ... CONNECT TO username IDENTIFIED BY password ...;

Following are examples of fixed user database links:

When an application uses a fixed user database link, the local server always

establishes a connection to a fixed remote schema in the remote database. The local

server also sends the fixed user’s credentials across the network when an

application uses the link to access the remote database.

See Also: Oracle9i SQL Reference for CREATE PUBLIC DATABASE
LINK syntax

This SQL Statement... Creates...

CREATE PUBLIC DATABASE LINK
supply.us.acme.com CONNECT
TO scott AS tiger;

A public link using the global database name to the
remote supply database. The link connects to the
remote database with the userid/password
scott/tiger .

CREATE DATABASE LINK foo
CONNECT TO jane IDENTIFIED
BY doe USING 'finance';

A private fixed user link called foo to the database
with service name finance . The link connects to
the remote database with the userid/password
jane/doe .

Creating Database Links

29-12 Oracle9i Database Administrator’s Guide

Creating Connected User and Current User Database Links
Connected user and current user database links do not include credentials in the

definition of the link. The credentials used to connect to the remote database can

change depending on the user that references the database link and the operation

performed by the application.

For an extended conceptual discussion of the distinction between connected users

and current users, see "Users of Database Links" on page 28-16.

Creating a Connected User Database Link To create a connected user database link, omit

the CONNECT TO clause. The following syntax creates a connected user database

link, where dblink is the name of the link and net_service_name is an optional connect

string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink ... [USING ' net_service_name '];

For example, to create a connected user database link, use the following syntax:

CREATE DATABASE LINK sales.division3.acme.com USING 'sales';

Creating a Current User Database Link To create a current user database link, use the

CONNECT TO CURRENT_USER clause in the link creation statement. Current user

links are only available through the Oracle Advanced Security option.

The following syntax creates a current user database link, where dblink is the name

of the link and net_service_name is an optional connect string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink CONNECT TO CURRENT_USER
[USING ' net_service_name '];

For example, to create a connected user database link to the sales database, you

might use the following syntax:

CREATE DATABASE LINK sales CONNECT TO CURRENT_USER USING 'sales';

Note: For many distributed applications, you do not want a user

to have privileges in a remote database. One simple way to achieve

this result is to create a procedure that contains a fixed user or

current user database link within it. In this way, the user accessing

the procedure temporarily assumes someone else’s privileges.

Note: To use a current user database link, the current user must be

a global user on both databases involved in the link.

Creating Database Links

Managing a Distributed Database 29-13

Using Connection Qualifiers to Specify Service Names Within Link Names
In some situations, you may want to have several database links of the same type

(for example, public) that point to the same remote database, yet establish

connections to the remote database using different communication pathways. Some

cases in which this strategy is useful are:

■ A remote database is part of an Oracle Real Application Clusters configuration,

so you define several public database links at your local node so that

connections can be established to specific instances of the remote database.

■ Some clients connect to the Oracle server using TCP/IP while others use

DECNET.

To facilitate such functionality, Oracle allows you to create a database link with an

optional service name in the database link name. When creating a database link, a

service name is specified as the trailing portion of the database link name, separated

by an @ sign, as in @sales . This string is called a connection qualifier.

For example, assume that remote database hq.acme.com is managed in a Oracle

Real Application Clusters environment. The hq database has two instances named

hq_1 and hq_2 . The local database can contain the following public database links

to define pathways to the remote instances of the hq database:

CREATE PUBLIC DATABASE LINK hq.acme.com@hq_1
 USING 'string_to_hq_1';
CREATE PUBLIC DATABASE LINK hq.acme.com@hq_2
 USING 'string_to_hq_2';
CREATE PUBLIC DATABASE LINK hq.acme.com
 USING 'string_to_hq';

Notice in the first two examples that a service name is simply a part of the database

link name. The text of the service name does not necessarily indicate how a

connection is to be established; this information is specified in the service name of

the USING clause. Also notice that in the third example, a service name is not

specified as part of the link name. In this case, just as when a service name is

specified as part of the link name, the instance is determined by the USING string.

To use a service name to specify a particular instance, include the service name at

the end of the global object name:

SELECT * FROM scott.emp@hq.acme.com@hq_1

See Also: Oracle9i SQL Reference for more syntax information

about creating database links

Creating Shared Database Links

29-14 Oracle9i Database Administrator’s Guide

Note that in this example, there are two @ symbols.

Creating Shared Database Links
Every application that references a remote server using a standard database link

establishes a connection between the local database and the remote database. Many

users running applications simultaneously can cause a high number of connections

between the local and remote databases.

Shared database links enable you to limit the number of network connections

required between the local server and the remote server.

This section contains the following topics:

■ Determining Whether to Use Shared Database Links

■ Creating Shared Database Links

■ Configuring Shared Database Links

Determining Whether to Use Shared Database Links
Look carefully at your application and shared server configuration to determine

whether to use shared links. A simple guideline is to use shared database links

when the number of users accessing a database link is expected to be much larger

than the number of server processes in the local database.

The following table illustrates three possible configurations involving database

links:

See Also: "What Are Shared Database Links?" on page 28-10 for a

conceptual overview of shared database links

Link Type Server Mode Consequences

Non-Shared Dedicated/shared
server

If your application uses a standard public database
link, and 100 users simultaneously require a
connection, then 100 direct network connections to
the remote database are required.

Shared shared server If 10 shared server processes exist in the local
shared server mode database, then 100 users that
use the same database link require 10 or fewer
network connections to the remote server. Each
local shared server process may only need one
connection to the remote server.

Creating Shared Database Links

Managing a Distributed Database 29-15

Shared database links are not useful in all situations. Assume that only one user

accesses the remote server. If this user defines a shared database link and 10 shared

server processes exist in the local database, then this user can require up to 10

network connections to the remote server. Because the user can use each shared

server process, each process can establish a connection to the remote server.

Clearly, a non-shared database link is preferable in this situation because it requires

only one network connection. Shared database links lead to more network

connections in single-user scenarios, so use shared links only when many users

need to use the same link. Typically, shared links are used for public database links,

but can also be used for private database links when many clients access the same

local schema (and therefore the same private database link).

Creating Shared Database Links
To create a shared database link, use the keyword SHARED in the CREATE
DATABASE LINK statement:

CREATE SHARED DATABASE LINKdblink_name
[CONNECT TO username IDENTIFIED BY password]|[CONNECT TO CURRENT_USER]
AUTHENTICATED BYschema_name IDENTIFIED BY password
[USING ' service_name '];

The following example creates a fixed user, shared link to database sales ,

connecting as scott and authenticated as keith :

CREATE SHARED DATABASE LINK link2sales
CONNECT TO scott IDENTIFIED BY tiger
AUTHENTICATED BY keith IDENTIFIED BY richards
USING 'sales';

Whenever you use the keyword SHARED, the clause AUTHENTICATED BY is
required. The schema specified in the AUTHENTICATED BY clause is only used for

security reasons and can be considered a dummy schema. It is not affected when

using shared database links, nor does it affect the users of the shared database link.

Shared Dedicated If 10 clients connect to a local dedicated server, and
each client has 10 sessions on the same connection
(thus establishing 100 sessions overall), and each
session references the same remote database, then
only 10 connections are needed. With a non-shared
database link, 100 connections are needed.

Link Type Server Mode Consequences

Creating Shared Database Links

29-16 Oracle9i Database Administrator’s Guide

The AUTHENTICATED BY clause is required to prevent unauthorized clients from

masquerading as a database link user and gaining access to privileged information.

Configuring Shared Database Links
You can configure shared database links in the following ways:

■ Creating Shared Links to Dedicated Servers

■ Creating Shared Links to Shared Servers

Creating Shared Links to Dedicated Servers
In the configuration illustrated in Figure 29–1, a shared server process in the local

server owns a dedicated remote server process. The advantage is that a direct

network transport exists between the local shared server and the remote dedicated

server. A disadvantage is that extra back-end server processes are needed.

See Also: Oracle9i SQL Reference for information about the

CREATE DATABASE LINK statement

Note: The remote server can either be a shared server or dedicated

server. There is a dedicated connection between the local and

remote servers. When the remote server is a shared server, you can

force a dedicated server connection by using the

(SERVER=DEDICATED) clause in the definition of the service name.

Creating Shared Database Links

Managing a Distributed Database 29-17

Figure 29–1 A Shared Database Link to Dedicated Server Processes

.

Creating Shared Links to Shared Servers
The configuration illustrated in Figure 29–2 uses shared server processes on the

remote server. This configuration eliminates the need for more dedicated servers,

but requires the connection to go through the dispatcher on the remote server. Note

that both the local and the remote server must be configured as shared servers.

Oracle
Server Code

System Global Area

Oracle
Server Code

Dedicated
Server

Process

Oracle
Server Code

System Global Area

Database Server

Client Workstation

Shared
Server
Processes

Dispatcher Processes

User
Process

Managing Database Links

29-18 Oracle9i Database Administrator’s Guide

Figure 29–2 Shared Database Link to Shared Server

Managing Database Links
This section contains the following topics:

■ Closing Database Links

■ Dropping Database Links

See Also: Oracle9i Net Services Administrator’s Guide for

information about the shared server option

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server
ProcessesDispatcher Processes

System Global Area

User
Process

Shared
Server
ProcessesDispatcher Processes

Oracle
Server Code

Oracle
Server Code

Managing Database Links

Managing a Distributed Database 29-19

■ Limiting the Number of Active Database Link Connections

Closing Database Links
If you access a database link in a session, then the link remains open until you close

the session. A link is open in the sense that a process is active on each of the remote

databases accessed through the link. This situation has the following consequences:

■ If 20 users open sessions and access the same public link in a local database,

then 20 database link connections are open.

■ If 20 users open sessions and each user accesses a private link, then 20 database

link connections are open.

■ If one user starts a session and accesses 20 different links, then 20 database link

connections are open.

After you close a session, the links that were active in the session are automatically

closed. You may have occasion to close the link manually. For example, close links

when:

■ The network connection established by a link is used infrequently in an

application.

■ The user session must be terminated.

If you want to close a link, issue the following statement, where linkname refers to

the name of the link:

ALTER SESSION CLOSE DATABASE LINK linkname ;

Note that this statement only closes the links that are active in your current session.

Dropping Database Links
You can drop a database link just as you can drop a table or view. If the link is

private, then it must be in your schema. If the link is public, then you must have the

DROP PUBLIC DATABASE LINK system privilege.

The statement syntax is as follows, where dblink is the name of the link:

DROP [PUBLIC] DATABASE LINK dblink ;

Procedure for Dropping a Private Database Link

1. Connect to the local database using SQL*Plus. For example, enter:

Managing Database Links

29-20 Oracle9i Database Administrator’s Guide

CONNECT scott/tiger@ local_db

2. Query USER_DB_LINKS to view the links that you own. For example, enter:

SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

SALES.US.ORACLE.COM
MKTG.US.ORACLE.COM
2 rows selected.

3. Drop the desired link using the DROP DATABASE LINK statement. For

example, enter:

DROP DATABASE LINK sales.us.oracle.com;

Procedure for Dropping a Public Database Link

1. Connect to the local database as a user with the DROP PUBLIC DATABASE
LINK privilege. For example, enter:

CONNECT SYSTEM/password @local_db AS SYSDBA

2. Query DBA_DB_LINKS to view the public links. For example, enter:

SELECT DB_LINK FROM USER_DB_LINKS
 WHERE OWNER = 'PUBLIC';

DB_LINK

DBL1.US.ORACLE.COM
SALES.US.ORACLE.COM
INST2.US.ORACLE.COM
RMAN2.US.ORACLE.COM
4 rows selected.

3. Drop the desired link using the DROP PUBLIC DATABASE LINK statement.

For example, enter:

DROP PUBLIC DATABASE LINK sales.us.oracle.com;

Limiting the Number of Active Database Link Connections
You can limit the number of connections from a user process to remote databases

using the static initialization parameter OPEN_LINKS. This parameter controls the

Viewing Information About Database Links

Managing a Distributed Database 29-21

number of remote connections that a single user session can use concurrently in

distributed transactions.

Note the following considerations for setting this parameter:

■ The value should be greater than or equal to the number of databases referred

to in a single SQL statement that references multiple databases.

■ Increase the value if several distributed databases are accessed over time. Thus,

if you regularly access three database, set OPEN_LINKS to 3 or greater.

■ The default value for OPEN_LINKS is 4. If OPEN_LINKS is set to 0, then no

distributed transactions are allowed.

Viewing Information About Database Links
The data dictionary of each database stores the definitions of all the database links

in the database. You can use data dictionary tables and views to gain information

about the links. This section contains the following topics:

■ Determining Which Links Are in the Database

■ Determining Which Link Connections Are Open

Determining Which Links Are in the Database
The following views show the database links that have been defined at the local

database and stored in the data dictionary:

These data dictionary views contain the same basic information about database

links, with some exceptions:

See Also: Oracle9i Database Reference for more information about

OPEN_LINKS

View Purpose

DBA_DB_LINKS Lists all database links in the database.

ALL_DB_LINKS Lists all database links accessible to the connected user.

USER_DB_LINKS Lists all database links owned by the connected user.

Column Which Views? Description

OWNER All except USER_* The user who created the database link. If the link is
public, then the user is listed as PUBLIC.

Viewing Information About Database Links

29-22 Oracle9i Database Administrator’s Guide

Any user can query USER_DB_LINKS to determine which database links are

available to that user. Only those with additional privileges can use the ALL_DB_
LINKS or DBA_DB_LINKS view.

The following script queries the DBA_DB_LINKS view to access link information:

COL OWNER FORMAT a10
COL USERNAME FORMAT A8 HEADING "USER"
COL DB_LINK FORMAT A30
COL HOST FORMAT A7 HEADING "SERVICE"
SELECT * FROM DBA_DB_LINKS
/
Here, the script is invoked and the resulting output is shown:

SQL>@link_script

OWNER DB_LINK USER SERVICE CREATED
---------- ------------------------------ -------- ------- ----------
SYS TARGET.US.ACME.COM SYS inst1 23-JUN-99
PUBLIC DBL1.UK.ACME.COM BLAKE ora51 23-JUN-99
PUBLIC RMAN2.US.ACME.COM inst2 23-JUN-99
PUBLIC DEPT.US.ACME.COM inst2 23-JUN-99
JANE DBL.UK.ACME.COM BLAKE ora51 23-JUN-99
SCOTT EMP.US.ACME.COM SCOTT inst2 23-JUN-99
6 rows selected.

Authorization for Viewing Password Information
Only USER_DB_LINKS contains a column for password information. However, if

you are an administrative user (SYS or users who connect AS SYSDBA), then you

can view passwords for all links in the database by querying the LINK$ table. If you

DB_LINK All The name of the database link.

USERNAME All If the link definition includes a fixed user, then this
column displays the username of the fixed user. If
there is no fixed user, the column is NULL.

PASSWORD Only USER_* The password for logging into the remote database.

HOST All The net service name used to connect to the remote
database.

CREATED All Creation time of the database link.

Column Which Views? Description

Viewing Information About Database Links

Managing a Distributed Database 29-23

are not an administrative user, you can be authorized to query the LINK$ table by

one of the following methods:

■ Being granted specific object privilege for the LINK$ table

■ Being granted the SELECT ANY DICTIONARY system privilege

Viewing Password Information
You can create and run the following script in SQL*Plus to obtain password

information (sample output included):

COL USERID FORMAT A10
COL PASSWORD FORMAT A10
SELECT USERID,PASSWORD
 FROM SYS.LINK$
 WHERE PASSWORD IS NOT NULL
/

SQL>@linkpwd

USERID PASSWORD
---------- ----------
SYS ORACLE
BLAKE TYGER
SCOTT TIGER
3 rows selected.

Viewing Authentication Passwords
It is possible to view AUTHENTICATED BY ... IDENTIFIED BY ... usernames

and passwords for all links in the database by querying the LINK$ table. You can

create and run the following script in SQL*Plus to obtain password information

(sample output included):

COL AUTHUSR FORMAT A10
COL AUTHPWD FORMAT A10
SELECT AUTHUSR AS userid, AUTHPWD AS password
 FROM SYS.LINK$
 WHERE PASSWORD IS NOT NULL
/

See Also: "Understanding User Privileges and Roles" on

page 25-2 for more information about privileges necessary to view

objects in the SYS schema

Viewing Information About Database Links

29-24 Oracle9i Database Administrator’s Guide

SQL> @authpwd

USERID PASSWORD
---------- ----------
ELLIE MAY
1 row selected.

You can also view the link and password information together in a join by creating

and executing the following script (sample output included):

COL OWNER FORMAT A8
COL DB_LINK FORMAT A15
COL USERNAME FORMAT A8 HEADING "CON_USER"
COL PASSWORD FORMAT A8 HEADING "CON_PWD"
COL AUTHUSR FORMAT A8 HEADING "AUTH_USER"
COL AUTHPWD FORMAT A8 HEADING "AUTH_PWD"
COL HOST FORMAT A7 HEADING "SERVICE"
COL CREATED FORMAT A10

SELECT DISTINCT d.OWNER,d.DB_LINK,d.USERNAME,l.PASSWORD,
 l.AUTHUSR,l.AUTHPWD,d.HOST,d.CREATED
FROM DBA_DB_LINKS d, SYS.LINK$ l
WHERE PASSWORD IS NOT NULL
AND d.USERNAME = l.USERID
/

SQL> @user_and_pwd

OWNER DB_LINK CON_USER CON_PWD AUTH_USE AUTH_PWD SERVICE CREATED
-------- --------------- -------- -------- -------- -------- ------- ----------
JANE DBL.ACME.COM BLAKE TYGER ELLIE MAY ora51 23-JUN-99
PUBLIC DBL1.ACME.COM SCOTT TIGER ora51 23-JUN-99
SYS TARGET.ACME.COM SYS ORACLE inst1 23-JUN-99

Determining Which Link Connections Are Open
You may find it useful to determine which database link connections are currently

open in your session. Note that if you connect as SYSDBA, you cannot query a view

to determine all the links open for all sessions; you can only access the link

information in the session within which you are working.

The following views show the database link connections that are currently open in

your current session:

Viewing Information About Database Links

Managing a Distributed Database 29-25

These data dictionary views contain the same basic information about database

links, with one exception:

For example, you can create and execute the script below to determine which links

are open (sample output included):

COL DB_LINK FORMAT A25
COL OWNER_ID FORMAT 99999 HEADING "OWNID"
COL LOGGED_ON FORMAT A5 HEADING "LOGON"
COL HETEROGENEOUS FORMAT A5 HEADING "HETER"
COL PROTOCOL FORMAT A8
COL OPEN_CURSORS FORMAT 999 HEADING "OPN_CUR"

View Purpose

V$DBLINK Lists all open database links in your session, that is, all database
links with the IN_TRANSACTION column set to YES.

GV$DBLINK Lists all open database links in your session along with their
corresponding instances. This view is useful in an Oracle Real
Application Clusters configuration.

Column
Which
Views? Description

DB_LINK All The name of the database link.

OWNER_ID All The owner of the database link.

LOGGED_ON All Whether the database link is currently logged on.

HETEROGENEOUS All Whether the database link is homogeneous (NO) or
heterogeneous (YES).

PROTOCOL All The communication protocol for the database link.

OPEN_CURSORS All Whether cursors are open for the database link.

IN_TRANSACTION All Whether the database link is accessed in a
transaction that has not yet been committed or
rolled back.

UPDATE_SENT All Whether there was an update on the database link.

COMMIT_POINT_
STRENGTH

All The commit point strength of the transactions
using the database link.

INST_ID GV$DBLINK
only

The instance from which the view information
was obtained.

Creating Location Transparency

29-26 Oracle9i Database Administrator’s Guide

COL IN_TRANSACTION FORMAT A3 HEADING "TXN"
COL UPDATE_SENT FORMAT A6 HEADING "UPDATE"
COL COMMIT_POINT_STRENGTH FORMAT 99999 HEADING "C_P_S"

SELECT * FROM V$DBLINK
/

SQL> @dblink

DB_LINK OWNID LOGON HETER PROTOCOL OPN_CUR TXN UPDATE C_P_S
------------------------- ------ ----- ----- -------- ------- --- ------ ------
INST2.ACME.COM 0 YES YES UNKN 0 YES YES 255

Creating Location Transparency
After you have configured the necessary database links, you can use various tools

to hide the distributed nature of the database system from users. In other words,

users can access remote objects as if they were local objects. The following sections

explain how to hide distributed functionality from users:

■ Using Views to Create Location Transparency

■ Using Synonyms to Create Location Transparency

■ Using Procedures to Create Location Transparency

Using Views to Create Location Transparency
Local views can provide location transparency for local and remote tables in a

distributed database system.

For example, assume that table emp is stored in a local database and table dept is

stored in a remote database. To make these tables transparent to users of the system,

you can create a view in the local database that joins local and remote data:

CREATE VIEW company AS
 SELECT a.empno, a.ename, b.dname
 FROM scott.emp a, jward.dept@hq.acme.com b
 WHERE a.deptno = b.deptno;

Creating Location Transparency

Managing a Distributed Database 29-27

Figure 29–3 Views and Location Transparency

JWARD.DEPT

DEPTNO DNAME

MARKETING
SALES

20
30

Database Server

Database Server

HQ

Sales

Database

Database

SCOTT.EMP Table

EMPNO ENAME JOB

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

CLERK
SALESMAN
SALESMAN
MANAGER

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–89
22–JUN–92
02–APR–93

SAL

 800.00
1600.00
1250.00
2975.00

COMM

300.00
300.00
500.00

DEPTNO

20
30
30
20

COMPANY View

EMPNO ENAME DNAME

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MARKETING
SALES
SALES
MARKETING

Creating Location Transparency

29-28 Oracle9i Database Administrator’s Guide

When users access this view, they do not need to know where the data is physically

stored, or if data from more than one table is being accessed. Thus, it is easier for

them to get required information. For example, the following query provides data

from both the local and remote database table:

SELECT * FROM company;

The owner of the local view can grant only those object privileges on the local view

that have been granted by the remote user. (The remote user is implied by the type

of database link). This is similar to privilege management for views that reference

local data.

Using Synonyms to Create Location Transparency
Synonyms are useful in both distributed and nondistributed environments because

they hide the identity of the underlying object, including its location in a distributed

database system. If you must rename or move the underlying object, you only need

to redefine the synonym; applications based on the synonym continue to function

normally. Synonyms also simplify SQL statements for users in a distributed

database system.

Creating Synonyms
You can create synonyms for the following:

■ Tables

■ Types

■ Views

■ Materialized views

■ Sequences

■ Procedures

■ Functions

■ Packages

All synonyms are schema objects that are stored in the data dictionary of the

database in which they are created. To simplify remote table access through

database links, a synonym can allow single-word access to remote data, hiding the

specific object name and the location from users of the synonym.

The syntax to create a synonym is:

Creating Location Transparency

Managing a Distributed Database 29-29

CREATE [PUBLIC] synonym_name
FOR [schema.] object_name [@database_link_name];

where:

■ PUBLIC is a keyword specifying that this synonym is available to all users.

Omitting this parameter makes a synonym private, and usable only by the

creator. Public synonyms can be created only by a user with CREATE PUBLIC
SYNONYM system privilege.

■ synonym_name specifies the alternate object name to be referenced by users

and applications.

■ schema specifies the schema of the object specified in object_name . Omitting

this parameter uses the creator’s schema as the schema of the object.

■ object_name specifies either a table, view, sequence, materialized view, type,

procedure, function or package as appropriate.

■ database_link_name specifies the database link identifying the remote

database and schema in which the object specified in object_name is located.

A synonym must be a uniquely named object for its schema. If a schema contains a

schema object and a public synonym exists with the same name, then Oracle always

finds the schema object when the user that owns the schema references that name.

Example: Creating a Public Synonym
Assume that in every database in a distributed database system, a public synonym

is defined for the scott.emp table stored in the hq database:

CREATE PUBLIC SYNONYM emp FOR scott.emp@hq.acme.com;

You can design an employee management application without regard to where the

application is used because the location of the table scott.emp@hq.acme.com is

hidden by the public synonyms. SQL statements in the application access the table

by referencing the public synonym emp.

Furthermore, if you move the emp table from the hq database to the hr database,

then you only need to change the public synonyms on the nodes of the system. The

employee management application continues to function properly on all nodes.

Managing Privileges and Synonyms
A synonym is a reference to an actual object. A user who has access to a synonym

for a particular schema object must also have privileges on the underlying schema

object itself. For example, if the user attempts to access a synonym but does not

Creating Location Transparency

29-30 Oracle9i Database Administrator’s Guide

have privileges on the table it identifies, an error occurs indicating that the table or

view does not exist.

Assume scott creates local synonym emp as an alias for remote object

scott.emp@sales.acme.com. scott cannot grant object privileges on the

synonym to another local user. scott cannot grant local privileges for the synonym

because this operation amounts to granting privileges for the remote emp table on

the sales database, which is not allowed. This behavior is different from privilege

management for synonyms that are aliases for local tables or views.

Therefore, you cannot manage local privileges when synonyms are used for location

transparency. Security for the base object is controlled entirely at the remote node.

For example, user admin cannot grant object privileges for the EMP_SYN synonym.

Unlike a database link referenced in a view or procedure definition, a database link

referenced in a synonym is resolved by first looking for a private link owned by the

schema in effect at the time the reference to the synonym is parsed. Therefore, to

ensure the desired object resolution, it is especially important to specify the

underlying object’s schema in the definition of a synonym.

Using Procedures to Create Location Transparency
PL/SQL program units called procedures can provide location transparency. You

have these options:

■ Using Local Procedures to Reference Remote Data

■ Using Local Procedures to Call Remote Procedures

■ Using Local Synonyms to Reference Remote Procedures

Using Local Procedures to Reference Remote Data
Procedures or functions (either standalone or in packages) can contain SQL

statements that reference remote data. For example, consider the procedure created

by the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp@hq.acme.com
 WHERE empno = enum;
END;

When a user or application calls the fire_emp procedure, it is not apparent that a

remote table is being modified.

Creating Location Transparency

Managing a Distributed Database 29-31

A second layer of location transparency is possible when the statements in a

procedure indirectly reference remote data using local procedures, views, or

synonyms. For example, the following statement defines a local synonym:

CREATE SYNONYM emp FOR emp@hq.acme.com;

Given this synonym, you can create the fire_emp procedure using the following

statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp WHERE empno = enum;
END;

If you rename or move the table emp@hq, then you only need to modify the local

synonym that references the table. None of the procedures and applications that call

the procedure require modification.

Using Local Procedures to Call Remote Procedures
You can use a local procedure to call a remote procedure. The remote procedure can

then execute the required DML. For example, assume that scott connects to

local_db and creates the following procedure:

CONNECT scott/tiger@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 EXECUTE term_emp@hq.acme.com;
END;

Now, assume that scott connects to the remote database and creates the remote

procedure:

CONNECT scott/tiger@hq.acme.com

CREATE PROCEDURE term_emp (enum NUMBER)
AS
BEGIN
 DELETE FROM emp WHERE empno = enum;
END;

When a user or application connected to local_db calls the fire_emp procedure,

this procedure in turn calls the remote term_emp procedure on hq.acme.com .

Managing Statement Transparency

29-32 Oracle9i Database Administrator’s Guide

Using Local Synonyms to Reference Remote Procedures
For example, scott connects to the local sales.acme.com database and creates

the following procedure:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
DELETE FROM emp@hq.acme.com
WHERE empno = enum;
END;

User peggy then connects to the supply.acme.com database and creates the

following synonym for the procedure that scott created on the remote sales
database:

SQL> CONNECT peggy/hill@supply
SQL> CREATE PUBLIC SYNONYM emp FOR scott.fire_emp@sales.acme.com;

A local user on supply can use this synonym to execute the procedure on sales .

Managing Procedures and Privileges
Assume a local procedure includes a statement that references a remote table or

view. The owner of the local procedure can grant the execute privilege to any user,

thereby giving that user the ability to execute the procedure and, indirectly, access

remote data.

In general, procedures aid in security. Privileges for objects referenced within a

procedure do not need to be explicitly granted to the calling users.

Managing Statement Transparency
Oracle allows the following standard DML statements to reference remote tables:

■ SELECT (queries)

■ INSERT

■ UPDATE

■ DELETE

■ SELECT ... FOR UPDATE (not always supported in Heterogeneous Systems)

■ LOCK TABLE

Managing Statement Transparency

Managing a Distributed Database 29-33

Queries including joins, aggregates, subqueries, and SELECT ... FOR UPDATE
can reference any number of local and remote tables and views. For example, the

following query joins information from two remote tables:

SELECT e.empno, e.ename, d.dname
 FROM scott.emp@sales.division3.acme.com e, jward.dept@hq.acme.com d
 WHERE e.deptno = d.deptno;

UPDATE, INSERT, DELETE, and LOCK TABLE statements can reference both local

and remote tables. No programming is necessary to update remote data. For

example, the following statement inserts new rows into the remote table emp in the

scott.sales schema by selecting rows from the emp table in the jward schema

in the local database:

INSERT INTO scott.emp@sales.division3.acme.com
 SELECT * FROM jward.emp;

Restrictions:
Several restrictions apply to statement transparency.

■ Within a single SQL statement, all referenced LONG and LONG RAW columns,

sequences, updated tables, and locked tables must be located at the same node.

■ Oracle does not allow remote DDL statements (for example, CREATE, ALTER,

and DROP) in homogeneous systems except through remote execution of

procedures of the DBMS_SQL package, as in this example:

DBMS_SQL.PARSE@link_name(crs, 'drop table emp', v7);

Note that in Heterogeneous Systems, a pass-through facility allows you to

execute DDL.

■ The LIST CHAINED ROWS clause of an ANALYZE statement cannot reference

remote tables.

■ In a distributed database system, Oracle always evaluates

environmentally-dependent SQL functions such as SYSDATE, USER, UID , and

USERENV with respect to the local server, no matter where the statement (or

portion of a statement) executes.

■ A number of performance restrictions relate to access of remote objects:

Note: Oracle supports the USERENV function for queries only.

Managing a Distributed Database: Scenarios

29-34 Oracle9i Database Administrator’s Guide

– Remote views do not have statistical data.

– Queries on partitioned tables may not be optimized.

– No more than 20 indexes are considered for a remote table.

– No more than 20 columns are used for a composite index.

■ There is a restriction in Oracle’s implementation of distributed read consistency

that can cause one node to be in the past with respect to another node. In

accordance with read consistency, a query may end up retrieving consistent, but

out-of-date data. See "Managing Read Consistency" on page 32-25 to learn how

to manage this problem.

Managing a Distributed Database: Scenarios
This section gives examples of various types of statements involving management

of database links:

■ Creating a Public Fixed User Database Link

■ Creating a Public Fixed User Shared Database Link

■ Creating a Public Connected User Database Link

■ Creating a Public Connected User Shared Database Link

■ Creating a Public Current User Database Link

Creating a Public Fixed User Database Link
The following example connects to the local database as jane and creates a public

fixed user database link to database sales for scott . The database is accessed

through its net service name sldb :

CONNECT jane/doe@local

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 USING 'sldb';

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the DBMS_SQL package

Managing a Distributed Database: Scenarios

Managing a Distributed Database 29-35

Consequences:
Any user connected to the local database can use the

sales.division3.acme.com database link to connect to the remote database.

Each user connects to the schema scott in the remote database.

To access the table emp table in scott ’s remote schema, a user can issue the

following SQL query:

SELECT * FROM emp@sales.division3.acme.com;

Note that each application or user session creates a separate connection to the

common account on the server. The connection to the remote database remains

open for the duration of the application or user session.

Creating a Public Fixed User Shared Database Link
The following example connects to the local database as dana and creates a public

link to the sales database (using its net service name sldb). The link allows a

connection to the remote database as scott and authenticates this user as scott :

CONNECT dana/sculley@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 AUTHENTICATED BY scott IDENTIFIED BY tiger
 USING 'sldb';

Consequences:
Any user connected to the local shared server can use this database link to connect

to the remote sales database through a shared server process. The user can then

query tables in the scott schema.

In the above example, each local shared server can establish one connection to the

remote server. Whenever a local shared server process needs to access the remote

server through the sales.division3.acme.com database link, the local shared

server process reuses established network connections.

Creating a Public Connected User Database Link
The following example connects to the local database as larry and creates a public

link to the database with the net service name sldb :

CONNECT larry/oracle@local

Managing a Distributed Database: Scenarios

29-36 Oracle9i Database Administrator’s Guide

CREATE PUBLIC DATABASE LINK redwood
 USING 'sldb';

Consequences:
Any user connected to the local database can use the redwood database link. The

connected user in the local database who uses the database link determines the

remote schema.

If scott is the connected user and uses the database link, then the database link

connects to the remote schema scott . If fox is the connected user and uses the

database link, then the database link connects to remote schema fox .

The following statement fails for local user fox in the local database when the

remote schema fox cannot resolve the emp schema object. That is, if the fox
schema in the sales.division3.acme.com does not have emp as a table, view,

or (public) synonym, an error will be returned.

CONNECT fox/mulder@local

SELECT * FROM emp@redwood;

Creating a Public Connected User Shared Database Link
The following example connects to the local database as neil and creates a shared,

public link to the sales database (using its net service name sldb). The user is

authenticated by the userid/password of crazy/horse . The following statement

creates a public, connected user, shared database link:

CONNECT neil/young@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.acme.com
 AUTHENTICATED BY crazy IDENTIFIED BY horse
 USING 'sldb';

Consequences:
Each user connected to the local server can use this shared database link to connect

to the remote database and query the tables in the corresponding remote schema.

Each local, shared server process establishes one connection to the remote server.

Whenever a local server process needs to access the remote server through the

sales.division3.acme.com database link, the local process reuses established

network connections, even if the connected user is a different user.

Managing a Distributed Database: Scenarios

Managing a Distributed Database 29-37

If this database link is used frequently, eventually every shared server in the local

database will have a remote connection. At this point, no more physical connections

are needed to the remote server, even if new users use this shared database link.

Creating a Public Current User Database Link
The following example connects to the local database as the connected user and

creates a public link to the sales database (using its net service name sldb). The

following statement creates a public current user database link:

CONNECT bart/simpson@local

CREATE PUBLIC DATABASE LINK sales.division3.acme.com
 CONNECT TO CURRENT_USER
 USING 'sldb';

Consequences:
Assume scott creates local procedure fire_emp that deletes a row from the

remote emp table, and grants execute privilege on fire_emp to ford .

CONNECT scott/tiger@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 DELETE FROM emp@sales.division3.acme.com
 WHERE empno=enum;
END;

GRANT EXECUTE ON fire_emp TO ford;

Now, assume that ford connects to the local database and runs scott ’s procedure:

CONNECT ford/fairlane@local_db

EXECUTE PROCEDURE scott.fire_emp (enum 10345);

When ford executes the procedure scott.fire_emp , the procedure runs under

scott ’s privileges. Because a current user database link is used, the connection is

established to scott ’s remote schema—not ford ’s remote schema. Note that

scott must be a global user while ford does not have to be a global user.

Note: To use this link, the current user must be a global user.

Managing a Distributed Database: Scenarios

29-38 Oracle9i Database Administrator’s Guide

You can accomplish the same result by using a fixed user database link to scott ’s

remote schema. With fixed user database links, however, security can be

compromised because scott ’s username and password are available in readable

format in the database.

Note: If a connected user database link were used instead, the

connection would be to ford ’s remote schema. For more

information about invoker’s-rights and privileges, see the PL/SQL
User’s Guide and Reference.

Developing Applications for a Distributed Database System 30-1

30
Developing Applications for a Distributed

Database System

This chapter describes considerations important when developing an application to

run in a distributed database system. It contains the following topics:

■ Managing the Distribution of an Application’s Data

■ Controlling Connections Established by Database Links

■ Maintaining Referential Integrity in a Distributed System

■ Tuning Distributed Queries

■ Handling Errors in Remote Procedures

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about application development in an Oracle

environment

Managing the Distribution of an Application’s Data

30-2 Oracle9i Database Administrator’s Guide

Managing the Distribution of an Application’s Data
In a distributed database environment, coordinate with the database administrator

to determine the best location for the data. Some issues to consider are:

■ Number of transactions posted from each location

■ Amount of data (portion of table) used by each node

■ Performance characteristics and reliability of the network

■ Speed of various nodes, capacities of disks

■ Importance of a node or link when it is unavailable

■ Need for referential integrity among tables

Controlling Connections Established by Database Links
When a global object name is referenced in a SQL statement or remote procedure

call, database links establish a connection to a session in the remote database on

behalf of the local user. The remote connection and session are only created if the

connection has not already been established previously for the local user session.

The connections and sessions established to remote databases persist for the

duration of the local user’s session, unless the application or user explicitly

terminates them. Note that when you issue a SELECT statement across a database

link, a transaction lock is placed on the rollback segments. To re-release the

segment, you must issue a COMMIT or ROLLBACK statement.

Terminating remote connections established using database links is useful for

disconnecting high cost connections that are no longer required by the application.

You can terminate a remote connection and session using the ALTER SESSION
statement with the CLOSE DATABASE LINKclause. For example, assume you issue

the following transactions:

SELECT * FROM emp@sales;
COMMIT;

The following statement terminates the session in the remote database pointed to by

the sales database link:

ALTER SESSION CLOSE DATABASE LINK sales;

To close a database link connection in your user session, you must have the ALTER
SESSION system privilege.

Tuning Distributed Queries

Developing Applications for a Distributed Database System 30-3

Maintaining Referential Integrity in a Distributed System
If a part of a distributed statement fails, for example, due to an integrity constraint

violation, Oracle returns error number ORA-02055 . Subsequent statements or

procedure calls return error number ORA-02067 until a rollback or rollback to

savepoint is issued.

Design your application to check for any returned error messages that indicate that

a portion of the distributed update has failed. If you detect a failure, you should roll

back the entire transaction before allowing the application to proceed.

Oracle does not permit declarative referential integrity constraints to be defined

across nodes of a distributed system. In other words, a declarative referential

integrity constraint on one table cannot specify a foreign key that references a

primary or unique key of a remote table. Nevertheless, you can maintain

parent/child table relationships across nodes using triggers.

If you decide to define referential integrity across the nodes of a distributed

database using triggers, be aware that network failures can limit the accessibility of

not only the parent table, but also the child table. For example, assume that the

child table is in the sales database and the parent table is in the hq database. If the

network connection between the two databases fails, some DML statements against

the child table (those that insert rows into the child table or update a foreign key

value in the child table) cannot proceed because the referential integrity triggers

must have access to the parent table in the hq database.

Tuning Distributed Queries
The local Oracle database server breaks the distributed query into a corresponding

number of remote queries, which it then sends to the remote nodes for execution.

Note: Before closing a database link, first close all cursors that use

the link and then end your current transaction if it uses the link.

See Also: Oracle9i SQL Reference for more information about the

ALTER SESSION statement.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about using triggers to enforce referential

integrity.

Tuning Distributed Queries

30-4 Oracle9i Database Administrator’s Guide

The remote nodes execute the queries and send the results back to the local node.

The local node then performs any necessary post-processing and returns the results

to the user or application.

You have several options for designing your application to optimize query

processing. This section contains the following topics:

■ Using Collocated Inline Views

■ Using Cost-Based Optimization

■ Using Hints

■ Analyzing the Execution Plan

Using Collocated Inline Views
The most effective way of optimizing distributed queries is to access the remote

databases as little as possible and to retrieve only the required data.

For example, assume you reference five remote tables from two different remote

databases in a distributed query and have a complex filter (for example, WHERE
r1.salary + r2.salary > 50000). You can improve the performance of the

query by rewriting the query to access the remote databases once and to apply the

filter at the remote site. This rewrite causes less data to be transferred to the query

execution site.

Rewriting your query to access the remote database once is achieved by using

collocated inline views. The following terms need to be defined:

Term Definition

Collocated Two or more tables located in the same database.

Inline view A SELECT statement that is substituted for a table in a parent
SELECT statement. The embedded SELECT statement, shown
within the parentheses is an example of an inline view:

SELECT e.empno,e.ename,d.deptno,d.dname
 FROM (SELECT empno, ename from
 emp@orc1.world) e, dept d;

Collocated inline view An inline view that selects data from multiple tables from a
single database only. It reduces the amount of times that the
remote database is accessed, improving the performance of a
distributed query.

Tuning Distributed Queries

Developing Applications for a Distributed Database System 30-5

Oracle Corporation recommends that you form your distributed query using

collocated inline views to increase the performance of your distributed query.

Oracle’s cost-based optimization can transparently rewrite many of your

distributed queries to take advantage of the performance gains offered by

collocated inline views.

Using Cost-Based Optimization
In addition to rewriting your queries with collocated inline views, the cost-based

optimization method optimizes distributed queries according to the gathered

statistics of the referenced tables and the computations performed by the optimizer.

For example, cost-based optimization analyzes the following query. The example

assumes that table statistics are available. Note that it analyzes the query inside a

CREATE TABLE statement:

CREATE TABLE AS (
 SELECT l.a, l.b, r1.c, r1.d, r1.e, r2.b, r2.c
 FROM local l, remote1 r1, remote2 r2
 WHERE l.c = r.c
 AND r1.c = r2.c
 AND r.e > 300
);

and rewrites it as:

CREATE TABLE AS (
 SELECT l.a, l.b, v.c, v.d, v.e
 FROM (
 SELECT r1.c, r1.d, r1.e, r2.b, r2.c
 FROM remote1 r1, remote2 r2
 WHERE r1.c = r2.c
 AND r1.e > 300
) v, local l
 WHERE l.c = r1.c
);

The alias v is assigned to the inline view, which can then be referenced as a table in

the above SELECT statement. Creating a collocated inline view reduces the amount

of queries performed at a remote site, thereby reducing costly network traffic.

How Does Cost-Based Optimization Work?
The optimizer’s main task is to rewrite a distributed query to use collocated inline

views. This optimization is performed in three steps:

Tuning Distributed Queries

30-6 Oracle9i Database Administrator’s Guide

1. All mergeable views are merged.

2. Optimizer performs collocated query block test.

3. Optimizer rewrites query using collocated inline views.

After the query is rewritten, it is executed and the data set is returned to the user.

While cost-based optimization is performed transparently to the user, it is unable to

improve the performance of several distributed query scenarios. Specifically, if your

distributed query contains any of the following, cost-based optimization is not

effective:

■ Aggregates

■ Subqueries

■ Complex SQL

If your distributed query contains one of the above, see "Using Hints" on page 30-8

to learn how you can modify your query and use hints to improve the performance

of your distributed query.

Setting Up Cost-Based Optimization
After you have set up your system to use cost-based optimization to improve the

performance of distributed queries, the operation is transparent to the user. In other

words, the optimization occurs automatically when the query is issued.

You need to complete the following tasks to set up your system to take advantage

of Oracle's optimizer:

■ Setting Up the Environment

■ Analyzing Tables

Setting Up the Environment To enable cost-based optimization, set the OPTIMIZER_
MODE initialization parameter to CHOOSE or COST. You can set this parameter by:

■ Modifying the OPTIMIZER_MODE parameter in the initialization parameter file

■ Setting it at session level by issuing an ALTER SESSION statement

Issue one of the following statements to set the OPTIMIZER_MODE initialization

parameter at the session level:

ALTER SESSION OPTIMIZER_MODE = CHOOSE;
ALTER SESSION OPTIMIZER_MODE = COST;

Tuning Distributed Queries

Developing Applications for a Distributed Database System 30-7

Analyzing Tables For cost-based optimization to select the most efficient path for a

distributed query, you must provide accurate statistics for the tables involved. You

do this using the DBMS_STATS package or the ANALYZE statement.

The following DBMS_STATS procedures enable the gathering of certain classes of

optimizer statistics:

■ GATHER_INDEX_STATS

■ GATHER_TABLE_STATS

■ GATHER_SCHEMA_STATS

■ GATHER_DATABASE_STATS

For example, assume that distributed transactions routinely access the scott.dept
table. To ensure that the cost-based optimizer is still picking the best plan, execute

the following:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS ('scott', 'dept');
END;

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on setting the OPTIMIZER_MODE initialization

parameter in the parameter file and for configuring your system to

use a cost-based optimization method.

Note: You must connect locally with respect to the tables when

executing the DBMS_STATS procedure or ANALYZE statement. For

example, you cannot execute the following:

ANALYZE TABLE remote@remote.com COMPUTE STATISTICS;

You must first connect to the remote site and then execute the above

ANALYZE statement, or the equivalent DBMS_STATSprocedure.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information about generating statistics

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

additional information on using the DBMS_STATS package

Tuning Distributed Queries

30-8 Oracle9i Database Administrator’s Guide

Using Hints
If a statement is not sufficiently optimized, then you can use hints to extend the

capability of cost-based optimization. Specifically, if you write your own query to

utilize collocated inline views, instruct the cost-based optimizer not to rewrite your

distributed query.

Additionally, if you have special knowledge about the database environment (such

as statistics, load, network and CPU limitations, distributed queries, and so forth),

you can specify a hint to guide cost-based optimization. For example, if you have

written your own optimized query using collocated inline views that are based on

your knowledge of the database environment, specify the NO_MERGE hint to

prevent the optimizer from rewriting your query.

This technique is especially helpful if your distributed query contains an aggregate,

subquery, or complex SQL. Because this type of distributed query cannot be

rewritten by the optimizer, specifying NO_MERGE causes the optimizer to skip the

steps described in "How Does Cost-Based Optimization Work?" on page 30-5.

The DRIVING_SITE hint allows you to define a remote site to act as the query

execution site. In this way, the query executes on the remote site, which then

returns the data to the local site. This hint is especially helpful when the remote site

contains the majority of the data.

Using the NO_MERGE Hint
The NO_MERGE hint prevents Oracle from merging an inline view into a potentially

non-collocated SQL statement (see "Using Hints" on page 30-8). This hint is

embedded in the SELECT statement and can appear either at the beginning of the

SELECT statement with the inline view as an argument or in the query block that

defines the inline view.

/* with argument */

SELECT /*+NO_MERGE(v)*/ t1.x, v.avg_y
 FROM t1, (SELECT x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

/* in query block */

SELECT t1.x, v.avg_y
 FROM t1, (SELECT /*+NO_MERGE*/ x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about using hints.

Tuning Distributed Queries

Developing Applications for a Distributed Database System 30-9

 WHERE t1.x = v.x AND t1.y = 1;

Typically, you use this hint when you have developed an optimized query based on

your knowledge of your database environment.

Using the DRIVING_SITE Hint
The DRIVING_SITE hint allows you to specify the site where the query execution is

performed. It is best to let cost-based optimization determine where the execution

should be performed, but if you prefer to override the optimizer, you can specify

the execution site manually.

Following is an example of a SELECT statement with a DRIVING_SITE hint:

SELECT /*+DRIVING_SITE(dept)*/ * FROM emp, dept@remote.com
 WHERE emp.deptno = dept.deptno;

Analyzing the Execution Plan
An important aspect to tuning distributed queries is analyzing the execution plan.

The feedback that you receive from your analysis is an important element to testing

and verifying your database. Verification becomes especially important when you

want to compare plans. For example, comparing the execution plan for a distributed

query optimized by cost-based optimization to a plan for a query manually

optimized using hints, collocated inline views, and other techniques.

Preparing the Database to Store the Plan
Before you can view the execution plan for the distributed query, prepare the

database to store the execution plan. You can perform this preparation by executing

a script. Execute the following script to prepare your database to store an execution

plan:

SQL> @UTLXPLAN.SQL

See Also: Oracle9i Database Performance Tuning Guide and Reference
for detailed information about execution plans, the EXPLAIN PLAN
statement, and how to interpret the results.

Note: The utlxplan.sql file can be found in the $ORACLE_
HOME/rdbms/admin directory.

Tuning Distributed Queries

30-10 Oracle9i Database Administrator’s Guide

After you execute utlxplan.sql , a table, PLAN_TABLE, is created in the current

schema to temporarily store the execution plan.

Generating the Execution Plan
After you have prepared the database to store the execution plan, you are ready to

view the plan for a specified query. Instead of directly executing a SQL statement,

append the statement to the EXPLAIN PLAN FOR clause. For example, you can

execute the following:

EXPLAIN PLAN FOR
 SELECT d.dname
 FROM dept d
 WHERE d.deptno
 IN (SELECT deptno
 FROM emp@orc2.world
 GROUP BY deptno
 HAVING COUNT (deptno) >3
)
/

Viewing the Execution Plan
After you have executed the above SQL statement, the execution plan is stored

temporarily in the PLAN_TABLE that you created earlier. To view the results of the

execution plan, execute the following script:

@UTLXPLS.SQL

Executing the utlxpls.sql script displays the execution plan for the SELECT
statement that you specified. The results are formatted as follows:

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT						
NESTED LOOPS						
VIEW						
REMOTE						
TABLE ACCESS BY INDEX RO	DEPT					

Note: The utlxpls.sql can be found in the $ORACLE_
HOME/rdbms/admin directory.

Handling Errors in Remote Procedures

Developing Applications for a Distributed Database System 30-11

| INDEX UNIQUE SCAN |PK_DEPT | | | | | |
--

If you are manually optimizing distributed queries by writing your own collocated

inline views or using hints, it is best to generate an execution plan before and after

your manual optimization. With both execution plans, you can compare the

effectiveness of your manual optimization and make changes as necessary to

improve the performance of the distributed query.

To view the SQL statement that will be executed at the remote site, execute the

following select statement:

SELECT OTHER
FROM PLAN_TABLE
 WHERE operation = 'REMOTE';

Following is sample output:

SELECT DISTINCT "A1"."DEPTNO" FROM "EMP" "A1"
 GROUP BY "A1"."DEPTNO" HAVING COUNT("A1"."DEPTNO")>3

Handling Errors in Remote Procedures
When Oracle executes a procedure locally or at a remote location, four types of

exceptions can occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword

EXCEPTION

■ PL/SQL predefined exceptions such as the NO_DATA_FOUND keyword

■ SQL errors such as ORA-00900 and ORA-02015

■ Application exceptions generated using the RAISE_APPLICATION_ERROR()
procedure

When using local procedures, you can trap these messages by writing an exception

handler such as the following:

BEGIN
 ...

Note: If you are having difficulty viewing the entire contents of

the OTHER column, execute the following SQL*Plus command:

SET LONG 9999999

Handling Errors in Remote Procedures

30-12 Oracle9i Database Administrator’s Guide

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* ... handle the exception */
END;

Notice that the WHEN clause requires an exception name. If the exception does not

have a name, for example, exceptions generated with RAISE_APPLICATION_
ERROR, you can assign one using PRAGMA_EXCEPTION_INIT. For example:

DECLARE
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
...
EXCEPTION
 WHEN null_salary THEN
 ...
END;

When calling a remote procedure, exceptions can be handled by an exception

handler in the local procedure. The remote procedure must return an error number

to the local, calling procedure, which then handles the exception as shown in the

previous example. Note that PL/SQL user-defined exceptions always return

ORA-06510 to the local procedure.

Therefore, it is not possible to distinguish between two different user-defined

exceptions based on the error number. All other remote exceptions can be handled

in the same manner as local exceptions.

See Also: PL/SQL User’s Guide and Reference for more information

about PL/SQL procedures

Distributed Transactions Concepts 31-1

31
Distributed Transactions Concepts

This chapter describes what distributed transactions are and how Oracle maintains

their integrity. The following topics are contained in this chapter:

■ What Are Distributed Transactions?

■ Session Trees for Distributed Transactions

■ Two-Phase Commit Mechanism

■ In-Doubt Transactions

■ Distributed Transaction Processing: Case Study

What Are Distributed Transactions?

31-2 Oracle9i Database Administrator’s Guide

What Are Distributed Transactions?
A distributed transaction includes one or more statements that, individually or as a

group, update data on two or more distinct nodes of a distributed database. For

example, assume the database configuration depicted in Figure 31–1:

Figure 31–1 Distributed System

The following distributed transaction executed by scott updates the local sales
database, the remote hq database, and the remote maint database:

UPDATE scott.dept@hq.us.acme.com
 SET loc = 'REDWOOD SHORES'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
UPDATE scott.bldg@maint.us.acme.com
 SET room = 1225
 WHERE room = 1163;
COMMIT;

SALES

HQ

MAINT

Oracle Net
database link

Oracle Net
database link

SCOTT

dept table

bldg table

emp table

What Are Distributed Transactions?

Distributed Transactions Concepts 31-3

There are two types of permissible operations in distributed transactions:

■ DML and DDL Transactions

■ Transaction Control Statements

DML and DDL Transactions
The following list describes DML and DDL operations supported in a distributed

transaction:

■ CREATE TABLE AS SELECT

■ DELETE

■ INSERT (default and direct load)

■ LOCK TABLE

■ SELECT

■ SELECT FOR UPDATE

You can execute DML and DDL statements in parallel, and INSERT direct load

statements serially, but note the following restrictions:

■ All remote operations must be SELECT statements.

■ These statements must not be clauses in another distributed transaction.

■ If the table referenced in the table_expression_clause of an INSERT, UPDATE, or

DELETE statement is remote, then execution is serial rather than parallel.

■ You cannot perform remote operations after issuing parallel DML/DDL or

direct load INSERT.

■ If the transaction begins using XA or OCI, it executes serially.

■ No loopback operations can be performed on the transaction originating the

parallel operation. For example, you cannot reference a remote object that is

actually a synonym for a local object.

■ If you perform a distributed operation other than a SELECT in the transaction,

no DML is parallelized.

Note: If all statements of a transaction reference only a single

remote node, then the transaction is remote, not distributed.

Session Trees for Distributed Transactions

31-4 Oracle9i Database Administrator’s Guide

Transaction Control Statements
The following list describes supported transaction control statements:

■ COMMIT

■ ROLLBACK

■ SAVEPOINT

Session Trees for Distributed Transactions
As the statements in a distributed transaction are issued, Oracle defines a session
tree of all nodes participating in the transaction. A session tree is a hierarchical

model that describes the relationships among sessions and their roles. Figure 31–2

illustrates a session tree:

Figure 31–2 Example of a Session Tree

See Also: Oracle9i SQL Reference for more information about these

SQL statements

WAREHOUSE.ACME.COM FINANCE.ACME.COM

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
UPDATE accts_rec @ finance...;
.
COMMIT;

SALES.ACME.COM

Global Coordinator

Commit Point Site

Database Server

Client

Session Trees for Distributed Transactions

Distributed Transactions Concepts 31-5

All nodes participating in the session tree of a distributed transaction assume one or

more of the following roles:

The role a node plays in a distributed transaction is determined by:

■ Whether the transaction is local or remote

■ The commit point strength of the node ("Commit Point Site" on page 31-6)

■ Whether all requested data is available at a node, or whether other nodes need

to be referenced to complete the transaction

■ Whether the node is read-only

Clients
A node acts as a client when it references information from another node’s

database. The referenced node is a database server. In Figure 31–2, the node sales
is a client of the nodes that host the warehouse and finance databases.

Database Servers
A database server is a node that hosts a database from which a client requests data.

In Figure 31–2, an application at the sales node initiates a distributed transaction

that accesses data from the warehouse and finance nodes. Therefore,

sales.acme.com has the role of client node, and warehouse and finance are

both database servers. In this example, sales is a database server and a client

because the application also modifies data in the sales database.

Role Description

Client A node that references information in a database belonging to a
different node.

Database server A node that receives a request for information from another
node.

Global coordinator The node that originates the distributed transaction.

Local coordinator A node that is forced to reference data on other nodes to
complete its part of the transaction.

Commit point site The node that commits or rolls back the transaction as
instructed by the global coordinator.

Session Trees for Distributed Transactions

31-6 Oracle9i Database Administrator’s Guide

Local Coordinators
A node that must reference data on other nodes to complete its part in the

distributed transaction is called a local coordinator. In Figure 31–2, sales is a local

coordinator because it coordinates the nodes it directly references: warehouse and

finance. The node sales also happens to be the global coordinator because it

coordinates all the nodes involved in the transaction.

A local coordinator is responsible for coordinating the transaction among the nodes

it communicates directly with by:

■ Receiving and relaying transaction status information to and from those nodes

■ Passing queries to those nodes

■ Receiving queries from those nodes and passing them on to other nodes

■ Returning the results of queries to the nodes that initiated them

Global Coordinator
The node where the distributed transaction originates is called the global

coordinator. The database application issuing the distributed transaction is directly

connected to the node acting as the global coordinator. For example, in Figure 31–2,

the transaction issued at the node sales references information from the database

servers warehouse and finance . Therefore, sales.acme.com is the global

coordinator of this distributed transaction.

The global coordinator becomes the parent or root of the session tree. The global

coordinator performs the following operations during a distributed transaction:

■ Sends all of the distributed transaction’s SQL statements, remote procedure

calls, and so forth to the directly referenced nodes, thus forming the session tree

■ Instructs all directly referenced nodes other than the commit point site to

prepare the transaction

■ Instructs the commit point site to initiate the global commit of the transaction if

all nodes prepare successfully

■ Instructs all nodes to initiate a global rollback of the transaction if there is an

abort response

Commit Point Site
The job of the commit point site is to initiate a commit or roll back operation as

instructed by the global coordinator. The system administrator always designates

Session Trees for Distributed Transactions

Distributed Transactions Concepts 31-7

one node to be the commit point site in the session tree by assigning all nodes a

commit point strength. The node selected as commit point site should be the node

that stores the most critical data.

Figure 31–3 illustrates an example of distributed system, with sales serving as the

commit point site:

Figure 31–3 Commit Point Site

The commit point site is distinct from all other nodes involved in a distributed

transaction in these ways:

■ The commit point site never enters the prepared state. Consequently, if the

commit point site stores the most critical data, this data never remains in-doubt,

even if a failure occurs. In failure situations, failed nodes remain in a prepared

state, holding necessary locks on data until in-doubt transactions are resolved.

■ The commit point site commits before the other nodes involved in the

transaction. In effect, the outcome of a distributed transaction at the commit

point site determines whether the transaction at all nodes is committed or rolled

back: the other nodes follow the lead of the commit point site. The global

coordinator ensures that all nodes complete the transaction in the same manner

as the commit point site.

SALES

WAREHOUSE

COMMIT_POINT_STRENGTH = 100

COMMIT_POINT_STRENGTH = 75

FINANCE

COMMIT_POINT_STRENGTH = 50

Session Trees for Distributed Transactions

31-8 Oracle9i Database Administrator’s Guide

How a Distributed Transaction Commits
A distributed transaction is considered committed after all non-commit point sites

are prepared, and the transaction has been actually committed at the commit point

site. The online redo log at the commit point site is updated as soon as the

distributed transaction is committed at this node.

Because the commit point log contains a record of the commit, the transaction is

considered committed even though some participating nodes may still be only in

the prepared state and the transaction not yet actually committed at these nodes. In

the same way, a distributed transaction is considered not committed if the commit

has not been logged at the commit point site.

Commit Point Strength
Every database server must be assigned a commit point strength. If a database

server is referenced in a distributed transaction, the value of its commit point

strength determines which role it plays in the two-phase commit. Specifically, the

commit point strength determines whether a given node is the commit point site in

the distributed transaction and thus commits before all of the other nodes. This

value is specified using the initialization parameter COMMIT_POINT_STRENGTH.

This section explains how Oracle determines the commit point site.

The commit point site, which is determined at the beginning of the prepare phase, is

selected only from the nodes participating in the transaction. The following

sequence of events occurs:

1. Of the nodes directly referenced by the global coordinator, Oracle selects the

node with the highest commit point strength as the commit point site.

2. The initially-selected node determines if any of the nodes from which it has to

obtain information for this transaction has a higher commit point strength.

3. Either the node with the highest commit point strength directly referenced in

the transaction or one of its servers with a higher commit point strength

becomes the commit point site.

4. After the final commit point site has been determined, the global coordinator

sends prepare responses to all nodes participating in the transaction.

Figure 31–4 shows in a sample session tree the commit point strengths of each node

(in parentheses) and shows the node chosen as the commit point site:

Session Trees for Distributed Transactions

Distributed Transactions Concepts 31-9

Figure 31–4 Commit Point Strengths and Determination of the Commit Point Site

The following conditions apply when determining the commit point site:

■ A read-only node cannot be the commit point site.

■ If multiple nodes directly referenced by the global coordinator have the same

commit point strength, then Oracle designates one of these as the commit point

site.

■ If a distributed transaction ends with a rollback, then the prepare and commit

phases are not needed. Consequently, Oracle never determines a commit point

site. Instead, the global coordinator sends a ROLLBACK statement to all nodes

and ends the processing of the distributed transaction.

As Figure 31–4 illustrates, the commit point site and the global coordinator can be

different nodes of the session tree. The commit point strength of each node is

communicated to the coordinators when the initial connections are made. The

coordinators retain the commit point strengths of each node they are in direct

communication with so that commit point sites can be efficiently selected during

two-phase commits. Therefore, it is not necessary for the commit point strength to

be exchanged between a coordinator and a node each time a commit occurs.

Global Coordinator

Commit Point Site

Database Server

Client

SALES.ACME.COM
(45)

HQ.ACME.COM
(165)

HR.ACME.COM
(45)

FINANCE.ACME.COM
(45)

WAREHOUSE.ACME.COM
(140)

Two-Phase Commit Mechanism

31-10 Oracle9i Database Administrator’s Guide

Two-Phase Commit Mechanism
Unlike a transaction on a local database, a distributed transaction involves altering

data on multiple databases. Consequently, distributed transaction processing is

more complicated, because Oracle must coordinate the committing or rolling back

of the changes in a transaction as a self-contained unit. In other words, the entire

transaction commits, or the entire transaction rolls back.

Oracle ensures the integrity of data in a distributed transaction using the two-phase
commit mechanism. In the prepare phase, the initiating node in the transaction

asks the other participating nodes to promise to commit or roll back the transaction.

During the commit phase, the initiating node asks all participating nodes to commit

the transaction. If this outcome is not possible, then all nodes are asked to roll back.

All participating nodes in a distributed transaction should perform the same action:

they should either all commit or all perform a rollback of the transaction. Oracle

automatically controls and monitors the commit or rollback of a distributed

transaction and maintains the integrity of the global database (the collection of

databases participating in the transaction) using the two-phase commit mechanism.

This mechanism is completely transparent, requiring no programming on the part

of the user or application developer.

The commit mechanism has the following distinct phases, which Oracle performs

automatically whenever a user commits a distributed transaction:

See Also:

■ "Specifying the Commit Point Strength of a Node" on page 32-2

to learn how to set the commit point strength of a node

■ Oracle9i Database Reference for more information about the

initialization parameter COMMIT_POINT_STRENGTH

Phase Description

Prepare phase The initiating node, called the global coordinator, asks
participating nodes other than the commit point site to promise
to commit or roll back the transaction, even if there is a failure.
If any node cannot prepare, the transaction is rolled back.

Commit phase If all participants respond to the coordinator that they are
prepared, then the coordinator asks the commit point site to
commit. After it commits, the coordinator asks all other nodes to
commit the transaction.

Forget phase The global coordinator forgets about the transaction.

Two-Phase Commit Mechanism

Distributed Transactions Concepts 31-11

This section contains the following topics:

■ Prepare Phase

■ Commit Phase

■ Forget Phase

Prepare Phase
The first phase in committing a distributed transaction is the prepare phase. In this

phase, Oracle does not actually commit or roll back the transaction. Instead, all

nodes referenced in a distributed transaction (except the commit point site,

described in the "Commit Point Site" on page 31-6) are told to prepare to commit. By

preparing, a node:

■ Records information in the online redo logs so that it can subsequently either

commit or roll back the transaction, regardless of intervening failures

■ Places a distributed lock on modified tables, which prevents reads

When a node responds to the global coordinator that it is prepared to commit, the

prepared node promises to either commit or roll back the transaction later—but does

not make a unilateral decision on whether to commit or roll back the transaction.

The promise means that if an instance failure occurs at this point, the node can use

the redo records in the online log to recover the database back to the prepare phase.

Types of Responses in the Prepare Phase
When a node is told to prepare, it can respond in the following ways:

Note: Queries that start after a node has prepared cannot access

the associated locked data until all phases complete. The time is

insignificant unless a failure occurs (see "Deciding How to Handle

In-Doubt Transactions" on page 32-7).

Response Meaning

Prepared Data on the node has been modified by a statement in the
distributed transaction, and the node has successfully prepared.

Read-only No data on the node has been, or can be, modified (only
queried), so no preparation is necessary.

Abort The node cannot successfully prepare.

Two-Phase Commit Mechanism

31-12 Oracle9i Database Administrator’s Guide

Prepared Response When a node has successfully prepared, it issues a prepared
message. The message indicates that the node has records of the changes in the

online log, so it is prepared either to commit or perform a rollback. The message

also guarantees that locks held for the transaction can survive a failure.

Read-Only Response When a node is asked to prepare, and the SQL statements

affecting the database do not change the node’s data, the node responds with a

read-only message. The message indicates that the node will not participate in the

commit phase.

There are three cases in which all or part of a distributed transaction is read-only:

Note that if a distributed transaction is set to read-only, then it does not use rollback

segments. If many users connect to the database and their transactions are not set to

READ ONLY, then they allocate rollback space even if they are only performing

queries.

Case Conditions Consequence

Partially read-only Any of the following occurs:

■ Only queries are issued at
one or more nodes.

■ No data is changed.

■ Changes rolled back due
to triggers firing or
constraint violations.

The read-only nodes recognize
their status when asked to
prepare. They give their local
coordinators a read-only
response. Thus, the commit phase
completes faster because Oracle
eliminates read-only nodes from
subsequent processing.

Completely read-only
with prepare phase

All of following occur:

■ No data changes.

■ Transaction is not started
with SET TRANSACTION
READ ONLY statement.

All nodes recognize that they are
read-only during prepare phase,
so no commit phase is required.
The global coordinator, not
knowing whether all nodes are
read-only, must still perform the
prepare phase.

Completely read-only
without two-phase
commit

All of following occur:

■ No data changes.

■ Transaction is started with
SET TRANSACTION
READ ONLY statement.

Only queries are allowed in the
transaction, so global coordinator
does not have to perform
two-phase commit. Changes by
other transactions do not degrade
global transaction-level read
consistency because of global
SCN coordination among nodes.
The transaction does not use
rollback segments.

Two-Phase Commit Mechanism

Distributed Transactions Concepts 31-13

Abort Response When a node cannot successfully prepare, it performs the following

actions:

1. Releases resources currently held by the transaction and rolls back the local

portion of the transaction.

2. Responds to the node that referenced it in the distributed transaction with an

abort message.

These actions then propagate to the other nodes involved in the distributed

transaction so that they can roll back the transaction and guarantee the integrity of

the data in the global database. This response enforces the primary rule of a

distributed transaction: all nodes involved in the transaction either all commit or all roll
back the transaction at the same logical time.

Steps in the Prepare Phase
To complete the prepare phase, each node excluding the commit point site performs

the following steps:

1. The node requests that its descendants, that is, the nodes subsequently

referenced, prepare to commit.

2. The node checks to see whether the transaction changes data on itself or its

descendants. If there is no change to the data, then the node skips the remaining

steps and returns a read-only response (see "Read-Only Response" on

page 31-12).

3. The node allocates the resources it needs to commit the transaction if data is

changed.

4. The node saves redo records corresponding to changes made by the transaction

to its online redo log.

5. The node guarantees that locks held for the transaction are able to survive a

failure.

6. The node responds to the initiating node with a prepared response (see

"Prepared Response" on page 31-12) or, if its attempt or the attempt of one of its

descendents to prepare was unsuccessful, with an abort response (see "Abort

Response" on page 31-13).

These actions guarantee that the node can subsequently commit or roll back the

transaction on the node. The prepared nodes then wait until a COMMIT or

ROLLBACK request is received from the global coordinator.

Two-Phase Commit Mechanism

31-14 Oracle9i Database Administrator’s Guide

After the nodes are prepared, the distributed transaction is said to be in-doubt (see

"In-Doubt Transactions" on page 31-15). It retains in-doubt status until all changes

are either committed or rolled back.

Commit Phase
The second phase in committing a distributed transaction is the commit phase.

Before this phase occurs, all nodes other than the commit point site referenced in the

distributed transaction have guaranteed that they are prepared, that is, they have

the necessary resources to commit the transaction.

Steps in the Commit Phase
The commit phase consists of the following steps:

1. The global coordinator instructs the commit point site to commit.

2. The commit point site commits.

3. The commit point site informs the global coordinator that it has committed.

4. The global and local coordinators send a message to all nodes instructing them

to commit the transaction.

5. At each node, Oracle commits the local portion of the distributed transaction

and releases locks.

6. At each node, Oracle records an additional redo entry in the local redo log,

indicating that the transaction has committed.

7. The participating nodes notify the global coordinator that they have committed.

When the commit phase is complete, the data on all nodes of the distributed system

is consistent.

Guaranteeing Global Database Consistency
Each committed transaction has an associated system change number (SCN) to

uniquely identify the changes made by the SQL statements within that transaction.

The SCN functions as an internal Oracle timestamp that uniquely identifies a

committed version of the database.

In a distributed system, the SCNs of communicating nodes are coordinated when

all of the following actions occur:

■ A connection occurs using the path described by one or more database links

■ A distributed SQL statement executes

In-Doubt Transactions

Distributed Transactions Concepts 31-15

■ A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a distributed

system ensures global read-consistency at both the statement and transaction level.

If necessary, global time-based recovery can also be completed.

During the prepare phase, Oracle determines the highest SCN at all nodes involved

in the transaction. The transaction then commits with the high SCN at the commit

point site. The commit SCN is then sent to all prepared nodes with the commit

decision.

Forget Phase
After the participating nodes notify the commit point site that they have committed,

the commit point site can forget about the transaction. The following steps occur:

1. After receiving notice from the global coordinator that all nodes have

committed, the commit point site erases status information about this

transaction.

2. The commit point site informs the global coordinator that it has erased the

status information.

3. The global coordinator erases its own information about the transaction.

In-Doubt Transactions
The two-phase commit mechanism ensures that all nodes either commit or perform

a rollback together. What happens if any of the three phases fails because of a

system or network error? The transaction becomes in-doubt.

Distributed transactions can become in-doubt in the following ways:

■ A server machine running Oracle software crashes

■ A network connection between two or more Oracle databases involved in

distributed processing is disconnected

■ An unhandled software error occurs

The RECO process automatically resolves in-doubt transactions when the machine,

network, or software problem is resolved. Until RECO can resolve the transaction,

See Also: "Managing Read Consistency" on page 32-25 for

information about managing time lag issues in read consistency

In-Doubt Transactions

31-16 Oracle9i Database Administrator’s Guide

the data is locked for both reads and writes. Oracle blocks reads because it cannot

determine which version of the data to display for a query.

This section contains the following topics:

■ Automatic Resolution of In-Doubt Transactions

■ Manual Resolution of In-Doubt Transactions

■ Relevance of System Change Numbers for In-Doubt Transactions

Automatic Resolution of In-Doubt Transactions
In the majority of cases, Oracle resolves the in-doubt transaction automatically.

Assume that there are two nodes, local and remote , in the following scenarios.

The local node is the commit point site. User scott connects to local and

executes and commits a distributed transaction that updates local and remote .

Failure During the Prepare Phase
Figure 31–5 illustrates the sequence of events when there is a failure during the

prepare phase of a distributed transaction:

Figure 31–5 Failure During Prepare Phase

The following steps occur:

Local

SCOTT

Remote

COMMIT_POINT_SITE = 200 COMMIT_POINT_SITE = 100

1

3 Crashes before giving
prepare response

Issues distributed
transaction

2 Asks REMOTE to prepare

4 All databases perform
rollback

In-Doubt Transactions

Distributed Transactions Concepts 31-17

1. User Scott connects to local and executes a distributed transaction.

2. The global coordinator, which in this example is also the commit point site,

requests all databases other than the commit point site to promise to commit or

roll back when told to do so.

3. The remote database crashes before issuing the prepare response back to

local .

4. The transaction is ultimately rolled back on each database by the RECO process

when the remote site is restored.

Failure During the Commit Phase
Figure 31–6 illustrates the sequence of events when there is a failure during the

commit phase of a distributed transaction:

Figure 31–6 Failure During Commit Phase

The following steps occur:

1. User Scott connects to local and executes a distributed transaction.

Local

SCOTT

Remote

COMMIT_POINT_STRENGTH = 200 COMMIT_POINT_STRENGTH = 100

1

5 Receives commit message,
but cannot respond

Issues distributed
transaction

2 Asks REMOTE to prepare

3 Receives prepare message from REMOTE

4 Asks REMOTE to commit

6 All databases commit after
network restored

In-Doubt Transactions

31-18 Oracle9i Database Administrator’s Guide

2. The global coordinator, which in this case is also the commit point site, requests

all databases other than the commit point site to promise to commit or roll back

when told to do so.

3. The commit point site receives a prepared message from remote saying that it

will commit.

4. The commit point site commits the transaction locally, then sends a commit

message to remote asking it to commit.

5. The remote database receives the commit message, but cannot respond

because of a network failure.

6. The transaction is ultimately committed on the remote database by the RECO

process after the network is restored.

Manual Resolution of In-Doubt Transactions
You should only need to resolve an in-doubt transaction in the following cases:

■ The in-doubt transaction has locks on critical data or rollback segments.

■ The cause of the machine, network, or software failure cannot be repaired

quickly.

Resolution of in-doubt transactions can be complicated. The procedure requires that

you do the following:

■ Identify the transaction identification number for the in-doubt transaction.

■ Query the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS views to determine

whether the databases involved in the transaction have committed.

■ If necessary, force a commit using the COMMIT FORCE statement or a rollback

using the ROLLBACK FORCE statement.

See Also: "Deciding How to Handle In-Doubt Transactions" on

page 32-7 for a description of failure situations and how Oracle

resolves intervening failures during two-phase commit

See Also: The following sections explain how to resolve in-doubt

transactions:

■ "Deciding How to Handle In-Doubt Transactions" on page 32-7

■ "Manually Overriding In-Doubt Transactions" on page 32-10

Distributed Transaction Processing: Case Study

Distributed Transactions Concepts 31-19

Relevance of System Change Numbers for In-Doubt Transactions
A system change number (SCN) is an internal timestamp for a committed version

of the database. The Oracle database server uses the SCN clock value to guarantee

transaction consistency. For example, when a user commits a transaction, Oracle

records an SCN for this commit in the online redo log.

Oracle uses SCNs to coordinate distributed transactions among different databases.

For example, Oracle uses SCNs in the following way:

1. An application establishes a connection using a database link.

2. The distributed transaction commits with the highest global SCN among all the

databases involved.

3. The commit global SCN is sent to all databases involved in the transaction.

SCNs are important for distributed transactions because they function as a

synchronized commit timestamp of a transaction—even if the transaction fails. If a

transaction becomes in-doubt, an administrator can use this SCN to coordinate

changes made to the global database. The global SCN for the transaction commit

can also be used to identify the transaction later, for example, in distributed

recovery.

Distributed Transaction Processing: Case Study
In this scenario, a company has separate Oracle database servers,

sales.acme.com and warehouse.acme.com . As users insert sales records into

the sales database, associated records are being updated at the warehouse
database.

This case study of distributed processing illustrates:

■ The definition of a session tree

■ How a commit point site is determined

■ When prepare messages are sent

■ When a transaction actually commits

■ What information is stored locally about the transaction

Stage 1: Client Application Issues DML Statements
At the Sales department, a salesperson uses SQL*Plus to enter a sales order and

then commit it. The application issues a number of SQL statements to enter the

Distributed Transaction Processing: Case Study

31-20 Oracle9i Database Administrator’s Guide

order into the sales database and update the inventory in the warehouse
database:

CONNECT scott/tiger@sales.acme.com ...;
INSERT INTO orders ...;
UPDATE inventory@warehouse.acme.com ...;
INSERT INTO orders ...;
UPDATE inventory@warehouse.acme.com ...;
COMMIT;

These SQL statements are part of a single distributed transaction, guaranteeing that

all issued SQL statements succeed or fail as a unit. Treating the statements as a unit

prevents the possibility of an order being placed and then inventory not being

updated to reflect the order. In effect, the transaction guarantees the consistency of

data in the global database.

As each of the SQL statements in the transaction executes, the session tree is

defined, as shown in Figure 31–7.

Figure 31–7 Defining the Session Tree

Note the following aspects of the transaction:

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

SQL

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
INSERT INTO orders...;
UPDATE inventory @ warehouse...;
COMMIT;

Distributed Transaction Processing: Case Study

Distributed Transactions Concepts 31-21

■ An order entry application running on the sales database initiates the

transaction. Therefore, sales.acme.com is the global coordinator for the

distributed transaction.

■ The order entry application inserts a new sales record into the sales database

and updates the inventory at the warehouse. Therefore, the nodes

sales.acme.com and warehouse.acme.com are both database servers.

■ Because sales.acme.com updates the inventory, it is a client of

warehouse.acme.com .

This stage completes the definition of the session tree for this distributed

transaction. Each node in the tree has acquired the necessary data locks to execute

the SQL statements that reference local data. These locks remain even after the SQL

statements have been executed until the two-phase commit is completed.

Stage 2: Oracle Determines Commit Point Site
Oracle determines the commit point site immediately following the COMMIT
statement. sales.acme.com , the global coordinator, is determined to be the

commit point site, as shown in Figure 31–8.

Figure 31–8 Determining the Commit Point Site

Stage 3: Global Coordinator Sends Prepare Response
The prepare stage involves the following steps:

See Also: "Commit Point Strength" on page 31-8 for more

information about how the commit point site is determined

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Commit

Distributed Transaction Processing: Case Study

31-22 Oracle9i Database Administrator’s Guide

1. After Oracle determines the commit point site, the global coordinator sends the

prepare message to all directly referenced nodes of the session tree, excluding
the commit point site. In this example, warehouse.acme.com is the only node

asked to prepare.

2. Node warehouse.acme.com tries to prepare. If a node can guarantee that it

can commit the locally dependent part of the transaction and can record the

commit information in its local redo log, then the node can successfully prepare.

In this example, only warehouse.acme.com receives a prepare message

because sales.acme.com is the commit point site.

3. Node warehouse.acme.com responds to sales.acme.com with a prepared

message.

As each node prepares, it sends a message back to the node that asked it to prepare.

Depending on the responses, one of the following can happen:

■ If any of the nodes asked to prepare responds with an abort message to the

global coordinator, then the global coordinator tells all nodes to roll back the

transaction, and the operation is completed.

■ If all nodes asked to prepare respond with a prepared or a read-only message to

the global coordinator, that is, they have successfully prepared, then the global

coordinator asks the commit point site to commit the transaction.

Distributed Transaction Processing: Case Study

Distributed Transactions Concepts 31-23

Figure 31–9 Sending and Acknowledging the Prepare Message

Stage 4: Commit Point Site Commits
The committing of the transaction by the commit point site involves the following

steps:

1. Node sales.acme.com , receiving acknowledgment that

warehouse.acme.com is prepared, instructs the commit point site to commit

the transaction.

2. The commit point site now commits the transaction locally and records this fact

in its local redo log.

Even if warehouse.acme.com has not yet committed, the outcome of this

transaction is predetermined. In other words, the transaction will be committed at

all nodes even if a given node’s ability to commit is delayed.

Stage 5: Commit Point Site Informs Global Coordinator of Commit
This stage involves the following steps:

1. The commit point site tells the global coordinator that the transaction has

committed. Because the commit point site and global coordinator are the same

node in this example, no operation is required. The commit point site knows

that the transaction is committed because it recorded this fact in its online log.

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse
”Please prepare”
Warehouse to Sales
”Prepared”

1.

2.

Distributed Transaction Processing: Case Study

31-24 Oracle9i Database Administrator’s Guide

2. The global coordinator confirms that the transaction has been committed on all

other nodes involved in the distributed transaction.

Stage 6: Global and Local Coordinators Tell All Nodes to Commit
The committing of the transaction by all the nodes in the transaction involves the

following steps:

1. After the global coordinator has been informed of the commit at the commit

point site, it tells all other directly referenced nodes to commit.

2. In turn, any local coordinators instruct their servers to commit, and so on.

3. Each node, including the global coordinator, commits the transaction and

records appropriate redo log entries locally. As each node commits, the resource

locks that were being held locally for that transaction are released.

In Figure 31–10, sales.acme.com , which is both the commit point site and the

global coordinator, has already committed the transaction locally. sales now

instructs warehouse.acme.com to commit the transaction.

Figure 31–10 Instructing Nodes to Commit

Stage 7: Global Coordinator and Commit Point Site Complete the Commit
The completion of the commit of the transaction occurs in the following steps:

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.ACME.COM

SALES.ACME.COM

Sales to Warehouse:
”Commit”

Distributed Transaction Processing: Case Study

Distributed Transactions Concepts 31-25

1. After all referenced nodes and the global coordinator have committed the

transaction, the global coordinator informs the commit point site of this fact.

2. The commit point site, which has been waiting for this message, erases the

status information about this distributed transaction.

3. The commit point site informs the global coordinator that it is finished. In other

words, the commit point site forgets about committing the distributed

transaction. This action is permissible because all nodes involved in the

two-phase commit have committed the transaction successfully, so they will

never have to determine its status in the future.

4. The global coordinator finalizes the transaction by forgetting about the

transaction itself.

After the completion of the COMMIT phase, the distributed transaction is itself

complete. The steps described above are accomplished automatically and in a

fraction of a second.

Distributed Transaction Processing: Case Study

31-26 Oracle9i Database Administrator’s Guide

Managing Distributed Transactions 32-1

32
Managing Distributed Transactions

This chapter describes how to manage and troubleshoot distributed transactions.

The following topics are included in this chapter:

■ Specifying the Commit Point Strength of a Node

■ Naming Transactions

■ Viewing Information About Distributed Transactions

■ Deciding How to Handle In-Doubt Transactions

■ Manually Overriding In-Doubt Transactions

■ Purging Pending Rows from the Data Dictionary

■ Manually Committing an In-Doubt Transaction: Example

■ Data Access Failures Due To Locks

■ Simulating Distributed Transaction Failure

■ Managing Read Consistency

Specifying the Commit Point Strength of a Node

32-2 Oracle9i Database Administrator’s Guide

Specifying the Commit Point Strength of a Node
The database with the highest commit point strength determines which node

commits first in a distributed transaction. When specifying a commit point strength

for each node, ensure that the most critical server will be nonblocking if a failure

occurs during a prepare or commit phase. The COMMIT_POINT_STRENGTH
initialization parameter determines a node’s commit point strength.

The default value is operating system-dependent. The range of values is any integer

from 0 to 255. For example, to set the commit point strength of a database to 200,

include the following line in that database’s initialization parameter file:

COMMIT_POINT_STRENGTH = 200

The commit point strength is only used to determine the commit point site in a

distributed transaction.

When setting the commit point strength for a database, note the following

considerations:

■ Because the commit point site stores information about the status of the

transaction, the commit point site should not be a node that is frequently

unreliable or unavailable in case other nodes need information about the

transaction’s status.

■ Set the commit point strength for a database relative to the amount of critical

shared data in the database. For example, a database on a mainframe computer

usually shares more data among users than a database on a PC. Therefore, set

the commit point strength of the mainframe to a higher value than the PC.

Naming Transactions
Starting with Oracle9i you can name a transaction. This is useful for identifying a

specific distributed transaction and replaces the use of the COMMIT COMMENT
statement for this purpose.

To name a transaction, use the SET TRANSACTION ... NAME statement. For

example:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
 NAME 'update inventory checkpoint 0';

See Also: "Commit Point Site" on page 31-6 for a conceptual

overview of commit points

Viewing Information About Distributed Transactions

Managing Distributed Transactions 32-3

This example shows that the user started a new transaction with isolation level

equal to SERIALIZABLE and named it 'update inventory checkpoint 0' .

For distributed transactions, the name is sent to participating sites when a

transaction is committed. If a COMMIT COMMENT exists, it is ignored when a

transaction name exists.

The transaction name is displayed in the NAME column of the V$TRANSACTION
view, and is placed in the TRAN_COMMENT column of the view when the transaction

is committed.

Viewing Information About Distributed Transactions
The data dictionary of each database stores information about all open distributed

transactions. You can use data dictionary tables and views to gain information

about the transactions. This section contains the following topics:

■ Determining the ID Number and Status of Prepared Transactions

■ Tracing the Session Tree of In-Doubt Transactions

Determining the ID Number and Status of Prepared Transactions
The following view shows the database links that have been defined at the local

database and stored in the data dictionary:

Use this view to determine the global commit number for a particular transaction

ID. You can use this global commit number when manually resolving an in-doubt

transaction.

The following table shows the most relevant columns (for a description of all the

columns in the view, see Oracle9i Database Reference):

View Purpose

DBA_2PC_PENDING Lists all in-doubt distributed transactions. The view is empty
until populated by an in-doubt transaction. After the
transaction is resolved, the view is purged.

Viewing Information About Distributed Transactions

32-4 Oracle9i Database Administrator’s Guide

Table 32–1 DBA_2PC_PENDING

Column Description

LOCAL_TRAN_ID Local transaction identifier in the format integer.integer.integer.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID
for a connection are the same, the node is the global coordinator
of the transaction.

GLOBAL_TRAN_ID Global database identifier in the format global_db_name.db_hex_
id.local_tran_id, where db_hex_id is an eight-character
hexadecimal value used to uniquely identify the database. This
common transaction ID is the same on every node for a
distributed transaction.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID
for a connection are the same, the node is the global coordinator
of the transaction.

STATE STATE can have the following values:

■ Collecting

This category normally applies only to the global
coordinator or local coordinators. The node is currently
collecting information from other database servers before it
can decide whether it can prepare.

■ Prepared

The node has prepared and may or may not have
acknowledged this to its local coordinator with a prepared
message. However, no commit request has been received.
The node remains prepared, holding any local resource
locks necessary for the transaction to commit.

■ Committed

The node (any type) has committed the transaction, but
other nodes involved in the transaction may not have done
the same. That is, the transaction is still pending at one or
more nodes.

■ Forced Commit

A pending transaction can be forced to commit at the
discretion of a database administrator . This entry occurs if
a transaction is manually committed at a local node.

■ Forced termination (rollback)

A pending transaction can be forced to roll back at the
discretion of a database administrator. This entry occurs if
this transaction is manually rolled back at a local node.

Viewing Information About Distributed Transactions

Managing Distributed Transactions 32-5

Execute the following script, named pending_txn_script , to query pertinent

information in DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL GLOBAL_TRAN_ID FORMAT A30
COL STATE FORMAT A8
COL MIXED FORMAT A3
COL HOST FORMAT A10
COL COMMIT# FORMAT A10

SELECT LOCAL_TRAN_ID, GLOBAL_TRAN_ID, STATE, MIXED, HOST, COMMIT#
FROM DBA_2PC_PENDING
/

SQL> @pending_txn_script

LOCAL_TRAN_ID GLOBAL_TRAN_ID STATE MIX HOST COMMIT#
------------- ------------------------------ -------- --- ---------- ----------
1.15.870 HQ.ACME.COM.ef192da4.1.15.870 commit no dlsun183 115499

This output indicates that local transaction 1.15.870 has been committed on this

node, but it may be pending on one or more other nodes. Because LOCAL_TRAN_ID
and the local part of GLOBAL_TRAN_ID are the same, the node is the global

coordinator of the transaction.

Tracing the Session Tree of In-Doubt Transactions
The following view shows which in-doubt transactions are incoming from a remote

client and which are outgoing to a remote server:

MIXED YES means that part of the transaction was committed on one
node and rolled back on another node.

TRAN_COMMENT Transaction comment or, if using transaction naming, the
transaction name is placed here when the transaction is
committed.

HOST Name of the host machine.

COMMIT# Global commit number for committed transactions.

Table 32–1 DBA_2PC_PENDING(Cont.)

Column Description

Viewing Information About Distributed Transactions

32-6 Oracle9i Database Administrator’s Guide

When a transaction is in-doubt, you may need to determine which nodes performed

which roles in the session tree. Use to this view to determine:

■ All the incoming and outgoing connections for a given transaction

■ Whether the node is the commit point site in a given transaction

■ Whether the node is a global coordinator in a given transaction (because its

local transaction ID and global transaction ID are the same)

The following table shows the most relevant columns (for an account of all the

columns in the view, see Oracle9i Database Reference):

View Purpose

DBA_2PC_NEIGHBORS Lists all incoming (from remote client) and outgoing (to remote
server) in-doubt distributed transactions. It also indicates
whether the local node is the commit point site in the
transaction.

The view is empty until populated by an in-doubt transaction.
After the transaction is resolved, the view is purged.

Table 32–2 DBA_2PC_NEIGHBORS

Column Description

LOCAL_TRAN_ID Local transaction identifier with the format integer.integer.integer.

Note: When LOCAL_TRAN_ID and GLOBAL_TRAN_ID.DBA_
2PC_PENDING for a connection are the same, the node is the
global coordinator of the transaction.

IN_OUT IN for incoming transactions; OUT for outgoing transactions.

DATABASE For incoming transactions, the name of the client database that
requested information from this local node; for outgoing
transactions, the name of the database link used to access
information on a remote server.

DBUSER_OWNER For incoming transactions, the local account used to connect by
the remote database link; for outgoing transactions, the owner
of the database link.

Deciding How to Handle In-Doubt Transactions

Managing Distributed Transactions 32-7

Execute the following script, named neighbors_script , to query pertinent

information in DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL IN_OUT FORMAT A6
COL DATABASE FORMAT A25
COL DBUSER_OWNER FORMAT A15
COL INTERFACE FORMAT A3
SELECT LOCAL_TRAN_ID, IN_OUT, DATABASE, DBUSER_OWNER, INTERFACE
FROM DBA_2PC_NEIGHBORS
/

SQL> CONNECT SYS/password @hq.acme.com
SQL> @neighbors_script

LOCAL_TRAN_ID IN_OUT DATABASE DBUSER_OWNER INT
------------- ------ ------------------------- --------------- ---
1.15.870 out SALES.ACME.COM SYS C

This output indicates that the local node sent an outgoing request to remote server

sales to commit transaction 1.15.870 . If sales committed the transaction but

no other node did, then you know that sales is the commit point site—because the

commit point site always commits first.

Deciding How to Handle In-Doubt Transactions
A transaction is in-doubt when there is a failure during any aspect of the two-phase

commit. Distributed transactions become in-doubt in the following ways:

INTERFACE C is a commit message; N is either a message indicating a
prepared state or a request for a read-only commit.

When IN_OUT is OUT, C means that the child at the remote end
of the connection is the commit point site and knows whether to
commit or terminate. N means that the local node is informing
the remote node that it is prepared.

When IN_OUT is IN , C means that the local node or a database
at the remote end of an outgoing connection is the commit point
site. N means that the remote node is informing the local node
that it is prepared.

Table 32–2 DBA_2PC_NEIGHBORS

Column Description

Deciding How to Handle In-Doubt Transactions

32-8 Oracle9i Database Administrator’s Guide

■ A server machine running Oracle software crashes

■ A network connection between two or more Oracle databases involved in

distributed processing is disconnected

■ An unhandled software error occurs

You can manually force the commit or rollback of a local, in-doubt distributed

transaction. Because this operation can generate consistency problems, perform it

only when specific conditions exist.

This section contains the following topics:

■ Discovering Problems with a Two-Phase Commit

■ Determining Whether to Perform a Manual Override

■ Analyzing the Transaction Data

Discovering Problems with a Two-Phase Commit
The user application that commits a distributed transaction is informed of a

problem by one of the following error messages:

ORA-02050: transaction ID rolled back,
 some remote dbs may be in-doubt
ORA-02051: transaction ID committed,
 some remote dbs may be in-doubt
ORA-02054: transaction ID in-doubt

A robust application should save information about a transaction if it receives any

of the above errors. This information can be used later if manual distributed

transaction recovery is desired.

No action is required by the administrator of any node that has one or more

in-doubt distributed transactions due to a network or system failure. The automatic

recovery features of Oracle transparently complete any in-doubt transaction so that

the same outcome occurs on all nodes of a session tree (that is, all commit or all roll

back) after the network or system failure is resolved.

In extended outages, however, you can force the commit or rollback of a transaction

to release any locked data. Applications must account for such possibilities.

See Also: "In-Doubt Transactions" on page 31-15 for a conceptual

overview of in-doubt transactions

Deciding How to Handle In-Doubt Transactions

Managing Distributed Transactions 32-9

Determining Whether to Perform a Manual Override
Override a specific in-doubt transaction manually only when one of the following

situations exists:

■ The in-doubt transaction locks data that is required by other transactions. This

situation occurs when the ORA-01591 error message interferes with user

transactions.

■ An in-doubt transaction prevents the extents of a rollback segment from being

used by other transactions. The first portion of an in-doubt distributed

transaction’s local transaction ID corresponds to the ID of the rollback segment,

as listed by the data dictionary views DBA_2PC_PENDING and DBA_
ROLLBACK_SEGS.

■ The failure preventing the two-phase commit phases to complete cannot be

corrected in an acceptable time period. Examples of such cases include a

telecommunication network that has been damaged or a damaged database that

requires a long recovery time.

Normally, you should make a decision to locally force an in-doubt distributed

transaction in consultation with administrators at other locations. A wrong decision

can lead to database inconsistencies that can be difficult to trace and that you must

manually correct.

If the conditions above do not apply, always allow the automatic recovery features of

Oracle to complete the transaction. If any of the above criteria are met, however,

consider a local override of the in-doubt transaction.

Analyzing the Transaction Data
If you decide to force the transaction to complete, analyze available information

with the following goals in mind.

Find a Node That Committed or Rolled Back
Use the DBA_2PC_PENDINGview to find a node that has either committed or rolled

back the transaction. If you can find a node that has already resolved the

transaction, then you can follow the action taken at that node.

Look For Transaction Comments
See if any information is given in the TRAN_COMMENT column of DBA_2PC_
PENDING for the distributed transaction. Comments are included in the COMMENT
clause of the COMMIT statement, or if transaction naming is used, the transaction

name is placed in the TRAN_COMMENT field when the transaction is committed.

Manually Overriding In-Doubt Transactions

32-10 Oracle9i Database Administrator’s Guide

For example, an in-doubt distributed transaction’s comment can indicate the origin

of the transaction and what type of transaction it is:

COMMIT COMMENT 'Finance/Accts_pay/Trans_type 10B';

The SET TRANSACTION ... NAME statement could also have been used (and is

preferable) to provide this information in a transaction name.

Look For Transaction Advice
See if any information is given in the ADVICE column of DBA_2PC_PENDING for

the distributed transaction. An application can prescribe advice about whether to

force the commit or force the rollback of separate parts of a distributed transaction

with the ADVISE clause of the ALTER SESSION statement.

The advice sent during the prepare phase to each node is the advice in effect at the

time the most recent DML statement executed at that database in the current

transaction.

For example, consider a distributed transaction that moves an employee record

from the emptable at one node to the emptable at another node. The transaction can

protect the record—even when administrators independently force the in-doubt

transaction at each node—by including the following sequence of SQL statements:

ALTER SESSION ADVISE COMMIT;
INSERT INTO emp@hq ... ; /*advice to commit at HQ */
ALTER SESSION ADVISE ROLLBACK;
DELETE FROM emp@sales ... ; /*advice to roll back at SALES*/

ALTER SESSION ADVISE NOTHING;

If you manually force the in-doubt transaction following the given advice, the worst

that can happen is that each node has a copy of the employee record; the record

cannot disappear.

Manually Overriding In-Doubt Transactions
Use the COMMIT or ROLLBACK statement with the FORCE option and a text string

that indicates either the local or global transaction ID of the in-doubt transaction to

commit.

See Also: "Naming Transactions" on page 32-2

Manually Overriding In-Doubt Transactions

Managing Distributed Transactions 32-11

This section contains the following topics:

■ Manually Committing an In-Doubt Transaction

■ Manually Rolling Back an In-Doubt Transaction

Manually Committing an In-Doubt Transaction
Before attempting to commit the transaction, ensure that you have the proper

privileges. Note the following requirements:

Committing Using Only the Transaction ID
The following SQL statement commits an in-doubt transaction:

COMMIT FORCE 'transaction_id ';

The variable transaction_id is the identifier of the transaction as specified in either

the LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_PENDING
data dictionary view.

For example, assume that you query DBA_2PC_PENDING and determine that

LOCAL_TRAN_ID for a distributed transaction is 1:45.13 .

You then issue the following SQL statement to force the commit of this in-doubt

transaction:

COMMIT FORCE '1.45.13';

Note: In all examples, the transaction is committed or rolled back

on the local node, and the local pending transaction table records a

value of forced commit or forced termination for the STATEcolumn

of this transaction’s row.

If the transaction was committed by... Then you must have this privilege...

You FORCE TRANSACTION

Another user FORCE ANY TRANSACTION

Manually Overriding In-Doubt Transactions

32-12 Oracle9i Database Administrator’s Guide

Committing Using an SCN
Optionally, you can specify the SCN for the transaction when forcing a transaction

to commit. This feature allows you to commit an in-doubt transaction with the SCN

assigned when it was committed at other nodes.

Consequently, you maintain the synchronized commit time of the distributed

transaction even if there is a failure. Specify an SCN only when you can determine

the SCN of the same transaction already committed at another node.

For example, assume you want to manually commit a transaction with the

following global transaction ID:

SALES.ACME.COM.55d1c563.1.93.29

First, query the DBA_2PC_PENDING view of a remote database also involved with

the transaction in question. Note the SCN used for the commit of the transaction at

that node. Specify the SCN when committing the transaction at the local node. For

example, if the SCN is 829381993 , issue:

COMMIT FORCE 'SALES.ACME.COM.55d1c563.1.93.29', 829381993;

Manually Rolling Back an In-Doubt Transaction
Before attempting to roll back the in-doubt distributed transaction, ensure that you

have the proper privileges. Note the following requirements:

The following SQL statement rolls back an in-doubt transaction:

ROLLBACK FORCE 'transaction_id ';

The variable transaction_id is the identifier of the transaction as specified in either

the LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_PENDING
data dictionary view.

For example, to roll back the in-doubt transaction with the local transaction ID of

2.9.4 , use the following statement:

See Also: Oracle9i SQL Reference for more information about

using the COMMIT statement

If the transaction was committed by... Then you must have this privilege...

You FORCE TRANSACTION

Another user FORCE ANY TRANSACTION

Purging Pending Rows from the Data Dictionary

Managing Distributed Transactions 32-13

ROLLBACK FORCE '2.9.4';

Purging Pending Rows from the Data Dictionary
Before RECO recovers an in-doubt transaction, the transaction appears in DBA_
2PC_PENDING.STATE as COLLECTING, COMMITTED, or PREPARED. If you force an

in-doubt transaction using COMMIT FORCE or ROLLBACK FORCE, then the states

FORCED COMMIT or FORCED ROLLBACKmay appear.

Automatic recovery normally deletes entries in these states. The only exception is

when recovery discovers a forced transaction that is in a state inconsistent with

other sites in the transaction. In this case, the entry can be left in the table and the

MIXED column in DBA_2PC_PENDING has a value of YES. These entries can be

cleaned up with the DBMS_TRANSACTION.PURGE_MIXED procedure.

If automatic recovery is not possible because a remote database has been

permanently lost, then recovery cannot identify the re-created database because it

receives a new database ID when it is re-created. In this case, you must use the

PURGE_LOST_DB_ENTRY procedure in the DBMS_TRANSACTION package to clean

up the entries. The entries do not hold up database resources, so there is no urgency

in cleaning them up.

Executing the PURGE_LOST_DB_ENTRY Procedure
To manually remove an entry from the data dictionary, use the following syntax

(where trans_id is the identifier for the transaction):

DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('trans_id ');

For example, to purge pending distributed transaction 1.44.99 , enter the

following statement in SQL*Plus:

EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('1.44.99');

Execute this procedure only if significant reconfiguration has occurred so that

automatic recovery cannot resolve the transaction. Examples include:

Note: You cannot roll back an in-doubt transaction to a savepoint.

See Also: Oracle9i SQL Reference for more information about

using the ROLLBACK statement

Purging Pending Rows from the Data Dictionary

32-14 Oracle9i Database Administrator’s Guide

■ Total loss of the remote database

■ Reconfiguration in software resulting in loss of two-phase commit capability

■ Loss of information from an external transaction coordinator such as a

TPMonitor

Determining When to Use DBMS_TRANSACTION
The following tables indicates what the various states indicate about the distributed

transaction what the administrator’s action should be:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the DBMS_TRANSACTION package

STATE
Column

State of Global
Transaction

State of Local
Transaction Normal Action Alternative Action

Collecting Rolled back Rolled back None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Committed Committed Committed None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Prepared Unknown Prepared None Force commit or
rollback

Forced
commit

Unknown Committed None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Forced
rollback

Unknown Rolled back None PURGE_LOST_DB_
ENTRY (only if
autorecovery cannot
resolve transaction)

Forced
commit

Mixed Committed Manually remove
inconsistencies
then use PURGE_
MIXED

-

Manually Committing an In-Doubt Transaction: Example

Managing Distributed Transactions 32-15

Manually Committing an In-Doubt Transaction: Example
Figure 32–1, illustrates a failure during the commit of a distributed transaction. In

this failure case, the prepare phase completes. During the commit phase, however,

the commit point site’s commit confirmation never reaches the global coordinator,

even though the commit point site committed the transaction. Inventory data is

locked and cannot be accessed because the in-doubt transaction is critical to other

transactions. Further, the locks must be held until the in-doubt transaction either

commits or rolls back.

Figure 32–1 Example of an In-Doubt Distributed Transaction

You can manually force the local portion of the in-doubt transaction by following

the steps detailed in the following sections:

Step 1: Record User Feedback

Step 2: Query DBA_2PC_PENDING

Forced
rollback

Mixed Rolled back Manually remove
inconsistencies
then use PURGE_
MIXED

-

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the DBMS_TRANSACTION package

STATE
Column

State of Global
Transaction

State of Local
Transaction Normal Action Alternative Action

Global Coordinator

Commit Point Site

Database Server

Client

Communication break

commitprepared

prepared

WAREHOUSE.ACME.COM HQ.ACME.COM

SALES.ACME.COM

Manually Committing an In-Doubt Transaction: Example

32-16 Oracle9i Database Administrator’s Guide

Step 3: Query DBA_2PC_NEIGHBORS on Local Node

Step 4: Querying Data Dictionary Views on All Nodes

Step 5: Commit the In-Doubt Transaction

Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

Step 1: Record User Feedback
The users of the local database system that conflict with the locks of the in-doubt

transaction receive the following error message:

ORA-01591: lock held by in-doubt distributed transaction 1.21.17

In this case, 1.21.17 is the local transaction ID of the in-doubt distributed

transaction. You should request and record this ID number from users that report

problems to identify which in-doubt transactions should be forced.

Step 2: Query DBA_2PC_PENDING
After connecting with SQL*Plus to warehouse , query the local DBA_2PC_
PENDING data dictionary view to gain information about the in-doubt transaction:

CONNECT SYS/password @warehouse.acme.com
SELECT * FROM DBA_2PC_PENDING WHERE LOCAL_TRAN_ID = '1.21.17';

Oracle returns the following information:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

Manually Committing an In-Doubt Transaction: Example

Managing Distributed Transactions 32-17

Determining the Global Transaction ID
The global transaction ID is the common transaction ID that is the same on every

node for a distributed transaction. It is of the form:

global_database_name.hhhhhhhh.local_transaction_id

where:

■ global_database_name is the database name of the global coordinator.

■ hhhhhhhh is the internal database identifier of the global coordinator (in

hexadecimal).

■ local_transaction_id is the corresponding local transaction ID assigned on the

global coordinator.

Note that the last portion of the global transaction ID and the local transaction ID

match at the global coordinator. In the example, you can tell that warehouse is not
the global coordinator because these numbers do not match:

LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID ... 1.93.29

Determining the State of the Transaction
The transaction on this node is in a prepared state:

STATE prepared

Therefore, warehouse waits for its coordinator to send either a commit or a

rollback request.

Looking For Comments or Advice
The transaction’s comment or advice can include information about this transaction.

If so, use this comment to your advantage. In this example, the origin and

transaction type is in the transaction’s comment:

TRAN_COMMENT Sales/New Order/Trans_type 10B

It could also be provided as a transaction name with a SET TRANSACTION ...
NAME statement.

This information can reveal something that helps you decide whether to commit or

rollback the local portion of the transaction. If useful comments do not accompany

an in-doubt transaction, you must complete some extra administrative work to trace

the session tree and find a node that has resolved the transaction.

Manually Committing an In-Doubt Transaction: Example

32-18 Oracle9i Database Administrator’s Guide

Step 3: Query DBA_2PC_NEIGHBORS on Local Node
The purpose of this step is to climb the session tree so that you find coordinators,

eventually reaching the global coordinator. Along the way, you may find a

coordinator that has resolved the transaction. If not, you can eventually work your

way to the commit point site, which will always have resolved the in-doubt

transaction. To trace the session tree, query the DBA_2PC_NEIGHBORSview on each

node.

In this case, you query this view on the warehouse database:

CONNECT SYS/password @warehouse.acme.com
SELECT * FROM DBA_2PC_NEIGHBORS
 WHERE LOCAL_TRAN_ID = '1.21.17'
 ORDER BY SESS#, IN_OUT;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
IN_OUT in
DATABASE SALES.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 000003F4
SESS# 1
BRANCH 0100

Obtaining Database Role and Database Link Information
The DBA_2PC_NEIGHBORS view provides information about connections

associated with an in-doubt transaction. Information for each connection is

different, based on whether the connection is inbound (IN_OUT = in) or

outbound (IN_OUT = out):

IN_OUT Meaning DATABASE DBUSER_OWNER

in Your node is a server of
another node.

Lists the name of the
client database that
connected to your node.

Lists the local account for
the database link
connection that
corresponds to the
in-doubt transaction.

out Your node is a client of
other servers.

Lists the name of the
database link that
connects to the remote
node.

Lists the owner of the
database link for the
in-doubt transaction.

Manually Committing an In-Doubt Transaction: Example

Managing Distributed Transactions 32-19

In this example, the IN_OUT column reveals that the warehouse database is a

server for the sales client, as specified in the DATABASE column:

IN_OUT in
DATABASE SALES.ACME.COM

The connection to warehouse was established through a database link from the

swilliams account, as shown by the DBUSER_OWNER column:

DBUSER_OWNER SWILLIAMS

Determining the Commit Point Site
Additionally, the INTERFACE column tells whether the local node or a subordinate

node is the commit point site:

INTERFACE N

Neither warehouse nor any of its descendants is the commit point site, as shown

by the INTERFACE column.

Step 4: Querying Data Dictionary Views on All Nodes
At this point, you can contact the administrator at the located nodes and ask each

person to repeat Steps 2 and 3 using the global transaction ID.

For example, the following results are returned when Steps 2 and 3 are performed

at sales and hq .

Checking the Status of Pending Transactions at sales
At this stage, the sales administrator queries the DBA_2PC_PENDING data

dictionary view:

SQL> CONNECT SYS/password @sales.acme.com
SQL> SELECT * FROM DBA_2PC_PENDING
 > WHERE GLOBAL_TRAN_ID = 'SALES.ACME.COM.55d1c563.1.93.29';

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29

Note: If you can directly connect to these nodes with another

network, you can repeat Steps 2 and 3 yourself.

Manually Committing an In-Doubt Transaction: Example

32-20 Oracle9i Database Administrator’s Guide

STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

Determining the Coordinators and Commit Point Site at sales
Next, the sales administrator queries DBA_2PC_NEIGHBORS to determine the

global and local coordinators as well as the commit point site:

SELECT * FROM DBA_2PC_NEIGHBORS
 WHERE GLOBAL_TRAN_ID = 'SALES.ACME.COM.55d1c563.1.93.29'
 ORDER BY SESS#, IN_OUT;

This query returns three rows:

■ The connection to warehouse

■ The connection to hq

■ The connection established by the user

Reformatted information corresponding to the rows for the warehouse connection

appears below:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE WAREHOUSE.ACME.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 55d1c563
SESS# 1
BRANCH 1

Reformatted information corresponding to the rows for the hq connection appears

below:

Manually Committing an In-Doubt Transaction: Example

Managing Distributed Transactions 32-21

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE HQ.ACME.COM
DBUSER_OWNER ALLEN
INTERFACE C
DBID 00000390
SESS# 1
BRANCH 1

The information from the previous queries reveal the following:

■ sales is the global coordinator because the local transaction ID and global

transaction ID match.

■ Two outbound connections are established from this node, but no inbound

connections. sales is not the server of another node.

■ hq or one of its servers is the commit point site.

Checking the Status of Pending Transactions at HQ:
At this stage, the hq administrator queries the DBA_2PC_PENDING data dictionary

view:

SELECT * FROM DBA_2PC_PENDING@hq.acme.com
 WHERE GLOBAL_TRAN_ID = 'SALES.ACME.COM.55d1c563.1.93.29';

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.45.13
GLOBAL_TRAN_ID SALES.ACME.COM.55d1c563.1.93.29
STATE COMMIT
MIXED NO
ACTION
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST SYSTEM1
DB_USER SWILLIAMS
COMMIT# 129314

Manually Committing an In-Doubt Transaction: Example

32-22 Oracle9i Database Administrator’s Guide

At this point, you have found a node that resolved the transaction. As the view

reveals, it has been committed and assigned a commit ID number:

STATE COMMIT
COMMIT# 129314

Therefore, you can force the in-doubt transaction to commit at your local database.

It is a good idea to contact any other administrators you know that could also

benefit from your investigation.

Step 5: Commit the In-Doubt Transaction
You contact the administrator of the sales database, who manually commits the

in-doubt transaction using the global ID:

SQL> CONNECT SYS/password @sales.acme.com
SQL> COMMIT FORCE 'SALES.ACME.COM.55d1c563.1.93.29';

As administrator of the warehouse database, you manually commit the in-doubt

transaction using the global ID:

SQL> CONNECT SYS/password @warehouse.acme.com
SQL> COMMIT FORCE 'SALES.ACME.COM.55d1c563.1.93.29';

Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING
After you manually force a transaction to commit or roll back, the corresponding

row in the pending transaction table remains. The state of the transaction is changed

depending on how you forced the transaction.

Every Oracle database has a pending transaction table. This is a special table that

stores information about distributed transactions as they proceed through the

two-phase commit phases. You can query a database’s pending transaction table

through the DBA_2PC_PENDING data dictionary view (see Table 32–1).

Also of particular interest in the pending transaction table is the mixed outcome flag

as indicated in DBA_2PC_PENDING.MIXED. You can make the wrong choice if a

pending transaction is forced to commit or roll back. For example, the local

administrator rolls back the transaction, but the other nodes commit it. Incorrect

decisions are detected automatically, and the damage flag for the corresponding

pending transaction’s record is set (MIXED=yes).

The RECO (Recoverer) background process uses the information in the pending

transaction table to finalize the status of in-doubt transactions. You can also use the

Data Access Failures Due To Locks

Managing Distributed Transactions 32-23

information in the pending transaction table to manually override the automatic

recovery procedures for pending distributed transactions.

All transactions automatically resolved by RECO are removed from the pending

transaction table. Additionally, all information about in-doubt transactions correctly

resolved by an administrator (as checked when RECO reestablishes

communication) are automatically removed from the pending transaction table.

However, all rows resolved by an administrator that result in a mixed outcome

across nodes remain in the pending transaction table of all involved nodes until

they are manually deleted using DBMS_TRANSACTIONS.PURGE_MIXED.

Data Access Failures Due To Locks
When you issue a SQL statement, Oracle attempts to lock the resources needed to

successfully execute the statement. If the requested data is currently held by

statements of other uncommitted transactions, however, and remains locked for a

long time, a timeout occurs.

Consider the following scenarios involving data access failure:

■ Transaction Timeouts

■ Locks from In-Doubt Transactions

Transaction Timeouts
A DML statement that requires locks on a remote database can be blocked if

another transaction own locks on the requested data. If these locks continue to block

the requesting SQL statement, then the following sequence of events occurs:

1. A timeout occurs.

2. Oracle rolls back the statement.

3. Oracle returns this error message to the user:

ORA-02049: time-out: distributed transaction waiting for lock

Because the transaction did not modify data, no actions are necessary as a result of

the timeout. Applications should proceed as if a deadlock has been encountered.

The user who executed the statement can try to reexecute the statement later. If the

lock persists, then the user should contact an administrator to report the problem.

Simulating Distributed Transaction Failure

32-24 Oracle9i Database Administrator’s Guide

Locks from In-Doubt Transactions
A query or DML statement that requires locks on a local database can be blocked

indefinitely due to the locked resources of an in-doubt distributed transaction. In

this case, Oracle issues the following error message:

ORA-01591: lock held by in-doubt distributed transaction identifier

In this case, Oracle rolls back the SQL statement immediately. The user who

executed the statement can try to reexecute the statement later. If the lock persists,

the user should contact an administrator to report the problem, including the ID of

the in-doubt distributed transaction.

The chances of the above situations occurring are rare considering the low

probability of failures during the critical portions of the two-phase commit. Even if

such a failure occurs, and assuming quick recovery from a network or system

failure, problems are automatically resolved without manual intervention. Thus,

problems usually resolve before they can be detected by users or database

administrators.

Simulating Distributed Transaction Failure
You can force the failure of a distributed transaction for the following reasons:

■ To observe RECO automatically resolving the local portion of the transaction

■ To practice manually resolving in-doubt distributed transactions and observing

the results

The RECO background process of an Oracle instance automatically resolves failures

involving distributed transactions. At exponentially growing time intervals, the

RECO background process of a node attempts to recover the local portion of an

in-doubt distributed transaction.

RECO can use an existing connection or establish a new connection to other nodes

involved in the failed transaction. When a connection is established, RECO

automatically resolves all in-doubt transactions. Rows corresponding to any

resolved in-doubt transactions are automatically removed from each database’s

pending transaction table.

You can enable and disable RECO using the ALTER SYSTEM statement with the

ENABLE/DISABLE DISTRIBUTED RECOVERY options. For example, you can

temporarily disable RECO to force the failure of a two-phase commit and manually

resolve the in-doubt transaction.

Managing Read Consistency

Managing Distributed Transactions 32-25

The following statement disables RECO:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

Alternatively, the following statement enables RECO so that in-doubt transactions

are automatically resolved:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

Managing Read Consistency
An important restriction exists in Oracle’s implementation of distributed read

consistency. The problem arises because each system has its own SCN, which you

can view as the database’s internal timestamp. The Oracle database server uses the

SCN to decide which version of data is returned from a query.

The SCNs in a distributed transaction are synchronized at the end of each remote

SQL statement and at the start and end of each transaction. Between two nodes that

have heavy traffic and especially distributed updates, the synchronization is

frequent. Nevertheless, no practical way exists to keep SCNs in a distributed system

absolutely synchronized: a window always exists in which one node may have an

SCN that is somewhat in the past with respect to the SCN of another node.

Because of the SCN gap, you can execute a query that uses a slightly old snapshot,

so that the most recent changes to the remote database are not seen. In accordance

with read consistency, a query can therefore retrieve consistent, but out-of-date

data. Note that all data retrieved by the query will be from the old SCN, so that if a

locally executed update transaction updates two tables at a remote node, then data

selected from both tables in the next remote access contain data prior to the update.

One consequence of the SCN gap is that two consecutive SELECT statements can

retrieve different data even though no DML has been executed between the two

Note: Single-process instances (for example, a PC running

MS-DOS) have no separate background processes, and therefore no

RECO process. Therefore, when a single-process instance that

participates in a distributed system is started, you must manually

enable distributed recovery using the statement above.

See Also: Your Oracle operating system specific documentation

for more information about distributed transaction recovery for

single-process instances

Managing Read Consistency

32-26 Oracle9i Database Administrator’s Guide

statements. For example, you can issue an update statement and then commit the

update on the remote database. When you issue a SELECT statement on a view

based on this remote table, the view does not show the update to the row. The next

time that you issue the SELECT statement, the update is present.

You can use the following techniques to ensure that the SCNs of the two machines

are synchronized just before a query:

■ Because SCNs are synchronized at the end of a remote query, precede each

remote query with a dummy remote query to the same site, for example,

SELECT * FROM DUAL@REMOTE.

■ Because SCNs are synchronized at the start of every remote transaction, commit

or roll back the current transaction before issuing the remote query.

Index-1

Index
A
abort response, 31-13

two-phase commit, 31-13

accounts

operating system

database administrator, 1-10

user

SYS and SYSTEM, 1-11

ADD LOGFILE MEMBER option

ALTER DATABASE statement, 7-13

ADD LOGFILE option

ALTER DATABASE statement, 7-13

ADD PARTITION clause, 17-27

ADD SUBPARTITION clause, 17-29, 17-30

ADMIN OPTION

about, 25-12

revoking roles/privileges, 25-16

ADMIN_TABLES procedure, 22-4

DBMS_REPAIR package

ADMIN_TABLES procedure, 22-3

examples

building orphan key table, 22-10

building repair table, 22-9

ADMINISTER_RESOURCE_MANAGER system

privilege, 27-8

administration

distributed databases, 29-1

tools, 28-31

administrators

application, 1-4

AFTER SUSPEND system event, 14-21

AFTER SUSPEND trigger, 14-21

example of registering, 14-23

agent

Heterogeneous Services, definition of, 28-5

aggregate functions, 29-33

alert file

job failures and, 10-10

alert log

about, 5-15

location of, 5-16

size of, 5-16

using, 5-15

when written, 5-17

ALL_DB_LINKS view, 29-21

ALL_JOBS view

jobs in system, viewing, 10-15

allocation

extents, 15-12

minimizing extents for rollback segments, 13-24

ALTER CLUSTER statement

ALLOCATE EXTENT clause, 18-9

using for hash clusters, 19-9

using for index clusters, 18-9

ALTER DATABASE statement

ADD LOGFILE MEMBER option, 7-13

ADD LOGFILE option, 7-13

ARCHIVELOG option, 8-5

CLEAR LOGFILE option, 7-19

CLEAR UNARCHIVED LOGFILE option, 7-7

database partially available to users, 4-9

DATAFILE...OFFLINE DROP clause, 12-9

datafiles online or offline, 11-24, 12-10

default temporary tablespace, specifying, 2-24

DROP LOGFILE MEMBER option, 7-17

DROP LOGFILE option, 7-16

MOUNT clause, 4-9

Index-2

NOARCHIVELOG option, 8-5

OPEN clause, 4-10

READ ONLY clause, 4-10

RENAME FILE clause, 12-13

tempfiles online or offline, 11-24, 12-10

UNRECOVERABLE DATAFILE option, 7-20

ALTER FUNCTION statement

COMPILE clause, 21-25

ALTER INDEX statement

COALESCE clause, 16-8

for maintaining partitioned

indexes, 17-23 to 17-61

MONITORING USAGE clause, 16-21

ALTER PACKAGE statement

COMPILE clause, 21-25

ALTER PROCEDURE statement

COMPILE clause, 21-25

ALTER PROFILE statement

altering resource limits, 24-21

ALTER RESOURCE COST statement, 24-21

ALTER ROLE statement

changing authorization method, 25-7

ALTER ROLLBACK SEGMENT statement

bringing segments online, 13-22

changing storage parameters, 13-21

taking segment offline, 13-23

ALTER SEQUENCE statement, 20-13

ALTER SESSION statement

ADVISE clause, 32-10

CLOSE DATABASE LINK clause, 30-2

SET SQL_TRACE initialization parameter, 5-17

setting time zone, 2-28

system privilege, 30-2

ALTER SYSTEM statement

ARCHIVE LOG ALL option, 8-9

ARCHIVE LOG option, 8-8

DISABLE DISTRIBUTED RECOVERY

clause, 32-25

ENABLE DISTRIBUTED RECOVERY

clause, 32-25

ENABLE RESTRICTED SESSION clause, 4-11

QUIESCE RETRICTED, 4-15

RESUME clause, 4-17

SCOPE clause for SET, 2-47

SET RESOURCE_LIMIT option, 24-19

SET RESOURCE_MANAGER_PLAN, 27-25

SET SHARED_SERVERS initialization

parameter, 5-10

setting initialization parameters, 2-47

SUSPEND clause, 4-17

SWITCH LOGFILE option, 7-18

to enable Database Resource Manager, 27-24

UNQUIESCE, 4-16

ALTER TABLE

MODIFY DEFAULT ATTRIBUTES FOR

PARTITION clause, 17-43

ALTER TABLE statement

ADD (column) clause, 15-13

ALLOCATE EXTENT clause, 15-12

DEALLOCATE UNUSED clause, 15-13

DISABLE ALL TRIGGERS clause, 21-14

DISABLE integrity constraint clause, 21-18

DROP COLUMN clause, 15-14

DROP integrity constraint clause, 21-19

DROP UNUSED COLUMNS clause, 15-15

ENABLE ALL TRIGGERS clause, 21-13

ENABLE integrity constraint clause, 21-18

external tables, 15-38

for maintaining partitions, 17-23 to 17-61

MODIFY (column) clause, 15-13

MODIFY DEFAULT ATTRIBUTES

clause, 17-43

modifying index-organized table

attributes, 15-30

MOVE clause, 15-12, 15-30

reasons for use, 15-10

RENAME COLUMN clause, 15-14

SET UNUSED clause, 15-15

ALTER TABLESPACE statement

ADD DATAFILE parameter, 11-11

ONLINE option, example, 11-23

READ ONLY option, 11-25

READ WRITE option, 11-27

RENAME DATAFILE clause, 12-11

taking datafiles/tempfiles online/offline, 11-23,

12-9

ALTER TRIGGER statement

DISABLE clause, 21-14

ENABLE clause, 21-13

ALTER USER privilege, 24-6

Index-3

ALTER USER statement

default roles, 25-21

GRANT CONNECT THROUGH clause, 24-16

REVOKE CONNECT THROUGH clause, 24-16

ALTER VIEW statement

COMPILE clause, 21-25

altering indexes, 16-19 to 16-21

altering storage parameters, 15-11

altering users, 24-6

ANALYZE statement, 21-5

CASCADE clause, 21-7

corruption reporting, 22-5

ESTIMATE STATISTICS SAMPLE clause, 21-5

LIST CHAINED ROWS clause, 21-7

listing chained rows, 21-7

VALIDATE STRUCTURE clause, 21-6

VALIDATE STRUCTURE ONLINE clause, 21-7

validating structure, 22-4

ANALYZE TABLE statement, 30-7

analyzing redo log files, 9-1

analyzing schema objects, 21-3 to 21-6

analyzing tables

cost-based optimization, 30-7

application administrators, 23-12

application context, 23-4

application developers

privileges for, 23-10

roles for, 23-11

application development

constraints, 30-3

database links

controlling connections, 30-2

distributed databases, 30-1

analyzing execution plan, 30-9

controlling connections, 30-2

handling errors, 30-3

handling RPC errors, 30-11

managing distribution of data, 30-2

managing referential integrity, 30-3

optimizing distributed queries, 28-47

overview, 28-44

remote procedure calls, 28-46

tuning distributed queries, 30-3

tuning using collocated inline views, 30-4

using cost-based optimization, 30-5

using hints to tune queries, 30-8

distributing data, 30-2

referential integrity, 30-3

remote connections

terminating, 30-2

security for, 23-10

applications

administrator, 1-4

errors

RAISE_APPLICATION_ERROR()

procedure, 30-11

applications administrator, 1-4

AQ_ADMINISTRATOR_ROLE role, 25-6

AQ_USER_ROLE role, 25-6

ARCH process

specifying multiple processes, 8-19

architecture

Optimal Flexible Architecture (OFA), 2-7

ARCHIVE LOG option

ALTER SYSTEM statement, 8-8

archive processes, 5-12

ARCHIVE_LAG_TARGET initialization

parameter, 7-11

archived redo logs, 8-2

archiving modes, 8-5

controlling destination availability state, 8-14

destination status, 8-12

destinations

mandatory, 8-16

minimum number of, 8-16

re-archiving to failed, 8-18

sample scenarios, 8-17

failed destinations and, 8-16

multiplexing, 8-10

normal transmission of, 8-14

specifying destinations for, 8-10

standby transmission of, 8-14

status information, 8-24

transmitting, 8-14

tuning, 8-19

archived redo mandatory destinations

for archived redo logs, 8-16

ARCHIVELOG mode, 8-3

advantages, 8-3

archiving, 8-2

Index-4

automatic archiving in, 8-3

definition of, 8-3

distributed databases, 8-4

enabling, 8-5

manual archiving in, 8-3

running in, 8-3

switching to, 8-5

taking datafiles offline and online in, 12-9

archivelog process (ARCn)

tracing, 8-21

archiver, 5-12

archiving

advantages, 8-2

automatic

disabling, 8-8

disabling at instance startup, 8-8

enabling after instance startup, 8-7

enabling at instance startup, 8-7

changing archiving mode, 8-5

controlling destination availability state, 8-14

controlling number of processes, 8-7

destination status, 8-12

destinations

failure, 8-16

disabling, 8-5, 8-8

disadvantages, 8-2

enabling, 8-5, 8-7

manual, 8-9

multiple ARCH processes, 8-19

privileges

disabling, 8-8

enabling, 8-6

for manual archiving, 8-9

setting initial mode, 8-5

to failed destinations, 8-18

trace, controlling, 8-21

tuning, 8-19

viewing information on, 8-24

AUDIT statement

BY proxy clause, 26-13

schema objects, 26-12

statement auditing, 26-11

system privileges, 26-11

audit trail, 26-15

archiving, 26-17

auditing changes to, 26-18

controlling size of, 26-15

creating and deleting, 26-19

deleting views, 26-20

dropping, 26-19

interpreting, 26-20

maximum size of, 26-16

protecting integrity of, 26-18

purging records from, 26-16

recording changes to, 26-18

reducing size of, 26-17

table that holds, 26-2

views on, 26-19

AUDIT_FILE_DEST initialization parameter, 26-8

setting for OS auditing, 26-8

AUDIT_SYS_OPERATIONS initialization

parameter, 26-8

auditing SYS, 26-6

AUDIT_TRAIL initialization parameter, 26-8

auditing SYS, 26-6

setting, 26-8

auditing, 26-2

audit option levels, 26-9

audit trail records, 26-4

database links, 28-31

default options, 26-13

disabling default options, 26-15

disabling options, 26-8, 26-13, 26-14

disabling options versus auditing, 26-14

enabling options, 26-8

privileges for, 26-8

enabling options versus auditing, 26-10

fine-grained, 26-18

guidelines, 26-2

historical information, 26-4

information stored in OS file, 26-5

keeping information manageable, 26-3

managing the audit trail, 26-19

multi-tier environments, 26-13

operating-system audit trails, 26-2

policies for, 23-20

privilege audit options, 26-11

privileges required for object, 26-12

privileges required for system, 26-12

schema objects, 26-12

Index-5

session level, 26-11

statement, 26-11

statement level, 26-11

suspicious activity, 26-3

SYS, 26-6

system privileges, 26-11

to OS file, 26-8

using the database, 26-2

viewing

active object options, 26-22

active privilege options, 26-22

active statement options, 26-22

default object options, 26-23

views, 26-19

AUTHENTICATED BY clause

CREATE DATABASE LINK statement, 29-16

authentication

by database, 24-9

by SSL, 24-8, 24-14

database links, 28-25

directory service, 24-14

external, 24-11

global, 24-13

operating system, 1-17

password policy, 23-5

proxy, 24-16

selecting a method, 1-15

specifying when creating a user, 24-3

users, 23-2

using password file, 1-19

ways to authenticate users, 24-8

authorization

changing for roles, 25-7

global, 24-13

omitting for roles, 25-7

operating-system role management and, 25-9

roles, about, 25-8

automatic undo management, 2-24

B
background processes, 5-11 to 5-13

FMON, 12-17

BACKGROUND_DUMP_DEST initialization

parameter, 5-16

backups

after creating new databases, 2-22

guidelines, 1-7

effects of archiving on, 8-3

BLANK_TRIMMING initialization

parameter, 15-13

BLOCKSIZE clause

of CREATE TABLESPACE, 11-19

broken jobs

about, 10-12

running, 10-13

BUFFER_POOL storage parameter

description, 14-11

buffers

buffer cache in SGA, 2-40

C
calls

remote procedure, 28-46

CASCADE clause

when dropping unique or primary keys, 21-19

cascading revokes, 25-19

CATAUDIT.SQL script

running, 26-19

CATBLOCK.SQL script, 5-15

CATNOAUD.SQL script

running, 26-20

centralized user management

distributed systems, 28-27

chained rows

eliminating from table, procedure, 21-8

CHAINED_ROWS table

used by ANALYZE statement, 21-7

change vectors, 7-2

CHAR datatype

increasing column length, 15-13

character sets

multibyte characters in role names, 25-7

multibyte characters in role passwords, 25-8

specifying when creating a database, 2-3

CHECK_OBJECT procedure, 22-2, 22-4, 22-5

example, 22-10

checkpoint process, 5-12

checksums

Index-6

for data blocks, 12-14

redo log blocks, 7-18

CJQ0 background process, 10-2

CLEAR LOGFILE option

ALTER DATABASE statement, 7-19

clearing redo log files, 7-7, 7-19

restrictions, 7-19

client/server architectures

distributed databases, 28-6

direct and indirect connections, 28-7

Globalization Support, 28-47

CLOSE DATABASE LINK clause

ALTER SESSION statement, 30-2

closing database links, 29-19

clustered tables. See clusters.

clusters

allocating extents, 18-9

altering, 18-8

analyzing, 21-3 to 21-6

cluster indexes, 18-10

altering, 18-9

creating, 18-8

dropping, 18-11

cluster keys

columns for, 18-4

definition, 18-2

SIZE parameter, 18-5

clustered tables, 18-2, 18-4, 18-7, 18-11

ALTER TABLE restrictions, 18-9

columns for cluster key, 18-4

creating, 18-6

deallocating extents, 18-9

dropping, 18-10

estimating space, 18-5, 18-6

guidelines for managing, 18-4 to 18-6

hash

contrasted with index, 19-2

hash clusters, 19-1 to 19-9

index

contrasted with hash, 19-2

location, 18-6

overview of, 18-2

privileges

for altering, 18-8

for creating, 18-6

for dropping, 18-11

selecting tables, 18-4

single-table hash clusters, 19-5

specifying PCTFREE for, 14-4

truncating, 21-9

validating structure, 21-6

COALESCE PARTITION clause, 17-32

coalescing indexes

costs, 16-8

collocated inline views

tuning distributed queries, 30-4

columns

adding, 15-13

displaying information about, 21-34

dropping, 15-14 to 15-16

granting privileges for selected, 25-15

granting privileges on, 25-15

increasing length, 15-13

INSERT privilege and, 25-15

listing users granted to, 25-28

modifying definition, 15-13

privileges, 25-15

renaming, 15-14

revoking privileges on, 25-18

COMMENT statement, 15-40

COMMIT COMMENT statement

used with distributed transactions, 32-2, 32-10

commit phase, 31-11, 31-23

two-phase commit, 31-14

commit point site, 31-7

commit point strength, 31-8, 32-2

determining, 31-9

distributed transactions, 31-6, 31-8

how Oracle determines, 31-8

commit point strength

definition, 31-8

specifying, 32-2

COMMIT statement

FORCE clause, 32-10, 32-11, 32-12

forcing, 32-9

two-phase commit and, 28-36

COMMIT_POINT_STRENGTH initialization

parameter, 31-8, 32-2

committing transactions

distributed

Index-7

commit point site, 31-7

composite limits

costs and, 24-22

composite partitioned tables

subpartition template, modifying, 17-48

composite partitioning

creating tables using, 17-14

default partition, 17-10

range-list, 17-8, 17-15

when to use, 17-7

CONNECT command

starting an instance, 4-3

CONNECT INTERNAL

desupported, 1-15

CONNECT role, 25-5

connected user database links, 29-12

advantages and disadvantages, 28-16

creating, 29-12

definition, 28-16

example, 28-19

REMOTE_OS_AUTHENT initialization

parameter, 28-17

connection qualifiers

database links and, 29-13

connections

auditing, 26-11

remote

terminating, 30-2

constraints

See also integrity constraints

application development issues, 30-3

disabling at table creation, 21-17

dropping integrity constraints, 21-19

enable novalidate state, 21-16

enabling example, 21-17

enabling when violations exist, 21-16

exceptions, 21-16, 21-21

exceptions to integrity constraints, 21-21

integrity constraint states, 21-15

keeping index when disabling, 21-18

keeping index when dropping, 21-18

ORA-02055

constrain violation, 30-3

renaming, 21-19

setting at table creation, 21-17

when to disable, 21-15

control files

adding, 6-5

changing size, 6-5

conflicts with data dictionary, 6-9

creating

about, 6-2

additional control files, 6-5

initially, 6-4

new files, 6-6

creating as Oracle-managed files, 3-17

default name, 2-36, 6-5

dropping, 6-11

errors during creation, 6-10

guidelines for, 6-2 to 6-4

importance of multiplexed, 6-3

location of, 6-3

log sequence numbers, 7-5

mirrored, 6-3

mirroring, 2-36

moving, 6-5

multiplexed

importance of, 6-3

names, 6-2

number of, 6-3

overwriting existing, 2-36

relocating, 6-5

renaming, 6-5

requirement of one, 6-2

size of, 6-4

specifying names before database creation, 2-36

troubleshooting, 6-9

unavailable during startup, 4-6

CONTROL_FILES initialization parameter

overwriting existing control files, 2-36

setting

before database creation, 6-4

names for, 6-2

setting before database creation, 2-36

warning about setting, 2-36

corruption

data block

repairing, 22-2 to 22-15

cost-based optimization, 30-5

distributed databases, 28-47

Index-8

hints, 30-8

using for distributed queries, 30-5

costs

resource limits and, 24-22

CREATE CLUSTER statement

creating clusters, 18-7

example, 18-7

for hash clusters, 19-4

HASH IS option, 19-4, 19-6

HASHKEYS option, 19-4, 19-7

SIZE option, 19-6

CREATE CONTROLFILE statement

about, 6-6

checking for inconsistencies, 6-9

NORESETLOGS option, 6-8

RESETLOGS option, 6-8

CREATE DATABASE LINK statement, 29-9

CREATE DATABASE statement

CONTROLFILE REUSE option, 6-5

DEFAULT TEMPORARY TABLESPACE

clause, 2-24

EXTENT MANAGEMENT LOCAL clause, 2-26

MAXLOGFILES option, 7-10

MAXLOGMEMBERS parameter, 7-10

password for SYS, 2-23

password for SYSTEM, 2-23

setting time zone, 2-28

specifying FORCE LOGGING, 2-29

UNDO TABLESPACE clause, 2-24

used to create an undo tablespace, 13-6

using Oracle-managed files, 3-8

CREATE INDEX statement

NOLOGGING, 16-7

ON CLUSTER option, 18-8

partitioned indexes, 17-12 to 17-15

using, 16-10

with a constraint, 16-11

CREATE PROFILE statement

about, 24-20

CREATE ROLE statement

IDENTIFIED BY option, 25-8

IDENTIFIED EXTERNALLY option, 25-9

CREATE ROLLBACK SEGMENT statement

about, 13-19

CREATE SCHEMA statement

multiple tables and views, 21-2

CREATE SEQUENCE statement, 20-12

CREATE SPFILE statement, 2-46

CREATE SYNONYM statement, 20-14

CREATE TABLE statement

AS SELECT clause, 15-4, 15-8

CLUSTER option, 18-7

COMPRESS clause, 15-29

creating partitioned tables, 17-11 to 17-21

creating temporary table, 15-8

INCLUDING clause, 15-28

index-organized tables, 15-25

MONITORING clause, 15-9

NOLOGGING clause, 15-4

ORGANIZATION EXTERNAL clause, 15-35

OVERFLOW clause, 15-27

parallelizing, 15-8

PCTTHRESHOLD clause, 15-28

TABLESPACE clause, specifying, 15-3

use of, 15-7

CREATE TABLESPACE

BLOCKSIZE CLAUSE, using, 11-19

FORCE LOGGING clause, using, 11-20

Oracle-managed files, 3-14

CREATE TABLESPACE statement

example, 11-10

SEGMENT MANAGEMENT clause, 11-8

CREATE TEMPORARY TABLESPACE

Oracle-managed files, 3-16

CREATE TEMPORARY TABLESPACE

statement, 11-13

CREATE UNDO TABLESPACE

Oracle-managed files, 3-14

CREATE UNDO TABLESPACE statement

using to create an undo tablespace, 13-6

CREATE UNIQUE INDEX statement

using, 16-11

CREATE USER statement

IDENTIFIED BY option, 24-3

IDENTIFIED EXTERNALLY option, 24-3

CREATE VIEW statement

about, 20-2

OR REPLACE option, 20-11

WITH CHECK OPTION, 20-3

CREATE_SIMPLE_PLAN procedure

Index-9

Database Resource Manager, 27-10

creating a database

default temporary tablespace, specifying, 2-24

creating an audit trail, 26-19

creating connected user links

scenario, 29-35, 29-36

creating current user links

scenario, 29-37

creating database links, 29-8

connected user, 29-12

current user, 29-12

example, 28-19

fixed user, 29-11

private, 29-9

public, 29-10

service names within link names, 29-13

specifying types, 29-9

creating databases, 2-1, 8-5

backing up the new database, 2-22

executing CREATE DATABASE, 2-18

manually from a script, 2-5

preparing to, 2-2

prerequisites for, 2-4

problems encountered while, 2-31

UNDO MANAGEMENT clause, 2-24

upgrading to a new release, 2-5

using Database Configuration Assistant, 2-5

with locally managed tablespaces, 2-26

creating datafiles, 12-5

creating fixed user links

scenario, 29-34, 29-35

creating indexes

after inserting table data, 16-3

associated with integrity constraints, 16-11

NOLOGGING, 16-7

USING INDEX clause, 16-11

creating profiles, 24-20

creating sequences, 20-12

creating synonyms, 20-14

creating views, 20-2

current user database links, 29-12

advantages and disadvantages, 28-18

cannot access in shared schema, 28-28

creating, 29-12

definition, 28-16

example, 28-19

schema independence, 28-28

cursors

and closing database links, 30-2

D
data

loading using external tables, 15-35

security of, 23-3

data block corruption

repairing, 22-2 to 22-15

data blocks

altering size of, 2-37

managing space in, 14-2 to 14-7

non-standard block size, 2-37

PCTFREE in clusters, 18-5

shared in clusters, 18-2

specifying size of, 2-37

standard block size, 2-37

transaction entry settings, 14-8

verifying, 12-14

data dictionary

changing storage parameters, 21-30

changing storage parameters of, 21-27

conflicts with control files, 6-9

purging pending rows from, 32-13, 32-14

schema object views, 21-30

segments in the, 21-28

V$DBFILE view, 2-31

V$LOGFILE view, 2-31

data dictionary views

DBA_DB_LINKS, 29-21, 32-3, 32-5

USER, 32-3, 32-5

data encryption

distributed systems, 28-30

data manipulation language

statements allowed in distributed

transactions, 28-33

database

granting privileges, 25-11

granting roles, 25-11

database administrators, 1-2

application administrator versus, 23-12

initial priorities, 1-4 to 1-8

Index-10

operating system account, 1-10

password files for, 1-16

responsibilities of, 1-2

roles

about, 1-13

for security, 23-9

security and privileges of, 1-10

security for, 23-8

security officer versus, 1-3, 23-2

SYS and SYSTEM accounts, 1-11

utilities for, 1-26

database authentication, 24-9

Database Configuration Assistant

advantages, 2-6

configuring options, 2-9

creating databases, 2-7 to 2-9

defined, 2-5

deleting databases, 2-9

managing templates, 2-9

templates, using, 2-11

database links

advantages, 28-11

auditing, 28-31

authentication, 28-25

without passwords, 28-26

closing, 29-19, 30-2

connected user, 29-12, 29-35

advantages and disadvantages, 28-16

definition, 28-16

connections

controlling, 30-2

determining open, 29-24

creating, 29-8

connected user, 29-12, 29-35

connected user, shared, 29-36

current user, 29-12, 29-37

example, 28-19

fixed user, 29-11, 29-34

fixed user, shared, 29-35

obtaining necessary privileges, 29-8

private, 29-9

public, 29-10

scenarios, 29-34

shared, 29-14, 29-15

specifying types, 29-9

current user, 28-15, 29-12

advantages and disadvantages, 28-18

definition, 28-16

data dictionary views

ALL, 32-3, 32-5

DBA_DB_LINKS, 32-3, 32-5

USER, 29-21, 32-3, 32-5

definition, 28-8

distributed queries, 28-34

distributed transactions, 28-35

dropping, 29-19

enforcing global naming, 29-3

enterprise users and, 28-28

fixed user, 29-34

advantages and disadvantages, 28-17

definition, 28-16

global

definition, 28-15

global names, 28-12

global object names, 28-36

handling errors, 30-3

job queues and, 10-9

limiting number of connections, 29-20

listing, 29-21, 32-3, 32-5

managing, 29-18

minimizing network connections, 29-14

name resolution, 28-36

schema objects, 28-38

views, synonyms, and procedures, 28-42

when global database name is

complete, 28-37

when global database name is partial, 28-37

when no global database name is

specified, 28-37

names for, 28-14

passwords, viewing, 29-22

private

definition, 28-15

public

definition, 28-15

referential integrity in, 30-3

remote queries, 28-33

remote transactions, 28-33, 28-35

resolution, 28-36

restrictions, 28-22

Index-11

roles on remote database, 28-23

schema objects, 28-20

name resolution, 28-22

synonyms for, 28-21

service names used within link names, 29-13

shared, 28-10

configuring, 29-16

creating, 29-14

creating links to dedicated servers, 29-16

creating links to shared servers, 29-17

determining whether to use, 29-14

shared SQL, 28-34

tuning distributed queries, 30-3

tuning queries with hints, 30-8

tuning using collocated inline views, 30-4

types of links, 28-15

types of users, 28-16

users

specifying, 29-11

using cost-based optimization, 30-5

viewing, 29-21

Database Resource Manager

active session pool with queuing, 27-6

administering system privilege, 27-8 to 27-10

automatic consumer group switching, 27-7

CREATE_SIMPLE_PLAN procedure, 27-10

description, 27-2

enabling, 27-24

execution time limit, 27-7

managing resource consumer groups, 27-20

changing resource consumer groups, 27-21

granting the switch privilege, 27-21, 27-22

revoking the switch privilege, 27-23

setting initial resource consumer

group, 27-21

switching a session, 27-21

switching sessions for a user, 27-22

multiple level CPU resource allocation, 27-6

pending area, 27-12 to 27-14

resource allocation methods, 27-4

ACTIVE_SESS_POOL_MTH, 27-15

CPU resource, 27-14

EMPHASIS, 27-14

limiting degree of parallelism, 27-15

PARALLEL_DEGREE_LIMIT_

ABSOLUTE, 27-15

PARALLEL_DEGREE_LIMIT_MTH, 27-15

QUEUEING_MTH, 27-15

ROUND-ROBIN, 27-16

resource consumer groups, 27-3

creating, 27-16 to 27-17

DEFAULT_CONSUMER_GROUP, 27-16,

27-17, 27-21, 27-23

deleting, 27-17

LOW_GROUP, 27-17, 27-29

managing, 27-20 to 27-23

OTHER_GROUPS, 27-6, 27-13, 27-16, 27-19,

27-28

parameters, 27-16

SYS_GROUP, 27-17, 27-28

updating, 27-17

resource plan directives, 27-4, 27-12

deleting, 27-19

specifying, 27-17 to 27-20

updating, 27-19

resource plans, 27-3

creating, 27-10 to 27-16

DELETE_PLAN_CASCADE, 27-16

deleting, 27-15

examples, 27-4, 27-25

parameters, 27-14

plan schemas, 27-6, 27-12, 27-16, 27-25, 27-32

subplans, 27-5, 27-6, 27-16

SYSTEM_PLAN, 27-15, 27-17, 27-28

top plan, 27-6, 27-13, 27-24

updating, 27-15

specifying a parallel degree limit, 27-7

undo pool, 27-7

used for quiescing a database, 4-15

validating plan schema changes, 27-12

views, 27-31

database users

enrolling, 1-7

database writer, 5-12

database writer process

calculating checksums for data blocks, 12-14

DATABASE_PROPERTIES view

name of default temporary tablespace, 2-25

databases

administering, 1-1

Index-12

administration of distributed, 29-1

altering availability, 4-9 to 4-11

auditing, 26-1

backing up, 2-22

after creation of, 1-7

configuring options using DBCA, 2-9

control files of, 6-2

creating, 8-5

opening and, 1-6

creating manually, 2-14 to 2-22

creating using DBCA, 2-7

default temporary tablespace, specifying, 2-24

deleting using DBCA, 2-9

design of

implementing, 1-7

distributed

site autonomy of, 28-24

dropping, 2-31

global database name, about, 2-35

global database names in distributed

systems, 2-36

hardware evaluation, 1-5

logical structure of, 1-5

mounting a database, 4-6

mounting to an instance, 4-9

names, about, 2-36

names, conflicts in, 2-36

opening a closed database, 4-10

password encryption, 23-5

physical structure, 1-6

physical structure of, 1-6

planning, 1-5

production, 23-10, 23-12

quiescing, 4-14

read-only, opening, 4-10

recovery, 4-8

renaming, 6-6, 6-8

restricting access, 4-11

resuming, 4-17

security. See also security.

shutting down, 4-11 to 4-14

specifying control files, 2-36

starting up, 4-3 to 4-9

structure of

distributed database, 1-6

suspending, 4-17

templates (DBCA), 2-9

test, 23-10

troubleshooting creation problems, 2-31

tuning

archiving large databases, 8-19

responsibilities for, 1-8

undo management, 2-24

upgrading, 2-5

user responsibilities, 1-4

viewing datafiles and redo log files, 2-31

with locally managed tablespaces, 2-26

datafiles

adding to a tablespace, 12-5

bringing online and offline, 12-8

checking associated tablespaces, 11-51

creating, 12-5

creating as Oracle-managed files, 3-14

database administrators access, 1-10

default directory, 12-5

definition, 12-2

deleting, 11-29

dropping, 12-9, 12-14

dropping Oracle-managed files, 3-21

file numbers, 12-2

fully specifying filenames, 12-5

guidelines for managing, 12-2 to 12-4

identifying filenames, 12-12

location, 12-4

mapping files to physical devices, 12-15 to 12-27

minimum number of, 12-2

MISSING, 6-9

monitoring using views, 12-28

online, 12-9

relocating, 12-10, 12-13

relocating, example, 12-12

renaming, 12-10, 12-13

renaming for single tables, 12-11

reusing, 12-5

size of, 12-4

statements to create, 12-5

storing separately from redo log files, 12-4

taking offline, 11-23

unavailable when database is opened, 4-6

V$DBFILE and V$LOGFILE views, 2-31

Index-13

verifying data blocks, 12-14

DB_BLOCK_CHECKING initialization

parameter, 22-4, 22-5

DB_BLOCK_CHECKSUM initialization

parameter, 12-14

enabling redo block checking with, 7-18

DB_BLOCK_SIZE initialization parameter

setting, 2-37

DB_CACHE_SIZE initialization parameter

setting, 2-40

DB_CREATE_FILE_DEST initialization parameter

described, 3-5

DB_CREATE_ONLINE_LOG_DEST_n initialization

parameter

described, 3-5

DB_DOMAIN initialization parameter

setting before database creation, 2-35, 2-36

DB_FILES initialization parameter, 12-3

DB_NAME initialization parameter

setting before database creation, 2-35

DB_nK_CACHE_SIZE initialization parameter

using with transportable tablespaces, 11-41

DB_nK_CACHE_SIZE initialization parameters

setting, 2-40

DB_VERIFY utility, 22-4, 22-5

DBA role, 1-13, 25-5

DBA. See database administrators.

DBA_2PC_NEIGHBORS view, 32-5

using to trace session tree, 32-6

DBA_2PC_PENDING view, 32-3, 32-13, 32-22

using to list in-doubt transactions, 32-3

DBA_DATA_FILES view, 11-50

DBA_DB_LINKS view, 29-21, 32-3, 32-5

DBA_JOBS view

jobs in system, viewing, 10-15

DBA_JOBS_RUNNING

running jobs, viewing, 10-15

DBA_RESUMABLE view, 14-21

DBA_ROLLBACK_SEGS view, 13-25, 13-26

DBA_SEGMENTS view, 11-50

DBA_TEMP_FILES view, 11-50

DBA_TS_QUOTAS view, 11-50

DBA_UNDO_EXTENTS view

undo tablespace extents, 13-12

DBA_USERS view, 11-50

DBCA. See Database Configuration Assistant

DBMS_FLASHBACK package

setting undo retention period for, 13-10

DBMS_JOB package, 10-3

DBMS_LOGMNR_D.BUILD procedure, 9-6

DBMS_METADATA package

GET_DDL function, 21-31

using for object definition, 21-31

DBMS_REDEFINITION package

redefining tables online, 15-17

DBMS_REPAIR package, 22-2 to 22-15

CHECK_OBJECT procedure, 22-2

DUMP_ORPHAN_KEYS procedure, 22-3

examples, 22-8 to 22-15

limitations, 22-3

procedures, 22-2

SEGMENT_FIX_STATUS procedure, 22-3

SKIP_CORRUPT_BLOCKS procedure, 22-3

using, 22-3 to 22-8

DBMS_REPAIR procedure

FIX_CORRUPT_BLOCKS procedure, 22-2

REBUILD_FREELISTS procedure, 22-3

DBMS_RESOURCE_MANAGER package, 27-4,

27-9, 27-20, 27-21

procedures (table of), 27-8

DBMS_RESOURCE_MANAGER_PRIVS

package, 27-9, 27-20

procedures (table of), 27-9

DBMS_RESUMABLE package, 14-22

DBMS_SESSION package, 27-23

DBMS_SPACE package, 14-25

example for unused space, 21-32

FREE_BLOCK procedure, 21-31

SPACE_USAGE procedure, 21-31

UNUSED_SPACE procedure, 21-31

DBMS_SPACE_ADMIN package, 11-30 to 11-33

DBMS_STATS package, 21-4

MONITORING clause of CREATE TABLE, 15-9

DBMS_STORAGE_MAP package

invoking for file mapping, 12-22

DBMS_STORAGE_MAPPING package, 12-22,

12-23

DBMS_TRANSACTION package

PURGE_LOST_DB_ENTRY procedure, 32-13

DBMS_UTILITY package

Index-14

ANALYZE_SCHEMA procedure

used for computing statistics, 21-6

DEALLOCATE UNUSED clause, 14-26

deallocating unused space, 14-25

DBMS_SPACE package, 14-25

DEALLOCATE UNUSED clause, 14-26

examples, 14-26

high water mark, 14-25

declarative referential integrity constraints, 30-3

dedicated server processes, 5-2

trace files for, 5-15

default

audit options, 26-13

disabling, 26-15

DEFAULT keyword

list partitioning, 17-13

default partitions, 17-7

default roles, 25-21

default subpartition, 17-10

DEFAULT_CONSUMER_GROUP for Database

Resource Manager, 27-16, 27-17, 27-21, 27-23

defaults

profile, 24-20

role, 24-7

tablespace quota, 24-4

user tablespaces, 24-3

DELETE_CATALOG_ROLE role, 25-6

DELETE_CATALOG_ROLE roll, 25-4

dependencies

displaying, 21-34

destinations

archived redo logs

optional, 8-16

sample scenarios, 8-17

developers, application, 23-10

dictionary protection mechanism, 25-2

dictionary-managed tablespaces, 11-10 to 11-12

migrating SYSTEM to locally managed, 11-34

Digital’s POLYCENTER Manager on

NetView, 28-32

directory service

See also enterprise directory service.

DISABLE ROW MOVEMENT clause, 17-10

disabling audit options, 26-13, 26-14

disabling auditing, 26-8

disabling recoverer process

distributed transactions, 32-25

disabling resource limits, 24-19

disconnections

auditing, 26-11

dispatcher processes, 5-6, 5-10, 5-13

DISPATCHERS initialization parameter

setting initially, 5-6

distributed applications

distributing data, 30-2

distributed databases

administration

overview, 28-23

application development

analyzing execution plan, 30-9

controlling connections, 30-2

handling errors, 30-3

handling RPC errors, 30-11

managing distribution of data, 30-2

managing referential integrity, 30-3

tuning distributed queries, 30-3

tuning using collocated inline views, 30-4

using cost-based optimization, 30-5

using hints to tune queries, 30-8

client/server architectures, 28-6

commit point strength, 31-8

cost-based optimization, 28-47

distributed processing, 28-3

distributed queries, 28-34

distributed updates, 28-34

distributing an application’s data, 30-2

global database names

how they are formed, 29-2

global object names, 28-22, 29-2

global users

schema-dependent, 28-27

schema-independent, 28-28

Globalization Support, 28-47

location transparency, 28-44

creating, 29-26

creating using procedures, 29-30

creating using synonyms, 29-28

creating using views, 29-26

restrictions, 29-33

management tools, 28-31

Index-15

managing read consistency, 32-25

nodes of, 28-6

overview, 28-2

referential integrity

application development, 30-3

remote object security, 29-28

remote queries and updates, 28-33

replicated databases and, 28-4

resumable space allocation, 14-18

running in ARCHIVELOG mode, 8-4

running in NOARCHIVELOG mode, 8-4

scenarios, 29-34

security, 28-24

site autonomy, 28-24

SQL transparency, 28-45

starting a remote instance, 4-9

transaction processing, 28-33

transparency, 28-44

queries, 29-32

updates, 29-32

distributed processing

distributed databases, 28-3

distributed queries, 28-34

analyzing tables, 30-7

application development issues, 30-3

cost-based optimization, 30-5

optimizing, 28-47

distributed systems

data encryption, 28-30

distributed transactions, 28-35

case study, 31-19

commit point site, 31-7

commit point strength, 31-8

committing, 31-8

database server role, 31-5

defined, 31-2

DML and DDL, 31-3

failure during, 32-23

global coordinator, 31-6

local coordinator, 31-6

lock timeout interval, 32-23

locked resources, 32-23

locks for in-doubt, 32-24

management, 31-1, 32-1

manually overriding in-doubt, 32-9

naming, 32-2, 32-10

recovery in single-process systems, 32-25

session trees, 31-4

clients, 31-5

commit point site, 31-6, 31-8

database servers, 31-5

global coordinators, 31-6

local coordinators, 31-6

setting advice, 32-10

specifying

commit point strength, 32-2

tracing session tree, 32-5

transaction control statements, 31-4

transaction timeouts, 32-23

two-phase commit, 31-10

discovering problems, 32-8

example, 31-19

viewing information about, 32-3

distributed updates, 28-34

distributing I/O, 2-2

DML. See data manipulation language

DRIVING_SITE hint, 30-9

DROP CLUSTER statement

CASCADE CONSTRAINTS option, 18-10

dropping cluster, 18-10

dropping cluster index, 18-10

dropping hash cluster, 19-9

INCLUDING TABLES option, 18-10

DROP LOGFILE MEMBER option

ALTER DATABASE statement, 7-17

DROP LOGFILE option

ALTER DATABASE statement, 7-16

DROP PARTITION clause, 17-32

DROP PROFILE statement, 24-23

DROP ROLE statement, 25-10, 25-11

DROP ROLLBACK SEGMENT statement, 13-25

DROP SYNONYM statement, 20-15

DROP TABLE statement

about, 15-23

CASCADE CONSTRAINTS option, 15-23

for clustered tables, 18-11

DROP TABLESPACE statement, 11-30

DROP USER privilege, 24-8

DROP USER statement, 24-8

dropping an audit trail, 26-19

Index-16

dropping columns from tables, 15-14

marking unused, 15-15

remove unused columns, 15-15

dropping database links, 29-19

dropping datafiles

Oracle managed, 3-21

dropping profiles, 24-23

dropping tables

CASCADE clause, 15-23

consequences of, 15-23

privileges, 15-23

dropping tempfiles

Oracle managed, 3-21

dropping users, 24-7

DUMP_ORPHAN_KEYS procedure, 22-3, 22-6,

22-7

example, 22-13

E
EMPHASIS resource allocation method, 27-14

ENABLE ROW MOVEMENT clause, 17-10, 17-11

enabling recoverer process

distributed transactions, 32-25

enabling resource limits, 24-19

encryption

database passwords, 23-5, 24-9

enterprise directory service, 23-8, 25-10

enterprise roles, 23-8, 24-14, 25-10

enterprise users, 23-8, 24-14, 25-10

definition, 28-28

errors

alert log and, 5-15

messages

trapping, 30-11

ORA-00028, 5-22

ORA-00900, 30-11

ORA-01090, 4-11

ORA-01173, 6-10

ORA-01176, 6-10

ORA-01177, 6-10

ORA-01578, 12-14

ORA-01591, 32-24

ORA-02015, 30-11

ORA-02049, 32-23

ORA-02050, 32-8

ORA-02051, 32-8

ORA-02054, 32-8

ORA-02055

integrity constrain violation, 30-3

ORA-02067

rollback required, 30-3

ORA-06510

PL/SQL error, 30-12

ORA-1215, 6-10

ORA-1216, 6-10

ORA-1547, 21-30

ORA-1628 through 1630, 21-30

remote procedures, 30-11

snapshot too old, 13-9, 13-18

trace files and, 5-15

when creating a database, 2-31

when creating control file, 6-10

while starting a database, 4-8

while starting an instance, 4-8

exception handler, 30-11

local, 30-12

EXCEPTION keyword, 30-11

exceptions

assigning names

PRAGMA_EXCEPTION_INIT, 30-12

integrity constraints, 21-21

user-defined

PL/SQL, 30-11

EXCHANGE PARTITION clause, 17-37

EXCHANGE SUBPARTITION clause, 17-37

EXECUTE_CATALOG_ROLE role, 25-6

EXECUTE_CATALOG_ROLE roll, 25-3

executing jobs

enabling processes for, 10-2

execution plans

analyzing for distributed queries, 30-9

EXP_FULL_DATABASE role, 25-5

Export utility

about, 1-26

restricted mode and, 4-7

exporting jobs, 10-6

EXTENT MANAGEMENT LOCAL clause

CREATE DATABASE, 2-26

extents

Index-17

allocating

clusters, 18-9

allocating for tables, 15-12

data dictionary views for, 21-33

deallocating

clusters, 18-9

displaying free extents, 21-36

displaying information on, 21-35

external authentication

by network, 24-13

by operating system, 24-12

external procedures

managing processes for, 5-20

external tables

altering, 15-38

creating, 15-35

defined, 15-33

dropping, 15-39

object privileges, 15-39

object privileges for directory, 15-39

system privileges, 15-39

uploading data example, 15-35

F
failures

media

multiplexed online redo logs, 7-5

features, new, xlviii to lxi

file mapping

examples, 12-25

how it works, 12-16

how to use, 12-21

overview, 12-16

structures, 12-18

views, 12-23

file system

used for Oracle-managed files, 3-3

FILE_MAPPING initialization parameter, 12-22

filenames

Oracle-managed files, 3-7

files

Oracle-managed, 3-1 to 3-28

fine-grained access control, 23-4

fine-grained auditing, 26-18

FIX_CORRUPT_BLOCKS procedure, 22-2, 22-7

example, 22-12

fixed user database links

07_DICTIONARY_ACCESSIBILITY initialization

parameter, 28-18

advantages and disadvantages, 28-17

creating, 29-11

definition, 28-16

example, 28-20

flashback query

setting retention period for, 13-10

FMON background process, 12-17

FMPUTL external process

used for file mapping, 12-18

FOR PARTITION clause, 17-44

FORCE clause

COMMIT statement, 32-10

ROLLBACK statement, 32-10

FORCE LOGGING clause

CREATE CONTROLFILE, 2-30

CREATE DATABASE, 2-29

CREATE TABLESPACE, 11-20

performance considerations, 2-30

forcing

COMMIT or ROLLBACK, 32-4, 32-9

forcing a log switch, 7-18

using ARCHIVE_LAG_TIME, 7-10

with the ALTER SYSTEM statement, 7-18

forget phase

two-phase commit, 31-15

free space

coalescing, 11-16

listing free extents, 21-36

tablespaces and, 11-51

FREELIST GROUPS storage parameter

description, 14-11

FREELISTS GROUPS parameter, 11-8, 11-9

FREELISTS parameter, 11-8, 11-9

FREELISTS storage parameter

description, 14-11

function-based indexes, 16-14 to 16-18

functions

recompiling, 21-25

Index-18

G
generic connectivity

definition, 28-6

global authentication and authorization, 24-13

global cache service, 5-13

global coordinators, 31-6

distributed transactions, 31-6

global database consistency

distributed databases and, 31-14

global database links, 28-15

creating, 29-11

global database name, 2-35

global database names

changing the domain, 29-4

database links, 28-12

distributed databases

how they are formed, 29-2

enforcing for database links, 28-14

enforcing global naming, 29-3

impact of changing, 28-42

querying, 29-4

global object names

database links, 28-36

distributed databases, 29-2

global roles, 24-13, 25-10

global users, 24-13, 29-37

distributed systems

schema-dependent, 28-27

schema-independent, 28-28

GLOBAL_NAME view

using to determine global database name, 29-4

GLOBAL_NAMES initialization parameter, 28-14

Globalization Support

client/server architectures, 28-48

distributed databases

clients and servers may diverge, 28-47

heterogeneous systems, 28-49

homogeneous systems, 28-48

GRANT ANY OBJECT PRIVILEGE system

privilege, 25-14, 25-17

GRANT CONNECT THROUGH clause

for proxy authorization, 24-16

GRANT statement, 25-11

ADMIN OPTION, 25-12

creating a new user, 25-12

object privileges, 25-12

SYSOPER/SYSDBA privileges, 1-24

system privileges and roles, 25-11

when takes effect, 25-20

WITH GRANT OPTION, 25-13

granting privileges and roles

listing grants, 25-26

SYSOPER/SYSDBA privileges, 1-24

GV$DBLINK view, 29-25

H
hardware

evaluating, 1-5

hash clusters

advantages and disadvantages, 19-2 to 19-3

altering, 19-9

choosing key, 19-5

contrasted with index clusters, 19-2

controlling space use of, 19-5

creating, 19-4

dropping, 19-9

estimating storage, 19-8

examples, 19-7

hash function, 19-2, 19-3, 19-4, 19-6

HASH IS option, 19-4, 19-6

HASHKEYS option, 19-4, 19-7

single-table, 19-5

SIZE option, 19-6

hash functions

for hash cluster, 19-2

hash partitioning

creating tables using, 17-12

index-organized tables, 17-21

when to use, 17-5

heterogeneous distributed systems

definition, 28-5

Heterogeneous Services

overview, 28-5

high water mark, 14-25

hints, 30-8

DRIVING_SITE, 30-9

NO_MERGE, 30-8

using to tune distributed queries, 30-8

Index-19

historical tables

moving time window, 17-61

HP’s OpenView, 28-32

HS_ADMIN_ROLE role, 25-6

I
IBM’s NetView/6000, 28-32

IMP_FULL_DATABASE role, 25-5

implementing database design, 1-7

Import utility

about, 1-26

restricted mode and, 4-7

importing jobs, 10-6

index clusters. See clusters.

indexes

altering, 16-19 to 16-21

analyzing, 21-3 to 21-6

choosing columns to index, 16-4

cluster indexes, 18-8, 18-9, 18-10

coalescing, 16-8, 16-21

column order for performance, 16-5

creating, 16-9 to 16-19

disabling and dropping constraints cost, 16-9

dropping, 16-5, 16-22

estimating size, 16-6

explicitly creating a unique index, 16-11

function-based, 16-14 to 16-18

guidelines for managing, 16-2 to 16-9

keeping when disabling constraint, 21-18

keeping when dropping constraint, 21-18

key compression, 16-18

limiting per table, 16-5

monitoring space use of, 16-21

monitoring usage, 16-21

parallelizing index creation, 16-7

partitioned, 17-2

see also partitioned indexes

PCTFREE for, 16-5

PCTUSED for, 16-5

privileges

for altering, 16-19

for dropping, 16-22

rebuilding, 16-8, 16-20

rebuilding online, 16-20

separating from a table, 15-6

setting storage parameters for, 16-6

space used by, 16-21

specifying PCTFREE for, 14-4

statement for creating, 16-10

tablespace for, 16-6

temporary segments and, 16-3

updating global indexes, 17-26

validating structure, 21-6

when to create, 16-4

index-organized tables

analyzing, 15-32

AS subquery, 15-27

converting to heap, 15-33

creating, 15-25

described, 15-24

hash partitioning, 17-21

INCLUDING clause, 15-28

key compression, 15-29

maintaining, 15-30

ORDER BY clause, using, 15-33

overflow clause, 15-27

partitioning, 17-10, 17-19 to 17-21

partitioning secondary indexes, 17-20

range partitioning, 17-20

rebuilding with MOVE clause, 15-30

threshold value, 15-28

updating key column, 15-31

in-doubt transaction

manually committing, example, 32-15

in-doubt transactions, 31-14

after a system failure, 32-8

automatic resolution, 31-16

failure during commit phase, 31-17

failure during prepare phase, 31-16

deciding how to handle, 32-7

deciding whether to perform manual

override, 32-9

manually committing, 32-11

manually overriding, 31-18, 32-10

scenario, 32-15

manually rolling back, 32-12

overriding manually, 32-9

overview, 31-15

pending transactions table, 32-22

Index-20

purging rows from data dictionary, 32-13

deciding when necessary, 32-14

recoverer process, 32-24

rollback segments, 32-9

rolling back, 32-11, 32-12, 32-13

SCNs and, 31-19

simulating, 32-24

tracing session tree, 32-5

viewing information about, 32-3

INITIAL storage parameter

cannot alter, 14-13, 15-12

description, 14-10

rollback segments, 13-18, 13-20

when deallocating unused space, 14-26

initialization parameter file

creating, 2-15

creating for database creation, 2-15

editing before database creation, 2-35

individual parameter names, 2-35

server parameter file, 2-44 to 2-51, 4-4

initialization parameters

ARCHIVE_LAG_TARGET, 7-11

buffer cache, 2-40

DB_BLOCK_CHECKSUM, 7-18

DB_CREATE_FILE_DEST, 3-5

DB_CREATE_ONLINE_LOG_DEST_n, 3-5

FILE_MAPPING, 12-22

LOG_ARCHIVE_DEST_n, 8-10

LOG_ARCHIVE_DEST_STATE_n, 8-14

LOG_ARCHIVE_MAX_PROCESSES, 8-7, 8-19

LOG_ARCHIVE_MIN_SUCCEED_DEST, 8-16

LOG_ARCHIVE_START, 8-7, 8-8, 8-13

LOG_ARCHIVE_TRACE, 8-21

MAX_ROLLBACK_SEGMENTS, 13-15

RESOURCE_MANAGER_PLAN, 27-24

ROLLBACK_SEGMENTS, 13-15

shared server and, 5-5

SPFILE, 2-47

TRANSACTIONS, 13-15

TRANSACTIONS_PER_ROLLBACK_

SEGMENT, 13-15

UNDO_MANAGEMENT, 2-24, 13-3

UNDO_RETENTION, 13-9

UNDO_SUPPRESS_ERROR, 13-4

UNDO_TABLESPACE, 13-3

INITRANS storage parameter

altering, 15-11

guidelines for setting, 14-8

INSERT privilege

granting, 25-15

revoking, 25-18

installation

Oracle9i, 1-5

instances

aborting, 4-13

shutting down immediately, 4-12

shutting down normally, 4-12

starting up, 4-2 to 4-9

transactional shutdown, 4-13

integrity constraints

See also constraints

cost of disabling, 16-9

cost of dropping, 16-9

creating indexes associated with, 16-11

dropping tablespaces and, 11-30

ORA-02055

constraint violation, 30-3

INTERNAL

security for, 23-8

INTERNAL username

connecting for shutdown, 4-11

I/O

distributing, 2-2

IOT. See index-organized tables.

J
Jnnn processes

managing job queues, 10-3 to 10-14

job queues

altering jobs, 10-11

broken jobs, 10-12

CJQ background process, 10-2

DBMS_JOB package, 10-3

executing jobs in, 10-9

Jnnn processes, 10-2

locks, 10-9

removing jobs from, 10-10

submitting jobs to, 10-4 to 10-9

terminating jobs, 10-14

Index-21

viewing information, 10-15

JOB_QUEUE_PROCESSES initialization

parameter, 10-2

jobs

altering, 10-11

broken, 10-12

database links and, 10-9

environment, recording when submitted, 10-6

executing, 10-9

exporting, 10-6

forcing to execute, 10-14

importing, 10-6

job definition, 10-7

job execution interval, 10-8

job number, 10-7

ownership of, 10-7

removing from job queue, 10-10

running broken jobs, 10-13

submitting to job queue, 10-4

terminating, 10-14

trace files for job failures, 10-10

troubleshooting, 10-10

join views

definition, 20-3

DELETE statements, 20-8

key-preserved tables in, 20-6

modifying, 20-5

rule for, 20-7

updating, 20-5

joins

distributed databases

managing statement transparency, 29-33

JQ locks, 10-9

K
key compression, 15-29

indexes, 16-18

key-preserved tables

in join views, 20-6

keys

cluster, 18-2, 18-4, 18-5

L
LIST CHAINED ROWS clause

of ANALYZE statement, 21-7

list partitioning

adding values to value list, 17-45

creating tables using, 17-13

DEFAULT keyword, 17-13

dropping values from value-list, 17-46

when to use, 17-5

listing database links, 29-21, 32-3, 32-5

loading data

using external tables, 15-35

LOBs

storage parameters for, 14-12

local coordinators, 31-6

distributed transactions, 31-6

locally managed tablespaces, 11-5 to 11-10

automatic segment space management, 11-8

DBMS_SPACE_ADMIN package, 11-30

detecting and repairing defects, 11-30

migrating SYSTEM from

dictionary-managed, 11-34

tempfiles, 11-13

temporary, creating, 11-13

location transparency

distributed databases

creating using procedures, 29-30

creating using synonyms, 29-28

creating using views, 29-26

using procedures, 29-30, 29-31, 29-32

lock timeout interval

distributed transactions, 32-23

locks

in-doubt distributed transactions, 32-23, 32-24

job queue, 10-9

monitoring, 5-15

log sequence number

control files, 7-5

log switches

description, 7-5

forcing, 7-18

log sequence numbers, 7-5

multiplexed redo log files and, 7-7

privileges, 7-18

Index-22

using ARCHIVE_LAG_TIME, 7-10

waiting for archiving to complete, 7-7

log writer process (LGWR), 5-12

multiplexed redo log files and, 7-6

online redo logs available for use, 7-3

trace file monitoring, 5-16

trace files and, 7-6

writing to online redo log files, 7-3

LOG_ARCHIVE_DEST initialization parameter

specifying destinations using, 8-10

LOG_ARCHIVE_DEST_n initialization

parameter, 8-10

REOPEN option, 8-18

LOG_ARCHIVE_DEST_STATE_n initialization

parameter, 8-14

LOG_ARCHIVE_DUPLEX_DEST initialization

parameter

specifying destinations using, 8-10

LOG_ARCHIVE_MAX_PROCESSES initialization

parameter, 8-7, 8-19

LOG_ARCHIVE_MIN_SUCCEED_DEST

initialization parameter, 8-16

LOG_ARCHIVE_START initialization

parameter, 8-7, 8-13

setting, 8-8

LOG_ARCHIVE_TRACE initialization

parameter, 8-21

LOGGING clause

CREATE TABLESPACE, 11-20

logical structure of a database, 1-5

logical volume manager

used for Oracle-managed files, 3-2

logical volume managers

mapping files to physical devices, 12-15 to 12-27

LogMiner

continuous mining, 9-25

formatting returned data, 9-17

LogMiner utility

analyzing output, 9-16

dbmslmd.sql script, 9-6

dictionary options, 9-5

ending a session, 9-28

executing reconstructed SQL, 9-17

extracting a dictionary file, 9-6

extracting data values from redo logs, 9-18

graphical user interface, 9-1

re-creating LogMiner tables in alternate

tablespace, 9-11

redo log files, 9-4

specifying redo logs for analysis, 9-24

starting, 9-26

steps in a typical session, 9-23

supplemental logging, 9-19

identification keys, 9-20

log groups, 9-22

suppressing delimiters in SQL_REDO and SQL_

UNDO, 9-17

tracking DDL statements, 9-9

using the online catalog, 9-8

using to analyze redo log files, 9-1

V$LOGMNR_CONTENTS view, 9-16

views, 9-15

LogMiner Viewer, 9-1

LOGON trigger

setting resumable mode, 14-20

LONG columns, 29-33

LONG RAW columns, 29-33

LOW_GROUP for Database Resource

Manager, 27-17, 27-29

M
managing datafiles, 12-1 to 12-29

managing job queues, 10-3 to 10-14

managing roles, 25-6

managing sequences, 20-11 to 20-13

managing synonyms, 20-13 to 20-15

managing tables, 15-1 to 15-41

managing views, 20-2 to 20-11

manual archiving

in ARCHIVELOG mode, 8-9

manual overrides

in-doubt transactions, 32-10

MAX_DUMP_FILE_SIZE initialization

parameter, 5-16

MAX_ENABLED_ROLES initialization parameter

enabling roles and, 25-22

MAX_ROLLBACK_SEGMENTS initialization

parameter, 13-15

MAXDATAFILES parameter

Index-23

changing, 6-6

MAXEXTENTS storage parameter

description, 14-10

rollback segments, 13-17, 13-20

setting for the data dictionary, 21-28

MAXINSTANCES parameter

changing, 6-6

MAXLOGFILES option

CREATE DATABASE statement, 7-10

MAXLOGFILES parameter

changing, 6-6

MAXLOGHISTORY parameter

changing, 6-6

MAXLOGMEMBERS parameter

changing, 6-6

CREATE DATABASE statement, 7-10

MAXTRANS storage parameter

altering, 15-11

guidelines for setting, 14-8

media recovery

effects of archiving on, 8-3

memory

viewing per user, 24-26

MERGE PARTITIONS clause, 17-38

messages

error

trapping, 30-11

migrated rows

eliminating from table, procedure, 21-8

MINEXTENTS storage parameter

cannot alter, 14-13, 15-12

deallocating unused space, 14-26

description, 14-10

rollback segments, 13-18, 13-20

mirrored control files, 6-3

mirrored files

online redo log, 7-6

location, 7-9

size, 7-9

mirroring

control files, 2-36

MISSING datafiles, 6-9

MODIFY DEFAULT ATTRIBUTES clause, 17-44

using for partitioned tables, 17-43

MODIFY DEFAULT ATTRIBUTES FOR

PARTITION clause

of ALTER TABLE, 17-43

MODIFY PARTITION clause, 17-44, 17-48, 17-51

MODIFY SUBPARTITION clause, 17-45

MONITORING clause

CREATE TABLE, 15-9

monitoring datafiles, 12-28

MONITORING USAGE clause

of ALTER INDEX statement, 16-21

MOUNT option

STARTUP command, 4-7

mounting a database, 4-6

MOVE PARTITION clause, 17-44, 17-48

MOVE SUBPARTITION clause, 17-44, 17-49

moving control files, 6-5

multiplexed control files

importance of, 6-3

multiplexing

archived redo logs, 8-10

control files, 6-3

redo log files, 7-5

groups, 7-6

multi-tier environments

auditing clients, 26-13

N
name resolution

distributed databases, 28-22

impact of global name changes, 28-42

schema objects, 28-38

when global database name is

complete, 28-37

when global database name is partial, 28-37

when no global database name is

specified, 28-37

named user limits

setting initially, 2-43

nested tables

storage parameters for, 14-12

network

authentication, 24-13

network authentication, 24-13

network connections

minimizing, 29-14

Index-24

networks

distributed databases use of, 28-2

new features, xlviii to lxi

NEXT storage parameter

altering, 14-13, 15-12

description, 14-10

rollback segments, 13-18, 13-20

setting for the data dictionary, 21-28

NO_DATA_FOUND keyword, 30-11

NO_MERGE hint, 30-8

NOARCHIVELOG MODE

dropping datafiles, 12-9

NOARCHIVELOG mode

archiving, 8-2

definition, 8-2

media failure, 8-3

no hot backups, 8-3

running in, 8-2

switching to, 8-5

taking datafiles offline in, 12-9

NOAUDIT statement

disabling audit options, 26-13

disabling default object audit options, 26-15

disabling object auditing, 26-14

disabling statement and privilege

auditing, 26-14

NOLOGGING CLAUSE

CREATE TABLESPACE, 11-20

NOMOUNT option

STARTUP command, 4-6

normal transmission mode

definition, 8-14

Novell’s NetWare Management System, 28-32

O
O7_DICTIONARY_ACCESSIBILITY initialization

parameter, 25-3

object privileges

for external tables, 15-39

granting on behalf of the owner, 25-14

revoking, 25-16

revoking on behalf of owner, 25-17

objects

See also schema objects

referencing with synonyms, 29-28

See also schema objects

offline tablespaces

priorities, 11-21

rollback segments and, 13-22

taking offline, 11-21

online redefinition of tables

abort and cleanup, 15-20

example, 15-20

features of, 15-16

intermediate synchronization, 15-19

restrictions, 15-22

steps, 15-17

online redo log, 7-2

See also redo logs

creating

groups and members, 7-12

creating members, 7-13

dropping groups, 7-16

dropping members, 7-16

forcing a log switch, 7-18

guidelines for configuring, 7-5

INVALID members, 7-17

location of, 7-9

managing, 7-1

moving files, 7-14

number of files in the, 7-10

optimum configuration for the, 7-10

privileges

adding groups, 7-12

dropping groups, 7-16

dropping members, 7-17

forcing a log switch, 7-18

renaming files, 7-14

renaming members, 7-14

specifying ARCHIVE_LAG_TIME, 7-10

STALE members, 7-17

viewing information about, 7-20

online redo log files

creating as Oracle-managed files, 3-19

OPEN_LINKS initialization parameter, 29-20

opening a database

after creation, 1-6

operating systems

accounts, 25-24

Index-25

authentication, 24-12, 25-22

database administrators requirements for, 1-10

enabling and disabling roles, 25-25

renaming and relocating files, 12-10

role identification, 25-23

roles and, 25-22

security in, 23-3

Optimal Flexible Architecture (OFA), 2-7

OPTIMAL storage parameter

description, 14-11

rollback segments, 13-17, 13-18, 13-20

optional destinations

for archived redo logs

destinations

archived redo logs
mandatory, 8-16

ORA_TZFILE environment variable

specifying time zone file for database, 2-29

ORA-00900 error, 30-11

ORA-02015 error, 30-11

ORA-02055 error

integrity constraint violation, 30-3

ORA-02067 error

rollback required, 30-3

ORA-06510 error

PL/SQL error, 30-12

Oracle

installing, 1-5

release numbers, 1-8

Oracle Call Interface. See OCI

Oracle Enterprise Manager, 4-2

Oracle Managed Files feature

See also Oracle-managed files

Oracle Net

service names in, 8-15

transmitting archived logs via, 8-15

Oracle Universal Installer, 2-5

Oracle9i Real Application Clusters

allocating extents for cluster, 18-9

sequence numbers and, 20-13

threads of online redo log, 7-2

Oracle-managed files

behavior, 3-21

benefits, 3-3

CREATE DATABASE statement, 3-8

creating, 3-6 to 3-21

creating control files, 3-17

creating datafiles, 3-14

creating online redo log files, 3-19

creating tempfiles, 3-16

described, 3-2

dropping datafile, 3-21

dropping online redo log files, 3-22

dropping tempfile, 3-21

initialization parameters, 3-4

introduction, 2-25

naming, 3-7

renaming, 3-22

scenarios for using, 3-22 to 3-28

ORAPWD utility, 1-20

ORGANIZATION EXTERNAL clause

of CREATE TABLE, 15-35

OS authentication, 1-17

OS_ROLES parameter

operating-system authorization and, 25-9

REMOTE_OS_ROLES and, 25-25

using, 25-23

OSDBA group, 1-18

OSOPER group, 1-18

OTHER_GROUPS for Database Resource

Manager, 27-6, 27-13, 27-16, 27-19, 27-28

P
packages

DBMS_JOB, 10-3

DBMS_METADATA, 21-31

DBMS_REDEFINITION, 15-17

DBMS_REPAIR, 22-2 to 22-15

DBMS_RESOURCE_MANAGER, 27-4, 27-8,

27-9, 27-20, 27-21

DBMS_RESOURCE_MANAGER_PRIVS, 27-9,

27-20

DBMS_RESUMABLE, 14-22

DBMS_SESSION, 27-23

DBMS_SPACE, 14-25, 21-31

DBMS_STATS, 15-9, 21-4

DBMS_STORAGE_MAPPING, 12-22, 12-23

DBMS_UTILITY

Index-26

used for computing statistics, 21-6

privileges for recompiling, 21-25

recompiling, 21-25

parallel execution

managing, 5-18

parallel hints, 5-18

parallelizing index creation, 16-7

resumable space allocation, 14-18

parallel hints, 5-18

PARALLEL_DEGREE_LIMIT_ABSOLUTE resource

allocation method, 27-15

parallelizing table creation, 15-4, 15-8

parameter files

See also initialization parameter file.

PARTITION BY HASH clause, 17-12

PARTITION BY LIST clause, 17-13

PARTITION BY RANGE clause, 17-11

for composite-partitioned tables, 17-14, 17-15

PARTITION clause

for composite-partitioned tables, 17-14, 17-15

for hash partitions, 17-12

for list partitions, 17-13

for range partitions, 17-11

partition views

converting to partitioned table, 17-62

partitioned indexes, 17-1 to 17-65

adding partitions, 17-31

creating local index on composite partitioned

table, 17-15

creating local index on hash partitioned

table, 17-13

creating range partitions, 17-12

description, 17-2

dropping partitions, 17-35

global, 17-3

local, 17-3

maintenance operations, 17-22 to 17-61

table of, 17-24

modifying partition default attributes, 17-43

modifying real attributes of partitions, 17-45

moving partitions, 17-49

rebuilding index partitions, 17-50

renaming index partitions/subpartitions, 17-52

secondary indexes on index-organized

tables, 17-20

splitting partitions, 17-57

partitioned tables, 17-1 to 17-65

adding partitions, 17-27

adding subpartitions, 17-29, 17-30

coalescing partitions, 17-31

converting partition views, 17-62

creating composite partitions and

subpartitions, 17-14

creating hash partitions, 17-12

creating list partitions, 17-13

creating range partitions, 17-11, 17-12

description, 17-2

DISABLE ROW MOVEMENT, 17-10

dropping partitions, 17-32

ENABLE ROW MOVEMENT, 17-10

exchanging partitions, 17-35

exchanging subpartitions, 17-37, 17-38

global indexes on, 17-3

index-organized tables, 17-10, 17-20, 17-21

local indexes on, 17-3

maintenance operations, 17-22 to 17-61

table of, 17-23

marking indexes UNUSABLE, 17-28, 17-30,

17-31, 17-33, 17-35, 17-36, 17-38, 17-44, 17-45,

17-48, 17-52, 17-59

merging partitions, 17-38

modifying default attributes, 17-43

modifying real attributes of partitions, 17-44

modifying real attributes of subpartitions, 17-45

moving partitions, 17-48

moving subpartitions, 17-49

rebuilding index partitions, 17-50

renaming partitions, 17-51

renaming subpartitions, 17-51

splitting partitions, 17-52

truncating partitions, 17-59

truncating subpartitions, 17-61

updating global indexes automatically, 17-26

partitioning

composite, 17-7

creating partitions, 17-10 to 17-21

default partition, 17-7

default subpartition, 17-10

hash, 17-5

indexes, 17-2

Index-27

See also partitioned indexes

index-organized tables, 17-10, 17-20, 17-21

list, 17-5, 17-45, 17-46

maintaining partitions, 17-22 to 17-61

methods, 17-3

range, 17-4

range-list, 17-8, 17-15

subpartition templates, 17-17

tables, 17-2

See also partitioned tables

partitions

See also partitioned tables.

See also partitioned indexes.

PARTITIONS clause

for hash partitions, 17-12

password file authentication, 1-19

passwords

changing for roles, 25-7

default for SYS and SYSTEM, 1-11

encrypted

database, 23-5

encryption, 24-9

password file, 1-23

creating, 1-20

OS authentication, 1-16

removing, 1-25

state of, 1-25

privileges for changing for roles, 25-8

privileges to alter, 24-6

roles, 25-8

security policy for users, 23-5

setting REMOTE_LOGIN_PASSWORD

parameter, 1-22

user authentication, 24-9

viewing for database links, 29-22

PCTFREE parameter

clustered tables, 14-4

clusters, used in, 18-5

guidelines for setting, 14-4

indexes, 14-4

non-clustered tables, 14-4

PCTUSED, use with, 14-7

usage, 14-2

PCTFREE storage parameter

altering, 15-11

table creation, 15-2

PCTINCREASE parameter

altering, 14-13

rollback segments, 13-18, 13-20

setting for the data dictionary, 21-28

PCTINCREASE storage parameter

altering, 15-12

description, 14-10

PCTUSED parameter, 11-8, 11-9

clusters, used in, 18-5

guidelines for setting, 14-6

PCTFREE, use with, 14-7

usage, 14-5

PCTUSED storage parameter

altering, 15-11

table creation, 15-2

pending area for Database Resource Manager

plans, 27-12 to 27-14

validating plan schema changes, 27-12

pending transaction tables, 32-22

performance

index column order, 16-5

location of datafiles and, 12-4

tuning archiving, 8-19

physical structure of a database, 1-6

plan schemas for Database Resource

Manager, 27-6, 27-12, 27-16, 27-25, 27-32

examples, 27-25

validating plan changes, 27-12

planning

database creation, 2-2

relational design, 1-6

the database, 1-5

PL/SQL

errors

ORA-06510, 30-12

program units

replaced views and, 20-11

user-defined exceptions, 30-11

PRAGMA_EXCEPTION_INIT procedure

assigning exception names, 30-12

predefined roles, 1-13

prepare phase, 31-11

recognizing read-only nodes, 31-12

two-phase commit, 31-11

Index-28

prepare/commit phases

effects of failure, 32-23

failures during, 32-8

locked resources, 32-23

pending transaction table, 32-22

prepared response

two-phase commit, 31-12

prerequisites

for creating a database, 2-4

PRIMARY KEY constraints

associated indexes, 16-11

dropping associated indexes, 16-23

enabling on creation, 16-11

foreign key references when dropped, 21-19

indexes associated with, 16-11

private database links, 28-15

private rollback segments, 13-15, 13-19

taking offline, 13-24

private synonyms, 20-13

granting privileges and roles

specifying ALL, 25-4

revoking privileges and roles

specifying ALL, 25-4

privileges, 25-2

See also system privileges.

adding redo log groups, 7-12

altering

indexes, 16-19

passwords, 24-7

sequences, 20-12

users, 24-6

altering role authentication method, 25-8

altering tables, 15-10

application developers and, 23-10

audit object, 26-12

auditing system, 26-12

auditing use of, 26-11

cascading revokes, 25-19

closing a database link, 30-2

column, 25-15

creating

sequences, 20-12

synonyms, 20-14

views, 20-2

creating database links, 29-8

creating roles, 25-7

creating rollback segments, 13-19

creating tables, 15-6

creating tablespaces, 11-4

creating users, 24-2

database administrator, 1-10

disabling automatic archiving, 8-8

dropping

indexes, 16-22

online redo log members, 7-17

redo log groups, 7-16

sequences, 20-13

synonyms, 20-14

views, 20-10

dropping profiles, 24-23

dropping roles, 25-10

dropping rollback segments, 13-25

dropping tables, 15-23

enabling and disabling resource limits, 24-19

enabling and disabling triggers, 21-13

enabling automatic archiving, 8-6

for external tables, 15-39

forcing a log switch, 7-18

granting, 25-11

granting object privileges, 25-12

granting system privileges, 25-11

granting, about, 25-11

grouping with roles, 25-6

individual privilege names, 25-2

listing grants, 25-27

managing with procedures, 29-32

managing with synonyms, 29-30

managing with views, 29-28

manually archiving, 8-9

object, 25-4

on selected columns, 25-18

policies for managing, 23-6

recompiling packages, 21-25

recompiling procedures, 21-25

recompiling views, 21-25

renaming

objects, 21-3

redo log members, 7-14

replacing views, 20-10

RESTRICTED SESSION system privilege, 4-7

Index-29

revoking, 25-16

revoking object, 25-16

revoking object privileges, 25-16, 25-19

revoking system privileges, 25-16

setting resource costs, 24-22

system, 25-2

taking tablespaces offline, 11-21

truncating, 21-11

See also system privileges.

procedures

external, 5-20

location transparency using, 29-30, 29-31, 29-32

recompiling, 21-25

remote calls, 28-46

process monitor, 5-12

processes

See also server processes

PROCESSES initialization parameter

setting before database creation, 2-41

PRODUCT_COMPONENT_VERSION view, 1-10

profiles, 24-18

altering, 24-21

assigning to users, 24-20

creating, 24-20

default, 24-20

disabling resource limits, 24-19

dropping, 24-23

enabling resource limits, 24-19

listing, 24-23

managing, 24-18

privileges for dropping, 24-23

privileges to alter, 24-21

privileges to set resource costs, 24-22

PUBLIC_DEFAULT, 24-20

setting a limit to null, 24-21

viewing, 24-25

program global area (PGA)

effect of MAX_ENABLED_ROLES on, 25-22

proxies

auditing clients of, 26-13

proxy authentication and authorization, 24-16

proxy authentication, 24-16

proxy authorization, 24-16

proxy servers

auditing clients, 26-13

PROXY_USERS view, 24-16

public database links

connected user, 29-35

fixed user, 29-34

public fixed user database links, 29-34

public rollback segments, 13-19

taking offline, 13-24

public synonyms, 20-13

PUBLIC user group

granting and revoking privileges to, 25-20

procedures and, 25-20

PUBLIC_DEFAULT profile

dropping profiles and, 24-23

using, 24-20

PURGE_LOST_DB_ENTRY procedure

DBMS_TRANSACTION package, 32-13

purging pending rows

from data dictionary, 32-13

when necessary, 32-14

Q
queries

distributed, 28-34

application development issues, 30-3

distributed or remote, 28-33

location transparency and, 28-45

post-processing, 30-4

remote, 30-4

transparency, 29-32

quiescing a database, 4-14

quotas

listing, 24-23

revoking from users, 24-4

setting to zero, 24-4

tablespace, 24-4

tablespace quotas, 11-3

temporary segments and, 24-4

unlimited, 24-4

viewing, 24-25

R
range partitioning

creating tables using, 17-11

Index-30

index-organized tables, 17-20

when to use, 17-4

range-hash partitioning

subpartitioning template, 17-17

range-list partitioning, 17-8, 17-15

subpartitioning template, 17-19

read consistency

managing in distributed databases, 32-25

read-only database

opening, 4-10

read-only response

two-phase commit, 31-12

read-only tablespaces

datafiles, 12-8

read-only tablespaces, see tablespaces, read-only

REBUILD PARTITION clause, 17-49, 17-51

REBUILD SUBPARTITION clause, 17-51

REBUILD UNUSABLE LOCAL INDEXES

clause, 17-51

REBUILD_FREELISTS procedure, 22-3, 22-6, 22-8

example, 22-13

rebuilding indexes, 16-20

costs, 16-8

online, 16-20

RECOVER option

STARTUP command, 4-8

recoverer process, 5-13

recoverer process (RECO)

disabling, 32-24, 32-25

distributed transaction recovery, 32-24

enabling, 32-24, 32-25

pending transaction table, 32-24

recovery

creating new control files, 6-6

Recovery Manager

starting a database, 4-2

starting an instance, 4-2

RECOVERY_CATALOG_OWNER role, 25-6

redefining tables

online, 15-16 to 15-22

redo log files

active (current), 7-4

analyzing, 9-1

archived

advantages of, 8-2

contents of, 8-2

log switches and, 7-5

archived redo log files, 8-5

archived redo logs, 8-2

available for use, 7-3

circular use of, 7-3

clearing, 7-7, 7-19

restrictions, 7-19

contents of, 7-2

creating

groups and members, 7-12

creating members, 7-13

distributed transaction information in, 7-3

groups, 7-6

creating, 7-12

dropping, 7-16

members, 7-6

threads, 7-2

how many in redo log, 7-10

inactive, 7-4

legal and illegal configurations, 7-7

LGWR and the, 7-3

log sequence numbers of, 7-5

log switches, 7-5

members, 7-6

creating, 7-12

dropping, 7-16

maximum number of, 7-10

mirrored

log switches and, 7-7

multiplexed

diagrammed, 7-6

if all inaccessible, 7-7

multiplexing, 7-5

groups, 7-6

if some members inaccessible, 7-7

online, 7-2

recovery use of, 7-2

requirement of two, 7-3

threads of, 7-2

online redo log, 7-1

planning the, 7-5, 7-10

privileges

adding groups and members, 7-12

redo entries, 7-2

Index-31

requirements, 7-7

verifying blocks, 7-18

viewing, 2-31

redo logs

See also online redo log

storing separately from datafiles, 12-4

unavailable when database is opened, 4-6

redo records, 7-2

LOGGING and NOLOGGING, 11-20

REFERENCES privilege

CASCADE CONSTRAINTS option, 25-18

revoking, 25-18

referential integrity

distributed database systems

application development, 30-3

relational design

planning, 1-6

release number format, 1-8

releases, 1-8

checking the Oracle database release

number, 1-10

relocating control files, 6-5

remote connections, 1-25

connecting as SYSOPER/SYSDBA, 1-13

password files, 1-20

remote data

querying, 29-33

updating, 29-33

remote procedure calls, 28-46

distributed databases and, 28-46

remote queries, 30-4

distributed databases and, 28-33

execution, 30-4

post-processing, 30-4

remote transactions, 28-35

defined, 28-35

REMOTE_LOGIN_PASSWORDFILE initialization

parameter, 1-22

REMOTE_OS_AUTHENT initialization

parameter, 28-17

setting, 24-12

REMOTE_OS_ROLES initialization parameter

setting, 25-9, 25-26

RENAME PARTITION clause, 17-51

RENAME statement, 21-3

RENAME SUBPARTITION clause, 17-51

renaming control files, 6-5

renaming files

Oracle-managed files, 3-22

REOPEN option

LOG_ARCHIVE_DEST_n initialization

parameter, 8-18

repairing data block corruption

DBMS_REPAIR, 22-2 to 22-15

resource allocation methods, 27-4

active session pool, 27-15

CPU resource, 27-14

EMPHASIS, 27-14

limit on degree of parallelism, 27-15

limiting degree of parallelism, 27-15

PARALLEL_DEGREE_LIMIT_

ABSOLUTE, 27-15

queueing resource allocation method, 27-15

ROUND-ROBIN, 27-16

resource consumer groups, 27-3

creating, 27-16 to 27-17

DEFAULT_CONSUMER_GROUP, 27-16, 27-17,

27-21, 27-23

deleting, 27-17

LOW_GROUP, 27-17, 27-29

managing, 27-20 to 27-23

OTHER_GROUPS, 27-6, 27-13, 27-16, 27-19,

27-28

parameters, 27-16

SYS_GROUP, 27-17, 27-28

updating, 27-17

resource limits

altering in profiles, 24-21

assigning with profiles, 24-20

costs and, 24-22

creating profiles and, 24-20

disabling, 24-19

enabling, 24-19

privileges to enable and disable, 24-19

privileges to set costs, 24-22

profiles, 24-18

PUBLIC_DEFAULT profile and, 24-20

setting to null, 24-21

resource plan directives, 27-4, 27-12

deleting, 27-19

Index-32

specifying, 27-17 to 27-20

updating, 27-19

resource plans, 27-3

creating, 27-10 to 27-16

DELETE_PLAN_CASCADE, 27-16

deleting, 27-15

examples, 27-4, 27-25

parameters, 27-14

plan schemas, 27-6, 27-12, 27-16, 27-25, 27-32

subplans, 27-5, 27-6, 27-16

SYSTEM_PLAN, 27-15, 27-17, 27-28

top plan, 27-6, 27-13, 27-24

updating, 27-15

validating, 27-12

RESOURCE role, 25-5

RESOURCE_LIMIT initialization parameter

enabling and disabling limits, 24-19

RESOURCE_MANAGER_PLAN initialization

parameter, 27-24

resources

profiles, 24-18

responsibilities

database administrator, 1-2

of database users, 1-4

RESTRICT OPTION

STARTUP command, 4-7

RESTRICTED SESSION system privilege

connecting to database, 4-7

connecting to database., 4-7

restricted mode and, 4-7

resumable space allocation

correctable errors, 14-17

detecting suspended statements, 14-21

disabling, 14-19

distributed databases, 14-18

enabling, 14-19

example, 14-23

how resumable statements work, 14-15

naming statements, 14-20

parallel execution and, 14-18

resumable operations, 14-16

setting as default for session, 14-20

timeout interval, 14-19, 14-20

REVOKE CONNECT THROUGH clause

revoking proxy authorization, 24-16

REVOKE statement, 25-16

when takes effect, 25-20

revoking privileges and roles

on selected columns, 25-18

REVOKE statement, 25-16

when using operating-system roles, 25-25

RMAN. See Recovery Manager.

role identification

operating system accounts, 25-24

roles

ADMIN OPTION and, 25-12

application developers and, 23-11

AQ_ADMINISTRATOR_ROLE, 25-6

AQ_USER_ROLE, 25-6

authorization, 25-8

authorized by enterprise directory

service, 25-10

changing authorization for, 25-7

changing passwords, 25-7

CONNECT role, 25-5

database authorization, 25-8

DBA role, 1-13, 25-5

default, 24-7, 25-21

definition, 25-5

DELETE_CATALOG_ROLE, 25-6

disabling, 25-21

dropping, 25-10

enabling, 25-21

enterprise, 24-14, 25-10

EXECUTE_CATALOG_ROLE, 25-6

EXP_FULL_DATABASE, 25-5

global, 24-13, 25-10

global authorization, 25-10

GRANT statement, 25-25

granting, 25-11

granting, about, 25-11

HS_ADMIN_ROLE, 25-6

IMP_FULL_DATABASE, 25-5

listing, 25-30

listing grants, 25-28

listing privileges and roles in, 25-30

management using the operating system, 25-22

managing, 25-6

maximum, 25-22

multibyte characters in names, 25-7

Index-33

multibyte characters in passwords, 25-8

network authorization, 25-9

obtained through database links, 28-23

operating system, 25-24

operating system granting of, 25-23, 25-25

operating-system authorization, 25-9

OS management and the shared server, 25-25

passwords for enabling, 25-8

predefined, 1-13, 25-5

privileges for creating, 25-7

privileges for dropping, 25-10

privileges, changing authorization method

for, 25-8

privileges, changing passwords, 25-8

RECOVERY_CATALOG_OWNER, 25-6

RESOURCE role, 25-5

REVOKE statement, 25-25

revoking, 25-16

revoking ADMIN OPTION, 25-16

security and, 23-6

SELECT_CATALOG_ROLE, 25-6

SET ROLE statement, 25-25

SNMPAGENT, 25-6

unique names for, 25-7

WITH GRANT OPTION and, 25-13

without authorization, 25-7

rollback segments

acquiring automatically, 13-15, 13-23

acquiring on startup, 2-43

altering storage parameters, 13-21

AVAILABLE, 13-22

bringing online, 13-22

bringing online when new, 13-19

bringing PARTLY AVAILABLE segment

online, 13-23

checking if offline, 13-23

creating, 13-19 to 13-21

displaying information about, 13-26

displaying names of all, 13-28

displaying PENDING OFFLINE

segments, 13-29

dropping, 13-22, 13-25

equally sized extents, 13-17

explicitly assigning transactions to, 13-24

guidelines for managing, 13-13 to 13-18

in-doubt distributed transactions, 32-9

initial creation of SYSTEM, 13-14

INITIAL storage parameter, 13-18, 13-20

initialization parameters used with, 13-5

invalid status, 13-25

listing extents in, 21-35

location of, 13-18

making available for use, 13-22

maximum number of, 13-15

MINEXTENTS, 13-17, 13-18, 13-20

NEXT, 13-18, 13-20

OFFLINE, 13-22

OPTIMAL, 13-17, 13-18, 13-20

PARTLY AVAILABLE, 13-22

PCTINCREASE, 13-18, 13-20

PENDING OFFLINE, 13-24

private, 13-15, 13-19

privileges for dropping, 13-25

privileges required to create, 13-19

public, 13-19

public vs. private, 13-15

setting size of, 13-16

shrinking size of, 13-21

starting an instance using, 13-4

status for dropping, 13-25

status or state, 13-22

storage parameters, 13-20

taking offline, 13-23

taking tablespaces offline and, 11-23

using multiple, 13-14

ROLLBACK statement

FORCE clause, 32-10, 32-11, 32-12

forcing, 32-9

ROLLBACK_SEGMENTS initialization

parameter, 13-15

adding rollback segments to, 13-19, 13-23

dropping rollback segments, 13-25

online at instance startup, 13-16

setting before database creation, 2-43

rollbacks

ORA-02067 error, 30-3

ROUND-ROBIN resource allocation method, 27-16

row movement clause for partitioned tables, 17-10

rows

chaining across blocks, 14-4

Index-34

listing chained or migrated, 21-7

S
Sample Schemas

description, 2-33

savepoints

in-doubt transactions, 32-11, 32-13

schema objects

analyzing, 21-3 to 21-6

cascading effects on revoking, 25-19

creating multiple objects, 21-2

default audit options, 26-13

default tablespace for, 24-3

defining using DBMS_METADATA

package, 21-31

dependencies between, 21-23

disabling audit options, 26-14

distributed database naming conventions

for, 28-22

enabling audit options on, 26-12

global names, 28-22

granting privileges, 25-12

in a revoked tablespace, 24-4

listing by type, 21-33

name resolution in SQL statements, 21-25

obtaining metadata about, 21-31

owned by dropped users, 24-7

privileges to access, 25-4

privileges to rename, 21-3

privileges with, 25-4

renaming, 21-3

revoking privileges, 25-16

validating structure, 21-6

viewing information, 21-30

schema-independent users, 24-14

SCN. See system change number.

SCOPE clause

ALTER SYSTEM SET, 2-47

Secure Sockets Layer, 23-2, 24-8, 24-14

security

accessing a database, 23-2

administrator of, 23-2

application developers and, 23-10

auditing policies, 23-20

authentication of users, 23-2

data, 23-3

database security, 23-2

database users and, 23-2

distributed databases, 28-24

centralized user management, 28-27

establishing policies, 23-1

general users, 23-4

level of, 23-3

multibyte characters in role names, 25-7

multibyte characters in role passwords, 25-8

operating-system security and the

database, 23-3

policies for database administrators, 23-8

privilege management policies, 23-6

privileges, 23-2

protecting the audit trail, 26-18

remote objects, 29-28

REMOTE_OS_ROLES parameter, 25-26

roles to force security, 23-6

security officer, 1-3

test databases, 23-10

using synonyms, 29-30

SEGMENT_FIX_STATUS procedure, 22-3

segments

available space, 21-31

data dictionary, 21-28

data dictionary views for, 21-33

deallocating unused space, 14-25

displaying information on, 21-35

monitoring rollback, 13-27

rollback. See rollback segments.

temporary

storage parameters, 14-13

SELECT statement

FOR UPDATE clause, 29-33

SELECT_CATALOG_ROLE role, 25-6

SELECT_CATALOG_ROLE roll, 25-3

sequences

altering, 20-13

creating, 20-12

dropping, 20-13

managing, 20-11

Oracle Real Applications Clusters and, 20-13

privileges for altering, 20-12

Index-35

privileges for creating, 20-12

privileges for dropping, 20-13

SERVER parameter

net service name, 29-16

server parameter file

creating, 2-46

defined, 2-44

error recovery, 2-50

exporting, 2-49

migrating to, 2-45

RMAN backup, 2-50

setting initialization parameter values, 2-47

SPFILE initialization parameter, 2-47

STARTUP command behavior, 2-45, 4-3

viewing parameter settings, 2-51

server processes

archiver (ARCn), 5-12

background, 5-11 to 5-13

checkpoint (CKPT), 5-12

database writer (DBWn), 5-12

dedicated, 5-2

dispatcher (Dnnn), 5-13

dispatchers, 5-6 to 5-10

global cache service (LMS), 5-13

job queue coordinator process (CJQ0), 5-13, 10-2

log writer (LGWR), 5-12

monitoring, 5-13

monitoring locks, 5-15

process monitor (PMON), 5-12

recoverer (RECO), 5-13

shared server, 5-3 to 5-10

system monitor (SMON), 5-12

trace files for, 5-15

servers

role in two-phase commit, 31-5

service names

database links and, 29-13

session trees

distributed transactions, 31-4

clients, 31-5

commit point site, 31-6, 31-8

database servers, 31-5

global coordinators, 31-6

local coordinators, 31-6

tracing, 32-5

sessions

auditing connections and disconnections, 26-11

listing privilege domain of, 25-29

setting advice for transactions, 32-10

terminating, 5-21 to 5-23

viewing memory use, 24-26

sessions, user

active, 5-22

inactive, 5-23

marked to be terminated, 5-22

terminating, 5-21

viewing terminated sessions, 5-23

SET ROLE statement

how password is set, 25-8

used to enable/disable roles, 25-21

when using operating-system roles, 25-25

SET TIME_ ZONE clause

CREATE DATABASE, 2-28

SET TIME_ZONE clause

ALTER SESSION, 2-28

time zone files, 2-28

SET TRANSACTION statement

naming transactions, 32-2

USE ROLLBACK SEGMENT option, 13-24

SGA. See system global area.

SGA_MAX_SIZE initialization parameter, 2-38

setting size, 2-40

shared database links

configuring, 29-16

creating links, 29-14, 29-15

to dedicated servers, 29-16

to shared servers, 29-17

determining whether to use, 29-14

example, 28-20

SHARED keyword

CREATE DATABASE LINK statement, 29-15

shared server, 5-3

adjusting number of dispatchers, 5-8

enabling and disabling, 5-10

initialization parameters, 5-5

OS role management restrictions, 25-25

setting initial number of dispatchers, 5-6

setting initial number of servers, 5-7

setting minimum number of servers, 5-10

views, 5-10

Index-36

shared server processes

trace files for, 5-15

shared SQL

for remote and distributed statements, 28-34

SHARED_SERVERS initialization parameter

initial setting, 5-7

SHUTDOWN command

ABORT option, 4-13

IMMEDIATE option, 4-12

NORMAL option, 4-12

TRANSACTIONAL option, 4-13

Simple Network Management Protocol (SNMP)

support

database management, 28-32

single-process systems

enabling distributed recovery, 32-25

single-table hash clusters, 19-5

site autonomy

distributed databases, 28-24

SKIP_CORRUPT_BLOCKS procedure, 22-3, 22-7

example, 22-14

snapshot too old

OPTIMAL storage parameter and, 13-18

undo retention and, 13-9

SNMPAGENT role, 25-6

SORT_AREA_SIZE initialization parameter

index creation and, 16-3

space allocation

resumable, 14-14 to 14-25

space management

data blocks, 14-2 to 14-7

datatypes, space requirements, 14-29

deallocating unused space, 14-25

setting storage parameters, 14-9 to 14-13

SPACE_ERROR_INFO procedure, 14-21

specifying destinations

for archived redo logs, 8-10

specifying multiple ARCH processes, 8-19

SPFILE initialization parameter, 2-47

specifying from client machine, 4-5

SPLIT PARTITION clause, 17-27, 17-52

SQL errors

ORA-00900, 30-11

ORA-02015, 30-11

SQL statements

disabling audit options, 26-14

distributed databases and, 28-33

enabling audit options on, 26-11

SQL*Loader

about, 1-26

SQL*Plus

starting, 4-3

starting a database, 4-2

starting an instance, 4-2

SQL_TRACE initialization parameter

trace files and, 5-15

SSL. See Secure Sockets Layer.

STALE status

of redo log members, 7-17

standby transmission mode

definition of, 8-14

Oracle Net and, 8-15

RFS processes and, 8-15

starting a database

forcing, 4-8

Oracle Enterprise Manager, 4-2

recovery and, 4-8

Recovery Manage, 4-2

restricted mode, 4-7

SQL*Plus, 4-2

when control files unavailable, 4-6

when redo logs unavailable, 4-6

starting an instance

automatically at system startup, 4-9

database closed and mounted, 4-6

database name conflicts and, 2-36

enabling automatic archiving, 8-7

forcing, 4-8

mounting and opening the database, 4-6

normally, 4-6

Oracle Enterprise Manager, 4-2

recovery and, 4-8

Recovery Manager, 4-2

remote instance startup, 4-9

restricted mode, 4-7

SQL*Plus, 4-2

when control files unavailable, 4-6

when redo logs unavailable, 4-6

without mounting a database, 4-6

STARTUP command

Index-37

default behavior, 2-45

MOUNT option, 4-7

NOMOUNT option, 2-17, 4-6

RECOVER option, 4-8

RESTRICT option, 4-7

starting a database, 4-2, 4-3

statistics

automatically collecting for tables, 15-9

storage

quotas and, 24-4

revoking tablespaces and, 24-4

unlimited quotas, 24-4

STORAGE clause

See also storage parameters

storage parameters

altering, 15-11

altering defaults for tablespaces, 11-11

applicable objects, 14-8

BUFFER POOL, 14-11

changing for data dictionary objects, 21-27

data dictionary, 21-27

default, 14-9

example, 14-14

for the data dictionary, 21-28

FREELIST GROUPS, 14-11

FREELISTS, 14-11

INITIAL, 14-10

INITIAL, cannot alter, 15-12

INITRANS, altering, 15-11

MAXEXTENTS, 14-10

MAXTRANS, altering, 15-11

MINEXTENTS, 14-10

MINEXTENTS, cannot alter, 15-12

NEXT, 14-10

NEXT, altering, 15-12

OPTIMAL, 14-11

OPTIMAL (in rollback segments), 13-18

PCTFREE, altering, 15-11

PCTFREE, specifying, 15-2

PCTINCREASE, 14-10

PCTINCREASE, altering, 15-12

PCTUSED, altering, 15-11

PCTUSED, specifying, 15-2

precedence of, 14-13

rollback segments, 13-20

setting, 14-9 to 14-13

SYSTEM rollback segment, 13-21

temporary segments, 14-13

storage subsystems

mapping files to physical devices, 12-15 to 12-27

STORE IN clause, 17-14

stored procedures

distributed query creation, 30-3

managing privileges, 29-32

privileges for recompiling, 21-25

remote object security, 29-32

using privileges granted to PUBLIC, 25-20

SUBPARTITION BY HASH clause

for composite-partitioned tables, 17-14

SUBPARTITION BY LIST clause

for composite-partitioned tables, 17-15

SUBPARTITION clause, 17-29, 17-30, 17-54

for composite-partitioned tables, 17-14, 17-15

subpartition template

modifying, 17-48

subpartition templates, 17-17

subpartitions, 17-2

SUBPARTITIONS clause, 17-29, 17-54

for composite-partitioned tables, 17-14

subqueries, 29-33

in remote updates, 28-34

SunSoft’s SunNet Manager, 28-32

supplemental logging

for LogMiner utility, 9-19

LogMiner utility

identification keys, 9-20

log groups, 9-22

SWITCH LOGFILE option

ALTER SYSTEM statement, 7-18

synonyms

CREATE statement, 29-28

creating, 20-14

definition and creation, 29-28

displaying dependencies of, 21-34

dropping, 20-15

examples, 29-29

location transparency using, 29-28

managing, 20-13 to 20-15

managing privileges, 29-30

name resolution, 28-42

Index-38

name resolution in distributed databases, 28-42

private, 20-13

privileges for creating, 20-14

privileges for dropping, 20-14

public, 20-13

remote object security, 29-30

SYS

specifying password for CREATE DATABASE

statement, 2-23

SYS account

default password, 1-11

objects owned, 1-12

policies for protecting, 23-8

privileges, 1-12

user, 1-12

SYS_GROUP for Database Resource

Manager, 27-17, 27-28

SYS.AUD$ table

audit trail, 26-2

creating and deleting, 26-19

SYSDBA system privilege

connecting to database, 1-14

SYSOPER system privilege

connecting to database, 1-14

SYSOPER/SYSDBA privileges

adding users to the password file, 1-23

connecting with, 1-13

determining who has privileges, 1-24

granting and revoking, 1-24

SYSTEM

specifying password for CREATE

DATABASE, 2-23

SYSTEM account

default password, 1-11

objects owned, 1-12

policies for protecting, 23-8

system change number

using V$DATAFILE to view information

about, 12-29

when assigned, 7-2

system change numbers (SCN)

coordination in a distributed database

system, 31-14

in-doubt transactions, 32-12

system global area

initialization parameters affecting size, 2-38

specifying buffer cache sizes, 2-40

system monitor, 5-12

system privileges, 25-2

ADMINISTER_RESOURCE_MANAGER, 27-8

described, 25-2

for external tables, 15-39

GRANT ANY OBJECT PRIVILEGE, 25-14,

25-17

granting, 25-11

SYSTEM rollback segment

altering storage parameters of, 13-21

SYSTEM Tablespace

creating locally managed, 2-26

SYSTEM tablespace

cannot drop, 11-29

initial rollback segment, 13-14

restrictions on taking offline, 12-8

when created, 11-3

SYSTEM_PLAN for Database Resource

Manager, 27-15, 27-17, 27-28

T
tables

adding columns, 15-13

allocating extents, 15-12

altering, 15-10

altering physical attributes, 15-11

analyzing, 21-3 to 21-6

clustered (hash). See hash clusters

clustered (index). See clusters.

creating, 15-7

creating in locally managed tablespaces, 15-3

data block space, specifying, 15-2

designing before creating, 15-2

dropping, 15-23

dropping columns, 15-14 to 15-16

estimating size, 15-4

external, 15-33 to 15-39

guidelines for managing, 15-2

hash clustered. See hash clusters

historical

moving time windows, 17-61

increasing column length, 15-13

Index-39

index-organized, 15-24 to 15-33

partitioning, 17-19 to 17-21

key-preserved, 20-6

limiting indexes on, 16-5

managing, 15-1 to 15-41

modifying column definition, 15-13

moving, 15-12

parallelizing creation, 15-4, 15-8

partitioned, 17-2 to 17-65

see also partitioned tables

planning large tables, 15-5

privileges for creation, 15-6

privileges to alter, 15-10

redefining online, 15-16 to 15-22

renaming columns, 15-14

restrictions when creating, 15-6

separating from indexes, 15-6

setting storage parameters, 15-4

specifying location, 15-3

specifying PCTFREE for, 14-4

statistics collection, automatic, 15-9

temporary, 15-8

temporary space for creation, 15-6

truncating, 21-9

unrecoverable (NOLOGGING), 15-4

validating structure, 21-6

views, 15-40

tablespace set, 11-37

tablespaces

adding datafiles, 12-5

altering storage parameters, 11-11

assigning defaults for users, 24-3

assigning user quotas, 11-3

automatic segment space management, 11-8

checking default storage parameters, 11-51

coalescing free space, 11-16

creating a default temporary tablespace, 2-24

creating undo tablespace at database

creation, 2-24

DBMS_SPACE_ADMIN package, 11-30

default quota, 24-4

detecting and repairing defects, 11-30

dictionary managed, 11-10 to 11-12

dropping, 11-29

guidelines for managing, 11-2

listing files of, 11-51

listing free space in, 11-51

locally managed, 11-5 to 11-10

locally managed SYSTEM, 2-26

locally managed temporary, 11-13

location, 12-4

making read-only, 11-25

making read-only writable, 11-27

migrating SYSTEM to locally managed, 11-34

multiple block sizes, 11-41

on a WORM device, 11-27

privileges for creating, 11-4

privileges to take offline, 11-21

quotas for users, 24-4

quotas, assigning, 11-3

revoking from users, 24-4

setting default storage parameters, 14-11

setting default storage parameters for, 11-3

specifying non-standard block sizes, 11-19

SYSTEM tablespace, 11-3

taking offline normal, 11-21

taking offline temporarily, 11-22

tempfiles in locally managed, 11-13

temporary

assigning to users, 24-5

for creating large indexes, 16-13

temporary, creating, 11-12

transportable, 11-35 to 11-49

undo, 13-2 to 13-13

unlimited quotas, 24-4

using multiple, 11-2

viewing quotas, 24-25

tempfiles, 11-13

creating as Oracle-managed files, 3-16

dropping Oracle-managed files, 3-21

taking offline, 11-23

templates

for databases (DBCA), 2-11

temporary segments

index creation and, 16-3

temporary tables

creating, 15-8

temporary tablespaces, see tablespaces, temporary

terminating user sessions

active sessions, 5-22

Index-40

identifying sessions, 5-22

inactive session, example, 5-23

inactive sessions, 5-23

threads

online redo log, 7-2

time zone

files, 2-28

setting for database, 2-28

TNSNAMES.ORA file, 8-11

trace files

job failures and, 10-10

location of, 5-16

log writer, 5-16

log writer process and, 7-6

size of, 5-16

using, 5-15, 5-16

when written, 5-17

tracing

archivelog process, 8-21

transaction control statements

distributed transactions and, 31-4

transaction failures

simulating, 32-24

transaction management

overview, 31-10

transaction processing

distributed systems, 28-33

transactions

assigning to specific rollback segment, 13-24

closing database links, 30-2

distributed

two-phase commit and, 28-36

in-doubt, 31-14

after a system failure, 32-8

pending transactions table, 32-22

recoverer process (RECO) and, 32-24

manually overriding in-doubt, 32-9

naming distributed, 32-2, 32-10

remote, 28-35

rollback segments and, 13-24

TRANSACTIONS initialization parameter, 13-15

TRANSACTIONS_PER_ROLLBACK_SEGMENT

initialization parameter, 13-15

transmitting archived redo logs, 8-14

in normal transmission mode, 8-14

in standby transmission mode, 8-14

transparency

location

using procedures, 29-30, 29-31, 29-32

query, 29-32

update, 29-32

transportable tablespaces, 11-35 to 11-49

multiple block sizes, 11-41

transporting tablespaces between

databases, 11-34 to 11-49

triggers

disabling, 21-13

distributed query creation, 30-3

enabling, 21-13

privileges for enabling and disabling, 21-13

TRUNCATE PARTITION clause, 17-59

TRUNCATE statement, 21-10

DROP STORAGE clause, 21-11

REUSE STORAGE clause, 21-11

vs. dropping table, 15-23

TRUNCATE SUBPARTITION clause, 17-61

tuning

analyzing tables, 30-7

archiving, 8-19

cost-based optimization, 30-5

databases, 1-8

two-phase commit

case study, 31-19

commit phase, 31-14, 31-23

steps in, 31-14

described, 28-35

distributed transactions, 31-10

tracing session tree, 32-5

viewing information about, 32-3

forget phase, 31-15

in-doubt transactions, 31-15

automatic resolution, 31-16

manual resolution, 31-18

SCNs and, 31-19

phases, 31-10

prepare phase, 31-11

abort response, 31-13

prepared response, 31-12

read-only response, 31-12

responses, 31-11

Index-41

steps, 31-13

problems, 32-8

recognizing read-only nodes, 31-12

specifying commit point strength, 32-2

U
undo space management

automatic undo management

mode, 13-3 to 13-13

described, 13-2

rollback segment undo mode, 13-13 to 13-29

specifying mode, 13-3

undo tablespaces

altering, 13-7

creating, 13-6

dropping, 13-7

estimating space requirements, 13-11

initialization parameters for, 13-3

monitoring, 13-12

PENDING OFFLINE status, 13-8

specifying at database creation, 2-24

specifying retention period, 13-9

starting an instance using, 13-3

statistics for, 13-12

switching, 13-8

used with flashback queries, 13-10

user quotas, 13-9

viewing information about, 13-11

UNDO_MANAGEMENT initialization

parameter, 2-24

starting instance as AUTO, 13-3

UNDO_RETENTION initialization parameter

for undo tablespaces, 13-9

UNDO_SUPPRESS_ERROR initialization parameter

for undo tablespaces, 13-4

UNDO_TABLESPACE initialization parameter

starting an instance using, 13-3

UNIQUE key constraints

associated indexes, 16-11

dropping associated indexes, 16-23

enabling on creation, 16-11

foreign key references when dropped, 21-19

indexes associated with, 16-11

UNLIMITED TABLESPACE privilege, 24-5

UNRECOVERABLE DATAFILE option

ALTER DATABASE statement, 7-20

UPDATE GLOBAL INDEX clause

of ALTER TABLE, 17-26

UPDATE privilege

revoking, 25-18

updates

location transparency and, 28-45

transparency, 29-32

upgrading a database, 2-5

USER_DB_LINKS view, 29-21

USER_DUMP_DEST initialization parameter, 5-16

USER_JOBS view

jobs in system, viewing, 10-15

USER_RESUMABLE view, 14-21

USER_SEGMENTS view, 11-50

usernames

SYS and SYSTEM, 1-11

users

altering, 24-6

assigning profiles to, 24-20

assigning tablespace quotas, 11-3

assigning unlimited quotas for, 24-4

authentication

about, 23-2, 24-8

changing default roles, 24-7

database authentication, 24-9

default tablespaces, 24-3

dropping, 24-7

dropping profiles and, 24-23

dropping roles and, 25-10

end-user security policies, 23-6

enrolling, 1-7

enterprise, 24-14, 25-10

external authentication, 24-11

global, 24-13

in a newly created database, 2-32

limiting number of, 2-43

listing, 24-23

listing privileges granted to, 25-27

listing roles granted to, 25-28

managing, 24-2

network authentication, 24-13

objects after dropping, 24-7

operating system authentication, 24-12

Index-42

password security, 23-5

policies for managing privileges, 23-6

privileges for changing passwords, 24-6

privileges for creating, 24-2

privileges for dropping, 24-8

proxy authentication and authorization, 24-16

PUBLIC group, 25-20

schema-independent, 24-14

security and, 23-2

security for general users, 23-4

session, terminating, 5-23

specifying user names, 24-3

tablespace quotas, 24-4

unique user names, 2-43

viewing information on, 24-25

viewing memory use, 24-26

viewing tablespace quotas, 24-25

utilities

Export, 1-26

for the database administrator, 1-26

Import, 1-26

SQL*Loader, 1-26

UTLCHAIN.SQL script

listing chained rows, 21-7

UTLCHN1.SQL script

listing chained rows, 21-7

UTLLOCKT.SQL script, 5-15

V
V$ARCHIVE view, 8-23

V$ARCHIVE_DEST view

obtaining destination status, 8-13

V$DATABASE view, 8-24

V$DATAFILE view, 11-50

V$DBFILE view, 2-31

V$DBLINK view, 29-25

V$DISPATCHER view

monitoring shared server dispatchers, 5-8

V$DISPATCHER_RATE view

monitoring shared server dispatchers, 5-8

V$INSTANCE view

for database quiesce state, 4-16

V$LOG view, 8-23

displaying archiving status, 8-23

online redo log, 7-20

viewing redo data with, 7-20

V$LOG_HISTORY view

viewing redo data, 7-20

V$LOGFILE view, 2-31

log file status, 7-17

viewing redo data, 7-20

V$LOGMNR_CONTENTS view, 9-16

V$OBJECT_USAGE view

for monitoring index usage, 16-21

V$PWFILE_USERS view, 1-24

V$QUEUE view

monitoring shared server dispatchers, 5-8

V$ROLLNAME view

finding PENDING OFFLINE segments, 13-29

V$ROLLSTAT view

finding PENDING OFFLINE segments, 13-29

undo segments, 13-12

V$SESSION view, 5-23

V$SORT SEGMENT view, 11-50

V$SORT_USER view, 11-50

V$TEMP_EXTENT_MAP view, 11-50

V$TEMP_EXTENT_POOL view, 11-50

V$TEMP_SPACE_HEADER view, 11-50

V$TEMPFILE view, 11-50

V$THREAD view, 7-20

V$TIMEZONE_NAMES view

time zone table information, 2-29

V$TRANSACTION view

undo tablespaces information, 13-12

V$UNDOSTAT view

statistics for undo tablespaces, 13-12

V$VERSION view, 1-10

varrays

storage parameters for, 14-12

verifying blocks

redo log files, 7-18

views

creating, 20-2

creating with errors, 20-4

Database Resource Manager, 27-31

DATABASE_PROPERTIES, 2-25

DBA_RESUMABLE, 14-21

displaying dependencies of, 21-34

dropping, 20-10

Index-43

file mapping views, 12-23

for monitoring datafiles, 12-28

FOR UPDATE clause and, 20-3

join. See join views.

location transparency using, 29-26

managing, 20-2, 20-11

managing privileges with, 29-28

name resolution in distributed databases, 28-42

ORDER BY clause and, 20-3

privileges, 20-2

privileges for dropping, 20-10

privileges for recompiling, 21-25

privileges to replace, 20-10

recompiling, 21-25

remote object security, 29-28

tables, 15-40

USER_RESUMABLE, 14-21

V$ARCHIVE, 8-23

V$ARCHIVE_DEST, 8-13

V$DATABASE, 8-24

V$LOG, 7-20, 8-23

V$LOG_HISTORY, 7-20

V$LOGFILE, 7-17, 7-20

V$OBJECT_USAGE, 16-21

V$THREAD, 7-20

wildcards in, 20-4

WITH CHECK OPTION, 20-3

W
wildcards

in views, 20-4

Windows operating system

OS audit trail, 26-2, 26-9

WORM devices

and read-only tablespaces, 11-27

Index-44

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Oracle9i?
	Oracle9i Release 2 (9.2) New Features
	Oracle9i Release 1 (9.0.1) New Features

	Part I� Basic Database Administration
	1 The Oracle Database Administrator
	Types of Oracle Users
	Database Administrators
	Security Officers
	Network Administrators
	Application Developers
	Application Administrators
	Database Users

	Tasks of a Database Administrator
	Task 1: Evaluate the Database Server Hardware
	Task 2: Install the Oracle Software
	Task 3: Plan the Database
	Task 4: Create and Open the Database
	Task 5: Back Up the Database
	Task 6: Enroll System Users
	Task 7: Implement the Database Design
	Task 8: Back Up the Fully Functional Database
	Task 9: Tune Database Performance

	Identifying Your Oracle Database Software Release
	Release Number Format
	Checking Your Current Release Number

	Database Administrator Security and Privileges
	The Database Administrator’s Operating System Account
	Database Administrator Usernames

	Database Administrator Authentication
	Administrative Privileges
	Selecting an Authentication Method
	Using Operating System (OS) Authentication
	Using Password File Authentication

	Creating and Maintaining a Password File
	Using ORAPWD
	Setting REMOTE_LOGIN_ PASSWORDFILE
	Adding Users to a Password File
	Maintaining a Password File

	Database Administrator Utilities
	SQL*Loader
	Export and Import

	2 Creating an Oracle Database
	Considerations Before Creating a Database
	Planning for Database Creation
	Meeting Creation Prerequisites
	Deciding How to Create an Oracle Database

	Using the Database Configuration Assistant
	Advantages of Using DBCA
	Creating a Database Using DBCA
	Configuring Database Options
	Deleting a Database Using DBCA
	Managing DBCA Templates
	Using DBCA Silent Mode

	Manually Creating an Oracle Database
	Step 1: Decide on Your Instance Identifier (SID)
	Step 2: Establish the Database Administrator Authentication Method
	Step 3: Create the Initialization Parameter File
	Step 4: Connect to the Instance
	Step 5: Start the Instance.
	Step 6: Issue the CREATE DATABASE Statement
	Step 7: Create Additional Tablespaces
	Step 8: Run Scripts to Build Data Dictionary Views
	Step 9: Run Scripts to Install Additional Options (Optional)
	Step 10: Create a Server Parameter File (Recommended)
	Step 11: Back Up the Database.

	Understanding the CREATE DATABASE Statement
	Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM
	Clauses that Simplify Database Creation and Management
	Creating a Locally Managed SYSTEM Tablespace
	Specifying the Database Time Zone and Time Zone File
	Specifying FORCE LOGGING Mode

	Troubleshooting Database Creation
	Dropping a Database
	Considerations After Creating a Database
	Some Security Considerations
	Installing Oracle’s Sample Schemas

	Initialization Parameters and Database Creation
	Determining the Global Database Name
	Specifying Control Files
	Specifying Database Block Sizes
	Setting Initialization Parameters that Affect the Size of the SGA
	Specifying the Maximum Number of Processes
	Specifying the Method of Undo Space Management
	Setting License Parameters

	Managing Initialization Parameters Using a Server Parameter File
	What is a Server Parameter File?
	Migrating to a Server Parameter File
	Creating a Server Parameter File
	The SPFILE Initialization Parameter
	Using ALTER SYSTEM to Change Initialization Parameter Values
	Exporting the Server Parameter File
	Backing Up the Server Parameter File
	Errors and Recovery for the Server Parameter File
	Viewing Parameter Settings

	3 Using Oracle-Managed Files
	What are Oracle-Managed Files?
	Who Can Use Oracle-Managed Files?
	Benefits of Using Oracle-Managed Files
	Oracle-Managed Files and Existing Functionality

	Enabling the Creation and Use of Oracle-Managed Files
	Setting the DB_CREATE_FILE_DEST Initialization Parameter
	Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameter

	Creating Oracle-Managed Files
	How Oracle-Managed Files are Named
	Creating Oracle-Managed Files at Database Creation
	Creating Datafiles for Tablespaces
	Creating Tempfiles for Temporary Tablespaces
	Creating Control Files
	Creating Online Redo Log Files

	Behavior of Oracle-Managed Files
	Dropping Datafiles and Tempfiles
	Dropping Online Redo Log Files
	Renaming Files
	Managing Standby Databases

	Scenarios for Using Oracle-Managed Files
	Scenario 1: Create and Manage a Database with Multiplexed Online Redo Logs
	Scenario 2: Add Oracle-Managed Files to an Existing Database

	4 Starting Up and Shutting Down
	Starting Up a Database
	Options for Starting Up a Database
	Preparing to Start an Instance
	Using SQL*Plus to Start Up a Database
	Starting an Instance: Scenarios

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Opening a Database in Read-Only Mode
	Restricting Access to an Open Database

	Shutting Down a Database
	Shutting Down with the NORMAL Option
	Shutting Down with the IMMEDIATE Option
	Shutting Down with the TRANSACTIONAL Option
	Shutting Down with the ABORT Option

	Quiescing a Database
	Placing a Database into a Quiesced State
	Restoring the System to Normal Operation
	Viewing the Quiesce State of an Instance

	Suspending and Resuming a Database

	Part II� Oracle Server Processes and Storage Structure
	5 Managing Oracle Processes
	Server Processes
	Dedicated Server Processes
	Shared Server Processes

	Configuring Oracle for the Shared Server
	Initialization Parameters for Shared Server
	Setting the Initial Number of Dispatchers (DISPATCHERS)
	Setting the Initial Number of Shared Servers (SHARED_SERVERS)
	Modifying Dispatcher and Server Processes
	Monitoring Shared Server

	About Oracle Background Processes
	Monitoring the Processes of an Oracle Instance
	Process and Session Views
	Monitoring Locks
	Trace Files and the Alert File

	Managing Processes for Parallel Execution
	Managing the Parallel Execution Servers
	Altering Parallel Execution for a Session

	Managing Processes for External Procedures
	Terminating Sessions
	Identifying Which Session to Terminate
	Terminating an Active Session
	Terminating an Inactive Session

	6 Managing Control Files
	What Is a Control File?
	Guidelines for Control Files
	Provide Filenames for the Control Files
	Multiplex Control Files on Different Disks
	Place Control Files Appropriately
	Back Up Control Files
	Manage the Size of Control Files

	Creating Control Files
	Creating Initial Control Files
	Creating Additional Copies, Renaming, and Relocating Control Files
	Creating New Control Files

	Troubleshooting After Creating Control Files
	Checking for Missing or Extra Files
	Handling Errors During CREATE CONTROLFILE

	Backing Up Control Files
	Recovering a Control File Using a Current Copy
	Recovering from Control File Corruption Using a Control File Copy
	Recovering from Permanent Media Failure Using a Control File Copy

	Dropping Control Files
	Displaying Control File Information

	7 Managing the Online Redo Log
	What Is the Online Redo Log?
	Redo Threads
	Online Redo Log Contents
	How Oracle Writes to the Online Redo Log

	Planning the Online Redo Log
	Multiplexing Online Redo Log Files
	Placing Online Redo Log Members on Different Disks
	Setting the Size of Online Redo Log Members
	Choosing the Number of Online Redo Log Files
	Controlling Archive Lag

	Creating Online Redo Log Groups and Members
	Creating Online Redo Log Groups
	Creating Online Redo Log Members

	Relocating and Renaming Online Redo Log Members
	Dropping Online Redo Log Groups and Members
	Dropping Log Groups
	Dropping Online Redo Log Members

	Forcing Log Switches
	Verifying Blocks in Redo Log Files
	Clearing an Online Redo Log File
	Viewing Online Redo Log Information

	8 Managing Archived Redo Logs
	What Is the Archived Redo Log?
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	Running a Database in NOARCHIVELOG Mode
	Running a Database in ARCHIVELOG Mode

	Controlling Archiving
	Setting the Initial Database Archiving Mode
	Changing the Database Archiving Mode
	Enabling Automatic Archiving
	Disabling Automatic Archiving
	Performing Manual Archiving

	Specifying the Archive Destination
	Specifying Archive Destinations
	Understanding Archive Destination Status

	Specifying the Mode of Log Transmission
	Normal Transmission Mode
	Standby Transmission Mode

	Managing Archive Destination Failure
	Specifying the Minimum Number of Successful Destinations
	Re-Archiving to a Failed Destination

	Tuning Archive Performance by Specifying Multiple ARCn Processes
	Controlling Trace Output Generated by the Archivelog Process
	Viewing Information About the Archived Redo Log
	Dynamic Performance Views
	The ARCHIVE LOG LIST Command

	9 Using LogMiner to Analyze Redo Logs
	Potential Uses for Data Stored in Redo Logs
	Accessing Information Stored in Redo Logs
	Redo Logs and Dictionary Files
	Redo Logs
	Dictionary Options
	Tracking DDL Statements

	LogMiner Recommendations and Restrictions
	Recommendations
	Restrictions

	Filtering Data That is Returned
	Showing Only Committed Transactions
	Skipping Redo Corruptions
	Filtering Data By Time
	Filtering Data By SCN

	Accessing LogMiner Information
	Querying V$LOGMNR_CONTENTS
	Executing Reconstructed SQL Statements
	Formatting of Returned Data

	Extracting Actual Data Values from Redo Logs
	NULL Returns From the MINE_VALUE Function
	Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions

	Supplemental Logging
	Database Supplemental Logging
	Table Supplemental Logging

	Steps in a Typical LogMiner Session
	Perform Initial Setup Activities
	Extract a Dictionary
	Specify Redo Logs for Analysis
	Start a LogMiner Session
	Query V$LOGMNR_CONTENTS
	End a LogMiner Session

	Example Uses of LogMiner
	Example: Using LogMiner to Track Changes Made By a Specific User
	Example: Using LogMiner to Calculate Table Access Statistics

	10 Managing Job Queues
	Enabling Processes Used for Executing Jobs
	Managing Job Queues
	The DBMS_JOB Package
	Submitting a Job to the Job Queue
	How Jobs Execute
	Removing a Job from the Job Queue
	Altering a Job
	Broken Jobs
	Forcing a Job to Execute
	Terminating a Job

	Viewing Job Queue Information
	Displaying Information About a Job
	Displaying Information About Running Jobs

	11 Managing Tablespaces
	Guidelines for Managing Tablespaces
	Use Multiple Tablespaces
	Specify Tablespace Default Storage Parameters
	Assign Tablespace Quotas to Users

	Creating Tablespaces
	Locally Managed Tablespaces
	Dictionary-Managed Tablespaces
	Temporary Tablespaces

	Coalescing Free Space in Dictionary-Managed Tablespaces
	How Oracle Coalesces Free Space
	Manually Coalescing Free Space
	Monitoring Free Space

	Specifying Nonstandard Block Sizes for Tablespaces
	Controlling the Writing of Redo Records
	Altering Tablespace Availability
	Taking Tablespaces Offline
	Bringing Tablespaces Online
	Altering the Availability of Datafiles or Tempfiles

	Using Read-Only Tablespaces
	Making a Tablespace Read-Only
	Making a Read-Only Tablespace Writable
	Creating a Read-Only Tablespace on a WORM Device
	Delaying the Opening of Datafiles in Read Only Tablespaces

	Dropping Tablespaces
	Diagnosing and Repairing Locally Managed Tablespace Problems
	Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)
	Scenario 2: Dropping a Corrupted Segment
	Scenario 3: Fixing Bitmap Where Overlap is Reported
	Scenario 4: Correcting Media Corruption of Bitmap Blocks
	Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace

	Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
	Transporting Tablespaces Between Databases
	Introduction to Transportable Tablespaces
	Limitations
	Compatibility Considerations for Transportable Tablespaces
	Transporting Tablespaces Between Databases: A Procedure
	Object Behaviors
	Using Transportable Tablespaces

	Viewing Tablespace Information
	Listing Tablespaces and Default Storage Parameters: Example
	Listing the Datafiles and Associated Tablespaces of a Database: Example
	Displaying Statistics for Free Space (Extents) of Each Tablespace: Example

	12 Managing Datafiles
	Guidelines for Managing Datafiles
	Determine the Number of Datafiles
	Determine the Size of Datafiles
	Place Datafiles Appropriately
	Store Datafiles Separate from Redo Log Files

	Creating Datafiles and Adding Datafiles to a Tablespace
	Changing a Datafile’s Size
	Enabling and Disabling Automatic Extension for a Datafile
	Manually Resizing a Datafile

	Altering Datafile Availability
	Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode
	Taking Datafiles Offline in NOARCHIVELOG Mode
	Altering the Availability of All Datafiles or Tempfiles in a Tablespace

	Renaming and Relocating Datafiles
	Renaming and Relocating Datafiles for a Single Tablespace
	Renaming and Relocating Datafiles for Multiple Tablespaces

	Dropping Datafiles
	Verifying Data Blocks in Datafiles
	Mapping Files to Physical Devices
	Overview of Oracle’s File Mapping Interface
	How Oracle’s File Mapping Interface Works
	Using Oracle’s File Mapping Interface
	File Mapping Examples

	Viewing Datafile Information

	13 Managing Undo Space
	What is Undo?
	Specifying the Mode for Undo Space Management
	Starting an Instance in Automatic Undo Management Mode
	Starting an Instance in Manual Undo Management Mode

	Managing Undo Tablespaces
	Creating an Undo Tablespace
	Altering an Undo Tablespace
	Dropping an Undo Tablespace
	Switching Undo Tablespaces
	Establishing User Quotas for Undo Space
	Specifying the Retention Period for Undo Information
	Viewing Information About Undo Space

	Managing Rollback Segments
	Guidelines for Managing Rollback Segments
	Creating Rollback Segments
	Altering Rollback Segments
	Explicitly Assigning a Transaction to a Rollback Segment
	Dropping Rollback Segments
	Viewing Rollback Segment Information

	Part III� Schema Objects
	14 Managing Space for Schema Objects
	Managing Space in Data Blocks
	Specifying the PCTFREE Parameter
	Specifying the PCTUSED Parameter
	Selecting Associated PCTUSED and PCTFREE Values
	Specifying the Transaction Entry Parameters: INITRANS and MAXTRANS

	Setting Storage Parameters
	Identifying the Storage Parameters
	Setting Default Storage Parameters for Segments in a Tablespace
	Setting Storage Parameters for Data Segments
	Setting Storage Parameters for Index Segments
	Setting Storage Parameters for LOBs, Varrays, and Nested Tables
	Changing Values for Storage Parameters
	Understanding Precedence in Storage Parameters
	Example of How Storage Parameters Effect Space Allocation

	Managing Resumable Space Allocation
	Resumable Space Allocation Overview
	Enabling and Disabling Resumable Space Allocation
	Detecting Suspended Statements
	Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

	Deallocating Space
	Viewing the High Water Mark
	Issuing Space Deallocation Statements
	Examples of Deallocating Space

	Understanding Space Use of Datatypes

	15 Managing Tables
	Guidelines for Managing Tables
	Design Tables Before Creating Them
	Specify How Data Block Space Is to Be Used
	Specify the Location of Each Table
	Consider Parallelizing Table Creation
	Consider Using NOLOGGING When Creating Tables
	Estimate Table Size and Set Storage Parameters
	Plan for Large Tables
	Table Restrictions

	Creating Tables
	Creating a Table
	Creating a Temporary Table
	Parallelizing Table Creation
	Automatically Collecting Statistics on Tables

	Altering Tables
	Altering Physical Attributes of a Table
	Moving a Table to a New Segment or Tablespace
	Manually Allocating Storage for a Table
	Modifying an Existing Column’s Definition
	Adding Table Columns
	Renaming Table Columns
	Dropping Table Columns

	Redefining Tables Online
	Features of Online Table Redefinition
	The DBMS_REDEFINITION Package
	Steps for Online Redefinition of Tables
	Intermediate Synchronization
	Abort and Cleanup After Errors
	Example of Online Table Redefinition
	Restrictions

	Dropping Tables
	Managing Index-Organized Tables
	What are Index-Organized Tables
	Creating Index-Organized Tables
	Maintaining Index-Organized Tables
	Analyzing Index-Organized Tables
	Using the ORDER BY Clause with Index-Organized Tables
	Converting Index-Organized Tables to Regular Tables

	Managing External Tables
	Creating External Tables
	Altering External Tables
	Dropping External Tables
	System and Object Privileges for External Tables

	Viewing Information About Tables

	16 Managing Indexes
	Guidelines for Managing Indexes
	Create Indexes After Inserting Table Data
	Index the Correct Tables and Columns
	Order Index Columns for Performance
	Limit the Number of Indexes for Each Table
	Drop Indexes That Are No Longer Required
	Specify Index Block Space Use
	Estimate Index Size and Set Storage Parameters
	Specify the Tablespace for Each Index
	Consider Parallelizing Index Creation
	Consider Creating Indexes with NOLOGGING
	Consider Costs and Benefits of Coalescing or Rebuilding Indexes
	Consider Cost Before Disabling or Dropping Constraints

	Creating Indexes
	Creating an Index Explicitly
	Creating a Unique Index Explicitly
	Creating an Index Associated with a Constraint
	Collecting Incidental Statistics when Creating an Index
	Creating a Large Index
	Creating an Index Online
	Creating a Function-Based Index
	Creating a Key-Compressed Index

	Altering Indexes
	Altering Storage Characteristics of an Index
	Rebuilding an Existing Index
	Monitoring Index Usage

	Monitoring Space Use of Indexes
	Dropping Indexes
	Viewing Index Information

	17 Managing Partitioned Tables and Indexes
	What Are Partitioned Tables and Indexes?
	Partitioning Methods
	When to Use the Range Partitioning Method
	When to Use the Hash Partitioning Method
	When to Use the List Partitioning Method
	When to Use the Composite Range-Hash Partitioning Method
	When to Use the Composite Range-List Partitioning Method

	Creating Partitioned Tables
	Creating Range-Partitioned Tables
	Creating Hash-Partitioned Tables
	Creating List-Partitioned Tables
	Creating Composite Range-Hash Partitioned Tables
	Creating Composite Range-List Partitioned Tables
	Using Subpartition Templates to Describe Composite Partitioned Tables
	Creating Partitioned Index-Organized Tables
	Partitioning Restrictions for Multiple Block Sizes

	Maintaining Partitioned Tables
	Updating Global Indexes Automatically
	Adding Partitions
	Coalescing Partitions
	Dropping Partitions
	Exchanging Partitions
	Merging Partitions
	Modifying Default Attributes
	Modifying Real Attributes of Partitions
	Modifying List Partitions: Adding Values
	Modifying List Partitions: Dropping Values
	Modifying a Subpartition Template
	Moving Partitions
	Rebuilding Index Partitions
	Renaming Partitions
	Splitting Partitions
	Truncating Partitions

	Partitioned Tables and Indexes Examples
	Moving the Time Window in a Historical Table
	Converting a Partition View into a Partitioned Table

	Viewing Information About Partitioned Tables and Indexes

	18 Managing Clusters
	Guidelines for Managing Clusters
	Choose Appropriate Tables for the Cluster
	Choose Appropriate Columns for the Cluster Key
	Specify Data Block Space Use
	Specify the Space Required by an Average Cluster Key and Its Associated Rows
	Specify the Location of Each Cluster and Cluster Index Rows
	Estimate Cluster Size and Set Storage Parameters

	Creating Clusters
	Creating Clustered Tables
	Creating Cluster Indexes

	Altering Clusters
	Altering Clustered Tables
	Altering Cluster Indexes

	Dropping Clusters
	Dropping Clustered Tables
	Dropping Cluster Indexes

	Viewing Information About Clusters

	19 Managing Hash Clusters
	When to Use Hash Clusters
	Situations Where Hashing Is Useful
	Situations Where Hashing Is Not Advantageous

	Creating Hash Clusters
	Creating Single-Table Hash Clusters
	Controlling Space Use Within a Hash Cluster
	Estimating Size Required by Hash Clusters

	Altering Hash Clusters
	Dropping Hash Clusters
	Viewing Information About Hash Clusters

	20 Managing Views, Sequences, and Synonyms
	Managing Views
	Creating Views
	Updating a Join View
	Altering Views
	Dropping Views
	Replacing Views

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	Viewing Information About Views, Synonyms, and Sequences

	21 General Management of Schema Objects
	Creating Multiple Tables and Views in a Single Operation
	Renaming Schema Objects
	Analyzing Tables, Indexes, and Clusters
	Collecting Statistics for Tables, Indexes, and Clusters
	Validating Tables, Indexes, Clusters, and Materialized Views
	Listing Chained Rows of Tables and Clusters

	Truncating Tables and Clusters
	Using DELETE
	Using DROP and CREATE
	Using TRUNCATE

	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Managing Integrity Constraints
	Integrity Constraint States
	Setting Integrity Constraints Upon Definition
	Modifying, Renaming, or Dropping Existing Integrity Constraints
	Deferring Constraint Checks
	Reporting Constraint Exceptions
	Viewing Constraint Information

	Managing Object Dependencies
	Manually Recompiling Views
	Manually Recompiling Procedures and Functions
	Manually Recompiling Packages

	Managing Object Name Resolution
	Changing Storage Parameters for the Data Dictionary
	Structures in the Data Dictionary
	Errors that Require Changing Data Dictionary Storage

	Displaying Information About Schema Objects
	Using PL/SQL Packages to Display Information About Schema Objects
	Using Views to Display Information About Schema Objects

	22 Detecting and Repairing Data Block Corruption
	Options for Repairing Data Block Corruption
	About the DBMS_REPAIR Package
	DBMS_REPAIR Procedures
	Limitations and Restrictions

	Using the DBMS_REPAIR Package
	Task 1: Detect and Report Corruptions
	Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
	Task 3: Make Objects Usable
	Task 4: Repair Corruptions and Rebuild Lost Data

	DBMS_REPAIR Examples
	Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table
	Using the CHECK_OBJECT Procedure to Detect Corruption
	Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure
	Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN_KEYS
	Rebuilding Free Lists Using the REBUILD_FREELISTS Procedure
	Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT_BLOCKS

	Part IV� Database Security
	23 Establishing Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	End-User Security
	Administrator Security
	Application Developer Security
	Application Administrator Security

	Password Management Policy
	Account Locking
	Password Aging and Expiration
	Password History
	Password Complexity Verification

	Auditing Policy
	A Security Checklist

	24 Managing Users and Resources
	Managing Oracle Users
	Creating Users
	Altering Users
	Dropping Users

	User Authentication Methods
	Database Authentication
	External Authentication
	Global Authentication and Authorization
	Proxy Authentication and Authorization

	Managing Resources with Profiles
	Enabling and Disabling Resource Limits
	Creating Profiles
	Assigning Profiles
	Altering Profiles
	Using Composite Limits
	Dropping Profiles

	Viewing Information About Database Users and Profiles
	Listing All Users and Associated Information
	Listing All Tablespace Quotas
	Listing All Profiles and Assigned Limits
	Viewing Memory Use for Each User Session

	25 Managing User Privileges and Roles
	Understanding User Privileges and Roles
	System Privileges
	Object Privileges
	User Roles

	Managing User Roles
	Creating a Role
	Specifying the Type of Role Authorization
	Dropping Roles

	Granting User Privileges and Roles
	Granting System Privileges and Roles
	Granting Object Privileges

	Revoking User Privileges and Roles
	Revoking System Privileges and Roles
	Revoking Object Privileges
	Cascading Effects of Revoking Privileges

	Granting to and Revoking from the User Group PUBLIC
	When Do Grants and Revokes Take Effect?
	The SET ROLE Statement
	Specifying Default Roles
	Restricting the Number of Roles that a User Can Enable

	Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES=TRUE
	Enabling and Disabling Roles When OS_ROLES=TRUE
	Using Network Connections with Operating System Role Management

	Viewing Privilege and Role Information
	Listing All System Privilege Grants
	Listing All Role Grants
	Listing Object Privileges Granted to a User
	Listing the Current Privilege Domain of Your Session
	Listing Roles of the Database
	Listing Information About the Privilege Domains of Roles

	26 Auditing Database Use
	Guidelines for Auditing
	Decide Whether to Use the Database or Operating System Audit Trail
	Keep Audited Information Manageable
	Guidelines for Auditing Suspicious Database Activity
	Guidelines for Auditing Normal Database Activity

	What Information is Contained in the Audit Trail?
	Information Stored in the Database Audit Trail
	Information Stored in an Operating System File

	Actions Audited by Default
	Auditing Administrative Users
	Managing the Audit Trail
	Enabling and Disabling Auditing
	Setting Auditing Options
	Auditing in a Multi-Tier Environment
	Turning Off Audit Options
	Controlling the Growth and Size of the Audit Trail
	Protecting the Audit Trail

	Fine-Grained Auditing
	Viewing Database Audit Trail Information
	Creating the Audit Trail Views
	Deleting the Audit Trail Views
	Using Audit Trail Views to Investigate Suspicious Activities

	Part V� Database Resource Management
	27 Using the Database Resource Manager
	What Is the Database Resource Manager?
	What Problems Does the Database Resource Manager Address?
	How Does the Database Resource Manager Address These Problems?
	What are the Elements of the Database Resource Manager?
	Understanding Resource Plans

	Administering the Database Resource Manager
	Creating a Simple Resource Plan
	Creating Complex Resource Plans
	Using the Pending Area for Creating Plan Schemas
	Creating Resource Plans
	Creating Resource Consumer Groups
	Specifying Resource Plan Directives

	Managing Resource Consumer Groups
	Assigning an Initial Resource Consumer Group
	Changing Resource Consumer Groups
	Managing the Switch Privilege

	Enabling the Database Resource Manager
	Putting It All Together: Database Resource Manager Examples
	Multilevel Schema Example
	Example of Using Several Resource Allocation Methods
	An Oracle Supplied Plan

	Monitoring and Tuning the Database Resource Manager
	Creating the Environment
	Why Is This Necessary to Produce Expected Results?
	Monitoring Results

	Viewing Database Resource Manager Information
	Viewing Consumer Groups Granted to Users or Roles
	Viewing Plan Schema Information
	Viewing Current Consumer Groups for Sessions
	Viewing the Currently Active Plans

	Part VI� Distributed Database Management
	28 Distributed Database Concepts
	Distributed Database Architecture
	Homogenous Distributed Database Systems
	Heterogeneous Distributed Database Systems
	Client/Server Database Architecture

	Database Links
	What Are Database Links?
	What Are Shared Database Links?
	Why Use Database Links?
	Global Database Names in Database Links
	Names for Database Links
	Types of Database Links
	Users of Database Links
	Creation of Database Links: Examples
	Schema Objects and Database Links
	Database Link Restrictions

	Distributed Database Administration
	Site Autonomy
	Distributed Database Security
	Auditing Database Links
	Administration Tools

	Transaction Processing in a Distributed System
	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Schema Object Name Resolution
	Global Name Resolution in Views, Synonyms, and Procedures

	Distributed Database Application Development
	Transparency in a Distributed Database System
	Remote Procedure Calls (RPCs)
	Distributed Query Optimization

	Character Set Support for Distributed Environments
	Client/Server Environment
	Homogeneous Distributed Environment
	Heterogeneous Distributed Environment

	29 Managing a Distributed Database
	Managing Global Names in a Distributed System
	Understanding How Global Database Names Are Formed
	Determining Whether Global Naming Is Enforced
	Viewing a Global Database Name
	Changing the Domain in a Global Database Name
	Changing a Global Database Name: Scenario

	Creating Database Links
	Obtaining Privileges Necessary for Creating Database Links
	Specifying Link Types
	Specifying Link Users
	Using Connection Qualifiers to Specify Service Names Within Link Names

	Creating Shared Database Links
	Determining Whether to Use Shared Database Links
	Creating Shared Database Links
	Configuring Shared Database Links

	Managing Database Links
	Closing Database Links
	Dropping Database Links
	Limiting the Number of Active Database Link Connections

	Viewing Information About Database Links
	Determining Which Links Are in the Database
	Determining Which Link Connections Are Open

	Creating Location Transparency
	Using Views to Create Location Transparency
	Using Synonyms to Create Location Transparency
	Using Procedures to Create Location Transparency

	Managing Statement Transparency
	Managing a Distributed Database: Scenarios
	Creating a Public Fixed User Database Link
	Creating a Public Fixed User Shared Database Link
	Creating a Public Connected User Database Link
	Creating a Public Connected User Shared Database Link
	Creating a Public Current User Database Link

	30 Developing Applications for a Distributed Database System�
	Managing the Distribution of an Application’s Data
	Controlling Connections Established by Database Links
	Maintaining Referential Integrity in a Distributed System
	Tuning Distributed Queries
	Using Collocated Inline Views
	Using Cost-Based Optimization
	Using Hints
	Analyzing the Execution Plan

	Handling Errors in Remote Procedures

	31 Distributed Transactions Concepts
	What Are Distributed Transactions?
	Session Trees for Distributed Transactions
	Clients
	Database Servers
	Local Coordinators
	Global Coordinator
	Commit Point Site

	Two-Phase Commit Mechanism
	Prepare Phase
	Commit Phase
	Forget Phase

	In-Doubt Transactions
	Automatic Resolution of In-Doubt Transactions
	Manual Resolution of In-Doubt Transactions
	Relevance of System Change Numbers for In-Doubt Transactions

	Distributed Transaction Processing: Case Study
	Stage 1: Client Application Issues DML Statements
	Stage 2: Oracle Determines Commit Point Site
	Stage 3: Global Coordinator Sends Prepare Response
	Stage 4: Commit Point Site Commits
	Stage 5: Commit Point Site Informs Global Coordinator of Commit
	Stage 6: Global and Local Coordinators Tell All Nodes to Commit
	Stage 7: Global Coordinator and Commit Point Site Complete the Commit

	32 Managing Distributed Transactions
	Specifying the Commit Point Strength of a Node
	Naming Transactions
	Viewing Information About Distributed Transactions
	Determining the ID Number and Status of Prepared Transactions
	Tracing the Session Tree of In-Doubt Transactions

	Deciding How to Handle In-Doubt Transactions
	Discovering Problems with a Two-Phase Commit
	Determining Whether to Perform a Manual Override
	Analyzing the Transaction Data

	Manually Overriding In-Doubt Transactions
	Manually Committing an In-Doubt Transaction
	Manually Rolling Back an In-Doubt Transaction

	Purging Pending Rows from the Data Dictionary
	Executing the PURGE_LOST_DB_ENTRY Procedure
	Determining When to Use DBMS_TRANSACTION

	Manually Committing an In-Doubt Transaction: Example
	Step 1: Record User Feedback
	Step 2: Query DBA_2PC_PENDING
	Step 3: Query DBA_2PC_NEIGHBORS on Local Node
	Step 4: Querying Data Dictionary Views on All Nodes
	Step 5: Commit the In-Doubt Transaction
	Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

	Data Access Failures Due To Locks
	Transaction Timeouts
	Locks from In-Doubt Transactions

	Simulating Distributed Transaction Failure
	Managing Read Consistency

	Index

