
Oracle9 i OLAP

User’s Guide

Release 2 (9.2.0.2)

Sept 2002

Part No. A95295-02

Oracle9i OLAP User’s Guide, Release 2 (9.2.0.2)

Part No. A95295-02

Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Express, PL/SQL, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xxi

Preface ... xxiii

Audience ... xxiv
Organization... xxiv
Related Documentation ... xxviii
Conventions.. xxix
Documentation Accessibility .. xxxii

What’s New in Oracle OLAP? ... xxxiii

Oracle9i Release 2 (9.2) New Features in Oracle OLAP... xxxiv

Part I The Basics

1 Overview

Why OLAP?.. 1-2
Analytical Processing Answers Business Questions ... 1-2
Types of OLAP Applications .. 1-3

Analytical Reporting... 1-3
Predictive Analysis.. 1-3

The Oracle9i Integrated Relational-Multidimensional Database... 1-4
Components of Oracle OLAP ... 1-5

Calculation Engine ... 1-6
Analytic Workspace ... 1-6
iii

OLAP DML.. 1-6
SQL Table Functions .. 1-7
OLAP API .. 1-7
OLAP Catalog ... 1-8

Applications Access to Oracle OLAP .. 1-8

2 Manipulating Multidimensional Data

What Is the OLAP DML?... 2-2
Extensive Analytic Capabilities .. 2-2
Features of the Multidimensional Model .. 2-3

Basic Categories of OLAP DML Commands ... 2-4
Aggregation ... 2-4
Allocation... 2-4
Data Selection .. 2-5
Data Exchange... 2-5
File Reading and Writing... 2-5
Financial Operations .. 2-6
Forecasts and Regressions ... 2-6
Models .. 2-7
Numeric Computations ... 2-7
Statistical Operations.. 2-8
Text Manipulation .. 2-8
Time Series Manipulation.. 2-8

Methods of Executing OLAP DML Commands ... 2-8
OLAP Worksheet: The OLAP DML Development Tool... 2-9

Procedure: Open OLAP Worksheet.. 2-9
Embedding OLAP DML Commands in Programs.. 2-9

3 Developing OLAP Applications

Building SQL-Based OLAP Applications .. 3-2
Methods of Accessing Multidimensional Data From SQL ... 3-3
Embedding OLAP DML Commands in SQL ... 3-4

Building Analytical Java Applications ... 3-4
About Java ... 3-4
Deploying Java Applications .. 3-5
iv

The Java Solution for OLAP.. 3-6
Oracle Java Development Environment.. 3-6

Introducing the BI Beans... 3-7
Thick-Client Configuration ... 3-7
Thin-Client Configuration... 3-9
Metadata .. 3-10
Runtime Repository ... 3-10
Navigation ... 3-10
Formatting ... 3-10
Graphs .. 3-11
Crosstabs.. 3-11
Tables.. 3-11
OLAP BI Beans.. 3-12
Wizards .. 3-12

Understanding the OLAP API.. 3-12
How the OLAP API Accesses Multidimensional Data ... 3-13
Intelligent Caching ... 3-15
Calculation Capabilities... 3-15

4 Designing Your Da tabase for OLAP

Overview .. 4-2
Preparing a Database for the OLAP API .. 4-2
Types of Data Stored in a Data Warehouse ... 4-3

Historical Data .. 4-3
Derived Data ... 4-4
Metadata .. 4-4

Data Structures in Relational and Multidimensional Data Stores ... 4-4
Relational Table Storage .. 4-4
Multidimensional Table Storage .. 4-5
Temporary and Persistent Analytic Workspaces... 4-5
About Star, Snowflake, Parent-Child, and Multidimensional Schemas............................... 4-6
Choosing a Schema for Your Data ... 4-7

OLAP Metadata Model .. 4-8
Mapping Data Objects to Metadata Objects ... 4-8
Measures .. 4-9
v

Dimensions .. 4-10
Time Dimensions... 4-10
Hierarchical Dimensions .. 4-13

Attributes ... 4-14
Level Attributes ... 4-14
Dimension Attributes.. 4-14

Cubes .. 4-14
Measure Folders.. 4-15

5 Creating OLAP Catalog Metadata

Overview of the OLAP Catalog.. 5-2
Tools for Creating OLAP Metadata ... 5-2
OLAP Catalog Components.. 5-2
Logical Steps for Creating OLAP Metadata.. 5-3

Accessing the OLAP Catalog .. 5-3
Data Warehouse Requirements .. 5-4

Basic Star or Snowflake Schema ... 5-4
Dimension Tables with Complex Hierarchies.. 5-4
Solved and Unsolved Fact Data.. 5-4
Multidimensional Data .. 5-5
Parent-Child Dimensions .. 5-5

Creating Metadata Using Oracle Enterprise Manager... 5-6
Procedure: Accessing OLAP Management ... 5-6
Defining Metadata for Dimension Tables ... 5-7
Defining Metadata for Fact Tables ... 5-8
Viewing a Cube’s Data... 5-9
Procedure: Viewing a Cube’s Data .. 5-9

Creating Metadata Using PL/SQL ... 5-9
Views of OLAP Catalog Metadata ... 5-10
CWM2 Packages for Creating OLAP Dimensions... 5-10
CWM2 Packages for Creating Cubes... 5-10
CWM2 Package for Mapping Metadata .. 5-11
CWM2 Package for Creating Analytic Workspaces .. 5-11
CWM2 Package for Creating Level-Based Dimension Tables ... 5-11
CWM2 Packages for Classification and Validation ... 5-11
vi

Part II Oracle OLAP Administration

6 Administering Oracle OLAP

Administration Overview ... 6-2
Initialization Parameters for Oracle OLAP ... 6-3

OLAP_PAGE_POOL_SIZE ... 6-4
Initialization Parameters for the OLAP API.. 6-4
Creating Tablespaces for Analytic Workspaces .. 6-5

Creating a Tablespace for Rollbacks .. 6-7
Creating a Temporary Tablespace ... 6-8
 Creating Tablespaces for Analytic Workspaces.. 6-8
Querying the Size of an Analytic Workspace... 6-9

Setting Up User Names.. 6-9
Controlling Access to External Files ... 6-10

Creating a Directory Alias... 6-10
Granting Access Rights to a Directory Alias .. 6-10
Example: Creating and Using a Directory Alias .. 6-11

Understanding Data Storage .. 6-11
User-Owned Tables.. 6-12
System Tables .. 6-12

Monitoring Performance ... 6-13

7 OLAP Dynamic Performance Views

System Tables Referenced by OLAP Performance Views .. 7-2
Summary of OLAP Performance Views ... 7-2
V$AW_CALC ... 7-3
V$AW_OLAP ... 7-5
V$AW_SESSION_INFO .. 7-6

8 OLAP_API_SESSION_INIT

Overview .. 8-2
Summary of OLAP_API_SESSION_INIT Subprograms.. 8-2
ADD_ALTER_SESSION Procedure .. 8-3

Syntax ... 8-3
vii

Parameters ... 8-3
Exceptions .. 8-3
Examples .. 8-3

DELETE_ALTER_SESSION Procedure .. 8-5
Syntax ... 8-5
Parameters ... 8-5
Exceptions .. 8-5
Examples .. 8-5

CLEAN_ALTER_SESSION Procedure.. 8-6
Syntax ... 8-6
Examples .. 8-6

ALL_OLAP_ALTER_SESSION View ... 8-7

9 Creating an Analytic Work space From Re lational Tables

Choosing to Use an Analytic Workspace.. 9-2
Relational and Multidimensional Data Models ... 9-2
Advantages of OLAP ... 9-2

Functional Summary .. 9-2
Procedure: Create the OLAP Catalog Metadata .. 9-3
Procedure: Create the Analytic Workspace Cube ... 9-3
Procedure: Create SQL Access to the Analytic Workspace ... 9-4
Column Structure of Dimension Views ... 9-5

Sample Dimension View ... 9-6
Grouping ID Column ... 9-6

Column Structure of Fact Views .. 9-6

10 Creating Materialized Views for the OLAP API

Choosing a Summary Management Strategy .. 10-2
Summary Management with Analytic Workspaces.. 10-2
Summary Management with Materialized Views ... 10-2
About Materialized Views... 10-2

Materialized View Formats ... 10-3
Grouping Sets .. 10-3
Concatenated Rollup .. 10-3

Materialized Views and OLAP Metadata .. 10-4
viii

Dimension Materialized Views ... 10-4
Creating Dimension Materialized Views.. 10-4
Number of Dimension Materialized Views.. 10-5

Fact Materialized Views .. 10-5
Number of Fact Materialized Views.. 10-6

Choosing the Right Format for Materialized Views .. 10-6
Query Performance .. 10-7
Build Times.. 10-7
Partial Materialization ... 10-7
MV Size .. 10-7
Lineage (Key) .. 10-8

Part III SQL Access Reference

11 DBMS_AW

Summary of DBMS_AW Subprograms .. 11-2
EXECUTE Procedure ... 11-3

Guidelines for Using Quotation Marks in OLAP DML Commands 11-3
Effect of the OUTFILE Command ... 11-4

Example .. 11-4
GETLOG Function.. 11-5
INTERP_SILENT Procedure ... 11-6

Guidelines for Using Quotation Marks in OLAP DML Commands 11-6
Example .. 11-6

INTERP Function.. 11-8
Guidelines for Using Quotation Marks in OLAP DML Commands 11-8
Effect of the OUTFILE Command ... 11-9

Example .. 11-9
INTERPCLOB Function... 11-10

Guidelines for Using Quotation Marks in OLAP DML Commands 11-10
Effect of the OUTFILE Command ... 11-11

Example .. 11-11
OLAP_EXPRESSION Function... 11-12

View Used in These Examples ... 11-13
Time Series Function With a WHERE Clause.. 11-14
ix

Numeric Calculation With an ORDER BY Clause... 11-14
PRINTLOG Procedure ... 11-16

12 OLAP_TABLE

Description ... 12-2
Preliminary Steps.. 12-2

Measures .. 12-3
Dimensions .. 12-3
Hierarchies... 12-3

Hierarchy Dimensions .. 12-4
Hierarchy Relations... 12-4
Level Dimensions .. 12-5
In-Hierarchy Variables.. 12-5

Grouping IDs... 12-6
Parent Grouping IDs .. 12-7
Family Relations.. 12-7
Attributes ... 12-8

Basic Steps .. 12-9
Defining a Row.. 12-9
Creating a Table .. 12-10
Using OLAP_TABLE in a SELECT Statement.. 12-10

OLAP_TABLE Reference ... 12-12
Syntax ... 12-12
Parameters ... 12-12
AW_ATTACH Parameter.. 12-12
Table_Name Parameter.. 12-13
OLAP_Command Parameter .. 12-13
Limit_Map Parameter .. 12-14
MEASURE column FROM {measure | AW_EXPR expression} .. 12-15
DIMENSION [column FROM] dimension.. 12-16

WITH... .. 12-16
HIERARCHY [column FROM] hierarchy_relation[(hierarchy_dimension ’hierarchy’)].....
12-16

INHIERARCHY inhierarchy_variable .. 12-17
GID column FROM gid_variable ... 12-17
x

PARENTGID column FROM gid_variable .. 12-17
FAMILYREL col1, col2, coln FROM {expression1, expression2, expressionn |
family_relation USING level_dimension } [LABEL label_variable] 12-17

ATTRIBUTE column FROM attribute_variable.. 12-18
ROW2CELL column... 12-18
LOOP sparse_dimension... 12-18
 PREDMLCMD olap_command... 12-18
 POSTDMLCMD olap_command .. 12-18

Examples... 12-19
Creating a View .. 12-19
Creating Views of Embedded Total Dimensions... 12-20
Creating Views of Embedded Total Measures... 12-21
Creating Views in Rollup Form.. 12-23

Part IV OLAP Catalog Me tadata API Reference

13 Using the OLAP Catalog Metadata APIs

OLAP Metadata Entities .. 13-2
Constructing a Dimension .. 13-2

Procedure: Construct an OLAP Dimension.. 13-3
Constructing a Cube... 13-3

Procedure: Construct an OLAP Cube.. 13-3
Mapping OLAP Metadata ... 13-4

Mapping to Columns ... 13-4
Joining Fact Tables with Dimension Tables.. 13-4

Validating OLAP Metadata... 13-5
Structural Validation.. 13-6

Cubes... 13-6
Dimensions... 13-6

Mapping Validation ... 13-6
Cubes... 13-6
Dimensions... 13-7

Invoking the Procedures ... 13-7
Security Checks and Error Conditions .. 13-7
Case Requirements for Parameters .. 13-7
xi

Creating and Saving Metadata ... 13-7
Viewing OLAP Catalog Metadata ... 13-8
Example: Creating OLAP Metadata for a Dimension Table... 13-8
Example: Creating OLAP Metadata for a Fact Table .. 13-11

14 Viewing OLAP Catalog Metadata

Access to OLAP Catalog Views .. 14-2
Views of the Dimensional Model .. 14-3
Views of Mapping Information ... 14-4
ALL_OLAP2_CUBES.. 14-5
ALL_OLAP2_CUBE_MEASURES ... 14-5
ALL_OLAP2_CUBE_DIM_USES... 14-6
ALL_OLAP2_CUBE_MEAS_DIM_USES... 14-6
ALL_OLAP2_DIMENSIONS ... 14-7
ALL_OLAP2_DIM_HIERARCHIES ... 14-8
ALL_OLAP2_DIM_LEVELS ... 14-8
ALL_OLAP2_DIM_ATTRIBUTES .. 14-9
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES.. 14-9
ALL_OLAP2_DIM_ATTR_USES ... 14-10
ALL_OLAP2_DIM_HIER_LEVEL_USES... 14-10
ALL_OLAP2_CATALOGS... 14-11
ALL_OLAP2_CATALOG_ENTITY_USES ... 14-11
ALL_OLAP2_ENTITY_DESC_USES .. 14-11
ALL_OLAP2_CUBE_MEASURE_MAPS.. 14-12
ALL_OLAP2_DIM_LEVEL_ATTR_MAPS .. 14-12
ALL_OLAP2_LEVEL_KEY_COLUMN_USES .. 14-13
ALL_OLAP2_JOIN_KEY_COLUMN_USES.. 14-14
ALL_OLAP2_HIER_CUSTOM_SORT ... 14-14
ALL_OLAP2_FACT_TABLE_GID ... 14-15
ALL_OLAP2_FACT_LEVEL_USES ... 14-16

15 CWM2_OLAP_AW_ACCESS

When to Use the AW_ACCESS Package... 15-2
Prerequisites .. 15-2
Process Overview .. 15-2
xii

Preparing the Analytic Workspace .. 15-3
Specifying the Source and Target Objects ... 15-4

Defining Dimension Views ... 15-5
Defining Fact Views ... 15-8

Example: Creating Views .. 15-9
Example: Input Files for Mapping Variables to Views ... 15-10

Geography Dimension Standard Hierarchy View ... 15-10
Product Dimension View ... 15-11
Channel Dimension View .. 15-11
Time Standard Hierarchy Input File .. 15-12
Sales and Costs Fact Views .. 15-12

Example: Script for the Product View ... 15-13
Example: Product View ... 15-15

Summary of CWM2_OLAP_AW_ACCESS Subprograms .. 15-16
CreateAWAccessStructures_FR Procedure .. 15-17
CreateAWAccessStructures Procedure ... 15-18

16 CWM2_OLAP_AW_CREATE

Summary of CWM2_OLAP_AW_CREATE Subprograms .. 16-2
AW_DIMENSION_CREATE Procedure... 16-2
AW_DIM_DEFINE_LOAD Procedure.. 16-3
AW_DIM_FILTER_LOAD Procedure ... 16-4
AW_DIMENSION_REFRESH Procedure ... 16-5
AW_DIMENSION_CREATE_ACCESS Procedure ... 16-6
AW_CUBE_CREATE Procedure .. 16-8
AW_CUBE_DEFINE_LOAD Procedure ... 16-9
AW_CUBE_FILTER_LOAD Procedure... 16-9
AW_CUBE_MEASURE_LOAD Procedure .. 16-10
AW_CHOOSE_LEVEL_TUPLES Procedure .. 16-11
AW_DEFINE_AGG_PLAN Procedure ... 16-11
AW_CUBE_REFRESH Procedure .. 16-12
AW_CUBE_CREATE_ACCESS Procedure... 16-13

17 CWM2_OLAP_CUBE

Understanding Cubes .. 17-2
xiii

Summary of CWM2_OLAP_CUBE Subprograms .. 17-2
ADD_DIMENSION_TO_CUBE Procedure .. 17-3
CREATE_CUBE Procedure ... 17-4
DROP_CUBE Procedure .. 17-5
LOCK_CUBE Procedure .. 17-6
REMOVE_DIMENSION_FROM_CUBE Procedure .. 17-6
SET_CUBE_NAME Procedure.. 17-7
SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure .. 17-8
SET_DESCRIPTION Procedure.. 17-9
SET_DISPLAY_NAME Procedure ... 17-10
SET_MV_SUMMARY_CODE Procedure.. 17-11
SET_SHORT_DESCRIPTION Procedure .. 17-12

Example: Creating a Cube ... 17-13

18 CWM2_OLAP_DIMENSION

Understanding Dimensions.. 18-2
Summary of CWM2_OLAP_DIMENSION Subprograms.. 18-2

CREATE_DIMENSION Procedure .. 18-3
DROP_DIMENSION Procedure... 18-4
LOCK_DIMENSION Procedure... 18-5
SET_DEFAULT_DISPLAY_HIERARCHY Procedure... 18-6
SET_DESCRIPTION Procedure.. 18-7
SET_DIMENSION_NAME Procedure .. 18-7
SET_DISPLAY_NAME Procedure ... 18-8
SET_PLURAL_NAME Procedure .. 18-9
SET_SHORT_DESCRIPTION Procedure .. 18-10

Example: Creating a CWM2 Dimension... 18-11

19 CWM2_OLAP_DIMENSION_ATTRIBUTE

Understanding Dimension Attributes .. 19-2
Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms 19-3

CREATE_DIMENSION_ATTRIBUTE Procedure.. 19-3
DROP_DIMENSION_ATTRIBUTE Procedure .. 19-5
LOCK_DIMENSION_ATTRIBUTE Procedure .. 19-6
SET_DESCRIPTION Procedure.. 19-7
xiv

SET_DIMENSION_ATTRIBUTE_NAME Procedure.. 19-8
SET_DISPLAY_NAME Procedure ... 19-9
SET_SHORT_DESCRIPTION Procedure .. 19-10

Example: Creating a Dimension Attribute .. 19-10

20 CWM2_OLAP_HIERARCHY

Understanding Hierarchies... 20-2
Summary of CWM2_OLAP_HIERARCHY Subprograms.. 20-2

CREATE_HIERARCHY Procedure ... 20-2
DROP_HIERARCHY Procedure .. 20-4
LOCK_HIERARCHY Procedure .. 20-5
SET_DESCRIPTION Procedure.. 20-6
SET_DISPLAY_NAME Procedure ... 20-7
SET_HIERARCHY_NAME Procedure.. 20-8
SET_SHORT_DESCRIPTION Procedure .. 20-9
SET_SOLVED_CODE Procedure ... 20-10

Example: Creating a Hierarchy... 20-11

21 CWM2_OLAP_LEVEL

Understanding Levels .. 21-2
Summary of CWM2_OLAP_LEVEL Subprograms .. 21-2

ADD_LEVEL_TO_HIERARCHY Procedure.. 21-3
CREATE_LEVEL Procedure ... 21-4
DROP_LEVEL Procedure.. 21-5
LOCK_LEVEL Procedure.. 21-6
REMOVE_LEVEL_FROM_HIERARCHY Procedure.. 21-7
SET_DESCRIPTION Procedure.. 21-8
SET_DISPLAY_NAME Procedure ... 21-9
SET_LEVEL_NAME Procedure.. 21-9
SET_PLURAL_NAME Procedure .. 21-10
SET_SHORT_DESCRIPTION Procedure .. 21-11

Example: Creating a Level... 21-12
xv

22 CWM2_OLAP_LEVEL_ATTRIBUTE

Understanding Level Attributes .. 22-2
Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms... 22-3

CREATE_LEVEL_ATTRIBUTE .. 22-3
DROP_LEVEL_ATTRIBUTE Procedure.. 22-5
LOCK_LEVEL_ATTRIBUTE Procedure.. 22-6
SET_DESCRIPTION Procedure.. 22-8
SET_DISPLAY_NAME Procedure ... 22-9
SET_LEVEL_ATTRIBUTE_NAME Procedure ... 22-10
SET_SHORT_DESCRIPTION Procedure .. 22-12

Example: Creating a Level Attribute ... 22-13

23 CWM2_OLAP_MEASURE

Understanding Measures .. 23-2
Summary of CWM2_OLAP_MEASURE Subprograms... 23-2

CREATE_MEASURE Procedure .. 23-3
DROP_MEASURE Procedure ... 23-4
LOCK_MEASURE Procedure ... 23-4
SET_DESCRIPTION Procedure.. 23-5
SET_DISPLAY_NAME Procedure ... 23-6
SET_MEASURE_NAME Procedure... 23-7
SET_SHORT_DESCRIPTION Procedure .. 23-8

Example: Creating a Measure ... 23-9

24 CWM2_OLAP_METADATA_REFRESH

The OLAP API Metadata Reader Views... 24-2
Summary of CWM2_OLAP_METADATA_REFRESH Subprograms 24-3

MR_REFRESH Procedure.. 24-3

25 CWM2_OLAP_PC_TRANSFORM

Prerequisites .. 25-2
Parent-Child Dimensions.. 25-2
Solved, Level-Based Dimensions .. 25-3
Example: Creating a Solved, Level-Based Dimension Table.. 25-4
xvi

Grouping ID Column... 25-5
Embedded Total Key Column .. 25-5

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms... 25-5
CREATE_SCRIPT Procedure .. 25-5

26 CWM2_OLAP_TABLE_MAP

Understanding OLAP Metadata Mapping .. 26-2
Summary of CWM2_OLAP_TABLE_MAP Subprograms .. 26-2

MAP_DIMTBL_HIERLEVELATTR Procedure.. 26-3
MAP_DIMTBL_HIERLEVEL Procedure... 26-5
MAP_DIMTBL_HIERSORTKEY Procedure... 26-6
MAP_DIMTBL_LEVELATTR Procedure.. 26-7
MAP_DIMTBL_LEVEL Procedure .. 26-9
MAP_FACTTBL_LEVELKEY Procedure.. 26-10
MAP_FACTTBL_MEASURE Procedure ... 26-12
REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure .. 26-13
REMOVEMAP_DIMTBL_HIERLEVEL Procedure ... 26-15
REMOVEMAP_DIMTBL_HIERSORTKEY Procedure ... 26-16
REMOVEMAP_DIMTBL_LEVELATTR Procedure .. 26-17
REMOVEMAP_DIMTBL_LEVEL Procedure ... 26-18
REMOVEMAP_FACTTBL_LEVELKEY Procedure... 26-19
REMOVEMAP_FACTTBL_MEASURE Procedure.. 26-20

Example: Mapping a Dimension ... 26-21
Example: Mapping a Cube .. 26-22

27 CWM2_OLAP_VALIDATE

Summary of CWM2_OLAP_VALIDATE Subprograms .. 27-2
VALIDATE_DIMENSION Procedure ... 27-2
VALIDATE_CUBE Procedure .. 27-2

28 CWM_CLASSIFY

Understanding the OLAP Classification System ... 28-2
Summary of CWM_CLASSIFY Subprograms .. 28-3

ADD_CATALOG_ENTITY Procedure.. 28-4
xvii

ADD_DESCRIPTOR_ENTITY_TYPE Procedure... 28-5
ADD_ENTITY_DESCRIPTOR_USE Procedure ... 28-6
CREATE_CATALOG Function .. 28-7
CREATE_DESCRIPTOR Function ... 28-8
CREATE_DESCRIPTOR_TYPE Procedure ... 28-9
DROP_CATALOG Procedure... 28-10
DROP_DESCRIPTOR Procedure.. 28-10
DROP_DESCRIPTOR_TYPE Procedure.. 28-11
LOCK_CATALOG Procedure... 28-12
REMOVE_CATALOG_ENTITY Procedure.. 28-12
REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure... 28-13
REMOVE_ENTITY_DESCRIPTOR_USE Procedure ... 28-14
SET_CATALOG_DESCRIPTION Procedure.. 28-16
SET_CATALOG_PARENT Procedure .. 28-16

Example: Creating a Measure Folder .. 28-18

Part V OLAP API Materialized View Reference

29 Creating Di mension Materialized Views

Creating Materialized Views for Dimensions .. 29-2
Statistics and Bitmap Indexes... 29-2

Statistics.. 29-2
Bitmap Indexes.. 29-3
The CREATE Statement for a Dimension Materialized View.. 29-3

Sample Script for the TIMES_DIM Dimension ... 29-4
Table Structure of Sample TIMES_DIM Dimension Materialized View............................ 29-10

30 Creating Fact Materialized Views With DBMS_ODM

Using the DBMS_ODM Package ... 30-2
Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views......... 30-2

Partitioning, Statistics, and Indexes .. 30-3
 Partitioning ... 30-3
Statistics.. 30-3
Bitmap Indexes.. 30-4
xviii

Sample Script for the COST Cube .. 30-4
Summary of DBMS_ODM Subprograms .. 30-11

CREATEDIMLEVTUPLE Procedure ... 30-11
CREATECUBELEVELTUPLE Procedure.. 30-12
CREATEFACTMV_GS Procedure ... 30-13
CREATEDIMMV_GS Procedure.. 30-14

31 Creating Fact Materialized Views With OLAP Summary Advisor

Using the OLAP Summary Advisor Wizard.. 31-2
Procedure: Run the OLAP Summary Advisor ... 31-2

Partitioning, Statistics, and Indexes.. 31-3
 Partitioning... 31-3
Statistics.. 31-3
Bitmap Indexes.. 31-4

The MV CREATE Statement With Concatenated Rollup ... 31-4
Sample Script for the COST Cube .. 31-6

A Upgrading From Express Server

Administration .. A-2
Authentication of Users ... A-2
Management Tools ... A-2

Data Transfer.. A-3
Localization .. A-3
Applications Support ... A-4

Programming Environment .. A-4
Communications... A-5
Metadata .. A-5

Programming Language Changes.. A-5
New Commands ... A-5
Obsolete Commands .. A-6
UPDATE and COMMIT .. A-6

How to Upgrade an Express Database.. A-6

Index
xix

xx

Send Us Your Comments

Oracle9 i OLAP User’s Guide, Release 2 (9.2.0.2)

Part No. A95295-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: 781-238-9850 Attn: Oracle OLAP
■ Postal service:

Oracle Corporation
Oracle OLAP Documentation
10 Van de Graaff Drive
Burlington, MA 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xxi

xxii

Preface

The Oracle9i OLAP User’s Guide describes how to use Oracle OLAP for business
analysis. It introduces the concepts underlying analytical applications and
multidimensional querying, and the tools used for application development and
system administration.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxiii

Audience
This guide is intended for application developers and database administrators who
perform the following tasks:

■ Administer a database

■ Build and maintain data warehouses or data marts

■ Define metadata

■ Develop analytical applications

To use this document, you need no prior knowledge of Oracle OLAP.

Organization
This document is organized in five parts.

Part 1: The Basics
Provides conceptual information of general interest to anyone planning to use
Oracle OLAP.

Chapter 1, "Overview"
Explains the basics of using Oracle OLAP and related client software for analytical
applications.

Chapter 2, "Manipulating Multidimensional Data"
Provides an overview of data manipulation using the OLAP DML.

Chapter 3, "Developing OLAP Applications"
Presents the rich development environment and the powerful tools that you can use
to create OLAP applications.

Chapter 4, "Designing Your Database for OLAP"
Highlights some of the most important data warehousing concepts, and provides
additional information that is specific to Oracle OLAP.

Chapter 5, "Creating OLAP Catalog Metadata"
Provides an overview of OLAP Catalog metadata and the APIs for working with it.
xxiv

Part II: "Oracle OLAP Administration"
Provides information for database administrators on administrative tasks associated
with Oracle OLAP.

Chapter 6, "Administering Oracle OLAP"
Describes the various administrative tasks that are associated with Oracle OLAP.

Chapter 7, "OLAP Dynamic Performance Views"
Describes the relational views that contain performance data on Oracle OLAP.

Chapter 8, "OLAP_API_SESSION_INIT"
Describes the OLAP_API_SESSION_INIT package, which contains procedures for
maintaining a configuration table of initialization parameters.

Chapter 9, "Creating an Analytic Workspace From Relational Tables"
Describes how to create an analytic workspace from a star schema and OLAP
Catalog metadata. Describes how to generate relational views of the workspace
data.

Chapter 10, "Creating Materialized Views for the OLAP API"
Describes how to create materialized views for star schemas that will be used by the
OLAP API.

Part III: "SQL Access Reference"
Provides information about SQL packages and procedures that either create
relational views of multidimensional data or embed OLAP DML commands in their
syntax.

Chapter 11, "DBMS_AW"
Contains reference information for the DBMS_AW package, which enables SQL
programmers to issue OLAP DML statements against analytic workspace data.

Chapter 12, "OLAP_TABLE"
Describes how SQL programmers can use the OLAP_TABLE function in a SQL
SELECT statement to query multidimensional data in an analytic workspace
xxv

Part IV: "OLAP Catalog Metadata API Reference"
Describes the OLAP Catalog views and the PL/SQL packages for creating OLAP
Catalog metadata.

Chapter 13, "Using the OLAP Catalog Metadata APIs"
Describes how to use the CWM2 PL/SQL packages.

Chapter 14, "Viewing OLAP Catalog Metadata"
Describes the views of OLAP Catalog metadata.

Chapter 15, "CWM2_OLAP_AW_ACCESS"
Describes procedures for creating generic views of data stored in analytic
workspaces.

Chapter 16, "CWM2_OLAP_AW_CREATE"
Describes procedures for creating an analytic workspace from relational tables and
generating views of the resulting data in the analytic workspace.

Chapter 17, "CWM2_OLAP_CUBE"
Describes procedures for creating, dropping, and locking cubes, for adding
dimensions to cubes, and for setting general properties of cubes.

Chapter 18, "CWM2_OLAP_DIMENSION"
Describes procedures for creating, dropping, and locking dimensions, and for
setting general dimension properties.

Chapter 19, "CWM2_OLAP_DIMENSION_ATTRIBUTE"
Describes procedures for creating, dropping, and locking dimension attributes, and
for setting general properties of dimension attributes.

Chapter 20, "CWM2_OLAP_HIERARCHY"
Describes procedures for creating, dropping, and locking hierarchies, and for setting
general hierarchy properties.

Chapter 21, "CWM2_OLAP_LEVEL"
Describes procedures for creating, dropping, and locking levels, for adding levels to
hierarchies, and for setting the general properties of levels.
xxvi

Chapter 22, "CWM2_OLAP_LEVEL_ATTRIBUTE"
Describes a procedure for creating level attributes, associating them with dimension
attributes, and for dropping, locking, and setting the general properties of level
attributes.

Chapter 23, "CWM2_OLAP_MEASURE"
Describes procedures for creating, dropping, and locking measures, and for setting
general properties of measures.

Chapter 24, "CWM2_OLAP_METADATA_REFRESH"
Describes the procedure for refreshing metadata tables for the OLAP API.

Chapter 25, "CWM2_OLAP_PC_TRANSFORM"
Describes the procedure for converting a parent-child dimension table to an
embedded-total dimension table.

Chapter 26, "CWM2_OLAP_TABLE_MAP"
Describes procedures for mapping OLAP metadata entities to columns in your data
warehouse tables or views.

Chapter 27, "CWM2_OLAP_VALIDATE"
Describes procedures for validating OLAP metadata.

Chapter 28, "CWM_CLASSIFY"
Describes procedures for creating measure folders and populating them with
measures.

Part V: "OLAP API Materialized View Reference"
Explains how to create materialized views for queries for aggregate data from the
OLAP API.

Chapter 29, "Creating Dimension Materialized Views"
Explains how to create materialized views for dimensions.

Chapter 30, "Creating Fact Materialized Views With DBMS_ODM"
Explains how to use the DBMS_ODM package to create fact table materialized views
in grouping set form.
xxvii

Chapter 31, "Creating Fact Materialized Views With OLAP Summary Advisor"
Explains how to use OLAP Summary Advisor to create fact table materialized
views in concatenated rollup form.

Appendix A, "Upgrading From Express Server"
Provides upgrading instructions and identifies some of the major differences
between Oracle Express Server 6.3 and Oracle9i OLAP.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i OLAP Developer’s Guide to the OLAP API

■ Oracle9i OLAP API Javadoc

■ Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Oracle9i OLAP DML Reference help

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at
xxviii

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xxx

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxxi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Exam ples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xxxii

What’s New in Oracle OLAP?

Oracle9i Release 2 provides multidimensional analysis within the Oracle database.
Oracle OLAP is the next generation of analytical engines and related software,
providing an upgrade path from Oracle Express Server release 6.3.

The following sections describe the new features in Oracle9i OLAP:

■ Oracle9i Release 2 (9.2) New Features in Oracle OLAP

See Also:

■ Appendix A, "Upgrading From Express Server" for specific
differences between Express Server and Oracle OLAP.

■ Oracle9i OLAP Developer’s Guide to the OLAP DML for changes
to the OLAP data manipulation language.
xxxiii

Oracle9i Release 2 (9.2) New Features in Oracle OLAP
The following list briefly describes the new features of Oracle OLAP.

■ Oracle OLAP is integrated with the Oracle database

The OLAP engine runs in the Oracle kernel, and analytic workspaces are stored
as LOBs in relational tables.

■ Oracle OLAP management tools are integrated with Oracle

The Oracle DBA uses one set of management tools for both the Oracle database
and Oracle OLAP.

■ SQL applications can access multidimensional data

SQL applications can use the database table functions to access and manipulate
data directly in the multidimensional OLAP data cache. Alternatively, relational
views can be created for multidimensional data, which provides access to
standard SQL.

■ Tools simplify creation of analytic workspaces and related views

Tools are available to help move data from relational tables into
multidimensional objects in an analytic workspace, and to generate views of
these objects so that applications can access workspace data using standard
SQL.

See Also: "The Oracle9i Integrated Relational-Multidimensional
Database" on page 1-4

See Also: Chapter 6, "Administering Oracle OLAP"

See Also: Chapter 3, "Developing OLAP Applications"

See Also:

■ Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

■ Chapter 15, "CWM2_OLAP_AW_ACCESS"
xxxiv

■ Applications can use OCI or JDBC to connect to Oracle OLAP

OLAP applications that used SNAPI communications in Express Server 6.3 and
earlier can upgrade to Oracle OLAP without substantially changing the
application’s Express language-based architecture.

■ OLAP API is available for developing Java applications

The Oracle OLAP API is an all-Java application programming interface that is
designed specifically to support multidimensional analysis.

■ OLAP Catalog API supports third-party applications development

PL/SQL interfaces to the OLAP Catalog allow developers to query and update
the logical multidimensional metadata model and map it to physical relational
and analytic workspace data.

■ OLAP metadata provides extended schema support

The Oracle OLAP Catalog metadata supports star, snowflake, and
multidimensional schema. The metadata supports level-based, parent-child,
and complex dimension hierarchies.

■ Oracle Globalization Support extended to Oracle OLAP

Oracle Globalization Support provides the Oracle standard for internationalizing
and localizing Oracle products. The character set encoding supports Unicode using
the UTF-8 standard, which is a format that transforms all Unicode characters into a
variable-length encoding of bytes. Its use in the database and Oracle OLAP allows
text data in native languages to be passed between them without data loss or
performance degradation.

See Also: Chapter 1, "Overview"

See Also: Chapter 3, "Developing OLAP Applications"

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

See Also: Oracle9i Database Globalization Support Guide
xxxv

xxxvi

Part I

The Basics

Part I contains basic information about multidimensional analysis. It is of interest to
anyone who may use Oracle OLAP as a database administrator, an applications
developer, or an end user.

This part contains the following chapters:

■ Chapter 1, "Overview"

■ Chapter 2, "Manipulating Multidimensional Data"

■ Chapter 3, "Developing OLAP Applications"

■ Chapter 4, "Designing Your Database for OLAP"

■ Chapter 5, "Creating OLAP Catalog Metadata"

Ove
1

Overview

This chapter explains the basics of using Oracle OLAP and related client software
for analytical applications. By reading this chapter, you will get an overview of its
features.

This chapter includes the following topics:

■ Why OLAP?

■ The Oracle9i Integrated Relational-Multidimensional Database

■ Components of Oracle OLAP

■ Applications Access to Oracle OLAP
rview 1-1

Why OLAP?
Why OLAP?
Relational databases have dominated database technology by providing the online
transactional processing (OLTP) that is essential for businesses to keep track of their
affairs. Designed for efficient selection, storage, and retrieval of data, relational
databases are ideal for housing gigabytes of detailed data.

The success of relational databases is apparent in their use to store information
about an increasingly wide scope of activities. As a result, they contain a wealth of
data that can yield critical information about a business. This information can
provide a competitive edge in an increasingly competitive marketplace.

Analytical Processing Answers Business Questions
The challenge is in deriving answers to business questions from the available data,
so that decision makers at all levels can respond quickly to changes in the business
climate. While a standard transactional query might ask, “When did order 84305
ship?” a typical series of analytical queries might ask, “How do sales in the
Southwestern region for this quarter compare with sales a year ago? What can we
predict for sales next quarter? What factors can we alter to improve the sales
forecast?”

The transactional query involves simple data selection and retrieval. However, the
analytical queries involve inter-row calculations, time series analysis, and access to
aggregated historical and current data. This is online analytical processing — OLAP.

The data processing required to answer analytical questions is fundamentally
different from the data processing required to answer transactional questions.
Table 1–1 highlights the major differences.

Table 1–1 Characteristics of Transactional And Analytical Queries

Characteristic Transactional Query Analytical Query

Typical operation Update Analyze

Age of data Current Historical

Level of data Detail Aggregate

Data required per query Minimal Extensive

Querying pattern Individual queries Iterative queries
1-2 Oracle9i OLAP User’s Guide

Why OLAP?
Types of OLAP Applications
Applications that support business analyses fall into these major groups:

■ Standard reporting

■ Ad-hoc query and reporting

■ Multidimensional analytical reporting

■ Predictive analysis and planning

Oracle provides the technology for all of these types of applications. Oracle OLAP
and its development tools are particularly suited to analytical reporting and
predictive analysis applications. This guide will introduce you to the tools for
developing these types of applications.

Analytical Reporting
Analytic applications can support many facets of a business and offer high returns
on the investment. Here are just a few examples of analytical applications:

■ Accounting. Forecasting, budgeting, cost and profitability analyses, and
consolidation

■ Human Resources. Skills consolidation, labor scheduling and optimization

■ Distribution. Scheduling and optimization

■ Sales Force Automation. Cross-selling and territory analyses

■ Marketing. Churn and market-based analyses

■ Retailing. Site location and demographic analyses

■ Manufacturing. Demand planning and forecasting

■ Health Care. Outcomes analysis

■ Financial Services. Risk assessment and management

Predictive Analysis
Planning applications allow organizations to predict outcomes. They generate new
data using predictive analytical tools such as models, forecasts, aggregation,
allocation, and scenario management. Some examples of this type of application are
corporate budgeting and financial analyses, and demand planning systems.

Budgeting and financial analyses systems allow organizations to analyze past
performance, build revenue and spending plans, manage toward profit goals, and
Overview 1-3

The Oracle9i Integrated Relational-Multidimensional Database
model the effects of change on the financial plan. Management can determine
spending and investment levels that are appropriate for the anticipated revenue and
profit levels. Financial analysts can prepare alternative budgets and investment
plans contingent on factors such as fluctuations in currency values.

Demand planning systems allow organizations to predict market demand based on
factors such as sales history, promotional plans, pricing models, and so forth. They
can model different scenarios that forecast product demand and then determine
appropriate manufacturing goals.

The Oracle9i Integrated Relational-Multidimensional Database
Oracle provides multidimensional technology within the database. Organizations
no longer need to choose between a multidimensional OLAP database and a
relational database. By integrating OLAP into the database, Oracle provides the
power of a multidimensional database while retaining the manageability, scalability,
and reliability of the Oracle database and the accessibility of SQL. The Oracle
database provides the functionality of a specialized analytic database while
eliminating the need for a separate database system.

The advantages of a single integrated relational-multidimensional database when
compared to two separate relational and multidimensional databases are many:

■ Simplified management. All management tasks are consolidated into a single
database and can be managed through Oracle Enterprise Manager or PL/SQL.

■ High availability. Oracle OLAP has the same scalability and high reliability as
the Oracle database, including support for Real Application Clusters and Oracle
Data Guard. Real Application Clusters allow multiple instances of the database
to work cooperatively against a single disk image of the database. When more
processing power is needed, another server can be added to the cluster. If a
server fails, then another server automatically takes over. Oracle Data Guard
protects against complete site failure, for instance, in the event of an
unprotected power failure. In the event of site failure, Oracle Data Guard
automatically switches to a backup instance at a different site.

■ High security. Oracle provides complete security to all data in the database,
including multidimensional data. All users are defined in a single user catalog
and are assigned privileges using standard security features such as roles and
privileges. More finely grained access privileges can also be granted.

■ Open access. Both relational and multidimensional data can be accessed
through SQL and the OLAP API. Application developers can choose to use the
calculation and data navigation features of the OLAP API, or they can leverage
1-4 Oracle9i OLAP User’s Guide

Components of Oracle OLAP
their investment in SQL to access multidimensional data. Any OLAP
calculation can be queried using SQL. Standard reporting applications can
present the results of complex multidimensional calculations. Ad-hoc querying
tools can provide new calculation functions.

■ Reduced update time. Oracle allows data to be stored in either relational or
multidimensional tables and provides access to both through SQL and the
OLAP API. Thus, data does not need to be replicated in two data stores. The
typical two-step data maintenance process (update the data warehouse, then
update the multidimensional database) is now reduced to a single step. The
result is a corresponding reduction in the interval between the time the data is
available from the source system and the time the data is available to users for
analyses.

■ Improved data reliability. Because data does not need to be replicated between
the relational tables and multidimensional tables, it cannot get out of
synchronization. All users have access to the same version of the data as soon as
changes are committed to the database.

The Oracle relational database and Oracle OLAP provide complementary
functionality to support the most versatile and high performance applications. The
database and SQL engine provide detail data, summary management, and
one-dimensional calculations using the SQL-99 OLAP extensions. Oracle OLAP
expands these capabilities to provide forecasting, modeling, what-if scenarios, and
multidimensional calculations.

Components of Oracle OLAP
Analytical queries and predictive analyses require a multidimensional OLAP
solution. Oracle OLAP consists of the following components:

■ Calculation engine

■ Analytic workspaces

■ OLAP DML

■ PL/SQL table functions

■ OLAP API

■ OLAP Catalog metadata

This guide explains the relationships among these components from the
perspectives of both database administrators and application developers.
Overview 1-5

Components of Oracle OLAP
Calculation Engine
The OLAP calculation engine supports the selection and rapid calculation of
multidimensional data. The status of an individual session persists to support a
series of queries, which is typical of analytical applications; the output from one
query is easily used as input to the next query. The OLAP engine runs within the
Oracle kernel.

Analytic Workspace
An analytic workspace stores multidimensional data objects and procedures written
in the OLAP DML. Within a single database, many analytic workspaces can be
created and shared among users. Like relational tables, an analytic workspace is
owned by a particular user ID, and other users can be granted access to it. Because
individual users can save a personal copy of their alterations to a workspace, the
workspace environment is particularly conducive to planning applications.

An analytic workspace can be temporary (that is, for the life of the session) or it can
be persistent, that is, saved from one session to the next. When an analytic
workspace is persistent, the data is stored as LOBs in database tables. Analytic
workspaces also provide an alternative to materialized views as a means of storing
aggregate data.

OLAP DML
The OLAP DML is a data manipulation language that is understood by the Oracle
OLAP calculation engine. The OLAP DML extends the analytical capabilities of
querying languages such as SQL and the OLAP API to include forecasting,
modeling, and what-if scenarios. Application developers can create stored
procedures that use conditional logic and the extensive library of DML commands
and functions to perform complex analyses of data. Moreover, the OLAP DML is a
very accessible calculation language, similar to that of a spreadsheet, which is easy
for power users and DBAs to learn and use.

OLAP DML commands and functions include the following categories:

Aggregation
Allocation
Data Selection
Date and Time Operations
File Reading and Writing
Financial Operations
Forecasts and Regressions
1-6 Oracle9i OLAP User’s Guide

Components of Oracle OLAP
Numeric Manipulation
Models
Statistical Operations
Text Manipulation
Time Series Manipulation

Both the OLAP API and PL/SQL can embed OLAP DML commands in their
syntax.

Using the OLAP DML, database administrators and application developers can
create multidimensional data objects that are stored in an analytic workspace. The
OLAP DML operates on data that is stored (permanently or temporarily) in these
multidimensional objects.

SQL Table Functions
SQL table functions can take a set of rows as input and produce a set of rows as
output that can be queried like a physical database table. Application developers
who use SQL can access SQL packages that use table functions to create views of
multidimensional data. SQL applications can then access these views. Thus, the
calculation engine and multidimensional data sources are accessible to SQL, making
analytic and predictive functions available to SQL-based applications. SQL
applications can connect to the database using either the Oracle Call Interface (OCI)
or Java Database Connectivity (JDBC).

OLAP API
The Oracle OLAP API is an application programming interface to Oracle OLAP. It is
a querying language that selects and manipulates data for display in a Java client.
Because the OLAP API is all Java, it supports deployment of analytical applications
to large, geographically distributed user communities on the Internet. It is object
oriented, so that application developers define the results they want, not the process
by which the results are obtained. The OLAP API connects to the database using
JDBC.

The OLAP API is the technology underlying the Oracle BI Beans for access to
relational and multidimensional data. JavaBeans are the building blocks of

See Also: Chapter 2, "Manipulating Multidimensional Data" for
more information about using the OLAP DML.

See Also: Chapter 3, "Developing OLAP Applications" for more
information about using SQL table functions.
Overview 1-7

Applications Access to Oracle OLAP
application development. They are reusable pieces of Java code that can be
assembled quickly into an application. The Oracle BI Beans provide pre-built
OLAP-aware application building blocks: Connecting to a database; authenticating
user credentials; selecting and fetching data; and displaying the data in a variety of
tabular and graphical formats. Using the BI Beans, developers can create
applications with a common “look and feel,” enabling users to gain expertise
quickly in the new product.

The BI Beans can be used within Oracle JDeveloper or other Java development
environments to build analytical applications, which can be deployed as either Java
or HTML clients.

OLAP Catalog
Metadata is typically defined as “data about data.” OLAP Catalog metadata is
created and stored in relational tables in the database. OLAP applications can query
this metadata repository to find out what data is available for analyses and display.
The metadata contains information about the physical location of the data, that is,
whether it is stored in a relational table or in an analytic workspace. The application
does not need to be aware of the location of the data or alter its processing to
accommodate the storage location. Since the data is queried using SQL, data from
relational data and multidimensional data can be joined in a single SQL query.

Whether the data is stored in a relational schema or in an analytic workspace, the
metadata identifies the data in terms of the multidimensional objects: measures,
dimensions, levels, and attributes. The metadata provides information critical to the
selection, manipulation, and display of that data.

Applications Access to Oracle OLAP
On a very basic level, all applications have access to analytic workspaces and the
computational engine using SQL, but the application can be unaware of the SQL or
unaware of the underlying OLAP facilities. They all use OCI or JDBC for their
communications protocol.

However, at a higher level, different types of applications can access the
computational power of Oracle OLAP in different ways.

See Also: Chapter 3, "Developing OLAP Applications" for a more
detailed introduction to the OLAP API and the BI Beans.

See Also: Chapter 4, "Designing Your Database for OLAP" for
information about creating OLAP metadata.
1-8 Oracle9i OLAP User’s Guide

Applications Access to Oracle OLAP
■ OLAP API clients are written in Java, which the SQL generator in Oracle OLAP
converts to SQL. The application developer does not need to be familiar either
with SQL or the OLAP DML.

■ SQL-based applications can use pure SQL against relational views of
multidimensional data. The application developer only needs to know SQL and
the language of the user interface, such as C++. However, an application
developer who is familiar with the OLAP DML can manipulate
multidimensional data directly using DML commands embedded in SQL table
functions.

■ OLAP applications can operate directly on multidimensional data by making
use of the conditional processing capabilities of stored procedures written in the
OLAP DML.

Figure 1–1 illustrates these methods.
Overview 1-9

Applications Access to Oracle OLAP
Figure 1–1 Methods of Querying Analytic Workspaces

OLAP API
Application

Generic SQL
Application

OLAP Aware
SQL Application

Direct SQL
Application

SQL Generator

JDBC OCI or JDBC OCI or JDBC OCI or JDBC

DBMS_AW PL/SQL
Package with DML
FETCH

select * from
table function

select * from
view

select * from
view

Relational
 View

 Table Function

 Object Type

OLAP
Engine

OLAP DML

 Analytic
Workspace
 Object
1-10 Oracle9i OLAP User’s Guide

Manipulating Multidimensiona
2

Manipulating Multidimensional Data

This chapter provides an overview of data manipulation using the OLAP DML. It
includes the following topics:

■ What Is the OLAP DML?

■ Basic Categories of OLAP DML Commands

■ Methods of Executing OLAP DML Commands
l Data 2-1

What Is the OLAP DML?
What Is the OLAP DML?
The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write stored procedures
that contain DML commands and functions.

Extensive Analytic Capabilities
The OLAP DML enables application developers to extend the analytical capabilities
of querying languages such as SQL and the OLAP API. These are some situations in
which you might use the OLAP DML:

■ When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or in SQL.
Examples include forecasts, solving a model, some types of consolidations
(aggregations), and allocations.

■ When your application needs to perform various calculations, but you do not
want to immediately commit the results in SQL tables. For example, you might
have a forecasting application where you want to allow users to save personal
forecasts and reuse them during a later session, but you do not want users to
commit the forecast to the SQL tables. Instead, you can just commit the data to
the analytic workspace without committing it to SQL tables.

■ When you want to manipulate data that is stored in an analytic workspace. An
analytic workspace can be an alternative to materialized views for storing
aggregate data. It may also be the preferred storage location for data that is
frequently used in business analyses such as models and forecasts.

See Also:

■ Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Oracle9i OLAP DML Reference help
2-2 Oracle9i OLAP User’s Guide

What Is the OLAP DML?
Features of the Multidimensional Model
There are inherent features of the multidimensional model that make it an
appropriate environment for business intelligence. The multidimensional model:

■ Enforces referential integrity. Each dimension member is unique and cannot be
NA. If a measure has three dimensions, then each data value of that measure
must be qualified by a member of each dimension.

■ Promotes consistency. Dimensions are maintained as separate workspace
objects and are shared by measures.

■ Preserves the order of data. Each dimension has a default status list, which
contains all of its members in the order they are stored. The default status list is
always the same unless it is purposefully altered by adding, deleting, or
moving members. Within a session, the user can change the selection and order
of the status list; this is called the current status list. The current status list
remains the same until the user purposefully alters it by adding, removing, or
changing the order of its members.

Because the order of dimension members is consistent and known, the selection
of members can be relative. For example, the function call

lag(sales, 12, month)

compares the sales values of all months in the current status list against sales
from a year ago (that is, 12 time periods earlier in the default status list for the
month dimension).

■ Presents data as fully solved. Applications do not need to define calculations.
Because of the combination of power and ease-of-use of the OLAP DML, the
analytic workspace can be prepared so that the data is presented as fully solved
to the application.

■ Manages calculated members and measures transparently. Users can define
their own dimension members (often called custom aggregates), which function
identically to the other dimension members and can be used transparently in
any calculation. Similarly, users can define their own measures and assign
values to them using any of the methods available in the OLAP DML.
Throughout the session, these additions behave identically to the dimension
members and objects originally provided in the workspace. Users can save their
changes from one session to the next with a single DML command.
Manipulating Multidimensional Data 2-3

Basic Categories of OLAP DML Commands
Basic Categories of OLAP DML Commands
Following are descriptions of some of the basic categories of OLAP DML
commands and functions.

Aggregation
The OLAP DML supports a variety of aggregation methods including first, last,
average, weighted average, and sum. In a multidimensional data object, the
aggregation method can vary by dimension. Some of the data can be aggregated
and stored, while other data is aggregated at runtime. A technique called “skip
level” aggregation pre-aggregates every other level in a dimension hierarchy. The
DBA can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria.

Allocation
Allocations are a critical part of planning applications. Given a target for the
organization — whether for sales quota, product growth, salary, or equipment —
managers must allocate that target among its contributors. Some of the key features
of the allocation system are:

■ Support for hierarchies so the data is distributed based on parentage.

■ Support for arbitrary selections so that data is distributed among selected
members, regardless of parentage or in the absence of a hierarchy.

■ A variety of allocation methods, including:

■ Copy methods (hierarchical copy, minimum, maximum, first, last)

■ Even distribution (even, hierarchical even)

■ Proportional distribution (including weighted distributions and
user-defined multidimensional functions.

■ Cell-level locking prevents certain cells from being overwritten by the
allocation. This feature is used when some values for the planning period are
known.

■ Logging records how far an allocation has progressed and whether any errors
have occurred.
2-4 Oracle9i OLAP User’s Guide

Basic Categories of OLAP DML Commands
Data Selection
Data selection within the analytic workspace is persistent throughout a session,
which is a feature that supports the iterative nature of analytic queries. Users can
select data in multiple steps, with each step refining the previous query. The OLAP
DML provides data selection methods that are specifically designed for
multidimensional data, such as hierarchical relations, levels of aggregation,
attributes, time series functions, and data values.

Data Exchange
SQL statements can be embedded in the OLAP DML, which allows applications to
select data from SQL tables and write data back to them. This can be done at
runtime or as a data maintenance procedure. Access to SQL tables is controlled by
the privileges and roles granted to the user’s database ID.

The following embedded SQL statements define a cursor and fetch data from a
relational table named products into a workspace dimension named prod and a
measure named prod_label.

SQL DECLARE highprice CURSOR FOR SELECT prod_id, prod_name -
 FROM products WHERE suggested_price > :set_price
SQL OPEN highprice
SQL FETCH highprice LOOP INTO :prod, :prod_label

File Reading and Writing
Data can be read from flat files or spreadsheets into multidimensional objects. This
is typically done as a data maintenance procedure. Access to external files is
controlled by BFILE security. DBAs can set up aliases for directories and control
which users and groups can use those aliases, as described in "Controlling Access to
External Files" on page 6-10. The security system does not allow users to access
directories without an alias.

The following program copies data from a file named unit and stores it in a
dimensions named month and productid and variables named productname
and units.sold. The DBA previously created a directory alias named mydat.

DEFINE read.product PROGRAM
PROGRAM
VARIABLE fi INT "Define a local integer variable
fi = FILEOPEN(’mydat/unit’ READ) "Store a file handle in the variable
Manipulating Multidimensional Data 2-5

Basic Categories of OLAP DML Commands
FILEREAD fi COLUMN 1 WIDTH 5 month -
 COLUMN 6 WIDTH 6 productid -
 COLUMN 12 WIDTH 30 productname -
 COLUMN 44 WIDTH 22 units.sold
FILECLOSE fi
END

The next example creates a file named custom.eif as a private data store that
contains the data and definitions for a custom measure named mysales. The user
can import mysales during another session.

EXPORT mysales TO EIF FILE ’userdat/custom.eif’ DATA DFNS

Financial Operations
The financial functions include interest rate calculations, depreciation, and payment
schedules, similar to those provided in spreadsheets.

For example, the FPMTSCHED function calculates a payment schedule (principal
plus interest) for paying off a series of fixed-rate installment loans over a specified
number of time periods. The following call to FPMTSCHED calculates 36 payments
based on the amounts listed in the loans variable, at the interest rates listed in the
rates variable, for the month dimension of these variables.

FPMTSCHED(loans, rates, 36, month)

Forecasts and Regressions
The OLAP DML offers the most sophisticated and up-to-date forecasting and
regression tools of Roadmap Geneva Forecasting, including simple linear
regressions, non-linear regression methods, single exponential smoothing, double
exponential smoothing, and the Holt-Winters method.

For example, the following FORECAST command uses the EXPONENTIAL method
to forecast sales for the next 12 months based on historical data stored in the sales
measure. It stores the results of the calculation in a second measure named
fcst.sales.

FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst.sales TIME month sales
2-6 Oracle9i OLAP User’s Guide

Basic Categories of OLAP DML Commands
Models
A model is a set of interrelated equations. These are some of the modeling features
supported by the OLAP DML:

■ You can perform calculations for individual dimension members following
unique calculation rules.

■ Oracle OLAP determines the order of the calculations, so you can list them in
any order without concern for dependencies.

■ Oracle OLAP solves simultaneous equations.

You can assign results either to a variable or to a dimension member.
Dimension-based equations provide flexibility; since you do not need to specify the
modeling variable until you solve a model, you can run the same model with any
other measure with the same dimension. For example, you could run the same
model on budget and actual, which both have a line dimension.

The following is an example of a modeling program.

’cost of goods’ = ’raw materials’+labor+’fixed overhead’
’fixed overhead’ = ’capital equipment’+’building costs’
’building costs’ = ’building depreciation’+electric+heat+maintenance
’labor’ = salary+benefits
’capital equipment’ = ’equipment maintenance’+’equipment depreciation’

Numeric Computations
Functions are available to perform a wide variety of computations (such as sine,
cosine, square root, minimum, and maximum) and data type conversions.

For example, the CEIL function returns the smallest whole number greater than or
equal to a specified number. The function call

CEIL(-6.457)

returns a value of -6.
Manipulating Multidimensional Data 2-7

Methods of Executing OLAP DML Commands
Statistical Operations
Statistical operations include standard deviation, rank, and correlation. For
example, the STDDEV function calculates the standard deviation. The function call

STDDEV(units month)

returns the standard deviation of values in the units measure for all months that
are currently selected.

Text Manipulation
The OLAP DML provides support for manipulating both single- and multibyte
character sets, with functions for concatenating strings, locating a string within a
larger body of text, inserting a string, and so forth.

For example, the EXTCHARS function extracts a portion of text. The function call

EXTCHARS(’lastname,firstname’, 1,8)

extracts the first 8 characters, which contains the characters

lastname

Time Series Manipulation
The time series functions perform operations such as lead, lag, and moving average.
For example, the MOVINGTOTAL function calculates a series of totals over time. The
following example returns a 3-month total on the sales measure for all currently
selected months.

MOVINGTOTAL(sales, -2, 0, 1, month)

Methods of Executing OLAP DML Commands
The OLAP DML can be used when you want to perform calculations that are not
easily accomplished in the ETL process or using SQL (either directly or using the
OLAP API). The results can be calculated as part of the data warehouse build and
update process, and can optionally be written to SQL tables. Alternatively,
applications developers can create OLAP DML programs using the OLAP
Worksheet and execute them by embedding OLAP DML in their SQL- or Java-based
applications.
2-8 Oracle9i OLAP User’s Guide

Methods of Executing OLAP DML Commands
OLAP Worksheet: The OLAP DML Development Tool
OLAP Worksheet is an interactive command line interface to Oracle that you can
use to perform the following tasks:

■ Connect to an analytic workspace

■ Execute OLAP DML commands

■ Execute SQL statements

■ Create and populate data objects

■ Create, modify, compile, and execute OLAP DML programs

OLAP Worksheet has a command input window and a program edit window.

Procedure: Open OLAP Worksheet
To open OLAP Worksheet, use the following steps:

1. In Enterprise Manager, connect to a database that is enabled for OLAP.

2. Expand the database.

3. Choose Warehouse.

4. From the right mouse menu, choose Oracle OLAP Worksheet.

Once you have opened OLAP Worksheet, you can use its menus to establish a
connection to Oracle, open a workspace, execute OLAP DML commands, execute
SQL statements, or write OLAP DML programs, save any changes, and close the
connection.

Embedding OLAP DML Commands in Programs
Applications developers can embed OLAP DML in their SQL- or Java-based
applications:

■ In SQL programs, you can embed OLAP DML commands using the procedures
in the DBMS_AW package.

■ In Java programs, you can embed OLAP DML commands using the
SPLExecutor class in the OLAP API.
Manipulating Multidimensional Data 2-9

Methods of Executing OLAP DML Commands
See Also:

■ Oracle9i OLAP Developer’s Guide to the OLAP DML for further
information about the OLAP DML and the OLAP Worksheet

■ OLAP API Javadoc for a description of the SPLExecutor class.

■ Chapter 11, "DBMS_AW" for descriptions of the procedures in
the DBMS_AW package.
2-10 Oracle9i OLAP User’s Guide

Developing OLAP Applic
3

Developing OLAP Applications

This chapter presents the rich development environment and the powerful tools
that you can use to create OLAP applications. It includes the following topics:

■ Building SQL-Based OLAP Applications

■ Building Analytical Java Applications

■ Introducing the BI Beans

■ Understanding the OLAP API
ations 3-1

Building SQL-Based OLAP Applications
Building SQL-Based OLAP Applications
SQL-based applications can access multidimensional data, which is stored in
analytic workspaces. Two mechanisms in the database’s object technology make
this possible:

■ Object types (also called abstract data types or ADT) are the basis for
object-oriented programming in PL/SQL. An object type encapsulates a data
structure along with the functions and procedures needed to manipulate the
data. When you define an object type using the CREATE TYPE statement, you
create an abstract template that corresponds to a real-world object.

In OLAP, these “real-world objects” are measures, dimensions, hierarchies,
attributes, and so forth. By defining object types for the objects in an analytic
workspace, you can describe the format of multidimensional data to SQL as
rows and columns.

■ Table functions produce a collection of rows that can be queried like a physical
database table. You use a table function instead of the name of a database table,
in the FROM clause of a query. A table function can take a collection of rows as
input.

You can use table functions to fetch data from objects in an analytic workspace.
The table functions require arguments that are passed to the OLAP engine,
which selects, manipulates, and returns the data. By incorporating table
functions into your application, you have the most power and flexibility in
selecting and manipulating data in the analytic workspace.

If you overlay the table functions with relational views, then you can make the table
functions (and thus the source of the data) transparent to SQL-based applications.
Your applications can use standard SQL to run against these views of
multidimensional data, the same way that they access other relational tables and
views in the database.

Figure 3–1 shows how a SQL application can access multidimensional data (using
table functions and views) as well as relational data.

See Also: PL/SQL User’s Guide and Reference for detailed
information about object types and table functions.
3-2 Oracle9i OLAP User’s Guide

Building SQL-Based OLAP Applications
Figure 3–1 Components of a SQL-Based Analytical Application

Methods of Accessing Multidimensional Data From SQL
There are several ways that SQL can access the multidimensional data of an analytic
workspace. An abstract data type and the table functions underlie all of them. The
method that you choose depends on how you want to use the data.

■ Use the CWM2_OLAP_AW_CREATE package to create the analytic workspace
from a star schema. Use other procedures in this package to define a star
schema of dimension views and fact views, which represent the measures,
dimensions, hierarchies, and attributes in the analytic workspace. You can then
query these views using standard SQL SELECT statements. You can use other
CWM2 APIs to create OLAP Catalog metadata based on these views.

■ If your analytic workspace did not originate from the AW_CREATE process, you
can use the CWM2_OLAP_AW_ACCESS PL/SQL package to generate views of the
workspace.

SQL Applications

SQL

Relational
 Views

OLAP DML

 Analytic
Workspace
 Objects

 OLAP
Calculation
 Engine

 Table Function

 Object Type

Relational
 Tables

SQL

SQL
Developing OLAP Applications 3-3

Building Analytical Java Applications
■ Write object type definitions and then make relational queries and views of the
analytic workspace data by using the OLAP_TABLE function in SQL SELECT
statements. This method is more complex than using CWM2_OLAP_AW_CREATE
or CWM2_OLAP_AW_ACCESS, but it provides more flexibility and power in an
application than using predefined views.

Embedding OLAP DML Commands in SQL
Using the procedures and functions in the DBMS_AW package, SQL programmers
can issue OLAP DML commands directly against analytic workspace data. They
can move data from relational tables into an analytic workspace, perform advanced
analysis of the data (for example, forecasting), and copy data from the analytic
workspace back into relational tables.

While the data is in the analytic workspace, SQL programmers can also issue
SELECT statements against the data in the analytic workspace using the
OLAP_TABLE function.

Building Analytical Java Applications
Java is the language of the Internet. Using Java, an application developer can write a
standalone application or an applet, which is a program that can be included in an
HTML page and executed in a browser.

About Java
Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or
C++, the move to Java is easy because it provides a familiar environment while
avoiding many of the shortcomings of the C language. Developed by Sun
Microsystems, Java is fast superseding C++ and Visual Basic as the language of
choice for application developers for the following reasons:

See Also:

■ Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

■ Chapter 11, "DBMS_AW"

■ Chapter 15, "CWM2_OLAP_AW_ACCESS"

See Also: Chapter 11, "DBMS_AW"
3-4 Oracle9i OLAP User’s Guide

Building Analytical Java Applications
■ Object oriented. Java allows application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create
that object. Almost everything in Java is defined as an object.

■ Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Unix, and Macintosh platforms where the JVM has been
installed. All major browsers have the JVM built in.

■ Network based. Java was designed to work over a network, which allows Java
programs to handle remote resources as easily as local resources.

■ Secure. Java code is either trusted or untrusted, and access to system resources
is determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not
trusted.

The Java “sandbox” security model provides a very restricted environment for
untrusted code. For example, untrusted Java code cannot read to or write from
files on the local file system, run programs, load libraries, define native method
calls, or make network connections except to the originating host computer. A
security manager determines the system resources that an applet can access.
However, a signed applet, which identifies itself as being from a trusted source,
has full access to system resources the same as local code.

Deploying Java Applications
With the rise in Internet technology, more and more businesses are recognizing the
savings they can accrue just by changing the way they deploy their applications.

Traditional thick client applications implement many of their functions on the
user’s computer, thus requiring a large proportion of installed code. However, the
days are gone when a team of technicians are required to install and maintain
applications software on hundreds or thousands of individual desktop computers
for a large user base. Instead, Java thick-client applications download the needed
software to client computers automatically at run-time.

Alternatively, system administrators can deploy thin client applications that do not
download any Java to client computers. These applications run on servers that users
world wide can access using Java clients such as their Web browsers. By deploying
thin client business intelligence applications on the Internet, businesses can
distribute information both within their enterprise and externally to suppliers and
customers.
Developing OLAP Applications 3-5

Building Analytical Java Applications
Regardless of whether you choose a thick-client or a thin-client configuration, Java
applications provide an immediate solution to the problems inherent in supporting
large user communities, which typically are equipped with a variety of
incompatible hardware and software platforms.

The Java Solution for OLAP
To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily
deployed over the Internet.

The OLAP API is a Java-based application programming interface that provides
access to multidimensional data for analytical business applications. The OLAP API
fetches data stored in a data warehouse into the OLAP multidimensional data cache
for manipulation by its analytical engine. Java classes in the OLAP API provide all
of the functions required of an OLAP application: Connection to an OLAP instance;
authentication of user credentials; access to data in the RDBMS controlled by the
permissions granted to those credentials; and selection and manipulation of that
data for business analysis.

The BI Beans simplify application development by providing these functions as
JavaBeans. Moreover, the BI Beans include JavaBeans for presenting the data in
graphs, crosstabs, and tables.

Oracle Java Development Environment
Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle database and
BI Beans wizards. The following are a few JDeveloper features:

■ Remote graphical debugger with break points, watches, and an inspector.

■ Multiple document interface (MDI)

■ Codecoach feature that helps you to optimize your code

■ Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

■ Oracle database browser

Note: Oracle JDeveloper and the BI Beans are applications and are
not packaged with the Oracle RDBMS.
3-6 Oracle9i OLAP User’s Guide

Introducing the BI Beans
For more information about the Java programming language, browse the Sun
Microsystems Java Web site at http://java.sun.com. For information about
JDeveloper, search the Oracle Web site at http://www.oracle.com.

Introducing the BI Beans
The BI Beans provide reusable components that are the basic building blocks for
OLAP decision support applications. Using the BI Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for
their ease of use. And because the BI Beans provide a common look and feel to
OLAP applications, the learning curve for end users is greatly reduced.

Two groups of BI Beans are currently available:

■ Presentation Beans display the data in a rich variety of formats so that trends
and variations can easily be detected. Among the Presentation BI Beans
currently available are Graph, Table, and Crosstabs.

The Presentation Beans can be implemented as a thick client or a thin client.
Thick clients best support users who do immersed analyses, that is, use the
system for extensive periods of time with a lot of interaction. For example, users
who create reports benefit from a thick client. Thin clients best support remote
users who use a low bandwidth connection and have basic analytical needs.
Thin clients can be embedded in a portal or other Web site for these users.

■ OLAP BI Beans acquire and manipulate the data. The OLAP BI Beans use the
OLAP API to connect to a data source, define a query, manipulate the resultant
data set, and return the results to the Presentation BI Beans for display.

You can use the BI Beans in either thick-client or thin-client applications.

Thick-Client Configuration
The components of an OLAP thick-client application are grouped into three tiers,
which can be on separate platforms or the same platform:

Note: Oracle JDeveloper is an application and is not packaged
with the Oracle RDBMS.

See Also: For more information about the BI Beans, go to the
Oracle Web site at http://www.oracle.com.
Developing OLAP Applications 3-7

Introducing the BI Beans
■ Java client tier. A Java application can run either in a browser or directly in the
Java Runtime Environment (JRE). The BI Beans that are dedicated to presenting
the data and metadata also run on this tier.

■ Application server tier. The “brains” of the application run on this tier, which
includes the OLAP API and the OLAP BI Beans that are built using the OLAP
API.

■ Data server tier. The Oracle RDBMS and OLAP service form the data server tier,
where the data is stored, selected, and manipulated. An OLAP API component
also runs on the data server tier.

Figure 3–2 shows these relationships in a thick-client configuration.

Figure 3–2 Thick Client Configuration

JRE * Browser
Presentation Beans

Applications

Java Client Tier

Application Server Tier

 Data Server Tier

BI Beans

OLAP API

Oracle RDBMS

N-Pass
OLAP functions

Metadata

OLAP API

Metadata Provider

Oracle OLAP
Calculation
 Engine
Analytic
 Workspace
3-8 Oracle9i OLAP User’s Guide

Introducing the BI Beans
Thin-Client Configuration
The components of an OLAP thin-client application are grouped into two tiers,
which can be on separate platforms or the same platform:

■ Application server tier. The “brains” of the application run on this tier, which
includes a Web server, the OLAP API and the OLAP BI Beans (both
presentation and analytical).

■ Data server tier. The Oracle RDBMS is the data server tier, where the data is
stored, selected, and manipulated either in relational tables or in the OLAP
analytic workspace. An OLAP API component also runs on the data server tier.

Figure 3–3 shows these relationships in a thin-client configuration.

Figure 3–3 Thin-Client Configuration

Application Server Tier

Data Server Tier

BI Beans

OLAP API

Application Server

Oracle RDBMS

N-Pass
OLAP functions

Metadata

OLAP API

Metadata Provider

Oracle OLAP
Calculation
 Engine
Analytic
 Workspace
Developing OLAP Applications 3-9

Introducing the BI Beans
Metadata
The OLAP API and the BI Beans use the OLAP Catalog to provide the information
they need about multidimensional objects defined in an Oracle data warehouse,
such as measures and dimensions. For information about metadata and other
requirements, refer to Chapter 4, "Designing Your Database for OLAP".

Runtime Repository
The BI Beans employ a runtime repository in the Oracle database that allows users
to save their personal analyses and to share their discoveries with other users.

Navigation
The Presentation BI Beans support navigation techniques such as drilling, pivoting,
and paging.

■ Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

■ Pivoting rotates the data cube so that the dimension members that appeared
along the X-axis of a graph now appear along the Y-axis, or the dimension
members that labeled columns in a crosstab now label rows instead. For
example, if products label the rows and regions label the columns, then you can
pivot the data cube so that products label the columns and regions label the
rows.

■ Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather
than all time periods on the same graph.

Formatting
The Presentation BI Beans allow you to change the appearance of a particular
display. In addition, the values of the data itself can affect the format.

■ Number formatting. Numerical displays can be modified by changing their
scale, number of decimal digits and leading zeros, currency symbol, negative
notation, and so forth. Currency symbols and scaling factors can be displayed in
the column or row headers rather than in the cells.
3-10 Oracle9i OLAP User’s Guide

Introducing the BI Beans
■ Stoplight formatting. The formatting of the cell background color, border, font,
and so forth can be data driven so that outstanding or problematic results stand
out visually from the other data values.

■ Ranking. In ranking reports, the numerical rank of each dimension value, based
on the value of the measure, is displayed.

Graphs
The Graph bean presents data in a large selection of two- and three-dimensional
business chart types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Many of the 2D graphs can be displayed as clustered, stacked, dual-Y,
percentage, horizontal, vertical, or 3D effect.

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, and width, and fill colors on a row-by-row basis.

The graph image can be copied to the system clipboard and exported in GIF and
other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across
the axes.

Crosstabs
The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, color and underlining; individual cell background colors; border
formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard. They can
insert rows and columns to display totals, and edit cells for what-if analysis.

Tables
The Table bean presents data in record format like a relational table or view. In
contrast to the crosstab, the table display handles measures individually rather than
as members of a measure dimension. Thus, each measure can be manipulated
individually.
Developing OLAP Applications 3-11

Understanding the OLAP API
OLAP BI Beans
The OLAP BI Beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for
accessing that database, and make a connection. The application can then access the
metadata and identify the available data. Users can select the measures they want to
see and the specific slice of data that is of interest to them. That data can then be
modified and manipulated.

Wizards
The BI Beans offer wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of
the information needed by an application. The following are some of the tasks that
can be done using wizards.

■ Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can
also degrade performance unnecessarily. In addition to selecting measures, you
can limit the amount of data fetched in a query by selecting dimension
members from a list or using a set of conditions. A selection can be saved and
used again just by picking its name from a list.

The BI Beans take advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

■ Generating custom measures. You can define new “custom” measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and
create all of the calculations required by all users, the BI Beans enable users to
create their own.

Understanding the OLAP API
OLAP applications typically have object-oriented user interfaces where users
manipulate objects that represent organized groupings of their data. Thus, there is a
natural relationship between an object-oriented user interface and an
object-oriented API such as the Oracle OLAP API. The OLAP API exploits this
3-12 Oracle9i OLAP User’s Guide

Understanding the OLAP API
natural relationship by providing objects that match the end-user behavior that an
application needs.

Object-oriented languages such as Java manipulate data by applying methods on
objects. This approach enables the objects to maintain a current state and support
incremental modifications to that state. This approach provides excellent support
for common OLAP actions such as drill and rotate.

For example, a central activity for users of OLAP applications is refining queries. A
user has a question in mind and devises a query to answer that question. In most
cases, the initial results of the query prompt the user to want to dig deeper for a
solution, perhaps by drilling to see more detailed data or by rotating the report to
highlight correlations in the data. The OLAP API is able to use the result of one
query as the input to the next query.

How the OLAP API Accesses Multidimensional Data
The OLAP API accesses the data through the OLAP Catalog, that is, the relational
tables that contain OLAP metadata. The application does not need to be aware of
whether the data is located in relational tables or in an analytic workspace, nor does
it need to know the mechanism for accessing that data.

Oracle OLAP translates all queries from the OLAP API into SQL; when a query is
issued through the OLAP API, the SQL generator in Oracle OLAP issues a SELECT
statement against a relational table or view. This has several advantages for
application developers:

■ The difficult task of writing the complex SQL needed to resolve
multidimensional queries, and even more difficult task of optimizing that
complex SQL, is left for Oracle OLAP to do. Application developers can be
more productive writing in the OLAP API, which is designed for OLAP.

■ Updates to SQL and the OLAP DML will be incorporated into new versions of
the OLAP API. Applications can make use of new analytic and performance
features without recoding.

Figure 3–4 shows how a query in the OLAP API that uses data from both a
multidimensional workspace object and a relational table is resolved.
Developing OLAP Applications 3-13

Understanding the OLAP API
Figure 3–4 Accessing Relational and Multidimensional Data Using the OLAP API

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecutor class in the OLAP API to send DML commands
directly to Oracle OLAP for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through
SPLExecutor), closes the workspace, and closes the connection.

OLAP Catalog

Java OLAP Applications

Relational
 Views

 Table Function

 Object Type

 OLAP
Calculation
 Engine OLAP DML

 Analytic
Workspace
 Objects

OLAP SQL Generator

SQL

Relational
 Tables

OLAP API

SQL

SQL
3-14 Oracle9i OLAP User’s Guide

Understanding the OLAP API
Intelligent Caching
Analytical queries are by nature iterative. An analyst formulates a query, sees the
results, and then formulates other queries based on those results. Since the
likelihood is very high in business analysis of needing the same data to answer
subsequent queries, the OLAP API caches the metadata so that it is available
throughout the session without fetching it again. Moreover, the OLAP API defines
the result set of a query geometrically. Using multidimensional cursors, the OLAP
API can randomly access disparate regions of the result set. This allows an
application to retrieve just the data currently of interest instead of all of the data in
the result set. For example, you might scroll to the end of a page without having to
fetch all of the data on the page.

To acquire data from a data warehouse, the OLAP API generates SQL statements.
Data fetches use many of the newest innovations in Oracle9i, including
concatenated rollup, scrollable cursors, and query rewrite.

Calculation Capabilities
The OLAP API generates SQL commands to select and manipulate data stored in
the relational tables. These SQL commands can include the “N-pass” functions,
such as RANK, PERCENTILE, TOPN, BOTTOMN, LAG, LEAD, SUM, AVG, MIN, MAX,
COUNT, and STDDEV.

The OLAP API provides expanded calculation capabilities beyond those that can be
handled efficiently in other OLAP solutions, such as:

■ Totals broken out by multiple attributes

■ Suppression of NA and zero rows, columns, and pages

■ Row and column calculations

■ Union dimensions

■ Measures as dimensions

■ Inter-row calculations such as the following book-to-bill ratio:

Balance(Account "BOOKED", Period "PRIOR")/ Balance(Account
"BILLED", Period "LAST")

See Also:

■ Oracle9i OLAP Developer’s Guide to the OLAP API

■ OLAP API Javadoc
Developing OLAP Applications 3-15

Understanding the OLAP API
■ Asymmetric queries

The OLAP engine performs additional calculations, such as:

■ Modeling

■ Forecasting

■ What-if scenarios

 These types of analysis can be performed on data in the analytic workspace.

Example 3–1 Selecting Values

This OLAP API code fragment demonstrates the selection of dimension values
based on the data values of a measure. The Sales measure has four dimensions. The
Geography, Channel, and Time dimensions are limited to one member each, then
Product members are selected with Sales values greater than 20,000,000.

Source geographySel = geography.selectValue("BOSTON");
Source channelSel = channel.selectValue("TOTALCHANNEL");
Source timeSel = time.selectValue("1996");
Source prodSel = product.select(salesSel.gt(20000000));
Source result = sales.join(geographySel).
 join(channelSel).join(timeSel).join(prodSel);

See Also:

■ Oracle9i OLAP Developer’s Guide to the OLAP API

■ Oracle9i OLAP Developer’s Guide to the OLAP DML
3-16 Oracle9i OLAP User’s Guide

Designing Your Database fo
4

Designing Your Database for OLAP

This chapter highlights some of the most important data warehousing concepts as
they pertain to Oracle OLAP. It contains additional information that is specific to a
data warehouse that will support applications that use OLAP Catalog metadata,
such as the OLAP API and the BI Beans.

This chapter includes the following topics:

■ Overview

■ Preparing a Database for the OLAP API

■ Types of Data Stored in a Data Warehouse

■ Data Structures in Relational and Multidimensional Data Stores

■ OLAP Metadata Model
r OLAP 4-1

Overview
Overview
This chapter provides concepts and background to help you start the process of
enabling your data warehouse for access by Oracle OLAP client applications. The
OLAP API has special requirements that are discussed in this chapter. If you are
developing a SQL application, you may still benefit from the discussion of OLAP
concepts. Moreover, SQL applications can also be implemented to use OLAP
Catalog metadata, like the OLAP API.

This chapter presumes that the relational data stores in your warehouse have
already been generated. For this purpose, you may have used Oracle Warehouse
Builder or some other Extraction Transformation Transport (ETT) tool. This chapter
does not provide sufficient information for you to build a relational data warehouse
of your own, or even to fully understand the issues involved in creating and
maintaining the relational structures for storing warehouse data.

Preparing a Database for the OLAP API
Oracle provides specialized facilities for the development and deployment of
Java-based OLAP clients: the OLAP API and the BI Beans (Business Intelligence
Beans). The OLAP API directly queries the data warehouse. The BI Beans may be
used as a layer between the end user and the OLAP API.

The OLAP API requires the presence of OLAP Catalog metadata in the database.
You will need to take these steps to prepare your data warehouse for the Oracle
OLAP API:

1. Design and implement the relational and/or multidimensional data stores to be
used by analytical applications.

2. Create the OLAP Catalog metadata.

3. Create the special materialized views that are used by the Oracle OLAP API.

The information that you need to perform these steps is introduced in this chapter.

See Also: Oracle9i Data Warehousing Guide for a detailed
discussion of data warehousing concepts as they apply to storage in
relational tables and data manipulation in SQL.
4-2 Oracle9i OLAP User’s Guide

Types of Data Stored in a Data Warehouse
Types of Data Stored in a Data Warehouse
The term data warehouse is used to distinguish a database that is used for business
analysis (OLAP) rather than transaction processing (OLTP). While an OLTP
database contains current low-level data and is typically optimized for the selection
and retrieval of records, a data warehouse typically contains aggregated historical
data and is optimized for particular types of analyses, depending upon the client
applications.

The contents of your data warehouse depends on the requirements of your users.
They should be able to tell you what type of data they want to view and at what
levels of aggregation they want to be able to view it.

Your data warehouse will store these types of data:

■ Historical data

■ Derived data

■ Metadata

These types of data are discussed individually.

Historical Data
A data warehouse typically contains several years of historical data. The amount of
data that you decide to make available depends on available disk space and the
types of analysis that you want to support. This data can come from your
transactional database archives or other sources.

Some applications might perform analyses that require data at lower levels than
users typically view it. You will need to check with the application builder or the
application’s documentation for those types of data requirements.

See Also:

■ Chapter 5, "Creating OLAP Catalog Metadata" provides
detailed information about the tools and APIs you can use to
enable various warehouse configurations for OLAP access.

■ The syntax of the PL/SQL APIs that create and display OLAP
Catalog metadata are documented in Part IV, "OLAP Catalog
Metadata API Reference".
Designing Your Database for OLAP 4-3

Data Structures in Relational and Multidimensional Data Stores
Derived Data
Derived data is generated from existing data using a mathematical operation or a
data transformation. It can be created as part of a database maintenance operation
or generated at run-time in response to a query.

Metadata
Metadata is data that describes the data and schema objects, and is used by
applications to fetch and compute the data correctly.

OLAP Catalog metadata is designed specifically for use with Oracle OLAP. It is
required by the Java-based Oracle OLAP API, and can also be used by SQL-based
applications to query the database.

Data Structures in Relational and Multidimensional Data Stores
Oracle offers both relational and multidimensional storage within a single database.
Historical and derived data can be stored either in relational tables or in
multidimensional objects.

Relational Table Storage
The lowest level of historical data, as well as fully aggregated historical data, can be
stored in fact tables in your data warehouse. The lowest level in a data warehouse
is typically at a much higher level than in the transactional database. The
transactional data should be aggregated to a base level where patterns and trends
can emerge and analysis is meaningful, before being stored in the data warehouse.
For example, individual purchase orders might be aggregated by sales
representative, zip code, or some other demographic feature.

Dimension tables, also called lookup tables, are used to store the dimension
members that determine the aggregation criteria for fact data. Dimension members
are typically organized in levels that roll up within hierarchies.

The Oracle RDBMS provides materialized views for storing precomputed data
derived from fact tables. Materialized views significantly improve querying times
because the aggregates are computed and stored as a database administration task
for everyone’s use, that is, when the data is refreshed rather than each time the
aggregates are needed.
4-4 Oracle9i OLAP User’s Guide

Data Structures in Relational and Multidimensional Data Stores
Multidimensional Table Storage
As an alternative to relational table storage, data can be stored in multidimensional
objects in analytic workspaces. Analytic workspaces are multidimensional
structures that are designed specifically to support analytic processing. The
equivalent of a relational table in an analytic workspace is a variable. You can think
of variables as multidimensional tables. The historical and derived data in a data
warehouse can be distributed between relational tables and workspace variables.
Keep in mind that there is no need to duplicate data; it can be stored in tables or
variables, but it does not need to be stored in both.

You can use the sophisticated analysis tools of the OLAP DML to generate new data
such as forecasts. You have the option of copying this data into relational tables or
keeping it exclusively in the analytic workspace. Analytic workspaces are also an
alternative to materialized views for generating and storing aggregate data.

Temporary and Persistent Analytic Workspaces
Data can be loaded into analytic workspaces from SQL tables or from flat files. The
analytic workspaces can be either temporary or persistent, depending on your
needs. If an analytic workspace is needed only to perform a specific calculation and
the results of the calculation does not need to persist in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, an application needs to forecast a small amount of sales data. Since the
forecast can be rerun at any time, there might not be any point in saving the results.

Analytic workspaces can also persist across sessions. You might want to save data
in an analytic workspace if you have calculated a significant amount of data (for
example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Data in analytic workspaces can be shared by many different users. To share data in
an analytic workspace, the workspace must be saved in the database during the
period of time it is to be shared.

See Also: "Choosing a Schema for Your Data" on page 4-7 for a
discussion of the merits of these storage alternatives.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
detailed instructions on how to create and populate an analytic
workspace, and how to manipulate data stored in it.
Designing Your Database for OLAP 4-5

Data Structures in Relational and Multidimensional Data Stores
About Star, Snowflake, Parent-Child, and Multidimensional Schemas
A schema is a collection of database objects. The following types of schemas are
characteristic of a relational data warehouse:

■ Star schema. Consists of one or more fact tables related to one or more
dimension tables. The relationships are defined through foreign keys, metadata,
or both.

■ Snowflake schema. A star schema that has been partially or fully normalized to
reduce the number of duplicate values in the dimension tables. However,
snowflake schema require more joins, which can slow performance.

For example, a star schema might have a single geography dimension table with
four columns: city, state, region, and country. Only the city column has
predominately unique values, while the other columns have increasing numbers of
duplicate values.

A snowflake schema might have three related geography dimension tables: One
table with two columns (city and state) that define the relationship between
cities and states, a second table with two columns (state and region) that define
the relationship between states and regions, and a third table with two columns
(region and country) that define the relationship between regions and countries.

Star and snowflake schemas use level-based dimensions. Their hierarchies are
defined by the relationship between levels, and their levels map to columns in
dimension tables. Alternatively, a data warehouse schema may use parent-child
dimensions. In this type of schema, dimension members map to a parent column
and a child column. The parent-child combination in a given row expresses a
hierarchical relationship.

Your relational tables can be organized in either a level-based schema (star or
snowflake) or a parent-child schema.

With Oracle OLAP, your data warehouse storage options are extended to include:

■ Multidimensional schema. You can think of analytic workspaces as
multidimensional schema, since a workspace stores a collection of related
objects.

With analytic workspace data, the data warehouse can support multidimensional
and hybrid solutions in addition to pure relational storage models. Thus, an Oracle
OLAP schema can contain multidimensional analytic workspace objects in addition
to fact tables and dimension tables.
4-6 Oracle9i OLAP User’s Guide

Data Structures in Relational and Multidimensional Data Stores
Choosing a Schema for Your Data
The types of analyses performed by the OLAP applications that your data
warehouse will support determine the best choice of a data repository. You must
examine the benefits of each storage method in light of these applications and
decide which one most closely matches their requirements. You can choose to store
the data for your business analysis applications from these alternatives:

■ Entirely in a relational schema. During user sessions, SQL commands are used
to select and manipulate the data in the relational database.

Fact tables are the preferred data repository for most query and reporting
applications that require read-only access to the data. For these applications, the
relational database offers scalability in supporting very large data sets
efficiently and manageability with a single set of administrative tools.

■ Entirely in a multidimensional schema. As a routine maintenance task, data is
loaded into dimensions and variables in the analytic workspace from one or
more sources (including relational tables and flat files). During user sessions,
data is selected and manipulated in the analytic workspace.

Analytic workspaces should be used as a persistent data store for applications
that support predictive analysis functions, such as models, forecasts, and
what-if scenarios. Other design choices — such as the types of hierarchies, the
use of non-additive aggregation methods, or storage issues concerning
aggregate data — may make workspace objects the preferred data repository.

■ Distributed between a relational schema and a multidimensional schema.
The implementation of this model can, of course, vary widely since it
encompasses any scheme that draws on the other two methods. A distributed
solution may be desirable when an application requires the advanced
calculation capabilities of the analytic workspace combined with the efficient
storage of standard relational tables.

As explained in "How the OLAP API Accesses Multidimensional Data" on
page 3-13, the storage location of data is transparent to applications that use OLAP
metadata to identify data objects. Thus, database administrators can fine-tune the
database by moving data between relational tables and analytic workspaces
without breaking existing Java applications that use the OLAP API.
Designing Your Database for OLAP 4-7

OLAP Metadata Model
OLAP Metadata Model
The basic data model in a relational database is a table composed of one or more
columns of data. All of the data is stored in columns. In contrast, the basic data
model for multidimensional analysis is a cube, which is composed of Measures,
Dimensions, and Attributes.

Within the OLAP Catalog, you identify whether the data will function as a measure,
a dimension, or an attribute. Once these decisions are stored in the OLAP Catalog
metadata, the OLAP API can access warehouse data without regard to its
underlying storage format. Whether the data is stored in relational tables, analytic
workspaces, or some combination of relational and multidimensional schemas, the
OLAP Catalog presents the same logical model to applications that use the OLAP
API.

The OLAP Catalog metadata informs applications about the data that is available
within the database. The application can then define multidimensional objects to
represent that data. When the application runs, it instantiates these objects and
populates them with data.

Before you can create metadata, you must know what data users want to view and
at what levels they want to view it. If you have already created a data warehouse,
then you have already done most of this research. You only need to verify that the
requirements haven’t changed for the analytical applications that will be run using
Oracle OLAP.

Mapping Data Objects to Metadata Objects
The objects comprising a data warehouse and Oracle OLAP metadata use different
data structures. The data objects in your data warehouse are represented to the
OLAP metadata catalog in the following relational objects, regardless of whether
the data is actually stored in relational tables or workspace variables:

Note: The OLAP API uses OLAP metadata. Even if you have
created other types of metadata to support other applications, you
must create OLAP metadata for applications written in the OLAP
API.

Keep in mind that the OLAP API only has access to objects in the
database through the metadata definitions. Thus, if an object (such
as a column in a table) has not been defined in the metadata, then it
is not available to the OLAP API.
4-8 Oracle9i OLAP User’s Guide

OLAP Metadata Model
■ Fact Tables or Views

■ Level-based dimension Tables or Views

Oracle OLAP metadata catalog maps the data warehouse schema to these
multidimensional data objects:

■ Measures

■ Dimensions

■ Dimension attributes

■ Levels

■ Level attributes

■ Hierarchies

■ Cubes

■ Measure folders

Measures
Measures are the same as facts. The term “fact” is typically used in relational
databases, and the term “measure” is typically used in multidimensional
applications.

Measures are thus located in fact tables. A fact table has columns that store
measures (or facts) and foreign key columns that create the association with
dimension tables.

Measures contain the data that you wish to analyze, such as Sales or Cost. OLAP
Catalog metadata requires that a column have a numerical or a date data type to be
identified as a measure. Most frequently, a measure is numerical and additive.

Note: The OLAP API supports native Java data types. It does not
support the following Oracle data types: BLOB, CLOB, NCLOB,
RAW, and LONG RAW. Do not create measures from facts with
these unsupported data types.

The OLAP DML supports CLOB and NCLOB data types. Search for
“SQL (FETCH)” in the Oracle9i OLAP DML Reference help for
additional information about supported data types.
Designing Your Database for OLAP 4-9

OLAP Metadata Model
Dimensions
Dimensions identify and categorize your data. Dimension members are stored in a
dimension table. Each column represents a particular level in a hierarchy. In a star
schema, the columns are all in the same table; in a snowflake schema, the columns
are in separate tables for each level.

Because measures are typically multidimensional, a single value in a measure must
be qualified by a member of each dimension to be meaningful. For example, the
unit_cost measure has two dimensions: products_dim and times_dim. A
value of unit_cost (21.60) is only meaningful when it is qualified by a specific
product code (1575) and a time period (28-jan-1998).

If you use Oracle Enterprise Manager to create OLAP metadata, then defining a
dimension in your data warehouse creates a database dimension object, in addition
to creating metadata. A dimension object contains the details of the parent-child
relationship between columns in a dimension table; it does not contain data.

The database dimension object is used by the Summary Advisor and query rewrite
to optimize your data warehouse.

Time Dimensions
OLAP metadata considers time dimensions to be distinct from other dimensions.
When you specify a dimension in the OLAP metadata, you must identify whether it
is a time dimension. A time dimension has special attributes that support both
regular and irregular time periods.

Regular time periods, such as weeks, months, and years, are evident on standard
calendars. Typically, they neither overlap nor have gaps between them.

Irregular time periods, such as promotional schedules and seasonal time periods,
are not evident on standard calendars. They often overlap (even to the extent that
one time period is a subset of another time period) or have gaps between them.

The time dimension table should contain the following columns to provide full time
support:

■ Values for all dimension members, with a column for each level of
summarization (such as weeks, quarters, and years).

Note: A dimension object is not created when you use the CWM2
PL/SQL procedures to create OLAP metadata.
4-10 Oracle9i OLAP User’s Guide

OLAP Metadata Model
■ An end-date attribute for each level, such as WEEK_ENDDATE, QUARTER_
ENDDATE, and YEAR_ENDDATE. These columns must have a DATE data type.
Their values identify the last day in the time period.

■ A time-span attribute for each level, such as WEEK_TIMESPAN, QUARTER_
TIMESPAN, and YEAR_TIMESPAN. These columns must have a NUMBER data
type. Their values identify the number of days in the period.

Note: The OLAP Management feature of Oracle Enterprise
Manager provides support for creating and populating time
dimension tables with these columns.
Designing Your Database for OLAP 4-11

OLAP Metadata Model
Example 4–1 Time Dimension in a Star Schema

The following table describes a dimension table in a star schema.

Example 4–2 Time Dimension in a Snowflake Schema

The following tables describe dimension tables in a snowflake schema. The first
table defines weeks, which is the lowest level of time data.

Column Name Sample Value Data Type Comment

WEEK_ID W12000 VARCHAR2 Level 1

WEEK_DESC Week Ending January
8, 2000

VARCHAR2 Attribute

WEEK_ENDDATE 8-JAN-00 DATE Attribute

WEEK_TIMESPAN 7 NUMBER Attribute

QUARTER_ID 1QTR2000 VARCHAR2 Level 2

QUARTER_DESC 1st Quarter in Year
2000

VARCHAR2 Attribute

QUARTER_ENDDATE 31-MAR-00 DATE Attribute

QUARTER_TIMESPAN 91 NUMBER Attribute

YEAR_ID YR2000 VARCHAR2 Level 3

YEAR_DESC Year 2000 VARCHAR2 Attribute

YEAR_ENDDATE 31-DEC-00 DATE Attribute

YEAR_TIMESPAN 366 NUMBER Attribute

Column Name Sample Value Data Type Comment

WEEK_ID W12000 VARCHAR2 Level 1

WEEK_DESC Week Ending January
8, 2000

VARCHAR2 Attribute

WEEK_ENDDATE 8-JAN-00 DATE Attribute

WEEK_TIMESPAN 7 NUMBER Attribute
4-12 Oracle9i OLAP User’s Guide

OLAP Metadata Model
A second table defines quarters.

A third table defines years.

Hierarchical Dimensions
A hierarchy is a way to organize data according to levels. Dimensions are
structured hierarchically so that data at different levels of aggregation can be
manipulated together efficiently for analysis and display. Dimension hierarchies
enable users to recognize trends at one level of aggregation, drill down to lower
levels to identify reasons for these trends, and roll up to higher levels to see what
affect these trends have on a larger sector of the business.

Each level represents a position in the hierarchy. Levels group the data for
aggregation and are used internally for computation. Each level above the base (or
lowest) level represents the aggregate total of the levels below it. For example, a
time dimension might have day, week, quarter, and year for the levels of a
hierarchy. If data for the sales measure is stored in days, then the higher levels of
the time dimension allow the sales data to be aggregated correctly into weeks,
quarters, and years. Days roll up into weeks, weeks into quarters, and quarters into
years.

Column Name Sample Value Data Type Comment

WEEK_ID W12000 VARCHAR2 Foreign key

QUARTER_ID 1QTR2000 VARCHAR2 Level 2

QUARTER_DESC 1st Quarter in Year
2000

VARCHAR2 Attribute

QUARTER_ENDDATE 31-MAR-00 DATE Attribute

QUARTER_TIMESPAN 91 NUMBER Attribute

Column Name Sample Value Data Type Comment

QUARTER_ID 1QTR2000 VARCHAR2 Foreign key

YEAR_ID YR2000 VARCHAR2 Level 3

YEAR_DESC Year 2000 VARCHAR2 Attribute

YEAR_ENDDATE 31-DEC-00 DATE Attribute

YEAR_TIMESPAN 366 NUMBER Attribute
Designing Your Database for OLAP 4-13

OLAP Metadata Model
The members of a hierarchy at different levels have a one-to-many parent-child
relationship. For example, qtr1 and qtr2 are the children of yr2001, thus yr2001
is the parent of qtr1 and qtr2.

Attributes
Attributes provide descriptive information about the data and are typically used for
display.

Level Attributes
Level attributes provide supplementary information about the dimension members
at a particular level of a dimension hierarchy. The dimension members themselves
may be meaningless, such as a value of “1296” for a time period. These cryptic
values for dimension members are used internally for selecting and sorting quickly,
but are meaningless to users.

For example, you might have columns for employee number (ENUM), last name
(LAST_NAME), first name (FIRST_NAME), and telephone extension (TELNO). ENUM is
the best choice for a level column, since it is a key column and its values uniquely
identify the employees. ENUM also has a NUMBER data type, which makes it more
efficient than a text column for the creation of indexes. LAST_NAME, FIRST_NAME,
and TELNO are attributes. Even though they are dimensioned by ENUM, they do not
make suitable measures because they are descriptive text rather than business
measurements.

Dimension Attributes
Dimension attributes specify groupings of level attributes for a specific dimension.
Whereas level attributes map to specific data values, dimension attributes are
purely logical metadata objects.

An example of a dimension attribute is end date, which is required for time
dimensions. If a time dimension has month, quarter, and year levels, end date
identifies the last date of each month, each quarter, and each year. Within a
relational schema, the three level attributes that make up the end date dimension
attribute would be stored in columns with names like month_end_date,
quarter_end_date, and year_end_date.

Cubes
Cubes are the metadata objects that associate measures with their dimensions. All
the measures associated with a cube have the exact same dimensionality.
4-14 Oracle9i OLAP User’s Guide

OLAP Metadata Model
The edges of a cube are defined by its dimensions. Although there is no limit to the
number of edges on a cube, data is often organized for display purposes along three
edges, which are referred to as the row edge, column edge, and page edge. A single
dimension or multiple dimensions can be placed on an edge. For example, sales
data might be displayed with Product and Channel on the row edge, Time on the
column edge, and Customer on the page edge.

Measure Folders
Measures can be organized within measure folders, which facilitate the browsing of
data by business area. Measure folders are also known as catalogs.

Whereas dimensions and measures are associated with the schemas that contain
their source data, measure folders are schema independent. Each OLAP client can
view all measure folders defined within the Oracle instance.
Designing Your Database for OLAP 4-15

OLAP Metadata Model
4-16 Oracle9i OLAP User’s Guide

Creating OLAP Catalo
5

Creating OLAP Catalog Metadata

This chapter describes the OLAP Catalog and the methods for working with OLAP
metadata.

This chapter includes the following sections:

■ Overview of the OLAP Catalog

■ Accessing the OLAP Catalog

■ Data Warehouse Requirements

■ Creating Metadata Using Oracle Enterprise Manager

■ Creating Metadata Using PL/SQL

See Also:

■ "OLAP Metadata Model" on page 4-8 for detailed descriptions
of the logical entities in the OLAP Catalog.

■ "Understanding the OLAP API" on page 3-12 for information
on the OLAP API and its use of the OLAP Catalog.

■ Part IV, "OLAP Catalog Metadata API Reference" for detailed
descriptions of the APIs for creating CWM2 metadata.
g Metadata 5-1

Overview of the OLAP Catalog
Overview of the OLAP Catalog
The repository for OLAP metadata is known as the OLAP Catalog. OLAP metadata
represents warehouse data as logical cubes, as described in "OLAP Metadata
Model" on page 4-8.

OLAP metadata must be defined and mapped to any data that will be accessed by
the OLAP API. OLAP metadata may also be used by other types of analytical
applications.

OLAP metadata maps to dimension tables and fact tables. The dimension tables
must be organized in levels. The dimension tables and fact tables may be actual
relational tables or they may be views representing data stored in analytic
workspaces. A number of different warehouse configurations can be represented by
OLAP metadata, as described in "Data Warehouse Requirements" on page 5-4.

Tools for Creating OLAP Metadata
There are two tools for creating OLAP metadata:

■ Oracle Enterprise Manager.

■ The CWM2 PL/SQL APIs.

OLAP Catalog Components
The OLAP Catalog includes the following:

■ Metadata model tables - A set of tables that instantiate the OLAP metadata
model. These tables define all the OLAP metadata objects: dimensions,
measures, cubes, measure folders, and so on. Within the metadata definitions
are references to the actual warehouse data.

Note: Enterprise Manager currently uses a set of proprietary APIs
to create OLAP metadata. It does not provide access to metadata
created with the CWM2 APIs.

However, the OLAP Catalog metadata views allow you to browse
all the metadata in the OLAP Catalog. This includes metadata
created by Enterprise Manager and metadata created by the CWM2
APIs.
5-2 Oracle9i OLAP User’s Guide

Accessing the OLAP Catalog
■ A Write API - A set of PL/SQL packages for creating and editing OLAP
metadata. These packages contain procedures for inserting, updating, and
deleting rows in the model tables.

■ A Read API - A set of SQL views providing information about the metadata
registered in the model tables.

Logical Steps for Creating OLAP Metadata
Whether you create OLAP metadata programmatically or by using Oracle
Enterprise Manager, you follow the same logical steps.

To create OLAP metadata:

1. Create the dimensions. Specify the levels, attributes, and hierarchies associated
with each one.

2. Create cubes and specify their edges (dimensions).

3. Create measures that represent the fact data. Associate each measure with a
cube.

4. Map the metadata entities to the source data.

5. Create measure folders in which to store related measures. Populate the folders
with measures.

Accessing the OLAP Catalog
To create OLAP metadata, you must be able to log into your database with
credentials that have been granted the OLAP_DBA role. The OLAP Catalog is owned
by the OLAPSYS user.

The OLAP_DBA role has system privileges associated with it, such as the ability to
create and drop tables, indexes, and dimensions. For a list of these privileges, follow
these steps:

1. Log into your database through Oracle Enterprise Manager.

2. Expand the Security branch.

3. Choose OLAP_DBA.

4. Display the Role and System Privileges pages.

If you have the system DBA role, then you also have the OLAP_DBA role. You must
also have the CONNECT role.
Creating OLAP Catalog Metadata 5-3

Data Warehouse Requirements
Data Warehouse Requirements
The CWM2 APIs support and extend Enterprise Manager’s warehouse requirements.

Basic Star or Snowflake Schema
Enterprise Manager creates OLAP metadata for star and snowflake schemas. It
creates a database dimension object for each logical OLAP dimension. The database
dimension object imposes the following restrictions on dimension tables and related
fact tables:

■ All hierarchies must be level-based; the schema cannot use parent-child
dimension tables.

■ Multiple hierarchies defined for a dimension must have the same base level.

■ Level columns cannot contain NULLs.

■ Fact data must be unsolved, that is, it is stored only at the lowest level of the
hierarchy, and all the data for a cube must be stored in a single fact table.

If your data warehouse complies with these requirements, you can use either
Enterprise Manager or the CWM2 APIs to create OLAP metadata.

Dimension Tables with Complex Hierarchies
If your dimension tables include any of the following variations, you must use the
CWM2 APIs to create OLAP metadata:

■ Level columns containing NULLs, such as in skip-level hierarchies

■ Hierarchies with different lowest levels (sometimes called ragged hierarchies)

■ Values mapped to different levels for multiple hierarchies

Solved and Unsolved Fact Data
Fact data is unsolved when it is stored at the lowest level of aggregation. Fact data
is solved when it is stored with embedded totals.

Note: To view existing metadata, you only need the CONNECT
and SELECT_CATALOG_ROLE roles.
5-4 Oracle9i OLAP User’s Guide

Data Warehouse Requirements
Enterprise Manager creates OLAP metadata for unsolved fact data. With the CWM2
APIs, you can create OLAP metadata for both solved and unsolved fact data.

The CWM2 APIs also support multiple fact tables per cube. In this case, the data
associated with a given combinations of hierarchies can be stored in a separate fact
table. All the fact tables associated with a cube must have the same column
structure.

Multidimensional Data
 With the CWM2 APIs, you can create and populate analytic workspaces from a star
schema and generate relational views of the resulting workspaces. You can then
create OLAP metadata based on these views. Use the following procedure.

1. Use the CWM2_OLAP_AW_CREATE package, as described in Chapter 9 to create
the workspace and create relational views of the data. These views take the
place of fact tables and dimension tables.

2. Use other CWM2 APIs to create OLAP metadata based on these views.

Parent-Child Dimensions
If the dimensions of your data are stored in parent-child dimension tables, then you
must convert them to level-based dimensions before creating OLAP metadata. Use
the following procedure:

1. Use the CWM2_OLAP_PC_TRANSFORM package, as described in Chapter 25 to
convert the parent-child dimensions to a level-based dimensions.

2. Use other CWM2 APIs to create OLAP metadata based on the level-based
dimensions.

Note: If your data is stored in an analytic workspace that was
created in some other way, for example by using OLAP Worksheet
or the DBMS_AW package, you can use the CWM2_OLAP_AW_ACCESS
package to generate views of the workspace. Then use other CWM2
APIs to create OLAP metadata based on these views.

See Also: Chapter 3, "Developing OLAP Applications" and
Chapter 12, "OLAP_TABLE" for more detailed explanations of the
technology underlying views of analytic workspace data.
Creating OLAP Catalog Metadata 5-5

Creating Metadata Using Oracle Enterprise Manager
Creating Metadata Using Oracle Enterprise Manager
If your data warehouse complies with the requirements listed in "Basic Star or
Snowflake Schema" on page 5-4, you can create OLAP metadata using the OLAP
Management tool in Oracle Enterprise Manager.

You generate the SQL statements that create the metadata primarily by following
the steps presented by a wizard or by completing a property sheet. If you wish, you
can display the SQL statements before executing them.

Procedure: Accessing OLAP Management
Follow these steps to start Oracle Enterprise Manager and access OLAP
Management:

1. Open the Oracle Enterprise Manager console.

You see the main page.

2. Expand Databases by clicking the plus sign next to it.

You see the list of service names for Oracle databases for which you have
defined a connection.

If the database that you want to manage is not listed, then from the Navigator
menu choose Add Database to Tree. You will need to supply the host name,
port number, and SID.

3. Expand the database that you want to manage.

You see the Database Connect Information dialog box.

4. Type in your user name (one with the appropriate credentials) and password
for that database.

Note: If you prefer to execute PL/SQL programs directly or your
schema does not conform to the requirements of the OLAP
Management tool, refer to "Creating Metadata Using PL/SQL" on
page 5-9.
5-6 Oracle9i OLAP User’s Guide

Creating Metadata Using Oracle Enterprise Manager
The database folder will expand to show the various tools available for
administering the database.

5. Expand Warehouse.

6. Expand OLAP.

You see the types of objects that you can create. This part of Oracle Enterprise
Manager is for OLAP Management.

Defining Metadata for Dimension Tables
When creating OLAP metadata, you must first define the metadata objects for the
dimension tables. These metadata objects are logical dimensions based on database
dimension objects. You can use the Dimension Creation Wizard or supply
information directly in the Create Dimension dialog box.

To define a dimension, you provide all the information that will be needed to label
and aggregate the measures dimensioned by it, including:

■ The name of the dimension

■ The tables that contain the data for the dimension

■ The name of each level, and the columns that contain the data for each level

■ The number and order of levels in each hierarchy

■ Join keys for levels that are stored in separate tables

■ The columns that contain attributes for the levels

■ A display name and description for the dimension and each of its hierarchies,
levels, and attributes

Business analysis is performed on historical data, so fully defined time periods are
vital. Special support for time dimensions is built into the metadata to allow for
time-dependent analyses, such as comparisons with earlier time periods.

Tip: Select the Save as preferred credentials box if you wish to
eliminate this step in future sessions. Your user name and
encrypted password will be saved in a local file. For security, make
sure that only you can run Oracle Enterprise Manager with your
stored credentials. Later, if you wish to change this information,
then choose Edit Local Preferred Credentials from the
Configuration menu.
Creating OLAP Catalog Metadata 5-7

Creating Metadata Using Oracle Enterprise Manager
Your time dimension table must have columns for end-date and time-span, as
described in "Time Dimensions" on page 4-10. Typical levels and hierarchies for
time dimensions are suggested by the Dimension Wizard, but you do not have to
use them.

Follow these steps to create a dimension and its associated levels, hierarchies, and
attributes:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. To create a new dimension, right click on Dimensions, then choose one of the
following:

■ Create Using Wizard to run the Dimension Wizard

or

■ Create to edit a new dimension property sheet

3. Choose Help if you need additional information.

Defining Metadata for Fact Tables
After you have defined the metadata objects for the dimension tables, you can
create metadata objects for the fact tables. These metadata objects are measures and
cubes. A cube is a collection of identically dimensioned measures. Cubes and
measures are defined entirely in the OLAP metadata; there are no corresponding
database objects. When you define a cube, you identify information such as the
following:

■ The name of the cube and the fact table associated with it. All measures in a
cube must be from a single fact table.

■ The names of the dimensions and the levels in the dimension hierarchies that
will be used in the cube.

■ The names of the measures and the columns in the fact table where the values
for each measure is stored.

■ Default aggregation operators for each dimension of each measure (such as sum
or average).

■ Any calculation dependencies.
5-8 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL
 Follow these steps to create a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. Right-click on Cubes, then choose one of the following:

■ Create Using Wizard to run the Cube Wizard

or

■ Create to edit a new cube property sheet

3. Choose Help if you need additional information.

Viewing a Cube’s Data
The Cube Viewer allows you to see the cube that you created in the same way that
end-users might see it — with the data presented in a BI Beans crosstab, as
described in "Crosstabs" on page 3-11. Moreover, you can select the data that you
want to see by using the query builder.

Procedure: Viewing a Cube’s Data
Follow these steps to view a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. Expand the OLAP tree so that you can see the list of cubes.

3. Right-click on the cube you want to examine, then choose Cube Viewer.

4. If you need additional information, then search for the Help topic “Viewing a
Cube’s Data.”

Creating Metadata Using PL/SQL
The CWM2 PL/SQL packages contain stored procedures that can create OLAP
metadata for a variety of data warehouses, as described in "Data Warehouse
Requirements" on page 5-4.

Note: Only cubes created in Enterprise Manager are visible in the
Cube Viewer.
Creating OLAP Catalog Metadata 5-9

Creating Metadata Using PL/SQL
Before using these packages, make sure that you have performed any required
preprocessing steps, as described in "Multidimensional Data" and "Parent-Child
Dimensions" on page 5-5.

Views of OLAP Catalog Metadata
A set of views, identified by the ALL_OLAP2 prefix, presents the metadata in the
OLAP Catalog. The metadata may have been created with the CWM2 PL/SQL
packages or with Enterprise Manager. These views are described in Chapter 14,
"Viewing OLAP Catalog Metadata".

CWM2 Packages for Creating OLAP Dimensions
The following packages contain procedures that create metadata for dimension
tables:

■ CWM2_OLAP_DIMENSION contains procedures for creating dimensions.

■ CWM2_OLAP_HIERARCHY contains procedures for creating hierarchies for
dimensions.

■ CWM2_OLAP_LEVEL contains procedures for creating levels for dimensions and
for associating levels with hierarchies.

■ CWM2_OLAP_LEVEL_ATTRIBUTE contains procedures for creating level
attributes and associating them with levels.

■ CWM2_OLAP_DIMENSION_ATTRIBUTE contains procedures for creating
dimension attributes and associating them with dimensions.

CWM2 Packages for Creating Cubes
The following packages contain procedures that create metadata for fact tables:

■ CWM2_OLAP_CUBE contains procedures for creating the multidimensional
structure of cubes.

■ CWM2_OLAP_MEASURE contains procedures for creating measures and
associating them with cubes.

See Also: Part IV, "OLAP Catalog Metadata API Reference" for
the comprehensive syntax of the CWM2 packages and examples of
their use.
5-10 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL
CWM2 Package for Mapping Metadata
The CWM2_OLAP_TABLE_MAP package contains procedures that map logical
metadata entities to their physical data source. The data may be stored in relational
tables, or it may be represented by relational views. When the dimension tables and
fact tables are defined as views, the actual data may reside in analytic workspaces.

CWM2 Package for Creating Analytic Workspaces
The CWM2_OLAP_AW_CREATE package contains procedures for replicating a star
schema within an analytic workspace and creating relational views of the
workspace.

The CWM2_OLAP_AW_ACCESS package contains generic procedures for creating
relational views of analytic workspaces. These workspaces do not have to be
created by CWM2_OLAP_AW_CREATE.

CWM2 Package for Creating Level-Based Dimension Tables
The CWM2_OLAP_PC_TRANSFORM package contains a procedure for transforming
parent-child dimension tables to level-based dimension tables. This conversion is
necessary if the dimension will be accessed by the OLAP API.

CWM2 Packages for Classification and Validation
The following packages contain procedures for creating measure folders and
validating OLAP metadata:

■ CWM_CLASSIFY

■ CWM2_OLAP_VALIDATE
Creating OLAP Catalog Metadata 5-11

Creating Metadata Using PL/SQL
5-12 Oracle9i OLAP User’s Guide

Part II

Oracle OLAP Administration

Part II provides information for database administrators on administrative tasks
associated with Oracle OLAP.

This part contains the following chapters:

■ Chapter 6, "Administering Oracle OLAP"

■ Chapter 7, "OLAP Dynamic Performance Views"

■ Chapter 8, "OLAP_API_SESSION_INIT"

■ Chapter 9, "Creating an Analytic Workspace From Relational Tables"

Administering Orac
6

Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with
Oracle OLAP. It contains the following topics:

■ Administration Overview

■ Initialization Parameters for Oracle OLAP

■ Initialization Parameters for the OLAP API

■ Creating Tablespaces for Analytic Workspaces

■ Setting Up User Names

■ Controlling Access to External Files

■ Understanding Data Storage

■ Monitoring Performance
le OLAP 6-1

Administration Overview
Administration Overview
Because Oracle OLAP is contained in the database and is managed using the same
tools, the management tasks of Oracle OLAP and the database converge.
Nonetheless, a database administrator or applications developer needs to address
management tasks in the specific context of Oracle OLAP. Following is a list of these
tasks.

■ Database configuration. Permanent and temporary tablespaces must be created
to prevent I/O bottlenecks, as described in "Creating Tablespaces for Analytic
Workspaces". Initialization parameters must also be set to optimize
performance.

■ Security. Users of OLAP applications must have database identities that have
been granted the appropriate access rights. For users to have access to files,
aliases for the directories must be created and the access rights must be granted.
Refer to "Setting Up User Names" on page 6-9.

■ Data maintenance. For data that will be stored in analytic workspaces, stored
procedures must be developed in the OLAP DML for copying the data into
multidimensional data objects and performing whatever aggregations or other
data manipulations are required. Refer to the Oracle9i OLAP Developer’s Guide to
the OLAP DML.

These tasks are typically performed during off-peak hours using a batch facility,
as described in "Monitoring Performance" on page 6-13.

■ Data Interfaces. For access by SQL, views of multidimensional objects can be
created using table functions, as described in Chapter 3, "Developing OLAP
Applications". For access by the OLAP API, OLAP metadata must be defined.
Refer to Chapter 5, "Creating OLAP Catalog Metadata".

■ Performance. Materialized views must be created for data stored in relational
schema. All of the data, whether it is stored in relational tables or
multidimensional tables, may require striping and partitioning to gain the best
performance. For information about how analytic workspaces are stored in the
database, refer to "Understanding Data Storage" on page 6-11. For information
about striping and partitioning for relational tables, refer to the Oracle9i Data
Warehousing Guide.
6-2 Oracle9i OLAP User’s Guide

Initialization Parameters for Oracle OLAP
Initialization Parameters for Oracle OLAP
Several packages described in this guide require that utl_file_dir be set. This
parameter enables the RDBMS to write to a file.

Table 6–1 identifies the parameters that affect the performance of Oracle OLAP.
Alter your server parameter file or init.ora file to these values, then restart your
database instance.

Take the following steps to set system parameters:

1. Open the initsid.ora parameters file in a text editor.

The parameters file is located in $ORACLE_HOME/admin/sid/pfile, where
sid is the system identifier as defined in $ORACLE_
HOME/network/admin/tnsnames.ora.

2. Add or change the settings in the file.

For example, you might enter a command like this so that Oracle can write files
to the OraHome1/olap directory:

UTL_FILE_DIR=/users/oracle/OraHome1/olap

3. Stop and restart the database, using commands such as the following. Be sure to
identify the parameters file in the STARTUP command.

sqlplus ’/ as sysdba’
shutdown immediate
startup pfile=/users/oracle/OraHome1/admin/rel9dw/pfile/initrel9dw.ora

Table 6–1 Database Performance Initialization Parameter Settings

Parameter Setting

db_cache_size Half of physical memory

parallel_max_servers The number of processors minus one

This parameter limits the number of processes that are
used for a parallel update. The number of parallel
processes is also dependent on the number of analytic
workspace extension files that are being updated.

sessions 2.5 * maximum number of OLAP users

See Also: Oracle9i SQL Reference for information about these
parameters.
Administering Oracle OLAP 6-3

Initialization Parameters for the OLAP API
OLAP_PAGE_POOL_SIZE
OLAP_PAGE_POOL_SIZE is an initialization parameter that is specific to Oracle
OLAP. This parameter specifies in bytes the maximum size of the paging cache to be
allocated to an OLAP session.

The OLAP paging cache is allocated at the start of an OLAP session and released
when the user exits the database. An OLAP session can be initiated by the OLAP_
TABLE function, the DBMS_AW PL/SQL package, or via command line in OLAP
Worksheet.

The minimum value of OLAP_PAGE_POOL_SIZE is 2 MB. The default value is 32
MB.

The OLAP paging cache is allocated from the User Global Area (UGA). When the
database is running in dedicated mode, the UGA is part of the Process Global Area
(PGA). When the database is running in multi-threaded server mode (MTS), the
UGA is part of the Shared Global Area (SGA).

When the database is running in dedicated mode, you can reset the value of OLAP_
PAGE_POOL_SIZE in an ALTER SESSION statement. If you decrease the value, you
should first do an UPDATE in the analytic workspace and a COMMIT in the
database. If you increase the value to a size greater than the available memory,
OLAP_PAGE_POOL_SIZE remains the same.

If OLAP_PAGE_POOL_SIZE is greater than available memory, OLAP session
initialization will fail.

For performance reasons, it is generally preferable to use a small OLAP paging
cache and a larger DB_CACHE_SIZE. An OLAP paging cache of 4 MB is fairly
typical, with 2 MB used for systems with limited memory resources.

Initialization Parameters for the OLAP API
The OLAP API will perform best if the configuration parameters for the database
are optimized for this type of use. During installation of the Oracle RDBMS, an
OLAP configuration table is created and populated with ALTER SESSION
commands that have been tested to optimize the performance of the OLAP API.
Each time the OLAP API opens a session, it executes these ALTER SESSION
commands.

If a database instance is being used only to support Java applications that use the
OLAP API, then you can modify your server parameter file or init.ora file to
include these settings. Alternatively, you might want to include some of the settings
6-4 Oracle9i OLAP User’s Guide

Creating Tablespaces for Analytic Workspaces
in the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

■ Keep all of the parameters in the configuration table, so that they are set as part
of the initialization of an OLAP API session. This method fully isolates these
configuration settings solely for the OLAP API. (Default)

■ Add some of the configuration parameters to the server parameter file or
init.ora file, and delete those rows from the configuration table. This is
useful if your database is being used by other applications that require the same
settings.

■ Add all of the configuration parameters to the server parameter file or init.ora
file, and delete all rows from the configuration table. This is the most
convenient if your database instance is being used only by the OLAP API.

Regardless of where these parameters are set, you should check the Oracle
Technology Network for updated recommendations.

Creating Tablespaces for Analytic Workspaces
Before users begin creating analytic workspaces, you should create tablespaces that
will be used for temporary and permanent storage of analytic workspaces. By
default, these tablespaces are created in the SYS tablespace, which can degrade
overall performance. Oracle OLAP makes heavy use of temporary tablespaces, so it
is particularly important that they be set up correctly to prevent I/O bottlenecks.

These are some of the objects that Oracle OLAP stores in temporary tablespaces:

■ The results of what-if analysis or other changes to the analytic workspace before
they are committed to the database

■ Output logs

■ Views in a self-join

■ Output of a table function when it exceeds 64KB

See Also:

■ Chapter 8, "OLAP_API_SESSION_INIT" for information about
the read and write APIs

■ Oracle9i SQL Reference for descriptions of initialization
parameters that can be set by the ALTER SESSION command
Administering Oracle OLAP 6-5

Creating Tablespaces for Analytic Workspaces
If possible, you should stripe the datafiles and temporary files across as many
controllers and drives as are available.

Example 6–1 provides an example of a session in SQL*PLUS in which these
tablespaces are created.

Example 6–1 Creating Tablespaces

The SQL commands in this example do the following:

■ Create a tablespace named OLAPUNDO in a disk file named olapundo.f.

■ Create and modify a rollback segment named OLAPSEG in the OLAPUNDO
tablespace.

■ Create a temporary tablespace named OLAPTEMP that uses up to four
temporary disk files named temp1.f, temp2.f, temp3.f, and temp4.f. The
additional disk files are located on separate physical disks (user2, user3, and
user4).

■ Grant the SCOTT user access rights to use OLAPTEMP.

■ Create a tablespace named OLAPTS in up to three disk files named olapdf1.f,
olapdf2.f, and olapdf3.f.

Following this example is an explanation of the statements beginning with
"Creating a Tablespace for Rollbacks" on page 6-7.

SQL> CREATE TABLESPACE olapundo DATAFILE ’/user1/oracle/datafiles/olapundo.f’
 2 SIZE 200M REUSE AUTOEXTEND ON EXTENT MANAGEMENT LOCAL UNIFORM;

Tablespace created.

SQL> CREATE ROLLBACK SEGMENT olapseg TABLESPACE olapundo STORAGE (OPTIMAL 6M);

Rollback segment created.

SQL> ALTER ROLLBACK SEGMENT olapseg ONLINE;

Rollback segment altered.

SQL> CREATE TEMPORARY TABLESPACE olaptemp TEMPFILE
 2 ’/user2/oracle/datafiles/temp1.f’ SIZE 1024M REUSE
 3 AUTOEXTEND ON NEXT 100M MAXSIZE 2048M EXTENT MANAGEMENT LOCAL;

SQL> ALTER TABLESPACE olaptemp ADD TEMPFILE
 2 ’/user2/oracle/datafiles/temp2.f’ SIZE 1024M REUSE
6-6 Oracle9i OLAP User’s Guide

Creating Tablespaces for Analytic Workspaces
AUTOEXTEND ON NEXT 100M MAXSIZE 4096,
 3 ’/user3/oracle/datafiles/temp3.f’ SIZE 1024M REUSE
AUTOEXTEND ON NEXT 100M MAXSIZE 4096,
 4 ’/user4/oracle/datafiles/temp4.f’ SIZE 1024M REUSE
AUTOEXTEND ON NEXT 100M MAXSIZE UNLIMITED;

Tablespace altered.

SQL> ALTER USER scott TEMPORARY TABLESPACE olaptemp;

User altered.

SQL> CREATE TABLESPACE olapts DATAFILE
 2 ’/user1/oracle/olapdf1.f’ SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE 4096M,
 3 ’/user2/oracle/olapdf2.f’ SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE 4096M,
 4 ’/user3/oracle/olapdf3.f’ SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSIZE UNLIMITED;

Tablespace created.

Creating a Tablespace for Rollbacks
The following SQL commands create a tablespace that Oracle OLAP uses to store
changes to active analytic workspaces so that the changes can be rolled back if
necessary.

CREATE TABLESPACE tablespacename DATAFILE 'pathname' SIZE size REUSE
 AUTOEXTEND ON EXTENT MANAGEMENT LOCAL UNIFORM;

CREATE ROLLBACK SEGMENT segmentname TABLESPACE tablespacename
 STORAGE (OPTIMAL size);

Where:

segmentname is the name of the segment.

pathname is the fully qualified file name.

size is an appropriate size for these tablespaces.

tablespacename is the name of the tablespace being defined.
Administering Oracle OLAP 6-7

Creating Tablespaces for Analytic Workspaces
Creating a Temporary Tablespace
Oracle OLAP uses temporary tablespace to maintain different generations of an
analytic workspace. This allows it to present a consistent view of the analytic
workspace when one or more users are reading it while the contents are being
updated.

CREATE TEMPORARY TABLESPACE tablespacename TEMPFILE ’pathname1’
 SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size EXTENT MANAGEMENT LOCAL;
ALTER TABLESPACE tablespacename ADD TEMPFILE
 'pathname2’ SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
 'pathname3' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
 'pathname4' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size;

ALTER USER username TEMPORARY TABLESPACE tablespacename;

Where:

segmentname is the name of the segment.

pathname1... pathname4 are the fully qualified file names of files that located
on separate disk drives if possible.

size is an appropriate size for these tablespaces.

tablespacename is the name of the tablespace being defined.

username is a user or group that you want to grant access rights to this tablespace.

workspacename is the name of a new analytic workspace.

 Creating Tablespaces for Analytic Workspaces
When a user creates an analytic workspace, it is created by default in the SYS
tablespace. The following commands create a tablespace that a user or group of
users can specify as the storage location for their analytic workspaces. Using this
temporary tablespace instead of the SYS tablespace will result in better
performance. Note that this tablespace can be located on a separate disk drive.

CREATE TABLESPACE tablespacename DATAFILE
 'pathname1' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
 'pathname2' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE size,
 'pathname3' SIZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE UNLIMITED;

Where:

segmentname is the name of the segment.
6-8 Oracle9i OLAP User’s Guide

Setting Up User Names
pathname1... pathname3 are the fully qualified names of files located on
separate disk drives if possible.

size is an appropriate size for these tablespaces.

tablespacename is the name of the tablespace.

username is a user or group that you want to grant access rights to this tablespace.

workspacename is the name of a new analytic workspace.

After creating this tablespace, be sure to instruct the users with access rights to
create their analytic workspaces with OLAP DML commands such as the following
one. Otherwise, their analytic workspaces will still be created in the SYS tablespace,
even though you have created a separate tablespace for this purpose.

AW CREATE workspacename TABLESPACE tablespacename

Querying the Size of an Analytic Workspace
To find out the size of the tablespace extensions for a particular analytic workspace,
use the following SQL statements:

COLUMN DBMS_LOB.GETLENGTH(AWLOB) HEADING "Bytes";
SELECT EXTNUM, DBMS_LOB.GETLENGTH(AWLOB) FROM AW$workspacename;

Where:

workspacename is the name of the analytic workspace.

Setting Up User Names
To connect to the database, a user must present a user name and password that can
be authenticated by database security. The privileges associated with that user name
control the user’s access to data. As a database administrator, you must set up user
names with appropriate credentials for all users of Oracle OLAP applications.

To connect to the database using the OLAP API, users must have the following
access rights to the database:

■ CONNECT role

■ QUERY REWRITE system privilege

■ SELECT privileges on the database objects containing the data to be analyzed

You can define user names and grant them these rights from the Security folder of
Oracle Enterprise Manager.
Administering Oracle OLAP 6-9

Controlling Access to External Files
Controlling Access to External Files
The OLAP DML contains three types of commands that read from and write to
external files:

■ File read commands that copy data between flat files and workspace objects.

■ Import and export commands that copy workspace objects and their contents to
files for transfer to another database instance.

■ File input and output commands that read and execute DML commands from a
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database
security mechanism creates a directory alias to represent a physical disk directory.
Permissions are assigned to the alias, which control access to files within the
associated physical directory.

You use PL/SQL statements to create a directory alias and grant permissions. The
relevant syntax of these SQL statements is provided in this chapter.

Creating a Directory Alias
To create a directory alias, you must have CREATE ANY DIRECTORY system
privileges.

Use a CREATE DIRECTORY statement to create a new directory alias, or a REPLACE
DIRECTORY statement to redefine an existing directory alias, using the following
PL/SQL syntax:

{CREATE | REPLACE | CREATE OR REPLACE} DIRECTORY alias AS ’pathname’;

Where:

alias is the name of the directory alias.

pathname is the physical directory path.

Granting Access Rights to a Directory Alias
After you create a directory alias, grant users and groups access rights to the files
contained in that directory, using the following PL/SQL syntax:

GRANT permission ON DIRECTORY alias TO {user | role | PUBLIC};

See Also: Oracle9i SQL Reference under the entries for CREATE
DIRECTORY and GRANT for the full syntax and usage notes.
6-10 Oracle9i OLAP User’s Guide

Understanding Data Storage
Where:

permission is one of the following:

READ for read-only access
WRITE for write-only access
ALL for read and write access

alias is the name of the directory alias.

user is a database user name. That user gets immediate access rights.

role is a database role. All users who have been granted that role get immediate
access rights.

PUBLIC is all database users. All users gets immediate access rights.

Example: Creating and Using a Directory Alias
The following SQL commands create a directory alias named olapdemo to control
access to a directory named /users/oracle/OraHome1/demo and grant read
access to all users.

CREATE DIRECTORY olapdemo as ’/users/oracle/OraHome1/demo’;
GRANT READ ON DIRECTORY olapdemo TO PUBLIC;

Users access files located in /users/oracle/OraHome1/demo with DML
commands such as this one:

funit = FILEOPEN('olapdemo/units.dat' READ)

Understanding Data Storage
Oracle OLAP multidimensional data is stored in analytic workspaces. An analytic
workspace can contain a variety of objects, such as dimensions, variables (also
called measures), and OLAP DML programs. These objects typically support a
particular application or set of data.

Whenever an analytic workspace is created, modified, or accessed, the information
is stored in tables in the relational database.
Administering Oracle OLAP 6-11

Understanding Data Storage
User-Owned Tables
An analytic workspace is stored in a table in the Oracle database as a Binary Large
Object (BLOB).

For example, if the SCOTT user creates two analytic workspaces, one named
SALESDATA and the other named SALESPRGS, then these tables will be created in
the SCOTT schema:

AW$SALESDATA
AW$SALESPRGS

These tables store all of the object definitions and data for these analytic
workspaces.

System Tables
The SYS user owns several tables associated with analytic workspaces:

AW$EXPRESS
AW$
PS$

AW$EXPRESS stores the express analytic workspace. This workspace contains
objects and programs that support the OLAP DML. The express workspace is
used any time that a session is open.

AW$ maintains a record of all analytic workspaces in the database, recording its
name, owner, and other information.

PS$ maintains a history of all page spaces. A page is an ordered series of bytes
equivalent to a file. Oracle OLAP manages a cache of workspace pages. Pages are
read from storage in a table and written into the cache in response to a query. The
same page can be accessed by several sessions.

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly unless you
are fully aware of the consequences.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
information about managing analytic workspaces.
6-12 Oracle9i OLAP User’s Guide

Monitoring Performance
One writer and many readers can use an analytic workspace at one time. The
information stored in PS$ enables the Oracle OLAP to discard pages that are no
longer in use, and to maintain a consistent view of the data for all users, even when
the workspace is being modified during their sessions. When changes to a
workspace are saved, unused pages are purged and the corresponding rows are
deleted from PS$.

Monitoring Performance
Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables. The dynamic
performance tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP. By monitoring these
tables, you can detect usage trends and diagnose system bottlenecks.

OLAP dynamic performance tables and associated views are described in
Chapter 7, "OLAP Dynamic Performance Views".
Administering Oracle OLAP 6-13

Monitoring Performance
6-14 Oracle9i OLAP User’s Guide

OLAP Dynamic Perform
7

OLAP Dynamic Performance Views

Oracle collects performance statistics in fixed tables, and creates user-accessible
views from these tables. This chapter describes the views that contain performance
data on Oracle OLAP.

This chapter contains the following topics:

■ System Tables Referenced by OLAP Performance Views

■ Summary of OLAP Performance Views

■ V$AW_CALC

■ V$AW_OLAP

■ V$AW_SESSION_INFO

See Also: For additional information about dynamic performance
tables and views, refer to the following:

■ Oracle9i Database Reference

■ Oracle9i Database Performance Guide and Reference
ance Views 7-1

System Tables Referenced by OLAP Performance Views
System Tables Referenced by OLAP Performance Views
Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables.

The dynamic performance tables collect data on internal disk structures and
memory structures. Dynamic performance tables are continuously updated while
the database is in use. Among them are tables that collect data on Oracle OLAP.

The names of the OLAP dynamic performance tables begin with V$AW. The SYS
user owns the dynamic performance tables. In addition, any user with the SELECT
CATALOG role can access the tables.

The system creates views from these tables and creates public synonyms for the
views. The views are sometimes called fixed views because they cannot be altered
or removed by the database administrator. The synonym names also begin with
V$AW. The views are also owned by SYS, but the DBA can grant access to them to a
wider range of users.

The following sample SQL*Plus session shows the list of OLAP system tables.

% sqlplus ’/ as sysdba’
.
.
.

SQL> SELECT name FROM v$fixed_table WHERE name LIKE ’V$AW%’;

NAME
- - - - - - - - - - - - - - -
V$AW_OLAP
V$AW_CALC
V$AW_SESSION_INFO

Summary of OLAP Performance Views
Table 7–1 briefly describes each OLAP performance view.

Table 7–1 OLAP Performance Views

Fixed View Description

V$AW_CALC Collects information about the use of cache space.

V$AW_OLAP Collects information about the status of active analytic
workspaces.

V$AW_SESSION_INFO Collects information about each active session.
7-2 Oracle9i OLAP User’s Guide

V$AW_CALC
V$AW_CALC
V$AW_CALC reports on the effectiveness of various caches used by Oracle OLAP.
Because OLAP queries tend to be iterative, the same data is typically queried
repeatedly during a session. The caches provide much faster access to data that has
already been calculated during a session than would be possible if the data had to
be recalculated for each query.

The more effective the caches are, the better the response time experienced by users.
An ineffective cache (that is, one with few hits and many misses) probably indicates
that the data is not being stored optimally for the way it is being viewed. To
improve runtime performance, you may need to reorder the dimensions of the
variables (that is, change the order of fastest to slowest varying dimensions).

Oracle OLAP uses the following caches:

■ Aggregate cache. An optional cache used by the AGGREGATE function in the
OLAP DML. The AGGREGATE function calculates aggregate data at runtime in
response to a query. When a cache is maintained, AGGREGATE can retrieve data
that was previously calculated during the session instead of recalculating it
each time the data is queried.

■ Session cache. Oracle OLAP maintains a cache for each session for storing the
results of calculations. When the session ends, the contents of the cache are
discarded.

■ Page pool. A cache allocated from the program global area (PGA) in the
database, which Oracle OLAP maintains for the session. The page pool is
associated with a particular session and is shared by all attached analytic
workspaces. If the page pool becomes too full, then Oracle OLAP writes some
of the pages to the database cache. When an UPDATE command is issued in the
OLAP DML, the changed pages associated with that analytic workspace are
written to the permanent LOB, using temporary segments as the staging area
for streaming the data to disk.

■ Database cache. The larger cache maintained by the Oracle RDBMS for the
database instance.

See Also:

■ Oracle9i OLAP Developer’s Guide to the OLAP DML for full
discussions of data storage issues and aggregation.

■ Oracle9i OLAP DML Reference help under the CACHE
command for information about defining an aggregate cache.
OLAP Dynamic Performance Views 7-3

V$AW_CALC
Column Datatype Description

AGGREGATE_CACHE_HITS NUMBER The number of times a dimension member is found in the
aggregate cache (a hit).

The number of hits for run-time aggregation can be increased by
fetching data across the dense dimension.

AGGREGATE_CACHE_MISSES NUMBER The number of times a dimension member is not found in the
aggregate cache and must be read from disk (a miss).

SESSION_CACHE_HITS NUMBER The number of times the data is found in the session cache (a
hit).

SESSION_CACHE_MISSES NUMBER The number of times the data is not found in the session cache (a
miss).

POOL_HITS NUMBER The number of times the data is found in a page in the OLAP
page pool (a hit).

POOL_MISSES NUMBER The number of times the data is not found in the OLAP page
pool (a miss).

POOL_NEW_PAGES NUMBER The number of newly created pages in the OLAP page pool that
have not yet been written to the workspace LOB.

POOL_RECLAIMED_PAGES NUMBER The number of previously unused pages that have been recycled
with new data.

CACHE_WRITES NUMBER The number of times the data from the OLAP page pool has
been written to the database cache.

POOL_SIZE NUMBER The number of pages in the OLAP page pool.
7-4 Oracle9i OLAP User’s Guide

V$AW_OLAP
V$AW_OLAP
V$AW_OLAP provides a record of active sessions and their use with analytic
workspaces. A row is generated whenever an analytic workspace is created or
attached. The first row for a session is created when the first DML command is
issued. It identifies the SYS.EXPRESS workspace, which is attached automatically
to each session. Rows related to a particular analytic workspace are deleted when
the workspace is detached from the session or the session ends.

Column Datatype Description

SESSION_ID NUMBER A unique numerical identifier for a session.

AW_NUMBER NUMBER A unique numerical identifier for an analytic workspace.

ATTACH_MODE VARCHAR2(10) READ ONLY or READ WRITE.

GENERATION NUMBER The generation of an analytic workspace. Each UPDATE creates a
new generation. Sessions attaching the same workspace between
UPDATE commands share the same generation.

TEMP_SPACE_PAGES NUMBER The number of pages stored in temporary segments for the
analytic workspace.

TEMP_SPACE_READS NUMBER The number of times data has been read from a temporary
segment and not from the page pool.

LOB_READS NUMBER The number of times data has been read from the table where
the analytic workspace is stored (the permanent LOB).

POOL_CHANGED_PAGES NUMBER The number of pages in the page pool that have been modified
in this analytic workspace.

POOL_UNCHANGED_PAGES NUMBER The number of pages in the page pool that have not been
modified in this analytic workspace.
OLAP Dynamic Performance Views 7-5

V$AW_SESSION_INFO
V$AW_SESSION_INFO
V$AW_SESSION_INFO provides information about each active session.

A transaction is a single exchange between a client session and Oracle OLAP.
Multiple DML commands can execute within a single transaction, such as in a call
to the DBMS_AW.EXECUTE procedure.

Column Datatype Description

CLIENT_TYPE VARCHAR2(64) OLAP

SESSION_STATE VARCHAR2(64) TRANSACTING, NOT_TRANSACTING, EXCEPTION_
HANDLING, CONSTRUCTING, CONSTRUCTED,
DECONSTRUCTING, or DECONSTRUCTED

SESSION_HANDLE NUMBER The session identifier

USERID VARCHAR2(64) The database user name under which the session
opened

CURR_DML_COMMAND VARCHAR2(64) The DML command currently being executed

PREV_DML_COMMAND VARCHAR2(64) The DML command most recently completed.

TOTAL_TRANSACTION NUMBER The total number of transactions executed within the
session; this number provides a general indication of
the level of activity in the session

TOTAL_TRANSACTION_TIME NUMBER The total elapsed time in milliseconds in which
transactions were being executed

AVERAGE_TRANSACTION_TIME NUMBER The average elapsed time in milliseconds to
complete a transaction

TRANSACTION_CPU_TIME NUMBER The total CPU time in milliseconds used to complete
the most recent transaction

TOTAL_TRANSACTION_CPU_TIME NUMBER The total CPU time used to execute all transactions
in this session; this total does not include
transactions that are currently in progress

AVERAGE_TRANSACTION_CPU_TIME NUMBER The average CPU time to complete a transaction;
this average does not include transactions that are
currently in progress
7-6 Oracle9i OLAP User’s Guide

OLAP_API_SESSION
8

OLAP_API_SESSION_INIT

The OLAP_API_SESSION_INIT package contains procedures for maintaining a
configuration table of initialization parameters for the OLAP API.

This chapter contains the following topics:

■ Overview

■ Summary of OLAP_API_SESSION_INIT Subprograms

■ ADD_ALTER_SESSION Procedure

■ DELETE_ALTER_SESSION Procedure

■ CLEAN_ALTER_SESSION Procedure

■ ALL_OLAP_ALTER_SESSION View
_INIT 8-1

Overview
Overview
The OLAP_API_SESSION_INIT package contains procedures for maintaining a
configuration table of initialization parameters. When the OLAP API opens a
session, it executes the ALTER SESSION commands listed in the table for any user
who has the specified roles. Only the OLAP API uses this table; no other type of
application executes the commands stored in it.

This functionality provides an alternative to setting these parameters in the
database initialization file or the init.ora file, which would alter the environment
for all users.

During installation, the table is populated with ALTER SESSION commands that
have been shown to enhance the performance of the OLAP API. Unless new
settings prove to be more beneficial, you do not need to make changes to the table.

The information in the table can be queried through the ALL_OLAP_ALTER_
SESSION view alias, which is also described in this chapter.

Summary of OLAP_API_SESSION_INIT Subprograms

Table 8–1 OLAP_API_SESSION_INIT Subprograms

Subprogram Description

ADD_ALTER_SESSION
Procedure on page 8-3

Specifies an ALTER SESSION parameter for OLAP
API users with a particular database role.

DELETE_ALTER_SESSION
Procedure on page 8-5

Removes a previously defined ALTER SESSION
parameter for OLAP API users with a particular
database role.

CLEAN_ALTER_SESSION
Procedure on page 8-6

Removes orphaned data, that is, any ALTER
SESSION parameters for roles that are no longer
defined in the database.
8-2 Oracle9i OLAP User’s Guide

ADD_ALTER_SESSION Procedure
ADD_ALTER_SESSION Procedure
This procedure specifies an ALTER SESSION parameter for OLAP API users with a
particular database role. It adds a row to the OLAP$ALTER_SESSION table.

Syntax
ADD_ALTER_SESSION (
 role_name IN VARCHAR2,
 session_parameter IN VARCHAR2);

Parameters
The role_name and session_parameter are added as a row in OLAP$ALTER_
SESSION.

Exceptions

Examples
The following call inserts a row in OLAP$ALTER_SESSION that turns on query
rewrite for users with the OLAP_DBA role.

call olap_api_session_init.add_alter_session(
 ’OLAP_DBA’, ’SET QUERY_REWRITE_ENABLED=TRUE’);

Table 8–2 ADD_ALTER_SESSION Procedure Parameters

Parameter Description

role_name The name of a valid role in the database. Required.

session_parameter A parameter that can be set with a SQL ALTER SESSION
command. Required.

Table 8–3 ADD_ALTER_SESSION Procedure Exceptions

Exception Description

invalid_role Role is not defined in the database.

duplicate_role Session parameter has already been set for that role.
OLAP_API_SESSION_INIT 8-3

ADD_ALTER_SESSION Procedure
The ALL_OLAP_ALTER_SESSION view now contains the following row:

ROLE CLAUSE_TEXT

OLAP_DBA ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE
8-4 Oracle9i OLAP User’s Guide

DELETE_ALTER_SESSION Procedure
DELETE_ALTER_SESSION Procedure
This procedure removes a previously defined ALTER SESSION parameter for
OLAP API users with a particular database role. It deletes a row from the
OLAP$ALTER_SESSION table.

Syntax
DELETE_ALTER_SESSION (
 role_name IN VARCHAR2,
 session_parameter IN VARCHAR2);

Parameters
The role_name and session_parameter together uniquely identify a row in
OLAP$ALTER_SESSION.

Exceptions

Examples
The following call deletes a row in OLAP$ALTER_SESSION that contains a value of
OLAP_DBA in the first column and QUERY_REWRITE_ENABLED=TRUE in the
second column.

call olap_api_session_init.delete_alter_session(
 ’OLAP_DBA’, ’SET QUERY_REWRITE_ENABLED=TRUE’);

Table 8–4 DELETE_ALTER_SESSION Procedure Parameters

Parameter Description

role_name The name of a valid role in the database. Required.

session_parameter A parameter that can be set with a SQL ALTER SESSION
command. Required.

Table 8–5 DELETE_ALTER_SESSION Procedure Exceptions

Exception Description

invalid_role Role is not defined in the database.

duplicate_role Session parameter has already been set for that role.
OLAP_API_SESSION_INIT 8-5

CLEAN_ALTER_SESSION Procedure
CLEAN_ALTER_SESSION Procedure
This procedure removes all ALTER SESSION parameters for any role that is not
currently defined in the database. It removes all orphaned rows in the
OLAP$ALTER_SESSION table for those roles.

Syntax
CLEAN_ALTER_SESSION ();

Examples
The following call deletes all orphaned rows.

call olap_api_session_init.clean_alter_session();
8-6 Oracle9i OLAP User’s Guide

ALL_OLAP_ALTER_SESSION View
ALL_OLAP_ALTER_SESSION View
ALL_OLAP_ALTER_SESSION is the public synonym for V$OLAP_ALTER_
SESSION, which is a view for the OLAP$ALTER_SESSION table. The view and table
are owned by the SYS user.

Each row of ALL_OLAP_ALTER_SESSION identifies a role and a session
initialization parameter. When a user opens a session using the OLAP API, the
session is initialized using the parameters for roles granted to that user. For
example, if there are rows for the OLAP_DBA role and the SELECT_CATALOG_ROLE,
and a user has the OLAP_DBA role, then the parameters for the OLAP_DBA role will
be set, but those for the SELECT_CATALOG_ROLE will be ignored.

Table 8–6 ALL_OLAP_ALTER_SESSION Column Descriptions

Column Datatype NULL Description

ROLE VARCHAR2(30) NOT NULL A database role

CLAUSE_TEXT VARCHAR2(3000) An ALTER SESSION command
OLAP_API_SESSION_INIT 8-7

ALL_OLAP_ALTER_SESSION View
8-8 Oracle9i OLAP User’s Guide

Creating an Analytic Workspace From Relati
9

Creating an Analytic Workspace From

Relational Tables

You can use the AW_CREATE PL/SQL package to replicate a star schema within an
analytic workspace and generate relational views of the resulting workspace cube.
You can query these views directly using standard SQL. You can also create OLAP
Catalog metadata that maps to these views to enable access by the OLAP API.

This chapter contains the following topics:

■ Choosing to Use an Analytic Workspace

■ Functional Summary

■ Procedure: Create the OLAP Catalog Metadata

■ Procedure: Create the Analytic Workspace Cube

■ Procedure: Create SQL Access to the Analytic Workspace

■ Column Structure of Dimension Views

■ Column Structure of Fact Views

See Also: Chapter 16, "CWM2_OLAP_AW_CREATE" for the
syntax of the AW_CREATE procedure calls.
onal Tables 9-1

Choosing to Use an Analytic Workspace
Choosing to Use an Analytic Workspace
If you determine that OLAP processing would best support the needs of an
application, you can use the CWM2_OLAP_AW_CREATE package to replicate your
relational data warehouse within an analytic workspace.

Relational and Multidimensional Data Models
The basic data model in a relational database is a table composed of one or more
columns of data. In contrast, the basic data model in an analytic workspace is a
cube, in which the data is stored as one or more measures with the same
dimensionality. See Chapter 4, "Designing Your Database for OLAP" for an
explanation of both data models.

Advantages of OLAP
OLAP processing within an analytic workspace is optimized to support complex
analytic queries. Moreover, an analytic workspace can provide an efficient means of
managing summary data, which may be precalculated or calculated on the fly. See
"Why OLAP?" on page 1-2 for more information.

Functional Summary
With the CWM2_OLAP_AW_CREATE package, you can accomplish the following basic
tasks:

■ Create an analytic workspace, and define containers within it to represent an
OLAP Catalog cube. The cube must be mapped to a star schema.

■ Create load definitions. These definitions specify which data to load from the
relational tables and how to aggregate it within the analytic workspace.

■ Use a load definition to load data from the relational tables and aggregate it
within the analytic workspace.

■ Build relational views of the resulting analytic workspace. The views use the
OLAP_TABLE function, described in Chapter 12, to access the workspace via
object technology.

Note: Currently, the source cube in the OLAP Catalog must be
mapped to a star or snowflake schema, as described in "Data
Warehouse Requirements" on page 5-4.
9-2 Oracle9i OLAP User’s Guide

Procedure: Create the Analytic Workspace Cube
Procedure: Create the OLAP Catalog Metadata
Before you can use the CWM2_OLAP_AW_CREATE procedures, you must create a
cube in the OLAP Catalog. You can use Enterprise Manager, as described in
"Creating Metadata Using Oracle Enterprise Manager" on page 5-6, or you can write
scripts that use the CWM2 PL/SQL packages, as described in Chapter 13, "Using the
OLAP Catalog Metadata APIs".

Procedure: Create the Analytic Workspace Cube
Once the appropriate metadata exists in the OLAP Catalog, you can create the cube
within the analytic workspace. Within a script, invoke the AW_CREATE procedures
as follows:

1. For each of the cube’s dimensions, call the AW_DIMENSION_CREATE
Procedure to define the data structures for the dimension within the analytic
workspace. The first call to AW_DIMENSION_CREATE creates the analytic
workspace if it does not already exist.

2. Create one or more load definitions for each dimension. Call the
AW_DIM_DEFINE_LOAD Procedure to name the load definition and specify
its type. You can also call the AW_DIM_FILTER_LOAD Procedure to specify a
SQL WHERE clause for the query against the dimension tables.

3. Call the AW_CUBE_CREATE Procedure to define the data structures for the
cube within the analytic workspace.

4. Create one or more load definitions for the cube. Call the
AW_CUBE_DEFINE_LOAD Procedure to name a load definition. Call the
following procedures to complete the load definition:

Note: If you choose to write your own script using the CWM2
packages, be sure to create the cube for a star schema with a single
fact table containing only lowest level data.

Each of the cube’s hierarchies must have a solved code set to
UNSOLVED LEVEL, and the join relationships between the fact table
and dimension tables must be mapped with storage type indicator
of LOWEST LEVEL.

For more information on setting the solved code for a hierarchy, see
Chapter 20. For more information on setting the storage type
indicator, see "Mapping OLAP Metadata" on page 13-4.
Creating an Analytic Workspace From Relational Tables 9-3

Procedure: Create SQL Access to the Analytic Workspace
■ To load data that meets a certain criteria, call the
AW_CUBE_FILTER_LOAD Procedure to specify a SQL WHERE clause for
the query against the fact table.

■ To specify which of the cube’s measures to load, call the
AW_CUBE_MEASURE_LOAD Procedure.

■ If you want to partially aggregate the cube’s data within the analytic
workspace, call the AW_CHOOSE_LEVEL_TUPLES Procedure to create a
table of level combinations for the cube. By default, all level combinations
are selected for aggregation. For partial aggregation, edit the table to
deselect the appropriate levels. Then call the AW_DEFINE_AGG_PLAN
Procedure to define the aggregation plan for the cube.

5. Call the AW_DIMENSION_REFRESH Procedure with a given load definition to
load each analytic workspace dimension.

6. Call the AW_CUBE_REFRESH Procedure with a given load definition to load
the analytic workspace cube.

Procedure: Create SQL Access to the Analytic Workspace
Once you have completed the steps described in Procedure: Create the Analytic
Workspace Cube, you can generate the relational views that will allow SQL
applications to access the analytic workspace. These views contain calls to the
OLAP_TABLE function. OLAP_TABLE, described in Chapter 12, uses object
technology to present the contents of the workspace in table format.

Use the following steps to generate the views:

1. Call the AW_DIMENSION_CREATE_ACCESS Procedure to generate views of
the cube’s dimensions.

2. Call the AW_CUBE_CREATE_ACCESS Procedure to generate views of the
cube’s measures.

Note: If you do not specify partial aggregation, the cube will be
fully aggregated within the analytic workspace.

Note: In the current release, the views generated by AW_
DIMENSION_CREATE_ACCESS and AW_CUBE_CREATE_ACCESS
are structured in the format required by the OLAP API.
9-4 Oracle9i OLAP User’s Guide

Column Structure of Dimension Views
Column Structure of Dimension Views
The AW_DIMENSION_CREATE_ACCESS procedure generates a separate view for
each dimension hierarchy. For example, an AW cube with the four dimensions
shown in Table 9–1, would have six separate dimension views since two of the
dimensions have two hierarchies.

The dimension views are level-based, and they include the full lineage of every
level value in every row. This type of dimension table is considered solved, because
the fact table related to this dimension includes embedded totals for all level
combinations.

Each dimension view contains the columns described in Table 9–2.

Table 9–1 Sample Dimension Hierarchies

Dimensions Hierarchies Number of Views

geography standard

consolidated

2

product standard 1

channel standard 1

time standard

ytd

2

Table 9–2 Dimension View Columns

Column Description

ET key The embedded-total key column stores the value of the lowest
populated level in the row.

Parent ET key The parent embedded-total key column stores parent of the ET key
column.

GID The grouping ID column identifies the hierarchy level associated
with each row, as described in "Grouping ID Column" on
page 9-6.

Parent GID The parent grouping ID column stores the parent of the grouping ID
column.

level columns There is a column for each level of the dimension hierarchy.

level attribute
columns

There is a column for each level attribute.
Creating an Analytic Workspace From Relational Tables 9-5

Column Structure of Fact Views
Sample Dimension View
For a standard geography hierarchy with levels for TOTAL_US, REGION, and
STATE, the dimension view would contain columns like the ones shown below.
Level attribute columns would also be included.

GID PARENT_GID ET KEY PARENT_ET_KEY TOTAL_US REGION STATE
--- ---------- ------ ------------ -------- ------ -----
0 1 MA Northeast USA Northeast MA
0 1 NY Northeast USA Northeast NY
0 1 GA Southeast USA Southeast GA
0 1 CA Southwest USA Southwest CA
0 1 AZ Southwest USA Southwest AZ
1 3 Northeast USA USA Northeast
1 3 Southeast USA USA Southeast
1 3 Southwest USA USA Southwest
3 NA USA NA USA

Grouping ID Column
The GID identifies the hierarchy level associated with each row by assigning a zero
to each non-null value and a one to each null value in the level columns. The
resulting binary number is the value of the GID.

For example, a GID of 1 is assigned to a row with the following three levels.

TOTAL_US REGION STATE
-------- ------ -----
USA Southwest
0 0 1

A GID of 3 is assigned to a row with the following five levels.

TOTAL_GEOG COUNTRY REGION STATE CITY
---------- ------- ------- ------ -------
World USA Northeast
0 0 0 1 1

Column Structure of Fact Views
The AW_CUBE_CREATE_ACCESS procedure generates a separate view for each
dimension/hierarchy combination. For example, an analytic workspace cube with
the four dimensions shown in Table 9–1, would have four separate fact views, one
for each hierarchy combination show in Table 9–3.
9-6 Oracle9i OLAP User’s Guide

Column Structure of Fact Views
The fact views are fully solved. They contain embedded totals for all level
combinations. Each view has columns for the cube’s measures, and key columns
that link the fact view with its associated dimension views.

Each fact view contains the columns described in Table 9–4.

Table 9–3 Sample Dimension/Hierarchy Combinations

Geography Dim Product Dim Channel Dim Time Dim

geography/
standard

product/standard channel/standard time/standard

geography/
standard

product/standard channel/standard time/ytd

geography/
consolidated

product/standard channel/standard time/standard

geography/
consolidated

product/standard channel/standard time/ytd

Table 9–4 Fact View Columns

Column Description

ET key for each
dimension/hierarchy

The ET key column maps to the ET key column of the associated
dimension table.

GID for each
dimension/hierarchy

The GID column maps to GID column of the associated dimension
table.

measure columns Columns for each of the cube’s measures.

empty columns 100 empty numeric columns and 100 empty text columns. These
columns may be used to store custom measures.
Creating an Analytic Workspace From Relational Tables 9-7

Column Structure of Fact Views
9-8 Oracle9i OLAP User’s Guide

Creating Materialized Views for the O
10

Creating Materialized Views for the

OLAP API

This chapter provides information to help you create materialized views specific to
the requirements of the OLAP API. It describes the kinds of materialized views you
will need to create, and it presents an overview of the tools that can assist you in
creating them.

This chapter includes the following topics:

■ Choosing a Summary Management Strategy

■ Materialized View Formats

■ Materialized Views and OLAP Metadata

■ Dimension Materialized Views

■ Fact Materialized Views

■ Choosing the Right Format for Materialized Views

See Also:

■ Chapter 29, "Creating Dimension Materialized Views"

■ Chapter 30, "Creating Fact Materialized Views With DBMS_
ODM"

■ Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor"
LAP API 10-1

Choosing a Summary Management Strategy
Choosing a Summary Management Strategy
A basic feature of online analytical processing (OLAP) is the ability to analyze and
view various levels of aggregate data. With Oracle OLAP, you can choose to
manage aggregation within analytic workspaces or you can use Oracle’s query
rewrite facility.

Summary Management with Analytic Workspaces
Multidimensional processing within analytic workspaces provides an efficient
means of managing summary data. Summaries may be precalculated or calculated
on the fly. See "The Oracle9i Integrated Relational-Multidimensional Database" on
page 1-4 for more information about multidimensional processing.

You can move your warehouse data from relational tables to analytic workspaces
using the AW_CREATE package. See Chapter 9, "Creating an Analytic Workspace
From Relational Tables".

Summary Management with Materialized Views
Summary management for relational warehouses is managed by Oracle’s query
rewrite facility. Query rewrite enables a query to fetch aggregate data from
materialized views rather than recomputing the aggregates at runtime.

When the OLAP API queries a warehouse stored in relational tables, it uses query
rewrite whenever possible. To prepare your relational warehouse for access by the
OLAP API, you need to establish materialized views according to the guidelines
described in this chapter.

About Materialized Views
Materialized views store data that has been calculated from detail tables. When data
in the detail tables changes, you can refresh materialized views with the new data.
While a view only stores the query, a materialized view actually stores the results
of a query. Thus, you will need to allocate sufficient tablespace to store the required
materialized views.

The OLAP API requires a very specific set of materialized views. For query rewrite
to recognize that a materialized view contains the query results, the materialized
view must have been created using basically the same type of SQL commands that
are generated by the OLAP API.

You should create materialized views for frequently-aggregated data that is stored
at detail level in a star or snowflake schema.
10-2 Oracle9i OLAP User’s Guide

Materialized View Formats
Do not create materialized views for data stored in embedded-total tables or
analytic workspaces. Relational tables with embedded totals contain all the
summary information within the tables. Analytic workspaces provide summary
management based on a native multidimensional model.

Materialized View Formats
The database provides you with several tools for generating materialized views for
the OLAP API. These tools produce materialized views for dimensions and fact
tables. Fact materialized views may be built with concatenated rollup syntax or
with grouping set syntax.

The choices you make in establishing materialized views will be based primarily on
the structure of the data in the star schema and on the query requirements of OLAP
clients.

Grouping Sets
 The OLAP API supports fact table materialized views that use explicit grouping set
syntax. This type of materialized view uses the GROUP BY GROUPING SETS syntax
to aggregate the data for each level combination in the summary.

Materialized views generated with grouping set syntax can support asymmetric
partial summarization. A single materialized view of this type holds all the
summary information for a cube.

To generate this type of materialized view, use the Oracle Data Management
PL/SQL package, DBMS_ODM.

Concatenated Rollup
The OLAP API also supports fact table materialized views that use concatenated
rollup syntax. This type of materialized view uses the GROUP BY ROLLUP syntax to
aggregate the data for each level combination in the summary.

Important: You must be sure to create materialized views that are
specifically for use by the OLAP API. Query rewrite will not map
the SQL generated by the OLAP API to the materialized views
generated by the DBMS_OLAP PL/SQL package, which is described
in the Oracle9i Data Warehousing Guide. Do not use the DBMS_OLAP
package for the OLAP API.
Creating Materialized Views for the OLAP API 10-3

Materialized Views and OLAP Metadata
Materialized views generated with concatenated rollup syntax can support
symmetric partial summarization. A single materialized view of this type holds the
summary information for one hierarchy combination of a cube.

To generate this type of materialized view, use the OLAP Summary Advisor within
Oracle Enterprise Manager.

Materialized Views and OLAP Metadata
You should create materialized views after you have defined the OLAP metadata
for your star schema.

If your OLAP metadata is visible within Enterprise Manager, you can use the OLAP
Summary Advisor to create MVs in concatenated rollup form. You can also use the
DBMS_ODM package to create MVs in grouping set form.

If your OLAP metadata is not visible within Enterprise Manager, you must use the
DBMS_ODM package. Only grouping set style MVs are supported for this type of
metadata.

Dimension Materialized Views
When creating materialized views for the OLAP API, you should create MVs for
each dimension in a star schema. Dimensions may be denormalized in a single table
or normalized in separate tables (snow flake schema).

The structural differences between concatenated rollup style and grouping set style
apply only to materialized views for fact tables. The structure of dimension
materialized views is the same whether the fact table materialized view uses
concatenated rollup or grouping sets.

Creating Dimension Materialized Views
When you use OLAP Summary Advisor, dimension materialized views are
automatically created along with the fact materialized views for a cube.

Alternatively, you can use the CREATEDIMMV_GS procedure in the DBMS_ODM
package to create dimension materialized views.

See Also: Chapter 5, "Creating OLAP Catalog Metadata" for
information about creating OLAP metadata.
10-4 Oracle9i OLAP User’s Guide

Fact Materialized Views
Number of Dimension Materialized Views
The dimension MV scripts produced by OLAP Summary Advisor and DBMS_ODM
create a separate MV for each hierarchy of a dimension.

Table 10–1, " SALES_CUBE Cube" lists the dimensions and hierarchies associated
with the SALES_CUBE cube in the Sales History (SH) schema.

The total number of dimension materialized views required for SALES_CUBE is
seven, the sum of the number of materialized views required for each of its
dimension hierarchies.

Fact Materialized Views
When creating MVs for the OLAP API, you should create materialized views for
each OLAP Catalog cube that represents a star schema. The cube must be mapped
to a single fact table, and the fact table may contain only lowest-level data. For more
information, see "Materialized Views and OLAP Metadata" on page 10-4.

Note: The syntax of the CREATE MATERIALIZED VIEW
statement is the same whether generated by OLAP Summary
Advisor or the DBMS_ODM package.

Table 10–1 SALES_CUBE Cube

SALES_CUBE Dimensions Hierarchies Number of MVs

SH.CHANNELS_DIM CHANNEL_ROLLUP 1

SH.CUSTOMERS_DIM CUST_ROLLUP

GEOG_ROLLUP

2

SH.PRODUCTS_DIM PROD_ROLLUP 1

SH.PROMOTIONS_DIM PROMO_ROLLUP 1

SH.TIMES_DIM CAL_ROLLUP

FIS_ROLLUP

2

See Also: Chapter 29, "Creating Dimension Materialized Views"
for more information about creating materialized views for
dimensions.
Creating Materialized Views for the OLAP API 10-5

Choosing the Right Format for Materialized Views
Number of Fact Materialized Views
The number of fact materialized views for a cube depends on whether you using
concatenated rollup style MVs or grouping set MVs.

If you use OLAP Summary Advisor, you will generate a separate concatenated
rollup style MV for each combination of hierarchies in the cube. If you use DBMS_
ODM, you will generate a single grouping set style MV for the cube.

For example, the SALES_CUBE cube in the Sales History (SH) schema, described in
Table 10–1, would have either one materialized view generated with grouping sets
or four materialized views generated with concatenated rollup.

For SALES_CUBE, there would be a separate concatenated rollup materialized view
for the each of the following dimension hierarchy combinations.

■ (CHANNEL, PRODUCT, PROMOTIONS, CUSTOMERS_CUST_ROLLUP, TIMES_CAL_
ROLLUP)

■ (CHANNEL, PRODUCT, PROMOTIONS, CUSTOMERS_CUST_ROLLUP, TIMES_FIS_
ROLLUP)

■ (CHANNEL, PRODUCT, PROMOTIONS, CUSTOMERS_GEOG_ROLLUP, TIMES_CAL_
ROLLUP)

■ (CHANNEL, PRODUCT, PROMOTIONS, CUSTOMERS_GEOG_ROLLUP, TIMES_FIS_
ROLLUP)

Choosing the Right Format for Materialized Views
Whether you choose to use grouping set or concatenated rollup for your fact
materialized views will depend on the complexity of the data in your star schema
and on the nature of your OLAP metadata.

For more information on the metadata requirements, see "Materialized Views and
OLAP Metadata" on page 10-4.

See Also:

■ Chapter 30, "Creating Fact Materialized Views With DBMS_
ODM"

■ Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor".
10-6 Oracle9i OLAP User’s Guide

Choosing the Right Format for Materialized Views
Unless you have a very simple data model with only single-hierarchy dimensions,
grouping set MVs are generally more efficient and provide greater flexibility than
concatenated rollup MVs.

Query Performance
MVs generated with grouping sets provide better runtime query performance for
schemas that have dimensions with multiple hierarchies. MVs generated with
concatenated rollup are more efficient for schemas that have only single-hierarchy
dimensions.

Build Times
If you have single-hierarchy dimensions, concatenated rollup MVs will take less
time to build than grouping set MVs. If you have multiple-hierarchy dimensions,
grouping set MVs generally will take less time to build.

Partial Materialization
If you want to store partially aggregated data in your materialized views, the
grouping set form provides more flexibility than the concatenated rollup form.
Grouping set form supports asymmetric partial materialization. Concatenated
rollup form supports only symmetric partial materialization.

With grouping set form, you could store month level summaries for specific level
combinations only. For example, you could summarize month data for a certain
type of product within a given geographical region, without regard for the other
dimension levels associated with the data. You would do this by specifying
individual level combinations before generating the script for creating the MV.

With concatenated rollup form, you could store month level summaries only, but
they would be aggregated over all of the dimension hierarchies associated with the
cube. You could choose to limit the MV to month data by editing the script for
creating the MV.

MV Size
Although a grouping set style MV may be very large, it requires significantly less
tablespace than concatenated rollup style MVs. The multiple concatenated rollup
style MVs for a cube store redundant data, since each hierarchy combination is
stored in a separate MV. A grouping set style MV for a cube contains all hierarchy
combinations within the single MV.
Creating Materialized Views for the OLAP API 10-7

Choosing the Right Format for Materialized Views
Lineage (Key)
With concatenated rollup form, all the dimension key columns are populated, and
data may only be accessed when its full lineage is specified. With true grouping set
form, dimension key columns may contain null values, and data may be accessed
simply by specifying one or more levels.

Note: In the current release, all MVs, whether generated with
concatenated rollup or with grouping sets, are full lineage
preserving.
10-8 Oracle9i OLAP User’s Guide

Part III

SQL Access Reference

Part III provides information about PL/SQL packages and procedures that either
create relational views of multidimensional data or embed OLAP DML commands
in their syntax.

This part contains the following chapters:

■ Chapter 11, "DBMS_AW"

■ Chapter 12, "OLAP_TABLE"

D

11

DBMS_AW

Using the procedures and functions in the DBMS_AW package, SQL programmers
can execute OLAP single-row functions and other OLAP DML commands against
analytic workspace data.

This chapter includes the following topics:

■ Summary of DBMS_AW Subprograms

■ EXECUTE Procedure

■ GETLOG Function

■ INTERP_SILENT Procedure

■ INTERP Function

■ INTERPCLOB Function

■ OLAP_EXPRESSION Function

■ PRINTLOG Procedure

See Also:

■ Oracle9i OLAP DML Reference help for the syntax of
individual OLAP DML commands.

■ Oracle9i OLAP Developer’s Guide to the OLAP DML for
information on analytic workspace objects.

■ PL/SQL User’s Guide and Reference for information about the
DBMS_OUTPUT package.
BMS_AW 11-1

Summary of DBMS_AW Subprograms
Summary of DBMS_AW Subprograms

The following table describes the subprograms provided in DBMS_AW.

Table 11–1 DBMS_AW Subprograms

Subprogram Description

"EXECUTE Procedure" on
page 11-3

Executes one or more OLAP DML commands. Input and
output is limited to 4K. Typically used in an interactive session
using an analytic workspace.

"PRINTLOG Procedure"
on page 11-16

Returns the session log from the last execution of the INTERP
or INTERPCLOB functions.

"INTERP_SILENT
Procedure" on page 11-6

Executes one or more OLAP DML commands and suppresses
the output. Input is limited to 4K and output to 4G.

"INTERP Function" on
page 11-8

Executes one or more OLAP DML commands. Input is limited
to 4K and output to 4G. Typically used in applications when
the 4K limit on output for the EXECUTE procedure is too
restrictive.

"INTERPCLOB Function"
on page 11-10

Executes one or more OLAP DML commands. Input and
output are limited to 4G. Typically used in applications when
the 4K input limit of the INTERP function is too restrictive.

"OLAP_EXPRESSION
Function" on page 11-12

Returns the result set of a single-row function calculated in an
analytic workspace.

"PRINTLOG Procedure"
on page 11-16

Prints a session log returned by the INTERP, INTERCLOB, or
GETLOG functions.
11-2 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
EXECUTE Procedure

The EXECUTE procedure executes one or more OLAP DML commands and directs
the output to a printer buffer. It is typically used to manipulate analytic workspace
data within an interactive SQL session.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON

If you are using a different program, refer to its documentation for the equivalent
setting.

Input and output is limited to 4K. For larger values, refer to the INTERP and
INTERPCLOB functions in this package.

Syntax
DBMS_AW.EXECUTE (
 olap_commands IN VARCHAR2
 text OUT VARCHAR2);

Parameters

Usage Notes

Guidelines for Using Quotation Marks in OLAP DML Commands
The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the olap-commands parameter:

■ Wherever you would normally use single quote (’) in an OLAP DML
command, use two single quotes (’’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

Table 11–2 EXECUTE Procedure Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semicolons.

text Output from the OLAP engine in response to the OLAP
commands.
DBMS_AW 11-3

EXECUTE Procedure
■ In the OLAP DML, a double quote (") indicates the beginning of a comment.

Effect of the OUTFILE Command
This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

Example
The following sample SQL*Plus session attaches an analytic workspace named
XADEMO, creates a formula named COST_PP in XADEMO, and displays the new
formula definition.

SQL> SET SERVEROUT ON

SQL> EXECUTE DBMS_AW.EXECUTE(’AW ATTACH xademo RW; DEFINE cost_pp FORMULA
LAG(analytic_cube_f.costs, 1, time, LEVELREL time_levelrel)’);

PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_AW.EXECUTE(’DESCRIBE cost_pp’);

DEFINE COST_PP FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
EQ lag(analytic_cube_f.costs, 1, time, levelrel time.levelrel)

PL/SQL procedure successfully completed.
11-4 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
GETLOG Function

This function returns the session log from the last execution of the INTERP or
INTERPCLOB functions in this package.

To print the session log returned by this function, use the DBMS_AW.PRINTLOG
procedure.

Syntax
DBMS_AW.GETLOG()
 RETURN CLOB;

Returns
The session log from the latest call to INTERP or INTERPCLOB.

Example
The following example shows the session log returned by a call to INTERP, then
shows the identical session log returned by GETLOG.

SQL> SET SERVEROUT ON SIZE 1000000
SQL> EXECUTE DBMS_AW.PRINTLOG(DBMS_AW.INTERP(’AW ATTACH xademo; LISTNAMES AGGMAP’));
2 AGGMAPs
--
ANALYTIC_CUBE.AGGMAP.1
XADEMO_SALES_MULTIKEY_CUBE.AGGMAP.1

PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_AW.PRINTLOG(DBMS_AW.GETLOG());
2 AGGMAPs
--
ANALYTIC_CUBE.AGGMAP.1
XADEMO_SALES_MULTIKEY_CUBE.AGGMAP.1

PL/SQL procedure successfully completed.
DBMS_AW 11-5

INTERP_SILENT Procedure
INTERP_SILENT Procedure

The INTERP_SILENT procedure executes one or more OLAP DML commands and
suppresses all output from them. It does not suppress error messages from the
OLAP command interpreter.

Input to the INTERP_SILENT function is limited to 4K. If you want to display the
output of the OLAP DML commands, use the EXECUTE procedure, or the INTERP
or INTERPCLOB functions.

Syntax
DBMS_AW.INTERP_SILENT (
 olap-commands IN VARCHAR2);

Parameters

Usage Notes

Guidelines for Using Quotation Marks in OLAP DML Commands
The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the olap-commands parameter:

■ Wherever you would normally use single quote (’) in an OLAP DML
command, use two single quotes (’’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

■ In the OLAP DML, a double quote (") indicates the beginning of a comment.

Example
The following commands show the difference in message handling between
EXECUTE and INTERP_SILENT. Both commands attach the XADEMO analytic
workspace in read-only mode. However, EXECUTE displays a warning message,
while INTERP_SILENT does not.

SQL> EXECUTE DBMS_AW.EXECUTE(’AW ATTACH xademo’);

Table 11–3 DBMS_AW.INTERP Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
11-6 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
IMPORTANT: Analytic workspace XADEMO is read-only. Therefore, you will
not be able to use the UPDATE command to save changes to it.

PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_AW.INTERP_SILENT(’AW ATTACH xademo’);

PL/SQL procedure successfully completed.
DBMS_AW 11-7

INTERP Function
INTERP Function

The INTERP function executes one or more OLAP DML commands and returns the
session log in which the commands are executed. It is typically used in applications
when the 4K limit on output for the EXECUTE procedure may be too restrictive.

Input to the INTERP function is limited to 4K. For larger input values, refer to the
INTERPCLOB function of this package.

You can use the INTERP function as an argument to the PRINTLOG procedure in
this package to view the session log. See the example.

Syntax
DBMS_AW.INTERP (
 olap-commands IN VARCHAR2)
 RETURN CLOB;

Parameters

Returns
The log file for the Oracle OLAP session in which the OLAP DML commands were
executed.

Usage Notes

Guidelines for Using Quotation Marks in OLAP DML Commands
The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the olap-commands parameter:

■ Wherever you would normally use single quote (’) in an OLAP DML
command, use two single quotes (’’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

■ In the OLAP DML, a double quote (") indicates the beginning of a comment.

Table 11–4 DBMS_AW.INTERP Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
11-8 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
Effect of the OUTFILE Command
This function does not return the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

Example
The following sample SQL*Plus session attaches an analytic workspace named
XADEMO and lists the members of the PRODUCT dimension.

SQL> SET SERVEROUT ON SIZE 1000000
SQL> EXECUTE DBMS_AW.PRINTLOG(DBMS_AW.INTERP(’AW ATTACH cloned; REPORT product’));
PRODUCT

L1.TOTALPROD
L2.ACCDIV
L2.AUDIODIV
L2.VIDEODIV
L3.AUDIOCOMP
L3.AUDIOTAPE
 .
 .
 .
PL/SQL procedure successfully completed.
DBMS_AW 11-9

INTERPCLOB Function
INTERPCLOB Function

The INTERPCLOB function executes one or more OLAP DML commands and
returns the session log in which the commands are executed. It is typically used in
applications when the 4K limit on input for the INTERP function may be too
restrictive.

You can use the INTERPCLOB function as an argument to the PRINTLOG procedure
in this package to view the session log. See the example.

 Syntax
The syntax for the INTERPCLOB procedure is shown below.

DBMS_AW.INTERPCLOB (
 olap-commands IN CLOB)
 RETURN CLOB;

Parameters

Returns
The log for Oracle OLAP session in which the OLAP DML commands were
executed.

Usage Notes

Guidelines for Using Quotation Marks in OLAP DML Commands
The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the olap-commands parameter:

■ Wherever you would normally use single quote (’) in an OLAP DML
command, use two single quotes (’’). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

■ In the OLAP DML, a double quote (") indicates the beginning of a comment.

Table 11–5 DBMS_AW.INTERPCLOB Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
11-10 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
Effect of the OUTFILE Command
This function does not return the output of the OLAP DML commands when you
have redirected the output by using the OLAP DML OUTFILE command.

Example
The following sample SQL*Plus session creates an analytic workspace named
ELECTRONICS, imports its contents from an EIF file stored in the dbs directory
alias, and displays the contents of the analytic workspace.

SQL> SET SERVEROUT ON SIZE 1000000
SQL> EXECUTE DBMS_AW.PRINTLOG(DBMS_AW.INTERPCLOB(’AW CREATE electronics; IMPORT
ALL FROM EIF FILE ’’dbs/electronics.eif’’ DATA DFNS; DESCRIBE’));

DEFINE GEOGRAPHY DIMENSION TEXT WIDTH 12
LD Geography Dimension Values
DEFINE PRODUCT DIMENSION TEXT WIDTH 12
LD Product Dimension Values
DEFINE TIME DIMENSION TEXT WIDTH 12
LD Time Dimension Values
DEFINE CHANNEL DIMENSION TEXT WIDTH 12
LD Channel Dimension Values
 .
 .
 .
PL/SQL procedure successfully completed.
DBMS_AW 11-11

OLAP_EXPRESSION Function
OLAP_EXPRESSION Function

The OLAP_EXPRESSION function allows you to execute single-row numeric
functions in the analytic workspace and thus generate custom measures in SELECT
statements. In addition to calculating an expression, OLAP_EXPRESSION can be
used in the WHERE and ORDER BY clauses to modify the result set of a SELECT.

Syntax
OLAP_EXPRESSION(
 r2c IN RAW(32),
 expression IN VARCHAR2)
 RETURN NUMBER;

Parameters

Returns
An evaluation of expression for each row of the table object returned by the
OLAP_TABLE function.

Usage Notes
You can use OLAP_EXPRESSION only with a table object returned by the
OLAP_TABLE function. The returned table object must have a column populated by
a ROW2CELL clause in the limit map used in the call to OLAP_TABLE. Refer to
Chapter 12, "OLAP_TABLE" for more information about using this function.

Table 11–6 OLAP_EXPRESSION Function Parameters

Parameter Description

r2c The name of a column populated by the ROW2CELL clause of
the limit map in a call to the OLAP_TABLE function.

expression A calculation that will be performed in the analytic workspace.
11-12 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
Examples

View Used in These Examples
The following script was used to create a view named MEASURE_VIEW, which is
used in the examples of OLAP_EXPRESSION that follow.

CREATE TYPE measure_row AS OBJECT (
 time VARCHAR2(12),
 geography VARCHAR2(30),
 product VARCHAR2(30),
 channel VARCHAR2(30),
 sales NUMBER(16),
 cost NUMBER(16),
 promotions NUMBER(16),
 quota NUMBER(16),
 units NUMBER(16),
 r2c RAW(32));
/

CREATE TYPE measure_table AS TABLE OF measure_row;
/

CREATE OR REPLACE VIEW measure_view AS
SELECT sales, cost, promotions, quota, units,
 time, geography, product, channel, r2c
 FROM TABLE(CAST(OLAP_TABLE(
 ’xademo DURATION SESSION’,
 ’measure_table’,
 ’’,
 ’MEASURE sales FROM xademo_analytic_cube_f.sales
 MEASURE cost FROM xademo_analytic_cube_f.costs
 MEASURE promotions FROM xademo_analytic_cube_f.promo
 MEASURE quota FROM xademo_analytic_cube_f.quota
 MEASURE units FROM xademo_analytic_cube_f.units
 DIMENSION time FROM xademo_time WITH
 HIERARCHY xademo_time_member_parentrel
 INHIERARCHY xademo_time_member_inhier
 DIMENSION geography FROM xademo_geography WITH
 HIERARCHY xademo_geography_member_parentrel
 INHIERARCHY xademo_geography_member_inhier
 DIMENSION product FROM xademo_product WITH
 HIERARCHY xademo_product_member_parentrel
 INHIERARCHY xademo_product_member_inhier
 DIMENSION channel FROM xademo_channel WITH
 HIERARCHY xademo_channel_member_parentrel
DBMS_AW 11-13

OLAP_EXPRESSION Function
 INHIERARCHY xademo_channel_member_inhier
 ROW2CELL r2c’)
 AS measure_table))
 WHERE sales IS NOT NULL;
/
COMMIT
/
GRANT SELECT ON measure_view TO PUBLIC;

Time Series Function With a WHERE Clause
The following SELECT statement calculates an expression with an alias of
PERIODAGO, and limits the result set to calculated values greater than 200,000. The
calculation uses the LAG function to return the value of the previous time period.

SELECT time, cost, OLAP_EXPRESSION(r2c,
 ’LAG(xademo_analytic_cube_f.costs, 1, xademo_time,
 LEVELREL xademo_time_member_levelrel)’) periodago
FROM measure_view
WHERE geography = ’L1.WORLD’ AND
CHANNEL = ’STANDARD_2.TOTALCHANNEL’ AND
PRODUCT = ’L1.TOTALPROD’ and
OLAP_EXPRESSION(r2c, ’LAG(xademo_analytic_cube_f.costs, 1, xademo_time,
 LEVELREL xademo_time_member_levelrel)’) > 200000;

This SELECT statement produces these results.

TIME COST PERIODAGO
------------ ---------- ----------
L1.1997 1078031 2490243.07
L2.Q1.97 615399 560379.445
L2.Q2.96 649004 615398.858
L2.Q2.97 462632 649004.473
L2.Q3.96 582693 462632.064
L2.Q4.96 698166 582693.091
L3.AUG96 194498 209476.344
L3.FEB96 186762 252738.981
L3.JAN96 185755 205214.946
 .
 .
 .

Numeric Calculation With an ORDER BY Clause
This example subtracts costs from sales to calculate profit, and gives this expression
an alias of PROFIT. The rows are ordered by geographic areas from most to least
profitable.
11-14 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms
SELECT geography, sales, cost, OLAP_EXPRESSION(r2c,
 ’xademo_analytic_cube_f.sales - xademo_analytic_cube_f.costs’) profit
FROM measure_view
WHERE
channel = ’STANDARD_2.TOTALCHANNEL’ AND
product = ’L1.TOTALPROD’ AND
time = ’L3.APR97’
ORDER BY OLAP_EXPRESSION(r2c,
 ’xademo_analytic_cube_f.sales - xademo_analytic_cube_f.costs’) DESC;

This SELECT statement produces these results.

GEOGRAPHY SALES COST PROFIT
------------------------------ ---------- ---------- ----------
L1.WORLD 9010260 209476 8800783.17
L2.EUROPE 3884776 95204 3789571.85
L2.AMERICAS 2734436 55322 2679114.66
L2.ASIA 1625379 37259 1588120.61
L3.USA 1603043 27547 1575496.86
L2.AUSTRALIA 765668 21692 743976.058
L3.UK 733090 19144 713945.952
L3.CANADA 731734 19666 712067.455
L4.NEWYORK 684008 8020 675987.377
L3.GERMANY 659428 12440 646988.197
L3.FRANCE 596767 19307 577460.113
 .
 .
 .
DBMS_AW 11-15

PRINTLOG Procedure
PRINTLOG Procedure

This procedure sends a session log returned by the INTERP, INTERPCLOB, or
GETLOG functions of this package to the print buffer, using the DBMS_OUTPUT
package in PL/SQL.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON SIZE 1000000

The SIZE clause increases the buffer from its default size of 4K.

If you are using a different program, refer to its documentation for the equivalent
setting.

Syntax
The syntax for the PRINTLOG procedure is shown below.

DBMS_AW.PRINTLOG (
 session-log IN CLOB);

Parameters

Example
The following example shows the session log returned by the INTERP function.

SQL> SET SERVEROUT ON SIZE 1000000
SQL> EXECUTE DBMS_AW.PRINTLOG(DBMS_AW.INTERP(’DESCRIBE analytic_cube_f.profit’));

DEFINE ANALYTIC_CUBE.F.PROFIT FORMULA DECIMAL <CHANNEL
GEOGRAPHY PRODUCT TIME>
EQ analytic_cube.f.sales - analytic_cube.f.costs

PL/SQL procedure successfully completed.

Table 11–7 DBMS_AW.PRINTLOG Procedure Parameters

Parameter Description

session-log The log of a session.
11-16 Oracle9i OLAP User’s Guide

OLA
12

OLAP_TABLE

This chapter describes how you can use the OLAP_TABLE function in a SQL
SELECT statement to query the multidimensional data stored in an analytic
workspace. This chapter contains the following topics:

■ Description

■ Preliminary Steps

■ Basic Steps

■ OLAP_TABLE Reference

■ Examples
P_TABLE 12-1

Description
Description
The OLAP_TABLE function extracts data from the LOBs in which workspace data
has been stored and presents the result set in the format of a relational table.
OLAP_TABLE is an implementation of the PL/SQL table functions.

The OLAP_TABLE function can be used in a SQL SELECT statement instead of, or in
addition to, the names of relational tables and views. It presents fully solved data
that is either stored or calculated in an analytic workspace. OLAP_TABLE accepts
parameters that are passed to the OLAP engine, which selects, manipulates, and
returns the data. The WHERE clause of a SELECT statement that includes a call to
OLAP_TABLE only needs to identify the result set; it does not need to perform any
calculations. If it does include calculations, they will be performed by the SQL
engine, not the OLAP engine.

SELECT statements that use OLAP_TABLE can be used during database
maintenance to create relational views, and they can be used interactively to fetch
data directly into an application.

Preliminary Steps
Most applications require the data to be presented in a specific format. You must
know the requirements of your application in order to construct a call to
OLAP_TABLE that returns a result set that complies with those requirements.

In addition, you need to gather information about the data containers in the analytic
workspace and decide how you are going to map them to the columns of a
relational view. These are the steps you might take:

1. Identify the measures that you want to make available to applications.

2. Identify the dimensions (including composite dimensions) of the measures.

3. For hierarchical dimensions, identify the objects that support the hierarchy.

4. Identify the dimension attributes, which are data containers that provide
additional information about the dimensions.

5. If you plan to create OLAP catalog metadata, generate the additional data
containers that are needed by the Java-based OLAP API.

Following are descriptions of these data containers.

See Also: PL/SQL User’s Guide and Reference for a discussion of
PL/SQL table functions.
12-2 Oracle9i OLAP User’s Guide

Preliminary Steps
Measures
Measures are VARIABLE, FORMULA, or RELATION containers with a numeric data
type. If you are creating views for a star schema, you will experience the best
performance and data retrieval if the measures represented in a single fact view
have the exact same dimensions listed in the exact same order.

For example, the following variables compose the same cube and are dimensioned
identically.

DEFINE ANALYTIC_CUBE_F.COSTS VARIABLE DECIMAL <ANALYTIC_CUBE_COMPOSITE <CHANNEL GEOGRAPHY
PRODUCT TIME>>

DEFINE ANALYTIC_CUBE_F.SALES VARIABLE DECIMAL <ANALYTIC_CUBE_COMPOSITE <CHANNEL GEOGRAPHY
PRODUCT TIME>>

You can combine these variables with formulas derived from them. Although
formulas do not use composites, they are defined with the same dimensions in the
same order as their source variables. For example, the following command creates a
formula named ANALYTIC_CUBE_PROFIT, which is calculated by subtracting
ANALYTIC_CUBE_F.COSTS from ANALYTIC_CUBE_F.SALES.

->DEFINE analytic_cube_profit FORMULA analytic_cube_f.sales - analytic_cube_f.costs

The resulting formula is dimensioned the same as the source variables, but without
the composite.

->DESCRIBE analytic_cube_profit

DEFINE ANALYTIC_CUBE_PROFIT FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
EQ analytic_cube_f.sales - analytic_cube_f.costs

You can also specify formulas within the MEASURE clause of the OLAP_TABLE
function.

Dimensions
If a measure is sparse, then it is probably dimensioned by a composite or a conjoint
dimension. The definition of a measure identifies its dimensions.

Hierarchies
Dimensions that contain members at all levels of a hierarchy are supported by
several workspace objects that define the hierarchy: hierarchy dimensions,
hierarchy relations, level dimensions, level relations, and “in hierarchy” variables.
OLAP_TABLE 12-3

Preliminary Steps
A flat dimension (that is, one without a hierarchy, or one in which all members are
at the same level of a hierarchy) does not require these supporting objects.

Hierarchy Dimensions
When a dimension has more than one hierarchy, then a hierarchy dimension is used
to identify them. The members of the hierarchy dimension are the names of the
hierarchies.

The following example shows the hierarchy dimension for the GEOGRAPHY
dimension.

->DESCRIBE geography_hierlist

DEFINE GEOGRAPHY_HIERLIST DIMENSION TEXT

->REPORT W 25 geography_hierlist

GEOGRAPHY_HIERLIST

STANDARD
CONSOLIDATED

Hierarchy Relations
A self-relation identifies the parent of each dimension member. This type of relation
is often called a parent relation. In the following example, the GEOGRAPHY
dimension has a parent relation named GEOGRAPHY_PARENTREL.

GEOGRAPHY_HIERLIST also dimensions the parent relation. GEOGRAPHY has two
hierarchies, STANDARD and CONSOLIDATED, which are the dimension members of
GEOGRAPHY_HIERLIST.

->DESCRIBE geography_member_parentrel

DEFINE GEOGRAPHY_MEMBER_PARENTREL RELATION GEOGRAPHY <GEOGRAPHY
GEOGRAPHY_HIERLIST>

->LIMIT geography TO ’L4.KUALALUMPUR’
->LIMIT geography ADD ANCESTORS USING geography_member_parentrel
->REPORT W 16 DOWN geography W 20 geography_member_parentrel
12-4 Oracle9i OLAP User’s Guide

Preliminary Steps
 -------GEOGRAPHY_MEMBER_PARENTREL--------
 -----------GEOGRAPHY_HIERLIST------------
GEOGRAPHY STANDARD CONSOLIDATED
---------------- -------------------- --------------------
L4.KUALALUMPUR L3.MALAYSIA L6.MALAYSIA
L3.MALAYSIA L2.ASIA NA
L6.MALAYSIA NA L5.ASIA
L2.ASIA L1.WORLD NA
L5.ASIA NA NA
L1.WORLD NA NA

From this example, you can see that levels L1, L2, and L3 are in the STANDARD
hierarchy, and levels L5 and L6 are in the CONSOLIDATED hierarchy. Malaysia and
Asia are each represented by two dimension members, one for each hierarchy.

Level Dimensions
The levels of a dimension hierarchy are defined by the members of a level
dimension. This dimension has a TEXT data type so that the members can have
descriptive names. For example, GEOGRAPHY_LEVELLIST is the level dimension
for GEOGRAPHY.

->DESCRIBE geography_levellist
DEFINE GEOGRAPHY_LEVELLIST DIMENSION TEXT

Six levels are defined for the two GEOGRAPHY hierarchies.

->REPORT geography_levellist

GEOGRAPHY_LEVELLIST

L4
L3
L2
L1
L6
L5

In-Hierarchy Variables
If a hierarchical dimension contains members that are excluded from a hierarchy,
then a boolean variable is used to identify whether a dimension member is in the
hierarchy (YES) or not in the hierarchy (NO or NA). If all the members of a dimension
are included in the hierarchy (which is typically the case when there is only one
OLAP_TABLE 12-5

Preliminary Steps
hierarchy), then this boolean dimension is not required because there is no
ambiguity. However, if a dimension member is part of one hierarchy but excluded
from another (which is typically the case when there are multiple hierarchies) an NA
value in the hierarchy relation is ambiguous. It can mean either that the member is
at the top level of the hierarchy and therefore has no parent, or that it is excluded
from the hierarchy.

The following example shows an in-hierarchy variable named
GEOGRAPHY_INHIERARCHY defined for the GEOGRAPHY dimension, which has two
hierarchies, STANDARD and CONSOLIDATED.

->DESCRIBE geography_member_inhier
DEFINE GEOGRAPHY_MEMBER_INHIER VARIABLE BOOLEAN <GEOGRAPHY GEOGRAPHY_HIERLIST>

->REPORT DOWN geography W 12 geography_member_inhier

 -GEOGRAPHY_MEMBER_INHIER-
 --- GEOGRAPHY_HIERLIST---
GEOGRAPHY STANDARD CONSOLIDATED
-------------- ------------ ------------
L4.KUALALUMPUR yes yes
L3.MALAYSIA yes NA
L6.MALAYSIA NA yes
L2.ASIA yes NA
L5.ASIA NA yes
L1.WORLD yes NA

Grouping IDs
Grouping IDs identify the depth of a dimension member in the hierarchy. You can
create a GID variable manually by using the GROUPINGID command in the OLAP
DML. Grouping IDs are used by the OLAP API to improve performance.

->DESCRIBE geography_member_gid

DEFINE GEOGRAPHY_MEMBER_GID VARIABLE INTEGER <GEOGRAPHY GEOGRAPHY_HIERLIST>

->REPORT DOWN geography W 12 geography_member_gid
12-6 Oracle9i OLAP User’s Guide

Preliminary Steps
 --GEOGRAPHY_MEMBER_GID---
 ---GEOGRAPHY_HIERLIST----
GEOGRAPHY STANDARD CONSOLIDATED
-------------- ------------ ------------
L4.KUALALUMPUR 0 0
L3.MALAYSIA 1 NA
L6.MALAYSIA NA 1
L2.ASIA 3 NA
L5.ASIA NA 3
L1.WORLD 7 NA

Parent Grouping IDs
Parent grouping IDs provide the GID value of the parent of each dimension
member. OLAP_TABLE calculates the parent grouping IDs from the member
grouping IDs. Thus, you do not need to define the parent GIDs in an object in the
analytic workspace. However, you do need to specify the PARENTGID clause so that
OLAP_TABLE will generate them.

This information is used by the OLAP API to improve performance. If you specify a
parent relation, then you also need to specify a parent GID.

Family Relations
A family relation is used when generating a view in rollup form, that is, a view in
which a multiple-column key identifies the full parentage of each dimension value.
Each column in the key contains values at one level of the dimension hierarchy. A
family relation formats the information in this way in the analytic workspace.

You can create a family relation manually by defining a relation and populating it
using the HIERHEIGHT command in the OLAP DML.

The following is the definition of the family relation for GEOGRAPHY.

->DESCRIBE geography_member_familyrel

DEFINE GEOGRAPHY_MEMBER_FAMILYREL RELATION GEOGRAPHY <GEOGRAPHY
GEOGRAPHY_LEVELLIST GEOGRAPHY_HIERLIST>

->LIMIT geography_levellist TO FIRST 4
->REPORT W 12 DOWN geography W 16 geography_member_familyrel

GEOGRAPHY.HIERLIST: STANDARD
OLAP_TABLE 12-7

Preliminary Steps
 ---------------------GEOGRAPHY_MEMBER_FAMILYREL--------------------
 -------------------------GEOGRAPHY_LEVELLIST-----------------------
GEOGR
APHY L4 L3 L2 L1
------------ ---------------- ---------------- ---------------- ----------------
L4.ADELAIDE L4.ADELAIDE L3.CENTRAL.AUST L2.AUSTRALIA L1.WORLD
L4.AMSTERDAM L4.AMSTERDAM L3.NETHERLANDS L2.EUROPE L1.WORLD
L4.ATHENS L4.ATHENS L3.GREECE L2.EUROPE L1.WORLD
L4.BANGKOK L4.BANGKOK L3.THAILAND L2.ASIA L1.WORLD
 .
 .
 .

Attributes

Attributes are typically text variables or relations that provide descriptive
information about dimension members, and are useful for displaying the data.
Dimension members are usually very cryptic, and are more useful for uniquely
identifying the data internally than for labeling the data for users in a table or
graph. For this reason, dimensions often have one or more variables that provide
descriptions of the dimension members.

Attributes can also provide other types of information and be other data types, like
the end date and time span attributes for a time dimension. The following example
shows attributes for the TIME dimension.

->LIMIT time_hierlist TO ’STANDARD’
->REPORT DOWN time time_short.description time_end_date time_time_span

LANGUAGELIST: AMERICAN_AMERICA
 ----------TIME_HIERLIST---------
 ------------STANDARD------------
 TIME_SHORT
 .DESCRIPTI TIME_END_ TIME_TIME_
TIME ON DATE SPAN
-------------- ---------- ---------- ----------
L1.1996 1996 31DEC96 366.00
L1.1997 1997 31MAY97 151.00
L2.Q1.96 Q1.96 31MAR96 91.00

See Also: Oracle9i OLAP DML Reference help for syntax and
examples of the GROUPINGID and HIERHEIGHT commands.
12-8 Oracle9i OLAP User’s Guide

Basic Steps
L2.Q1.97 Q1.97 31MAR97 90.00
L2.Q2.96 Q2.96 30JUN96 91.00
 .
 .
 .

Basic Steps
There are three steps to using the OLAP_TABLE function:

1. Define an object type. Equivalent to defining a row.

2. Create a type of these objects. Equivalent to defining a table.

3. Embed a call to the OLAP_TABLE function in a SELECT statement.

Defining a Row
When you define a row, you are actually defining an abstract object type. An
abstract object type is composed of attributes, which are equivalent to the columns
of a table. (These attributes have no relationship to the attributes described in
"Attributes" on page 12-8.) When you ultimately create a relational view, you will
select its columns from these attributes. However, it is generally easier to
understand the process in terms of rows and columns instead of object types and
attributes.

This is the basic syntax for defining a row. The last column is defined as type RAW,
and stores information used by the single-row functions in DBMS_AW. If you are not
going to use those functions, then you do not need to define this column.

CREATE TYPE row_name AS OBJECT (
 column_first datatype,
 column_second datatype,
 column_last RAW(32);

Example 12–1 defines a row for a product dimension table. The five VARCHAR2
columns of PRODUCT_ROW (PRODUCT, PRODUCT_LABEL, and so forth) ultimately
define the available columns of a product dimension view.

Example 12–1 Creating the PRODUCT_ROW Object Type

CREATE TYPE product_row AS OBJECT (
 product VARCHAR2(30),
 product_label VARCHAR2(30),
 product_parent VARCHAR2(30),
OLAP_TABLE 12-9

Basic Steps
 product_level VARCHAR2(2),
 subcategory VARCHAR2(30),
 category VARCHAR2(15),
 all_products VARCHAR2(15)
 r2c RAW(32));

Creating a Table
An abstract table type is a collection of abstract object types. The table type
describes the table that will be populated by OLAP_TABLE. This is the basic syntax
for creating a table type:

CREATE TYPE table_name AS TABLE OF row_name;

Example 12–2 creates a table of the PRODUCT_ROW objects that were created in
Example 12–1.

Example 12–2 Creating the PRODUCT_TABLE Table Type

CREATE TYPE product_table AS TABLE OF product_row;

Using OLAP_TABLE in a SELECT Statement
A view of an analytic workspace is like any other relational view in being a saved
SELECT statement. The difference is that the OLAP_TABLE function takes the place
of a relational table.

The following syntax shows how you would use OLAP_TABLE to create a view:

CREATE OR REPLACE VIEW view_name AS
SELECT columns
 FROM TABLE(OLAP_TABLE(parameters))
WHERE conditions;

Where:

columns are the names of attribute columns in the logical table object that you
defined. You do not need to reference all of the columns, only those that you will
use as targets in the limit map of OLAP_TABLE.

conditions modify the result set from OLAP_TABLE. These operators are processed in
the analytic workspace: =, !=, IN, NOT IN. Conditions that are not supported in the
analytic workspace are executed in SQL on the returned result set.

Applications can also generate SELECT statements on the fly that use calls to
OLAP_TABLE instead of, or in addition to, the names of relational tables. This type
12-10 Oracle9i OLAP User’s Guide

Basic Steps
of application can generate calls to OLAP_TABLE with parameters defined by the
user.
OLAP_TABLE 12-11

OLAP_TABLE Reference
OLAP_TABLE Reference
The OLAP_TABLE function extracts multidimensional data from an analytic
workspace and presents it in the two-dimensional format of a relational table. It can
be used wherever you would use the name of a table or view. The analytic
workspace data can be stored or calculated on the fly from stored data. The result
set is a table of objects that can be joined to relational tables and views, or to other
tables of objects populated by OLAP_TABLE.

Syntax
OLAP_TABLE(
 aw_attach IN VARCHAR2,
 table_name IN VARCHAR2,
 olap_command IN VARCHAR2,
 limit_map IN VARCHAR2);

The OLAP_TABLE function returns the table of objects identified by table_name,
which has been populated according to the rules defined in limit_map.

Parameters

AW_ATTACH Parameter
The first parameter of the OLAP_TABLE function provides the name of the analytic
workspace where the source data is stored and specifies how long the analytic
workspace will be attached to your OLAP session, which opens for your first call to
OLAP_TABLE. You can detach the analytic workspace either at the end of the query
or at the end of the session. This is the full syntax of this parameter:

’[owner.]aw_name DURATION QUERY | SESSION’

Table 12–1 OLAP_TABLE Function Parameters

Parameter Description

aw_attach The name of the analytic workspace with the source data

table_name The name of the table that has been defined to structure the
multidimensional data in tabular form

olap_command An OLAP DML command that will be executed before the data is
fetched

limit_map A keyword-based map that identifies the source objects in aw_attach and
the target columns in table_name.
12-12 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference
For example:

’sys.xademo DURATION QUERY’

Specify owner whenever you are creating views that will be accessed by other users.
Otherwise, you can omit the owner if you own the analytic workspace. It is required
only when you are logged in under a different user name than the owner.

If you specify SESSION, then you can use an empty string for this parameter in
subsequent calls to OLAP_TABLE, because the analytic workspace is already
attached. If you repeat the connection string unnecessarily, it is simply ignored.

SESSION provides slightly better performance than QUERY, because the analytic
workspace is attached only once instead of multiple times in the session. However,
you will not see modifications made by other users in the meantime.

Table_Name Parameter
The second parameter identifies the name of the table of objects that you defined, as
shown in "Creating a Table" on page 12-10. The syntax of this parameter is:

’table_name’

For example:

’product_table’

OLAP_Command Parameter
The third parameter of the OLAP_TABLE function is a single OLAP DML command.
If you want to execute more than one command, then you must create a program in
your analytic workspace and call the program in this parameter.

A common use of this parameter is to limit one or more dimensions. If you limit one
of the dimensions specified in a DIMENSION clause, then the status of that
dimension is changed only during execution of this call to OLAP_TABLE; it does not
affect the rest of your OLAP session. However, other commands can affect your
session.

The syntax of this parameter is:

’olap_command’

For example:
OLAP_TABLE 12-13

OLAP_TABLE Reference
’LIMIT product TO product_member_levelrel ’’L2’’’

Another use is to execute the OLAP FETCH command in this parameter and omit
the limit map.

The power and flexibility of this parameter comes from its ability to process
virtually any data manipulation commands available in the OLAP DML.

Limit_Map Parameter
The fourth (and last) parameter of the OLAP_TABLE function maps workspace
objects to columns in the table and identifies the role of each one. It is called a limit
map because it combines with the WHERE clause of a SQL SELECT statement to
issue a series of LIMIT commands to the analytic workspace. The contents of the
limit map populate the table specified in the table_name parameter.

All or part of the limit map can be stored in a text variable in the analytic
workspace. To insert the variable in the limit map, precede the name of the variable
with an ampersand (&). This practice is called ampersand substitution in the OLAP
DML.

The syntax of the limit map has numerous clauses, primarily for defining dimension
hierarchies. Pay close attention to the presence or absence of commas, since syntax
errors will prevent your limit map from being parsed.

’[MEASURE column FROM {measure | AW_EXPR expression}]
 .
 .
 .
 DIMENSION [column FROM] dimension
 [WITH
 [HIERARCHY [column FROM] hierarchy_relation[(hierarchy_dimension ’hierarchy’)]
 [INHIERARCHY inhierarchy_variable]
 [GID column FROM gid_variable]
 [PARENTGID column FROM gid_variable]
 [FAMILYREL col1, col2, coln FROM
 {expression1, expression2, expressionn |
 family_relation USING level_dimension }
 [LABEL label_variable]]
 .
 .
 .
]
 [ATTRIBUTE column FROM attribute_variable]
 .
 .
 .
12-14 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference
]
 [ROW2CELL column]
 [LOOP composite_dimension]
 [PREDMLCMD olap_command]
 [POSTDMLCMD olap_command]

’

Where:

column is the name of a column in the target table.

measure is a business measure that is stored in the analytic workspace.

dimension is a dimension in the analytic workspace

expression is a formula or qualified data reference for objects in the analytic
workspace

hierarchy_relation is a self-relation in the analytic workspace that defines the
hierarchies for dimension.

hierarchy_dimension is a dimension in the analytic workspace that contains the
names of the hierarchies for dimension.

hierarchy is a member of hierarchy_dimension.

inhierarchy_variable is a Boolean variable in the analytic workspace that identifies
whether a dimension member is in hierarchy.

gid_variable is the name of a variable in the analytic workspace that contains the
grouping ID of each dimension member.

attribute_variable is the name of a variable in the analytic workspace that contains
attribute values for dimension.

sparse_dimension is the name of a composite dimension used in the definition of
measure.

olap_command is an OLAP DML command.

MEASURE column FROM {measure | AW_EXPR expression}
The MEASURE clause maps a variable, formula, or relation in the analytic workspace
to a column in the target table.

Alternatively, the AW_EXPR keyword can map a calculation performed by the OLAP
engine on one or more of these objects to a column. For example, you could specify
calculations such as these:
OLAP_TABLE 12-15

OLAP_TABLE Reference
analytic_cube_sales - analytic_cube_cost

or

LAGDIF(analytic_cube_sales, 1, time, LEVELREL time.lvlrel)

You can list any number of MEASURE clauses. This clause is optional when, for
example, you wish to create a dimension view.

Refer to "Measures" on page 12-3 for additional information about measures in an
analytic workspace.

DIMENSION [column FROM] dimension...
The DIMENSION clause identifies a dimension or conjoint in the analytic workspace
that dimensions one or more measures, attributes, or hierarchies in the limit map.
Refer to "Dimensions" on page 12-3 for additional information about dimensions in
an analytic workspace.

The column subclause is optional when you do not want the dimension members
themselves to be represented in the table. In this case, you should include a
dimension attribute that can be used for data selection.

Every limit map should have at least one DIMENSION clause. If the limit map
contains MEASURE clauses, then it should also contain a single DIMENSION clause
for each dimension of the measures, unless a dimension is being limited to a single
value. If the measures are dimensioned by a composite, then you must identify each
dimension in the composite with a DIMENSION clause. For the best performance
when fetching a large result set, identify the composite in a LOOP clause.

A dimension can be named in only one DIMENSION clause. Subclauses of
DIMENSION identify the dimension hierarchy and attributes.

WITH...
The WITH clause introduces a HIERARCHY or ATTRIBUTE subclause. If you omit
these subclauses from the limit map, then omit the WITH clause also. However, if
you include one or both of these subclauses, then precede them with a single WITH
clause.

HIERARCHY [column FROM] hierarchy_relation[(hierarchy_dimension
’hierarchy’)]...
The HIERARCHY subclause identifies the parent self-relation in the analytic
workspace that defines the hierarchies for dimension. Refer to "Hierarchies" on
12-16 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference
page 12-3 for additional information on dimension hierarchies in an analytic
workspace.

If hierarchy_dimension has more than one member, then you can specify the one that
you want with a (hierarchy_dimension ’hierarchy’) phrase. To include multiple
hierarchies, specify a HIERARCHY subclause for each one. The hierarchy_dimension is
limited to hierarchy for all workspace objects that are referenced in subsequent
subclauses (that is, INHIERARCHY, GID, PARENTGID, and FAMILYREL).

The HIERARCHY subclause is optional when dimension does not have a hierarchy, or
when the status of dimension has been limited to a single level of the hierarchy.

INHIERARCHY inhierarchy_variable The INHIERARCHY subclause identifies a boolean
variable in the analytic workspace that identifies whether a dimension member is in
hierarchy. It is required only when there are members of the dimension that are
omitted from the hierarchy, which is typical when a dimension has multiple
hierarchies. Refer to "In-Hierarchy Variables" on page 12-5 for additional
information about in-hierarchy variables.

GID column FROM gid_variable The GID subclause maps an integer variable in the
analytic workspace, which contains the grouping ID for each dimension member, to
a column in the target table. It is required for Java applications that use the OLAP
API. Refer to "Grouping IDs" on page 12-6 for additional information about GIDs.

PARENTGID column FROM gid_variable The PARENTGID subclause calculates the
grouping IDs for the parent relation using the GID variable in the analytic
workspace. The parent GIDs are not stored in a workspace object. Instead, you
specify the same GID variable for the PARENTGID clause that you used in the GID
clause.

The PARENTGID clause is recommended for Java applications that use the OLAP
API. Refer to "Grouping IDs" on page 12-6 for additional information about GIDs.

FAMILYREL col1, col2, coln FROM {expression1, expression2, expressionn |
family_relation USING level_dimension } [LABEL label_variable] The FAMILYREL subclause
is used primarily to map a family relation in the analytic workspace to multiple
columns in the target table. List the columns in the order of level_dimension. If you
do not want a particular level included, then specify null for the target column. The
resulting view is in rollup form, in which each level of the hierarchy is represented
in a separate column, and the full parentage of each dimension member is identified
within the row. Refer to "Family Relations" on page 12-7 for more information about
family relations.
OLAP_TABLE 12-17

OLAP_TABLE Reference
The FAMILYREL subclause can also be used to map a list of qualified data
references (QDRs) to multiple columns. In this usage, the first QDR maps to the first
column, the second QDR maps to the second column, and so forth.

The LABEL keyword identifies a text attribute that provides more meaningful
names for the dimension members.

You can use multiple FAMILYREL clauses for each hierarchy.

ATTRIBUTE column FROM attribute_variable
The ATTRIBUTE clause maps a variable in the analytic workspace to a column in
the target table. If attribute_variable has multiple dimensions, then values are
mapped for all members of dimension, but only for the first member in the current
status of additional dimensions. For example, if your attributes have a language
dimension, then you must set the status of that dimension to a particular language.
You can set the status of dimensions in a PREDMLCMD clause.

ROW2CELL column
The ROW2CELL clause populates a RAW(32) column with information needed by
the single-row functions in the DBMS_AW package. Use this clause when creating a
view that will be used by these functions.

LOOP sparse_dimension
The LOOP clause identifies a single named composite that dimensions one or more
measures specified in the limit map. It improves performance when fetching a large
result set; however, it can slow the retrieval of a small number of values.

 PREDMLCMD olap_command
The PREDMLCMD specifies an OLAP DML command that is executed before the data
is fetched from the analytic workspace into the target table. It can be used, for
example, to execute a model or forecast whose results will be fetched into the table.

 POSTDMLCMD olap_command
The POSTDMLCMD specifies an OLAP DML command that is executed after the data
is fetched from the analytic workspace into the target table. It can be used, for
example, to delete objects or data that were created by commands in the
PREDMLCMD clause, or to restore the dimension status that was changed in a
PREDMLCMD clause.
12-18 Oracle9i OLAP User’s Guide

Examples
Examples
Because different applications have different requirements, several different formats
are commonly used for fetching data into SQL from an analytic workspace. The
examples in this chapter show how to create views using a variety of different
formats.

Although these examples are shown as views, the SELECT statements can be
extracted from them and used directly to fetch data from an analytic workspace into
an application.

Creating a View
To create a view, use a text editor to create a PL/SQL script that defines the row, the
table, and the view. Example 12–3 is a template that you can use as the starting
point for the SQL scripts that you will develop for views of your analytic
workspace. You can then execute the script with the @ command in SQL*Plus.

Example 12–3 Template for Creating a View

SET ECHO ON
SET SERVEROUT ON

DROP TYPE table_obj;
DROP TYPE row_obj;

CREATE TYPE row_obj AS OBJECT (
 column_first datatype,
 column_next datatype,
 column_last datatype);
/
CREATE TYPE table_obj AS TABLE OF row_obj;
/
CREATE OR REPLACE VIEW view AS
SELECT column1, column2, columnn
 FROM TABLE(OLAP_TABLE(
 ’connection’,
 ’table_obj’,
 ’olap_command’,
 ’limit_map’));
/
COMMIT
/
GRANT SELECT ON view TO PUBLIC;
OLAP_TABLE 12-19

Examples
Creating Views of Embedded Total Dimensions
 Example 12–4 shows the PL/SQL script used to create a view of the TIME
dimension STANDARD hierarchy.

Example 12–4 Script for a Dimension View

CREATE TYPE time_std_row AS OBJECT (
 time_id VARCHAR2(16),
 standard_short_label VARCHAR2(16),
 standard_end_date DATE,
 standard_timespan NUMBER(6));
/

CREATE TYPE time_std_table AS TABLE OF time_std_row;
/

CREATE OR REPLACE VIEW time_std_view AS
SELECT time_id, standard_short_label, standard_end_date, standard_timespan
FROM TABLE(OLAP_TABLE(’xademo DURATION SESSION’, ’time_std_table’,
 ’LIMIT time_hierlist TO ’’STANDARD’’’,
 ’DIMENSION time_id FROM time WITH
 HIERARCHY time_member_parentrel
 INHIERARCHY time_member_inhier
 ATTRIBUTE standard_short_label FROM time_short.description
 ATTRIBUTE standard_end_date FROM time_end_date
 ATTRIBUTE standard_timespan FROM time_time_span’));
/

12-20 Oracle9i OLAP User’s Guide

Examples
SQL> SELECT * FROM time_std_view;

TIME_ID STANDARD STANDARD_ STANDARD_TIMESPAN
-------- -------- --------- -----------------
L1.1996 1996 31-DEC-96 366
L1.1997 1997 31-MAY-97 151
L2.Q1.96 Q1.96 31-MAR-96 91
L2.Q2.96 Q2.96 30-JUN-96 91
L2.Q3.96 Q3.96 30-SEP-96 92
L2.Q4.96 Q4.96 31-DEC-96 92
L2.Q1.97 Q1.97 31-MAR-97 90
L2.Q2.97 Q2.97 31-MAY-97 61
L3.JAN96 Jan96 31-JAN-96 31
L3.FEB96 Feb96 29-FEB-96 29
L3.MAR96 Mar96 31-MAR-96 31

 .
 .
 .

Creating Views of Embedded Total Measures
In a star schema, a separate measure view is needed with columns that can be
joined to each of the dimension views. Example 12–5 shows the PL/SQL script used
to create a measure view with a column populated by ROW2CELL to support custom
measures. For an example of creating a custom measure, refer to
"OLAP_EXPRESSION Function" on page 11-12.

Example 12–5 Script for a Measure View

CREATE TYPE measure_row AS OBJECT (
 time VARCHAR2(12),
 geography VARCHAR2(30),
 product VARCHAR2(30),
 channel VARCHAR2(30),
 sales NUMBER(16),
 cost NUMBER(16),
 promotions NUMBER(16),
 quota NUMBER(16),
 units NUMBER(16),

Note: Be sure to verify that you have created the views correctly
by issuing SELECT statements against them. Only at that time will
any errors in the call to OLAP_TABLE show up.
OLAP_TABLE 12-21

Examples
 r2c RAW(32));
/

CREATE TYPE measure_table AS TABLE OF measure_row;
/

CREATE OR REPLACE VIEW measure_view AS
SELECT sales, cost, promotions, quota, units,
 time, geography, product, channel, r2c
 FROM TABLE(OLAP_TABLE(
 ’xademo DURATION SESSION’,
 ’measure_table’,
 ’’,
 ’MEASURE sales FROM analytic_cube_f.sales
 MEASURE cost FROM analytic_cube_f.costs
 MEASURE promotions FROM analytic_cube_f.promo
 MEASURE quota FROM analytic_cube_f.quota
 MEASURE units FROM analytic_cube_f.units
 DIMENSION time FROM time WITH
 HIERARCHY time_member_parentrel
 INHIERARCHY time_member_inhier
 DIMENSION geography FROM geography WITH
 HIERARCHY geography_member_parentrel
 INHIERARCHY geography_member_inhier
 DIMENSION product FROM product WITH
 HIERARCHY product_member_parentrel
 INHIERARCHY product_member_inhier
 DIMENSION channel FROM channel WITH
 HIERARCHY channel_member_parentrel
 INHIERARCHY channel_member_inhier
 ROW2CELL r2c’))
 WHERE sales IS NOT NULL;
/

SQL> SELECT channel, sales, cost, promotions, quota, units FROM measure_view
 WHERE product = ’L1.TOTALPROD’
 AND geography = ’L1.WORLD’
 AND time = ’L1.1996’;

CHANNEL SALES COST PROMOTIONS QUOTA UNITS
------------------------------ ---------- ---------- ---------- ---------- ---------
STANDARD_1.CATALOG 76843552 125398 110249 16525 25209
STANDARD_1.DIRECT 41403560 2364845 518649 5458917 118851
STANDARD_2.TOTALCHANNEL 118247112 2490243 628898 5475442 144060
12-22 Oracle9i OLAP User’s Guide

Examples
Creating Views in Rollup Form
Rollup form uses a column for each hierarchy level to show the full parentage of
each dimension member. The only difference between the syntax for rollup form
and the syntax for embedded total form is the addition of a FAMILYREL clause in
the definition of each dimension in the limit map.

Example 12–6 shows the PL/SQL script used to create a rollup view of the
PRODUCT dimension. It shows a dimension view to highlight the differences in the
syntax of the limit map from the one used for the embedded total form, as shown in
Example 12–4, "Script for a Dimension View". Note that the target columns for these
levels are listed in the FAMILYREL clause from base level to most aggregate, which
is the order they are listed in the level list dimension. The family relation returns
four columns. The most aggregate level (all products) is omitted from the view by
mapping it to null.

Example 12–7 shows the alternative syntax for the FAMILYREL clause, which uses
QDRs to identify exactly which columns will be mapped from the family relation.

These two limit maps generate identical views.

Example 12–6 Script for a Rollup View of Products

CREATE TYPE product_row AS OBJECT (
 equipment VARCHAR2(20),
 components VARCHAR2(20),
 divisions VARCHAR2(20));
/

CREATE TYPE product_table AS TABLE OF product_row;
/

CREATE OR REPLACE VIEW product_view AS
SELECT equipment, components, divisions
 FROM TABLE(OLAP_TABLE(’xademo DURATION QUERY’, ’product_table’,
 ’’,
 ’DIMENSION product WITH
 HIERARCHY product_member_parentrel
 FAMILYREL equipment, components, divisions, null
 FROM product_member_familyrel USING product_levellist
 LABEL product_short.description
 ’));

SQL> SELECT * FROM product_view
OLAP_TABLE 12-23

Examples
 ORDER BY divisions, components, equipment;

EQUIPMENT COMPONENTS DIVISIONS
-------------------- -------------------- --------------------
Chrm Cas Audio Tape Accessory Div
Mtl Cassette Audio Tape Accessory Div
Std Cassette Audio Tape Accessory Div
 Audio Tape Accessory Div
 .
 .
 .
Standard VCR VCR Video Div
Stereo VCR VCR Video Div
 VCR Video Div
 Video Div

Example 12–7 Script Using QDRs in the FAMILYREL Clause

CREATE TYPE product_row AS OBJECT (
 equipment VARCHAR2(15),
 components VARCHAR2(15),
 divisions VARCHAR2(15));
/

CREATE TYPE product_table AS TABLE OF product_row;
/

CREATE OR REPLACE VIEW product_view AS
SELECT equipment, components, divisions
 FROM TABLE(OLAP_TABLE(’xademo DURATION QUERY’, ’product_table’,
 ’’,
 ’DIMENSION product WITH
 HIERARCHY product_member_parentrel
 FAMILYREL equipment, components, divisions FROM
 product_member_familyrel(product_levellist ’’L4’’),
 product_member_familyrel(product_levellist ’’L3’’),
 product_member_familyrel(product_levellist ’’L2’’)
 LABEL product_short.description
 ’));
/

SQL> SELECT * FROM product_view
 ORDER BY divisions, components, equipment;

EQUIPMENT COMPONENTS DIVISIONS
12-24 Oracle9i OLAP User’s Guide

Examples
--------------- --------------- ---------------
Chrm Cas Audio Tape Accessory Div
Mtl Cassette Audio Tape Accessory Div
Std Cassette Audio Tape Accessory Div
 Audio Tape Accessory Div
 .
 .
 .
Standard VCR VCR Video Div
Stereo VCR VCR Video Div
 VCR Video Div
 Video Div
OLAP_TABLE 12-25

Examples
12-26 Oracle9i OLAP User’s Guide

Part IV

OLAP Catalog Metadata API Reference

Part IV describes the PL/SQL APIs for creating and viewing CWM2 metadata.

This part contains the following chapters:

■ Chapter 13, "Using the OLAP Catalog Metadata APIs"

■ Chapter 14, "Viewing OLAP Catalog Metadata"

■ Chapter 15, "CWM2_OLAP_AW_ACCESS"

■ Chapter 16, "CWM2_OLAP_AW_CREATE"

■ Chapter 17, "CWM2_OLAP_CUBE"

■ Chapter 18, "CWM2_OLAP_DIMENSION"

■ Chapter 19, "CWM2_OLAP_DIMENSION_ATTRIBUTE"

■ Chapter 20, "CWM2_OLAP_HIERARCHY"

■ Chapter 21, "CWM2_OLAP_LEVEL"

■ Chapter 22, "CWM2_OLAP_LEVEL_ATTRIBUTE"

■ Chapter 23, "CWM2_OLAP_MEASURE"

■ Chapter 24, "CWM2_OLAP_METADATA_REFRESH"

■ Chapter 25, "CWM2_OLAP_PC_TRANSFORM"

■ Chapter 26, "CWM2_OLAP_TABLE_MAP"

■ Chapter 27, "CWM2_OLAP_VALIDATE"

■ Chapter 28, "CWM_CLASSIFY"

Using the OLAP Catalog Meta
13

Using the OLAP Catalog Metadata APIs

The OLAP Catalog PL/SQL packages provide stored procedures for creating,
dropping, and updating OLAP metadata. This chapter explains how to call these
procedures from within scripts. For complete syntax descriptions, refer to the
reference chapter for each package.

This chapter discusses the following topics:

■ OLAP Metadata Entities

■ Constructing a Dimension

■ Constructing a Cube

■ Mapping OLAP Metadata

■ Validating OLAP Metadata

■ Invoking the Procedures

■ Viewing OLAP Catalog Metadata

■ Example: Creating OLAP Metadata for a Dimension Table

■ Example: Creating OLAP Metadata for a Fact Table

See Also:

■ Chapter 5, "Creating OLAP Catalog Metadata" for an
introduction to the OLAP Catalog

■ "OLAP Metadata Model" on page 4-8 for a description of the
logical entities in the OLAP Catalog
data APIs 13-1

OLAP Metadata Entities
OLAP Metadata Entities
OLAP metadata entities are: dimensions, hierarchies, levels, level attributes,
dimension attributes, measures, cubes, and measure folders. A separate PL/SQL
package exists for each type of entity. The package provides procedures for creating,
dropping, locking, and specifying descriptions for entities of that type. For example,
to create a dimension, you would call CWM2_OLAP_DIMENSION.CREATE_
DIMENSION, to create a level, you would call CWM2_OLAP_LEVEL.CREATE_LEVEL,
and so on.

Each entity of metadata is uniquely identified by its owner and its name.

To fully construct a dimension or a cube, you must understand the hierarchical
relationships between the component metadata entities.

Constructing a Dimension
Creating a dimension entity is only the first step in constructing the OLAP metadata
for a dimension. Each dimension must have at least one level. More typically, it will
have multiple levels, hierarchies, and attributes. Table 13–1 shows the parent-child
relationships between the metadata components of a dimension.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating an entity does not fully define a
dimension or a cube, nor does it involve any mapping to
warehouse dimension tables or fact tables.

Table 13–1 Hierarchical Relationships Between Components of a Dimension

Parent Entity Child Entity

dimension dimension attribute, hierarchy, level

dimension attribute level attribute

hierarchy level

level level attribute
13-2 Oracle9i OLAP User’s Guide

Constructing a Cube
Procedure: Construct an OLAP Dimension
Generally, you will create hierarchies and dimension attributes after creating the
dimension and before creating the dimension levels and level attributes. Once the
levels and level attributes are defined, you can map them to columns in one or more
warehouse dimension tables. The general steps are as follows:

1. Call procedures in CWM2_OLAP_DIMENSION to create the dimension.

2. Call procedures in CWM2_OLAP_DIMENSION_ATTRIBUTE to create dimension
attributes.

3. Call procedures in CWM2_OLAP_HIERARCHY to define hierarchical relationships
for the dimension’s levels.

4. Call procedures in CWM2_OLAP_LEVEL to create levels and assign them to
hierarchies.

5. Call procedures in CWM2_OLAP_LEVEL_ATTRIBUTE to create level attributes
and assign them to dimension attributes.

6. Call procedures in CWM2_OLAP_TABLE_MAP to map the dimension’s levels and
level attributes to columns in a dimension table.

Constructing a Cube
Creating a cube entity is only the first step in constructing the OLAP metadata for a
cube. Each cube must have at least one dimension and at least one measure. More
typically, it will have multiple dimensions and multiple measures.

Procedure: Construct an OLAP Cube
The general steps for constructing a cube are as follows:

1. Follow the steps in "Procedure: Construct an OLAP Dimension" on page 13-3 to
create the cube’s dimensions.

2. Call procedures in CWM2_OLAP_CUBE to create the cube and identify its
dimensions.

3. Call procedures in CWM2_OLAP_MEASURE to create the cube’s measures.

4. Call procedures in CWM2_OLAP_TABLE_MAP to map the cube’s measures to
columns in a fact table and to map foreign key columns in the fact table to key
columns in the dimension tables.
Using the OLAP Catalog Metadata APIs 13-3

Mapping OLAP Metadata
Mapping OLAP Metadata
OLAP metadata mapping is the process of establishing the links between logical
metadata entities and the physical locations where the data is stored. Dimension
levels and level attributes map to columns in dimension tables. Measures map to
columns in fact tables. The mapping process also specifies the join relationships
between a fact table and its associated dimension tables.

Mapping to Columns
Each dimension level maps to one or more columns in a dimension table. All the
columns of a multicolumn level must be mapped within the same table. All the
levels of a dimension may be mapped to columns in the same table (a traditional
star schema), or the levels may be mapped to columns in separate tables (snowflake
schema).

The CWM2_OLAP_TABLE_MAP package contains the mapping procedures for CWM2
metadata. The MAP_DIMTBL_HIERLEVEL procedure maps a level of a given
hierarchy to columns in a dimension table. The MAP_DIMTBL_LEVEL procedure
maps a level with no hierarchical context to columns in a dimension table.

Each level attribute maps to a single column in the same table as its associated level.
The MAP_DIMTBL_HIERLEVELATTR maps a level attribute of a given hierarchy to a
column in a dimension table. The MAP_DIMTBL_LEVELATTR maps a level attribute
with no hierarchical context to a column in a dimension table.

Each measure maps to a single column in a fact table. All the measures mapped
within the same fact table must share the same dimensionality. The MAP_FACTTBL_
MEASURE procedure maps a measure to a column in a fact table.

Joining Fact Tables with Dimension Tables
Once you have mapped the levels, level attributes, and measures, you can specify
the mapping of logical foreign key columns in the fact table to level key columns in
dimension tables.

Note: The dimension tables and fact tables may be implemented
as views. For example, the views you can generate using the CWM2_
OLAP_AW_CREATE package may be the data source for OLAP
metadata. These views project an image of relational fact tables and
dimension tables over an analytic workspace, where the data
actually resides.
13-4 Oracle9i OLAP User’s Guide

Validating OLAP Metadata
The CWM2_OLAP_TABLE_MAP.MAP_FACTTBL_LEVELKEY procedure defines the
join relationships between a cube and its dimensions. This procedure takes as input:
the cube name, the fact table name, a mapping string, and a storage type indicator
specifying how data is stored in the fact table.

The storage type indicator can have any of the following values:

■ LOWEST LEVEL (Required in CWM, supported but not required in CWM2).
A single fact table stores unsolved data for all the measures of a cube. If any of
the cube’s dimensions have more than one hierarchy, they must all have the
same lowest level. Each foreign key column in the fact table maps to a level key
column in a dimension table.

■ ET (CWM2 only).
Fact tables store completely solved data (with embedded totals) for specific
hierarchies of the cube’s dimensions. Typically, the data for each combination of
hierarchies is stored in a separate fact table. Each fact table must have the same
columns. Multiple hierarchies in dimensions do not have to share the same
lowest level.

An embedded total key and a grouping ID key (GID) in the fact table map to
corresponding columns that identify a dimension hierarchy in a solved
dimension table. The ET key identifies the lowest level value present in a row.
The GID identifies the hierarchy level associated with each row. For more
information, see "Grouping ID Column" on page 9-6.

■ ROLLED UP (CWM2 only).
Same as for ET, but with key columns in the fact table for each level of each
dimension hierarchy. The presence of fully populated level keys in the fact table
facilitates aggregation at runtime.

Validating OLAP Metadata
To test the validity of OLAP metadata, use the VALIDATE_CUBE and VALIDATE_
DIMENSION procedures in the CWM2_OLAP_VALIDATE package. The validation
process checks the structural integrity of the metadata and verifies that it is properly
mapped to columns in tables or views.

Important: The validation process ensures that mapping
information has been properly specified. It does not ensure that the
source tables and columns still exist.
Using the OLAP Catalog Metadata APIs 13-5

Validating OLAP Metadata
You can determine whether or not a cube is valid by checking the INVALID column
of the ALL_OLAP2_CUBES view. You can determine whether or not a dimension is
valid by checking the INVALID column of the ALL_OLAP2_DIMENSIONS view.

Structural Validation
Structural validation ensures that cubes and dimensions have all their required
components parts.

Cubes
To be structurally valid, a cube must meet the following criteria:

■ It must have at least one valid dimension.

■ It must have at least one measure.

Dimensions
To be structurally valid, a dimension must meet the following criteria:

■ It must have at least one level.

■ It may have one or more hierarchies. Each hierarchy must have at least one
level.

■ It may have one or more dimension attributes. Each dimension attribute must
have at least one level attribute.

Mapping Validation
Mapping validation ensures that the metadata has been properly mapped to
columns in tables or views.

Cubes
To be valid, a cube’s mapping must meet the following criteria:

■ It must be mapped to one or more fact tables.

■ All of the cube’s measures must be mapped to columns in a fact table. If there
are multiple fact tables, all the measures must be in each one.

■ Every dimension/hierarchy combination must be mapped to one of the fact
tables.
13-6 Oracle9i OLAP User’s Guide

Invoking the Procedures
Dimensions
To be valid, a dimension’s mapping must meet the following criteria:

■ All levels must be mapped to columns in a dimension table.

■ Level attributes must be mapped to columns in the same table as the
corresponding levels.

Invoking the Procedures
When using the OLAP Catalog write API, you should be aware of logic and
conventions that are common to all the CWM2 procedures.

Security Checks and Error Conditions
Each CWM2 procedure first checks the calling user’s security privileges. The calling
user must be the entity owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception. For
example, if your identity is jsmith, you cannot successfully execute CWM2_OLAP_
HIERARCHY.DROP_HIERARCHY for a hierarchy owned by jjones.

After verifying the security requirements, each procedure checks for the existence of
the entity and of its parent entities. All procedures, except CREATE procedures,
return an error if the entity does not already exist. For example, if you call CWM2_
OLAP_LEVEL.SET_DESCRIPTION, and the level does not already exist, the
procedure will fail. Similarly, if you call CWM2_OLAP_MEASURE.SET_
DESCRIPTION and the measure exists but the parent cube does not exist, then the
procedure will fail.

Case Requirements for Parameters
You can specify arguments to CWM2 procedures in lower case, upper case, or mixed
case.

If the argument is a metadata entity name (for example, dimension_name) or a
value that will be used in further processing by other procedures (for example, the
solved_code of a hierarchy), the procedure converts the argument to upper case.
For all other arguments, the case that you specify is retained.

Creating and Saving Metadata
None of the procedures that create, map, and validate OLAP metadata include a
COMMIT. Your script should execute all the statements that create and map new
Using the OLAP Catalog Metadata APIs 13-7

Viewing OLAP Catalog Metadata
metadata, then validate the metadata by calling procedures in CWM2_OLAP_
VALIDATE, and finally do a COMMIT to commit the new metadata to the database.

However, if the metadata is specifically for the OLAPI API, you must refresh the
OLAP API Metadata Reader tables after validating the metadata. This procedure,
CWM2_OLAP_METADATA_REFRESH.MR_REFRESH, does include a COMMIT.

Viewing OLAP Catalog Metadata
A set of views, identified by the ALL_OLAP2 prefix, presents the metadata in the
OLAP Catalog. The metadata may have been created with the CWM2 PL/SQL
packages or with Enterprise Manager. The ALL_OLAP2 views are automatically
populated whenever changes are made to the metadata.

A second set of views, identified by the MRV_OLAP prefix, also presents OLAP
Catalog metadata. However, these views are structured specifically to support fast
querying by the OLAP API’s Metadata Reader. These views must be explicitly
refreshed whenever changes are made to the metadata.

Example: Creating OLAP Metadata for a Dimension Table

Example 13–1 Creating Metadata for a Dimension Table

In the Sales History sample schema, PRODUCTS is a dimension table with the
following columns:

See Also:

■ Chapter 14, "Viewing OLAP Catalog Metadata" for more
information on the ALL_OLAP2 views.

■ Chapter 24, "CWM2_OLAP_METADATA_REFRESH" for more
information on refreshing metadata tables for the OLAP API.

Column Name Data Type

PROD_ID NUMBER

PROD_NAME VARCHAR2

PROD_DESC VARCHAR2

PROD_SUBCATEGORY VARCHAR2

PROD_SUBCAT_DESC VARCHAR2
13-8 Oracle9i OLAP User’s Guide

Example: Creating OLAP Metadata for a Dimension Table
The following statements, excerpted from a PL/SQL script, create a logical CWM2
dimension, PRODUCT_DIM, for the PRODUCTS dimension table.

--- Create the PRODUCT Dimension ---
cwm2_olap_dimension.create_dimension(’SH’, ’PRODUCT_DIM’, ’Product’,
 ’Products’, ’Product Dimension’, ’Product Dimension Values’);

--- Create Dimension Attributes ---
cwm2_olap_dimension_attribute.create_dimension_attribute(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’Long Descriptions’,
 ’Long Desc’, ’Long Product Descriptions’, true);
cwm2_olap_dimension_attribute.create_dimension_attribute(’SH’, ’PRODUCT_DIM’,
 ’PROD_NAME_DIM’, ’Product Name’,
 ’Prod Name’, ’Product Name’);

--- Create STANDARD Hierarchy ---
cwm2_olap_hierarchy.create_hierarchy(’SH’, ’PRODUCT_DIM’, ’STANDARD’,
 ’Standard’, ’Std Product’, ’Standard Product Hierarchy’,
 ’Unsolved Level-Based’);

--- Create Levels ---
cwm2_olap_level.create_level(’SH’, ’PRODUCT_DIM’, ’L4’,
 ’Product ID’, ’Product Identifiers’,
 ’Prod Key’,’Product Key’);
cwm2_olap_level.create_level(’SH’, ’PRODUCT_DIM’, ’L3’,

PROD_CATEGORY VARCHAR2

PROD_CAT_DESC VARCHAR2

PROD_WEIGHT_CLASS NUMBER

PROD_UNIT_OF_MEASURE VARCHAR2

PROD_PACK_SIZE VARCHAR2

SUPPLIER_ID NUMBER

PROD_STATUS VARCHAR2

PROD_LIST_PRICE NUMBER

PROD_MIN_PRICE NUMBER

PROD_TOTAL VARCHAR2

Column Name Data Type
Using the OLAP Catalog Metadata APIs 13-9

Example: Creating OLAP Metadata for a Dimension Table
 ’Product Sub-Category’,’Product Sub-Categories’,
 ’Prod Sub-Category’, ’Sub-Categories of Products’);
cwm2_olap_level.create_level(’SH’, ’PRODUCT_DIM’, ’L2’,
 ’Product Category’, ’Product Categories’,
 ’Prod Category’, ’Categories of Products’);
cwm2_olap_level.create_level(’SH’, ’PRODUCT_DIM’, ’L1’,
 ’Total Product’, ’Total Products’,
 ’Total Prod’, ’Total Product’);

--- Create Level Attributes ---
cwm2_olap_level_attribute.create_level_attribute(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’L4’, ’Long Description’,
 ’PRODUCT_LABEL’, ’L4 Long Desc’,
 ’Long Labels for PRODUCT Identifiers’, TRUE);
cwm2_olap_level_attribute.create_level_attribute(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’L3’, ’Long Description’,
 ’SUBCATEGORY_LABEL’, ’L3 Long Desc’,
 ’Long Labels for PRODUCT Sub-Categories’, TRUE);
cwm2_olap_level_attribute.create_level_attribute(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’L2’, ’Long Description’,
 ’CATEGORY_LABEL’, ’L2 Long Desc’,
 ’Long Labels for PRODUCT Categories’, TRUE);
cwm2_olap_level_attribute.create_level_attribute(’SH’, ’PRODUCT_DIM’,
 ’PROD_NAME_DIM’, ’L4’, ’PROD_NAME_LEV’,
 ’Product Name’, ’Product Name’);

--- Add levels to hierarchies ---
cwm2_olap_level.add_level_to_hierarchy(’SH’, ’PRODUCT_DIM’, ’STANDARD’,
 ’L4’, ’L3’);
cwm2_olap_level.add_level_to_hierarchy(’SH’, ’PRODUCT_DIM’, ’STANDARD’,
 ’L3’, ’L2’);
cwm2_olap_level.add_level_to_hierarchy(’SH’, ’PRODUCT_DIM’, ’STANDARD’,
 ’L2’, ’L1’);
cwm2_olap_level.add_level_to_hierarchy(’SH’, ’PRODUCT_DIM’, ’STANDARD’,
 ’L1');

--- Create mappings ---
cwm2_olap_table_map.Map_DimTbl_HierLevel('SH', 'PRODUCT_DIM',
 'STANDARD', 'L4',
 'SH', 'PRODUCTS', 'PROD_ID');
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr('SH', 'PRODUCT_DIM',
 'Long Description', 'STANDARD', 'L4', 'Long Description', 'SH',
 'PRODUCTS', 'PROD_DESC');
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr('SH', 'PRODUCT_DIM',
 'PROD_NAME_DIM', 'STANDARD', 'L4', 'PROD_NAME_LEV', 'SH',
13-10 Oracle9i OLAP User’s Guide

Example: Creating OLAP Metadata for a Fact Table
 ’PRODUCTS’, ’PROD_NAME’);
cwm2_olap_table_map.Map_DimTbl_HierLevel(’SH’, ’PRODUCT_DIM’,
 ’STANDARD’, ’L3’,’SH’, ’PRODUCTS’, ’PROD_SUBCATEGORY’);
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’STANDARD’, ’L3’, ’Long Description’, ’SH’,
 ’PRODUCTS’, ’PROD_SUBCAT_DESC’);
cwm2_olap_table_map.Map_DimTbl_HierLevel(’SH’, ’PRODUCT_DIM’,
 ’STANDARD’, ’L2’,’SH’, ’PRODUCTS’, ’PROD_CATEGORY’);
cwm2_olap_table_map.Map_DimTbl_HierLevelAttr(’SH’, ’PRODUCT_DIM’,
 ’Long Description’, ’STANDARD’, ’L2’, ’Long Description’, ’SH’,
 ’PRODUCTS’, ’PROD_CAT_DESC’);
cwm2_olap_table_map.Map_DimTbl_HierLevel(’SH’, ’PRODUCT_DIM’,
 ’STANDARD’, ’L1’,’SH’, ’PRODUCTS’, ’PROD_TOTAL’);

Example: Creating OLAP Metadata for a Fact Table
In the Sales History sample schema, COSTS is a fact table with the following
columns.I

The following statements create a logical CWM2 cube object, ANALYTIC_CUBE, for
the COSTS fact table. The dimensions of the cube are: PRODUCT_DIM, shown in
"Example: Creating OLAP Metadata for a Dimension Table" on page 13-8, and
TIME_DIM, a time dimension mapped to a table TIME.

--- Create the ANALYTIC_CUBE Cube ---
cwm2_olap_cube.create_cube(’SH’, ’ANALYTIC_CUBE’, ’Analytics’,
 ’Analytic Cube’,’Unit Cost and Price Analysis’);

--- Add the dimensions to the cube ---
cwm2_olap_cube.add_dimension_to_cube(’SH’, ’ANALYTIC_CUBE’,
 ’SH’, ’TIME_DIM’);
cwm2_olap_cube.add_dimension_to_cube(’SH’, ’ANALYTIC_CUBE’,
 ’SH’, ’PRODUCT_DIM’);

--- Create the measures ---

Column Name Data Type

PROD_ID NUMBER

TIME_ID DATE

UNIT_COST NUMBER

UNIT_PRICE NUMBER
Using the OLAP Catalog Metadata APIs 13-11

Example: Creating OLAP Metadata for a Fact Table
cwm2_olap_measure.create_measure(’SH’, ’ANALYTIC_CUBE’, ’UNIT_COST’,
 ’Unit Cost’,’Unit Cost’, ’Unit Cost’);
cwm2_olap_measure.create_measure(’SH’, ’ANALYTIC_CUBE’, ’UNIT_PRICE’,
 ’Unit Price’,’Unit Price’, ’Unit Price’);

--- Create the mappings ---
cwm2_olap_table_map.Map_FactTbl_LevelKey
 (’SH’, ’ANALYTIC_CUBE’,’SH’, ’COSTS’, ’LOWEST LEVEL’,
 ’DIM:SH.PRODUCTS/HIER:STANDARD/LVL:L4/COL:PROD_ID;
 DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH;’);
cwm2_olap_table_map.Map_FactTbl_Measure
 ('SH', 'ANALYTIC_CUBE',’UNIT_COST’, 'SH', 'COSTS', 'UNIT_COST',
 'DIM:SH.PRODUCTS/HIER:STANDARD/LVL:L4/COL:PROD_ID;
 DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH;');
cwm2_olap_table_map.Map_FactTbl_Measure
 ('SH', 'ANALYTIC_CUBE',’UNIT_PRICE’, 'SH', 'COSTS', 'UNIT_PRICE',
 'DIM:SH.PRODUCTS/HIER:STANDARD/LVL:L4/COL:PROD_ID;
 DIM:SH.TIME/HIER:CALENDAR/LVL:L3/COL:MONTH;');
13-12 Oracle9i OLAP User’s Guide

Viewing OLAP Catalog M
14

Viewing OLAP Catalog Metadata

This chapter describes the OLAP Catalog metadata views. All OLAP metadata,
whether created with the CWM2 PL/SQL packages or with Enterprise Manager, is
presented in these views.

This chapter discusses the following topics:

■ Access to OLAP Catalog Views

■ Views of the Dimensional Model

■ Views of Mapping Information

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".

Note: A second set of views, called the OLAP API Metadata
Reader views, presents much of the same information as the OLAP
Catalog views. The Metadata Reader views are structured to
facilitate fast queries by the OLAP API. See Chapter 24 for more
information.
etadata 14-1

Access to OLAP Catalog Views
Access to OLAP Catalog Views
The OLAP Catalog read API consists of two sets of corresponding views:

■ ALL_ views displaying all valid OLAP metadata accessible to the current user.

■ DBA_ views displaying all OLAP metadata (both valid and invalid) in the entire
database. DBA_ views are intended only for administrators.

The columns of the ALL_ and DBA_ views are identical. Only the ALL_ views are
listed in this chapter.

Note: The OLAP Catalog tables are owned by OLAPSYS. To create
OLAP metadata in these tables, the user must have the OLAP_DBA
role.
14-2 Oracle9i OLAP User’s Guide

Views of the Dimensional Model
Views of the Dimensional Model
The following views show the basic dimensional model of OLAP metadata.

For more information on the logical model, see Chapter 4, "Designing Your
Database for OLAP".

Table 14–1 OLAP Catalog Dimensional Model Views

View Name Synonym Description

ALL_OLAP2_CUBES Lists all cubes in an Oracle instance.

 ALL_OLAP2_CUBE_MEASURES Lists the measures within each cube.

 ALL_OLAP2_CUBE_DIM_USES Lists the dimensions within each cube.

 ALL_OLAP2_CUBE_MEAS_DIM_USES Shows how each measure is aggregated along each of its
dimensions.

ALL_OLAP2_DIMENSIONS Lists all OLAP dimensions in an Oracle instance.

 ALL_OLAP2_DIM_HIERARCHIES Lists the hierarchies within each dimension.

 ALL_OLAP2_DIM_LEVELS Lists the levels within each dimension.

 ALL_OLAP2_DIM_ATTRIBUTES Lists the dimension attributes within each dimension.

 ALL_OLAP2_DIM_LEVEL_ATTRIBUTES Lists the level attributes within each level.

 ALL_OLAP2_DIM_ATTR_USES Shows how level attributes are associated with each
dimension attribute.

 ALL_OLAP2_DIM_HIER_LEVEL_USES Show how levels are ordered within each hierarchy.

ALL_OLAP2_CATALOGS List all measure folders (catalogs) within the Oracle
instance.

 ALL_OLAP2_CATALOG_ENTITY_USES Lists the measures within each measure folder.

 ALL_OLAP2_ENTITY_DESC_USES Lists the reserved attributes that have application-specific
meanings. Examples are dimension attributes that are
used for long and short descriptions and time-series
calculations (end date, time span, period ago, and so on).
Viewing OLAP Catalog Metadata 14-3

Views of Mapping Information
Views of Mapping Information
The following views show how the basic dimensional model is mapped to relational
tables or views.

Table 14–2 OLAP Catalog Mapping Views

View Synonym Name Description

ALL_OLAP2_CUBE_MEASURE_MAPS Shows the mapping of each measure to a column.

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS Shows the mapping of each level attribute to a column.

ALL_OLAP2_LEVEL_KEY_COLUMN_USES Shows the mapping of each level to a unique key column.

ALL_OLAP2_JOIN_KEY_COLUMN_USES Shows the joins between two levels in a hierarchy.

ALL_OLAP2_HIER_CUSTOM_SORT Shows the default sort order for level columns within
hierarchies.

ALL_OLAP2_FACT_TABLE_GID Shows the Grouping ID column for each hierarchy in each
fact table.

ALL_OLAP2_FACT_LEVEL_USES Shows the joins between dimension tables and fact tables in a
star or snowflake schema.
14-4 Oracle9i OLAP User’s Guide

ALL_OLAP2_CUBE_MEASURES
ALL_OLAP2_CUBES
ALL_OLAP2_CUBES lists all cubes in an Oracle instance.

ALL_OLAP2_CUBE_MEASURES
ALL_OLAP2_CUBE_MEASURES lists the measures within each cube.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

INVALID VARCHAR2(2) NOT NULL Whether or not this cube is in an invalid state. See "Validating
OLAP Metadata" on page 13-5.

DISPLAY_NAME VARCHAR2(30) Display name for the cube.

DESCRIPTION VARCHAR2(2000) Description of the cube.

MV_SUMMARYCODE VARCHAR2(2) If this cube has an associated materialized view, the MV
summary code specifies whether it is in Grouping Set
(groupingset) or Rolled Up (rollup) form.

See Chapter 10, "Creating Materialized Views for the
OLAP API".

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube that contains the measure.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that contains the measure.

MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DISPLAY_NAME VARCHAR2(30) Display name for the measure.

DESCRIPTION VARCHAR2(2000) Description of the measure.
Viewing OLAP Catalog Metadata 14-5

ALL_OLAP2_CUBE_DIM_USES
ALL_OLAP2_CUBE_DIM_USES
ALL_OLAP2_CUBE_DIM_USES lists the dimensions within each cube.

A dimension may be associated more than once with the same cube, but each
association is specified in a separate row, under its own unique dimension alias.

ALL_OLAP2_CUBE_MEAS_DIM_USES
ALL_OLAP2_CUBE_MEAS_DIM_USES shows how each measure is aggregated along
each of its dimensions. The default aggregation method is addition.

Column Data Type NULL Description

CUBE_DIMENSION_USE_ID NUMBER NOT NULL ID of the association between a cube and a dimension.

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DIMENSION_ALIAS VARCHAR2(30) Alias of the dimension, to provide unique identity of
dimension use within the cube.

DEFAULT_CALC_
HIERARCHY_NAME

VARCHAR2(30) The default hierarchy to be used for drilling up or down
within the dimension.

DEPENDENT_ON_DIM_USE_
ID

NUMBER ID of the cube/dimension association on which this
cube/dimension association depends.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube that contains this measure.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that contain this measure.

MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DIMENSION_OWNER VARCHAR2(30) NOT NULL Owner of a dimension associated with this measure.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DIMENSION_ALIAS VARCHAR2(30) Alias of the dimension.

DEFAULT_AGGR_
FUNCTION_USE_ID

NUMBER The default aggregation method used to aggregate this measure’s
data over this dimension. If this column is null, the aggregation
method is addition.
14-6 Oracle9i OLAP User’s Guide

ALL_OLAP2_DIMENSIONS
ALL_OLAP2_DIMENSIONS
ALL_OLAP2_DIMENSIONS lists all the OLAP dimensions in the Oracle instance.

OLAP dimensions created with the CWM2 APIs have no association with database
dimension objects. OLAP dimensions created in Enterprise Manager are based on
database dimension objects.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

PLURAL_NAME VARCHAR2(30) Plural name for the dimension. Used for display.

DISPLAY_NAME VARCHAR2(30) Display name for the dimension.

DESCRIPTION VARCHAR2(2000) Description of the dimension.

DEFAULT_DISPLAY_
HIERARCHY

VARCHAR2(30) NOT NULL Default display hierarchy for the dimension.

INVALID VARCHAR2(1) NOT NULL Whether or not the dimension is valid. See "Validating OLAP
Metadata" on page 13-5

DIMENSION_TYPE VARCHAR2(10) Not used.
Viewing OLAP Catalog Metadata 14-7

ALL_OLAP2_DIM_HIERARCHIES
ALL_OLAP2_DIM_HIERARCHIES
ALL_OLAP2_DIM_HIERARCHIES lists the hierarchies within each dimension.

ALL_OLAP2_DIM_LEVELS
ALL_OLAP2_DIM_LEVELS lists the levels within each dimension.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DISPLAY_NAME VARCHAR2(30) Display name for the hierarchy.

DESCRIPTION VARCHAR2(2000) Description of the hierarchy.

SOLVED_CODE VARCHAR2(2) NOT NULL The solved code may be one of the following:

UNSOLVED LEVEL-BASED, for a hierarchy that contains no
embedded totals and is stored in a level-based dimension
table.
SOLVED LEVEL-BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table.

SOLVED VALUE-BASED, for a hierarchy that contains
embedded totals for all level combinations and is stored
in a parent-child dimension table.

For information about mapping hierarchies with
different solved codes, see "Joining Fact Tables with
Dimension Tables" on page 13-4.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension containing this level.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension containing this level.

LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

DISPLAY_NAME VARCHAR2(30) Display name for the level.

DESCRIPTION VARCHAR2(2000) Description of the level.

LEVEL_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table that contains the columns
for this level.
14-8 Oracle9i OLAP User’s Guide

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
ALL_OLAP2_DIM_ATTRIBUTES
ALL_OLAP2_DIM_ATTRIBUTES lists the dimension attributes within each
dimension.

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES lists the level attributes within each level.

LEVEL_TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table that contains the columns for
this level.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

ATTRIBUTE_NAME VARCHAR2(30) NOT NULL Name of the dimension attribute.

DISPLAY_NAME VARCHAR2(30) Display name for the dimension attribute.

DESCRIPTION VARCHAR2(2000) Description of the dimension attribute.

DESC_ID NUMBER If the attribute is reserved, its type is listed in this column.
Examples of reserved dimension attributes are long and short
descriptions and time-related attributes, such as end date, time
span, and period ago.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension containing the level.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension containing the level.

ATTRIBUTE_NAME VARCHAR2(30) Name of the level attribute. If no attribute name is specified, the
column name is used.

DISPLAY_NAME VARCHAR2(30) Display name for the level attribute.

DESCRIPTION VARCHAR2(2000) Description of the level attribute.

DETERMINED_BY_
LEVEL_NAME

VARCHAR2(30) NOT NULL Name of the level.

Column Data Type NULL Description
Viewing OLAP Catalog Metadata 14-9

ALL_OLAP2_DIM_ATTR_USES
ALL_OLAP2_DIM_ATTR_USES
ALL_OLAP2_DIM_ATTR_USES shows how level attributes are associated with each
dimension attribute.

The same level attribute can be included in more than one dimension attribute.

ALL_OLAP2_DIM_HIER_LEVEL_USES
ALL_OLAP2_DIM_HIER_LEVEL_USES shows how levels are ordered within each
hierarchy.

Within separate hierarchies, the same parent level may be hierarchically related to a
different child level.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DIM_ATTRIBUTE_
NAME

VARCHAR2(30) NOT NULL Name of the dimension attribute.

LEVEL_NAME VARCHAR2(30) NOT NULL Name of a level within the dimension.

LVL_ATTRIBUTE_
NAME

VARCHAR2(30) NOT NULL Name of an attribute for this level. This level attribute is
included in the dimension attribute.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

PARENT_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the parent level.

CHILD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the child level.

POSITION NUMBER NOT NULL Position of this parent-child relationship within the hierarchy,
with position 1 being the most detailed.
14-10 Oracle9i OLAP User’s Guide

ALL_OLAP2_ENTITY_DESC_USES
ALL_OLAP2_CATALOGS
ALL_OLAP2_CATALOGS lists all the measure folders (catalogs) within the Oracle
instance.

ALL_OLAP2_CATALOG_ENTITY_USES
ALL_OLAP2_CATALOG_ENTITY_USES lists the measures within each measure
folder.

ALL_OLAP2_ENTITY_DESC_USES
ALL_OLAP2_ENTITY_DESC_USES lists the reserved attributes and shows whether
or not dimensions are time dimensions.

Column Data Type NULL Description

CATALOG_ID NUMBER NOT NULL ID of the measure folder.

CATALOG_NAME VARCHAR2(30) NOT NULL Name of the measure folder.

PARENT_CATALOG_ID NUMBER ID of the parent measure folder. This column is null for
measure folders at the root of the measure folder tree.

DESCRIPTION VARCHAR2(2000) Description of the measure folder.

Column Data Type NULL Description

CATALOG_ID NUMBER NOT NULL ID of the measure folder.

ENTITY_OWNER VARCHAR2(30) NOT NULL Owner of the measure’s cube.

ENTITY_NAME VARCHAR2(30) NOT NULL Name of the measure’s cube.

CHILD_ENTITY_NAME VARCHAR2(30) NOT NULL Name of the measure in the measure folder.

Column Data Type NULL Description

DESCRIPTOR_ID NUMBER NOT NULL Name of the reserved attribute or dimension type.

The reserved dimension attributes are listed in Table 19–1,
" Reserved Dimension Attributes" on page 19-2.

The reserved level attributes are listed in Table 22–1, " Reserved
Level Attributes" on page 22-2.

ENTITY_OWNER VARCHAR2(30) NOT NULL Owner of the metadata entity.

ENTITY_NAME VARCHAR2(30) NOT NULL Name of the metadata entity.
Viewing OLAP Catalog Metadata 14-11

ALL_OLAP2_CUBE_MEASURE_MAPS
ALL_OLAP2_CUBE_MEASURE_MAPS
ALL_OLAP2_CUBE_MEASURE_MAPS shows the mapping of each measure to a
column.

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS
ALL_OLAP2_DIM_LEVEL_ATTR_MAPS shows the mapping of each level attribute
to a column.

The mapping of level attributes to levels is dependent on hierarchy. The same level
may have different attributes when it is used in different hierarchies.

CHILD_ENTITY_NAME VARCHAR2(30) Name of the child entity (if applicable). A dimension attribute is
a child entity of a dimension. A level attribute is a child entity of
a dimension attribute.

SECONDARY_CHILD_
ENTITY_NAME

VARCHAR2(30) Name of the secondary child entity name (if applicable). A
dimension attribute is a child entity of a dimension. A level
attribute is a child entity of a dimension attribute. A level
attribute could be the secondary child entity of a dimension.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure contained in this cube.

DIM_HIER_COMBO_ID NUMBER NOT NULL ID of the association between this measure and one combination
of its dimension hierarchies.

FACT_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column in the fact table where this measure’s data is
stored.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) Name of the hierarchy containing this level.

Column Data Type NULL Description
14-12 Oracle9i OLAP User’s Guide

ALL_OLAP2_LEVEL_KEY_COLUMN_USES
ALL_OLAP2_LEVEL_KEY_COLUMN_USES
ALL_OLAP2_LEVEL_KEY_COLUMN_USES shows the mapping of each level to a
unique key column.

If the level is mapped to more than one column, each column mapping is
represented in a separate row in the view.

ATTRIBUTE_NAME VARCHAR2(30) Name of a dimension attribute grouping containing this level
attribute.

LVL_ATTRIBUTE_
NAME

VARCHAR2(30) NOT NULL Name of the level attribute, or name of the column if the level
attribute name is not specified.

LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table containing the level and level
attribute.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table containing the level and level
attribute columns.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column containing the level attribute.

DTYPE VARCHAR2(10) NOT NULL Data type of the column containing the level attribute.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) Name of the hierarchy that includes this level.

CHILD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column that stores CHILD_LEVEL_NAME.

POSITION NUMBER Position of the column within the key. Applies to multi-column
keys only (where the level is mapped to more than one column).

Column Data Type NULL Description
Viewing OLAP Catalog Metadata 14-13

ALL_OLAP2_JOIN_KEY_COLUMN_USES
ALL_OLAP2_JOIN_KEY_COLUMN_USES
ALL_OLAP2_JOIN_KEY_COLUMN_USES shows the joins between two levels in a
hierarchy. The joins are between dimension tables in a snowflake schema, and
between level columns in a star schema.

If the level is mapped to more than one column, each column mapping is
represented in a separate row in the view.

ALL_OLAP2_HIER_CUSTOM_SORT
ALL_OLAP2_HIER_CUSTOM_SORT shows the sort order for level columns within
hierarchies. Custom sorting information is optional.

Custom sorting information specifies how to sort the members of a hierarchy based
on columns in the dimension table. The specific columns in the dimension tables
may be the same as the key columns or may be related attribute columns.

Custom sorting can specify that the column be sorted in ascending or descending
order, with nulls first or nulls last. Custom sorting can be applied at multiple levels
of a dimension.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

CHILD_LEVEL_NAME VARCHAR2(30) NOT NULL Child level in the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the child level column in the dimension table. In a star
schema, this is the column associated with CHILD_LEVEL_
NAME. In a snowflake schema, this is the parent column of
CHILD_LEVEL_NAME in the same dimension table.

POSITION NUMBER Position of column within the key. Applies to multi-column
keys only (where the level is mapped to more than one column).

JOIN_KEY_TYPE VARCHAR2(30) NOT NULL The key is of type SNOWFLAKE if the join key is a logical foreign
key. The key is of type STAR if the join key refers to a column
within the same table.
14-14 Oracle9i OLAP User’s Guide

ALL_OLAP2_FACT_TABLE_GID
ALL_OLAP2_FACT_TABLE_GID
ALL_OLAP2_FACT_TABLE_GID shows the Grouping ID column for each hierarchy
in each fact table. For more information, see "Grouping ID Column" on page 9-6.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HIERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column to be sorted.

POSITION NUMBER NOT NULL Represents the position within a multi-column SORT_
POSITION. In most cases, a single column represents SORT_
POSITION, and the value of POSITION is 1.

SORT_POSITION NUMBER NOT NULL Position within the sort order of the level to be sorted.

SORT_ORDER VARCHAR2(4) NOT NULL Sort order. Can be either Ascending or Descending.

NULL_ORDER VARCHAR2(5) NOT NULL Where to insert null values in the sort order. Can be either
Nulls First or Nulls Last.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME VARCHAR2(30) NOT NULL Name of the dimension

HIERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DIM_HIER_COMBO_ID NUMBER NOT NULL ID of the dimension-hierarchy association.

FACT_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the GID column.
Viewing OLAP Catalog Metadata 14-15

ALL_OLAP2_FACT_LEVEL_USES
ALL_OLAP2_FACT_LEVEL_USES
ALL_OLAP2_FACT_LEVEL_USES shows the joins between dimension tables and
fact tables in a star or snowflake schema. For more information, see "Joining Fact
Tables with Dimension Tables" on page 13-4.

.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DIMENSION_OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DIMENSION_NAME NUMBER NOT NULL Name of the dimension.

DIMENSION_ALIAS VARCHAR2(30) Dimension alias (if applicable).

HIERARCHY_NAME NOT NULL Name of the hierarchy.

DIM_HIER_COMBO_ID NUMBER NOT NULL ID of the dimension hierarchy combination associated with this
fact table.

LEVEL_NAME VARCHAR2(30) Name of the level within the hierarchy where the mapping
occurs.

FACT_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the foreign key column in the fact table.

POSITION NUMBER Position of this column within a multi-column key.

DIMENSION_KEYMAP_
TYPE

VARCHAR2(30) NOT NULL Type of key mapping for the fact table. Values may be:

LL (Lowest Level), when only lowest-level dimension members
are stored in the key column. The fact table is unsolved.

ET (Embedded Totals), when dimension members for all level
combinations are stored in the key column. The fact table is
solved (contains embedded totals for all level combinations).

RU (Rolled Up), when dimension members for each level are
stored in a separate key column (multi-column key).

FOREIGN_KEY_NAME VARCHAR2(30) Name of the foreign key constraint applied to the foreign key
column. Constraints are not used by the CWM2 APIs.
14-16 Oracle9i OLAP User’s Guide

CWM2_OLAP_AW
15

CWM2_OLAP_AW_ACCESS

The CWM2_OLAP_AW_ACCESS package contains procedures for generating scripts
that create views of analytic workspace objects. After running the scripts and
creating the views, you can use standard SQL to access data stored in the analytic
workspace. You can also use the views to define OLAP metadata so that OLAP API
applications can access the multidimensional objects.

This chapter contains the following topics:

■ When to Use the AW_ACCESS Package

■ Process Overview

■ Preparing the Analytic Workspace

■ Specifying the Source and Target Objects

■ Example: Creating Views

■ Summary of CWM2_OLAP_AW_ACCESS Subprograms

See Also:

■ Chapter 2, "Manipulating Multidimensional Data" for a
discussion of analytic workspaces and the OLAP DML.

■ Chapter 3, "Developing OLAP Applications" for information
about how this package fits into the process of preparing a
database for use with OLAP applications.

■ Chapter 9, "Creating an Analytic Workspace From Relational
Tables" for information on creating SQL access for analytic
workspaces created by AW_CREATE.
_ACCESS 15-1

When to Use the AW_ACCESS Package
When to Use the AW_ACCESS Package
If your analytic workspace was created by the CWM2_AW_CREATE package, you will
use procedures in that package to generate the views of the workspace. Those
procedures depend on structures within the analytic workspace that are specific to
AW_CREATE.

If your analytic workspace was created by some other means (OLAP Worksheet or
the DBMS_AW package), you can use the CWM2_AW_ACCESS package to generate the
views. CWM2_AW_ACCESS is essentially a wrapper for the OLAP_TABLE function.

Prerequisites
The utl_file_dir parameter must be set to a valid directory, as described in
"Initialization Parameters for Oracle OLAP" on page 6-3. Otherwise, the procedures
in CWM2_OLAP_AW_ACCESS will not be able to write the SQL scripts to a file.

Process Overview
These are the basic steps you need to follow to generate views of data stored in an
analytic workspace. They are described more fully throughout this chapter.

1. Explore the analytic workspace and identify the objects that you want to expose
in a relational view.

2. For each view, create a text file that defines the mapping between analytic
workspace objects and columns in the view.

If you intend to create OLAP Catalog metadata, then you need to generate
views that form a star schema, that is, fact views and dimension views. For
more information about OLAP Catalog schema requirements, refer to
Chapter 4, "Designing Your Database for OLAP".

3. In PL/SQL, execute the CreateAWAccessStructures_FR procedure for each
input text file.

Tip: Create a script that executes these procedures.

See Also:

■ Chapter 12, "OLAP_TABLE".

■ Chapter 9, "Creating an Analytic Workspace From Relational
Tables" for information on creating SQL access for analytic
workspaces created by AW_CREATE.
15-2 Oracle9i OLAP User’s Guide

Preparing the Analytic Workspace
4. Use a text editor to view the resulting scripts and make whatever changes you
wish.

5. In PL/SQL, run the scripts.

6. If errors are triggered, do the following:

a. Identify and fix the problems in the input files.

b. Delete the script files.

CreateAWAccessStructures_FR will not overwrite an existing output
file. If you created a script to execute this procedure on each of your input
files, you may want to begin that script by deleting existing output files.

c. Regenerate the script files.

7. In PL/SQL, select data from the views to verify that they work properly. Errors
at this stage are caused by problems in the definition of the workspace objects.

If necessary, correct the errors and regenerate the views.

8. When no errors occur, commit the views to the database.

9. Change the access protection of the views with commands such as this:

GRANT SELECT ON VIEW electro_product_view TO PUBLIC

Preparing the Analytic Workspace
The CWM2_OLAP_AW_ACCESS package can expose various types of analytic
workspace objects in relational views. You will need to gather information about
these objects and decide how you are going to map them to the columns of a
relational view. These are the steps you might take:

1. Identify the measures that you want to make available to applications.

2. Identify the dimensions of the measures.

3. For hierarchical dimensions, identify the objects that support the hierarchy:

■ Parent relation

■ Hierarchy dimension

■ Inhierarchy variable

4. Identify the dimension attributes, which are objects that provide additional
information about the dimensions.
CWM2_OLAP_AW_ACCESS 15-3

Specifying the Source and Target Objects
5. If you plan to create OLAP Catalog metadata, be sure that you have a GID
needed by the OLAP API. For a description of this object, refer to Chapter 12,
"OLAP_TABLE".

Specifying the Source and Target Objects
A delimited text string specifies multidimensional source objects in the analytic
workspace and maps them to target columns in a relational view. You can supply
this delimited text string either in files (as described in
"CreateAWAccessStructures_FR Procedure" on page 15-17) or directly in the
command line (as described in "CreateAWAccessStructures Procedure" on
page 15-18).

Each source and target object is defined by a keyword followed by one or more
values. Two colons (:) delimit the keywords and values. In the following example,
MEASURE is a keyword, and sales and costs are the names of measures in the
analytic workspace.

MEASURE::sales::costs

When you provide mapping information in a text file, each keyword begins a new
line:

MEASURE::sales::costs
MEASURE COLUMNS::sales::costs

When you provide mapping information directly in the command line, a semicolon
delimits the individual object specifications:

MEASURE::sales::costs;MEASURE COLUMNS::sales::costs

Each call to one of these procedures generates a single view. For example, to create
one fact view and three dimension views, you must execute the procedure four
times. If you are supplying input files for the mapping information, then you must
create four files, one for each view that you want to generate.

Note: If you are creating views that will be accessed directly using
SQL, then you can structure the views in whatever way is
appropriate for your application.

If you will use the views to create OLAP Catalog metadata, then
you must create a star schema with measure views and dimension
views as described in this chapter.
15-4 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects
Defining Dimension Views
For a star schema, you must define a dimension view for every hierarchy of every
dimension of the fact view. A flat dimension, that is, one with no hierarchies,
requires a single dimension view.

Since each call to one of these procedures generates a single view, you must create a
separate mapping file for each one. For example, if the GEOGRAPHY dimension has
two hierarchies, then you need to create two mapping files.

Table 15–1 describes the keywords that identify the source data in an analytic
workspace that will be used to create a dimension view. The object naming
conventions used by AW_CREATE are provided in the description of the source data.
Table 15–2 describes the keywords that specify the target columns in the generated
database dimension view. Enter these keywords in the same input file. Some of
these keywords are required and others are optional. DIMENSION must be the first
keyword. The

Table 15–1 Keywords for Defining the Source Data for a Dimension View

Keyword Description

DIMENSION A workspace DIMENSION, which dimensions the
measures in the fact view, as described in
"Dimensions" on page 12-3. This keyword must
appear first. Required.

AW_CREATE name: [owner_]dimension

HIERARCHY A workspace RELATION that identifies the parent
value for each dimension value in the hierarchy, as
described in "Hierarchies" on page 12-3. Required
for hierarchical dimensions.

AW_CREATE name: [owner_]dimension_PARENTREL

IN HIERARCHY A workspace VARIABLE with a BOOLEAN data type
that identifies whether or not each value of
DIMENSION is included in the hierarchy, as
described in "In-Hierarchy Variables" on page 12-5.
Required only when some dimension members are
omitted from the hierarchy.

AW_CREATE name:
[owner_]dimension_INHIERARCHY
CWM2_OLAP_AW_ACCESS 15-5

Specifying the Source and Target Objects
HIERARCHY DIMENSION The workspace DIMENSION that contains the names
of the hierarchies, as described in "Hierarchy
Dimensions" on page 12-4. Required only if more
than one hierarchy is defined for DIMENSION.

AW_CREATE name: [owner_]dimension_HIERDIM

HIERARCHY DIMENSION VALUE The dimension member in the HIERARCHY
DIMENSION object that identifies the hierarchy.
Required only if HIERARCHY DIMENSION is
specified.

GID A workspace VARIABLE with an INTEGER data type
that identifies the hierarchy level of each dimension
value. Use the GROUPINGID command to generate
this variable, as described in "Grouping IDs" on
page 12-6. Improves performance of the OLAP API.

AW_CREATE name: [owner_]dimension_GID

PARENT GID The same GID variable used with the GID keyword.
Parent grouping IDs will be generated automatically
from the GID variable.

ATTRIBUTES One or more workspace VARIABLE objects that
contain descriptive information about the dimension
members, as described in "Attributes" on page 12-8.
Optional.

AW_CREATE name: [owner_]dimension_attribute

COLUMN LEVEL DIMENSION A workspace DIMENSION whose values identify the
levels of a cube dimension, and which dimensions
the COLUMN LEVEL RELATION object. Required for
hierarchical dimensions.

AW_CREATE name: [owner_]dimension_LVLDIM

COLUMN LEVEL RELATION A workspace RELATION with a value for each level
in the hierarchy. The HIERHEIGHT command in the
OLAP DML generates the values of this relation.
Required for hierarchical dimensions.

AW_CREATE name: [owner_]dimension_FAMILYREL

Table 15–1 (Cont.) Keywords for Defining the Source Data for a Dimension View

Keyword Description
15-6 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects
Important: When listing the keywords for the target columns, you
must list DIMENSION COLUMN, PARENT COLUMN, and GID
COLUMN in that order. All column names must comply with Oracle
requirements.

Table 15–2 Keywords for Defining the Target Columns for a Dimension View

Keyword Description

DIMENSION COLUMN A valid name for the column that will represent
dimension values from DIMENSION. Required.

PARENT COLUMN A valid name for the column that will represent the
parent value for each dimension value. Required for
hierarchical dimensions.

GID COLUMN A valid name for the column that will represent the
grouping IDs from GID. Required for hierarchical
dimensions.

PARENT GID COLUMN A valid name for the column that will represent the
calculated parent grouping IDs. Optional.

DIMENSION DATATYPES The data types of the previously specified columns,
as follows:

First value: DIMENSION COLUMN

Second value: PARENT COLUMN

Third value: GID COLUMN

Fourth value: PARENT GID

Required for each defined column.

For information about compatible workspace and
database data types, search for the SQL FETCH
command in the Oracle9i OLAP DML Reference
help.

LEVEL COLUMNS Valid names for the columns that represent level
values. You must identify a column for each value in
COLUMN LEVEL DIMENSION. For example, if the
level dimension has four values, then you must
define four columns. Required for hierarchical
dimensions.
CWM2_OLAP_AW_ACCESS 15-7

Specifying the Source and Target Objects
Defining Fact Views
You can create a single group of views for several measures if they are dimensioned
identically, as described in "Measures" on page 12-3.

For the OLAP API, you need to create one view for each combination of dimension
hierarchies. The views must contain columns for the measures themselves and the
dimension values that qualify this data. You can copy statements from the input
files for dimension views into the input files for fact views.

Create input files (or text strings) that includes the following keywords:

■ All of the keywords in Table 15–3. They must appear in the order shown at the
beginning, before keywords for the dimensions.

■ The following keywords from Table 15–1, " Keywords for Defining the Source
Data for a Dimension View" if they appear in the input file for the dimension
view: DIMENSION, HIERARCHY, IN HIERARCHY, and GID. If you wish to create
a denormalized view for use by SQL applications, you can include additional
keywords.

LEVEL DATATYPES The data types of the columns listed in LEVEL
COLUMNS. The data types must correspond in
number and order to the columns listed in LEVEL
COLUMNS, that is, the first column will be defined
with the first data type, the second column will be
defined with the second data type, and so forth.
Required when LEVEL COLUMNS is specified.

ATTRIBUTE COLUMNS Valid names for the columns that represent attribute
values. The columns must correspond in number
and order to the variables listed in ATTRIBUTES,
that is, the first column will represent the first
variable, the second column will represent the
second variable, and so forth. Optional.

ATTRIBUTE DATATYPES The data type of the columns listed in ATTRIBUTE
COLUMNS. The data types must correspond in
number and order to the columns listed in
ATTRIBUTE COLUMNS, that is, the first column will
be defined with the first data type, the second
column will be defined with the second data type,
and so forth. Required when ATTRIBUTE COLUMNS
is specified.

Table 15–2 (Cont.) Keywords for Defining the Target Columns for a Dimension View

Keyword Description
15-8 Oracle9i OLAP User’s Guide

Example: Creating Views
■ Keywords from Table 15–2, " Keywords for Defining the Target Columns for a
Dimension View" that correspond to the source data keywords. The OLAP API
uses the DIMENSION and GID columns in the fact views, and uses the
dimension views for all other information about the dimensions. Thus, you
only need to define columns for the dimension members and the GIDs.

Table 15–3 lists the keywords that map workspace measures to columns in a fact
view.

Example: Creating Views
This example creates fact views and dimension views for two variables, sales and
costs. These variables were not created by the AW_CREATE process.

The following are the object definitions for sales and costs. Note that they are
dimensioned identically.

DEFINE SALES VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>
DEFINE COSTS VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>

Table 15–3 Additional Keywords for Defining a Fact View

Keyword Description

MEASURE One or more workspace VARIABLE, RELATION, or FORMULA
objects that are dimensioned identically, as described in
"Measures" on page 12-3. The MEASURE keyword must appear
before the other keywords listed in this table.

MEASURE COLUMNS The names for the columns in the fact view where the data
from MEASURE will be represented. You can specify any valid
column name. The columns correspond in number and order
to the workspace objects listed in MEASURE, that is, the first
measure will be mapped to the first column, the second
measure to the second column, and so forth.

MEASURE DATATYPES The data types of the columns in the fact view. The data types
must correspond in number and order to the columns listed in
MEASURE COLUMNS, that is, the first column will be defined
with the first data type, the second column will be defined
with the second data type, and so forth.

For a comparison between workspace data types and database
data types, search for the SQL FETCH command in the
Oracle9i OLAP DML Reference help.
CWM2_OLAP_AW_ACCESS 15-9

Example: Creating Views
In a star schema for use with OLAP Catalog metadata, you would create dimension
views for each hierarchy and fact views for each combination of dimension
hierarchies.

If the hierarchies shown in Table 15–4 have been defined for these dimensions, then
the following views must be generated:

■ Six dimension views(2+1+1+2)

■ Four fact views (2*1*1*2)

Example: Input Files for Mapping Variables to Views
This example creates views in a star schema for use by the OLAP API.

Geography Dimension Standard Hierarchy View
These statements define the geography dimension view for the STANDARD
hierarchy. A separate file is required to generate another view to support the
CONSOLIDATED hierarchy, but it is not included in this example.

DIMENSION::geography
HIERARCHY::geography.parentrel
INHIERARCHY: geography.inhierarchy
HIERARCHY DIMENSION::geography.hierarchies
HIERARCHY DIMENSION VALUE::STANDARD
GID::geography.gid
PARENT GID::geography.gid
ATTRIBUTES::geography.longlabel::geography.shortlabel
COLUMN LEVEL DIMENSION::geography.lvldim
COLUMN LEVEL RELATION::geography.hierheight

DIMENSION COLUMN::geography

Table 15–4 Sample Dimension Hierarchies

Dimensions Hierarchies Required Number of Views

geography standard

consolidated

2

product standard 1

channel standard 1

time standard

ytd

2

15-10 Oracle9i OLAP User’s Guide

Example: Creating Views
PARENT COLUMN::geog_parent
GID COLUMN::geog_gid
PARENT GID COLUMN::geogp_gid
DIMENSION DATATYPES::varchar2(16)::varchar2(16)::number(10)::number(10)
LEVEL COLUMNS::city::country::continent::world
LEVEL DATATYPES::varchar2(16)::varchar2(16)::varchar2(16)::varchar2(16)
ATTRIBUTE COLUMNS::geog_long::geog_short
ATTRIBUTE DATATYPES::varchar(32)::varchar(16)

Product Dimension View
The following statements define the product dimension view.

DIMENSION::product
HIERARCHY::product.parentrel
GID::product.gid
PARENT GID::product.gid
ATTRIBUTES::product.longlabel::product.shortlabel
COLUMN LEVEL DIMENSION::product.lvldim
COLUMN LEVEL RELATION::product.hierheight

DIMENSION COLUMN::product
PARENT COLUMN::prod_parent
GID COLUMN::prod_gid
PARENT GID COLUMN::prod_gid
DIMENSION DATATYPES::varchar2(16)::varchar2(16)::number(10)::number(10)
LEVEL COLUMNS::equipment::component::division::totalprod
LEVEL DATATYPES::varchar2(16)::varchar2(16)::varchar2(16)::varchar2(16)
ATTRIBUTE COLUMNS::prod_long::prod_short
ATTRIBUTE DATATYPES::varchar(32)::varchar(16)

Channel Dimension View
These statements define the channel dimension view.

DIMENSION::channel
HIERARCHY::channel.parentrel
GID::channel.gid
PARENT GID::channel.gid
ATTRIBUTES::channel.longlabel::channel.shortlabel
COLUMN LEVEL DIMENSION::channel.lvldim
COLUMN LEVEL RELATION::channel.hierheight

DIMENSION COLUMN::channel
PARENT COLUMN::chan_parent
GID COLUMN::chan_gid
CWM2_OLAP_AW_ACCESS 15-11

Example: Creating Views
PARENT GID COLUMN::chanp_gid
DIMENSION DATATYPES::varchar2(16)::varchar2(16)::number(10)::number(10)
LEVEL COLUMNS::outlet::totalchan
LEVEL DATATYPES::varchar2(16)::varchar2(16)
ATTRIBUTE COLUMNS::chan_long::chan_short
ATTRIBUTE DATATYPES::varchar(32)::varchar(16)

Time Standard Hierarchy Input File
These statements define the time dimension view for the STANDARD hierarchy. A
separate file is required to generate another view to support the YTD hierarchy, but
it is not included in this example.

DIMENSION::time
HIERARCHY::time.parentrel
INHIERARCHY: time.inhierarchy
HIERARCHY DIMENSION::time.hierarchies
HIERARCHY DIMENSION VALUE::STANDARD
GID::time.gid
PARENT GID::time.gid
ATTRIBUTES::time.longlabel::time.shortlabel
COLUMN LEVEL DIMENSION::time.lvldim
COLUMN LEVEL RELATION::time.hierheight

DIMENSION COLUMN::time
PARENT COLUMN::time_parent
GID COLUMN::time_gid
PARENT GID COLUMN::timep_gid
DIMENSION DATATYPES::varchar2(8)::varchar2(8)::number(10)::number(10)
LEVEL COLUMNS::month::quarter::year
LEVEL DATATYPES::varchar2(16)::varchar2(16)::varchar2(16)
ATTRIBUTE COLUMNS::time_long::time_short
ATTRIBUTE DATATYPES::varchar(32)::varchar(16)

Sales and Costs Fact Views
For the OLAP API, you need to create a fact view for each combination of
dimension hierarchies. In addition to the fact columns, the OLAP API also needs
columns for dimension members and grouping IDs.

The following statements identify two workspace measures, sales and costs, as
the source objects for a fact view. The fact view will have columns for the data from
sales and costs. Both of these columns will have a NUMBER data type with 12
significant digits and 2 decimal places. The data from sales will be fetched into the
sales column, and the data from costs will be fetched into the costs column.
15-12 Oracle9i OLAP User’s Guide

Example: Creating Views
The following is an example of just one of the four input files needed by the sales
and costs measures. The statements defining the product and channel columns
are also omitted, as indicated by the ellipsis.

MEASURE::sales::costs
MEASURE COLUMNS::sales::costs
MEASURE DATATYPES::number(12,2)::number(12,2)

DIMENSION::geography
HIERARCHY::geography.parentrel
INHIERARCHY: geography.inhierarchy
HIERARCHY DIMENSION::geography.hierarchies
HIERARCHY DIMENSION VALUE::STANDARD
GID::geography.gid

DIMENSION COLUMN::geography
GID COLUMN::geog_gid
DIMENSION DATATYPES::varchar2(16)::number(10)
 .
 .
 .
DIMENSION::time
HIERARCHY::time.parentrel
INHIERARCHY: time.inhierarchy
HIERARCHY DIMENSION::time.hierarchies
HIERARCHY DIMENSION VALUE::STANDARD
GID::time.gid

DIMENSION COLUMN::time
GID COLUMN::time_gid
DIMENSION DATATYPES::varchar2(8)::number(10)

Example: Script for the Product View
This PL/SQL command uses the /users/oracle/mapfiles/product.txt
input file shown in "Product Dimension View" on page 15-11 to generate a script
named /users/oracle/scripts/product.sql. The resulting view will be
named electro_product_view.

CALL CWM2_OLAP_AW_ACCESS.CREATEAWACCESSSTRUCTURES_FR(
 ’/users/oracle/scripts/’, ’product.sql’, ’electro_product_’,
 ’scott.electronics’, ’/users/oracle/mapfiles/’, ’product.txt’);

Before executing the script, you may edit it.
CWM2_OLAP_AW_ACCESS 15-13

Example: Creating Views
--product.sql
--Generated on: 15-FEB-2002 09:16:42am

SET ECHO ON
SET LINESIZE 200
SET PAGESIZE 50
SET SERVEROUT ON

DROP TYPE electro_product_TBL;
DROP TYPE electro_product_OBJ;

CREATE TYPE electro_product_OBJ AS OBJECT (
 PRODUCT VARCHAR2(16),
 PROD_PARENT VARCHAR2(16),
 PROD_GID NUMBER(10),
 PRODP_GID NUMBER(10),
 EQUIPMENT VARCHAR2(16),
 COMPONENT VARCHAR2(16),
 DIVISION VARCHAR2(16),
 TOTALPROD VARCHAR2(16),
 PROD_LONG VARCHAR(32),
 PROD_SHORT VARCHAR(16));
/

CREATE TYPE electro_product_TBL AS TABLE OF electro_product_OBJ;
/

CREATE OR REPLACE FUNCTION electro_product_LMAP RETURN VARCHAR2 IS
--This function will return the following Limit Map:
--DIMENSION PRODUCT FROM PRODUCT
-- WITH HIERARCHY PROD_PARENT FROM PRODUCT.PARENTREL
-- GID PROD_GID FROM PRODUCT.GID
-- PARENTGID PRODP_GID FROM PRODUCT.GID
-- LEVELREL EQUIPMENT, COMPONENT, DIVISION, TOTALPROD FROM
PRODUCT.HIERHEIGHT USING PRODUCT.LVLDIM
-- ATTRIBUTE PROD_LONG FROM PRODUCT.LONGLABEL
-- ATTRIBUTE PROD_SHORT FROM PRODUCT.SHORTLABEL
vRetVal VARCHAR2(443) := ’’;

BEGIN
 vRetVal := vRetVal || ’DIMENSION PRODUCT FROM PRODUCT ’;
 vRetVal := vRetVal || ’WITH HIERARCHY PROD_PARENT FROM PRODUCT.PARENTREL ’;
 vRetVal := vRetVal || ’GID PROD_GID FROM PRODUCT.GID ’;
 vRetVal := vRetVal || ’PARENTGID PRODP_GID FROM PRODUCT.GID ’;
 vRetVal := vRetVal || ’LEVELREL EQUIPMENT, COMPONENT, DIVISION, TOTALPROD
15-14 Oracle9i OLAP User’s Guide

Example: Creating Views
FROM PRODUCT.HIERHEIGHT USING PRODUCT.LVLDIM ’;
 vRetVal := vRetVal || ’ATTRIBUTE PROD_LONG FROM PRODUCT.LONGLABEL ’;
 vRetVal := vRetVal || ’ATTRIBUTE PROD_SHORT FROM PRODUCT.SHORTLABEL’;
 RETURN vRetVal;
END electro_product_LMAP;
/

SHOW ERRORS;

CREATE OR REPLACE VIEW electro_product_VIEW AS SELECT * FROM
TABLE(CAST(OLAP_TABLE(’scott.electronics DURATION QUERY’, ’electro_product_TBL’,
’’, electro_product_LMAP())AS electro_product_TBL));

--The command below should be modified to provide appropriate security to
Analytic Workspace data.
--GRANT SELECT ON electro_product_VIEW TO PUBLIC;

--End of file: product.sql

Example: Product View
The script shown in "Example: Script for the Product View" on page 15-13 creates a
view named ELECTRO_PRODUCT_VIEW, which has the following definition:

SELECT "PRODUCT", "PROD_PARENT", "PROD_GID", "PRODP_GID" "EQUIPMENT",
 "COMPONENT","DIVISION, "TOTALPROD", "PROD_LONG", "PROD_SHORT"
 FROM TABLE(CAST (OLAP_TABLE('scott.electronics DURATION QUERY',
 'electro_product_TBL', '', electro_product_LMAP()) AS electro_product_TBL))

Use a command like the following to access data about products from the
electronics analytic workspace:

select product, prod_long, prod_short from electro_product_view
 where prod_gid=0;

PRODUCT PROD_LONG PROD_SHORT
---------------- -------------------------------- ----------------
PORTCD Portable CD Player Port CD
PORTST Portable Stereo Port Stereo
PORTCAS Portable Cassette Port Cassette
TUNER Tuner Tuner
 .
 .
 .
METALCAS Metal Cassette Mtl Cassette
CWM2_OLAP_AW_ACCESS 15-15

Summary of CWM2_OLAP_AW_ACCESS Subprograms
STNDCAS Standard Cassette Std Cassette
STNDVHSVIDEO Standard VHS Video VHS Video
8MMVIDEO 8MM Video 8MM Video
HI8VIDEO Hi 8 Video Hi8 Video

22 rows selected.

Summary of CWM2_OLAP_AW_ACCESS Subprograms

Table 15–5 lists the subprograms provided in CWM2_OLAP_AW_ACCESS.

Table 15–5 CWM2_OLAP_AW_ACCESS

Subprogram Description

CreateAWAccessStructures_FR
Procedure

Functions the same way as
CreateAWAccessStructures except that it accepts a
file that contains the mapping information. This procedure
parses the information contained in the file and passes it,
along with the other parameters, to
CreateAWAccessStructures.

CreateAWAccessStructures
Procedure

Generates one or more scripts. The scripts create views
that represent the multidimensional objects in an analytic
workspace. The views take the place of dimension tables
and measure tables when creating metadata. This
procedure accepts a delimited text string on the command
line for the mapping information. The mapping
information identifies source objects in the analytic
workspace and target columns in the database.
15-16 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_ACCESS Subprograms
CreateAWAccessStructures_FR Procedure

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. As
input, it takes a text file that maps the workspace objects to columns of the views.

Syntax
CreateAWAccessStructures_FR(
 script_directory VARCHAR2,
 script_name VARCHAR2,
 prefix VARCHAR2,
 aw_name VARCHAR2,
 infile_directory VARCHAR2
 infile_name VARCHAR2);

Parameters

Table 15–6 CreateAWAccessStructures_FR Procedure Parameters

Parameter Description

script_directory An existing directory path where script_name will be written.

script_name The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_name The name of the analytic workspace where the source objects are
stored.

infile_directory The directory path where the infile_name is stored.

infile_name The name of the input file that contains mapping information, as
described in Example , "Specifying the Source and Target Objects".
CWM2_OLAP_AW_ACCESS 15-17

CreateAWAccessStructures Procedure
CreateAWAccessStructures Procedure

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. It
takes a delimited string as input for the mapping information.

Syntax
CreateAWAccessStructures(
 script_directory VARCHAR2,
 script_filename VARCHAR2,
 prefix VARCHAR2,
 aw_name VARCHAR2,
 mapping_info VARCHAR2);

Parameters

Table 15–7 CreateAWAccessStructures Procedure Parameters

Parameter Description

script_directory An existing directory path where script_name will be written.

script_name The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_name The name of the analytic workspace where the source objects are
stored.

mapping_info A delimited string that contains mapping information, as described
in "Specifying the Source and Target Objects" on page 15-4.
15-18 Oracle9i OLAP User’s Guide

CWM2_OLAP_AW_C
16

CWM2_OLAP_AW_CREATE

The CWM2_OLAP_AW_CREATE package provides procedures for moving data from a
relational data warehouse to an analytic workspace and generating relational views
of the workspace.

This chapter discusses the following topics:

■ Summary of CWM2_OLAP_AW_CREATE Subprograms

See Also:

■ Chapter 9, "Creating an Analytic Workspace From Relational
Tables".

■ Chapter 13, "Using the OLAP Catalog Metadata APIs".
REATE 16-1

Summary of CWM2_OLAP_AW_CREATE Subprograms
Summary of CWM2_OLAP_AW_CREATE Subprograms

AW_DIMENSION_CREATE Procedure
This procedure creates the containers within an analytic workspace to hold an
OLAP Catalog dimension.

The OLAP Catalog dimension must conform to the requirements specified in "Basic
Star or Snowflake Schema" on page 5-4.

Table 16–1 CWM2_OLAP_AW_CREATE Subprograms

Subprogram Description

AW_DIMENSION_CREATE
Procedure

Creates containers within an analytic workspace to
hold the dimension members of an OLAP Catalog
dimension.

AW_DIM_DEFINE_LOAD Procedure Creates a load definition for a dimension.

AW_DIM_FILTER_LOAD Procedure Specifies a SQL WHERE clause to use in the query
against the dimension table.

AW_DIMENSION_REFRESH
Procedure

Uses a load definition to load dimension members
into an analytic workspace.

AW_DIMENSION_CREATE_ACCESS
Procedure

Generates relational views of an analytic workspace
dimension.

AW_CUBE_CREATE Procedure Creates containers within an analytic workspace to
hold the data of an OLAP Catalog cube.

AW_CUBE_DEFINE_LOAD
Procedure

Creates a load definition for a cube.

AW_CUBE_FILTER_LOAD
Procedure

Specifies a SQL WHERE clause to use in the query
against the fact table.

AW_CUBE_MEASURE_LOAD
Procedure

Specifies a measure to load into the analytic
workspace.

AW_CHOOSE_LEVEL_TUPLES
Procedure

Creates a table of level combinations for a cube.

AW_DEFINE_AGG_PLAN Procedure Specifies how to aggregate the cube’s data within
the analytic workspace.

AW_CUBE_REFRESH Procedure Uses a load definition to load data from a fact table
into an analytic workspace.

AW_CUBE_CREATE_ACCESS
Procedure

Generates relational views of an analytic workspace
cube.
16-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
If the analytic workspace does not already exist, AW_DIMENSION_CREATE creates
it.

Syntax
AW_DIMENSION_CREATE (
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2);

Parameters

AW_DIM_DEFINE_LOAD Procedure
This procedure creates a load definition for an OLAP Catalog dimension. The load
definition specifies the dimension members to load from the dimension tables and
how to store them within the analytic workspace.

The load definition is used by AW_DIMENSION_REFRESH.

The load definition can have one of the types described in Table 16–3.

Table 16–2 AW_DIMENSION_CREATE Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

dimension_owner Owner of the OLAP Catalog dimension.

dimension_name Name of the OLAP Catalog dimension.

Table 16–3 Load Types for Dimensions

Load Type Description

FULL Load all dimension members. If the dimension has already
been loaded, delete all members and replace with the new
ones.

FULL_ADDITIONS ONLY Load all dimension members. If the dimension has already
been loaded, keep the existing members that have not changed
and add the new members.
CWM2_OLAP_AW_CREATE 16-3

AW_DIM_FILTER_LOAD Procedure
Syntax
AW_DIM_DEFINE_LOAD (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 load_name IN VARCHAR2,
 load_type IN VARCHAR2,
 unique_keys IN VARCHAR2);

Parameters

AW_DIM_FILTER_LOAD Procedure
This procedure creates a SQL WHERE clause to be added to a load definition for a
dimension. The WHERE clause specifies which members of a hierarchy should be
loaded from the dimension table to the analytic workspace.

Syntax
AW_DIM_FILTER_LOAD (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 load_name IN VARCHAR2
 dim_table_owner IN VARCHAR2,
 dim_table_name IN VARCHAR2,
 where_clause IN VARCHAR2);

Table 16–4 AW_DIM_DEFINE_LOAD Procedure Parameters

Parameter Description

dimension_owner Owner of the OLAP Catalog dimension.

dimension_name Name of the OLAP Catalog dimension.

load_name Name of a load definition.

load_type Type of data load. Specify one of the values listed in
Table 16–3, "Load Types for Dimensions".

unique_keys Whether or not the members of this dimension are unique
across all levels. Values can be YES or NO. The default is NO.
16-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
Parameters

AW_DIMENSION_REFRESH Procedure
This procedure uses a load definition to load values from dimension tables into an
analytic workspace.

If the analytic workspace dimension has never been populated, AW_DIMENSION_
REFRESH does a full load. Otherwise, it refreshes the dimension based on the load
type described in Table 16–3 and on any filter criteria that may have been
established by a call to AW_DIM_FILTER_LOAD.

Syntax
AW_DIMENSION_REFRESH (
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 load_name IN VARCHAR2);

Parameters

Table 16–5 AW_DIM_FILTER_LOAD Procedure Parameters

Parameter Description

dimension_owner Owner of the OLAP Catalog dimension.

dimension_name Name of the OLAP Catalog dimension.

load_name Name of a load definition.

dim_table_owner Owner of the dimension table that underlies this OLAP
Catalog dimension.

dim_table_name Name of the dimension table that underlies this OLAP
Catalog dimension.

where_clause A SQL WHERE clause that specifies which rows to load from
the dimension table.

Table 16–6 AW_DIMENSION_REFRESH Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.
CWM2_OLAP_AW_CREATE 16-5

AW_DIMENSION_CREATE_ACCESS Procedure
AW_DIMENSION_CREATE_ACCESS Procedure
This procedure creates a script that you can run to generate relational views of an
AW dimension.

The views contain calls to the OLAP_TABLE function. OLAP_TABLE, described in
Chapter 12, uses object technology to present the contents of the workspace in table
format

The AW_DIMENSION_CREATE_ACCESS procedure creates a separate ET-style view
for each dimension hierarchy. Each view has a column for each level and level
attribute participating in the hierarchy. It also contains grouping ID columns and ET
key columns as described in Table 9–2, "Dimension View Columns" on page 9-5.

aw_name Name of the analytic workspace.

dimension_owner Owner of the OLAP Catalog dimension.

dimension_name Name of the OLAP Catalog dimension.

load_name Name of a load definition.

See Also: "Procedure: Create SQL Access to the Analytic
Workspace" on page 9-4 and "Column Structure of Dimension
Views" on page 9-5.

Table 16–6 (Cont.) AW_DIMENSION_REFRESH Procedure Parameters

Parameter Description
16-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
Syntax
AW_DIMENSION_CREATE_ACCESS (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 prefix IN VARCHAR2,
 access_type IN VARCHAR2,
 script_directory IN VARCHAR2,
 script_name IN VARCHAR2);

Parameters

Usage Notes
The script creates an ADT (abstract data type) that encapsulates multidimensional
data in the analytic workspace, a table of the ADTs, and a view of the table. The
ADT, table, and view are named according to specific rules.

The ADT name is the concatenation of the user-supplied prefix, the first five
characters of the dimension owner, the first five characters of the dimension name,
and the suffix OBJ. The following name identifies an ADT for the Product
dimension owned by SH, with a prefix of mydim.

mydim_sh_produ_OBJ

Table 16–7 AW_DIMENSION_CREATE_ACCESS Procedure Parameters

Parameter Description

dimension_owner Owner of the OLAP Catalog dimension.

dimension_name Name of the OLAP Catalog dimension.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

prefix Prefix to be applied to the name of the ADT, the name of the
table of ADTs, and the name of the view. See Usage Notes.

access_type How the view will be accessed. Examples are straight SQL,
OLAP API, and Discoverer. This argument is not currently
used.

script_directory The directory that will contain the script.

script_name The script that will generate the views.
CWM2_OLAP_AW_CREATE 16-7

AW_CUBE_CREATE Procedure
The table of ADT name is like the name of the ADT, but with the suffix TBL. For
example,

mydim_sh_produ_TBL

The view name is similarly constructed, but it contains additional information: the
first five characters of the hierarchy name and a hierarchy sequence number. The
hierarchy sequence number uniquely identifies each view, starting with one. The
following name identifies the first view of the Product dimension owned by SH.

mydim_sh_produ_std_1_view

AW_CUBE_CREATE Procedure
This procedure creates the containers within an analytic workspace to hold an
OLAP Catalog cube.

The OLAP Catalog cube must conform to the requirements specified in "Basic Star
or Snowflake Schema" on page 5-4.

Syntax
AW_CUBE_CREATE (
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2);

Parameters

Table 16–8 AW_CUBE_CREATE Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.
16-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
AW_CUBE_DEFINE_LOAD Procedure
This procedure creates a load definition for an OLAP Catalog cube. The load
definition specifies the data to load from the fact table and how to aggregate the
data within the analytic workspace.

The load definition is used by AW_CUBE_REFRESH.

Syntax
AW_CUBE_DEFINE_LOAD (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 load_name IN VARCHAR2,
 load_type IN VARCHAR2);

Parameters

AW_CUBE_FILTER_LOAD Procedure
This procedure creates a SQL WHERE clause to be added to a load definition for a
cube. The WHERE clause specifies which rows should be loaded from the fact table
to the analytic workspace.

Syntax
AW_CUBE_FILTER_LOAD (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 load_name IN VARCHAR2
 fact_table_owner IN VARCHAR2,
 fact_table_name IN VARCHAR2,
 where_clause IN VARCHAR2);

Table 16–9 AW_CUBE_DEFINE_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.

load_name Name of a load definition.

load_type Type of data load. This argument is not used in the current
release.
CWM2_OLAP_AW_CREATE 16-9

AW_CUBE_MEASURE_LOAD Procedure
Parameters

AW_CUBE_MEASURE_LOAD Procedure
This procedure specifies a measure to load from the fact table to the analytic
workspace. The load instructions are added to load definition created by AW_CUBE_
DEFINE_LOAD.

Syntax
AW_CUBE_MEASURE_LOAD (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2
 load_name IN VARCHAR2);

Parameters

Table 16–10 AW_CUBE_FILTER_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.

load_name Name of a load definition.

fact_table_owner Owner of the fact table that underlies this OLAP Catalog
cube.

fact_table_name Name of the fact table that underlies this OLAP Catalog cube

where_clause A SQL WHERE clause that specifies which rows to load from
the fact table.

Table 16–11 AW_CUBE_MEASURE_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.

measure_name Name of one of the cube’s measures.

load_name Name of a load definition.
16-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
AW_CHOOSE_LEVEL_TUPLES Procedure
This procedure creates a table listing all the level combinations associated with a
cube.

The table, SYS.OlapTabLevels, has columns for each of the cube’s dimensions.
The rows contain the level names for the dimensions. By default, all the levels are
selected for aggregation within the analytic workspace.

If you want to specify partial aggregation, you must edit the table. Uncheck each
level for which summary data should not be stored.

Once you have established the table of level tuples for a cube, you can call AW_
DEFINE_AGG_PLAN to define a set of aggregation rules for a given load definition.

Syntax
AW_CHOOSE_LEVEL_TUPLES (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2);

Parameters

AW_DEFINE_AGG_PLAN Procedure
This procedure reads a table of level combinations for a cube and defines an
aggregation plan for a cube load definition.

Before calling this procedure, call AW_CHOOSE_LEVEL_TUPLES to create the table
SYS.OlapTabLevels. To specify partial aggregation, you must edit this table
before calling AW_DEFINE_AGG_PLAN.

Syntax
AW_DEFINE_AGG_PLAN (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 load_name IN VARCHAR2);

Table 16–12 AW_CHOOSE_LEVEL_TUPLES Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.
CWM2_OLAP_AW_CREATE 16-11

AW_CUBE_REFRESH Procedure
Parameters

AW_CUBE_REFRESH Procedure
This procedure uses a load definition to load data from a fact table into an analytic
workspace. Unless a filter criteria was established for the data load, AW_CUBE_
REFRESH loads all the data from the fact table.

If an aggregation plan was established for this data load, AW_CUBE_REFRESH
aggregates the data to the specified level. Otherwise, it fully aggregates the data
within the analytic workspace.

Syntax
AW_CUBE_REFRESH (
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 load_name IN VARCHAR2);

Parameters

Table 16–13 AW_DEFINE_AGG_PLAN Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.

load_name Name of a load definition.

Table 16–14 AW_CUBE_REFRESH Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

cube_owner Owner of the cube.

cube_name Name of the cube.

load_name Name of the load definition.
16-12 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms
AW_CUBE_CREATE_ACCESS Procedure
The AW_CUBE_CREATE_ACCESS procedure creates a script that you can run to
generate fact views of AW cubes.

The views contain calls to the OLAP_TABLE function. OLAP_TABLE, described in
Chapter 12, uses object technology to present the contents of the workspace in table
format

The script created by AW_CUBE_CREATE_ACCESS generates a fully solved fact view
for every dimension/hierarchy of the cube. Each view has a column for each of the
cube’s measures. It also contains a grouping ID column and an ET key column for
each dimension to link the fact view with the associated dimension views.

Syntax
AW_CUBE_CREATE_ACCESS (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 aw_owner IN VARCHAR2,
 aw_name IN VARCHAR2,
 prefix IN VARCHAR2,
 access_type IN VARCHAR2,
 script_directory IN VARCHAR2,
 script_name IN VARCHAR2);

Parameters

See Also: "Procedure: Create SQL Access to the Analytic
Workspace" and Table 9–4, "Fact View Columns" on page 9-7.

Table 16–15 AW_CUBE_CREATE_ACCESS Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_name Name of the OLAP Catalog cube.

aw_owner Owner of the analytic workspace.

aw_name Name of the analytic workspace.

prefix Prefix to be applied to the name of the ADT, the name of the
table of ADTs, and the name of the view. See Usage Notes.
CWM2_OLAP_AW_CREATE 16-13

AW_CUBE_CREATE_ACCESS Procedure
Usage Notes
The script creates an ADT (abstract data type) that encapsulates multidimensional
data in the analytic workspace, a table of the ADTs, and a view of the table. The
ADT, table, and view are named according to specific rules.

The ADT name is the concatenation of the user-supplied prefix, the first five
characters of the cube owner, the first five characters of the cube name, and the
suffix OBJ. The following name identifies an ADT for the Sales cube owned by SH,
with a prefix of mydim.

mydim_sh_sales_OBJ

The table of ADT name is like the name of the ADT, but with the suffix TBL. For
example,

mydim_sh_sales_TBL

The view name is similarly constructed, but it contains an additional sequence
number that uniquely identifies the view. The following name identifies the first
view of the Sales cube owned by SH, with a prefix of mydim.

mydim_sh_sales_1_view

access_type How the view will be accessed. Examples are straight SQL,
OLAP API, and Discoverer. This argument is not currently
used.

script_directory The directory that will contain the script.

script_name The script that will generate the views.

Table 16–15 (Cont.) AW_CUBE_CREATE_ACCESS Procedure Parameters

Parameter Description
16-14 Oracle9i OLAP User’s Guide

CWM2_OLAP
17

CWM2_OLAP_CUBE

The CWM2_OLAP_CUBE package provides procedures for creating, dropping, and
locking cubes. It also provides procedures for setting general properties of cubes.

This chapter discusses the following topics:

■ Understanding Cubes

■ Summary of CWM2_OLAP_CUBE Subprograms

■ Example: Creating a Cube

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs"
_CUBE 17-1

Understanding Cubes
Understanding Cubes
A cube is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP Catalog.

A cube is a multidimensional framework to which you can assign measures. A
measure represents data stored in fact tables. The fact tables may be relational tables
or views. The views may reference data stored in analytic workspaces. Cubes are
fully described in "OLAP Metadata Model" on page 4-8.

 Use the procedures in the CWM2_OLAP_CUBE package to create, drop, and lock
cubes, to associate dimensions with cubes, and to specify descriptive information
for display purposes.

You must create the cube before using the CWM2_OLAP_MEASURE package to create
the cube’s measures.

Summary of CWM2_OLAP_CUBE Subprograms

Table 17–1 CWM2_OLAP_CUBE Subprograms

Subprogram Description

ADD_DIMENSION_TO_CUBE
Procedure on page 17-3

Adds a dimension to a cube.

CREATE_CUBE Procedure on
page 17-4

Creates a cube.

DROP_CUBE Procedure on
page 17-5

Drops a cube.

LOCK_CUBE Procedure on
page 17-6

Locks a cube’s metadata for update.

REMOVE_DIMENSION_FROM_
CUBE Procedure on
page 17-6

Removes a dimension from a cube.

SET_CUBE_NAME Procedure
on page 17-7

Sets the name of a cube.

SET_DEFAULT_CUBE_DIM_
CALC_HIER Procedure on
page 17-8

Sets the default calculation hierarchy for a dimension of
the cube.

SET_DESCRIPTION Procedure
on page 17-9

Sets the description for a cube.
17-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms
ADD_DIMENSION_TO_CUBE Procedure
This procedure adds a dimension to a cube.

Syntax
ADD_DIMENSION_TO_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2);

Parameters

Exceptions

SET_DISPLAY_NAME
Procedure on page 17-10

Sets the display name for a cube.

SET_MV_SUMMARY_CODE
Procedure on page 17-11

Sets the format for materialized views associated with a
cube.

SET_SHORT_DESCRIPTION
Procedure on page 17-12

Sets the short description for a cube.

Table 17–2 ADD_DIMENSION_TO_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

dimension_owner Owner of the dimension to be added to the cube.

dimension_name Name of the dimension to be added to the cube.

Table 17–3 ADD_DIMENSION_TO_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

Table 17–1 (Cont.) CWM2_OLAP_CUBE Subprograms

Subprogram Description
CWM2_OLAP_CUBE 17-3

CREATE_CUBE Procedure
CREATE_CUBE Procedure
This procedure creates a new cube in the OLAP Catalog.

Descriptions and display properties must also be established as part of cube
creation. Once the cube has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 display_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2);

Parameters

cube_not_found Cube not found.

dimension_not_found Dimension not found.

Table 17–4 CREATE_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

display_name Display name for the cube.

short_description Short description of the cube.

description Description of the cube.

Table 17–3 (Cont.) ADD_DIMENSION_TO_CUBE Procedure Exceptions

Exception Description
17-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms
Exceptions

DROP_CUBE Procedure
This procedure drops a cube from the OLAP 2 Catalog.

Syntax
DROP_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2);

Parameters

Exceptions

Table 17–5 CREATE_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_already_exists Cube already exists.

Note: When a cube is dropped, its associated measures are also
dropped. However, the cube’s dimensions are not dropped. They
might be mapped within the context of a different cube.

Table 17–6 DROP_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

Table 17–7 DROP_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
CWM2_OLAP_CUBE 17-5

LOCK_CUBE Procedure
LOCK_CUBE Procedure
This procedure locks the cube’s metadata for update by acquiring a database lock
on the row that identifies the cube in the CWM2 model table.

Syntax
LOCK_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2.
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

REMOVE_DIMENSION_FROM_CUBE Procedure
This procedure removes a dimension from a cube.

Table 17–8 LOCK_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

wait_for_lock (Optional) Whether or not to wait for the cube to be available
when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.

Table 17–9 LOCK_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not_found Cube not found.
17-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms
Syntax
REMOVE_DIMENSION_FROM_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2);

Parameters

Exceptions

SET_CUBE_NAME Procedure
This procedure sets the name for a cube.

Table 17–10 REMOVE_DIMENSION_FROM_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

dimension_owner Owner of the dimension to be removed from the cube.

dimension_name Name of the dimension to be removed from the cube.

Table 17–11 REMOVE_DIMENSION_FROM_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not_found Cube not found.

dimension_not_found Dimension not found.
CWM2_OLAP_CUBE 17-7

SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure
Syntax
SET_CUBE_NAME (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 set_cube_name IN VARCHAR2);

Parameters

Exceptions

SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure
This procedure sets the default calculation hierarchy for a dimension of this cube.

Table 17–12 SET_CUBE_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Original name of the cube.

set_cube_name New name for the cube.

Table 17–13 SET_CUBE_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
17-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms
Syntax
SET_DEFAULT_CUBE_DIM_CALC_HIER (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2);

Parameters

Exceptions

SET_DESCRIPTION Procedure
This procedure sets the description for a cube.

Table 17–14 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_owner Name of the cube.

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy to be used by default for this
dimension.

Table 17–15 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
CWM2_OLAP_CUBE 17-9

SET_DISPLAY_NAME Procedure
Syntax
SET_DESCRIPTION (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

SET_DISPLAY_NAME Procedure
This procedure sets the display name for a cube.

Table 17–16 SET_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

description Description of the cube.

Table 17–17 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
17-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms
Syntax
SET_DISPLAY_NAME (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

SET_MV_SUMMARY_CODE Procedure
This procedure specifies the form of materialized views for this cube. Materialized
views may be in Grouping Set (groupingset) or Rolled Up (rollup) form.

In a materialized view in Rolled Up form, all the dimension key columns are
populated, and data may only be accessed when its full lineage is specified.

In a materialized view in Grouping Set form, dimension key columns may contain
null values, and data may be accessed simply by specifying one or more levels.

Table 17–18 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

display_name Display name for the cube.

Table 17–19 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
CWM2_OLAP_CUBE 17-11

SET_SHORT_DESCRIPTION Procedure
Syntax
SET_MV_SUMMARY_CODE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 summary_code IN VARCHAR2);

Parameters

Exceptions

SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a cube.

Table 17–20 SET_MV_SUMMARY_CODE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

summary_code One of the following case-insensitive values:

■ rollup, for Rolled Up form.

■ groupingset, for Grouping Set form.

Table 17–21 SET_MV_SUMMARY_CODE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
17-12 Oracle9i OLAP User’s Guide

Example: Creating a Cube
Syntax
SET_DESCRIPTION (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Example: Creating a Cube
The following statements drop the cube SALES_CUBE, recreate it, and add the
dimensions TIME_DIM, GEOG_DIM, and PRODUCT_DIM.

Table 17–22 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

short_description Short description of the cube.

Table 17–23 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Cube not found.
CWM2_OLAP_CUBE 17-13

Example: Creating a Cube
Dropping the cube removes the cube entity, along with its measures, from the
OLAP Catalog. However, dropping the cube does not cause the cube’s dimensions
to be dropped.

execute cwm2_olap_cube.drop_cube(’JSMITH’, ’SALES_CUBE’);
execute cwm2_olap_cube.create_cube
 (’JSMITH’, ’SALES_CUBE’, ’Sales’, ’Sales Cube’,
 'Sales dimensioned over geography, product, and time’);
execute cwm2_olap_cube.add_dimension_to_cube
 ('JSMITH', 'SALES_CUBE', 'JSMITH', 'TIME_DIM');
execute cwm2_olap_cube.add_dimension_to_cube
 ('JSMITH', 'SALES_CUBE', 'JSMITH', 'GEOG_DIM');
execute cwm2_olap_cube.add_dimension_to_cube
 ('JSMITH', 'SALES_CUBE', 'JSMITH', 'PRODUCT_DIM');
17-14 Oracle9i OLAP User’s Guide

CWM2_OLAP_DI
18

CWM2_OLAP_DIMENSION

The CWM2_OLAP_DIMENSION package provides procedures for creating, dropping,
and locking dimensions. It also provides procedures for setting general dimension
properties.

This chapter discusses the following topics:

■ Understanding Dimensions

■ Summary of CWM2_OLAP_DIMENSION Subprograms

■ Example: Creating a CWM2 Dimension

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
MENSION 18-1

Understanding Dimensions
Understanding Dimensions
A dimension is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog. Logical OLAP dimensions
are fully described in "OLAP Metadata Model" on page 4-8.

Use the procedures in the CWM2_OLAP_DIMENSION package to create, drop, and
lock CWM2 dimension entities and to specify descriptive information for display
purposes. To fully define a CWM2 dimension, follow the steps listed in "Constructing
a Dimension" on page 13-2.

Summary of CWM2_OLAP_DIMENSION Subprograms

Note: Dimensions in CWM2 map directly to columns in dimension
tables and have no relationship to Oracle database dimension
objects.

Table 18–1 CWM2_OLAP_DIMENSION Subprograms

Subprogram Description

CREATE_DIMENSION
Procedure on page 18-3

Creates a dimension.

DROP_DIMENSION Procedure
on page 18-4

Drops a dimension.

LOCK_DIMENSION Procedure
on page 18-5

Locks the dimension metadata for update.

SET_DEFAULT_DISPLAY_
HIERARCHY Procedure on
page 18-6

Sets the default hierarchy for a dimension.

SET_DESCRIPTION Procedure
on page 18-7

Sets the description for a dimension.

SET_DIMENSION_NAME
Procedure on page 18-7

Sets the name of a dimension.

SET_DISPLAY_NAME
Procedure on page 18-8

Sets the display name for a dimension.

SET_PLURAL_NAME Procedure
on page 18-9

Sets the plural name for a dimension.
18-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms
CREATE_DIMENSION Procedure
This procedure creates a new dimension entity in the OLAP Catalog.

By default the new dimension is a normal dimension, but you can specify the value
TIME for the dimension_type parameter to create a time dimension.

Descriptions and display properties must also be established as part of dimension
creation. Once the dimension has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_DIMENSION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 display_name IN VARCHAR2,
 plural_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2,
 dimension_type IN VARCHAR2 DEFAULT NULL);

Parameters

SET_SHORT_DESCRIPTION
Procedure on page 18-10

Sets the short description for a dimension.

Table 18–2 CREATE_DIMENSION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

display_name Display name for the dimension.

plural_name Plural name for the dimension.

short_description Short description of the dimension.

description Description of the dimension.

Table 18–1 (Cont.) CWM2_OLAP_DIMENSION Subprograms

Subprogram Description
CWM2_OLAP_DIMENSION 18-3

DROP_DIMENSION Procedure
Exceptions

DROP_DIMENSION Procedure
This procedure drops a dimension entity from the OLAP Catalog. All related levels,
hierarchies, and dimension attributes are also dropped.

Syntax
DROP_DIMENSION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2);

Parameters

dimension_type (Optional) Type of the dimension. Specify the value TIME to
create a time dimension. If you do not specify this parameter,
the dimension is created as a normal dimension.

Table 18–3 CREATE_DIMENSION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_already_exists Cannot create dimension. Dimension already exists.

Table 18–4 DROP_DIMENSION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

Table 18–2 (Cont.) CREATE_DIMENSION Procedure Parameters

Parameter Description
18-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms
Exceptions

LOCK_DIMENSION Procedure
This procedure locks the dimension metadata for update by acquiring a database
lock on the row that identifies the dimension in the CWM2 model table.

Syntax
LOCK_DIMENSION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2.
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

Table 18–5 DROP_DIMENSION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

Table 18–6 LOCK_DIMENSION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

wait_for_lock (Optional) Whether or not to wait for the dimension to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 18–7 LOCK_DIMENSION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.
CWM2_OLAP_DIMENSION 18-5

SET_DEFAULT_DISPLAY_HIERARCHY Procedure
SET_DEFAULT_DISPLAY_HIERARCHY Procedure
This procedure sets the default hierarchy to be used for display purposes.

Syntax
SET_DEFAULT_DISPLAY_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2);

Parameters

Exceptions

dimension_not_found Dimension not found.

Table 18–8 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of one of the dimension’s hierarchies.

Table 18–9 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found This hierarchy not found for this dimension.

Table 18–7 (Cont.) LOCK_DIMENSION Procedure Exceptions

Exception Description
18-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms
SET_DESCRIPTION Procedure
This procedure sets the description for a dimension.

Syntax
SET_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

SET_DIMENSION_NAME Procedure
This procedure sets the name for a dimension.

Table 18–10 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

description Description of the dimension.

Table 18–11 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
CWM2_OLAP_DIMENSION 18-7

SET_DISPLAY_NAME Procedure
Syntax
SET_DIMENSION_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 set_dimension_name IN VARCHAR2);

Parameters

Exceptions

SET_DISPLAY_NAME Procedure
This procedure sets the display name for a dimension.

Table 18–12 SET_DIMENSION_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Original name of the dimension.

set_dimension_name New name for the dimension.

Table 18–13 SET_DIMENSION_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
18-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms
Syntax
SET_DISPLAY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

SET_PLURAL_NAME Procedure
This procedure sets the plural name of a dimension.

Table 18–14 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

display_name Display name for the dimension.

Table 18–15 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
CWM2_OLAP_DIMENSION 18-9

SET_SHORT_DESCRIPTION Procedure
Syntax
SET_PLURAL_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 plural_name IN VARCHAR2);

Parameters

Exceptions

SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a dimension.

Table 18–16 SET_PLURAL_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

plural_name Plural name for the dimension.

Table 18–17 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

dimension_not_found Dimension not found.
18-10 Oracle9i OLAP User’s Guide

Example: Creating a CWM2 Dimension
Syntax
SET_SHORT_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Example: Creating a CWM2 Dimension
The following statement creates a CWM2 dimension entity, PRODUCT_DIM, in the
JSMITH schema. The display name is Product, and the plural name is Products.
The short description is Prod, and the description is Product.

execute cwm2_olap_dimension.create_dimension
 ('JSMITH', 'PRODUCT_DIM', 'Product', ’Products', 'Prod', 'Product');

The following statements change the short description to Product and the long
description to Product Dimension.

execute cwm2_olap_dimension.set_short_description
 ('JSMITH', 'PRODUCT_DIM', 'Product');
execute cwm2_olap_dimension.set_description
 ('JSMITH', 'PRODUCT_DIM', 'Product Dimension');

Table 18–18 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

short_description Short description of the dimension.

Table 18–19 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
CWM2_OLAP_DIMENSION 18-11

Example: Creating a CWM2 Dimension
18-12 Oracle9i OLAP User’s Guide

CWM2_OLAP_DIMENSION_AT
19

CWM2_OLAP_DIMENSION_ATTRIBUTE

The CWM2_OLAP_DIMENSION_ATTRIBUTE package provides procedures for
creating, dropping, and locking dimension attributes. It also provides procedures
for setting general properties of dimension attributes.

This chapter discusses the following topics:

■ Understanding Dimension Attributes

■ Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

■ Example: Creating a Dimension Attribute

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
TRIBUTE 19-1

Understanding Dimension Attributes
Understanding Dimension Attributes
A dimension attribute is an OLAP metadata entity. This means that it is a logical
object, identified by name and owner, within the OLAP Catalog.

Dimension attributes define sets of level attributes for a dimension. Dimension
attributes may include level attributes for some or all of the dimension’s levels. For
time dimensions, the dimension attributes end date and time span must be
defined for all levels. Dimension attributes are fully described in "OLAP Metadata
Model" on page 4-8.

Use the procedures in the CWM2_OLAP_DIMENSION_ATTRIBUTE package to create,
drop, and lock dimension attributes and to specify descriptive information for
display purposes.

Several dimension attribute names are reserved, because they have special
significance within CWM2. The level attributes comprising a reserved dimension
attribute will be mapped to columns containing specific information. The reserved
dimension attributes are listed in Table 19–1.

Table 19–1 Reserved Dimension Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

Time Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key,
which identifies the dimension member at the lowest level in a
row of the dimension table.

Parent ET Key For an embedded total dimension, the dimension member that
is the parent of the ET key.

Grouping ID For an embedded total dimension, the grouping ID (GID),
which identifies the hierarchical level for a row of the
dimension table.

Parent Grouping ID For an embedded total dimension, the dimension member that
is the parent of the grouping ID.
19-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
The parent dimension must already exist before you can create dimension attributes
for it. To fully define a dimension, follow the steps listed in "Constructing a
Dimension" on page 13-2.

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

CREATE_DIMENSION_ATTRIBUTE Procedure
This procedure creates a new dimension attribute.

If the dimension attribute name should be reserved for mapping specific groups of
level attributes, you can set the RESERVED_DIMENSION_ATTRIBUTE argument to
TRUE. For more information, see Table 19–1, " Reserved Dimension Attributes".

Descriptions and display properties must also be established as part of dimension
attribute creation. Once the dimension attribute has been created, you can override
these properties by calling other procedures in this package.

Table 19–2 CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Subprogram Description

CREATE_DIMENSION_
ATTRIBUTE Procedure on
page 19-3

Creates a dimension attribute.

DROP_DIMENSION_ATTRIBUTE
Procedure on page 19-5

Drops a dimension attribute.

LOCK_DIMENSION_ATTRIBUTE
Procedure on page 19-6

Locks the dimension attribute for update.

SET_DESCRIPTION Procedure
on page 19-7

Sets the description for a dimension attribute.

SET_DIMENSION_ATTRIBUTE_
NAME Procedure on
page 19-8

Sets the name of a dimension attribute.

SET_DISPLAY_NAME
Procedure on page 19-9

Sets the display name for a dimension attribute.

SET_SHORT_DESCRIPTION
Procedure on page 19-10

Sets the short description for a dimension attribute.
CWM2_OLAP_DIMENSION_ATTRIBUTE 19-3

CREATE_DIMENSION_ATTRIBUTE Procedure
Syntax
CREATE_DIMENSION_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 display_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2,
 reserved_dimension_attribute IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

Table 19–3 CREATE_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

display_name Display name for the dimension attribute.

short_description Short description of the dimension attribute.

description Description of the dimension attribute.

reserved_dimension_
attribute

Whether or not this is a reserved dimension attribute. By
default, the dimension attribute is not reserved. The reserved
dimension attributes are described in Table 19–1, " Reserved
Dimension Attributes".

Table 19–4 CREATE_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_attribute_
already_exists

Dimension attribute already exists.
19-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
DROP_DIMENSION_ATTRIBUTE Procedure
This procedure drops a dimension attribute.

Syntax
DROP_DIMENSION_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2);

Parameters

Exceptions

Table 19–5 DROP_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

Table 19–6 DROP_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Dimension attribute not found.
CWM2_OLAP_DIMENSION_ATTRIBUTE 19-5

LOCK_DIMENSION_ATTRIBUTE Procedure
LOCK_DIMENSION_ATTRIBUTE Procedure
This procedure locks the dimension attribute for update by acquiring a database
lock on the row that identifies the dimension attribute in the CWM2 model table.

Syntax
LOCK_DIMENSION_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

Table 19–7 LOCK_DIMENSION_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

wait_for_lock (Optional) Whether or not to wait for the dimension attribute
to be available when it is already locked by another user. If you
do not specify a value for this parameter, the procedure does
not wait to acquire the lock.

Table 19–8 LOCK_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Dimension attribute not found.
19-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
SET_DESCRIPTION Procedure
This procedure sets the description for a dimension attribute.

Syntax
SET_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

Table 19–9 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_name Name of the dimension attribute.

description Description of the dimension attribute.

Table 19–10 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Dimension attribute not found.
CWM2_OLAP_DIMENSION_ATTRIBUTE 19-7

SET_DIMENSION_ATTRIBUTE_NAME Procedure
SET_DIMENSION_ATTRIBUTE_NAME Procedure
This procedure sets the name for a dimension attribute.

Syntax
SET_DIMENSION_ATTRIBUTE_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 set_dimension_attribute_name IN VARCHAR2,
 reserved_dimension_attribute IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

Table 19–11 SET_DIMENSION__ATTRIBUTE_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_
attribute_name

Original name for the dimension attribute.

set_dimension_
attribute_name

New name for the dimension attribute.

reserved_
dimension_
attribute

Whether or not this is a reserved dimension attribute. By default,
the dimension attribute is not reserved.

Table 19–12 SET_DIMENSION_ATTRIBUTE_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Dimension attribute not found.
19-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
SET_DISPLAY_NAME Procedure
This procedure sets the display name for a dimension attribute.

Syntax
SET_DISPLAY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

Table 19–13 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_
attribute_name

Name of the dimension attribute.

display_name Display name for the dimension attribute.

Table 19–14 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Dimension attribute not found.
CWM2_OLAP_DIMENSION_ATTRIBUTE 19-9

SET_SHORT_DESCRIPTION Procedure
SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a dimension attribute.

Syntax
SET_SHORT_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Example: Creating a Dimension Attribute
The following statement creates a dimension attribute, PRODUCT_DIM_BRAND, for
the PRODUCT_DIM dimension in the JSMITH schema. The display name is Brand.

Table 19–15 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_name Name of the dimension attribute.

short_description Short description of the dimension attribute.

Table 19–16 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Dimension attribute not found.
19-10 Oracle9i OLAP User’s Guide

Example: Creating a Dimension Attribute
The short description is Brand Name, and the description is Product Brand
Name.

execute cwm2_olap_dimension_attribute.create_dimension_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_BRAND’,
 ’Brand’, ’Brand Name’, ’Product Brand Name’);

The following statement creates a dimension attribute, ’Short Description’,
for the PRODUCT_DIM dimension in the JSMITH schema. Short Description is
a reserved dimension attribute.

execute cwm2_olap_dimension_attribute.create_dimension_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Short Description’,
 ’Short Product Names’, ’Short Desc Product’,
 ’Short Name of Products’, TRUE);
CWM2_OLAP_DIMENSION_ATTRIBUTE 19-11

Example: Creating a Dimension Attribute
19-12 Oracle9i OLAP User’s Guide

CWM2_OLAP_HIE
20

CWM2_OLAP_HIERARCHY

The CWM2_OLAP_HIERARCHY package provides procedures for creating, dropping,
and locking hierarchies. It also provides procedures for setting general hierarchy
properties.

This chapter discusses the following topics:

■ Understanding Hierarchies

■ Summary of CWM2_OLAP_HIERARCHY Subprograms

■ Example: Creating a Hierarchy

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
RARCHY 20-1

Understanding Hierarchies
Understanding Hierarchies
A hierarchy is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Hierarchies define parent-child relationships between sets of levels in a dimension.
There can be multiple hierarchies associated with a single dimension, and the same
level can be used in multiple hierarchies. Hierarchies are fully described in "OLAP
Metadata Model" on page 4-8.

Use the procedures in the CWM2_OLAP_HIERARCHY package to create, drop, and
lock hierarchies and to specify descriptive information for display purposes.

The parent dimension must already exist in the OLAP Catalog before you can create
hierarchies for it.

Summary of CWM2_OLAP_HIERARCHY Subprograms

CREATE_HIERARCHY Procedure
This procedure creates a new hierarchy in the OLAP Catalog.

Table 20–1 CWM2_OLAP_HIERARCHY Subprograms

Subprogram Description

CREATE_HIERARCHY Procedure
on page 20-2

Creates a hierarchy.

DROP_HIERARCHY Procedure
on page 20-4

Drops a hierarchy.

LOCK_HIERARCHY Procedure
on page 20-5

Locks the hierarchy for update.

SET_DESCRIPTION Procedure
on page 20-6

Sets the description for a hierarchy.

SET_DISPLAY_NAME Procedure
on page 20-7

Sets the display name for a hierarchy.

SET_HIERARCHY_NAME
Procedure on page 20-8

Sets the name of a hierarchy.

SET_SHORT_DESCRIPTION
Procedure on page 20-9

Sets the short description for a hierarchy.

SET_SOLVED_CODE Procedure
on page 20-10

Sets the solved code for a hierarchy.
20-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms
You must specify descriptions and display properties as part of hierarchy creation.
Once the hierarchy has been created, you can override these properties by calling
other procedures in the CWM2_OLAP_HIERARCHY package.

Syntax
CREATE_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 display_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2,
 solved_code IN VARCHAR2);

Parameters

Table 20–2 CREATE_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

display_name Display name for the hierarchy.

short_description Short description of the hierarchy.

description Description of the hierarchy.
CWM2_OLAP_HIERARCHY 20-3

DROP_HIERARCHY Procedure
Exceptions

DROP_HIERARCHY Procedure
This procedure drops a hierarchy from the OLAP Catalog.

solved_code Specifies whether or not the hierarchy includes embedded
totals and whether it is mapped to a level-based dimension
table or a parent-child dimension table. For information
about mapping hierarchies with different solved codes, see
"Joining Fact Tables with Dimension Tables" on page 13-4.

Values for this parameter are:

■ UNSOLVED LEVEL-BASED, for a hierarchy that contains
no embedded totals and is stored in a level-based
dimension table

■ SOLVED LEVEL-BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table

■ SOLVED VALUE-BASED, for a hierarchy that contains
embedded totals and is stored in a parent-child
dimension table

Table 20–3 CREATE_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_already_exists This hierarchy already exists for this dimension.

Table 20–2 (Cont.) CREATE_HIERARCHY Procedure Parameters

Parameter Description
20-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms
Syntax
DROP_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2);

Parameters

Exceptions

LOCK_HIERARCHY Procedure
This procedure locks the hierarchy metadata for update by acquiring a database
lock on the row that identifies the hierarchy in the CWM2 model table.

Table 20–4 DROP_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

Table 20–5 DROP_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
CWM2_OLAP_HIERARCHY 20-5

SET_DESCRIPTION Procedure
Syntax
LOCK_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

SET_DESCRIPTION Procedure
This procedure sets the description for a hierarchy.

Table 20–6 LOCK_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

wait_for_lock (Optional) Whether or not to wait for the hierarchy to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 20–7 LOCK_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
20-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms
Syntax
SET_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

SET_DISPLAY_NAME Procedure
This procedure sets the display name for a dimension.

Table 20–8 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

description Description of the hierarchy.

Table 20–9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
CWM2_OLAP_HIERARCHY 20-7

SET_HIERARCHY_NAME Procedure
Syntax
SET_DISPLAY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

SET_HIERARCHY_NAME Procedure
This procedure sets the name for a hierarchy.

Table 20–10 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

display_name Display name for the hierarchy.

Table 20–11 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
20-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms
Syntax
SET_HIERARCHY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 set_hierarchy_name IN VARCHAR2);

Parameters

Exceptions

SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a hierarchy.

Table 20–12 SET_HIERARCHY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Original name for the hierarchy.

set_hierarchy_name New name for the hierarchy.

Table 20–13 SET_HIERARCHY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
CWM2_OLAP_HIERARCHY 20-9

SET_SOLVED_CODE Procedure
Syntax
SET_SHORT_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

SET_SOLVED_CODE Procedure
This procedure sets the solved code for a hierarchy. The solved code specifies whether
or not the data dimensioned by this hierarchy includes embedded totals and whether it is
mapped to a level-based dimension table or a parent-child dimension table. If mapped to a
parent-child dimension table, it cannot be accessed by the OLAP API.

For more information on mapping solved and unsolved data, see "Joining Fact
Tables with Dimension Tables" on page 13-4.

Table 20–14 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

short_description Short description of the hierarchy.

Table 20–15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
20-10 Oracle9i OLAP User’s Guide

Example: Creating a Hierarchy
Syntax
SET_SOLVED_CODE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 solved_code IN VARCHAR2);

Parameters

Exceptions

Example: Creating a Hierarchy
The following statement creates a dimension hierarchy PRODUCT_DIM_ROLLUP, for
the PRODUCT_DIM dimension in the JSMITH schema. The display name is

Table 20–16 SET_SOLVED_CODE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

solved_code One of the following values:

■ UNSOLVED LEVEL, for a hierarchy that contains no embedded
totals and is stored in a level-based dimension table

■ SOLVED LEVEL, for a hierarchy that contains embedded
totals, has a grouping ID, and is stored in a level-based
dimension table

■ SOLVED VALUE, for a hierarchy that contains embedded
totals and is stored in a parent-child dimension table. This type
of hierarchy cannot be accessed by the OLAP API.

Table 20–17 SET_SOLVED_CODE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.
CWM2_OLAP_HIERARCHY 20-11

Example: Creating a Hierarchy
Standard. The short description is Std Product, and the description is
Standard Product Hierarchy. The solved code is SOLVED LEVEL-BASED,
meaning that this hierarchy will be mapped to an embedded total dimension table,
and that the fact table associated with this dimension hierarchy will store fully
solved data.

execute cwm2_olap_hierarchy.create_hierarchy
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_ROLLUP’,
 ’Standard’, ’Std Product’, ’Standard Product Hierarchy’,
 ’SOLVED LEVEL-BASED’);
20-12 Oracle9i OLAP User’s Guide

CWM2_OL
21

CWM2_OLAP_LEVEL

The CWM2_OLAP_LEVEL package provides procedures for creating, dropping, and
locking levels, and for adding levels to hierarchies. It also provides procedures for
setting the general properties of levels.

This chapter discusses the following topics:

■ Understanding Levels

■ Summary of CWM2_OLAP_LEVEL Subprograms

■ Example: Creating a Level

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
AP_LEVEL 21-1

Understanding Levels
Understanding Levels
A level is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP Catalog.

Dimension members are organized in levels that map to columns in dimension
tables or views. Levels are typically organized in hierarchies. Every dimension must
have at least one level. Levels are fully described in "OLAP Metadata Model" on
page 4-8

Use the procedures in the CWM2_OLAP_LEVEL package to create, drop, and lock
levels, to assign levels to hierarchies, and to specify descriptive information for
display purposes.

The parent dimension and the parent hierarchy must already exist in the OLAP
Catalog before you can create a level.

Summary of CWM2_OLAP_LEVEL Subprograms

Table 21–1 CWM2_OLAP_LEVEL Subprograms

Subprogram Description

ADD_LEVEL_TO_HIERARCHY
Procedure on page 21-3

Adds a level to a hierarchy.

CREATE_LEVEL Procedure on
page 21-4

Creates a level.

DROP_LEVEL Procedure on
page 21-5

Drops a level.

LOCK_LEVEL Procedure on
page 21-6

Locks the level metadata for update.

REMOVE_LEVEL_FROM_
HIERARCHY Procedure on
page 21-7

Removes a level from a hierarchy.

SET_DESCRIPTION Procedure
on page 21-8

Sets the description for a level.

SET_DISPLAY_NAME
Procedure on page 21-9

Sets the display name for a level.

SET_LEVEL_NAME Procedure
on page 21-9

Sets the name of a level.
21-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms
ADD_LEVEL_TO_HIERARCHY Procedure
This procedure adds a level to a hierarchy.

Syntax
ADD_LEVEL_TO_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2,
 parent_level_name IN VARCHAR2 DEFAULT);

Parameters

SET_PLURAL_NAME Procedure
on page 21-10

Sets the plural name for a level.

SET_SHORT_DESCRIPTION
Procedure on page 21-11

Sets the short description for a level.

Table 21–2 ADD_LEVEL_TO_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

level_name Name of the level to add to the hierarchy.

parent_level_name Name of the level’s parent in the hierarchy. If you do not
specify a parent, then the added level is the root of the
hierarchy.

Table 21–1 (Cont.) CWM2_OLAP_LEVEL Subprograms

Subprogram Description
CWM2_OLAP_LEVEL 21-3

CREATE_LEVEL Procedure
Exceptions

CREATE_LEVEL Procedure
This procedure creates a new level in the OLAP Catalog.

You must specify descriptions and display properties as part of level creation. Once
the level has been created, you can override these properties by calling other
procedures in the CWM2_OLAP_LEVEL package.

Syntax
CREATE_LEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 display_name IN VARCHAR2,
 plural_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Table 21–3 ADD_LEVEL_TO_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.

level_not_found Level not found.

Table 21–4 CREATE_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

display_name Display name for the level.

plural_name Plural name for the level.
21-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms
Exceptions

DROP_LEVEL Procedure
This procedure drops a level from the OLAP Catalog. All related level attributes are
also dropped.

Syntax
DROP_LEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2);

Parameters

short_description Short description of the level.

description Description of the level.

Table 21–5 CREATE_LEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_already_exists This level already exists for this dimension.

Table 21–6 DROP_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

Table 21–4 (Cont.) CREATE_LEVEL Procedure Parameters

Parameter Description
CWM2_OLAP_LEVEL 21-5

LOCK_LEVEL Procedure
Exceptions

LOCK_LEVEL Procedure
This procedure locks the level metadata for update by acquiring a database lock on
the row that identifies the level in the CWM2 model table.

Syntax
LOCK_LEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Table 21–7 DROP_LEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.

Table 21–8 LOCK_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

wait_for_lock (Optional) Whether or not to wait for the level to be available
when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.
21-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms
Exceptions

REMOVE_LEVEL_FROM_HIERARCHY Procedure
This procedure removes a level from a hierarchy.

Syntax
REMOVE_LEVEL_FROM_HIERARCHY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2);

Parameters

Exceptions

Table 21–9 LOCK_LEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.

Table 21–10 REMOVE_LEVEL_FROM_HIERARCHY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

level_name Name of the level to remove from the hierarchy.

Table 21–11 REMOVE_LEVEL_FROM_HIERARCHY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.
CWM2_OLAP_LEVEL 21-7

SET_DESCRIPTION Procedure
SET_DESCRIPTION Procedure
This procedure sets the description for a level.

Syntax
SET_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

dimension_not_found Parent dimension not found.

hierarchy_not_found Hierarchy not found.

child_level_not_found Child level not found.

Table 21–12 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

description Description of the level.

Table 21–13 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.

Table 21–11 (Cont.) REMOVE_LEVEL_FROM_HIERARCHY Procedure Exceptions

Exception Description
21-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms
SET_DISPLAY_NAME Procedure
This procedure sets the display name for a level.

Syntax
SET_DISPLAY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

SET_LEVEL_NAME Procedure
This procedure sets the name for a level.

Table 21–14 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

display_name Display name for the level.

Table 21–15 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.
CWM2_OLAP_LEVEL 21-9

SET_PLURAL_NAME Procedure
Syntax
SET_LEVEL_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 set_level_name IN VARCHAR2);

Parameters

Exceptions

SET_PLURAL_NAME Procedure
This procedure sets the plural name of a level.

Table 21–16 SET_LEVEL_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Original name for the level.

set_level_name New name for the level.

Table 21–17 SET_LEVEL_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.
21-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms
Syntax
SET_PLURAL_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 plural_name IN VARCHAR2);

Parameters

Exceptions

SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a level.

Table 21–18 SET_PLURAL_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

plural_name Plural name for the level.

Table 21–19 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

dimension_not_found Parent dimension not found.

level_not_found Level not found.
CWM2_OLAP_LEVEL 21-11

Example: Creating a Level
Syntax
SET_SHORT_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Example: Creating a Level
The following statements create four levels for the PRODUCT_DIM dimension and
assign them to the PRODUCT_DIM_ROLLUP hierarchy.

execute cwm2_olap_level.create_level
 (’JSMITH’, ’PRODUCT_DIM’, ’TOTALPROD_LVL’,
 ’Total Product’, ’All Products’, ’Total’,
 ’Equipment and Parts of standard product hierarchy’);
execute cwm2_olap_level.create_level
 (’JSMITH’, ’PRODUCT_DIM’, ’PROD_CATEGORY_LVL’,
 ’Product Category’, ’Product Categories’, ’Category’,
 ’Categories of standard product hierarchy’);

Table 21–20 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

short_description Short description of the level.

Table 21–21 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

level_not_found Level not found.
21-12 Oracle9i OLAP User’s Guide

Example: Creating a Level
execute cwm2_olap_level.create_level
 (’JSMITH’, ’PRODUCT_DIM’, ’PROD_SUBCATEGORY_LVL’,
 ’Product Sub-Category’, ’Product Sub-Categories’, ’Sub-Category’,
 ’Sub-Categories of standard product hierarchy’);
execute cwm2_olap_level.create_level
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_LVL’,
 ’Product’, ’Products’, ’Product’,
 ’Individual products of standard product hierarchy’);

execute cwm2_olap_level.add_level_to_hierarchy
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_ROLLUP’,
 ’PRODUCT_LVL’, ’PROD_SUBCATEGORY_LVL’);
execute cwm2_olap_level.add_level_to_hierarchy
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_ROLLUP’,
 ’PROD_SUBCATEGORY_LVL’, ’PROD_CATEGORY_LVL’);
execute cwm2_olap_level.add_level_to_hierarchy
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_ROLLUP’,
 ’PROD_CATEGORY_LVL’, ’TOTALPROD_LVL’);
execute cwm2_olap_level.add_level_to_hierarchy
 (’JSMITH’, ’PRODUCT_DIM’, ’PRODUCT_DIM_ROLLUP’, ’TOTALPROD_LVL’);
CWM2_OLAP_LEVEL 21-13

Example: Creating a Level
21-14 Oracle9i OLAP User’s Guide

CWM2_OLAP_LEVEL_ATT
22

CWM2_OLAP_LEVEL_ATTRIBUTE

The CWM2_OLAP_LEVEL_ATTRIBUTE package provides a procedure for creating
level attributes and associating them with levels and dimension attributes. It also
provides procedures for dropping, locking, and setting the general properties of
level attributes.

This chapter discusses the following topics:

■ Understanding Level Attributes

■ Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

■ Example: Creating a Level Attribute

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
RIBUTE 22-1

Understanding Level Attributes
Understanding Level Attributes
A level attribute is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

A level attribute is a child entity of a level and a dimension attribute. A level
attribute stores descriptive information about its related level. For example, a level
containing product identifiers might have an associated level attribute that contains
color information for each product.

Each level attribute maps to a column in a dimension table. The level attribute
column must be in the same table as the column (or columns) for its associated
level. Level attributes are fully described in "OLAP Metadata Model" on page 4-8.

Use the procedures in the CWM2_OLAP_LEVEL_ATTRIBUTE package to create,
drop, and lock level attributes, to assign level attributes to levels and dimension
attributes, and to specify descriptive information for display purposes.

Several level attribute names are reserved, because they have special significance
within CWM2. Reserved level attributes are associated with reserved dimension
attributes of the same name. Reserved level attributes will be mapped to columns
containing specific information. The reserved level attributes are listed in
Table 22–1.

Table 22–1 Reserved Level Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

Time Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key,
which identifies the dimension member at the lowest level in a
row of the dimension table.

Parent ET Key For an embedded total dimension, the dimension member that
is the parent of the ET key.
22-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
The parent dimension, parent level, and parent dimension attribute must already
exist in the OLAP Catalog before you can create a level attribute.

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

CREATE_LEVEL_ATTRIBUTE
This procedure creates a new level attribute in the OLAP Catalog and associates the
level attribute with a level and with a dimension attribute.

Grouping ID For an embedded total dimension, the grouping ID (GID),
which identifies the hierarchical level for a row of the
dimension table.

Parent Grouping ID For an embedded total dimension, the dimension member that
is the parent of the grouping ID.

Table 22–2 CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Subprogram Description

CREATE_LEVEL_ATTRIBUTE on
page 22-3

Creates a level attribute.

DROP_LEVEL_ATTRIBUTE
Procedure on page 22-5

Drops a level attribute.

LOCK_LEVEL_ATTRIBUTE
Procedure on page 22-6

Locks the level attribute metadata for update.

SET_DESCRIPTION Procedure
on page 22-8

Sets the description for a level attribute.

SET_DISPLAY_NAME
Procedure on page 22-9

Sets the display name for a level attribute.

SET_LEVEL_ATTRIBUTE_NAME
Procedure on page 22-10

Sets the name of a level attribute.

SET_SHORT_DESCRIPTION
Procedure on page 22-12

Sets the short description for a level attribute.

Table 22–1 (Cont.) Reserved Level Attributes

Dimension Attribute Description
CWM2_OLAP_LEVEL_ATTRIBUTE 22-3

CREATE_LEVEL_ATTRIBUTE
If the level attribute name should be reserved for a specific level and dimension
attribute combination, you can set the RESERVED_LEVEL_ATTRIBUTE argument to
TRUE. For more information, see Table 22–1, " Reserved Level Attributes".

You must specify descriptions and display properties as part of level attribute
creation. Once the level attribute has been created, you can override these
properties by calling other procedures in the CWM2_OLAP_LEVEL_ATTRIBUTE
package.

Syntax
CREATE_LEVEL_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 display_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2,
 reserved_level_attribute IN BOOLEAN FALSE);

Parameters

Table 22–3 CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute that includes this level
attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute.

display_name Display name for the level attribute.

short_description Short description of the level attribute.

description Description of the level attribute.
22-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
Exceptions

DROP_LEVEL_ATTRIBUTE Procedure
This procedure drops a level attribute from the OLAP Catalog.

reserved_level_
attribute

Whether or not this level attribute is reserved. By default, the
level attribute is not reserved.

The reserved level attributes are as follows.

Long Description
Short Description
End Date
Time Span
Prior Period
Year Ago Period
ET Key
Parent ET Key
Grouping ID
Parent Grouping ID

Table 22–4 CREATE_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_already_
exists

This level attribute already exists for this level.

Table 22–3 (Cont.) CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description
CWM2_OLAP_LEVEL_ATTRIBUTE 22-5

LOCK_LEVEL_ATTRIBUTE Procedure
Syntax
DROP_LEVEL_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2);

Parameters

Exceptions

LOCK_LEVEL_ATTRIBUTE Procedure
This procedure locks the level attribute metadata for update by acquiring a
database lock on the row that identifies the level attribute in the CWM2 model table.

Table 22–5 DROP_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute.

Table 22–6 DROP_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_not_
found

Level attribute not found.
22-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
Syntax
LOCK_LEVEL_ATTRIBUTE (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

Table 22–7 LOCK_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute.

wait_for_lock (Optional) Whether or not to wait for the level attribute to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 22–8 LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Parent dimension attribute not found.

level_not_found Parent level not found.
CWM2_OLAP_LEVEL_ATTRIBUTE 22-7

SET_DESCRIPTION Procedure
SET_DESCRIPTION Procedure
This procedure sets the description for a level attribute.

Syntax
SET_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

level_attribute_not_
found

Level attribute not found.

Table 22–9 SET_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_name Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute.

description Description of the level attribute.

Table 22–10 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

Table 22–8 (Cont.) LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description
22-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
SET_DISPLAY_NAME Procedure
This procedure sets the display name for a level attribute.

Syntax
SET_DISPLAY_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_not_
found

Level attribute not found.

Table 22–11 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_
attribute_name

Name of the dimension attribute.

level_name Name of the level.

level_attribute_
name

Name of the level attribute.

display_name Display name for the level attribute.

Table 22–10 (Cont.) SET_DESCRIPTION Procedure Exceptions

Exception Description
CWM2_OLAP_LEVEL_ATTRIBUTE 22-9

SET_LEVEL_ATTRIBUTE_NAME Procedure
Exceptions

SET_LEVEL_ATTRIBUTE_NAME Procedure
This procedure sets the name for a level attribute.

For information on reserved level attribute names, see Table 22–1, " Reserved Level
Attributes".

Syntax
SET_LEVEL_ATTRIBUTE_NAME (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 set_level_attribute_name IN VARCHAR2,
 reserved_level_attribute IN BOOLEAN DEFAULT FALSE);

Parameters

Table 22–12 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_not_
found

Level attribute not found.

Table 22–13 SET_LEVEL_ATTRIBUTE_NAME Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_
attribute_name

Name of the dimension attribute.
22-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
Exceptions

level_name Name for the level.

level_attribute_
name

Original name for the level attribute.

set_level_
attribute_name

New name for the level attribute.

reserved_level_
attribute

Whether or not this level attribute is reserved. By default, the
level attribute is not reserved.

Table 22–14 SET_LEVEL_ATTRIBUTE_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_
not_found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_not_
found

Level attribute not found.

Table 22–13 (Cont.) SET_LEVEL_ATTRIBUTE_NAME Procedure Parameters

Parameter Description
CWM2_OLAP_LEVEL_ATTRIBUTE 22-11

SET_SHORT_DESCRIPTION Procedure
SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a level attribute.

Syntax
SET_SHORT_DESCRIPTION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Table 22–15 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_name Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute.

short_description Short description of the level attribute.

Table 22–16 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Parent dimension not found.

dimension_attribute_not_
found

Parent dimension attribute not found.

level_not_found Parent level not found.

level_attribute_not_
found

Level attribute not found.
22-12 Oracle9i OLAP User’s Guide

Example: Creating a Level Attribute
Example: Creating a Level Attribute
The following statements create a color attribute for the lowest level and long
descriptions for all four levels of the PRODUCT_DIM dimension.

execute cwm2_olap_level_attribute.create_level_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Product Color’, ’PRODUCT_LVL’, ’Product Color’,
 ’PROD_STD_COLOR’, ’Prod Color’, ’Product Color’);

execute cwm2_olap_level_attribute.create_level_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Long Description’, ’PRODUCT_LVL’,
 ’Long Description’,’PRODUCT_STD_LLABEL’, ’Product’,
 ’Long Labels for individual products of the PRODUCT hierarchy’, TRUE);

execute cwm2_olap_level_attribute.create_level_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Long Description’, ’PROD_SUBCATEGORY_LVL’,
 ’Long Description’, ’PROD_STD_LLABEL’, ’Product Sub Category’,
 ’Long Labels for subcategories of the PRODUCT hierarchy’, TRUE);

execute cwm2_olap_level_attribute.create_level_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Long Description’, ’PROD_CATEGORY_LVL’,
 ’Long Description’, ’PROD_STD_LLABEL’, ’Product Category’,
 ’Long Labels for categories of the PRODUCT hierarchy’, TRUE);

execute cwm2_olap_level_attribute.create_level_attribute
 (’JSMITH’, ’PRODUCT_DIM’, ’Long Description’, ’TOTALPROD_LVL’,
 ’Long Description’, ’PROD_STD_LLABEL’, ’Total Product’,
 ’Long Labels for total of the PRODUCT hierarchy’, TRUE);

CWM2_OLAP_LEVEL_ATTRIBUTE 22-13

Example: Creating a Level Attribute
22-14 Oracle9i OLAP User’s Guide

CWM2_OLAP_M
23

CWM2_OLAP_MEASURE

The CWM2_OLAP_MEASURE package provides procedures for creating, dropping,
and locking measures. It also provides procedures for setting general properties of
measures.

This chapter discusses the following topics:

■ Understanding Measures

■ Summary of CWM2_OLAP_MEASURE Subprograms

■ Example: Creating a Measure

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
EASURE 23-1

Understanding Measures
Understanding Measures
A measure is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Measures represent data stored in fact tables. The fact tables may be relational tables
or views. The views may reference data stored in analytic workspaces.

Measures exist within the context of cubes, which fully specify the dimensionality
of the measures’ data. Measures are fully described in "OLAP Metadata Model" on
page 4-8.

Use the procedures in the CWM2_OLAP_MEASURE package to create, drop, and lock
measures, to associate a measure with a cube, and to specify descriptive information
for display purposes.

The parent cube must already exist in the OLAP Catalog before you can create a
measure.

Summary of CWM2_OLAP_MEASURE Subprograms

Table 23–1 CWM2_OLAP_MEASURE Subprograms

Subprogram Description

CREATE_MEASURE Procedure
on page 23-3

Creates a measure.

DROP_MEASURE Procedure on
page 23-4

Drops a measure.

LOCK_MEASURE Procedure on
page 23-4

Locks a measure’s metadata for update.

SET_DESCRIPTION Procedure
on page 23-5

Sets the description for a measure.

SET_DISPLAY_NAME
Procedure on page 23-6

Sets the display name for a measure.

SET_MEASURE_NAME
Procedure on page 23-7

Sets the name of a measure.

SET_SHORT_DESCRIPTION
Procedure on page 23-8

Sets the short description for a measure.
23-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms
CREATE_MEASURE Procedure
This procedure creates a new measure in the OLAP Catalog.

A measure can only be created in the context of a cube. The cube must already exist
before you create the measure.

Descriptions and display properties must also be established as part of measure
creation. Once the measure has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_MEASURE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 display_name IN VARCHAR2,
 short_description IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

Table 23–2 CREATE_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure.

display_name Display name for the measure.

short_description Short description of the measure.

description Description of the measure.

Table 23–3 CREATE_MEASURE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.
CWM2_OLAP_MEASURE 23-3

DROP_MEASURE Procedure
DROP_MEASURE Procedure
This procedure drops a measure from a cube.

Syntax
DROP_MEASURE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2);

Parameters

Exceptions

LOCK_MEASURE Procedure
This procedure locks the measure’s metadata for update by acquiring a database
lock on the row that identifies the measure in the CWM2 model table.

measure_already_exists This measure already exists for this cube.

Table 23–4 DROP_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be dropped from the cube.

Table 23–5 DROP_MEASURE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.

Table 23–3 (Cont.) CREATE_MEASURE Procedure Exceptions

Exception Description
23-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms
Syntax
LOCK_MEASURE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2.
 measure_name IN VARCHAR2,
 wait_for_lock IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

SET_DESCRIPTION Procedure
This procedure sets the description for a measure.

Table 23–6 LOCK_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be locked.

wait_for_lock (Optional) Whether or not to wait for the measure to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 23–7 LOCK_MEASURE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.
CWM2_OLAP_MEASURE 23-5

SET_DISPLAY_NAME Procedure
Syntax
SET_DESCRIPTION (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Exceptions

SET_DISPLAY_NAME Procedure
This procedure sets the display name for a measure.

Table 23–8 SET_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure.

description Description of the measure.

Table 23–9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.
23-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms
Syntax
SET_DISPLAY_NAME (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 display_name IN VARCHAR2);

Parameters

Exceptions

SET_MEASURE_NAME Procedure
This procedure sets the name for a measure.

Table 23–10 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure.

display_name Display name for the measure.

Table 23–11 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.
CWM2_OLAP_MEASURE 23-7

SET_SHORT_DESCRIPTION Procedure
Syntax
SET_MEASURE_NAME (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 set_cube_name IN VARCHAR2);

Parameters

Exceptions

SET_SHORT_DESCRIPTION Procedure
This procedure sets the short description for a cube.

Table 23–12 SET_MEASURE_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Original name of the measure.

set_cube_name New name for the measure.

Table 23–13 SET_MEASURE_NAME Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.
23-8 Oracle9i OLAP User’s Guide

Example: Creating a Measure
Syntax
SET_DESCRIPTION (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 short_description IN VARCHAR2);

Parameters

Exceptions

Example: Creating a Measure
The following statements create the SALES_AMOUNT and SALES_QUANTITY
measures for the SALES_CUBE cube.

execute cwm2_olap_measure.create_measure
 (’JSMITH’, ’SALES_CUBE’, ’SALES_AMOUNT’, ’Sales Amount’,
 ’$ Sales’, ’Dollar Sales’);
execute cwm2_olap_measure.create_measure
 (’JSMITH’, ’SALES_CUBE’, ’SALES_QUANTITY’, ’Sales Quantity’,
 ’Sales Quantity’, ’Quantity of Items Sold’);

Table 23–14 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure.

short_description Short description of the measure.

Table 23–15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not_found Parent cube not found.

measure_not_found Measure not found.
CWM2_OLAP_MEASURE 23-9

Example: Creating a Measure
23-10 Oracle9i OLAP User’s Guide

CWM2_OLAP_METADATA_RE
24

CWM2_OLAP_METADATA_REFRESH

The CWM2_OLAP_METADATA_REFRESH package provides a procedure that
refreshes a set of metadata tables for the OLAP API.

This chapter discusses the following topics:

■ The OLAP API Metadata Reader Views

■ Summary of CWM2_OLAP_METADATA_REFRESH Subprograms
FRESH 24-1

The OLAP API Metadata Reader Views
The OLAP API Metadata Reader Views
The Metadata Reader views present a read API to the OLAP Catalog. These views
are structured to facilitate queries by the OLAP API Metadata Reader.

The Metadata Reader views, unlike the OLAP Catalog views described in
Chapter 14, "Viewing OLAP Catalog Metadata", are not automatically refreshed
when changes are made to the metadata.

The Metadata Reader views have public synonyms with the prefix MRV_OLAP. The
union views have public synonyms with the prefix ALL_OLAP2. More than half of
the MRV_OLAP views have the same name and column structure as the
corresponding ALL_OLAP2 views.

The MRV_OLAP views and the ALL_OLAP2 views rely on separate sets of metadata
tables. Whereas the tables that underlie the ALL_OLAP views are populated
automatically, the tables that underlie the MRV_OLAP views must be explicitly
refreshed whenever changes are made to the metadata.
24-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms
Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

MR_REFRESH Procedure
This procedure refreshes the metadata tables that underlie the MRV_OLAP views, as
described in "The OLAP API Metadata Reader Views" on page 24-2.

Execute MR_REFRESH as the final statement in any script that creates, drops, or
updates OLAP Catalog metadata for the OLAP API.

The MR_REFRESH procedure includes a COMMIT. The updates to the metadata
tables are saved permanently in the database.

Syntax
MR_REFRESH;

Table 24–1 CWM2_OLAP_METADATA_REFRESH Subprograms

Subprogram Description

MR_REFRESH Procedure Refreshes the metadata tables used by the OLAP API.
CWM2_OLAP_METADATA_REFRESH 24-3

MR_REFRESH Procedure
24-4 Oracle9i OLAP User’s Guide

CWM2_OLAP_PC_TRANSFO
25

CWM2_OLAP_PC_TRANSFORM

The CWM2_OLAP_PC_TRANSFORM package contains a procedure for generating a
SQL script that creates a solved, level-based dimension table from a parent-child
dimension table. .

After running the script and creating the new table, you can define OLAP metadata
so that OLAP API applications can access the dimension.

This chapter discusses the following topics:

■ Prerequisites

■ Parent-Child Dimensions

■ Solved, Level-Based Dimensions

■ Example: Creating a Solved, Level-Based Dimension Table

■ Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

See Also:

■ Chapter 4, "Designing Your Database for OLAP" for information about
types of data warehouse tables supported by OLAP Catalog metadata.

■ Chapter 20, "CWM2_OLAP_HIERARCHY" for information about
creating OLAP Catalog metadata for dimension hierarchies.
RM 25-1

Prerequisites
Prerequisites
Before running the CWM2_OLAP_PC_TRANSFORM.CREATE_SCRIPT procedure,
ensure that the RDBMS is enabled to write to a file. The utl_file_dir parameter
must be set to a valid directory, as described in "Initialization Parameters for Oracle
OLAP" on page 6-3.

A parent-child dimension table must exist and be accessible to the CWM2_OLAP_PC_
TRANSFORM.CREATE_SCRIPT procedure.

Parent-Child Dimensions
A parent-child dimension table is one in which the hierarchical relationships are
defined by a parent column and a child column. Since the hierarchy is defined by
the relationship between the values within two columns, a parent-child dimension is
sometimes referred to as having a value-based hierarchy.

Figure 25–1, "Sample Parent-Child Dimension Table Columns" illustrates the
relationships between the values in the child and parent columns. A description
column, which is an attribute of the child, is also included.

Figure 25–1 Sample Parent-Child Dimension Table Columns

CHILD PARENT DESCRIPTION
------------- ----------- -------------
World World
USA World United States of America
Northeast USA North East Region
Southeast USA South East Region
MA Northeast Massachusetts
Boston MA Boston, MA
Burlington MA Burlington, MA
NY Northeast New York State
New York City NY New York, NY
GA Southeast Georgia
Atlanta GA Atlanta,GA
Canada World Canada

If you choose to create OLAP Catalog metadata to represent a parent-child
dimension, set the solved_code for the hierarchy to SOLVED,VALUE_BASED, as
described in Chapter 20, "CWM2_OLAP_HIERARCHY".
25-2 Oracle9i OLAP User’s Guide

Solved, Level-Based Dimensions
Solved, Level-Based Dimensions
The script generated by OLAP_PC_TRANSFORM.CREATE_SCRIPT creates a table
that stores the values from the parent-child table in levels.

The resulting level-based dimension table includes the full lineage of every level
value in every row. This type of dimension table is solved, because the fact table
related to this dimension includes embedded totals for all level combinations.

If you want to enable parent-child dimension tables for access by the OLAP API,
you must convert them to solved, level-based dimension tables. The OLAP API
requires that dimensions have levels and that they include a GID (Grouping ID)
column and an Embedded Total (ET) key column. GIDs and ET key columns are
described in Example: Creating a Solved, Level-Based Dimension Table.

Figure 25–2, "Sample Solved, Level-Based Dimension Table Columns" illustrates
how the parent-child relationships in Figure 25–1 would be represented as solved
levels.

Figure 25–2 Sample Solved, Level-Based Dimension Table Columns

TOT_GEOG COUNTRY REGION STATE CITY DESCRIPTION
-------- ------- --------- ----- ------- ----------------------
World USA Northeast MA Boston Boston, MA
World USA Northeast MA Burlington Burlington, MA
World USA Northeast NY New York City New York, NY
World USA Southeast GA Atlanta Atlanta, GA
World USA Northeast MA Massachusetts
World USA Northeast NY New York State
World USA Southeast GA Georgia
World USA Northeast North East Region
World USA Southeast South East Region
World USA United States of America
World Canada Canada
World World

When creating OLAP Catalog metadata to represent a solved, level-based
dimension hierarchy, specify a solved_code of SOLVED,LEVEL_BASED, as
described in Chapter 20, "CWM2_OLAP_HIERARCHY".

Note: You can create OLAP Catalog metadata to represent
value-based hierarchies, but this type of hierarchy is not accessible
to applications that use the OLAP API.
CWM2_OLAP_PC_TRANSFORM 25-3

Example: Creating a Solved, Level-Based Dimension Table
Example: Creating a Solved, Level-Based Dimension Table
Assuming a parent-child dimension table with the PARENT and CHILD columns
shown in Figure 25–1, you could use a command like the following to represent
these columns in a solved, level-based dimension table.

execute cwm2_olap_pc_transform.create_script
 (’/dat1/scripts/myscripts’ ,
 ’jsmith’ ,
 ’input_tbl’ ,
 ’PARENT’ ,
 ’CHILD’ ,
 ’output_tbl’ ,
 ’jsmith_data’);

This statement creates a script in the directory /dat1/scripts/myscripts. The
script will convert the parent-child table input_tbl to the solved, level-based table
output_tbl. Both tables are in the jsmith_data tablespace of the jsmith
schema.

You can run the resulting script with the following command.

@create_output_tbl

You can view the resulting table with the following command.

select * from output_tbl_view

The resulting table would look like this.

GID SHORT_DESC LONG_DESC CHILD1 CHILD2 CHILD3 CHILD4 CHILD5
--- ----------- ------------ ------ ----- -------- ------ -------
0 Boston Boston World USA Northeast MA Boston
0 Burlington Burlington World USA Northeast MA Burlington
0 New York City New York City World USA Northeast NY New York City
0 Atlanta Atlanta World USA Southeast GA Atlanta
1 MA MA World USA Northeast MA
1 NY MA World USA Northeast NY
1 GA GA World USA Southeast GA
3 Northeast Northeast World USA Northeast
3 Southeast Southeast World USA Southeast
7 USA USA World USA
7 Canada Canada World Canada
15 World World World
25-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms
Grouping ID Column
The script automatically creates a GID column, as required by the OLAP API. The
GID identifies the hierarchy level associated with each row by assigning a zero to
each non-null value and a one to each null value in the level columns. The resulting
binary number is the value of the GID. For example, a GID of 3 is assigned to the
row with the level values World, USA, Northeast, since the three highest levels are
assigned zeros and the two lowest levels are assigned ones.

CHILD1 CHILD2 CHILD3 CHILD4 CHILD5
------ ----- -------- ------ -------
World USA Northeast
0 0 0 1 1

Embedded Total Key Column
The script automatically generates columns for long description and short
description. If you have columns in the input table that contain this information,
you can specify them as parameters to the CREATE_SCRIPT procedure.

If you do not specify a column for the short description, the script creates the
column and populates it with the lowest-level child value represented in each row.
If you do not specify a column for the long description, the script simply replicates
the short description.

The ET key column required by the OLAP API is the short description column that
is created by default.

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

CREATE_SCRIPT Procedure
This procedure generates a script that converts a parent-child dimension table to an
embedded-total dimension table.

Table 25–1 CWM2_OLAP_PC_TRANSFORM

Subprogram Description

CREATE_SCRIPT Procedure on
page 25-5

Generates a script that converts a parent-child
table to an embedded-total table.
CWM2_OLAP_PC_TRANSFORM 25-5

CREATE_SCRIPT Procedure
Syntax
CREATE_SCRIPT (
 directory IN VARCHAR2,
 schema IN VARCHAR2,
 pc_table IN VARCHAR2,
 pc_parent IN VARCHAR2,
 pc_child IN VARCHAR2,
 slb_table IN VARCHAR2,
 slb_tablespace IN VARCHAR2,
 pc_root IN VARCHAR2 DEFAULT NULL,
 number_of_levels IN NUMBER DEFAULT NULL,
 level_names IN VARCHAR2 DEFAULT NULL,
 short_description IN VARCHAR2 DEFAULT NULL,
 long_description IN VARCHAR2 DEFAULT NULL,
 attribute_names IN VARCHAR2 DEFAULT NULL);

Parameters

Table 25–2 CREATE_SCRIPT Procedure Parameters

Parameter Description

directory Full path of the directory that will contain the generated script.

schema Schema containing the parent-child table. This schema will also
contain the solved, level-based table.

pc_table Name of the parent-child table.

pc_parent Name of the column in pc_table that contains the parent
values .

pc_child Name of the column in pc_table that contains the child values.

slb_table Name of the solved, level-based table that will be created.

slb_tablespace Name of the tablespace where the solved, level-based table will
be created.

pc_root One of the following:

null - Root of the parent-child hierarchy is identified by null
in the parent column. (default)

condition - Root of the parent-child hierarchy is a condition,
for example:

’long_des = "All Countries"’
25-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms
Usage Notes
1. If a table with the same name as the solved, level-based table already exists, the

script will delete it.

number_of_levels One of the following:

null - The number of levels in the solved, level-based table
will be all the levels of the hierarchy in the parent-child table.
(default)

number - The number of levels to be created in the solved,
level-based table.

level_names One of the following:

null - The column names in the solved, level-based table will
be the source child column name concatenated with the level
number. (default)

list - A comma-separated list of column names for the solved,
level-based table.

short_description One of the following:

null - There is no short description in the parent-child table.
The highest level non-null child value in each row of the solved,
level-based table will be used as the short description. This
constitutes the ET key column (default)

column name - Name of the column in the parent-child table
that contains the short description. This column will be copied
from the parent-child table to the solved, level-based table.

long_description One of the following:

null - There is no long description in the parent-child table.
The short description will be used. (default)

column name - Name of the column in the parent-child table
that contains the long description. This column will be copied
from the parent-child table to the solved, level-based table.

attribute_names One of the following:

null - There are no attributes in the parent-child table.
(default)

list - A comma-separated list of attribute columns in the
parent-child table. These columns will be copied from the
parent-child table to the solved, level-based table

Table 25–2 (Cont.) CREATE_SCRIPT Procedure Parameters

Parameter Description
CWM2_OLAP_PC_TRANSFORM 25-7

CREATE_SCRIPT Procedure
2. You can reduce the time required to generate the script by specifying the
number of levels in the number_of_levels parameter. If you do not specify a
value for this parameter, the CREATE_SCRIPT procedure calculates all the
levels from the parent-child table.

3. To define additional characteristics of the solved, level-based table, you can
modify the generated script file before executing it.
25-8 Oracle9i OLAP User’s Guide

CWM2_OLAP_TA
26

CWM2_OLAP_TABLE_MAP

The CWM2_OLAP_TABLE_MAP package provides procedures for mapping OLAP
metadata entities to columns in your data warehouse dimension tables and fact
tables.

This chapter discusses the following topics:

■ Understanding OLAP Metadata Mapping

■ Summary of CWM2_OLAP_TABLE_MAP Subprograms

■ Example: Mapping a Dimension

■ Example: Mapping a Cube

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs"
BLE_MAP 26-1

Understanding OLAP Metadata Mapping
Understanding OLAP Metadata Mapping
The CWM2_OLAP_TABLE_MAP package provides procedures for linking OLAP
metadata entities to columns in fact tables and dimension tables and for
establishing the join relationships between a fact table and its associated dimension
tables.

Dimension levels and level attributes are mapped to columns in dimension tables.
Typically, they are mapped by hierarchy. Measures are mapped to columns in fact
tables.

The join relationship between the fact table and dimension tables may specified for
unsolved data stored in a single fact table, for solved data stored in one fact table
per hierarchy combination, or for solved data stored in a single fact table.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

See Also: "Mapping OLAP Metadata" on page 13-4.

Table 26–1 CWM2_OLAP_TABLE_MAP

Subprogram Description

MAP_DIMTBL_HIERLEVELATTR
Procedure on page 26-3

Maps a hierarchical level attribute to a column in
a dimension table.

MAP_DIMTBL_HIERLEVEL
Procedure on page 26-5

Maps a hierarchical level to one or more columns
in a dimension table.

MAP_DIMTBL_HIERSORTKEY
Procedure on page 26-6

Sorts the members of a hierarchy within a column
of a dimension table.

MAP_DIMTBL_LEVELATTR
Procedure on page 26-7

Maps a non-hierarchical level attribute to a
column in a dimension table

MAP_DIMTBL_LEVEL
Procedure on page 26-9

Maps a non-hierarchical level to one or more
columns in a dimension table.

MAP_FACTTBL_LEVELKEY
Procedure on page 26-10

Maps the dimensions of a cube to a fact table.

MAP_FACTTBL_MEASURE
Procedure on page 26-12

Maps a measure to a column in a fact table.

REMOVEMAP_DIMTBL_
HIERLEVELATTR Procedure
on page 26-13

Removes the mapping of a hierarchical level
attribute from a column in a dimension table.
26-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
MAP_DIMTBL_HIERLEVELATTR Procedure
This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level in the context of a hierarchy.

REMOVEMAP_DIMTBL_
HIERLEVEL Procedure on
page 26-15

Removes the mapping of a hierarchical level from
one or more columns in a dimension table.

REMOVEMAP_DIMTBL_
HIERSORTKEY Procedure on
page 26-16

Removes custom sorting criteria associated with
columns in a dimension table.

REMOVEMAP_DIMTBL_
LEVELATTR Procedure on
page 26-17

Removes the mapping of a non-hierarchical level
attribute from a column in a dimension table.

REMOVEMAP_DIMTBL_LEVEL
Procedure on page 26-18

Removes the mapping of a non-hierarchical level from
one or more columns in a dimension table.

REMOVEMAP_FACTTBL_
LEVELKEY Procedure on
page 26-19

Removes the mapping of a cube’s dimensions
from a fact table.

REMOVEMAP_FACTTBL_MEASURE
Procedure on page 26-20

Removes the mapping of a measure from a column in a
fact table.

Table 26–1 (Cont.) CWM2_OLAP_TABLE_MAP

Subprogram Description
CWM2_OLAP_TABLE_MAP 26-3

MAP_DIMTBL_HIERLEVELATTR Procedure
Syntax
MAP_DIMTBL_HIERLEVELATTR (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 attrcol IN VARCHAR2);

Parameters

Exceptions

Table 26–2 MAP_DIMTBL_HIERLEVELATTR Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

hierarchy_name Name of the hierarchy.

level_name Name of the level.

level_attribute_name Name of the level attribute associated with this level.

table_owner Owner of the dimension table.

table_name Name of the dimension table.

attrcol Column in the dimension table to which this level attribute
should be mapped.

Table 26–3 MAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
26-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
MAP_DIMTBL_HIERLEVEL Procedure
This procedure maps a level to one or more columns in a dimension table.

The level being mapped is identified within the context of a hierarchy.

Syntax
MAP_DIMTBL_HIERLEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 keycol IN VARCHAR2,
 parentcol IN VARCHAR2 DEFAULT NULL);

Parameters

hierarchy_not_found Hierarchy not found.

level_not_found Level not found.

attribute_not_found Level attribute not found.

table_not_found Dimension table not found.

column_not_found Dimension table column not found.

Table 26–4 MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

level_name Name of the level.

table_owner Owner of the dimension table.

table_name Name of the dimension table.

Table 26–3 (Cont.) MAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception Description
CWM2_OLAP_TABLE_MAP 26-5

MAP_DIMTBL_HIERSORTKEY Procedure
Exceptions

MAP_DIMTBL_HIERSORTKEY Procedure
This procedure specifies how to sort the members of a hierarchy within a column of
a dimension table. The column may be the key column or it may be a related
attribute column. Custom sorting can specify that the column be sorted in
ascending or descending order, with nulls first or nulls last.

Custom sorting information is optional and can be applied at multiple levels of a
dimension.

keycol Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

parentcol Column that stores the parent level in the hierarchy. If you do
not specify this parameter, the level is the root of the
hierarchy.

Table 26–5 MAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found Hierarchy not found.

level_not_found Level not found.

table_not_found Dimension table not found.

column_not_found Dimension table column not found.

Table 26–4 (Cont.) MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description
26-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
Syntax
MAP_DIMTBL_HIERSORTKEY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 sortcol IN VARCHAR2);

Parameters

Exceptions

MAP_DIMTBL_LEVELATTR Procedure
This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level that has no hierarchical
context. Typically, this level is the only level defined for this dimension.

Table 26–6 MAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

sortcol A string specifying how to sort the values stored in a given
column of a dimension table. The string specifies the table
name, the column name, whether to sort in ascending or
descending order, and whether to place nulls first or last.

The string should be enclosed in single quotes, and it should
be in the following form.

TBL:tableowner.tablename/COL:columnname
/ORD:ASC|DSC/NULL:FIRST|LAST

Table 26–7 MAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found Hierarchy not found.
CWM2_OLAP_TABLE_MAP 26-7

MAP_DIMTBL_LEVELATTR Procedure
Syntax
MAP_DIMTBL_LEVELATTR (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 attrcol IN VARCHAR2);

Parameters

Exceptions

Table 26–8 MAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute associated with this level.

table_owner Owner of the dimension table.

table_name Name of the dimension table.

attrcol Column in the dimension table to which this level attribute
should be mapped.

Table 26–9 MAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

level_not_found Level not found.

attribute_not_found Level attribute not found.
26-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
MAP_DIMTBL_LEVEL Procedure
This procedure maps a level to one or more columns in a dimension table.

The level being mapped has no hierarchical context. Typically, this level is the only
level defined for this dimension.

Syntax
MAP_DIMTBL_LEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2,
 table_owner IN VARCHAR2,
 table_name IN VARCHAR2,
 keycol IN VARCHAR2);

Parameters

table_not_found Dimension table not found

column_not_found Dimension table column not found.

Table 26–10 MAP_DIMTBL_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

table_owner Owner of the dimension table.

table_name Name of the dimension table.

keycol Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

Table 26–9 (Cont.) MAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description
CWM2_OLAP_TABLE_MAP 26-9

MAP_FACTTBL_LEVELKEY Procedure
Exceptions

MAP_FACTTBL_LEVELKEY Procedure
This procedure creates the join relationships between a fact table and a set of
dimension tables. A join must be specified for each of the dimensions of the cube.
Each dimension is joined in the context of one of its hierarchies.

For example, if you had a cube with three dimensions, and each dimension had
only one hierarchy, you could fully map the cube with one call to MAP_FACTTBL_
LEVELKEY.

However, if you had a cube with three dimensions, but two of the dimensions each
had two hierarchies, you would need to call MAP_FACTTBL_LEVELKEY four times
to fully map the cube. For dimensions Dim1, Dim2, and Dim3, where Dim1 and
Dim3 each have two hierarchies, you would specify the following mapping strings
in each call to MAP_FACTTBL_LEVELKEY, as shown below.

Dim1_Hier1, Dim2_Hier, Dim3_Hier1
Dim1_Hier1, Dim2_Hier, Dim3_Hier2
Dim1_Hier2, Dim2_Hier, Dim3_Hier1
Dim1_Hier2, Dim2_Hier, Dim3_Hier2

Typically the data for each hierarchy combination would be stored in a separate fact
table.

For more information, see"Joining Fact Tables with Dimension Tables" on page 13-4.

Table 26–11 MAP_DIMTBL_LEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

level_not_found Level not found.

table_not_found Dimension table not found.

column_not_found Dimension table column not found.
26-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
Syntax
MAP_FACTTBL_LEVELKEY (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 facttable_owner IN VARCHAR2,
 facttable_name IN VARCHAR2,
 storetype IN VARCHAR2,
 dimkeymap IN VARCHAR2,
 dimktype IN VARCHAR2 DEFAULT NULL);

Parameters

Table 26–12 MAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

facttable_owner Owner of the fact table.

facttable_name Name of the fact table.

storetype One of the following:

LOWEST LEVEL, for a fact table that stores only lowest level
data

ET, for a fact table that stores embedded totals in addition to
lowest level data

ROLLED UP, for an embedded total fact table with key
columns for all levels

dimkeymap A string specifying the mapping for each dimension of the
data in the fact table. For each dimension you must specify a
hierarchy and the lowest level to be mapped within that
hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DIM:dimname/HIER:hiername/GID:columnname/LVL:
levelname/COL:columnname;

This string must also be specified as an argument to the MAP_
FACTTBL_MEASURE procedure.

dimktype This parameter is not currently used.
CWM2_OLAP_TABLE_MAP 26-11

MAP_FACTTBL_MEASURE Procedure
Exceptions

MAP_FACTTBL_MEASURE Procedure
This procedure maps a measure to a column in a fact table.

Syntax
MAP_FACTTBL_MEASURE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 facttable_owner IN VARCHAR2,
 facttable_name IN VARCHAR2,
 column_name IN VARCHAR2,
 dimkeymap IN VARCHAR2);

Parameters

Table 26–13 MAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not_found Cube not found.

fact_table_not_found Fact table not found.

Table 26–14 MAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure to be mapped.

facttable_owner Owner of the fact table.

facttable_name Name of the fact table.

column_name Column in the fact table to which the measure will be
mapped.
26-12 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
Exceptions

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure
This procedure removes the relationship between a level attribute and a column in a
dimension table. The attribute is identified by the hierarchy that contains its
associated level.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

dimkeymap A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DIM:dimname/HIER:hiername/GID:columnname/LVL:
levelname/COL:columnname;

This string must also be specified as an argument to the MAP_
FACTTBL_HIERLEVELKEY procedure.

Table 26–15 MAP_FACTTBL_MEASURE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not_found Cube not found.

fact_table_not_found Fact table not found.

measure_not_found Measure not found.

column_not_found Fact table column not found.

Table 26–14 (Cont.) MAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description
CWM2_OLAP_TABLE_MAP 26-13

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure
Syntax
REMOVEMAP_DIMTBL_HIERLEVELATTR (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2);

Parameters

Exceptions

Table 26–16 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

hierarchy_name Name of the hierarchy.

level_name Name of the level.

level_attribute_name Name of the level attribute associated with this level.

Table 26–17 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found Hierarchy not found.

level_not_found Level not found.

attribute_not_found Level attribute not found.
26-14 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
REMOVEMAP_DIMTBL_HIERLEVEL Procedure
This procedure removes the relationship between a level of a hierarchy and one or
more columns in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVEMAP_DIMTBL_HIERLEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2,
 level_name IN VARCHAR2);

Parameters

Exceptions

Table 26–18 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

level_name Name of the level.

Table 26–19 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found Hierarchy not found.

level_not_found Level not found.
CWM2_OLAP_TABLE_MAP 26-15

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure
REMOVEMAP_DIMTBL_HIERSORTKEY Procedure
This procedure removes custom sorting criteria associated with columns in a
dimension table.

Syntax
REMOVEMAP_DIMTBL_HIERSORTKEY (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 hierarchy_name IN VARCHAR2);

Parameters

Exceptions

Table 26–20 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

hierarchy_name Name of the hierarchy.

Table 26–21 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

hierarchy_not_found Hierarchy not found.
26-16 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
REMOVEMAP_DIMTBL_LEVELATTR Procedure
This procedure removes the relationship between a level attribute and a column in a
dimension table.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP_DIMTBL_LEVELATTR (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 dimension_attribute_name IN VARCHAR2,
 level_name IN VARCHAR2,
 level_attribute_name IN VARCHAR2);

Parameters

Exceptions

Table 26–22 REMOVEMAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

dimension_attribute_
name

Name of the dimension attribute.

level_name Name of the level.

level_attribute_name Name of the level attribute associated with this level.

Table 26–23 REMOVEMAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

level_not_found Level not found.

attribute_not_found Level attribute not found.
CWM2_OLAP_TABLE_MAP 26-17

REMOVEMAP_DIMTBL_LEVEL Procedure
REMOVEMAP_DIMTBL_LEVEL Procedure
This procedure removes the relationship between a level and one or more columns
in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVEMAP_DIMTBL_LEVEL (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 level_name IN VARCHAR2);

Parameters

Exceptions

Table 26–24 REMOVEMAP_DIMTBL_LEVEL Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

level_name Name of the level.

Table 26–25 REMOVEMAP_DIMTBL_LEVEL Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.

level_not_found Level not found.
26-18 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms
REMOVEMAP_FACTTBL_LEVELKEY Procedure
This procedure removes the relationship between the key columns in a fact table
and the level columns of a dimension hierarchy in a dimension table.

Syntax
REMOVEMAP_FACTTBL_LEVELKEY (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 facttable_owner IN VARCHAR2,
 facttable_name IN VARCHAR2 DEFAULT);

Parameters

Exceptions

Table 26–26 REMOVEMAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

facttable_owner Owner of the fact table.

facttable_name Name of the fact table.

Table 26–27 REMOVEMAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not_found Cube not found.

fact_table_not_found Fact table not found.
CWM2_OLAP_TABLE_MAP 26-19

REMOVEMAP_FACTTBL_MEASURE Procedure
REMOVEMAP_FACTTBL_MEASURE Procedure
This procedure removes the relationship between a measure column in a fact table
and a logical measure associated with a cube.

Upon successful completion of this procedure, the measure is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP_FACTTBL_MEASURE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 measure_name IN VARCHAR2,
 facttable_owner IN VARCHAR2,
 facttable_name IN VARCHAR2,
 column_name IN VARCHAR2,
 dimkeymap IN VARCHAR2);

Parameters

Table 26–28 REMOVEMAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

measure_name Name of the measure.

facttable_owner Owner of the fact table.

facttable_name Name of the fact table.

column_name Column in the fact table to which the measure is mapped.

dimkeymap A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DIM:dimname/HIER:hiername/GID:columnname/LVL:
levelname

This string must also be specified as an argument to the MAP_
FACTTBL_HIERLEVELKEY procedure.
26-20 Oracle9i OLAP User’s Guide

Example: Mapping a Dimension
Exceptions

Example: Mapping a Dimension
The following statements map the four levels of the STANDARD hierarchy in the
XADEMO.PRODUCT_AW dimension to columns in the XADEMO_AW_VIEW_PRODUCT
dimension table. A long description attribute is mapped for each level.

execute cwm2_olap_table_map.Map_DimTbl_HierLevel
 (’XADEMO’, ’PRODUCT_AW’, ’STANDARD’, ’L4’,
 ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’L4’, ’L3’);
execute cwm2_olap_table_map.Map_DimTbl_HierLevelAttr
 (’XADEMO’, ’PRODUCT_AW’, ’Long Description’, ’STANDARD’, ’L4’,
 ’Long Description’, ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’PROD_STD_LLABEL’);

execute cwm2_olap_table_map.Map_DimTbl_HierLevel
 (’XADEMO’, ’PRODUCT_AW’, ’STANDARD’, ’L3’,
 ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’L3’, ’L2’);
execute cwm2_olap_table_map.Map_DimTbl_HierLevelAttr
 (’XADEMO’, ’PRODUCT_AW’, ’Long Description’, ’STANDARD’, ’L3’,
 ’Long Description’, ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’PROD_STD_LLABEL’);

execute cwm2_olap_table_map.Map_DimTbl_HierLevel
 (’XADEMO’, ’PRODUCT_AW’, ’STANDARD’, ’L2’,
 ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’L2’, ’L1’);
execute cwm2_olap_table_map.Map_DimTbl_HierLevelAttr
 (’XADEMO’, ’PRODUCT_AW’, ’Long Description’, ’STANDARD’, ’L2’,
 ’Long Description’, ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’PROD_STD_LLABEL’);

execute cwm2_olap_table_map.Map_DimTbl_HierLevel
 (’XADEMO’, ’PRODUCT_AW’, ’STANDARD’, ’L1’,
 ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’L1’, null);

Table 26–29 REMOVEMAP_FACTTBL_MEASURE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not_found Cube not found.

fact_table_not_found Fact table not found

measure_not_found Measure not found.

column_not_found Fact table column not found.
CWM2_OLAP_TABLE_MAP 26-21

Example: Mapping a Cube
execute cwm2_olap_table_map.Map_DimTbl_HierLevelAttr
 (’XADEMO’, ’PRODUCT_AW’, ’Long Description’, ’STANDARD’, ’L1’,
 ’Long Description’, ’XADEMO’, ’XADEMO_AW_VIEW_PRODUCT’, ’PROD_STD_LLABEL’);

Example: Mapping a Cube
The following statement maps the dimension join keys for a cube named
ANALYTIC_CUBE_AW in the XADEMO schema. Join key relationships are specified for
four dimension/hierarchy combinations:

PRODUCT_AW/STANDARD
CHANNEL_AW/STANDARD
TIME_AW/YTD
GEOGRAPHY_AW/CONSOLIDATED.

The fact table is called XADEMO_AW_SALES_VIEW_4. It stores lowest level data and
embedded totals for all level combinations.

execute cwm2_olap_table_map.Map_FactTbl_LevelKey
 (’XADEMO’, ’ANALYTIC_CUBE_AW’,’XADEMO’, ’XADEMO_AW_SALES_VIEW_4’, ’ET’,
 ’DIM:XADEMO.PRODUCT_AW/HIER:STANDARD/GID:PRODUCT_GID/LVL:L4/COL:PRODUCT_ET;
 DIM:XADEMO.CHANNEL_AW/HIER:STANDARD/GID:CHANNEL_GID/LVL:STANDARD_1/COL:CHANNEL_ET;
 DIM:XADEMO.TIME_AW/HIER:YTD/GID:TIME_YTD_GID/LVL:L3/COL:TIME_YTD_ET;
 DIM:XADEMO.GEOGRAPHY_AW/HIER:CONSOLIDATED/GID:GEOG_CONS_GID/LVL:L4/COL:GEOG_CONS_ET;’);

The following statement maps the F.SALES_AW measure to the SALES column in the
fact table.

execute cwm2_olap_table_map.Map_FactTbl_Measure
 (’XADEMO’, ’ANALYTIC_CUBE_AW’, ’F.SALES_AW’,
 ’XADEMO’, ’XADEMO_AW_SALES_VIEW_4’, ’SALES’,
 ’DIM:XADEMO.PRODUCT_AW/HIER:STANDARD/LVL:L4/COL:PRODUCT_ET;
 DIM:XADEMO.CHANNEL_AW/HIER:STANDARD/LVL:STANDARD_1/COL:CHANNEL_ET;
 DIM:XADEMO.TIME_AW/HIER:YTD/LVL:L3/COL:TIME_YTD_ET;
 DIM:XADEMO.GEOGRAPHY_AW/HIER:CONSOLIDATED/LVL:L4/COL:GEOG_CONS_ET;’);
26-22 Oracle9i OLAP User’s Guide

CWM2_OLAP_VALID
27

 CWM2_OLAP_VALIDATE

The. CWM2_OLAP_VALIDATE package provides procedures for validating OLAP
metadata.

This chapter discusses the following topics:

■ Summary of CWM2_OLAP_VALIDATE Subprograms

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
ATE 27-1

Summary of CWM2_OLAP_VALIDATE Subprograms
Summary of CWM2_OLAP_VALIDATE Subprograms

VALIDATE_DIMENSION Procedure
This procedure validates an OLAP Catalog dimension.

Syntax
VALIDATE_DIMENSION (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2);

Parameters

Exceptions

VALIDATE_CUBE Procedure
This procedure validates a cube.

Table 27–1 CWM2_OLAP_VALIDATE

Subprogram Description

VALIDATE_DIMENSION Procedure
on page 27-2

Validates a dimension.

VALIDATE_CUBE Procedure on
page 27-2

Validates a cube.

Table 27–2 VALIDATE_DIMENSION Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

Table 27–3 VALIDATE_DIMENSION Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

dimension_not_found Dimension not found.
27-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_VALIDATE Subprograms
The validity status of a cube is displayed in the view ALL_OLAP2_CUBES, described
on page 14-5.

Syntax
VALIDATE_CUBE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2);

Parameters

Exceptions

Table 27–4 VALIDATE_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

Table 27–5 VALIDATE_CUBE Procedure Exceptions

Exception Description

no_access_privileges User does not have the necessary privileges. User must
be the cube owner and have the OLAP_DBA role.

cube_not_found Cube not found.
CWM2_OLAP_VALIDATE 27-3

VALIDATE_CUBE Procedure
27-4 Oracle9i OLAP User’s Guide

CWM_C
28

CWM_CLASSIFY

The CWM_CLASSIFY package implements the OLAP metadata classification system,
used to manage measure folders (catalogs) and classify various OLAP metadata
entities. It provides procedures for creating measure folders and populating them
with measures.

This chapter discusses the following topics:

■ Understanding the OLAP Classification System

■ Summary of CWM_CLASSIFY Subprograms

■ Example: Creating a Measure Folder

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
LASSIFY 28-1

Understanding the OLAP Classification System
Understanding the OLAP Classification System
The CWM_CLASSIFY package, implementing the OLAP classification system, is
used primarily to manipulate OLAP measure folders.

The CWM_CLASSIFY package is part of CWM, the metadata repository that underlies
the OLAP Management feature of Oracle Enterprise Manager. However, the
classification system is also used by CWM2, the new metadata repository that is
available via the PL/SQL packages whose names start with CWM2_OLAP.

Note: Although the CWM_CLASSIFY package manages measure
folders for both metadata management systems, the measures
stored within measure folders are specific to either CWM and CWM2.
Measures created by Enterprise Manager cannot be accessed by
CWM2 procedures, and measures created by CWM2 procedures are
not visible within Enterprise Manager.
28-2 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Summary of CWM_CLASSIFY Subprograms

Table 28–1 CWM_CLASSIFY Subprograms

Subprogram Description

ADD_CATALOG_ENTITY
Procedure on page 28-4

Adds a measure to a measure folder (catalog).

ADD_DESCRIPTOR_ENTITY_
TYPE Procedure on
page 28-5

Adds a descriptor type to an entity type.

ADD_ENTITY_DESCRIPTOR_USE
Procedure on page 28-6

Attaches a descriptor to an entity.

CREATE_CATALOG Function
on page 28-7

Creates a measure folder (catalog).

CREATE_DESCRIPTOR
Function on page 28-8

Creates a descriptor.

CREATE_DESCRIPTOR_TYPE
Procedure on page 28-9

Creates a descriptor type.

DROP_CATALOG Procedure on
page 28-10

Drops a measure folder (catalog).

DROP_DESCRIPTOR Procedure
on page 28-10

Drops a descriptor.

DROP_DESCRIPTOR_TYPE
Procedure on page 28-11

Drops a descriptor type.

LOCK_CATALOG Procedure on
page 28-12

Locks a measure folder’s metadata for update.

REMOVE_CATALOG_ENTITY
Procedure on page 28-12

Removes a measure from a measure folder (catalog).

REMOVE_DESCRIPTOR_ENTITY_
TYPE Procedure on
page 28-13

Removes a descriptor type from an entity type.

REMOVE_ENTITY_DESCRIPTOR_
USE ProcedureExceptions
on page 28-14

Removes a descriptor from an entity.

SET_CATALOG_DESCRIPTION
Procedure on page 28-16

Sets the description for a measure folder (catalog).

SET_CATALOG_PARENT
Procedure on page 28-16

Sets the parent folder for a measure folder (catalog).
CWM_CLASSIFY 28-3

ADD_CATALOG_ENTITY Procedure
ADD_CATALOG_ENTITY Procedure
This procedure adds a measure or a cube to a measure folder.

Syntax
ADD_CATALOG_ENTITY (
 catalog_id IN NUMBER,
 entity_owner IN VARCHAR2,
 entity_name IN VARCHAR2,
 child_entity_name IN VARCHAR2);

Parameters

Exceptions

Table 28–2 ADD_CATALOG_ENTITY Procedure Parameters

Parameter Description

catalog_id Name of the measure folder.

entity_owner Owner of the cube to be added to the measure folder.

entity_name Name of the cube to be added to the measure folder.

child_entity_
name

Name of a measure. If this parameter is specified, the procedure adds
this individual measure to the measure folder, instead of adding all
of the cube’s measures. If this parameter is NULL, the procedure adds
all of the cube’s measures. The default is NULL.

Table 28–3 ADD_CATALOG_ENTITY Procedure Exceptions

Exception Description

element_already_
exists

This cube is already added to this measure folder.

element_not_found Cube or measure not found.

catalog_not_found Measure folder not found.
28-4 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
ADD_DESCRIPTOR_ENTITY_TYPE Procedure
This procedure adds a descriptor type to a metadata entity type.

This procedure is only available to DBAs.

The following pairs of entity types and descriptor types are predefined in the OLAP
Catalog.

Syntax
ADD_DESCRIPTOR_ENTITY_TYPE (
 descriptor_type IN VARCHAR2,
 entity_type IN VARCHAR2);

Parameters

Entity Type Descriptor Type

Dimension Dimension Type

Dimension Dimension Primary Display Sort Order

Dimension Dimension Secondary Display Sort Order

Dimension Attribute Dimension Attribute Descriptor

Dimension Attribute Time Dimension Attribute Type

Level Attribute Dimension Attribute Descriptor

Level Attribute Time Dimension Attribute Type

Level Total Level

Level Time Dimension Level Type

Parameter Parameter Source Type

Table 28–4 ADD_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be
dimension type, or attribute type.

entity_type One of the following types of entities: DIMENSION,
CUBE, MEASURE, LEVEL, ATTRIBUTE,
HIERARCHY, PARAMETER
CWM_CLASSIFY 28-5

ADD_ENTITY_DESCRIPTOR_USE Procedure
ADD_ENTITY_DESCRIPTOR_USE Procedure
This procedure assigns a descriptor to an OLAP metadata entity. An entity may
have multiple descriptors.

This procedure is only available to DBAs.

Syntax
ADD_ENTITY_DESCRIPTOR_USE (
 descriptor_id IN NUMBER,
 entity_type IN VARCHAR2,
 entity_owner IN VARCHAR2,
 entity_name IN VARCHAR2,
 child_entity_name IN VARCHAR2,
 secondary_child_entity_name IN VARCHAR2);

Parameters

Table 28–5 ADD_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter Description

descriptor_id Identifier of the descriptor.

entity_type One of the following types of entities: DIMENSION, CUBE,
MEASURE, LEVEL, ATTRIBUTE,
HIERARCHY, PARAMETER

entity_owner Owner of the entity.

entity_name Name of the parent entity. If there is no child entity, this is the name
of the entity to which the descriptor should be applied.

child_entity_
name

If the entity is a child of entity_name, name of the child entity. If
the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity to which the descriptor should be
applied.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

secondary_
child_entity_
name

Used for specifying level attributes, which are children of levels. If
the entity is not a level attribute, this parameter is NULL.
28-6 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Exceptions

CREATE_CATALOG Function
This function creates a measure folder and returns a unique identifier (NUMBER) for
the measure folder.

This identifier may be used to create subfolders of this measure folder.

Syntax
CREATE_CATALOG (
 catalog_name IN VARCHAR2,
 catalog_description IN NUMBER,
 parent_catalog_id IN NUMBER);

Parameters

Exceptions

Table 28–6 ADD_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception Description

entity_not_found Entity not found.

descriptor_undefined Descriptor value not found in ALL$OLAP_DESCRIPTORS
lookup view.

Table 28–7 CREATE_CATALOG Function Parameters

Parameter Description

catalog_name Name of the measure folder.

catalog_description Description of the measure folder.

parent_catalog_id Identifier of the parent measure folder. By default, this
parameter is NULL, meaning that the new measure folder
is at the root level in the hierarchy.

Table 28–8 CREATE_CATALOG Function Exceptions

Exception Description

parent_catalog_not_found Parent measure folder not found.
CWM_CLASSIFY 28-7

CREATE_DESCRIPTOR Function
CREATE_DESCRIPTOR Function
This function creates a descriptor and returns a unique identifier (NUMBER) for the
new descriptor.

 For each descriptor type, multiple descriptors may be defined. These descriptors
are used as a domain to descriptor usages.

This procedure is only available to DBAs.

Syntax
CREATE_DESCRIPTOR (
 descriptor_type IN VARCHAR2,
 descriptor_value IN VARCHAR2,
 description IN VARCHAR2);

Parameters

catalog_already_exists A measure folder with this name already exists.

invalid_name Measure folder name may not be empty or null.

Table 28–9 CREATE_DESCRIPTOR Function Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be dimension type,
or attribute type.

descriptor_
value

The value for the descriptor. For example, long description and
short description are descriptors of type attribute type.

description Description of the descriptor.

Table 28–8 (Cont.) CREATE_CATALOG Function Exceptions

Exception Description
28-8 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Exceptions

CREATE_DESCRIPTOR_TYPE Procedure
This procedure creates a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP
metadata entities. The descriptor type also specifies the metadata entities to which
its descriptors may apply.

This procedure is only available to DBAs.

Syntax
CREATE_DESCRIPTOR_TYPE (
 descriptor_type IN VARCHAR2);

Parameters

Exceptions

Table 28–10 CREATE_DESCRIPTOR Function Exceptions

Exception Description

descriptor_type_not_found Descriptor type must be created first using the
CREATE_DESCRIPTOR_TYPE procedure.

descriptor_already_exists This descriptor value already exists for this
descriptor type.

no-access-privileges Must have OLAP_DBA role.

Table 28–11 CREATE_DESCRIPTOR_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be dimension type,
or attribute type.

Table 28–12 CREATE_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descriptor_type_already_
exists

A descriptor type with this name already exists.

entity_type_not_allowed Entity type is not one of the supported types.
CWM_CLASSIFY 28-9

DROP_CATALOG Procedure
DROP_CATALOG Procedure
This procedure deletes a measure folder. By default, you must delete subfolders
before deleting a measure folder. However, if you set the cascade parameter, all
subfolders are deleted along with the measure folder.

Syntax
DROP_CATALOG (
 catalog_id IN NUMBER,
 cascade IN VARCHAR2);

Parameters

Exceptions

DROP_DESCRIPTOR Procedure
This procedure drops a descriptor.

Table 28–13 DROP_CATALOG Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.

cascade Whether or not the subfolders should be deleted with the measure
folder. Values may be Y or N. Y means that subfolders will be deleted. N
means that subfolders will not be deleted, and if there are subfolders the
measure folder will not be deleted. The default is N.

Table 28–14 DROP_CATALOG Procedure Exceptions

Exception Description

catalog_has_sub_catalogs You must drop the subfolders before deleting the
measure folder.

catalog_not_found Measure folder not found.
28-10 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Syntax
DROP_DESCRIPTOR (
 descriptor_id IN NUMBER);

Parameters

Exceptions

DROP_DESCRIPTOR_TYPE Procedure
This procedure drops a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP
metadata entities. The descriptor type also specifies the metadata entities to which
its descriptors may apply.

This procedure is granted only to DBA.

Syntax
DROP_DESCRIPTOR_TYPE (
 descriptor_type IN VARCHAR2);

Parameters

Table 28–15 DROP_DESCRIPTOR Procedure Parameters

Parameter Description

descriptor_id Descriptor identifier

Table 28–16 DROP_DESCRIPTOR Procedure Exceptions

Exception Description

descriptor_not_found Descriptor not found.

no_access_privileges Must have the OLAP_DBA role.

Table 28–17 DROP_DESCRIPTOR_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type.
CWM_CLASSIFY 28-11

LOCK_CATALOG Procedure
Exceptions

LOCK_CATALOG Procedure
This procedure locks the measure folder metadata for update. A database lock is
acquired on the row for the measure folder in the CWM model table.

Syntax
LOCK_CATALOG (
 catalog_id IN NUMBER,
 wait_for_lock IN BOOLEAN);

Parameters

Exceptions

REMOVE_CATALOG_ENTITY Procedure
This procedure removes a cube or a measure from a measure folder.

Table 28–18 DROP_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descriptor_type_not_found Descriptor type not found.

Table 28–19 LOCK_CATALOG Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.

wait_for_lock When true, wait for lock to released if it has already been
acquired by another user. The default is false.

Table 28–20 LOCK_CATALOG Procedure Exceptions

Exception Description

catalog_not_found Measure folder not found.

failed_to_gain_lock Failed to acquire lock.

no_access_privileges User does not have privileges to edit the measure folder.
User must be the owner or OLAP_DBA.
28-12 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Syntax
REMOVE_CATALOG_ENTITY (
 catalog_id IN NUMBER,
 entity_owner IN VARCHAR2,
 entity_name IN VARCHAR2,
 child_entity_name IN VARCHAR2);

Parameters

Exceptions

REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure
This procedure removes a descriptor type from an entity type.

Table 28–21 REMOVE_CATALOG_ENTITY Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.

entity_owner Owner of the cube to be removed from the measure folder.

entity_name Name of the cube to be removed from the measure folder.

child_entity_
name

Name of a measure. If this parameter is specified, the procedure
removes this individual measure from the measure folder, instead of
removing all of the cube’s measures. If this parameter is NULL, the
procedure removes all of the cube’s measures. The default is NULL.

Table 28–22 REMOVE_CATALOG_ENTITY Procedure Exceptions

Exception Description

element_not_found Entity not found.

catalog_not_found Measure folder not found.
CWM_CLASSIFY 28-13

REMOVE_ENTITY_DESCRIPTOR_USE Procedure
Syntax
REMOVE_DESCRIPTOR_ENTITY_TYPE (
 descriptor_type IN VARCHAR2,
 entity_type IN VARCHAR2);

Parameters

Exceptions

REMOVE_ENTITY_DESCRIPTOR_USE Procedure
This procedure removes a descriptor from an OLAP metadata entity.

Table 28–23 REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be
dimension type, or attribute type.

entity_type One of the following types of entities: DIMENSION,
CUBE, MEASURE, LEVEL, ATTRIBUTE,
HIERARCHY, PARAMETER

Table 28–24 REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure Exceptions

Exception Description

entity_not_found Entity not found.
28-14 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Syntax
REMOVE_ENTITY_DESCRIPTOR_USE (
 descriptor_id IN NUMBER,
 entity_type IN VARCHAR2,
 entity_owner IN VARCHAR2,
 entity_name IN VARCHAR2,
 child_entity_name IN VARCHAR2,
 secondary_child_entity_name IN VARCHAR2);

Parameters

Exceptions

Table 28–25 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter Description

descriptor_id Identifier of the descriptor.

entity_type One of the following types of entities: DIMENSION, CUBE,
MEASURE, LEVEL, ATTRIBUTE,
HIERARCHY, PARAMETER

entity_owner Owner of the entity.

entity_name Name of the parent entity. If there is no child entity, this is the name
of the entity from which the descriptor should be removed.

child_entity_
name

If the entity is a child of entity_name, name of the child entity. If
the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity from which the descriptor should
be removed.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

secondary_
child_entity_
name

Used for specifying level attributes, which are children of levels. If
the entity is not a level attribute, this parameter is NULL.

Table 28–26 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception Description

entity_not_found Entity not found.
CWM_CLASSIFY 28-15

SET_CATALOG_DESCRIPTION Procedure
SET_CATALOG_DESCRIPTION Procedure
This procedure sets the description of a measure folder.

Syntax
SET_CATALOG_DESCRIPTION (
 catalog_id IN NUMBER,
 catalog_description IN VARCHAR2);

Parameters

Exceptions

SET_CATALOG_PARENT Procedure
This procedure changes the parent folder of an existing measure folder.

Syntax
SET_CATALOG_PARENT (
 catalog_id IN NUMBER,
 parent_catalog_id IN NUMBER);

Parameters

Table 28–27 SET_CATALOG_DESCRIPTION Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.

catalog_description Description of the measure folder.

Table 28–28 SET_CATALOG_DESCRIPTION Procedure Exceptions

Exception Description

catalog_not_found Measure folder not found.

Table 28–29 SET_CATALOG_PARENT Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.
28-16 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms
Exceptions

parent_catalog_id Identifier of the parent measure folder.

Table 28–30 SET_CATALOG_PARENT Procedure Exceptions

Exception Description

parent_catalog_not_found Parent measure folder not found.

catalog_not_found Measure folder not found.

circular_dependency Cannot add the measure folder at this position in the
hierarchy. The parent is already a child of the measure
folder.

Table 28–29 (Cont.) SET_CATALOG_PARENT Procedure Parameters

Parameter Description
CWM_CLASSIFY 28-17

Example: Creating a Measure Folder
Example: Creating a Measure Folder
The following statements create a measure folder called PHARMACEUTICALS and
add the measure SALES_AMOUNT from SALES_CUBE to it. The measure folder is at
the root level.

execute folder_ID = cwm_classify.create_catalog
 (’PHARMACEUTICALS’, ’Pharmaceutical Sales and Planning’);
execute cwm_classify.add_catalog_entity
 (’folder_ID’, ’JSMITH’, ’SALES_CUBE’, ’SALES_AMOUNT’);
28-18 Oracle9i OLAP User’s Guide

Part V

OLAP API Materialized View Reference

Part V explains how to create materialized views for queries for aggregate data
from the OLAP API.

This part contains the following chapters:

■ Chapter 29, "Creating Dimension Materialized Views"

■ Chapter 30, "Creating Fact Materialized Views With DBMS_ODM"

■ Chapter 31, "Creating Fact Materialized Views With OLAP Summary Advisor"

Creating Dimension Materialized
29

Creating Dimension Materialized Views

This chapter explains how to create dimension materialized views for the OLAP
API.

This chapter contains the following topics:

■ Creating Materialized Views for Dimensions

■ Statistics and Bitmap Indexes

■ Sample Script for the TIMES_DIM Dimension

■ Table Structure of Sample TIMES_DIM Dimension Materialized View

See Also: Chapter 10, "Creating Materialized Views for the
OLAP API".
 Views 29-1

Creating Materialized Views for Dimensions
Creating Materialized Views for Dimensions
You can use OLAP Summary Advisor or the DBMS_ODM PL/SQL package to create
dimension materialized views. When you use OLAP Summary Advisor, the
dimension materialized views are automatically created along with the fact
materialized views for a CWM cube. When you use the DBMS_ODM package, you must
call the CREATEDIMMV_GS procedure to create dimension materialized views.

The syntax of the CREATE MATERIALIZED VIEW statement is the same whether
generated by OLAP Summary Advisor or the DBMS_ODM package.

Statistics and Bitmap Indexes
The scripts for creating dimension materialized views, whether generated by OLAP
Summary Advisor or DBMS_ODM, include syntax for gathering statistics and creating
bitmap indexes.

Statistics
Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_name COMPUTE STATISTICS;
EXECUTE dbms_stats.gather_table_stats (mv_owner, mv_name, degree=>
 dbms_stats.default_degree,method_opt=>’for all columns size skewonly’) ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ;

For more information about the ANALYZE TABLE statement, refer to the Oracle9i
SQL Reference. For more information about the DBMS_STATS package, refer to the
Oracle9i Supplied PL/SQL Packages and Types Reference.

See Also:

■ "Dimension Materialized Views" on page 10-4.

■ "Using the DBMS_ODM Package" on page 30-2.

■ "Using the OLAP Summary Advisor Wizard" on page 31-2.
29-2 Oracle9i OLAP User’s Guide

Statistics and Bitmap Indexes
Bitmap Indexes
Bitmap indexes optimize the performance of materialized views at runtime.
Dimension materialized views for the OLAP API include bitmap indexes for all
columns that contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BITMAP INDEX index_name ON mv_name (mv_colname)
TABLESPACE tblspace_name
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

The CREATE Statement for a Dimension Materialized View
The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor or DBMS_ODM to create a dimension materialized view
for the OLAP API.

The SELECT statement contains a COUNT(*) function, a GROUPING_ID function,
MAX aggregate functions, and a ROLLUP function. The following example shows the
basic syntax.

CREATE MATERIALIZED VIEW mv_name
PARTITION BY RANGE (gid)
 (partition values less than(1) ,
 partition values less than(3) ,
 .
 .
 partition values less than(MAXVALUE))
TABLESPACE tblspace_name
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT
 COUNT(*) COUNT_STAR,
 GROUPING_ID(level_cols) gid,
 MAX(attribute_col1)
 .
 .
 MAX(attribute_coln)
 level_cols
Creating Dimension Materialized Views 29-3

Sample Script for the TIMES_DIM Dimension
FROM
 dimension_table
GROUP BY level1, ROLLUP(level2, ..., leveln)

where:

mv_name is the name of the materialized view. The name is derived from the names
of the dimension table and the hierarchy.

level_cols are the names of columns in the dimension table that contain data for the
levels of the hierarchy, beginning with the most aggregate (level1) and ending with
the least aggregate (leveln).

attribute_col is the name of a column defined as an attribute. All columns defined as
attributes should be listed in a MAX function.

dimension_table is the name of the dimension table whose columns are being
aggregated to create the materialized view.

level1 is the highest level of aggregation. Note that level1 is excluded from the
ROLLUP list.

leveln is the lowest level of aggregation or “leaf node”, which is also the key column.

Sample Script for the TIMES_DIM Dimension
The following sample script creates materialized views for the TIMES_DIM
dimension in the SH schema. This script could result from running OLAP Summary
Advisor or from invoking the DBMS_ODM.CREATEDIMMV_GS procedure.

The script creates two materialized views: one for the CAL_ROLLUP hierarchy, and
one for the FIS_ROLLUP hierarchy

CREATE materialized view TIMES_CAL_R_OLAP
partition by range (gid) (
partition values less than(1),
partition values less than(3),
partition values less than(7),
partition values less than(MAXVALUE))
TABLESPACE SH_DATABUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT
 COUNT(*) COUNT_STAR,
 GROUPING_ID(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER_DESC,
29-4 Oracle9i OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension
 TIMES.CALENDAR_MONTH_DESC, TIMES.TIME_ID) gid,
 max(TIMES.CALENDAR_YEAR) CALENDAR_YEAR_AR,
 max(TIMES.END_OF_CAL_YEAR) END_OF_CAL_YEAR_AR,
 max(TIMES.DAYS_IN_CAL_YEAR) DAYS_IN_CAL_YEAR_AR,
 max(TIMES.CALENDAR_QUARTER_DESC) CALENDAR_QUARTER_DESC_AR,
 max(TIMES.END_OF_CAL_QUARTER) END_OF_CAL_QUARTER_AR,
 max(TIMES.DAYS_IN_CAL_QUARTER) DAYS_IN_CAL_QUARTER_AR,
 max(TIMES.CALENDAR_QUARTER_NUMBER) CALENDAR_QUARTER_NUMBER_AR,
 max(TIMES.CALENDAR_MONTH_DESC) CALENDAR_MONTH_DESC_AR,
 max(TIMES.END_OF_CAL_MONTH) END_OF_CAL_MONTH_AR,
 max(TIMES.DAYS_IN_CAL_MONTH) DAYS_IN_CAL_MONTH_AR,
 max(TIMES.CALENDAR_MONTH_NAME) CALENDAR_MONTH_NAME_AR,
 max(TIMES.CALENDAR_MONTH_NUMBER) CALENDAR_MONTH_NUMBER_AR,
 max(TIMES.DAY_NUMBER_IN_WEEK) DAY_NUMBER_IN_WEEK_AR,
 max(TIMES.CALENDAR_WEEK_NUMBER) CALENDAR_WEEK_NUMBER_AR,
 max(TIMES.DAY_NUMBER_IN_MONTH) DAY_NUMBER_IN_MONTH_AR,
 max(TIMES.DAY_NAME) DAY_NAME_AR,
 TIMES.CALENDAR_YEAR CALENDAR_YEAR,
 TIMES.CALENDAR_QUARTER_DESC CALENDAR_QUARTER_DESC,
 TIMES.CALENDAR_MONTH_DESC CALENDAR_MONTH_DESC,
 TIMES.TIME_ID TIME_ID
FROM
 SH.TIMES TIMES
GROUP BY
 TIMES.CALENDAR_YEAR ,
 ROLLUP(TIMES.CALENDAR_QUARTER_DESC,TIMES.CALENDAR_MONTH_DESC,TIMES.TIME_ID):

execute dbms_stats.gather_table_stats (’SH’, ’TIMES_CAL_R_OLAP’, degree=>
 dbms_stats.default_degree,method_opt=>’for all columns size skewonly’) ;
ALTER TABLE TIMES_CAL_R_OLAP MINIMIZE RECORDS_PER_BLOCK ;

CREATE BITMAP INDEX MV_CALENDAR_QUARTER_DESCCA_BI2 ON TIMES_CAL_R_OLAP
 (CALENDAR_QUARTER_DESC)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_CALENDAR_MONTH_DESCCA_BI3 ON TIMES_CAL_R_OLAP
 (CALENDAR_MONTH_DESC)
TABLESPACE SH_IDX
PCTFREE 0
Creating Dimension Materialized Views 29-5

Sample Script for the TIMES_DIM Dimension
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIME_IDCA_BI4 ON TIMES_CAL_R_OLAP
 (TIME_ID)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_GID_CA_BI_4 ON TIMES_CAL_R_OLAP
 (gid)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIMES_CAL_R_OLAP_PREL_FI ON TIMES_CAL_R_OLAP
 ((CASE GID
 WHEN(7) THEN NULL
 WHEN(3) THEN TO_CHAR(CALENDAR_YEAR)
 WHEN(1) THEN TO_CHAR(CALENDAR_QUARTER_DESC)
 ELSE TO_CHAR(CALENDAR_MONTH_DESC) END))
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIMES_CAL_R_OLAP_ET_FI ON TIMES_CAL_R_OLAP
 ((CASE GID
 WHEN(7) THEN TO_CHAR(CALENDAR_YEAR)
 WHEN(3) THEN TO_CHAR(CALENDAR_QUARTER_DESC)
 WHEN(1) THEN TO_CHAR(CALENDAR_MONTH_DESC)
 ELSE TO_CHAR(TIME_ID) END))
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;
29-6 Oracle9i OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension
execute dbms_stats.gather_table_stats(’SH’, ’TIMES_CAL_R_OLAP’,
 degree=>dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>’for all hidden columns size 254’) ;

create materialized view TIMES_FIS_R_OLAP
partition by range (gid) (
partition values less than(1),
partition values less than(3),
partition values less than(7),
partition values less than(15),
partition values less than(MAXVALUE))
TABLESPACE SH_DATA
BUILD IMMEDIATE
USING NO INDEX
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT
 COUNT(*) COUNT_STAR,
 GROUPING_ID(TIMES.FISCAL_YEAR,
 TIMES.FISCAL_QUARTER_DESC,
 TIMES.FISCAL_MONTH_DESC,
 TIMES.WEEK_ENDING_DAY,
 TIMES.TIME_ID) gid,
 max(TIMES.FISCAL_YEAR) FISCAL_YEAR_AR,
 max(TIMES.END_OF_FIS_YEAR) END_OF_FIS_YEAR_AR,
 max(TIMES.DAYS_IN_FIS_YEAR) DAYS_IN_FIS_YEAR_AR,
 max(TIMES.FISCAL_QUARTER_DESC) FISCAL_QUARTER_DESC_AR,
 max(TIMES.END_OF_FIS_QUARTER) END_OF_FIS_QUARTER_AR,
 max(TIMES.DAYS_IN_FIS_QUARTER) DAYS_IN_FIS_QUARTER_AR,
 max(TIMES.FISCAL_QUARTER_NUMBER) FISCAL_QUARTER_NUMBER_AR,
 max(TIMES.FISCAL_MONTH_DESC) FISCAL_MONTH_DESC_AR,
 max(TIMES.END_OF_FIS_MONTH) END_OF_FIS_MONTH_AR,
 max(TIMES.DAYS_IN_FIS_MONTH) DAYS_IN_FIS_MONTH_AR,
 max(TIMES.FISCAL_MONTH_NAME) FISCAL_MONTH_NAME_AR,
 max(TIMES.FISCAL_MONTH_NUMBER) FISCAL_MONTH_NUMBER_AR,
 max(TIMES.WEEK_ENDING_DAY) WEEK_ENDING_DAY_AR,
 max(TIMES.FISCAL_WEEK_NUMBER) FISCAL_WEEK_NUMBER_AR,
 max(TIMES.DAY_NUMBER_IN_WEEK) DAY_NUMBER_IN_WEEK_AR,
 max(TIMES.CALENDAR_WEEK_NUMBER) CALENDAR_WEEK_NUMBER_AR,
 max(TIMES.DAY_NUMBER_IN_MONTH) DAY_NUMBER_IN_MONTH_AR,
 max(TIMES.DAY_NAME) DAY_NAME_AR,
 TIMES.FISCAL_YEAR FISCAL_YEAR,
 TIMES.FISCAL_QUARTER_DESC FISCAL_QUARTER_DESC,
 TIMES.FISCAL_MONTH_DESC FISCAL_MONTH_DESC,
Creating Dimension Materialized Views 29-7

Sample Script for the TIMES_DIM Dimension
 TIMES.WEEK_ENDING_DAY WEEK_ENDING_DAY,
 TIMES.TIME_ID TIME_ID
FROM
 SH.TIMES TIMES
GROUP BY
 TIMES.FISCAL_YEAR , ROLLUP(TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY , TIMES.TIME_ID);

execute dbms_stats.gather_table_stats(’SH’, ’TIMES_FIS_R_OLAP’,
 degree=>dbms_stats.default_degree,method_opt=>
 ’for all columns size skewonly’) ;
ALTER TABLE TIMES_FIS_R_OLAP MINIMIZE RECORDS_PER_BLOCK ;

CREATE BITMAP INDEX MV_FISCAL_QUARTER_DESCFI_BI8 ON TIMES_FIS_R_OLAP
 (FISCAL_QUARTER_DESC)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_FISCAL_MONTH_DESCFI_BI12 ON TIMES_FIS_R_OLAP
 (FISCAL_MONTH_DESC)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_WEEK_ENDING_DAYFI_BI16 ON TIMES_FIS_R_OLAP
 (WEEK_ENDING_DAY)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIME_IDFI_BI20 ON TIMES_FIS_R_OLAP
 (TIME_ID)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;
29-8 Oracle9i OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension
CREATE BITMAP INDEX MV_GID_FI_BI_20 ON TIMES_FIS_R_OLAP
 (gid)
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIMES_FIS_R_OLAP_PREL_FI ON TIMES_FIS_R_OLAP
((CASE GID
 WHEN(15) THEN NULL
 WHEN(7) THEN TO_CHAR(FISCAL_YEAR)
 WHEN(3) THEN TO_CHAR(FISCAL_QUARTER_DESC)
 WHEN(1) THEN TO_CHAR(FISCAL_MONTH_DESC)
 ELSE TO_CHAR(WEEK_ENDING_DAY) END))
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

CREATE BITMAP INDEX MV_TIMES_FIS_R_OLAP_ET_FI ON TIMES_FIS_R_OLAP
((CASE GID
 WHEN(15) THEN TO_CHAR(FISCAL_YEAR)
 WHEN(7) THEN TO_CHAR(FISCAL_QUARTER_DESC)
 WHEN(3) THEN TO_CHAR(FISCAL_MONTH_DESC)
 WHEN(1) THEN TO_CHAR(WEEK_ENDING_DAY)
 ELSE TO_CHAR(TIME_ID) END))
TABLESPACE SH_IDX
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

execute dbms_stats.gather_table_stats(’SH’, ’TIMES_FIS_R_OLAP’,
 degree=>dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>’for all hidden columns size 254’) ;
Creating Dimension Materialized Views 29-9

Table Structure of Sample TIMES_DIM Dimension Materialized View
Table Structure of Sample TIMES_DIM Dimension Materialized View
The following table identifies the columns of the materialized view for the Times
dimension CAL_ROLLUP hierarchy.

Column Name Datatype Description

COUNT_STAR NUMBER The total number of rows.

GID NUMBER The grouping IDs for the remaining level
columns. Created by the GROUPING_ID
function to identify whether a level has a
value that should be included in the
aggregation. A zero (0) indicates that the
cell contains a value that should be
included; a one (1) indicates that it is null
or should not be included in the
aggregation.

CALENDAR_YEAR_AR DATE Calendar year attribute.

END_OF_CAL_YEAR_AR DATE End date attribute for year level.

DAYS_IN_CAL_YEAR_AR NUMBER Time span attribute for year level.

CALENDAR_QUARTER_
DESC_AR

VARCHAR2 Description attribute for quarter level.

END_OF_CAL_QUARTER_AR DATE End date attribute for quarter level.

DAYS_IN_CAL_QUARTER_
AR

NUMBER Time span attribute for quarter level.

CALENDAR_QUARTER_
NUMBER_AR

NUMBER Number of quarters.

CALENDAR_MONTH_DESC_
AR

VARCHAR2 Description attribute for month level.

END_OF_CAL_MONTH_AR DATE End date attribute for month level.

DAYS_IN_CAL_MONTH_AR NUMBER Time span attribute for month level.

CALENDAR_MONTH_NAME_
AR

VARCHAR2 Name attribute for month level.

CALENDAR_MONTH_
NUMBER_AR

NUMBER Number of months.

DAY_NUMBER_IN_WEEK_AR NUMBER Number of days in a week.
29-10 Oracle9i OLAP User’s Guide

Table Structure of Sample TIMES_DIM Dimension Materialized View
CALENDAR_WEEK_NUMBER_
AR

NUMBER Number of weeks.

DAY_NUMBER_IN_MONTH_
AR

NUMBER Number of days in a month.

DAY_NAME_AR VARCHAR2 Name attribute for day level.

CALENDAR_YEAR NUMBER Year level of calendar hierarchy.

CALENDAR_QUARTER_DESC VARCHAR2 Quarter level of calendar hierarchy.

CALENDAR_MONTH_DESC VARCHAR2 Month level of calendar hierarchy.

TIME_ID DATE The primary key in the dimension table.
The “leaf node” in which the lowest level
of data is stored.

Column Name Datatype Description
Creating Dimension Materialized Views 29-11

Table Structure of Sample TIMES_DIM Dimension Materialized View
29-12 Oracle9i OLAP User’s Guide

Creating Fact Materialized Views With DB
30

Creating Fact Materialized Views With

DBMS_ODM

This chapter explains how to use the DBMS_ODM package to create materialized
views with grouping sets for the OLAP API.

This chapter contains the following topics:

■ Using the DBMS_ODM Package

■ Partitioning, Statistics, and Indexes

■ Sample Script for the COST Cube

■ Summary of DBMS_ODM Subprograms

See Also: Chapter 10, "Creating Materialized Views for the
OLAP API".
MS_ODM 30-1

Using the DBMS_ODM Package
Using the DBMS_ODM Package
The procedures in the OLAP Data Management package, DBMS_ODM, generate
scripts that create materialized views in grouping set form for fact tables. Each
script generates a single MV containing all hierarchy combinations for a CWM2 cube.

The procedures in DBMS_ODM generate scripts that create materialized views,
bitmap indexes, and partitions. You can run these scripts in their original form,
modify the scripts before executing them, or use them simply as models for writing
your own SQL scripts.

Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views
Follow these steps to create a grouping set materialized view for a cube:

1. Create and map a valid CWM2 cube as described in Chapter 17, "CWM2_OLAP_
CUBE".

1. Enable your database to write the scripts to a file by setting the UTL_FILE_DIR
parameter to a valid directory, as described in "Initialization Parameters for
Oracle OLAP" on page 6-3.

2. Log into SQL*Plus using the identity of the metadata owner.

3. Delete any materialized views that currently exist for the cube.

4. Use the following three step procedure to create a script to generate a grouping
set materialized view for the cube:

a. Execute DBMS_ODM.CREATEDIMLEVTUPLE to create the table
sys.olaptablevels. This table lists all the dimensions of the cube and
all of the levels of each dimension.

By default, all the levels of all the dimensions are selected for inclusion in
the materialized view. You can edit the table to deselect any levels that you
do not want to include.

b. Execute DBMS_ODM.CREATECUBELEVELTUPLE to create the table
sys.olaptableveltuples. This table lists all of the level combinations
that will be included in the materialized view. This table is derived from the
table created in the previous step.

See Also:

■ "Fact Materialized Views".

■ "Choosing the Right Format for Materialized Views".
30-2 Oracle9i OLAP User’s Guide

Partitioning, Statistics, and Indexes
By default, all the levels combinations are selected for inclusion in the
materialized view. You can edit the table to deselect any level combinations
that you do not want to include.

c. Execute DBMS_ODM.CREATEFACTMV_GS to create the script.

For example, in the Sales History sample schema, you would create a script for
COST_CUBE and a script for SALES_CUBE.

5. Optionally, edit the script using any text editor.

6. Run the scripts in SQL*Plus, using commands such as the following:

@/users/oracle/OraHome1/olap/mvscript.sql;

Partitioning, Statistics, and Indexes
The scripts generated by DBMS_ODM.CREATEFACTMV_GS include syntax for
partitioning, gathering statistics, and creating bitmap indexes.

 Partitioning
Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by DBMS_ODM.CREATEFACTMV_GS.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics
Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_name COMPUTE STATISTICS;
EXECUTE dbms_stats.gather_table_stats (mv_owner, mv_name, degree=>
 dbms_stats.default_degree,method_opt=>’for all columns size skewonly’) ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ;

See Also: "Summary of DBMS_ODM Subprograms" on
page 30-11 for the syntax of the procedures in the DMBS_ODM
package.
Creating Fact Materialized Views With DBMS_ODM 30-3

Sample Script for the COST Cube
For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes
Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BITMAP INDEX index_name ON mv_name (mv_colname)
TABLESPACE tblspace_name
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

Sample Script for the COST Cube
The following sample script, generated by DBMS_ODM.CREATEFACTMV_GS, creates
a materialized view in grouping set form for the COST_CUBE cube, which is
mapped to the COSTS fact table in the SH schema.

This script contains all level combinations for all hierarchies. To deselect levels and
level combinations, edit the tables generated by the CREATEDIMLEVTUPLE
Procedure and the CREATECUBELEVELTUPLE Procedure before invoking
CREATEFACTMV_GS Procedure.

create materialized view
COST_CUBE_2_OLAP
partition by range (gid) (
partition values less than(1),
partition values less than(62),
partition values less than(126),
partition values less than(254),
partition values less than(450),
partition values less than(454),
partition values less than(462),
partition values less than(478),
partition values less than(512),
partition values less than(574),
partition values less than(638),
30-4 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
partition values less than(766),
partition values less than(962),
partition values less than(966),
partition values less than(974),
partition values less than(990),
partition values less than(1536),
partition values less than(1598),
partition values less than(1662),
partition values less than(1790),
partition values less than(1986),
partition values less than(1990),
partition values less than(1998),
partition values less than(2014),
partition values less than(3584),
partition values less than(3646),
partition values less than(3710),
partition values less than(3838),
partition values less than(4034),
partition values less than(4038),
partition values less than(4046),
partition values less than(4062),
partition values less than(MAXVALUE))
pctfree 5 pctused 40
build immediate
using no index
refresh force
enable query rewrite
AS
SELECT
 GROUPING_ID(PRODUCTS.PROD_TOTAL, PRODUCTS.PROD_CATEGORY,
 PRODUCTS.PROD_SUBCATEGORY, PRODUCTS.PROD_ID,
 TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER_DESC,
 TIMES.CALENDAR_MONTH_DESC, TIMES.FISCAL_YEAR,
 TIMES.FISCAL_QUARTER_DESC, TIMES.FISCAL_MONTH_DESC,
 TIMES.WEEK_ENDING_DAY, TIMES.TIME_ID) gid,
 SUM(COSTS.UNIT_COST) SUM_OF_UNIT_COST,
 SUM(COSTS.UNIT_PRICE) SUM_OF_UNIT_PRICE,
 COUNT(*) COUNT_OF_STAR,
 PRODUCTS.PROD_TOTAL PROD_TOTAL_77,
 PRODUCTS.PROD_CATEGORY PROD_CATEGORY_78,
 PRODUCTS.PROD_SUBCATEGORY PROD_SUBCATEGORY_79,
 PRODUCTS.PROD_ID PROD_ID_80,
 TIMES.CALENDAR_YEAR CALENDAR_YEAR_169,
 TIMES.CALENDAR_QUARTER_DESC CALENDAR_QUARTER_DESC_170,
 TIMES.CALENDAR_MONTH_DESC CALENDAR_MONTH_DESC_171,
Creating Fact Materialized Views With DBMS_ODM 30-5

Sample Script for the COST Cube
 TIMES.FISCAL_YEAR FISCAL_YEAR_172,
 TIMES.FISCAL_QUARTER_DESC FISCAL_QUARTER_DESC_173,
 TIMES.FISCAL_MONTH_DESC FISCAL_MONTH_DESC_174,
 TIMES.WEEK_ENDING_DAY WEEK_ENDING_DAY_175,
 TIMES.TIME_ID TIME_ID_176
FROM
 SH.PRODUCTS PRODUCTS,
 SH.TIMES TIMES,
 SH.COSTS COSTS
WHERE
 (TIMES.TIME_ID = COSTS.TIME_ID) AND
 (PRODUCTS.PROD_ID = COSTS.PROD_ID)
 GROUP BY GROUPING SETS

 ((PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC ,
 TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY , TIMES.TIME_ID),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC ,
 TIMES.WEEK_ENDING_DAY),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.FISCAL_YEAR),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
30-6 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
 PRODUCTS.PROD_SUBCATEGORY , PRODUCTS.PROD_ID , TIMES.CALENDAR_YEAR),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC ,
 TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY , TIMES.TIME_ID),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC ,
 TIMES.WEEK_ENDING_DAY),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.FISCAL_YEAR),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY ,
 PRODUCTS.PROD_SUBCATEGORY , TIMES.CALENDAR_YEAR),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC ,
 TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY, TIMES.TIME_ID),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC ,
 TIMES.WEEK_ENDING_DAY),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.FISCAL_YEAR ,
Creating Fact Materialized Views With DBMS_ODM 30-7

Sample Script for the COST Cube
 TIMES.FISCAL_QUARTER_DESC , TIMES.FISCAL_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.FISCAL_YEAR),

 (PRODUCTS.PROD_TOTAL , PRODUCTS.PROD_CATEGORY , TIMES.CALENDAR_YEAR),

 (PRODUCTS.PROD_TOTAL , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC ,
 TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY , TIMES.TIME_ID),

 (PRODUCTS.PROD_TOTAL , TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC , TIMES.WEEK_ENDING_DAY),

 (PRODUCTS.PROD_TOTAL , TIMES.FISCAL_YEAR , TIMES.FISCAL_QUARTER_DESC ,
 TIMES.FISCAL_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , TIMES.CALENDAR_YEAR ,
 TIMES.CALENDAR_QUARTER_DESC , TIMES.CALENDAR_MONTH_DESC),

 (PRODUCTS.PROD_TOTAL , TIMES.FISCAL_YEAR ,
 TIMES.FISCAL_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL, TIMES.CALENDAR_YEAR,
 TIMES.CALENDAR_QUARTER_DESC),

 (PRODUCTS.PROD_TOTAL , TIMES.FISCAL_YEAR),

 (PRODUCTS.PROD_TOTAL , TIMES.CALENDAR_YEAR)) ;

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_2_OLAP’, degree=>
 dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 ’for all columns size 1 for columns size 254 GID’ , granularity=>’GLOBAL’) ;
ALTER TABLE COST_CUBE_2_OLAP MINIMIZE RECORDS_PER_BLOCK ;
30-8 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
CREATE BITMAP INDEX BMHIDX_COST_PROD_TOTALTAL ON COST_CUBE_2_OLAP(PROD_TOTAL_77)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_PROD_CATEGORY ON COST_CUBE_2_OLAP
(PROD_CATEGORY_78)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_PROD_SUBCAORY ON COST_CUBE_2_OLAP
(PROD_SUBCATEGORY_79)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_PROD_ID_ID ON COST_CUBE_2_OLAP
(PROD_ID_80)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_CALENDAR_YEAR ON COST_CUBE_2_OLAP
(CALENDAR_YEAR_169)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_CALENDAR_QESC ON COST_CUBE_2_OLAP
(CALENDAR_QUARTER_DESC_170)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_CALENDAR_MESC ON COST_CUBE_2_OLAP
(CALENDAR_MONTH_DESC_171)
LOCAL
COMPUTE STATISTICS
Creating Fact Materialized Views With DBMS_ODM 30-9

Sample Script for the COST Cube
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_FISCAL_YEAEAR ON COST_CUBE_2_OLAP
(FISCAL_YEAR_172)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_FISCAL_QUAESC ON COST_CUBE_2_OLAP
(FISCAL_QUARTER_DESC_173)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_FISCAL_MONESC ON COST_CUBE_2_OLAP
(FISCAL_MONTH_DESC_174)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_WEEK_ENDINDAY ON COST_CUBE_2_OLAP
(WEEK_ENDING_DAY_175)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BMHIDX_COST_TIME_ID_ID ON COST_CUBE_2_OLAP(TIME_ID_176)
LOCAL
COMPUTE STATISTICS
PARALLEL PCTFREE 0
NOLOGGING;

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_2_OLAP’, degree=>
 dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 ’for all hidden columns size 254’ , granularity=>’GLOBAL’) ;

execute cwm2_olap_cube.set_mv_summary_code(’SH’, ’COST_CUBE’, ’GROUPINGSET’) ;
30-10 Oracle9i OLAP User’s Guide

Summary of DBMS_ODM Subprograms
Summary of DBMS_ODM Subprograms

CREATEDIMLEVTUPLE Procedure
This procedure creates the table sys.olaptablevels, which lists all the levels of all
of the dimensions of the cube. By default, all levels are selected for inclusion in the
materialized view. You can edit the table to deselect any levels that you do not want
to include.

Syntax
CREATE_DIMLEVTUPLE (
 cube_owner IN varchar2,
 cube_name IN varchar2);

Parameters

Table 30–1 DBMS_ODM Subprograms

Subprogram Description

CREATEDIMLEVTUPLE
Procedure on page 30-11

Creates a table of levels to be included in the
materialized view for a cube.

CREATECUBELEVELTUPLE
Procedure on page 30-12

Creates a table of level combinations to be included in
the materialized view for a cube.

CREATEFACTMV_GS Procedure
on page 30-13

Generates a script that creates a fact table materialized
view.

CREATEDIMMV_GS Procedure
on page 30-14

Generates a script that creates a dimension table
materialized view.

Table 30–2 CREATEDIMLEVTUPLE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.
Creating Fact Materialized Views With DBMS_ODM 30-11

CREATECUBELEVELTUPLE Procedure
CREATECUBELEVELTUPLE Procedure
This procedure creates the table sys.olaptableveltuples, which lists all the level
combinations to be included in the materialized view for the cube.

The table sys.olaptableveltuples is created based on the table
sys.olaptablevels, which was generated by the CREATEDIMLEVTUPLE
Procedure.

Syntax
CREATECUBELEVELTUPLE (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2);

 Parameters

Important: If you do not want to include all level combinations in
the materialized view for the cube, you must edit the table
sys.olaptablevels before executing the
CREATECUBELEVELTUPLE procedure.

Table 30–3 CREATECUBELEVELTUPLE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.
30-12 Oracle9i OLAP User’s Guide

Summary of DBMS_ODM Subprograms
CREATEFACTMV_GS Procedure
This procedure generates a script that creates a fact table materialized view.

The materialized view will include all level combinations specified in the
sys.olaptableveltuples table, which was created by the
CREATECUBELEVELTUPLE Procedure.

Syntax
CREATEFACTMV_GS (
 cube_owner IN VARCHAR2,
 cube_name IN VARCHAR2,
 outfile IN VARCHAR2,
 outfile_path IN VARCHAR2,
 partitioning IN BOOLEAN,
 tablespace_mv IN VARCHAR2 DEFAULT NULL,
 tablespace_index IN VARCHAR2 DEFAULT NULL);

 Parameters

Table 30–4 CREATEFACTMV_GS Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_name Name of the cube.

output_file File name where the PL/SQL script will be written.

output_path Directory path where output_file will be created.

partitioning TRUE turns on index partitioning; FALSE turns it off.

tablespace_mv The name of the tablespace in which the materialized view
will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

tablespace_index The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.
Creating Fact Materialized Views With DBMS_ODM 30-13

CREATEDIMMV_GS Procedure
CREATEDIMMV_GS Procedure
This procedure generates a script that creates a dimension table materialized view
for each hierarchy of a dimension.

Syntax
CREATEDIMMV_GS (
 dimension_owner IN VARCHAR2,
 dimension_name IN VARCHAR2,
 output_file IN VARCHAR2,
 output_path IN VARCHAR2,
 tablespace_mv IN VARCHAR2 DEFAULT NULL,
 tablespace_index IN VARCHAR2 DEFAULT NULL);

 Parameters

Table 30–5 CREATEDIMMV_GS Procedure Parameters

Parameter Description

dimension_owner Owner of the dimension.

dimension_name Name of the dimension.

output_file File name where the PL/SQL script will be written.

output_path Directory path where output_file will be created.

tablespace_mv The name of the tablespace in which the materialized view
will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

tablespace_index The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.
30-14 Oracle9i OLAP User’s Guide

Creating Fact Materialized Views With OLAP Summary
31

Creating Fact Materialized Views With OLAP

Summary Advisor

This chapter explains how to use OLAP Summary Advisor to create fact table
materialized views in concatenated rollup form for the OLAP API.

This chapter contains the following topics:

■ Using the OLAP Summary Advisor Wizard

■ Partitioning, Statistics, and Indexes

■ The MV CREATE Statement With Concatenated Rollup

■ Sample Script for the COST Cube

See Also: Chapter 10, "Creating Materialized Views for the
OLAP API".
Advisor 31-1

Using the OLAP Summary Advisor Wizard
Using the OLAP Summary Advisor Wizard
To create concatenated rollup MVs for CWM cubes, use OLAP Summary Advisor.

 Oracle Enterprise Manager has two distinct Summary Advisors. They generate
very different types of materialized views. One Summary Advisor generates
materialized views for Oracle OLAP, and the other generates materialized views for
other types of applications.

The Summary Advisor that you need to use for OLAP is located within the OLAP
Management tool. It generates materialized views that query rewrite will use for
queries generated by the OLAP API.

Procedure: Run the OLAP Summary Advisor
Follow these steps to run the OLAP Summary Advisor wizard:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
Chapter 5, "Creating OLAP Catalog Metadata".

2. Expand the OLAP folder, then fully expand the Cubes folder.

3. Right-click a cube or its Materialized Views subfolder.

You see a popup menu.

4. Choose Summary Advisor from the menu.

You see the Summary Advisor Wizard Welcome page.

5. Choose Next.

The Summary Advisor analyzes the cube and makes recommendations for
creating materialized views for the fact table and dimension tables associated
with the selected cube. When it is done, you see the Recommendations page.

6. Choose Next.

The Summary Advisor generates the scripts to create the recommended
materialized views. When it is done, you see the Finish page.

See Also:

■ "Fact Materialized Views".

■ "Choosing the Right Format for Materialized Views".
31-2 Oracle9i OLAP User’s Guide

Partitioning, Statistics, and Indexes
7. Examine the scripts. If you have already created the materialized views for
another cube that uses some of the same dimensions, delete the scripts that
recreate materialized views for those dimensions.

8. To modify the scripts, choose Save to file. Then choose Cancel to close the
Summary Advisor. You can edit the file, then execute it using SQL*Plus or Job
Manager.

or

Choose Finish to execute the original scripts immediately. You see the
Implement Recommendations page while the scripts are executing.

9. Run the OLAP Summary Advisor wizard on other cubes in your schema.

Partitioning, Statistics, and Indexes
The scripts generated by OLAP Summary Advisor include syntax for partitioning,
gathering statistics and creating bitmap indexes.

 Partitioning
Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by OLAP Summary Advisor.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics
Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_name COMPUTE STATISTICS;
EXECUTE dbms_stats.gather_table_stats (mv_owner, mv_name, degree=>
 dbms_stats.default_degree,method_opt=>’for all columns size skewonly’) ;
ALTER TABLE mv_name MINIMIZE RECORDS_PER_BLOCK ;
Creating Fact Materialized Views With OLAP Summary Advisor 31-3

The MV CREATE Statement With Concatenated Rollup
For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes
Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BITMAP INDEX index_name ON mv_name (mv_colname)
TABLESPACE tblspace_name
PCTFREE 0
COMPUTE STATISTICS
LOCAL
NOLOGGING;

The MV CREATE Statement With Concatenated Rollup
The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor to create a concatenated rollup style fact MV for the
OLAP API. The following general characteristics apply:

■ The SELECT statement contains SUM(column) and COUNT(column) function
calls for all measures in the cube (that is, all aggregated columns in the fact
table), and a COUNT(*) function call.

■ The SELECT list contains all GROUP BY columns.

■ The list of level key columns always appear in the exact same order, especially
in the GROUPING_ID and GROUP BY clauses.

The following example shows the basic syntax.

CREATE MATERIALIZED VIEW mvname
partition by range (gid)
(partition values less than (1),
 .
 .
 .
partition values less than (MAXVALUE))
BUILD IMMEDIATE
REFRESH FORCE
31-4 Oracle9i OLAP User’s Guide

The MV CREATE Statement With Concatenated Rollup
ENABLE QUERY REWRITE
AS
SELECT SUM(measure1) target, COUNT(measure1) target,
 SUM(measure2) target, COUNT(measure2) target,
 .
 .
 .
 COUNT(*) COUNT_OF_STAR, select_list
 hierarch1_level1, hierarch1_level2, ...,
 hierarch2_level1, hierarch2_level2,...
 GROUPING_ID(hierarch1_level1, hierarch1_level2, ...,
 hierarch2_level1, hierarch2_level2,...) gid
FROM dimtable1, dimtable2,...
WHERE (dim_key1=fact_key1) AND (dim_key2=fact_key2)...AND...
GROUPBY
 hierarch1_level1, ROLLUP(hierarch1_leveln2,... hierarch1_leveln),
 hierarch2_level1 ROLLUP(hierarch2_leveln2,... hierarch2_leveln,
 .
 .
 .
 hierarchn_level1 ROLLUP(hierarchn_level2... hierarchn_leveln)

where:

measure1, measure 2... are the measures in the fact table.

select_list are the dimension levels from hierarch1_level1 to
hierarchn_leveln.

hierarch1...hierarchn are the dimension hierarchies, beginning with the
hierarchy with the most levels (1) and ending with the hierarchy with the fewest
levels (n). Note that this ordering is important.

level1...leveln are the columns in the related dimension tables, from the
highest (1) to the lowest (n) levels of aggregation.

dim_key is the key column in the dimension table.

fact_key is the related column in the fact table.
Creating Fact Materialized Views With OLAP Summary Advisor 31-5

Sample Script for the COST Cube
Sample Script for the COST Cube
The following sample script creates materialized views in concatenated rollup form
for the COST_CUBE cube, which is mapped to the COSTS fact table in the SH
schema.

This script creates two materialized views, one for each combination of hierarchies
associated with the COST_CUBE cube.

create materialized view
COST_CUBE_1_OLAP
partition by range (gid) (
partition values less than(1),
partition values less than(3),
partition values less than(7),
partition values less than(16),
partition values less than(17),
partition values less than(19),
partition values less than(23),
partition values less than(48),
partition values less than(49),
partition values less than(51),
partition values less than(55),
partition values less than(112),
partition values less than(113),
partition values less than(115),
partition values less than(119),
partition values less than(MAXVALUE))
pctfree 5 pctused 40
tablespace SH_DATA
build immediate
using no index
refresh force
enable query rewrite
AS
SELECT
 GROUPING_ID(TIMES.CALENDAR_YEAR, TIMES.CALENDAR_QUARTER_DESC,
 TIMES.CALENDAR_MONTH_DESC, TIMES.TIME_ID, PRODUCTS.PROD_TOTAL,
 PRODUCTS.PROD_CATEGORY, PRODUCTS.PROD_SUBCATEGORY,
 PRODUCTS.PROD_ID) gid,
 SUM(COSTS.UNIT_COST) SUM_OF_UNIT_COST,
 SUM(COSTS.UNIT_PRICE) SUM_OF_UNIT_PRICE,
 COUNT(*) COUNT_OF_STAR,
 TIMES.CALENDAR_YEAR CALENDAR_YEAR_1,
 TIMES.CALENDAR_QUARTER_DESC CALENDAR_QUARTER_DESC_2,
 TIMES.CALENDAR_MONTH_DESC CALENDAR_MONTH_DESC_3,
31-6 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
 TIMES.TIME_ID TIME_ID_4,
 PRODUCTS.PROD_TOTAL PROD_TOTAL_10,
 PRODUCTS.PROD_CATEGORY PROD_CATEGORY_11,
 PRODUCTS.PROD_SUBCATEGORY PROD_SUBCATEGORY_12,
 PRODUCTS.PROD_ID PROD_ID_13
FROM
 SH.TIMES TIMES,
 SH.PRODUCTS PRODUCTS,
 SH.COSTS COSTS
WHERE
 (TIMES.TIME_ID = COSTS.TIME_ID) AND
 (PRODUCTS.PROD_ID = COSTS.PROD_ID)
GROUP BY
 TIMES.CALENDAR_YEAR ,
 ROLLUP
 (TIMES.CALENDAR_QUARTER_DESC, TIMES.CALENDAR_MONTH_DESC, TIMES.TIME_ID),
 PRODUCTS.PROD_TOTAL ,
 ROLLUP
 (PRODUCTS.PROD_CATEGORY, PRODUCTS.PROD_SUBCATEGORY, PRODUCTS.PROD_ID);

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_1_OLAP’, degree=>
 dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 ’for all columns size 1 for columns size 254 GID’ , granularity=>’GLOBAL’) ;
ALTER TABLE COST_CUBE_1_OLAP MINIMIZE RECORDS_PER_BLOCK ;

CREATE BITMAP INDEX BI_COST_CALENAR_QUESC_2_1 ON COST_CUBE_1_OLAP(CALENDAR_
QUARTER_DESC_2)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_CALENAR_MOESC_3_1 ON COST_CUBE_1_OLAP(CALENDAR_
MONTH_DESC_3)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_TIME_D_ID_4_1 ON COST_CUBE_1_OLAP(TIME_ID_4)
LOCAL
COMPUTE STATISTICS
Creating Fact Materialized Views With OLAP Summary Advisor 31-7

Sample Script for the COST Cube
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_PROD_ATEGOORY_22_1 ON COST_CUBE_1_OLAP(PROD_
CATEGORY_11)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_PROD_UBCATORY_24_1 ON COST_CUBE_1_OLAP(PROD_
SUBCATEGORY_12)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_PROD_D_ID_26_1 ON COST_CUBE_1_OLAP(PROD_ID_13)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_1_OLAP’, degree=>
dbms_stats.default_degree, estimate_percent=>
dbms_stats.auto_sample_size, method_opt=>
’for all hidden columns size 254’ , granularity=>’GLOBAL’) ;

execute cwm2_olap_cube.set_mv_summary_code(’SH’, ’COST_CUBE’, ’ROLLUP’) ;

create materialized view
COST_CUBE_2_OLAP
partition by range (gid) (
partition values less than(1),
partition values less than(3),
partition values less than(7),
partition values less than(15),
partition values less than(32),
partition values less than(33),
partition values less than(35),
partition values less than(39),
31-8 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
partition values less than(47),
partition values less than(96),
partition values less than(97),
partition values less than(99),
partition values less than(103),
partition values less than(111),
partition values less than(224),
partition values less than(225),
partition values less than(227),
partition values less than(231),
partition values less than(239),
partition values less than(MAXVALUE))
pctfree 5 pctused 40
tablespace SH_DATA
build immediate
using no index
refresh force
enable query rewrite
AS
SELECT
 GROUPING_ID(PRODUCTS.PROD_TOTAL, PRODUCTS.PROD_CATEGORY,
 PRODUCTS.PROD_SUBCATEGORY, PRODUCTS.PROD_ID, TIMES.FISCAL_YEAR,
 TIMES.FISCAL_QUARTER_DESC, TIMES.FISCAL_MONTH_DESC,
 TIMES.WEEK_ENDING_DAY, TIMES.TIME_ID) gid,
 SUM(COSTS.UNIT_COST) SUM_OF_UNIT_COST,
 SUM(COSTS.UNIT_PRICE) SUM_OF_UNIT_PRICE,
 COUNT(*) COUNT_OF_STAR,
 TIMES.FISCAL_YEAR FISCAL_YEAR_5,
 TIMES.FISCAL_QUARTER_DESC FISCAL_QUARTER_DESC_6,
 TIMES.FISCAL_MONTH_DESC FISCAL_MONTH_DESC_7,
 TIMES.WEEK_ENDING_DAY WEEK_ENDING_DAY_8,
 TIMES.TIME_ID TIME_ID_9,
 PRODUCTS.PROD_TOTAL PROD_TOTAL_10,
 PRODUCTS.PROD_CATEGORY PROD_CATEGORY_11,
 PRODUCTS.PROD_SUBCATEGORY PROD_SUBCATEGORY_12,
 PRODUCTS.PROD_ID PROD_ID_13
FROM
 SH.PRODUCTS PRODUCTS,
 SH.TIMES TIMES,
 SH.COSTS COSTS
WHERE
 (PRODUCTS.PROD_ID = COSTS.PROD_ID) AND
 (TIMES.TIME_ID = COSTS.TIME_ID) GROUP BY
 PRODUCTS.PROD_TOTAL ,
Creating Fact Materialized Views With OLAP Summary Advisor 31-9

Sample Script for the COST Cube
 ROLLUP
 (PRODUCTS.PROD_CATEGORY, PRODUCTS.PROD_SUBCATEGORY, PRODUCTS.PROD_ID),
 TIMES.FISCAL_YEAR ,
 ROLLUP
 (TIMES.FISCAL_QUARTER_DESC, TIMES.FISCAL_MONTH_DESC,
 TIMES.WEEK_ENDING_DAY, TIMES.TIME_ID) ;

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_2_OLAP’, degree=>
 dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 ’for all columns size 1 for columns size 254 GID’ , granularity=>’GLOBAL’) ;
ALTER TABLE COST_CUBE_2_OLAP MINIMIZE RECORDS_PER_BLOCK ;

CREATE BITMAP INDEX BI_COST_PROD_ATEGOORY_33_2 ON COST_CUBE_2_OLAP(PROD_
CATEGORY_11)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_PROD_UBCATORY_36_2 ON COST_CUBE_2_OLAP(PROD_
SUBCATEGORY_12)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_PROD_D_ID_39_2 ON COST_CUBE_2_OLAP(PROD_ID_13)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_FISCA_QUARESC_24_2 ON COST_CUBE_2_OLAP(FISCAL_
QUARTER_DESC_6)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;
31-10 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube
CREATE BITMAP INDEX BI_COST_FISCA_MONTESC_28_2 ON COST_CUBE_2_OLAP(FISCAL_MONTH_
DESC_7)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_WEEK_NDINGDAY_32_2 ON COST_CUBE_2_OLAP(WEEK_ENDING_
DAY_8)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

CREATE BITMAP INDEX BI_COST_TIME_D_ID_36_2 ON COST_CUBE_2_OLAP(TIME_ID_9)
LOCAL
COMPUTE STATISTICS
TABLESPACE SH_IDX
PARALLEL PCTFREE 0
NOLOGGING;

execute dbms_stats.gather_table_stats(’SH’, ’COST_CUBE_2_OLAP’, degree=>
 dbms_stats.default_degree, estimate_percent=>
 dbms_stats.auto_sample_size, method_opt=>
 ’for all hidden columns size 254’ , granularity=>’GLOBAL’) ;

execute cwm2_olap_cube.set_mv_summary_code(’SH’, ’COST_CUBE’, ’ROLLUP’) ;
Creating Fact Materialized Views With OLAP Summary Advisor 31-11

Sample Script for the COST Cube
31-12 Oracle9i OLAP User’s Guide

Upgrading From Express S
A

Upgrading From Express Server

This appendix provides upgrading instructions and identifies some of the major
differences between Oracle Express Server 6.3 and Oracle9i OLAP. It is intended to
provide a frame of reference to help you understand the material presented in this
guide.

This chapter includes the following topics:

■ Administration

■ Data Transfer

■ Localization

■ Applications Support

■ Programming Language Changes

■ How to Upgrade an Express Database

See Also: "What’s New in Oracle OLAP?" for a list of major
features introduced in this release.
erver A-1

Administration
Administration
Oracle OLAP is installed as an option in Oracle Enterprise Edition, and it is now
integrated with the Oracle database. While Express Server runs in a service
environment, Oracle OLAP runs within the database kernel.

In Oracle9i, the term database refers only to the relational database. Express
databases are now called analytic workspaces. In Oracle OLAP, an analytic
workspace can be used either as a transient data cache or as a persistent data
repository. A persistent analytic workspace is stored as a LOB in a relational table.
There are no “.db” files.

The administrative tasks for Oracle OLAP are merged with the database tool set.

Authentication of Users
Oracle OLAP does not use operating system identities, except for the installation
user under whose identity the RDBMS is installed. You can delete other operating
system identities created for use by Express Server (such as the DBA user, the
Initialize user, the Default user, and individual user names) if they have no other
purpose.

All authentication is performed by the Oracle RDBMS. Applications must always
present credentials before opening a session, and those credentials must match a
user name and password stored in the relational database. Before users can access
Oracle OLAP, you must define user names and passwords in the database.

For users to access operating system files, they must have access rights to a
directory alias that is mapped to the physical directory path. This access is granted
either to an individual user ID or to a database role.

Management Tools
Oracle Enterprise Manager encompasses the tools for administering Oracle OLAP,
providing a common user interface across all platforms. Various PL/SQL packages
extend the functionality currently available through Oracle Enterprise Manager and
provide an alternative to its use.

Performance data can be collected in system tables the same as other Oracle
database performance statistics.

OLAP Instance Manager, oesmgr, and oescmd are not available.
A-2 Oracle9i OLAP User’s Guide

Localization
Data Transfer
Oracle OLAP runs within the Oracle database kernel. An Oracle OLAP session is
always connected to the database. You do not open a connection with the database
as a separate or optional step.

You can move data between an analytic workspace objects (such as variables and
dimensions) and relational tables in the following ways:

■ The OLAP DML’s SQL command fetches data into dimensions and variables for
further manipulation. A new SQL IMPORT command facilitates bulk data
transfer from relational tables into the analytic workspace, and a new SQL
INSERT DIRECT command facilitates data transfer from the analytic
workspace into relational tables.

■ A PL/SQL package, CWM2_OLAP_AW_CREATE, provides procedures for
creating an analytic workspace from relational tables and OLAP Catalog
metadata, and for generating views of the workspace.

■ Using SQL table functions, it is now possible for a SQL-based application to
manipulate and extract data from an analytic workspace. Express Server did not
permit a data transfer to be initiated externally.

ODBC is not available, and thus access to third-party databases is not available
directly from Oracle OLAP.

Oracle Express Relational Access Administrator and Oracle Express Relational
Access Manager are not available.

Localization
The Express Server language support has been replaced by Oracle Globalization
Technology, which provides more extensive localization support and is much easier
to administer than the localization features of Express Server. The RDBMS and
Oracle OLAP typically use the same character set, which is selected during
installation.

If you are upgrading Express databases that used translation tables, then you can
delete those tables because they are not needed by Oracle OLAP. Likewise, you
should check your Express programs for use of obsolete commands and keywords
that supported translation tables. If you plan to import Express databases or to use
Oracle OLAP to access multibyte data in external files, then you might find
Table A–1, " Multibyte Character Set Equivalents" helpful in identifying a character
set. Note that the CHARSET option is now obsolete.
Upgrading From Express Server A-3

Applications Support
Support for Globalization Technology has been added to the OLAP DML. These
options allow an application to query the current localization settings and override
the behaviors controlled by the default language and territory.

Table A–1 identifies the Unicode character sets available in Oracle that are
equivalent to the Express Server character sets.:

Applications Support
Oracle OLAP allows applications to access its multidimensional data directly
through either a Java API or SQL. Express SPL programs can be executed using
either programming method. Be sure to review all SPL programs to remove
commands that are no longer available and to take advantage of new functionality.

The CWM2_OLAP_AW_CREATE package contains procedures for creating analytic
workspaces and generating views of analytic workspaces. You can create OLAP
Catalog metadata for use by the OLAP API, or use SQL to run directly against these
views of your multidimensional data.

You cannot run Windows C++, HTML, or Java applications that were developed for
use with Express Server.

Programming Environment
Applications for Oracle OLAP can be developed in Java using the OLAP API.
SQL-based applications can access OLAP data through views or manipulate it
directly through SQL table functions.

Note: Oracle OLAP does not support EBCDIC character sets.

Table A–1 Multibyte Character Set Equivalents

Express Server
DefaultCharacterSet Parameter or
CHARSET Option Value Equivalent Unicode Character Set

EUC JA16EUC

SHIFTJIS JA16SJIS

HANGEUL KO16KSC5601

SCHINESE ZHS16GBK

TCHINESE ZHT16BIG5
A-4 Oracle9i OLAP User’s Guide

Programming Language Changes
OLAP Worksheet provides an interactive environment for developing stored
procedures in either the OLAP DML or SQL. The DBMS_AW procedure executes
OLAP DML commands from within a SQL program.

You cannot connect to Oracle OLAP using Express Administrator, Personal Express,
or the Express Connection Utility.

Communications
Oracle OLAP provides communications through Oracle Call Interface (OCI) and
Java Database Connectivity (JDBC).

OLAP Worksheet uses XCA for communication with the analytic workspace.
However, XCA is not supported for user-developed applications and may produce
unexpected results.

SNAPI is no longer available. Session sharing is not supported.

Metadata
In Oracle OLAP, the database administrator defines multidimensional objects and
associated OLAP metadata in the relational database using PL/SQL packages for
use by the OLAP API.

OLAP Worksheet allows DBAs and applications developers to create objects in the
analytic workspace by issuing DML commands. For the OLAP API to access these
objects, the appropriate analytic workspace metadata must be defined.

Oracle Express Administrator is not available in Oracle OLAP, and the Oracle
Express Objects metadata that it generated is not used by the OLAP API.

Programming Language Changes
Numerous changes have been made to the Express Stored Procedure Language
(now called the OLAP Data Manipulation Language or OLAP DML).

New Commands
 Support in the following areas has been added to the OLAP DML:

■ Parallel aggregate

■ Allocation

■ Dynamic model execution
Upgrading From Express Server A-5

How to Upgrade an Express Database
■ Bulk data transfers between analytic workspaces and relational tables

■ Byte manipulation functions

■ Data conversion functions

■ New data types

Obsolete Commands
Support in the following areas has been dropped:

■ EXTCALL

■ ODBC

■ SNAPI

■ XCA

■ Operating system commands

For comprehensive lists of new, obsolete, and significantly revised commands, open
OLAP DML Help and click List of Changes on the Contents page.

UPDATE and COMMIT
The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Your changes are not saved
until you execute a COMMIT command, either from your Oracle OLAP session or
from SQL.

If you want changes that you have made in a workspace to be committed when you
execute the COMMIT command, then you must first update the workspace using the
UPDATE command. Changes that have not been moved to the table are not
committed.

The COMMIT command executes a SQL COMMIT command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

How to Upgrade an Express Database
Follow these steps to upgrade an Express database for use as an analytic workspace
in Oracle9i:
A-6 Oracle9i OLAP User’s Guide

How to Upgrade an Express Database
1. Open a connection with Express Server and create an EIF file of your Express
database, using a command such as this:

EXPORT ALL TO EIF FILE ’upgrade.eif’ REWRITE

where upgrade.eif is the name of the file being created.

2. Copy the file to a directory that has a directory alias in the Oracle database and
to which you have access rights.

For information about directory aliases, refer to "Controlling Access to External
Files" on page 6-10.

3. Open a connection to the Oracle database using OLAP Worksheet.

For information about using OLAP Worksheet, refer to the Oracle9i OLAP
Developer’s Guide to the OLAP DML.

4. Create an empty analytic workspace with a command such as this:

AW CREATE financials TABLESPACE olapts

where financials is the name of the analytic workspace and olapts is the
name of a tablespace allocated for your use. Note that the DATABASE command
has changed to the AW command.

5. Copy the object definitions and data from the EIF file into the new analytic
workspace with a command such as this:

IMPORT ALL FROM EIF FILE ’alias/upgrade.eif’ DATA DFNS

where alias is the name of the directory alias, and upgrade.eif is the name
of the EIF file.

6. Save your changes to the new analytic workspace:

UPDATE

7. Commit the new analytic workspace to the Oracle database:

COMMIT

8. Revise any programs in the analytic workspace to delete references to obsolete
commands. Save these changes.
Upgrading From Express Server A-7

How to Upgrade an Express Database
A-8 Oracle9i OLAP User’s Guide

Index

A
abstract data types

 See object types
access rights, 5-3, 6-9
ADD_ALTER_SESSION procedure, 8-3
administration privileges, 5-3
ADT, 3-2, 9-2, 12-9, 12-10
aggregate cache

performance statistics, 7-3
aggregation, 2-4, 9-2, 10-2, A-5
ALL_OLAP2 views, 14-1 to 14-16, 24-2
allocation, 2-4, A-5
ALTER SESSION commands, 6-4, 8-2
analytic workspaces

creating from relational tables, 9-1 to 9-7
creating metadata for, 5-5, 9-1, 15-1
data manipulation, 2-2
database storage, 6-12
defined, 1-6
enabling for SQL access, 3-3, 9-4, 15-2, 15-3,

16-1, 16-6, 16-13, 25-2
performance counters, 7-5

applications
business analysis, 1-3
comparison, 1-8
components of SQL-based, 3-2
differences from Express, A-4

ATTRIBUTE subclause (limit maps), 12-18
attributes

 See Also dimension attributes
 See Also level attributes
creating, 5-8, 5-10
defined, 4-14

in an object type, 12-9
in analytic workspaces, 12-8
viewing, 14-10

authentication, 6-9
AW$ tables, 6-12

B
BFILE security, 6-10
BI Beans

described, 1-7, 3-6, 3-7
thick-client configuration, 3-7
thin-client configuration, 3-9

C
caches

performance statistics, 7-3
use in iterative queries, 3-15

calculation engine
defined, 1-6

calculations
runtime, 2-2

catalogs
See measure folders

character sets, A-3
CHARSET option, A-3
CLEAN_ALTER_SESSION procedure, 8-6
composite dimensions, 12-3
configuration procedures, 6-2
conjoint dimensions, 12-3
CONNECT role, 6-9
CreateAWAccessStructures procedure, 15-18
CreateAWAccessStructures_FR procedure, 15-13,
Index-1

15-17
CREATECUBELEVELTUPLE procedure, 30-12
CREATEDIMLEVTUPLE procedure, 30-11
CREATEDIMMV_GS procedure, 30-14
CREATEFACTMV_GS procedure, 30-13
crosstab bean, 3-11
Cube Viewer, 5-9
cubes

creating, 13-3, 17-1, 17-2
defined, 4-14, 5-8
in analytic workspaces, 9-1 to 9-7
materialized views, 10-5, 30-1 to 30-14,

31-1 to 31-11
viewing, 5-9, 14-5

cursors, 3-15
custom aggregates, 2-3
custom measures, 3-12
CWM_CLASSIFY package, 5-11, 28-1 to 28-18

subprograms, 28-3
CWM2, 5-4 to 5-5, 5-9

write APIs, 5-10, 13-1 to 13-12
CWM2_OLAP_AW_ACCESS package, 3-3, 5-5,

5-11, 15-1 to 15-18
subprograms, 15-16

CWM2_OLAP_AW_CREATE package, 3-3, 5-5, 9-2
CWM2_OLAP_CUBE package, 5-10, 17-1 to 17-13

subprograms, 17-2
CWM2_OLAP_DIMENSION package, 5-10,

18-1 to 18-11
subprograms, 16-2, 18-2, 24-3

CWM2_OLAP_DIMENSION_ATTRIBUTE
package, 19-1 to 19-11

subprograms, 19-3
CWM2_OLAP_HIERARCHY package, 5-10,

20-1 to 20-12
subprograms, 20-2

CWM2_OLAP_LEVEL package, 5-10, 21-1 to 21-13
subprograms, 21-2

CWM2_OLAP_LEVEL_ATTRIBUTE
package, 5-10, 22-1 to 22-13

subprograms, 22-3
CWM2_OLAP_MEASURE package, 5-10,

23-1 to 23-9
subprograms, 23-2

CWM2_OLAP_METADATA_REFRESH

package, 24-1
CWM2_OLAP_PC_TRANSFORM package, 5-5,

5-11, 25-1 to 25-8
CWM2_OLAP_TABLE_MAP

package, 26-1 to 26-22
CWM2_OLAP_VALIDATE package, 5-11

D
data exchange commands, 2-5
data formatting, 3-10
data selection commands, 2-5
data storage, 4-7
data striping, 6-6
database cache, 7-3
database configuration, 6-2
database initialization, 8-1, 8-2
database security, 6-9
DB_CACHE_SIZE parameter, 6-3, 6-4
DBMS_AW package, 2-9, 3-4, 5-5

EXECUTE procedure, 11-3
GETLOG function, 11-5
INTERP function, 11-8
INTERP_SILENT function, 11-6
INTERPCLOB function, 11-10
overview, 11-1 to 11-2
PRINTLOG procedure, 11-16

DBMS_ODM package, 10-3, 29-2, 30-1 to 30-14
subprograms, 30-11

DELETE_ALTER_SESSION procedure, 8-5
demand planning systems, 1-4
derived data, 4-4
dimension alias, 14-6
dimension attributes

creating, 19-1
defined, 4-14
viewing, 14-9

DIMENSION clause (limit maps), 12-16
dimension hierarchies

 See hierarchies
dimension tables, 4-4, 5-7, 13-4
dimension views

defining for workspace objects, 9-5, 15-5
dimensions

analytic workspace, 12-3
Index-2

creating, 5-7, 5-8, 13-2, 18-1
defined, 4-10
embedded-total, 25-5
exposing in views, 12-3
materialized views, 10-4, 29-1 to 29-11
parent-child, 25-1
time, 4-10, 5-7
valid, 13-6
viewing, 14-7

directory aliases, 6-10
drilling, 3-10
dynamic performance tables, 6-13
dynamic performance views, 7-1 to 7-6

E
embedded total dimension views

creating, 9-5, 12-20, 15-5
end-date attribute, 4-11
ETL process, 2-2
ETT tool, 4-2
EXECUTE procedure, 11-3
Express Connection Utility (obsolete), A-5
Express databases, A-6
Express Relational Access Administrator

(obsolete), A-3
Express Relational Access Manager (obsolete), A-3

F
fact tables, 4-4, 4-9, 5-4, 5-8, 13-4, 14-16

joining with dimension tables, 13-5
supported configurations, 13-5

fact views
defining from workspace objects, 9-6, 15-8

FAMILYREL subclause (limit maps), 12-17
FETCH command (DML), 12-14
file read/write commands, 2-5
files

allowing access, 6-10
financial applications, 1-3
financial operations, 2-6
fixed views, 7-2
forecasting commands, 2-6
formatting

data, 3-10

G
GETLOG function, 11-5
GID

See grouping IDs
GID subclause (limit maps), 12-17
globalization, A-3
Globalization Technology . See NLS
graph bean, 3-11
grouping IDs, 9-5, 9-6, 12-6, 14-15, 15-6, 15-12, 25-5

parent, 9-5, 12-7, 15-6
GROUPINGID command, 12-6

H
hierarchical dimensions, 12-3
hierarchies

creating, 5-8, 20-1
custom sorting, 14-14, 26-6
defined, 4-13, 20-2
viewing, 14-8, 14-10, 14-14

hierarchy dimension
defined, 12-4

HIERARCHY subclause (limit maps), 12-16
HIERHEIGHT command, 12-7
historical data, 4-3

I
IDE

defined, 3-6
INHIERARCHY subclause (limit maps), 12-17
inhierarchy variables, 12-5
initialization parameters, ?? to 6-5, 8-1, 8-2
init.ora file, 6-3, 8-2
INTERP function, 11-8
INTERP_SILENT function, 11-6
INTERPCLOB function, 11-10

J
Java

described, 3-4
Index-3

sandbox security, 3-5
JDeveloper, 3-6

L
language support, A-3
level attributes

creating, 22-1
defined, 4-14, 22-2
viewing, 14-9, 14-12

level dimensions, 12-5
levels

creating, 5-8, 21-1
defined, 4-13
viewing, 14-8

limit maps, 12-14 to 12-18
syntax, 12-14

localization, A-3
login names, 6-9
lookup tables

See dimension tables
LOOP clause (limit maps), 12-18

M
materialized views, 4-4

asymmetric materialization, 10-7
concatenated rollup, 10-3, 10-6, 31-1 to 31-11
cubes, 30-1 to 30-14, 31-1 to 31-11
CWM2, 30-2
defined, 10-2
dimensions, 29-1 to 29-11
for OLAP API, 10-1 to 10-7
grouping sets, 10-3, 10-6, 30-2 to 30-14

MDI
defined, 3-6

MEASURE clause (limit maps), 12-15
measure folders, 28-2

creating, 28-1
defined, 14-11
viewing, 14-11

measures
analytic workspace, 12-3
creating, 23-1
custom, 3-12

defined, 4-9, 23-2
exposing in a view, 12-3
viewing, 14-5

metadata
defined, 4-4, 4-8

modeling commands, 2-7
modeling support, A-5
MR_REFRESH Procedure, 24-3
MRV_OLAP views, 24-2
multibyte character sets

Express equivalents, A-4
multidimensional data

enabling for SQL access, 9-1, 9-4, 15-1, 16-1,
16-6, 16-13

N
NLS_LANG configuration parameter, A-3
n-pass functions, 3-15
number formatting, 3-10
numeric computation, 2-7

O
object types, 3-2, 9-2, 12-9, 12-10
object-oriented programming, 3-12
ODBC support (obsolete), A-3
oescmd program (obsolete), A-2
oesmgr program (obsolete), A-2
OLAP

defined, 1-2
OLAP API

defined, 1-7
described, 3-6, 3-12

OLAP API optimization, 8-1, 8-2
OLAP beans, 3-7, 3-12
OLAP Catalog

accessing, 5-3
classification system, 14-11
defined, 1-8, 5-2
metadata entities, 13-2
metadata model tables, 5-2
preprocessors, 25-1
read APIs, 5-3, 13-8, 14-1, 24-1
refreshing views for OLAP API, 24-1
Index-4

viewing, 13-8, 14-1, 24-1
write APIs, 5-3, 13-1 to 13-12

OLAP commands
executing in SQL, 11-3, 11-6, 11-8, 11-10, 11-16

OLAP DML
defined, 1-6
described, 2-1 to 2-9
executing commands, 2-9

OLAP Instance Manager (obsolete), A-2
OLAP Management tool, 5-6
OLAP metadata

creating for a dimension table, 13-8
creating for a fact table, 13-11
creating for CWM2_OLAP_AW_CREATE, 9-3
creating in Enterprise Manager, 5-6
creating with CWM2 APIs, 5-9
logical steps for creating, 5-3
mapping, 13-4, 13-10 to 13-12, 14-12, 14-13
materialized views, 10-4
tools for creating, 5-2
validating, 13-5, 27-1
warehouse requirements, 5-4

OLAP performance views, 7-2
OLAP Summary Advisor, 10-4, 29-2, 31-1 to 31-11
OLAP Worksheet, 2-9, A-5
OLAP_API_SESSION_INIT package, 8-1 to 8-7
OLAP_DBA role, 5-3
OLAP_PAGE_POOL_SIZE, 6-4
OLAP_TABLE function

about, 12-1 to 12-23
in SELECT statement, 12-10
retrieving session log, 11-5
syntax, 12-12
uses, 3-4

OLAP2_CATALOG_ENTITY_USES view, 14-11
OLAP2_CATALOGS view, 14-11
OLAP2_CUBE_DIM_USES view, 14-6
OLAP2_CUBE_MEAS_DIM_USES view, 14-6
OLAP2_CUBE_MEASURE_MAPS view, 14-12
OLAP2_CUBE_MEASURES view, 14-5
OLAP2_CUBES view, 14-5
OLAP2_DIM_ATTR_USES view, 14-10
OLAP2_DIM_ATTRIBUTES view, 14-9
OLAP2_DIM_HIER_LEVEL_USES view, 14-10
OLAP2_DIM_HIERARCHIES view, 14-8

OLAP2_DIM_LEVEL_ATTR_MAPS view, 14-12
OLAP2_DIM_LEVEL_ATTRIBUTES view, 14-9
OLAP2_DIM_LEVELS view, 14-8
OLAP2_DIMENSIONS view, 14-7
OLAP2_FACT_LEVEL_USES view, 14-16
OLAP2_FACT_TABLE_GID view, 14-15
OLAP2_HIER_CUSTOM_SORT view, 14-14
OLAP2_JOIN_KEY_COLUMN_USES view, 14-14
OLAP2_LEVEL_KEY_COLUMN_USES

view, 14-13
OLAPSYS user, 5-3
OLTP

defined, 1-2
optimization

OLAP API, 8-1, 8-2
optimization techniques, 6-5
Oracle Globalization Support

See also NLS, i-xxxv
OUTFILE command

affect on DBMS_AW procedure, 11-4

P
page pool

for ORACLE OLAP, 6-4
performance statistics, 7-3

paging
described, 3-10

parallel_max_servers parameter, 6-3
parameter file, 6-3
parent-child relations, 12-4

defined, 12-4
PARENTGID subclause (limit maps), 12-17
performance counters, 6-13, 7-1 to 7-6
Personal Express (obsolete), A-5
pfile settings, 6-3
PGA allocation, 6-4, 7-3
pivoting

described, 3-10
POSTDMLCMD clause (limit maps), 12-18
predictive analytsis applications, 1-3
PREDMLCMD clause (limit maps), 12-18
Presentation Beans, 3-7
print buffer, 11-3
PRINTLOG procedure, 11-16
Index-5

PS$ tables, 6-12

Q
query builder, 3-12
QUERY REWRITE system privilege, 6-9
querying methods, 1-9
quotation marks

in OLAP DML, 11-3

R
rank formatting, 3-11
referential integrity, 2-3
regressions, 2-6
Relational Access Administrator (obsolete), A-3
Relational Access Manager (obsolete), A-3
reporting applications, 1-3
repository

application runtime, 3-10
result sets, 3-15
roles, 6-9
rollup form

defined, 12-17
row

defining, 12-9
ROW2CELL clause (limit maps), 12-18

S
schemas

star, snowflake defined, 4-6
star,snowflake, 5-4, 5-6

SELECT privilege, 6-9
server parameter file, 6-3
SERVEROUTPUT option, 11-3, 11-16
session cache

performance statistics, 7-3
session counters, 7-6
session logs

printing, 11-16
retrieving, 11-5

session sharing, A-5
session statistics, 7-5
sessions parameter, 6-3

simultaneous equations, 2-7
SNAPI communications (obsolete), A-5
SPLExecutor class, 2-9
SQL

embedding OLAP commands, 11-3, 11-6, 11-8,
11-10, 11-16

SQL command (OLAP DML), A-3
SQL FETCH command, 2-5
SQL-99 extensions, 1-5
SQL-based applications

components, 3-2
star schema

materialized views, 10-2
statistical operations, 2-8
stoplight formatting, 3-11
striping, 6-6
summary management

 See analytic workspaces
 See materialized views

summary tables
 See materialized views

T
table

creating from object types, 12-10
table bean, 3-11
table functions

defined, 1-7, 3-2
tablespaces

for analytic workspaces, 6-5
text manipulation, 2-8
thick-client applications

defined, 3-5
illustrated, 3-7

thin-client applications
defined, 3-5
illustrated, 3-9

tiers, 3-7, 3-9
time dimensions, 4-10, 5-7
time periods

regular, irregular defined, 4-10
time series functions, 2-8
time-span attributes, 4-11
transaction statistics, 7-6
Index-6

translation tables, A-3
type

creating, 12-10

U
Unicode, A-4
user access rights, 6-9
user names, 6-9
utl_file_dir parameter, 6-3, 15-2, 25-2

V
V$AW_CALC view, 7-3
V$AW_OLAP view, 7-5
V$AW_SESSION_INFO view, 7-6
views

creating embedded total dimensions, 9-5, 12-20,
15-5

creating embedded total measures, 12-21
creating for analytic workspaces, 9-4, 15-1, 15-2,

25-2
creating rollup form, 12-23
template for creating, 12-19

W
wizards

Beans, 3-12
workspaces

 See analytic workspaces

X
XCA support, A-5
Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Oracle OLAP?
	Oracle9i Release 2 (9.2) New Features in Oracle OLAP

	Part I� The Basics
	1 Overview
	Why OLAP?
	Analytical Processing Answers Business Questions
	Types of OLAP Applications

	The Oracle9i Integrated Relational-Multidimensional Database
	Components of Oracle OLAP
	Calculation Engine
	Analytic Workspace
	OLAP DML
	SQL Table Functions
	OLAP API
	OLAP Catalog

	Applications Access to Oracle OLAP

	2 Manipulating Multidimensional Data
	What Is the OLAP DML?
	Extensive Analytic Capabilities
	Features of the Multidimensional Model

	Basic Categories of OLAP DML Commands
	Aggregation
	Allocation
	Data Selection
	Data Exchange
	File Reading and Writing
	Financial Operations
	Forecasts and Regressions
	Models
	Numeric Computations
	Statistical Operations
	Text Manipulation
	Time Series Manipulation

	Methods of Executing OLAP DML Commands
	OLAP Worksheet: The OLAP DML Development Tool
	Embedding OLAP DML Commands in Programs

	3 Developing OLAP Applications
	Building SQL-Based OLAP Applications
	Methods of Accessing Multidimensional Data From SQL
	Embedding OLAP DML Commands in SQL

	Building Analytical Java Applications
	About Java
	Deploying Java Applications
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing the BI Beans
	Thick-Client Configuration
	Thin-Client Configuration
	Metadata
	Runtime Repository
	Navigation
	Formatting
	Graphs
	Crosstabs
	Tables
	OLAP BI Beans
	Wizards

	Understanding the OLAP API
	How the OLAP API Accesses Multidimensional Data
	Intelligent Caching
	Calculation Capabilities

	4 Designing Your Database for OLAP
	Overview
	Preparing a Database for the OLAP API
	Types of Data Stored in a Data Warehouse
	Historical Data
	Derived Data
	Metadata

	Data Structures in Relational and Multidimensional Data Stores
	Relational Table Storage
	Multidimensional Table Storage
	Temporary and Persistent Analytic Workspaces
	About Star, Snowflake, Parent-Child, and Multidimensional Schemas
	Choosing a Schema for Your Data

	OLAP Metadata Model
	Mapping Data Objects to Metadata Objects
	Measures
	Dimensions
	Attributes
	Cubes
	Measure Folders

	5 Creating OLAP Catalog Metadata
	Overview of the OLAP Catalog
	Tools for Creating OLAP Metadata
	OLAP Catalog Components
	Logical Steps for Creating OLAP Metadata

	Accessing the OLAP Catalog
	Data Warehouse Requirements
	Basic Star or Snowflake Schema
	Dimension Tables with Complex Hierarchies
	Solved and Unsolved Fact Data
	Multidimensional Data
	Parent-Child Dimensions

	Creating Metadata Using Oracle Enterprise Manager
	Procedure: Accessing OLAP Management
	Defining Metadata for Dimension Tables
	Defining Metadata for Fact Tables
	Viewing a Cube’s Data
	Procedure: Viewing a Cube’s Data

	Creating Metadata Using PL/SQL
	Views of OLAP Catalog Metadata
	CWM2 Packages for Creating OLAP Dimensions
	CWM2 Packages for Creating Cubes
	CWM2 Package for Mapping Metadata
	CWM2 Package for Creating Analytic Workspaces
	CWM2 Package for Creating Level-Based Dimension Tables
	CWM2 Packages for Classification and Validation

	Part II� Oracle OLAP Administration
	6 Administering Oracle OLAP
	Administration Overview
	Initialization Parameters for Oracle OLAP
	OLAP_PAGE_POOL_SIZE

	Initialization Parameters for the OLAP API
	Creating Tablespaces for Analytic Workspaces
	Creating a Tablespace for Rollbacks
	Creating a Temporary Tablespace
	Creating Tablespaces for Analytic Workspaces
	Querying the Size of an Analytic Workspace

	Setting Up User Names
	Controlling Access to External Files
	Creating a Directory Alias
	Granting Access Rights to a Directory Alias
	Example: Creating and Using a Directory Alias

	Understanding Data Storage
	User-Owned Tables
	System Tables

	Monitoring Performance

	7 OLAP Dynamic Performance Views
	System Tables Referenced by OLAP Performance Views
	Summary of OLAP Performance Views
	V$AW_CALC
	V$AW_OLAP
	V$AW_SESSION_INFO

	8 OLAP_API_SESSION_INIT
	Overview
	Summary of OLAP_API_SESSION_INIT Subprograms
	ADD_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	DELETE_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	CLEAN_ALTER_SESSION Procedure
	Syntax
	Examples

	ALL_OLAP_ALTER_SESSION View

	9 Creating an Analytic Workspace From Relational Tables
	Choosing to Use an Analytic Workspace
	Relational and Multidimensional Data Models
	Advantages of OLAP

	Functional Summary
	Procedure: Create the OLAP Catalog Metadata
	Procedure: Create the Analytic Workspace Cube
	Procedure: Create SQL Access to the Analytic Workspace
	Column Structure of Dimension Views
	Sample Dimension View
	Grouping ID Column

	Column Structure of Fact Views

	10 Creating Materialized Views for the OLAP�API
	Choosing a Summary Management Strategy
	Summary Management with Analytic Workspaces
	Summary Management with Materialized Views
	About Materialized Views

	Materialized View Formats
	Grouping Sets
	Concatenated Rollup

	Materialized Views and OLAP Metadata
	Dimension Materialized Views
	Creating Dimension Materialized Views
	Number of Dimension Materialized Views

	Fact Materialized Views
	Number of Fact Materialized Views

	Choosing the Right Format for Materialized Views
	Query Performance
	Build Times
	Partial Materialization
	MV Size
	Lineage (Key)

	Part III� SQL Access Reference
	11 DBMS_AW
	Summary of DBMS_AW Subprograms
	EXECUTE Procedure
	GETLOG Function
	INTERP_SILENT Procedure
	INTERP Function
	INTERPCLOB Function
	OLAP_EXPRESSION Function
	PRINTLOG Procedure

	12 OLAP_TABLE
	Description
	Preliminary Steps
	Measures
	Dimensions
	Hierarchies
	Grouping IDs
	Parent Grouping IDs
	Family Relations
	Attributes

	Basic Steps
	Defining a Row
	Creating a Table
	Using OLAP_TABLE in a SELECT Statement

	OLAP_TABLE Reference
	Syntax
	Parameters
	AW_ATTACH Parameter
	Table_Name Parameter
	OLAP_Command Parameter
	Limit_Map Parameter
	MEASURE column FROM {measure | AW_EXPR expression}
	DIMENSION [column FROM] dimension...
	ROW2CELL column
	LOOP sparse_dimension
	PREDMLCMD olap_command
	POSTDMLCMD olap_command

	Examples
	Creating a View
	Creating Views of Embedded Total Dimensions
	Creating Views of Embedded Total Measures
	Creating Views in Rollup Form

	Part IV� OLAP Catalog Metadata API Reference
	13 Using the OLAP Catalog Metadata APIs
	OLAP Metadata Entities
	Constructing a Dimension
	Procedure: Construct an OLAP Dimension

	Constructing a Cube
	Procedure: Construct an OLAP Cube

	Mapping OLAP Metadata
	Mapping to Columns
	Joining Fact Tables with Dimension Tables

	Validating OLAP Metadata
	Structural Validation
	Mapping Validation

	Invoking the Procedures
	Security Checks and Error Conditions
	Case Requirements for Parameters
	Creating and Saving Metadata

	Viewing OLAP Catalog Metadata
	Example: Creating OLAP Metadata for a Dimension Table
	Example: Creating OLAP Metadata for a Fact Table

	14 Viewing OLAP Catalog Metadata
	Access to OLAP Catalog Views
	Views of the Dimensional Model
	Views of Mapping Information
	ALL_OLAP2_CUBES
	ALL_OLAP2_CUBE_MEASURES
	ALL_OLAP2_CUBE_DIM_USES
	ALL_OLAP2_CUBE_MEAS_DIM_USES
	ALL_OLAP2_DIMENSIONS
	ALL_OLAP2_DIM_HIERARCHIES
	ALL_OLAP2_DIM_LEVELS
	ALL_OLAP2_DIM_ATTRIBUTES
	ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
	ALL_OLAP2_DIM_ATTR_USES
	ALL_OLAP2_DIM_HIER_LEVEL_USES
	ALL_OLAP2_CATALOGS
	ALL_OLAP2_CATALOG_ENTITY_USES
	ALL_OLAP2_ENTITY_DESC_USES
	ALL_OLAP2_CUBE_MEASURE_MAPS
	ALL_OLAP2_DIM_LEVEL_ATTR_MAPS
	ALL_OLAP2_LEVEL_KEY_COLUMN_USES
	ALL_OLAP2_JOIN_KEY_COLUMN_USES
	ALL_OLAP2_HIER_CUSTOM_SORT
	ALL_OLAP2_FACT_TABLE_GID
	ALL_OLAP2_FACT_LEVEL_USES

	15 CWM2_OLAP_AW_ACCESS
	When to Use the AW_ACCESS Package
	Prerequisites
	Process Overview
	Preparing the Analytic Workspace
	Specifying the Source and Target Objects
	Defining Dimension Views
	Defining Fact Views

	Example: Creating Views
	Example: Input Files for Mapping Variables to Views
	Example: Script for the Product View
	Example: Product View
	Summary of CWM2_OLAP_AW_ACCESS Subprograms
	CreateAWAccessStructures_FR Procedure
	CreateAWAccessStructures Procedure

	16 CWM2_OLAP_AW_CREATE
	Summary of CWM2_OLAP_AW_CREATE Subprograms
	AW_DIMENSION_CREATE Procedure
	AW_DIM_DEFINE_LOAD Procedure
	AW_DIM_FILTER_LOAD Procedure
	AW_DIMENSION_REFRESH Procedure
	AW_DIMENSION_CREATE_ACCESS Procedure
	AW_CUBE_CREATE Procedure
	AW_CUBE_DEFINE_LOAD Procedure
	AW_CUBE_FILTER_LOAD Procedure
	AW_CUBE_MEASURE_LOAD Procedure
	AW_CHOOSE_LEVEL_TUPLES Procedure
	AW_DEFINE_AGG_PLAN Procedure
	AW_CUBE_REFRESH Procedure
	AW_CUBE_CREATE_ACCESS Procedure

	17 CWM2_OLAP_CUBE
	Understanding Cubes
	Summary of CWM2_OLAP_CUBE Subprograms
	ADD_DIMENSION_TO_CUBE Procedure
	CREATE_CUBE Procedure
	DROP_CUBE Procedure
	LOCK_CUBE Procedure
	REMOVE_DIMENSION_FROM_CUBE Procedure
	SET_CUBE_NAME Procedure
	SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_MV_SUMMARY_CODE Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Cube

	18 CWM2_OLAP_DIMENSION
	Understanding Dimensions
	Summary of CWM2_OLAP_DIMENSION Subprograms
	CREATE_DIMENSION Procedure
	DROP_DIMENSION Procedure
	LOCK_DIMENSION Procedure
	SET_DEFAULT_DISPLAY_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DIMENSION_NAME Procedure
	SET_DISPLAY_NAME Procedure
	SET_PLURAL_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a CWM2 Dimension

	19 CWM2_OLAP_DIMENSION_ATTRIBUTE
	Understanding Dimension Attributes
	Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
	CREATE_DIMENSION_ATTRIBUTE Procedure
	DROP_DIMENSION_ATTRIBUTE Procedure
	LOCK_DIMENSION_ATTRIBUTE Procedure
	SET_DESCRIPTION Procedure
	SET_DIMENSION_ATTRIBUTE_NAME Procedure
	SET_DISPLAY_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Dimension Attribute

	20 CWM2_OLAP_HIERARCHY
	Understanding Hierarchies
	Summary of CWM2_OLAP_HIERARCHY Subprograms
	CREATE_HIERARCHY Procedure
	DROP_HIERARCHY Procedure
	LOCK_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_HIERARCHY_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure
	SET_SOLVED_CODE Procedure

	Example: Creating a Hierarchy

	21 CWM2_OLAP_LEVEL
	Understanding Levels
	Summary of CWM2_OLAP_LEVEL Subprograms
	ADD_LEVEL_TO_HIERARCHY Procedure
	CREATE_LEVEL Procedure
	DROP_LEVEL Procedure
	LOCK_LEVEL Procedure
	REMOVE_LEVEL_FROM_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_LEVEL_NAME Procedure
	SET_PLURAL_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Level

	22 CWM2_OLAP_LEVEL_ATTRIBUTE
	Understanding Level Attributes
	Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
	CREATE_LEVEL_ATTRIBUTE
	DROP_LEVEL_ATTRIBUTE Procedure
	LOCK_LEVEL_ATTRIBUTE Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_LEVEL_ATTRIBUTE_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Level Attribute

	23 CWM2_OLAP_MEASURE
	Understanding Measures
	Summary of CWM2_OLAP_MEASURE Subprograms
	CREATE_MEASURE Procedure
	DROP_MEASURE Procedure
	LOCK_MEASURE Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_MEASURE_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Measure

	24 CWM2_OLAP_METADATA_REFRESH
	The OLAP API Metadata Reader Views
	Summary of CWM2_OLAP_METADATA_REFRESH Subprograms
	MR_REFRESH Procedure

	25 CWM2_OLAP_PC_TRANSFORM
	Prerequisites
	Parent-Child Dimensions
	Solved, Level-Based Dimensions
	Example: Creating a Solved, Level-Based Dimension Table
	Grouping ID Column
	Embedded Total Key Column
	Summary of CWM2_OLAP_PC_TRANSFORM Subprograms
	CREATE_SCRIPT Procedure

	26 CWM2_OLAP_TABLE_MAP
	Understanding OLAP Metadata Mapping
	Summary of CWM2_OLAP_TABLE_MAP Subprograms
	MAP_DIMTBL_HIERLEVELATTR Procedure
	MAP_DIMTBL_HIERLEVEL Procedure
	MAP_DIMTBL_HIERSORTKEY Procedure
	MAP_DIMTBL_LEVELATTR Procedure
	MAP_DIMTBL_LEVEL Procedure
	MAP_FACTTBL_LEVELKEY Procedure
	MAP_FACTTBL_MEASURE Procedure
	REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure
	REMOVEMAP_DIMTBL_HIERLEVEL Procedure
	REMOVEMAP_DIMTBL_HIERSORTKEY Procedure
	REMOVEMAP_DIMTBL_LEVELATTR Procedure
	REMOVEMAP_DIMTBL_LEVEL Procedure
	REMOVEMAP_FACTTBL_LEVELKEY Procedure
	REMOVEMAP_FACTTBL_MEASURE Procedure

	Example: Mapping a Dimension
	Example: Mapping a Cube

	27 27 CWM2_OLAP_VALIDATE
	Summary of CWM2_OLAP_VALIDATE Subprograms
	VALIDATE_DIMENSION Procedure
	VALIDATE_CUBE Procedure

	28 CWM_CLASSIFY
	Understanding the OLAP Classification System
	Summary of CWM_CLASSIFY Subprograms
	ADD_CATALOG_ENTITY Procedure
	ADD_DESCRIPTOR_ENTITY_TYPE Procedure
	ADD_ENTITY_DESCRIPTOR_USE Procedure
	CREATE_CATALOG Function
	CREATE_DESCRIPTOR Function
	CREATE_DESCRIPTOR_TYPE Procedure
	DROP_CATALOG Procedure
	DROP_DESCRIPTOR Procedure
	DROP_DESCRIPTOR_TYPE Procedure
	LOCK_CATALOG Procedure
	REMOVE_CATALOG_ENTITY Procedure
	REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure
	REMOVE_ENTITY_DESCRIPTOR_USE Procedure
	SET_CATALOG_DESCRIPTION Procedure
	SET_CATALOG_PARENT Procedure

	Example: Creating a Measure Folder

	Part V� Part V� OLAP�API Materialized View Reference
	29 Creating Dimension Materialized Views
	Creating Materialized Views for Dimensions
	Statistics and Bitmap Indexes
	Statistics
	Bitmap Indexes
	The CREATE Statement for a Dimension Materialized View

	Sample Script for the TIMES_DIM Dimension
	Table Structure of Sample TIMES_DIM Dimension Materialized View

	30 Creating Fact Materialized Views With DBMS_ODM
	Using the DBMS_ODM Package
	Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	Sample Script for the COST Cube
	Summary of DBMS_ODM Subprograms
	CREATEDIMLEVTUPLE Procedure
	CREATECUBELEVELTUPLE Procedure
	CREATEFACTMV_GS Procedure
	CREATEDIMMV_GS Procedure

	31 Creating Fact Materialized Views With OLAP Summary Advisor
	Using the OLAP Summary Advisor Wizard
	Procedure: Run the OLAP Summary Advisor

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	The MV CREATE Statement With Concatenated Rollup
	Sample Script for the COST Cube

	A Upgrading From Express Server
	Administration
	Authentication of Users
	Management Tools

	Data Transfer
	Localization
	Applications Support
	Programming Environment
	Communications
	Metadata

	Programming Language Changes
	New Commands
	Obsolete Commands
	UPDATE and COMMIT

	How to Upgrade an Express Database

	Index

