
Oracle9 i Application Server

Migrating From WebLogic

Release 2 (9.0.2)

April 2002

Part No. A95109-01

Oracle9i Application Server Migrating From WebLogic, Release 2 (9.0.2)

Part No. A95109-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Authors: Anand Ramakrishnan, Kai Li

Contributing Authors: Joan Gregoire

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

Audience .. xii
Organization.. xii
Related Documentation .. xiii
Conventions.. xiv
Documentation Accessibility .. xvii

1 Overview

Overview of J2EE .. 1-2
What is the J2EE Application Model?.. 1-2
What is the J2EE Platform?.. 1-3

What is an Application Server?.. 1-4
Overview of Oracle9iAS.. 1-5

J2EE Application Migration Challenges.. 1-5
J2EE Application Architecture ... 1-6
Migration Issues.. 1-7

Migration Approach... 1-8
Migration Effort .. 1-8
Using This Guide.. 1-8

2 Comparison of Oracle9 iAS and WebLogic Server 6.0

Application Server Product Offerings .. 2-1
iii

WebLogic Server 6.0 ... 2-1
WebLogic Server.. 2-1
WebLogic Enterprise... 2-2
WebLogic Express ... 2-2

Oracle9i Application Server .. 2-3
Architecture Comparison .. 2-4

WebLogic Server 6.0 Components and Concepts .. 2-4
Oracle9iAS Components and Concepts .. 2-6

Oracle9iAS Instance... 2-6
Oracle HTTP Server... 2-6
OC4J Instances ... 2-7
Oracle Process Management Notification (OPMN) Service.. 2-7
Distributed Configuration Manager (DCM).. 2-8
Oracle9iAS Infrastructure Repository .. 2-8
Oracle9iAS Web Cache ... 2-9

Clustering and Load balancing .. 2-9
What is Clustering? .. 2-9
Benefits of Clustering: Failover Recovery ... 2-9
What is LoadBalancing?... 2-9
WebLogic Server 6.0 Suppport for Clustering and Load Balancing 2-10

HTTP Session State Load Balancing and Failover (Servlet Clustering) 2-10
EJB and RMI Object Load Balancing and Failover ... 2-10

Oracle9iAS Support for Clustering and Load Balancing .. 2-11
Oracle9iAS Clusters... 2-11
OC4J Islands ... 2-12

J2EE Support Comparison... 2-14
Java Development and Deployment Tools .. 2-15

WebLogic Server Development and Deployment Tools .. 2-15
WebLogic Server Development Tools .. 2-15
WebLogic Server Administration Console .. 2-15

Oracle9iAS Development and Deployment Tools... 2-15
Development Tools ... 2-16
Assembly Tools.. 2-16
Administration Tools .. 2-17
iv

3 Migrating Java Servlets

Introduction ... 3-2
Differences Between WebLogic Server and Oracle9iAS Servlet Implementations............. 3-2

OC4J Key Servlet Container Features... 3-2
Migrating a Simple Servlet ... 3-2
Migrating a WAR File .. 3-5
Migrating an Exploded Web Application .. 3-9
Migrating Configuration and Deployment Descriptors ... 3-10

Oracle9iAS ... 3-11
WebLogic Server 6.0 .. 3-12

Migrating Cluster Aware Applications .. 3-13

4 Migrating JSP Pages

Introduction ... 4-2
Differences Between WebLogic Server and Oracle9iAS JSP Implementations................... 4-2

OC4J JSP Features.. 4-2
Oracle JDeveloper and OC4J JSP Container .. 4-3

Migrating a Simple JSP Page.. 4-4
Migrating a Custom JSP Tag Library .. 4-5

Migrating from WebLogic Custom Tags .. 4-8
WebLogic Server cache Tag... 4-8
WebLogic Server process Tag .. 4-9
WebLogic Server repeat Tag... 4-9

Precompiling JSP Pages... 4-10
Using the WebLogic Server JSP Compiler .. 4-10
Using the OC4J JSP Pre-translator ... 4-10
Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification) 4-11
Configure the JSP Container for Execution with Binary Files Only.................................... 4-11

5 Migrating Enterprise JavaBean Components

Introduction ... 5-2
Differences Between WebLogic Server and Oracle9iAS EJB Implementations................... 5-2

EJB Container Facilities .. 5-2
More Efficient Container Managed Persistence.. 5-3
v

Clustering Support .. 5-3
Security and LDAP Integration ... 5-4

EJB Migration Considerations... 5-4
Migration Steps ... 5-5

Setting Deployment Properties... 5-6
Vendor-specific Deployment Descriptors.. 5-6

Generating and Deploying EJB Container Classes .. 5-7
Loading EJB Classes in the Server.. 5-7

Migrating EJBs in a EAR or JAR File .. 5-8
Migrating an Exploded EJB Application .. 5-8
Configuring EJBs using Deployment Descriptors.. 5-9
Writing Finders for RDBMS Persistence.. 5-12
WebLogic Query Language (WLQL) ... 5-13
Message Driven Beans ... 5-13
Configuring Security .. 5-14
Migrating Cluster-Aware Applications to OC4J ... 5-14

EJB Clustering in WebLogic Server.. 5-14
In-Memory Replication for Stateful Session EJBs ... 5-14
Requirements and Configuration.. 5-15

EJB Clustering in Oracle9iAS .. 5-16
Load Balancing... 5-16
Failover.. 5-17

6 Migrating JDBC

Introduction ... 6-2
Differences between WebLogic and Oracle9iAS Database Access Implementations 6-2

Overview of JDBC Drivers ... 6-2
Migrating Data Sources ... 6-4

Data Source Import Statements .. 6-4
Configuring Data Sources in the Application Server .. 6-4
Obtaining a Client Connection Using a Data Source Object .. 6-7

Migrating Connection Pools ... 6-7
Overview of Connection Pools ... 6-8
How Connection Pools Enhance Performance... 6-9

Overview of Clustered JDBC.. 6-9
vi

Performance Tuning JDBC.. 6-9

A Oracle9 iAS 1.0.2.x and WebLogic Server 6.0 Comparison

Introduction ... A-1
Performance Results and Analysis.. A-2

Performance and Scalability Results.. A-3
Feature Comparison ... A-4

Installation and Configuration ... A-4
Performance and Scalability ... A-5
J2EE Container Features .. A-8
Clustering Support ... A-9

Sample Migration Case Study.. A-11

B Partner Migration Tools

Cacheon... B-1
Features of Cacheon Migrator .. B-1

TogetherSoft... B-2

Index
vii

viii

Send Us Your Comments

Oracle9 i Application Server Migrating From WebLogic, Release 2 (9.0.2)

Part No. A95109-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

Oracle9i Application Server Migrating From WebLogic provides you with the

information required for a successful migration from BEA Systems’ application

server, WebLogic Server 6.0, to Oracle Corporation’s application server, Oracle9i
Application Server (Oracle9iAS).

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xi

Audience
Oracle9i Application Server Migrating From WebLogic is intended for those Java

development managers, application developers, and system administrators

responsible for planning and migrating J2EE web applications from BEA System’s

WebLogic Server 6.0 to Oracle9i Application Server (Oracle9iAS).

To use this document, you need an in-depth understanding of the Java platform and

experience in Java application development, configuration, and deployment. In

addition, you need a thorough understanding of the WebLogic Server environment,

as well as the Oracle9iAS environment.

Organization
This document contains:

Chapter 1, "Overview"
This chapter provides an overview of the issues involved in migrating J2EE web

applications from WebLogic Server 6.0 to Oracle9i Application Server (Oracle9iAS),

and the effort required.

Chapter 2, "Comparison of Oracle9iAS and WebLogic Server 6.0"
This chapter provides a comparison between Oracle Corporation’s implementation

of Sun Microsystems’ J2EE platform and component specifications and that of BEA

Systems.

Chapter 3, "Migrating Java Servlets"
This chapter provides the information you need to migrate Java servlets from

WebLogic Server 6.0 to Oracle9iAS. It addresses the migration of simple servlets,

WAR files, and exploded web applications.

Chapter 4, "Migrating JSP Pages"
This chapter provides the information you need to migrate JavaServer pages from

WebLogic Server 6.0 to Oracle9iAS. It addresses the migration of simple JSP pages,

custom JSP tag libraries, and WebLogic custom tags.

Chapter 5, "Migrating Enterprise JavaBean Components"
This chapter provides the information you need to migrate Enterprise JavaBeans

from WebLogic Server 6.0 to Oracle9iAS. It addresses the migration of stateful and
xii

stateless session beans and container-managed persistence and bean-managed

persistence entity beans.

Chapter 6, "Migrating JDBC"
This chapter provides the information you need to migrate database access code

from WebLogic Server 6.0 to Oracle9iAS. It addresses the migration of JDBC drivers,

data sources, and connection pooling.

Appendix A, "Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison"
This appendix provides a comparison of performance and features between

Oracle9iAS version 1.0.2.2.x and BEA Systems’ WebLogic Server 6.0. (Oracle9iAS

1.0.2.2 is the predecessor Oracle9iAS Release 2.)

Appendix B, "Partner Migration Tools"
This appendix provides an overview of the tools available from Oracle9iAS partners

which aid the migration process.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Concepts Guide

■ Oracle9i Application Server Developer’s Guide

■ Oracle9iAS Containers for J2EE User’s Guide

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

■ Oracle9i JDBC Developer’s Guide and Reference

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/
xiii

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

For additional information, see:

■ http://bea.com/ for more information on WebLogic Server

■ http://java.sun.com/ for more information on J2EE

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xiv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;
xvi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xvii

xviii

Ove
1

Overview

This chapter provides an overview of the issues involved in migrating J2EE web

applications from WebLogic Server 6.0 to Oracle9i Application Server (Oracle9iAS)

Release 2, and the effort required.

The chapter contains these topics:sv

■ Overview of J2EE

■ What is an Application Server?

■ Overview of Oracle9iAS

■ J2EE Application Architecture

■ Migration Issues

■ Migration Effort

■ Using This Guide

Note: Unless explicitly stated, any mention of "Oracle9iAS" in this

guide refers to Oracle9iAS Release 2.
rview 1-1

Overview of J2EE
Overview of J2EE
The application server market is evolving rapidly. In particular, the most significant

development over the last few years is the emergence of Sun Microsystems’ Java 2

Platform, Enterprise Edition (J2EE) Specification that promises to create a level of

cross-vendor standardization.

The J2EE platform and component specifications define, among other things, a

standard platform for developing and deploying multi-tier, web-based, enterprise

applications.

J2EE provides a solution to the problems encountered by companies moving to a

multi-tier computing model. The problems addressed include reliability, scalability,

security, application deployment, transaction processing, web interface design, and

timely software development. It builds upon the Java 2 Platform, Standard Edition

(J2SE) to enable Sun Microsystems’ "Write Once, Run Anywhere" paradigm for

multi-tier computing.

J2EE consists of the components described in Table 1–1:

What is the J2EE Application Model?
The J2EE application model is a multi-tier application model. Application

components are managed in the middle tier by containers. A container is a standard

runtime environment that provides services, including life cycle management,

deployment, and security services, to application components. This container-based

model separates business logic from system infrastructure.

Table 1–1 J2EE Standard Architecture Components

Component Description

J2EE Application Model An application model for developing
multi-tier, thin client services

J2EE Platform A platform for hosting J2EE applications

J2EE Compatibility Test Suite A compatibility test suite for verifying
that a J2EE platform product meets the
requirements set forth in the J2EE
platform and component specifications

J2EE Reference Implementation A reference implementation of the J2EE
platform
1-2 Oracle9i Application Server Migrating From WebLogic

Overview of J2EE
What is the J2EE Platform?
The J2EE platform consists of a runtime environment and a standard set of services

that provide the necessary functionality for developing multi-tiered, web-based,

enterprise applications.

The J2EE platform consists of the components described in Table 1–2.

Table 1–2 J2EE Platform Components

Component Description

J2EE runtime environment

Application components

Application clients A Java program, typically used for a GUI,
that executes on a desktop computer

Applets A component of a Java program that
typically executes in a web browser

Servlets and JSP pages Servlet: A Java program, used to generate
dynamic content, that executes on a web
server

JSP page: A technology used to return
dynamic content to a client, typically a
web browser

Enterprise JavaBeans (EJB) An applications architecture for
component-based distributed computing

Containers An entity that provides services for
application components, including life
cycle management, deployment, and
security services

Resource manager drivers A system-level component that enables
network connectivity to external data
sources

Database A set of related files used for the storage
of business data and accessible through
the JDBC API

J2EE standard services

HTTP The standard protocol used by the
Internet to send and receive messages
between web servers and browsers
Overview 1-3

What is an Application Server?
What is an Application Server?
An application server is software that runs between web-based client programs and

back-end databases and legacy applications. It helps separate system complexity

from business logic, enabling developers to focus on solving business problems. An

application server helps reduce the size and complexity of client programs by

enabling these programs to share capabilities and resources in an organized and

efficient way.

Application servers provide benefits in the areas of usability, flexibility, scalability,

maintainability, and interoperability.

HTTPS A protocol used by the Internet to send
and receive messages securely between
web servers and browsers

Java Transaction API (JTA) An API that allows applications and
application servers to access transactions

RMI-IIOP RMI: A protocol that enables Java objects
to communicate remotely with other Java
objects

IIOP: A protocol that enables browsers
and servers to exchange things other than
text

RMI-IIOP is a version of RMI that uses
the CORBA IIOP protocol

JavaIDL A standard language for interface
specification primarily used for CORBA
object interface definition

JDBC An API that provides connectivity
between databases and the J2EE platform

Java Message Service (JMS) An API that enables the use of enterprise
messaging systems

Java Naming and Directory Interface (JNDI) An API that provides directory and
naming services

JavaMail An API that provides the ability to send
and receive e-mail

JavaBeans Activation Framework (JAF) An API required by the JavaMail API

Table 1–2 J2EE Platform Components (Cont.)

Component Description
1-4 Oracle9i Application Server Migrating From WebLogic

Overview of Oracle9iAS
Overview of Oracle9 iAS
Oracle9iAS is a comprehensive, integrated application server that provides all of the

infrastructure and functionality needed to run every successful e-Business. All

development teams face a similar set of challenges—the need to rapidly deliver web

sites and applications that run fast over any network and on every device; while

providing business intelligence to support operational adjustments and strategic

decisions. Oracle9iAS enables teams to address all of these e-business challenges.

Oracle9iAS has generated a great deal of interest in the application server market,

and many organizations are embracing it to deploy their web-based, enterprise

applications.

Oracle9iAS offers the only integrated infrastructure to develop and deploy web

sites and applications. It provides a complete J2EE platform for developing

enterprise Java applications. Oracle9iAS enables developers to develop web

applications in any language including Java, Perl, PL/SQL, XML, and Forms. It

enables the reduction of development and deployment costs through a single,

unified platform for Java, XML, and SQL.

The J2EE server implementation in Oracle9iAS is called Oracle9iAS Containers for

J2EE (OC4J). OC4J runs on the standard JDK and is extremely lightweight, provides

high performance and scalability, and is simple to deploy and manage. With

Oracle9iAS Release 2, the OC4J supports J2EE 1.2 with support for some J2EE 1.3

features.

This migration guide seeks to help you understand the migration challenges you

may face when migrating your J2EE applications from Weblogic Server 6.0 to

Oracle9iAS.

J2EE Application Migration Challenges
The varying degrees of compliance to J2EE standards can make migrating

applications from one application server to another a daunting task. Some of the

challenges in migrating J2EE applications from one application server to another

are:

■ Though in theory, any J2EE application can be deployed on any J2EE-compliant

application server, in practice, this is not strictly true

■ Lack of knowledge of the implementation details of the given J2EE application

■ Ambiguity in the meaning of ’J2EE-compliant’ (usually, this means the

application server has J2EE compliant features, not code-level compatibility

with the J2EE specification)
Overview 1-5

J2EE Application Architecture
■ The number of vendor-supplied extensions to the J2EE standards in use, which

differ in deployment methods and reduce portability of Java code from one

application server to another

■ Differences in clustering, load balancing, and failover implementations among

application servers; these differences are sparsely documented, and are thus an

even bigger challenge to the migration process

These challenges make the migration path daunting, uncertain, and difficult to

reliably plan and schedule. This chapter addresses the challenges in migrating your

applications from WebLogic Server 6.0 to Oracle9iAS, providing an approach to

migration with solutions based on the J2EE version 1.2 specification.

J2EE Application Architecture
The J2EE platform provides a multi-tiered, distributed application model. Central to

the J2EE component-based development model is the notion of containers.

Containers are standardized runtime environments that provide specific services to

components. Thus, Enterprise JavaBeans (EJB) developed for a specific purpose in

any organization can expect generic services such as transaction and EJB life cycle

management to be available on any J2EE platform from any vendor.

Containers also provide standardized access to enterprise information systems; for

example, providing RDBMS access through the JDBC API. Containers also provide

a mechanism for selecting application behavior at assembly or deployment time.

As shown in Figure 1–1, the J2EE application architecture is a multi-tiered

application model. In the middle tier, components are managed by containers; for

example, J2EE web containers invoke servlet behavior, and EJB containers manage

life cycle and transactions for EJBs. The container-based model separates business

logic from system infrastructure.
1-6 Oracle9i Application Server Migrating From WebLogic

Migration Issues
Figure 1–1 J2EE Architecture

Migration Issues
In quantifying the migration effort, it is helpful to examine the application

components to be migrated with the following issues in mind:

■ Portability

Code may not be portable because it contains embedded references to

vendor-specific extensions to the J2EE specification. Evaluating and planning

for code modifications may be a significant part of the migration effort.

■ Proprietary extensions

If vendor-specific extensions are in use, migration of those components

becomes difficult or unfeasible. Complete redesign toward J2EE specifications is

not addressed in this document. If vendor-specific extensions are in use, they

may need to be redesigned and reimplemented, rather than being identified as

migration candidates.

EJB Container

Firewall

Client Tier Middle Tier Enterprise Information
Systems Tier

Enterprise
Beans

Enterprise
Beans

Enterprise
Beans

Enterprise
Beans

RDBMS

Legacy
Application

Legacy
Application

JSP Page

Servlet

Servlet

EJB Container

JMS

JNDI

JDBC

JDBCHTML, XML
Overview 1-7

Migration Effort
■ Deviations from J2EE Specification, v1.2

If a component is largely non-compliant with the J2EE specification, this guide

will not be helpful in determining the migration path to Oracle9iAS. If the J2EE

specification version of the component is not v1.2 (the version on which this

guide is based), then the specification implementation differences will need to

be addressed.

Migration Approach
The approach in developing this migration guide was to document our experience

migrating web application components from WebLogic Server 6.0 to Oracle9iAS.

Examples shipped with WebLogic Server 6.0 were selected, tested on WebLogic

Server 6.0, and migrated to Oracle9iAS. Issues encountered in the migration of these

examples are the basis for this document.

Migration Effort
Moving from WebLogic Server 6.0 to Oracle9iAS is a relatively simple process.

Standard J2EE applications, using no proprietary APIs, can be deployed with no

required code changes. The only actions required are configuration and

deployment. Those applications using proprietary utilities or APIs can be ported

easily.

Using This Guide
This guide details the migration of components from WebLogic Server 6.0 to

Oracle9iAS. While it does not claim to be an exhaustive source of solutions for every

possible configuration, it provides solutions for some of the migration issues listed

above, which will surface, along with others, in your migration effort. The

information in this guide helps you to assess the WebLogic Server 6.0 applications

and plan and execute their migration to Oracle9iAS. The material in this guide

supports these high-level tasks:

■ Survey the components according to the issues listed above

■ Identify migration candidates

■ Prepare the migration environment and tools

■ Migrate and test the candidate components
1-8 Oracle9i Application Server Migrating From WebLogic

Comparison of Oracle9iAS and WebLogic Serv
2

Comparison of Oracle9 iAS and WebLogic

Server 6.0

Although WebLogic Server 6.0 and Oracle9iAS are both J2EE servers that support

J2EE 1.2 and some J2EE 1.3 features, both application servers have intrinsic

differences ranging from product packaging to runtime architecture. This chapter

seeks to discuss these differences and is organized as follows:

■ Application Server Product Offerings

■ Architecture Comparison

■ Clustering and Load balancing

■ J2EE Support Comparison

■ Java Development and Deployment Tools

Application Server Product Offerings
WebLogic Server 6.0 is sold in several configurations. This section outlines these

configurations and Oracle9iAS Release 2.

WebLogic Server 6.0
WebLogic Server 6.0 is available in three configurations: WebLogic Server,

WebLogic Enterprise, and WebLogic Express.

WebLogic Server
WebLogic Server provides the core services and infrastructure for J2EE applications.

It supports J2EE 1.2 with additional support for some J2EE 1.3 features. These J2EE

1.3 features include JSP 1.2, Servlets 2.3, EJB 2.0, and JCA 1.0. However, these are
er 6.0 2-1

Application Server Product Offerings
implemented from non-final J2EE 1.3 specifications. Hence, compatibility problems

will surface if a J2EE 1.3 compliant application is deployed on WebLogic Server 6.0.

WebLogic Server allows Java applications and components to be deployed as web

services through SOAP, UDDI, and WSDL. It does not, however, support CORBA

applications. CORBA support is available in WebLogic Enterprise (see next section).

Each WebLogic Server can be configured as a web server utilizing its own HTTP

listener, which supports HTTP 1.1. Alternatively, Apache, Microsoft IIS, and

Netscape web servers can also be used. This web server configuration allows

WebLogic Server to service requests for static HTML content in addition to dynamic

content generated by servlets or JSPs.

A WebLogic Server node can be deployed as an administration server. This node

provides administrative services to other WebLogic Servers, called managed

servers, in the WebLogic domain. A WebLogic domain is a set of WebLogic Servers

and clusters of WebLogic Servers managed by an administration server, inclusive of

the latter. The administration server provides a web-based GUI for management of

the entire domain. In each domain, WebLogic Servers can be clusted together or are

standalone. Refer to "Oracle9iAS Support for Clustering and Load Balancing" for

more clustering information.

WebLogic Enterprise
WebLogic Enterprise consists of WebLogic Server and BEA Tuxedo. Tuxedo is a

distributed transaction management platform that enables distributed transactions

across multiple databases. Tuxedo integrates with WebLogic Server through the

latter’s connector architecture.

WebLogic Enterprise supports multiple application environments including Java,

C++, C, and COBOL. WebLogic Enterprise also supports CORBA applications and

allows single sign-on to disparate application environments. Additionally, through

Tuxedo, WebLogic Enterprise supports industry standard SNMP MIBS allowing

WebLogic Server to be monitored by third-party tools.

WebLogic Express
WebLogic Express is a "lightweight"version of WebLogic Server. It is not J2EE

compliant as it does not have support for EJBs and JMS. It does support JSPs,

servlets, JDBC, and RMI, and it also includes a web server. Hence, WebLogic

Note: For a list of J2EE 1.2 APIs supported by WebLogic Server,

refer to "J2EE Support Comparison" in this chapter.
2-2 Oracle9i Application Server Migrating From WebLogic

Application Server Product Offerings
Express can be used to build rudimentary web applications with simple database

access using JDBC (no support for two-phase transactions).

Oracle9 i Application Server
Like WebLogic Server, Oracle9iAS is a platform-independent J2EE application

server that can host multi-tier, web-enabled enterprise applications for the Internet

and intranets, and which is accessible from browser and standalone clients. It

includes Oracle9iAS Containers for J2EE (OC4J) a lightweight, scalable J2EE

container written in Java, and is J2EE 1.2 certified. In addition, OC4J provides

support for J2EE 1.3 features such as:

■ Servlets 2.3

■ JSP 1.2

■ EJB 2.0

■ JNDI 1.2

■ JavaMail 1.2

■ JAF 1.0

■ JAXP 1.1

■ JCA 1.0

■ JAAS 1.0

■ JMS 1.0

■ JTA 1.0

■ JDBC 2.0

Oracle9iAS is designed specifically for running large-scale, distributed Java

enterprise applications, including Internet commerce sites, enterprise portals and

high volume transactional applications. It adds considerable value beyond the J2EE

standards in areas critical to the implementation of real world applications,

providing an entire suite of integrated solutions that encompass:

■ Web services

■ Business intelligence

■ Management and security

■ E-business integration
Comparison of Oracle9iAS and WebLogic Server 6.0 2-3

Architecture Comparison
■ Support for wireless clients

■ Enterprise portals

■ Performance caching

To enable these solutions to be implemented in a reliable and scalable

infrastructure, Oracle9iAS can be deployed in a redundant architecture using

clustering mechanisms. The sections "Architecture Comparison" and "Oracle9iAS

Support for Clustering and Load Balancing" in this chapter details the components

in and characteristics of Oracle9iAS.

Architecture Comparison
This section describes and compares the overall architectures of WebLogic Server

and Oracle9iAS.

WebLogic Server 6.0 Components and Concepts
WebLogic Server has several components and concepts peculiar to it. Each

WebLogic Server can be configured and deployed either as a Managed Server or an

Administration Server. A Managed Server hosts and executes the application logic

deployed in it when requests are received from clients. An Administration Server

configures and monitors Managed Servers. Figure 2–1 depicts the components in

WebLogic Server and their interactions.
2-4 Oracle9i Application Server Migrating From WebLogic

Architecture Comparison
Figure 2–1 WebLogic Server components

In any node, more than one Managed Server can exist. Each Managed Server is a

Java process (JVM) executing J2EE containers (Web and EJB). An Administration

Server, which is also a Java process, is required to propagate configuration

information to Managed Servers when they start-up. The configuration information

is stored in the filesystem on the Administration Server node.

The Administration Server is also used to monitor and log information about

individual Managed Servers and the entire WebLogic domain. A WebLogic domain

can consist of standalone Managed Servers, clusters of Managed Servers, and one

Administration Server. If the Administration Server goes offline, client requests can

still be serviced by the Managed Servers. However, configuration information is not

available for new Managed Servers to start-up, and monitoring services are not

available for server clusters. The Administration Server does not have automatic

failover or replication. Configuration data for the WebLogic domain has to be

manually backed. The Administration Server functions can be accessed through a

console GUI (remotely over HTTP) or a command line utility.

In order for the Administration Server to start Managed Servers remotely, a Node

Manager must be running on each node where there are Managed Servers. This

Node Manager is a Java program executing in the background as a Unix daemon or

Windows NT service. With the Node Manager, the Administration Server can also
Comparison of Oracle9iAS and WebLogic Server 6.0 2-5

Architecture Comparison
kill a Managed Server if the latter hangs or does not respond to commands from the

former.

WebLogic Server 6.0 can also be set up to run as a web server. In this mode, it

supports HTTP 1.1 and resolves client requests to Managed Servers based on the

settings in the XML configuration files. Instead of WebLogic Server 6.0, third-party

proxy plug-ins can also be used. Supported plug-ins are Apache, Netscape, and

Microsoft IIS.

Oracle9 iAS Components and Concepts
This section describes components and several concepts peculiar to Oracle9iAS. The

discussion here provides an overview scope. For more detailed information, refer to

the Oracle9i Application Server Concepts Guide, Oracle9i Application Server
Administrator’s Guide, and Oracle9iAS Containers for J2EE User’s Guide.

Oracle9 iAS Instance
An Oracle9iAS instance is a runtime occurrence of an installation of Oracle9iAS. An

Oracle9iAS installation corresponds to an "Oracle home" where the Oracle9iAS files

are installed. Each Oracle9iAS installation can provide only one Oracle9iAS instance

at runtime. A physical node can have multiple "Oracle homes", and hence, more

than one Oracle9iAS installation and Oracle9iAS instance.

Each Oracle9iAS instance consists of several interoperating components that enable

Oracle9iAS to service user requests in a reliable and scalable manner. These

components are Oracle HTTP Server, OC4J instances, Oracle Process Management
Notification (OPMN) service, and Distributed Configuration Manager (DCM).

Oracle HTTP Server
Oracle9iAS contains two listeners: The Oracle HTTP Server (based on the Apache

open source product) and the listener that is part of OC4J, which runs in a separate

thread of execution. Each Oracle9iAS instance has one Oracle HTTP Server.

The OC4J listener listens to requests coming from the mod_oc4j module of the

Oracle HTTP Server and forwards them to the appropriate OC4J instance. From a

functional viewpoint, the Oracle HTTP Server acts as a proxy server to OC4J,

wherein all servlet or JSP requests are redirected to OC4J instances.

mod_oc4j communicates with the OC4J listener using the Apache JServ Protocol

version 1.3 (AJP 1.3). This protocol load balances JSP and servlet requests between

OC4J instances. mod_oc4j works with the Oracle HTTP Server as an Apache
2-6 Oracle9i Application Server Migrating From WebLogic

Architecture Comparison
module. The OC4J listener can also accept HTTP and RMI requests, in addition to

AJP 1.3 requests.

The following diagram depicts the Oracle HTTP Server and other Oracle9iAS

runtime components in a single instance of Oracle9iAS.

Figure 2–2 Components of an Oracle9iAS instance

OC4J Instances
An OC4J instance is a logical instantiation of the OC4J implementation in

Oracle9iAS. This implementation is Java 2 Enterprise Edition (J2EE) complete and

written entirely in Java. It executes on the standard Java Development Kit (JDK)

1.3.1 Java Virtual Machine. It has a lower disk and memory footprint than the

previous Oracle9iAS Java environment and competitive Java application servers.

Note that each OC4J instance can consist of more than one JVM process where each

process can be executing multiple J2EE containers. The number of JVM processes

can be specified for each OC4J instance using the Oracle Enterprise Manager GUI.

Oracle9iAS allows several OC4J instances to be clustered together for scalability and

high-availibility purposes. When OC4J instances are clustered together, they have

the same configuration and applications deployed amongst them. A more in-depth

discussion on clustering is found in the section "Oracle9iAS Support for Clustering

and Load Balancing" below.

Oracle Process Management Notification (OPMN) Service
Each Oracle9iAS instance has an OPMN service which performs monitoring and

process management functions within that instance. This service communicates
Comparison of Oracle9iAS and WebLogic Server 6.0 2-7

Architecture Comparison
messages between the components in an Oracle9iAS instance to enable startup,

death-detection and recovery of components. This communication extends to other

OPMN services in other Oracle9iAS instances belonging to the same cluster as well,

thereby allowing other instances in a cluster to be aware of active OC4J and Oracle

HTTP server processes in other Oracle9iAS instances (in the same cluster).

The OPMN service also communicates and interfaces with Oracle Enterprise

Manager to provide a consolidated interface for monitoring, configurating, and

managing Oracle9iAS. Oracle9iAS components, Oracle HTTP Server, OC4J

instances, and Distributed Configuration Manager (described below), use a

subscribe-publish messaging mechanism to communicate with the OPMN service.

For failover and availibility, the process that implements the OPMN service has a

shadow process that restarts the OPMN process if it fails.

Distributed Configuration Manager (DCM)
In order to manage and track configuration changes in the various components in

each Oracle9iAS instance, a DCM process exists in each Oracle9iAS instance to

perform those tasks. Each configuration change made to any of the components in a

Oracle9iAS instance is communicated to the DCM. DCM in turn takes note of the

change and records it in the Oracle9iAS metadata repository in the infrastructure

database. This repository contains the configuration information for all the

Oracle9iAS instances connected to it through their respective DCMs. All Oracle9iAS

instances connecting to the same infrastructure repository in this way belong to the

same Oracle9iAS farm. If any of the Oracle9iAS instances fail, the configuration

information can be retrieved from the repository for purposes of restarting the

instance.

Each DCM also communicates with the OPMN in their respective instances to send

notification events on changes in repository data. This allows OPMN to make the

corresponding adjustments to the Oracle9iAS components.

Oracle9 iAS Infrastructure Repository
The Oracle9iAS infrastructure repository maintains metadata about the Oracle9iAS

clusters and standalone Oracle9iAS instances connected to it. A common and

shared infrastructure repository ensures a more robust way of maintaining

configuration information and consistency between the clusters and instances.

Whenever a new instance is added to a cluster, common configuration information

such as the applications deployed is retrieved from the infrastructure repository

and propagated to the new instance so that it will behave uniformly with the other

instances of the cluster. The infrastructure repository is discussed further in the

section "Oracle9iAS Clusters" below.
2-8 Oracle9i Application Server Migrating From WebLogic

Clustering and Load balancing
Oracle9 iAS Web Cache
Oracle9iAS provides a caching solution with the unique capability to cache both

static and dynamically generated web content. The Oracle9iAS Web Cache

significantly improves the performance and scalability of heavily loaded

Oracle9iAS web sites by reducing the number of round trips to the web server. In

addition, it provides a number of features to ensure consistent and predictable

responses. These features include page fragment caching, dynamic content

assembly, web server load balancing, Web Cache clustering, and failover.

Oracle9iAS Web Cache can be used as a load balancer for Oracle9iAS instances in a

cluster. Web Cache can itself be deployed in its own cluster. Refer to the Oracle9iAS
Database Cache Concepts and Administration Guide.

Clustering and Load balancing
This section defines and describes clustering and load balancing and their

importance to application server operation. It compares the methods for clustering

and load balancing used in WebLogic Server 6.0 and Oracle9iAS.

What is Clustering?
An application server cluster is a group of independent application server instances

managed as a single system for higher availability and increased scalability. The

main goal of clustering is to minimize response time to user requests and to provide

scalability (the ability to add nodes to an existing system with minimal system

disruption). Clustering improves manageability, since the system administrator can

remotely manage the cluster from a central location. The cluster appears to the

administrator as a single system.

Benefits of Clustering: Failover Recovery
Within a cluster of multiple application server instances, a failed application server

instance can rely on another instance to take over its workload. Two important

characteristics of failover are quick failure detection, and failover without loss of

data. The level of failover support varies among application servers. Oracle9iAS

provides support for both.

What is LoadBalancing?
Load balancing is the proportional distribution of client requests (the application

server workload) among the servers in the cluster, enabling the maximum number

of concurrent requests. The primary goals of load balancing are to optimize usage of
Comparison of Oracle9iAS and WebLogic Server 6.0 2-9

Clustering and Load balancing
available server capacity and provide the most rapid possible response time to

clients.

WebLogic Server 6.0 Suppport for Clustering and Load Balancing
One or more WebLogic Servers can be grouped together as a cluster. Applications

can be deployed commonly in all servers in a cluster, through cluster-wide

deployment, to allow client requests to be load balanced across the cluster and the

applications to have failover capabilities. In a WebLogic cluster, the entities that

benefit from clustering are HTTP session states, and EJB and RMI objects. Several

load balancing algorithms are used by WebLogic. These are round-robin,

weight-based, and parameter-based.

HTTP Session State Load Balancing and Failover (Servlet Clustering)
Clients making requests to a WebLogic cluster can have their requests load balanced

across the servers in the cluster. For this to work, a web server installed with the

WebLogic proxy plug-in or a hardware load balancer must be used. The WebLogic

proxy plug-in uses a round-robin load balancing mechanism to distribute the

request load. If a hardware load balancer is used, the cluster can be load balanced

using the hardware’s mechanism.

WebLogic Server achieves failover for servlets and JSPs by replicating the HTTP

session states of clients. When a WebLogic Server receives the very first request for a

servlet or JSP, it replicates the servlet’s session state to another server. The replicated

session state is always kept up-to-date with the original. The WebLogic proxy

plug-in returns the names of the two servers to the client through a cookie or by

rewriting the URL. If the server hosting the original session state fails, the WebLogic

proxy plug-in uses the information in the cookie or URL to redirect the client to the

server with the replicated session state. At any one time, the cluster maintains an

original and replica of each active session state. In this scenario, the session state is

replicated in memory. WebLogic Server also supports replication to the file system

or a database through JDBC, however, the failover is not automatic for these

replication methods.

EJB and RMI Object Load Balancing and Failover
WebLogic Server provides load balancing and failover for EJB and RMI objects by

using a JNDI service and client stubs which are both cluster-aware.

Each WebLogic Server in a cluster maintains a local JNDI tree. This tree contains

information on objects deployed on the local server and around the cluster (for

objects that are clusterable). If a clusterable object is deployed on more than one
2-10 Oracle9i Application Server Migrating From WebLogic

Clustering and Load balancing
server, each JNDI tree reflects the existence of that object on those servers. When a

clusterable object is deployed on a server, that server, through multicast, notifies the

other servers in the cluster of the new deployment. The other servers’ update their

JNDI trees accordingly. Note that the server with the deployed object also sends the

object’s stub to the other servers.

When a client looks up a clusterable object in the JNDI service, the server servicing

the request returns a stub of the object to the client. This stub contains information

about which server(s) the object is actually deployed in. The stub also has load

balancing logic to balance method calls to the object. The load balancing algorithms

available are round-robin, weight-based, random, and parameter-based. From the

client’s point-of-view, the cluster is transparent. The JNDI look ups and load

balancing are done without the client knowing that it is working with a clustered

object at the server end.

In the case where a clustered object is stateful, for example, a stateful session EJB,

the object’s state is replicated to a second server. The replication is achieved in a

similar manner as for HTTP session state. The server that is chosen to service a

client’s very first request replicates the object’s state to another server. The client

stub is updated to reflect this. If the first server fails, the stub receives an exception

when it tries to invoke a method. The stub then redirects the invocation to the

server with the replicated object state. This server instantiates the object with the

replicated state and executes the method invocation. The server also selects another

server to replicate the state to since the original server is down. Failover of stateful

objects is achieved this way.

Failover of stateless objects is more straightforward to achieve as state need not be

replicated. Upon receiving an exception indicating that a server has failed, the client

stub simply selects another server which is hosting another instance of the called

object and redirects the method invocation there.

Oracle9 iAS Support for Clustering and Load Balancing
Oracle9iAS is designed with sophisticated clustering mechanisms. These

mechanisms ensure that failover and scalibility are achieved at the infrastructure

and application levels. This section describes the clustering and load balancing

concepts and capabilities of Oracle9iAS and OC4J.

Oracle9 iAS Clusters
An Oracle9iAS cluster is made up of one or more Oracle9iAS instances (see

Figure 2–3). All Oracle9iAS instances in the cluster have the same configuration.

The first Oracle9iAS instance to join a cluster has its configuration replicated to the
Comparison of Oracle9iAS and WebLogic Server 6.0 2-11

Clustering and Load balancing
second and later instances when they join. In addition to the configuration,

deployed OC4J applications are also replicated to the newer instances. Information

for the replicated configuration and applications is retrieved from the Oracle9iAS

infrastructure repository used by the cluster.

Within each cluster, there is no mechanism to load balance or failover the

Oracle9iAS instances. That is, there is no internal mechanism in the cluster to load

balance or failover requests to the Oracle HTTP Server component in the instances.

A separate load balancer such as Oracle9iAS Web Cache or hardware load

balancing product can be used to load balance the Oracle9iAS cluster and failover

the Oracle HTTP Server instances in the cluster.

Several Oracle9iAS clusters and standalone Oracle9iAS instances can be further

grouped into an Oracle9iAS farm. The clusters and instances in this farm share the

same Oracle9iAS infrastructure repository. For further information on Oracle9iAS

farms, refer to the Oracle9i Application Server Administrator’s Guide.

Figure 2–3 An Oracle9iAS cluster using Oracle9iAS Web Cache for load balancing

OC4J Islands
An important function of clustering technology in Oracle9iAS is that of reducing

multicast traffic. With every server sharing its session state with every other server

in the cluster, a lot of CPU cycles is consumed as overhead to replicate the session

state across all nodes in the cluster. Oracle9iAS solves this problem by introducing

the concept of OC4J islands, where OC4J processes (JVMs) in an Oracle9iAS cluster

can be sub-grouped into islands. Session state of applications is replicated only to
2-12 Oracle9i Application Server Migrating From WebLogic

Clustering and Load balancing
OC4J processes belonging to the same island rather than all OC4J processes in the

Oracle9iAS cluster. Hence, state is replicated to a smaller number of processes. OC4J

islands are typically configured to span across physical nodes, thereby allowing

failover of application state if a node goes down.

Consider an Oracle9iAS cluster with four OC4J processes running in two nodes,

two processes per node (see Figure 2–4). When the state of an application changes,

which could occur at every request from the same client, multicast messages are

sent between all four processes to update the state of that application in each

process. If these four processes were to be divided into two islands of two processes

across two nodes, state replication of the application would only have to occur

between processess within the same island. Multicast messages would be required

only between the two processes in the island instead of four, reducing replication

overhead by half. As a result, network traffic and CPU cycles are reduced.

Figure 2–4 OC4J islands

When configuring OC4J islands (using OEM), you can specify the number of OC4J

processes for each node that belong to each island. By doing so, you can increase or

decrease the number of processes based on the capabilities of the hardware and

operating system of each node. For instructions on how to configure Oracle9iAS

clusters and OC4J islands, refer to Oracle9i Application Server Administrator’s Guide.
Comparison of Oracle9iAS and WebLogic Server 6.0 2-13

J2EE Support Comparison
J2EE Support Comparison
This section outlines the differences in the level of support of J2EE specifications

between WebLogic Server 6.0 and Oracle9iAS.

Oracle9iAS OC4J is fully certified with J2EE 1.2.1, having passed Sun Microsystems’

Certification Test Suite (CTS). The CTS includes over 5,000 tests designed to assess

application portability and the overall quality of a J2EE implementation.

WebLogic Server 6.0 supports J2EE 1.2. It also has some early J2EE 1.3 features

which were implemented before the J2EE 1.3 specifications were finalized.

Table 2–1 lists the J2EE technologies and the level of support provided by

Oracle9iAS and WebLogic Server 6.0:

In addition to supporting these standards, Oracle9iAS provides a well-thought-out,

integrated architecture for building real world J2EE applications, including

implementation of standard deployment archives: JAR files for EJBs, Web Archives

Table 2–1 J2EE Technology Support

J2EE Technology
Version Supported by
WebLogic Server 6.0

Version Supported by
Oracle9 iAS

JDK 1.3 1.2.2 and 1.3

Servlets 2.2 (early 2.3.2) 2.2 and 2.3

JSPs 1.2.1 1.2

EJBs 1.1 (early 2.0) 1.1 and 2.0

JDBC 2.0 2.0

JNDI 1.2 1.2.1

JTA 1.0.1 1.0.1

JMS 1.0.2 1.0.1

JavaMail 1.1 1.2

JAF None 1.0.1

JAXP 1.0.1 1.1

JCA 1.0 1.0

JAAS 1.0 1.0
2-14 Oracle9i Application Server Migrating From WebLogic

Java Development and Deployment Tools
(WARs) for servlets and JSPs, and Enterprise Archives (EARs) for applications. This

ensures smooth server interoperability.

Java Development and Deployment Tools
This section compares the Java tools included with WebLogic Server and

Oracle9iAS.

WebLogic Server Development and Deployment Tools
The WebLogic Server development environment, tools, and Administration Console

are described below.

WebLogic Server Development Tools
WebLogic has partnered with WebGain to provide a suite of tools. WebLogic itself

does not provide the tools as an integrated package with its WebLogic Server. The

tools available from WebGain are:

■ Application Composer - a rapid application development environment

■ Business Designer - a tool for managing business process requirements

■ TopLink - an object-relational mapping tool

■ WebGain Studio - a Java IDE

WebLogic Server Administration Console
The WebLogic Server administrative console provides a GUI for managing the

WebLogic Server domain. A WebLogic Server domain consists of one or more

WebLogic Server instances (where each instance runs one or more applications) or

clusters of instances. The administrative console connects to the designated

administrative server running in the domain and can be used to change the

configuration or run-time state on any machine in a domain. The administrative

console is used to define clusters, add servers, deploy applications, configure

applications, and manage web servers, services, and resources in the domain.

Oracle9 iAS Development and Deployment Tools
This section describes development and deployment tools for creating J2EE

applications. The tools are part of the Oracle9i Developer Suite.
Comparison of Oracle9iAS and WebLogic Server 6.0 2-15

Java Development and Deployment Tools
Development Tools
Application developers can use the tools in Oracle JDeveloper to build J2EE-

compliant applications for deployment on OC4J. JDeveloper is a component in

Oracle Interent Developer Suite, a full-featured, integrated development

environment for creating multi-tier Java applications. It enables you to develop,

debug, and deploy Java client applications, dynamic HTML applications, web and

application server components and database stored procedures based on

industry-standard models. For creating multi-tier Java applications, JDeveloper has

the following features:

■ Oracle Business Components for Java (BC4J)

■ Web application development

■ Java client application development

■ Java in the database

■ Component-Based Development with JavaBeans

■ Simplified database access

■ Visual Integrated Development Environment

■ Complete J2EE 1.2 support

■ Automatic generation of .ear files, .war files, ejb-jar.xml file, and

deployment descriptors.

You can build applications with Oracle JDeveloper and deploy them manually,

using Oracle Enterprise Manager, or with the OC4J Administration Console. Also

note that you are not restricted to using JDeveloper to build applications; you can

deploy applications built with IBM VisualAge or Borland JBuilder on OC4J.

Assembly Tools
Oracle9iAS provides a number of assembly tools to configure and package J2EE

Applications. The output from these tools is compliant with J2EE standards and is

not specific to OC4J. These include:

■ A WAR file assembly tool to assemble JSP, servlets, tag libraries and static

content into WAR files.

■ An EJB assembler, which packages an EJB home, remote interface, deployment

descriptor, and the EJB into a standard JAR file.

■ An EAR File assembly tool, which assembles WAR Files and EJB JARs into

standard EAR files.
2-16 Oracle9i Application Server Migrating From WebLogic

Java Development and Deployment Tools
■ A tag library assembly tool, which assembles JSP tag libraries into standard JAR

files.

Administration Tools
Oracle9iAS also provides two different administration facilities to configure,

monitor, and administer OC4J.

■ A graphical management console, integrated with Oracle Enterprise Manager,

which provides a single point of administration across Oracle9iAS clusters,

farms, and OC4J containers.

■ A command line tool for performing administrative tasks locally or remotely

from a command prompt. (Oracle Enterprise Manager (OEM) is the preferred

administration environment over this command line tool as OEM provides a

more integrated set of administration services.)
Comparison of Oracle9iAS and WebLogic Server 6.0 2-17

Java Development and Deployment Tools
2-18 Oracle9i Application Server Migrating From WebLogic

Migrating Java Se
3

Migrating Java Servlets

This chapter provides the information you need to migrate Java servlets from

WebLogic Server 6.0 to Oracle9iAS. It covers the migration of simple servlets, WAR

files, and exploded web applications.

This chapter contains these topics:

■ Introduction

■ Migrating a Simple Servlet

■ Migrating Configuration and Deployment Descriptors

■ Migrating a WAR File

■ Migrating an Exploded Web Application

■ Migrating Cluster Aware Applications
rvlets 3-1

Introduction
Introduction
Migrating Java servlets from WebLogic Server 6.0 to Oracle9iAS is typically straight

forward, requiring little or no code changes to the servlets migrated.

Both application servers are fully compliant with Sun Microsystem’s Java 2 Servlet

Specification, version 2.2. All servlets written to the standard specification will work

correctly and require minimal migration effort.

The primary tasks involved in migrating servlets to a new environment are

configuration and deployment. The use of proprietary extensions, such as

htmlKona, will require additional tasks and complicate the migration effort.

The tasks involved in migrating servlets also depend on how the servlets have been

packaged and deployed. Servlets can be deployed as a simple servlet, as a web

application packaged with other resources in a standard directory structure, or as a

web archive (WAR) file.

Differences Between WebLogic Server and Oracle9 iAS Servlet Implementations
Oracle9iAS and WebLogic Server both support the Servlet 2.2 specification.

Additionally, Oracle9iAS fully supports the finalized Servlet 2.3 specification.

WebLogic Server has Servlet 2.3 support, but its implementation is based on

non-finalized Servlet 2.3 specification. Hence, migrating a servlet that uses the

WebLogic Server Servlet 2.3 API and features to Oracle9iAS may require some code

upgrade to use the finalized Servlet 2.3 API.

OC4J Key Servlet Container Features
One of the key distinguishing features of OC4J is the seamless integration with

Single Sign-On (SSO) and Oracle Internet Directory (OID). This is achieved through

Oracle’s implementation of the Java Authentication and Authorization Service

(JAAS) standard - JAAS provider is integrated with OC4J.

Migrating a Simple Servlet
Simple servlets are easily configured and deployed in OC4J. The manual process

used to deploy a servlet is the same in both WebLogic Server and OC4J.
3-2 Oracle9i Application Server Migrating From WebLogic

Migrating a Simple Servlet
A servlet must be registered and configured as part of a web application. To register

and configure a servlet, several entries must be added to the web application

deployment descriptor.

The overall steps to deploy a simple servlet are as follows (detailed steps are in

Table 3–1):

1. Update the web application deployment descriptor

(web.xml) with the name of the servlet class and the URL pattern used to

resolve requests for the servlet.

2. Copy the servlet class file to the WEB-INF/classes/ directory. If the servlet

class file contains a package statement, create additional subdirectories for each

level of the package statement. The servlet class file must then be placed in the

lowest subdirectory created for that package.

3. Invoke the servlet from your browser by entering its URL.

To determine the effort involved in migrating servlets, we selected and migrated

example servlets provided with WebLogic Server 6.0. We chose examples that did

not use proprietary extensions.

Table 3–1 presents the manual process for migrating a simple servlet, HelloWorld,

from WebLogic Server 6.0 to OC4J.

Note: The recommended and preferred way to deploy a servlet is

by packaging it in a WAR or EAR file and using OEM or the

dcmctl command line utility. The manual processes described in

this chapter of editing XML files and starting OC4J at the command

line using the java command should be used for development

purposes and for discussion in this chapter only.
Migrating Java Servlets 3-3

Migrating a Simple Servlet
Table 3–1 Migrating a Simple Servlet

Step Description Process

1 Modify the web application
deployment descriptor

Add the following to the web.xml file located in the

j2ee/home/default-web-app/WEB-INF/

directory of your OC4J installation:

<servlet>
<servlet-name>
HelloWorldServlet

</servlet-name>
<servlet-class>
examples.servlets.HelloWorldServlet

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>
HelloWorldServlet

</servlet-name>
<url-pattern>
/HelloWorld/*

</url-pattern>
</servlet-mapping>

Save the changes to the web.xml file

2 Copy the servlet class file to
the appropriate directory

Copy HelloWorldServlet.class from the

wlserver6.0/config/examples/
applications/examplesWebApp/
WEB-INF/classes/examples/servlets/

directory of your WebLogic Server installation to the

j2ee/home/default-web-app/WEB-INF/
classes/examples/servlets/

directory of your OC4J installation

NOTE: This servlet provided with the WebLogic
Server installation belongs to a package called
examples.servlets .
3-4 Oracle9i Application Server Migrating From WebLogic

Migrating a WAR File
Migrating a WAR File
WAR files are also easily migrated to OC4J.

A web application can be configured and deployed as a WAR file. This is easily

accomplished in OC4J by using the Oracle Enterprise Manager administration GUI

or manually copying the WAR file to the appropriate directory. This is also true for

WebLogic Server. We will illustrate here the manual process for deploying WAR

files. This manual process should only be used in development environments where

OC4J is in standalone mode (not a component of an Oracle9iAS instance).

Production web applications are typically deployed using WAR or EAR files

through OEM or the dcmctl utility. Also, during the development of a web

application, it may be faster to deploy and test edited code using an exploded

directory format.

3 Start the OC4J J2EE
application server, if not
currently running

Use the OEM administration web pages or the
following dcmctl command:

dcmctl start -i 9ias_instance_name -ct
oc4j -co oc4j_instance_name

where 9ias_instance_name is the name of your
Oracle9iAS instance and oc4j_instance_name is
the name of the OC4J instance you want to start

4 Run the servlet from your
web browser

Access the servlet from your web browser using the
URL

http://localhost:7777/HelloWorld

(Substitute "localhost " with your OC4J’s host
name if using the browser from another machine.)

See Also: Oracle9iAS Containers for J2EE Servlet Developer’s Guide
for detailed information on configuring and deploying servlets.

See Also: Oracle9i Application Server Administrator’s Guide and

Oracle Enterprise Manager Administrator’s Guide for detailed

information on using the Oracle Enterprise Manager administration

screens.

Table 3–1 Migrating a Simple Servlet (Cont.)

Step Description Process
Migrating Java Servlets 3-5

Migrating a WAR File
To deploy a WAR file in WebLogic Server, copy the WAR file into the

config/ <domain_name> /applications directory of your WebLogic Server

installation. Once the WAR file is in this directory, WebLogic Server automatically

deploys the web application (auto-deployment must be enabled for the domain and

the Administration Server must be running).

Deploying a WAR file in OC4J is slightly different. Copy the WAR file into the

<ORACLE_HOME>/j2ee/home/applications directory of your OC4J

installation. Then, modify the application deployment descriptor found in

<ORACLE_HOME>/config/application.xml to include the WAR file. Bind the

web application to your web site by adding an entry in

<ORACLE_HOME>/config/default-web-site.xml .

Instead of manually editing these XML files, you can also use the admin.jar
utility. Refer to the Oracle9iAS Containers for J2EE User’s Guide for more details.

However, when either of these methods are used, the other Oracle9iAS components,

Distributed Configuration Manager and Oracle Process Management Notification

service, are not aware of the changes. Hence, the best way would be to use Oracle

Enterprise Manager or dcmctl utility to deploy the WAR file.

For OC4J to automatically deploy a web application, the web application must be

packaged in an EAR file. Create a WAR file for the web application and package the

WAR file inside an EAR file. When you modify server.xml (one of the descriptor

files you need to modify) and save it, OC4J detects the timestamp change of the

EAR file and deploys the application automatically. OC4J need not be restarted.

To determine the effort involved in migrating web applications packaged as WAR

files, we selected and migrated example web applications provided with WebLogic

Server 6.0. We chose examples that did not use proprietary extensions.

Table 3–2 presents the typical process for migrating a WAR file from WebLogic

Server 6.0 to OC4J.

Note: When you package the WAR file in a EAR file, the J2EE

specified manifest file (for the enterprise archive)

META-INF/application.xml must be added to the EAR file.

This manifest file may have to be created manually. See instructions

below for an example of this file.
3-6 Oracle9i Application Server Migrating From WebLogic

Migrating a WAR File
Table 3–2 Migrating a WAR File

Step Description Process

1 Modify the appropriate
application deployment
descriptor and save the
changes

Add the following to the application.xml file
located in the j2ee/home/config/ directory of
your OC4J installation:

<web-module id="cookie"
path="..home/applications/cookie/
cookie.war" />

Save the changes to the application.xml file

2 Modify the appropriate
*-web-site.xml file and
save the changes

Add the following to the http-web-site.xml file
located in the j2ee/home/config directory of
your OC4J installation:

<web-app application="cookie" name="cookie"
root="/cookie" />

3 Modify server.xml Add the following to
j2ee/home/config/server.xml :

<application name="cookie"
path="../applications/cookie.ear" />

There is no need to restart OC4J as it should pick up
the new timestamp on this file automatically.
Migrating Java Servlets 3-7

Migrating a WAR File
4 Prepare application files for
archival to EAR file

1. Create a staging directory to perform the EAR
file archival.

2. Assuming you deployed the cookie example in
the "examples" domain of WebLogic Server,
copy cookie.war from the
<WL_HOME>/wlserver6.0/config/exampl
es/ applications/ directory of your
WebLogic Server installation into this staging
directory.

3. Create a subdirectory META-INF in this staging
directory and create a file called
application.xml in META-INF. This acts as
the manifest file for the EAR and should look
like the following:

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun
Microsystems, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">
<application>

<module>
<web>
<web-uri>cookie.war</web-uri>
<context-root>/cookie</context-root>

</web>
</module>

</application>

4. In the same directory level as META-INF, run
the jar archive utility:

jar cvfM cookie.ear *

Table 3–2 Migrating a WAR File (Cont.)

Step Description Process
3-8 Oracle9i Application Server Migrating From WebLogic

Migrating an Exploded Web Application
Migrating an Exploded Web Application
Web applications can also be configured and deployed as a collection of files stored

in a standard directory structure or exploded directory format. This can be

accomplished in OC4J by manually copying the contents of the standard directory

structure to the appropriate directory in the OC4J installation. The same method can

also be used for WebLogic Server. In this section, we will describe the manual

process for deploying an exploded web application.

Deploying a web application in exploded directory format is used primarily during

the development of a web application. It provides a fast and easy way to deploy

5 Copy the EAR file to the
appropriate directory

Copy cookie.ear from the staging directory to
j2ee/home/applications/ directory of your
Oracle9iAS installation. If OC4J is running, it will
detect the new EAR file and automatically deploy it.

If it is not running, use the OEM administration web
pages or the following dcmctl command:

dcmctl start -i 9ias_instance_name -ct
oc4j -co oc4j_instance_name

where 9ias_instance_name is the name of your
Oracle9iAS instance and oc4j_instance_name is
the name of the OC4J instance you want to start.

6 Invoke the web application
from your web browser

Invoke the web application from your web browser
using the URL

http://localhost:7777/cookie

(Substitute "localhost " with your OC4J’s host
name if using the browser from another machine.)

See Also: Oracle9iAS Containers for J2EE Servlet Developer’s Guide
and Oracle9iAS Containers for J2EE User’s Guide for detailed

information on deploying WAR files.

See Also: Oracle9i Application Server Administrator’s Guide for

detailed information on using the Oracle Enterprise Manager

administration GUI.

Table 3–2 Migrating a WAR File (Cont.)

Step Description Process
Migrating Java Servlets 3-9

Migrating Configuration and Deployment Descriptors
and test changes. When deploying a production web application, package the web

application in a WAR file and deploy the WAR file using OEM.

To manually deploy an exploded web application in WebLogic Server, copy the

top-level directory containing the exploded web application files into the

<WL_HOME>/config/ <domain_name> /applications directory of your

WebLogic Server installation. Once the top-level directory is copied to the

appropriate directory, create an empty file with the name "REDEPLOY" within the

top-level directory. WebLogic Server detects this file and deploys the web

application. (WebLogic Server reads the timestamp of this file every few minutes to

determine if the application needs redeploying. Hence, whenever an application file

is updated, the REDEPLOYfile’s timestamp has to be updated to redeploy the file. In

UNIX, this can be done by using the touch command.)

Manually deploying an exploded web application in OC4J varies slightly. Copy the

top-level directory containing the exploded web application into the

<ORACLE_HOME>/j2ee/home/applications directory of your OC4J

installation. Then, modify the application deployment descriptor found in

<ORACLE_HOME>/config/application.xml to include the web application.

Bind the web application to your web site by adding an entry in

<ORACLE_HOME>/config/default-web-site.xml (or the appropriate website

XML file). Finally, register the new application in

<ORACLE_HOME>/config/server.xml by adding a new <application> tag

entry. When you modify server.xml and save it, OC4J detects the timestamp

change of this file and deploys the application automatically. OC4J need not be

restarted.

Migrating Configuration and Deployment Descriptors
Since WebLogic Server and Oracle9iAS fully support J2EE 1.2, there is a standard

set of XML configuration files supported by both application servers. These are:

■ web.xml (found in the WEB-INF directory of a web application’s WAR file)

■ application.xml (found in the META-INF directory of a web application’s

WAR file)

■ ejb-jar.xml (found in the META-INF directory of an EJB module’s exploded

directory hierarchy)

In addition to the standard files, each application server has specific files used only

by their respective environments. These are:
3-10 Oracle9i Application Server Migrating From WebLogic

Migrating Configuration and Deployment Descriptors
Oracle9 iAS
■ server.xml

Found in j2ee/home/config . This is the overall OC4J runtime configuration

file. It defines attributes such as the deployed applications directory, the server

log file path and name, path and names of other XML files, names of

applications and their EAR files, paths to runtime libraries, etc.

■ application.xml
Found in j2ee/home/config . This is the global configuration file common

settings for all applications deployed on a particular OC4J installation. Note

that this is different from the application.xml in a J2EE WAR file.

■ <website_name> -web-site.xml
Found in j2ee/home/config . This file defines a website and specifies

attributes such as host name, HTTP listener port number, web applications it

services and their URL contexts, and HTTP access log file and path. Note that

the name and path of each *-web-site.xml file has to be specified in the

server.xml file for OC4J to configure the defined website at runtime.

■ data-sources.xml
Found in j2ee/home/config . This file contains configuration information for

data sources used by the OC4J runtime. Information in this file include: JDBC

drivers used, JNDI binding for each data source, username and password for

each data source, database schemas to use, maximum connections to each

database, and time out values.

■ principals.xml
Found in j2ee/home/config . This file contains the user repository for the

default XMLUserManager class. Groups, users belonging to them, and group

permissions are defined in this file. The mapping of groups to roles is defined in

the global application.xml file.

■ orion-application.xml
Found in j2ee/home/application-deployments/ <app_name> . This file

contains OC4J-specific information for an application (<app_name>) deployed

on an OC4J installation. Web and EJB module names and security information

for the application are included in the file. This file is generated by OC4J at

deploy time.

■ global-web-application.xml
Found in j2ee/home/config/ . This file contains servlet configuration

information used internally by the OC4J runtime. An example is the JSP

translator servlet.
Migrating Java Servlets 3-11

Migrating Configuration and Deployment Descriptors
■ orion-web.xml
Found in

j2ee/home/application-deployments/ <app_name>/ <web_app_name
>/ . OC4J internal JSP and servlet information for <web_app_name> is

specified in this file. This file is generated by OC4J at deploy time.

■ orion-ejb-jar.xml
Found in

j2ee/home/application-deployments/ <app_name>/ <ejb_jarfile_
name>/ . This file contains OC4J internal deployment information for EJBs in

the JAR file specified by <ejb_jarfile_name> belonging to the application

<app_name> . This file is generated by OC4J at deploy time.

■ oc4j-connectors.xml
Found in j2ee/home/config/ . This file contains connector information for

the OC4J installation.

WebLogic Server 6.0
■ config.xml

Found in <WL_HOME>/config/ <domain_name> /config.xml . This file

contains configuration information for an entire WebLogic Server domain.

Information specified in this file include the domain administration server’s

host name and admin port number, JNDI mappings to data sources, JDBC

connection pool information, applications deployed to all nodes in the domain,

SSL certificate information,

■ weblogic.xml
Found in

<WL_HOME>/config/ <domain_name> /applications/ <web_app_name>
/WEB-INF/ . This file defines JSP properties, JNDI mappings, resource

references, security role mappings, and HTTP session and cookie parameters

for a Web application. This file is WebLogic Server-specific but is created

manually.

■ weblogic-ejb-jar.xml
Found in an EJB module’s META-INF subdirectory. This file maps WebLogic

Server resources to EJBs. These resources include security role names, data

sources, JMS connections, and other EJBs. This file also has performance

attributes for caching and clustering for the EJBs defined in the corresponding

ejb-jar.xml file.
3-12 Oracle9i Application Server Migrating From WebLogic

Migrating Cluster Aware Applications
Migrating Cluster Aware Applications
OC4J provides clustering features that are superior to WebLogic Server in both

performance and ease of use.

WebLogic Server provides two primary cluster services, HTTP session state

clustering and object clustering. The focus of this section is on HTTP session state

clustering or web application clustering.

WebLogic Server supports clustering for servlets and JSP pages by replicating the

HTTP session state of clients accessing clustered servlets and JSP pages. To benefit

from HTTP session state clustering, you must ensure that the HTTP session state is

persistent by configuring either in-memory replication, filesystem persistence, or

JDBC persistence.

Oracle9iAS provides clustering support similar to that of WebLogic Server. In

addition, Oracle9iAS provides:

■ Servlet Clustering—OC4J provides facilities to cluster servlets without

requiring any changes to the web application. The changes necessary are

deployment configuration modifications that are transparent to the web

application.

■ Clustering Architecture and Simplicity—An important differentiator for

Oracle9iAS is the ease with which different instances can be clustered and the

robustness of the architecture used for clustering.

■ Clustering Simplicity—Oracle Enterprise Manager (OEM) provides a GUI to

configure various Oracle9iAS instances to belong to a single cluster, whether

they are multiple servers with load balancing on a single machine or on

different machines. Alternatively, you can also edit a single XML file. In

contrast, it is more complex to configure WebLogic Server clusters with load

balancing either with multiple instances on one machine or on multiple

machines.

■ Superior Clustering Architecture—OC4J uses dynamic IP addresses to register

instances as part of a cluster. Its built-in load balancer, or any standard load

Note: The files mentioned above are not an exhaustive list of all

XML configuration file used by each application server. They are

files which are relevant to the configuration and deployment of

servlet applications. Other XML files also exist to configure

components such as HTTP listeners, RMI, security.
Migrating Java Servlets 3-13

Migrating Cluster Aware Applications
balancer such as Cisco Local Director or BigIP, has the ability to use a variety of

load balancing algorithms to route requests to different instances. In contrast,

WebLogic Server uses static IP addresses to configure clustering. Static IP

addresses preclude the use of a load balancer to distribute requests across

instances. As a result, you get either clustering or load balancing with WebLogic

Server but not both.

Each Oracle9iAS farm consists of multiple OC4J islands and each island can consist

of multiple applications. The sharing of session state for failover is within a

particular island.

Use the following steps to configure Oracle9iAS clustering:

1. Install the web application on all nodes in the cluster

Verify that the web application is installed on all nodes in the cluster. To avoid

duplication of the web application, place the web application on a drive shared

by the appropriate servers. Start all nodes and verify that the web application

works correctly on all nodes.

2. Set up the web application to replicate its state

Edit the OC4J specific deployment descriptor for the web application located at

j2ee/home/application-deployments/< application-name> /
<web-app-name> /orion-web.xml . If clustering is to be configured for all

web applications on a web site, edit the OC4J-specific deployment descriptor

for the global web application located at

j2ee/home/config/global-web-application.xml . Edit either file by

adding the <cluster-config/> tag after the main body of the

<orion-web-app> tag.

Optionally you may:

■ Specify the multicast host/IP address to transmit and receive cluster data

■ Specify the port to transmit and receive cluster data (default port is 9127)

■ Specify the id (number) of the node to identify itself with in the cluster

(default is based on the IP address of the local machine)

Note: These steps illustrate the manual method of editing XML

files to configure Oracle9iAS. OEM provides a graphical interface to

manage Oracle9iAS and provides a better view of the entire system.

Refer to the Oracle9i Application Server Administrator’s Guide for

instructions on how to use OEM.
3-14 Oracle9i Application Server Migrating From WebLogic

Migrating Cluster Aware Applications
Repeat step 2 for all the nodes in the cluster. As a result, the following will be

replicated:

■ The HttpSession data (as long as it is serializable or an EJB reference).

Note, however, that if the EJBs are located on a server that goes down, the

references might become invalid.

■ The ServletContext data

It is important to understand that load balancing is providing load balancing

for the web component, not the EJB. When using multiple islands, you may

want to use different multicast IP addresses to enable "smart" routing of

multicast packets in your network and just send traffic on certain IP addresses

to certain servers.

3. Configure the OC4J islands

OC4J islands are connected to a certain web site rather than to a web

application. To configure an island, edit the deployment descriptor of the web

site that the web application is deployed on. For example, if the web application

is deployed on the default web site, edit the deployment descriptor located at

j2ee/home/config/default-web-site.xml . Edit the file by adding

cluster-island="1" to the <web-site> tag. If the cluster has more than

one island, specify different island values for servers that belong to different

islands and similar values for those in the same island. Remember, HTTP

session state is shared only within an island.

Obtaining the IP address of the local host is not reliable on all platforms. The

back-end needs to tell the front-end about its IP address in some other way. This

is accomplished by specifying the host using the host="host/ip" attribute in

the <web-site> tag of the same deployment descriptor modified earlier in this

step.

4. Tell the back-end about the load balancer

To specify where the load balancer for the web site is located, edit the same

deployment descriptor modified in Step 3 by adding the following tag in the

main body of the <web-site> tag:

<frontend host=" balancer-host " port=" balancer-port " />

balancer-host is the hostname of the server where the load balancer is

running and balancer-port is the port number of the load balancer. As this

host and port make up the public hostname for the site, port 80 is suggested.

5. Make the web application distributable
Migrating Java Servlets 3-15

Migrating Cluster Aware Applications
To indicate that a web application is distributable, edit the web application

deployment descriptor located in WEB-INF/web.xml . Add the

</distributable> tag to the deployment descriptor. For example:

<web-app>
...

<distributable/>
...
</web-app>

6. Test the Oracle9iAS configuration

Access the load balancer's host and port using a web browser. Notice how the

request is sent off to one of the back-end servers. Now, request the same page

from the same client. More than likely, you will be sent to the same back-end

node, but if the same page is requested from a different client, you will see that

this client request gets balanced across to another node.

To test state replication, request servlet/SessionServlet . Determine

which server has become the primary server for the session by looking at the

access logs. Shut that server down and request the SessionServlet again. If

the Oracle9iAS configuration is correct, you will get to the same session as

before but on a different node and the counter will be updated appropriately.

See Also: "Oracle9iAS Support for Clustering and Load

Balancing" on page 2-11 of this book and the Oracle9iAS Containers
for J2EE User’s Guide.
3-16 Oracle9i Application Server Migrating From WebLogic

Migrating JSP P
4

Migrating JSP Pages

This chapter provides the information you need to migrate JavaServer pages from

WebLogic Server 6.0 to Oracle9iAS 9.0.2. It covers the migration of simple JSP

pages, custom JSP tag libraries, and WebLogic custom tags.

This chapter contains these topics:

■ Introduction

■ Migrating a Simple JSP Page

■ Migrating a Custom JSP Tag Library

■ Precompiling JSP Pages
ages 4-1

Introduction
Introduction
Migrating JSP pages from WebLogic Server 6.0 to Oracle9iAS is straight forward

and requires little or no code changes.

Both application servers are fully compliant with Sun Microsystem’s JavaServer

Page specifications, version 1.1 and 1.2. All JSP pages written to the standard

specification will work correctly and require minimal migration effort.

The primary tasks involved in migrating JSP pages to a new environment are

configuration and deployment. The use of proprietary extensions and tag libraries

will require additional tasks and complicate the migration effort.

The tasks involved in migrating JSP pages also depend on how the JSP pages have

been packaged and deployed. JSP pages can be deployed as a simple JSP page, as a

web application packaged with other resources in a standard directory structure, or

as a enterprise application archive (EAR) file. The migration of web applications in

exploded directory format and EAR file format is addressed in Chapter 3,

"Migrating Java Servlets".

Differences Between WebLogic Server and Oracle9iAS JSP Implementations
Since both WebLogic Server and Oracle9iAS Containers for J2EE (OC4J) have

implemented the same versions of the Java ServerPages specifications, there are no

differences between the two in the core areas. There are a few differences in the JSP

1.2 features each server supports. Each vendor also provides their own JSP custom

tags. WebLogic Server provides three specialized JSP tags - cache , repeat , and

process - that you can use in your JSP pages. OC4J also provides various JSP tags -

Oracle JSP Markup Language (JML) Custom Tag Library, tags for XML and XSL

integration, and several JSP utility tags. A comprehensive discussion of these tags

can be found in Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference.

OC4J JSP Features
Oracle9iAS 9.0.2 provides one of the fastest JSP engines on the market. Further, it

also provides several value-added features and enhancements such as support for

globalization and SQLJ. For those of you who are familiar with Oracle9iAS 1.0.2.2,

the first release of Oracle9iAS to include OC4J, there were two JSP containers: a

container developed by Oracle and formerly known as OracleJSP and a container

licensed from Ironflare AB and formerly known as the "Orion JSP container".

In Oracle9iAS 9.0.2, these have been integrated into a single JSP container, referred

to as the "OC4J JSP container". This new container offers the best features of both

previous versions, runs efficiently as a servlet in the OC4J servlet container, and is
4-2 Oracle9i Application Server Migrating From WebLogic

Introduction
well integrated with other OC4J containers. The integrated container primarily

consists of the OracleJSP translator and the Orion container runtime running with a

new simplified dispatcher and the OC4J 1.0.2.2 core runtime classes. The result is

one of the fastest JSP engines on the market with additional functionality over the

standard JSP specifications.

OC4J JSP provides extended functionality through custom tag libraries and custom

JavaBeans and classes that are generally portable to other JSP environments:

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event handling

■ Integration with XML and XSL through custom tags

■ Data-access JavaBeans

■ The Oracle JSP Markup Language (JML) custom tag library, which reduces the

level of Java proficiency required for JSP development

■ A custom tag library for SQL functionality

■ Additional utility tags for functionality such as uploading or downloading files

or sending e-mail

■ JESI (Edge Side Includes for Java) tags and Web Object Cache tags and API that

work with content delivery network edge servers to provide an intelligent

caching solution for web content.

The OC4J JSP container also offers several important features such as the ability to

switch modes for automatic page recompilation and class reloading, JSP instance

pooling, and tag handler instance pooling.

Oracle JDeveloper and OC4J JSP Container
Oracle JDeveloper is integrated with the OC4J JSP container to support the full JSP

application development cycle - editing, debugging, and running JSP pages. It also

provides an extensive set of data-enabled and web-enabled JavaBeans, known as

JDeveloper web beans and a JSP element wizard which offers a convenient way to

add predefined web beans to a page. JDeveloper also provides a distinct feature that

is very popular with developers. It allows you to set breakpoints within JSP page

source and can follow calls from JSP pages into JavaBeans. This is much more

See Also: Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference for detailed information on custom JSP tag

libraries.
Migrating JSP Pages 4-3

Migrating a Simple JSP Page
convenient than manual debugging techniques, such as adding print statements

within the JSP page to output state into the response stream for display on browser

or to the server log.

Migrating a Simple JSP Page
Simple JSP pages are easily configured and deployed in OC4J. The process used to

deploy a JSP page is similar in both WebLogic Server and OC4J.

JSP pages do not require specific mappings as do HTTP servlets. To deploy a simple

JSP page, you can copy the JSP page and any files required by the JSP page to the

appropriate directories. No additional registrations are required.

The deployment process has been simplified in OC4J by providing a J2EE web

application and various configuration files by default.

To determine the effort involved in migrating JSP pages, we selected and migrated

example JSP pages provided with WebLogic Server 6.0. We chose examples that did

not use proprietary extensions.

Table 4–1 presents the typical process for migrating a simple JSP page from

WebLogic Server 6.0 to OC4J.

Note: OEM should be used to deploy any type of applications

including JSPs. But for the purpose of this discussion here, we are

copying JSP files manually without using OEM.

Table 4–1 Migrating a Simple JSP Page

Step Description Process

1 Start an instance of
OC4J, if none are
currently running.

Go to http://localhost:1810 and select the OC4J
instance you want to start. Or, use the following dcmctl
command:

dcmctl start -i 9ias_instance_name -ct oc4j
-co oc4j_instance_name

where 9ias_instance_name is the name of your
Oracle9iAS instance and oc4j_instance_name is the
name of the OC4J instance you want to start.
4-4 Oracle9i Application Server Migrating From WebLogic

Migrating a Custom JSP Tag Library
Migrating a Custom JSP Tag Library
WebLogic Server and OC4J provide the ability to create and use custom JSP tags.

The process used to deploy a custom JSP tag library is similar for both WebLogic

Server and OC4J.

Tag libraries can be packaged and deployed as part of a web application, and are

declared in a specific section of the web application deployment descriptor.

To determine the effort involved in migrating custom JSP tag libraries, we selected

and migrated example JSP pages provided with WebLogic Server 6.0. We chose

examples that did not use proprietary extensions.

Table 4–2 presents the typical process for migrating a JSP page that utilizes a custom

JSP tag library from WebLogic Server 6.0 to OC4J.

2 Copy the JSP page to
the appropriate
directory

Copy HelloWorld.jsp from
wlserver6.0/samples/examples/jsp/ of your
WebLogic Server installation to
j2ee/home/default-web-app/ of your OC4J
installation

3 Copy any files
required by the JSP
page

Copy BEA_Button_Final_web.gif from

wlserver6.0/config/examples/applications/
examplesWebApp/images/

of your WebLogic Server installation to

j2ee/home/default-web-app/images/

of your OC4J installation. Note that you may have to
create the images directory

4 Request the JSP page
from your web
browser

From your web browser, request the JSP page through the
URL

http://localhost:7777/j2ee/HelloWorld.jsp

See Also: Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference and Oracle9iAS Containers for J2EE User’s Guide for

detailed information on configuring and deploying JSP pages.

Table 4–1 Migrating a Simple JSP Page (Cont.)

Step Description Process
Migrating JSP Pages 4-5

Migrating a Custom JSP Tag Library
Table 4–2 Migrating a Custom JSP Tag Library

Step Description Process

1 Copy the tag library file to
the appropriate directory

Copy counter.tld from

wlserver6.0/samples/examples/jsp/
tagext/counter/

of the WebLogic Server installation to

j2ee/home/default-web-app/WEB-INF/

of your OC4J installation

2 Copy the JSP page to the
appropriate directory

Copy pagehits.jsp from

wlserver6.0/samples/examples/jsp/
tagext/counter/

of the WebLogic Server installation to

j2ee/home/default-web-app/

of your OC4J installation

3 Copy any class files
required by the tag library
and used by the JSP file to
the appropriate directory

Copy Count.class , Display.class, and
Increment.class from

wlserver6.0/config/examples/
applications/examplesWebApp/WEB-INF/
classes/examples/jsp/tagext/counter/

of the WebLogic Server installation to

j2ee/home/default-web-app/WEB-INF/
classes/examples/jsp/tagext/counter/

of your OC4J installation

Note that these .class files provided with the
WebLogic server installation belong to a package
called examples.jsp.tagext.counter . You
may need to create the
examples/jsp/tagext/counter/ directory.
4-6 Oracle9i Application Server Migrating From WebLogic

Migrating a Custom JSP Tag Library
4 Copy image files used by
the JSP file

Copy the directory containing the image files from

wlserver6.0/samples/examples/jsp/
tagext/counter/images/numbers/

of the WebLogic Server installation to

j2ee/home/default-web-app/images/
numbers/

of your OC4J installation.

Note that you may have to create the
images/numbers directory

5 Modify the appropriate web
application deployment
descriptor and save the
changes

Add the following to the web.xml file located in the

j2ee/home/default-web-app/WEB-INF/

directory of your OC4J installation (<taglib> is a
child element of <web-app>):

<taglib>
<taglib-uri>
counter

</taglib-uri>
<taglib-location>
/WEB-INF/counter.tld

</taglib-location>
</taglib>

6 Start the OC4J instance, if it
is not currently running.

Go to http://localhost:1810 and select the
OC4J instance you want to start. Or, use the
following dcmctl command:

dcmctl start -i 9ias_instance_name -ct
oc4j -co oc4j_instance_name

where 9ias_instance_name is the name of your
Oracle9iAS instance and oc4j_instance_name is
the name of the OC4J instance you want to start.

7 Request the JSP file from
your web browser

From your web browser, use the URL

http://localhost:7777/j2ee/
pagehits.jsp

Table 4–2 Migrating a Custom JSP Tag Library (Cont.)

Step Description Process
Migrating JSP Pages 4-7

Migrating a Custom JSP Tag Library
Migrating from WebLogic Custom Tags
If WebLogic custom tags are used extensively throughout your web application,

then the best option is to use the WebLogic tag library by deploying it on OC4J. This

option is discussed in the previous section, "Migrating a Custom JSP Tag Library".

You can then migrate to the Oracle JSP tags if required. In the future, tools or

automated scripts may be available to make the code conversion easier.

If WebLogic custom tags are used sparingly throughout your web application, then

the best option is to modify the JSP pages to use the Oracle JSP tag library. This

option is discussed below.

WebLogic Server provides three specialized JSP tags for use in JSP pages. They are

cache , process , and repeat .

WebLogic Server cache Tag
OC4J provides a superset of the WebLogic Server cache tag in the form of Web

Object Cache Tags. These tags provide additional functionality over the WebLogic

cache tag. Further, the Web Object Cache Tags of OC4J are well integrated with

other tag libraries such as the XML tag library. For example, the cacheXMLObj tag

is well integrated with OC4J’s XML tags.

One feature which does not have direct functionality mapping is "async". However,

Edge Side Includes (ESI) and Edge Side Includes for Java (JESI) can provide similar

functionality to it.

See Also:

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for detailed information on configuring and

deploying JSP pages.

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference for detailed information on custom JSP tag libraries.

See Also: Chapter 6 and Chapter 7 of Oracle9iAS Containers for
J2EE JSP Tag Libraries and Utilities Reference for detailed information

on Web Object Cache tags and JESI tags.
4-8 Oracle9i Application Server Migrating From WebLogic

Migrating a Custom JSP Tag Library
WebLogic Server process Tag
OC4J does not have an exact equivalent for the process tag. The closest option is

to use the jml:useForm and jml:if tags. from Oracle’s JSP Markup Language

(JML).

Alternatively, you could write Java code to implement the tag.

WebLogic Server repeat Tag
The OC4J equivalent for this tag is the jml:foreach tag. This tag provides the

ability to iterate over a homogeneous set of values. The body of the tag is executed

once per element in the set. This tag currently supports iterations over the following

types of data structures:

■ Java array

■ java.util.Enumeration

■ java.util.Vector

However, these tags do not cover data structures such as Iterators, Collections, and

the keys of a hashtable.

For ResultSets and ResultSetMetaData , OC4J provides tags called the SQL

Tags for Data Access. These tags provide functionality very similar to that provided

by the WebLogic Server repeat tag. The dbNextRow tag is the tag that you are

likely to be most interested in. This tag can be used to process each row of a result

set obtained in a dbQuery tag and associated with the specified queryId . Place the

processing code in the tag body, between the dbNextRow start and end tags. The

code in the body is executed for each row of the result set.

See Also: Bean Binding Tag Descriptions and Logic and Flow

Control Tag Descriptions subsections in the JSP Markup Language

(JML) Tag Descriptions section of Chapter 3 of Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference for

detailed information on these JML tags.

See Also: The Logic and Flow Control Tag Descriptions

subsection in the JSP Markup Language (JML) Tag Descriptions

section of Chapter 3 of Oracle9iAS Containers for J2EE JSP Tag
Libraries and Utilities Reference for detailed information on this JML

tag.
Migrating JSP Pages 4-9

Precompiling JSP Pages
Precompiling JSP Pages
JSP pages are compiled automatically by the JSP compiler. However, when testing

and debugging JSP pages, you may want to access the JSP compiler directly.

The JSP compiler parses a .jsp file into a .java file. The standard Java compiler is

then used to compile the .java file into a .class file.

Using the WebLogic Server JSP Compiler
To start the WebLogic Server JSP compiler, type the following command:

java weblogic.jspc - options fileName

The fileName parameter refers to the name of the JSP page to be compiled.

Options may be specified before or after the JSP page name. The following example

demonstrates the use of the -d option to compile myFile.jsp into the destination

directory weblogic/classes :

java weblogic.jspc -d /weblogic/classes myFile.jsp

Using the OC4J JSP Pre-translator
In addition to the standard jsp_precompile mechanism, OC4J provides a

command-line utility called ojspc for pretranslating JSP pages.

Consider the example where the JSP page, HelloWorld.jsp , is located in the

OC4J default web application directory

j2ee/home/default-web-app/examples/jsp/ . (Copy the HelloWorld.jsp file

from j2ee/home/default-web-app/ to this subdirectory.)

To pre-translate this JSP page, set your current directory to the application root

directory, then, in ojspc , set the _pages directory as the output base directory

See Also:

■ The Custom Data-Access Tag Library subsection in the SQL

Tags for Data Access section of Chapter 4 of Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference for

detailed information on these JML tags.

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for detailed information about the standard JSP tag

library framework and tag-extra-info classes.
4-10 Oracle9i Application Server Migrating From WebLogic

Precompiling JSP Pages
using the -d option. This results in the appropriate package name and file

hierarchy. To illustrate (assume % is a UNIX prompt):

% cd j2ee/home/default-web-app
% ojspc -d ../application-deployments/default/defaultWebApp/temp/_pages

examples/jsp/HelloWorld.jsp

The directory structure above specifies an application-relative path of

examples/jsp/HelloWorld.jsp . The translated JSP can be found in

j2ee/home/application-deployments/default/defaultWebApp/temp/
_pages/_examples/_jsp/ .

At execution time, the JSP container looks for compiled JSP files in the _pages
subdirectory. The _examples/_jsp/ subdirectory would be created

automatically by ojspc if run as in the above example.

Invoke the JSP page through the URL

http://localhost:7777/j2ee/examples/jsp/HelloWorld.jsp . Notice

that response time is faster than without pre-translating.

Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)
You can specify JSP pre-translation, without execution, by enabling the standard

jsp_precompile request parameter when invoking a JSP page from the browser.

For instance, http://hostname:port/foo.jsp?jsp_precompile=true

Using the j2ee/home/default-web-app/HelloWorld.jsp file as an example,

erase all the "_HelloWorld* " files in

j2ee/home/application-deployments/default/defaultWebApp/temp/
_pages/ . Then, invoke the URL

http://localhost:7777/j2ee/HelloWorld.jsp?jsp_precompile=true .

The pre-translation is performed but the page does not appear on your browser.

Check the _pages subdirectory for the translated files.

Configure the JSP Container for Execution with Binary Files Only
You can avoid exposing your JSP page source, for proprietary or security reasons,

by pre-translating the pages and deploying only the translated and compiled binary

files. JSP pages that are pre-translated, either from previous execution in an

on-demand translation scenario or by using ojspc , can be deployed to any

standard J2EE environment.

For further details, refer to the Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference.
Migrating JSP Pages 4-11

Precompiling JSP Pages
4-12 Oracle9i Application Server Migrating From WebLogic

Migrating Enterprise JavaBean Compo
5

Migrating Enterprise JavaBean

Components

This chapter provides the information you need to migrate Enterprise JavaBean

components from WebLogic Server 6.0 to Oracle9iAS 9.0.2. It addresses the

migration of simple EJB JARs, as well as J2EE web applications in the form of EAR

files or in an exploded directory format.

This chapter contains these topics:

■ Introduction

■ Migration Steps

■ Migrating EJBs in a EAR or JAR File

■ Migrating an Exploded EJB Application

■ Configuring EJBs using Deployment Descriptors

■ Writing Finders for RDBMS Persistence

■ WebLogic Query Language (WLQL)

■ Message Driven Beans

■ Configuring Security

■ Migrating Cluster-Aware Applications to OC4J
nents 5-1

Introduction
Introduction
Migrating Enterprise JavaBeans (EJB) from WebLogic Server 6.0 to Oracle9iAS 9.0.2

is straightforward, requiring little or no code changes to the EJBs migrated. Both

application servers support the EJB 1.1 specification. For EJB 2.0 however, WebLogic

Server’s implementation is based on a non-final version of the EJB 2.0 specifications

while Oracle9iAS’s supports the final EJB 2.0 specifications.

All EJBs written to the EJB 1.1 standard specifications will work correctly and

require minimal migration effort. The primary effort goes into configuring and

deploying the applications in the new environment. Only in cases where

proprietary extensions are used will the migration effort get complex. Additionally,

if your WebLogic Server EJBs use 2.0 APIs and features, you may need to upgrade

your EJB code to the final EJB 2.0 specifications.

In this chapter we cover the migration of EJBs deployed in the form of EAR files or

in an exploded directory format.

Differences Between WebLogic Server and Oracle9 iAS EJB Implementations
Since both WebLogic Server and Oracle9iAS Containers for J2EE (OC4J) have

implemented the same versions of the Enterprise JavaBeans specifications, there are

no differences between the two in the core areas. There are a few differences in the

EJB 2.0 features each server supports. OC4J also supports more features than

WebLogic Server 6.0.

EJB Container Facilities
Oracle9iAS has a complete EJB 1.1 implementation including session beans (both

stateful and stateless) and entity beans (supporting both container managed

persistence and bean managed persistence). Further, Oracle9iAS has support for EJB

2.0 including:

■ XML deployment descriptors

■ Message driven beans

■ EJB 2.0 object-relational (O-R) mapping

■ Support for several of the elements of the new container-managed persistence

(CMP) architecture
5-2 Oracle9i Application Server Migrating From WebLogic

Introduction
More Efficient Container Managed Persistence
There are two specific facts that reflect the significant performance advantages in

using Oracle9iAS’ container-managed persistence (CMP) implementation compared

to WebLogic Server’s implementation:

■ Automatic Detection of Modified EJBs—When using CMP, Oracle9iAS’ J2EE

container can automatically detect whether you have modified an EJB and

writes the EJB’s state to the database; it does an ejbStore only when

necessary. WebLogic Server does not provide such automatic detection

requiring a user to code is-modified methods which the WebLogic Server

container uses to know whether or not to do the ejbStore operation.

■ Simple and Complex DB mapping for CMP—When using CMP, Oracle9iAS’

J2EE container supports both simple (1:1, 1:many) and complex (many:many)

database field mappings very efficiently. In contrast, WebLogic Server provides

rudimentary support for simple CMP database field mapping (1:many) in its

CMP EJB 1.1 XML files. For instance, it is difficult to qualify a where clause

string in WebLogic Server and this results in doing unnecessary full table scans.

Clustering Support
Application server clustering essentially means the use of a group of application

servers that coordinate their actions in order to provide scalable, highly available

services in a transparent manner.

From a comparative point of view, Oracle9iAS’ J2EE container provides the

following facilities:

■ Servlet Clustering—Oracle9iAS provides facilities to cluster servlets without

requiring any changes to the user’s application. The changes are deployment

configuration modifications which are transparent to the J2EE application.

■ Clustering Architecture and Simplicity—An important differentiator for

Oracle9iAS’ J2EE container is the ease with which different instances can be

clustered and the robustness of the architecture used for clustering. Specifically,

Oracle9iAS requires a user to edit a single XML file to configure various

Oracle9iAS instances to belong to a single cluster/island whether they are

multiple servers with load balancing on a single machine or multiple servers

with load balancing on different machines. In contrast, it is much more complex

to configure WebLogic Server clusters with load balancing either with multiple

instances on one machine or on multiple machines. For instance, if you indicate

that your EJBs will be used in a cluster, then you need to specify it during the

time the EJB stubs are created using ejbc , which then results in the creation of

special cluster-aware classes that will be used for deployment. Overall,
Migrating Enterprise JavaBean Components 5-3

Introduction
Oracle9iAS’ J2EE container provides a more robust clustering architecture with

better ease-of-use.

■ Stateless Session Bean Clustering—Oracle9iAS supports clustering of stateless

session beans.

■ Stateful Session Bean and Entity Bean Clustering—Oracle9iAS supports

clustering of stateful session beans and entity beans. Two aspects of design are

focused upon:

– Clustered Performance—Existing clustering facilities such as those in

WebLogic Server 6.0 impose a severe performance penalty when running

the instances in a stateful fashion with clustering. As a result, most users

choose to keep their middle tier completely stateless and write their state to

a persistent store, for example, a database. In delivering clustered EJBs,

Oracle is working on optimizing the EJB clustering implementation to

avoid introducing performance penalties.

– Programmatic Simplicity—Additionally, unlike servlets which have a

natural session boundary at which to failover their state, EJBs do not have

such a clear boundary. As a result, we are working on simple programmatic

facilities to allow developers to use EJB clustering without any changes to

their applications.

Security and LDAP Integration
One of the key distinguishing features of OC4J is the seamless integration with

Single Sign On (SSO) and Oracle Internet Directory (OID). This is achieved through

Oracle’s implementation of the Java Authentication and Authorization Service

(JAAS) standard. See Oracle9iAS Containers for J2EE User’s Guide and Oracle9i
Application Server Security Guide.

EJB Migration Considerations
One of the goals of the EJB initiative is to deliver component portability between

different environments not only at source code level, but also at a binary level, to

ensure portability of compiled, packaged components. While it is true that EJBs do

offer portability, there are still a number of nonportable, implementation-specific

aspects that need to be addressed when migrating components from one platform

to another. Typically, an EJB component requires low level interfaces with the

container in the form of stub and skeleton classes that will need to stay

implementation-specific. In effect, a clear partitioning between portable and

nonportable elements of an EJB component can be drawn from the EJB 1.1

specification.
5-4 Oracle9i Application Server Migrating From WebLogic

Migration Steps
Portable EJB elements include:

■ The actual component implementation classes and interfaces (bean class, and

remote and home interfaces)

■ The assembly and deployment descriptor that describes generic component

properties such as JNDI names and transactional attributes

■ Security attributes

Implementation-specific elements include:

■ Low level helper implementation classes (stubs and skeletons) to interface with

the host container.

■ O-R mapping definitions for CMP entity beans, including search logic for

custom finder methods that are declared in an implementation-specific format

proprietary to each platform.

■ Every component has a set of properties that require systematic configuration at

deployment time. For example, mapping of security roles declared in an EJB

component to actual users and groups is a task that is systematically performed

at deployment time because mappings may not be known in advance. Also,

they may have dependencies on the structure and population of the user

directory on the target deployment server.

Migration Steps
The tasks involved in migrating EJBs are best analyzed by looking at the steps

required for deploying EJBs to an EJB container:

■ Setting the EJB deployment descriptors, particularly the vendor-specific

deployment descriptors

■ Generating EJB container classes

■ Loading EJB classes in the server

■ Deploying the EJBs in the form of an EAR file or in an exploded directory

format

■ Configuring the EJBs for deployment at startup

We can address the migration tasks along the same lines.
Migrating Enterprise JavaBean Components 5-5

Migration Steps
Setting Deployment Properties
The deployment process starts with a JAR file or a J2EE standard deployment

directory that contains the compiled EJB interfaces and implementation classes

created by the EJB provider. There should also be an EJB-compliant ejb-jar.xml
file that describes the bundled EJB(s). The ejb-jar.xml file and other required

XML deployment files, typically the vendor-specific deployment descriptors, must

reside in a top level META-INF directory of the JAR file or deployment directory as

follows:

Vendor-specific Deployment Descriptors

WebLogic Server You would have first created and configured the WebLogic

Server-specific and mandatory deployment descriptor, weblogic-ejb-jar.xml ,

and then added the file to the deployment file or directory. The

weblogic-ejb-jar.xml file is used for specifying caching, clustering, and

performance behavior.

If you were deploying an entity EJB that used container managed persistence, you

would have also included an additional deployment file for specifying the O-R

mapping details, or, in other words, the RDBMS-based persistence services in a file

called weblogic-cmp-rdbms-jar.xml . A separate file would have been

required for each bean that used RDBMS persistence.

OC4J In the case of OC4J, only one file is required. You first create and configure the

OC4J-specific and mandatory deployment descriptor, orion-ejb-jar.xml , and

then add the file to the deployment file or directory. The orion-ejb-jar.xml file

is used for defining caching, clustering, and performance behavior. The details on

WebLogic EJB JAR Structure

<EJB Module Name>

*.class
<remote> .class
<home>.class

META-INF

ejb-jar.xml
weblogic-ejb-jar.xml
weblogic-cmp-rdbms-jar.xml

Oracle9iAS EJB JAR Structure

<EJB Module Name>

*.class
<remote> .class
<home>.class

META-INF

ejb-jar.xml
orion-ejb-jar.xml
5-6 Oracle9i Application Server Migrating From WebLogic

Migration Steps
O-R mapping or the RDBMS-based persistence services are also specified in the

orion-ejb-jar.xml file. This is different from WebLogic Server where two

separate files were required.

Generating and Deploying EJB Container Classes
The next step after compiling the EJB classes and adding the required XML

deployment descriptors (the J2EE deployment descriptor as well as the

vendor-specific deployment descriptors) is generation of the container classes that

are used to access the EJB. The container classes include implementation of the

external interfaces (home and remote) that clients use, as well as the classes that the

application server uses, for the internal representation of the EJBs.

WebLogic Server In WebLogic Server, you would have used the ejbc compiler to

generate container classes according to the deployment properties specified in the

WebLogic Server-specific XML deployment files. For example, if you indicate that

your EJBs will be used in a cluster, ejbc creates special cluster-aware classes that

will be used for deployment. You can also use ejbc directly from the command line

by supplying the required options and arguments.

Once the container classes have been generated, you need to package the classes

into a JAR or EAR file and deploy the classes using the console GUI.

OC4J For OC4J, explicit compilation is not required. The EJB JAR file is packaged

into a EAR file (together with a WAR file, if any). Then, you can use the Oracle

Enterprise Manager (OEM) GUI to specify the EAR file for deployment. The

container classes are generated for OC4J and any J2EE Web application in the EAR

file is bound to the OC4J container.

Alternatively, you can also use the admin.jar utility to deploy the EAR file if you

are using OC4J in standalone mode. You would then need to update the OEM

environment using the dcmctl utility. Refer to the Oracle9iAS Containers for J2EE
User’s Guide for more information.

Loading EJB Classes in the Server

WebLogic Server The final step in deploying an EJB involves loading the generated

container classes into WebLogic Server. However, you can prompt WebLogic Server

to automatically load EJB classes by starting WebLogic Server. This places the EJB in

the deployment directory where it is automatically deployed when the server is

started.
Migrating Enterprise JavaBean Components 5-7

Migrating EJBs in a EAR or JAR File
OC4J Similarly, you can specify classes belonging to an application to be loaded

when OC4J starts by specifying the auto-start="true" parameter in the

<application> tag in server.xml .

Migrating EJBs in a EAR or JAR File
EAR and JAR files containing EJBs which are deployed in WebLogic Server can be

migrated to Oracle9iAS. However, you should un-archive and re-archive the EAR

file to ensure its contents are complete and that the XML descriptors have the

correct entries. Use the following points as a guideline:

■ Ensure that the EJB client XML descriptors specify the JNDI names of the EJB

stubs. If the client is a Web application, the JNDI names should be specified in

web.xml . If the client is standalone, the names should be specified in

application-client.xml .

■ For the case where the EJB client is standalone, the client classes and XML

descriptor file, application-client.jar , should be archived into a JAR file,

which in turn should be archived into the EAR file where the EJBs are.

■ If the EJB(s) to be migrated from WebLogic are in a JAR file, you need to

repackage them in a EAR file with the EAR’s application.xml .

■ Deploy the EAR file on Oracle9iAS using OEM or dcmctl .

■ You do not need to pre-compile EJB stubs using ejbc , rmic , or other such

facilities into the client application. The OC4J EJB container generates EJB stubs

on demand as it needs them. This makes application and system maintenance

significantly more straightforward than WebLogic Server.

Migrating an Exploded EJB Application
EJB applications can also be deployed as a collection of files that use a standard

directory structure defined in the J2EE specification. This type of deployment

deploys applications in an exploded directory format. Deploying an EJB application

in exploded directory format is done most often whilst developing your application

and only for standalone OC4J instances. This is because the exploded directory

format is more suitable for developers to modify source files and test the

application quickly. In Oracle9iAS production environments, however, the

application should be packaged in a EAR file and deployed using OEM or dcmctl .

When deploying an exploded directory structure to WebLogic Server, you would

have copied the top level directory containing an EJB application in exploded

directory format into the mydomain/config/applications/ directory of your
5-8 Oracle9i Application Server Migrating From WebLogic

Configuring EJBs using Deployment Descriptors
WebLogic Server distribution (where mydomain is the name of your domain). Once

copied, WebLogic Server automatically deploys the EJB application.

For OC4J, copy the top level directory containing the EJB application in exploded

directory format into the j2ee/home/applications/ directory of the OC4J

installation. Then, modify the default J2EE application deployment descriptor,

server.xml , located in the j2ee/home/config/ directory to include your EJB

module.

In WebLogic Server, if a file is modified using the administration console, or

otherwise, it requires a server restart before the updated configuration is picked up.

In the case of OC4J, the timestamp change for server.xml will cause OC4J to

effect the changes in the XML file.

Configuring EJBs using Deployment Descriptors
There are typically two deployment descriptors that are used to configure and

deploy EJBs. The first deployment descriptor, ejb-jar.xml , is defined in the EJB

1.1 specification and provides a standardized format that describes the EJB

application. The second deployment descriptor is a vendor-specific deployment

descriptor that maps resources defined in the ejb-jar.xml file to resources in the

vendor’s application server. It is also used to define other aspects of the EJB

container such as EJB behavior, caching, and some vendor-specific features.

The WebLogic Server-specific deployment descriptors are

weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml , and the

OC4J-specific deployment descriptor is orion-ejb-jar.xml .

A typical J2EE application directory structure would look like this:
Migrating Enterprise JavaBean Components 5-9

Configuring EJBs using Deployment Descriptors
The WebLogic Server-specific deployment descriptor, weblogic-ejb-jar.xml ,

defines EJB deployment descriptor DTDs which are unique to WebLogic Server. The

EJB 2.0 container uses a version of weblogic-ejb-jar.xml that is different from

the one shipped with WebLogic Server 5.1. The revised DTD for

weblogic-ejb-jar.xml includes new elements for enabling stateful session EJB

replication, configuring entity EJB locking behavior, and assigning JMS Queue and

<app_name>

META-INF
application.xml

<ejb_module_name>

ejb class files in

META-INF

qualified package-directory
hierarchy (my.ejb.class
maps to my/ejb/class)

ejb-jar.xml
orion-ejb-jar.xml OR weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

<web_module_name>

WEB-INF

web.xml
orion-web.xml

*.html
*.jsp

servlet classes in
qualified package-directory
hierarchy

<client_module_name>

META-INF

application-client.xml
orion-application-client.xml

*.class
5-10 Oracle9i Application Server Migrating From WebLogic

Configuring EJBs using Deployment Descriptors
Topic names for message-driven beans. The new DTD also reorganizes the major

stanzas into more logical sections. The earlier weblogic-ejb-jar.xml DTD can

be used for EJB 1.1-compliant EJBs that you deploy into the EJB 1.1 container.

Elements configured in the EJB weblogic-ejb-jar.xml include:

■ weblogic-enterprise-bean

– ejb-name

– entity-descriptor

– stateless-session-descriptor

– stateful-session-descriptor

– message-driven-descriptor

– transaction-descriptor

– reference-descriptor

– enable-call-by-reference

– jndi-name

■ Security-role-assignment

■ transaction-isolation

The WebLogic Server-specific deployment descriptor,

weblogic-cmp-rdbms-jar.xml , defines deployment properties for an entity EJB

that uses WebLogic Server RDBMS-based persistence services. The EJB 2.0 container

uses a version of weblogic-cmp-rdbms-jar.xml that is different from the one

shipped with WebLogic Server 5.1. The earlier weblogic-cmp-rdbms-jar.xml
DTD can be used for EJB 1.1 beans that you deploy on WebLogic Server 6.0.

However, if you want to use any of the new CMP 2.0 features, you must use the

DTD described in the later version.

Each weblogic-cmp-rdbms-jar.xml defines the following persistence options:

■ EJB connection pools or data source for 2.0 CMP

■ EJB field-to-database-element mappings

■ Finder method definitions (CMP 1.1)

■ Foreign key mappings for relationships

■ WebLogic Server-specific deployment descriptors for queries
Migrating Enterprise JavaBean Components 5-11

Writing Finders for RDBMS Persistence
The OC4J-specific deployment descriptor, orion-ejb-jar.xml , contains

extended deployment information for session beans, entity beans, message driven

beans, and security.

An entity EJB can save its state in any transactional or nontransactional persistent

storage (bean-managed persistence), or it can ask the container to save its

non-transient instance variables automatically (container-managed persistence).

WebLogic Server and OC4J allow both choices and a mixture of the two.

In the case of an EJB that uses container-managed persistence, the

weblogic-ejb-jar.xml or the orion-ejb-jar.xml deployment file specifies

the type of persistence services that an EJB uses. In the case of WebLogic Server, the

automatic persistence services requires the use of additional deployment files to

specify their deployment descriptors, and to define entity EJB finder methods.

WebLogic Server RDBMS-based persistence services obtain deployment descriptors

and finder definitions from a particular bean using the bean's

weblogic-cmp-rdbms-jar.xml file. This configuration file must be referenced

in the weblogic-ejb-jar.xml file. In the case of OC4J, the type of persistence

service as well as the details regarding the RDBMS-based persistence services are

configured and obtained from the same deployment descriptor -

orion-ejb-jar.xml .

Some of the attributes such as Development Mode are unique to OC4J.

Writing Finders for RDBMS Persistence
For EJBs that use RDBMS persistence, WebLogic Server 6.0 provides a way to write

dynamic finders. The EJB provider writes the method signature of a finder in the

EJBHome interface, and defines the finder's query expressions in the ejb-jar.xml
deployment file. The ejbc compiler creates implementations of the finder methods

at deployment time, using the queries in ejb-jar.xml .

The key components of a finder for RDBMS persistence are:

■ The finder method signature in EJBHome

■ A query stanza defined within ejb-jar.xml

■ An optional WebLogic Server query stanza within

weblogic-cmp-rdbms-jar.xm l

See Also: Oracle9iAS Containers for J2EE Enterprise JavaBeans
Developer’s Guide and Reference for more information on the

attributes.
5-12 Oracle9i Application Server Migrating From WebLogic

Message Driven Beans
OC4J simplifies the whole process by automatically generating the finder methods.

Specifying the findByPrimaryKey method is easy to do in OC4J. All the fields for

defining a simple or complex primary key are specified within the ejb-jar.xml
deployment descriptor. To define other finder methods in a CMP entity bean, do the

following:

1. Add the finder method to the home interface

2. Add the finder method definition to the OC4J-specific deployment

descriptor—the orion-ejb-jar.xml file

WebLogic Query Language (WLQL)
In WebLogic Server 5.1 and 6.0, each finder query stanza in the

weblogic-cmp-rdbms-jar.xml file had to include a WLQL string that defines

the query used to return EJBs.

With the emergence of EJB Query Language (EQL), which is a standard based on

the EJB 2.0 specification, use of WLQL is deprecated, and is not supported by

WebLogic Server in later releases.

The first version of Oracle9iAS 9.0.2 does not provide support for EQL. Subsequent

versions will provide it.

Message Driven Beans
In WebLogic Server, in addition to the new ejb-jar.xml elements, the

weblogic-ejb-jar.xml file includes only one new message-driven-descriptor

stanza to associate the message-driven bean with an actual destination in WebLogic

Server. The XML element is destination-jndi-name .

In OC4J, to create a message-driven bean, you perform the following steps:

1. Implement a message-driven bean as defined in the EJB specification

2. Create the message-driven bean deployment descriptors

3. Configure the JMS Destination type (queue or topic) in the OC4J JMS XML

file, jms.xml .

4. Map the JMS Destination type to the message-driven bean in the

OC4J-specific deployment descriptor, orion-ejb-jar.xml

5. If a database is involved in your message-driven bean application, configure the

data source that represents your database in data-sources.xml .
Migrating Enterprise JavaBean Components 5-13

Configuring Security
6. Create an EJB JAR file containing the bean and the deployment descriptor; once

created, configure the application.xml file, create an EAR file, and deploy

the EJB in OC4J.

Configuring Security
Security can be handled by the application server, or it can be incorporated

programmatically into your EJB classes. Both WebLogic Server and OC4J provide

similar support for security such as authentication, authorization, and digital

certificates.

Migrating Cluster-Aware Applications to OC4J
Oracle9iAS provides clustering features that are superior to WebLogic Server in

performance as well as ease of use. Further, migration cluster-aware applications

from WebLogic Server to OC4J is straightforward.

EJB Clustering in WebLogic Server

In-Memory Replication for Stateful Session EJBs
The WebLogic Server EJB container introduces new clustering support for stateful

session EJBs. Whereas in WebLogic Server 5.1 only the EJBHome is clustered for

stateful session EJBs, the EJB container can also replicate the state of the EJB across

clustered WebLogic Server instances.

Replication support for stateful session EJBs is transparent to clients of the EJB.

When a stateful session EJB is deployed, WebLogic Server creates a cluster-aware

EJBHome stub and a replica-aware EJBObject stub for the stateful session EJB.

The EJBObject stub maintains a list of the primary WebLogic Server instance on

which the EJB instance runs and the name of a secondary WebLogic Server to use

for replicating the bean's state.

Each time a client of the EJB commits a transaction that modifies the EJB's state,

WebLogic Server replicates the bean's state to the secondary server instance.

Replication of the bean's state occurs directly in memory, for best performance in a

clustered environment.

See Also: Configuring Security in Chapter 6 of Oracle9iAS
Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for more information.
5-14 Oracle9i Application Server Migrating From WebLogic

Migrating Cluster-Aware Applications to OC4J
Should the primary server instance fail, the client's next method invocation is

automatically transferred to the EJB instance on the secondary server. The

secondary server becomes the primary WebLogic Server for the EJB instance, and a

new secondary server is used to account for the possibility of additional failovers.

Should the EJB's secondary server fail, WebLogic Server enlists a new secondary

server instance from the cluster.

By replicating the state of a stateful session EJB, clients are generally guaranteed to

have the last committed state of the EJB, even if the primary WebLogic Server

instance fails. However, in certain rare failover scenarios, the last committed state

may not be available. This can happen when:

■ A client commits a transaction involving a stateful EJB, but the primary

WebLogic Server fails before the EJB's state is replicated. In this scenario, the

client's next method invocation will work against the previous committed state,

if available.

■ A client creates an instance of a stateful session EJB and commits an initial

transaction, but the primary WebLogic Server fails before the EJB's initial state

can be replicated. In this scenario the client's next method invocation will fail to

locate the bean instance, because the initial state could not be replicated. The

client would need to recreate the EJB instance using the clustered EJBHomestub

and restart the transaction.

■ Both the primary and secondary servers fail. In this scenario the client would

need to recreate the EJB instance and restart the transaction.

Requirements and Configuration
To replicate the state of a stateful session EJB in a WebLogic Server cluster, ensure

that the cluster is homogeneous for the EJB class. In other words, deploy the same

EJB class to every WebLogic Server instance in the cluster, using the same

deployment descriptors. In-memory replication is not supported for heterogeneous

clusters.

By default, WebLogic Server does not replicate the state of stateful session EJB

instances in a cluster. To enable replication, set the replication type deployment

parameter to InMemory in the weblogic-ejb-jar.xml deployment file. For

example:

<stateful-session-clustering>
...
...
...
<replication-type>InMemory</replication-type>
Migrating Enterprise JavaBean Components 5-15

Migrating Cluster-Aware Applications to OC4J
</stateful-session-clustering>

EJB Clustering in Oracle9 iAS
EJB clustering in Oracle9iAS provides EJB load balancing and failover. For 9.0.2, the

mechanisms used to achieve these are different from HTTP session load balancing

and failover. For EJBs, load balancing redirection is performed by the EJB client

stubs and state replication for failover is done without using cluster islands (a

future release of Oracle9iAS will implement cluster islands for EJBs).

To create an EJB cluster, you need to specify which OC4J nodes are part of the

cluster and configure each of them with the same multicast address, username, and

password. The EJBs to be clustered can then be deployed to each of these nodes.

Configuring all nodes in the cluster with the same multicast username and

password allows authentication to all nodes with a single username/password

combination. If you use a different username/password combination with the same

multicast address, another cluster is actually defined.

Load Balancing
Load balancing for EJBs is performed at the EJB client end. The client stubs obtain

the addresses of nodes in the cluster in one of two ways: static discovery or

dynamic discovery. Once all nodes in the same cluster are known, the client stubs

select one at random. Hence, load balancing is performed using a random

methodology.

Static and dynamic discovery is performed as follows:

Static Discovery At lookup time, the JNDI addresses of all nodes in the cluster are

provided in the lookup URL property. This requires knowledge of the node name

and ormi port for each node. For example:

java.naming.provider.url = ormi://serverA:23791/ejb, ormi://serverB:23792/ejb,
ormi://serverC:23791/ejb;

Dynamic Discovery For dynamic discovery, at the first lookup made, the first node

that is contacted communicates with the other nodes with the same multicast

address and username/password. The ormi addresses of these nodes are retrieved

and returned to the client stubs, which select one of the addresses at random. To

enable dynamic discovery, "lookup: " is inserted before the ormi URL:

ic.lookup("lookup:ormi://serverA:23791/ejb");
5-16 Oracle9i Application Server Migrating From WebLogic

Migrating Cluster-Aware Applications to OC4J
Failover
Depending on the type of EJB that is clustered, failover in an EJB cluster is achieved

by request redirection and state replication.

Stateless Session EJBs Load balancing and failover for stateless session EJBs is

performed by EJB client stubs by redirecting requests to randomly picked nodes

after the nodes have been discovered statically or dynamically. Because of the

stateless nature of the EJBs, replication of bean state is not required.

Stateful Session EJBs Load balancing for stateful session EJBs is the same as for

stateless session EJBs. For failover, state replication is required, and by default, is

replicated to all nodes in the cluster at the end of every method call to each EJB

instance. Though reliable, this obviously incurs a significant amount of CPU

overhead in all the nodes and degrades performance. Hence, two more replication

modes are provided to allow replication without compromising performance

significantly: JVM termination and stateful session context replication modes.

The JVM termination mode replicates the state of all stateful session EJBs to one

other node when the JVM executing these EJBs terminates gracefully. The

replication logic uses JDK 1.3 termination hooks (hence, JDK 1.3 or later is

required). This mode is the most performant among all because replication is done

only once. However, reliability is not the best as it is dependent on the JVM’s ability

to shutdown properly.

Stateful session context mode replicates state programatically. An OC4J-proprietary

class, com.evermind.server.ejb.statefulSessionContext , is provided to

allow you to specify the information to be replicated. By setting this information as

parameters for the setAttribute method, this information can be replicated to all

nodes in the EJB cluster. Hence, EJB providers have more control on when and what

to replicate.

Entity EJBs Replication for entity EJBs allows EJB state to be stored in a database.

Each time the state of an entity EJB changes, it is updated in the database. The entity

EJB that changes the state notifies the other nodes in the cluster that their equivalent

entity EJBs are out-of-date. If the node hosting the "up-to-date" EJB fails, the client

stub redirects to another node and the out-of-date entity EJB in that node

resynchronizes its state with the information in the database.

See Also: Oracle9iAS Containers for J2EE Enterprise JavaBeans
Developer’s Guide and Reference for information on how to configure

EJB clustering.
Migrating Enterprise JavaBean Components 5-17

Migrating Cluster-Aware Applications to OC4J
5-18 Oracle9i Application Server Migrating From WebLogic

Migrating
6

Migrating JDBC

This chapter provides the information you need to migrate database access code

from WebLogic Server 6.0 to Oracle9iAS. It addresses the migration of JDBC drivers,

data sources, and connection pooling.

This chapter contains these topics:

■ Introduction

■ Migrating Data Sources

■ Migrating Connection Pools

■ Overview of Clustered JDBC

■ Performance Tuning JDBC
JDBC 6-1

Introduction
Introduction
Migrating applications deployed on WebLogic Server that use JDBC, specifically

WebLogic JDBC drivers, to OC4J and Oracle JDBC drivers is can be straightforward,

requiring little or no code changes to the applications migrated. Both application

servers support the same API levels for the JDBC API - full support for version 2.0

of the specification. All applications written to the standard JDBC specifications will

work correctly and require minimal migration effort. The primary effort goes into

configuring and deploying the applications in the new environment. Only in cases

where proprietary extensions are used will the migration effort get complex.

Differences between WebLogic and Oracle9iAS Database Access Implementations
Both WebLogic Server and OC4J are fully J2EE 1.2 compliant containers that permit

the usage of all types of JDBC drivers to access several different databases. Further,

the JDBC drivers from BEA as well as Oracle support the same version of the JDBC

standard - version 2.0 specifications. Therefore, the differences between the two

servers are minimal, often differing primarily in the area of proprietary extensions.

Before analyzing any differences, an overview of JDBC Drivers is apt.

Overview of JDBC Drivers
JDBC defines standard API calls to a specified JDBC driver, a piece of software that

performs the actual data interface commands. The driver is considered the lower

level JDBC API. The interfaces to the driver are database client calls, or database

network protocol commands that are serviced by a database server.

Depending on the interface type, there are four types of JDBC drivers that translate

JDBC API calls:

■ Type 1, JDBC-ODBC Bridge—Translates calls into ODBC API calls.

■ Type 2, Native-API Driver—Translates calls into database native API calls. As

this driver uses native APIs, it is vendor dependent. The driver consists of two

parts: a Java language part that performs the translation, and a set of native API

libraries.

■ Type 3, Net-Protocol—Translates calls into DBMS-independent network

protocol calls. The database server interprets these network protocol calls into

specific DBMS operations.

■ Type 4, Native-Protocol—Translates calls into DBMS native network protocol

calls. The database server converts these calls into DBMS operations.
6-2 Oracle9i Application Server Migrating From WebLogic

Introduction
BEA provides a variety of options for database access using the JDBC API

specification. These options include WebLogic jDrivers for the Oracle, Microsoft

SQL Server, and Informix database management systems (DBMS). In addition to the

Type 2 WebLogic jDriver for Oracle, WebLogic provides a Type 2 driver for Oracle

XA and three Type 3 drivers - RMI Driver, Pool Driver and JTS.

Similarly, Oracle9iAS provides a variety of options for database access, particularly

the best JDBC drivers for the Oracle database, and JDBC drivers from partner

Merant for accessing several other databases including DB2.

■ WebLogic jDriver for Oracle—The WebLogic jDriver for Oracle provides

connectivity to the Oracle database and requires an Oracle client installation

since it is based on OCI (Oracle Call Interface API). The WebLogic jDriver for

Oracle XA driver extends the WebLogic jDriver for Oracle for distributed

transactions.

The Oracle thick or JDBC OCI driver is the equivalent of WebLogic jDriver for

Oracle as well as WebLogic jDriver for Oracle XA since the JDBC OCI driver

provides XA functionality.

■ WebLogic Pool Driver—The WebLogic Pool driver enables utilization of

connection pools from server-side applications such as HTTP servlets or EJBs.

■ Oracle JDBC-OCI Driver—The Oracle JDBC-OCI driver allows J2EE

applications to use connection pools. This driver supports JDBC 2.0 connection

pool features fully.

■ WebLogic RMI Driver—The WebLogic RMI driver is a multitier, Type 3, Java

Data Base Connectivity (JDBC) driver that runs in WebLogic Server and can be

used with any two-tier JDBC driver to provide database access. Additionally,

when configured in a cluster of WebLogic Servers, the WebLogic RMI driver can

be used for clustered JDBC, allowing JDBC clients the benefits of load balancing

and fail-over provided by WebLogic Clusters.

■ WebLogic JTS Driver—The WebLogic JTS driver is a multitier, Type 3, JDBC

driver used in distributed transactions across multiple servers with one

database instance. The JTS driver is more efficient than the WebLogic jDriver for

Oracle XA driver when working with only one database instance because it

avoids two-phase commit.

■ Oracle Thin Driver—The two-tier Oracle Thin Type 4 driver provides

connectivity from WebLogic Server to Oracle DBMS.

If you are already using the Oracle OCI or Oracle thin JDBC drivers from your

WebLogic Server, your code will not require any changes and you can move to

the section on configuring data-sources in OC4J.
Migrating JDBC 6-3

Migrating Data Sources
Migrating Data Sources
The JDBC 2.0 specification introduced the java.sql.Datasource class to make

the JDBC program 100% portable. In this version, the vendor-specific connection

URL and machine and port dependencies were removed. This version also

discourages using java.sql.DriverManager , Driver , and

DriverPropertyInfo classes. The data source facility provides a complete

replacement for the previous JDBC DriverManager facility. Instead of explictly

loading the driver manager classes into the client applications runtime, the

centralized JNDI service lookup obtains the java.sql.Datasource object. The

Datasource object can also be used to connect to the database. According to the

JDBC 2.0 API specification, a data source is registered under the JDBC subcontext or

one of its child contexts. The JDBC context itself is registered under the root context.

A DataSource object is a connection factory to a data source.

WebLogic and OC4J both support the JDBC 2.0 data source API. A J2EE server

implicitly loads the driver based on the JDBC driver configuration, so no

client-specific code is needed to load the driver. The JNDI (Java Naming and

Directory Interface) tree provides the DataSource object reference.

Data Source Import Statements
DataSource objects, along with JNDI, provide access to connection pools for

database connectivity. Each data source requires a separate DataSource object,

which may be implemented as a DataSource class that supports either connection

pooling or distributed transactions.

To use the DataSource objects, import the following classes in your client code:

import java.sql.*;
import java.util.*;
import javax.naming.*;

In the case of WebLogic Server, you would use the weblogic.jdbc.* packages

and in the case of OC4J, you would use oracle.jdbc.* packages.

Configuring Data Sources in the Application Server
In WebLogic, you configure data sources using the Oracle Enterprise Manager

(OEM) web pages to specify the data source name, database name and JDBC URL

string. You can also define multiple data sources to use a single connection pool,

thereby allowing you to define both transaction and non-transaction-enabled

DataSource objects that share the same database.
6-4 Oracle9i Application Server Migrating From WebLogic

Migrating Data Sources
The best way to configure and define data sources is through OEM. However, in

this document we will examine the underlying infrastructure and focus on direct

manipulation of the configuration files. OC4J uses flat files to configure data sources

for all of its deployed applications. Data sources are specified in the <ORACLE_
HOME>/j2ee/home/config/data-sources.xml file. Following is an sample

data source configuration for an Oracle database. Each data source specified in

data-sources.xml (xa-location , ejb-location and pooled-location)

must be unique.

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="Oracle"
url="jdbc:oracle:thin@<database host name><database listener port
number>:<database SID>"
pooled-location="jdbc/OraclePoolDS"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin@<database host name><database listener port
number>:<database SID>"
schema="database-schemas/oracle.xml"
inactivity-timeout="30"
max-connections="20"
/>

Table 6–1 describes all of the configuration parameters in data-sources.xml .

(Not all of the parameters are shown in the example above).

Table 6–1 Configuration Parameters in data-sources.xml File

Parameter Description

class Class name of the data source.

connection-driver Class name of the JDBC.

connection-retry-int
erval

Number of seconds to wait before retrying a failed connection.

Default value is 1 second.

ejb-location JNDI path for binding an EJB-aware, pooled version of this
data source; this version will participate in container-managed
transactions. This is the type of data source to use from within
EJBs and similar objects.

This parameter only applies to a ConnectionDataSource .
Migrating JDBC 6-5

Migrating Data Sources
inactivity-timeout Number of seconds unused connections should be cached
before being closed.

location JNDI path for binding this data source.

max-connect-attempts Number of times to retry a failed connection.

Default is 3 times.

max-connections Maximum number of open connections for pooling data
sources.

min-connections Minimum number of open connections for pooling data
sources.

The default is zero.

name Displayed name of the data source.

password User password for accessing the data source (optional).

pooled-location JNDI path for binding a pooled version of this data source.

This parameter only applies to a ConnectionDataSource .

Relative or absolute path to a database-schema file for the
database connection.

source-location Underlying data source of this specialized data source.

url JDBC URL for this data source (used by some data sources that

deal with java.sql.Connections .

username User name for accessing the data source (optional).

wait-timeout Number of seconds to wait for a free connection if all

connections are used. Default is 60.

xa-location JNDI path for binding a transactional version of this data
source.

This parameter only applies to a ConnectionDataSource .

xa-source-location Underlying XADataSource of the specialized data source
(used by OrionCMTDataSource).

Table 6–1 Configuration Parameters in data-sources.xml File

Parameter Description
6-6 Oracle9i Application Server Migrating From WebLogic

Migrating Connection Pools
Obtaining a Client Connection Using a Data Source Object
To obtain a connection from a JDBC client, you would use JNDI to look up and

locate the DataSource object. This is illustrated in the following code fragment

where you obtain a connection in WebLogic Server:

try
{

java.util.Properties parms = new java.util.Properties();
parms.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

javax.naming.Context ctx = new javax.naming.InitialContext(parms);
javax.sql.DataSource ds = (javax.sql.DataSource)ctx.lookup("jdbc/SampleDB");
java.sql.Connection conn = ds.getConnection();

// process the results
...

}

To migrate the above code from WebLogic Server to OC4J, you need to change the

class that implements the initial context factory (Context.INITIAL_CONTEXT_
FACTORY) of the JNDI tree from weblogic.jndi.WLInitialContextFactory ,

which is the WebLogic-specific class, to

com.evermind.server.ApplicationClientInitialContextFactory ,

which is the OC4J specific class.

With this change, your code is ready for deployment on OC4J and to use the Oracle

JDBC drivers.

Migrating Connection Pools
Most web-based resources, such as servlets and application servers, access

information in a database. Each time a resource attempts to access a database, it

must establish a connection to the database, consume system resources to create the

connection, maintain it, and then release it when it is no longer in use. The resource

overhead is particularly high for web-based applications, because of the frequency

and volume of web users connecting and disconnecting. Often, more resources are

consumed in connecting and disconnecting than in the interactions themselves.

Connection pooling enables you to control connection resource usage by spreading

the connection overhead across many user requests. A connection pool is a cached

set of connection objects that multiple clients can share when they need to access a

database resource. The resources to create the connections in the pool are expended
Migrating JDBC 6-7

Migrating Connection Pools
only once for a specified number of connections, which are left open and re-used by

many client requests, instead of each client using resources to create its own

connection and closing it after its database operation is complete. Connection

pooling improves overall performance in the following ways:

■ Reducing the load on the middle tier and server

■ Minimizing resource usage by session create and session close operations

■ Eliminating bottlenecks caused by socket and file descriptor limitations and ’n’

user license limitations.

The JDBC 2.0 specification allows you to define a pool of JDBC database

connections with the following objectives:

■ Maximize the availability of connections to resources.

■ Minimize the idle connections in the pool.

■ Return orphan connections to the pool and make them available for reuse by

other servlets or application servers.

To meet these objectives, you:

1. Set the maximum connection pool size property equal to the maximum number

of concurrently active user requests expected.

2. Set the minimum connection pool size property equal to the minimum number

of concurrently active user requests expected.

The connection pooling properties ensure that as the number of user requests

decreases, connections are gradually removed from the pool. Likewise, as the

number of user requests begins to grow, new connections are created. The balance

of connections is maintained so that connection re-use is maximized and connection

creation overhead minimized. You can also use connection pooling to control the

number of concurrent database connections.

Overview of Connection Pools
Connection pools provide ready-to-use pools of connections to your DBMS. Since

these database connections are already established when the connection pool starts

up, the overhead of establishing database connections is eliminated. You can utilize

connection pools from server-side applications such as HTTP servlets or EJBs using

the pool driver or from stand-alone Java client applications.

One of the greatest advantages of connection pooling is that it saves valuable

program execution time and has almost no or very low overhead. Making a DMBS
6-8 Oracle9i Application Server Migrating From WebLogic

Performance Tuning JDBC
connection is very slow. With connection pools, connections are established and

available to users before they are needed. The alternative is for application code to

make its own JDBC connections when needed. A DBMS runs faster with dedicated

connections than if it has to handle incoming connection attempts at runtime.

How Connection Pools Enhance Performance
Establishing a JDBC connection with a DBMS can be very slow. If your application

requires database connections that are repeatedly opened and closed, this can

become a significant performance issue. WebLogic and Oracle9iAS connection pools

offer an solution to this problem.

When WebLogic Server or Oracle9iAS starts, connections from the connection pools

are opened and are available to all clients. When a client closes a connection from a

connection pool, the connection is returned to the pool and becomes available for

other clients; the connection itself is not closed. There is little cost to "open" and

"close" pool connections.

How many connections should you create in the pool? A connection pool can grow

and shrink according to configured parameters, between a minimum and a

maximum number of connections. The best performance will always be when the

connection pool has as many connections as there are concurrent users.

Overview of Clustered JDBC
Relevant only in multitier configurations, clustered JDBC allows external JDBC

clients to reconnect and restart their JDBC connection without changing the

connection parameters, in case a serving cluster member fails. For WebLogic,

clustered JDBC requires data source objects and the WebLogic RMI driver to

connect to the DBMS. Data source objects are defined for each WebLogic Server

using the WebLogic Administration Console.

Oracle provides functionality that is similar to and more advanced than that

provided by the clustered JDBC by leveraging the TAF capabilities of OCI.

Performance Tuning JDBC
Performance tuning your JDBC application in OC4J is similar to that for WebLogic

Server. Connection pooling helps improve performance by avoiding the expensive

operation of creating new database connections. The guidelines on writing efficient

code hold true for Oracle9iAS and WebLogic Server.
Migrating JDBC 6-9

Performance Tuning JDBC
6-10 Oracle9i Application Server Migrating From WebLogic

Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Compa
A

Oracle9 iAS 1.0.2.x and WebLogic Server 6.0

Comparison

This appendix provides a comparison of performance and features between

Oracle9iAS version 1.0.2.2.x and BEA Systems’ WebLogic Server 6.0. (Oracle9iAS

1.0.2.2 is the predecessor Oracle9iAS 9.0.2.)

This chapter is organized as follows:

■ Introduction

■ Performance Results and Analysis

■ Feature Comparison

Introduction
In response to Oracle’s delivery of a 100% J2EE 1.2 standards compliant J2EE

container in Oracle9iAS 1.0.2.2, which is both feature-rich and highly optimized for

Java execution, the primary competitors in the application server market have

responded with several claims to both feature and performance differentiation to

Oracle9iAS.

To provide Oracle’s customers with a fair and accurate representation of the actual

facts when comparing Oracle9iAS 1.0.2.2 against the most recent release of

WebLogic Server 6.0, this chapter provides the specific details comparing

Oracle9iAS’ J2EE facilities with this product.

This chapter is structured in two parts:

Note: Unless explicitly stated, any mention of "Oracle9iAS" in this

chapter refers to Oracle9iAS 1.0.2.x.
rison A-1

Performance Results and Analysis
■ Performance Results—This chapter first explains in specific detail: (i) the

objective performance comparison’s that Oracle conducted against WebLogic

Server 6.0; and also (ii) explains the specific reasons for the comparative

performance differences between the two products.

■ Feature/Function Comparison—This chapter also explains in specific detail the

relative capabilities of Oracle9iAS against WebLogic Server.

The objectives of this chapter are to provide Oracle’s customers and potential

application server customers with a clear and objective analysis of the capabilities of

Oracle9iAS’ J2EE facilities.

Performance Results and Analysis
In order to compare the relative performance of Oracle9iAS 1.0.2.2’s J2EE container

vs WebLogic Server 6.0, Oracle ran a formalized benchmark test comparing various

aspects of the performance of the Oracle9iAS J2EE container against WebLogic

Server 6.0 (the production version available at the time of our benchmarking effort).

The goals were to measure the comparative performance of the J2EE containers of

the two application servers along the following objective set of guidelines:

■ Real World Benchmark—First, the goal of our benchmarking exercise was to

run a J2EE application that represented a real-world application and would

execute all aspects of the J2EE container rather than one that either did not

represent a real-world application or one that only tested aspects of the J2EE

container that were favorable to Oracle.

■ Identical Hardware Configurations—Second, the benchmarking exercise was

conducted on identical hardware configurations, for example, the same

operating systems and hardware platforms, to ensure that the results

represented an objective comparison of the two products.

■ Identical Software Configurations—Third, to ensure fairness, the

benchmarking exercise was also conducted on identical software

configurations. There were four aspects to such identical software

configurations:

– Web Caching—Web caching was not used to enhance the performance of

Oracle9iAS results. While the web cache is a specific capability of

Oracle9iAS, and when used by customers could provide further

performance acceleration compared to BEA, the initial focus of the

performance tests were to provide specific comparisons on the J2EE

containers in these products alone. As a result, to ensure a fair comparison

of the results, no web caching was used with Oracle9iAS.
A-2 Oracle9i Application Server Migrating From WebLogic

Performance Results and Analysis
– JDK, JRE, and Operating System Versions—The same JDK and JRE versions

and the same operating system were used in both cases. Since the more

recent JDK versions have much faster JIT compilers and other optimizations

of the Java runtime, these in turn would impact overall J2EE performance

measurements. Again, in the interest of a fair comparison of the results, the

same versions were used to measure the performance of both containers.

– Web Server Configurations—Finally, the same web server configuration

was used in both cases to ensure that measured performance differences

reflected J2EE container performance alone and also reflected real-world

customer deployments. Specifically, Oracle9iAS provides, as part of its J2EE

container, an extremely fast and optimized web server which has a number

of optimizations for extremely efficient HTTP streaming and input/output.

Further, this web server can be run in process with the servlet engine and

EJB container and, as a result, for benchmarking purposes, could provide a

big performance difference when compared to BEA which embeds a much

slower web server. Since the performance tests were focused on measuring

J2EE container performance, we did not use the Oracle9iAS embedded web

server but chose to use Apache, forwarding requests via a proxy

architecture to both J2EE containers. This not only isolates the differences in

J2EE container performance but also reflects typical customer situations

where customers already have existing web servers deployed on a separate

tier from their J2EE containers.

■ Performance and Scalability Comparisons—Fourth, the benchmarking

exercise was also designed to measure both performance and scalability of the

vendors’ J2EE containers.

– Performance results were measured on the basis of average response time

under specific user or transaction loads.

– Scalability was measured on the basis of total CPU utilization to support a

specific user or transaction load on identical hardware. The system that

uses the smallest amount of CPU to support a specific number of users can

support more users on the same hardware configuration and, as a result,

scales best.

The results of the performance and scalability comparisons are as documented

below.

Performance and Scalability Results
Although the characteristics of the individual tests varied, Oracle9iAS

demonstrated superior performance to WebLogic Server in all tests. We stopped the
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-3

Feature Comparison
tests at the point where the application server’s average response time was

increasing exponentially, but all indications suggest that Oracle9iAS can be scaled to

much higher user loads and configurations. On average, Oracle9iAS performance

(based on response times) was 2-5 times better than WebLogic Server. On average,

Oracle9iAS demonstrated much superior scalability (based on CPU utilization)

compared to WebLogic Server. CPU utilization was about 2 times less than

WebLogic Server. Even at lower user loads, Oracle9iAS used significantly less

hardware resources than WebLogic Server.

Feature Comparison
The section above clearly documents the relative performance and scalability

differences of Oracle9iAS’ J2EE container with WebLogic Server. The results

showed that the Oracle9iAS’ J2EE container yielded better performance and used

less CPU and memory than WebLogic Server on all the tests. In response to these

benchmark results, BEA falsely claims that Oracle9iAS’ J2EE container lacks several

features. To address these concerns, this section specifically examines the J2EE

features in Oracle9iAS against WebLogic Server.

Installation and Configuration
BEA has claimed that Oracle9iAS has a very heavyweight disk and memory

footprint and is, as a result, difficult to install and configure. In doing so, they

falsely compare the relative disk and memory requirements for their J2EE

containers with the requirements for all of Oracle9iAS, which includes a directory

server, an enterprise portal, a cache, business intelligence, and several other

capabilities. Their comparisons are not accurate. Accurate comparisons are shown

in Table 6–2.

To address these claims, we compare the disk and memory requirements for

Oracle9iAS J2EE container with those of WebLogic Server - the requirements for

WebLogic Server are taken from BEA’s product documentation. The facts highlight

these important results:

Table 6–2 Disk and Minimum Memory Configurations for J2EE Containers

Issue Oracle BEA

Download Size 10 MB 32 MB

Disk Space 15 MB 45 MB

Minimum Memory 20 MB 256 MB
A-4 Oracle9i Application Server Migrating From WebLogic

Feature Comparison
■ 1/3 Disk Footprint—Oracle9iAS has the smallest download footprint and

requires just 1/3 the disk space of WebLogic Server 6.0.

■ 1/12 Minimum Memory Footprint—The memory footprint that was measured

was the recommended memory configuration required to start-up the JDK,

start-up an instance of the J2EE container, and run the standard Java Pet Store

Demo application. Table 6–2 indicates that Oracle9iAS requires less than 1/12

the memory footprint of WebLogic Server 6.0.

■ No Oracle Database Requirement—Additionally, BEA claims that it is

necessary to install and configure an Oracle database in order to run J2EE

applications. This is also false. Specifically, Oracle9iAS’ J2EE container can be

installed and configured with no Oracle database dependency. All the

configuration information is captured in simple XML files and the JNDI

namespace is captured in the file system.

■ No Oracle Java VM Requirement—Additionally, Oracle9iAS’ J2EE container

has no dependency on Oracle’s Java Virtual Machine. It has been certified on

both JDK 1.2 and JDK 1.3, versions available on all six major operating systems

including Windows, Linux, Solaris, HP-UX, AIX, and Compaq TRU-64.

■ 20 Minutes Installation and Configuration Time—To specifically address these

competitive considerations and to make it easy for J2EE application developers,

Oracle provides a downloadable version of its web cache, Apache, and J2EE

container as a single zip file. The entire product can be downloaded as a single

zip file, requires one command to unzip, and a single command to start the

J2EE container. The total time to install and configure all three components is 20

minutes. This is substantially faster and easier than WebLogic Server 6.0.

Performance and Scalability
Having considered the relative ease of installation and configuration, let us examine

the fundamental reasons for the performance and scalability differences between

Oracle9iAS and WebLogic Server. There are a number of reasons that drive the

measured performance differences that were documented in the previous section.

■ More Efficient Code Path and Optimizations—There are three points to

consider:

– 2-3X More Optimized Code Path—First, Oracle9iAS has a highly optimized

J2EE container which has a roughly 2-3X more efficient code path with a

much smaller instruction count than WebLogic Server 6.0.

– Optimizations for In-Process Deployments—Additionally, Oracle9iAS’ J2EE

container has even better optimization for the typical deployment
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-5

Feature Comparison
configurations when JSPs, servlets, and EJBs are co-located in the same Java

Virtual Machine. For instance, unlike WebLogic Server, Oracle9iAS uses

very optimized in-process calling mechanisms which avoid doing costly

RMI calls when calling between co-located JSPs, servlets, and EJBs.

– Very Efficient Byte Array Operations—Finally, Java developers know that

Java String operations are extremely expensive and slow to execute on even

the latest versions of the JDK Virtual Machine. To avoid using such costly

operations, Oracle9iAS’ J2EE container was designed from the ground-up

to use byte-array operations without using Java Strings. This is a significant

performance advantage which would require significant re-architecture by

BEA to duplicate.

■ More Efficient Network Protocol—Additionally, Oracle9iAS uses a much more

efficient network protocol than WebLogic Server to call between Java

applications.

– Very Efficient RMI Dispatch—Oracle9iAS’ J2EE container uses a very highly

optimized RMI dispatcher that has been optimized for calling between J2EE

applications. Oracle9iAS does not use a CORBA infrastructure to route calls

between J2EE applications which introduces protocol overhead when

tunneling RMI through IIOP for instance. Oracle will continue to offer a

highly optimized RMI protocol for performance reasons even when we

comply with EJB 2.0/J2EE 1.3 which requires RMI-over-IIOP.

■ More Efficient Database Access—Oracle9iAS also uses a very efficient

mechanism to schedule transactions between the middle tier application server

and the database. For instance, Oracle9iAS can prepare and cache both a single

SQL statement and multiple SQL statements across a JDBC connection pool.

This ensures that Oracle9iAS is highly optimized when it dispatches

transactions to both Oracle and non-Oracle databases and significantly

improves database access performance.

■ More Efficient Container Managed Persistence—There are two specific facts

that reflect the significant performance advantages in using Oracle9iAS’

Container Managed Persistence (CMP) implementation compared to WebLogic

Server’s implementation:

– Auto-Detection of Modified EJBs—When using CMP, Oracle9iAS’ J2EE

container can automatically detect whether you have modified an EJB and

writes the EJB’s state to the database, for example, does an ejbStore only

when necessary. WebLogic Server does not provide such auto-detection

requiring a user to code is-modified methods which the WebLogic Server

container uses to know whether or not to do the ejbStore operation. Note
A-6 Oracle9i Application Server Migrating From WebLogic

Feature Comparison
that this problem may be addressed with the coming WebLogic Server EJB

2.0 implementation.

– Simple and Complex DB mapping for CMP—When using CMP,

Oracle9iAS’ J2EE container supports both simple (1:1, 1:many) and complex

(many:many) database field mappings very efficiently. In contrast,

WebLogic Server provides very poor support for even some simple CMP

database field mapping (1:many) in its CMP EJB 1.1 xml files. For instance,

it is difficult to qualify a where clause string in WebLogic Server and this

results in doing unnecessary full table scans.

■ Fast and Predictable Steady State Performance—Further, when comparing the

performance of J2EE applications, the time to execute the first

request/transaction with WebLogic Server when several JSPs, servlets, or EJBs

are created, takes several minutes because the container takes a long time to

load the first J2EE objects and does so in an as necessary fashion. Oracle9iAS

does not have a similar problem. Note that in the interests of fairness in

carrying out the performance comparisons, we increased the test ramp-up time

to get WebLogic Server’s performance to predictable steady-state.

■ Simpler to Configure for Scalability—Finally, to configure Oracle9iAS for

scalability requires very minimal tuning when compared to WebLogic Server.

Oracle9iAS does not require the developer to configure operating system, Java

Virtual Machine, network, or thread parameters for scalability. In contrast,

WebLogic Server, for instance, has a "number of threads" parameter which is

difficult to tune, and can limit scalability. The recommended default is 15

threads for a WebLogic Server. This parameter limits the number of concurrent

users. You can tune the parameter to increase it, but it will have different effects

on performance at different user loads. For example, for one of our test

workloads, increasing this to 30 significantly improved performance for the

1000 user test, but made the 500 user test worse. Since in a real production

environment you can't really adjust this thread count as the load changes, it is

difficult to use this parameter for tuning. If left at 15, as the BEA documentation

generally suggests, it can limit concurrency and scalability to fewer than 100

concurrent users. Note that Apache JServ has a "number of threads" parameter,

but setting it higher than the required concurrency didn’t cause the same type

of degradation we saw in WebLogic Server.
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-7

Feature Comparison
J2EE Container Features
Table 6–2 lists the J2EE features of a J2EE container and the implementation

currently supported by Oracle and BEA.

■ JSP Facilities—Oracle9iAS has a complete JSP 1.1 implementation and most of

the features of JSP 1.2 including:

– Uses Servlet 2.3 as its runtime environment

– XML syntax for JSP pages

– Translate time validation

– Tag library runtime support

■ Servlet Facilities—Oracle9iAS has a complete Servlet 2.2 implementation and

virtually all of the features of Servlet 2.3 including:

– Servlet filters

– Servlet chaining

– Application life cycle events

– Formalized support for inter-JAR dependencies

– Support for new class loading rules

WebLogic Server 6.0 does not yet have JSP 1.2 and Servlet 2.3 implementation.

■ EJB Container Facilities—Oracle9iAS has a complete EJB 1.1 implementation

including session beans (both stateful and stateless) and entity beans

(supporting both container managed persistence and bean managed

persistence). Further, Oracle9iAS already has several of the features of EJB 2.0

including:

Table 6–3 J2EE Features of J2EE Containers

J2EE Compliance Oracle BEA

EJB 1.1 1.1 (early 2.0)

Servlets 2.2 2.2 (early 2.3)

JSP 1.1 1.1 (early 1.2)

JDBC 2.0 2.0

JNDI 1.2 1.2

JMS 1.0.2 1.0.2
A-8 Oracle9i Application Server Migrating From WebLogic

Feature Comparison
– XML deployment descriptors

– Message-driven beans

– EJB 2.0 object-relational mapping

– Support for several of the elements of the new CMP architecture

■ Simpler Deployment for OC4J—As a further differentiator, application

development with Oracle9iAS is much simpler than with WebLogic Server. For

example, EJB deployment with WebLogic Server requires manual coding of the

WebLogic specific EJB xml deployment files. It is done manually from scratch

using a crude text editor. Oracle9iAS in contrast auto-generates the

Oracle9iAS-specific EJB xml deployment files for EJBs with some defaults

already filled-in. It is then much quicker to only modify the fields you need to,

instead of creating the whole thing yourself.

■ JDBC Support for Oracle and non-Oracle Databases—Oracle9iAS is also

certified to support Oracle 7.3, 8.0, Oracle8i, and Oracle9i databases via JDBC

drivers.

– Oracle9iAS is the only application server today certified with the Oracle9i
database and Real Application Clusters.

– Oracle9iAS is also certified using Merant’s Type 4 pure Java JDBC drivers to

work against IBM DB/2, Microsoft SQL-Server, Informix, and Sybase

databases.

Note that this level of support is exactly equivalent to BEA’s support for these

databases.

■ Web Server Support for Netscape, IIS, and Apache Web Servers—Oracle9iAS

also supports the Apache web server in the box and provides proxy support for

Netscape and Microsoft’s IIS web server. BEA provides its own web server in

the box and provides proxy support for Netscape, Apache, and Microsoft.

Clustering Support
Application server clustering (not to be confused with database clustering)

essentially means the use of a group of application servers that coordinate their

actions in order to provide scalable, highly-available services in a transparent

manner. There are three requirements here:

■ Heterogeneous Clusters—Unlike the database, where every node of a cluster

has an identical configuration, in the middle tier, it is important to allow users

to configure a set of boxes which may have heterogeneous operating systems,
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-9

Feature Comparison
hardware, and other systems infrastructure to belong to a cluster. Further,

application server clusters cannot use a shared disk architecture for clustering

due to the large number of middle tier instances and to the fact that web

masters typically use local disks attached to application server boxes rather

than more expensive shared disk arrays. Oracle9iAS and WebLogic Server

support heterogeneous clusters using an IP-multicast based architecture for

scalability.

■ Stateless Clustering—Clustering different application server instances together

to service stateless requests is straightforward. Since the requests are stateless,

an external load balancer can simply direct a request to a new Oracle9iAS

instance either on the same node or on a different node.

■ Stateful Clustering—The far more difficult problem is to address how you

cluster systems together when the requests are stateful. For instance, an

e-commerce servlet is making use of the HTTPSession object to save the state

of a shopping cart between method requests. When the client adds another item

to the shopping cart, the servlet servicing the original request may not be

accessible either because the load on that instance is too high or because the

instance is not available (for example, the instance has failed). In this case, the

request needs to be redirected to a different J2EE container to which the

HTTPSession object’s state has been replicated from the first container.

From a comparative point of view, Oracle9iAS’ J2EE container provides the

following facilities:

■ Servlet Clustering—Oracle9iAS provides facilities to cluster servlets without

requiring any changes to the user’s application. The changes are deployment

configuration modifications which are transparent to the J2EE application.

■ Clustering Architecture and Simplicity: An important differentiator for

Oracle9iAS’ J2EE container is the ease with which different instances can be

clustered and the robustness of the architecture used for clustering.

– Clustering Simplicity—Specifically, Oracle9iAS requires a user to edit a

single XML file to configure various Oracle9iAS instances to belong to a

single cluster/island whether they are multiple servers with load balancing

on a single machine or multiple servers with load balancing on different

machines. In contrast, it is much more complex to configure WebLogic

Server clusters with load balancing either with multiple instances on one

machine or on multiple machines.

– Superior Clustering Architecture—Oracle9iAS’ J2EE container uses

dynamic IP addresses to register instances as belonging to a cluster. Its

built-in load balancer or any standard load balancer, such as Cisco Local
A-10 Oracle9i Application Server Migrating From WebLogic

Sample Migration Case Study
Director or BigIP, has the ability to use a variety of load balancing

algorithms to route requests to different instances. In contrast, WebLogic

Server uses static IP addresses to configure clustering. Static addresses

preclude the use of a load balancer to distribute requests across instances.

As a result, with WebLogic Server 6.0 you get either clustering or load

balancing but not both.

■ Stateless Session Bean Clustering—Oracle9iAS supports clustering of stateless

session beans.

■ Stateful Session Bean and Entity Bean Clustering—Oracle9iAS 1.0.2.2 does

not provide clustering of stateful session beans and entity beans. We will be

bringing such functionality to market with an upcoming release. There are two

important considerations that we are working on:

– Clustered Performance—Existing clustering facilities such as those in

WebLogic Server 6.0 impose a severe performance penalty when running

the instances in a stateful fashion with clustering. As a result, most users

choose to keep their middle tier completely stateless and write their state to

a persistent store, for example, a database. In delivering clustered EJBs,

Oracle is working on optimizing the EJB clustering implementation to

avoid introducing performance penalties.

– Programmatic Simplicity—Additionally, unlike servlets which have a

natural session boundary at which to failover their state, EJBs do not have

such a clear boundary. As a result, we are working on simple programmatic

facilities to allow users to use EJB clustering without any changes to their

applications.

■ Transparent Application Failover with J2EE Applications—Finally, when

Oracle9iAS’ J2EE container writes state to the Oracle database, Oracle9iAS

provides facilities to fail over JDBC connections to provide transparent

application failover (TAF) across nodes of the Oracle database. With EJBs, this

allows a user to maintain a stateless middle tier by writing the state to the

database and full state recoverability should a database node have a failure.

WebLogic Server 6.0 does not provide this capability. Only BEA Tuxedo

provides this capability, but it is not certified with Oracle9i.

Sample Migration Case Study
This section describes in detail the steps used to migrate an application from

WebLogic Server 6.0 to Oracle9iAS 1.0.2.2.1.
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-11

Sample Migration Case Study
Migration was done on a Windows 2000 system with OC4J connected to an Oracle

8.1.7 database and JDK 1.3.1 as runtime environment for OC4J.

1. Classpath and Libraries. As several commonly used classes, including apache

SOAP 2.2 had to be accessible we created the following startup script to set the

appropriate environment.

>d:
>cd \oracle\oc4jv1\j2ee\home
>set java_home=d:\jdk1.3
>set path=d:\jdk1.3\bin;%path%
>set CLASSPATH=D:\oracle\oc4jv1\j2ee\home\orion.jar;
D:\OrderServerNew\OrderServer.jar;D:\OrderServerNew\DataItemCore.jar;
D:\OrderServerInstall\OrderServerJars\jdom.jar;
D:\OrderServerInstall\OrderServerJars\activation.jar;
D:\OrderServerInstall\OrderServerJars\imap.jar;
D:\OrderServerInstall\OrderServerJars\mail.jar;
D:\OrderServerInstall\OrderServerJars\mailapi.jar;
D:\OrderServerInstall\OrderServerJars\pop3.jar;
D:\OrderServerInstall\OrderServerJars\smtp.jar;
D:\OrderServerInstall\OrderServerJars\soap.jar;
D:\OrderServerNew\Performance.jar

>java -hotspot -Xss128k -ms128m -mx128m -cp %CLASSPATH%
-Dplot.home=D:\OrderServerNew\OC4JRepository
-Dplot.orderserver.url=ormi://localhost:23791
-Dplot.orderserver.factory=com.evermind.server.rmi.RMIInitialContextFactory
-Dplot.orderserver.principal=admin -Dplot.orderserver.credential=admin
-Dplot.orderserver.EJBAppName=OrderServer
com.evermind.server.ApplicationServer -verbosity 10

Doing benchmarks we discovered that there are several problems when

including another XML parser (xerces.jar) in the classpath. Development

also recommends to start OC4J with java –jar –orion.jar (so the

manifest file in the orion.jar is used). It can slow down OC4J to 50% of it’s

normal performance. So, if the application, e.g. Apache SOAP, needs an XML

parser, then include it in the WEB-INF\lib directory and change the entry in

the web.xml file for the XML-Parser as follows.

<init-param>
<param-name>XMLParser</param-name>
<param-value>org.apache.crimson.jaxp.DocumentBuilderFactoryImpl
</param-value>

</init-param>
A-12 Oracle9i Application Server Migrating From WebLogic

Sample Migration Case Study
We tried the crimson parser and it worked faster than xerces.

The second thing we discovered doing benchmarks with WebLogic Server 6.0

which uses its internal JDK1.3.0 and OC4J using JDK1.3.1 was that the java
–server option gives very bad performance for OC4J.

Using java –hotspot instead, WebLogic Server had 2 times better

performance for looping through a large JDBC result set. OC4J had 4 times

better performance with the same operation.

2. Automatic invocation of a class at server startup, WebLogic Server 6.0 has a

parameter

weblogic.system.startupClass.initialise=<class-name> that

enables automatic initialization of environment constants and services at

startup.

To get similar behaviour in OC4J we created an startup application as java

enterprise client, put it in an .ear and set two parameters in the config files.

server.xml :

<application name="Startup" parent="OrderServer"
path="../applications/startup.ear" auto-start="true" />

application.xml for Startup.ear

<application>
<display-name>StartupSettings</display-name>
<module>

<java>Start.jar</java>
</module>

</application>

Example of a startup class:

import my.util.StartupHelper;

public class OracleASStartupClient {
private static void startup() {

StartupHelper.setConstantswithProperties();
StartupHelper.cacheSettings();
StartupHelper.installClientInteface();
StartupHelper.installLogging();

}

public static String startBatch (String name, Hashtable args) throws
Exception {
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-13

Sample Migration Case Study
Object obj = Class.forName(name).getConstructor(
new Class[]{Class.forName("java.util.Hashtable")}).newInstance(
new Object[]{args});

if (obj instanceof Thread) {
((Thread)obj).start();
}

else throw new Exception("Class to start must be of Type Thread");
// Write your startup code here...
return "BatchStarter Successfully completed.";

}

public static void main(String[] args) {
System.out.println("***** STARTUP begin ********************");
startup();

/* try {
startBatch("my.orderserver.batch.MessagePersisterBatch",

new Hashtable());
catch(Exception e) {
e.printStackTrace();*/

System.out.println("******* STARTUP end *********************");
return;

}
}

3. Adapt application from WebLogic Server global JNDI context to OC4J specific

context. The JNDI tree in WebLogic Server enables each enterprise application

to see all other ear’s methods. In OC4J, it is standards compliant, and therefore,

we had to use the parent-application parameter in server.xml (see 2

above). The following class was used to establish the JNDI context:

public static Context getInitialContext (boolean security) throws
Exception {

Hashtable env= new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,Constants.OS_FACTORY);
env.put(Context.PROVIDER_URL, Constants.ORDERSERVER_URL);
if(security) {

env.put(Context.SECURITY_PRINCIPAL,
Constants.ORDERSERVER_PRINCIPAL);

env.put(Context.SECURITY_CREDENTIALS,
Constants.ORDERSERVER_CREDENTIAL);
A-14 Oracle9i Application Server Migrating From WebLogic

Sample Migration Case Study
try {
Context ctx = new InitialContext(env);
return ctx;

}
catch (Exception e) {

e.printStackTrace();
}
return new InitialContext();

}

4. Enable call-by-reference for EJB methods. As the application was programmed

to make use of call-by-reference for EJB method calls, we had to set this

behaviour (default is call-by-value) in orion-ejb-jar.xml .

orion-ejb-jar.xml for OrderServerGroup :

<?xml version="1.0"?>

<!DOCTYPE orion-ejb-jar PUBLIC "-//Evermind//DTD Enterprise JavaBeans 1.1
runtime//EN" "http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd">

<orion-ejb-jar deployment-version="1.0.2.2.1" deployment-time="eadf228126">
<enterprise-beans>

<session-deployment name="AblaufsteuerungBean"
location="AblaufsteuerungBean" wrapper=
"AblaufsteuerungHome_StatelessSessionHomeWrapper1" timeout="0"
persistence-filename="AblaufsteuerungBean" />

<session-deployment name="OrderService" copy-by-value=false
location="OrderService" wrapper=
"OrderServiceHome_StatelessSessionHomeWrapper3" timeout="0"
persistence-filename="OrderService" />

<session-deployment name="TransparentService"
location="TransparentService" wrapper=
"TransparentServiceHome_StatelessSessionHomeWrapper5" timeout="0"
persistence-filename="TransparentService" />

</enterprise-beans>

<assembly-descriptor>
<default-method-access>

<security-role-mapping name="<default-ejb-caller-role>"
impliesAll="true" />

</default-method-access>
</assembly-descriptor>
Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison A-15

Sample Migration Case Study
</orion-ejb-jar>

5. Enable connection pooling with OC4J. We used the same Oracle JDBC 2.0

drivers classes12.jar for WebLogic Server and Oracle9iAS. To enable

connection pooling, we had to switch off MTS on Oracle 8.1.7. We used the

ejb-location in the following data-sources.xml config file:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OrderServerDS"
location="myOrderServerDS"
pooled-location="pooledOrderServerDS"
xa-location="jdbc/xa/OrderServerXADS"
ejb-location="OrderServerDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="plot"
password="plot"
url="jdbc:oracle:thin:@localhost:1529:o8i"
inactivity-timeout="3600"
min-connections="20"
max-connections="100"
/>

6. Transaction timeout for EJB’s. During benchmarking, we discovered in some

tests that the EJB container ran into a time-out and rolled back transactions. To

fix that, we set the timeout parameter in orion-ejb-jar.xml to zero (no

time-outs).

<enterprise-beans>
<session-deployment name="TransparentService"
location="TransparentService"
wrapper="TransparentServiceHome_StatelessSessionHomeWrapper5" timeout="0"
persistence-filename="TransparentService"
/>

</enterprise-beans>
A-16 Oracle9i Application Server Migrating From WebLogic

Partner Migration
B

Partner Migration Tools

Enterprises migrating their applications to Oracle9iAS from other application

servers can now do so easily and more effectively using our partner migration tools.

Cacheon
Cacheon Migrator helps automate and improve the productivity of migrating

existing J2EE applications from BEA WebLogic and IBM WebSphere to Oracle9iAS.

With Cacheon Migrator, developers can automatically convert JSPs, EJB

deployment descriptors, Java source code, JMS settings, WEBINF configuration

files, and third party security features into Oracle9iAS.

Cacheon Migrator automates up to fifty percent of the migration effort. For the

remaining portion, the software highlights areas that may require manual

intervention and offers suggested solutions.

Features of Cacheon Migrator
■ Fast J2EE migration - Accelerate the conversion of EJB deployment descriptors,

Java source code, JSP and tag libraries, JMS settings and configuration files, and

security features.

■ Migration workbench - Manage the conversion of J2EE applications from one

application server platform to another.

■ Issue resolver - Identify and remove application server dependencies and build

an overall schedule for a migration project.

■ Migration reports - Identify all source application modifications and track

problem areas during migration.
Tools B-1

TogetherSoft
■ Customize rules - Customize conversion rules to meet application specific

requirements.

■ Create new rules - Create new rules in a scripting language to extend migration

capabilities.

■ JDeveloper integration - Streamline the migration process by converting

applications directly within Oracle9i JDeveloper.

For more information and resources, visit http://www.cacheon.com.

TogetherSoft
Together ControlCenter, the comprehensive Model-Build-Deploy Platform for

end-to-end software development, enables organizations to not only deploy to

leading application servers, but also lets them migrate their J2EE applications from

other J2EE-compliant application servers to Oracle9iAS.

ControlCenter handles the underlying deployment details so that developers can

focus on the business logic of the application instead of the application server

specifics.

An online viewlet that demonstrates how Together ControlCenter can help migrate

an application from Weblogic Server to Oracle9iAS can be found at:

http://www.togethersoft.com/developers/integrations/oracle9ias.jsp and

http://otn.oracle.com/products/ias/daily/mar28.html.
B-2 Oracle9i Application Server Migrating From WebLogic

Index

A
Apache, 2-2, 2-6, A-9

JServ Protocol, 2-6

application.xml , 3-6, 3-10, 3-11, 5-14

authentication, 5-14, 5-16

authorization, 5-14

auto-deployment, 3-6

B
BEA Tuxedo, 2-2

benchmarks, A-2, A-12

byte array operations, A-6

C
Cacheon, B-1

client stubs, 2-10

clustering

JDBC, 6-9

servlets, 3-13

servlets and JSPs, 3-13

concurrent users, 6-8, A-7

connection pool, 6-7

console GUI, 5-7

CORBA, 2-2

CPU cycles, 2-13

D
data sources, 6-4

data-sources.xml , 3-11, 5-13, 6-5, A-16

dcmctl , 3-3, 3-5, 3-6, 4-4, 4-7, 5-7, 5-8

default-web-site.xml , 3-6, 3-15

digital certificates, 5-14

Distributed Configuration Manager (DCM), 2-8,

3-6

E
EAR file, 2-16, 3-3, 3-6, 4-2, 5-2, 5-5, 5-7, 5-14

Edge Side Includes (ESI), 4-8

Edge Side Includes for Java (JESI), 4-3, 4-8

ejbc , 5-3, 5-7

ejb-jar.xml , 3-10, 5-6, 5-9, 5-13

Enterprise JavaBeans, 5-2

clustering, 5-3

stateful session bean, 5-4

stateless session bean, 5-4

load balancing, 5-16

Query Language, 5-13

stateful session

replication, 5-14

entity EJB

container-managed persistence, A-6

simple and complex DB mapping, 5-3, A-7

F
failover, 2-9, 2-11, 2-13, 5-17

finder method, 5-11, 5-12

G
global-web-application.xml , 3-11, 3-14
Index-1

H
HelloWorld, 3-3

high-availibility, 2-7

HTTP

1.1, 2-2

access log, 3-16

Apache, 2-2, A-9

listener, 3-13

Microsoft IIS, 2-2, A-9

Netscape, 2-2, A-9

session state, 2-11

streaming, A-3

HttpSession , 3-15

I
IIOP, A-6

in-memory replication, 5-14

J
J2EE

1.2, 2-1, 2-14, A-1

1.3, 2-1, 2-14

supported component specifications, 2-3

application architecture, 1-6

application model, 1-2

Certification Test Suite, 2-14

components, 1-2

containers, 2-7

platform, 1-3

JAAS, 2-3

JAF, 2-3

JAR file, 2-17, 5-6, 5-7

Java Virtual Machine, 2-7, 2-12

JavaBeans, 2-16, 4-3

JavaMail, 2-3

JAXP, 2-3

JCA, 2-3

JDBC, 2-3, 6-4

clustering, 6-9

DriverManager , 6-4

drivers, 6-2

JIT, A-3

JMS, 2-2, 2-3

jms.xml , 5-13

JNDI, 2-3, 2-10, 2-11, 5-5, 5-16, 6-4, 6-7, A-5, A-14

INITIAL_CONTEXT_FACTORY, 6-7

JSP custom tags, 4-2, 4-5, 4-8

JSP pre-translation, 4-11

JTA, 2-3

JVM, 5-17, A-5

L
load balancer, 2-9, 2-10, 2-12, 3-13, 3-16

load balancing, 2-9, 3-15

parameter-based, 2-10, 2-11

random, 2-11

round-robin, 2-10, 2-11

weight-based, 2-10

M
message-driven bean, 5-13, A-9

Microsoft IIS, 2-2, A-9

migration challenges, 1-5

migration tools, B-1

mod_oc4j, 2-6

multicast, 2-12, 2-13, 5-16, A-10

host/IP, 3-14

N
Netscape, 2-2, A-9

O
object-relational mapping, 5-2, 5-5, 5-6, A-9

OC4J

container, 2-17, 5-7

failover, 2-13

instances, 2-6

island, 2-12, 3-14

processes, 2-12

what is, 1-5

oc4j-connectors.xml , 3-12

ojspc , 4-10, 4-11

Oracle

Business Components for Java, 2-16
Index-2

Enterprise Manager, 2-7, 2-17, 3-6, 5-7, 5-8, 6-4

HTTP Server, 2-6

Internet Developer Suite, 2-16

Internet Directory, 3-2

JDeveloper, 2-16, 4-3

OCI driver, 6-3

XA drivers, 6-3

Oracle OCI driver, 6-3

Oracle Process Management Notification

(OPMN), 2-7, 3-6

Oracle9i Developer Suite, 2-15

Oracle9iAS

cluster, 2-11

clustering

servlets, 3-13

components, 2-6

Oracle HTTP Server, 2-6

entity EJB, 5-2

container-managed persistence, 5-2

replication, 5-17

farm, 2-12

infrastructure, 2-8

infrastructure repository, 2-12

installation, 2-6

instance, 2-6, 2-11

island, 5-16

JAAS, 3-2

JSP Markup Language (JML), 4-2, 4-3, 4-9

JSP pre-translator, 4-10

multicast port number, 3-14

Single Sign-On, 3-2

Web Cache, 2-9

JESI, 4-3

OracleJSP, 4-2

Orion JSP container, 4-2

orion-application.xml , 3-11

orion-ejb-jar.xml , 3-12, 5-6, 5-9, 5-12, 5-13

orion-web.xml , 3-12, 3-14

ormi, 5-16

P
portability, 1-7

precompiling, 4-10

principals.xml , 3-11

proprietary extensions, 1-7

R
RMI, 2-10, 3-13, A-6

round-robin, 2-10

S
scalability, 2-7, 2-11, A-4, A-7, A-10

serializable, 3-15

server.xml , 3-6, 5-8, 5-9

ServletContext , 3-15

session state, 2-10, 2-11, 2-12, 3-13, 3-14, 3-15

single sign-on, 2-2

skeleton classes, 5-4

SNMP, 2-2

SOAP, 2-2, A-12

SQLJ, 4-2

state replication, 3-16

database, 3-13

filesystem, 3-13

in-memory, 3-13

stub classes, 5-5, 5-16

stubs, 2-10

T
tag library, 2-16

custom, 4-5

TogetherSoft, B-2

transactions

two-phase, 2-3

U
UDDI, 2-2

W
WAR file, 2-16, 3-1, 3-2, 3-3, 3-5

deploying, 3-6

WebGain, 2-15

WebLogic Enterprise, 2-1

WebLogic Express, 2-1, 2-2

WebLogic Server, 2-1
Index-3

6.0, 1-8

components, 2-4

administration console, 2-15

Administration Server, 2-4, 3-6

auto-deployment, 3-6

cluster, 2-10

clustering

servlets and JSPs, 3-13

config.xml , 3-12

console GUI, 2-5, 6-9

domain, 2-2, 2-5

Enterprise JavaBeans, 5-2

field-to-database-element mapping, 5-11

in-memory replication, 5-15

failover, 2-10

htmlKona, 3-2

JDBC drivers, 6-2

jDriver, 6-3

JSP compiler, 4-10

JSP custom tags, 4-2, 4-8

load balancing, 2-10

parameter-based, 2-11

random, 2-11

round-robin, 2-11

weight-based, 2-11

Managed Server, 2-4

product suite, 2-1

proxy plug-in, 2-10

round-robin, 2-10

session state, 2-10

state replication, 2-10, 3-13

weblogic-ejb-jar.xml , 3-12

weblogic.xml , 3-12

weblogic-cmp-rdbms-jar.xml , 5-6, 5-9, 5-12

weblogic-ejb-jar.xml , 5-6, 5-9, 5-12, 5-13,

5-15

web.xml , 3-3, 3-10, 3-16

WSDL, 2-2
Index-4

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 Overview
	Overview of J2EE
	What is the J2EE Application Model?
	What is the J2EE Platform?

	What is an Application Server?
	Overview of Oracle9iAS
	J2EE Application Migration Challenges

	J2EE Application Architecture
	Migration Issues
	Migration Approach

	Migration Effort
	Using This Guide

	2 Comparison of Oracle9iAS and WebLogic Server 6.0
	Application Server Product Offerings
	WebLogic Server 6.0
	WebLogic Server
	WebLogic Enterprise
	WebLogic Express

	Oracle9i Application Server

	Architecture Comparison
	WebLogic Server 6.0 Components and Concepts
	Oracle9iAS Components and Concepts
	Oracle9iAS Instance
	Oracle HTTP Server
	OC4J Instances
	Oracle Process Management Notification (OPMN) Service
	Distributed Configuration Manager (DCM)
	Oracle9iAS Infrastructure Repository
	Oracle9iAS Web Cache

	Clustering and Load balancing
	What is Clustering?
	Benefits of Clustering: Failover Recovery
	What is LoadBalancing?
	WebLogic Server 6.0 Suppport for Clustering and Load Balancing
	HTTP Session State Load Balancing and Failover (Servlet Clustering)
	EJB and RMI Object Load Balancing and Failover

	Oracle9iAS Support for Clustering and Load Balancing
	Oracle9iAS Clusters
	OC4J Islands

	J2EE Support Comparison
	Java Development and Deployment Tools
	WebLogic Server Development and Deployment Tools
	WebLogic Server Development Tools
	WebLogic Server Administration Console

	Oracle9iAS Development and Deployment Tools
	Development Tools
	Assembly Tools
	Administration Tools

	3 Migrating Java Servlets
	Introduction
	Differences Between WebLogic Server and Oracle9iAS Servlet Implementations
	OC4J Key Servlet Container Features

	Migrating a Simple Servlet
	Migrating a WAR File
	Migrating an Exploded Web Application
	Migrating Configuration and Deployment Descriptors
	Oracle9iAS
	WebLogic Server 6.0

	Migrating Cluster Aware Applications

	4 Migrating JSP Pages
	Introduction
	Differences Between WebLogic Server and Oracle9iAS JSP Implementations
	OC4J JSP Features
	Oracle JDeveloper and OC4J JSP Container

	Migrating a Simple JSP Page
	Migrating a Custom JSP Tag Library
	Migrating from WebLogic Custom Tags
	WebLogic Server cache Tag
	WebLogic Server process Tag
	WebLogic Server repeat Tag

	Precompiling JSP Pages
	Using the WebLogic Server JSP Compiler
	Using the OC4J JSP Pre-translator
	Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)
	Configure the JSP Container for Execution with Binary Files Only

	5 Migrating Enterprise JavaBean Components
	Introduction
	Differences Between WebLogic Server and Oracle9iAS EJB Implementations
	EJB Container Facilities
	More Efficient Container Managed Persistence
	Clustering Support
	Security and LDAP Integration

	EJB Migration Considerations

	Migration Steps
	Setting Deployment Properties
	Vendor-specific Deployment Descriptors
	WebLogic Server
	OC4J

	Generating and Deploying EJB Container Classes
	WebLogic Server
	OC4J

	Loading EJB Classes in the Server
	WebLogic Server
	OC4J

	Migrating EJBs in a EAR or JAR File
	Migrating an Exploded EJB Application
	Configuring EJBs using Deployment Descriptors
	Writing Finders for RDBMS Persistence
	WebLogic Query Language (WLQL)
	Message Driven Beans
	Configuring Security
	Migrating Cluster-Aware Applications to OC4J
	EJB Clustering in WebLogic Server
	In-Memory Replication for Stateful Session EJBs
	Requirements and Configuration

	EJB Clustering in Oracle9iAS
	Load Balancing
	Static Discovery
	Dynamic Discovery

	Failover
	Stateless Session EJBs
	Stateful Session EJBs
	Entity EJBs

	6 Migrating JDBC
	Introduction
	Differences between WebLogic and Oracle9iAS Database Access Implementations
	Overview of JDBC Drivers

	Migrating Data Sources
	Data Source Import Statements
	Configuring Data Sources in the Application Server
	Obtaining a Client Connection Using a Data Source Object

	Migrating Connection Pools
	Overview of Connection Pools
	How Connection Pools Enhance Performance

	Overview of Clustered JDBC
	Performance Tuning JDBC

	A Oracle9iAS 1.0.2.x and WebLogic Server 6.0 Comparison
	Introduction
	Performance Results and Analysis
	Performance and Scalability Results

	Feature Comparison
	Installation and Configuration
	Performance and Scalability
	J2EE Container Features
	Clustering Support

	Sample Migration Case Study

	B Partner Migration Tools
	Cacheon
	Features of Cacheon Migrator

	TogetherSoft

	Index

