
Oracle9 i Application Server

Migrating from Oracle Application Server

Release 2 (9.0.2)

January 2002

Part No. A95108-01

Alpha/Beta Draft Label

IMPORTANT: You should always insert the release number
(relnum) and part number (partnum) on this page as vari-
ables. On the copyright page, you should insert the book
name (booktitle), part number (partnum), release number
(relnum), and platform (platform) as variables in the Prod-

uct/Book Title paragraph tag that is the first line of the
copyright page. Do this in the RCF file as well.

Oracle9i Application Server Migratiing from Oracle Application Server, Release 2 (9.0.2)

Part No. A95108-01

Copyright © 2002, Oracle Corporation. All rights reserved.

Contributors: Min Yao, Sanjay Singh, Kai Li, Beth Roser, Sheryl Maring, Baogang Song, Song Lin, and
Stephen Mayer

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Alpha and Beta Draft Documentation Alpha and Beta Draft documentation are considered to be in
prerelease status. This documentation is intended for demonstration and preliminary use only. We expect
that you may encounter some errors, ranging from typographical errors to data inaccuracies. This
documentation is subject to change without notice, and it may not be specific to the hardware on which
you are using the software. Please be advised that Oracle Corporation does not warrant prerelease
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

Contents

Send Us Your Comments

Preface

1 Introduction to Oracle9 i Application Server

What is Oracle9i Application Server?... 1-2
Oracle Application Server Component Migration Options ... 1-3
Enterprise Services Migration .. 1-4

Overview.. 1-4
Scalability... 1-4
Availability and Fault Tolerance .. 1-5
Load Balancing.. 1-6
Administration.. 1-6
Security... 1-7
Third-Party Web Server Support ... 1-9

2 Migrating JWeb & JServlet Applications to OC4J

JWeb and OC4J Differences.. 2-2
Architecture ... 2-2
Life cycle .. 2-4
Threading... 2-5
Sessions .. 2-6
Dynamic Content Generation in HTML Pages .. 2-6

Migration Strategies ... 2-7
Beta Draft iii

Comparison of Compliance Standards.. 2-7
Key JWeb & Servlet Methods.. 2-7
Migration Approach... 2-8

Code Modifications for JWeb Applications ... 2-9
Session Control.. 2-9
Application Threads... 2-10
Logging... 2-10

3 Migrating Oracle Application Server Cartridges

Cartridge Types and Corresponding Oracle9iAS Modules .. 3-2
PL/SQL Migration... 3-3

File Upload and Download ... 3-3
Uploaded File Document Format... 3-4
Using the oas2ias Tool.. 3-5
Custom Authentication.. 3-7
Flexible Parameter Passing.. 3-7
Positional Parameter Passing.. 3-8
Executing SQL Files.. 3-8

Perl Migration.. 3-9
Perl Applications under Oracle Application Server.. 3-9
Migrating Perl Cartridge Scripts .. 3-10
Variations from Oracle Application Server Perl Cartridge .. 3-11

LiveHTML Migration... 3-13
SSI.. 3-13
Scripts ... 3-14

CWeb Migration .. 3-15
Using FastCGI ... 3-15
Creating a Custom Oracle9iAS Module .. 3-16

4 Migrating EJB, ECO/Java and JCORBA Applications

Migrating EJBs to OC4J ... 4-2
Deployment Descriptors.. 4-2
Client Code .. 4-2
Logging (Server Code) ... 4-3

Migrating ECO/Java to OC4J .. 4-4
iv Beta Draft

Remote Interface ... 4-4
Home Interface.. 4-4
Implementation Class .. 4-4

Migrating JCORBA to OC4J ... 4-5
Remote Interface ... 4-5
Home Interface.. 4-5
Object Implementation .. 4-5
Make Parameters Serializable... 4-6

Index
Beta Draft v

vi Beta Draft

Send Us Your Comments

Oracle9 i Application Server Migrating from Oracle Application Server, Release 2 (9.0.2)

Part No. A95108-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com

■ FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager

■ Postal service:

Oracle Corporation

Oracle9i Application Server Documentation

500 Oracle Parkway, M/S 2op3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
Beta Draft vii

viii Beta Draft

Preface

This guide describes the process of migrating your system from Oracle Application

Server to Oracle9i Application Server.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
Beta Draft ix

Intended Audience
Migrating from Oracle Application Server is intended for system administrators

and application developers who will migrate their systems from Oracle Application

Server to Oracle9i Application Server.

To use this document, you need to be familiar with the configuration, operation,

and development of Oracle Application Server and other system administration

tasks.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

Organization
This document contains:

Chapter 1, "Introduction to Oracle9i Application Server"
x Beta Draft

This chapter provides an introduction to Oracle9i Application Server and migration

options for Oracle Application Server users.

Chapter 2, "Migrating JWeb & JServlet Applications to OC4J"

This chapter discusses migration options for Oracle Application Server JWeb

Cartridge users.

Chapter 3, "Migrating Oracle Application Server Cartridges"

This chapter discusses the migration options for the other Oracle Application Server

cartridge types including the PL/SQL cartridge.

Chapter 4, "Migrating EJB, ECO/Java and JCORBA Applications"

This chapter discusses the migration options for the Oracle Application Server IIOP

components.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Documentation Library CD-ROM

■ Oracle9i Application Server Platform Specific Documentation on Oracle9i
Application Server Disk 1

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at
 Beta Draft xi

http://otn.oracle.com/docs/index.html

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xii Beta Draft

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
 Beta Draft xiii

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating

systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xiv Beta Draft

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener
 Beta Draft xv

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xvi Beta Draft

Beta Draft Introduction to Oracle9i Application S
1

Introduction to Oracle9 i Application Server

This chapter provides a general discussion of the Oracle9i Application Server

(Oracle9iAS) characteristics in comparison to those of Oracle Application Server. It

includes a mapping of Oracle Application Server components to their equivalent

functionality in Oracle9iAS. The topics include:

■ What is Oracle9i Application Server?

■ Oracle Application Server Component Migration Options

■ Enterprise Services Migration
erver 1-1

What is Oracle9i Application Server?
What is Oracle9 i Application Server?
Oracle9iAS provides full support for the Java 2 Enterprise Platform (J2EE), XML,

and emerging Web services standards. With Oracle9iAS you can simplify

information access for your customers and trading partners by delivering enterprise

portals, which can be customized and accessed from a network browser or wireless

devices. It allows you to redefine your business processes, and integrate your

applications and data sources with those from your customers or partners. You can

deliver tailored customer experiences via real-time personalization, and assess and

correlate Web site traffic patterns using Oracle9iAS integrated business intelligence

services.

You can also implement a centralized management, security, and directory

framework to manage and monitor all of your distributed systems and diverse user

communities. Oracle9iAS allows you to save on Web site infrastructure by

deploying your fast, scalable Internet applications through built-in Web caching,

load balancing and clustering capabilities.

Before proceeding to migration, you must have successfully deployed the

Oracle9iAS product and have worked with the examples provided in respective

sections of Oracle9i Application Server Concepts and other related documentation.

See Also: Oracle9i Application Server Concepts in Oracle9iAS

documentation library for additional information on Oracle9iAS
1-2 Migrating from Oracle Application Server Beta Draft

Oracle Application Server Component Migration Options
Oracle Application Server Component Migration Options
Table 1–1 presents Oracle Application Server components and their corresponding

functionality in Oracle9iAS. During the migration process, you must migrate these

Oracle Application Server components to their closest corresponding components

in Oracle9iAS. Please refer to the reference chapters presented in Table 1–1 for

detailed discussions on specific components.

Table 1–1 Comparison of Application Components

Oracle Application Server
Component

Closest Oracle9 i Application Server
Equivalent Component Reference

JWeb application Oracle9iAS Container for J2EE (OC4J)
application

Chapter 2

JServlet application OC4J application Chapter 2

LiveHTML application Apache SSI and JavaServer Page (JSP)
applications

Chapter 3

Perl application mod_perl application Chapter 3

CWeb application Custom Apache Modules, Common
Gateway Interface (CGI), FastCGI, Java
Naming and Directory Interface (JDNI), and
PL/SQL Callouts

Chapter 3

PL/SQL application mod_plsql application Chapter 3

ECO/Java application OC4J application Chapter 4

EJB application OC4J application Chapter 4

JCORBA application OC4J application Chapter 4
 Beta Draft Introduction to Oracle9i Application Server 1-3

Enterprise Services Migration
Enterprise Services Migration
This section discusses enterprise services and characteristics of a Web site of

concern to administrators and developers. It describes scalability, availability, fault

tolerance, load balancing, administration, security, and the third-party Web server

support in Oracle Application Server. It also describes whether migrating your Web

site from Oracle Application Server to Oracle9iAS affects these characteristics.

Overview
Oracle Application Server consists of three layers, the HTTP listener layer, the

server layer, and the applications layer. The HTTP listener layer consists of listeners,

the adapter interface, and the dispatchers. The server layer provides a common set

of components for managing applications. These components include load

balancing, logging, automatic failure recovery, security, directory, and transaction

management components. The application layer consists of applications, cartridges,

and cartridge servers. When a request arrives, the dispatcher routes the request to

the application server layer, and if a cartridge instance is available, the request will

be serviced by that instance. Otherwise, a new instance will be created.

In Oracle9iAS, Oracle HTTP Server handles load-balancing, routing servlet requests

to OC4J through mod_oc4 j, single sign-on authentication and security context

propagation through mod_osso and SSL. OC4J consists of pure J2EE containers for

running JSPs, Servlets, and Enterprise JavaBeans (EJBs), and provides J2EE

container services. Both the Oracle HTTP Server and OC4J perform the same

functions as three layers in Oracle Application Server.

Scalability
You can deploy Oracle Application Server in single or multiple-host environments.

You can configure the Oracle HTTP Server and OC4J for single or clustered-host

environments.

HTTP Server
In Oracle Application Server, each listener accommodates a maximum number of

concurrent connections. This number varies based on operating system restrictions.

To distribute the request load on a site, you can create multiple listeners, each

listening on a different TCP port.

See Also: Oracle Application Server Overview and Glossary for

details on Oracle Application Server.
1-4 Migrating from Oracle Application Server Beta Draft

Enterprise Services Migration
For Oracle9iAS on UNIX platforms, Oracle HTTP Server creates a pool of child

processes ready to handle incoming client requests during the start-up. As the

requests load increases, the server spawns new processes for subsequent requests.

The initial and maximum size of the pool, and the minimum or maximum number

of spare server processes is configured with the StartServers , MaxClients ,

MinSpareServers and MaxSpareServers directives, respectively.

For Oracle9iAS on Windows platforms, Oracle HTTP Server runs as a

multi-threaded process. The number of simultaneous connections is configured

with the ThreadsPerChild directive, which is analogous to both the

StartServers and MaxClients directives for UNIX.

You can configure Oracle Application Server through the Node Manager. For

Oracle9iAS, you can configure Oracle HTTP Server using Oracle Enterprise

Management (OEM) graphical user interfaces (GUIs), or by manually editing the

http.conf file.

OC4J Container
In Oracle Application Server, as the number of requests increases, the system

creates new cartridge servers and new instances.

In Oracle9iAS Oracle HTTP Server, mod_oc4j receives requests from the server

and routes them to the OC4J servlet container.

Refer to Chapter 2, "Migrating JWeb & JServlet Applications to OC4J" and

Chapter 4, "Migrating EJB, ECO/Java and JCORBA Applications" for Migration of

Oracle Application Server components to Oracle9iAS OC4J.

Availability and Fault Tolerance
When a component, such as a listener or a cartridge server fails, Oracle Application

Server detects the failure and restarts the failed component, and restoring any

preserved state information, when possible.

In Oracle HTTP Server, if there is more than one HTTP server host, or more than

one OC4J host, when one of the hosts stops, the system will still function as long as

See Also: Oracle HTTP Server Administration Guide and Oracle9i
Application Server Administrator’s Guide in the Oracle9iAS

Documentation Library

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
 Beta Draft Introduction to Oracle9i Application Server 1-5

Enterprise Services Migration
one HTTP server and one OC4J are running, provided that J2EE components have

been deployed against the cluster of OC4J instances. Any Oracle HTTP Server

instance can route a request to any OC4J instance. Maintaining routing information

in cookies eliminates single point of failure.

Load Balancing
Oracle Application Server allocates system resources and prioritizes requests based

on two types of load balancing methods, priority-based method and minimum or

maximum-based method.

In priority mode, the system manages and allocates resources automatically, based

on the priority level you set for your applications and cartridges. The number of

processes, threads, and instances is automatically determined based on the request

load and priority level of the application and components.

In minimum or maximum mode, you set the number of instances, threads and

client parameters for each cartridge at the cartridge level.

In Oracle HTTP Server, you can define the number of hosts and a logical set of these

hosts in your configuration file. The system assigns incoming requests to OC4J

instances.

Configuration of an instance determines whether the instance is part of a cluster. If

an OC4J instance may be part of one cluster, all of its configured components are

implicitly part of that cluster. A cluster can contain one or more instances. Each

installation can have only one instance. There can be many installations on one host.

Administration
Oracle Application Server provides GUI tools and built-in support for

administering and monitoring your site, listeners, and applications. The

configuration data from the Oracle Application Server Manager tool is stored in

various configuration files.

In Oracle HTTP Server, you can perform site administration and maintenance using

OEM through GUIs, or through a set of configuration files. Table 1–2 presents

configuration files for the Oracle Application Server HTTP listener and Oracle

HTTP Server. The configuration files between two servers are significantly different.

See Also: Oracle9i Application Server Administrator’s Guide and

Oracle HTTP Server Administration Guide in the Oracle9iAS

Documentation Library
1-6 Migrating from Oracle Application Server Beta Draft

Enterprise Services Migration
Security
You must convert the certificate from Oracle Application Server to Oracle9iAS.

Migrating Certificates
Oracle9iAS contains two migration tools, pconvert and ssl2ossl (Unix) or

osslconvert (Windows). You can take the following two steps to migrate from

the Oracle Application Server certificate to an Oracle9iAS certificate or wallet.

1. Convert the Oracle Application Server private key to an Oracle9iAS private key

using the conversion tool, pconvert . The full path to the tool is:

■ (UNIX) ORACLE_HOME/Apache/Apache/bin/pconvert

■ (Windows) ORACLE_HOME\Apache\Apache\bin\pconvert.exe

The syntax for running pconvert is:

pconvert -s oas_private_key_file -d ias_private_key_file

For example:

prompt> pconvert -s privkey.der -d iaskey.pem

Table 1–2 Configuration Files

Oracle Application Server HTTP Listener Oracle9 iAS Oracle HTTP Server

owl.cfg – list of registered listeners and their
configuration settings

httpd.conf – primary (or sole)
server-wide configuration file

(You can choose to maintain file location
and translation information in
srm.conf , and security information in
access.conf , or to maintain all
directives in one file.)

site.app – site configuration file (no equivalent)

sv listenerName .cfg – listener
configuration file

(no equivalent)

wrb.app – process and cartridge configuration
file

(no equivalent)

resources.ora – configuration file for the
ORB

(no equivalent)
 Beta Draft Introduction to Oracle9i Application Server 1-7

Enterprise Services Migration
2. Generate an Oracle9iAS wallet file using the Oracle Application Server

certificate file and the ias_private_key file that you obtained from step 1

with the conversion tool, ssl2ossl or osslconvert . The full paths to the

tools are:

■ (UNIX) ORACLE_HOME/Apache/Apache/bin/ssl2ossl

■ (Windows) ORACLE_HOME\Apache\Apache\bin\osslconvert.exe

The syntax for running ssl2ossl on Unix is:
ssl2ossl -cert oas_certificate_file

-key ias_private_key_file
-wltpass password_for_wallet
-certpass password_for_oas_certificate_file
-chain oas_certificate_chain_file
-capath oas_certificate_authority_path
-cafile oas_certificate_authority_file
-wallet wallet_full_path
-ssowallet yes/no
-validate yes/no

The syntax for running osslconvert on Windows is:
osslconvert.exe -cert oas_certificate_file

-key ias_private_key_file
-wltpass password_for_wallet
-certpass password_for_oas_certificate_file
-chain oas_certificate_chain_file
-capath oas_certificate_authority_path
-cafile oas_certificate_authority_file
-wallet wallet_full_path
-ssowallet yes/no
-validate yes/no

Table 1–3 summarizes the parameters and their associated requirements for the

ssl2ossl or osslconvert conversion tool.

Table 1–3 Summary of ssl2ossl or osslconvert Tool Parameters

Parameter Description Requirement

cert your Oracle Application Server
certificate file

required

key the ias_private_key_file
you just obtained from step 1

required

certpass the password for the certificate optional
1-8 Migrating from Oracle Application Server Beta Draft

Enterprise Services Migration
Third-Party Web Server Support
Oracle9iAS uses Oracle HTTP Server and Oracle Application Server uses HTTP

Server as their Web listeners. However, many companies only use Microsoft

Internet Information Services (IIS) or iPlanet as their corporate standard Web server.

Both Oracle Application Server and Oracle9iAS support the third-party Web

servers, such as IIS and iPlanet.

wltpass the password for the wallet optional

chain the Oracle Application Server
certificate chain file

optional, but of chain, capath, or
cafile, at least one of these
parameters are required.

capath the Oracle Application Server
certificate authority path

optional, but of chain, capath, or
cafile, at least one of these
parameters are required.

cafile the Oracle Application Server
certificate authority file

optional, but of chain, capath, or
cafile, at least one of these
parameters are required.

wallet the full path of your wallet file optional, but the default path is:

ORACLE_HOME/Apache/Apache/conf/
ssl.wlt/0

ssowallet with a value of either yes or no optional, the default value is no

validate with a value of either yes or no

- If yes , then the tool will not generate
a wallet.

- If no , the tool will generate a wallet.

optional, the default value is no .

See Also: Oracle9i Application Server Security Guide in the

Oracle9iAS Documentation Library for details on ssowallet and

other security information

Table 1–3 Summary of ssl2ossl or osslconvert Tool Parameters

Parameter Description Requirement
 Beta Draft Introduction to Oracle9i Application Server 1-9

Enterprise Services Migration
1-10 Migrating from Oracle Application Server Beta Draft

Beta Draft Migrating JWeb & JServlet Applications to
2

Migrating JWeb & JServlet Applications to

OC4J

This chapter discusses migration of JWeb and JServlet applications from Oracle

Application Server to OC4J in the Oracle9iAS. Topics include:

■ JWeb and OC4J Differences

■ Migration Strategies

■ Code Modifications for JWeb Applications
OC4J 2-1

JWeb and OC4J Differences
JWeb and OC4J Differences
This section provides background information on JWeb and OC4J. It also describes

the differences between JWeb and OC4J applications.

Architecture
JWeb applications execute within the Oracle Application Server cartridge

infrastructure, while OC4J runs on a standard Virtual Machine.

JWeb Architecture
In Oracle Application Server, the HTTP listener receives a request for a JWeb

cartridge. The listener passes the request to the dispatcher, which communicates

with the Security or Web Request Broker (WRB). The WRB uses a URL mapping to

identify the cartridge instance to which the request should be sent. If no cartridge

instances exist for the requested cartridge, the cartridge server factory creates a

cartridge server process to instantiate the cartridge. In JWeb, the cartridge server

process loads a JVM, which runs a JWeb application (of the Oracle Application

Server application paradigm). Figure 2–1 depicts these components graphically.

Figure 2–1 Oracle Application Server Cartridge Infrastructure

HTTP Listener

Dispatcher

Web Request
Broker

JWeb Request

Cartridge
Instances

Cartridge Server Process
(JWeb application)

routes request to
available
cartridge
instance
2-2 Migrating from Oracle Application Server Beta Draft

JWeb and OC4J Differences
OC4J Architecture
OC4J consists of a Web container including servlet and JSP engines, EJB container,

J2EE services APIs (JNDI, JTA, JMS, and JAAS), and enterprise information systems

APIs (JDBC, SQLJ, J2EE connector architecture).

mod_oc4j is a dynamically loaded module of Oracle HTTP Server with the

purpose of routing requests through Oracle HTTP Server to OC4J processes. mod_
oc4j takes into account OC4J sessions information to route requests back to the

original OC4J process and to re-route failed session requests to other members of

the same OC4J Island when the original OC4J process is unreachable.

The mod_oc4j interacts with two components, Oracle Process Manager and

Notification System (OPMN) and OC4J. The mod_oc4j interacts with OC4J by

routing requests to it. OPMN starts Oracle HTTP Server, which starts mod_oc4j ,

and starts all OC4J processes. OPMN monitors each process that it starts and

periodically verifies that each process is reachable. If a process dies, or becomes

unreachable, OPMN will restart that process. In addition, OPMN communicates

OC4J process status to mod_oc4j so that mod_oc4j knows when OC4J processes

are started and stopped. The mod_oc4j uses this information to maintain an

internal OC4J process table for rapid request routing.

Figure 2–2 illustrates a one-to-many configuration. A one-to-many configuration,

consists of one Oracle HTTP Server listner and multiple OC4J instances. In

Figure 2–2, a single OC4J instance is communicating with two OC4J hosts. OC4J

Host 1 is running two servlet containers, and OC4J Host 2 is running one servlet

container. Three connections are open between the servlet containers and a single

mod_oc4j in the OC4J instance.

A servlet container provides the runtime environment to execute servlets

implementing the Servlet 2.3 Application Programming Interface (API)

specifications. It runs in a JVM process in the same or different host as the OC4J.

Each JVM has one servlet container, and the number of servlet containers is not

proportional to the number of Web servers (mod_oc4j modules). One mod_oc4j
can work with more than one servlet container and vice versa. Or, multiple mod_
oc4j modules can work with multiple servlet containers.

See Also: Oracle9iAS Containers for J2EE User’s Guide in the

Oracle9iAS Documentation Library
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-3

JWeb and OC4J Differences
Figure 2–2 AOC4J Architecture (one-to-many example)

Single Host Configuration
When a servlet container is located on the same machine as the Web server, you can

set up the mod_oc4j module to start or stop the servlet container and JVM when

the Web server starts or stops, respectively. The module performs all the necessary

tasks to gracefully shut down the JVM. In this scenario, mod_oc4j can also perform

failover by checking JVM status regularly and starting another JVM if the first one

becomes unavailable.

Life cycle
JWeb classes and OC4J applications have different life cycles.

JWeb Life Cycle
JWeb classes use the standard main() entry point to start their execution logic.

Their life cycle resembles that of a standard Java class in loading, linking,

initializing, and invoking main() .

See Also: Information on Java Virtual Machines from

http://java.sun.com/docs

Servlet Container

Oracle HTTP Server

mod_perl mod_oc4j mod_ossl

OC4J Host 1 OC4J Host 2

Servlet Container Servlet Container
2-4 Migrating from Oracle Application Server Beta Draft

JWeb and OC4J Differences
OC4J Life Cycle
In OC4J, Servlet life cycle is in compliance with Servlet 2.3 specifications. The life

cycle is defined by the javax.servlet.Servlet interface, which is implemented

directly or indirectly by all servlets. This interface has methods which are called at

specific times by the servlet engine in a particular order during a servlet’s lifecycle.

The init() and destroy() methods are invoked once per servlet lifetime, while

the service() method is called multiple times to execute the Servlet’s logic.

Figure 2–3 illustrates the servlet life cycle.

Figure 2–3 Servlet Life Cycle

Threading
The JWeb cartridge and OC4J servlet container support single or multiple threads of

execution, but the threading implementations are different.

JWeb Threading
Threading for the JWeb cartridge is defined in the Oracle Application Server

cartridge configuration by toggling the Stateless parameter. If the stateless

parameter is set to true , then a cartridge instance is shared by more than one

client. If the stateless perimeter is set to false , then it is not shared, and only one

client can access it at any one time. Also, if Oracle Application Server is in min/max

Instantiation

Implementation
service()

Destruction
destroy()

Initialization
init()

Servlet

(multiple calls)
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-5

JWeb and OC4J Differences
mode, the min/max cartridge servers and min/max threads values can be varied to

change the way multi-threading is implemented for the cartridge.

OC4J Threading
The OC4J servlet container is multi-threaded by default. The OC4J servlet container

manages the threads that service client requests. Each instance of a servlet class can

be given multiple threads of execution. In this case, a servlet instance is shared

between more than one client. Alternatively, you can specify a class to execute only

one thread at a time by having that class implement the

javax.servlet.SingleThread interface. In this case, a pool of instances of this

Servlet class is maintained and each instance is assigned to one client only at any

one time (instances are not shared).

Sessions
In the JWeb cartridge, you can enable client sessions using the OAS Node Manager.

In OC4J, in accordance with Servlet 2.3 specifications, only programmable sessions

are available. Consequently, if you are migrating a JWeb application that was

session-enabled by means other than code, you must implement the session

mechanism programmatically using the servlet session API. See "Session Control"

on page 2-9.

Dynamic Content Generation in HTML Pages
A JWeb Toolkit feature is available for generating dynamic content in HTML pages.

The JWeb Toolkit embeds special placeholders in an HTML page. When this file is

imported into a JWeb class as an oracle.html.HtmlFile object, the

setItemAt() method places the data generated from the code at the placeholder

locations.

Since this is a JWeb specific feature, it is not available in Oracle9iAS. If you would

like to embed dynamic information in HTML pages (scripting), consider using JSP

in Oracle9iAS.

code Modifications for JWeb Application

See Also: Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference in the Oracle9iAS Documentation Library
2-6 Migrating from Oracle Application Server Beta Draft

Migration Strategies
Migration Strategies
OC4J provides complete support for J2EE 1.2, as well as support for major J2EE 1.3,

such as complete Servlet 2.3, partial EJB 2.0 (message-driven beans), complete Jaas

and JCA support. If you have JWeb or JServlet applications deployed on Oracle

Application Server 4.x and wish to migrate to Oracle9iAS, you must modify your

JWeb or JServlet applications to comply with applicable specifications for OC4J.

Comparison of Compliance Standards
Table 2–1 presents the comparison of compliance standards between the JWeb and

JServlet cartridges in Oracle Application Server, and OC4J in Oracle9iAS. When

migrating JWeb or JServlet from Oracle Application Server to OC4J Servlet in

Oracle9iAS, you must modify the code to comply with Servlet 2.3 specifications.

* JSP 1.2 is being completed when preparing this document. Please consult your

product to verify actual specifications conplied.

Key JWeb & Servlet Methods
In order to migrate, you must understand and use the following key methods:

JWeb—contains a java class with a main() method, also known as JWeb Cartridge.

The infrastructure of JWeb maps a URL to this method.

Servlet—contains a java class that includes a few doGet() and doPut() methods,

specified by Sun Microsystems Inc., which map to a URL.

Table 2–1 Comparison of Compliance Standards for JWeb, JServlet, and OC4J

Standard Complied JWeb JServlet OC4J

Servlet Specifications NA 2.1 2.3

JSP Specifications NA NA 1.1*

See Also: http://java.sun.com for more information
regarding Servlet specifications:
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-7

Migration Strategies
Migration Approach
As a primary migration approach, you can call the main() method of the JWeb

Cartridge in the corresponding doGet() Servlet method.

Specifically, you must focus on the following aspects:

■ Logging APIs—Oracle9iAS does not support the Oracle Application Server

logging APIs. Instead, it uses the Servlet logging APIs. Therefore, you must

modify your code in JWeb cartridge to reflect the changes in logging APIs.

■ Utility APIs—Use JSP to write your utility APIs. Currently, oracle.html.*.
package is not available.

■ WRB Calls—You must use the standard servlet APIs to write your security

code since Oracle9iAS does not support most WRB APIs. For example, you can

use methods getClientCertificate() and getLogger() .

■ Session—see "Session Control" on page 2-9.

■ Application Thread—see "Application Threads" on page 2-10.

■ Logging—see "Logging" on page 2-10.

See Also: http://jakarta.apache.org/ecs/index.html
for more information regarding html.*. packages
2-8 Migrating from Oracle Application Server Beta Draft

Code Modifications for JWeb Applications
Code Modifications for JWeb Applications
To migrate JWeb applications to OC4J, you must modify code in these areas:

■ Session Control

■ Application Threads

■ Logging

Session Control
You can session-enable a JWeb application with the cartridge’s Client Session

parameter in the Node Manager Web Parameters form. This allows the static

parameters of an invoked class to contain per client data across calls. In OC4J, as per

the Servlet 2.3 API, session state is not kept in static variables of Servlet classes.

Instead, a session object is explicitly obtained to store session state using named

attributes.

In OC4J, there is no support for configurable sessions. Therefore, you must enable

sessions in code using the getSession() method in

javax.servlet.http.HttpServletRequest , as shown below:

HttpSession session = request.getSession(true);

State information for a session can be stored subsequently and retrieved, for

example, by the setAttribute(name, who) and getAttribute(name)
methods of javax.servlet.http.HttpSession , respectively.

session.setAttribute(“List”, new Vector());
Vector list = (Vector) session.getAttribute(“List”);

Session Timeout
The default session timeout for an OC4J container can be specified in the

session.config element in the XML deployment descriptors. A programmer can

use the getMaxInactiveInernal method in the HTTPSession interface. Use

setMaxInactiveInternal method to set the time-out value for a container.

Note: Do not use static data members to maintain session state in

OC4J (although this is a common practice in JWeb). Instead, use the

Servlet session API. The latter allows the Servlet container to use

memory more efficiently.
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-9

Code Modifications for JWeb Applications
The JWeb session time-out callback is not available in OC4J.

Application Threads
In JWeb, an application can manage threads using the

oracle.owas.wrb.WRBRunnable class. This class allows application threads to

access request and response information. For OC4J, you only need standard Java

thread management to manage application threads (the java.lang.Runnable
interface is used). For both JWeb and OC4J, using application threads is not

recommended because multi-threaded applications limit the effectiveness of the

load balancer.

Logging
In Oracle Application Server, JWeb applications log messages using the logger

service provided by the WRB. This service allows applications to write messages to

a central repository, such as a file system or database. The

oracle.owas.wrb.services.logger.OutputLogStream class interfaces

with the logger service.

In Oracle9iAS, OC4J generates diagnostic messages associated with Servlet logging

APIs. These logging files are located at:

ORACLE_HOME/j2ee/home/log/ digit digit_island-name /server.log

JWeb Toolkit Packages (JWeb API)
Oracle Application Server includes a JWeb toolkit containing proprietary Java

packages. If you used any of those packages in JWeb applications that you are

migrating to Oracle9iAS, you must modify the code to use Servlet 2.3 equivalent

classes and methods. If no equivalent functionality is available, you must rewrite

the code to implement the functionality provided by the JWeb packages.

Because some of the JWeb toolkit packages were designed specifically to interact

with Oracle Application Server components such as the WRB, the functionality in

these packages is not reproducible in the standard Servlet API. Consequently, the

migration process may also include some redesign of applications.

Table 2–2 through Table 2–8 list JWeb methods and their functional equivalents for

the following Servlet API classes:

Note: OC4J does not have log levels.
2-10 Migrating from Oracle Application Server Beta Draft

Code Modifications for JWeb Applications
■ Table 2–2, "JWeb Equivalents for javax.servlet.http.HttpServletRequest Class

Methods"

■ Table 2–3, "JWeb Equivalents for javax.servlet.ServletRequest Class Methods"

■ Table 2–4, "JWeb Equivalents for javax.servlet.ServletResponse Class Methods"

■ Table 2–5, "JWeb Equivalents for javax.servlet.ServletContext Class Methods"

■ Table 2–6, "JWeb Equivalents for javax.servlet.http.HttpUtils Class Methods"

■ Table 2–7, "JWeb Equivalents for Javax.servlet.ServletOutputStream Class

Methods"

■ Table 2–8, "JWeb Equivalents for javax.servlet.ServletInputStream Class

Method"

Table 2–2 JWeb Equivalents for javax.servlet.http.HttpServletRequest Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getHeader(String) getHeader(string)

oracle.owas.wrb.services.http.getCGIEnvironment(“AUTH_TYPE”) getAuthType()

oracle.owas.wrb.services.http.HTTP.getHeaders()1

1 return a hashtable of header names and values

getHeaderNames()2

2 return an enumeration of header names

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_INFO”) getPathInfo()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_TRANSLATED”) getPathTranslated()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“QUERY_STRING”) getQueryString()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REQUEST_METHOD”) getMethod()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_USER”) getRemoteUser()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SCRIPT_NAME”) getServletPath()

Table 2–3 JWeb Equivalents for javax.servlet.ServletRequest Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_TYPE”) getContentType()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_LENGTH”) getContentLength()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PROTOCOL”) getProtocol()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_ADDR”) getRemoteAddr()
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-11

Code Modifications for JWeb Applications
oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_HOST”) getRemoteHost()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_NAME”) getServerName()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PORT”) getServerPort()

oracle.owas.wrb.services.http.HTTP.getPreferredAcceptCharset() getCharacterEncoding()

oracle.owas.wrb.services.http.HTTP.getURLParameter(name) getParameter(string)

oracle.owas.wrb.services.http.HTTP.getURLParameters(name) getParameterValues(string)

Table 2–4 JWeb Equivalents for javax.servlet.ServletResponse Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.WRBWriter getWriter()

Table 2–5 JWeb Equivalents for javax.servlet.ServletContext Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment getServerInfo()

Use oracle.OAS.Services.Logger log(Exception, String)

log(String)

Table 2–6 JWeb Equivalents for javax.servlet.http.HttpUtils Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parsePostData(int, ServletInputStream)

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parseQueryString(String)

Table 2–3 JWeb Equivalents for javax.servlet.ServletRequest Class Methods

JWeb Method Servlet Method
2-12 Migrating from Oracle Application Server Beta Draft

Code Modifications for JWeb Applications
Table 2–7 JWeb Equivalents for Javax.servlet.ServletOutputStream Class Methods

JWeb Method Servlet Method

oracle.html.HtmlStream.print() javax.servlet.ServletOutputStream.print()

oracle.html.HtmlStream.println() avax.servlet.ServletOutputStream.println()

Table 2–8 JWeb Equivalents for javax.servlet.ServletInputStream Class Method

JWeb Method Servlet Method

oracle.owas.wrb.services.http.MultipartElement() javax.servlet.ServletInputStream.readLine()
 Beta Draft Migrating JWeb & JServlet Applications to OC4J 2-13

Code Modifications for JWeb Applications
2-14 Migrating from Oracle Application Server Beta Draft

Beta Draft Migrating Oracle Application Server Cartr
3

Migrating Oracle Application Server

Cartridges

This chapter compares Oracle Application Server cartridge functionality to

corresponding functionality in Oracle9iAS, and discusses considerations for

migrating cartridges to the Oracle9iAS infrastructure. The topics include:

■ Cartridge Types and Corresponding Oracle9iAS Modules

■ PL/SQL Migration

■ Perl Migration

■ LiveHTML Migration

■ CWeb Migration
idges 3-1

Cartridge Types and Corresponding Oracle9iAS Modules
Cartridge Types and Corresponding Oracle9 iAS Modules
Table 3–1 presents the equivalent Oracle Application Server cartridge types and

their Oracle9iAS components:

The migration strategy for each application cartridge is detailed in the following

sections.

Table 3–1 Cartridge Types

Oracle Application Server Cartridge Type Oracle9 iAS Equivalent

PL/SQL mod_plsql

Perl mod_perl

LiveHTML Apache SSI, and JSP

CWeb Custom Apache Modules, FastCGI, CGI,
Java JNI and PL/SQL Callouts

Note: Oracle Application Server uses Perl version 5.004_01, while

Oracle9iAS uses the uses Perl version 5.6.1. When code

modification is required, please use the appropriate Perl version.
3-2 Migrating from Oracle Application Server Beta Draft

PL/SQL Migration
PL/SQL Migration
You can migrate Oracle Application Server PL/SQL Cartridge applications to

Oracle9iAS mod_plsql . Both mod_plsql and PL/SQL Cartridge applications

provide similar support for building and deploying PL/SQL-based applications on

the Web.

The mod_plsql runs as an Oracle HTTP Server module. It delegates the servicing

of HTTP requests to PL/SQL programs, which execute their logic inside Oracle

databases.

If you are planning to migrate PL/SQL applications from Oracle Application Server

to Oracle9iAS, you should read Oracle9i Application Server mod_plsql User's Guide in

the Oracle9iAS Documentation Library to be familiar with the features in this

module.

Support for the several Oracle Application Server PL/SQL Cartridge features has

changed in Oracle9iAS PL/SQL. The rest of this section provides details on how to

migrate Oracle Application Server applications that use these features.

File Upload and Download
Table 3–2 summarizes the file upload and download features supported by Oracle

Application Server and Oracle9iAS.

Table 3–2 File Upload and Download Features Comparison

File Upload/Download Features
Oracle Application
Server Support

Oracle9 iAS
Support

Upload/Download of file as raw byte
streams without any character conversion

Yes Yes

Upload of file into column type: LONG RAW Yes Yes

Upload of file into column type: BLOB No Yes

Upload of file into column type: CLOB, NCLOB No Yes

Specify tables for upload of file for each
database access descriptor (DAD)

No - Uploads into
WEBSYS schema only

Yes

Compression/Decompression of file during
file upload or download

Yes No

Upload multiple files per form submission Yes Yes
 Beta Draft Migrating Oracle Application Server Cartridges 3-3

PL/SQL Migration
Uploaded File Document Format
Oracle Application Server PL/SQL Cartridge and Oracle9iAS mod_plsql both

support uploading files. However, they use different document table schemas.

Users with uploaded files on Oracle Application Server who wish to migrate to

Oracle9iAS must convert their files using the oas2ias migration tool.

The oas2ias tool performs two functions:

■ Mapping data from the Oracle Application Server tables to the Oracle9iAS

tables while maintaining the uploaded content and the content description.

■ Deflating compressed content in Oracle Application Server before migrating to

Oracle9iAS. This version of Oracle9iAS does not support

compression/decompression for uploaded files (see the previous section for

further details).

The oas2ias tool reads all the rows from the OWS_CONTENT table and populates

the content and attributes to a document table you specify.

Table 3–3 shows how the columns in the Oracle9iAS document table derive their

values from Oracle Application Server.

Note: All Oracle Application Server features are supported in

Oracle9iAS, except file compression/decompression . Users

with compressed uploaded files in Oracle Application Server do

not need to decompress their files manually. These files will be

automatically decompressed and uploaded in an uncompressed

format into the Oracle9iAS Document Table (see Table 3–3). This

process is performed by the oas2ias file migration tool (see

"Using the oas2ias Tool" on page 3-5).

See Also: Oracle9i Application Server mod_plsql User's Guide in the

Oracle9iAS Documentation Library

Table 3–3 Derived Column Values

Column in Oracle9 i Application Server
Document Table

Oracle Application Server table.column
Value

NAME ows_object.name

MIME_TYPE ows_fixed_attrib.content_type

DOC_SIZE ows_content.length
3-4 Migrating from Oracle Application Server Beta Draft

PL/SQL Migration
The content from Oracle Application Server will always be stored in the BLOB_
CONTENT column of the Oracle9iAS document table. The tool will also ensure that

the data loaded into the Oracle9iAS doc table is always uncompressed data. To do

this, if the data is compressed (this is verified by checking the entries in the OWS_
ATTRIBUTES table), the data is uncompressed using the zlib library, and then

loaded to the document table in Oracle9iAS.

Using the oas2ias Tool
You only need to run the oas2ias tool once to convert all Oracle Application

Server files to Oracle9iAS format with the following steps:

1. Make sure you have a current backup of all Oracle Application Server uploaded

files.

2. Create the document table for Oracle9iAS. You can create this as any database

user.

SQL> CREATE TABLE my_doc_table (
NAME VARCHAR2(128) UNIQUE NOT NULL,
MIME_TYPE VARCHAR2(128),
DOC_SIZE NUMBER,
DAD_CHARSET VARCHAR2(128),
LAST_UPDATED DATE,
CONTENT_TYPE VARCHAR2(128),
CONTENT LONG RAW,
BLOB_CONTENT BLOB);

3. Verify the environment

■ Oracle Application Server Release 4.0.7.1 or later

■ Oracle9iAS Release 2 (9.0.2) or later

DAD_CHARSET ows_fixed_attrib.character_set

LAST_UPDATED ows_object.last_modified

CONTENT_TYPE “BLOB”

CONTENT NULL

BLOB_CONTENT OWS_CONTENT.content

Table 3–3 Derived Column Values

Column in Oracle9 i Application Server
Document Table

Oracle Application Server table.column
Value
 Beta Draft Migrating Oracle Application Server Cartridges 3-5

PL/SQL Migration
■ Oracle database version 9.x or later

■ ORACLE_HOMEis set to the Oracle9iAS Oracle Home directory.

■ For Windows, the system path contains ORACLE_HOME\bin

■ For UNIX, the PATH environment variable contains ORACLE_HOME/bin

■ For UNIX, the LD_LIBRARY_PATH environment variable contains both

ORACLE_HOME/lib and /usr/java/lib

4. Create TNS aliases to the Oracle Application Server database (where the

websys schema exists) and the Oracle9iAS database (where the Oracle9i
Application Server user schema with the my_doc_table table exists). Store the

aliases in the following directory:

■ (UNIX) ORACLE_HOME/network/admin/tnsnames.ora

■ (Windows) ORACLE_HOME\network\admin\tnsnames.ora

The format for a TNS alias in this file is:
alias =

(DESCRIPTION =
(ADDRESS =

(PROTOCOL = TCP)
(Host = hostname)
(Port = port_number)

)
(CONNECT_DATA = (SID = sid))

)

See your database documentation for more information on TNS aliases.

5. Run the oas2ias tool which can be found in the bin directory under

ORACLE_HOME in your Oracle9iAS installation. The tool will prompt for the

following parameters:

Parameter Description

websys_password password for the websys user

websys_connstr connect string for the Oracle Application Server database

ias_user_name database user name for the schema containing the Oracle9iAS
document table created in step 2

ias_password password for ias_user_name

ias_connstr connect string for the mod_plsql database
3-6 Migrating from Oracle Application Server Beta Draft

PL/SQL Migration
The following is a sample run of oas2ias :

Welcome to the OAS to iAS migration Utility
Please enter the following parameters:
WEBSYS password: manager
OAS database connect string (<ENTER if local database>: db
iAS database user: oracle
iAS database user's password: welcome
iAS database connect string <ENTER if local database>: db
iAS doc table: my_doc_table

Transferred file : C:\TEMP\upload.htm
Length of file : 422
Transferred file : C:\Tnsnames.ora
Length of file : 2785
Transferred file : C:\rangan\mails1.htm
Length of file : 717835
Freeing handles ...

6. This completes the transfer of the files to an Oracle9iAS document table and the

files are now available for access using Oracle9iAS mod_plsql .

Custom Authentication
Custom Authentication is used in Oracle Application Server for applications that

want to control the access themselves (that is within the application itself). The

application authenticates the users in its own level and not within the database

level.

The mod_plsql also supports custom authentication.

Flexible Parameter Passing
The flexible parameter passing scheme allows you to overload PL/SQL procedures.

This allows you to reuse the same procedure name but change the procedure’s

behavior depending on how many parameters a form passes to the procedure.

ias_doc_table name of the Oracle9iAS doc table created in step 2

See Also: Oracle9i Application Server mod_plsql User's Guide in the

Oracle9iAS Documentation Library

Parameter Description
 Beta Draft Migrating Oracle Application Server Cartridges 3-7

PL/SQL Migration
Both Oracle Application Server and Oracle9iAS support flexible parameter passing.

To use flexible parameter passing in the mod_plsql , prefix the procedure name

with an exclamation point (!) in the invoking URL.

For example, if the following URL invokes your Oracle Application Server

procedure:

http:// host / virtual_path /procedure?x=1&y=2

Then the URL that invokes your mod_plsql procedure will be:

http:// host / virtual_path / ! procedure?x=1&y=2

Positional Parameter Passing
The Oracle Application Server PL/SQL cartridge supports a positional parameter

passing scheme. This feature is not supported in Oracle9iAS and cannot be used.

Executing SQL Files
In addition to running PL/SQL procedures stored in the database, the Oracle

Application Server PL/SQL cartridge can run PL/SQL source files from the file

system. The source file contains an anonymous PL/SQL block that does not define a

function or procedure. This feature enables users to execute PL/SQL statements

without storing them in the database. This is useful when prototyping PL/SQL

code since it saves having to reload procedures into the database each time they are

edited.

Oracle9iAS does not support this feature. You must assign names to the anonymous

blocks and compile them as stored procedures in the database.

See Also: Oracle9i Application Server mod_plsql User's Guide in the

Oracle9iAS Documentation Library

See Also: Oracle9i Application Server mod_plsql User's Guide in the

Oracle9iAS Documentation Library
3-8 Migrating from Oracle Application Server Beta Draft

Perl Migration
Perl Migration
This section explains how Perl cartridge applications are implemented in the Oracle

Application Server, and how you can migrate them to Oracle9iAS.

Perl Applications under Oracle Application Server
There are two types of Perl applications that can run under Oracle Application

Server:

■ Perl scripts running as a CGI scripts

■ Perl scripts using the Perl cartridge

Perl scripts that run under Oracle Application Server as CGI scripts use a standard

Perl interpreter that must be installed on the system as a Perl executable, separate

from the Oracle Application Server installation.

Perl scripts that run under Oracle Application Server using the Perl cartridge use a

Perl interpreter contained in the cartridge, and based on standard Perl version

5.004_01. The interpreter is built as the following:

■ (UNIX only) libperlctx.so —a shared object

■ (Windows only) perlnt40.dll —a shared library

The Perl cartridge links with the shared object or library at runtime.

Differences between Cartridge Scripts and CGI Scripts
Scripts written for the Perl cartridge differ from scripts written for a CGI

environment, because of how the cartridge runs the interpreter. The Perl cartridge

■ Maintains a persistent interpreter, and pre-compiles and caches Perl scripts

(thus achieving better performance).

■ Redirects stdin and stdout to the WRB client input/output (for example, the

browser).

■ Redirects stderr to the WRB logger.

■ Returns additional CGI environment variables to the Perl interpreter whenever

it calls for system environment variables.

■ Supports the system call instead of the fork call. The system call modifies the

implementation of the Perl interpreter to redirect child process output to the

WRB client input/output.
 Beta Draft Migrating Oracle Application Server Cartridges 3-9

Perl Migration
■ Supports error logging.

■ Supports performance instrumentation.

You can run your Perl scripts developed for Oracle Application Server under the

CGI environment in Oracle9iAS CGI environment, as well, after modifying the

interpreter line of your Perl scripts. You may also modify your Perl scripts for Perl

cartridge in Oracle Application Server in order to run under Oracle9iAS.

Migrating Perl Cartridge Scripts
This section includes a discussion of Oracle Application Server and Oracle9iAS Perl

implementations, and code modifications for migrating Perl scripts to Oracle9iAS.

The Oracle9 iAS Perl Environment
The Oracle9iAS Perl environment is based on mod_perl . Like the Oracle

Application Server implementation, mod_perl provides a persistent Perl

interpreter embedded in the server and a code caching feature that loads and

compiles modules and scripts only once, serving them from the cache. Like the

Oracle Application Server Perl cartridge, mod_perl redirects stdout to the

listener.

Perl Modules
Table 3–4 presents comparisons of the third party Perl modules associated with both

Oracle Application Server and Oracle9iAS. In order to migrate applications that use

these modules from Oracle Application Server to Oracle9iAS, you must acquire

these modules and install them. The files are available from:

http://www.cpan.org

See Also: Oracle9i Application Server mod_plsql User's Guide
documentation in the Oracle9iAS Documentation Library

Table 3–4 Comparison of Third Party Perl Modules

Perl Module
Version in Oracle
Application Server Version in Oracle9 iAS

DBI 0.79 1.20

DBD::Oracle 0.44 1.12

LWP or libwww-perl 5.08 5.53_94

CGI 2.36 2.752
3-10 Migrating from Oracle Application Server Beta Draft

Perl Migration
Variations from Oracle Application Server Perl Cartridge
The following points should be noted between the Oracle Application Server Perl

cartridge and mod_perl in Oracle9iAS.

Namespace Collision
Both Oracle Application Server and Oracle9iAS cache compiled Perl scripts. If not

properly handled, the caching of multiple Perl scripts can lead to namespace

collisions. To avoid this, both Oracle Application Server and Oracle9iAS translate

the Perl script file name into a unique packaging name, and then compile the code

into the package using eval . The script is then available to the Perl application in

compiled form, as a subroutine in the unique package name.

MD5 1.7 2.14

IO 1.15 1.20

NET 1.0502 1.0703

Data-Dumper 2.07 NA

Apache DBI NA 0.88

Devel::Symdump NA 2.01

Digest::HMAC NA 1.01

Digest::MD2 NA 2.00

Digest::SHA1 NA 2.00

HTML::Parser NA 3.25

MIME::Base64 NA 2.12

PlRPC NA 0.2015

Storable NA 1.0.12

Net::Daemon NA 0.35

Time::HiRes NA 1.20

URI NA 1.15

Table 3–4 Comparison of Third Party Perl Modules

Perl Module
Version in Oracle
Application Server Version in Oracle9 iAS
 Beta Draft Migrating Oracle Application Server Cartridges 3-11

Perl Migration
Oracle Application Server and Oracle9iAS form the package name differently.

Oracle Application Server cannot cache subroutines with the same name.

Oracle9iAS creates the package name by prepending Apache::ROOT:: and the

path of the URL (substituting "::" for "/ ").

Using cgi-lib.pl
Oracle Application Server Perl scripts that use cgi-lib.pl must be modified to

use a version of the library customized for the Perl cartridge. This is not necessary

for Oracle9iAS.

Pre-loading Modules
Oracle Application Server Perl scripts may contain instructions that need not be

executed repetitively for each request of the script. Performance improves if these

instructions are run only once, and only the necessary portion is run for each

request of the Perl script.

In Oracle Application Server, perlinit.pl pre-loads modules and performs

initial tasks. This file is executed only once when the cartridge instance starts up. By

default, there are no executable statements in this file. This file is specified by the

Initialization Script parameter in the Perl Cartridge Configuration form.

The corresponding pre-load script for Oracle9iAS is startup.pl .

See Also: http://cgi-lib.stanford.edu/cgi-lib for more

information on cgi-lib.pl

See Also: http://perl.apache.org for more information on

mod_starup.pl
3-12 Migrating from Oracle Application Server Beta Draft

LiveHTML Migration
LiveHTML Migration
In Oracle Application Server, you can generate dynamic content using the

LiveHTML cartridge by embedding Server-Side Includes (SSI) and scripts in HTML

pages, or by using Perl for scripting. If you are migrating LiveHTML applications to

Oracle9iAS, you must migrate LiveHTML SSI to Apache SSI. Currently the only

equivalent to LiveHTML embedded scripts in Oracle9iAS is JSP.

SSI
The following table lists the SSIs available in Apache and LiveHTML.

The syntax for specifying an SSI in Apache or LiveHTML is the same. For example:

<!--#config sizefmt="bytes" -->

SSI in Apache is implemented by the mod_include module. This module is

compiled into the OC4J by default.

In addition to the elements shown in the table above, Apache SSI also includes

variable substitution and flow control elements.

Table 3–5 List of SSIs in Apache and LiveHTML

Apache SSIs LiveHTML SSIs

config config

echo echo

exec exec

fsize fsize

flastmod flastmod

include include

printenv not available

set not available

not available request

Note: The space before the closing terminator (-->) is required.
 Beta Draft Migrating Oracle Application Server Cartridges 3-13

LiveHTML Migration
Scripts
In Oracle Application Server, you can use the LiveHTML cartridge to embed Perl

scripts in HTML files. There is no equivalent functionality in Oracle9iAS. However,

you have the following choices to do so.

1. Keep the logic in Perl and use mod_perl —for example, you can change the

HTML piece to printf() .

2. Keep the HTML, but change the programming language to PL/SQL.

3. Download from the Web for tools that allow using Perl as a scripting language

with HTML, for example at http://perl.apache.org/#appservers .

4. Keep the HTML, but change the programming language to Java, for example

JSP—Oracle9iAS complies with JSP 1.1 specifications. To migrate you

LiveHTML application to Oracle9iAS, you must do the following:

a. Migrate from the LiveHTML application model to the JSP application

model.

b. Migrate LiveHTML tags to JSP tags.

c. Rewrite the Perl code as Java code.

Note: The tools run on top of mod_perl . Therefore, this

migration approach is the easiest, comparing to other three

approaches listed in this section.

Note: If your LiveHTML application uses Web Application

Objects in Oracle Application Server, you must implement this

functionality as embedded Java code, or as JavaBean classes, and

declare them with the <jsp:useBean> tag in JSP.

See Also: Oracle JavaServer Pages Developer’s Guide and Reference in

the Oracle9iAS Documentation Library

Note: Oracle9iAS does not provide WRB APIs.
3-14 Migrating from Oracle Application Server Beta Draft

CWeb Migration
CWeb Migration
In Oracle Application Server, you can use the CWeb Cartridge to:

■ create custom cartridges

■ develop applications that other cartridges invoke

The migration paths from Oracle Application Server CWeb Cartridges to

Oracle9iAS include:

■ Using FastCGI

■ creating a custom Oracle9iAS module

Using FastCGI
CWeb cartridge is essentially a .DLL or a .so library. You can integrate into the

Oracle Application Server environment by specifying the entry point of this library

in an administration page and map it to a Web URL. The Oracle Application Server

infrastructure invokes the entry point of the library (CWeb cartridge) when a

browser requests that URL. In addition, the CWEB cartridge makes several API

from the WRB infrastructure available to access the client information, and other

environment information.

CGI is a standard supported by all Web servers, including Oracle9iAS. When a URL

that maps to the "CGI program" is accessed, the Web server will start that program

and return its results to the browser.

Therefore, one simple way to migrate CWeb is to write a simple C program that

invokes the entry point of the CWeb cartridge during the start-up.

The WRB API and other Oracle Application Server infrastructure dependencies

will, of course, not be available in the new Oracle9iAS environment. If these WRB

API or capabilities were used, the CWeb cartridge must be modified to use

alternative API.

From an infrastructure standpoint, the CWeb cartridges were load balanced. New

instances were not started on each request.

However, CGI causes the invocation of a new program on each request and does

not support program reuse. Beginning Oracle9iAS v1.0.2.2, this problem is solved

with the introduction of FastCGI.

FastCGI is an "overloaded" term referring to the specifications, protocol, API, and

also the implementation. In summary, it spawns a separate process and keeps it

alive and independent of the life-style of the requests. FastCGI programs must
 Beta Draft Migrating Oracle Application Server Cartridges 3-15

CWeb Migration
conform to certain standards for starting point and events to listen to, which is

similar to a Java Servlet specification. Their life-cycle can, then, be controlled by the

infrastructure.

Migrating a CWeb cartridge is similar to writing a FastCGI program, which

conforms to the specifications and in turn calls the entry point of the CWeb

cartridge. For FastCGI examples, refer to http://www.fastcgi.com .

Creating a Custom Oracle9 iAS Module
If you used CWeb to create custom cartridges you can also consider creating a

custom Oracle9iAS module.

If you use CWeb to invoke C programs, you have the following options:

■ CGI scripts: stand-alone C programs generating Web content with println
statements.

■ Java JNI: Java Servlets or JSP that call CWeb routines from OC4J

■ PL/SQL callouts: PL/SQL applications that call CWeb routines from Oracle

Database Cache or Oracle9i.

Note: The same limitations of WRB API mentioned earlier still

apply, since the Oracle9iAS does not provide WRB APIs.

Note: Oracle9iAS does not provide WRB and CWeb APIs.
3-16 Migrating from Oracle Application Server Beta Draft

Beta Draft Migrating EJB, ECO/Java and JCORBA Applica
4

Migrating EJB, ECO/Java and JCORBA

Applications

This chapter provides information on migrating EJB, ECO for Java and JCO

applications from the Oracle Application Server to OC4J in Oracle9iAS. The topics

include:

■ Migrating EJBs to OC4J

■ Migrating ECO/Java to OC4J

■ Migrating JCORBA to OC4J
tions 4-1

Migrating EJBs to OC4J
Migrating EJBs to OC4J
To migrate EJBs from Oracle Application Server 4.x to OC4J, you must modify code

in the following areas:

■ Deployment Descriptors

■ Client Code

■ Logging (Server Code) (if applicable)

The following sections describe these changes.

Deployment Descriptors
OC4J conforms to XML file configuration that complies to J2EE 1.2 specifications.

Client Code
Changes to the client code are made in the initial context call using JNDI. The

hashtable passed to the initial context call must contain all of the following

properties:

■ javax.naming.Context.URL_PKG_PREFIXES

■ javax.naming.Context.SECURITY_AUTHORIZATION

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

Note: Oracle Application Server EJB does not comply to EJB

standards, while Oracle9iAS EJB complies with complete EJB 1.2

and partial EJB 2.0 specifications. Please modify your code

accordingly during the migration.

See Also: Oracle9iAS Containers for J2EE Enterprise JavaBeans
Developer’s Guide and Reference in the Oracle9iAS documentation

library

See Also: Chapter 3, "Advanced Configuration, Development, and
Deployment" in Oracle9iAS Containers for J2EE User’s Guide in the
Oracle9iAS documentation library
4-2 Migrating from Oracle Application Server Beta Draft

Migrating EJBs to OC4J
You must also change the URL that accesses your EJB home to the OC4J:

ORMI://<host>:<port>/<path>/<bean>

For example:

ORMI://myhost:2481/test/myBean
ORMI://host/port/est/bean

Logging (Server Code)
If application logging was done in Oracle Application Server, remove all references

to oracle.oas.ejb.Logger from your EJB code.
 Beta Draft Migrating EJB, ECO/Java and JCORBA Applications 4-3

Migrating ECO/Java to OC4J
Migrating ECO/Java to OC4J
When migrating ECO for Java (ECO/Java) in Oracle Application Server to OC4J in

Oracle9iAS, you must change server code described in this section, as well as to

change deployment descriptors and client code described in the previous section for

EJB migration.

To make your ECO/Java components compatible with OC4J, you must modify the

implementation file, the remote interface file, the home interface file, and

deployment descriptors.

Remote Interface
Change the remote interface to extend javax.ejb.EJBObject instead of

oracle.oas.eco.ECOObject . Each method must throw

java.rmi.RemoteException .

Home Interface
Change the home interface to extend javax.ejb.EJBHome instead of

oracle.oas.eco.ECOHome .

The created method must throw javax.ejb.CreateException and

java.rmi.RemoteException instead of

oracle.oas.eco.CreateException .

Implementation Class
Make the following changes to the implementation class:

1. Remove all occurrences of, and references to, oracle.oas.eco.Logger .

2. Change all occurrences of oracle.oas.eco.* to javax.ejb.* .

3. Change ECOCreate method to ejbCreate method.

4. Change ECORemove method to ejbRemove method.

5. Change ECOActivate method to ejbActivate method.

6. Change ECOPassivate method to ejbPassivate method.

7. OC4J uses XML files for deployment, you have to create appropriate

deployment files.
4-4 Migrating from Oracle Application Server Beta Draft

Migrating JCORBA to OC4J
Migrating JCORBA to OC4J
Oracle Application Server versions 4.0.6 and 4.0.7 provided a component model,

Java CORBA Objects (JCO), which is a precursor to the ECO/Java model.

Oracle9iAS does not support CORBA objects. You must recode your CORBA objects

as EJBs. This section discusses migration from JCO in Oracle Application Server to

OC4J in Oracle9iAS.

To migrate to OC4J, you must modify the server and client code as discussed in this

section. To modify the server code, you must modify the remote interface, create a

home interface, modify the JCORBA object implementation, and make parameters

serializable. You must also modify the deployment descriptors as discussed in

"Deployment Descriptors" on page 4-2.

Remote Interface
Make the following changes to the remote interface:

1. Convert all occurrences of org.omg.CORBA.Object or

oracle.oas.jco.JCORemote to javax.ejb.EJBObject .

2. Throw java.rmi.RemoteException for all methods in the interface.

Home Interface
You must to create a home interface, as defined in the EJB specification. The

following is an example.

import javax.ejb.*;
import java.rmi.RemoteException;
public interface ServerStackHome extends EJBHome
{

public ServerStackRemote create() throws CreateException, RemoteException;
}

Object Implementation
Complete the following steps to migrate the implementation class:

1. Change import oracle.oas.jco.* to import javax.ejb.* .
 Beta Draft Migrating EJB, ECO/Java and JCORBA Applications 4-5

Migrating JCORBA to OC4J
2. Check that the class implements javax.ejb.SessionBean , or

javax.ejb.EntityBean .

3. Remove any logger references.

4. Move any initialization operations to the ejbCreate() method.

5. Save the session context passed into the setSessionContext() method in an

instance variable.

6. Ensure that all public methods in the class throw

java.rmi.RemoteException .

7. Change any ObjectManager type to SessionContext type. Table 4–1 maps

the methods in the ObjectManager class to methods in the SessionContext class.

Make Parameters Serializable
If any user-defined parameters are being passed in the remote interface, ensure that

the classes implement java.io.Serializable .

Note: The JCORBA Lifecycle is not supported within OC4J. If the

JCORBA object implements oracle.oas.jco.Lifecycle , you

must remove it.

Table 4–1 ObjectManager and SessionContext Methods

SessionContext Method ObjectManager Method

getEnvironment() getEnvironment()

Parameter passed to setSessionContext() getObjectManager()

getEJBObject() getSelf()

getEJBObject().remove() revokeSelf()

getUserTransaction() getCurrentTransaction()
4-6 Migrating from Oracle Application Server Beta Draft

Index

A
administration, 1-6

Apache modules, 3-15

application threads, 2-10

availability, 1-5

C
C cartridge, 3-15

certificates, 1-7

CGI, 3-2

environment variables, 3-9

scripts, 3-16

classes, 2-10

client code, 4-2

configuration files, 1-6

conversion tool, 1-8

custom Apache module, 3-2

custom authentication, 3-7

custom cartridges, 3-15

custom module, 3-16

CWeb, 3-15

D
data members, 2-9

DBD, 3-10

DBI, 3-10

deployment descriptors, 4-2

E
enterprise services migration, 1-4

eval, 3-11

executing SQL files

PL/SQL, 3-8

F
FastCGI, 3-15

fault tolerance, 1-5

file

download, 3-3

upload, 3-3

flexible parameter passing, 3-7

H
home interface, 4-4, 4-5

HTML

dynamic content, 2-6

HTTP

listener, 2-2

server, 1-4

I
IIS, 1-9

implementation class, 4-4

Initialization Script parameter, 3-12

interface

home, 4-4, 4-5

remote, 4-4, 4-5

iPlanet, 1-9
Beta Draft Index-1

J
Java JNI, 3-16

JNDI, 4-2

JServ

defined, 2-7

JServlet, 2-7

JWEB

cartridge

enabling sessions, 2-6

Client Session parameter, 2-9

logging, 2-10

session timeout, 2-10

session-enabled applications, 2-6

toolkit, 2-6, 2-10

JWeb

life cycle, 2-4

method, 2-7

threading, 2-5

L
libperlctx.so, 3-9

libwww-perl, 3-10

LiveHTML migrate to SSI, 3-13

load balancing, 1-6

logger service, 2-10

logging, 4-3

LWP, 3-10

M
MD5, 3-11

methods

create, 4-4

ECO, 4-4

ejb, 4-4

javax.servlet.http.HttpServletRequest class, 2-11

javax.servlet.http.HttpSession, 2-9

javax.servlet.http.HttpUtils class, 2-12, 2-13

javax.servlet.ServletContext class, 2-12

javax.servlet.ServletRequest class, 2-11, 2-12

ObjectManager, 4-6

public, 4-6

SessionContext, 4-6

migrate

certificates, 1-7

CWeb, 3-15

EJB to OC4J, 4-2

JCORBA to OC4J, 4-5

LiveHTML, 3-13

Perl cartridge scripts, 3-10

Perl cartrige applications, 3-9

PL/SQL to mod_plsql, 3-3

mod_jserv

configuration, 2-4

failover, 2-4

in Apache JServ architecure, 2-4

mod_perl, 3-2, 3-10

in Apache JServ architecture, 2-4

mod_plsql, 3-2, 3-7

authentication, 3-7

derived column values, 3-4

file upload and download features, 3-3

oas2ias tool, 3-4, 3-5

SQL files, 3-8

mod_ssl

in Apache JServ architecture, 2-4

N
NET, 3-11

O
OAS

component migration options, 1-3

components, 2-10

Java CORBA object (JCO), 4-5

logger service, 4-2, 4-3, 4-6

migrating EJBs from, 4-2

migrating JCO to EJB, 4-5

migrating JServlets from, 2-7

Node Manager, 2-6, 2-9

Perl Cartridge Configuration, 3-12

Perl implementation, 3-9

Web Parameters form, 2-9

OAS Perl, 3-10

oas2ias migration tool, 3-4, 3-5

object inplementation, 4-5

OC4J, 1-5
Index-2 Beta Draft

life cycle, 2-4

multi-host configuration, 2-4

single host configuration, 2-4

threading, 2-5

OpenSSL, 1-7

Oracle9iAS, 1-2

Oracle9iAS Modules, 3-2

oracle.owas.wrb.services.logger.OutputLogStream

class, 2-10

oracle.owas.wrb.WRBRunnable class, 2-10

osslconvert, 1-7

P
package name, 3-11

parameter passing, 3-7

parameters

serializable, 4-6

user-defined, 4-6

pconvert, 1-7

Perl

environment, 3-10

modules, 3-10

scripts

run as CGI, 3-9

using Perl cartridge, 3-9

Perl scripts

namespace collision, 3-11

performance, 3-9

perlinit.pl, 3-12

perlnt40.dll, 3-9

PL/SQL

flexible parameter passing, 3-7

PL/SQL callouts, 3-16

preloading modules, 3-12

private keys, 1-7

R
remote interface, 4-4, 4-5

S
scalability, 1-4

security, 1-7

certificates, 1-7

serializable parameters, 4-6

server code, 4-3

Servlet

method, 2-7

session

context, 4-6

state, 2-9

session timeout, 2-9

ssl2ossl, 1-7

static data members, 2-9

T
third party web server

IIS, 1-9

iPlanet, 1-9

threading, 2-5

threads, application, 2-10

tools

certificate tools, 1-7

osslconvert, 1-7

pconvert, 1-7

ssl2ossl, 1-7

W
Web Request Broker (WRB), 3-15, 3-16

cartridge requests and, 2-2

client, 3-9

defined, 2-2

logger service, 2-10

OAS components and, 2-10
 Beta Draft Index-3

Index-4 Beta Draft

	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Oracle9i Application Server
	What is Oracle9i Application Server?
	Oracle Application Server Component Migration Options
	Enterprise Services Migration
	Overview
	Scalability
	HTTP Server
	OC4J Container

	Availability and Fault Tolerance
	Load Balancing
	Administration
	Security
	Migrating Certificates

	Third-Party Web Server Support

	2 Migrating JWeb & JServlet Applications to OC4J
	JWeb and OC4J Differences
	Architecture
	JWeb Architecture
	OC4J Architecture
	Single Host Configuration

	Life cycle
	JWeb Life Cycle
	OC4J Life Cycle

	Threading
	JWeb Threading
	OC4J Threading

	Sessions
	Dynamic Content Generation in HTML Pages

	Migration Strategies
	Comparison of Compliance Standards
	Key JWeb & Servlet Methods
	Migration Approach

	Code Modifications for JWeb Applications
	Session Control
	Session Timeout

	Application Threads
	Logging
	JWeb Toolkit Packages (JWeb API)

	3 Migrating Oracle Application Server Cartridges
	Cartridge Types and Corresponding Oracle9iAS Modules
	PL/SQL Migration
	File Upload and Download
	Uploaded File Document Format
	Using the oas2ias Tool
	Custom Authentication
	Flexible Parameter Passing
	Positional Parameter Passing
	Executing SQL Files

	Perl Migration
	Perl Applications under Oracle Application Server
	Differences between Cartridge Scripts and CGI Scripts

	Migrating Perl Cartridge Scripts
	The Oracle9iAS Perl Environment
	Perl Modules

	Variations from Oracle Application Server Perl Cartridge
	Namespace Collision
	Using cgi-lib.pl
	Pre-loading Modules

	LiveHTML Migration
	SSI
	Scripts

	CWeb Migration
	Using FastCGI
	Creating a Custom Oracle9iAS Module

	4 Migrating EJB, ECO/Java and JCORBA Applications
	Migrating EJBs to OC4J
	Deployment Descriptors
	Client Code
	Logging (Server Code)

	Migrating ECO/Java to OC4J
	Remote Interface
	Home Interface
	Implementation Class

	Migrating JCORBA to OC4J
	Remote Interface
	Home Interface
	Object Implementation
	Make Parameters Serializable

	Index

