
Oracle9i OLAP Services

Developer’s Guide to the OLAP DML

Release 1 (9.0.1)

June 2001

Part No. A86720-01

Oracle9i OLAP Services Developer’s Guide to the OLAP DML, Release 1 (9.0.1)

Part No. A86720-01

Copyright © 1999, 2001 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. ix

Preface.. xi

Conventions xiii
Documentation Accessibility .. xiv

1 Basic Concepts

What Is the OLAP DML?... 1-1
Using the OLAP DML.. 1-5
How Do I Use the OLAP DML to Analyze Data? .. 1-6
Where Do I Go From Here? .. 1-9

2 Defining and Working with Analytic Workspaces

Defining an Analytic Workspace... 2-2
How to Gain Access to an Analytic Workspace .. 2-4
Gaining Access to a Workspace from OLAP Worksheet... 2-4
Gaining Access to a Workspace from a Java Application ... 2-6
Using the OLAP DML to Work with Analytic Workspaces ... 2-9
Saving Analytic Workspace Changes ... 2-13
Minimizing Analytic Workspace Growth.. 2-14
Sharing Analytic Workspaces... 2-17
Working with AUTOGO Programs... 2-19
Adding Security to an Analytic Workspace... 2-20
Obtaining Analytic Workspace Information... 2-23

iv

3 Defining Data Objects

Overview: Defining OLAP DML objects ... 3-1
Defining Dimensions... 3-4
Defining Relations ... 3-7
Defining Variables.. 3-11
Defining Variables That Handle Sparse Data Efficiently... 3-15
Defining Hierarchical Dimensions and Variables That Use Them .. 3-20
Defining Metadata.. 3-23
Changing the Definition of an Object .. 3-24

4 Working with Expressions

OLAP DML Data Types ... 4-2
Using OLAP DML Objects in Expressions .. 4-6
OLAP DML Operators ... 4-10
Introducing Expressions .. 4-11
Expressions and Dimensionality ... 4-14
Specifying a Single Value for the Dimension of an Expression.. 4-16
Using Functions in Expressions ... 4-22
Numeric Expressions.. 4-23
Text Expressions 4-27
Boolean Expressions ... 4-28
Conditional Expressions.. 4-37
Substitution Expressions ... 4-39
Working with NA Values .. 4-40

5 Populating OLAP DML Data Objects

Overview: Populating an Analytic Workspace ... 5-1
Maintaining Dimensions and Composites .. 5-3
Assigning Values to Data Objects ... 5-13
Calculating and Analyzing Data.. 5-18
Aggregating Data .. 5-19

v

6 Limiting an Application’s View of the Data

Introducing Dimension Status... 6-2
Limiting Using a Simple List of Values ... 6-5
Limiting Using a Boolean Expression... 6-7
Limiting to the Top or Bottom Values of a Sorted Dimension... 6-11
Limiting to the Values of a Related Dimension.. 6-13
Limiting Based on the Position of a Value in a Dimension ... 6-15
Limiting Based on a Relationship Within a Hierarchy ... 6-16
Limiting Composites and Conjoint Dimensions ... 6-21
Working with Null Status ... 6-24
Working with Valuesets... 6-25

7 Working with Models

Using Models to Calculate Data .. 7-1
Creating a Nested Hierarchy of Models ... 7-4
Basic Modeling Commands .. 7-6
Compiling a Model... 7-8
Running a Model .. 7-11
Debugging a Model.. 7-13
Modeling for Multiple Scenarios .. 7-15

8 Designing Programs

Introduction to OLAP DML Programs ... 8-2
Invoking Programs ... 8-3
Defining and Editing Programs ... 8-5
Using Variables in Programs .. 8-8
Passing Arguments ... 8-11
Writing User-Defined Functions.. 8-16
Controlling the Flow of Execution .. 8-19
Directing Output... 8-23
Preserving the Session Environment .. 8-25
Handling Errors... .. 8-29
Compiling Programs .. 8-35
Testing Programs... 8-37

vi

9 Debugging Programs

Overview: Debugging in OLAP DML .. 9-1
Debugging with a Debugging File .. 9-2
Debugging with OLAP Worksheet.. 9-5
OLAP DML Debugger Commands ... 9-6
Working with watch points... 9-10

10 Using Embedded SQL

Using Relational Data .. 10-2
Obtaining Access to the Relational Database ... 10-3
Supported SQL Commands .. 10-4
Checking for Errors .. 10-5
Fetching Data into an Analytic Workspace .. 10-6
Declaring a Cursor .. 10-8
Opening a Cursor.. 10-10
Fetching the Selected Data .. 10-11
Closing a Cursor .. 10-14
Using Dimensions as Output Host Variables.. 10-14
Writing OLAP DML Data to a Relational Table ... 10-15
Matching Oracle9i Data Types ... 10-18
Using the Special Features of an OCI Connection ... 10-20
Example: SQL Program .. 10-22

11 Reading Data from Files

Introducing Data-Reading Programs .. 11-2
Reading Files ... 11-3
Specifying File Names in the OLAP DML .. 11-5
Reading Data from Files .. 11-6
Reading and Maintaining Dimension Values ... 11-9
Processing Input Data .. 11-18
Processing Records Individually ... 11-19
Processing Several Values for One Variable.. 11-22

vii

12 Writing Reports

Introducing the Reporting Commands .. 12-2
Creating Report Rows .. 12-4
Creating Report Columns ... 12-6
Retrieving Data for Rows.. 12-7
Controlling the Default Format of Report Output... 12-11
Modifying the Layout of Columns.. 12-12
Creating Headings .. 12-16
Performing Calculations in a Report .. 12-20
Creating Paginated Reports .. 12-25
Creating Headings on Each Page ... 12-30
Guidelines for Writing a Report Program.. 12-33

A Creating and Using Analytic Workspace Metadata

What is Analytic Workspace Metadata? ... A-1
Analytic Workspace Metadata Prerequisites... A-2
Metadata That Describes Dimension Hierarchies ... A-10
Metadata That Describes Dimension Hierarchy Levels ... A-16
Metadata That Describes Dimension Attributes.. A-20
Metadata That Describes Other Objects .. A-23

Glossary

Index

viii

ix

Send Us Your Comments

Oracle9i OLAP Services Developer’s Guide to the OLAP DML, Release 1 (9.0.1)

Part No. A86720-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ FAX - 781-684-5880. Attn: Oracle OLAP Services
■ Postal service:

Oracle Corporation
OLAP Services Documentation Manager
200 Fifth Avenue
Waltham, MA 02451-8720
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

What this manual is about
The Oracle9i OLAP Services Developer’s Guide to the OLAP DML provides an
overview of the programming environment for the OLAP DML, describes the
OLAP DML data objects, and explains how to use the key commands in the OLAP
DML. It also describes how to write and debug OLAP DML programs and
illustrates programming strategies for accessing and working with data.

Intended audience
This guide is intended for users who want to perform the following tasks:

■ Write OLAP DML programs

■ Manage analytic workspaces with the OLAP DML

■ Access data and perform analysis using the OLAP DML

Structure of this document
The Oracle9i OLAP Services Developer’s Guide to the OLAP DML is structured as
follows:

■ Chapter 1 provides an overview of the OLAP DML environment.

■ Chapter 2 describes how to create, attach, and manage analytic workspaces,
how to save analytic workspace changes, how to share analytic workspaces,
and how to obtain information about an analytic workspace.

■ Chapter 3 describes how to define OLAP DML objects.

xii

■ Chapter 4 describes the OLAP DML data types and operators and how to create
expressions in the OLAP DML.

■ Chapter 5 provides an overview of how to populate OLAP DML data objects
and how to calculate values.

■ Chapter 6 describes how to limit an application’s view of the data.

■ Chapter 7 describes how to write models using the OLAP DML.

■ Chapter 8 describes how to write OLAP DML programs.

■ Chapter 9 describes how to use the OLAP DML debugger.

■ Chapter 10 describes how to access relational data by using SQL commands in
the OLAP DML.

■ Chapter 11 describes how to use the OLAP DML to read data from files.

■ Chapter 12 describes how to use the OLAP DML to write reports.

■ Appendix A describes how to create and use analytic workspace metadata.

■ The Glossary provides definitions of OLAP terminology.

Related Documentation
You will find the following documentation helpful when using the Oracle OLAP
API and Oracle OLAP Services:

■ Oracle9i OLAP Services Concepts and Administration Guide — Describes how to
use OLAP Services. It introduces the basic concepts underlying business
analysis and multidimensional querying, as well as the basic tools used for
application development and system administration.

■ Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API — Introduces
Java programmers to the Oracle OLAP API, the application programming
interface for Oracle OLAP Services. Through OLAP Services, the OLAP API
provides access to data stored in an Oracle database. The OLAP API's
capabilities for querying, manipulating, and presenting data are particularly
suited to applications that perform online analytical processing.

■ Oracle9i OLAP Services OLAP API Reference — Provides online reference
documentation for the Oracle OLAP API, the Java application programming
interface for Oracle OLAP Services.

■ Oracle9i Data Warehousing Guide — Discusses the database structures, concepts,
and issues involved in creating a data warehouse to support OLAP solutions.

xiii

Conventions

Text conventions
You will find the following text conventions in this document.

Mouse usage
Always use the left mouse button unless you are specifically instructed to use the
right mouse button.

The term “left mouse button” refers to the dominant button. If you have
reconfigured your mouse to reverse the functions of the left and right buttons, then
you will need to use the reverse button when you follow the procedures in this
manual.

Convention Usage

Boldface text Indicates menu items, command buttons, options, field names,
and hyperlinks.

Bold text is also used for notes and other secondary information
in tables (for example, Result).

Fixed-width text Indicates folder names, file names, operating system
commands, and URLs. Also indicates examples and anything
that you must type exactly as it appears.

For example: If you are asked to type show eversion, then
you would type all the characters exactly as shown in the
fixed-width font.

Italic text Indicates variables, including variable text that is used in the
following ways:

■ In the syntax of OLAP DML commands to indicate
arguments or parameters.

■ When dialog boxes or their components are unlabeled or
have labels that change dynamically based on their current
context. The wording of variable text does not exactly
match what you see on your screen.

Italic type is also used for emphasis, for new terms, and for titles
of documents.

Underlined text Indicates a default value in descriptions of OLAP DML syntax.

UPPERCASE text Indicates Express commands and objects and acronyms.

xiv

Formats for key combinations and sequences
Key combinations and key sequences appear in the following formats.

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

IF you see the format . . . THEN . . .

Key1+Key2, press and hold down the first key while you press the second
key.

For example: “Press Alt+Tab” means to press and hold down
the Alt key while you press the Tab key.

Key1, Key2, press and release the keys one after the other.

For example: “Press Alt, F, O” means to press and release the
Alt key, press and release the F key, then press and release
the O key.

http://www.oracle.com/accessibility/

Basic Concepts 1-1

1
Basic Concepts

Chapter summary
This chapter provides an overview of the basic concepts that you should
understand before you use the OLAP DML. The checklist at the end of this chapter
explains how to use this guide to learn the specific tasks that this chapter discusses.

List of topics
This chapter includes the following topics:

■ What Is the OLAP DML?

■ Using the OLAP DML

■ How Do I Use the OLAP DML to Analyze Data?

■ Where Do I Go From Here?

What Is the OLAP DML?

Definition: OLAP DML
The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write programs that
contain DML commands and functions.

If you are familiar with Oracle Express Server, think of the OLAP DML as being the
same as the Express Server stored procedure language (SPL). In fact, the OLAP
DML is nearly 100 percent compatible with Oracle Express Server’s stored
procedure language.

What Is the OLAP DML?

1-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The basic syntactic units of the OLAP DML are:

■ Commands that initiate actions

■ Functions that initiate actions and return a value

■ Options to which you assign a value and that can influence the analytic
workspace processing environment in various ways

OLAP DML commands, functions, and options are collectively referred to as
commands. The complete syntax for each command is provided in the OLAP DML
Reference, which is a help system that you can access from OLAP Worksheet.

The purpose of the OLAP DML
The purpose of the OLAP DML is to allow application developers to extend Oracle
OLAP Services’ Java OLAP API.

To describe the purpose of the OLAP DML, it is important to discuss a few
important concepts such as:

■ OLAP Server data sources

■ Analytic workspaces

■ The relationship of the Oracle OLAP API to the OLAP DML

OLAP Services data sources
OLAP Services can access two different data sources — the Oracle relational
database and analytic workspaces. For most applications the Oracle relational
database will be the primary (and often the only) data source. When accessing data
from the Oracle relational database, OLAP Services generates SQL to access data
stored in tables. The OLAP API provides a wide variety of analytic functions that
allow the application to derive calculated measures when using the Oracle database
as the data source.

In some cases, however, the OLAP API does not provide the means to calculate data
needed by an application. Examples include forecasts, solving a model, some types
of consolidations (aggregations), and allocations. In this case, you can use the OLAP
DML to calculate this data. The OLAP DML does not operate directly on data in
relational tables. Instead, it operates on data within an analytic workspace.

What Is the OLAP DML?

Basic Concepts 1-3

Analytic workspaces
An analytic workspace is a multidimensional data source. It may be temporary (that
is, for the life of the session) or it may be persistent. When an analytic workspace is
persisted, a separate data file is created that is not part of the relational database.

OLAP API and OLAP DML
The OLAP API performs three primary functions:

■ It provides access to metadata the describes the multidimensional data model
and data sources.

■ It fetches data from data sources.

■ It provides the means of performing complex analytic calculations.

When accessing data in the relational database, OLAP Services processes OLAP API
queries by generating SQL. When accessing data in an analytic workspace, OLAP
Services processes OLAP API queries by using OLAP Services’ multidimensional
engine and the OLAP DML.

What Is the OLAP DML?

1-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The following illustration provides an architectural overview of OLAP Services,
showing both the relational database and analytic workspaces as data sources.

Application

OLAP Services
Java OLAP API

 SQL
Generator

 Query
Processor

Multidimensional
 Engine

Data Data

Relational
Database

Analytic
Workspace

Using the OLAP DML

Basic Concepts 1-5

Using the OLAP DML

When should I use the OLAP DML?
There are three situations where you might use the OLAP DML:

■ When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or using the Java
OLAP API.

■ When your application needs to perform and persist various calculations, but
you do not want to immediately commit this calculation to the data warehouse.

■ You want to use a data file that was created with Oracle Express Server with
OLAP Services.

The common calculations for which you will need OLAP DML
The most common types of calculations that the OLAP DMS is used for includes:

■ Forecasts

■ Models (a group of calculations in which the results of one calculation is
required by another calculation — refer to Chapter 7 for more information)

■ Allocations

■ Some types of non-additive aggregations (consolidations), such as hierarchical
weighted averages

In addition, the OLAP DML can be used when you want to perform calculations
that are not easily accomplished in the ETL process or using the OLAP API.

Because analytic workspaces are not stored in the relational database, it is possible
for you to commit data to the analytic workspace without committing it to the data
warehouse. This is very useful for work in process. For example, you might have a
forecasting application where you want to allow users to save personal forecasts
and reuse them during a later session, but you do not want that user to commit the
forecast to the data warehouse.

How Do I Use the OLAP DML to Analyze Data?

1-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How Do I Use the OLAP DML to Analyze Data?

Procedure: Using the OLAP DML
To use the OLAP DML, you:

1. Create an analytic workspace (see “Creating an analytic workspace” on page
1-6).

2. Define data sources within the analytic workspace (see “Defining data sources
within the analytic workspace” on page 1-7).

3. Load data into the analytic workspace (see “Loading data into analytic
workspaces” on page 1-7).

4. Define and execute the OLAP DML commands and programs (see “Executing
OLAP DML commands and functions” on page 1-7).

What can I do with the data after I have analyzed it?
After you have used the OLAP DML to analyze data from a table, you can then:

■ View data in an analytic workspace using the OLAP API

■ Can commit data to the data warehouse

Creating an analytic workspace
Creating an analytic workspace is a very simple process and is accomplished using
a command in the OLAP DML. An example of this command follows:

DATABASE CREATE \DATA\SALESFORECAST

The above command will create a new and empty analytic workspace named
SALESFORECAST in the \DATA directory.

This would be similar to creating a new tablespace and data file in the relational
database. That is, the physical file is created, but there are no objects stored in the
file yet.

For more information about creating an analytic workspace, refer to Chapter 2.

How Do I Use the OLAP DML to Analyze Data?

Basic Concepts 1-7

Defining data sources within the analytic workspace
Within an analytic workspace, you create workspace objects and OLAP API data
sources. Examples of workspace objects include variables, formulas, and
dimensions. These are the basic building blocks within an analytic workspace.

These workspace objects can be augmented with analytic workspace metadata to
expose data to the OLAP API.

For more information about creating data sources, refer to Chapter 3. To learn how
to create and use analytic workspace metadata, refer to Appendix A.

Loading data into analytic workspaces
To use the OLAP DML, data must exist in the analytic workspace. Data can be
loaded into an analytic workspace by fetching it from the relational database or by
loading it using OLAP Services’ file reader. In most cases, the relational database
will be the data source.

Data is loaded into the analytic workspace using commands in the OLAP DML.
There are commands for fetching data from relational tables and commands for
reading flat files. When loading data from the relational database, the data can be
from any table (that is, it does not need to be part of a data warehouse).

For more information about loading data into an analytic workspace, refer to
Chapter 10.

Executing OLAP DML commands and functions
The OLAP DML consists of various commands and functions. Commands create,
delete, and modify objects, call programs, fetch and load data, and perform other
needed tasks. Functions typically manipulate data (for example, return the TOTAL
of SALES).

You can call individual functions and you can define and execute formulas and
programs. Whether you use functions, formulas, or programs will depend on what
you are trying to accomplish.

OLAP Services applications call or executes commands and functions using the SPL
EXECUTE method in the OLAP API. The SPL EXECUTE method allows the OLAP
API to pass OLAP DML commands to the multidimensional engine that processes
the OLAP DML.

The OLAP Worksheet application allows you to work interactively with the OLAP
DML (much the same way that SQL Plus allows you to interact with the relational

How Do I Use the OLAP DML to Analyze Data?

1-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

database by typing SQL statements). Using the OLAP Worksheet, you can execute
most OLAP DML commands. You can also define workspace objects, and edit
programs and formulas.

You might, for example, use the OLAP Worksheet to define a OLAP DML program
that loads data from the relational database and forecasts sales. Your application
would then call execute the OLAP DML program through the OLAP API using the
SPL EXECUTE method.

For more information about using OLAP DML commands, functions, and
programs, refer to Chapter 4, Chapter 5, Chapter 6, and Chapter 7.

Viewing data in an analytic workspace
Any data in an analytic workspace that has been exposed as an OLAP API data
source with analytic workspace metadata will automatically become available
through the OLAP API. To the OLAP API client, there is no difference between a
relational database data source and an analytic workspace data source. The OLAP
API reveals all data sources to the application without requiring the application to
understand the data’s physical storage.

Temporary vs. persistent analytic workspaces
Analytic workspaces may be either temporary or persistent, depending on your
needs. If the analytic workspace is needed only to perform a specific calculation and
the results of the calculation does not need to be persisted in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, your application needs to forecast a small amount sales data. Since the
forecast can be rerun at any time, there might not be any point in persisting the
results.

Analytic workspaces can also be persisted across sessions. You might want to
persist data in the analytic workspace if you have calculated a significant amount of
data (for example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Sharing data in analytic workspaces
Data in analytic workspaces may be shared by many different users. To share data
in an analytic workspace, the workspace needs to be persisted during the period of
time it is to be shared.

Where Do I Go From Here?

Basic Concepts 1-9

For example, if you want to allow a user to share the results of a forecast, you can
allow the user to persist the analytic workspace. If another user attaches that
workspace during their application session, they can be allowed to see the other
user’s forecast.

Committing data to the data warehouse
Data created within an analytic workspace can be committed to the relational
database using the OLAP DML. Data can be committed to any table, regardless of
whether that table is part of a data warehouse.

The are two primary reasons why you might want to commit data in an analytic
workspace to the relational database:

■ You want to use the relational database for long-term persistent storage. This is
advisable because the relational database has more robust disaster recovery
features as compared to analytic workspaces.

■ You want to make the results of calculations made within an analytic workspace
available to SQL-based applications (that is, applications that use SQL rather
than the OLAP API).

Two common examples of situations where you might want to commit data to the
relational database include:

■ Sharing the results of a final forecast with users of SQL-based applications.

■ Managing the long persistence of data resulting from specialized aggregations
in the relational database.

Where Do I Go From Here?

The OLAP DML checklist
To learn how to perform all the tasks described in this chapter, use the following
checklist:

❏ Read Chapter 2 to learn how to create an analytic workspace.

❏ Read Chapter 3 to learn how to populate an analytic workspace with the objects
that will contain data from the Oracle relational database.

❏ Read Chapter 10 to learn how to select data from an Oracle relational database
and move that data into the objects in a DML work file.

Where Do I Go From Here?

1-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

❏ Read Chapter 4, Chapter 5, Chapter 6, and Chapter 7 to learn how to use the
DML commands and functions to analyze data.

❏ Read Chapter 10 to learn how to move the analyzed data from the work file into
the Oracle relational database.

For more information
The following publications provide more information about the Oracle OLAP API
and the OLAP DML:

■ Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API

■ The OLAP Worksheet’s Help system contains an on-line reference for the DML
language

Defining and Working with Analytic Workspaces 2-1

2
Defining and Working with Analytic

Workspaces

Chapter summary
This chapter discusses creating, attaching, and managing analytic workspaces.

List of topics
This chapter includes the following topics:

■ Defining an Analytic Workspace

■ How to Gain Access to an Analytic Workspace

■ Gaining Access to a Workspace from a Java Application

■ Gaining Access to a Workspace from OLAP Worksheet

■ Using the OLAP DML to Work with Analytic Workspaces

■ Saving Analytic Workspace Changes

■ Minimizing Analytic Workspace Growth

■ Sharing Analytic Workspaces

■ Working with AUTOGO Programs

■ Adding Security to an Analytic Workspace

■ Obtaining Analytic Workspace Information

Defining an Analytic Workspace

2-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining an Analytic Workspace

How to define an analytic workspace
Analytic workspaces are defined using commands in the OLAP DML. There are
two methods by which this can be accomplished:

■ Use the OLAP API’s SPLExecutor method to issue OLAP DML commands.
This allows applications using the OLAP API to create new analytic workspaces
and alter existing workspaces. When workspaces are defined through the
SPLExecutor method, they can be temporary (that is, for the life of the
session) or they may be persisted.

■ Use OLAP Worksheet to issue OLAP DML commands. OLAP Worksheet
connects to an OLAP Services instance as a new session and allows you to work
interactively with the OLAP DML; this is similar to issuing SQL commands
from within SQL Worksheet. When an analytic workspace is created using
OLAP Worksheet, it must be persisted so that OLAP Services applications using
the OLAP API will be able access it.

This guide discusses how to use OLAP DML commands to define an analytic
workspace.

Examples: Defining an analytic workspace
The following example creates a new analytic workspace named shoes; the full
name of the new analytic workspace is shoes.db.

database create shoes

The following example creates the shoes.db analytic workspace in a directory
named apps on the i drive of an NT system.

database create ’i:/apps/shoes’

For the complete syntax for the DATABASE command, see the OLAP DML
Reference.

About the term “database”
Throughout this guide, you will notice that the OLAP DML command ‘database’ is
used to create and manage analytic workspaces. When referring to the OLAP DML,
you can think of the terms ‘database’ and ‘analytic workspace’ as being equivalent.
The ‘database’ command is used in the OLAP DML to allow for compatibility with

Defining an Analytic Workspace

Defining and Working with Analytic Workspaces 2-3

the Express Server stored procedure language. (Express Server was the predecessor
to OLAP Services.)

Do not confuse analytic workspaces with the Oracle relational database. Analytic
workspaces are stored in files that are separate from Oracle relational database files.

Managing analytic workspace structure and size
An analytic workspace can be made up of many files. There is always a main
analytic workspace file. There can also be one or more extension analytic workspace
files. You can use extension files to divide a single analytic workspace among
several files, so the analytic workspace can be larger than the space that is available
on any single disk. Typically, you need extension files only when the analytic
workspace is located on a disk with limited available space or when the analytic
workspace will grow to a very large size. An analytic workspace that is stored in
more than one file is called a multifile analytic workspace.

When you use the DATABASE command with the CREATE keyword, a new
analytic workspace file is created. As the analytic workspace is populated, data is
added to that file and, optionally, additional analytic workspace extension files are
created, if needed. Depending on the options that you specify when you create an
analytic workspace, you can change the default characteristics of these files:

■ The maximum size of analytic workspace files

■ The increment size of analytic workspace files

■ The location of the main analytic workspace file

■ The location of analytic workspace extension files

Note: If you want to specify location of analytic workspace extension files only
for a given session, then use the DBEXTENDPATH option. If you want to
specify the location of analytic workspace extension files only for an instance of
OLAP Services, then use the ExtensionFilePath setting of the OLAP Services
Instance Manager.

How to Gain Access to an Analytic Workspace

2-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How to Gain Access to an Analytic Workspace

Two alternatives for accessing a workspace
Once an analytic workspace has been defined, it can be accessed in one of the
following two ways.

■ From OLAP Worksheet, or

■ From a Java application

For more information
To learn how to access an analytic workspace from OLAP Worksheet, see “Gaining
Access to a Workspace from OLAP Worksheet” on page 2-4.

To learn how to access an analytic workspace from a Java application, see “Gaining
Access to a Workspace from a Java Application” on page 2-6.

Gaining Access to a Workspace from OLAP Worksheet

What is OLAP Worksheet?
OLAP Worksheet is a command line interface to OLAP Services that you can use to
perform the following tasks:

■ Access an analytic workspace

■ Execute most OLAP DML commands

■ Edit programs

■ Debug programs

OLAP Worksheet has a Command Input window and an Edit window.

You can enter OLAP DML commands in the Input (query) pane at the bottom of the
Command Input window. The results are displayed in the Output (result) pane at
the top of the Command Input window.

This chapter describes how to use OLAP Worksheet to access analytic workspaces
and execute OLAP DML commands. Refer to Chapter 9 for information about
writing, editing, and debugging programs with OLAP Worksheet, as well as how to
display its Edit window.

Gaining Access to a Workspace from OLAP Worksheet

Defining and Working with Analytic Workspaces 2-5

This guide provides basic information about using OLAP Worksheet. For details,
refer to the OLAP Worksheet Help system.

Overview of accessing a workspace
Once you have started OLAP Worksheet, you can use its menus to establish a
connection to OLAP Services, open a workspace, execute OLAP DML commands or
write and debug programs, save any changes, close the workspace, and close the
connection.

Establishing a connection
Use the following procedure to establish a connection to OLAP Services:

1. In the OLAP Worksheet menu bar, choose File.

2. Choose Connect.

3. Enter valid user credentials and information in the Login dialog box that
appears.

Opening the workspace
Once you have made a connection to OLAP Services, you can open an analytic
workspace by entering a DATABASE ATTACH command in the Command Input
window in OLAP Worksheet.

Alternatively, you can define a new analytic workspace.

For example, suppose that you have already defined a workspace named SALES
that exists at the top level of the current directory. Enter the following command to
open the SALES analytic workspace:

database attach sales

Suppose you want to define a new workspace named EXPENSE. You would enter
the following commands to create the new workspace and then open it:

database create expense
database attach expense

For more information about opening workspaces and working with more than one
workspace at a time, see “Using the OLAP DML to Work with Analytic
Workspaces” on page 2-9.

Gaining Access to a Workspace from a Java Application

2-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Closing the workspace
When you have finished working with an analytic workspace and have saved
changes, you can close it by entering a DATABASE DETACH command in the
Command Input window in OLAP Worksheet.

For example, to close an analytic workspace named SALES, enter the following
command:

database detach sales

Closing the connection
Use the following procedure to close a connection to OLAP Services:

1. In the OLAP Worksheet menu bar, choose File.

2. Choose Disconnect.

3. When prompted to disconnect, choose Yes.

Gaining Access to a Workspace from a Java Application

Overview of accessing a workspace
Typically, a Java application uses the Oracle OLAP API to access relational data. In
addition, the Oracle OLAP API supports access to data that resides in an OLAP
Services analytic workspace.

Through the OLAP API, a Java application can access workspace data that has been
provided with analytic workspace metadata. Because analytic workspace metadata
is compatible with the OLAP API multidimensional metadata (MDM) model, a Java
application can manipulate workspace data using the OLAP API Java classes. For a
description of the MDM model and the OLAP API classes, see the Oracle9i OLAP
Services Developer’s Guide to the Oracle OLAP API and the Oracle9i OLAP Services
OLAP API Reference.

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecutor class in the OLAP API to send DML commands
directly to OLAP Services for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through

Gaining Access to a Workspace from a Java Application

Defining and Working with Analytic Workspaces 2-7

SPLExecutor), closes the workspace, and closes the connection. This topic
describes these steps.

Establishing a connection
To make a connection, follow the steps described in the chapter about connecting to
a data store in the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API.
The chapter describes how the OLAP service makes a connection to its parent
Oracle database instance. This connection is a requirement even if your application
will only access data in an OLAP Services workspace.

When you have connected to the workspace, you will have a Connection object
that represents the connection.

Opening the workspace
Use the openDatabase method on the Connection object to open the workspace
that you want to access. The openDatabase method requires the following two
parameters:

■ The name of the workspace. This is the name that was used in the OLAP
Services DML to create the workspace. For example, the following DML
command creates a workspace named FORECAST.

DATABASE CREATE FORECAST

■ A Properties object that specifies parameters that are appropriate for
opening the workspace. The Properties object contains one or more
properties, each of which represents one parameter. If you are opening a
workspace that has analytic workspace metadata, then you must specify a
property called “DatabaseType”, with a value of “ECM”.

To discover if there are other required or optional parameters, use the
getConnectionParameterInfo method on the Connection object, as
described in the reference page for the Connection class in the Oracle9i OLAP
Services OLAP API Reference.

The openDatabase method returns the Database object that represents the
workspace.

Accessing workspace data using MDM metadata
The OLAP API provides classes that support the MDM model for describing a set of
data. These classes are in the mdm package of the OLAP API.

Gaining Access to a Workspace from a Java Application

2-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Ordinarily, the data that an application analyzes is stored in an Oracle database, and
it has been provided with MDM-compatible metadata through the OLAP
management feature of Oracle Enterprise Manager. However, if your workspace
has been provided with analytic workspace metadata, the OLAP API can use the
workspace data for analysis, because its analytic workspace metadata is
MDM-compatible.

To access analytic workspace metadata and the data that it represents, create an
MdmMetadataProvider, as described in the chapter on discovering metadata in
the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API. When you
create the MdmMetadataProvider, specify the Database object that represents
the workspace.

To navigate the metadata, create queries, and fetch data, use the procedures that are
described in the Oracle9i OLAP Services Developer’s Guide to the Oracle OLAP API.

Accessing workspace data using SPLExecutor
The OLAP API provides the SPLExecutor class, through which you can execute
DML commands or evaluate DML expressions in a workspace. You create an
SPLExecutor object, specifying your Connection object as a parameter. Then
you call the executeCommand method on your SPLExecutor to send commands
to the OLAP service, or you call one of several methods for evaluating expressions.

Depending on the evaluation method that you use, the return value is a boolean,
int, double, or other Java data type. An executed command always returns a
String.

For more information about the SPLExecutor methods, see the reference page for
this class in the Oracle9i OLAP Services OLAP API Reference.

Closing the workspace
When you are finished with your work, call the close method on the Database
object that represents your workspace. This method closes the Database object,
and the OLAP service detaches the workspace that is associated with it.

Closing the connection
When you no longer need the connection, call the close method on the
Connection object. This method terminates the connection that was made on
behalf of your application with the Oracle database instance, and the method
terminates the connection between your application and the OLAP service.

Using the OLAP DML to Work with Analytic Workspaces

Defining and Working with Analytic Workspaces 2-9

Using the OLAP DML to Work with Analytic Workspaces

Definition: Active analytic workspace
To make the data and the object definitions of an analytic workspace available to
your session, the analytic workspace must be attached. Analytic workspaces that
are currently attached are known as active analytic workspaces. Attaching analytic
workspaces is described in “How to attach an analytic workspace” on page 2-10.

Listing the active analytic workspaces
You can view a list of the active analytic workspaces by using the DATABASE
command with the LIST keyword. For the complete syntax for the DATABASE
command, see the OLAP DML Reference. The simplified syntax for this command
is shown below.

database list

This command displays a list of the active analytic workspaces, along with their
update status and full path name. The express.db analytic workspace, which is a
system analytic workspace that contains objects used internally, always appears in
the analytic workspace list.

The meaning of the update status, CHANGED or UNCHANGED, depends on
whether the analytic workspace is attached with read/write or read-only access and
whether the analytic workspace is being shared with other users.

Definition: Current analytic workspace
The current analytic workspace is the first analytic workspace in the list of the
active analytic workspaces that you view with the DATABASE command with the
LIST keyword. By default, when you define new OLAP DML objects, they reside in
the current analytic workspace, unless you specify the name of another active
analytic workspace. Additionally, programs such as DBDESCRIBE list only the
objects in the current analytic workspace.

Your session does not have to have a current analytic workspace. If you start OLAP
Services without specifying an analytic workspace name, then the express.db
analytic workspace is first on the list. However, the express.db analytic
workspace is not current; there is no current analytic workspace until you specify
one with the DATABASE command. Even though an active analytic workspace is
not current, you can still change and update its data, edit and run its programs, and
modify its analytic workspace definitions.

Using the OLAP DML to Work with Analytic Workspaces

2-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Retrieving the name of the current analytic workspace
You can retrieve the name of the current analytic workspace by using the
DATABASE function with the NAME keyword.

Example: Retrieving the name of the current analytic workspace
Suppose that you have two analytic workspaces attached, one named
programs.db and another named demo.db. The following commands use the
DATABASE function with the NAME keyword to retrieve the name of the current
analytic workspace into a variable named MYTEXT, and then display the value of
MYTEXT. This value is shown after the commands.

mytext = database(name)
show mytext
PROGRAMS

How to attach an analytic workspace
The system administrator can change OLAP Services configuration settings so that
OLAP Services starts up with one or more application analytic workspaces already
attached. To reconfigure OLAP Services, use the OLAP Services Instance Manager.

You can also use the DATABASE command to attach and detach analytic
workspaces during a session. During your OLAP Services session, you can use the
DATABASE command to switch freely between active analytic workspaces.

You can attach an analytic workspace by using the DATABASE command with or
without the ATTACH keyword. As shown below, the action that is taken varies
depending on whether or not you use the ATTACH keyword:

■ If you attach an analytic workspace by using the DATABASE command with
the ATTACH keyword, then the analytic workspace that you specify is
automatically attached and made to be the current analytic workspace.

■ If you attach an analytic workspace by using the DATABASE command with
the ATTACH keyword, then different actions are taken, depending on whether
or not there is a current analytic workspace:

■ If there is no current analytic workspace, then the new analytic workspace
is attached and made current.

■ If there is a current analytic workspace, then it is first detached. The new
analytic workspace is attached and made current.

Using the OLAP DML to Work with Analytic Workspaces

Defining and Working with Analytic Workspaces 2-11

When you attach an analytic workspace, the default access to it is read-only. If you
want a different attachment mode, then you must explicitly specify it in the
DATABASE command as described in “Specifying the analytic workspace
attachment mode” on page 2-11.

Note: You can create programs that are automatically executed when you attach an
analytic workspace. For more information, see “Programs that run when a user
attaches to an analytic workspace” on page 2-12.

Examples: Attaching an analytic workspace
The following example attaches an existing analytic workspace named
finance.db and makes it the current analytic workspace. If another analytic
workspace was current before this command executes, then that analytic workspace
remains attached but is no longer current.

database attach finance

The following example attaches the finance.db analytic workspace and makes it
current. The analytic workspace that was current is detached before this command
was executed.

database finance

Specifying the analytic workspace attachment mode
You can specify whether you want the analytic workspace attached in read-only
mode, read/write nonexclusive mode, or read/write exclusive mode by using the
RO, RW, and RW EXCLUSIVE keywords of the DATABASE command.

An analytic workspace that is attached in read/write nonexclusive mode or
read-only mode can be accessed simultaneously by several sessions. However, only
one session can have the analytic workspace open with read/write access. If
another user has already attached an analytic workspace in read/write mode, then
you cannot attach the same analytic workspace in read/write mode until that other
user detaches it.

An analytic workspace that is attached in read/write exclusive mode cannot be
accessed by any other session. If other users have already attached an analytic
workspace, then you cannot attach the same analytic workspace in read/write
exclusive mode until all of the other users detach it.

For more information on sharing analytic workspaces across sessions and
specifying the analytic workspace attachment mode, see “Sharing Analytic
Workspaces” on page 2-17.

Using the OLAP DML to Work with Analytic Workspaces

2-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Programs that run when a user attaches to an analytic workspace
When a user attaches to an analytic workspace, permission programs and
AUTOGO programs will be run automatically if they exist:

1. Any permission programs that are associated with the analytic workspace will
be automatically executed.

2. Any AUTOGO program associated with the analytic workspace or any
program specified in the DATABASE ATTACH command will be executed.

Permission programs are, as the name suggests, programs that check the permission
of the user. AUTOGO programs and programs specified in the DATABASE
ATTACH command can contain any type of functionality. For more information on
permission programs, see “Adding Security to an Analytic Workspace” on page
2-20. For more information on other programs that run when a user attaches to an
analytic workspace, see “Working with AUTOGO Programs” on page 2-19.

Attaching multiple analytic workspaces
You can attach more than one analytic workspace at a time. However, when
working with multiple analytic workspaces, keep the following points in mind:

■ Oracle Corporation does not recommend that you give the same name to more
than one analytic workspace. However, if there is more than one analytic
workspace with the same name, then specify the full path name of the analytic
workspace you want.

■ If you are going to attach more than one analytic workspace, then you must
take more care when you name objects. When you request an object by name,
either with the DESCRIBE command or by referring to it in a command or
program, all the active analytic workspaces are searched in order until the
named object is found. When you intend to use several analytic workspaces
together, do not give the same name to objects in different analytic workspaces.
If you do, then you can create unanticipated interactions between the objects.

■ If you have analytic workspace permission programs defined in analytic
workspaces that are currently attached, then the one in the analytic workspace
that you are attaching is executed. However, if you have analytic workspace
permission programs in more than one currently attached analytic workspace,
then you must take special care when you edit them, or use them in any other
way, to ensure that you access the appropriate version.

Saving Analytic Workspace Changes

Defining and Working with Analytic Workspaces 2-13

Detaching analytic workspaces
To detach an analytic workspace, you use the DATABASE command with the
DETACH keyword. The following command detaches the finance.db analytic
workspace.

database detach finance

Saving Analytic Workspace Changes

When should you save your analytic workspace changes?
Typically, you want to save an analytic workspace at the end of your OLAP Services
session to save analytic workspace changes that were made during the session. You
can also save an analytic workspace periodically during an OLAP Services session
to save changes as you go along.

If you have read/write access to the analytic workspace, then you will get a
warning message if you try to switch analytic workspaces, detach a changed
analytic workspace, or exit without updating the analytic workspace. If you have
read-only access to the analytic workspace, then you can make changes to the
analytic workspace, but you cannot save these changes by updating it.

Using the UPDATE command
If you have changed an analytic workspace and want to save those changes, then
execute the UPDATE command. The UPDATE command saves analytic workspace
changes to disk.

For the complete syntax for the UPDATE command, see the OLAP DML Reference.
The simplified syntax for the UPDATE command is show below.

UPDATE [dbname1 [dbname2 . . .]]

A dbname argument specifies the name of a read/write analytic workspace that is
attached to your OLAP Services session. If you do not specify any analytic
workspace names, then all the attached read/write analytic workspaces, including
express.db, are updated.

For example, you can issue the following command to save all analytic workspace
changes made so far in a session, including changes to express.db if it is attached
as a read/write analytic workspace.

update

Minimizing Analytic Workspace Growth

2-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Updating shared analytic workspaces
If you have attached a shared analytic workspace and another user has read/write
access, then that user’s UPDATE command does not affect your view of the analytic
workspace. Your view of the data remains the same as when you attached the
analytic workspace. If you want access to the changes, then you must detach the
analytic workspace and reattach it.

Minimizing Analytic Workspace Growth

Ways to minimize analytic workspace growth
This guide presents some very basic and simple information about ways in which
you can minimize analytic workspace growth.

You can minimize analytic workspace growth through the judicious use of NA
stored pages and by frequently updating the analytic workspace when you are
attached exclusively. You can completely reorganize the analytic workspace by
exporting and importing all of the analytic workspace files.

Definition: NA pages
An NA page is an analytic workspace page that contains only NA values for a
variable. Depending on the status of the variable at the time the NA values are
assigned, NA pages are either unstored or stored:

■ NA unstored pages — In most cases, if an analytic workspace page would
contain only NA values for a variable, then the page is not actually stored.
Instead a marker is stored. This marker indicates that the page would contain
only NA values. These virtual analytic workspace pages are called NA unstored
pages.

■ NA stored pages — An NA stored page is an actual analytic workspace page
that contains only NA values. Typically, you want NA stored pages to be
created only if you want to reserve space for values of an in-place variable.

Minimizing Analytic Workspace Growth

Defining and Working with Analytic Workspaces 2-15

When are NA stored pages created?
NA stored pages are created only if all of the following conditions are true:

■ The NA values are explicitly assigned.

■ The variable is defined as an in-place variable when the NA values are
assigned.

■ The analytic workspace that contains the variable is attached in read/write,
exclusive mode when the NA values are assigned.

■ The variable contains, or has previously contained, at least one non-NA value.

■ The NA values are distributed so that some analytic workspace pages contain
only NA values.

Retrieving the number of NA pages
You can use the OBJ function with the NAPAGES keyword to retrieve the number
of NA pages (either stored and unstored) in an analytic workspace.

You can also run DBREPORT to retrieve information about the number of NA pages
(both stored and unstored) in an analytic workspace.

For more information on the OBJ function and the DBREPORT program, see the
topic for the function or the program in the OLAP DML Reference.

Releasing NA stored pages
You can use the NAPAGEFREE command to release any NA stored pages that have
been created for a variable. Once these pages are released, they can be used to store
new data. NAPAGEFREE loops through all allocated pages for the variable and
converts any NA stored pages into NA unstored pages. When it is finished, it
reports the number of pages that have been freed.

For more information on the NAPAGEFREE command, see the topic for the
function in the OLAP DML Reference.

Example: Releasing NA stored pages
The following example uses OBJ(DISKSIZE) to query the variable SALES before and
after NAPAGEFREE is issued to show its reduction by the number of pages that are
freed by NAPAGEFREE (three in this example).

Minimizing Analytic Workspace Growth

2-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The first OBJ function shows that 35 pages are being used to store the SALES
variable.

show obj(disksize ’sales’)
35

Now the NAPAGEFREE command frees three pages that contained only NA values.

napagefree sales
3 pages freed for SALES.

When the OBJ function is reissued, it shows that only 33 pages are now being used
to store the SALES variable.

show obj(disksize ’sales’)
32

When are unused pages released?
When many users are attached to an analytic workspace, unused pages are not
actually released when the analytic workspace is updated. Instead, an erase list is
created. The erase list identifies the pages that it can release later when only one
user is attached to the analytic workspace.

Updating an analytic workspace when you are attached exclusively
When you update an analytic workspace and no other users are attached to the
analytic workspace, the erase list is flushed and all unused pages are released. This
creates more space in the analytic workspace files for new data. Consequently, to
minimize analytic workspace growth, you want to update the analytic workspace
frequently when you have exclusive use it.

Using EXPORT and IMPORT to minimize analytic workspace size
You can reorganize your analytic workspace files by exporting all of the objects in
your analytic workspace and then importing them into a new analytic workspace.
This procedure removes extra space. The new files may be substantially smaller.

To reorganize your analytic workspace by exporting and importing OLAP DML
objects, follow the procedure outlined below.

1. Issue an ALLSTAT command against the original analytic workspace.

2. Use the EXPORT command with the ALL keyword to put all of the data in the
original analytic workspace into an EIF file.

Sharing Analytic Workspaces

Defining and Working with Analytic Workspaces 2-17

3. Create a new analytic workspace with a different name than the original
analytic workspace.

4. Use the IMPORT command to import the EIF file into the new analytic
workspace.

5. Use the UPDATE command to update the new analytic workspace.

6. After checking that the objects were successfully moved into the new analytic
workspace, delete the original analytic workspace.

7. Rename the new analytic workspace with the original name.

For more information on importing and exporting analytic workspace files, see the
topics for the EXPORT and IMPORT commands in the OLAP DML Reference.

You cannot export and import SEGWIDTH specifications
If you use CHGDFN SEGWIDTH to specify the segment size of any variable, you
should be aware that this information cannot be exported and imported. If you
export any variable, when that variable is imported, it will use the default segment
size.

Sharing Analytic Workspaces

Sharing analytic workspaces across sessions
An analytic workspace can be accessed simultaneously by several sessions.
However, only one session can have the analytic workspace open with read/write
access at any given time.

When you attach an analytic workspace, your default access to it is read-only.
OLAP Services supports simultaneous access for one writer and many readers of an
analytic workspace. Provided your user ID has the appropriate access rights, you
can always get read-only access to an analytic workspace, no matter how many
other users are using it. If another user has read/write access and updates the
analytic workspace, then your view of the analytic workspace does not change; you
must detach and reattach the analytic workspace to see the changes.

If you want read/write access, then you must explicitly specify it in the DATABASE
command. If you request read/write access to an analytic workspace that is being
used in read/write mode by another session, whether or not OLAP Services waits
for the analytic workspace and the message OLAP Services returns to the

Sharing Analytic Workspaces

2-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

application depends on how you have coded the DATABASE command as
described in “Waiting for an analytic workspace” on page 2-18.

Waiting for an analytic workspace
You can specify whether or not you want to wait until an analytic workspace is
available for the type of access you are you are requesting by using the WAIT and
NOWAIT keywords of the DATABASE command.

■ If you specify the NOWAIT keyword (the default) and if the analytic workspace
is not available for the type of access you are requesting, then an error message
is produced that indicates that the analytic workspace is unavailable.

■ If you specify the WAIT keyword and the analytic workspace is not available
for the type of access you are requesting, then OLAP Services places you on the
wait list for the analytic workspace. The number of seconds that OLAP Services
waits for access depends on the value of the DefaultDBWaitTime setting. Use
the OLAP Services Instance Manager to change the value of the
DefaultDBWaitTime setting.

Strategies for attaching analytic workspaces in exclusive mode
If your analytic workspaces are in use almost all of the time, you need to develop a
strategy for attaching the analytic workspace in read/write, exclusive mode. Some
possible strategies are listed below:

■ “Officially” schedule a time to attach the analytic workspace exclusively.

■ Run a batch job every 30 minutes or so that attempts to attach the analytic
workspace in read/write, exclusive mode and, once it is successful, updates the
analytic workspace. You can use the Persistent Session and Command line
utilities to set up batch jobs.

Command line utilities
You can submit batch jobs using the OLAP Service Manager (xscosvc). You can
define scripts that invoke xscosvc. You can schedule the running of these scripts
with the Unix cron facility, the Windows NT at command, or the job-scheduling
facility within Oracle Enterprise Manager. For more information about input files,
refer to the INFILE command in the OLAP DML Reference.

Working with AUTOGO Programs

Defining and Working with Analytic Workspaces 2-19

Working with AUTOGO Programs

What is an AUTOGO program?
You can create programs that are automatically executed when you attach an
analytic workspace. When you attach an analytic workspace by using the
DATABASE command without the ATTACH keyword, the workspace dictionary is
searched for a program named AUTOGO. If it exists, then the program is executed
before commands are accepted. You can use the NOAUTOGO keyword to specify
that the AUTOGO program should not be executed.

You do not have to name a program AUTOGO to have it automatically execute
when you attach an analytic workspace. You can use the AUTOGO keyword with
the DATABASE command to specify that a program will be automatically executed
with some name other than AUTOGO when you attach an analytic workspace.
Even if a program named AUTOGO exists in the analytic workspace, the program
you specify is still used after the AUTOGO keyword instead.

Analytic workspace permission programs are executed before any AUTOGO
program that is associated with the analytic workspace is executed. For more
information on permission programs, see “Adding Security to an Analytic
Workspace” on page 2-20. For information on writing and debugging OLAP DML
programs, see Chapter 8 and Chapter 9.

Example: AUTOGO program
Suppose you have two analytic workspaces of sales data, one for expenses and one
for revenue. You have a third analytic workspace called analysis that contains
programs that analyze the data.

The analysis analytic workspace has the following AUTOGO program, which
attaches the other two analytic workspaces.

database attach expense after analysis
database attach revenue after analysis

Running AUTOGO programs
Suppose that you write a program named ATTACH_DBS that attaches the analytic
workspaces you want an application to use. You can run it when attaching the main
analytic workspace, called analysis, with the following command.

database autogo attach_dbs analysis

Adding Security to an Analytic Workspace

2-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

If you named the program AUTOGO, you could run the program automatically
with the following command.

database analysis

Adding Security to an Analytic Workspace

Types of security
You can protect analytic workspaces with a password and analytic workspace
permission programs. When an analytic workspace is password-protected, users
cannot attach it without specifying the password. When you provide an analytic
workspace permission program for an analytic workspace, that program associates
access rights with OLAP DML objects.

Assigning a password
At any time after you create an analytic workspace, you can assign a password to it
by using the DATABASE command with the PASSWORD keyword. This command
assigns a password to the current analytic workspace; if the current analytic
workspace already has a password, then it replaces the old password with the new
one.

Passwords can consist of up to 16 characters. They must begin with a letter or an
underscore and can contain letters, numbers, periods (.), and underscores (_).
Choose a password you can remember easily. Once you specify a password, you
cannot access the analytic workspace without it.

A password does not become effective until you update the analytic workspace.
Thereafter, you can attach that analytic workspace only if you supply this password
in the DATABASE command.

Example: Assigning and using a password
The following command assigns the password goldfinch to the current analytic
workspace (called sales).

database password goldfinch

To access the analytic workspace after this command is executed, you must, as
shown below, use the password goldfinch.

database sales goldfinch

Adding Security to an Analytic Workspace

Defining and Working with Analytic Workspaces 2-21

Removing a password
To remove a password from the current analytic workspace, use the DATABASE
command with the PASSWORD keyword without specifying the password
argument. Once you update the analytic workspace, the password is no longer
required to attach the analytic workspace.

Using analytic workspace permission programs
When a user attaches an analytic workspace, the analytic workspace is checked to
see if it contains a program called PERMIT_READ or PERMIT_WRITE. You do not
have to create these programs; however, if they are present, then they are
automatically executed when the user attaches an analytic workspace.

If you have analytic workspace permission programs defined in analytic
workspaces that are currently attached, then the one in the analytic workspace that
you are attaching is executed. However, if you have analytic workspace permission
programs in more than one currently attached analytic workspace, then you must
take special care when you edit them or use them in any other way, to ensure that
you access the one in the appropriate analytic workspace.

Analytic workspace permission programs are executed before any AUTOGO
program that is associated with the analytic workspace is executed. If a user
specifies a password when attaching the analytic workspace, then the password is
not immediately compared to the stored password that was specified with
DATABASE PASSWORD. Instead, the password is passed as an argument to the
analytic workspace permission program for processing.

Creating and designing analytic workspace permission programs
To create permission programs, you define two programs with the names
PERMIT_READ and PERMIT_WRITE. In these programs, you can specify PERMIT
commands and the values of the permission conditions on which permission is

IF the user attaches an analytic
workspace with . . .

THEN the following program is executed,
it exists . . .

read-only access, PERMIT_READ program.

read/write access, PERMIT_WRITE program.

Adding Security to an Analytic Workspace

2-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

based. You write these programs as user-defined functions that return a Boolean
value.

For information on writing and debugging OLAP DML programs, see Chapter 8
and Chapter 9.

Levels of access you can control using permission programs
Permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

Using PERMIT commands to restrict access
For example, using the PERMIT command, you can deny access to the SALARY
variable to one group of users, and you can deny access to the TENURE variable to
another group of users. You can even specify that certain users cannot access a
subset of the cells in the SALARY variable.

You can specify permission to access OLAP DML objects with PERMIT commands.
The PERMIT command can use permission conditions based on values that are
returned by the SYSINFO function. In this manner, you can specify permission
based on the user ID under which the session is running or the groups to which the
user ID belongs.

Making an analytic workspace read-only
To protect an analytic workspace from inadvertent changes, you should ensure that
users attach the analytic workspace in read-only (RO) mode unless you know that

IF the program returns . . . THEN the analytic workspace . . .

YES is attached.

NO is not attached.

Type of access Description

Analytic Workspace
level

Depending on the return value of the permission program, the user
is or is not granted access to the entire analytic workspace.

Object level Depending on the PERMIT commands in the permission program,
the user is or is not restricted to the access to specific objects or sets
of object values.

Note: All of the objects referred to in a given permission program
must exist in the same analytic workspace.

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-23

users need to make permanent changes in the analytic workspace. By default, an
analytic workspace is read-only when it is attached. You can also explicitly make
the analytic workspace read-only at the system level.

Users can use a read-only analytic workspace in the same way as an ordinary
analytic workspace; users can even make changes to it during a session. However,
users cannot make the changes permanent on disk by updating. The UPDATE
command has no effect on an analytic workspace with read-only access. This
protects data you do not want users to change.

Obtaining Analytic Workspace Information

Viewing a complete analytic workspace description
The DBDESCRIBE program displays a complete description of your analytic
workspace, including:

■ A table of contents that shows general information about your analytic
workspace, such as the date and time of the last update and the number of each
type of OLAP DML object.

■ A list of OLAP DML objects that are sorted alphabetically.

■ Detailed descriptions of all OLAP DML objects, which are sorted by type of
object and sorted alphabetically by name within each type. For each object,
there is a cross-reference list of other objects that use or are used by this object.

Because the output from DBDESCRIBE is frequently very long, you can direct it to a
file with the OUTFILE command.

outfile ’filename’
dbdescribe
outfile eof

Obtaining general analytic workspace information
The DATABASE function returns various kinds of information about attached
analytic workspaces. For example, you can use the DATABASE function to learn
your read or write access rights to an analytic workspace or to determine if an
attached analytic workspace has been changed by a user with read/write access.

Obtaining Analytic Workspace Information

2-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For the complete syntax for the DATABASE function, see the OLAP DML
Reference. The simplified syntax of the DATABASE function is shown below.

DATABASE(choice [database-name])

The keyword you specify for choice determines the type of information that is
returned by the DATABASE function. Examples of keywords are: ATTACHED,
CHANGED, FILESIZE, NAME, RO, and RW.

For example, the following commands check which analytic workspace is active so
the program can choose the appropriate data to report.

if DATABASE(NAME) eq ’MYSALES’
 then report sales.m
 else report gensales

Listing the names of objects in an analytic workspace
You can retrieve a list of the objects in an analytic workspace by using the
LISTNAMES program. This program lists all the objects in the analytic workspace,
grouped by object type and alphabetized within object type. LISTNAMES shows
the total number of each type of object (dimension, variable, and so on).

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-25

Example: Listing the names of all of the objects in an analytic workspace
If the demo analytic workspace is attached, issuing the command listnames
produces the following output.

Viewing the definitions of OLAP DML objects
To display the definitions of one or more objects, use the DESCRIBE command. For
example, you can issue the following command for the demo analytic workspace.

describe price

11 DIMENSIONs 19 VARIABLEs 4 RELATIONs 2 VALUESETs

------------- -------------- ----------- ----------

CHOICE ACTUAL DIVISION.PRODUCT PRODUCTSET

DISTRICT ADVERTISING MARKET.MARKET QUARTERSET

DIVSION BUDGET

LINE CHOICEDESC

MARKET DEMOVER

MARKETLEVEL EXPENSE

MONTH FAST

MONTH INDUSTRY.SALES

PRODUCT NAME.LINE

QUARTER NAME.PRODUCT

REGION NATIONAL.SALES

YEAR PRICE

PRODUCT.MEMO

SALES

SALES.FORECAST

SALES.PLAN

SHARE

UNITS

UNITS.M

Obtaining Analytic Workspace Information

2-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

It produces the following output.

DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price

If you execute the DESCRIBE command without any object names, all the objects in
the current status list of the NAME dimension are described.

Listing objects that are dimensioned by a specific dimension
Use the LISTBY command to retrieve a list of all objects that are dimensioned by, or
related to, a given dimension.

Example: Listing objects that are dimensioned by a specific dimension
For example, to find out which objects in the demo analytic workspace are
dimensioned by, or related to, MONTH, you can use the following command.

listby month

The following list is displayed.

14 objects dimensioned by or related to MONTH in database DEMO
--
ACTUAL ADVERTISING BUDGET
EXPENSE FCST NATIONAL.SALES
PRICE PRODUCT.MEMO SALES
SALES.FORECAST SALES.PLAN SHARE
UNITS UNITS.M

Obtaining information about OLAP DML objects
To obtain information about OLAP DML objects, you can use the OBJ function.

Example: Obtaining the number of dimensions for the variable
The following command obtains the number of dimensions for the variable UNITS
in the demo analytic workspace. The output is shown below the command.

show obj(numdims ’units’)
3

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-27

Example: Obtaining the data type of a variable
The following command obtains the data type of the UNITS variable. The output is
shown below the command.

show obj(data ’units’)
INTEGER

Obtaining information about groups of objects
You often use the OBJ function in conjunction with the LIMIT command and the
NAME dimension in order to obtain information about groups of objects. The
LIMIT command sets the status of a dimension. This means that it restricts the
accessibility of dimension values, which sets a corresponding restriction on any
variables or relations that are dimensioned by them. The NAME dimension
contains the names of all the objects that are defined in the analytic workspace.

You can use the LIMIT command together with the OBJ function to identify a group
of objects with a particular characteristic. Then, you can list the objects in the group
using the STATUS command.

Example: Identifying objects by their dimensions
The following commands lists the objects that are dimensioned by both MONTH
and PRODUCT.

limit name to obj(isby ’month’) and obj(isby ’product’)
status name

The output of these commands is shown below.

The current status of NAME is:
ADVERTISING, EXPENSE, NATIONAL.SALES, PRICE, PRODUCT.MEMO, SALES,
SALES.FORECAST, SALES.PLAN, SHARE, UNITS, UNITS.M

Obtaining Analytic Workspace Information

2-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

the status of a dimension, Chapter 6

the entry for the STATUS command in the
OLAP DML Reference

limiting dimensions, Chapter 6

the entry for the LIMIT command in the OLAP
DML Reference

the DBDESCRIBE program, LISTBY
command, LISTNAMES program,
NAME dimension, OBJ function

the entry for the program, command, or
function in the OLAP DML Reference

Defining Data Objects 3-1

3
Defining Data Objects

Chapter summary
This chapter introduces the OLAP DML data structures. It explains how to define
OLAP DML objects and change the definition of those objects.

List of topics
This chapter includes the following topics:

■ Overview: Defining OLAP DML objects

■ Defining Dimensions

■ Defining Relations

■ Defining Variables

■ Defining Variables That Handle Sparse Data Efficiently

■ Defining Hierarchical Dimensions and Variables That Use Them

■ Defining Metadata

■ Changing the Definition of an Object

Overview: Defining OLAP DML objects

What are object definitions?
It is important to understand the distinction between an object’s definition and its
data. An object’s definition is its description in the workspace dictionary of the
analytic workspace. An object’s data is the value or values that are associated with
that definition. All objects have definitions. However, not all objects have data.

Overview: Defining OLAP DML objects

3-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For example, a SALES variable that is dimensioned by MONTH, PRODUCT, and
DISTRICT has a definition for itself as a variable object. The SALES variable is also
associated with the definitions for its three dimensions. However, the values of
SALES, MONTH, PRODUCT, and DISTRICT are not part of the definitions.

Other objects, such as programs (stored procedures), do not have data.

Defining OLAP DML objects using OLAP DML commands
Once you have created an analytic workspace, you can begin defining OLAP DML
objects. To define any OLAP DML object, use the DEFINE command. The simplified
syntax for the DEFINE command is shown below.

DEFINE name object-type attributes [DATABASE dbname]

The name argument specifies the name for the new definition.

Important: Because each analytic workspace has its own dictionary of OLAP DML
objects, you can define objects with the same name in more than one analytic
workspace. However, to prevent unexpected results, you should take care to
provide unique names for objects in separate analytic workspaces that will be active
at the same time.

The object-type argument specifies the type of OLAP DML object that is being
defined. The default is VARIABLE. You can specify any of the valid object types as
outlined in “OLAP DML objects you define using the DEFINE command” on page
3-3.

The attributes argument specifies the properties of the object. Attributes are different
for each type of object. The attributes are listed in the entry for each object type.

The DATABASE dbname phrase specifies the name of an attached analytic
workspace in which you want to define the object. If you do not specify an analytic
workspace name, then the current analytic workspace is used.

For the complete syntax for the DEFINE command, see the entry for the command
in THE OLAP DML Reference.

Overview: Defining OLAP DML objects

Defining Data Objects 3-3

OLAP DML objects you define using the DEFINE command
The OLAP DML data objects types that you define using the DEFINE command are
outlined in the following table.

Object Type Description

DIMENSION An object that contains a list of values that provide categories for
data. A dimension acts as an index for identifying values of a
variable. A dimension is similar to a key in a relational analytic
workspace.

RELATION An object that establishes a correspondence between the values of a
given dimension and the values of that dimension or other
dimensions in the analytic workspace.

VARIABLE An object that stores data. The data type of a variable indicates the
kind of data that it contains.

COMPOSITE A named list of dimension-value combinations, in which a given
combination has one value taken from each of the dimensions on
which the composite is based.

Note: An unnamed composite is automatically created when you
define a variable with some dimensions specified as sparse. An
unnamed composite is an internal object; it is not considered an
OLAP DML object.

FORMULA An object that represents a stored calculation, expression, or
procedure that produces a value.

MODEL An object that contains a set of interrelated equations that are used
to calculate data and assign it to a variable or dimension value. In
most cases, models are used when working with financial data.

PROGRAM An object that contains a series of OLAP DML commands. A
program is a stored procedure that executes a set of related
commands.

VALUESET An object that contains a list of dimension values for a particular
dimension.

AGGMAP
(AGGREGATION
MAP)

An object that contains a set of interrelated commands that are used
to specify which data in a variable should be aggregated (with the
AGGREGATE command) and which data should be calculated on
the fly (with the AGGREGATE function).

Defining Dimensions

3-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining Dimensions

Definition: Dimension
A dimension is an OLAP DML object that holds a list of values that provide the
organization for one or more OLAP DML variables. A dimension value is similar to
a key in a relational analytic workspace; it acts as an index to data. For example, if
you have sales data with a separate sales figure for each month, then the data has a
MONTH dimension; that is, the data is organized by month. The dimension values
you add might be Feb98, Mar98, and Apr98.

Dimension values let you identify your data and provide an easy way to target the
data you need for a particular purpose. When your users display or analyze your
data, they select the values to work with.

Types of dimensions
OLAP DML supports both flat and hierarchical dimensions:

■ A flat dimension exists when the values within a dimension are all at the same
level. No value is the child or parent of another value.

■ A hierarchical dimension exists when values are in a one-to-many
(parent-to-child) relationship with each other. A hierarchical dimension is a
means of organizing and structuring this type of data within a single dimension
that you can then use to dimension a single variable that contains data for all
the levels. Some dimensions have multiple hierarchies based on them. For more
information on hierarchical dimensions, see “Defining Hierarchical Dimensions
and Variables That Use Them” on page 3-20.

Note: When you define a variable using the SPARSE keyword, an internal object
called a composite is automatically created. A composite shares some of the
characteristics of a dimension and contains values that are combinations of values
in other dimensions. For more information on composites, see “Defining Variables
That Handle Sparse Data Efficiently” on page 3-15.

Determining what dimensions to define
If you want your analytic workspace to contain only flat dimensions, you need to
define dimensions for each level of detail in your data that users will access.

For example, if your company is divided into sales districts and each district
handles several store accounts, then you need to decide whether you want sales

Defining Dimensions

Defining Data Objects 3-5

figures for every store or only for each district. As shown in the following table, the
answer to this question determines the structure of your analytic workspace.

Sometimes, you will decide to store data of varying levels of aggregation within a
single variable, because this type of storage affords a quicker response time for
users who want to view the data. In this case, you need to define a hierarchical
dimension.

For example, if you want to look at data both ways instead of defining both a
STORE and a DISTRICT dimension as described above, then you can define a single
hierarchical dimension. This hierarchical dimension would contain all of the values
for stores and districts. If you dimension a variable by this hierarchical dimension
then you can store data of varying levels of aggregation within that single variable.
You can still view store data and district data separately.

How data for simple flat dimensions is stored
The data for a simple flat dimension is stored in a one-dimensional array. As you
add values to the dimension, it stores each new value at the end of the array.

Example: How data for simple flat dimensions is stored
Assume that the PRODUCT dimension has been defined as a TEXT data type. The
first three values that are added to the dimension are TENTS, CANOES, and
RACQUETS. At this point, a report of the dimension shows the following values.

PRODUCT

TENTS
CANOES
RACQUETS

IF . . . THEN . . .

you need store data, you can define a STORE dimension.

you always look at each district as a whole, all you need is a DISTRICT dimension.

you want to look at data both ways, you can organize data by store and view
aggregates of data by district by creating
both a STORE and a DISTRICT dimension
with a relation between them.

Defining Dimensions

3-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The values are actually stored as shown below.

Later, the values SPORTSWEAR and FOOTWEAR are added. At this point, a report
of the dimension shows the following values.

PRODUCT

TENTS
CANOES
RACQUETS
SPORTSWEAR
FOOTWEAR

Now the dimension array looks like the following figure.

Related information
For more information, see the following table.

PRODUCT Dimension

Position 1 2 3

Value TENTS CANOES RACQUETS

PRODUCT Dimension

Position 1 2 3 4 5

Value TENTS CANOES RACQUETS SPORTSWEAR FOOTWEAR

IF you want documentation about . . . THEN see . . .

adding values to dimensions, Chapter 5.

using dimensions in expressions, Chapter 4.

reports, Chapter 12.

defining dimensions, the entry for the DEFINE DIMENSION
command in THE OLAP DML Reference.

Defining Relations

Defining Data Objects 3-7

Defining Relations

Definition: Relation
A relation is an OLAP DML object that establishes a correspondence between the
values of a given dimension and the values of that same dimension or other
dimensions in the analytic workspace. The structure of a relation is similar to that of
a variable. However, the cells in relations do not hold actual data values; instead,
each cell in a relation holds the index of the value of a dimension.

By creating a relation between two dimensions that participate in a one-to-many
(parent-to-child) relationship, you can organize your data by the child dimension
and view aggregates of data by the parent dimension. For example, if you define
STORE and DISTRICT dimensions and a relation between them, then you can
organize data by STORE and view aggregates of data by DISTRICT.

You can explicitly define relations between two or more dimensions, multiple
relations between two relations, or a self-relation. Additionally, relations between
dimensions in your analytic workspace that have time data types (DAY, WEEK,
MONTH, QUARTER, or YEAR) are automatically defined.

How relations are dimensioned
All relations are dimensioned arrays. Relations can be dimensioned by the
dimension with the larger number of values or the fewer number of values.

Dimensioning with the larger number of values
Typically, a relation is dimensioned by the dimension with the larger number of
values (that is, the less aggregate or child dimension) and the related dimension is
the dimension with fewer values (that is, the more aggregate or parent dimension).
For example, you can create a relation called STATE.CITY to associate each city with
the state that it is in. The relationship is dimensioned by CITY and the related
dimension is STATE. You assign a state to each city.

Dimensioning with the fewer number of values
Less typically, a relation is dimensioned by the dimension with fewer values (the
more aggregate dimension or parent dimension). In this case, not every value of the
other dimension is related. For example, you could create a relationship, named
CITY.STATE, between states and their capital cities. The relation is dimensioned by
STATE and the related dimension is CITY. Only the capital cities are assigned to a
state.

Defining Relations

3-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How relation data is stored
The order in which you define the dimensions of a relation determines how its data
is stored and accessed. Dimension values vary in the order you list them in the
definition, with the first value varying fastest and the last value varying slowest.

The data values that are stored for a relation are the indexes of the related
dimension.

For example, the STATE.CITY relation (that is dimensioned by CITY and has a
related dimension of STATE) assigns a state to each city. To implement this
relationship, an index from the STATE dimension is stored for every value (index)
in the CITY dimension.

Example: Relation between two dimensions
Most relations are a single-dimensional array that relates the values of one
dimension with another. For example, as the figure below illustrates, you can define
two simple dimensions, STATE and CITY, and a relation STATE.CITY between them
to associate each city with the state that it is in.

STATE.CITY Relation

CITYPosition

(Value)

C1

 (Atlanta)

C2

 (Chicago)

C3

 (Springfield)

STATEPosition

 (Value)

S1

 (Georgia)

S2

 (Illinois)

S2

 (Illinois)

STATE dimension

CITY dimension

STATE.CITY
 relation

Defining Relations

Defining Data Objects 3-9

Assume that the STATE.CITY relation was defined using the following command.

define state.city relation state<city>

Assume that, as shown below, the STATE dimension has two values and the CITY
dimensions has three values.

STATE

GEORGIA
ILLINOIS

CITY

ATLANTA
CHICAGO
SPRINGFIELD

The STATE.CITY relation is dimensioned by CITY and the related dimension is
STATE. The STATE.CITY relation assigns a state to each city as shown below.

CITY STATE.CITY
-------------- ---------------
ATLANTA GEORGIA
CHICAGO ILLINOIS
SPRINGFIELD ILLINOIS

Example: Self-relation
You can define a self-relation for a single dimension. For example, to keep track of
the reporting structure of a company, you can have the EMP.EMP relation for the
EMPLOYEE dimension.

Assume that the EMP.EMP relation was defined using the following command.

define emp.emp relation employee <employee>

EMPLOYEE
dimension

EMP.EMP
 relation

Defining Relations

3-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Assume that the EMPLOYEE dimension contains the values shown below.

EMPLOYEE

ANN LOGAN
MICHAEL ARON
LUCY BATES
RALPH BURNS

The self-relation EMP.EMP is dimensioned by the EMPLOYEE dimension and the
related dimension is also the EMPLOYEE dimension. As shown below, the
EMP.EMP relation assigns a manager to each employee.

EMPLOYEE EMP.EMP
-------------- ----------
ANN LOGAN NA
MICHAEL ARON ANN LOGAN
LUCY BATES ANN LOGAN
RALPH BURNS LUCY BATES

In this example, Ann Logan, the company’s president, does not report to anyone;
employees Lucy Bates and Michael Aron report directly to Ann Logan, the
president; and employee Ralph Burns reports to employee Lucy Bates.

For information about using self-relations with hierarchical dimensions, see
“Defining Hierarchical Dimensions and Variables That Use Them” on page 3-20.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

using self-relations with hierarchical
dimensions,

“Defining Hierarchical Dimensions and
Variables That Use Them” on page 3-20.

adding values to relations, “Assigning Values to Data Objects” on page
5-13.

using relations in expressions, “Using OLAP DML Objects in Expressions”
on page 4-6.

Defining Variables

Defining Data Objects 3-11

Defining Variables

Definition: Variable
A variable is an OLAP DML object that stores data. All of the data in a variable
represents the same unit of measurement with the same data type. Your business
might have several categories of transactions — measured in dollars, units,
percentages, and so on — and each category is stored in its own variable. For
example, you might record sales data in dollars (a SALES variable) and units (a
UNITS variable).

Typically, you use variables to contain data values that quantify a particular aspect
of your business.

Types of variables
Variables can be either dimensioned or undimensioned:

■ Dimensioned variables — If a variable is an array with dimensions, then those
dimensions organize its data, and there is one cell for each combination of
dimension values. This type of variable is called a dimensioned variable. A
variable can be dimensioned by up to 32 dimensions.

■ Undimensioned variables — If a variable has no dimensions, then it is a scalar,
or single-cell variable, which contains one data value.

Variables that you define in an analytic workspace can be permanent, inplace, or
temporary. You can also define variables in programs, as described in “Defining
local variables” on page 8-9.

Permanent variables
A permanent variable is a variable for which both the variable’s values and
definitions are stored on disk. The values of permanent variables are written to new
pages in the analytic workspace as you make changes to the values of the variable.
However, the stored values of the permanent variable are not actually changed
when an UPDATE command is processed for the analytic workspace that contains
the variable. Consequently, if an update of an analytic workspace is unsuccessful,
then the original values of the permanent variable can be retrieved.

Defining Variables

3-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Inplace variables
Like permanent variables, both the values and definitions of inplace variables are
stored on disk. The way that inplace variables are updated depends on how the
analytic workspace is attached:

■ When the analytic workspace is attached in read/write, non-exclusive mode,
inplace variables are updated in the same way that permanent variables are
updated.

■ When the analytic workspace is attached in read/write, exclusive mode, the
values of an inplace variable are stored whenever it writes pages to the disk.
Additionally, when you change the values of inplace variable, the new changed
values are stored over the inplace variable’s old values. Consequently, if an
update of an analytic workspace is unsuccessful, then the original values of an
inplace variable might not still be stored in the analytic workspace, and it might
not be possible to restore the variable’s original values.

For more information on attaching analytic workspaces, see “Gaining Access to a
Workspace from OLAP Worksheet” on page 2-4.

Temporary variables
For more efficient use of disk space, the OLAP DML also lets you define temporary
variables that have values only during the current OLAP Services session. When
you update the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded.

When to use inplace variables
There are both advantages and disadvantages to using inplace variables:

■ Advantages of inplace variables — Once the values for an inplace variable have
been stored, new analytic workspace pages are no longer created to store new,
changed values. Consequently, the major advantage of using an inplace variable
is that the analytic workspace that contains the variable grows at a slower rate
and has fewer free pages then the analytic workspace would have if you
defined the variable as a permanent variable.

■ Disadvantages of inplace variables — The major disadvantages of using inplace
variables rather than a permanent variables are:

■ An inplace variable is always in an indeterminate state while it is being
updated. Because the old values are overwritten when the new ones are
stored, there is no way to know exactly what data is stored in the variable at

Defining Variables

Defining Data Objects 3-13

any given moment. Depending on the other processing that is being
performed, an inplace variable that is being updated can be
computationally inconsistent. The values of an inplace variable are in a
determinate state only after an UPDATE command is processed for the
analytic workspace that contains the variable.

■ If an UPDATE command for an analytic workspace that contains an inplace
variable fails, it might not be possible to restore the original values of the
inplace variable if its stored values have been overwritten. Instead, you
must explicitly restore the inplace variable’s original values.

Recommendations for using inplace variables
Oracle Corporation recommends that you only use inplace variables if you can
guarantee that the following conditions are met:

■ You can reconstruct the data in the inplace variable if the update of the analytic
workspace that contains the variable fails.

■ You are the only user accessing the analytic workspace when you update the
inplace variable, for example, when you explicitly attach an analytic workspace
in read/write, exclusive mode as described in “Specifying the analytic
workspace attachment mode” on page 2-11.

How variable data is stored
The order in which you list the dimensions in a variable’s definition determines
how that variable’s data will be stored and accessed. The first dimension that you
list in the variable definition is referred to as the fastest-varying dimension, and the
last dimension that you list is referred to as the slowest-varying dimension.

Example: How variable data is stored
Assume your analytic workspace has an OPCOSTS variable that contains the
operating costs, by month, of each city in which you have offices. In the definition
shown below for the OPCOSTS variable, MONTH is the fastest-varying dimension
and CITY is the slowest-varying dimension.

define opcosts variable decimal <month city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered together. For
example, for the OPCOSTS variable, the values for Boston for all the months are

Defining Variables

3-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

stored in a sequence, and then it stores the values for Chicago for all the months in a
sequence, and so on. Thus the month values vary fastest, as shown below.

Example: Three-dimensional variable
The demo analytic workspace contains the SALES variable, which is a
three-dimensional array dimensioned by MONTH, PRODUCT, and DISTRICT.

Assume that the MONTH, PRODUCT, and DISTRICT dimensions have 36, 5, and 6
values, respectively, and that the SALES variable has the following definition.

define sales variable decimal <month product district>

The SALES variable contains 1,080 cells, which is the total number of cells in each
dimension multiplied together or, in this case, 36 times 5 times 6.

DISTRICT: BOSTON
 -------------------SALES-------------------
 -------------------MONTH-------------------
PRODUCT JAN96 FEB96 MAR96
-------------- ---------- ---------- ---------- ----------
TENTS 50,808.96 34,641.59 45,742.21 . . .
CANOES 70,489.44 82,237.68 97,622.28 . . .
RACQUETS 56,337.84 60,421.50 62,921.70 . . .
SPORTSWEAR 57,079.10 63,121.50 67,005.90 . . .
FOOTWEAR 95,986.32 101,115.36 103,679.88 . . .

OPCOSTS variable

Dimension
Values

JAN97
Boston

FEB97
Boston

. . .

. . .
JAN97
Chicago

FEB97
Chicago

. . .

. . .

Variable
Values

16000.77 16000.28 . . .
. . .

19000.21 19000.24 . . .
. . .

SALES
variable

 MONTH
dimension

PRODUCT
dimension

DISTRICT
dimension

Defining Variables That Handle Sparse Data Efficiently

Defining Data Objects 3-15

DISTRICT: ATLANTA
 -------------------SALES-------------------
 -------------------MONTH-------------------
PRODUCT JAN96 FEB96 MAR96
-------------- ---------- ---------- ---------- ----------
TENTS 46,174.92 50,553.52 58,787.82 . . .
CANOES 56,271.40 61,828.33 77,217.62 . . .
 .
 .
 .

Related information
For more information, see the following table.

Defining Variables That Handle Sparse Data Efficiently

Definition: Sparse data
A variable with sparse data is one in which a relatively high percentage of the
variable’s cells do not contain actual data. Such “empty,” or NA, values take up
storage space in the file.

There are two types of sparsity:

■ Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new variable dimensioned by MONTH for which you
do not have data for past months. The cells exist because you have past months
in the MONTH dimension, but the data is NA.

■ Random sparsity occurs when NA values are scattered throughout the data
variable, usually because some combinations of dimension values never have
any data. For example, a district might only sell certain products and never

IF you want documentation about . . . THEN see . . .

populating variables, “Assigning Values to Data Objects” on page
5-13

using variables in expressions, “Using OLAP DML Objects in Expressions”
on page 4-6

defining variables, the entry for the DEFINE VARIABLE
command in THE OLAP DML Reference

Defining Variables That Handle Sparse Data Efficiently

3-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

have data for other products. Other districts might sell some of those products
and other ones, too.

Definition: Composite
A composite is an internal object that is used to compactly store a variable with
sparse data. A composite is a list of dimension-value combinations in which one
value is taken from each of the dimensions on which the composite is based.

Composites can be named or unnamed:

■ An unnamed composite is not an OLAP DML object; it is merely an internal
structure. If you define a variable you use the SPARSE keyword to request that
an unnamed composite is automatically created.

■ A named composite is an OLAP DML object that is you define using the
DEFINE COMPOSITE command. Later, when you are defining or accessing a
variable you use this name along with the dimension names from which it is
built.

Because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

In general, why you should use composites
Using composites is one of the most important steps you can take to manage
sparsity, which contributes to keeping analytic workspace size to a minimum and
promoting good performance.

Specifically, why you should use named composites
Using a named composite in the variable’s dimension list tells OLAP Services that
those dimensions in the named composite are sparse dimensions on this variable,
and that this composite is shared only with other variables that use the same named
composite.

In general, using named composites is a good practice. This is because any variables
that are defined with an unnamed composite and that have exactly the same
dimensions in the same order will automatically share that unnamed composite. If
these variables have different sparsity patterns, performance will suffer. Using
named composites makes it easier to track which variables share the same
composite.

Defining Variables That Handle Sparse Data Efficiently

Defining Data Objects 3-17

Note: You can also manage sparsity by using a conjoint dimension to hold
dimension-value combinations for which a given variable has data. However,
because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

How to use composites
To ensure that a variable uses a minimum of disk storage space, when you define a
multidimensional variable, you can specify that a composite is used to store the
data for one or more of the variable’s dimensions.

First, define a named composite as an OLAP DML object by using the DEFINE
COMPOSITE command. Then, define the variables by using the following syntax to
include a named composite in each variable’s dimension list.

composite-name <dims>

For example, suppose you define a composite named PRODDIST, whose
dimensions include PRODUCT and DISTRICT, as shown in the following
command.

DEFINE proddist COMPOSITE <product district>

Now, suppose you want to define a SALES variable, in which TIME will be the
fastest-varying dimension and the PRODDIST composite will be the
slowest-varying dimension, as shown in the following command.

DEFINE sales <time proddist<product district>>

Note that you should never use the SPARSE keyword with a composite. Essentially,
you use the name of the composite instead of the SPARSE keyword.

Naming, renaming, and unnaming composites
You can use the RENAME command to:

■ Name an unnamed composite.

■ Change the name of a named composite.

■ Change a named composite to an unnamed composite.

What happens when you add data to a variable that uses a composite
When you define a multidimensional variable, you can specify that a composite is
used to store the data for one or more of the variable’s dimensions. Later, as you

Defining Variables That Handle Sparse Data Efficiently

3-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

add data to the variable’s dimensions for which you defined a composite, the
following actions are taken:

1. The composite is filled with dimension-value combinations.

2. The data for the variable is stored using the composite’s structure rather than
the structure of the base dimensions.

For a variable that uses a composite, cells are created for only those dimension
values that are used in the composite’s dimension-value combinations; it does not
create a variable cell for every value in the base dimensions. Data for a variable is
stored in order, cell by cell, for each combination of dimension values. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. This means that if you
define a variable with one regular dimension and one composite, then it is stored
like a two-dimensional variable.

Example: Defining a variable that uses a named composite
If your company does promotional marketing for certain products in some but not
all districts, then your variable data will be sparse along the PRODUCT and
DISTRICT dimensions. Therefore, suppose you define a composite named
PRODDIST, whose base dimensions are PRODUCT and DISTRICT. There are
dimension-value combinations in the composite only for those values that have
data. For example, if you ran a promotion for tents but not canoes, then the
composite will include the tents and city combinations, but not the canoes and city
combinations.

The following command creates a variable called PROMO that is dimensioned by
MONTH and a composite named PRODDIST, whose base dimensions are
PRODUCT and DISTRICT.

define promo integer <month proddist<product district>>

The conceptual figure below illustrates the PROMO variable that is created by this
command, the MONTH, PRODUCT and DISTRICT base dimensions, a named
composite (PRODDIST) created from the PRODUCT and DISTRICT base

Defining Variables That Handle Sparse Data Efficiently

Defining Data Objects 3-19

dimensions, and the internal relation that is created between the PRODUCT and
DISTRICT base dimensions and the PRODDIST composite.

The following is an example of the sequence in which the data for the PROMO
variable might be stored.

Defining a variable with a single-dimension composite
When you specify a composite for just one dimension in a variable definition, a
single-dimension composite is created. The values of this composite will be a subset
of the values in its base dimension.

It is a good idea to use single dimension composites when a variable will share the
same dimensions as some other variables, but for a particular single dimension, the
variable will only have data for some of that dimension’s values.

Example: Defining a variable with a single-dimension composite
Suppose you have already defined a variable called ACTUAL with the dimensions
LINE, DIVISION, and MONTH. The ACTUAL variable does not contain any NA
values. You need to define a variable called BUDGET, which requires much less

Sequence in which data for the PROMO variable might be stored

TENTS,
BOSTON

JAN95

TENTS,
BOSTON

FEB95

TENTS,
BOSTON

MAR95

. . . RACQUETS,
CHICAGO

JAN95

RACQUETS,
CHICAGO

FEB95

. . .

257 379 428 . . . 635 192 . . .

PRODUCT
dimension

PROMO
 variable

 PRODDIST
(named composite)

 MONTH
dimension

DISTRICT
dimension

Defining Hierarchical Dimensions and Variables That Use Them

3-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

detail than ACTUAL. For example, BUDGET only needs 10 percent of the LINE
dimension values, while ACTUAL needs all of them.

If you define BUDGET without setting sparsity, then all of the LINE dimension
values are present for every MONTH and ORG, but 90 percent of the LINE
dimension cells will have NA values.

To handle sparse data in this case, when you define BUDGET, specify a composite
for only the LINE dimension as shown below.

define budget decimal <sparse <line> division month>

Related information
For more information, see the following table.

Defining Hierarchical Dimensions and Variables That Use Them

Definition: Hierarchical dimension
A hierarchical dimension is a means of organizing and structuring parent-child
(one-to-many) data within a single dimension and using self-relations to organize
the values of the hierarchical dimension into groups. A hierarchy exists when
values within a dimension are arranged in levels, with each level representing the
aggregated total of the data from the level below. Some dimensions have multiple
hierarchies based on them.

Hierarchical dimensions allow you to store data of varying levels of aggregation
within a single variable. This type of storage affords a quicker response time for
users who want to view the data, particularly when the variable is large.

IF you want documentation about . . . THEN see . . .

working with sparse data, “Working with NA Values” on page 4-40

using composites in expressions, “Using composites in expressions” on page
4-7

defining composites, the DEFINE COMPOSITE command in the
OLAP DML Reference

defining conjoint dimensions, the DEFINE DIMENSION command in the
OLAP DML Reference

defining variables that use composites, the DEFINE VARIABLE command in the
OLAP DML Reference

Defining Hierarchical Dimensions and Variables That Use Them

Defining Data Objects 3-21

Example: Hierarchical dimension values
Rather than defining two separate dimensions, one for city and the other for region,
you could define a hierarchical dimension named GEOGRAPHY that contains both
city and region values.

GEOGRAPHY

EAST
WEST
BOSTON
SAN FRANCISCO
SEATTLE

Defining a variable that uses a hierarchical dimension
You use a hierarchical dimension to define a variable that contains data of varying
levels of aggregation within a single variable. This type of storage affords a quicker
response time for users who want to view the data, particularly when the variable is
large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the variable’s cells
that correspond to the lower level dimension values. For example, in a SALES
variable that is defined with a TIME dimension, the variable’s cells that correspond
to each quarter represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add
variable data to the lowest level of the hierarchy, and then calculate or “aggregate”
the values for the higher levels of the hierarchy. For more information on
aggregating data, see “Aggregating Data” on page 5-19.

Example: Hierarchical dimension and variable that uses it
The conceptual diagram below illustrates the GEOGRAPHY dimension that
contains values for both cities and regions, the GEO.GEO relation that defines the
relationships between cities and regions, the DIVISION dimension that contains the

Defining Hierarchical Dimensions and Variables That Use Them

3-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

list of divisions, and the COSTS variable that contains the expenses for each
DIVISION by city and the totals by region.

The DIVISION and GEOGRAPHY dimensions have the following values.

DIVISION

DIVA
DIVB

GEOGRAPHY

EAST
WEST
BOSTON
SAN FRANCISCO
SEATTLE

Assume that the GEO.GEO relation was defined using the following command.

define geo.geo relation geography <geography>

The figure below illustrates the values of a self-relation called GEO.GEO that is
defined to assign cities to regions.

GEOGRAPHY GEO.GEO
-------------- ----------
EAST NA
WEST NA
BOSTON EAST
SAN FRANCISCO WEST
SEATTLE WEST

GEOGRAPHY
 dimension

GEO.GEO
 relation

COSTS
variable

DIVISION
dimension

Defining Metadata

Defining Data Objects 3-23

If you enter data at the lowest level (city level) of COSTS, then it has the values
shown below.

 ------------------------COSTS------------------------------
 ----------------------GEOGRAPHY----------------------------

DIVISION EAST WEST BOSTON SAN FRANCISCO SEATTLE
--------- ---------- ---------- ---------- ------------- ----------
DIVA NA NA 27,600.00 10,000.00 40,000.00
DIVB NA NA 30,000.00 12,000.00 50,000.00

After you aggregate the data, the COSTS variable has values in all of its cells,
including the cells for the totals for the East and West regions.

 ------------------------COSTS------------------------------
 ----------------------GEOGRAPHY----------------------------

DIVISION EAST WEST BOSTON SAN FRANCISCO SEATTLE
--------- ---------- ---------- ---------- ------------- ----------
DIVA 27,600.00 50,000.00 27,600.00 10,000.00 40,000.00
DIVB 30,000.00 62,000.00 30,000.00 12,000.00 50,000.00

Related information
For more information, see the following table.

Defining Metadata

Definition: Metadata for OLAP DML objects
Metadata is a group of data objects that describes the OLAP DML objects that you
define.

IF you want documentation about . . . THEN see . . .

Defining dimensions, the entry for the DEFINE DIMENSION
command in the OLAP DML Reference

adding values to dimensions, “Maintaining Dimensions and Composites”
on page 5-3

using dimensions in expressions, “Using dimensions in expressions” on page
4-6

aggregating data, “Aggregating Data” on page 5-19

Changing the Definition of an Object

3-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Why and how to use metadata
The purpose of metadata is to provide you with the flexibility to specify how the
OLAP DML objects will be displayed in applications. Therefore, you should use
metadata when the way in which OLAP DML objects are displayed matters.

You must define metadata and set its property to YES in order to use that metadata.

Using the metadata appendix
This guide provides an appendix that describes all of the metadata that you can
define and use. Refer to Appendix A to learn the following:

■ What metadata is available — You may or may not need to define all possible
types of metadata, depending on your needs. Read the appendix thoroughly in
order to understand what kind of metadata is possible to define, then decide
which metadata you need.

■ The purpose of each metadata object — Each metadata object serves a specific
purpose. The description of each metadata object explains its purpose and use.

■ How to define metadata — The description of each metadata object includes the
syntax for defining that metadata object, as well as an example.

■ How to set the metadata’s property to YES — The description of each metadata
object includes an example of how you set its property to YES, which is what
makes that object functional.

Changing the Definition of an Object

When can you change the definition of an object?
The definition of the last object you have defined in your analytic workspace is the
current definition. You can append characteristics, such as a description, property,
or permission to the current definition. If you want to append a characteristic to a
definition that is not current, then you can use the CONSIDER command to make it
the current definition.

Changing the Definition of an Object

Defining Data Objects 3-25

Commands that you can use to make changes to an object definition
The following table lists the OLAP DML commands that you can use to append
characteristics to an object definition.

Example: Changing the definition of a variable
Suppose that you have defined a Boolean variable named ONPLAN. Later, you
want to add a description to the variable’s definition.

As shown below, to change the definition of the ONPLAN variable, you first make
ONPLAN the current definition, and then you append a description to the
definition.

consider onplan
ld Are these districts being tracked on a special plan?

Example: Changing the storage type of a variable
You can redefine the access mode of a variable by using the CHGDFN command,
which is shown below.

CHGDFN varname INPLACE
 PERMANENT

For more information on the DEFINE and CHGDFN commands, see the topic for
the command in the OLAP DML Reference.

Command Description

EQ Allows you to specify the expression to be calculated for a formula that
has already been defined

EXTARGS Assigns arguments to the definition of an EXTCALL object

LD Assigns a long description to an object definition

MODEL Allows you to enter completely new contents into a new or existing
model

PERMIT Assigns access permission to an object definition

PROGRAM Allows you to enter completely new contents into a new or existing
program

PROPERTY Assigns a property to an object definition

VNF Assigns a value name format to the definition of a time dimension

Changing the Definition of an Object

3-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Expressions 4-1

4
Working with Expressions

Chapter summary
Expressions represent data values in the grammar of the OLAP DML. This chapter
explains how to create and use expressions.

List of topics
This chapter includes the following topics:

■ OLAP DML Data Types

■ Using OLAP DML Objects in Expressions

■ OLAP DML Operators

■ Introducing Expressions

■ Expressions and Dimensionality

■ Specifying a Single Value for the Dimension of an Expression

■ Using Functions in Expressions

■ Numeric Expressions

■ Text Expressions

■ Boolean Expressions

■ Conditional Expressions

■ Substitution Expressions

■ Working with NA Values

OLAP DML Data Types

4-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

OLAP DML Data Types

Basic data types
OLAP DML data types fall into five categories which are referred to as basic data
types and are described in the following table.

Different objects support the use of different data types for their values:

■ For most data values, such as those stored in variables, the INTEGER,
SHORTINTEGER, DECIMAL, SHORTDECIMAL, TEXT, ID, BOOLEAN, and
DATE data types are supported.

■ For dimension values, the INTEGER, TEXT, ID, DAY, WEEK, MONTH,
QUARTER, and YEAR data types are supported.

Numeric data types
The following numeric data types are supported.

A value for any of these data types can begin with a plus (+) or minus (-) sign; it
cannot contain commas. Additionally, a decimal value can contain a decimal point.

Basic Type Specific Type

Numeric INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL

Text TEXT, ID

Boolean BOOLEAN

Date DATE

Time DAY, WEEK, MONTH, QUARTER, YEAR

Data Type Data Value

INTEGER A whole number (in the range of ±2,147,483,647).

SHORTINTEGER A whole number (in the range of ±32,767.

DECIMAL A decimal number (with up to 15 significant digits).

SHORTDECIMAL A decimal number (with up to 7 significant digits).

OLAP DML Data Types

Working with Expressions 4-3

Examples of literal numeric values
Examples of literal numeric values are:

-1
256000
+2147483647
10000000000.0009

Text data types
The following types of text data types are supported.

Escape sequences
In some cases, text data includes values that are not printable. Escape sequences are
provided to allow such values to be input and displayed. An escape sequence is a
series of alphanumeric characters that begins with a backslash.

The following table shows escape sequences that are recognized.

Data Type Data Value

TEXT Any number of alphanumeric characters enclosed in single quotes (’).

ID Up to 8 alphanumeric characters enclosed in single quotes (’).

Escape
Sequence Meaning

\b Backspace

\f Form feed

\n Linefeed

\r Carriage return

\t Horizontal tab

\" Double quote

\’ Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal
escape and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a
hexadecimal escape and nn is the hexadecimal value for the character

OLAP DML Data Types

4-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Examples of literal text values
Examples of literal text values are:

’First Quarter\’s Earnings’
’sales data eif’
’NONE’
’\n’
’JAN96’
’c:\\plan97\\budget.db’

BOOLEAN data type
A BOOLEAN data type is provided that you can use to represent logical values. In
code, you can use any of the following values (in any combination of uppercase and
lowercase characters) to represent Boolean values:

■ YES, TRUE, ON

■ NO, FALSE, OFF

By default, Boolean values as YES and NO are displayed. However, you can use the
NOSPELL and YESSPELL functions to specify other values for display.

Working with Boolean expressions is discussed in “Boolean Expressions” on page
4-28.

DATE data type
A DATE data type is provided that you can use to represent date values. Dates
range from January 1, 1000, to December 31, 9999.

To control how values are formatted with the DATE data type in output, use the
DATEFORMAT option. For more information on using the DATEFORMAT option,
see the entry for the option in the OLAP DML Reference.

To represent DATE values, specify them in either quoted text or integer format.

OLAP DML Data Types

Working with Expressions 4-5

Representing DATE values as quoted text
For quoted text, specify a group of characters enclosed in single quotes (’). Format
the text in one of the styles specified by the DATEORDER option and described in
the following table.

See the entry for DATEORDER in the OLAP DML Reference for detailed rules for
these styles.

Representing DATE values as integers
For an integer, specify a number between -328,717 and 2,958,464 (with the integer 1
corresponding to January 1, 1900).

Time data types
For dimensions, five time data types (DAY, WEEK, MONTH, QUARTER, and
YEAR) are supported. You can specify a dimension value for a time dimension in
either date or value name (VNF) format:

■ To specify a value in date format, use any of the input styles listed for the
DATEORDER option. You need to specify only the date components that are
relevant for the data type that is defined for the dimension. If you specify a full
date, the current value of the DATEORDER option is used to resolve any
ambiguities.

■ To specify a value in VNF format, use the formats outlined in the VNF
command. A VNF is a template that controls the input and display format for
values of a given time dimension. The template can include format
specifications for any of the components that identify a time period (day,
month, calendar year, fiscal year, and period within a fiscal year).

IF the style is... THEN specify... Examples

numeric, the day, month, and year as three
integer numbers with one or
more separators between them.

’24/4/97’ ’24-04-1997’

packed numeric, the day, month, and year as three
integer numbers with no
separators between them.

’240497’ ’04241997’

month name, the day and year as integer
numbers and the month as
characters.

’24APR97’ ’24 ap 97’
’April 24, 1997’

Using OLAP DML Objects in Expressions

4-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Note: You can use the MAKEDATE function to create a full date value from a day,
month, and year. For more information on the MAKEDATE functions, see the entry
for the function in the OLAP DML Reference.

Related information
For more information, see the following table.

Using OLAP DML Objects in Expressions

Overview: Using OLAP DML objects in expressions
You can use OLAP DML objects and functions in expressions as described below:

■ You can use a dimension, a relation, or a variable as an array of data by
specifying the name of the object.

■ You can use a formula or a function as a subexpression or as an expression in a
command or function by specifying the name of the formula or the function.

■ You can use a valueset as a list of dimension values in an expression by
specifying the name of the valueset.

■ You can use various data objects as the target or source expression in an
assignment statement as described in “Assigning Values to Data Objects” on
page 5-13.

Using dimensions in expressions
In expressions, a dimension is referenced as a one-dimensional array.

If the dimension has a data type of TEXT, then, in most cases, the dimension values
are referenced as text values.

IF you want documentation about . . . THEN see . . .

functions that you can use to manipulate
text, numbers, dates and time periods,

the OLAP DML Reference

specifying file names, “Specifying File Names in the OLAP DML”
on page 11-5

Using OLAP DML Objects in Expressions

Working with Expressions 4-7

However, dimension values are referenced by their positions (integers) in the
dimension array and uses the values numerically when you do one of the following:

■ Use a dimension with a data type of TEXT in a numeric expression

■ Compare one value in a dimension to another value in the same dimension

In these cases, the position number is based on the default status list, not on the
current status.

Note: When you use a dimension with a data type of DATE, if you want the
dimension value to be treated as an integer position, then you must use the
CONVERT function.

Using composites in expressions
In expressions, composites behave much the same way that dimensions do and,
generally, you can use a composite in an expression anywhere you can use a
dimension:

■ If the composite is named, then you specify its name.

■ If the composite is unnamed, then you specify SPARSE <dimensions...>.

Using variables in expressions
In expressions, a variable is referenced as an array containing values of the specified
data type.

When you assign values to a variable or when you use REPORT or another
command or function that loops over the dimensions of a variable, the values of the
variable’s fastest-varying dimension vary first. For example, for the OPCOSTS
variable that is dimensioned by MONTH and CITY, when you view the variable as
REPORT command output, you will see the data for all months for the first city
before you see any data for the second city. In this case, MONTH is the
fastest-varying dimension because its values change before those of CITY. When
you write programs that loop over a multidimensional variable in this way, try to
maximize performance by matching the fastest-varying dimension with the inner
loop.

Note: When you use a variable as the solution variable in a model, the model will
execute most efficiently if the order of the dimensions in the definition of the
solution variable matches the order of the dimensions in the DIMENSION
commands in the model.

Using OLAP DML Objects in Expressions

4-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

You can uniquely and completely select any item of data within a multidimensional
variable by using a QDR to specify one value from each of the variable’s
dimensions.

For example, if the OPCOSTS variable is dimensioned by MONTH and CITY,
specifying Jan95 for the MONTH dimension and Boston for the CITY dimension
uniquely specifies a single cell in the variable.

Using variables defined with composites in expressions
In most cases, when you use OLAP DML functions and commands with variables
that are defined with composites, the functions and commands treat those variables
as if they were defined with base dimensions:

■ You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

■ The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and
therefore, they do not have any independent status.

Default behavior of commands that loop over a variable
When you use the REPORT command or any other command that loops over a
variable that uses a composite, the default behavior is to evaluate all the
combinations of the values of the composite’s base dimensions that are in status.
Any combinations that do not exist in the composite display NA for their associated
data.

For example, the following commands create a report for the East region that shows
the number of coupons issued for sportswear from January through March 1995.
Since no coupons were issued in March 1995, the report displays NA in that
column.

limit month to ’JAN95’ ’FEB95’ ’MAR95’
limit market to ’EAST’
limit product to ’SPORTSWEAR’
report coupons

MARKET: EAST
 ------------COUPONS-------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
SPORTSWEAR 1,000 1,000 NA

Using OLAP DML Objects in Expressions

Working with Expressions 4-9

Changing the default behavior of looping commands
However, for performance reasons, you can change the default looping behavior for
the REPORT, ROW, RETRIEVE, FETCH, and = commands so that those commands
loop over the values in the composite rather than all of the base dimension values.
For more information on these commands, see the entry for each command in the
OLAP DML Reference.

Using relations in expressions
A relation is, in many ways, just a special type of variable. Instead of holding
general data values, a relation contains values of the related dimension.
Consequently, in an expression, a relation behaves somewhat like a variable and
somewhat like a dimension:

■ When you use a relation in a text expression, the relation value is referenced as
a text value. The values of the related dimension that is contained in the relation
are converted into text, and you can use these values in an expression. You can
also compare a text literal to a relation.

■ When you use a relation in a numeric expression, the relation value is
referenced by its position (an integer) in its related dimension array. You can use
this numeric value in an expression. The position number is based on the
default status list of the dimension, not the current status list of the dimension.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

OLAP DML data objects, Chapter 3

using OLAP DML data objects in
assignment statements,

“Assigning Values to Data Objects” on page
5-13

user-defined functions, “Writing User-Defined Functions” on page
8-16

OLAP DML Operators

4-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

OLAP DML Operators

Definition: Operator
An operator is a symbol that transforms a value or combines it in some way with
another value.

Categories of operators
The OLAP DML operators fall into the categories described in the following table.

Category Description

Arithmetic Operators that you can use in numeric expressions with numeric data to
produce a numeric result. You can also use some arithmetic operators in
date expressions with a mix of date and numeric data, which returns either
a date or numeric result. For more information on arithmetic operators, see
“OLAP DML arithmetic operators” on page 4-23.

Assignment An operator that you use to create an assignment statement that stores the
results of an expression into an OLAP DML object. For more information
on using assignment statements, see “Assigning Values to Data Objects” on
page 5-13.

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean) which returns a Boolean
result. For more information on comparison operators, see “Boolean
operators” on page 4-29.

Logical Operators that you can use to transform Boolean values using logical
operations which returns a Boolean result. For more information on logical
operators, see “Boolean operators” on page 4-29.

Substitution An operator that you can use to evaluate an expression and substitute the
resulting value. For more information on the substitution operator, see
“Substitution Expressions” on page 4-39.

Conditional Operators that you can use to select one of two values based on a Boolean
condition. For more information on the substitution operator, see
“Conditional Expressions” on page 4-37.

Introducing Expressions

Working with Expressions 4-11

Introducing Expressions

Definition: Expression
Expressions represent data values in the grammar of the OLAP DML language. You
can use expressions as arguments in commands or functions and as values for
OLAP DML options. An expression often performs a mathematical or logical
operation. It always evaluates to a result in one of the OLAP DML data types.

An expression can be:

■ A single, literal value (for example, 10 or ’EAST’)

■ A variable or formula that contains multiple values (for example, SALES)

■ A function that returns one or more values (for example, TOTAL or
JOINLINES)

■ A calculation that combines literal values, dimensions, variables, formulas, and
functions with operators (for example, INFLATION*1.02 or ACTUAL GT
20000)

An expression has a data type. It can also have dimensions. The data type and
dimensions of an expression depend on the values you are using in the expression.

Data types of expressions
The data type of an expression can be one of the following basic types:

■ Numeric

■ Text

■ Date (evaluating to a date value)

■ Boolean (evaluating to a YES or NO value)

These data types are defined in “OLAP DML Data Types” on page 4-2.

How the data type of an expression is determined
The data type of an expression is the data type of the resulting value. It may not be
the same as the data type of the OLAP DML data objects that make up the
expression; it depends on the data and on the operators and functions that are
involved.

Introducing Expressions

4-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

In addition, a conditional expression that is indicated by an IF. . .THEN. . .ELSE
operator is supported. A conditional expression returns a value whose data type
depends on the expressions in the THEN and ELSE clauses, not on the expression in
the IF clause, which must be Boolean.

Note: Do not confuse a conditional expression with the IF command, which has
similar syntax but a different purpose. The IF command does not have a data type
and is not evaluated like an expression.

Changing the data type of an expression
You can use the CONVERT function to change an expression’s data type. For
example, you can convert a number to text, or you can convert a text string that
consists of digits to a number.

However, there is no need to convert data to another type within the same basic
category because those conversions are made automatically. In general, you can use
TEXT or ID data anywhere text is called for, and you can use integers and decimal
numbers interchangeably.

OLAP DML data types are discussed in “OLAP DML Data Types” on page 4-2.

Saving an expression
You can save an expression in a formula. Typically, you define a formula to save
complex or frequently used expressions. A formula is a OLAP DML object that you
name and define using the DEFINE FORMULA command.

For example, you can define a formula to calculate dollar sales, as follows.

define dollar.sales formula units * price

Each time you use a formula, the expression it represents is evaluated.

Introducing Expressions

Working with Expressions 4-13

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

functions, the OLAP DML Reference

formulas, Chapter 7

the entry for the DEFINE FORMULA
command in the OLAP DML Reference

dimension status and limiting dimensions, Chapter 6

the entry for the LIMIT command in the
OLAP DML Reference

assigning permissions to dimension values, “Adding Security to an Analytic Workspace”
on page 2-20

the entry for the PERMIT command in the
OLAP DML Reference

user-defined functions, Chapter 8

qualified data references, “Specifying a Single Value for the Dimension
of an Expression” on page 4-16

Expressions and Dimensionality

4-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Expressions and Dimensionality

How an expression is dimensioned
An expression is dimensioned by a union of the dimensions of all the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression.

Determining the dimensions of an expression
You can find out the dimensions of an expression with the PARSE command and
the INFO function. PARSE evaluates the text of an expression; the INFO function
indicates how the expression is interpreted.

For more information on the PARSE command and the INFO function, see the entry
for the command or function in the OLAP DML Reference.

Item Dimensioned By More Information

Variable

Relation

Formula

The dimensions listed in
the object’s definition

Example 1: if the PRICE variable is
dimensioned by MONTH and PRODUCT, then
the expression PRICE * 1.2 is also
dimensioned by MONTH and PRODUCT

Example 2: If the UNITS variable is
dimensioned by MONTH, PRODUCT, and
DISTRICT, then the expression UNITS * PRICE
is dimensioned by MONTH, PRODUCT, and
DISTRICT (even though the dimensions of the
PRICE variable are MONTH and PRODUCT
only)

Qualified
data
reference

All of the dimensions of
the associated object,
except for the dimensions
being qualified

Qualified data references are described in
“Specifying a Single Value for the Dimension of
an Expression” on page 4-16

Function In most cases, the union of
the dimensions of its input
arguments

Note 1: Unless otherwise noted in the OLAP
DML Reference, when you specify breakout
dimensions or relations in an aggregation
function, you change the dimensionality of the
expression. The first dimension that you
specify as a breakout dimension is the slowest
varying and the last dimension that you specify
is the fastest varying.

Note 2: The dimensions of a user-defined
function depend on how it has been coded.

Expressions and Dimensionality

Working with Expressions 4-15

Example: Determining the dimensions of an expression
This example illustrates the use of the DIMENSION keyword with the INFO
function to retrieve the dimensions of the expression just analyzed by the PARSE
command.

The following commands produce the output shown below them.

parse ’total(sales region)’
show info(parse dimension)
REGION

How dimension status affects the results of expressions
The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, if three
dimension values are in status for MONTH, and two for PRODUCT, then the
expression PRICE GT 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an
expression are limited to the range of data you want to consider. In addition, you
must take into consideration any PERMIT commands that might limit access to the
dimensions of the data.

Example 1: How dimension status affects the results of an expression
You can see the changes in the results reported by the TOTAL function as you
change the status of PRODUCT and MONTH, both of which are dimensions of the
SALES variable.

limit month to all
limit district to all
limit product to all
report width 22 total(sales product)

The output of this report command is shown below.

PRODUCT TOTAL(SALES PRODUCT)
-------------- ----------------------
TENTS 10,430,420.75
CANOES 11,699,953.48
RACQUETS 13,550,445.01
SPORTSWEAR 14,910,328.52
FOOTWEAR 12,590,595.74

Specifying a Single Value for the Dimension of an Expression

4-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example 2: How dimension status affects the results of an expression
The following commands produce the output shown below them.

limit product to ’RACQUETS’ ’SPORTSWEAR’
report width 22 total(sales product)
PRODUCT TOTAL(SALES PRODUCT)
-------------- ----------------------
RACQUETS 13,550,445.01
SPORTSWEAR 14,910,328.52

Example 3: How dimension status affects the results of an expression
The following commands produce the output shown below them.

limit month to year ’YR96’
report width 22 total(sales product)
PRODUCT TOTAL(SALES PRODUCT)
-------------- ----------------------
RACQUETS 6,957,866.18
SPORTSWEAR 7,703,196.64

Specifying a Single Value for the Dimension of an Expression

What is a QDR?
A qualified data reference (QDR) is a way of limiting one or more dimensions of an
expression to a single value. QDRs are useful when you want to temporarily
reference a value that is not in the current status. Using a QDR, you can qualify a
dimension (which allows you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation.

A qualified data reference takes the following form.

expression(dimname1 dimexp1 [, dimname2 dimexp2. . .])

The dimname argument is the name of one of the dimensions of the expression, and
the dimexp argument is one of the following:

■ A value of dimname.

■ A text expression whose result is a value of dimname.

■ A numeric expression whose result is the logical position of a value of dimname.

■ A relation of dimname.

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-17

Qualifying a complex expression
To qualify a complex expression, you should use the QUAL function. For more
information, see the entry for QUAL.

Qualifying a variable
You can qualify any or all of a variable’s dimensions using either of the following
techniques:

■ The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value may be outside the current status.

■ The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the
qualifier. The dimension is temporarily replaced by the dimension(s) of the
relation.

Example: Temporarily limiting the dimension of a variable
In the demonstration analytic workspace, demo, the variable SALES has three
dimensions, MONTH, PRODUCT, and DISTRICT. You might want to compare total
sales in Boston to the total sales in all cities. In a single FETCH command, you want
DISTRICT to be limited to two different values:

■ For the numerator of the expression, you want the status of DISTRICT to be
BOSTON.

■ For the denominator of the expression, you want the status of DISTRICT to be
ALL.

The command below lets you fetch this data by using a QDR.

fetch sales(district ’BOSTON’)/total(sales)

Replacing a dimension in a variable
When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension(s) of the relation. The relation must be related to the
variable’s dimension you are qualifying, and it must be dimensioned by the
replacement dimension.

Example: Replacing a dimension in a variable
Suppose you have two variables, SALES and QUOTA, which are dimensioned by
MONTH, PRODUCT, and DISTRICT. A third variable, DIVISION.MGR, is

Specifying a Single Value for the Dimension of an Expression

4-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

dimensioned by MONTH and DIVISION. You also have a relation between
DIVISION and PRODUCT, called DIVISION.PRODUCT. These objects have the
following definitions.

DEFINE SALES VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
LD Sales Revenue
DEFINE QUOTA VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
DEFINE DIVISION.MGR VARIABLE TEXT <MONTH DIVISION>
DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

The command below produces the report following it.

report division.mgr
-------------------DIVISION.MGR----------------------
 ----------------------MONTH--------------------------
DIVISION JAN95 FEB95 MAR95 APR95 MAY95 JUN95
-------- -------- -------- -------- -------- -------- --------
CAMPING Hawley Hawley Jones Jones Jones Jones
SPORTING Carey Carey Carey Carey Carey Musgrave
CLOTHING Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota; and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
DIVISION.PRODUCT, which is related to DIVISION and dimensioned by
PRODUCT, as the qualifier. The QDR replaces the DIVISION dimension with
PRODUCT, so that it has the same dimensions as the other expression in the report
“SALES / QUOTA.” The command below produces the report following it.

report down month sales w 6 sales/quota w 8 heading -
 ’MANAGER’ division.mgr(division division.product)

DISTRICT: BOSTON
 -----------------------------PRODUCT------------------------------------
 ----TENTS---- ---CANOES---- --RACQUETS--- --SPORTSWEAR-- ---FOOTWEAR---
 SALES/ SALES/ SALES/ SALES/ SALES/
MONTH QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER
------ ----- ------- ----- ------- ----- ------- ----- -------- ----- --------
JAN95 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
FEB95 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
MAR95 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
APR95 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave
.
.
.

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-19

Example: Qualifying more than one dimension of a variable
You can qualify more than one of the dimensions of a variable. For example, if you
qualify all the dimensions of the SALES variable by specifying one dimension value
of each dimension, then you narrow SALES down to a single–cell value.

To fetch sales for JUN95, TENTS, and SEATTLE, use the following QDR.

fetch sales(month ’JUN95’, product ’TENTS’, district ’SEATTLE’)

This command fetches the single value: 113,806.48.

Qualifying a relation
You can also use a QDR to qualify a relation (which is really a special kind of
variable).

Example: Qualifying a relation
Suppose the REGION.DISTRICT relation is dimensioned by DISTRICT. If you
qualify DISTRICT with the value SEATTLE, then the value of the expression is the
value of the relation for SEATTLE. Because the QDR specifies one value of
DISTRICT, the expression has a single–cell result.

The definition of REGION.DISTRICT is as follows.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD The region for each district

The command below fetches the value: WEST.

fetch region.district(district ’SEATTLE’)

Qualifying a dimension
You can use a QDR to qualify the dimension itself, which allows you to specify one
dimension value in an expression.

Example: Qualifying a dimension
The following expression specifies one value of DISTRICT, the one contained in the
single-cell variable MYDISTRICT.

district(district mydistrict)

Specifying a Single Value for the Dimension of an Expression

4-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using QDRs to assign a value to a specific cell of a data object
You can use a qualified data reference with the target expression of the = command.
This lets you assign a value to a specific cell in a data object.

Example: Using QDRs to assign a value to a specific cell of a data object
The following example assigns the value 10200 to the data cell of the SALES
composite that is specified in the qualified data reference. If the composite named
SALES does not already have a value for the combination BOSTON and TENTS,
then this value combination is added to the composite, thus adding the data cell.

sales(market ’BOSTON’ product ’TENTS’ month ’JAN99’)= 10200

Using ampersand substitution with QDRs
When you use an ampersand with a QDR, you must enclose the whole expression
in parentheses if you want the variable to be qualified before the substitution is
made.

Example: Using ampersand substitution with QDRs
Suppose you have a text variable named MYVAR that is dimensioned by REPTYPE
and that contains the names of variables. Remember that it is MYVAR that is
dimensioned by REPTYPE, not the variables named by MYVAR. Therefore, you
must use parentheses so that MYVAR is qualified and the resulting value is used in
the REPORT command.

report &(myvar(reptype ’ACTUAL’))

If you do not use parentheses and the variable that is specified in MYVAR is SALES,
then you will get an error message that SALES is not dimensioned by REPTYPE.

Using the QUAL function to explicitly specify a QDR
Sometimes you will find that the syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error. In this case, you can use the QUAL function
to explicitly specify a qualified data reference (QDR).

Example: Using the QUAL function
The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-21

These commands produce the report shown below them.

limit month to ’JAN96’ to ’JUN96’
limit line to ’COGS’
limit division to ’SPORTING’
report down month w 11 max(actual,budget) w 11 actual w 11 budget
DIVISION: SPORTING
 ---------------LINE----------------
 ---------------COGS----------------
 MAX(ACTUAL,
MONTH BUDGET) ACTUAL BUDGET
-------------- ----------- ----------- -----------
JAN96 287,557.87 287,557.87 279,773.01
FEB96 323,981.56 315,298.82 323,981.56
MAR96 326,184.87 326,184.87 302,177.88
APR96 394,544.27 394,544.27 386,100.82
MAY96 449,862.25 449,862.25 433,997.89
JUN96 457,347.55 457,347.55 448,042.45

Now consider how you might view the same figures for MAX(ACTUAL,BUDGET)
without changing the status of LINE or DIVISION.

allstat
limit month to ’JAN96’ to ’JUN96’
report heading ’For Cogs in Sporting Division’ down month -
 w 11 heading ’MAX(ACTUAL,BUDGET)’-
 qual(max(actual,budget), line ’COGS’, division ’SPORTING’)

For Cogs in
Sporting MAX(ACTUAL,
Division BUDGET)
-------------- -----------
JAN96 287,557.87
FEB96 323,981.56
MAR96 326,184.87
APR96 394,544.27
MAY96 449,862.25
JUN96 457,347.55

If you attempt to produce the same report with standard QDR syntax, then an error
is signalled.

report heading ’For Cogs in Sporting Division’ down month -
 w 11 heading ’MAX(ACTUAL,BUDGET)’-
 max(actual,budget) (line cogs, division sporting)

Using Functions in Expressions

4-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The following error message is produced.

ERROR: A right parenthesis or an operator is expected after LINE.

Related information
For more information, see the following table.

Using Functions in Expressions

Definition: Function
A function is a predefined calculation that returns a value. A number of built-in
functions are provided, including:

■ Numeric functions — You can use these functions to make calculations and
analyze data.

■ Date functions — You can use these functions to manipulate dates.

■ Text functions — You can use these functions to join characters or lines, search
for or extract a group of characters, or calculate the length of the text.

Using functions in the OLAP DML
You can use a function wherever you need to use an expression in a command or
function, or even within another expression. To include a function in an expression,
specify the name of the function followed by its arguments enclosed in parentheses.

In addition to using the predefined OLAP DML functions, you can define a
program that behaves like a function by returning a value.

IF you want documentation about . . . THEN see . . .

limiting dimensions, Chapter 6

qualified data references, “Specifying a Single Value for the Dimension
of an Expression” on page 4-16

ampersand substitution, “Substitution Expressions” on page 4-39

the QUAL function, the entry for the function in the OLAP DML
Reference

Numeric Expressions

Working with Expressions 4-23

Numeric Expressions

What is a numeric expression?
A numeric expression evaluates to data with any of the numeric data types (that is,
INTEGER, SHORTINTEGER, DECIMAL, and SHORTDECIMAL). The data in a
numeric expression can be any combination of the following:

■ Numeric literals

■ Numeric variables or formulas

■ Dimensions

■ OLAP DML functions that yield numeric results

■ Date literals, variables, formulas, or functions

In addition, you can join any of these three–part expressions with the arithmetic
operators for a more complex numeric expression. You use arithmetic operators in
numeric expressions with numeric data, which returns a numeric result. You can
also use some arithmetic operators in date expressions with a mix of date and
numeric data, to retrieve either a date or numeric result.

OLAP DML arithmetic operators
The following table shows the OLAP DML arithmetic operators. When you use two
or more operators in a numeric expression, the expression is evaluated according to
standard rules of arithmetic. The column entitled Priority indicates the order in
which that operator is evaluated. Operators of the same priority are evaluated from
left to right, which are summarized below.

Note: A comma is required before a negative number that follows another numeric
expression, or the minus sign is interpreted as a subtraction operator. For example,
intvar,-4.

Operator Operation Priority

- Sign reversal 1st

** Exponentiation 2nd

* and / Multiplication and division 3rd

+ and - Addition and subtraction 4th

Numeric Expressions

4-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Mixing numeric data types
You can include INTEGER, SHORTINTEGER, DECIMAL, and SHORTDECIMAL
data in the same numeric expression.

The data type of the result is determined according to the following rules.

Automatic conversion of numeric data types
Numbers are converted to different data types according to the following rules.

IF . . . THEN the result is . . .

all the data in the expression is INTEGER or
SHORTINTEGER, and the only operations are addition,
subtraction, and multiplication,

INTEGER.

any of the data is DECIMAL or SHORTDECIMAL, DECIMAL.

you perform any division or exponentiation operations, DECIMAL.

IF you . . . THEN . . .

use a value with the
SHORTINTEGER or
SHORTDECIMAL data type in an
expression,

the value is converted to its long counterpart before
using it.

Note: See “Boolean Expressions” on page 4-28 for
information about problems that can occur when
you mix SHORTDECIMAL and DECIMAL data
types in a comparison expression.

save the results of a calculation as a
value with the SHORTINTEGER
data type,

NA is stored when the result is outside the range of
a SHORTINTEGER (-32768 to 32767).

assign the value of a decimal
expression to an object with the
INTEGER data type,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then Express stores NA.

use a decimal value where a value
with the INTEGER data type is
required,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then Express stores NA.

assign the value of a decimal
expression to a variable with the
SHORTDECIMAL data type,

only the first 7 significant digits are stored.

Numeric Expressions

Working with Expressions 4-25

If these conversions are not what you want, then you can use OLAP DML functions
to get different results.

Using dimensions in arithmetic expressions
When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an integer) and is used numerically. The
position number is based on the default status list, not on current status. When you
use a dimension with a data type of DATE, you must use the CONVERT function
when you want the dimension value to be treated as an integer position.

For example, the MONTH dimension in the demo analytic workspace has JAN95 in
position 1, FEB95 in position 2, and so on. Even when the list is sorted
alphabetically so that APR95 is first, the value APR95 remains in position 4.

Using dates in arithmetic expressions
When you use dates in arithmetic expressions, the result can be numeric or it can be
a date. The following table shows the legal operations for dates and the data type of
the result.

Limitations of dates in expressions
The following list outlines the ways in which you cannot use dates in expressions.

■ You cannot add two dates together.

■ You cannot add or subtract a literal value from a dimension value with a date
data type. Both operands must actually be dimension values.

For example, suppose that M1 is a dimension with a data type of MONTH. An
error message is returned when you attempt to subtract the literal value AUG97

IF you.... . . . THEN the result is... . . .

add or subtract a number from a
date,

a future or prior date.

subtract a date from a date, the number of days between them.

add or subtract a number from a
time period,

the time period at the appropriate interval in the future
or the past, similar to the LEAD or LAG function. The
result is NA when there is no dimension value that
corresponds to the result. The calculation is made based
on the positions of the values in the dimension’s default
status list.

Numeric Expressions

4-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

from the first value in status for the M1 dimension by issuing the first command
shown below. However, the number of months between the two values is
displayed when, as shown in the second command, you use a QDR to identify
AUG97 as a value of M1 and then subtract this dimension value from the first
value in status for the M1 dimension.

Incorrect: show m1 - ’AUG97’

Correct: show m1 - m1(m1 ’AUG97’)

■ You cannot specify time periods that have different phases or lengths in the
same calculation.

For example, if you tried to subtract a week from a month, then the result
would not have any meaning. If you need to compare time periods of different
types, then use the IN operator.

Limitations of floating point calculations
All decimal data are converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a
mantissa and an exponent. The mantissa and the exponent are stored as binary
numbers. The mantissa is a binary fraction which, when multiplied by a number
equal to 2 raised to the exponent, produces a number that equals or closely
approximates the original decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers may result in further
approximations, and the inaccuracy will gradually increase with the number of
operations. In addition to the approximation factor, the available number of
significant digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable may differ in
the least significant digits from a result you compute by hand. Because the
SHORTDECIMAL data type provides a maximum of only seven significant digits,
you will see more of these differences with SHORTDECIMAL data. Therefore, you
may want to use the DECIMAL data type for variables that have a fractional
decimal component, such as sales, costs, and other variables that contain currency
amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type

Text Expressions

Working with Expressions 4-27

will offer a different and closer approximation than the SHORTDECIMAL data
type, because it has more significant digits. This can lead to problems when
SHORTDECIMAL and DECIMAL data types are mixed in a comparison expression.
See the topic “Boolean Expressions” on page 4-28 for information on how to handle
such comparisons.

Controlling errors during calculations
You can control the following types of errors:

■ Division by zero — Dividing a non-NA value by zero normally produces an
error. If a divide-by-zero error occurs when you are making a calculation on
dimensioned data, then you can end up with partial results. When you use the
REPORT or the = command, values are reported or stored as they are
calculated, so the division by zero halts the loop before it has gone through all
the values.

If you divide an NA value by zero, then the result is NA; no error occurs. If you
want to suppress the divide-by-zero error, then you can change the value of the
DIVIDEBYZERO option to YES. This means that the result of any division by
zero is NA and no error occurs. This allows the calculation of the other values
of a dimensioned expression to continue.

■ Root of negative numbers — It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). If
you want to suppress the error message and allow the calculation of roots for
non-negative values of the expression to continue, then set the
ROOTOFNEGATIVE option to YES.

■ Overflow errors — The DECIMALOVERFLOW option works in a similar
manner to DIVIDEBYZERO. It lets you control whether an error is generated
when a calculation produces a decimal result larger than it can handle.

Text Expressions

What is a text expression?
A text expression evaluates to data with either the TEXT or ID data type. Text
expressions can be any combination of the following:

■ Text literals; for example, ’BOSTON’ or ’Current Sales Report’

■ Text dimensions; for example, DISTRICT or MONTH

Boolean Expressions

4-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

■ Text variables or formulas; for example, PRODUCT.NAME

■ Functions that yield text results; for example, JOINLINES(’Product: ’
product.name)

Example: Text expression
Suppose TEXTVAR is a variable whose value is ’MONTH’, which is the name of a
dimension. Whether you enclose the word TEXTVAR in quotation marks
determines whether the following OBJ function returns the word VARIABLE (the
type of object TEXTVAR is) or DIMENSION (the type of object MONTH is).

The following commands produce the output shown below them.

show obj(type ’textvar’)
VARIABLE

The following commands produce the output shown below them.

show obj(type textvar)
DIMENSION

Working with dates in text expressions
If you use a DATE value where a text value (TEXT or ID) is expected, or if you store
a DATE value in a text variable, then the DATE value is automatically converted to
a text value.

The current template in the DATEFORMAT option is used to format the text. If you
want to override the current DATEFORMAT template, then you can convert the
DATE value to text by using the CONVERT function with a date-format argument.
See the entry for the CONVERT function in the OLAP DML Reference for an
example.

Once a DATE value is stored in a text variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

Boolean Expressions

What is a Boolean expression?
A Boolean expression is a logical statement that is either true or false. Boolean
expressions can compare data of any type as long as both parts of the expression

Boolean Expressions

Working with Expressions 4-29

have the same basic data type. You can test data to see if it is equal to, greater than,
or less than other data.

A Boolean expression can consist of Boolean data, such as the following:

■ Boolean values (YES and NO, and their synonyms ON and OFF and TRUE and
FALSE)

■ Boolean variables or formulas

■ Functions that yield Boolean results

■ Boolean values calculated by comparison operators

For example, if you have the Boolean expression shown below, then each value of
the variable ACTUAL is compared to the constant 20,000. If the value is greater than
20,000, then the statement is true; if the value is less than or equal to 20,000, then the
statement is false.

actual gt 20000

When you are supplying a Boolean value, you can type either YES, ON, or TRUE
for a true value, and NO, OFF, or FALSE for a false value. When the result of a
Boolean calculation is produced, the defaults are YES and NO, but you can change
the output by setting the YESSPELL and NOSPELL options.

Boolean operators
The following table shows the comparison operators and the logical operators. You
use these operators to make expressions in much the same way as arithmetic

Boolean Expressions

4-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

operators. The column entitled “Priority” indicates the order in which that operator
is evaluated.

Each operator has a priority that determines its order of evaluation. Operators of
equal priority are evaluated left to right, unless parentheses change the order of
evaluation. However, the evaluation is halted when the truth value is already
decided. For example, in the following expression, the TOTAL function is never
executed because the first phrase determines that the whole expression is true.

yes eq yes or total(sales) gt 20000

Creating Boolean expressions
A Boolean expression is a three-part clause that consists of two items to be
compared, separated by a comparison operator. You can create a more complex
Boolean expression by joining any of these three-part expressions with the AND
and OR logical operators. Each expression that is connected by AND or OR must be
a complete Boolean expression in itself, even when it means specifying the same
variable several times.

Operator Operation Example Priority

NOT Returns opposite of
Boolean expression

NOT(YES) = NO 1st

EQ Equal to 4 EQ 4 = YES 2nd

NE Not equal to 4 NE 4 = NO 2nd

GT Greater than 5 GT 7 = NO 2nd

LT Less than 5 LT 7 = YES 2nd

GE Greater than or equal to 8 GE 8 = YES 2nd

LE Less than or equal to 8 LE 9 = YES 2nd

IN Is a date in a time period? ’1JAN97’ IN WI.97 = YES 2nd

LIKE Does a text value match a
specified text pattern?

’EXPRESS’ LIKE ’%PRE%’ = YES 2nd

AND Both expressions are true 8 GE 8 AND 5 LT 7 = YES 3rd

OR Either expression is true 8 GE 8 OR 5 GT 7 = YES 4th

Boolean Expressions

Working with Expressions 4-31

For example, the following expression is not valid because the second part is
incomplete.

sales gt 50000 and le 20000

In the next expression, both parts are complete so the expression is valid.

sales gt 50000 and sales le 20000

When you combine several Boolean expressions, the whole expression must be
valid even if the truth value can be determined by the first part of the expression.
The whole expression is compiled before it is evaluated, so when there are
undefined variables in the second part of a Boolean expression, you will get an
error.

Use the NOT operator, with parentheses around the expression, to reverse the sense
of a Boolean expression.

The following two expressions are equivalent.

district ne ’BOSTON’
not(district eq ’BOSTON’)

Example: Using Boolean comparisons
The following example shows a report that displays whether sales in Boston for
each product were greater than a literal amount.

limit month to first 2
limit district to ’BOSTON’
fetch sales gt 75000 labeled

This FETCH command returns the following data.

(MONTH JAN95, PRODUCT TENTS, DISTRICT BOSTON): FALSE
(MONTH FEB95, PRODUCT TENTS, DISTRICT BOSTON): FALSE
(MONTH JAN95, PRODUCT CANOES, DISTRICT BOSTON): FALSE
(MONTH FEB95, PRODUCT CANOES, DISTRICT BOSTON): TRUE
(MONTH JAN95, PRODUCT RACQUETS, DISTRICT BOSTON): FALSE
(MONTH FEB95, PRODUCT RACQUETS, DISTRICT BOSTON): FALSE
(MONTH JAN95, PRODUCT SPORTSWEAR, DISTRICT BOSTON): FALSE
(MONTH FEB95, PRODUCT SPORTSWEAR, DISTRICT BOSTON): FALSE
(MONTH JAN95, PRODUCT FOOTWEAR, DISTRICT BOSTON): TRUE
(MONTH FEB95, PRODUCT FOOTWEAR, DISTRICT BOSTON): TRUE

Boolean Expressions

4-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Comparing NA values in Boolean expressions
When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, if you test
whether an NA value is equal to a non-NA value, then the result is NO. However, if
the result would be misleading, then NA is returned. For example, testing whether
an NA value is less than or greater than a non–NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values.

Controlling errors when comparing numeric data
If you get unexpected results when comparing numeric data, then there are several
possible causes to consider:

■ One of the numbers you are comparing may have a small decimal part that
does not show in output because of the setting of the DECIMALS option.

■ You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

■ You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle Corporation recommends that you use the ABS and ROUND functions to do
approximate tests for equality and avoid all three causes of unexpected comparison
failure. When using ABS or ROUND, you can adjust the absolute difference or the
rounding factor to values you feel are appropriate for your application. If speed of
calculation is important, then you will probably want to use the ABS rather than the
ROUND function.

Expression Result

NA EQ NA YES

NA NE NA NO

NA EQ non–NA NO

NA NE non–NA YES

NA AND NO NO

NA OR YES YES

Boolean Expressions

Working with Expressions 4-33

Example: Controlling errors due to the setting of the DECIMALS option
Suppose EXPENSE is a decimal variable whose value is set by a calculation. If the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value will appear in output as 100.00. However, the output of the following
command returns NO.

show expense eq 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Example: Controlling errors when comparing floating point numbers resulting
from arithmetic operations
A standard restriction on the use of floating point numbers in a computer language
is that you cannot expect exact equality in a comparison of two floating point
numbers when either number is the result of an arithmetic operation. For example,
on some systems, the following command returns a NO instead of the expected
YES.

show .1 + .2 eq .3

When you deal with decimal data, you should not code direct comparisons such as
the one above. Instead, you can use the ABS or the ROUND function to allow a
tolerance for approximate equality. For example, either of the following two
commands will produce the desired YES.

show abs((.1 + .2) - .3) lt .00001
show round(.1 + .2) eq round(.3, .00001)

Example: Controlling errors when comparing SHORTDECIMAL and DECIMAL
values
You cannot expect exact equality between SHORTDECIMAL and DECIMAL
representations of a decimal number with a fractional component, because the
DECIMAL data type has more significant digits to approximate fractional
components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a
fractional decimal number, then a comparison of the SHORTDECIMAL number to a
fractional decimal number is likely to return NO.

define sdvar shortdecimal
sdvar = 1.3
show sdvar eq 1.3

Boolean Expressions

4-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

What happens in this situation is that the literal is automatically typed as
DECIMAL and converts the SHORTDECIMAL variable SDVAR to DECIMAL,
which extends the decimal places with zeros. A bit-by-bit comparison is then
performed, which fails.

There are several ways to avoid this type of comparison failure:

■ Do not mix the SHORTDECIMAL and DECIMAL types in comparisons. To
avoid mixing these two data types, you should generally define variables with
fractional decimal components as DECIMAL rather than SHORTDECIMAL.

■ Use the ABS or ROUND function to allow for approximate equality. The
following commands both produce YES.

show abs(sdvar - 1.3) lt .00001
show round(sdvar, .00001) eq round(.3, .00001)

Comparing dimension values
Values are not compared in the same dimension based on the textual value. Instead,
it compares the positions of the values in the default status of the dimension. This
allows you to specify commands like the following command.

fetch district lt ’SEATTLE’ labeled

Commands are interpreted such as these using the process below.

1. The text literal ’SEATTLE’ is converted to its position in the DISTRICT
dimension’s default status list.

2. That position is compared to the position of all other values in the DISTRICT
dimension.

3. As shown by the following report, the value YES is returned for districts that
are positioned before SEATTLE in the DISTRICT dimension’s default status list
and it returns NO for SEATTLE itself. It will also return NO for districts added
after SEATTLE.

report 22 width district lt ’SEATTLE’

DISTRICT DISTRICT LT ’SEATTLE’
-------------- ----------------------
BOSTON YES
ATLANTA YES
CHICAGO YES
DALLAS YES
DENVER YES
SEATTLE NO

Boolean Expressions

Working with Expressions 4-35

A more complex example assigns increasing values to the variable QUOTA based
on initial values assigned to the first six months. The comparison depends on the
position of the values in the MONTH dimension. Because it is a time dimension, the
values will be in chronological order.

quota = if month le ’JUN95’ then 100 else lag(quota, 1, month)* 1.15

However, if you compare values from different dimensions, such as in the
expression REGION LT DISTRICT, then the only common denominator is TEXT,
and text values are compared, not dimension positions.

Comparing dates
You can compare two dates with any of the Boolean comparison operators. For
dates, “less” means before and “greater” means after. The expressions being
compared can include any of the date calculations discussed in “Numeric
Expressions” on page 4-23. For example, in a billing application, you can determine
whether today is 60 or more days after the billing date in order to send out a more
strongly worded bill.

if bill.date + 60 le today

Dates also have a numeric value. For example, January 1, 1000, has a value of
-328717; December 31, 9999, has a value of 2958464; and January 1, 1900, has a
value of 1. Thus, each date in this range has a corresponding numeric value. For
example, January 2, 1000, has a value of -328716 and January 2, 1900, has a value
of 2. You can use the CONVERT function to change dates to integers and integers to
dates and compare them.

Comparing dates and times
There are several types of time dimensions whose values are time periods. Each
time period covers a range of dates, from one day to one year. If a date falls between
the starting and ending dates of that time period, then is equal to a time period.

You can also compare one time dimension value to another time dimension value,
when the two have the same length and phase. However, you cannot compare two
time dimension values with the standard Boolean operators when they have
different period lengths or phases. To make such a comparison, you can convert a
time dimension value to a date (its value becomes the last day in the time period)
and then compare it to another time period.

Correct: show day lt convert(week date)
Incorrect: show day lt week

Boolean Expressions

4-36 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The Boolean operator IN is designed for comparing time periods. It evaluates
whether a date or time period is contained in another time period. The comparison
is based on the ending dates of the time periods. If the ending date of the first
period is in the second period, then the result is YES. It does not matter whether the
first period is actually shorter or longer than the second.

Comparing text data
When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter
of each employee’s name is greater than the letter “M.”

extchars(employee.name, 1, 1) gt ’M’

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the ASCII value of the characters.

You can compare numbers with text by first converting the number to text.
Ordering is based on the values of the characters. This can produce unexpected
results because the text is evaluated from left to right. For example, the text literal
‘1234’ is greater than ’100,999.00’ because ’2’, the second character in the
first text literal, is greater than ’0’, the second character in the second text literal.

Example: Comparing text data
Suppose NAME.LABEL is an ID variable whose value is ’3-Person’ and
NAME.DESC is a TEXT variable whose value is ’3-Person Tents’.

The result of the following SHOW command will be NO.

show name.desc eq name.label

The result of the following commands will be YES.

name.desc = ’3-Person’
show name.desc eq name.label

Comparing a text value to a text pattern
The Boolean operator LIKE is designed for comparing a text value to a text pattern.
A text value is like another text value or pattern when corresponding characters
match.

Conditional Expressions

Working with Expressions 4-37

Besides literal matching, LIKE lets you use wildcard characters to match more than
one character in a string:

■ An underscore (_) character in a pattern matches any single character.

■ A percent (%) character in a pattern matches zero or more characters in the
first string.

For example, a pattern of %AT_ would match any text that contained zero or more
characters, followed by the characters AT, followed by any other single character.
Both ’DATA’ and ’ERRATA’ will return YES when LIKE is used to compare them
with the pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options. See the entries in the OLAP DML Reference for
these options, both for examples of their effect on the LIKE operator and for general
examples of the use of the LIKE operator.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following command is NO.

show not (’EXPRESS’ like ’EX%’)

Comparing text literals to relations
You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, REGION.DISTRICT holds values of REGION, so you can do the following
comparison.

region.district eq ’WEST’

Conditional Expressions

What is a conditional expression?
A conditional expression is an expression you can use to select one of two values
based on a Boolean condition. A conditional expression contains the conditional
operator IF. . .THEN. . .ELSE and has the following format.

IF Boolean-expression THEN expression1 ELSE expression2

You can use a conditional expression as part of any other expression as long as the
data type is appropriate.

Conditional Expressions

4-38 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Note: Do not confuse a conditional expression with the IF command, which has
similar syntax but a different purpose. The IF command does not have a data type
and is not evaluated like an expression.

How is a conditional expression processed?
A conditional expression is processed by first evaluating the Boolean expression;
then:

■ If the result of the Boolean expression is TRUE, then expression1 is evaluated and
returns that value.

■ If the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expression1 and expression2 arguments are any valid OLAP DML expressions
that evaluate to the same basic data type. However, when the data type of either
value is DATE, it is possible for the other value to have a numeric or text data type.
Because both data types are expected to be DATE, it will convert the numeric or text
value to a DATE. The data type of the whole expression is the same as the two
expressions.

If the result of the Boolean expression is NA, then NA is returned.

Example: Report with conditional expression
This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but if sales in the district are below budget, then the bonus is
zero.

limit month to ’JAN96’ to ’JUN96’
limit product to ’TENTS’
report down district if sales-sales.plan lt 0 then 0
 else .05*(sales-sales.plan)
PRODUCT: TENTS
 ---IF SALES-SALES.PLAN LT 0 THEN 0 ELSE .05*(SALES-SALES.PLAN)---
 ----------------------MONTH------------------------------
DISTRICT JAN96 FEB96 MAR96 APR96 MAY96 JUN96
--------- -------- -------- -------- ------- --------- ----------
BOSTON 229.53 0.00 0.00 0.00 584.51 749.13
ATLANTA 0.00 0.00 0.00 190.34 837.62 1,154.87
CHICAGO 0.00 0.00 0.00 84.06 504.95 786.81
.
.
.

Substitution Expressions

Working with Expressions 4-39

Substitution Expressions

What is a substitution expression?
A substitution expression allows you to substitute the value of the expression for
the expression itself in a command or function.

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that the
expression should be evaluated with the ampersand and substitute the resulting
value before it evaluates the rest of the expression.

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable
that holds the name of another variable, the value of the expression becomes the
data in the second variable. Ampersand substitution lets you write more general
programs that can operate on data that is chosen when the program is run.

Note: You cannot use ampersand substitution in model equations.

Example: Using ampersand substitution
Suppose you have a variable called CURNAME that holds the name of one of the
dimensions in the analytic workspace (PRODUCT). If you execute the following
command, then REPORT produces the single value, PRODUCT, which is the actual
value stored in the CURNAME variable, as shown below.

report curname
CURNAME

PRODUCT

However, if you execute the following command, then REPORT produces the
values of the dimension PRODUCT, as shown below.

report &curname
PRODUCT

TENTS
CANOES
RACQUETS
SPORTSWEAR
FOOTWEAR

Working with NA Values

4-40 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How are substitution expressions processed?
Although ampersand substitution lets you write more general programs that can
handle different variables and data, program lines that use ampersand substitution
are executed less efficiently. Lines with ampersand substitution are not compiled;
instead these lines are interpreted when the program runs.

Other ways to write general programs
To avoid ampersand substitution, you can use the IF or SWITCH command instead.
For more information about the IF or SWITCH command, see the entry for the
command in the OLAP DML Reference.

Related information
For more information, see the following table.

Working with NA Values

Definition: NA value
There are cases in which you might specify an operation for which no data is
available. For example, there might be no appropriate value for a given cell in a
variable, for the return value of a function, or for the value of an expression that
includes an arithmetic operator. In these cases, an NA (Not Available) value is
automatically supplied.

NA is the value of any cell to which a specific data value has not been assigned or
for which data cannot be calculated. An NA value has no specific data type.

When NA values are relevant
Certain functions (for example, the aggregation functions) return an NA value
when the information that is requested with the function is not available or cannot

IF you want documentation about . . . THEN see . . .

IF and SWITCH commands, the entry for the command in the OLAP DML
Reference

writing conditional commands in the
OLAP DML,

“Controlling the Flow of Execution” on page
8-19

Working with NA Values

Working with Expressions 4-41

be calculated. Similarly, an expression whose value cannot be calculated has NA as
its value.

To set the value of a variable or relation to NA, you can use the = command, as
shown in the following example.

sales = NA

If SALES is a dimensioned variable, then the = command loops through all of the
values of SALES, setting them to NA.

Overview: Controlling how NA values are treated
The following options and functions control how NA values are treated in
expressions:

■ Using the PROPERTY command you can set the value of the NATRIGGER
property on a dimensioned variable so that when a cell of the variable that
contains an NA value is read, the value of the NATRIGGER expression is
substituted for the NA value in the operation it is executing. You can use this
substitution to increase the efficiency of some kinds of calculations and to
eliminate the need for some formula objects.

■ The following options control how NA values are treated in aggregation
functions and in arithmetic operations with the addition (+) and subtraction (-)
operators.

■ The NASKIP option controls how NA values are treated in aggregation
functions.

■ The NASKIP2 option controls how NA values are treated in arithmetic
operations with the addition (+) and subtraction (-) operators.

■ The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function
in an expression to control the format of its value.

Working with NATRIGGER property
An NATRIGGER property expression is evaluated before applying the NAFILL
function or the NASKIP, NASKIP2, or NASPELL options. If the NATRIGGER
expression is NA, then the NAFILL function and the NA options have an effect.

Working with NA Values

4-42 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Additionally, the NATRIGGER property allows you a good deal of flexibility about
handling NA values:

■ You can make NA triggers recursive or mutually recursive by including
triggered objects within the value expression. You must set the RECURSIVE
option to YES before a formula, program, or other NATRIGGER expression can
invoke a trigger expression again while it is executing. For limiting the number
of triggers that can execute simultaneously, see the TRIGGERMAXDEPTH
option.

■ You can replace the NA value in the cells of the variable with the NATRIGGER
expression value by setting the TRIGGERSTOREOK option to YES and setting
the STORETRIGGERVAL property on the variable to YES.

The ROLLUP and AGGREGATE commands and the AGGREGATE function ignore
the NATRIGGER property setting for a variable during a rollup or aggregation
operation. Additionally, when an EXPORT (EIF file or pipeline) command is
executed, the NATRIGGER property expression on a variable is not evaluated when
the variable is simply exported; the NATRIGGER property expression is only
evaluated if the variable is part of an expression that is calculated during the export
operation.

Using NASKIP
The NASKIP option controls how NA values are treated in aggregation functions.

■ By default, the NASKIP option is set to YES, and NA values are ignored by
aggregation functions. Only expressions with actual values are used in
calculations.

■ If you set the NASKIP option to NO, then NA values are considered as input to
aggregation functions. If any of the values being considered are NA, then the
function returns NA for that value.

Setting NASKIP to NO is useful for cases in which having NA values in the data
makes the calculation itself invalid. For example, when you use the MOVINGMAX
function, you specify a range from which to select the maximum value.

■ If NASKIP is YES (the default), then MOVINGMAX returns NA only when all
the values in the range are NA.

■ If NASKIP is NO and any value in the range is NA, then MOVINGMAX returns
NA.

Working with NA Values

Working with Expressions 4-43

Using NASKIP2
The NASKIP2 option controls how NA values are treated in arithmetic operations
with the addition (+) and subtraction (-) operators.

■ By default, the value of the NASKIP2 option is NO. NA values are treated as
NAs in arithmetic operations using the addition (+) and subtraction (-)
operators. If any of the operands being considered is NA, then the arithmetic
operation evaluates to NA. For example, by default, 2+NA results in NA.

■ If you set the value of the NASKIP2 option to YES, then zeroes are substituted
for NA values in arithmetic operations using the addition (+) and subtraction (-)
operators. The two special cases of NA+ NA and NA-NA both result in NA.

Using NAFILL
NASKIP and NASKIP2 do not change your data. They only affect the results of
calculations on your data. If you would prefer a more targeted influence on any
kinds of expressions, not just functions or addition (+) and subtraction (-)
operations, and also have the option of making an actual change in your data, then
you can use the NAFILL function.

The effect of the NAFILL function is limited to the single expression you specify. It
can be any kind of expression, not just a function or an addition (+) or subtraction
(-) operation. In addition, you can use NAFILL to substitute anything for the NAs in
the expression, not just zeroes. Moreover, using assignment statements, you can use
NAFILL to make a permanent substitution for NAs in your data.

NAFILL returns the value of a specified expression unless its value is NA, in which
case NAFILL returns the substitute value you specify.

Example 1: Using NAFILL
The following command uses NAFILL, but does not change the data in storage. It
merely fetches the data in the SALES variable with each NA replaced with the
number 1.

fetch nafill(sales, 1)

Example 2: Using NAFILL
The following command uses NAFILL to replace the NA values in the SALES
variable with the number 1 and then assign those values to the variable. This makes
the substitution permanent in your data.

sales = nafill(sales, 1)

Working with NA Values

4-44 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example 3: Using NAFILL
The following command illustrates the use of NAFILL for more specialized
purposes. By substituting zeros for NA values, NAFILL in this example forces the
AVERAGE function to include NA values when it counts the number of values it is
averaging.

show average(nafill(sales 0.0) district)

Populating OLAP DML Data Objects 5-1

5
Populating OLAP DML Data Objects

Chapter summary
This chapter provides an overview of how you populate OLAP DML data objects
that hold source data and how to populate OLAP DML variables with calculated
values.

List of topics
This chapter includes the following topics:

■ Overview: Populating an Analytic Workspace

■ Maintaining Dimensions and Composites

■ Assigning Values to Data Objects

■ Calculating and Analyzing Data

■ Aggregating Data

Overview: Populating an Analytic Workspace

Process: Populating an analytic workspace
To use an analytic workspace, there must be data in it. There are two basic types of
data: fact data and dimensions. Fact data is stored in variable workspace objects;
dimensions, containing dimension members, are stored in dimension workspace
objects.

Overview: Populating an Analytic Workspace

5-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Variables and dimensions can be populated:

■ By loading data from the relational database. For example, you might load sales
fact data into a variable from a sale fact table, load time dimension members
from a time dimension table, custom dimension members from a customer
dimension table, and product dimension members from a product dimension
table.

■ As the result of a calculation. For example, a sales forecast variable might be
populated using the results of a forecasting function.

■ As an alternative to loading data from the relational database, you can load
data from a flat file using data loaders controlled through the OLAP DML.

There are other types of workspace objects that are discussed later in this guide.
Like variables and dimensions, this objects must also be populated from the
relational database, as the result of a calculation, or from a flat file.

Process: Populating data objects in an analytic workspace
To explicitly populate the source data objects in an analytic workspace, take the
following steps:

1. Specify the values for each dimension. These values provide indexes to the
actual data, which is stored in the analytic workspace’s variables.

2. Specify the values for each relation. These values indicate the relationships
between dimensions.

3. For variables that provide the source data for your application, specify the
actual data values.

You can populate an analytic workspace using programs written using the OLAP
DML’s SQL commands and data loading commands.

Maintaining Dimensions and Composites

Populating OLAP DML Data Objects 5-3

OLAP DML commands that populate source data objects
The OLAP DML commands that you typically use to populate source data objects
are listed in the following table.

Maintaining Dimensions and Composites

How do you specify dimension values?
The first step in populating an analytic workspace is to store values in the analytic
workspace’s dimensions. The list of stored dimension values is called the
dimension’s default status list. When you first attach an analytic workspace, the
default status list is the current status list of each dimension.

You can add, delete, merge, reposition, or change dimension values using the
MAINTAIN command. Consequently, storing and manipulating the values of a
dimension is called maintaining the dimension.

Command Description

= Assigns the results of an expression to a variable, option, or relation; or
assigns the result of a model to a variable or, when the result is numeric, to
a dimension value. For more information, see “Assigning Values to Data
Objects” on page 5-13, “Definition: Solution variable” on page 7-2, and the
topic for the EQUAL command in the OLAP DML Reference.

MAINTAIN Adds, deletes, renames, moves, or merges values in a dimension; and
adds, deletes, and merges values in a composite. For more information, see
“Maintaining Dimensions and Composites” on page 5-3 and the topic for
the command in the OLAP DML Reference.

FILEREAD Stores the data that is read from an input file into a dimension, composite,
relation, or variable. For more information, see Chapter 11 and the topic
for the command in the OLAP DML Reference.

SQL Retrieves data from a relational database into a dimension or variable. For
more information, see Chapter 10 and the topic for the command in the
OLAP DML Reference.

IMPORT Copies the data and definitions from one analytic workspace into another.
For more information, see the topic for the command in the OLAP DML
Reference.

Maintaining Dimensions and Composites

5-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Who can maintain dimensions?
You can only maintain a dimension when you have permission to both maintain
and read the dimension. Maintain permission is implicitly denied whenever read
permission is restricted for a dimension, even when you specify maintain
permission for the dimension.

By default, you have permission to both read and maintain dimensions. However,
either or both of these permissions can be changed using the PERMIT command.

For more information on using the PERMIT command, see “Adding Security to an
Analytic Workspace” on page 2-20 and the topic for the PERMIT command in the
OLAP DML Reference.

How maintaining a dimension affects dimension status
As outlined in the following table, using the MAINTAIN command sometimes
affects dimension status.

For more information on popping and pushing values, see “Introducing Dimension
Status” on page 6-2 and the entries for the POP and PUSH commands in the OLAP
DML Reference.

Avoiding deferred maintenance
When you maintain a dimension, the objects that are dimensioned by it must be
modified. If these objects are in memory, then they are modified immediately; if
these objects are not in memory, then maintenance is deferred until they are loaded
into memory.

In situations that involve a lot of dimension maintenance and a large update at the
end, deferred maintenance can trigger errors. Examples are issuing a MAINTAIN
DELETE ALL command, or performing a data load in which a large number of
values is added to a dimension. Before starting such projects, load into memory the
objects that are dimensioned by the dimension you are maintaining so that deferred

IF you use the MAINTAIN command with . . . THEN . . .

the ADD, DELETE, MERGE, or MOVE keyword
and the current status of a dimension is not ALL,

the dimension’s status is reset to ALL
before it performs the requested
maintenance.

a dimension that has a pushed status list (that is, a
status list that was created using the PUSH
commands),

that dimension’s pushed status list is
cleared, and popping that dimension
has no effect.

Maintaining Dimensions and Composites

Populating OLAP DML Data Objects 5-5

maintenance is unnecessary. You can do this by using commands similar to the
following, where the sample dimension is PRODUCT.

limit name to obj(isby product)
load &values(name)
maintain product add ...

Overview: Adding values to dimensions
To add new values to the end of a dimension or composite, use the MAINTAIN
command with the ADD keyword. The actual way that the values are added, and
the arguments that you use vary depending on whether you are adding values to a
non-time dimension, a time dimension, or a composite.

You can use the MAINTAIN command with the MERGE keyword as a quick way to
make sure all dimension values on a separate list are included in a dimension.
When you use this syntax, the new values from the list are automatically added and
the duplicates are ignored. This method of entering dimension values can save a
significant amount of time when you have a large number of values to enter.

You can use MERGE with dimensions of any data type, including time data types.
However, because the ADD keyword provides a quick way of adding time
dimension values, the MERGE keyword may not be as useful with time dimensions
as with TEXT or ID dimensions.

Adding values to non-time dimensions
You can use the MAINTAIN command with the ADD keywords to add values to a
non-time dimension in the following ways:

■ You can merely specify the values that you want to add. In this case, the values
are added to the end of the list of dimension values.

■ You can specify both the values that you want to add and where you want the
values to be placed.

Example: Adding values to non-time dimensions
This command adds ATLANTA at the beginning of the list of cities and inserts
PEORIA after OMAHA.

maintain city add ’ATLANTA’ first, ’PEORIA’ after ’OMAHA’

Maintaining Dimensions and Composites

5-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Displaying the default status list for the CITY dimension shows that the new values
have been added in the appropriate places in the list.

show values(city nostatus)
ATLANTA
CONCORD
LINCOLN
NEW YORK
OMAHA
PEORIA
SEATTLE

Adding values to time dimensions
You can use the MAINTAIN command with the ADD keyword to add new values
to time dimensions (that is, dimensions with the DAY, WEEK, MONTH, QUARTER,
or YEAR data type). You can specify what values you want to add by specifying:

■ The number of periods to add at the beginning or end of an existing list of
dimension values.

■ A list of values. (In this case, you can specify the values as text literals or as date
or text expressions.)

Regardless of how you specify the values, keep the following points in mind:

■ You can specify any date that falls within the time period you want to add. For
example, to add the month January 1999, you can specify any date from
01JAN99 through 31JAN99. The DATEORDER option is used to resolve any
ambiguities.

■ When adding values to a time dimension that does not yet have values, you
must specify only the first and last values you want to add for the dimension.
The gaps are automatically filled in with appropriate values for the intervening
time periods.

Maintaining Dimensions and Composites

Populating OLAP DML Data Objects 5-7

Adding date values to time dimensions
When you add a dimension value by specifying a DATE expression or a text value
that represents a complete date, keep the following points in mind:

■ If a time dimension already has values, then you can add values only at the
beginning or the end of the existing list. To add values, you must specify only
the first or last value you want to add. The gap between the existing list and the
value you specify is automatically filled in.

■ When you specify a time dimension value as a date, you must provide only the
date components that are relevant for the type of dimension you are
maintaining:

■ For a DAY or WEEK dimension, you must supply the day, month, and year
components.

■ For a MONTH or QUARTER dimension, you must supply only the month
and year (for example, JUN98 or 0698 for June 1998).

■ For a YEAR dimension, you must specify only the year (for example, 98 for
1998).

For more information on the valid input styles for dates, see the entry for the
DATEORDER option in the OLAP DML Reference.

Adding text values to time dimensions
When you add a dimension value by specifying the values as text literals or TEXT
or ID expressions (rather than as a date), keep the following points in mind:

■ If you use a TEXT expression, then each element or line is treated as a separate
value.

■ The values can be in either one of the following formats:

■ The format specified by the VNF (value name format) for the dimension (or
in the default format for the type of dimension you are maintaining when
the dimension does not have a VNF). In this case, each value explicitly
indicates the time period you want to add. For example, if the VNF for a
MONTH dimension is <MTXT><YY>, then the value JAN99 represents the
month January 1999.

■ A valid input style for date values. For more information on the valid input
styles for dates, see the entry for the DATEORDER option in the OLAP
DML Reference.

Maintaining Dimensions and Composites

5-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For more information on the default formats for time dimensions, see the entry for
the VNF command in the OLAP DML Reference.

Example: Adding values to a time dimension
Suppose you define a new time dimension, called QTR, with a data type of
QUARTER, and you add dimension values for the quarters in 1998 and 1999. You
must add only the first and last dimension values you want, and the intervening
values will be filled in automatically.

To add the first and last quarters, you can specify any dates that fall within those
quarters.

define qtr dimension quarter
maintain qtr add ’01JAN98’ ’31DEC99’

Displaying the default status list for the dimension shows the new dimension
values.

Q1.98
Q2.98
Q3.98
Q4.98
Q1.99
Q2.99
Q3.99

Maintaining Dimensions and Composites

Populating OLAP DML Data Objects 5-9

Updating relations when you merge new values
When you are merging values into a dimension it is a good practice to update any
relations that involve that dimension:

■ In some cases, using the simplified syntax of the MAINTAIN command shown
below, you can update a relation at the same time you merge values into a
dimension.

MAINTAIN dimension MERGE [exp [RELATE relation]]

The exp argument specifies a dimensioned expression whose values you want
to merge into the dimension; for example, the name of a dimensioned text
variable that contains dimension values.

The RELATE relation phrase specifies the name of the relation that you want to
update.

Note: The exp argument must be dimensioned and at least one of these
dimensions must also be in the definition of the relation that is specified in the
RELATE relation phrase.

■ In other cases, you need to explicitly update any relations that involve that
dimension.

For the complete syntax for the MAINTAIN command, see the entry for the
command in the OLAP DML Reference. For information about explicitly updating
relations, see “Assigning Values to Data Objects” on page 5-13.

Example: Merging values into a composite
Suppose you want to define a composite, named COMP_PRODDIST, that is made
up of all combinations of the first three values of the PRODUCT dimension and the
first five values of the DISTRICT dimension. You can efficiently include all 15 values
with the following commands.

define comp_proddist composite <product district>
limit product to first 3
limit district to first 5
maintain comp_proddist merge <product district>

This method works with conjoint dimensions as well.

Maintaining Dimensions and Composites

5-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Deleting values from dimensions
You can use the MAINTAIN command with the DELETE keyword to remove
values from a dimension. Using the MAINTAIN command with DELETE keyword,
you select the values that you want to delete in much the same way that you select
values using the LIMIT command. You can select for deletion:

■ One value, a list of values, a range of values, or all values

■ The values that match a list of values of a named related dimension

■ The values that are first, last, or in a specified position in the dimension

■ The values that meet a Boolean criterion

■ After it is sorted according to a specified criterion, the top or bottom n values of
the dimension, or the top or bottom n performers, by percentage, of the
dimension

■ For a hierarchical dimension, the values that have a certain relationship within
the hierarchy

■ The values in the dimension that match the values in a valueset

You delete values from a dimension with a time data type (that is, DAY, WEEK,
MONTH, QUARTER, or YEAR) the same way that you delete values from any
other dimension except that you can delete values only from the beginning or the
end of the existing list of values.

Example: Deleting values from a dimension
Suppose that you want remove from CITY all those cities with a population of less
than 75,000 people. Before you issue the command, the default status list for the
CITY dimension contains the six values shown below.

show values (city nostatus)
ATLANTA
CONCORD
LINCOLN
COLUMBUS
PEORIA
SEATTLE

You use the variable POPULATION.C, which contains the population for each city.

maintain city delete population.c lt 75000

Maintaining Dimensions and Composites

Populating OLAP DML Data Objects 5-11

Assuming that only Lincoln and Peoria have populations of fewer than 75,000, the
default status list of the CITY dimension now contains the following values.

show values (city nostatus)
ATLANTA
CONCORD
COLUMBUS
SEATTLE

Deleting values from conjoint dimensions
You can use the MAINTAIN command with the DELETE keyword to delete values
from a conjoint dimension.

You can also delete values from a conjoint dimension by using the MAINTAIN
command directly on the base dimension of the conjoint dimension. When you
delete a value from the base dimension, any values associated with that base
dimension value are deleted from the conjoint dimension.

Example: Deleting dimension values from a conjoint dimension
Suppose you have a conjoint dimension named PROD_DIST with the base
dimensions of PRODUCT and DISTRICT. To delete the value
<’SNOWSHOES’ ’ATLANTA’> from that conjoint dimension, you would use the
following command.

maintain PROD_DIST delete <’SNOWSHOES’ ’ATLANTA’>

Changing the position of dimension values
For dimensions that have a non-time data type, you can use the MAINTAIN
command with the MOVE keyword to change the position of one or more values in
a dimension list. You cannot change the position of a value in a time dimension or
in a composite.

When you want to store the dimension values in alphabetical order, you can first
use the SORT command to temporarily sort the values, and then use the
MAINTAIN command to store the values in the sorted order.

Example: Changing the position of dimension values
Use the TEXT variable TEXTVAR to move SEATTLE to the end of the list of cities.

textvar = ’SEATTLE’
maintain city move textvar last

Maintaining Dimensions and Composites

5-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Storing dimension values in sorted order
You can store the values of a dimension in sorted order by taking the following
actions:

1. Limit the dimension to all of its values.

LIMIT dimension TO ALL

2. Sort the dimension values based on your desired sorting criterion.

SORT dimension A sort-criterion

Note: To sort the values alphabetically, sort by the dimension itself.

3. Store the dimension values in their sorted order.

MAINTAIN dimension MOVE VALUES(dimension) FIRST

Note: To sort the values alphabetically, sort by the dimension itself.

Note: You cannot use the MAINTAIN command to save the sorted order as the
permanent order of a time dimension. The values of a time dimension must be
stored in increasing chronological order.

For more information on using the SORT command, see the entry for the command
in the OLAP DML Reference.

Example: Storing dimension values in alphabetical order
Suppose that the default status list for the CITY dimension contains the following
values.

show values (city nostatus)
ATLANTA
CONCORD
LINCOLN
COLUMBUS
PEORIA
SEATTLE

The following commands sort the values of CITY in alphabetical order and then
store the values in that order.

sort city a city
maintain city move values(city) first

Assigning Values to Data Objects

Populating OLAP DML Data Objects 5-13

The default status list of CITY reflects the new sorted order.

show values (city nostatus)
ATLANTA
COLUMBUS
CONCORD
LINCOLN
PEORIA
SEATTLE

Maintaining composites and conjoint dimensions
Both composites and conjoint dimensions are lists of dimension-value combinations
in which one value is taken from each of the dimensions on which the composite or
conjoint dimension is based. Composites and conjoint dimensions differ in the way
that they are maintained.

Maintaining composites
Composites are internal structures that are automatically maintained. Consequently,
the simplest way to maintain a composite is to merely maintain its base dimensions
and let the values in the composite be maintained automatically.

In most cases, it is not necessary to do anything to maintain composites. However, if
you want to have a very fine degree of control, you may have to explicitly maintain
the composite. In this case, you can use the MAINTAIN command to add, delete,
and merge values.

Maintaining conjoint dimensions
Conjoint dimensions, unlike composites, are actual dimensions that you must
explicitly maintain. Conjoint dimensions are not automatically maintained. In
programs, you use the MAINTAIN command to maintain the values in a conjoint
dimension.

Assigning Values to Data Objects

Introducing the assignment statement
An expression creates temporary data — you can display the resulting values, but
these values are not automatically saved in your analytic workspace. If you want to
save the result of an expression, then you store it in an object that has the same data

Assigning Values to Data Objects

5-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

type and dimensions as the expression. You use an assignment statement to store
the value that is the result of the expression in the object.

An assignment statement is composed of the OLAP DML = operator that is
preceded by an expression (on the left) and followed by an expression (on the right).

target-expression = source-expression

The assignment statement sets the value of the target expression equal to the results
of the source expression.

Using OLAP DML objects in assignment statements
The following table outlines the OLAP DML objects that you can use in assignment
statements and indicates whether you can use them as a target or source expression.

How values are assigned to variables
When you use the = operator to assign the value of a single-cell expression to a
single-cell, a single value is stored. However, when you use the = operator to assign
the value of a single-cell expression to a target variable that has one or more
dimensions, then a loop is performed over the values in status for each dimension
of the target variable and assigns a data value to the corresponding cells of the
variable.

Object Target Expression Source Expression

Variable Yes Yes

Relation Yes Yes

Dimension Only in models when the result of
the expression is numeric

Yes

Composite No Yes

Worksheet Yes Yes

Function No Yes

Formula No Yes

Valueset No Yes

Assigning Values to Data Objects

Populating OLAP DML Data Objects 5-15

Example 1: Assigning values to variables
The demo analytic workspace contains the CHOICEDESC variable that is
dimensioned by CHOICE. Before you enter data for the variable, the variable’s cells
contain only NA values.

CHOICE CHOICEDESC
-------------- --------------------
REPORT NA
GRAPH NA
ANALYZE NA
DATA NA
QUIT NA

Suppose you initialize the CHOICEDESC variable using the following command.

CHOICEDESC = JOINCHARS (’Description for ’ CHOICE)

Now all of the CHOICEDESC variable’s cells contain the appropriate values.

CHOICE CHOICEDESC
-------------- -------------------------
REPORT Description for REPORT
GRAPH Description for GRAPH
ANALYZE Description for ANALYZE
DATA Description for DATA
QUIT Description for QUIT

Example 2: Assigning values to variables
The following example shows an expression that is dimensioned by MONTH,
PRODUCT, and DISTRICT and is assigned to a new variable. The expression
calculates a 1997 sales plan based on unit sales in 1996.

define units.plan integer <month product district>
limit month to year ’YR97’
units.plan = lag(units 12 month) * 1.15

How values are assigned to variables with composites
When assigning data to variables with composites, the source expression is
evaluated for every combination of the dimension values in status for the target
variable, including combinations of the sparse dimensions for which the target
variable currently has no cells. If the source expression is not NA for those
combinations where the target currently has no cells, then new cells are created and
the data is assigned to them.

Assigning Values to Data Objects

5-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

When you use the = command to assign values to a target variable that has a
composite, the following happens automatically:

■ Creates any missing target variable cells that are being assigned non-NA values.

■ Adds to the composite all the dimension-value combinations that correspond to
those new cells.

Thus, both the target variable and the composite might be larger after an
assignment. If you want to assign values only to cells that already exist in the target
variable, then use the ACROSS keyword in the = command.

The OLAP DML gives you the ability to specify a different evaluation behavior
when it assigns data to variables with composites. You can alter the default
evaluation behavior of the assignment statement so that the source expression is
evaluated only for those combinations of the dimension values in status for which
the target variable currently has cells.

Because the composite of the sparse dimension is what keeps track of which
combinations of the sparse dimensions have data cells, you use the following syntax
to specify this different evaluation behavior.

varname = expression ACROSS composite

The varname argument is the name of the variable. It is the target to which the data
is assigned.

The expression argument is the source expression that holds the data that will be
assigned to the target variable.

The ACROSS keyword indicates that you want to alter the default evaluation
behavior and cause the evaluation of the composite of the target variable.

The composite argument is the composite for the sparse dimensions on the target
variable. If the variable was defined with a named composite, then specify the name
of the composite. If the variable was defined with an unnamed composite, then use
the SPARSE keyword to refer to the unnamed composite (for example, SPARSE
<MARKET PRODUCT>).

Example: Assigning values to variables with composites
To have data assigned from SALES only into existing data cells of SPARSE_SALES,
whose associated dimension values are in status, use the following command.

sparse_sales = sales across sparse<product market>

The ACROSS keyword is particularly helpful when the source expression is a single
value. If there are no limits on the dimensions of SPARSE_SALES, then an

Assigning Values to Data Objects

Populating OLAP DML Data Objects 5-17

assignment command like the following will create cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0

This defeats the purpose of a sparse variable.

In contrast, the following command will set only existing cells of SPARSE_SALES to
0.

sparse_sales = 0 across sparse<product market>

Assigning values to relations
You can assign values to a relation using an assignment statement. When executing
the assignment statement, a loop is performed over the values in status for each
dimension of the target relation and assigns a data value to the corresponding cell
of the target relation.

You can assign values to a relation with a text dimension by assigning one of the
following:

■ A text value of the dimension.

■ An integer that represents the position of the dimension value in the
dimension’s default status list.

Assigning values to dimensions
In most cases, you cannot use an assignment statement to assign values to
dimensions. However, in model equations, if the result of a calculation is numeric,
then you can use the = operator to assign the results to a dimension value.
However, equations (that is, expressions) in models differ in several ways from
expressions used in other contexts. For more information on working with models,
see Chapter 7 and the topic for the MODEL command in the OLAP DML Reference.

Assigning values to specific cells of a data object
You can use a QDR with the target of an assignment statement. This lets you assign
a value to specific cells in a data object.

The following example assigns the value 10200 to the data cell of the SALES
variable that is specified in the qualified data reference. If the variable named

Calculating and Analyzing Data

5-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

SALES does not already have a value in the cell associated with BOSTON, TENTS,
and JAN99, then the value is added to the variable.

sales(market ’BOSTON’ product ’TENTS’ month ’JAN99’)= 10200

Related information
For more information, see the following table.

Calculating and Analyzing Data

How to calculate and analyze data using the OLAP DML
Typically, using the OLAP DML, you calculate and analyze data in the following
ways:

■ Perform common calculations using built-in OLAP DML functions that are
described in detail in the OLAP DML Reference and outlined in “Categories of
OLAP DML functions” on page 5-19.

■ Aggregate (or roll up) data in variables that are dimensioned by one or more
hierarchical dimensions as outlined in “Aggregating Data” on page 5-19.

■ Create populated solution variables using the MODEL object as described in
Chapter 7.

IF you want documentation about . . . THEN see . . .

how values are stored in data objects, Chapter 3

assigning values to data objects, the entry for the = command in the OLAP
DML Reference

updating relations when you merge values
into a dimension,

“Updating relations when you merge new
values” on page 5-9

QDRs, “Specifying a Single Value for the Dimension
of an Expression” on page 4-16

Aggregating Data

Populating OLAP DML Data Objects 5-19

Categories of OLAP DML functions
The OLAP DML provides built-in functions for numeric analysis. The categories of
these functions are described below.

For more information on the functions in these categories, see the categorized list of
functions in the OLAP DML Reference. For more information on working with
numeric expressions, see “Numeric Expressions” on page 4-23.

Aggregating Data

What does “aggregating data” mean?
If you have a variable that is dimensioned by one or more hierarchical dimensions,
then you can calculate the totals of the variable’s data at the upper levels of each
hierarchy from the detail data — that is, the data at the lowest level of the hierarchy.
This is called aggregating.

For more information on hierarchical dimensions and variables defined with
hierarchical dimensions, see “Defining Hierarchical Dimensions and Variables That
Use Them” on page 3-20.

Specifying how and when data is aggregated
You can use the OLAP DML to aggregate the data. You define an aggregation map
object that specifies which data should be pre-calculated when the AGGREGATE
command is executed, and which data should be calculated on the fly.

Category Description

Numeric cell-by-cell Functions that operate on each cell of an expression or variable.

Time-series Functions that retrieve values from a previous or future time period
and perform calculations on those values.

Forecasts and regression Functions that analyze trends in your data.

Statistical Functions that perform calculations for statistical analysis.

Financial Functions that perform calculations for financial analysis.

Aggregation Functions that return an aggregate value, generally consisting of a
single value for many values of the input expression.

Aggregating Data

5-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For information about the aggregation map (AGGMAP) object, the AGGREGATE
command and function, and other aggregate commands (such as RELATION,
CACHE, and AGGINFO), see the OLAP DML Reference. For information on
designing, writing, and debugging programs, see Chapter 8 and Chapter 9.

Limiting an Application’s View of the Data 6-1

6
Limiting an Application’s View of the Data

Chapter summary
This chapter introduces dimension status and the use of the LIMIT command to
temporarily change your view of the data in an analytic workspace.

List of topics
This chapter includes the following topics:

■ Introducing Dimension Status

■ Limiting Using a Simple List of Values

■ Limiting Using a Boolean Expression

■ Limiting to the Top or Bottom Values of a Sorted Dimension

■ Limiting to the Values of a Related Dimension

■ Limiting Based on the Position of a Value in a Dimension

■ Limiting Based on a Relationship Within a Hierarchy

■ Limiting Composites and Conjoint Dimensions

■ Working with Null Status

■ Working with Valuesets

Introducing Dimension Status

6-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing Dimension Status

Definition: Current status list
The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be “in status.”

If you are familiar with relational database terminology, then you can think of the
current status list of a dimension as a view of the dimension. Whether or not a
dimension value is in status determines your view of the data from all of the objects
that are dimensioned by it. In general, when an OLAP DML command is processed,
only those values that are in status are accessed.

■ For dimensions, only those dimension values that are in the current status list
are accessed; and for dimensioned objects, only those values that are indexed by
dimension values that are in the current status list are accessed.

■ As a loop is performed through dimensioned objects, it uses the order of the
dimension values in the current status list to determine the order in which to
access the object’s values.

Whether or not a dimension value is in status merely restricts your view of the
value during a given session; it does not permanently affect the values that are
stored in the analytic workspace.

Definition: Default status list
When you first attach an analytic workspace, the current status list of each
dimension consists of all of the dimension’s values that have read permission, in the
order in which the values are stored. This list of values is called the default status
list for the dimension.

Changing the default status list
You can change the default status list of a dimension in the following ways:

■ You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command. For more information on storing and maintaining
dimension values, see “Maintaining Dimensions and Composites” on page 5-3
and the entry for the MAINTAIN command in OLAP DML Reference.

■ You can change the read permission of values that are associated with a
dimension by using the PERMIT command or the PERMITRESET command.

Introducing Dimension Status

Limiting an Application’s View of the Data 6-3

For more information on using these commands, see “Adding Security to an
Analytic Workspace” on page 2-20 and the topics for the commands in OLAP
DML Reference.

Changing the current status list
You can change the current status list for a dimension by using:

■ The LIMIT command to change the values and the order of the values in a
dimension’s current status list.

■ The SORT command to arrange the order of values in a dimension’s current
status list.

If you are familiar with relational database concepts and terminology, then it may
help you to think of using a LIMIT command to “set or change dimension status” or
“limit a dimension” in an analytic workspace as similar to using the SQL SELECT
statement to “select a view” in a relational database. Changing dimension status
merely restricts your view of the data during a given session. No matter how you
change the current status list of a dimension, the changes have no permanent effect
on your analytic workspace; every dimension retains all of its values.

Identifying and retrieving status lists
You can use the following commands and functions to identify and retrieve the
status of dimension values.

Command or
function Description

INSTAT function Checks whether a dimension value is in the current status list of a
dimension.

STATFIRST function Retrieves the first value in the current status list of a dimension.

STATLAST function Retrieves the last value in the current status list of a dimension.

Introducing Dimension Status

6-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Saving and restoring dimension status
You can save the current status of a dimension in the following ways.

■ If you want to save the current status or value of a dimension for use in any
session, then use a named valueset. Use the DEFINE VALUESET command to
define the valueset.

■ If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

■ If you want to save, access, or update the current status or value of a dimension,
an option, a single-cell variable, a valueset, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use in an analytic
workspace. With contexts, you can access and update the saved object values,
whereas PUSH and POP simply allow you to save and restore values. Typically, you
only used the PUSH and POP commands within a program to make changes that
apply only during the program’s execution.

STATUS command Sends to the current outfile the status of one or more values in a
dimension, or the status of all dimensions in an analytic
workspace.

VALUES function Retrieves different values depending on the keyword that you
specify:

■ If you specify the NOSTATUS keyword, then the function
retrieves the default status list of a dimension list.

■ If you specify the STATUS keyword, then the function
retrieves the current status list of a dimension.

■ Depending on whether you specify the INTEGER keyword,
the function either returns a multiline text value that contains
one dimension value per line or returns, as integers, the
position numbers of the dimension values.

Command or
function Description

Limiting Using a Simple List of Values

Limiting an Application’s View of the Data 6-5

Related information
For more information, see the following table.

Limiting Using a Simple List of Values

Overview: Limiting to a simple list of values
A common way of selecting data is to limit a dimension to a value or list of values.
The simplified syntax for using the LIMIT command in this way is shown below.

LIMIT dimension TO values

The values argument can consist of any combination of:

■ Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

■ Ranges of dimension values, expressed as value1 TO value2.

■ Integer values that represent the logical positions of dimension values,
expressed as comma-separated integers.

■ Ranges of integer values that represent the logical positions of dimension
values, expressed as value1 TO value2.

■ Valuesets.

IF you want documentation about . . . THEN see . . .

storing and maintaining values in a
dimension,

“Maintaining Dimensions and Composites”
on page 5-3

the CONTEXT, POP, POPLEVEL, PUSH,
and PUSHLEVEL commands,

“Preserving the Session Environment” on
page 8-25

the entries for the commands in OLAP DML
Reference

changing the read permission of dimension
values using the PERMIT or
PERMITRESET commands,

“Adding Security to an Analytic Workspace”
on page 2-20

the topics for the commands in OLAP DML
Reference

sorting dimension values, the entry for the SORT command in OLAP
DML Reference

Limiting Using a Simple List of Values

6-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Limiting to literal values
Suppose that you want a report of footwear sales in Boston for January through
March 1995. The following commands limit the appropriate dimensions and request
the report.

limit month to ’JAN95’ ’FEB95’ ’MAR95’
limit product to ’FOOTWEAR’
limit district to ’BOSTON’
report sales

The report output looks like this.

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46

Limiting using time values
You can use the LIMIT command to limit dimension status for the value of a time
dimension. When you specify a value of a time dimension (that is, a dimension with
a data type of DAY, WEEK, MONTH, QUARTER, or YEAR), the value can be in:

■ The format specified by the VNF (value name format) for the dimension (or in
the default VNF for the type of dimension you are limiting when the dimension
does not have a VNF).

■ A valid input style for date values, as described in the DATEORDER option.

When you specify a time dimension value as a date, you only need to provide the
date components that are relevant for the type of dimension you are limiting.

If you specify a DATE expression or a text value that represents a complete date,
then you can specify any date that falls within the time period that is represented by

IF you specify a value for a . . . THEN you must specify the . . .

DAY or WEEK dimension, day, month, and year.

MONTH or QUARTER dimension, month and year (for example, JUN95 or 0695
for June 1995).

YEAR dimension, year (for example, 95 for 1995).

Limiting Using a Boolean Expression

Limiting an Application’s View of the Data 6-7

the desired dimension value. The DATEORDER option is used automatically to
resolve any ambiguities.

Related information
For more information, see the following table.

Limiting Using a Boolean Expression

Overview: Limiting using a Boolean expression
You can use the LIMIT command to limit a dimension according to the result of a
Boolean expression. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMIT dimension TO Boolean-expression

When you use this form of the LIMIT command, the values that are currently in
status are replaced with those dimension values for which the Boolean expression is
TRUE.

Example: Limiting using a Boolean expression
In this example, the values of the TOTAL function are broken out by PRODUCT
and compared to a literal (that is, the number 12000000). The LIMIT command
replaces the values that are currently in status for the PRODUCT dimension with
the values of the PRODUCT dimension whose sales, totaled for all months and
districts, are greater than 12 million.

limit product to total(sales product) gt 12000000

IF you want documentation about . . . THEN see . . .

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

the valid input styles for dates, the entry for the DATEORDER option in
OLAP DML Reference

VNF (value name format), the entry for the VNF command in OLAP
DML Reference

Limiting Using a Boolean Expression

6-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How to construct a Boolean expression
When you are constructing a Boolean expression, keep the following points in
mind:

■ The Boolean expression must be dimensioned by the dimension whose status is
being set.

■ The data types of the expressions you are comparing in the Boolean expression
must be similar.

For example, the following Boolean expression has similar data types on both
sides of the Boolean operator GT.

limit market to units.m gt 50000

How LIMIT handles Boolean expressions with more than one dimension
An understanding of how the LIMIT command handles Boolean expressions with
more than one dimension is important to the successful use of the command.

The result of a simple Boolean expression is a single value. When you use the LIMIT
command with a Boolean expression, no looping is performed through the
dimensions to create and return an array of values for the expression. Instead, the
first value in the dimension’s status list is identified for each dimension in the
expression, the expression using those values is evaluated, and a single value is
returned.

If you want the result of the Boolean expression to have dimensionality, then use the
EVERY, ANY, or NONE functions, which let you specify the dimensions of the
result of the Boolean expression.

Example: How LIMIT handles Boolean expressions with many dimensions
Suppose that the MONTH, DISTRICT, and PRODUCT dimensions of the demo
analytic workspace have the dimension status shown below.

The current status of MONTH is:
JAN95 TO MAR95
The current status of DISTRICT is:
BOSTON
The current status of PRODUCT is:
ALL

Now you want products that have more than $90,000 worth of sales in at least one
of the months to be in status for the PRODUCT dimension. By issuing the following

Limiting Using a Boolean Expression

Limiting an Application’s View of the Data 6-9

command, you can see which values in the current dimension status meet this
condition.

report sales gt 90000

As shown below, the report displays YES in both the FOOTWEAR and CANOES
rows. Both of these products have sold more than $90,000 on at least one occasion
during January through March 1995.

DISTRICT: BOSTON
 ---------SALES GT 90000---------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
TENTS NO NO NO
CANOES NO NO YES
RACQUETS NO NO NO
SPORTSWEAR NO NO NO
FOOTWEAR YES NO YES

You might think that limiting the PRODUCT dimension using only the simple
Boolean expression sales gt 90000 (as shown below) would give you your
desired result.

limit product to sales gt 90000
status product
report sales

However, when the Boolean expression is evaluated, no looping is performed
through the SALES variable to create and return an array of values for the
PRODUCT dimension. Instead, only the first value in the dimension’s status list is
used for each dimension in SALES other than the PRODUCT dimension. In this case,
JAN95 is used for the value of the MONTH dimension of the SALES variable and
BOSTON is used for the value of the DISTRICT dimension.

For JAN95 and BOSTON, the Boolean expression evaluates to TRUE only for the
FOOTWEAR product. Consequently, only FOOTWEAR is in status for the
PRODUCT dimension.

Limiting Using a Boolean Expression

6-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

As shown below, a report of sales in Boston only displays values for the
FOOTWEAR product that have sold more than $90,000 on at least one occasion
during January through March 1995.

The current status of PRODUCT is:
FOOTWEAR
DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46

Limiting a dimension to all dimension values that match the expression
The way to limit a dimension to all dimension values that match a Boolean
expression is to use the ANY function with the Boolean expression.

Example: Limiting using the ANY function with a Boolean expression
The LIMIT command (shown below) illustrates how to use the ANY function to
limit the PRODUCT dimension to all dimension values that have a value of more
than $90,000 in the SALES variable (that is, CANOES and FOOTWEAR):

■ The first argument for the ANY function (that is, sales gt 90000) is the
Boolean expression you want to evaluate.

■ The second argument for the ANY function (that is, product) indicates the
dimensionality of the result of the Boolean expression.

In this example, when the Boolean function is evaluated, a test is performed for
TRUE values along the PRODUCT dimension, and returns an array of values.

limit product to any(sales gt 90000, product)
status product
report sales

The PRODUCT dimension has both CANOES and FOOTWEAR in status. Both of
these products sold more than $90,000 on at least one occasion during January
through March 1995.

As shown below, a report for sales in Boston displays both the CANOES and
FOOTWEAR products.

The current status of PRODUCT is:
CANOES, FOOTWEAR
DISTRICT: BOSTON

Limiting to the Top or Bottom Values of a Sorted Dimension

Limiting an Application’s View of the Data 6-11

 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
CANOES 66,013.92 76,083.84 91,748.16
FOOTWEAR 91,406.82 86,827.32 100,199.46

Related information
For more information, see the following table.

Limiting to the Top or Bottom Values of a Sorted Dimension

Limiting to the top or bottom values
You can set the dimension values that are currently in status to the top or bottom
performers based on a criterion represented as an expression. The simplified syntax
for using the LIMIT command in this way is shown below:

LIMIT dimension TO [BOTTOM|TOP] n BASEDON expression

Example: Limiting to the top or bottom values
Suppose the status list is sorted in descending order according to the values of
SALES, and only the top two performers are kept in status. Here the TOP and
BASEDON keywords are used to limit the status of a dimension, using the values of
a variable as a criterion.

limit product to ’SPORTSWEAR’
limit month to ’JUL96’
limit district to top 2 basedon sales

IF you want documentation about . . . THEN see . . .

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

creating expressions, Chapter 4

converting data types, the entry for the CONVERT function in
OLAP DML Reference

the ANY function, the entry for the function in OLAP DML
Reference

Limiting to the Top or Bottom Values of a Sorted Dimension

6-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Suppose that you issue the following REPORT command.

report down district sales

The following report is produced, which shows the results of the LIMIT commands.

PRODUCT: SPORTSWEAR
 --SALES---
 --MONTH---
DISTRICT JUL96
-------------- ----------
DALLAS 220,416.81
ATLANTA 211,666.14

Limiting to the top or bottom performers, by percentage
You can set the dimension values that are currently in status to the top or bottom
performers, by percentage, based on a criterion represented as an expression. The
simplified syntax for using the LIMIT command in this way is shown below.

LIMIT dimension TO [BOTTOM|TOP] percent PERCENTOF expression

This construction sorts values based on their contribution, by percentage, to an
expression and then places the identified values in status.

It can happen that the last item in status, based on a PERCENTOF criterion, is one
of a number of dimension values having the same associated criterion value. In this
case, LIMIT includes all dimension values with that criterion value in the resulting
status, even when that causes the total of the criterion value to far exceed the
specified percentage.

Note: Do not use a criterion expression that changes its own value.

Example: Limiting to the top or bottom performers by percentage
Suppose you want to sort products in descending order by each product’s
contribution to TOTAL(SALES) and then add values to the status list, starting from
the top, until the cumulative total of SALES by PRODUCT reaches or exceeds 30
percent of all sales. To limit the dimension in this way, you can use the following
command.

limit product to top 30 percentof total(sales, product)

The following commands produce a report for January through March 1995 of
products in the Boston district that reached or exceeded 30 percent of all sales.

limit month to ’JAN95’ ’FEB95’ ’MAR95’
limit district to ’BOSTON’

Limiting to the Values of a Related Dimension

Limiting an Application’s View of the Data 6-13

limit product to top 30 percentof total(sales, product)
report sales

This output of the report is shown below.

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46
CANOES 66,013.92 76,083.84 91,748.16

Limiting to the Values of a Related Dimension

Overview: Limiting to the values of related dimensions
You can use the LIMIT command to limit a dimension to the values of one or more
related dimensions. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMIT dimension TO reldim [reldim-val]

The reldim argument is the name of a relation or a dimension that is related to the
dimension being limited. Using a relation name allows you to choose which relation
is used when there is more than one.

The reldim-val argument is a list of values of the related dimension, and not the
dimension being limited. If this argument is present in a LIMIT command, then
status is obtained by selecting the values of the dimension being limited, which are
related to the related-dimension values. If valuelist is omitted, then the current
status of related-dimension is used.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

Example: Limiting with a related dimension
The following command limits DISTRICT to BOSTON and ATLANTA, which are in
the EAST region.

limit district to region ’EAST’

Limiting to the Values of a Related Dimension

6-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

This command limits PRODUCT to SPORTSWEAR and FOOTWEAR, which are in
the division that appears last in the list of DIVISION values.

limit product to division last 1

How status is determined when you limit to a related dimension
When you limit a dimension to a related dimension, the current status list is created
in a two-step process, as shown in the following table.

1. The values in the dimension’s current status list are arranged in the order of the
values of the related dimension.

2. If there is more than one value of the dimension for any value of the related
dimension, then the values in the dimension’s current status list are arranged in
the order of their default status list.

Suppressing the sort when you limit to a related dimension
The LIMIT.SORTREL option controls whether or not a sort is done when you limit a
dimension to a related dimension. You can suppress the sort that occurs when you
limit a dimension to a related dimension by setting LIMIT.SORTREL to NO. This
can significantly improve performance when the dimension you are limiting is
large.

Note: When LIMIT.SORTREL is NO, printed output of a dimension may not appear
in logical order.

Limiting using related time dimensions
Every time dimension (with a data type of DAY, WEEK, MONTH, QUARTER, or
YEAR) is related to every other time dimension through an implicit relation. When
you limit the values of a time dimension by specifying another time dimension as
the related dimension, the implicit relation is used by default.

For example, you can issue the following command.

limit month to quarter year

This command will temporarily limit QUARTER to YEAR, then limit MONTH to
QUARTER, and finally restore QUARTER to its original status.

However, if an explicit relation is defined between the two time dimensions, then
you can override the default by specifying the name of the explicit relation as the
related dimension.

Limiting Based on the Position of a Value in a Dimension

Limiting an Application’s View of the Data 6-15

Related information
For more information, see the following table.

Limiting Based on the Position of a Value in a Dimension

Overview: Limiting based on a value’s position in a dimension
Using the LIMIT command, you can set dimension status based on the position of
values in either:

■ The dimension you are limiting

■ An unrelated dimension

Limiting using a value’s position in its dimension
You can use the LIMIT command with the FIRST, LAST, NTH, and POSLIST
keywords to set dimension status based on the position of a value within a
dimension.

The simplified syntax for using the LIMIT command in this way is shown below.

LIMIT dimension TO {FIRST n|LAST n|NTH n|POSLIST poslist-exp}

The FIRST, LAST, and NTH keywords specify where the value is in the dimension’s
full set of values. The n argument following it specifies the number of values.

The POSLIST keyword indicates that the poslist-exp argument following it is a text
expression, each line of which is a numeric value that evaluates to a numeric
position of the dimension being limited.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

IF you want documentation about . . . THEN see . . .

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

working with values in time dimensions, “Defining Dimensions” on page 3-4

“OLAP DML Data Types” on page 4-2

sorting the current status list, the entry for the SORT command in OLAP
DML Reference

Limiting Based on a Relationship Within a Hierarchy

6-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Limiting using a value’s position in an unrelated dimension
You can use the LIMIT command with the NOCONVERT keyword to insert a value
into a dimension’s status list based on the numeric position of the values in the
status list of the unrelated dimension. This is particularly useful when the two
dimensions are in different analytic workspaces (for example, when there is a
one-to-one correspondence between the product dimension in two analytic
workspaces).

The simplified syntax for using the LIMIT command to keyword to insert a value
into a dimension’s status list based on the numeric position of the values in the
status list of the unrelated dimension is shown below:

LIMIT dimension TO NOCONVERT unrelated-dimension

The unrelated-dimension argument specifies the name of a dimension not related to
the dimension being limited.

For the complete syntax for the LIMIT command, see the entry for the command in
OLAP DML Reference.

Limiting Based on a Relationship Within a Hierarchy

Overview: Limiting based on a relationship within a hierarchy
You can use the LIMIT command to use a family tree to place dimension values in
status. You can limit a dimension as follows:

■ You can limit a dimension to the parents, children, ancestors, or descendants of
each value in a list of specified values or for each value in status.

■ You can also find the descendants based on a particular parent relationship.
This is useful with hierarchical dimensions that contain both a detail level and
levels that are aggregations of lower levels. To use the LIMIT command in this
way, you must ensure that the analytic workspace contains a relation that holds
the parent for each value of the dimension.

Syntax: Limiting based on a relationship within a hierarchy
The simplified syntax for using the LIMIT command to limit a dimension based on
a relationship within a hierarchy is shown below.

LIMIT dimension TO {PARENTS|CHILDREN|ANCESTORS|DESCENDANTS|HIERARCHY} -
 USING parent-rel[valuelist]

Limiting Based on a Relationship Within a Hierarchy

Limiting an Application’s View of the Data 6-17

The PARENTS keyword finds the parent of each value in valuelist or, when there is
no valuelist, it finds the parent for each value in status. It uses the parent-rel to look
up the parent.

The CHILDREN keyword finds the children of each value in valuelist or, when there
is no valuelist, finds the children for each value in status. It uses the parent-rel to look
up the children.

The ANCESTORS keyword finds the ancestors (that is, parents, grandparents, and
so on) of each value in valuelist or, when there is no valuelist, finds the ancestors of
each value in status.

The DESCENDANTS keyword finds the descendants (that is, children,
grandchildren, and so on) of each value in valuelist or, when there is no valuelist,
finds descendants for each value in status.

The HIERARCHY keyword is similar to DESCENDANTS and finds the
descendants (that is, children, grandchildren, and so on) based on the value of the
parent-rel argument.

The parent-rel argument is the name of a relation between the dimension and itself.
For each dimension value, the relation holds another value of the dimension that is
its parent dimension value (the one immediately above it in a given hierarchy). This
parent-relation can have more than one dimension.

The valuelist argument can be any inclusive list of values.

For more information on using the HIERARCHY keyword, see “Differences
between HIERARCHY and DESCENDANTS keywords” on page 6-17. For the
complete syntax of the LIMIT command, see the entry for the command in OLAP
DML Reference.

Differences between HIERARCHY and DESCENDANTS keywords
Both the HIERARCHY and DESCENDANTS keywords of the LIMIT command
allow you to set the status of a dimension based on its family tree; however, the
different keywords give you different results.

One difference is the order of the values:

■ DESCENDANTS groups the values by level (all children, and then all
grandchildren).

■ HIERARCHY places each group of children next to its parent.

Limiting Based on a Relationship Within a Hierarchy

6-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Additionally, if you use the HIERARCHY keyword, then you can include the
additional arguments described in the following table that let you further
manipulate the contents of the current status list.

Example: Skipping generations
Suppose your application issues the following command.

limit market to hierarchy depth 2 skip 1 using market.market ’TOTUS’

In processing this command, the parent relation is searched (MARKET.MARKET) to
find the children and the grandchildren (DEPTH 2) of TOTUS and discards the first
generation (SKIP 1).

The resulting status follows.

TOTUS
BOSTON
ATLANTA
CHICAGO
DALLAS
DENVER
SEATTLE

Note that TOTUS is included in status. With HIERARCHY, the original values are
included in status.

IF you want to . . . THEN use the . . .

list children before their parents, INVERTED keyword.

skip n generations for each value in valuelist,
or, when there is no valuelist skip n
generations for each value in status,

SKIP n phrase.

include n generations down from each value
of valuelist or, when there is no valuelist,
include n generations for each value in
status,

DEPTH n phrase.

run a command, represented as a text
expression, every time it constructs a group
of children,

RUN textexp phrase.

exclude the original values from the current
status list,

NOORIGIN keyword.

Limiting Based on a Relationship Within a Hierarchy

Limiting an Application’s View of the Data 6-19

Example: Sorting a group of children
When you are using the HIERARCHY keyword with the LIMIT command, you can
use the RUN keyword to execute a command, specified as a text expression, every
time a group of children is constructed. This lets you further manipulate the values
that are being placed in status.

The following command not only limits the values of the MARKET dimension to
descendants using the MARKET.MARKET self-relation but also, every time a group
of children is constructed, sorts the values in the MARKET dimension in increasing
order based on unit sales.

limit market to hierarchy run ’sort market a unit.m’ using market.market

Note: In this example, when you use KEEP or REMOVE instead of TO with the
LIMIT command, the SORT command has no effect.

Example: Drilling down on a hierarchy using a relation
Suppose you want to drill down on districts from the region level of the MARKET
dimension. This is a two step process.

Step 1
The first step in the process is to limit the MARKET dimension, which has
embedded totals at the district, region, and total U.S. level, to the region-level data.
This is done using the relation MLV.MARKET, which is a relation between
MARKET and MARKETLEVEL.

The following command produces the report shown below it, which shows the
values of MLV.MARKET.

report mlv.market
MARKET MLV.MARKET
-------------- ----------
TOTUS TOTUS
EAST REGION
BOSTON DISTRICT
ATLANTA DISTRICT
CENTRAL REGION
CHICAGO DISTRICT
DALLAS DISTRICT
WEST REGION
DENVER DISTRICT
SEATTLE DISTRICT

Limiting Based on a Relationship Within a Hierarchy

6-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The following commands limit the values of MARKET to the desired values and
display the values that are currently in status for the MARKET dimension.

limit market to mlv.market ’REGION’
status market
The current status of MARKET is:
EAST, CENTRAL, WEST

Step 2
The second step in the process is to drill down on the district-level data from the
region level. You can use the self-relation MARKET.MARKET to perform the drill
down. For each value of the MARKET dimension, this relation contains the name of
its parent.

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

A report of MARKET.MARKET produces the following output.

MARKET MARKET.MARKET
-------------- -------------
TOTUS NA
EAST TOTUS
BOSTON CENTRAL
ATLANTA EAST
CENTRAL TOTUS
CHICAGO CENTRAL
DALLAS CENTRAL
WEST TOTUS
DENVER WEST
SEATTLE WEST

The following commands limit MARKET to the children of the EAST, CENTRAL,
and WEST regions and drill down to the district-level data by using the CHILDREN
keyword with the LIMIT command.

limit market to mlv.market ’REGION’
limit market to children using market.market

Limiting Composites and Conjoint Dimensions

Limiting an Application’s View of the Data 6-21

A report of MARKET produces the following output and shows the values that are
now in status.

MARKET

BOSTON
ATLANTA
CHICAGO
DALLAS
DENVER
SEATTLE

Related information
For more information, see the following table.

Limiting Composites and Conjoint Dimensions

How to limit a composite
You cannot explicitly limit the values of a composite. Composites are not
dimensions and, therefore, do not have any independent status. The values of a
composite that are in status are determined by the values that are in status in the
base dimensions of the composite. In general, when OLAP DML functions and
commands deal with objects that are defined with composites, the default behavior
is to treat those objects as if no SPARSE keyword or named composite had been
used when the object was defined.

You can use the LIMIT command to set status for the dimensions of a variable that
is defined with a composite in the same way you would when the variable is not
defined with a composite.

IF you want documentation about . . . THEN see . . .

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

hierarchical dimensions “Defining Hierarchical Dimensions and
Variables That Use Them” on page 3-20

Limiting Composites and Conjoint Dimensions

6-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Limiting dimensions used by a composite
Suppose your analytic workspace contains a variable named COUPONS that is
dimensioned by MONTH and (using the PROD_MARKET composite) PRODUCT
and MARKET as shown in the following definition.

DEFINE COUPONS VARIABLE INTEGER <MONTH PROD_MARKET <PRODUCT MARKET>>

The following commands display the default status of all of the base dimensions of
the COUPONS variable.

status coupons
The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of MARKET is:
ALL

Later, when you want to access only the values of COUPON that apply to
sportswear, you limit the base dimension PRODUCT as shown below.

limit product to ’SPORTSWEAR’
status coupons
The current status of MONTH is:
ALL
The current status of PRODUCT is:
SPORTSWEAR
The current status of MARKET is:
ALL

Ways of limiting a conjoint dimension
You can limit a conjoint dimension in either of the following ways:

■ Limit the base dimensions.

■ Limit the conjoint dimension itself.

Limiting Composites and Conjoint Dimensions

Limiting an Application’s View of the Data 6-23

Limiting a conjoint dimension using value combinations
To limit a conjoint dimension to a list of values, you can use the following
constructions:

■ Specify the actual values, surrounding each combination with angle brackets.

limit proddist to <’TENTS’ ’BOSTON’> <’FOOTWEAR’ ’DENVER’>

■ Use a variable name for the values, surrounding the combination with angle
brackets.

prodname = ’CANOES’
distname = ’SEATTLE’
limit proddist to <prodname distname>

■ Create a multiline list, in which each line is a combination surrounded by angle
brackets and separated by \n (the linefeed escape sequence).

namelist = mytext = ’<\’TENTS\’ \’BOSTON\’>\n <\’FOOTWEAR\’ \’DENVER\’>’
limit proddist to namelist

Limiting conjoint dimensions using base dimension values
Because there is an implicit relation between a conjoint dimension and its base
dimensions, you can limit the conjoint dimension by limiting the base dimensions.

For example, the following command limits a conjoint dimension named
PRODDIST to all conjoint values having CANOES as one of the values of the base
dimension PRODUCT.

limit proddist to product ’CANOES’

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

limiting dimensions, the rest of this chapter

the entry for the LIMIT command in OLAP
DML Reference

conjoint dimensions, “Defining Variables That Handle Sparse Data
Efficiently” on page 3-15

Working with Null Status

6-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Null Status

Setting the current status to null (empty status)
You can set the current status list of a dimension to null (empty status) only when
you have explicitly specified that you want null status to be permitted. You can give
this permission in either of two ways:

■ Set the OKNULLSTATUS option to YES. This specification indicates that null
status should be allowed whenever it occurs except when the IFNONE
argument is present in a LIMIT command.

■ Use the NULL keyword in a LIMIT command to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or KEEP
NULL. This specification indicates that null status should be allowed for this
LIMIT command only.

If you have not used either of these two methods to give permission for null status
and you execute a LIMIT command that would result in null status, then the status
is not changed to null when the command is executed. Instead, the status remains
the same as it was before the command was issued.

Note: You cannot use the IFNONE and NULL keywords in the same LIMIT
command.

Managing null status in a program
An IFNONE argument in a LIMIT command indicates that you do not want
program execution to take its normal course when a dimension’s status is set to
null. Therefore, when IFNONE is present, a branch is performed to the IFNONE
label and the status is not set to null, even if OKNULLSTATUS is YES. If the NULL
keyword is present together with IFNONE, then the inconsistency is signaled with
an error.

Tip: Using the IFNONE argument provides limited flexibility for handling null
status because it simply branches to a label. For more flexibility, investigate the
possibility of setting the OKNULLSTATUS option to control whether or not
execution will branch when status is null, and the possibility of using a WHILE
loop to test for null status.

Working with Valuesets

Limiting an Application’s View of the Data 6-25

Errors when you limit status to a null value
An error will not be signaled when you try to limit the status of a dimension or
valueset that has no values, unless you explicitly list values that do not exist. For
example, if you have not added any values to a newly defined dimension WEEK,
then the following command does not cause an error.

limit week to first 10

However, the following command does cause an error because PETE is not a value.

limit week to ’PETE’

Similarly, the following command causes an error because WEEK does not have a
value at position 20.

limit week to 20

Working with Valuesets

Definition: Valueset
A valueset is an OLAP DML object that contains a list of dimension values for a
particular dimension. You use a valueset to save a dimension status list for later use.
The values in a valueset can be saved across OLAP Services sessions. When you
attach an analytic workspace, each dimension has all of the values in the default
status list. You can then limit a dimension to the values stored in the valueset for
that dimension. When you first define a valueset, its value is null. After defining a
valueset, you use the LIMIT command to assign values from the dimension to the
valueset. You can use the LIMIT command with valuesets in many of the ways that
you use it with dimensions. For example, you can use the LIMIT command to
expand, reduce, and replace values in the list of values of a valueset.

Creating a valueset
To create a valueset, take the following steps.

1. Define a valueset for the dimension values. Use the DEFINE command with the
VALUESET keyword.

2. Limit the dimension for which you want to create a valueset to the values you
want to save.

3. Limit the valueset you created in Step 1 to the dimension you limited in Step 2.

Working with Valuesets

6-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Creating a valueset
This example adds the valueset LINESET to the demonstration analytic workspace.
It is dimensioned by LINE and, therefore, it can be limited by the current values of
the LINE dimension. The LD command attaches a description to the object.

The following OLAP DML commands produce the output shown below them.

limit line to first 2
status line
The current status of LINE is:
REVENUE, COGS

The following OLAP DML commands produce the output shown below them.

define lineset valueset line
ld Valueset for LINE dimension values
limit lineset to line
show values(lineset)
REVENUE
COGS

Limiting using a valueset
Once you have defined a valueset, you can use it to limit a dimension with a single
LIMIT command.

For example, the following command limits the LINE dimension to the values
stored in the LINESET valueset and displays the new status of LINE.

limit line to lineset
status line
The current status of LINE is:
REVENUE, COGS

Example: Limiting using a valueset
The following commands limit DISTRICT to the districts in which sportswear sales
exceeded $1,000,000 in 1996. The current status list for the DISTRICT dimension is
saved in the valueset SPORTS.DISTRICT. Once you have created the valueset, you
can limit the DISTRICT dimension to the same values with one LIMIT command.

define sports.district valueset district
limit product to ’SPORTSWEAR’
limit month to year ’YR96’
limit sports.district to total(sales district) gt 1000000
limit district to sports.district

Working with Valuesets

Limiting an Application’s View of the Data 6-27

The following OLAP DML command produce the output shown below it.

status district
The current status of DISTRICT is:
ATLANTA TO DENVER

Changing the values of a valueset
You can use the LIMIT command to change the values in a valueset. The simplified
syntax for using the LIMIT command in this way is shown below:

LIMIT valueset keyword selection

The valueset argument specifies the name of the valueset you want to change.

The keyword that you specify determines how the command affects the values that
are currently in the valueset. The following table outlines the use of the keywords.

The selection argument specifies the selection criteria that you want to be used to
determine what values to assign to the valueset. In general, you can use the same
arguments when you are using the LIMIT command to select values for a valueset
that you can use when you use the LIMIT command to limit a dimension.

For the complete syntax of the LIMIT command, see the entry for the command in
OLAP DML Reference.

Identifying and retrieving the values in a valueset
You can use the following commands and functions to identify and retrieve
dimension values that are in a valueset.

IF you want to . . . THEN use the LIMIT command with . . .

replace the values that are currently in the
valueset with new values,

either the TO or COMPLEMENT keyword.

remove values from the current valueset, either the REMOVE or KEEP keyword.

expand the valueset, either the ADD or INSERT keyword.

sort the values in the valueset, the SORT keyword.

Command or function Description

INSTAT function Checks whether a dimension value is in a valueset.

STATFIRST function Retrieves the first value in a valueset.

Working with Valuesets

6-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For more information on these commands and functions, see the entry for the
command or function in OLAP DML Reference.

Retrieving the values in a valueset
Suppose an analytic workspace contains a valueset called MONTHSET that has the
values JAN95, MAY95, and DEC95. You can use the VALUES function to list the
values in that valueset.

The following OLAP DML command produces the output shown below it.

show values(monthset)
JAN95
MAY95
DEC95

Retrieving the dimension positions of values in a valueset
Suppose that you want to retrieve the position of the values in the MONTHSET
valueset, rather than retrieve the actual values themselves. To retrieve the position
of values, you use the VALUES function with the INTEGER keyword. When you
use this keyword, the position numbers are returned instead of the actual
dimension values that are included in a valueset. The position numbers that are
returned do not represent positions in the valueset; they represent positions in the
dimension on which the valueset is based.

The following OLAP DML command produces the output shown below it.

show values(monthset integer)
61
65
72

STATLAST function Retrieves the last value in a valueset.

STATUS command Sends to the current outfile the status of one or more values in a
valueset.

VALUES function Retrieves the values in a valueset. Depending on whether you
specify the INTEGER keyword, the function either returns a
multiline text value that contains one dimension value per line
or returns, as integers, the position numbers of the values in the
existing dimension, not in the valueset.

Command or function Description

Working with Valuesets

Limiting an Application’s View of the Data 6-29

The value JAN95 is shown as the sixty-first value in the MONTH dimension,
MAY95 as the sixty-fifth value, and DEC95 as the seventy-second value, although
they are the first, second, and third values in MONTHSET.

Working with Valuesets

6-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Working with Models 7-1

7
Working with Models

Chapter summary
This chapter describes how to use OLAP DML models to calculate data.

List of topics
This chapter includes the following topics:

■ Using Models to Calculate Data

■ Creating a Nested Hierarchy of Models

■ Basic Modeling Commands

■ Compiling a Model

■ Running a Model

■ Debugging a Model

■ Modeling for Multiple Scenarios

Using Models to Calculate Data

Definition: OLAP DML model
A model is a set of interrelated equations that can assign results either to a variable
or to a dimension value. For example, in a financial model, you can assign values to
specific line items, such as GROSS.MARGIN or NET.INCOME.

gross.margin = revenue - cogs

Using Models to Calculate Data

7-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

If an = command assigns data to a dimension value or refers to a dimension value
in its calculations, then it is called a dimension-based equation. A dimension-based
equation does not refer to the dimension itself, but only to the values of the
dimension. Therefore, if the model contains any dimension-based equations, then
you must specify the name of each of these dimensions in a DIMENSION command
at the beginning of the model.

Definition: Solution variable
If a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model.

The solution variable is both a source of data and the assignment target of model
equations. It holds the input data used in dimension-based equations, and the
calculated results are stored in designated values of the solution variable. For
example, when you run a financial model based on the LINE dimension, you might
specify ACTUAL as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Since you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the ACTUAL variable, the BUDGET variable, or any other
variable that is dimensioned by LINE.

Example: Creating an OLAP DML model
Suppose that you define a model, called INCOME.CALC, that will calculate line
items in the income statement.

define income.calc model
ld Calculate line items in income statement

After defining the model, you can use OLAP Worksheet or the MODEL command
to enter the contents of the model. A model can contain DIMENSION commands, =
commands, and comments. All the DIMENSION commands must come before the
first equation. For the current example, you can enter the lines shown in the
following program.

DEFINE INCOME.CALC MODEL
LD Calculate line items in income statement
MODEL
dimension line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing + selling + r.d)
gross.margin = revenue - cogs
END

Using Models to Calculate Data

Working with Models 7-3

When you enter the equations in a model, you can place them in any order. When
you compile the model, either with the COMPILE command or by running the
model, the order in which the model equations will be solved is determined. If the
calculated results of one equation are used as input to another equation, then the
equations are solved in the order in which they are needed.

To run the INCOME.CALC model and use ACTUAL as the solution variable, you
execute the following command.

income.calc actual

If the solution variable has dimensions other than the dimensions on which model
equations are based, then a loop is performed automatically over the current status
list of each of these “extra” dimensions. For example, ACTUAL is dimensioned by
MONTH and DIVISION, as well as by LINE. If DIVISION is limited to ALL, and
MONTH is limited to OCT96 to DEC96, then the INCOME.CALC model is solved
for the three months in the status for each of the divisions.

How dimension values are treated in a model
If a model contains an = command that assigns data to a dimension value, then the
dimension is limited temporarily to that value, performs the calculation, and then
restores the dimension’s initial status.

For example, a model might have the following commands.

dimension line
gross.margin = revenue - cogs

If you specify ACTUAL as the solution variable when you run the model, then the
following code is constructed and executed.

push line
limit line to gross.margin
actual = actual(line revenue) - actual(line cogs)
pop line

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the
ACTUAL variable, which is dimensioned by LINE. However, detail line item data
might be stored in a variable named DETAIL.DATA, with a dimension named
DETAIL.LINE.

Creating a Nested Hierarchy of Models

7-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

If your analytic workspace contains a relation between LINE and DETAIL.LINE,
which specifies the line item to which each detail item pertains, then you might
write model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between DETAIL.LINE and LINE is used automatically to aggregate
the detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the LINE
dimension. For example, while the equation for the REVENUE item is calculated,
LINE is temporarily limited to REVENUE, and the TOTAL function returns the total
of detail items for the REVENUE value of LINE.

Related information
For more information, see the following table.

Creating a Nested Hierarchy of Models

How to include one model in another
The INCLUDE command allows you to include one model within another model. A
model can contain only one INCLUDE command. The INCLUDE command must
come before any equations in the model, and it can specify the name of just one
model to include. The model that contains the INCLUDE command is referred to as
the parent model. The included model is referred to as the base model.

You can nest models by placing an INCLUDE command in a base model. For
example, model M1 can include model M2, and model M2 can include model M3.
The nested models form a hierarchy. In this example, M1 is at the top of the
hierarchy, and M3 is at the root.

IF you want documentation about . . . THEN see . . .

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Creating a Nested Hierarchy of Models

Working with Models 7-5

Working with the INCLUDE command
If a model contains an INCLUDE command, then it cannot contain any
DIMENSION commands. A parent model inherits its dimensions, if any, from the
DIMENSION commands in the root model of the included hierarchy. In the
example just given, models M1 and M2 both inherit their dimensions from the
DIMENSION commands in model M3.

The INCLUDE command allows you to create modular models. If certain equations
are common to several models, then you can place these equations in a separate
model and include that model in other models as needed.

The INCLUDE command also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations. To support what-if analysis, you can use equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed.

After you compile a model, either by running it or by using the COMPILE
command, you can run an OLAP DML program called MODEL.COMPRPT to
produce a report on the structure of the compiled model. If you run
MODEL.COMPRPT after compiling a model that contains a masked equation, then
you will find that the masked equation is not shown in the report.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

about masked equations and what-if analyses, the entry for the INCLUDE command in
OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Basic Modeling Commands

7-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Basic Modeling Commands

OLAP DML commands for defining and running models
The following table lists the most common OLAP DML commands that you will use
when you define and run models.

Writing equations in a model
When you write the equations in a model, you should keep these points in mind:

■ Within a single dimension-based equation, all the dimension values must
belong to the same dimension.

■ If a model equation is based on a time dimension (with a data type of DAY,
WEEK, MONTH, QUARTER, or YEAR), then you must use the dimension’s
VNF (value name format), rather than a date format, to specify the dimension’s
values.

■ You cannot use ampersand substitution in model equations.

Command Description

DEFINE Adds a new model to an analytic workspace.

MODEL Enters completely new contents into a new or existing model.

DIMENSION Lists one or more dimensions that are referred to in dimension-based
equations in the model.

INCLUDE Specifies a base model to include in the parent model.

= Performs a calculation and assigns the result to a target. The target can be
a variable or it can be represented by a dimension value.

COMPILE Compiles a model without running it and saves the compiled code in the
workspace dictionary. If you run a new or revised model without first
compiling it, then the model is compiled automatically at that time.

Basic Modeling Commands

Working with Models 7-7

Writing DIMENSION and INCLUDE commands
When you write DIMENSION and INCLUDE commands, you should keep these
points in mind:

■ Any DIMENSION commands or INCLUDE command must come before the
first equation in a model.

■ In the DIMENSION commands, you must list the names of all the dimensions
on which model equations are based. In the following example,
GROSS.MARGIN, REVENUE, and COGS are values of the LINE dimension, so
LINE is specified in a DIMENSION command.

dimension line
gross.margin = revenue - cogs

■ DIMENSION commands must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, MONTH
must be specified in a DIMENSION command.

dimension line, month
revenue = lag(revenue, 1, month) * 1.05

■ If a model contains an INCLUDE command, then it cannot contain any
DIMENSION commands. The included model (or the root model in a
hierarchy) must contain the DIMENSION commands needed by the parent
model(s).

■ If a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions
listed in the DIMENSION commands. The nontarget dimension listed first in
the DIMENSION commands is treated as the slowest-varying dimension.

■ A model will execute most efficiently when you observe the following
guidelines for coordinating the dimensions in DIMENSION commands and the
dimensions of the solution variable:

■ List the model’s target dimension as the first dimension in the DIMENSION
commands and as the last dimension in the definition of the solution
variable.

■ In DIMENSION commands, list the nontarget dimensions in the reverse
order of their appearance in the definition of the solution variable. This
means that the nontarget dimensions will have the same order in the model
and in the solution variable in terms of fastest-varying and slowest-varying
dimension.

Compiling a Model

7-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

■ If the solution variable has dimensions that are not used or referred to in model
equations, then do not include them in DIMENSION commands.

■ If your analytic workspace contains a variable whose name is the same as a
dimension value, or if the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Since you
can use a variable and a dimension value in exactly the same way in a model
equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

■ Your DIMENSION commands are used to determine whether each name
reference in an assignment statement (that is, the = command) is a variable or a
dimension value. “Compiling a Model” on page 7-8 explains how the name
references are resolved.

Related information
For more information, see the following table.

Compiling a Model

Using the COMPILE command
When you finish writing the commands in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.
If you do not use the COMPILE command before you run the model, then the
model will be compiled automatically before it is solved.

IF you want documentation about . . . THEN see . . .

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

assigning values to objects, “Assigning Values to Data Objects” on page
5-13

the entry for the = command in OLAP DML
Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Compiling a Model

Working with Models 7-9

Resolving name references
When you compile a model, either by using the COMPILE command or by running
the model, the model compiler examines each equation to determine whether the
assignment target and each data source is a variable or a dimension value.

To resolve each name reference, the following procedure is used.

1. The dimensions in the DIMENSION commands are searched, in the order they
are listed, to determine whether the name matches a dimension value of a listed
dimension. The search concludes as soon as a match is found.

2. If the name does not match a value of a listed dimension, then the variables in
the attached analytic workspaces are searched to find a match.

Analyzing dependencies with equation blocks
After resolving each name reference, the model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. If an = command indirectly depends on itself as the result of
the dependencies among equations, then a cyclic dependence exists between the
equations.

The model compiler structures the equations into blocks and orders the equations
within each block, and the blocks themselves, to reflect dependencies. The compiler
can produce three types of solution blocks: simple blocks, step blocks, and
simultaneous blocks.

Simple blocks
Simple blocks include equations that are independent of each other and equations
that have dependencies on each other that are noncyclic.

If a block contains equations that solve for values A, B, and C, then a noncyclic
dependence can be illustrated as shown below where the arrows indicate that A
depends on B, and B depends on C.

Step blocks
Step blocks include equations that have a cyclic dependence that is a one-way
dimensional dependence. A dimensional dependence occurs when the data for the

A B C

Compiling a Model

7-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

current dimension value depends on data from previous or later dimension values.
The dimensional dependence is one way when the data depends on previous values
only or later values only, but not both.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. If a block contains equations that solve
for values A and B, then a one-way dimensional dependence can be illustrated as
shown in the figure below where arrows indicate that A depends on B, and B
depends on the value of A from a previous time period.

Simultaneous blocks
Simultaneous blocks include equations that have a cyclic dependence that is other
than one-way dimensional. The cyclic dependence may be two-way dimensional, or
it may involve no dimensional qualifiers at all.

An example of a cyclic dependence that is two-way dimensional can be illustrated
as shown below where the arrows indicate that A depends on the value of B from a
future period, while B depends on the value of A from a previous period.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as shown below where the arrows indicate that A
depends on B and B depends on A.

A B LAG(A)

 A LEAD(B) LAG(A)

A B A

Running a Model

Working with Models 7-11

Related information
For more information, see the following table.

Running a Model

Points to remember when running a model
When you run a model, you should keep these points in mind:

■ Before you run a model, the input data must be available in the solution
variable. For example, before running the INCOME.CALC model (shown
earlier in this chapter) with ACTUAL as the solution variable, you must have
current data in the REVENUE, COGS, MARKETING, SELLING, R.D, and
TAXES line items of ACTUAL.

■ Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. Simultaneous equations are
discussed in the section entitled “Solving simultaneous equations” on page
7-12.

■ If your model contains any dimension-based equations, then you must provide
a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all the dimensions on which model equations are based, and it
can have “extra” dimensions as well.

■ When you run a model, a loop is performed automatically over the values in
the current status list of each of the extra dimensions of the solution variable.

■ If a model equation bases its calculations on data from previous time periods
(for example, if you use a LAG function), then the solution variable must
contain data for these previous periods. If it does not, or if the first value of the
time dimension is in the status, then the results of the calculation will be NA.

IF you want documentation about . . . THEN see . . .

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Running a Model

7-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using data from past and future time periods
Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAG function returns data from a specified previous
time period, and the LEAD function returns data from a specified future period.
The OLAP DML Reference lists some built-in functions that are useful in analyzing
financial data.

When you run a model that uses past or future data in its calculations, you must
make sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement (that is, the = command)
that bases an estimate of the REVENUE line item for the current month on the
REVENUE line item for the previous month.

dimension line month
.
.
.
revenue = lag(revenue, 1, month) * 1.05

If the MONTH dimension is limited to APR96 to JUN96 when you run the model,
then you must be sure that the solution variable contains REVENUE data for
MAR96.

If your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, if you want to calculate data for the months
of April through June of 1996, and if the model retrieves data from one month in the
future, then the solution variable must contain data for July 1996 when you run the
model.

Solving simultaneous equations
An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. If the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. If the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

If all the equations in the block converge, then the block is considered solved. If any
equation diverges or fails to converge within a specified number of iterations, then
the solution of the block (and the model) fails and an error occurs.

You can use OLAP DML options to exercise control over the solution of
simultaneous equations. For example, you can specify the solution method to use,

Debugging a Model

Working with Models 7-13

the factors to use in testing for convergence and divergence, the maximum number
of iterations to perform, and the action to take when the = command diverges or
fails to converge. For more information about the options, see the entry for the
MODEL command in OLAP DML Reference.

Debugging a Model

How do you debug a model?
You debug a model in much the same way that you debug an OLAP DML program.
There are two main methods for debugging OLAP DML programs. As outlined
below, the method that you use depends on the degree of debugging that you want
to perform.

For more information on debugging in the OLAP DML, see Chapter 9.

Method Description

Debugging file Creates a debugging file that logs the progress of a program
execution so you can analyze it for errors.

OLAP DML
debugger

Allows you to interactively step through programs one line at a
time and displays the current values of OLAP DML objects. The
OLAP DML debugger is used from within OLAP Worksheet.

Debugging a Model

7-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Tools for debugging models
The OLAP DML provides an assortment of tools that will help you debug your
models. You use these tools in OLAP Worksheet. These tools are listed in the
following table.

Tool Purpose

MODTRACE An option that controls whether each line of a model is displayed
while you run the model. When MODTRACE is set to YES, the
model lines are displayed, and you can observe the order in
which the equations are solved.

TRACE A command that lets you step through the model line by line or
block by block. At each step, model execution is suspended so
that you can type special debugger commands or any other
OLAP DML commands to examine the model environment. The
debugging environment and the TRACE command are available
only when you are using OLAP Worksheet.

WATCH A command that lets you monitor the value of specific
assignment targets in a model. Each time the target is assigned a
new value, this value is displayed. The debugging environment
and the WATCH command are available only when you are
using OLAP Worksheet.

MODEL.COMPRPT A program that produces a report on the structure of a compiled
model. The report shows how model equations are grouped into
blocks.

MODEL.DEPRPT A program that produces a report on the dependencies in model
equations. The report lists the assignment target and data sources
for each equation and specifies any dimensions of the
dependencies in the equation.

MODEL.XEQRPT A program that produces a report on the solution status of a
model. If the model contains simultaneous equations, then the
report specifies the values of the options that control
simultaneous solutions.

INFO A function that lets you obtain specific information about a
model that you have compiled or executed.

Modeling for Multiple Scenarios

Working with Models 7-15

Related information
For more information, see the following table.

Modeling for Multiple Scenarios

Calculating several sets of figures
Instead of calculating a single set of figures for a month and division, you might
want to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate
profit based on “optimistic,” “pessimistic,” and “best-guess” figures.

Building a scenario model
To build a scenario model, you follow these steps.

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.

3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the next few sections.

IF you want documentation about . . . THEN see . . .

the programs that produce debugging reports, the entry for the MODEL command in the
OLAP DML Reference

using the TRACE and WATCH commands, the entry for the command in OLAP DML
Reference

Chapter 9

Modeling for Multiple Scenarios

7-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Defining a scenario dimension
You can call the scenario dimension SCENARIO, and give it values that represent
the scenarios you want to calculate. For this example you can give it the values
OPTIMISTIC, PESSIMISTIC and BESTGUESS.

define scenario dimension text
ld Names of scenarios
maintain scenario add optimistic pessimistic bestguess

Defining a solution variable dimensioned by the scenario dimension
For this example the solution variable should be dimensioned by DIVISION as well
as by SCENARIO. Like the BUDGET variable in the demo analytic workspace, your
solution variable can also be dimensioned by MONTH and by LINE. You can call
the variable PLAN.

define plan decimal <month line division scenario>
ld Scenarios for financials

Entering input data into the solution variable
For this example, you need to enter input data, such as revenue and cost of goods
sold, into the PLAN variable.

For the best-guess data, you can use the data in the BUDGET variable. Limit the
LINE dimension to the input line items, and then copy the BUDGET data into the
PLAN variable.

limit scenario to ’BESTGUESS’
limit line to ’REVENUE’ ’COGS’ ’MARKETING’ ’SELLING’ ’R.D’
plan = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be 15 percent higher than best-guess data, and
pessimistic data might be 12 percent less than best-guess data. With LINE still
limited to the input line items, execute the following commands.

plan(scenario ’OPTIMISTIC’) = 1.15 * plan(scenario ’BESTGUESS’)
plan(scenario ’PESSIMISTIC’) = .88 * plan(scenario ’BESTGUESS’)

Writing a model to calculate results based on the input data
The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in
the BUDGET.CALC model shown earlier in this chapter.

Modeling for Multiple Scenarios

Working with Models 7-17

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by SCENARIO and place
the appropriate values in the variable. If the name of your variable is COGSVAL,
then your model might include the following equation for calculating the COGS
line item.

cogs = cogsval * revenue

By using variables dimensioned by SCENARIO, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You
can define a variable dimensioned by DIVISION to hold the values for each
division. For example, if labor costs vary from division to division, then you might
dimension COGSVAL by DIVISION as well as by SCENARIO.

When you run your model, you specify PLAN as the solution variable. For
example, if your model is called SCENARIO.CALC, then you solve the model with
this command.

scenario.calc plan

A loop is performed automatically over the current status list of each of the
dimensions of PLAN. Therefore, if the SCENARIO dimension is limited to ALL
when you run the SCENARIO.CALC model, then the model is solved for all three
scenarios — OPTIMISTIC, PESSIMISTIC, and BESTGUESS.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

overall understanding of the modeling
capabilities of the OLAP DML,

the entry for the MODEL command in
OLAP DML Reference

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Modeling for Multiple Scenarios

7-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Designing Programs 8-1

8
Designing Programs

Chapter summary
This chapter provides information about writing, compiling, testing, and calling
programs that are written in the OLAP DML.

List of topics
This chapter includes the following topics:

■ Introduction to OLAP DML Programs

■ Invoking Programs

■ Defining and Editing Programs

■ Using Variables in Programs

■ Passing Arguments

■ Writing User-Defined Functions

■ Controlling the Flow of Execution

■ Directing Output

■ Preserving the Session Environment

■ Handling Errors

■ Compiling Programs

■ Testing Programs

Introduction to OLAP DML Programs

8-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introduction to OLAP DML Programs

Definition: OLAP DML program
An OLAP DML program is a stored procedure, which is written in the OLAP DML,
that acts on data in the analytic workspace and helps you accomplish some analytic
workspace management or analysis task. You can write OLAP DML programs to
perform analytic workspace tasks that you must do repeatedly, or you can write
them as part of an application that you are developing.

Types of programs

Two main types of OLAP DML programs
There are two main types of OLAP DML programs: programs that do not return
values and programs that return values.

How you can use programs that do not return values
You can use an OLAP DML program that does not return a value as a standalone
program or as the main program or subprogram of a multiprogram application.
These programs behave like OLAP DML commands.

How you can use programs that return values
You can use a user-defined function in commands and expressions in the same way
that you use built-in OLAP DML functions. For more information on user-defined
functions, see “Writing User-Defined Functions” on page 8-16. For more
information on built-in OLAP DML functions, see the OLAP DML Reference.

Related information
For more information about invoking, writing, and compiling programs, see the rest
of this chapter; for more information on testing and debugging OLAP DML
programs, see Chapter 9.

In contrast to the form of a program, the content is related to the job it was created
to do, and it is the individual lines of a program that provide its content. Program
lines that accomplish specific purposes are discussed in other chapters in this guide.

Invoking Programs

Designing Programs 8-3

For more information on these tasks, see the following table.

Invoking Programs

Invoking programs that do not return values
There are two ways that you can invoke an OLAP DML program that does not
return a value:

■ Using the CALL command — You can invoke a program by using the CALL
command. You enclose arguments in parentheses and they are passed by value.
For example, suppose you create a simple program named HELLO that takes a
text literal as an input argument. You can use the CALL command in the main
program of your application to invoke the program.

 call hello (’Hello World’)

You typically use the CALL command to invoke a program when you are using
an OLAP DML program that does not return values as a subprogram.

■ As a command — You can invoke a program as a command. In this case, you do
not enclose the program’s arguments in parentheses, and the arguments are
passed as text strings (not by value). For example, you can invoke the HELLO
program in OLAP Worksheet by issuing the following command.

hello ’Hello World’

IF you want documentation about . . . THEN see . . .

using data from a SQL database, ■ Chapter 10

■ the entry for the SQL command in OLAP
DML Reference

reading data from a file, Chapter 11.

producing reports, Chapter 12.

using a model for financial data, ■ Chapter 7

■ the entry for the DEFINE MODEL
command in OLAP DML Reference

details on the syntax and usage of
individual OLAP DML commands,
functions, options, and programs,

OLAP DML Reference.

Invoking Programs

8-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

You typically invoke a program in this way when it is a standalone or main
program.

Syntax: CALL command
The syntax for using the CALL command to invoke a program is shown below.

CALL program-name [(arg1 [arg2 ...])]

The program-name argument is the name of the program to be called.

The arg1 and arg2 arguments are optional and specify any arguments that are
expected by the called program. You can declare these arguments in the called
program with the ARGUMENT command, or you can reference them in the
program with the ARG function. When the program uses the ARGUMENT
command and you use the CALL command to invoke the program, specify the
arguments so that they match the positions of the arguments that are declared in the
called program.

For the complete syntax of the CALL command, see the entry for the command in
OLAP DML Reference.

Invoking user-defined functions
A user-defined function is a program that does not return a value. You invoke
user-defined functions in the same way as you use OLAP DML built-in functions.
You merely use the program’s name in an expression and enclose the program’s
arguments, if any, in parentheses. The arguments are passed by value, not as text.

For example:

■ You can use the program name as an expression in a command.

The following REPORT command uses the value that is returned by the
user-defined function ISRECENT that has a single argument, ACTUAL.

report isrecent(actual)

■ You can use the = command to assign the return value of the function to a
variable.

The following command assigns the return value of the user-defined function
named TEMPSALES to a temporary variable called MYTEMPSALES.

mytempsales = tempsales

Defining and Editing Programs

Designing Programs 8-5

Important: Although you can also run user-defined functions as standalone
programs or invoke them using the CALL command, in these cases, the return
value of the function is discarded.

Related information
For more information, see the following table.

Defining and Editing Programs

Defining a program
A program, like a dimension or a variable, is an OLAP DML object. You can define
it using the DEFINE command. The following example defines a program named
HELLO using the DEFINE command.

define hello program

Once you have defined a program object, you need to add command lines to it
using an editor.

Editing programs
OLAP DML programs can be editing using a program editor or using commands in
the OLAP DML.

Using an editor
OLAP Worksheet provides an editor that you can use to edit programs and
formulas. To access the program editor from within OLAP Worksheet, type the
EDIT command followed by the program name.

To save the program, choose Save from the File menu in OLAP Worksheet.

IF you want documentation about . . . THEN see . . .

using arguments, “Passing Arguments” on page 8-11

the CALL command, the entry for the command in OLAP DML
Reference

user-defined functions, “Writing User-Defined Functions” on page
8-16

Defining and Editing Programs

8-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Procedure: Using OLAP Worksheet to edit a program
If you want to edit the program using OLAP Worksheet, then follow the procedure
outlined below.

1. Start OLAP Worksheet.

2. Connect to an analytic workspace.

Refer to the OLAP Worksheet Help system for details.

3. If necessary, define the program.

For example, to define a program named SALESREP, enter the following
command in the Command Input window in OLAP Worksheet.

define salesrep program

4. To use the Edit Window in OLAP Worksheet, enter the EDIT command and the
program name in the Command Input window.

For example, to edit the SALESREP program, enter the following command.

edit salesrep

If you do not want to use the Edit Window, you can enter the program contents
in the Command Input window. You can use one of the following modes.

■ Enter one line of code at a time in the Command Input window. For
example, enter PROGRAM, enter each line of code, and then enter END to
stop adding contents to the program. (Default mode)

■ Choose Preferences from the Options menu in OLAP Worksheet. In the
Preferences dialog box, deselect Execute on Enter. You can now enter the
entire contents of the program in the Command Input window. To save the
program contents, choose the play button or Ctrl-Enter on the keyboard.

Using OLAP DML commands
The OLAP DML allows you to edit the contents of a program from the OLAP
Worksheet command line or using an OLAP DML program. You may edit the
contents of a program immediately after it has been defined, or immediately after
using the CONSIDER command.

Defining and Editing Programs

Designing Programs 8-7

Formatting guidelines for editing programs
Use the following formatting guidelines as you add lines to your program:

■ Each line of code can have a maximum of 4000 characters.

■ To continue a single command on the next line, place a hyphen (-) at the end of
the line to be broken. The hyphen is called a continuation character.

Note: You cannot use a continuation character in the middle of a text literal.

■ To write more than one command on a single line, separate the commands with
semi-colons (;).

■ Enclose literal text in single quotation marks (’). To include a single quotation
mark within literal text, precede it with a backslash (\).

■ Precede comments with double quotation marks ("). You can place a comment,
preceded by double quotation marks, either at the beginning of a line or at the
end of a line, after some commands.

Example: Defining and add contents to a simple program
The following program named HELLO produces the phrase “Hello World.”

DEFINE HELLO PROGRAM
PROGRAM
show ’Hello World’
END

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

escape sequences, “Text data types” on page 4-3

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Using Variables in Programs

8-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using Variables in Programs

Temporary and local OLAP DML variables
Variables, such as SALES or UNITS, that hold the data in your analytic workspaces
are permanent variables. These variables persist from one OLAP Services session to
another. However, you might not need to save variables that your programs use to
hold processing information while they manipulate data. So that you do not clutter
your analytic workspaces with unnecessary variables, you can define temporary
and local variables:

■ A temporary variable has a value only during the current OLAP Services
session. When you update the analytic workspace, only the definitions of the
variables are saved. When you exit from the analytic workspace, the data values
are discarded.

■ A local variable is a single-cell variable that exists only for the duration of the
program in which it is defined. Using local variables within a program is a
useful alternative to using temporary variables.

Local variables have no dimensions, so you cannot use them for storing
dimensioned data. Because they exist only for the duration of the program in which
they are defined, you cannot store information in a local variable in one program
and then use that variable in another program. If you must store dimensioned data,
or use information in more than one program, then you should define a temporary
variable instead.

Global versus modular design approaches
The purpose of most OLAP DML programs is to manipulate data. Depending on
your programming style and the requirements of your application, you might use
either of the following approaches:

■ Use permanent and inplace variables, to which all programs have access. This
approach requires less programming overhead (for example, fewer definitions),
but it is less modular. If you are not careful, then programs can interfere with
one another when they set the values of permanent variables.

■ Use program arguments, local variables, and return values. This approach
forces you to write modular programs with clear input and output
responsibilities.

Using Variables in Programs

Designing Programs 8-9

Most applications combine these approaches, using permanent and inplace
variables and user-defined functions when they are appropriate. In general,
modular programs are considered to be easier to read, debug, and maintain.

Defining temporary variables
You define temporary variables with the TEMP keyword in the DEFINE command,
as in the following example.

define total.sales decimal temp

Defining temporary variables for use in programs helps you avoid cluttering your
analytic workspace with temporary data, but it still adds objects to your analytic
workspace. For most simple applications, the addition of a few temporary objects is
not a problem. However, in complex applications that require many programs, the
number of temporary objects can sometimes get very large, and this can affect the
application’s performance.

Defining local variables
You must specify local variables at the beginning of your program, before any
executable commands. You specify a local variable with the VARIABLE command,
which has the following syntax.

VARIABLE name datatype

The name argument specifies the name of the variable. To minimize confusion or
problems, you should avoid using the same name for both an analytic workspace
variable and a local variable. When both an analytic workspace variable and a local
variable have the same name, then the local variable usually takes precedence.
However, in a few commands and functions that operate on OLAP DML objects (for
example, the OBJ function), the defined variable takes precedence.

The datatype argument specifies the data type of the local variable. A local variable
can have a data type of BOOLEAN, DATE, DECIMAL, ID, INTEGER,
SHORTDECIMAL, SHORTINTEGER, or TEXT.

For the complete syntax of the VARIABLE command and for a list of the commands
and functions for which the defined variable takes precedence, see the entry for the
VARIABLE command in OLAP DML Reference. For more information on data
types, see “OLAP DML Data Types” on page 4-2.

Using Variables in Programs

8-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Defining local variables
The program named WEST.RPT, listed below, includes definitions for two local
variables named _DATA and _RPT.MONTH.

DEFINE WEST.RPT PROGRAM
LD Produce report for Western Sales District
PROGRAM
variable _data text
variable _rpt.month text
limit month to last 3
 .
 .
 .

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

OLAP DML data types, “OLAP DML Data Types” on page 4-2

permanent variables, The topic for the DEFINE VARIABLE
command in OLAP DML Reference

temporary variables, The topic for the DEFINE VARIABLE
command in OLAP DML Reference

local variables, the topic for the VARIABLE command in
OLAP DML Reference

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Passing Arguments

Designing Programs 8-11

Passing Arguments

Two methods for accepting arguments
The OLAP DML provides two ways for you to accept arguments in a program:

■ ARGUMENT command — You can use the ARGUMENT command to declare
arguments in a program. ARGUMENT allows you to use both simple and
complex arguments, such as expressions. ARGUMENT also makes it
convenient to pass arguments from one program to another, or to create your
own user-defined functions.

■ ARG functions — You can use the ARG, ARGS, and ARGFR functions in any
program to retrieve arguments from a command. These functions are primarily
useful for simple text arguments. For information on these functions, see OLAP
DML Reference.

Using the ARGUMENT command
The ARGUMENT command lets you declare an argument of any data type,
dimension, or valueset. Any ARGUMENT commands must precede the first
executable line in the program. When you run the program, these declared
arguments are initialized with the values you provided as arguments to the
program. The program can then use these arguments in the same way it would use
local variables.

Example: Using the ARGUMENT command
Suppose you are writing a program, called PRODUCT.RPT. The PRODUCT.RPT
program produces a report, and you want to supply an argument to the report
program that specifies the text that should appear for an NA value in the report. In
the PRODUCT.RPT program, you can use the declared argument NATEXT in an =
command to set the NASPELL option to the value provided as an argument.

argument natext text
naspell = natext

To specify Missing as the text for NA values, you can execute the following
command.

Call product.rpt (’Missing’)

Passing Arguments

8-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using multiple arguments
A program can declare as many arguments as needed. When the program is
executed with arguments specified, the arguments are matched positionally with
the declared arguments in the program.

When you run the program, you must separate arguments with spaces rather than
with commas or other punctuation. Punctuation is treated as part of the arguments.

Example 1: Using multiple arguments
Suppose, in the PRODUCT.RPT program, that you want to supply a second
argument that specifies the column width for the data columns in the report. In the
PRODUCT.RPT program, you would add a second ARGUMENT command to
declare the integer argument to be used in setting the value of the COLWIDTH
option.

argument natext text
argument widthamt integer
naspell = natext
colwidth = widthamt

To specify eight-character columns, you could run the PRODUCT.RPT program
with the following command.

call product.rpt (’Missing’ 8)

Example 2: Using multiple arguments
If the PRODUCT.RPT program also requires the name of a product as a third
argument, then in the PRODUCT.RPT program you would add a third
ARGUMENT command to handle the product argument, and you would set the
status of the PRODUCT dimension using this argument.

argument natext text
argument widthamt integer
argument rptprod product
naspell = natext
colwidth = widthamt
limit product to rptprod

You can run the PRODUCT.RPT program with the following command.

Call product.rpt (’Missing’ 8 ’TENTS’)

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

Passing Arguments

Designing Programs 8-13

Passing arguments as text with ampersand substitution
It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to pass a more complicated text
argument, such as an argument that is composed of more than one dimension value
or is composed of the text of an expression. In these cases, you want to substitute
the text you pass, exactly as you specify it, wherever the argument name appears.

To indicate that you want a text argument handled in this way, you precede the
argument name with an ampersand when you use it in the command lines of your
program. Specifying arguments in this way is called ampersand substitution.

When you use ampersand substitution to pass the names of OLAP DML objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program
must manipulate the objects in several operations.

Example: Passing multiple dimension values
If you want to specify exactly two products for the PRODUCT.RPT program
discussed earlier, then you could declare two dimension-value arguments to handle
them. But if you want to be able to specify any number of products using LIMIT
keywords, then you can use a single argument with ampersand substitution.

Suppose you use the following commands in your program.

argument natext text
argument widthamt integer
argument rptprod text
 .
 .
 .
limit product to &rptprod

You can run the program and specify that you want the first three products in the
report.

call product.rpt (’Missing’ 8 ’first 3’)

The single quotation marks are necessary to indicate that “first 3” should be taken
as a single argument, rather than two separate arguments separated by a space.

Passing Arguments

8-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Passing the text of an expression
Suppose you have a program named CUSTOM.RPT that includes a REPORT
command, but you want to be able to use the program to present the values of an
expression, such as sales - expense, as well as single variables.

custom.tbl ’sales - expense’

Note: You must enclose the expression in single quotation marks. Because the
expression contains punctuation (the minus sign), the quotation marks are
necessary to indicate that the entire expression is a single argument.

In the CUSTOM.RPT program, you could use the following commands to produce a
report of this expression.

argument rptexp text
report &rptexp

Ampersand substitution and performance
It is not possible to compile and save any program line that contains an ampersand.
Instead, the line is evaluated at run time, which can reduce the speed of your
programs. Therefore, to maximize performance, avoid using ampersand
substitution when another technique is available.

Passing OLAP DML object names and keywords
For the following types of arguments, you must always use an ampersand to make
the appropriate substitution:

■ Names of OLAP DML objects, such as UNITS or PRODUCT

■ Command keywords, such as COMMA or NOCOMMA in the REPORT
command, or A or D in the SORT command

Example: Passing OLAP DML object names and keywords
Suppose you design a program called SALES.RPT that produces a report on a
variable that is specified as an argument and sorts the PRODUCT dimension in the
order that is specified in another argument. You would run the SALES.RPT
program by executing a command like the following one.

sales.rpt units d

Passing Arguments

Designing Programs 8-15

In the SALES.RPT program, you can use the following commands.

argument varname text
argument sortkey text
sort product &sortkey &varname
report &varname

After substituting the arguments, these commands are executed in the SALES.RPT
program.

sort product d units
report units

Passing expression arguments by value
You can also pass expressions into a program by value. This means that the
program receives its argument as the values that are the result of an expression
rather than as the expression itself. Because this type of argument provides only the
value of the expression, it does not give the program access to any OLAP DML
object that is used in the original expression.

To pass an expression’s value as an argument, you must execute the program with
the CALL command and enclose its arguments in parentheses immediately
following the program name.

CALL programname(argument1 [argument2 ...])

By using the CALL command to execute a program from within another program,
you can use expressions to construct arguments “on the fly.” In this way, the
arguments passed to the second program can vary according to what has already
happened in the first program.

Example 1: Passing expression arguments by values
Suppose the first argument for your program PRODUCT.RPT specifies the text that
you want used for NA values. You might already have that text stored in a variable
(for example, TEMP1). Rather than supplying the text as an argument, you can
specify the name of the variable as an argument.

call product.rpt(temp1)

In this case, the argument that is passed into the PRODUCT.RPT program is not the
literal text ’temp1’, but the current value of the variable TEMP1. You can still pass
literal text into the program, but you must enclose the text in single quotation
marks.

call product.rpt(’Missing’)

Writing User-Defined Functions

8-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example 2: Passing expression arguments by values
In the program lines below, an argument has been passed that indicates the type of
report that should be produced. The report program is called with an argument that
specifies the text to be used for NA values. Because that text varies with the type of
report, an expression is used as the argument to supply the appropriate text.

argument reptype text
call product.rpt(if reptype eq ’Revenue’ then ’Missing’ else ’Not Available’)

Related information
For more information, see the following table.

Writing User-Defined Functions

Definition: User-defined function
When an OLAP DML program returns a value, it is called a user-defined function.
This means you can use it in commands and expressions in the same way you use
OLAP DML functions.

A user-defined function is a program that contains a RETURN command followed
by an expression. The RETURN command returns a single value when the program
terminates.

RETURN expression

Data type of a user-defined function
When you create a user-defined function, define the program with a data type or
dimension name, using the following syntax of the DEFINE command.

DEFINE programname PROGRAM [datatype|dimension]

The datatype argument specifies the data type of the value to be returned by the
program when it is called as a function.

IF you want documentation about . . . THEN see . . .

ampersand substitution, “Substitution Expressions” on page 4-39

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Writing User-Defined Functions

Designing Programs 8-17

The dimension argument specifies the name of a dimension whose value the
program returns when it is called as a function. The return value will be a single
value of the dimension, not a position (integer). The dimension must be defined in
the same analytic workspace as the program. The value that is returned by the
program has the data type that is specified in the definition. If you specify a
dimension name, then the program returns a value of that dimension.

The return expression in the program should match the data type that is specified in
its definition. If the data type of the return value does not match the data type that
is specified in its definition, then the value is converted to the data type in the
definition.

If you do not specify a data type for the program, then the return value is converted
to the data type that is required by the context from which the program was called.

For the complete syntax of the DEFINE PROGRAM command, see the entry for the
command in OLAP DML Reference.

Arguments in a user-defined function
User-defined functions can accept arguments. A user-defined function returns only
a single value. However, if you supply an argument to a user-defined function
when you are using the function in a context that loops over a dimension (for
example, in a REPORT command), then the function returns results with the same
dimension as its argument.

You must declare the arguments using the ARGUMENT command within the
program, and you must specify the arguments in parentheses following the name of
the program. For more information about using arguments with programs, see
“Passing Arguments” on page 8-11 and the entry for the ARGUMENT command in
OLAP DML Reference.

Example: User-defined function

Description
Suppose your analytic workspace contains a variable called UNITS.PLAN, which is
dimensioned by the PRODUCT, DISTRICT, and MONTH dimensions. The variable
holds integer data that indicates the number of product units that are expected to be
sold.

Suppose also that you define a program named UNITS_GOALS_MET. This
program is a user-defined function. It accepts three dimension-value arguments that

Writing User-Defined Functions

8-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

specify a given cell of the UNITS.PLAN variable, and it accepts a fourth argument
that specifies the number of units that were actually sold for that cell. The program
returns a Boolean value to the calling program. It returns YES when the actual
figure comes up to within 10 percent of the planned figure; it returns NO when the
actual figure does not.

Program Code
The definition of the UNITS_GOALS_MET program is listed below.

DEFINE UNITS_GOAL_MET PROGRAM BOOLEAN
LD Tests whether actual units met the planned estimate
"Program Initialization
argument userprod text
argument userdist text
argument usermonth text
argument userunits integer
variable answer boolean
trap on errorlabel
push product district month
"Program Body
limit product to userprod
limit district to userdist
limit month to usermonth
if (units.plan - userunits) / units.plan gt .10
 then answer = no
 else answer = yes
"Normal Exit
pop product district month
return answer
"Abnormal Exit
errorlabel:
pop product district month
signal errorname errortext
END

Invoking the Program
To execute the UNITS_GOAL_MET program and store the return value in a variable
called SUCCESS, you can use an assignment statement.

success = units_goal_met(’TENTS’ ’BOSTON’ ’JUN96’ 2000)

Controlling the Flow of Execution

Designing Programs 8-19

Related information
For more information, see the following table.

Controlling the Flow of Execution

Control structures that modify the sequence of command execution
Ordinarily, the lines of a program are executed sequentially — in linear fashion.
However, a well-designed program controls the flow of execution by using OLAP
DML commands that redirect the path of execution when appropriate.

You can use the following control structures to modify the sequence of command
execution.

IF you want documentation about . . . THEN see . . .

invoking programs that return values, “Invoking Programs” on page 8-3

using arguments with programs, “Passing Arguments” on page 8-11

the entry for the ARGUMENT command in
OLAP DML Reference

built-in OLAP DML functions, the OLAP DML Reference

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Command or
Keyword Action Event that Triggers Action

IF command Executes alternative commands or
groups of commands.

A specified Boolean condition
is or is not met.

WHILE command Executes a group of commands
repeatedly.

As long as a specified Boolean
condition is met.

FOR command Executes a command or a group of
commands.

Once for each value of a
dimension.

GOTO command Branches to a specific labeled
location.

Issuing the command.

SWITCH command Branches to particular branch in a
multipath branch.

A specific criterion is met.

TRAP command Branches to a specific labeled
location.

An error occurs during
program execution.

Controlling the Flow of Execution

8-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For more information on an individual command, see the entry for the command in
OLAP DML Reference.

Guidelines for constructing a label
When creating a label, follow these guidelines:

■ The first character in the label must be a letter, a period (.), or an underscore
(_).

■ The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

■ A label must be followed immediately by a colon (:).

■ Make sure that the first eight characters are unique. A label can contain up to
3999 characters (the maximum length of a text line minus 1 character for the
colon that identifies a label). However, because only the first eight characters of
a label name are used, you can experience problems with label names greater
than eight characters when the first eight characters are not unique.

Alternatives to the GOTO command
While GOTO makes it easy to branch within a program, frequent use of it can
obscure the logic of your program, making it difficult to follow its flow. This is
particularly true when you have a complex program with several labels and GOTO
commands that skip over large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

IFNONE keyword
in a LIMIT, REPORT,
ROW, or HEADING
command

Branches to a specific labeled
location.

An attempt to set status
would result in no values or
null status.

RETURN command Branches out of a program or
returns to a calling program before
the final command in the program.

Issuing the command.

Command or
Keyword Action Event that Triggers Action

Controlling the Flow of Execution

Designing Programs 8-21

Sometimes a GOTO command is the best programming technique, but often there
are better alternatives. For example:

■ Instead of using GOTO commands in an IF command, you can often place your
alternative sets of commands between DO and DOEND commands within the
IF command itself.

■ If each set of commands is long or you want to use them in more than one place
in your program, then you might consider placing them in subprograms. Then,
you can use the IF command to choose between two different programs, or use
the SWITCH command to choose among many different programs.

Example: Using the FOR command to loop over the values in a given dimension
The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing the FOR command. For example, you can produce a series of output lines
that show the price for each product.

limit month to first 1
limit product to all
for product
show joinchars(’Price for ’ product ’: $’ price)

Each output line has the following format.

Price for TENTS: $165.50

Example: Using the FOR command to loop over the values in several dimensions
When your data is multidimensional, you can specify more than one dimension in a
FOR command to control the order of processing. For example, you can use the
following command to control the order in which dimension values of the UNITS
data are processed.

for month district product
 units = ...

When this assignment statement is executed, the MONTH dimension varies the
slowest, the DISTRICT dimension varies the next slowest, and the PRODUCT
dimension varies the fastest. Thus, a loop is performed over all products for the first
district before doing the next district, and over all districts for the first month before
doing the next month.

Controlling the Flow of Execution

8-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Within the FOR loop, each specified dimension is temporarily limited to a single
value while it executes the commands in the loop. You can therefore work with
specific combinations of dimension values within the loop.

Example: Using the FOR command to loop over values in several dimensions
If actual figures for unit sales are stored in a variable called UNITS and projected
figures for unit sales are stored in a variable called UNITS.PLAN, then the code in
your loop can compare these figures for the same combination of dimension values.

limit month to first 1
limit product to all
limit district to all
for district product
 do
 if (units.plan - units)/units.plan gt .1
 then show joinchars(-
 ’Unit sales for ’ product ’ in ’ -
 district ’ are not within 10% of plan.’)
 doend

These lines of code are processed as described below.

1. The data is limited to a specific month.

2. All the districts and products are placed in status, and the FOR loop is entered.

3. In the FOR loop, the actual figure is tested against the planned figure. If the unit
sales figure for TENTS in BOSTON is more than 10 percent below the planned
figure, then the following message is sent to the current outfile.

Unit sales for TENTS in BOSTON are not within 10% of plan.

4. After processing all the products, the FOR loop is complete for the first district.

5. The loop is executed for the second district, and so on.

Note: While the FOR loop executes, each dimension that is specified in a FOR
command is limited temporarily to a single value. If you specified DISTRICT in the
FOR loop, but not PRODUCT, then all the values of PRODUCT would be in status
while the FOR loop executed. The IF command would then test data for only the
first value of the PRODUCT dimension.

Directing Output

Designing Programs 8-23

Examples: Branching in a program to avoid setting null status

Example: Branching using IFNONE keyword
Your program might try to set or refine the status of the PRODUCT dimension to
include only the products for which unit sales are greater than 500. If no products
have unit sales of more than 500, then you can use the IFNONE keyword to specify
that execution branch to the NOVALS label.

limit product keep units gt 500 ifnone novals

In the commands following the NOVALS label, you can handle the special situation
in which no products have units sales greater than 500.

Example: Alternative to branching using IFNONE keyword
As an alternative to branching to an IFNONE label, you can also handle null status
for a dimension with the OKNULLSTATUS option. If you set OKNULLSTATUS to
YES, then you will be allowed to set the status of a dimension to null. You can then
check for null status and execute appropriate commands with an IF command, or
you can handle null status as one of the cases in a SWITCH command.

oknullstatus = yes
limit month to sales gt salesnum
if statlen(month) lt 1
 then goto showerr

Directing Output

Directing output to a file
To send output to a file, use the OUTFILE command followed by a file name. A file
will be created with that name. The file name that you specify must follow the
standard filename format for your operating system.

The OUTFILE command changes the routing for all subsequent output. Therefore, if
you route a report to a file, then you should reroute output to the default outfile
before leaving the program. If you want to send subsequent output to the default
outfile, then place the OUTFILE EOF command directly after your report
commands. To make sure the OUTFILE EOF command is executed when errors
cause abnormal termination of the program, also place the command in the
abnormal exit section.

Directing Output

8-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Directing output to a file
Suppose you have a program called YEAR.END.SALES, and you want to save the
report it creates in a file. Type the following commands to write a file of the report
in the working directory of your analytic workspace. You can specify a full path
name when you want to use a different drive or directory.

outfile yearend.txt
year.end.sales
outfile eof

Now the file contains the YEAR.END.SALES report. You can add more reports to
the same file with the APPEND keyword for OUTFILE. Suppose you have another
program called YEAR.END.EXPENSES. Add its report to the file with the following
commands. Note that without APPEND, the OUTFILE command overwrites the
expense report.

outfile append yearend.txt
year.end.expenses
outfile eof

Routing error messages
You can route error messages to a file by setting the ECHOPROMPT option to YES.

echoprompt = yes

When you set ECHOPROMPT to YES, input lines and error messages are echoed, as
well as output lines, to the current outfile.

The next topic explains that you can use the DBGOUTFILE command to create a
log, or debugging file, of your program’s execution. When you create a debugging
file and set ECHOPROMPT to YES, input lines and error messages are routed to the
debugging file instead of to the current outfile.

If you set ECHOPROMPT to YES, then remember to save and restore its original
value with the PUSH and POP commands.

Setting paging options
Paging options such as BMARGIN and LSIZE have separate values for the default
outfile and for files. Executing the OUTFILE command sets the paging options to
their current values for the specified output destination. To make sure the paging
options have the values you want, set them after executing the OUTFILE command.

When you set paging options for the default outfile, the new values remain in effect
until you reset them. However, when you set paging options for a file, the new

Preserving the Session Environment

Designing Programs 8-25

values remain in effect only as long as you continue sending output to the same file.
When an OUTFILE command that routes output to a different destination is
executed, including a different file, the paging options return to their default values
for files.

Therefore, if you want the paging options to have a particular value for a file, then
you must reset the options each time you use the OUTFILE command for the file.

Related information
For more information, see the following table.

Preserving the Session Environment

Environment settings
One advantage to the modular design approach is that each program has a clearly
defined area of responsibility, and it does not affect the workings of other programs.
To make this possible, each program must act as a “good citizen” by saving global
settings before it changes them and restoring global settings before it finishes
execution.

There are two types of environment settings:

■ Session environment — The dimension status, option values, and output
destination that are in effect before a program is run make up the session
environment.

■ Program environment — The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the program environment
To perform a task within a program, you often need to change the output
destination or some dimension and option values. For example, you might run a
monthly sales report that always shows the last six months of sales data. You might

IF you want documentation about . . . THEN see . . .

creating a debugging file and debugging
with files,

“Debugging with a Debugging File” on page
9-2

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Preserving the Session Environment

8-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

want to show the data without decimal places, include the text “No Sales” where
the sales figure is zero, and send the report to a file. To set up this program
environment, you can use the following commands in your program.

limit month to last 6
decimals = 0
zspell = ’No Sales’
outfile monsales.txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the
program. In the normal and abnormal exit sections at the end of the program, you
can restore the saved environment, so that other programs do not need to be
concerned about whether any values have been changed. In addition, if you have
sent output to a file, then the exit sections should return the output destination to
the default outfile.

Ways to save and restore the program and session environments
The following suggestions let you save the environment of a program or a session:

■ If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

■ If you want to save, access, or update the current status or value of a dimension,
an option, a single-cell variable, a valueset, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use during a
session of OLAP Services. With contexts, you can access and update the saved
object values, whereas PUSH and POP simply allow you to save and restore values.
Typically, you use the PUSH and POP commands within a program to make
changes that apply only during the program’s execution.

Using PUSH to save a dimension’s status or an option’s value
The PUSH command saves the current status of a dimension, the value of an option,
or the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the
program, use the following command in the initialization section.

push decimals

Preserving the Session Environment

Designing Programs 8-27

You do not need to know the original value of the option to save it or to restore it
later. You can restore the saved value with the POP command.

pop decimals

You must make sure the POP command is executed when errors cause abnormal
termination of the program as well as when the program ends normally. Therefore,
you should place the POP command in the normal and abnormal exit sections of the
program.

Using PUSH to save several values at once
You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH command, and you can restore the values
with a single POP command, as shown in the following example.

push month decimals zspell
 .
 .
 .
pop month decimals zspell

Using PUSHLEVEL and POPLEVEL to save several values at once
If you are saving the values of several dimensions and options, then the
PUSHLEVEL and POPLEVEL commands provide an alternative and more
convenient way to save and restore the session environment. You first use the
PUSHLEVEL command to establish a level marker. Once the level marker is
established, you use the PUSH command to save the status of dimensions and the
values of options or single-cell variables.

For example, you can use the PUSHLEVEL command to establish a level marker
called FIRSTLEVEL, and then use PUSH to save the current values.

pushlevel ’firstlevel’
push month decimals zspell

The level marker can be any text that is enclosed in single quotation marks. It can
also be the name of a single-cell ID or TEXT variable, whose value becomes the
name of the level marker. In the exit sections of the program, you can then use the
POPLEVEL command to restore all the values you saved since establishing the
FIRSTLEVEL marker.

poplevel ’firstlevel’

Preserving the Session Environment

8-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

If you place more than one PUSH command between the PUSHLEVEL and
POPLEVEL commands, then all the objects that are specified in those PUSH
commands are restored with a single POPLEVEL command.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

Nesting PUSHLEVEL and POPLEVEL commands
You can nest PUSHLEVEL and POPLEVEL commands to save certain groups of
values in one place in a program and other groups of values in another place in a
program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

pushlevel ’firstlevel’
push pagesize decimals "Saves values in FIRSTLEVEL
 .
 .
 .
pushlevel ’secondlevel’
push month product "Saves values in SECONDLEVEL
 .
 .
 .
poplevel ’secondlevel’ "Restores values in SECONDLEVEL
 .
 .
 .
poplevel ’firstlevel’ "Restores values in FIRSTLEVEL

Normally, you will not use more than one set of PUSHLEVEL and POPLEVEL
commands in a single program. However, the nesting feature comes into play
automatically when one program calls another program and each program contains
a set of PUSHLEVEL and POPLEVEL commands.

Using CONTEXT to save several values at once
As an alternative to using PUSHLEVEL and POPLEVEL, you can use the
CONTEXT command and CONTEXT function. With these, you can access and
update your saved object values, as well as save and restore them. For details about
using named contexts, see the entries for the CONTEXT command and the
CONTEXT function in OLAP DML Reference.

Handling Errors

Designing Programs 8-29

Handling Errors

Overview: Handling errors
A well-designed program handles errors gracefully and reports each error in an
informative way. The OLAP DML provides commands such as TRAP to help you
detect and report errors in your programs.

How an error is signaled
When an error occurs anywhere in a program, the error is signaled. To signal the
error, the following actions are performed.

1. The name of the error is stored in the ERRORNAME option, and the text of the
error message is stored in the ERRORTEXT option.

2. If ECHOPROMPT is YES, then the error message is sent to the current outfile or
to the debugging file, when there is one.

3. If error trapping is off, then the execution of the program is halted. If error
trapping is on, then the error is trapped.

How an error is trapped
To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use the TRAP command to turn on an
error-trapping mechanism in a program. If error trapping is on when an error is
signaled, then the execution of the program is not halted. Instead, the following
actions are performed.

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP command

3. Executes the commands following the label

Handling Errors

8-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Handling errors while saving the session environment
To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL command before the TRAP command and
your PUSH commands after the TRAP command.

pushlevel ’firstlevel’
trap on error
push . . .

In the abnormal exit section of your program, place the ERROR label (followed by a
colon) and the commands that restore the session environment and handle errors.
The abnormal exit section might look like this.

error:
poplevel ’firstlevel’
outfile eof

These commands restore saved dimension status and option values and reroute
output to the default outfile.

Suppressing error messages
If you do not want to produce the error message that is normally provided for a
given error, then you can use the NOPRINT keyword with the TRAP command.

trap on error noprint

When you use the NOPRINT keyword with TRAP, control branches to the ERROR
label, and an error message is not issued when an error occurs. The commands
following the ERROR label are then executed.

When you suppress the error message, you might want to produce your own
message in the abnormal exit section. The SHOW command produces the text you
specify but does not signal an error.

trap on error noprint
 .
 .
 .
error:
 .
 .
 .
show ’The report will not be produced.’

The program continues with the next command after producing the message.

Handling Errors

Designing Programs 8-31

Identifying the error that occurred
All errors have names. Whenever an error is signaled, the error name is stored in
the ERRORNAME option. If you want to perform one set of activities when one
type of error occurs, and a different set of activities if another type of error occurs,
then you can test the value of the ERRORNAME option.

To find out what the value of ERRORNAME will be for specific error conditions,
you can check the dimension _MSGID in the express.db analytic workspace. The
error messages are contained in the variable _MSGTEXT, which is dimensioned by
_MSGID. To see this list, execute the following command.

report w 60 _msgtext

Many of the error messages contained in _MSGTEXT are constructed so that
appropriate values can be substituted in the message at the time it is produced (for
example, the name of an OLAP DML object). These substitutions are indicated by a
percent sign (%) followed by one or more characters in the _MSGTEXT value. In
most cases, you can understand the purpose and condition of the message without
knowing exactly what will be substituted.

When you need to, you can use the SIGNAL command to send to the current outfile
the ERRORNAME and ERRORTEXT of the last error that occurred. The SIGNAL
command has the following format.

SIGNAL errorname [message]

Creating your own error messages
All errors that occur when commands or command sequences do not conform to its
requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute the SIGNAL command to signal an error.

You can give the error any name. When the SIGNAL command is executed, the
error name you specify is stored in the ERRORNAME option, just as an error name
is stored. If you specify your own error message in the SIGNAL command, then
your message is produced just as an error message is produced. When you are
using a TRAP command to trap errors, a SIGNAL command branches to the TRAP
label after the error message is produced.

Handling Errors

8-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Signaling an error
Suppose your program produces a report that can present from one to nine months
of data. You can signal an error when the program is called with an argument value
greater than nine. In this example, NUMMONTHS is the name of the argument that
must be no greater than nine.

select:
trap on error
push month
limit month to nummonths
if statlen(month) gt 9
 then signal toomany -
 ’You can specify no more than 9 months.’
report down district w 6 units
finish:
pop month
return
error:
pop month
if errorname eq ’TOOMANY’
 then show ’No report produced’

If you do not specify your own message in a SIGNAL command, then Express the
error name and a default message are produced.

ERROR: (TOOMANY) Please contact the administrator of your Oracle Express Server
application.

If you want to produce a warning message without branching to an error label, then
you can use the SHOW command.

select:
limit month to nummonths
if statlen(month) gt 9
 then do
 show ’You can select no more than 9 months.’
 goto finish
 doend
report down district w 6 units
finish:
pop month
return

Handling Errors

Designing Programs 8-33

Handling errors in nested programs
When you write a program that runs another program, the second program is
nested within the first program. The second program might, in turn, run another
nested program.

The error-handling section in each program should restore the environment. It can
also handle any special error conditions that are particular to that program. For
example, if your program signals its own error, then you can include commands
that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want
the error message to be produced:

■ Method 1 — The error message is produced immediately, and the error
condition is then passed through the chain of programs.

■ Method 2 — The error is passed through the chain of programs first, and the
error message is produced at the end of the chain.

The SIGNAL command is used in both methods.

Example: Producing the error message immediately
For Method 1, use a TRAP command in each nested program, but do not use the
NOPRINT keyword. When an error occurs, an error message is produced
immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute a SIGNAL command with the PRGERR
keyword.

signal prgerr

When you use the PRGERR keyword with the SIGNAL command, no error message
is produced, and the name PRGERR is not stored in ERRORNAME. The SIGNAL
command signals an error condition that is passed up to the program from which
the current program was run. If the calling program contains a trap label, then
execution branches to that label.

Handling Errors

8-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, you can pass the error condition up through the entire
chain. Each program has commands like these.

trap on error
 .
 . "Body of program and normal exit commands
 .
return
error:
 .
 . "Error-handling and exit commands
 .
signal prgerr

Example: Producing the error message at the end of the chain
For Method 2, use a TRAP command with the NOPRINT keyword. When an error
occurs in a nested program, execution branches to the trap label, but the error
message is suppressed.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute the following SIGNAL command.

signal errorname errortext

The ERRORNAME option contains the name of the original error, and the
ERRORTEXT option contains the error message for the original error. The SIGNAL
command shown above passes the original error name and error text to the calling
program. If the calling program contains a trap label, then execution branches to
that label.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, the original error message is produced at the end of the
chain. Each program has commands like these.

trap on error noprint
 .
 . "Body of program and normal exit commands
 .
return
error:
 .
 . "Error-handling and exit commands
 .
signal errorname errortext

Compiling Programs

Designing Programs 8-35

Related information
For more information, see the following table.

Compiling Programs

When a program is compiled
You can explicitly compile a program by using the COMPILE command. If you do
not explicitly compile a program, then it is compiled when you run the program for
the first time after you have edited it.

Example: Using the COMPILE command
The following is an example of a COMPILE command that compiles the MYPROG
program.

compile myprog

For the syntax of the COMPILE commands, see the entry for the command in OLAP
DML Reference.

Example: Compilation errors
Suppose you misspell the dimension MONTH in a LIMIT command in the
MYPROG program.

limit motnh to last 6

When the COMPILE command encounters this command, it produces the following
message.

ERROR: MOTNH does not exist in any attached database.
In MYPROG PROGRAM:
limit motnh to last 6
 ^

You can edit the program to correct the error and then try to compile it again.

IF you want documentation about . . . THEN see . . .

testing and debugging programs, Chapter 9

individual OLAP DML commands, the topic for the command in OLAP DML
Reference

Compiling Programs

8-36 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

How a program is compiled
When a program is compiled, it translates the program commands into efficient
processed code that executes much more rapidly than the original text of the
program. If errors are encountered in the program, then the compilation is not
completed, and the program is considered to be uncompiled.

Note: Program lines that include ampersand substitution will not be compiled.
However, the presence of such lines does not constitute an error. A program whose
other lines compiled correctly is considered to be a compiled program.

Compiling and updating
After you compile a program, the compiled code is used each time you run the
program in the current OLAP Services session. When you update your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and uses it when you run the program in future sessions. Therefore, you
should be sure to update your analytic workspace after compiling a program.

Compiling, exporting, and importing
After you export a program from a source analytic workspace, if you import the
program to a target analytic workspace, then the compiled code is not exported or
imported. Therefore, after you import a program to a target analytic workspace, you
need to compile the program and update the target analytic workspace.

To keep an application analytic workspace compact and uncluttered, application
builders often define and test objects in a test analytic workspace, and then import
the tested objects to the final analytic workspace. When you follow this procedure,
remember to compile your programs in the final analytic workspace.

Compiling with object definitions
When your program defines an object and then uses the object in the program, the
program will not compile. When COMPILE encounters the reference to the object, it
treats the reference as a misspelling because the object does not yet exist in the
analytic workspace.

Testing Programs

Designing Programs 8-37

Finding out if a program has been compiled
You can use the ISCOMPILED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

show obj(iscompiled ’myprogram’)

For the syntax of the OBJ function, see the entry for the function in OLAP DML
Reference.

Testing Programs

Testing a program by running it
Even when your program compiles cleanly, you must also test the program by
running it. Running a program helps you detect errors in commands with
ampersand substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data
that the program will process. To confirm that you test all the features of the
program, including error-handling mechanisms, run the program several times,
using different data and responses. Use test data that:

■ Falls within the expected range

■ Falls outside the expected range

■ Causes each section of a program to execute

Using SHOW commands
Each time you run the program, confirm that the program executes its commands in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW commands in the program to
produce diagnostic or status messages. Then delete the SHOW commands after
your tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the
next section.

For the syntax of the SHOW command, see the entry for the command in OLAP
DML Reference.

Testing Programs

8-38 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using the BADLINE option
When you set the BADLINE option to YES, additional information will be
produced, along with any error message when a bad line of code is encountered.
When the error occurs, the error message, the name of the program, and the
program line that triggered the error are sent to the current outfile.

You can edit the specified program to correct the error and then run the original
program.

For the syntax of the BADLINE option, see the entry for the option in OLAP DML
Reference.

Example: Using the BADLINE option
In a simple program called TEST, the variable MYINT1 is divided by zero.

DEFINE TEST PROGRAM
PROGRAM
variable myint1 integer
variable myint2 integer
myint1 = 0
myint2 = 250/myint1
END

If you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to be
returned as the result of a division by zero, set the DIVIDEBYZERO option to
YES.)
In TEST PROGRAM:
myint2 = 250/myint1

Debugging Programs 9-1

9
Debugging Programs

Chapter summary
This chapter explains how to debug programs that are written in the OLAP DML.

List of topics
This chapter includes the following topics:

■ Overview: Debugging in OLAP DML

■ Debugging with a Debugging File

■ Debugging with OLAP Worksheet

■ OLAP DML Debugger Commands

Overview: Debugging in OLAP DML

How you debug OLAP DML
There are two main methods for debugging OLAP DML programs: using a
debugging file, and using the OLAP DML debugger from within OLAP Worksheet.
The method that you use depends on the degree of debugging that you want to
perform and how the OLAP DML code is executed.

Debugging using a debugging file
If you are executing OLAP DML code through the OLAP API, you can use a
debugging file that logs the progress of program execution so you can analyze it for
errors.

Debugging with a Debugging File

9-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For more information on working with a debugging file, see “Debugging with a
Debugging File” on page 9-2.

Debugging using the OLAP DML debugger
If you are executing OLAP DML code from within OLAP Worksheet, you can use
the OLAP DML debugger when you want to debug by interactively stepping
through a program one line at a time while displaying the current values of OLAP
DML objects.

The exact steps that you take to use OLAP Worksheet depend on the location of the
program you want to debug and the type of session in which OLAP Worksheet
runs. For more information, see “Debugging with OLAP Worksheet” on page 9-5,
and “OLAP DML Debugger Commands” on page 9-6.

Debugging with a Debugging File

Why you debug using a debugging file
If your program contains an error in logic, then the program might execute without
producing an error message, but it will execute the wrong set of commands or
produce incorrect results. For example, suppose you write a Boolean expression
incorrectly in an IF command (for example, you use NE instead of EQ). The
program will execute the commands you specified, but it will do so under the
wrong conditions.

To find an error in program logic, you often need to see the order in which the
commands are being executed. One way you can do this is to create a debugging
file and then examine the file to diagnose any problems in your programs.

Creating a debugging file

Command you use to create a debugging file
To create a debugging file, you use the DBGOUTFILE command. The simplified
syntax of the DBGOUTFILE command is shown below.

DBGOUTFILE {EOF|[APPEND] file-id [NOCACHE]}

The EOF keyword specifies that the current debugging file should be closed, and
that debugging output should no longer be sent to a file.

Debugging with a Debugging File

Debugging Programs 9-3

The APPEND keyword specifies that the output should be added to the end of an
existing disk file. If you omit this argument and a file exists with the specified name,
then the new output replaces the current contents of the file.

The argument file-id specifies the name of the file to receive the debugging output.

The NOCACHE keyword causes the OLAP DML to write to the debugging file each
time it executes a line of code. Without this keyword, file I/O activity is reduced by
saving text and writing it periodically to the file.

For the complete syntax of the DBGOUTFILE command, see the entry for the
command in OLAP DML Reference, which you can access by selecting Language
from the Help menu in OLAP Worksheet.

Specifying the contents of the debugging file
Using the DBGOUTFILE command merely creates a file for debugging. To specify
that you want each program line to be sent, as it executes, to the debugging file, set
the PRGTRACE option to YES.

As outlined below, using either the ECHOPROMPT or IFCOPY option, you can also
specify that additional information should be included in the debugging file.

For the syntax of the ECHOPROMPT, IFCOPY, and PRGTRACE options, see the
entry for each option in OLAP DML Reference.

Example: Debugging using a debugging file

Creating a debugging file
The following commands create a useful debugging file called debug.txt in the
current working directory.

prgtrace = yes
echoprompt = yes
dbgoutfile ’debug.txt’

IF you want the debugging file to interweave the
program lines with . . . THEN set the . . .

both the program’s input and error messages, ECHOPROMPT option to YES.

only the program’s input, IFCOPY option to YES.

Debugging with a Debugging File

9-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

After executing these commands, you can run your program as usual. To close the
debugging file, execute this command.

dbgoutfile eof

Sample Program Code
In the following sample program, the first LIMIT command has a syntax error.

DEFINE ERROR_TRAP PROGRAM
PROGRAM
trap on traplabel
limit month to first badarg
limit product to first 3
limit district to first 3
report sales
traplabel:
signal errorname errortext
END

Debugging File Output
With PRGTRACE and ECHOPROMPT both set to YES and with DBGOUTFILE set
to send debugging output to a file called debug.txt, the following text should be
sent to the debug.txt file when you execute the ERROR_TRAP program.

(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) trap on traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) limit month to first badarg
ERROR: BADARG does not exist in any attached database.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) signal errorname errortext
ERROR: BADARG does not exist in any attached database.

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

specifying the file to use for output, “Directing Output” on page 8-23

individual OLAP DML commands, the entry for the command in OLAP DML
Reference

Debugging with OLAP Worksheet

Debugging Programs 9-5

Debugging with OLAP Worksheet

How does OLAP Worksheet help you debug?
OLAP Worksheet allows you to use the TRACE or WATCH commands to
interactively step through your program, pausing to examine the current values of
OLAP DML objects and specifying how many program lines to execute. It also
allows you to set watch points where execution will stop when data values meet
certain conditions.

Starting the OLAP DML debugger
Access to the OLAP DML debugger is through the TRACE command, which
controls the list of programs that are traced by the debugger. To use the TRACE
command, you must be connected to OLAP Services using OLAP Worksheet.

To debug a single program, attach the analytic workspace in which the program
resides, and use the TRACE command to add that program to the trace list.

execute ’trace quarter.rpt’

Procedure: Debugging a program located on the OLAP Services computer
To debug a program that is located on the same computer as that on which OLAP
Services is running, take the following steps:

1. Choose Connect from the File menu to display the Login dialog box.

2. Specify the server name, password, and computer name in the Login dialog
box. If necessary, enter a user name, domain name, and password in the
appropriate boxes. For details, refer to the OLAP Worksheet Help system.

3. Choose OK.

4. Once you have connected to the OLAP Services instance, attach the analytic
workspace that contains the program that you want to debug. To attach an
analytic workspace, enter a DATABASE ATTACH command in the command
input window in OLAP Worksheet.

Example:

database attach demo

5. Add your program to the trace list by entering the TRACE command in the
command input window.

OLAP DML Debugger Commands

9-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example:

trace quarter.rpt

For more information on the TRACE command, see “OLAP DML Debugger
Commands” on page 9-6.

6. Run your program by entering the program name in the command input
window.

Example:

quarter.rpt

When your program runs, the debugger suspends the program’s execution
according to the settings you have specified and displays the double-line arrow
prompt in the output pane of the command input window.

7. Either select the debugger commands from the Debug menu or enter the
debugger commands in the command input window to examine your
program’s execution. For more information on using the debugger commands,
see “OLAP DML Debugger Commands” on page 9-6.

8. Leave the debugging environment by issuing the GO debugger command
without any argument to have the program complete execution. If necessary,
type go again to leave the debugging environment. The prompt returns to its
single-line form (->) in the output pane.

OLAP DML Debugger Commands

Accessing the debugging environment
Access to the debugging environment is through the TRACE command, which
controls the list of programs that is traced. To use the TRACE command, you must
be connected to an analytic workspace from OLAP Worksheet. You enter OLAP
DML commands in the command input window in OLAP Worksheet.

To debug a single program, attach the analytic workspace in which the program
resides, and use the TRACE command to add that program to the trace list.

trace quarter.rpt

To trace all programs that are executed in your host session, specify an asterisk (*)
instead of a program name.

trace *

OLAP DML Debugger Commands

Debugging Programs 9-7

To see the current trace list, which contains the names of all the programs that will
be traced by the debugger when it is executed, specify a question mark (?) instead
of a program name. For each program, the list contains the current TRACE settings.

trace ?

The following output is displayed in the output pane in the command input
window.

QUARTER.RPT IN STOP ARGS OUT STOP VALUE
TRACE * IN STOP ARGS OUT NOSTOP VALUE

Using the debugger
When you run a program on the trace list, the debugging environment takes over
execution of the program. When this happens, a double-line arrow prompt (=>) is
displayed in the output pane of the command input window in OLAP Worksheet.

The debugging environment suspends execution of the program so that you can do
the following:

■ Step through a program one line at a time

■ Display current values of OLAP DML objects

■ Display the program’s return value

You can use almost any OLAP DML command in the command input window. For
example, you might use SHOW to examine the current values of OLAP DML
objects.

Using the four debugger commands
You can also use four special debugger commands to help you investigate the
current execution environment. These commands are listed in the following table.

Command Description

GO Specifies the number of lines that are executed in the debugging
environment before execution stops. Each line of code is displayed as it is
executed, except for lines that contain only comments. If you do not
specify the number of lines, then all the code is executed to the end of the
program without displaying the lines.

WATCH Sets a watch point. When this point is reached in your program,
execution is suspended. You can also use WATCH to enable, disable, or
clear watch points. Finally, you can use WATCH to display a list of the
current watch points.

OLAP DML Debugger Commands

9-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For complete information about the program debugger commands, see the entry for
TRACE in OLAP DML Reference.

Stepping through your program using the debugger GO command
When any program on the list is executed, the debugger suspends the program’s
execution according to the settings you have specified and displays the double-line
arrow prompt in the output pane of the command input window.

At this point, you can use the GO debugger command to step through the execution
of the program:

■ To execute one line at a time, specify 1 as an argument.

go 1

■ To execute a group of lines, you can specify a higher number.

go 3

At any point where the debugger prompts for a command, you can use OLAP DML
commands to examine the current value of OLAP DML objects, or otherwise look at
the execution environment to confirm that the program is executing as expected.

Note: Although the debugger displays labels in your program, it does not include
them in the count of lines. Also, the debugger does not count or display lines that
contain only comments.

BACK command
In many cases, you will trace a single program; however, you can use the OLAP
Worksheet to trace a group of nested programs as well. The debugging environment
will keep track of all the nested levels, and you have all the debugging capabilities
in each program. To help keep track of the levels, you can use the BACK command
to display a list of currently running programs. The list identifies the programs that
call other programs and displays each program’s arguments next to the program
name.

BACK Displays a list of currently running programs and indicates which
programs call other programs. You have the option of displaying a
program’s arguments next to its name in the list.

ARGS Displays a list of arguments for all the currently running programs. You
can also display arguments for a single program.

Command Description

OLAP DML Debugger Commands

Debugging Programs 9-9

Example: Using the BACK command in a debugging session
The following example presents a debugging session in which three nested
programs are traced. PROG1 calls PROG2, and PROG2 calls PROG3. Only PROG2
accepts an argument, and the debugging environment displays its value upon
entering PROG2. While in PROG3, the user types the BACK command to display
the names of the programs that are currently executing, along with any arguments.

Enter the following commands in the input pane of the command input window in
OLAP Worksheet:

trace prog1
trace prog2
trace prog3
prog1

The following is displayed in the output pane of the command input window:

= Entering PROG1

Enter the following command in the input pane:

go

The following is displayed in the output pane:

this is prog1
= Entering PROG2 From PROG1
= Args: 234

Enter the following command in the input pane:

go

The following is displayed in the output pane:

this is prog2
= Entering PROG3 From PROG2

Enter the following command in the input pane:

go

The following is displayed in the output pane:

this is prog3
= Leaving PROG3

Enter the following command in the input pane:

back

Working with watch points

9-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The following is displayed in the output pane:

= Command Level -> PROG1
= PROG1 -> PROG2 (Args: 234)
= PROG2 -> PROG3

Enter the following command in the input pane:

go

The following is displayed in the output pane:

= Leaving PROG2

Enter the following command in the input pane:

go

The following is displayed in the output pane:

= Leaving PROG1

To exit the debugger, enter the following command in the input pane:

go

Exiting the debugging environment
From the Debug menu in OLAP Worksheet, choose Interrupt to exit the debugging
environment.

Working with watch points

Setting a watch point using the WATCH command
If you do not want to trace the execution of a program from its beginning, then you
can select a point in the program where you want to start tracing. You use the
WATCH command to select a watch point. You can enter a WATCH command in
the command input window in OLAP Worksheet.

The WATCH command sets a watch point as a Boolean expression that is monitored
by the debugging environment. When the Boolean expression becomes true, the
debugging environment suspends execution of the program and displays the
double-line arrow prompt in the output pane of the command input window in
OLAP Worksheet, from which you can examine the subsequent execution of the
program.

Working with watch points

Debugging Programs 9-11

To set a watch point, you specify the Boolean expression to be monitored, and,
optionally, the name of a program in which to watch the expression. The Boolean
expression can be something integral to your program, or you can include a watch
point in the program just for debugging.

Example: Watching a Boolean expression that is integral to your program
In the sample program called QUARTER.RPT, a command limits the QUARTER
dimension. You can use the results of that LIMIT command as a watch point as
outlined below.

1. Because you do not want to trace execution of QUARTER.RPT from the
beginning, remove it from the trace list.

Example:

trace quarter.rpt off

2. Set your watch point.

Example:

watch for statlen(quarter) eq 1 in quarter.rpt
watch list

 1: Watch For STATLEN(QUARTER) EQ 1 within QUARTER.RPT ENABLED

Note: The WATCH LIST command displays a list of the current watch points in
the output pane in the command input window. When you set a watch point, it
is assigned a watch number and is automatically enabled as indicated by the
word ENABLED at the right end of the output line in the above example.

3. Run QUARTER.RPT. It executes until the status of QUARTER is limited to one
value. Then the debugging environment suspends program execution and
displays the double-line arrow prompt. You can step through the rest of the
program or execute other OLAP DML commands in the command input
window.

Enabling and disabling a watch point
Once a watch point expression is TRUE, the debugging environment disables it.

watch list
 1:Watch For STATLEN(QUARTER) EQ 1 within QUARTER.RPT DISABLED

Working with watch points

9-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

You can enable it again with another WATCH command that specifies the watch
number.

watch enable 1

Using a special debugging watch point
Instead of using an integral part of the program as a watch point, you can set up a
special watch point specifically for the purpose of debugging.

Suppose you declare a local variable called WPOINT at the start of QUARTER.RPT
and then set WPOINT to 1 at the point in the program where you want to start
examining its execution. You can also set WPOINT to other values in other parts of
your program to establish several watch points for different purposes.

describe quarter.rpt
DEFINE QUARTER.RPT PROGRAM
PROGRAM
argument userchoice month
variable wpoint integer "Define watch point
trap on finish
pushlevel ’quarter’
push decimals month quarter
limit month to userchoice
wpoint = 1 "Set watch point
limit quarter to month
report down district across product: -
 heading ’Total Sales’ -
 total(sales, district product quarter)
finish:
poplevel ’quarter’
END

If you now set a watch point as follows and run QUARTER.RPT, then the debugger
suspends execution at the point where WPOINT is set to 1 and displays the
double-line arrow prompt.

watch for wpoint eq 1 in quarter.rpt
quarter.rpt

Using Embedded SQL 10-1

10
Using Embedded SQL

Chapter summary
In this chapter, you will learn how to write programs that copy data between an
analytic workspace and a relational database.

List of topics
This chapter includes the following topics:

■ Using Relational Data

■ Obtaining Access to the Relational Database

■ Supported SQL Commands

■ Checking for Errors

■ Fetching Data into an Analytic Workspace

■ Declaring a Cursor

■ Opening a Cursor

■ Fetching the Selected Data

■ Closing a Cursor

■ Using Dimensions as Output Host Variables

■ Writing OLAP DML Data to a Relational Table

■ Matching Oracle9i Data Types

■ Using the Special Features of an OCI Connection

■ Example: SQL Program

Using Relational Data

10-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Using Relational Data

Overview: How you can use the OLAP DML to analyze relational data
Oracle OLAP Services allows you to either move data from the relational database
into an analytic workspace, or load data (for example, from a flat file) directly into
an analytic workspace. In most cases, the relational database will be used as the
primary data store, because it offers advantages related to manageability, scalability,
and open access. Analytic workspaces provide support for some analytic features
such as forecasting, models, and custom analytic functions defined using the OLAP
DML.

To use analytic workspaces, they must be populated with data. The primary
method of populating analytic workspaces is to load data from tables in the
relational databases. You might also want to update tables with data generated
using the OLAP DML. For example, you might load historical sales data from tables
onto an analytic workspace, forecast sales data for future time periods, and commit
the results of the forecast to tables in a data warehouse.

The SQL command in the OLAP DML is used to interact with the relational
database using SQL statements. Using the SQL command, you can select data from
tables and load it into analytic workspaces, commit data in an analytic workspace to
tables, and perform most other operations supported by SQL.

Differences between the relational database and the OLAP DML models

Relational tables
A relational database stores information in tables organized by rows and columns.
Each table contains a column or a combination of columns whose values uniquely
identify each row. These unique values are called primary keys and help ensure the
integrity of the data. When the values in a column match the values of another
table’s primary key, that column is called a foreign key. Relationships between
tables are established through primary and foreign keys. You can select columns of
data from different tables and view them together as long as the tables are related in
this way.

OLAP DML variables contain multidimensional data
In contrast, when you use an analytic workspace, you define variables to store data.
These variables are multidimensional. Each cell in a variable represents a unique
combination of dimension values. Dimensions act as keys to variables. The OLAP

Obtaining Access to the Relational Database

Using Embedded SQL 10-3

DML operates on multidimensional variables and dimensions in analytic
workspaces.

Obtaining Access to the Relational Database

OLAP Services is always connected to the relational database
OLAP Services is always connected to its parent Oracle relational database instance.
There is no need to establish a connecting using the OLAP DML. OLAP Services
does not allow connections to Oracle instances other than the parent instance.

Overview: Using SQL statements in OLAP DML
SQL consists of statements that retrieve, delete, insert, change, and manipulate data
stored in relational tables. You can use this embedded SQL in your OLAP DML
programs.

OLAP DML SQL command
You can issue SQL statements from an OLAP Services session using the SQL OLAP
DML command. Ordinarily, the command is used in an OLAP DML program, but
you can also execute some SQL commands it interactively. The argument for the
SQL command is a SQL statement.

SQL sql_statement

You can use almost any SQL statement that is supported by Oracle. For example,
you can fetch data from relational tables and store it in OLAP DML dimensions and
variables.

Using quotation marks
Wherever you would normally use double quotes (") in a SQL statement, you must
use a single quote (’) in OLAP Services because the OLAP DML interprets a double
quote as the beginning of a comment.

Special SQL syntax in OLAP DML
The OLAP DML evaluates SQL statements, either in whole or in part, before
sending them to the relational database. Be sure to use the syntax described in this
manual, rather than the syntax described in your SQL documentation.

Supported SQL Commands

10-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Supported SQL Commands

What SQL statements can OLAP DML evaluate?
The OLAP DML evaluates the following SQL statements, either in whole or in part,
before sending them to the relational database.

Commands and options for general SQL use
The following OLAP DML options are available.

SQLBLOCKMAX option
The SQLBLOCKMAX option is an integer option that controls the maximum
number of records OLAP Services retrieves from an Oracle database at one time.
This option provides a means of fine-tuning the performance of data fetches.

Unsupported SELECT statement
When using SQL interactively, you would typically execute a SELECT command to
produce a table of data. However, most host programming languages, including
OLAP DML, must receive the data one row at a time instead of an entire table at
once. For this reason, you cannot issue a simple SQL SELECT statement
interactively in OLAP DML. Instead, you must define a cursor within an OLAP
DML program.

EXECUTE DECLARE FETCH

OPEN CLOSE PREPARE

Option Description

SQL A command that issues SQL commands.

SQLCODE An integer option that holds the returned value from the
most recently attempted SQL operation.

SQLERRM A text option that contains an explanatory message after an
error has occurred.

SQLMESSAGES A Boolean option that controls whether SQL error messages
are written to the current outfile.

Checking for Errors

Using Embedded SQL 10-5

Defining Transactions
SQL supports transaction processing in an OCI connection to Oracle9i. This support
allows you to save or abort a series of statements that you have defined as a logical
unit of work. This method of processing prevents partial updates; either all
statements or none within the unit of work are executed.

A COMMIT statement saves changes made in the current transaction, and a
ROLLBACK statement discards them. In your programs, you will want to write the
logic so that the program uses COMMIT when it runs successfully and ROLLBACK
when it ends in an error.

The OLAP DML accepts the following commands for transaction processing:

SQL COMMIT [WORK]
SQL ROLLBACK [WORK]

Checking for Errors

How the OLAP DML handles SQL errors
Although the OLAP DML will signal some SQL errors, it does not automatically
signal an error when the there is an error in a SQL statement. Instead, the OLAP
DML provides support to help you handle errors that are returned.

In your programs, you will need to provide the logic for handling SQL errors. The
OLAP DML provides two options, SQLCODE and SQLERRM, whose values reflect
the SQLCODE and SQLERRM values set by the Oracle relational database.

SQLCODE option
SQLCODE contains an integer error code number. Your programs should test the
value of SQLCODE after every SQL command to make sure that the command
executed successfully. You can also test the value of SQLCODE to determine
whether you need to break out of a loop.

Fetching Data into an Analytic Workspace

10-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

SQLCODE typically has one of the following values:

SQLERRM option
SQLERRM contains the error message associated with the current error code. It
identifies the condition that caused an error to occur.

You can control whether or not this message is sent automatically to the current
outfile. When you are debugging a program, you will probably want all SQL error
messages sent to the current outfile so that you can see them immediately. However,
when your application is in use, you will want to suppress the error messages and
handle the error condition in a way more suited to your application.

The SQLMESSAGES option controls whether SQL messages are sent to the current
outfile, which is usually the screen.

Procedure: Sending messages to the current outfile
To send SQL messages to the current outfile, issue the following command.

sqlmessages = yes

Fetching Data into an Analytic Workspace

Pretesting SELECT statements
Before writing the code to fetch data into an analytic workspace, you should write
down SELECT statements that you think will retrieve the data you want to fetch.
When possible, use an interactive interface such as SQL*Plus or SQL Worksheet to
test these SQL statements and make sure that they produce the results you expect.
Afterward, you can modify these SELECT statements for use in your OLAP DML
programs.

Tip: Use ORDER BY clauses where necessary so that the data for multidimensional
variables is fetched with the slowest-varying dimension values first. Use GROUPBY

Code Meaning

0 (zero) The last SQL operation was successful.

100 All requested rows have been fetched.

–1 An error has occurred.

Any value that is neither 0 nor 100 An error has occurred.

Fetching Data into an Analytic Workspace

Using Embedded SQL 10-7

clauses to perform simple aggregation of the data to the level at which it becomes
useful for data analysis.

Definition: Cursor
You cannot issue a SELECT statement in the OLAP DML. Instead, you must define
a cursor using embedded SQL in an OLAP DML program. In the context of a query,
a cursor can be thought of as simply a row marker in a table of data resulting from a
query. Instead of receiving the results of a query all at once, your program receives
the results row by row using the cursor.

Using cursors
You must declare and open a cursor from within a single OLAP DML program.
Then you can fetch the data and close the cursor either in the same program or a
different program.

Summary of cursor support
Several special SQL statements are used to define and use cursors.

The following commands are associated with cursors. Each of them is discussed in
detail in a separate topic.

OLAP DML Command Description

SQL DECLARE CURSOR Contains a SELECT statement to identify the data to be
retrieved and associates this selection with the name of a
cursor.

SQL OPEN Opens the cursor so it can be used in a FETCH statement.

SQL FETCH Retrieves the data associated with the cursor and stores it
in one or more OLAP DML objects.

SQL CLOSE Closes the cursor so that the program can no longer access
results through it.

Declaring a Cursor

10-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Declaring a Cursor

DECLARE CURSOR statement
A DECLARE CURSOR statement associates a cursor by name with the results of a
data query. In OLAP DML, it has the following syntax.

SQL DECLARE cursor-name CURSOR FOR select-statement

Cursor name requirements
A cursor name can consist of 1 to 18 alphanumeric characters or the symbols @, _, $,
or #. A name containing @, $, or # must be enclosed in single quotes. The first
character cannot be a number.

Example: Declaring a cursor
In the following example, the cursor declaration selects rows from a table named
Products that has columns for product identification codes (PROD_ID) and
descriptive labels (PROD_NAME). A third column, SUGGESTED_PRICE, is used in
a WHERE clause to limit the returned rows to only those in which the suggested
price is greater than $20.00.

sql declare highprice cursor for -
 select Prod_ID, Prod_Name from products -
 where Suggested_Price > 20

Re-using a cursor name
If you try to declare a cursor with the same name as one that is already declared,
but with a different SELECT statement, then an error is signaled. You must first free
the cursor with a COMMIT or ROLLBACK statement when you wish to associate it
with a different selection.

Definition: Input host variables
Instead of providing literal values in the WHERE clause of a SELECT statement,
you can use the values of input host variables. An input host variable is supplied by
the host program as a parameter to the SELECT statement. Note that the value of an
input host variable is assigned when the cursor is opened, not when it is declared.

An input host variable can be any expression preceded by a colon. However, if you
specify a multidimensional expression, such as a variable or dimension, then the
first value in status is used.

Declaring a Cursor

Using Embedded SQL 10-9

Using input host variables
When you use input host variables in a WHERE clause to match the data in a
relational table, any required conversions between data types is performed
wherever conversion is possible.

The following are examples of expressions that can be used as input host variables.

Example: Using input host variables
The following program fragment modifies the SQL command shown previously.
Instead of using an explicit value in the WHERE clause, it uses the value of a local
variable named SET_PRICE.

variable set_price short
set_price = 20
sql declare highprice cursor for -
 select Prod_ID, Prod_Name from products -
 where Suggested_Price > :set_price

Using conjunctions in a WHERE clause
Because both the OLAP DML and SQL include AND and OR as part of their
language syntax, you must use parentheses when using one of these conjunctions.
Otherwise, the command might be ambiguous and produce unexpected results.
Place the parentheses around the input host variable preceding AND or OR.

If a host variable expression begins with a parenthesis, then the matching right
parenthesis is interpreted as the end of the host variable expression. If you plan to
add more text to the expression after a matching right parenthesis, then you must
enclose the entire expression with an extra set of parentheses.

Type of Expression Example

Variable (database or local) :set_price

Dimension :prod

Qualified data reference :units(prod ’P8’, geog ’G12’, -
 time ’T36’)

Program argument :newval

Text expression :joinchars(’first_name’ ’last_name’)

Arithmetic expression :intpart(6.3049) + 1

User-defined function :getgeog

Opening a Cursor

10-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Using conjunctions in a WHERE clause
The following program fragment uses the values of two arguments to limit the
range of values selected for the time dimension.

arg start_time date
arg end_time date
 .
 .
 .
sql declare addtime cursor for -
 select Timestamp from shipments -
 where Timestamp between :(start_time) -
 and :end_time

Opening a Cursor

OPEN statement
After the SQL DECLARE CURSOR command has associated a cursor with a
selection of data, you use the SQL OPEN statement to get ready to retrieve the data.
These commands for a particular cursor:

■ Must appear in the same OLAP DML program.

■ Cannot contain ampersand substitution.

The following is the syntax of the SQL command with an OPEN statement as an
argument.

SQL OPEN cursor-name

Cursor’s active set
The SQL OPEN command:

■ Evaluates the input host variables (if any) used in the definition of the specified
cursor.

■ Determines the cursor’s active set (that is, the rows that satisfy the SELECT
statement).

■ Leaves the cursor positioned before the first row of the active set.

Fetching the Selected Data

Using Embedded SQL 10-11

A cursor’s active set is determined when it is opened, and it is not updated later.
Therefore, changing the value of an input host variable after opening its cursor does
not affect the cursor’s active set.

Fetching the Selected Data

FETCH statement
You use a FETCH statement to retrieve data from a relational database. The FETCH
statement advances the cursor position to each subsequent row of the cursor’s
active set and delivers the selected fields into OLAP DML objects.

The cursor must already be declared and open before you can use the FETCH
statement.

The following is the syntax of the SQL command using a FETCH statement as an
argument.

SQL FETCH cursor [LOOP [loopcount]] INTO :targets... -
[THEN action-statements...]

In the above syntax, targets represents output host variables, which can be one or
more of the following:

[MATCH] dimension
[APPEND position] dimension
variable|qualified data reference|relation|composite

If the output host variable is a dimension, and that dimension is preceded by a
APPEND keyword, then the position that follows APPEND is one of the following:

AFTER dimension-value
BEFORE dimension-value
FIRST
LAST

This chapter describes how to use the SQL FETCH command. For details about this
command, refer to the SQL FETCH entry in the OLAP DML Reference. For more
information about understanding the syntax, refer to “Using Dimensions as Output
Host Variables” on page 10-14.

Fetching the Selected Data

10-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Definition: Output host variables
The fetched data is brought into one or more output host variables. An output host
variable is an OLAP DML object that will be used to store the data retrieved from
the relational database.

Using output host variables
The order of the output host variables must match the order of the columns in the
DECLARE CURSOR statement, and a colon must precede each output host variable
name. The variable or dimension receiving the data must be defined already. It must
also have a compatible data type.

The following are examples of expressions that can be used as output host variables.

Fetching dimension values
Whenever you fetch data into a dimensioned OLAP DML variable, you must
include the dimension values in the fetch. While you can add new dimension values
at the same time, you do not need to add them when they already exist in your
analytic workspace; instead, you use the dimension values in the fetch to align the
data.

When data is written into a dimension, it temporarily limits the status of the
dimension to the value being matched or appended. This means that when the
FETCH statement also includes output host variables that are dimensioned by the
specified dimension, the temporary status is observed when values are assigned to
those variables.

Note: Be sure to fetch the dimension values before the values of the variable.
Otherwise, the fetch will not loop through the dimension values.

Fetching null values
Null values in a relational table are equivalent to NAs. In OLAP DML variables,
null values do not pose a problem; they appear as NAs. However, you cannot have

Type of Expression Example

Variable (database or local) :sales

Dimension :geog

Qualified data reference :units(geog ’G4’ prod ’P15’ time ’T23’)

Fetching the Selected Data

Using Embedded SQL 10-13

a dimension value of NA. Therefore, any rows that have a null value are discarded
in a column being fetched into a dimension.

Host indicator variables in the INTO clause of a FETCH statement are not
supported. (Indicator variables are required when using embedded SQL in C and
COBOL, which do not normally allow unknown or missing values in a variable.)

To promote good performance, use LOOP
Use the LOOP keyword to promote good performance. In most cases, you can
improve performance by using the LOOP keyword instead of using a WHILE loop.
The following is an example of a WHILE loop:

while sqlcode eq 0
 sql fetch highprice into :prod, :prod_label

Instead of using a WHILE loop, use the LOOP keyword, as shown below:

sql fetch highprice LOOP into :prod, :prod_label

For more information about the LOOP keyword and how to use it, refer to the SQL
FETCH entry in the OLAP DML Reference.

Example: Fetching descriptive dimension labels
This example shows the SQL commands used to retrieve dimension labels for the
PROD dimension. The FETCH statement stores descriptive labels in a variable
named LABELS.P. The dimension values have already been fetched from the
PROD_ID column of the Products table to the PROD dimension. They are fetched
again only to align the values in the PROD_NAME column with the appropriate
dimension values. Note that the output host variables, PROD and LABELS.P, must
already be defined as objects in the analytic workspace.

variable set_price short
set_price = 20
 .
 .
 .
sql declare highprice cursor for -
 select Prod_ID, Prod_Name from products -
 where Suggested_Price > :set_price
 .
 .
 .
sql fetch highprice loop into :prod, :labels.p

Closing a Cursor

10-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Closing a Cursor

CLOSE statement
After you have used a cursor to retrieve all the data in its active set, you should
close the cursor. If you want to use the cursor again to retrieve data starting from
the first row of its active set, then you can use the OPEN statement without having
to declare the cursor again. The CLOSE statement does not cancel a cursor’s
declaration; it only renders the active set undefined.

The following is the syntax of the CLOSE statement.

SQL CLOSE cursor-name

COMMIT and ROLLBACK statements
A COMMIT or ROLLBACK statement closes all cursors and cancels all cursor
declarations.

Using Dimensions as Output Host Variables

Syntax of FETCH statement
When an output host variable is a dimension, retrieved values are handled based on
the keyword that you specify before the host variable name. You can specify either
the MATCH keyword (the default) or the APPEND keyword.

SQL FETCH cursor LOOP INTO [MATCH|APPEND] dimension

MATCH keyword
With the MATCH keyword, only values that are the same as existing values of the
dimension are fetched, and an error is signalled when a new value is encountered.
You use it when fetching data into a variable whose dimensions are already
maintained; the dimensions are included in the fetch only to align the data.

In the following example, the MATCH keyword is omitted because it is the default
value. The data in the PROD_ID column of the Products table corresponds to the
PROD dimension values in the analytic workspace. An error is signalled when a
value from the relational table does not match any value in the PROD dimension.

sql fetch highprice loop into :prod, :labels.p

Writing OLAP DML Data to a Relational Table

Using Embedded SQL 10-15

APPEND keyword
With the APPEND keyword, all values that do not match are added to the list of
dimension values.

APPEND has the following arguments, which you use to specify the position where
the new values will be inserted. LAST is the default value.

AFTER value
BEFORE value
FIRST
LAST

Example 1: Adding values to the PROD dimension
In the following example, the APPEND keyword allows new values to be added to
the PROD dimension.

sql fetch highprice loop into :append prod, :labels.p

Example 2: Adding values to the PROD dimension
In the next example, new dimension values are added to the PROD dimension
before the value P11.

sql fetch highprice loop into :append before ’P11’ prod :labels.p

Writing OLAP DML Data to a Relational Table

PREPARE and EXECUTE statements
You write data stored in OLAP DML variables into a relational table by using those
variables as input host variables in your SQL statements. When writing multiple
records, you should use the PREPARE and EXECUTE statements so that the same
INSERT statement does not have to be recompiled for each row of data being sent to
the table.

The syntax of the PREPARE and EXECUTE statements is shown below.

SQL PREPARE statement-name FROM sql-statement
SQL EXECUTE statement-name

PREPARE and EXECUTE must appear in the same program and cannot include
ampersand (&) substitution. When an input host variable is a dimension, you must
use a FOR command to loop over its values; otherwise, only the first value in status
is sent.

Writing OLAP DML Data to a Relational Table

10-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Inserting OLAP DML data into a relational table
Suppose that you have been using the OLAP DML to plan the introduction of a new
product line, and now you want to add these new products to your relational
database. You could copy this information from your analytic workspace into the
appropriate relational table.

OLAP DML objects
The following are the OLAP DML objects used to store the data.

DEFINE PROD DIMENSION TEXT
DEFINE LABELS.P VARIABLE TEXT <PROD>
DEFINE SUGGEST.P VARIABLE SHORT <PROD>

Inefficient FOR loop
The following program fragment shows how you would use a FOR loop so that all
product values currently in status are copied to a table named Products.

for prod
 do
 sql insert into products -
 values(:prod, :labels.p, :suggest.p)
 if sqlcode ne 0
 then break
 doend

Efficient precompiled code
The previous example will run much more efficiently when the INSERT statement
is compiled with the PREPARE statement. The next example shows the PREPARE
statement being used to compile the INSERT statement with a name of
WRITE_PRODUCTS, which is then run by an EXECUTE statement within the FOR
loop.

sql prepare write_products from -
 insert into products -
 values(:prod, :labels.p, :suggest.p)
 .
 .
 .

Writing OLAP DML Data to a Relational Table

Using Embedded SQL 10-17

for prod
 do
 sql execute write_products
 if sqlcode ne 0
 then break
 doend

Example: Conditionally updating a relational table
You can also use the values of a multidimensional OLAP DML variable to update
the values in a relational table. Using a FOR loop, your OLAP DML program steps
through the specified dimension value by value and uses a WHERE clause to point
to the corresponding row in the relational table.

The following program fragment updates only those rows in the Products table
where the values in the PROD_ID column match the PROD dimension values
currently in status.

for prod
 do
 sql update products -
 set Suggested_Price = :suggest.p -
 where Prod_ID = :prod
 if sqlcode ne 0
 then break
 doend

Matching Oracle9i Data Types

10-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Matching Oracle9i Data Types

Table of equivalents
Oracle9i uses a mix of conventional and unique native data types. The equivalent
data types for OLAP DML dimensions and variables are listed in the following
table.

Date data
When writing OLAP DML text to a DATE column, the text must be in the default
date format. You can use slashes (/) or hyphens (-) as separators, as well as spaces.
If the data is in a different format, then you can use the Oracle9i TO_DATE function
in your SQL INSERT command. In the following example, TODAY is a text variable
containing the current date in the format of "March 16, 1995".

sql insert into shipments(Timestamp) -
 values(TO_DATE(:today, ’Month DD, YYYY’)

Refer to your Oracle9i documentation for information about using the TO_DATE
function.

Text data
You can retrieve the entire contents of VARCHAR2 and LONG columns into OLAP
DML TEXT variables. The maximum size in Oracle9i is 2K bytes for VARCHAR2

Oracle9i OLAP DML Dimensions OLAP DML Variables

CHAR TEXT [WIDTH n], ID TEXT [WIDTH n], ID, BOOLEAN

DATE DAY, WEEK, MONTH,
QUARTER, YEAR, TEXT

DATE, TEXT

FLOAT N/A DECIMAL

LONG N/A TEXT

LONG RAW N/A N/A

NUMBER N/A INTEGER, SHORTINTEGER,
DECIMAL, SHORTDECIMAL

RAW N/A N/A

ROWID N/A N/A

VARCHAR2 TEXT TEXT

Matching Oracle9i Data Types

Using Embedded SQL 10-19

columns and 2 gigabytes for LONG columns. Newline characters are inserted in an
output host variable whenever it encounters carriage returns (ASCII code 13) or line
feeds (ASCII code 10). A newline character is inserted whenever its maximum line
length of 498 bytes is reached.

LONG data
To insert more than 2k bytes of text data into a LONG column, use the WIDE
keyword before the name of the input host variable. With this keyword, the
maximum size is 65k bytes. Longer values are truncated.

The following is the syntax of the WIDE keyword.

:WIDE input-host-variable

Data is passed with the WIDE keyword to Oracle9i as LONG data. (Otherwise, text
data is passed as VARCHAR2.) Oracle9i imposes some restrictions on the LONG
data type. An error will not be signaled when you violate these restrictions.
However, you might get unexpected results.

Refer to the Oracle9i manuals for information about restrictions on the LONG data
type.

Input host variables
The input host variable must have a TEXT data type. The following example shows
the contents of an OLAP DML variable, TEXTVAR, being inserted into a LONG
column, COL1 of TABLE1.

sql insert into table1(col1) values(:wide textvar)

Formula for calculating the number of characters
You can calculate the number of characters that will be sent to Oracle9i from an
input host variable by using the following formula.

NUMCHARS(variable) + 2 * (NUMLINES(variable) - 1)

For example, the following command shows the number of characters that will be
sent using BIGVAR as the input host variable.

show numchars(bigvar) + 2 * (numlines(bigvar) -1)

This formula counts the extra carriage return and line feed characters that have
been inserted between lines when passing the text to Oracle9i.

Using the Special Features of an OCI Connection

10-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information about OLAP DML data types, search OLAP DML Reference
for the “DEFINE command.” For descriptions of Oracle9i data types, see the SQL
Language Reference Manual or the PL/SQL User’s Guide and Reference.

Using the Special Features of an OCI Connection

Overview: Using the special features of an OCI connection
When you have a direct connection to an Oracle9i database, you can use some of its
special features.

FOR UPDATE clause
Oracle9i has an additional FOR UPDATE clause in the SELECT statement. This
syntax is supported in a cursor declaration so that you can update or delete data
associated with the cursor.

WHERE CURRENT OF cursor clause
The WHERE CURRENT OF cursor clause is supported in UPDATE and DELETE
statements for interactive modifications to a table.

Savepoints
Savepoints are ignored. If your program sets a savepoint and issues a ROLLBACK
TO savepoint command, then all SQL commands are rolled back in the current
transaction, and the transaction is ended.

Requirements for stored procedures and triggers
Support is provided for Oracle9i stored procedures and triggers. They cannot
contain SELECT statements. An OLAP DML stored procedure cannot contain
output variables or transactions, nor can it call another procedure.

OLAP DML syntax differs slightly from the standard Oracle9i syntax. A tilde (~) is
required instead of a semicolon as a terminator, and two colons are required instead
of one in an assignment statement.

You can create a stored procedure or trigger in an OLAP DML program.

Using the Special Features of an OCI Connection

Using Embedded SQL 10-21

Example: Creating a stored procedure
The following example shows the OLAP DML syntax for creating a procedure
named NEW_PRODUCTS.

sql create procedure new_products -
 (id char, name char, cost number) is -
 price number~ -
 begin -
 price ::= cost * 2.5~ -
 insert into products -
 values(id, name, price)~ -
 end~

Executing a stored procedure
You use a PROCEDURE statement to run a stored procedure, using the following
syntax.

SQL PROCEDURE procedure-name (arg1, arg2, arg3, . . .)

The arguments can be literal text or input host variables. When you use input host
variables, be sure to use a colon before the variable name. Also be sure to use the
same number of arguments with appropriate data types for the parameters defined
in the procedure.

Examples: Running the sample procedure

Providing literal values for arguments
The following command uses the NEW_PRODUCTS procedure to insert a single
row in the Products table.

sql procedure new_products -
 (’P81’, ’8mm Camcorder’, 279.58)

Using OLAP DML data for arguments
The ADD_PRODS program runs the same procedure but inserts data stored in
OLAP DML dimensions and variables into the Products table. A FOR loop is
required to loop over all of the values in status.

DEFINE ADD_PRODS PROGRAM
LD Add new products using stored procedure NEW_PRODUCTS
PROGRAM
arg newprods text

Example: SQL Program

10-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

trap on error
push prod
limit prod to &newprods
" Loop over PROD to insert the data
for prod
 do
 sql procedure new_products(:prod, :labels.p,-
 :cost.p)
 if sqlcode ne 0
 then break
 doend
if sqlcode ne 0
 then signal err1 ’Insert data into table failed.’
" Save new data in Products table
sql commit
show ’New products added to products table’
goto cleanup
ERROR:
" Discard changes to Products table
sql rollback
show ’No new products added to Products table.’
CLEANUP:
pop prod
END

To call ADD_PRODS, you issue a command like the following to set the status of
PROD to include only the values you wish to update.

call add_prods(’last 5’)

Example: SQL Program

The sample relational database
The sample relational database used for SQL examples contains corporate data for a
fictitious electronics company. All of the examples are derived from four tables:
Stores, Products, Shipments, and Shipments_Detail.

The examples show selected data from these tables as displayed using SQL*Plus.

Stores table
The Stores table has a row for each retail outlet. The STORE_ID column is the
primary key and uniquely identifies each store.

Example: SQL Program

Using Embedded SQL 10-23

The following table shows sample data from three columns of the Stores table.

SQL> select store_id, store_name, city from stores;

STORE_ID STORE_NAME CITY
-------- --------------------- ------------
G4 Sears Boston
G5 Cambridge Sound Cambridge
G6 New England Stereo Boston
G7 Tweeter Burlington
G8 Tweeter Nashua
 .
 .
 .

Products table
The Products table contains a row with information about each product. The
PROD_ID column is the primary key and uniquely identifies each product.

SQL> select * from products;

PROD_ID PROD_NAME SUGGESTED_PRICE
---------- ---------------------- ---------------
P9 CD Player 248.95
P10 Receiver 298.95
P11 Amplifier 189.95
P12 Cassette Deck 159.95
P15 Color TV 499.95
P16 B & W TV 74.95
 .
 .
 .

Shipments table
The Shipments table contains a row for each purchase order.

The ORDER_NO column is the primary key.

The STORE_ID column is a foreign key and contains store identification numbers
listed in the STORE_ID column of the Stores table. The STORE_ID columns of the
Shipments and Stores tables create a relationship between the two tables.

Example: SQL Program

10-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The same store identification numbers can appear in numerous rows, once for each
order placed by a particular retail outlet. In the following sample of data from the
Shipments table, store G16 appears twice.

SQL> select * from shipments;

ORDER_NO STORE_ID CUST_PO TIMESTAMP
------------ -------- ------------- ---------
OR25 G6 2FD963718 12-MAR-96
OR26 G20 2243-3122-05 12-MAR-96
OR27 G21 379711 12-MAR-96
OR28 G11 2332628347 12-MAR-96
OR29 G13 786219190 19-MAR-96
OR30 G16 163222 19-MAR-96
 .
 .
 .

Shipments_Detail table
The Shipments_Detail table identifies the quantity and type of items ordered.

The primary key is composed of two columns, ORDER_NO and PROD_ID. The
ORDER_NO column is also a foreign key containing values from the ORDER_NO
column of the Shipments table. The ORDER_NO columns of the Shipments and
Shipments_Detail tables create a relationship between these two tables.

The PROD_ID column is also a foreign key containing values from the PROD_ID
column of the Products table. The PROD_ID columns of the Products and
Shipments_Detail tables create a relationship between these two tables.

SQL> select * from shipments_detail where units < 100;

ORDER_NO PROD_ID UNITS SELLING_PRICE
------------ ---------- ---------- -------------
OR51 P10 54 14528.97
OR51 P11 73 12479.71
OR51 P12 76 10940.58
OR51 P19 59 9555.35
OR51 P23 83 59756.27
OR51 P24 55 32172.52
OR52 P9 76 17028.18
OR52 P11 74 12650.67
 .
 .
 .

Example: SQL Program

Using Embedded SQL 10-25

Diagram of relational database
Following is a diagram of the database. The primary keys are shaded and the
relationships between tables are identified by arrows between them.

The sample analytic workspace
The SQL examples in this chapter use the tables shown in the previous topic to
create an OLAP DML data variable named V.UNITS. It is dimensioned by

Stores

STORE_ID

STORE_NAME

ADDRESS

SALES_REP

STATE

CITY

Shipments

STORE_ID

CUST_PO

ORDER_NO

TIMESTAMP

Shipments_Detail

ORDER_NO

PROD_ID

UNITS

SELLING_PRICE

SUGGESTED_PRICE

PROD_NAME

Products

PROD_ID

STORE_ID

ORDER_NO

PROD_ID

Example: SQL Program

10-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

geography, product, and time dimensions, which are named GEOG, PROD, and
TIME, respectively.

Since the relational tables provide codes for both stores and products, the
Geography and Product dimensions use these codes as their dimension values. The
full names for the stores and products are stored in separate text variables so that
they are available for labeling the data in reports, but they are not used for storing
and selecting data.

In the relational database, the order number is critically important for tracking
individual sales. However, it is not an important factor from the standpoint of
analytical processing. This information is not retrieved into the analytic workspace.

Geography dimension
The values for GEOG, the geography dimension, are fetched from the STORE_ID
column of the Stores table. The GEOG dimension contains identifications numbers
for all the stores, since the numbers are obtained from a primary key. The definition
for the GEOG dimension is shown below, followed by a report of the first five
values in GEOG.

DEFINE GEOG DIMENSION TEXT
LD All stores

GEOG

G11
G12
G13
G14
G15

Product dimension
The product dimension, PROD, also acquires its values from a primary key to get a
complete list of all products. The product values are fetched from the PROD_ID
column of the Products table. The definition for the PROD dimension is shown
below, followed by a report of the first eight values in PROD.

DEFINE PROD DIMENSION TEXT
LD All products

PROD

P10
P11

Example: SQL Program

Using Embedded SQL 10-27

P12
P15
P16
P17
P19
P20

TIME dimension
Time dimension values are fetched from the TIMESTAMP column of the Shipments
table. The definition for the TIME dimension is shown below, followed by a report
of the first eight values in TIME.

DEFINE TIME DIMENSION WEEK ENDING SATURDAY
LD Time dimension

TIME

W6.95
W7.95
W8.95
W9.95
W10.95
W11.95
W12.95
W13.95

Notice that the date values from the relational table were converted to a weekly
format when they were brought into the TIME dimension in the analytic
workspace.

V.UNITS variable
The number of items sold is fetched from the UNITS column of the
Shipments_Detail column and stored in a variable named V.UNITS. This variable is
dimensioned by GEOG, PROD, and TIME. Here is the object definition for
V.UNITS.

DEFINE V.UNITS VARIABLE SHORTINTEGER <GEOG PROD TIME>
LD Units sold

The report command

report down prod across time: v.units

Example: SQL Program

10-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

produces the following report.

GEOG: G7
 ------------V.UNITS-------------
 --------------TIME--------------
PROD W3.96 W8.96 W11.96
-------------- ---------- ---------- ----------
P10 185 137 127
P11 153 153 155
GEOG: G11
 ------------V.UNITS-------------
 --------------TIME--------------
PROD W3.96 W8.96 W11.96
-------------- ---------- ---------- ----------
P10 455 NA 180
P11 854 NA 773

Rotating the data cube
You can easily rotate a multidimensional data cube for different types of analyses.
In the next example, products identify the rows, and stores identify the columns.
Each time period appears in a separate report. The data is much easier to identify
this time because the report shows the full descriptive labels for stores and
products.

The report command

report w 20 down labels.p across labels.g: v.units

produces the following report.

TIME: W3.96
 ------------V.UNITS-------------
 --------------GEOG--------------
 Sams Club Tweeter - Wal-Mart -
LABELS.P - New York Burlington New York
-------------------- ---------- ---------- ----------
Receiver 455 185 166
Amplifier 854 153 63
Cassette Deck 347 63 175
Color TV 530 127 129
B & W TV 436 189 134
Portable TV 217 64 174
Standard VCR 670 170 110
Stereo VCR 813 161 151

Example: SQL Program

Using Embedded SQL 10-29

Summary of sample OLAP DML objects
The following table provides a summary of the OLAP DML objects that are created
from the sample relational database.

Fetching PRODUCT dimension values and labels
The GET_PRODUCTS program fetches product codes into the PROD dimension
and fetches descriptive labels into a text variable named LABELS.P.

Both PROD and LABELS.P have been defined in the database, but they do not yet
have values.

The SELECT statement of the SQL DECLARE CURSOR command compares the
value of a local variable with the suggested price for the product to determine
whether or not to include a product in the fetch. Notice that you do not need to use
the DISTINCT keyword in the SELECT statement; duplicate values from the fetch
are disregarded when adding dimension values.

Object definitions
The object definitions are listed below.

DEFINE PROD DIMENSION TEXT
LD Product dimension
DEFINE LABELS.P VARIABLE TEXT <PROD>
LD Product labels
DEFINE GET_PRODUCTS PROGRAM
LD Get product dimension values and labels
PROGRAM
variable set_price short

OLAP DML Object Created from. . .

Geography dimension (GEOG) STORE_ID column of Stores table

Product dimension (PROD) PROD_ID column of Products table

Time dimension (TIME) TIMESTAMP column of Shipments table

Units variable, dimensioned by geography,
product, and time (V.UNITS)

UNITS column of Shipments_Detail table

Geography labels variable, dimensioned by
geography (LABELS.G)

STORE_NAME column of Stores table

Product labels variable, dimensioned by
product (LABELS.P)

PROD_NAME column of Products table

Example: SQL Program

10-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

set_price = 2
trap on error
" Connect to database if communications
" have not been established already.
.
 .
 .
" Declare a cursor named HIGHPRICE
sql declare highprice cursor for -
 select Prod_ID, Prod_Name from products -
 where Suggested_Price > :set_price
if sqlcode ne 0
 then signal err1 ’Declare cursor failed.’
" Open the cursor
sql open highprice
if sqlcode ne 0
 then signal err2 ’Cursor open failed.’
" Fetch the data into the PROD dimension and
" LABELS.P variable
sql fetch highprice loop into :append prod, :labels.p
if sqlcode ne 0 and sqlcode ne 100
 then signal err3 ’Fetch failed.’
" Close the cursor
sql close highprice
if sqlcode ne 0
 then signal err4 ’Cursor close failed.’
show ’Product dimension created.’
update
goto cleanup
ERROR:
show ’Product dimension build failed.’
CLEANUP:
" Free the cursor
sql rollback
END

Fetching GEOGRAPHY dimension values and labels
In this example, two columns of information are needed to describe the geography
values uniquely. Since many of the stores are located in more than one city, the store
name and the city must be combined into a unique descriptive label.

The GET_GEOLABELS program fetches the store and city names into temporary
text variables first. Then the JOINCHARS function combines them into text for the

Example: SQL Program

Using Embedded SQL 10-31

LABELS.G variable. The temporary variables are discarded at the end of the
program, regardless of whether or not the program completes successfully.

Object definitions
The object definitions are listed below.

DEFINE GEOG DIMENSION TEXT
LD Geography dimension
DEFINE LABELS.G VARIABLE TEXT <GEOG>
LD Store and city labels

GET_GEOLABELS program
The GET_GEOLABELS program is listed below.

DEFINE GET_GEOLABELS PROGRAM
LD Get store and city names for geography labels
PROGRAM
define store.g variable text <geog> temp
define city.g variable text <geog> temp
trap on ERROR
" Connect to database if communications
" have not been established already.
 .
 .
 .
" Declare a cursor named GEOLABELS
sql declare geolabels cursor for -
 select Store_ID, Store_Name, City from stores
if sqlcode ne 0
 then signal err1 ’Declare cursor failed.’
" Open the cursor
sql open geolabels
if sqlcode ne 0
 then signal err2 ’Open cursor failed.’
" Fetch the data into the GEOG dimension and
" temporary variables STORE.G and CITY.G
sql fetch geolabels loop into :append geog, :store.g, :city.g
if sqlcode ne 0 and sqlcode ne 100
 then signal err3 ’Fetch failed.’
" Close the cursor
sql close geolabels
if sqlcode ne 0
 then signal err4 ’Close cursor failed.’
" Maintain the permanent LABELS.G variable

Example: SQL Program

10-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

labels.g = joinchars(store.g, ’ - ’, city.g)
delete store.g city.g
update
show ’Geography dimension and labels maintained.’
goto cleanup
ERROR:
delete store.g city.g
show ’Geography dimension build failed.’
CLEANUP:
" Free the cursor
sql rollback
END

Maintaining the TIME dimension
The GET_TIME program adds new values to the TIME dimension, which is already
defined with dimension values. Two arguments define the range into which the
new values must fall.

GET_TIME fetches the new values from the relational table into a dimension named
NEWTIME instead of TIME. Consequently, if the fetch fails while values are being
read into the analytic workspace, then the analytic workspace can be restored easily
to its previous state. The new values are added to the TIME dimension, using a
MAINTAIN MERGE command, only after all values have been fetched successfully.

Passing arguments to GET_TIME
To run the program, you issue a command like the following one.

call get_time (’01APR95’ ’30JUN95’)

Date formats
The arguments in this program are defined with a DATE data type. These
arguments are passed directly to the data source, so they must be in a date format
that the data source understands. The format is controlled by the OLAP DML
DATEFORMAT setting. Whenever a program uses a DATE argument, you must
make sure that DATEFORMAT is set to an appropriate format.

You could, however, define the arguments with a TEXT or ID data type. When a
program uses a TEXT or ID argument to pass a date, you must make sure to call the
program with arguments in a date format that is acceptable to the data source.

In the sample GET_TIME program, the OLAP DML date format is the default
"01JAN95" when the starting and ending dates are passed to the data source. Later

Example: SQL Program

Using Embedded SQL 10-33

in the program, the date format changes to "January 1st, 1995". Most data
sources do not accept this date format. A date value passed in this date format
would cause the OPEN CURSOR statement to fail.

The GET_TIME program also creates descriptive labels for time periods by
converting the dimension values into more descriptive text. This is done entirely in
the OLAP DML, using the DATEFORMAT option and the CONVERT function.

The following table will give you an idea of the various ways date data can be
formatted after being fetched into the analytic workspace.

Object definitions
The object definitions are listed below.

DEFINE TIME DIMENSION WEEK ENDING SATURDAY
LD Time dimension
DEFINE NEWTIME DIMENSION WEEK ENDING SATURDAY
LD Intermediate Time dimension
DEFINE LABELS.T VARIABLE TEXT <TIME>
LD Time descriptions

GET_TIME program
The GET_TIME program is listed below.

DEFINE GET_TIME PROGRAM
LD Get time periods
PROGRAM
arg start_time date
arg end_time date
push dateformat

Date Format Produced by. . .

W12.95 Fetching a date value into an OLAP DML dimension with a
WEEK data type.

25MAR95 Fetching a date value into an OLAP DML variable with a
TEXT data type. The format is not affected by the current
DATEFORMAT setting.

March 25th, 1995 Converting a date or text value (either W12.95 or 25MAR95)
into a date with this format:

’<mtextl> <dtl>, <yyyy>’

Example: SQL Program

10-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

trap on error
" Connect to database if communications
" have not been established already.
.
 .
 .
" Declare a cursor named ADDTIME
sql declare addtime cursor for -
 select Timestamp from shipments -
 where Timestamp between :(start_time) and :end_time
if sqlcode ne 0
 then signal err1 ’Declare cursor failed.’
" Open the cursor
sql open addtime
if sqlcode ne 0
 then signal err2 ’Cursor open failed.’
" Fetch time periods into dimension newtime
sql fetch addtime loop into :append newtime
if sqlcode ne 0 and sqlcode ne 100
 then signal err3 ’Fetch failed.’
" Close the cursor
sql close addtime
if sqlcode ne 0
 then signal err4 ’Close cursor failed.’
" Add new time periods to permanent TIME dimension
maintain time merge newtime
" Create time labels in format of January 1st, 1995
limit time to newtime
dateformat = ’<mtextl> <dtl>, <yyyy>’
labels.t = convert(time, date)
show ’Time dimension and labels maintained.’
update
goto cleanup
ERROR:
show ’Time dimension maintenance failed.’
CLEANUP:
" Free the cursor
sql rollback
pop dateformat
maintain newtime delete all
END

Example: SQL Program

Using Embedded SQL 10-35

Fetching SALES data
The GET_UNITS program fetches data into a variable named V.UNITS, which is
dimensioned by the GEOG, PROD, and TIME dimensions. V.UNITS is already
defined as an OLAP DML object. Notice that the SELECT portion of the DECLARE
CURSOR statement uses an ORDER BY clause listing the column with the
slowest-varying dimension values first.

Sorting data for efficiency
This sort order fetches the data in basically the same order that it will be stored, as
shown by the following table. The table shows the results of a SELECT statement
that was issued using the interactive interface of a relational manager.

Store_ID Prod_ID Timestamp Units
-------- --------- ---------------------- ---------
G17 P10 Jan 7 1995 8:56AM 103
G19 P10 Jan 7 1995 9:02AM 54
G5 P10 Jan 7 1995 9:10AM 69
G17 P11 Jan 7 1995 9:14AM 74
G19 P11 Jan 7 1995 9:23AM 73
G5 P11 Jan 7 1995 9:49AM 197
 .
 .
 .
G51 P32 Oct 21 1995 4:57PM 205
G5 P33 Oct 21 1995 5:04PM 251
G51 P33 Oct 21 1995 5:09PM 257
G5 P9 Oct 21 1995 5:18PM 83
G51 P9 Oct 21 1995 5:22PM 105

Object definitions
The object definitions are listed below.

DEFINE V.UNITS VARIABLE SHORT <GEOG PROD TIME>
LD Units sold
DEFINE TIME DIMENSION WEEK ENDING SATURDAY
LD Time dimension

GET_UNITS program
The GET-UNITS program is listed below.

DEFINE GET_UNITS PROGRAM
LD Fetch units sold data

Example: SQL Program

10-36 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

PROGRAM
trap on error
allstat
" Connect to database if communications
" have not been established already.
 .
 .
 .
" Declare a cursor named GRABDATA
sql declare grabdata cursor for -
 select Store_ID, Prod_ID, Timestamp, Units -
 from shipments, shipments_detail -
 where shipments.Order_No -
 = shipments_detail.Order_No -
 order by Timestamp, Prod_ID, Store_ID
if sqlcode ne 0
 then signal err1 ’Declare cursor failed.’
" Open the cursor
sql open grabdata
if sqlcode ne 0
 then signal err2 ’Open cursor failed.’
" Fetch new values into V.UNITS variable. Use
" dimensions to align data in V.UNITS.
sql fetch grabdata loop into :geog, :prod, :time,:v.units
if sqlcode ne 0 and sqlcode ne 100
 then signal err3 ’Fetch failed.’
" Close the cursor
sql close grabdata
if sqlcode ne 0
 then signal err4 ’Close cursor failed.’
update
show ’V.UNITS variable populated.’
goto cleanup
ERROR:
show ’V.UNITS data incomplete.’
CLEANUP:
" Free the cursor
sql rollback
END

Writing OLAP DML data to a relational table
The CREATE_PRODUCTS program defines a new table in the relational database
and populates it with data from an analytic workspace. It uses PREPARE and

Example: SQL Program

Using Embedded SQL 10-37

EXECUTE statements so that the INSERT statement will not have to be recompiled
for each dimension value.

Object definitions
The object definitions are listed below.

DEFINE PROD DIMENSION TEXT
LD Products
DEFINE LABELS.P VARIABLE TEXT <PROD>
LD Descriptive product names
DEFINE SUGGEST.P VARIABLE SHORT <PROD>
LD Suggested price

CREATE_PRODUCTS program
The CREATE_PRODUCTS program is listed below.

DEFINE CREATE_PRODUCTS PROGRAM
LD Create Products table
PROGRAM
trap on error
" Connect to database if communications
" have not been established already.
 .
 .
 .
" Create the products table using appropriate
" data types for the relational manager
sql create table products -
 (Prod_ID text data type, -
 Prod_Name text data type, -
 Suggested_Price decimal data type)
if sqlcode ne 0
 then signal err1 ’Create table failed.’
" Prepare the INSERT statement with a statement name
" of WRITE_PRODUCTS
sql prepare write_products from insert into products -
 values(:prod, :labels.p, :suggest.p)
if sqlcode ne 0
 then signal err2 ’Prepare table failed.’
" Begin transaction, if appropriate
 .
 .
 .

Example: SQL Program

10-38 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

" Loop over PROD dimension to execute INSERT statement
" for each product value in status
for prod
 do
 sql execute write_products
 if sqlcode ne 0
 then break
 doend
if sqlcode ne 0
 then signal err3 ’Insert data failed.’
" Save changes to the products table
sql commit
show ’Products table populated.’
return
ERROR:
"Discard all changes to the database
sql rollback
sql drop table products
show ’Products table discarded.’
END

Updating rows using a FOR loop
The UPDATE_PRODS program sets the status of the PROD dimension to a value
specified when you run the program.

UPDATE_PRODS uses a FOR command to loop over the selected products. The
SQL UPDATE command updates the SUGGEST.P column of the Products table
with the values from an OLAP DML variable named SUGGEST.P.

Passing arguments to UPDATE_PRODS
To run the program, you would issue a command like the one shown here.

call update_prods (’last 5’)

Object definitions
The object definitions are listed below.

DEFINE PROD DIMENSION TEXT
LD Products
DEFINE SUGGEST.P VARIABLE SHORT <PROD>
LD Suggested price

Example: SQL Program

Using Embedded SQL 10-39

UPDATE_PRODS program
The UPDATE_PRODS program is listed below.

DEFINE UPDATE_PRODS PROGRAM
LD Update products table
PROGRAM
arg _prodlist text
trap on error
push prod
limit prod to &_prodlist
" Connect to database if communications
" have not been established already.
" Begin transaction, if appropriate
 .
 .
 .
" Loop over products in status to update table
for prod
 do
 sql update products set -
 Suggested_Price = :suggest.p -
 where Prod_ID = :prod
 if sqlcode ne 0
 then break
 doend
if sqlcode ne 0
 then signal err ’Update data in table failed.’
show ’Products table updated.’
goto cleanup
ERROR:
"Discard all changes to the products table
sql rollback
show ’Product table was not updated.’
CLEANUP:
pop prod
END

Example: SQL Program

10-40 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Precompiling for efficiency
To improve performance, you should modify this program to use PREPARE and
EXECUTE, as shown in the following program fragment.

sql prepare new_prices from update products -
 set Suggested_Price = :suggest.p -
 where Prod_ID = :prod
 .
 .
 .
for prod
 do
 execute new_prices
 if sqlcode ne 0
 then break
 doend

Reading Data from Files 11-1

11
Reading Data from Files

Chapter summary
This chapter describes how to read data from external files.

List of topics
This chapter includes the following topics:

■ Introducing Data-Reading Programs

■ Reading Files

■ Specifying File Names in the OLAP DML

■ Reading Data from Files

■ Reading and Maintaining Dimension Values

■ Processing Input Data

■ Processing Records Individually

■ Processing Several Values for One Variable

Introducing Data-Reading Programs

11-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing Data-Reading Programs

Definition: Data-reading commands
There is a group of commands, often referred to as data-reading commands, that
you can use in programs to read data from external files in various formats: binary,
packed decimal, or text. The data-reading commands are described below.

Function or Command Description

FILEERROR function Returns information about the first error that occurred when
you are processing a record from an input file with the
data-reading commands FILEREAD and FILEVIEW.

FILENEXT function Makes a record available for processing by the FILEVIEW
command. It returns YES when it is able to read a record and
NO when it reaches the end of the file.

FILEREAD command Reads records from an input file, processes the data, and stores
the data in OLAP DML dimensions, composites, relations, and
variables, according to descriptions of the fields in the input
record.

FILEVIEW command Works in conjunction with the FILENEXT function to read one
record at a time of an input file, process the data, and store the
data in OLAP DML dimensions and variables according to the
descriptions of the fields.

RECNO function Reports the current record number of a file opened for reading.

Reading Files

Reading Data from Files 11-3

Description: File I/O commands
You use the data-reading commands with file I/O commands, such as the
commands described below.

Definition: Data-reading programs
While some of the data-reading commands can be used individually, it is best to
place them in a program that is often referred to as a data-reading program. In this
way you can minimize mistakes in typing and test your commands on smaller sets
of data. A program also allows you to perform operations in which several
commands are used together to loop over many records in a file.

Reading Files

Basic steps: Reading from files
While reading from a file, you can format the data from each field individually, and
you can use Express functions to process the information before assigning it to an
OLAP DML object. Reading a file generally involves the following steps.

1. Open the file you want to read.

2. Read data from the file one record or line at a time.

3. Process the data and assign it to one or more Express objects.

4. Close the file.

Function or Command Description

FILECLOSE command Closes an open file.

FILEGET function Returns text from a file that has been opened for reading.

FILEOPEN function Opens a file, assigns it a fileunit number (an arbitrary
integer), and returns that number.

FILEPUT command Writes data that is specified in a text expression to a file that is
opened in WRITE or APPEND mode.

FILEQUERY function Returns information about one or more files.

FILESET command Sets the paging attributes of a specified fileunit.

Reading Files

11-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Methods for reading a file
The FILEREAD and FILEVIEW commands have the same attributes and can do the
same processing on your data. However, they differ in important ways:

■ The FILEREAD command loops automatically over all records in the file.

■ The FILEVIEW command processes one record at a time.

Consequently, there are two basic methods for reading a file.

Creating a program to read data
The following table shows, for each method, the commands you need to open and
close the input file, to read the file, and to handle errors that might occur.

Note: The error handling in the abnormal exit section of the programs closes the file
only when the file is open. The FILEOPEN function signals an error when for any
reason the system can not open the file. The program tries to close the file after the

Method Command Description Use

1 FILEREAD Processes all records in a
file automatically.

Use when all records in the
file are the same.

2 FILENEXT and
FILEVIEW

Reads and processes one
record at a time from the
file.

Use when there is more than
one type of record in a file.

Program Section Method 1(FILEREAD)
Method 2(FILENEXT and

FILEVIEW)

Initialization variable funit integer
trap on error

variable funit integer
trap on error

Body funit = fileopen(-
 ’datafile’ read)
fileread funit
 .
 .
 .
fileclose funit

funit = fileopen(-
 ’datafile’ read)
while filenext(funit)
 do
 fileview funit . . .
 doend
fileclose funit

Normal Exit return return

Abnormal Exit error:
if funit ne na
then fileclose funit

error:
if funit ne na
then fileclose funit

Specifying File Names in the OLAP DML

Reading Data from Files 11-5

ERROR label only when FUNIT holds a valid file unit number. You can add
additional commands to the error handling section as well. These sections of the
program are the same for both methods.

Specifying File Names in the OLAP DML

Using the fileunit
The FILEOPEN function opens a file and returns an integer that uniquely identifies
that file. This identifier is known as a fileunit. Once you have opened a file and
obtained a fileunit, all subsequent calls to data-reading commands and file I/O
commands for that file reference the fileunit instead of the file name.

Using file identifiers
A file identifier is a character string that specifies a file stored on disk. The file
identifier always includes the file name. In addition, other information might be
required to specify the full path location of the file. The format of file identifiers is
different on different operating systems.

In the Windows environment, the format in which you specify a file name depends
on where the file is located:

■ For files that are local to the computer on which OLAP Services is running, use
DOS format.

■ For files remote to the computer on which OLAP Services is running, use either
DOS or UNC format, unless explicitly stated otherwise in the documentation.
However, be consistent; all references to a given file must be in the same format.

Syntax: DOS file name format
DOS file name format is as follows.

 [d:] [\][path\] filename[.ext]

The d argument designates a disk drive.

The path argument is a path of directory names separated by backslash (\)
characters.

The filename argument is the name of the file.

The ext argument is a 1- to 3-character extension preceded by a period.

Reading Data from Files

11-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Syntax: UNC file name format
UNC file name format is as follows

\\host\share\[path\] filename[.ext]

The host argument designates the host system.

The share keyword designates a shared area on the host.

The path argument is a path of directory names separated by backslash (\)
characters.

The filename argument is the name of the file.

The ext argument is a 1- to 3-character extension preceded by a period.

Specifying a file identifier as a text expression
When specifying file identifiers in OLAP DML commands, it is good practice to
always enclose them in single quotation marks. This will prevent parsing errors in
cases where file name components are also OLAP DML object names or reserved
words.

The backslash character (\) in file identifiers is of special importance. The backslash
is interpreted as an escape character. Therefore, when specifying a file identifier as a
text expression, you must use double backslashes to designate single backslashes.

In most cases, when parsing file names:

■ Forward slashes are converted to backslashes. This feature allows you to specify
one forward slash instead of two backslashes.

■ Extra backslash characters are removed when they occur anywhere in a path
name other than in the first two column positions.

Reading Data from Files

Using the FILEREAD command
Data-reading programs read data from a file, record-by-record, and assign that data
to variables, relations, dimensions, and composites in your analytic workspace.
When the records in the file contain dimension values, you can limit dimensions to
these values with the FILEREAD command before assigning the data to a variable
dimensioned by them.

Reading Data from Files

Reading Data from Files 11-7

Example: Using a FILEREAD command in a data-reading program

File layout
Suppose you want to update unit sales data for the products in the demo analytic
workspace. The new sales information is stored in a file called units.dat, which
has the layout shown in the following figure.

FILEREAD command
The FILEREAD command that reads the sample units.dat file is shown below.

fileread funit -
 column 1 width 8 district -
 column 9 width 8 product -
 column 17 width 6 units

How the FILEREAD command is processed
This command is processed as shown below.

1. The field is read beginning in column 1, and DISTRICT dimension is limited to
the value read. When the value read is not a dimension value of DISTRICT, an
error occurs.

2. The second field is read, and the PRODUCT dimension is limited.

3. The third field is read, and the value is assigned to the UNITS variable in the
cell corresponding to the district and product read in Steps 1 and 2.

 1 1 1 1 1 1 1 1 1 1 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

DISTRICT PRODUCT Unit Sales

Columns Description
 1 - 8 District Names
 9 - 16 Product Names
17 - 22 Unit Sales data

Reading Data from Files

11-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Program code
The full program, with commands to open and close the file, is shown next.

DEFINE READIT1 PROGRAM
LD Read a data file
variable funit integer
trap on error
funit = fileopen(’units.dat’ read)
fileread funit -
 column 1 width 8 district -
 column 9 width 8 product -
 column 17 width 6 units
fileclose funit
return
error:
if funit ne na
 then fileclose funit
END

Reading structured PRN files
You can also use the data-reading commands to read structured PRN files, which
are produced by many PC software products. In a PRN file, quoted text or a series
of numbers demarcated by spaces or commas constitutes a field of the record.
Instead of specifying the column in which a field starts, you can use the
STRUCTURED keyword to specify that you are reading a structured file. You can
also use one or more FIELD keywords to indicate the number of the field you want
to read.

Example: Reading a structured PRN file

File layout
Suppose you want to read sales data from the structured PRN file illustrated below.

 010195 "TENTS" "BOSTON" 307 50808.96
 010195 "TENTS" "ATLANTA" 279 46174.92
 010195 "TENTS" "CHICAGO" 189 31279.78
 010195 "TENTS" "DALLAS" 308 50974.46
 010195 "TENTS" "DENVER" 215 35582.82
 010195 "TENTS" "SEATTLE" 276 45678.41
 010195 "CANOES" "BOSTON" 352 70489.44
 010195 "CANOES" "ATLANTA" 281 56271.40
 010195 "CANOES" "CHICAGO" 243 48661.74

Reading and Maintaining Dimension Values

Reading Data from Files 11-9

 010195 "CANOES" "DALLAS" 176 35244.72
 010195 "CANOES" "DENVER" 222 44456.41
 010195 "CANOES" "SEATTLE" 335 67085.12

The file has PRODUCT values in the second field, DISTRICT values in the third
field, and sales data in the fifth field.

FILEREAD command
You can limit the MONTH dimension to the desired month, and then use the
following command to read the sales data from the first six records in the file.

fileread unit stopafter 6 structured field 2 product -
 district field 5 sales

Reading and Maintaining Dimension Values

Reading records only for existing dimension values
The records in a data file often contain dimension values, which are used to identify
the cell in which the data values should be stored. When all of the dimension values
in the file already exist in your analytic workspace, you can use the default attribute
MATCH in the dimension field description. MATCH accepts only dimension values
that already are in the analytic workspace.

When FILEREAD finds an unrecognized value, the command signals an error that
warns you about the bad data. Your data-reading program can handle the error by
skipping the data and continuing processing, or by halting the processing and
letting you check the validity of the data file.

Example: Reading records only for existing dimension values

File layout
The following example shows a data file that contains 6-character values for the
dimension PRODUCTID, names for each product, and the number of units sold.

 1234AA00CHOCOLATE CHIP COOKIES 123
 1099BB00OATMEAL COOKIES 145
 2344CC00SUGAR COOKIES 223
 3222DD00BROWNIES 432
 5553EE00GINGER SNAP COOKIES 233

Reading and Maintaining Dimension Values

11-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

OLAP DML objects used by the program
The following OLAP DML objects are used by the example program.

DEFINE PRODUCTID DIMENSION ID
DEFINE PRODUCTNAME VARIABLE TEXT <PRODUCTID>
DEFINE UNITS.SOLD VARIABLE INTEGER <MONTH PRODUCTID>

Program description
The DR.PROG program reads the file. The values of PRODUCTID with the
associated product name are already part of the analytic workspace, so the program
uses the PRODUCTID values only to set status and assign the units data to the right
cells of the UNITS.SOLD variable.

The MATCH attribute is left out of the field description because it is the default.
When the program finds a value for PRODUCTID that is not in the analytic
workspace, it branches to the trap label. If the user interrupts the program (that is,
the error name is ATTN) or the data file cannot be opened, then the program ends.
Otherwise, the program resets the error trap and branches back to FILEREAD to
continue with the next record.

Program code
The example program, named DR.PROG, has the following definition.

DEFINE DR.PROG PROGRAM
LD Reads a file with existing dimension values
PROGRAM
variable funit integer
trap on error
pushlevel ’save’
push month productid
limit month to first 1
funit = fileopen(’dr.dat’ read)
next:
fileread funit -
 column 1 width 6 productid -
 column 39 width 3 units.sold
fileclose funit
poplevel ’save’
return
error:
"Skip current record and continue processing

Reading and Maintaining Dimension Values

Reading Data from Files 11-11

if funit ne na and errorname ne ’ATTN’
 then do
 trap on error
 goto next
 doend
"Close the file
if funit ne na
 then fileclose funit
poplevel ’save’
END

Adding new dimension values from a data file
When your data file contains a mixture of existing and new dimension values, you
can add the new values and all the associated data to the analytic workspace by
using the APPEND attribute in the field description.

Example: Adding new dimension values from a data file

Program description
The first FILEREAD command in the DR.PROG2 program uses APPEND to add
any new PRODUCTID values to the analytic workspace. The second FILEREAD
command includes a field to read the product name so the new data will be
complete.

The dimension maintenance performed by APPEND might be done in the same
FILEREAD command that reads the data, but that would cause inefficient handling
of the data. The data is handled more efficiently when the dimension maintenance
and data reading are performed in two separate passes over the file.

The error processing in this version is shorter because there is no need to skip
nonexistent product values and branch back. If there is an error, then the program
closes the file, restores any pushed values, and terminates.

Program code
The program, named DR.PROG2, has the following definition.

DEFINE DR.PROG2 PROGRAM
LD Reads a file with new dimension values
PROGRAM
variable funit integer
trap on error

Reading and Maintaining Dimension Values

11-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

pushlevel ’save’
push month productid
limit month to first 1
funit = fileopen(’dr.dat’ read)
fileread funit column 1 append width 6 productid
fileclose funit
funit = fileopen(’dr.dat’ read)
fileread funit -
 column 1 width 6 productid -
 column 9 width 30 productname -
 column 39 width 3 units.sold
fileclose funit
poplevel ’save’
return
error:
if funit ne na
 then fileclose funit
poplevel ’save’
END

Reading dimension values by position
If the target dimension has a data type of TEXT or ID or a time data type (DAY,
WEEK, MONTH, QUARTER, or YEAR) and the input field in the file contains
dimension position numbers (rather than dimension values), then you must specify
a conversion type of INTEGER in the field description. The conversion type
specifies how input data should be converted to values of the target dimension.

Example: Reading dimension values by position
Suppose the target dimension is MONTH, then you can use the following command
to read input values that represent positions within the default status of MONTH.

fileread unit column 1 width 8 integer month

When the input field contains position numbers, you cannot use the APPEND
keyword to add new values to a target dimension.

Reading and Maintaining Dimension Values

Reading Data from Files 11-13

Converting time dimension values
When the records in a file contain values that represent time periods, you may need
to specify a conversion type in the field description. The input values can be in any
of the following formats:

■ The VNF of the target time dimension, or the default VNF for the target
dimension when it does not have a VNF of its own. For a VNF format, the
conversion type is VNF, which is the default for time dimensions.

■ Any of the input styles that are valid for dates. For date-style values, you must
specify DATE as the conversion type.

■ An integer that represents the number of days since December 31, 1899, or a
negative integer for earlier dates (1 = January 1, 1900). For values in an
integer-style date format, you must specify RAW DATE as the conversion type.

The FILEREAD command converts position values to time dimension values when
you specify INTEGER as the conversion type.

Adding values to a time dimension
For input values that are in any format except position values, you can use the
APPEND attribute to add values to a time dimension. Any gaps are filled in
automatically between the values that already exist in your analytic workspace and
the values that are read from the file. For example, when the MONTH dimension in
your analytic workspace contains values for January 1995 through December 1996,
and the file contains a value for March 1997, the months January 1997 through
March 1997 are added automatically to the MONTH dimension.

Regardless of how time periods are represented in the file, they are used and stored
internally as integers, and they are shown in output according to the VNF of the
target time dimension.

The use of composites
Composites are automatically maintained. The way in which you define and use
composites can dramatically improve or hinder performance. The more you know
about analytic workspace design, especially in regard to the applications that will
be used with an analytic workspace, the more effective your use of composites will
be.

Reading and Maintaining Dimension Values

11-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Reading and maintaining conjoint dimensions
When you have conjoint dimensions in your analytic workspace, you can set the
status of those dimensions while reading a file with the FILEREAD command.
Typically, the records in the data file will have a separate field for each base
dimension of your conjoint dimension. For example, a file might have a market
name in the first field, a product name in the second, and then one or more fields
containing sales data.

Example: Reading and maintaining conjoint dimensions
To read the sales data into a variable dimensioned by a conjoint dimension, for
example MARKPROD, you can use a FILEREAD command as follows.

fileread funit markprod -
 = <w 8 market w 8 product> w 10 sales

This command will read a value of the MARKET dimension from the first
8-character field of the record and a value of the PRODUCT dimension from the
next 8-character field.

The command will then use the results to set the status of MARKPROD, which is a
conjoint dimension defined as follows.

DEFINE MARKPROD DIMENSION <MARKET PRODUCT>

The command then reads the last field and assigns the value to the variable SALES,
which is dimensioned by MARKPROD.

By including the APPEND keyword in the field description, you can add new
values to MARKET, PRODUCT, and MARKPROD, when the FILEREAD command
encounters values in the file that do not match existing dimension values.

fileread funit append markprod -
 = <w 8 append market w 8 append product> w 10 sales

Translating coded dimension values
The fields containing dimension information in your data file might have values
that are not identical to the dimension values in your analytic workspace. The file
values might be abbreviated or otherwise encoded. For time dimensions, the file
values might not be in a format that can be interpreted as valid time periods for the
target dimension. The way you translate a coded dimension value varies depending
on whether the code is merely an abbreviation (for example, “P” for PRODUCT) or
if the code is more complicated.

Reading and Maintaining Dimension Values

Reading Data from Files 11-15

Translating dimension values with abbreviated codes
When the file contains an abbreviated code, you can sometimes complete the value
by using the RSET or LSET attribute to add text to the right or left of the value in the
file.

For example, products in the file might be identified by all-numeric product
numbers, while in your analytic workspace, the values of the PRODUCT dimension
might be these same product numbers preceded by the letter P. In this case, you can
use the LSET attribute to add the letter P to the values in the file.

fileread funit column 1 width 6 lset ’P’ product

The letter P is added when the value is read from the file; it is not added when the
modified value is matched with or assigned to the PRODUCT dimension.

Translating dimension values with complicated codes
To correctly read values that have less straightforward codes, you can set up
another dimension containing the coded values found in the data file, along with a
relation to the real dimension. FILEREAD can then use the relation to determine the
actual dimension value. Or you can use any OLAP DML function to alter or
manipulate the coded value to make it match a value in your analytic workspace.

Using an assignment statement in the field description
When reading coded data that must be manipulated in some way before being
stored in the target, use an assignment statement (shown below) in the field
description.

target = expression

The expression argument specifies the processing or calculation to be performed. If
you want to include the value just read from the file as part of the expression, then
use the VALUE keyword.

Both of the following field descriptions function identically.

COLUMN n WIDTH n target
 target = COLUMN n WIDTH n VALUE

Example: Translating codes into dimension values
This example illustrates the use of an expression for translating codes into
dimension values.

Reading and Maintaining Dimension Values

11-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

File layout
The following example shows the data file, which has 3-character codes for months,
and 2-character codes for districts and products.

 SEP BO CH 113945 115
 OCT BO CH 118934 115
 SEP BO CO 92013 119
 OCT BO CO 95820 119
 SEP BO WI 83201 110
 OCT BO WI 82986 110
 SEP DA CH 111792 115
 OCT DA CH 136031 114
 SEP DA CO 91641 121
 OCT DA CO 96347 120
 SEP DA WI 89734 109
 OCT DA WI 88264 109

OLAP DML objects used by the program
The following OLAP DML objects are used by the example program.

DEFINE DISTCODE DIMENSION ID
DEFINE DISTRICT.DCODE RELATION DISTRICT <DISTCODE>
DEFINE PRODCODE DIMENSION ID
DEFINE PRODUCT.PCODE RELATION PRODUCT <PRODCODE>

Program code
The example program, named DR.PROG3, has the following definition.

DEFINE DR.PROG3 PROGRAM
LD Translates coded values into valid dimension values
PROGRAM
variable funit int
funit = fileopen(’dr3.dat’ read)
fileread funit -
 column 1 width 3 append rset ’96’ month
fileclose funit
funit = fileopen(’dr3.dat’ read)
fileread funit -
 column 1 width 3 rset ’96’ month -
 column 5 width 2 district = district.dcode -
 (distcode value) -
 column 8 width 2 product = product.pcode -
 (prodcode value) -

Reading and Maintaining Dimension Values

Reading Data from Files 11-17

 column 11 width 6 strip units -
 column 18 width 3 scale 2 price
fileclose funit
END

Program description
The program translates the 2-character codes for districts and products into values
of a DISTRICT dimension and a PRODUCT dimension. The program also illustrates
how to translate 3-character month codes into values that can be recognized as valid
time periods in a MONTH dimension.

When reading from the file, the program changes the 3-character month read from
the file into a value that can be interpreted as a value of the MONTH dimension.
Because a MONTH dimension value is identified by a month and a year, the
program converts the format used in the file by attaching the year (96) at the end of
each 3-character month value.

In the first FILEREAD command, the APPEND keyword is used so that new
months are added to the MONTH dimension.

fileread fileunit column 1 width 3 append rset ’96’ month

For the district and product fields, the program reads the value from the data file
and finds the corresponding dimension value using the relations DISTRICT.DCODE
and PRODUCT.PCODE.

column 5 width 2 district = district.dcode distcode value)
column 8 width 2 product = product.pcode (prodcode value)

The program uses a QDR with the keyword VALUE representing the code read
from the data file. For the districts, the distcode value QDR modifies the
relation DISTRICT.DCODE, which holds district names. It specifies the district that
corresponds to the value of DISTCODE just read from the data file. The QDR for
PRODUCT works the same way.

The program assumes the PRODUCT and DISTRICT dimension values are already
in the analytic workspace, along with the DISTCODE and PRODCODE dimensions
and the relations connecting them to DISTRICT and PRODUCT. Once the coded
values have been processed, the resulting values of DISTRICT and PRODUCT are
used to limit the dimension status so that the data is put in the right cells of the
UNITS and PRICE variables.

Finally, you can see in the data file that the price data, which starts in column 18,
does not have a decimal point. The SCALE attribute on the last line of the
FILEREAD command puts two decimal places in each price value.

Processing Input Data

11-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information, see the following table.

Processing Input Data

Modifying values read from a file
Assignment statements created with the = command have a wide application in the
data-reading commands. With the = command you can process any value read from
a file in a variety of ways. Instead of just assigning the values as read to a variable
or relation, you can modify those values to make them more suitable to your
application.

The expression you use can be as simple or complex as you need. You can even
perform conditional processing on the values read, based on other data already
stored in your analytic workspace or previously read from the file.

For an example of using FILEREAD commands using an assignment statement in a
field description, see “Reading and Maintaining Dimension Values” on page 11-9.

Example: Modifying values read from a file
The following command reads sales data and assigns it to the variable SALES,
replacing whatever value is already stored in that variable.

fileread funit w 8 district w 8 product w 10 sales

Using an expression, however, you can add the new data to the value currently
stored in the variable.

fileread funit w 8 district w 8 product sales -
 = sales + w 10 value

The data just read from the file is represented in the expression by the keyword
VALUE.

IF you want documentation about . . . THEN see . . .

the VNF command, the topic for the command in the OLAP
DML Reference

the DATEORDER option, the topic for the option in the OLAP DML
Reference

Processing Records Individually

Reading Data from Files 11-19

Example: Reading different fields for different types of records
Suppose you have two different types of records in a file, you can read different
fields for each type of record.

fileread funit w 1 rectype w 8 district w 8 -
 append product -
 prodname = -
 if rectype eq ’A’ then col 25 w 16 value -
 else col 42 w 16 value

Specifying a conversion type for data
In general, you do not need to specify a data type when you read input values into
an OLAP DML variable. By default, input values are converted to the data type of
the target variable.

However, when the target variable has a data type of DATE, you can use either the
default conversion type of DATE or an alternative conversion type of RAW DATE
as described earlier in this chapter.

You might also want to specify a conversion type when you use an expression to
process input values before storing them in a target variable.

Related information
For more information, see the following table.

Processing Records Individually

Reading records with varying types of data
Your data files do not always have the same type of data in every record. You might
find that you need different field descriptions and different target objects for each

IF you want documentation about . . . THEN see . . .

the FILEREAD command, the topic for the command in the OLAP
DML Reference

assignment statement, “Assigning Values to Data Objects” on page
5-13.

the topic for the = command in the OLAP
DML Reference

Processing Records Individually

11-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

record, or you might have two or more distinct types of records mixed together in a
single file. You might even have to decide what to do with the data in a record
based on the contents of one or more of its fields.

The FILENEXT function and the FILEVIEW command allow you to retrieve one
record at a time from a file and look at its data one or more times. FILENEXT is a
Boolean function, which reads a record from the data file. It returns YES when it
finds a record and NO when it reaches the end of the file. The record read by
FILENEXT is then available to process with the FILEVIEW command.

Typically, FILENEXT is used as the condition of a WHILE command, so that the
data-reading program continues reading until it reaches the end of the file and finds
no more records. Within the WHILE loop, the FILEVIEW command is used one or
more times to process data from any field in the current record. Often the operation
of a FILEVIEW command depends on the data processed by a previous command
in the WHILE loop.

Example: Reading different data from the same record

File layout
In the data shown in the following example, the second field of each record contains
the name of the target variable for the data in the last field.

CEREALS DOL VS100 US JUN96 5000000
CEREALS LBS VS100 US JUN96 4800000
CEREALS CASE VS100 US JUN96 180000
CEREALS DOL VS100 BOS JUN96 62500
CEREALS LBS VS100 BOS JUN96 62830
CEREALS CASES VS100 BOS JUN96 2750
CEREALS DOL VS100 CHI JUN96 75290
CEREALS LBS VS100 CHI JUN96 73000
CEREALS CASES VS100 CHI JUN96 2700
CEREALS DOL VS100 LASF JUN96 143070
CEREALS LBS VS100 LASF JUN96 150500
CEREALS CASES VS100 LASF JUN96 NA

OLAP DML objects used by the program
The following OLAP DML objects are used by the example program.

DEFINE DOL VARIABLE DECIMAL <MONTH ITEM MARKET>
DEFINE LBS VARIABLE INTEGER <MONTH ITEM MARKET>
DEFINE CASES VARIABLE INTEGER <MONTH ITEM MARKET>

Processing Records Individually

Reading Data from Files 11-21

Program description
The DR.PROG4 program tests records against criterion before getting values. In the
program, the first FILEVIEW command gets the name of the variable and stores it in
a local variable named VARNAME. The second FILEVIEW command gets the value
and assigns it to the object specified in VARNAME.

Program code
The example program, named DR.PROG4, contains the following code.

variable funit integer
variable varname text
funit = fileopen(’dr4.dat’ read)
while filenext(funit)
 do
 fileview funit column 13 width 12 varname
 fileview funit column 25 width 12 item -
 column 37 width 6 market -
 column 43 width 5 month -
 column 48 width 10 &varname
 doend
fileclose funit

Reading different records
You might want to process only some of the records in a file, based on some
criterion in the record itself. You can use one FILEVIEW command to check a field
for an appropriate value and, if it is found, then you can process the rest of the
record with a second FILEVIEW command.

When the record does not meet the criterion for processing, you can save it in
another file using the FILEPUT command. FILEPUT with the FROM keyword
writes the last record read by FILENEXT directly to the designated output file. You
can also use a FILEPUT command in the error section of your program to keep track
of any records that could not be processed because of errors.

Before you use FILEPUT in your data-reading program, you must open a second
file in write mode. At the end of the program, you must close it.

Processing Several Values for One Variable

11-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information, see the following table.

Processing Several Values for One Variable

Assigning multiple fields to the same variable
Sometimes several contiguous fields in a file contain data values that you want to
assign to the same variable. Each field corresponds to a different value of one of the
dimensions of the target variable.

For repeating fields, you can use an ACROSS phrase in the field description to read
the successive fields and place the values in the appropriate cells of the target
variable. The ACROSS phrase extracts data for each dimension value in the current
status or until it reaches the end of the record. You can limit the ACROSS dimension
before the FILEREAD (or FILEVIEW) command, or you can limit it temporarily in
the ACROSS phrase.

When the data file contains the information you need to limit the ACROSS
dimension, you can extract the dimension values using a temporary variable, limit
the dimension, and then read the rest of the file.

IF you want documentation about . . . THEN see . . .

FILEPUT, FILENEXT, and FILEVIEW, the topic for the command in the OLAP
DML Reference

Processing Several Values for One Variable

Reading Data from Files 11-23

Example: Assigning multiple fields to the same variable

File layout
Successive fields might hold sales data for successive months, as shown in the
layout of unitsale.dat in the following figure.

In the unitsale.dat file, columns 9 through 80 contain twelve 6-character fields.
Each field contains sales data for one month of 1996.

Program code
The full data-reading program, with commands to open and close the file, is shown
next.

DEFINE DR.PROG5 PROGRAM
LD Read a data file
variable funit integer
trap on error
funit = fileopen(’unitsale.dat’ read)

 1 1 1 1 1 1 1 1 1 1 2 2 2 . . . 7 7 7 7 7 7 8
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 . . . 4 5 6 7 8 9 0

PRODUCT JAN96 DEC96FEB96 . . .

Unit Sales Data

Columns Description
 1 - 8 Product Names
 9 - 14 Unit sales for January 1996
 15 - 20 Unit sales for February 1996
 . .
 . .
 . .
 75 - 80 Unit sales for December 1996

Processing Several Values for One Variable

11-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

fileread funit -
 column 1 width 8 product -
 across month jan96 to dec96: width 6 units
fileclose funit
return
error:
if funit ne na
 then fileclose funit
END

Program description
The ACROSS phrase reads each of these fields into separate cells in the UNITS
variable.

across month jan96 to dec96: width 6 units

The FILEREAD command reads the sample unitsale.dat file.

fileread funit -
 column 1 width 8 product -
 across month jan96 to dec96: width 6 units

This command first reads the field beginning in column 1 and limits the PRODUCT
dimension to the value read. (When the value read is not a dimension value of
PRODUCT, an error occurs.) The command then reads the next 12 fields and assigns
the values read to the UNITS variable for each month of 1996.

Example: Using input data to limit the ACROSS dimension

File layout
As shown in following example, the first record of the data file contains values of
MONTH as labels for each column of data.

 JAN96 FEB96 MAR96 APR96
TENT 50,808.96 34,641.59 45,742.21 61,436.19
CANOES 70,489.44 82,237.68 97,622.28 134,265.60
RACQUETS 56,337.84 60,421.50 62,921.70 74,005.92
SPORTSWEAR 57,079.10 63,121.50 67,005.90 72,077.20
FOOTWEAR 95,986.32 101,115.36 103,679.88 115,220.22

Processing Several Values for One Variable

Reading Data from Files 11-25

OLAP DML objects used by the program
The following OLAP DML objects are used by the example program.

DEFINE ENUM DIMENSION INTEGER
DEFINE MONTHNAME VARIABLE ID <ENUM> TEMPORARY
DEFINE SALESDATA VARIABLE DECIMAL <MONTH PRODUCT>

Program code
The example program, named DR.PROG6, has the following definition.

DEFINE DR.PROG6 PROGRAM
PROGRAM
variable funit integer
trap on cleanup
pushlevel ’save’
push month product
funit = fileopen(’dr6.dat’ read)
if filenext(funit)
 then fileview funit column 16 across enum: -
 w 11 monthname
limit month to charlist(monthname)
fileread funit w 15 product column 16 across month: -
 w 11 salesdata
cleanup:
fileclose funit
poplevel ’save’
END

Program description
The program does not know how many months the file contains. The program uses
a temporary variable dimensioned by an INTEGER dimension to read the month
names from the file. The INTEGER dimension ENUM must have at least as many
values as the largest data file has months.

FILENEXT reads only the first record. The CHARLIST function creates a list of the
month names, which is used to limit the MONTH dimension.

Finally, the FILEREAD command processes the rest of the record using MONTH as
the ACROSS dimension. All the sales data is assigned to the correct months without
the user having to specify them.

Processing Several Values for One Variable

11-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

the CHARLIST function, the topic for the function in the OLAP
DML Reference

Writing Reports 12-1

12
Writing Reports

Chapter summary
This chapter explains how to create reports using the OLAP DML.

List of topics
This chapter includes the following topics:

■ Introducing the Reporting Commands

■ Creating Report Rows

■ Creating Report Columns

■ Retrieving Data for Rows

■ Controlling the Default Format of Report Output

■ Modifying the Layout of Columns

■ Creating Headings

■ Performing Calculations in a Report

■ Creating Paginated Reports

■ Creating Headings on Each Page

■ Guidelines for Writing a Report Program

Introducing the Reporting Commands

12-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Introducing the Reporting Commands

Creating simple reports
Sometime you only need to quickly report the output for one or more data
expressions. To produce a simple report you can use the REPORT command. This
command automatically loops over the dimensions of the data and formats the
output in a default layout. Output from the REPORT command is sent to the current
outfile.

You can also customize the layout REPORT produces by using a number of options.
In fact, because REPORT has an underlying format similar to ROW, all the options
available with the ROW command (discussed later) are available with REPORT.

Sample simple report
You can create a simple report of the values of the STATE.CITY relation with the
following command:

REPORT STATE.CITY

This command creates the following simple report

CITY STATE.CITY
-------------- ---------------
ATLANTA GEORGIA
CHICAGO ILLINOIS
SPRINGFIELD ILLINOIS

Introducing the Reporting Commands

Writing Reports 12-3

Creating complex reports
The OLAP DML includes a number of commands, functions, and options that you
can use to write complex reports. The following table summarizes the commands,
functions, and options that you can use to write reports.

By combining these elements in a program, you can create custom reports with
special formatting. For example, you can create a report with a different variable in
each column or with a different variable in each row. You can format the data on
each row exactly as you want, showing a different number of decimal places and
appending different text (such as a dollar sign or percent sign) to each item in a row.

You can use special report calculation functions to perform calculations on the data
in the rows and columns of a report.

To create a customized report, you combine the reporting commands, functions,
and options with other OLAP DML commands in a program. Although you will
use combinations of various commands in programs, you can experiment with most
of the commands individually.

Elements Description

Commands Produce rows of data and text. There are three key commands:

■ ROW — Produces rows of data

■ HEADING — Produces rows for titles, column headings, and
side headings

■ BLANK — Produces blank rows

Attributes in ROW and HEADING commands provide custom
formatting for data and text output.

Format options Control the default format of report output. The key format
options include COLWIDTH, DECIMALS, LCOLWIDTH, and
PARENS.

Calculation functions Perform calculations on numeric data in a report. There are three
key calculation functions:

■ COLVAL — Performs calculations on data in a row

■ SUBTOTAL — Calculates subtotals and totals for data
columns

■ RUNTOTAL — Calculates running totals for data columns

Paging options Provide paginated report output, and control features such as page
size, margin size, and standard page headers. To produce
paginated output, the PAGING option must be set to YES.

Creating Report Rows

12-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Creating Report Rows

Producing a simple row of data
The ROW command is used for producing each row of data in a report. In its
simplest form, the syntax of the ROW command is as follows.

row expression

ROW followed by a data expression creates a row of output that contains the value
of the expression.

Example: Showing a numeric value in a row
You can specify a numeric value as the expression argument to ROW. Suppose your
application issues the following command.

row 100

The command produces the following output.

100

When you use the ROW command to produce a row of numeric data, each data
value is right-justified in a column by default. “Creating Report Columns” on page
12-6 explains the default column format.

Example: Showing a literal text value in a row
If the expression argument to ROW is literal text, then you must enclose the text in
single quotes. Suppose your application issues the following command.

row ’District’

The command produces the following output.

District

By default, text values are left-justified in a column.

Example: Showing a variable value in a row
You can specify a variable as the expression argument to ROW. Suppose your
application issues the following command.

row units

Creating Report Rows

Writing Reports 12-5

The command produces a data value that corresponds to the first dimension values
in status for UNITS.

200

Example: Showing a dimension value in a row
The expression argument to ROW can be a dimension. Suppose your application
issues the following command.

row month

The command shows the current value of MONTH.

JAN95

Example: Showing a calculated value in a row
The expression argument to ROW can be a calculation. Suppose your application
issues the following command.

row sales / units

The command produces output such as the following.

160.77

Example: Showing multiple values in a row
You can show more than one expression in a row by specifying each expression in a
ROW command. Suppose your application issues the following command.

row district units sales

The command produces a row of output such as the following.

BOSTON 200 32,153.52

Creating blank lines
You can leave a blank line in a report by using the ROW command with no
arguments. The following command produces one blank line.

row

Alternatively, you can use the BLANK command to leave a blank line. The
following command also produces one blank line.

blank

Creating Report Columns

12-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

To leave more than one blank line, you can provide a numeric argument to BLANK
that indicates the number of blank lines you want to leave. The argument can be
any integer expression with a value of zero or greater. If the argument is zero, then
no blank lines are generated.

For example, to leave a series of three blank lines in a report, use the following
command.

blank 3

Creating Report Columns

How columns are created
Even though each ROW command creates just one row of data, the data values are
positioned in the row so that they will line up with the values in other rows of the
report. Therefore, we refer to the space occupied by each data value as a column.

The ROW command places the first expression in the first report column, the
second expression in the second column, and so on.

Creating columns for labels and data
You can show any value in any column of a row, but the first column usually
contains labels and the remaining columns usually contain data. Therefore, the first
column is called the labels column. The remaining columns are called data columns.

Default layout of a report row
The default width of the labels column is controlled by the LCOLWIDTH option,
which has a default value of 14 characters. The default width of data columns is
controlled by the COLWIDTH option, which has a default value of 10 characters.

By default, text and date values in a column are left-justified, and numeric and
Boolean values are right-justified. One space is left between columns.

A default row has the format shown in the next figure.

Label

14 characters

Data

10 characters

Data

10 characters

Data

10 characters
. . .

1 11

Retrieving Data for Rows

Writing Reports 12-7

Leaving a column blank
You can use the SKIP keyword in place of an expression to leave a column blank.
The command

row skip units sales

produces a blank column before the column of UNITS data.

200 32,153.52

Retrieving Data for Rows

No automatic looping in the ROW command
Unlike the REPORT command and many other OLAP DML commands, the ROW
command does not automatically loop over the values of a dimension.

For example, if you show the DISTRICT dimension with a ROW command, then
only the first district in status is shown. The command

row district

produces the following output.

BOSTON

Showing multiple values of a single expression in a row
You can use the ACROSS keyword with the ROW command to show multiple
values of a single expression across a row. By specifying ACROSS followed by the
name of one of the dimensions or composites of the expression, you can show a
data value for each dimension value in the current status. The name of the
dimension or composite must be followed by a colon.

Tip: You can specify an unnamed composite in an ACROSS phrase by using the
syntax that was used to create it.

Example: Looping across the values of UNITS
The following commands create a row of output that shows the value of UNITS for
each month in status.

limit month to ’JAN95’ to ’MAR95’
row district, across month: units

Retrieving Data for Rows

12-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

These commands produce the following output.

BOSTON 200 203 269

Example: Looping across the values of two expressions
You can apply the ACROSS keyword to more than one data expression by placing
angle brackets around the expressions.

limit month to ’JAN95’ ’FEB95’
row district, across month: <units sales>

The above commands create a row of output that shows a group containing a
UNITS value and a SALES value for each month in status.

BOSTON 200 32,153.52 203 32,536.30

Setting temporary dimension status within the row command
Instead of using a LIMIT command to set the status of a dimension before you
execute a ROW command, you can temporarily set the status of the dimension
within the ACROSS phrase of the ROW command. You specify a temporary status
for the dimension by specifying any of the LIMIT keywords along with an
appropriate value list or related-dimension list.

When you set the status for a dimension within an ACROSS phrase, the status
remains in effect only for the duration of the ROW command.

For example, the following command temporarily limits the MONTH dimension to
January 1995 and February 1995.

row district, across month to ’JAN95’ ’FEB95’: -
 <units, sales>

Handling a null status condition
You can use the IFNONE keyword in an ACROSS phrase to branch to a label if an
attempt to set status would result in no values. Your report program might contain
the following lines.

row district, across month keep units gt 500 -
 ifnone novals: units
 .
 .
 .

Retrieving Data for Rows

Writing Reports 12-9

return
novals:
 .
 .
 .

Looping across composites
A variable that uses a composite includes either the SPARSE keyword or a named
composite in its dimension list.

If you report data for a variable that uses a composite, and you do not include an
ACROSS phrase in the ROW command, then ROW shows output for all data cells
that correspond to the base dimensions of the composite. If a particular combination
of base dimension values does not exist in the composite, then ROW shows NA for
the corresponding data cell.

If you specify a composite in an ACROSS phrase, then ROW shows output only for
data cells for which combinations of base dimension values exist in the composite.
This gives you a more concise report that better reflects your data.

If you specify one of the composite’s base dimensions in an ACROSS phrase, then
ROW shows NA for a data cell for which the composite contains no value.

If you specify a composite in the ACROSS phrase of a ROW command, then you
cannot specify LIMIT arguments. You must limit the base dimensions of a
composite to the desired values before you execute a ROW command.

Creating a separate row for each dimension value
You can produce a separate row of output for each dimension value in the current
status by executing a ROW command in a FOR loop for the dimension. The FOR
command can only be executed in a program.

By using nested FOR loops in your program, you can loop over more than one
dimension. For example, you might want to show sales data for each product
within each district.

Example: Creating a separate row for each district
To show the data for each district in a separate row, you might include lines such as
the following ones in your program.

limit month to ’JAN95’ to ’MAR95’
limit product to ’TENTS’

Retrieving Data for Rows

12-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

for district
 row district, across month: units

The above commands loop over the DISTRICT dimension to create the following
output.

BOSTON 200 203 269
ATLANTA 253 276 320
CHICAGO 181 181 247
DALLAS 297 313 419
DENVER 227 210 283
SEATTLE 271 257 322

Each row shows data for the TENTS product for each of the three months in the
current status.

Example: Creating a separate row for each product within each district
You can loop over products within a loop over districts to create groupings of
output rows like the ones shown below.

BOSTON

 TENTS 200 203 269
 CANOES 347 400 482
 RACQUETS 992 1,076 1,114
 SPORTSWEAR 1,096 1,214 1,294
 FOOTWEAR 2,532 2,405 2,775
ATLANTA

 TENTS 253 276 320
 CANOES 260 285 356
 RACQUETS 1,037 1,196 1,158
 SPORTSWEAR 2,358 2,538 2,856
 FOOTWEAR 2,785 3,064 3,217

You can create the output shown above by using nested FOR loops in a program, as
shown below.

limit month to ’JAN95’ to ’MAR95’
limit district to ’BOSTON’ ’ATLANTA’
limit product to all
for district
 do
 row under ’-’ valonly district
 for product
 row indent 3 product, across month: units

Controlling the Default Format of Report Output

Writing Reports 12-11

 blank
 doend

The first (or outer) FOR command in the above code loops over the values of
DISTRICT and executes all the commands between the DO and DOEND
commands. The second (or inner) FOR command loops over the values of
PRODUCT to create the rows of data. Therefore, for each value of DISTRICT, rows
of unit sales data are produced for each product. The inner FOR loop does not
require the DO and DOEND commands because only one command is executed in
the loop.

Tip: The ROW commands in this example use the format attributes UNDER,
VALONLY, and INDENT. ROW command attributes are explained in the topic
“Modifying the Layout of Columns” on page 12-12.

Controlling the Default Format of Report Output

Introducing format options
You can use several options that control the default format of report output. The
following table lists the format options you will use most often.

The effect of using format options
By changing the value of a format option, you change the format of output
produced by subsequent ROW commands. If you want to use a specific format
more or less consistently throughout your report, then you should set the relevant
options to the appropriate values in the initialization section of your report
program.

Option Description

COLWIDTH Controls the width of data columns. Default: 10 characters.

DECIMALS Controls the number of decimal places shown for DECIMAL values.
Default: 2 places.

LCOLWIDTH Controls the width of the labels column (the first column). Default:
14 characters.

PARENS Controls whether negative numbers are represented with
parentheses or a minus sign. Default: NO (a minus sign is used).

Modifying the Layout of Columns

12-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Setting the DECIMALS option
If you want to suppress all decimals in your report, then include the following
command in the initialization section of your report program.

decimals = 0

Overriding OLAP DML format options
After setting an option, you might find that you want to use a different format for
an occasional row of data. In this case, you can specify a format attribute in the
particular ROW command to override the value of the corresponding option.

Related information
For more information, see the following table.

Modifying the Layout of Columns

Key format attributes
You can specify format attributes within a ROW command to modify the column
layout or the way the labels and data values are represented.

IF you want documentation about . . . THEN see . . .

on the format options, search for the entries for the individual options
in the OLAP DML Reference

table of all the OLAP DML format
options that affect report output,

the entry for the ROW command in the OLAP
DML Reference

Modifying the Layout of Columns

Writing Reports 12-13

The following table lists the ROW attributes you will use most often.

Tip: For convenience, you can use abbreviations when they are available for an
attribute. For example, you can abbreviate WIDTH as W.

The effect of using format attributes
The attributes in a ROW command affect only the row produced by that command.
They have no effect on subsequent output rows created by other ROW commands,
even when the same expressions are shown.

Overriding OLAP DML format options
The default values of some ROW attributes are controlled by OLAP DML format
options. For example, the DECIMALS option determines the default value of the
DECIMAL attribute in the ROW command.

Attribute Abbreviation Description

CENTER C Centers the value within its column.

DECIMAL n D n Shows n decimal places.

INDENTn Indents the value n spaces within its column.

LEFT L Left-justifies the value within its column.

LSET’text’ Adds text to the left of a value.

OVER ’text’ Overlines the column with the first character of
text.

PAREN Uses parentheses to indicate negative values.

RIGHT R Right-justifies the value within its column.

RSET ’text’ Adds text to the right of the value.

SPACE n SP n Precedes the column with n spaces.

UNDER ’text’ Underlines the column with the first character
of text.

VALONLY Underlines or overlines the value only, not the
entire column; VALONLY is used only with
UNDER or OVER.

WIDTH n W n Makes the column n characters wide.

Modifying the Layout of Columns

12-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

If you specify an attribute in a ROW command, then the attribute overrides the
value of the corresponding OLAP DML option.

Example: Modifying decimal places and column width
This example calculates the ratio of actual sales to budget sales. It shows a label in a
label column that is 16 characters wide and a data value with four decimal places in
a data column that is 6 characters wide.

row width 16 ’Percent of Plan’, decimal 4 -
 width 6 sales / sales.plan

The above commands produce a row of output such as the following.

Percent of Plan 0.7593

Example: Calculating the width of a data column
This example calculates the width of the UNITS column based on the current value
of the LSIZE option. The command

row skip, w lsize / 5 units

produces the following output.

200

Example: Underlining values
The following command uses the hyphen character to underline the UNITS data
column.

row skip, under ’-’ units

This command produces the following output.

 200

Applying attributes to more than one expression
To apply an attribute to more than one expression in a row, you can specify the
attribute once and enclose the expressions in angle brackets. Attributes that apply to
more than one data expression are called global attributes.

Place the global attributes just before the angle brackets, then place any attributes
that apply to just one expression within the angle brackets.

Modifying the Layout of Columns

Writing Reports 12-15

Tip: If you want to use the same format throughout most of your report, then you
might be able to set a format option instead of specifying format attributes.

Example: Applying format attributes to two expressions
The following command sets the width of the columns for both SALES.PLAN and
SALES to nine characters. In addition, it specifies a different number of decimal
places for each data expression.

row district, w 9 <d 0 sales.plan, d 2 sales>

The above command produces the following output.

BOSTON 42,347 32,153.52

Using different attributes in different rows
You might want to use different format attributes for data in different rows of a
report. For example, you might want to insert a dollar sign to the left of values in
the first row of a report but not in subsequent rows.

You can store the desired attribute arguments in variables dimensioned by one or
more dimensions of your data, and specify the variables as arguments to the format
attributes in your ROW commands.

Example: Using different attributes in different rows
If your report shows sales data with districts going down the page, then you can
insert a dollar sign for the sales value for the first district, BOSTON, but not for the
other districts.

First, define a text variable named DOLLAR.SIGN, dimensioned by DISTRICT. In
the DOLLAR.SIGN variable, store a dollar sign ($) for BOSTON and blank
characters for the other districts. To enter a blank character in DOLLAR.SIGN,
specify two single quotes with nothing between them, as shown below.

limit district to ’BOSTON’
dollar.sign = ’$’
limit district complement
dollar.sign = ’’

In your report program, specify DOLLAR.SIGN as the argument to the LSET
attribute.

limit district to all
for district
 row across month: lset dollar.sign sales

Creating Headings

12-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Related information
For more information, see the following table.

Creating Headings

Overview of the HEADING command
You use the HEADING command to create titles, column headings, and side
headings in reports. The HEADING command is like the ROW command except
that any numbers shown in headings are not added in when you generate totals of
the columns or rows in your report.

The HEADING command has the same syntax as the ROW command. You can use
any of the ROW format attributes with the HEADING command to change the
format of titles and headings.

The HEADING command creates rows of output with the same default layout as
those produced by the ROW command. The first expression you specify in the
HEADING command is shown in the labels column, and the remaining expressions
are shown in the data columns.

Creating report titles
You use the HEADING command to create titles on your reports. To center a title on
a page, you use the CENTER attribute along with a WIDTH attribute that specifies
the column width as the width of the page.

Example: Centering a title
For example, to center a title on a page that is 54 characters wide, you can use the
following command.

heading w 54 c ’Unit Sales’

This command produces the following title.

Unit Sales

IF you want documentation about . . . THEN see . . .

ROW attributes, including a complete listing
of attributes along with their default values
and the corresponding OLAP DML options,

the entry for the ROW command in the
OLAP DML Reference

Creating Headings

Writing Reports 12-17

Example: Incorporating text values in a title
Your title can be any character expression. For example, if you are creating a report
for each district, then you can incorporate the current district in your title.

heading w 54 c joinchars(’Unit Sales for ’ district)

If the current district is Boston, then this command produces the following title.

Unit Sales for BOSTON

Creating column headings
You also use the HEADING command to create headings for columns of data.
When you create column headings, you use the same layout that you use for the
data columns. You can use any ROW command attributes to format the headings.

Tip: Be sure the format attributes in the HEADING command that creates the
column headings match the format attributes in the ROW commands for the
corresponding data columns in your report program. If the attributes do not match,
then the headings will not line up properly with the data columns.

Example: Creating headings for month columns
If you report unit sales data for Boston for the first three months of 1996, then you
will want to label the columns with the names of the months. You can use the
following commands in a report program.

limit month to ’JAN96’ to ’MAR96’
heading skip, across month: w 6 sp 4 c -
 under ’=’ valonly month

The following report headings are produced.

 JAN96 FEB96 MAR96
 ===== ===== =====

This example uses the WIDTH attribute to specify the width of the columns,
CENTER to center the month values in the columns, UNDER to underline the
month values, and VALONLY to underline just the month values and not all of the
values.

Creating side headings
You can also use the HEADING command to create side headings in a report. For
example, suppose your program loops over the DISTRICT dimension to create rows

Creating Headings

12-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

of data for each district in status. You can use the HEADING command to generate
a label for each district.

Example: Creating side headings for rows of data
Suppose that you have a program that loops over the DISTRICT dimension to create
rows of data for each district. The following commands insert a row that contains
the name of the district before the rows of data for each district.

for district
 do
 heading under ’=’ valonly district
 .
 . "Row commands
 .
 doend

The commands produce output with the following format.

BOSTON
======
 .
 .
 .
ATLANTA
=======
 .
 .
 .

Formatting time dimension headings
The values of a time dimension are formatted according to the VNF attached to the
dimension definition. Or, if a time dimension does not have a VNF of its own, then
the values are formatted according to the default VNF for the type of time
dimension you are using.

For additional flexibility in formatting the values of a time dimension in a report,
you can override the dimension’s VNF (or the default VNF) by using the
CONVERT function with a VNF argument.

Creating Headings

Writing Reports 12-19

Example: Customizing column headings for MONTH
To override the VNF for the MONTH dimension when you create month headings
in a report, you can use commands such as the following.

limit month to ’JAN96’ to ’MAR96’
heading skip, across month: w 10 sp 2 c under ’=’ -
 convert(month text ’<mtextl>’)

The following headings are produced.

 January February March
 ========== ========== ==========

Related information
For more information, see the following table.

IF you want documentation about . . . THEN see . . .

the default VNFs and for instructions on how
to assign a VNF to a time dimension,

the topic for the VNF command in the
OLAP DML Reference

attributes that you can use with the
HEADING command,

“Creating Headings” on page 12-16

Performing Calculations in a Report

12-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Performing Calculations in a Report

Key report calculation functions
You can use three key report calculation functions to perform calculations on
numeric data that you have already generated in the current report. These functions
are summarized in the following table.

The report calculation functions make it easier and faster to create a report. By using
the functions, you can often avoid recalculating expressions that have already been
generated in preceding columns.

Tip: In addition to using the three report calculation functions to perform
calculations on values in your report, you can use other OLAP DML functions, such
as TOTAL and LAG, to access data in your analytic workspace.

Performing row calculations
You can use the COLVAL function to access a numeric data value in a previous
column of the current report row and perform calculations on that value.

As the argument to the COLVAL function, you specify the column number you
want to access. The labels column is column 1, and the data columns are numbered
from left to right, starting with column 2.

You can also use a negative argument to refer to the position of a column relative to
the current column.

Function Description

COLVAL Enables you to make calculations that involve data values in the
current row. Returns the value already generated in a specified column
of the current row of a report. Returns a decimal value.

SUBTOTAL Calculates subtotals and totals for columns of data generated in
previous rows. Returns one of 32 subtotals that are maintained for the
current column, and resets that subtotal to zero. Returns a decimal
value.

RUNTOTAL Calculates running totals for columns of data generated in previous
rows. Returns the running total for the current column (like
SUBTOTAL, except it does not reset the subtotal to zero). Returns a
decimal value.

Performing Calculations in a Report

Writing Reports 12-21

Example: Calculating the ratio of two columns
To produce a row of output that shows actual dollar sales, budgeted dollar sales,
and the ratio of the two, use the following commands.

allstat
row product, sales, sales.plan, colval(2)/colval(3)

This ROW command produces the following output.

TENTS 32,153.52 42,346.89 0.76

Example: Referring to the relative position of a column
The following command uses a negative argument to refer to the position of a
column relative to the current column.

row product, sales, sales.plan, colval(-2)/colval(-1)

In the command above, COLVAL(–2) returns the value in the SALES column, and
COLVAL(–1) returns the value in the SALES.PLAN column. The command
produces the following output.

TENTS 32,153.52 42,346.89 0.76

Calculating column subtotals and totals
By using the SUBTOTAL function, you can create a row that shows the total of one
or more numeric columns in a report.

Thirty-two subtotals are maintained for each column of numeric data in a report,
which means you can include up to 32 levels of totals and subtotals in your report.
As the argument to the SUBTOTAL function, you supply the number of the subtotal
you want to access.

Each time you use the SUBTOTAL function to access one of the subtotals, the
contents of that subtotal are reset to zero.

Example: Calculating product totals for each month
Suppose your program loops over the PRODUCT dimension to create this report of
unit sales.

 JAN95 FEB95 MAR95
 ========== ========== ==========
TENTS 200 203 269
CANOES 347 400 482
RACQUETS 992 1,076 1,114

Performing Calculations in a Report

12-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

By using the SUBTOTAL function, you can create a row that shows the total of each
numeric column. The SUBTOTAL function returns decimal values, which are
shown with two decimal places by default. However, because you are totaling
integer data, you will want to format the totals with no decimal places. After the
commands that produce the rows of data, execute the following command in your
program.

row indent 2 ’Total’, across month: over ’-’ -
 under ’=’ d 0 subtotal(1)

The report looks like the following.

 JAN95 FEB95 MAR95
 ========== ========== ==========
TENTS 200 203 269
CANOES 347 400 482
RACQUETS 992 1,076 1,114
 ---------- ---------- ----------
 Total 1,539 1,679 1,865
 ========== ========== ==========

Example: Calculating subtotals and totals
If your program loops over the DISTRICT dimension as well as over the PRODUCT
dimension, then you can show subtotals for the products within each district and
then a grand total for all the districts. You can use SUBTOTAL(1) for the total of the
products within each district, and SUBTOTAL(2) for the grand total of all districts.
The program might contain the following commands.

limit month to ’JAN95’ to ’MAR95’
limit product to ’TENTS’ ’CANOES’ ’RACQUETS’
limit district to ’BOSTON’ ’ATLANTA’
heading skip, under ’=’ across month: c month
blank
for district
 do
 row under ’-’ valonly district
 blank
 for product
 row product, across month: units
 row indent 2 ’Total’, over ’-’ across month: -
 d 0 subtotal(1)
 blank
 doend
row ’Grand Total’, over ’-’ under ’=’ across month: -
 d 0 subtotal(2)

Performing Calculations in a Report

Writing Reports 12-23

This program produces the following report.

 JAN95 FEB95 MAR95
 ========== ========== ==========
BOSTON

TENTS 200 203 269
CANOES 347 400 482
RACQUETS 992 1,076 1,114
 ---------- ---------- ----------
 Total 1,539 1,679 1,865
ATLANTA

TENTS 253 276 320
CANOES 260 285 356
RACQUETS 1,037 1,196 1,158
 ---------- ---------- ----------
 Total 1,550 1,757 1,834
 ---------- ---------- ----------
Grand Total 3,089 3,436 3,699
 ========== ========== ==========

Calculating running totals for columns
You can use the RUNTOTAL function to calculate a running total of the values in a
column. As the argument to RUNTOTAL, you supply the number of the subtotal
you want to access. Unlike SUBTOTAL, the RUNTOTAL function does not reset the
subtotal to zero when you access it. You must reset the subtotal yourself when you
want to start a new running total. To reset the subtotal, you use the ZEROTOTAL
command.

Example: Calculating cumulative sales
To show cumulative unit sales and dollar sales over several months, you might
want to create a report such as the following one.

Month Units Total Dollars Total
 Units Dollars
------ ------ ---------- ---------- ----------
JAN96 307 307 50,808.96 50,808.96
FEB96 209 516 34,641.59 85,450.55
MAR96 277 793 45,742.21 131,192.76
APR96 372 1,165 61,436.19 192,628.95
MAY96 525 1,690 86,699.67 279,328.62
JUN96 576 2,266 95,120.83 374,449.45

Performing Calculations in a Report

12-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

To create the report, use these lines in a program.

limit month to ’JAN96’ to ’JUN96’
limit product to all
limit district to ’BOSTON’
row under ’-’ r <l w 6 ’Month’, w 6 ’Units’, -
 ’Total Units’, ’Dollars’, ’Total Dollars’>
for month
 row w 6 <month, units>, d 0 units + runtotal(1),-
 sales, sales + runtotal(1)

Initializing the subtotals
When you use a SUBTOTAL or RUNTOTAL function in your program, you should
include a ZEROTOTAL command in the initialization section of the program.
Including a ZEROTOTAL command will ensure that all the totals are set to zero
before you begin your report. Before you start a new running total for a column,
you must use the ZEROTOTAL command to reset the subtotal of the column to
zero.

If you want to reset all the totals for all the columns to zero, then use the
ZEROTOTAL command with no argument.

zerototal

To reset a particular subtotal in a particular column to zero, specify the subtotal and
the column number as arguments to ZEROTOTAL. For example, to set the first
subtotal of the second column to zero, use this command.

zerototal 1, 2

To reset all the totals in a specific column to zero, specify ALL as the subtotal
argument to ZEROTOTAL. For example, if you want to reset all the totals for the
second column to zero, then use this command.

zerototal all, 2

Showing data calculated by functions
In a report, you can show the result returned by any OLAP DML function. To show
the result, you can use either of the following approaches:

■ Specify the function in the expression to be reported.

■ Create a variable that holds the result returned by the function, and then specify
the holding variable in the expression to be reported.

Creating Paginated Reports

Writing Reports 12-25

Example: Storing a calculation in a holding variable
Suppose you want to show the ratio of the unit sales for each district to the total
unit sales for all districts combined. You can use the following expression to make
the desired calculation.

total(units, district) / total(units)

If you make the above calculation in a FOR loop for the districts in a report
program, then the expression must be recalculated for each district. Your program
will run more efficiently when you define a variable to hold the calculated total, and
use a FOR loop to report the holding variable. First, define a holding variable.

define tot decimal <district> temp
ld Total units ratio by district

Then use the following lines in a program to calculate the ratio, expressed as a
percentage.

limit month to ’JAN95’
limit product to all
limit district to all
 .
 .
 .
tot = total(units, district) / total(units) * 100
for district
 row district, d 1 tot

The above commands produce this output.

BOSTON 16.4
ATLANTA 21.2
CHICAGO 17.2
DALLAS 18.6
DENVER 15.6
SEATTLE 11.1

Creating Paginated Reports

Introducing the paging options
You can use a number of options to produce report output in separate pages and
control the format of the pages.

Creating Paginated Reports

12-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

The paging facility is controlled by the PAGING option. When you want to produce
your report in separate pages, set the PAGING option to YES in the initialization
section of your report program. When PAGING is set to YES:

■ Output from commands such as ROW, HEADING, and REPORT is produced in
separate pages.

■ You can use other OLAP DML paging options to change page features such as
the size of the page, the size of the margins, and the headings that are used on
each page.

Summary of the paging options
The paging options are summarized in the following table.

Option Description

BMARGIN Specifies the number of blank lines for the bottom margin of output pages.
Default: 1.

LINENUM Holds the current line number for the current page of output. It is
adjusted automatically as output lines are produced. You should generally
set LINENUM to 1 when you want to produce a report starting on page 1.

LINESLEFT Holds the number of lines left on the current page. It is adjusted
automatically as output lines are produced.

LSIZE Specifies the width of the line within which the STDHDR program centers
the standard header. Default: 80.

PAGENUM Holds the current page number of the output. It is adjusted automatically
as lines of output are produced. You should generally set PAGENUM to 1
when you want to produce a report starting on page 1.

PAGEPRG Holds the text of a command or the name of a program to be executed at
the beginning of each page of output. The default, ’STDHDR’, specifies the
standard header program. For no headings, specify ’NONE’.

PAGESIZE Specifies the number of lines in a page of output, including the top margin
and bottom margin. Default: 66.

PAGING Controls the paging facility. Default: NO.

TMARGIN Specifies the number of blank lines for the top margin of output pages.
Default: 2.

Creating Paginated Reports

Writing Reports 12-27

How the line number is calculated
When a new page is used to store data, LINENUM is set to 1 and PAGENUM is
incremented. However, the first line of output is produced after the number of lines
used by TMARGIN and the lines produced by the PAGEPRG program. By the
second line of actual output, LINENUM is set to the actual line number on the page.

For example, if you are using the default page layout, and you show the value of
LINENUM on the first line of the body of the page, then its value is 1. However, if
you show LINENUM on the second line, then its value is 6 because the 2 lines for
TMARGIN and the 2 lines produced by STDHDR have been added to the line
count.

Using the PAGE command to start a new page
If the PAGING option is set to YES, then you can use the PAGE command to force a
page break in a report. For example, you might want to start each section of data on
a new page of the report.

Example: Showing data for each product on a separate page
For example, if your report shows regional sales data for each product, then you can
start the data for each product on a separate page. Your report program might
include the following lines.

for product
 do
 page
 row under ’-’ valonly product
 for region
 row indent 3 region, across month: units
 doend

The PAGE command forces a new page at the beginning of the FOR loop for each
value of the PRODUCT dimension.

Example: Resetting the page number for each product
Suppose you want to restart the page numbering of your report at 1 for each new
product. You can use the following code to reset the PAGENUM option to 0 before
executing a PAGE command.

for product
 do
 pagenum = 0

Creating Paginated Reports

12-28 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

 page
 row under ’-’ valonly product
 for region
 row indent 3 region, across month: units
 doend

Starting a new page based on the lines left
Your decision to start a new page might depend on the space available on the
current page. For example, you might want to start a block of data on a new page
when there is not enough room on the current page for the entire block.

To start a new page when fewer than a specific number of lines remain on the
current page, test the value in the LINESLEFT option.

For example, to start a new page when fewer than 12 lines are left on the current
page, use these commands in your program.

if linesleft lt 12
 then page

Sending output to different outfiles
You can use the OUTFILE command to specify a file as the target outfile or to direct
output to the default outfile.

The following command sends output to a file named repfile.txt.

outfile ’repfile.txt’

The following command redirects output to the default outfile.

outfile eof

Unless you use the OUTFILE command to send output to a file, your default outfile
is used.

Using paging options with different outfiles
The paging options can have different values for the default outfile and for a
different file. When you use the OUTFILE command to direct output to a file, the
values of the paging options that are currently in use for the default outfile are
saved automatically, and reinstates them when you redirect output back to the
default outfile.

When you direct output to a file, the paging options are reset automatically to their
default values for output to the file. After executing the OUTFILE command, you

Creating Paginated Reports

Writing Reports 12-29

can set the paging options as desired for the file. However, the values of the paging
options for the file remain in effect only as long as you continue sending output to
the same file. If you use another OUTFILE command to direct output to a different
outfile, then the current values for the file are not saved.

Therefore, if you want the paging options to have a particular value for a particular
file, then you must set the options each time you use the OUTFILE command for
that file. This is true even when you are appending output to an existing file.

Initializing the page number
The value of the PAGENUM option is reset to 1 when you execute an OUTFILE
command to send output to a file. However, if you redirect output to the default
outfile, then PAGENUM will contain the value it last held for the default outfile. To
be sure your report starts with Page 1, you should set PAGENUM to 1 in the
initialization section of your report program.

Pausing during report output
You can make your program pause while producing report output when the
PAGING option is set to YES in your Express session.

Using the PAGEPAUSE option and the PAUSE command
The following table shows how to pause during the execution of a report program.

When a pause occurs as a result of the PAGEPAUSE option or the PAUSE
command, program execution is suspended, and a message is displayed in the
prompt area at the bottom of the screen. The default message is as follows.

Press <Enter> to continue.

Execution of commands continues when the user presses a key.

IF you want your program to pause . . . THEN . . .

after producing each page of output, set the PAGEPAUSE option to YES.

at other times during the execution of the
program,

use the PAUSE command.

Creating Headings on Each Page

12-30 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Customizing the message for a pause
You can replace the default pause message with a message of your own, as shown
in the following table.

Creating Headings on Each Page

Controlling the page heading with the PAGEPRG option
When the PAGING option is set to YES, a heading is inserted at the top of each page
of output. The PAGEPRG option specifies the text of a command or the name of a
program used for generating page headings. By default, the value of the PAGEPRG
option is STDHDR, which means that the STDHDR program is used for generating
headings.

Using the standard page heading
The STDHDR program, which is provided with the OLAP DML, generates a
standard heading. The standard heading consists of the date and time on the left
side of the page, and the page number on the right side of the page. One blank line
is left after the heading to separate it from the rows of the report.

The STDHDR program uses the values of the TODAY and TOD functions to
generate the date and time in the heading. These two functions return the current
date and time from the time clock in the user’s PC.

Adjusting the position of the page number
The STDHDR program uses the value of the LSIZE option to determine the width of
the page, and then uses the width of the page for placing the page number at the

IF you want to customize the message . . . THEN . . .

for the PAGEPAUSE option, set the PAGEPROMPT option to the
desired text.

for the PAUSE command, supply the message as an argument to
the PAUSE command.

16Sept96 16:37:20 Page 1

Creating Headings on Each Page

Writing Reports 12-31

right side of the page. By changing the value of LSIZE, you can adjust the position
of the page number in the standard header.

If your current outfile is a file, then LSIZE can have different values for the default
outfile and the current outfile. Therefore, you should set the LSIZE option after
executing your OUTFILE command.

Customizing the page heading
Instead of using the standard heading, you can specify an OLAP DML command or
write your own program to produce page headings. Then set the PAGEPRG option
to the text of the command or the name of the program.

Example: Customizing the date in the page heading
Suppose you want to include the date and page number on a report but not the
time. You can write a program called DATEHDR to produce the headings you want.

DEFINE DATEHDR PROGRAM
LD Heading program to create date and page number
PROGRAM
push dateformat
dateformat = ’<yy>/<mm>/<dd>’
heading w 8 today, sp 0 w lsize-12 r ’Page’, sp 0 w 4 -
 pagenum
pop dateformat
END

To use the DATEHDR program for your report headings, set the PAGEPRG option
in the initialization section of your report program.

push pageprg
pageprg = ’datehdr’
 .
 .
 .
pop pageprg

Your report will have a heading at the top of each page that displays the date on the
left and the page number on the right, as shown in the following illustration.

96/09/16 Page 1

Creating Headings on Each Page

12-32 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Example: Combining the standard heading with a custom page heading
Instead of replacing the standard heading with your own heading, you might want
to use the standard heading and include additional headings of your own as well.
For example, you might want to produce the standard heading on each page of the
report, a title on the first page, and column headings on each page.

You might want the heading on the first page of the report to look like the one
below.

You might want the heading on each successive page of the report to look like the
one below.

You can use a program like HEAD.PRG to create the headings.

DEFINE HEAD.PRG PROGRAM
LD Produces std header, title, column headings
PROGRAM
stdhdr
if pagenum eq 1
 then do
 heading w lsize c ’Trend of Unit Sales’
 blank 2
 doend
heading skip, across month: under ’-’ c month
blank
END

For each page, the HEAD.PRG program first executes the STDHDR program to
produce the standard heading. Then it tests the value of the PAGENUM option,

16Sep96 11:26:40 Page 1

 Trend of Unit SALES

 JUL96 AUG96 SEP96

16Sep96 11:26:40 Page 1

 JUL96 AUG96 SEP96

Guidelines for Writing a Report Program

Writing Reports 12-33

which holds the page number, and generates the report title on the first page only.
Finally, the HEAD.PRG program inserts the column headings on each page.

In your report program, set the PAGEPRG option to HEAD.PRG.

pageprg = ’head.prg’

Tip: Be sure the format attributes in the HEADING command that creates the
column headings match the format attributes in the ROW commands for the
corresponding data columns in your report program. If the attributes do not match,
then the headings will not line up properly with the data columns.

Guidelines for Writing a Report Program

Suggested outline of a report program
As a general rule, the commands in a report program should be placed in the
sequence shown in the following table.

Program Section Commands

Initialization PUSHLEVEL command

PUSH commands

TRAP ON command

ZEROTOTAL command

Commands to set format options

OUTFILE command

PAGING command

Commands to set paging options

Body LIMIT commands

ROW and HEADING commands

Normal Exit OUTFILE EOF command

POPLEVEL command

RETURN command

Abnormal Exit Error label

Error-handling commands

OUTFILE EOF command

POPLEVEL command

Guidelines for Writing a Report Program

12-34 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

In addition to organizing your report program as suggested in the above table, you
should follow the suggestions that this manual provides for organizing and testing
any type of program.

Tips on aligning report columns
When you test a report program, the problem you are most likely to encounter is
that the report columns do not line up properly. You can avoid most column
alignment problems by following these general rules:

■ Use identical ACROSS groups in your HEADING and ROW commands.

■ Use identical values of WIDTH and SPACE in your HEADING and ROW
commands.

■ When appropriate, you might also need to use identical values for INDENT,
LEFT, RIGHT, and CENTER in your HEADING and ROW commands.

Creating and Using Analytic Workspace Metadata A-1

A
Creating and Using Analytic Workspace

Metadata

Appendix summary
This appendix describes how to create and use analytic workspace metadata, which
is necessary if you want to make the data that is contained in an analytic workspace
viewable by the OLAP API.

List of topics
This appendix includes the following topics:

■ What is Analytic Workspace Metadata?

■ Analytic Workspace Metadata Prerequisites

■ Metadata That Describes Dimension Hierarchies

■ Metadata That Describes Dimension Hierarchy Levels

■ Metadata That Describes Dimension Attributes

■ Metadata That Describes Other Objects

What is Analytic Workspace Metadata?

Definition: Analytic workspace metadata
Analytic workspace metadata describes data in an analytic workspace to the OLAP
API. If you wish to expose data, such as dimensions and measures, in an analytic
workspace to the OLAP API, then the analytic workspace metadata must describe
that data. You create analytic workspace metadata in an analytic workspace by

Analytic Workspace Metadata Prerequisites

A-2 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

using the OLAP DML to create lower-level workspace objects and to set properties
on these workspace objects.

Why is it necessary to create analytic workspace metadata?
When a Java client opens an analytic workspace, the data in that analytic workspace
will not be visible unless you have created analytic workspace metadata.

If you follow the instructions in this appendix, then OLAP Services will make the
analytic workspace metadata that you create available so that the OLAP API can
display the analytic workspace data.

Where should the analytic workspace metadata be created?
The analytic workspace metadata should be created and stored in the analytic
workspace in which data will be viewed by the OLAPI API.

What analytic workspace metadata needs to be created?
This appendix describes the metadata that you need to create. Typically, you need to
set a property on an OLAP DML object that already exists in the analytic
workspace. In addition, many properties will specify a metadata object that you
must define and, in some cases, populate.

Analytic Workspace Metadata Prerequisites

Required analytic workspace metadata
To create analytic workspace metadata and make the OLAP API aware that the
metadata exists, you must perform both of the following steps:

1. Define a metadata locator object.

2. Define metadata for every OLAP DML object that you wish for the OLAP API
to display.

Defining the metadata locator object: ECMLOCATOR
The metadata locator object is the first point of contact with an analytic workspace’s
metadata. Therefore, you must define one metadata locator object for every analytic
workspace whose data you wish to display in a Java client. Once you have defined
the metadata locator object, be sure to assign the ISECMLOCATOR property to it —

Analytic Workspace Metadata Prerequisites

Creating and Using Analytic Workspace Metadata A-3

if you fail to do so, OLAP Services will not be able to recognize that the analytic
workspace contains metadata, and the OLAP API will be unable to display any data
in that workspace.

Use the DEFINE command to create a text variable named ECMLOCATOR.

For example, use the following command to define a metadata locator object:

define ECMLOCATOR variable text

Properties required by the metadata locator object
After you define ECMLOCATOR, you must then set the following properties on it:

■ ISECMLOCATOR

■ DBDIMDIM

■ DBMEASDIM

■ DBATTRDIM

■ DBFOLDERDIM

Setting the ISECMLOCATOR property
After you define ECMLOCATOR, then use the PROPERTY command to set the
ISECMLOCATOR property to YES. Note that the name of any property must be
enclosed in single quotes.

If the ECMLOCATOR variable is not the current object, then use the CONSIDER
command before the PROPERTY command.

For example, use the following commands to set the ISECMLOCATOR property on
the ECMLOCATOR variable:

consider ECMLOCATOR
property ’ISECMLOCATOR’ yes

When the OLAP API opens an analytic workspace, an attempt is made to locate an
OLAP DML object that has an ISECMLOCATOR property that is set to YES. This is
how the OLAP API determines that the analytic workspace contains data that is
described by analytic workspace metadata.

Analytic Workspace Metadata Prerequisites

A-4 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Set the DBDIMDIM property to identify the workspace’s dimensions
DBDIMDIM is a property that specifies the name of the dimension dimension,
which you must define and populate. This is a dimension whose dimension values
are the names of the OLAP DML dimensions that exist in the analytic workspace.

To set the DBDIMDIM property, follow these steps:

1. Define and populate the dimension dimension.

2. Set the required properties on the dimension dimension.

3. Set the DBDIMDIM property on ECMLOCATOR. The DBDIMDIM property
will specify the name of the dimension dimension that you have defined.

Defining the dimension dimension
Use the DEFINE DIMENSION command to define the dimension dimension. Then
use the MAINTAIN command to specify the names of the dimensions that exist in
the analytic workspace as the dimension values.

Suppose your analytic workspace contains three dimensions, named TIME,
GEOGRAPHY, and PRODUCT. Use the following commands to define and
populate a dimension named dbdimdim:

define dbdimdim dimension text
maintain dbdimdim add ’TIME’ ’GEOGRAPHY’ ’PRODUCT’

Analytic Workspace Metadata Prerequisites

Creating and Using Analytic Workspace Metadata A-5

Setting properties on the dimension dimension
Once you have defined a dimension dimension, you then assign the following
properties to it:

■ LDSCVAR — Specifies the name of a text variable that contains the long
descriptive labels of the dimensions. You must define this text variable, which
should be dimensioned by the dimension dimension. See “Set the LDSCVAR
property to identify an object’s long description” on page A-25 for more
information.

■ NUMHIERFRM — Specifies the name of the formula that provides the number
of hierarchies that are associated with each dimension. You only need to define
one formula per analytic workspace. However, you must define this formula,
and the formula must return the number of hierarchies for each dimension in
the analytic workspace. See “Define a NUMHIERFRM object to determine the
number of hierarchies” on page A-12 for more information.

■ SDSCVAR — Specifies the name of a text variable that contains the short
descriptive labels of the dimensions. You must define this text variable, which
should be dimensioned by the dimension dimension. See “Set the SDSCVAR
property to identify an object’s short description” on page A-24 for more
information.

For each property, define the object and populate it. You can then set the property
on the dimension dimension.

For example, suppose you define and populate a variable named dbdim_ldscvar, a
formula named dbdim_numhierfrm, and a variable named dbdim_sdscvar. Use the
following commands to set the properties on a dimension dimension named
dbdimdim:

consider dbdimdim
property ’LDSCVAR’ ’dbdim_ldscvar’
property ’NUMHIERFRM’ ’dbdim_numhierfrm’
property ’SDSCVAR’ ’dbdim_sdscvar’

Setting the DBDIMDIM property on ECMLOCATOR
Once you have defined a dimension dimension, set the DBDIMDIM property on
ECMLOCATOR. The following example specifies dbdimdim as the name of the
dimension dimension:

consider eclocator
property ’DBDIMDIM’ ’dbdimdim’

Analytic Workspace Metadata Prerequisites

A-6 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Set the DBMEASDIM property to identify the workspace’s measures
DBMEASDIM is a property that specifies the name of a measure dimension, which
you must define and populate. This is a dimension whose dimension values are the
names of the OLAP DML variables that you have defined in the analytic
workspace.

To set the DBMEASDIM property, follow these steps:

1. Define and populate the measure dimension.

2. Set the required properties on the measure dimension.

3. Set the DBMEASDIM property on ECMLOCATOR. The DBMEASDIM property
will specify the name of the measure dimension that you have defined.

Defining the measure dimension
Use the DEFINE DIMENSION command to define the measure dimension. Then
use the MAINTAIN command to specify the names of the variables that exist in the
analytic workspace as the dimension values.

Suppose your analytic workspace contains three variables, named SALES, UNITS,
and PROJECTED_SALES. You can use the following commands to define and
populate a measure dimension named dbmeasdim:

define dbmeasdim dimension text
maintain dbmeasdim add ’SALES’ ’UNITS’ ’PROJECTED_SALES’

Setting properties on the measure dimension
The only property that you need to set for the measure dimension is the LDSCVAR
property. See “Set the DBDIMDIM property to identify the workspace’s
dimensions” on page A-4 for an example of setting the LDSCVAR property.

Once you have defined a measure dimension, you then assign the following
property to it:

LDSCVAR — Specifies the name of a text variable that contains the long descriptive
labels of the variables. You must define this text variable, which should be
dimensioned by the dimension dimension.

First, define the object and populate it. You can then set the property on the measure
dimension.

Analytic Workspace Metadata Prerequisites

Creating and Using Analytic Workspace Metadata A-7

For example, suppose you define and populate a variable named dbmeas_ldscvar.
Use the following commands to set the property on a dimension dimension named
dbdimdim:

consider dbdimdim
property ’LDSCVAR’ ’dbmeas_ldscvar’

Setting the DBMEASDIM property on ECMLOCATOR
Once you have defined a measure dimension, set the DBMEASDIM property on
ECMLOCATOR. The following example specifies dbmeasdim as the name of the
measure dimension:

consider ECMLOCATOR
property ’DBMEASDIM’ ’dbmeasdim’

Set the DBATTRDIM property to identify the workspace’s attributes
DBATTRDIM is a property that specifies the name of an attribute dimension, which
you must define and populate. This is a dimension whose dimension values are the
names of the OLAP DML attributes that exist in the analytic workspace.

To set the DBATTRDIM property, follow these steps:

1. Define and populate the attribute dimension.

2. Set the required properties on the attribute dimension.

3. Set the DBATTRDIM property on ECMLOCATOR. The DBATTRDIM property
will specify the name of the attribute dimension that you have defined.

For more information about attributes, refer to “Metadata That Describes
Dimension Attributes” on page A-20.

Defining the attribute dimension
Use the DEFINE DIMENSION command to define the attribute dimension. Then
use the MAINTAIN command to specify the names of the attributes that exist in the
analytic workspace as the dimension values.

Suppose your analytic workspace contains three attributes, named USE, GENDER,
and AGE. Use the following commands to define and populate a dimension named
dbattrdim:

define dbattrdim dimension text
maintain dbattrdim add ’USE’ ’GENDER’ ’AGE’

Analytic Workspace Metadata Prerequisites

A-8 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Setting properties on the attribute dimension
Once you have defined an attribute dimension, you then assign the following
properties to it:

■ DOMAINDIMREL — Specifies the name of the relation that holds the
dimension that functions as the domain of each attribute. See “Set the
DOMAINDIMREL property on the attribute dimension” on page A-21 for more
information.

■ LDSCVAR — Specifies the name of the variable that contains the long
descriptive labels of the attributes. See “Set the LDSCVAR property to identify
an object’s long description” on page A-25 for more information.

■ RANGEDIMREL — Specifies the name of the relation that holds the dimension
that functions as the range of each attribute. See “Set the RANGEDIMREL
property” on page A-21 for more information.

For each property, define the object and populate it. You can then set the property
on the attribute dimension.

For example, suppose you define and populate a relation named domaindimrel, a
variable named dbattr_ldscvar, and a relation named rangedimrel. Use the
following commands to set the properties for an attribute dimension named
dbattrdim:

consider dbattrdim
property ’DOMAINDIMREL’ ’domaindimrel’
property ’LDSCVAR’ ’dbattr_ldscvar’
property ’RANGEDIMREL’ ’rangedimrel’

For more information about an attribute’s domain, an attribute’s range, and setting
properties for attributes, refer to “Metadata That Describes Dimension Attributes”
on page A-20.

Setting the DBATTRDIM property on ECMLOCATOR
Once you have defined an attribute dimension, set the DBATTRDIM property on
ECMLOCATOR. The following example specifies dbattrdim as the name of the
attribute dimension:

consider ECMLOCATOR
property ’DBATTRDIM’ ’dbattrdim’

Analytic Workspace Metadata Prerequisites

Creating and Using Analytic Workspace Metadata A-9

Set the DBFOLDERDIM property to identify the workspace’s folders
DBFOLDERDIM is a property that specifies the name of a folder dimension, which
you must define and populate. This is a dimension whose dimension values are the
names of the folders that exist in the analytic workspace. A folder is a collection of
measures that a user considers to be related to one another.

For example, an analytic workspace might contain folders named Financial,
Shipments, Market Measurements, Sales, and Human Resources. Folders typically
have the same dimensionality, but this is not required. A measure can be in more
than one folder. Folders can contain other folders.

To set the DBFOLDERDIM property, follow these steps:

1. Define and populate the folder dimension.

2. Set the required properties on the folder dimension.

3. Set the DBFOLDERDIM property on ECMLOCATOR. The DBFOLDERDIM
property will specify the name of the folder dimension that you have defined.

Defining the folder dimension
Use the DEFINE DIMENSION command to define the folder dimension. Then use
the MAINTAIN command to specify the names of the folders that exist in the
analytic workspace as the dimension values.

Suppose your analytic workspace contains five folders, named FINANCIAL,
SHIPMENTS, MARKET_MEASUREMENTS, SALES, and HUMAN_RESOURCES.
You can use the following commands to define and populate a dimension named
dbfolderdim:

define dbfolderdim dimension text
maintain dbfolderdim add ’FINANCIAL’ ’SHIPMENTS’ ’MARKET_MEASUREMENTS’ -
 ’SALES’ ’HUMAN_RESOURCES’

Metadata That Describes Dimension Hierarchies

A-10 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Setting properties on the folder dimension
Once you have defined a folder dimension, you then assign the following
properties to it:

■ LDSCVAR — Specifies the name of the variable that contains the long
descriptive labels of the folders. See “Set the LDSCVAR property to identify an
object’s long description” on page A-25 for more information.

■ MEASINFOLDERVS — Specifies the name of the valueset that specifies the
measures that belong to each folder. See “Set the MEASINFOLDERVS property
to identify measures in folders” on page A-23 for more information.

For each property, define the object and populate it. You can then set the property
on the folder dimension.

For example, suppose you define and populate a variable named dbfolder_ldscvar
and a valueset named measinfoldervs. Use the following commands to set the
properties for an folder dimension named dbfolderdim:

consider dbfolderdim
property ’LDSCVAR’ ’dbfolder_ldscvar’
property ’MEASINFOLDERVS’ ’measinfoldervs’

Setting the DBFOLDERDIM property on ECMLOCATOR
Once you have defined a folder dimension, set the DBFOLDERDIM property on
ECMLOCATOR. The following example specifies dbfolderdim as the name of the
folder dimension:

consider ECMLOCATOR
property ’DBFOLDERDIM’ ’dbfolderdim’

Metadata That Describes Dimension Hierarchies

Metadata that is required for the display of dimension hierarchies
If a dimension has one or more hierarchies, and you want to make it possible to
display those hierarchies on a Java client, then the following metadata is required
for that dimension:

■ “Set the HIERDIM property if a dimension has any hierarchies” on page A-11

■ “Define a NUMHIERFRM object to determine the number of hierarchies” on
page A-12

Metadata That Describes Dimension Hierarchies

Creating and Using Analytic Workspace Metadata A-11

■ “Set the HIERDEFAULT property to specify the default hierarchy” on page
A-13

■ “Set the HIERLDSCVAR property to display hierarchy descriptions” on page
A-13

■ “Set the DRILLINFOFRM to display information about drill direction” on page
A-14

■ “Set the PARENTREL property to identify the hierarchy parent relation” on
page A-14

■ “Set the FULLORDER property to identify the hierarchy organization” on page
A-15

If you also want to display information about hierarchy levels, refer to “Metadata
That Describes Dimension Hierarchy Levels” on page A-16.

Set the HIERDIM property if a dimension has any hierarchies
Define a hierarchy dimension to hold the name of every hierarchy in a dimension,
then set the HIERDIM property on that dimension.

Defining the hierarchy dimension
Use the following steps to define a hierarchy dimension:

1. Define a dimension to act as the hierarchy dimension. The dimension values are
the names of the hierarchies in a dimension. You must define a separate
hierarchy dimension for every dimension that has hierarchies.

2. Create a self-relation for the dimension. For example, create a dimension that
relates the TIME dimension to itself.

3. Limit the self-relation to each hierarchy.

4. Relate the dimension values in the self-relation.

For a detailed example of creating a hierarchy dimension, refer to the RELATION
command in the OLAP DML Reference.

Setting the HIERDIM property on its dimension
After you have created a hierarchy dimension, then you can set the HIERDIM
property on its dimension.

Metadata That Describes Dimension Hierarchies

A-12 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For example, suppose you create a hierarchy dimension for the TIME dimension
named timehierdim. Use the following command to set the HIERDIM property for
the TIME dimension.

consider time
property ’HIERDIM’ ’timehierdim’

Define a NUMHIERFRM object to determine the number of hierarchies
Define one number-of-hierarchies formula whose return value is the number of that
dimension’s hierarchies. Because the formula is dimensioned by the dimension
dimension, you only need to define one formula for each analytic workspace.

Defining the number-of-hierarchies formula
The number-of-hierarchies formula must have an integer data type and must be
dimensioned by the dimension dimension. See “Set the DBDIMDIM property to
identify the workspace’s dimensions” on page A-4 for more information about the
dimension dimension.

The following example defines a number-of-hierarchies formula.

define numhiers formula integer <dbdimdim>
eq if not obj(hasproperty ’HIERDIM’ dimexpobj) then 0
 else if not exists(obj(property ’HIERDIM’ dimexpobj)) then 0
 else obj(dimmax obj(property ’HIERDIM’ dimexpobj))

For information about the HIERDIM property, see “Set the HIERDIM property if a
dimension has any hierarchies” on page A-11.

For an example of defining a DIMEXPOBJ object, see “Set the EXPOBJVAR property
on the attribute dimension” on page A-22.

Setting the NUMHIERFRM property on the dimension dimension
After you have defined the number-of-hierarchies formula, then you can set the
NUMHIERFRM property on the dimension dimension:

consider dbdimdim
property ’NUMHIERFRM’ ’numhiers’

Using the number-of-hierarchies formula
The following command uses the number-of-hierarchies formula to determine
which dimensions have hierarchies:

limit dbdimdim to numhiers gt 0

Metadata That Describes Dimension Hierarchies

Creating and Using Analytic Workspace Metadata A-13

Set the HIERDEFAULT property to specify the default hierarchy
If a dimension has more than one hierarchy, set the HIERDEFAULT property on
that dimension and specify the name of the hierarchy that you want to be used as
the default hierarchy.

Setting the HIERDEFAULT property
For example, suppose that the TIME dimension has two hierarchies: the Calendar
hierarchy and the Fiscal hierarchy. These names are specified in the hierarchy
dimension; refer to “Set the HIERDIM property if a dimension has any hierarchies”
on page A-11 for more information.

If you want to use the Fiscal hierarchy as the default hierarchy for TIME, then use
the following commands:

consider time
property ’HIERDEFAULT’ ’Fiscal’

For information about naming hierarchies, see “Set the HIERDIM property if a
dimension has any hierarchies” on page A-11.

Set the HIERLDSCVAR property to display hierarchy descriptions
To display a text description for a dimension’s hierarchies, define a text variable,
which must be dimensioned by the hierarchy dimension. Set the HIERLDSCVAR
property on the dimension to specify the name of the object you create.

Defining the hierarchy description variable
The following example defines a variable named time.ldsc for the TIME variable.
Note that the variable is dimensioned by TIME’s hierarchy dimension,
NUMHIERTIME.

define time.ldsc variable text <numhiertime>

Setting the HIERLDSCVAR property
After you have defined a hierarchy description variable, then you can set the
HIERLDSCVAR property on its dimension.

For example, the following commands set the HIERLDSCVAR property on the
TIME dimension and specify the variable named time.ldsc:

consider time
property ’HIERLDSCVAR’ ’time.ldsc’

Metadata That Describes Dimension Hierarchies

A-14 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Set the DRILLINFOFRM to display information about drill direction
If information about whether dimension values can be expanded or contracted
(“drilled”) is important, then you can define a formula, then specify the formula
name when you set the DRILLINFOFRM property on the dimension.

Defining the hierarchy drill information formula
The following example defines a formula named time.drill for the TIME dimension.
Note that the formula is dimensioned both by the TIME dimension and by its
hierarchy dimension, NUMHIERTIME. TIME.PARENT is the parent relation of the
TIME dimension.

define time.drill formula integer <time numhiertime>
EQ if statlen(limit(TIME to children using TIME.PARENT
convert(TIME, int))) eq 0 then 0 else if statlen(TIME) eq
statlen(limit(TIME remove children using TIME.PARENT
convert(TIME, int))) then 1 else 2

The possible return values are:

■ 0 — this dimension value has no children in the TIME hierarchy

■ 1 — this dimension value has children and is not expanded

■ 2 — this dimension value has children and is already expanded

Setting the DRILLINFOFRM property
After you have defined the hierarchy drill information formula, then you can set the
DRILLINFOFRM property on the dimension.

For example, the following code sets the DRILLINFOFRM property on the TIME
dimension and specifies the formula named time.drill:

consider time
property ’DRILLINFOFRM’ ’time.drill’

Set the PARENTREL property to identify the hierarchy parent relation
The hierarchy parent relation is a self-relation in which you specify the parent of
each dimension value. For example, suppose the TIME dimension values are
months, quarters, and years. In the Calendar hierarchy, Q1 is the parent of January,
February, and March. Therefore, you define a relation that relates TIME to itself,
then relate Q1 as the parent of January, February, and March.

Metadata That Describes Dimension Hierarchies

Creating and Using Analytic Workspace Metadata A-15

Once you have defined and populated the hierarchy parent relation, then set the
PARENTREL property on that dimension.

Defining the hierarchy parent relation
The following example defines a self-relation for the TIME dimension. Note that the
TIME dimension is related not only to itself but also to its hierarchy dimension,
numhiertime.

define time.parent relation time <time, numhiertime>

You relate the dimension values (for example, for the Calendar year dimension
values) in the self-relation (time.time) just as you would for a self-relation that has
only one hierarchy. See the DEFINE RELATION command in the OLAP DML
Reference for details.

Setting the PARENTREL property
After you have defined the hierarchy parent relation, then you can set the
PARENTREL property on the dimension.

For example, the following code sets the PARENTREL property on the TIME
dimension and specifies the relation named time.parent:

consider time
property ’PARENTREL’ ’time.parent’

Set the FULLORDER property to identify the hierarchy organization
If a dimension has one or more hierarchies, define a hierarchy full order variable to
identify the order of dimension values within each hierarchy, then set the
FULLORDER property on that dimension.

Defining the hierarchy full order variable
The following example defines a variable for the TIME dimension. Note that the
variable is defined with a decimal data type, and it is dimensioned by TIME and its
hierarchy dimension, numhiertime.

define time.fullorder variable decimal <time, numhiertime>

You then assign a number for each combination of a TIME dimension value and a
hierarchy name as the variable data.

Metadata That Describes Dimension Hierarchy Levels

A-16 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Setting the FULLORDER property
After you have defined the hierarchy full order variable, then you can set the
FULLORDER property on the dimension.

For example, the following code sets the FULLORDER property on the TIME
dimension and specifies the variable named time.fullorder:

consider time
property ’FULLORDER’ ’time.fullorder’

Metadata That Describes Dimension Hierarchy Levels

Metadata that is required for the display of hierarchy levels
If a dimension has one or more hierarchies, and you want to display the various
levels of those hierarchies, then the following metadata is required for that
dimension:

■ “Set the LEVELDIM property to identify the names of hierarchy levels” on page
A-16

■ “Set the LEVELREL property to identify hierarchy level contents” on page A-17

■ “Set the HIERLEVELVS property to specify level order” on page A-18

■ “Set the LEVELDEPTHVAR property to identify hierarchy level depth” on page
A-18

■ “Set the LEVELLDSC property to identify hierarchy level descriptions” on page
A-19

Set the LEVELDIM property to identify the names of hierarchy levels
Define a hierarchy level dimension to identify the name of each hierarchy level,
then set the LEVELDIM property on the base dimension (meaning, the dimension
whose hierarchy levels are being identified).

Defining the hierarchy level dimension
The following example defines a hierarchy level dimension for the TIME
dimension. Note that the dimension is defined with a text data type.

define time.leveldim dimension text

Metadata That Describes Dimension Hierarchy Levels

Creating and Using Analytic Workspace Metadata A-17

You then add dimension values that are the names of the levels of the TIME
dimension’s hierarchies.

Setting the LEVELDIM property
After you have defined the hierarchy level dimension, then you can set the
LEVELDIM property on the dimension.

For example, the following code sets the LEVELDIM property on the TIME
dimension and specifies the dimension named time.leveldim:

consider time
property ’LEVELDIM’ ’time.leveldim’

Set the LEVELREL property to identify hierarchy level contents
Define a dimension member level relation to identify the hierarchy level to which
each dimension value belongs, then set the LEVELREL property on that dimension.

Defining the dimension member level relation
The following example defines a relation for the TIME dimension. Note that the
relation relates the hierarchy level dimension for TIME, named time.leveldim to the
TIME dimension and its hierarchy dimension, named time.hierdim. See “Set the
LEVELDIM property to identify the names of hierarchy levels” on page A-16 for
information about defining a hierarchy level dimension. See “Set the HIERDIM
property if a dimension has any hierarchies” on page A-11 for information about
defining a hierarchy dimension.

define time.levelrel relation time.leveldim <time, time.hierdim>

You then relate each dimension value to the hierarchy level to which it belongs. For
information about populating a relation, refer to the DEFINE RELATION command
in the OLAP DML Reference.

Setting the LEVELREL property
After you have defined the dimension member level relation, then you can set the
LEVELREL property on the dimension.

For example, the following code sets the LEVELREL property on the TIME
dimension and specifies the relation named time.levelrel:

consider time
property ’LEVELREL’ ’time.levelrel’

Metadata That Describes Dimension Hierarchy Levels

A-18 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Set the HIERLEVELVS property to specify level order
Define a level-to-hierarchy mapping valueset to hold the list of levels for each
hierarchy, then set the HIERLEVELVS property on that dimension.

Order the levels from highest (meaning, the root level) to lowest. A level can belong
to more than one hierarchy.

Defining the level-to-hierarchy mapping valueset
The following example defines a level-to-hierarchy mapping valueset for the TIME
dimension. Note that the valueset is defined with a short integer data type. The
definition also requires the level dimension and hierarchy dimension. For
information about defining a level dimension, see “Set the LEVELDIM property to
identify the names of hierarchy levels” on page A-16. For information about
defining a hierarchy dimension, see “Set the HIERDIM property if a dimension has
any hierarchies” on page A-11.

define time.hierlvl valueset time.leveldim <time.hierdim>

You then populate the valueset with a list of levels for each hierarchy. For
information about populating valuesets, refer to the DEFINE VALUESET command
in the OLAP DML Reference.

Setting the HIERLEVELVS property
After you have defined the level-to-hierarchy mapping valueset, then you can set
the HIERLEVELVS property on the dimension.

For example, the following code sets the HIERLEVELVS property on the TIME
dimension and specifies the valueset named time.hierlvl:

consider time
property ’HIERLEVELVS’ ’time.hierlvl’

Set the LEVELDEPTHVAR property to identify hierarchy level depth
Define a level depth variable to identify each hierarchy level’s distance from the
hierarchy root, then set the LEVELDEPTHVAR property on that dimension.

The top level of the hierarchy has a value of 0.

Defining the level depth variable
The following example defines a level depth variable for the TIME dimension. Note
that the variable is defined with a short integer data type. The variable is

Metadata That Describes Dimension Hierarchy Levels

Creating and Using Analytic Workspace Metadata A-19

dimensioned by TIME’s level dimension and hierarchy dimension. For information
about defining a level dimension, see “Set the LEVELDIM property to identify the
names of hierarchy levels” on page A-16. For information about defining a
hierarchy dimension, see “Set the HIERDIM property if a dimension has any
hierarchies” on page A-11.

define time.lvldepth variable shortinteger <time.leveldim, time.hierdim>

You then add assign an integer for each hierarchy level that identifies its depth in
the hierarchy.

Setting the LEVELDEPTHVAR property
After you have defined the level depth variable, then you can set the
LEVELDEPTHVAR property on the dimension.

For example, the following code sets the LEVELDEPTHVAR property on the TIME
dimension and specifies the variable named time.lvldepth:

consider time
property ’LEVELDEPTH’ ’time.lvldepth’

Set the LEVELLDSC property to identify hierarchy level descriptions
Define a level long description variable to hold the description of each hierarchy
level, then set the LEVELLDSC property on that dimension.

Defining the level long description variable
The following example defines a level long description variable for the TIME
dimension. Note that the variable is defined with a text data type. It is dimensioned
by TIME’s hierarchy level dimension, named time.leveldim. For information about
defining a hierarchy level dimension, see “Set the LEVELDIM property to identify
the names of hierarchy levels” on page A-16.

define time.lvlldsc variable text <time.leveldim>

You then add text that describes the names of the levels of the TIME dimension’s
hierarchies.

Setting the LEVELLDSC property
After you have defined the level long description variable, then you can set the
LEVELLDSC property on the dimension.

Metadata That Describes Dimension Attributes

A-20 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For example, the following code sets the LEVELLDSC property on the TIME
dimension and specifies the variable named time.lvlldsc:

consider time
property ’LEVELLDSC’ ’time.lvlldsc’

Metadata That Describes Dimension Attributes

What are attributes?
Attributes relate the dimension values in one OLAP DML dimension to the
dimension values in another OLAP DML dimension.

An attribute has a domain dimension and a range dimension.

The domain dimension is the dimension about whose dimension values an attribute
supplies information.

The range dimension values provide information about the domain dimension.

For example, suppose you define a PRODUCT dimension. One attribute is the color
of each product. Therefore, you define a COLOR dimension to store the names of
colors. PRODUCT is the domain dimension, and COLOR is the range dimension.

Any OLAP DML object can represent more than one analytic workspace attribute.
Each unique mapping of domain and range dimensions to the dimensions of the
object is a separate attribute.

Metadata that is required for the display of attributes
If a dimension has attributes and you want to display them, then the following
metadata is required:

■ “Set the DBATTRDIM property on the ECMLOCATOR object” on page A-20

■ “Set the DOMAINDIMREL property on the attribute dimension” on page A-21

■ “Set the RANGEDIMREL property” on page A-21

■ “Set the EXPOBJVAR property on the attribute dimension” on page A-22

Set the DBATTRDIM property on the ECMLOCATOR object
You must set the DBATTRIDIM property on the ECMLOCATOR object in order to
make it possible for attributes that exist in the analytic workspace to be found.

Metadata That Describes Dimension Attributes

Creating and Using Analytic Workspace Metadata A-21

For details, refer to “Set the DBATTRDIM property to identify the workspace’s
attributes” on page A-7.

Set the DOMAINDIMREL property on the attribute dimension
Define a relation that holds the dimension that acts as domain of an attribute, then
set the DOMAINDIMREL property on the attribute dimension.

Defining the attribute domain relation
The following example defines an attribute domain relation that relates the attribute
dimension to the dimension dimension. For information about defining the
dimension dimension, see “Set the DBDIMDIM property to identify the
workspace’s dimensions” on page A-4. For information about defining the attribute
dimension, see “Set the DBATTRDIM property to identify the workspace’s
attributes” on page A-7.

define attrdomain relation dbdimdim <dbattrdim>

The dimension dimension, dbdimdim, contains the names of the dimensions in the
analytic workspace. The attribute dimension, dbattrdim, contains the names of the
dimensions that you have defined to store attribute values. You then store the name
of the domain dimension in the relation. For information about defining and using
relations, refer to the DEFINE RELATION command in the OLAP DML Reference.

Setting the DOMAINDIMREL property
After you have defined the attribute domain relation, then you can set the
DOMAINDIMREL property on the attribute dimension.

For example, the following code sets the DOMAINDIMREL property on the
DBATTRDIM dimension and specifies the relation named ATTRDOMAIN:

consider dbattrdim
property ’DOMAINDIMREL’ ’attrdomain’

Set the RANGEDIMREL property
Define a relation that holds the dimension that acts as range of an attribute, then set
the RANGEDIMREL property on the attribute dimension.

Defining the attribute range relation
The following example defines an attribute range relation that relates the attribute
dimension to the dimension dimension. For information about defining the

Metadata That Describes Dimension Attributes

A-22 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

dimension dimension, see “Set the DBDIMDIM property to identify the
workspace’s dimensions” on page A-4. For information about defining the attribute
dimension, see “Set the DBATTRDIM property to identify the workspace’s
attributes” on page A-7.

define attrrange relation dbdimdim <dbattrdim>

The dimension dimension, dbdimdim, contains the names of the dimensions in the
analytic workspace. The attribute dimension, dbattrdim, contains the names of the
dimensions that you have defined to store attribute values. You then store the name
of the range dimension in the relation. For information about defining and using
relations, refer to the DEFINE RELATION command in the OLAP DML Reference.

Setting the RANGEDIMREL property
After you have defined the attribute range relation, then you can set the
RANGEDIMREL property on the attribute dimension.

For example, the following code sets the RANGEDIMREL property on the
DBATTRDIM dimension and specifies the relation named ATTRDOMAIN:

consider dbattrdim
property ’DOMAINDIMREL’ ’attrrange’

Set the EXPOBJVAR property on the attribute dimension
Define a variable that holds the names of the attributes (which are typically
relations) in the analytic workspace, then set the EXPOBJVAR property on the
attribute dimension.

Defining the attribute name variable
An attribute is usually a relation between a dimension (such as PRODUCT) and a
second dimension that holds descriptions (such as COLOR). For example, the
second dimension holds names of colors that describe products.

The following is an example of a definition of a relation between COLOR and
PRODUCT:

define color.product relation color <product>

The next example defines a variable that will store the names of the attributes in the
analytic workspace. The variable has a text data type and is dimensioned by the
attribute dimension. For information about defining the attribute dimension, see

Metadata That Describes Other Objects

Creating and Using Analytic Workspace Metadata A-23

“Set the DBDIMDIM property to identify the workspace’s dimensions” on page
A-4.

define attrexpobj variable text <dbattrdim>

You add the names of the attributes as the data to the variable and populate them.
For example, after adding the name PRODUCTCOLOR to the ATTREXPOBJ
variable, you can then assign the relation to it, as shown in the following example:

attrexpobj(dbattrdim ’PRODUCTCOLOR’) = ’color.product’

Setting the EXPOBJVAR property
After you have defined the attribute name variable, then you can set the
EXPOBJVAR property on the attribute dimension.

For example, the following code sets the EXPOBJVAR property on the DBATTRDIM
dimension and specifies the variable named ATTREXPOBJ:

consider dbattrdim
property ’EXPOBJVAR’ ’attrexpobj’

Metadata That Describes Other Objects

Metadata that is required for other OLAP DML objects
The following metadata is required for the display of the following objects:

■ Folders — To display the measures in a business area, see“Set the
MEASINFOLDERVS property to identify measures in folders” on page A-23.

■ Any OLAP DML object — To provide a short description or a long description
for any OLAP DML object, see “Set the SDSCVAR property to identify an
object’s short description” on page A-24 and “Set the LDSCVAR property to
identify an object’s long description” on page A-25.

Set the MEASINFOLDERVS property to identify measures in folders
Define a folder membership valueset to specify the measures that are contained in a
folder, then set the MEASINFOLDERVS property on the folder dimension.

Defining the folder membership valueset
The following example defines a folder membership valueset. Note that the
definition uses the measure dimension and is dimensioned by the folder dimension.

Metadata That Describes Other Objects

A-24 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

For information about the measure dimension, see “Set the DBMEASDIM property
to identify the workspace’s measures” on page A-6. For information about the
folder dimension, see “Set the DBFOLDERDIM property to identify the
workspace’s folders” on page A-9.

define measinfldr valueset dbmeasdim <dbfolderdim>

You then create a list of measure names in the valueset. For more information about
using valuesets, refer to the DEFINE VALUESET command in the OLAP DML
Reference.

Setting the MEASINFOLDERVS property
After you have defined the folder membership valueset, then you can set the
MEASINFOLDERVS property on the folder dimension.

For example, the following code sets the MEASINFOLDERVS property on the
folder dimension and specifies the valueset named dbmeasdim.

consider dbfolderdim
property ’MEASINFOLDERVS’ ’dbmeasdim’

Set the SDSCVAR property to identify an object’s short description
To display a short name for any OLAP DML object, define a short description
variable to hold the short name, then set the SDSCVAR property on that object.

Defining the short description variable
The following example defines a short description variable for a SALES variable,
then assigns “sales” as the variable data. Note that the variable is defined with a
text data type.

define short_sales variable text
short_sales = ’sales’

Setting the SDSCVAR property
After you have defined the short description variable, then you can set the
SDSCVAR property on the OLAP DML object.

For example, the following code sets the SDSCVAR property on the SALES variable
and specifies the short description variable named short_sales.

consider sales
property ’SDSCVAR’ ’short_sales’

Metadata That Describes Other Objects

Creating and Using Analytic Workspace Metadata A-25

Set the LDSCVAR property to identify an object’s long description
To display a long name for any OLAP DML object, define a long description
variable to hold the long name, then set the LDSCVAR property on that object.

Defining the long description variable
The following example defines a long description variable for a SALES variable,
then assigns “sales for the past 12 months” as the variable data. Note that the
variable is defined with a text data type.

define long_sales variable text
long_sales = ’sales for the past 12 months’

Setting the LDSCVAR property
After you have defined the long description variable, then you can set the
LDSCVAR property on the OLAP DML object.

For example, the following code sets the LDSCVAR property on the SALES variable
and specifies the long description variable named long_sales.

consider sales
property ’LDSCVAR’ ’long_sales’

Metadata That Describes Other Objects

A-26 Oracle9i OLAP Services Developer’s Guide to the OLAP DML

Glossary-1

Glossary

ad hoc analysis

A type of analysis in which you answer questions by manipulating the dimensions,
dimension values, and layout of data. You can rotate the data in order to change its
dimensional orientation. You can also drill down or up on designated values in
order to expand or collapse dimension hierarchies.

(See also dimension; dimension value; drill; hierarchy; variable.)

administrator

See database administrator (DBA).

aggregation

The consolidation of data for several dimension values into a single value, such as
the total units sold for all the cities, or into a smaller set of values, such as the
average units sold for cities in each region. Data is often collected at the lowest level
of detail and is aggregated into higher level totals for analysis.

(See also dimension; level.)

ampersand substitution

An ampersand character (&) at the beginning of an expression tells OLAP Services
to substitute the value of the expression for the expression itself in a command or
function. This is useful in commands or functions that can take the name of an
object as an argument as explained in “Substitution Expressions” on page 4-39.

See aggregation; dimension value; hierarchy; level; object; parent.

Glossary-2

analytic workspace

A single file containing objects that organize and store data in a form that OLAP
Services can use. You determine the structure and contents of an analytic workspace
by defining objects, examples of which are dimensions, variables, and programs.
Once these definitions are in the analytic workspace dictionary, you can enter,
change, or use the data with OLAP Services.

You can use several analytic workspaces at the same time during an OLAP Services
session. All the analytic workspaces attached to the session at the same time are
active analytic workspaces. One of these analytic workspaces, the first one on the
active analytic workspace list, is the current analytic workspace.

An analytic workspace usually consists of a single file, but you can have a multifile
analytic workspace by specifying that the analytic workspace should be broken up
into several files. This allows you to keep the files of a large analytic workspace at a
manageable size.

(See also current analytic workspace; dictionary.)

analytic workspace dictionary

See dictionary.

ancestor

(1) A dimension value at any level above a particular value in a hierarchy. The
ancestor value is the aggregated total of the values of its descendants.

The following example shows the dimension value “Europe”” as the ancestor of
“France,” “Lyon,” and “Paris” in the GEOGRAPHY dimension.

(2) If an application has an inheritance hierarchy, an ancestor is also an object that is
two or more levels above a derived object. The level immediately above the derived
object is the parent.

Ancestor Descendants

Europe

France

Lyon

Paris

. . .

Glossary-3

application

A set of OLAP DML objects plus external programs and files that work together to
provide a unified collection of functions to the user. The collection of functions is
designed to solve a user’s problem.

The OLAP DML objects in an application can be in one analytic workspace or they
can be in several different analytic workspaces. The characteristic that unifies them
is their contribution to the application’s purpose. For example, the purpose of one
application might be to provide accounting assistance, while the purpose of another
application might be to help with marketing analysis.

You can use a given object in more than one application. For example, a company’s
marketing application can use some of the same variables as its accounting
application. In this case, the analytic workspace that holds the shared variables
would be part of both applications.

argument

A keyword, expression, or object name that provides input to a command, function,
method, or program. An argument can indicate the data values on which the
command, function, method, or program operates. It can also specify the way in
which the command, function, method, or program operates.

This term is relevant to the OLAP DML.

Another word for argument is parameter.

(See also command; expression; function; object.)

array

The format for storing data in analytic workspaces. You can also think of an array as
a group of data cells arranged by the dimensions of the data. For example, a
two-dimensional array is similar to a spreadsheet. The cells are arranged in rows
and columns, with one dimension of the data forming the rows and the other
forming the columns.

You can view a three-dimensional array as a group of data cells arranged in a cube,
with each dimension forming one side of the cube. In the OLAP DML, arrays can
have up to thirty-two dimensions.

Frequently, the term array is used as a synonym for a data variable, because a data
variable is stored in an array.

Glossary-4

attribute

A descriptive characteristic that is shared by dimension values. Attributes represent
logical groupings that allow users to select data based on like characteristics. For
example, in an analytic workspace representing footwear, you can use a shoe color
attribute to select all boots, sneakers, and slippers that share the same color.

A keyword or phrase used in the DEFINE command to specify characteristics of an
object definition in an analytic workspace. For example, the type of object, its data
type, and its dimensions are all attributes specified in the DEFINE command.

An attribute is also a keyword or phrase used in commands that produce output
(such as ROW or REPORT) to control the format of the output. For example,
number of decimal places, column width, and centering are format attributes
specified in ROW.

An attribute is also a keyword used in the FILESET command or the FILEQUERY
function to specify or obtain the characteristics of a file unit. For information about
file units, see the topic for FILEOPEN in the OLAP DML Reference.

(See also dimension value.)

AUTOGO

A program that you can write and that will be run automatically when the analytic
workspace in which it resides is opened. An AUTOGO program is useful when you
always want to execute a certain sequence of commands at start up. The AUTOGO
program can execute any OLAP DML command, or run any of your own programs.
For more information on AUTOGO, see the topic for the DATABASE command in
the OLAP DML Reference.

base dimension

A dimension that is a component of a composite or a conjoint dimension.
Composites and conjoints are used to control the size of data variables whose data
is sparse. The values of a composite or conjoint are combinations of values from its
base dimensions. A base dimension can be either a simple dimension or a conjoint
dimension.

(See also composite; conjoint dimension; dimension; sparsity.)

basic data types

One of five general categories of data. When you define an OLAP DML variable or
dimension, you give it a specific data type. The specific data types fall into the five
basic data types: numeric, text, Boolean, date, and time.

Glossary-5

Basic data types are not part of the definition of an OLAP DML object. However, it
is sometimes useful to use these categories when explaining how the OLAP DML
operates. Certain commands and functions treat all the data types in a basic
category the same way; and a specific command or function might only apply to
data types falling within one but not the other basic categories. For more
information about the basic data types, see “OLAP DML Data Types” on page 4-2.

See data type.

Boolean expression

A logical formula that is either true or false for each value of the expression. For
example, when you have the Boolean expression

actual gt 20000

each value of the variable ACTUAL is compared to the literal 20,000. If the value is
greater than 20,000, then the formula is true; if the value is less than or equal to
20,000, then the formula is false.

For more information see “Boolean Expressions” on page 4-28.

cell

A single data value of an expression. In a dimensioned expression, a cell is
identified by one value from each of the dimensions of the expression. For example,
if you have a variable with the dimensions MONTH and DISTRICT, then each
combination of a month and a district identifies a separate cell of that variable.

(See also dimension; expression; variable.)

child

(1) A dimension value at the level immediately below a particular value in a
hierarchy. Values of children are included in the calculation that produces the
aggregated total for a parent. A dimension value may be a child for more than one
parent when the dimension has more than one hierarchy.

Glossary-6

The following example shows the dimension values “Lyon” and “Paris” as the
children of “France” in the GEOGRAPHY dimension.

(2) If your application has an inheritance hierarchy, a child is also an object that is
derived from another object. The source object is called the parent.

(Contrast with parent. See also aggregation; dimension value; hierarchy; level; object.)

command

A word or group of words that instructs OLAP Services to start or stop an
operation. Typically, a command consists of the command name followed by one or
more arguments that specify the values on which the command is to operate
and/or the conditions under which it is to operate.

(See also argument.)

compilable object

An OLAP DML object, such as a program, model, or formula, whose definition
contains commands or expressions that are interpreted and executed each time you
use the object. The commands and expressions that are included in the object are
called the source code. By compiling the source code, OLAP Services can create
compiled code that executes more quickly. A compilable object is automatically
compiled the first time you use it after entering or changing the source code or
when you use the COMPILE command. When you update the analytic workspace,
the compiled code is saved as part of the analytic workspace and can be used later.

composite

A list of dimension-value combinations, in which a given combination has one
value taken from each of the dimensions on which the composite is based. A given
combination is an index into one or more sparse data variables. The purpose for
using a composite is to store sparse data in a compact form.

Parent Children

France
Lyon

Paris

Glossary-7

You are not required to specify the list of dimension-value combinations that will be
included in your composite. Instead, values are added automatically to the list,
based on the data in the variables that use the composite. A composite is not a
dimension, but it is treated like one for the purpose of storing sparse data.

A composite can be named or unnamed. A named composite is an OLAP DML
object that you have explicitly defined. An unnamed composite is automatically
created when you define a variable with some dimensions specified as sparse. In
this case, the composite is not an OLAP DML object.

(Contrast with conjoint dimension. See also dimension; dimension value; sparsity;
variable.)

conjoint dimension

A dimension that you build on base dimensions. Each value in a conjoint is a
combination of values, one from each of the conjoint’s base dimensions. The
purpose for using a conjoint is to achieve fine control over the status of individual
combinations of base dimension values.

For storing sparse data, you should almost always use a composite instead of a
conjoint, because composites are easier to use. The exception to this guideline is the
case in which you want to be able to specify every dimension-value combination in
status. In this situation, use a conjoint.

For a variable that is not sparse and not dimensioned by a conjoint, you might want
to define a separate conjoint to hold a set of dimension-value combinations that
meet one or more specific criteria. For example, you might include only
dimension-value combinations for which the variable has values higher than a
given number.

(Contrast with composite. See also dimension; dimension value; sparsity; variable.)

continuation character

A character indicating that a command continues on the next line. When you are
editing a command in a program, model, or formula, and it will not fit on a single
line, you can continue the command or response on additional lines. To do so, type
a hyphen (-) or an equal sign (=) as the last character on the line. This specifies that
the line is not complete but is continued on the next line.

current analytic workspace

The first analytic workspace on the active analytic workspace list (unless you do not
have a current analytic workspace). You can display the dictionary of the current
analytic workspace. You can modify and refer to objects, modify data, and run

Glossary-8

programs in any analytic workspace attached to an OLAP Services session. For
more information see Chapter 2.

See analytic workspace, dictionary.

current outfile

The current destination for the output of commands, such as REPORT and
DESCRIBE, that produce text. If you have not used the OUTFILE command to send
output to a file, then uses your default outfile is used. For more information see
“Directing Output” on page 8-23.

See default outfile.

data-reading commands

A group of commands used in programs to read data from external files having
different formats. These commands include FILEREAD, FILENEXT, FILEVIEW,
FILEERROR, and RECNO. You use these commands with file I/O commands, such
as FILEOPEN, FILECLOSE, FILEQUERY, FILESET, FILEGET, and FILEPUT. For
more information see Chapter 11.

See file I/O commands.

data type

The kind of information contained in a variable or dimension (for example, whole
numbers, decimal numbers, alphabetic characters, logical data). Each variable or
dimension can have only one type of data. The OLAP DML data types are described
in detail in “OLAP DML Data Types” on page 4-2.

database administrator (DBA)

The person responsible for creating, installing, configuring, and maintaining the
analytic workspaces, so that users can access and analyze data effectively.

(See also analytic workspace.)

date literal

A sequence of characters used as a single DATE value in OLAP DML commands or
functions. Normally, you must enclose a date literal in single quotes, so it will not be
used as a number or as the name of a variable. A date literal includes components
that identify the date of the day, month, and year. You can input date literals in
styles such as ’24 April 2001’, ’24/4/01’, and ’240401'. For a description
of the input styles for dates and an explanation of how ambiguous input (such as

Glossary-9

’030401’) is interpreted, see the topic for the DATEORDER option in the OLAP
DML Reference.

Normally, you can use a date literal whenever you are asked to specify a DATE
expression in OLAP DML commands or functions.

For more information see “OLAP DML Data Types” on page 4-2.

DBA

See database administrator (DBA).

decimal escape

A way of indicating a character using its EBCDIC or ASCII decimal value. The
decimal escape for a character takes the following form.

\dnnn

The d indicates a decimal escape, and nnn is the decimal value for the character.
Usually, the decimal escape must be enclosed in single quotes when used in OLAP
DML commands.

If you specify an invalid decimal escape (that is, a decimal escape that does not
represent an EBCDIC or ASCII character), then the decimal escape is converted
directly to text. For example, the decimal escape ’\d299’ would be converted to
the text value ’d299’ because there is no EBCDIC or ASCII character with the
decimal value 299.

For more information see “Text Expressions” on page 4-27, and see escape sequence,
hexadecimal escape.

default outfile

The default destination for the output of commands, such as REPORT and
DESCRIBE, that produce text. If you have not used the OUTFILE command to send
output to a file, then your default outfile is used.

definition

A description of an OLAP DML object. Definitions are used to keep track of the
information available in the analytic workspace. The collection of definitions in an
analytic workspace is known as the dictionary.

The definition includes the name of the object, its type (for example, DIMENSION
or VARIABLE), its data type when applicable (for example, INTEGER or TEXT),
and its dimensions. A definition might also include a description (LD), value name
format (VNF) for a time dimension, an expression associated with a FORMULA,

Glossary-10

permission specified with PERMIT commands, properties specified with the
PROPERTY command, or the contents of a program or model. You can view one or
more definitions in the analytic workspace with the DESCRIBE command. You can
view properties with the FULLDSC command.

descendant

(1) A dimension value at any level below a particular value in a hierarchy. Values of
descendants are included in the calculation that produces the aggregated total for
an ancestor.

The following example shows the dimension values “France,” “Lyon,” and “Paris”
as descendants of “Europe” in the GEOGRAPHY dimension.

(2) If an application has an inheritance hierarchy, a descendant is also an object two
or more levels below another object. The level immediately below is the child.

(Contrast with ancestor. See also aggregation; child; dimension value; hierarchy; level;
object.)

dictionary

The collection of definitions of the objects in an analytic workspace. The dictionary
is also called the analytic workspace dictionary.

(See also analytic workspace; dictionary; object.)

dimension

A type of OLAP DML object that is a list of values that provide categories for data.
A dimension acts as an index for identifying values of a variable. For example, if
you have sales data with a separate sales figure for each month, then the data has a
MONTH dimension; that is, the data is organized by month. A dimension is similar
to a key in a relational database.

Any item of data within a multidimensional variable can be uniquely and
completely selected by specifying one member from each of the variable’s

Ancestor Descendants

Europe

France

Lyon

Paris

. . .

Glossary-11

dimensions. For example, when a sales variable is dimensioned by MONTH,
PRODUCT, and MARKET, specifying January for the MONTH dimension, Stereos
for the PRODUCT dimension, and Eastern Region for the MARKET dimension
uniquely specifies a single cell in the variable. Thus, dimensions offer a concise and
intuitive way of organizing and selecting data for retrieval, updating, and
performing calculations.

A dimension can be simple, with values that are single text or integer values, or it
can be conjoint, with values that are combinations of values in other dimensions. A
composite is not a dimension, but it is a conjoint-like internal object that is treated
like a dimension for the purpose of handling sparse data.

(See alsocomposite; conjoint dimension; dimension value; multidimensional data; object;
sparsity; variable.)

dimension hierarchy

See hierarchy.

dimension label

A text description for a dimension. For example, a dimension that is named
GEOGRAPHY might have the label “Geographic Areas”. The label, rather than the
name, can be displayed in reports, tables, and graphs.

(See also dimension.)

dimension value

One element in the list that makes up a dimension. For example, a computer
company might have dimension values in the PRODUCT dimension called LAPPC
and DESKPC. Values in the GEOGRAPHY dimension might include Boston and
Paris. Values in the TIME dimension might include MAY96 and JAN97.

See dimension.

dimension value label

A text description for a dimension value. For example, in a PRODUCT dimension
that has values called LAPPC and DESKPC, the LAPPC value might have a label
“Laptop PC”. Dimension value labels might appear as row, column, and page labels
in reports or tables and as tick labels in graphs.

(See also dimension.)

Glossary-12

DML

A data manipulation language (DML). In the OLAP Services environment, DML
refers to the OLAP DML.

drill

To navigate up and down through the levels of aggregation in a dimension that has
a hierarchy. When selecting dimension values or viewing data, you can expand or
collapse a dimension hierarchy by drilling down or up in it. Drilling down expands
the view to include child values that are associated with parent values in the
dimension hierarchy. Drilling up collapses the list of descendant values associated
with a parent value in the dimension hierarchy.

In a typical OLAP application, you can click on a plus icon to drill down on
(expand) the hierarchy or on a minus icon to drill up on (collapse) the hierarchy.

(See also child; dimension; hierarchy; level; parent.)

EIF file

An EIF file is specially formatted for transferring data between analytic workspaces.
You create an EIF file using the EXPORT command and read an EIF file using the
IMPORT command.

embedded total

A predefined level of aggregation built into a dimension for which a hierarchy
exists. For example, in a TIME dimension, each quarter represents the total for the
months in the quarter. Data for embedded totals is calculated in the an analytic
workspace rather than in an application.

(See also aggregation; dimension; hierarchy.)

escape sequence

A series of characters beginning with a backslash (\) to indicate special treatment
by OLAP Services. The backslash is the escape character in the OLAP DML. It
means that the characters that follow it should not be treated in the normal way. For
example, when you tried to include an apostrophe in a TEXT value, as in the
following expression,

’First Quarter’s Earnings’

The second quote (in Quarter’s) is interpreted as the end of the value. You can
turn off this normal meaning of the quote by typing a backslash in front of it.

’First Quarter\’s Earnings’

Glossary-13

The backslash is also used in a few cases to indicate special treatment of characters
that normally do not have a special meaning. For example, the newline escape
sequence (\n) can be used in TEXT literals to indicate a line break, although the
character n does not normally have any special meaning.

Many OLAP DML commands take a file identifier as an argument. Path names for
both DOS and UNC files generally require backslashes. For information on
specifying file identifiers, see file identifier and text literal and “Text Expressions” on
page 4-27.

expression

One or more data values that are specified in an OLAP DML program. For example,
you can specify expressions as arguments to programs or functions. An expression
can be any of the following:

■ A single, literal value (for example, 10)

■ A variable or formula that contains one or more values

■ A function that returns one or more values

■ A calculation that combines values, such as variables, formulas, or functions,
with arithmetic or Boolean operators

(See also argument; dimension; formula; function; program; variable.)

extension files

Let you divide a single analytic workspace among several files, so the analytic
workspace can be larger than the space available on any single disk. Analytic
workspace extension files turn a single analytic workspace into a multifile analytic
workspace.

family

A group of related dimension values that correspond to the levels of the dimension
hierarchy. Dimension values within a family can relate to each other as ancestor,
parent, child, and descendant.

The following example shows family relationships for the dimension value
“France” in the GEOGRAPHY dimension. The parent of “France” is “Europe,”

Glossary-14

whose parent is “World Regions.” The children of “France” are “Lyon” and “Paris,”
and one of the children of “Paris” is “Ministry of Finance.”

(See also ancestor; child; descendant; dimension value; hierarchy; level; parent.)

fastest-varying dimension

The first dimension listed in the definition of a variable or relation. When you are
using a multidimensional variable or expression, the fastest-varying dimension is
the one whose values vary first in a REPORT, =, or other command or function that
loops over the dimensions of the expression.

For example, if you have a variable dimensioned by MONTH and CITY, then when
you view the variable as REPORT command output, you will see the data for all
months for the first city before you see any data for the second city. In this case,
MONTH is the fastest-varying dimension because its values change before those of
CITY.

The order in which dimensions vary is determined by the way you defined the
variable or relation being used. Dimensions vary in the order they are listed in the
definition, with the first varying fastest and the last varying slowest.

When you use a variable as the solution variable in a model, the model will execute
most efficiently when the order of the dimensions in the definition of the solution
variable matches the order of the dimensions in the DIMENSION commands in the
model.

For more information see “Defining Variables” on page 3-11.

See model, solution variable.

Parent

Children

France

Lyon

Paris

Ancestor

 World
Regions

Europe

Ministry of
Finance

Descendant

Dimension
 Value

. . .

. . .

. . .

. . .

Glossary-15

file I/O commands

A group of input/output commands for handling external files on a detailed level.
The file I/O commands let you open, close, and delete files; read and write lines of
text; and query and set various file attributes. You use them in programs with
data-reading commands to bring external data into an analytic workspace. For more
information on the file I/O commands, see Chapter 11.

See data-reading commands.

file identifier

Many OLAP DML commands take a file identifier as an argument. In the Windows
environment, the format in which you specify a file name depends on where the file
is located. For files that are local to the computer on which OLAP Services is
running, use DOS format. For files remote to the computer on which OLAP Services
is running, use either DOS or UNC format, unless explicitly stated otherwise in the
documentation. However, be consistent; all references to a given file must be in the
same format.

■ DOS file name format is as follows

[d:] [\][path\] filename[.ext]

where d designates a disk drive; a backslash (\) character may follow the drive
name; path is a path of directory names separated by backslash (\) characters;
filename is the name of the file, and ext is a 1- to 3-character extension preceded
by a period.

■ UNC file name format is as follows

\\host\share\[path\] filename[.ext]

where host designates the host system; share designates a shared area on the
host; path is a path of directory names separated by backslash (\) characters;
filename is the name of the file, and ext is a 1- to 3-character extension preceded
by a period.

When specifying file identifiers in OLAP DML commands, it is good practice to
always enclose them in single quotes. This will prevent parsing errors in cases
where file name components are also OLAP DML object names or reserved words.

See escape sequence, text literal

file name

See file identifier.

Glossary-16

fileunit

Any destination, such as a disk file, to which output can be sent. An arbitrary
integer is assigned to a fileunit when it is opened in a session. A fileunit is opened
with the OUTFILE command, which sets the current destination for command
output, or with the FILEOPEN function. The default outfile is also a fileunit.

formula

A type of OLAP DML object that represents a stored calculation, expression, or
procedure that produces a value. A formula provides a way to define and save
complex or frequently used relationships within the data without resaving the data
itself. Each time you use a formula, the calculation or procedure that is required to
produce the value is performed.

(See also expression; object.)

function

A programming language routine that returns a value. You can use a function
wherever an expression is required, by specifying the name of the function followed
by its arguments enclosed in parentheses.

The OLAP DML includes built-in functions. In addition, it allows you to create
functions of your own.

(See also argument; expression.)

hexadecimal escape

A way of indicating a character using its hexadecimal value. The hexadecimal
escape for a character takes the following form.

\xnn

The x indicates a hexadecimal escape, and nn is the hexadecimal value for the
character. Usually, the hexadecimal escape must be enclosed in single quotes when
used in OLAP DML commands.

If you specify an invalid hexadecimal escape (that is, a hexadecimal escape that
does not represent an EBCDIC or ASCII character), then the hexadecimal escape is
converted directly to text. For example, the hexadecimal escape ’\xwhat’ would
be converted to the text value ’xwhat’.

(See also escape sequence; decimal escape.)

Glossary-17

hierarchy

A means of organizing and structuring data. A hierarchy exists when values within
a dimension are arranged in levels, with each level representing the aggregated
total of the data from the level below. Some dimensions have multiple hierarchies
based on them.

The following example shows a hierarchy based on the GEOGRAPHY dimension,
in which dimension values are arranged in five levels. Data at the Customers level
is aggregated into the Cities level, which, in turn, is aggregated into the
Countries/Areas, Continents/Regions, and Global levels.

(See also aggregation; ancestor; child; descendant; dimension value; level; parent.)

input file

A disk file containing one or more OLAP DML commands. You can instruct that the
input from this file be read by using the INFILE command. You can only have one
command per line in an input file. However, with continuation characters, one
command might occupy several lines in an input file.

Arrange the commands in the order in which you want them to be executed. The
file must also include, in proper sequence, the appropriate responses to any
prompts resulting from the commands.

label (in a program)

A string of characters followed by a colon and included as a separate line in a
program. A label is used to mark the beginning of a section of a program that you
want to execute under certain conditions. You can branch from one part of the
program to a section headed by a label, altering the sequence in which commands

Cities

France

Lyon

Paris

Global

 World
Regions

Europe

Ministry of
Finance

Customers

Countries/
 Areas

. . .

. . .

. . .

. . .

Continents/
 Regions

Glossary-18

are executed or skipping some commands altogether. Commands such as GOTO
and TRAP allow you to specify conditions and to branch to labels.

A label must start with a letter, dot, or underscore, and the remaining characters
must be letters, numbers, dots, or underscores. Because only the first eight
characters of a label name are used, you can experience problems with label names
greater than eight characters, when the first eight characters are not unique. A label
can contain up to 497 characters (the maximum length of a text line minus one
character for the colon identifying a label).

LD (description)

A description attached with an LD command to an object in an analytic workspace.
LDs are used primarily to document an analytic workspace by attaching an
explanatory description to the objects defined in the analytic workspace. The LD is
saved as part of the analytic workspace dictionary and is included when you
describe an object. Through the OBJ function, you can use LDs to annotate output
produced by report programs.

Normally, you use the LD command to supply the LD when you define an object.
However, you can add or change an LD at any time with the CONSIDER and LD
commands. You can attach a description to any type of object.

level

A position in a dimension hierarchy. Each level above the base level represents the
aggregated total of the data from the level below. For example, the TIME dimension
might have ascending levels such as Month, Quarter, and Year. Within a dimension
hierarchy, a dimension value at one level has a family relationship with the
dimension values at the levels above and below that level.

(See also aggregation; dimension value; family; hierarchy.)

local variable

A single-cell variable defined and used within an OLAP DML program. A local
variable is not an OLAP DML object. When the program is finished executing, any
local variables are erased. A local variable can have any data type that a variable
object can have and can also be a relation to a dimension, meaning it holds a value
of that dimension. A local variable is always a single value (although it can be a
multiline text value); it does not have any dimensions.

(See also multiline text value; single-cell variable; variable.)

Glossary-19

metadata

Data that describes other data. An example of metadata is a variable that lists the
names of levels in a hierarchy or that holds the number of decimal places to be used
for displaying data. Client applications use metadata when displaying
multidimensional data in graphs, reports, tables, and so on.

(See also multidimensional data; object.)

model

A type of OLAP DML object that contains a set of interrelated equations that are
used to calculate data and assign it to a variable or dimension value. In most cases,
models are used when working with financial data.

(See also dimension value; object; variable.)

multidimensional data

Data organized by two or more dimensions. With two dimensions, the data is
structured as an array with rows and columns. With three dimensions, it is
structured as a cube in which each dimension forms an edge. Structures with more
than three dimensions have no physical metaphor, but they can organize data in
ways that are useful for analysis.

Multidimensional analytic workspaces are optimized for complex data analysis. For
example, a Sales variable might be dimensioned by TIME, PRODUCT, and
GEOGRAPHY, so that only a few short steps would be needed to find the 10 cities
with the top sales of tents over the last 3 months. In a relational database, a complex
SQL program would be needed to get the same information.

(See also cell; dimension.)

multifile analytic workspace

An analytic workspace usually consists of a single file, but you can have a multifile
analytic workspace by specifying that an analytic workspace be broken into several
files. This allows you to keep the files of a large analytic workspace at a manageable
size.

(See also cell; dimension.)

multiline text value

A TEXT value that occupies more than one line. A line can be up to 498 characters
in length. If broken into lines, then a TEXT value can exceed the 498-character line
limit. You can create a multiline TEXT value with the JOINLINES function.

Glossary-20

You can also specify a multiline TEXT literal by including the escape sequence \n
wherever you want a line break to occur. For example, the following literal value

’Yes\nNo’

is interpreted as the following two-line value.

Yes
No

NA value

A special data value that indicates that data is “not available” (NA). NA is the value
of any cell to which a specific data value has not been assigned or for which data
cannot be calculated.

(See also cell; sparsity.)

numeric literal

A sequence of digits used in OLAP DML commands or functions. A numeric literal
can be preceded by a plus (+) or minus (-) sign and can contain a decimal point;
however, it cannot contain commas.

Examples of numeric literals are:

1
25600
-471
.001
15.7
-6.342

Normally, you can use a numeric literal whenever you are asked to specify a
numeric expression in OLAP DML commands or functions.

object

In the OLAP DML, a distinct item in the analytic workspace, which is defined as an
entry in the analytic workspace dictionary. Objects are the basic pieces of an analytic
workspace. When you build an analytic workspace, you must define one or more
objects to organize, store, and retrieve the data. These objects include dimensions,
variables, relations, formulas, and programs.

(See also analytic workspace; dictionary.)

Glossary-21

OLAP

Online analytical processing. OLAP is a category of software technology that
enables analysts, managers, and executives to gain insight into data by accessing a
wide variety of views of information. Such information has been organized to
reflect the real dimensionality of the user’s enterprise.

OLAP functionality is characterized by dynamic, multidimensional analysis of
consolidated enterprise data, which supports analytical and navigational activities
such as the following:

■ Calculating and modeling across dimensions and through hierarchies

■ Analyzing trends over sequential time periods

■ Creating slices of data for on-screen viewing

■ Drilling down to lower levels of consolidation

■ Reaching through to underlying detail data

■ Rotating to change the dimensional orientation in the viewing area

OLAP analysis tools run against a multidimensional data engine or interact directly
with a relational database management system (RDBMS).

(See also dimension; drill; hierarchy; model; multidimensional data;.)

option

A special type of OLAP DML object. Generally, an option allows you to control the
format of output (for example, COMMAS, DECIMALS) or to turn on/off special
OLAP DML operations (for example, PRGTRACE, DIVIDEBYZERO). You cannot
define an option as part of an analytic workspace. However, you can use any of the
options that are defined as part of the OLAP DML.

outfile

The destination for the output of commands, such as REPORT and DESCRIBE, that
produce text.

(See also current outfile; default outfile.)

page

A unit of storage in an analytic workspace. A page can contain data or it can be a
free page, meaning it is available for use when you add to or change the database.
Use the DATABASE function to find the number of bytes in a page.

Glossary-22

parent

(1) A dimension value at the level immediately above a particular value in a
hierarchy. The parent value is the aggregated total of the values of its children.

The following example shows the dimension value “France” as the parent of
“Lyon” and “Paris” in the GEOGRAPHY dimension.

(2) In an application that has an inheritance hierarchy, a parent is also an object from
which one or more objects have been derived. Objects derived from the parent are
called children.

(Contrast with child. See also aggregation; dimension value; hierarchy; level.)

permission

Restricted access to OLAP DML objects, as specified with PERMIT commands. You
can use PERMIT commands in an analytic workspace security system that specifies
access rights for many users. You can also use PERMIT as an application building
tool for scoping.

(See also scoping; status.)

program

A type of OLAP DML object that contains a series of OLAP DML commands. A
program is a stored procedure that executes a set of related commands. Programs
can be nested, with one calling another to create a complete application or
sophisticated analytic workspace maintenance tool. A program can return a value;
in this case, it is called a user-defined function.

Parent Children

France
Lyon

Paris

Glossary-23

(See also command; object.)

property

In the OLAP DML language, a named value associated with an object. You can use
properties to store information about objects, such as the number of decimal places
to use when preparing reports on the object. You specify properties with the
PROPERTY command.

Also, a characteristic of an object or component. Properties provide identifiers and
descriptions, define object features (such as the number of decimal places or the
color), or define object behaviors (such as whether an object is enabled).

(See also object.)

QDR

See qualified data reference (QDR).

qualified data reference (QDR)

A qualifier that limits one or more of an expression’s dimensions to a single value.
A QDR is useful when you want to temporarily reference a value without affecting
the current status. In the following example of an OLAP DML command, the QDR
limits the MONTH dimension to “JUN95.”

fetch sales(month ’JUN95’)

Avoid using QDRs for complex expressions. Instead, use the QUAL function.

(See also dimension; dimension value; expression; status.)

relation

A type of OLAP DML object that establishes a correspondence between the values
of a given dimension and the values of that dimension or other dimensions in the
analytic workspace. For example, you might have a relation between cities and sales
regions, such that each city belongs to a particular region.

A relation is similar to a single-dimensioned variable. However, it is distinct from
most variables, because each cell holds the value of a dimension. For example, in a
relation between cities and sales regions, the relation would be dimensioned by
CITY. Each cell would hold the corresponding value of the REGION dimension.

(See also cell; dimension; dimension value; variable.)

Glossary-24

report

A tabular presentation of multidimensional data. A report is an analysis tool that is
used to view, manipulate, and print data.

(See also reporting commands.)

reporting commands

An informal collection of commands and options used to write report programs.
These commands and options allow you to create custom reports, in which you can
specify virtually any format for each row of the report and put headings and titles
on the report pages. Other commands and functions allow you to calculate totals
and to handle errors that might occur in the production of the report. The report
writing commands are discussed in Chapter 12.

scalar

See single-cell variable.

scoping

Restricting the view of OLAP DML objects. You can use the PERMIT command to
restrict access to values with read permission.

(See also permission.)

selection

The set of dimension values currently chosen for a dimension, or the script that
contains conditions or criteria to specify those values.

(Contrast with status. See also dimension value.)

simple dimension

A dimension whose values are single elements with a data type of TEXT, ID, or
INTEGER, or a time data type (DAY, WEEK, MONTH, QUARTER, or YEAR). For
more information, see “Defining Dimensions” on page 3-4.

(See also conjoint dimension; dimension; time dimension.)

single-cell variable

A variable that has no dimensions. Since it has no dimensions, a single-cell variable
has only one cell, which can contain a single data value. A single-cell variable can
have any data type. If it is a TEXT variable, then it can have a single multiline value.
A single-cell variable is sometimes called a scalar or a scalar variable.

Glossary-25

slowest-varying dimension

The last dimension listed in the definition of a variable or relation. When you are
using a multidimensional variable or expression, the slowest-varying dimension is
the one whose values vary last in a REPORT, =, or other command or function that
loops over the dimensions of the expression.

For example, if you have a variable dimensioned by MONTH and CITY, then when
you view the variable as REPORT command output, you will see the data for all
months for the first city before you see any data for the second city. In this case,
CITY is the slowest-varying dimension because its values change after those of
MONTH.

The order in which dimensions vary is determined by the definition of the variable
or relations being used. Dimensions vary in the order you list them in the definition,
with the first varying fastest and the last varying slowest.

solution variable

A variable that serves as both the source and the target of data in a model
containing dimension-based equation. You specify the name of the solution variable
when you run the model.

When you use a variable as the solution variable in a model, the model will execute
most efficiently when the order of the dimensions in the definition of the solution
variable matches the order of the dimensions in the DIMENSION commands in the
model.

(See also model.)

sparsity

A concept that refers to multidimensional data in which a relatively high percentage
of the combinations of dimension values do not contain actual data. Such “empty,”
or NA, values take up storage space in the analytic workspace. To handle sparse
data efficiently, you can create a composite.

There are two types of sparsity.

■ Controlled sparsity — Occurs when a range of values of one or more
dimensions has no data; for example, a new variable dimensioned by MONTH
for which you do not have data for past months. The cells exist because you
have past months in the MONTH dimension, but the cells contain NA values.

■ Random sparsity — Occurs when NA values are scattered throughout the
variable, usually because some combinations of dimension values never have
any data. For example, a district might only sell certain products and never

Glossary-26

have data for other products. Other districts might sell some of those products
and other ones, too.

(See also composite; multidimensional data; NA value.)

status

The list of currently accessible values for a given dimension. If the status of a given
dimension is limited to a subset of its stored values, then all expressions that are
based on that dimension will be limited to the corresponding subset of data.

(Contrast with selection. See also dimension; dimension value; expression.)

text literal

A sequence of alphabetic characters used as a single TEXT or ID value in OLAP
DML commands or functions. Normally, you must enclose a text literal in single
quotes, so that it will not be used as the name of a variable. A text literal can contain
any combination of alphabetic characters (including digits). Normally, you can use a
text literal whenever you are asked to specify a text expression in OLAP DML
commands or functions. For more information, see “OLAP DML Data Types” on
page 4-2.

See escape sequence, file identifier.

time dimension

A dimension with a time data type. The values of a time dimension represent time
periods that correspond to the data type of the dimension. For more information,
see “Defining Dimensions” on page 3-4.

See dimension.

update

To save on disk any changes made to the analytic workspace during an OLAP
Services session. Changes made during a session only affect the analytic workspace
in working memory. To save these changes permanently on disk, you must issue an
UPDATE command.

user-defined function

To augment the predefined functions, you can define a program that behaves like a
function by returning a value.

(See also function.)

Glossary-27

valueset

A type of OLAP DML object. A valueset contains a list of dimension values for a
particular dimension. After defining a valueset, you use the LIMIT command to
assign values from the dimension to the valueset. The values in a valueset can be
saved across OLAP Services sessions.

When you begin a new OLAP Services session or open an analytic workspace, each
dimension has all values in the status. You can then limit a dimension to the values
stored in the valueset for that dimension. For more information, see “Working with
Valuesets” on page 6-25.

(See also dimension; status.)

variable

A type of OLAP DML object that stores data. The data type of a variable indicates
the kind of data that it contains.

If a variable has dimensions, then those dimensions organize its data, and there is
one cell for each combination of dimension values. A dimensioned variable is an
array whose cells are individual data values. If a variable has no dimensions, then it
is a single-cell variable, which contains one data value.

(See also array; cell; dimension; dimension value; object.)

VNF (value name format)

A value name format attached with a VNF command to a time dimension in an
analytic workspace. The VNF controls the input and output format for values of the
dimension. It can include format specifications for any of the components that
identify a time period (day, month, calendar year, fiscal year, and period within a
fiscal year).

The VNF is saved as part of the analytic workspace dictionary and appears
whenever you describe the time dimension. Normally, you use the VNF command
to supply the VNF when you define the dimension. However, you can add or
change a VNF at any time using the CONSIDER and VNF commands.

(See also time dimension.)

working memory

The temporary working area used by OLAP Services. OLAP Services does not work
directly on the permanent disk copy of the data. Instead, when data is needed for
calculations, reports, and so on, OLAP Services copies it from the disk file into the
computer’s virtual memory. When you examine, manipulate, or change data during

Glossary-28

an OLAP Services session, you are affecting only the copy of the data in working
memory.

Working memory gives you some protection for the data, and at the same time lets
you try things out without worrying about what is happening to the data. You can
make changes you are not sure you want to keep, just to see how they look.

When you leave OLAP Services, the copy of the analytic workspace in working
memory is discarded, and the permanent disk copy remains unchanged unless you
used the UPDATE command to copy the changes to disk.

Index-1

Index
Symbols
- continuation character, 8-7
- operator, 4-25
% wildcard, 4-37
& operator, 4-39
= command

ACROSS keyword, 5-15
example of, 5-15, 5-16
introduced, 4-10, 5-3, 5-13
saving calculations, 5-15
with composites, 5-15
with dimensions, 5-17
with models, 7-6
with QDR, 4-20, 5-17
with relations, 5-17
with variables, 5-14, 5-15
with variables using composites, 5-15, 5-16

= continuation character, 8-7
= operator, See = command
_ wildcard, 4-37
_MSGID dimension, 8-31
_MSGTEXT variable, 8-31

A
ABS function, 4-32, 4-33
ACROSS phrase

data-reading commands, 11-22
in ROW command, 12-7

aggregation functions, NA values in, 4-42
ampersand (&) operator, 4-39

ampersand substitution
avoiding, 4-40
defined, 4-39
detecting logic errors, 8-37
effect performance, 8-14
example of, 4-39
program arguments and, 8-13 to 8-14
QDR with, 4-20
restrictions, 7-6
using to pass arguments, 8-13
when required, 8-14

analytic workspaces
active, 2-9
attached, 2-9
attached exclusively, 2-11
attached read-only, 2-11
attached read/write nonexclusive, 2-11
attaching, 2-9, 2-10, 2-11
attaching exclusively, 2-18
controlling access, 2-21
controlling access to, 2-20 to 2-22
creating, 2-2
current, 2-9
detaching, 2-10, 2-13
displaying description of, 2-23
extension file, 2-3
files, exporting, 2-16
files, importing, 2-16
files, reorganizing, 2-16
getting information about, 2-23
limiting access to, 5-4
list, 2-9
main file, 2-3
metadata, A-1

Index-2

minimizing growth of, 2-14
minimizing size of, 2-16
multifile, 2-3
multiple, 2-12
objects, acquiring information about, 2-23, 2-25,

2-26, 2-27
objects, defining, 3-2
objects, defining in a program, 8-36
passwords for, 2-20, 2-21
permission programs, 2-12, 2-21
permission programs for, 2-21, 5-4
populating, 5-3, 5-19
read-only access to, 2-22
retrieving information about, 2-23
retrieving name of, 2-10
rolling up data, 5-19
saving changes to, 2-13
sharing across sessions, 2-17
update status, 2-9
updating, 2-14
using commands to populate, 5-3
waiting for, 2-18

AND operator, 4-29, 4-30
ARG function, 8-11
ARGFR function, 8-11
ARGS function, 8-11, 9-8
ARGUMENT command

placement of, 8-11
use of, 8-11
using multiple, 8-12

arguments
expressions used as, 8-15
in programs, 8-11
in user-defined functions, 8-17
passing as text, 8-13
passing by value, 8-15
using ampersand substitution with, 8-13 to 8-14

arithmetic expressions. See arithmetic operators,
numeric expressions

arithmetic operators, 4-23
ASCII character set, 4-36
assignment operator. See = command
assignment statement. See = command

attributes
attribute dimension, defined, A-7
attribute dimension, how to define, A-7
attribute dimension, properties required, A-8
attribute domain relation, definition, A-21
attribute name variable, purpose of, A-22
DBATTRDIM property, A-20
definition, A-20
domain dimension, definition, A-20
domain relation, how to define, A-21
metadata required, A-20
range dimension, definition, A-20
range relation, A-21
setting the EXPOBJVAR property on the attribute

dimension, A-22
setting the RANGEDIMREL property on the

attribute dimension, A-22
AUTOGO programs, 2-19

defining, 2-19
running, 2-19

B
BACK debugger command, 9-8
backslashes

escape sequence for, 4-3
in path names, 11-5

backspace (escape sequence), 4-3
BADLINE option, 8-38
base model, 7-4
BLANK command, 12-5
BMARGIN option, 12-26
Boolean

constants, 4-4, 4-28
data type, 4-4, 4-28

Boolean expressions
creating, 4-30
defined, 4-28
example of, 4-31
involving NA values, 4-32
operators, 4-29
values, 4-28
with more than one dimension, 6-8

Index-3

Boolean operators
evaluation order, 4-29
table of, 4-29

C
calculations

controlling errors during, 4-27
in models, 7-6
in reports, 12-20, 12-24

CALL command, 8-15
carriage return (escape sequence), 4-3
cells, empty, 3-15
CENTER attribute (ROW), 12-12
changes, saving, 2-13
character set, 4-36
characters

representing as decimals, 4-3
representing as hexadecimals, 4-3

CLOSE statement (SQL), 10-7, 10-14
columns

headings in reports, 12-17
modifying in reports, 12-12

COLVAL function, 12-20
COLWIDTH option, 12-11
command line utilities, 2-18
commands

debugger, 9-7
limiting usage of, 5-4
reporting, 12-3
to populate analytic workspaces, 5-3
using with composites, 4-8

commas, 4-25
comments in programs, 8-7
COMMIT statement (SQL), 10-5, 10-14
comparison operators, 4-29
COMPILE command

example of, 8-35
in models, 7-6, 7-8
introduction to, 8-36

composites
assigning names to unnamed, 3-17
defined, 3-16
defining single-dimension, 3-19
in expressions, 4-7

limiting base dimensions, 6-21
limiting dimensions used by, 4-8, 6-21
maintaining, 5-13
named, 3-16
naming, 3-17
renaming, 3-17
single-dimension, 3-19
unnamed, 3-16, 3-18
unnaming, 3-17
using commands with, 4-8

conditional expressions, 4-37, 4-38
conditional operators

defined, 4-37
example of, 4-38
introduced, 4-10

conjoint dimensions
deleting values from, 5-11
limiting, 6-22, 6-23
maintaining, 5-13
maintaining with programs, 11-14
merging values into, 5-9

CONSIDER command, 3-24
CONTEXT

command, 8-28
function, 8-28

continuation characters, 8-7
control structures in programs, 8-19
controlled sparsity, 3-15
CONVERT function, 4-12, 4-25, 4-28

changing data type, 4-11, 4-12
for formatting headings, 12-18

currency symbols in reports, 12-15
current analytic workspace, defined, 2-9
cursor (SQL)

closing, 10-14
declaring, 10-8
fetching, 10-11
opening, 10-10

D
data

aggregating, 5-19

Index-4

data types
conversion of, 4-24
converting, 4-12
numeric, 4-2
of expression, 4-11
of numeric expressions, 4-23, 4-24, 4-25
of user-defined function, 8-16
text, 4-3
time, 4-5

data values
accessing variable, 4-8
converting, using programs, 11-12
numeric, 4-23
rolling up, 5-19
saving calculations, 5-15

DATABASE command
ATTACH keyword, 2-10, 2-11
CREATE keyword, 2-2
DETACH keyword, 2-10
LIST keyword, 2-9
NAME keyword, 2-9
PASSWORD keyword, 2-20, 2-21
WAIT keyword, 2-17

DATABASE function, 2-23, 2-24
data-reading commands

ACROSS phrase, 11-22
limiting the ACROSS dimension, 11-24

DATE data type, 4-4, 4-28, 5-7, 6-6
date functions, 12-30
DATEFORMAT option, 4-28
DATEORDER option, 4-4, 4-5, 5-7, 6-6
dates

comparing with times, 4-35
concatenating, 4-6
in arithmetic expressions, 4-25
in text expressions, 4-28
reading with data-reading commands, 11-19
representing, 4-4
specifying time dimension values, 4-5
valid values, 4-4

DAY data type, 4-5
DBATTRDIM property

defined, A-7
how to set on ECMLOCATOR, A-8

DBDESCRIBE program, 2-9, 2-23

DBDIMDIM property
how to set on ECMLOCATOR, A-5
purpose of, A-4

DBEXTENDPATH option, 2-3
DBFOLDERDIM property

defined, A-9
how to set on ECMLOCATOR, A-10

DBGOUTFILE command, 8-24, 9-4
DBMEASDIM property

how to set on ECMLOCATOR, A-7
purpose of, A-6

DBSEARCHPATH option, 2-3
debugger commands, 9-7
debugger. See OLAP DML debugger
DECIMAL attribute (ROW), 12-12
DECIMAL data type, 4-2, 4-33
decimal data types

comparing, 4-33
decimal values, formatting, 4-25
DECIMALOVERFLOW option, 4-27
DECIMALS option, 4-32, 4-33, 12-11
DECLARE CURSOR statement (SQL), 10-7, 10-8
DEFINE command, 3-2

COMPOSITE keyword, 3-16, 3-17
DIMENSIONS keyword, 3-20
MODEL keyword, 7-6
PROGRAM keyword, 8-5
SPARSE keyword, 3-16
VARIABLE keyword, 3-14, 3-16

definitions
changing, 3-24
displaying, 2-23, 2-25
of objects, 3-1

DESCRIBE command, 2-25
dimension

hierarchy level, A-16
DIMENSION command, 7-6, 7-7
dimension dimension

definition, A-4
how to define, A-4
properties required, A-5

dimension hierarchies
metadata required to display, A-10
number-of-hierarchies formula, A-12

Index-5

dimension member level relation
how to define, A-17
purpose of, A-17

dimension order in models, 7-7
dimension status, 6-11

affect of MAINTAIN command on, 5-4
affect on expressions, 4-15
defining, 6-5 to 6-26
examining, 6-27
if dimension is empty, 6-25
if valueset is empty, 6-25
null, 6-24
of conjoint dimension, 6-22, 6-23
of dimensions used by composites, 4-8, 6-21
restoring, 6-4, 6-25, 8-26
retrieving current values, 6-28
retrieving default values, 6-28
saving, 6-25
saving current status, 6-4, 8-26
setting to a list of values, 6-5
setting to a literal value, 6-6
setting to null, 6-24, 6-25
setting using position in dimension, 6-15, 6-16
using data-reading commands, 11-25

dimension values
comparing, 4-34
translating coded, 11-14

dimension-based equations, 7-2
dimensions

adding values to, 5-5
assigning values to, 5-17
comparing values, 4-34
defined, 3-4
defining, 3-20, 3-21
defining in a program, 8-36
deleting values from, 5-10
domain, A-20
examining values in status, 6-27
hierarchical, 3-20, 3-21
hierarchy, setting the default, A-13
how data is stored, 3-5
in expressions, 4-6
level of detail, 3-4
limiting to a percentage of values, 6-12
limiting to Boolean expressions, 6-7

limiting to bottom performers, 6-11
limiting to related dimension, 6-13, 6-14
limiting to single value, 4-16
limiting to top performers, 6-11
limiting, based on position, 6-15, 6-16
limiting, using a valueset, 6-26
limiting, using data-reading commands, 11-25
limiting, using hierarchical relationship, 6-16,

6-19
limiting, using time values, 6-6
looping over values of, 8-21, 8-22
maintaining with programs, 11-9
merging values into, 5-5
numeric value of text dimension, 4-25
of expression, 4-14, 4-15
of relations, 3-7
position of values in valueset, 6-28
QDR with, 4-16, 4-19
range, A-20
relations between, 3-8
repositioning values in, 5-11, 5-12
restoring previous values, 8-27
restricting maintenance on, 5-4
retrieving default status list, 6-28
retrieving list of objects related to, 2-26
running programs when limiting, 6-19
saving current values, 8-26
sorting values in, 5-12
storage of, 3-5
types of, 3-4
ways to define, 3-20

DIVIDEBYZERO option, 4-27
DO/DOEND commands

in report programs, 12-11
domain dimension

definition, A-20
DOMAINDIMREL property

how to set on the attribute dimension, A-21
double quotes, 10-3

escape sequence for, 4-3
DRILLINFOFRM property

how to set on a dimension, A-14
purpose of, A-14

Index-6

E
ECHOPROMPT option, 8-24
ECMLOCATOR, A-2

how to define, A-2
properties required, A-3

embedded totals
calculating, 5-19
example of, 3-21

empty cells, 3-15
EQ command, 3-25
EQ operator, 4-29, 4-30
equal sign (=).See = command
equal sign (=).See = continuation character
equations

cyclic dependence (in models), 7-10
dimension-based, 7-2
in models, 7-6
simple blocks, 7-9
step blocks, 7-9

error messages
deferring, 8-29
routing to a file, 8-24
suppressing, 8-30
system, 8-31

error names, 8-31
ERRORNAME option, 8-29, 8-31
errors

controlling during calculations, 4-27
handling, 8-29
handling in nested programs, 8-33, 8-34
identifying, 8-31
names of, 8-31
signaling, 8-33, 8-34
when comparing numeric data, 4-32, 4-33

ERRORTEXT option, 8-29
escape sequences, 4-3
EXECUTE statement (SQL), 10-15
EXPOBJVAR property

how to set on the attribute dimension, A-23
expressions

ampersand substitution, 4-39
Boolean, 4-28, 4-29, 4-37, 4-38, 6-7, 6-8
changing the default behavior, 5-15
conditional, 4-37, 4-38

data type of, 4-11
dates in, 4-25
defined, 4-11
dimensions in, 4-6
dimensions of, 4-14, 4-15
evaluating, default behavior, 5-15
formulas in, 4-6
functions in, 4-6
mixing numeric data types, 4-24
numeric, 4-23
objects in, 4-6
relations in, 4-6, 4-9
substitution, 4-39
text, 4-27
using composites in, 4-7
using text dimension in numeric

expression, 4-25
valuesets in, 4-6
variables in, 4-6

EXTARGS command, 3-25
extension files, 2-3

F
FETCH statement (SQL), 10-7, 10-11
file names

DOS format, 11-5
specifying, 11-5
UNC format, 11-5

file-ids
DOS format, 11-5
UNC format, 11-5

FILENEXT function, 11-19
FILEOPEN function, 11-4
FILEREAD command, 5-3
files

analytic workspace, 2-3
appending output, 8-24
debugging, 9-4
reading, 11-6
reading individual records, 11-19
reading structured PRN, 11-8
reading with FILENEXT function, 11-19
saving output in, 8-23, 8-24
size of, 2-3

Index-7

FILEVIEW command, 11-19
financial analysis, scenario modeling, 7-15
floating point numbers

comparing, 4-33
floating-point format

limitations when calculating, 4-26
use of, 4-26

folder dimension
defined, A-9
how to define, A-9
properties required, A-10

folder membership valueset
how to define, A-23

FOR command
example of, 8-22
in report programs, 12-9
looping over dimension values, 8-21, 8-22
nested in reports, 12-10

form feed (escape sequence), 4-3
format attributes

for dimensioned data, 12-15
in ROW command, 12-12

formula
hierarchy drill information, how to define, A-14
hierarchy drill information, return values, A-14
number of hierarchies, purpose of, A-12
number-of-hierarchies, how to define, A-12
number-of-hierarchies, using, A-12

formulas in expressions, 4-6
FULLORDER property

how to set on a dimension, A-16
functions

calling, 8-4
defined, 4-22
in expressions, 4-6
numeric, 5-19
user-defined, 8-4, 8-16, 8-17
using, 4-22
writing, 8-16

G
GE operator, 4-29, 4-30

GO command
example of, 9-8
introduced, 9-7

GT operator, 4-29, 4-30

H
HEADING command

in reports, 12-16
paging output from, 12-25

headings in reports, 12-16, 12-30
hierarchical dimensions

defined, 3-20
defining variables for, 3-21
drilling down, 6-19
example of, 3-21
limiting based on relationship within, 6-16, 6-19
rolling up data, 5-19
self-relations for, 3-21

hierarchy
drilling down, 6-19

hierarchy dimension
definition, A-11
how to define, A-11

hierarchy full order variable, A-15
hierarchy level dimension

how to define, A-16
purpose of, A-16

hierarchy parent relation
definition, A-14
how to define, A-15

HIERDEFAULT property
how to set on a dimension, A-13
purpose of, A-13

HIERDIM property
how to set on a dimension, A-11
purpose of, A-11

HIERLDSCVAR property
how to set on a dimension, A-13
purpose of, A-13

HIERLEVELVS property
how to set on a dimension, A-18

horizontal tab (escape sequence), 4-3

Index-8

host variables (SQL)
input, 10-8
output, 10-12, 10-14

hyphen (-).See - continuation character

I
ID data type

defined, 4-3
IFNONE keyword

branching in programs, 8-23
implicit relations, 3-7
IMPORT command, 5-3
IN operator, 4-29, 4-30
INCLUDE command, 7-4, 7-6, 7-7
INDENT attribute (ROW), 12-12
INFO function

determining dimensionality with, 4-14
DIMENSION keyword, 4-15
with models, 7-14

inplace variables
advantages of, 3-12
defined, 3-12
disadvantages of, 3-12
when to use, 3-13

input host variables (SQL), 10-8
INSTAT function, 6-3, 6-27
INTEGER data type, 4-2
ISECMLOCATOR property

how to set on ECMLOCATOR, A-3

L
labels

in programs, 8-30
modifying in reports, 12-12
with IFNONE, 8-23

LAG function, 4-25, 7-12
LCOLWIDTH option, 12-11
LD command, 3-25
LDSCVAR property

how to set on an OLAP DML object, A-25
LE operator, 4-29, 4-30
LEAD function, 4-25, 7-12
LEFT attribute (ROW), 12-12

level depth variable, A-18
level long description variable, A-19
LEVELDEPTHVAR property

how to set on a dimension, A-19
LEVELDIM property

how to set on a dimension, A-17
LEVELLDSC property

how to set on a dimension, A-19
LEVELREL property

how to set on a dimension, A-17
level-to-hierarchy mapping valueset

purpose of, A-18
LIKE operator, 4-29, 4-30, 4-36
LIMIT command

DESCENDANT keyword, 6-17
examples of, 6-6, 6-11, 6-12, 6-13, 6-19, 6-26
HIERARCHY keyword, 6-16, 6-17
NOCONVERT keyword, 6-16
NULL keyword, 6-24
overview, 6-5
POSLIST keyword, 6-15
relation dimension, 6-13
RUN keyword, 6-19
with Boolean expression, 6-7, 6-8
with conjoint dimension, 6-22, 6-23
with time dimensions, 6-14
with variables with composite, 4-8, 6-21

linefeed (escape sequence), 4-3
LINENUM option, 12-26
LINESLEFT option, 12-26, 12-28
LISTBY program, 2-9
LISTNAMES program, 2-24
literals

date, 4-4
numeric, 4-2
text, 4-27

local variables, 8-8
logical operators, 4-29
long description variable, A-25
LSET attribute (ROW), 12-12
LSIZE option, 12-26, 12-30
LT operator, 4-29, 4-30

Index-9

M
MAINTAIN command

adding values using, 5-5 to 5-7, 5-8
affect on dimension status, 5-4
deleting values using, 5-10, 5-11
denying permission to, 5-4
introduced, 5-3
merging values using, 5-5, 5-9
overview of, 5-3
repositioning values using, 5-11
when objects are updated, 5-4
with composites, 5-13
with conjoint dimensions, 5-13

MAKEDATE function, 4-6
MEASINFOLDERVS property

how to set on the folder dimension, A-24
measure dimension

definition, A-6
how to define, A-6
properties required, A-6

messages
warning, 8-32

metadata
analytic workspace, A-1
defined, A-1
locator object, A-2
purpose of, A-1
required for attributes, A-20
required for dimension hierarchies, A-10
required for hierarchy levels, A-16
requirements, A-2

minus sign (in numeric input), 4-25
MODEL command, 3-25, 7-6
MODEL.COMPRPT program, 7-14
MODEL.DEPRPT program, 7-14
models

base, 7-4
basic commands, 7-6
compiling, 7-3, 7-8
creating a nested hierarchy, 7-4
debugging, 7-13, 7-14
editing, 7-2
parent, 7-4
running, 7-3, 7-11

scenario, 7-15
solution variables, 7-2
types of solution blocks, 7-9

MODEL.XEQRPT program, 7-14
MODTRACE option, 7-14
MONTH data type, 4-5
multidimensional data model, 3-11
multiple analytic workspaces, 2-12

N
NA pages

creating, 2-15, 2-16
releasing, 2-15
retrieving number of, 2-15

NA values, 3-15
comparing, 4-32
controlling how treated, 4-41
defined, 4-40
in aggregation functions, 4-42
in arithmetic operations, 4-43
in Boolean expression, 4-32
substituting another value for, 4-43
times when relevant, 4-40

NAFILL function, 4-41, 4-43
NAME dimension, 2-27
named composites

defined, 3-16
NASKIP option, 4-41, 4-42
NASKIP2 option, 4-41, 4-43
NASPELL option, 8-11
NE operator, 4-29, 4-30
NOPRINT keyword (TRAP), 8-30, 8-34
NOSPELL function, 4-4
NOT operator, 4-29, 4-30
number-of-hierarchies formula

how to define, A-12
how to use, A-12

numeric data
comparing, 4-32 to 4-33

numeric data types
automatic conversion of, 4-24
comparing, 4-32, 4-33
list of, 4-2
mixing, 4-24

Index-10

numeric expressions
data type of the result, 4-23, 4-24, 4-25
dates in, 4-25
defined, 4-23
evaluating, 4-23
mixing data types in, 4-24
NA values in, 4-43

numeric literals, 4-25
NUMHIERFRM property

defining the number-of-hierarchies
formula, A-12

how to set on the dimension dimension, A-12

O
OBJ function, 2-26, 2-27
objects

assigning values to, 4-10, 5-13
changing definition of, 3-24
definitions, 3-1
displaying definitions of, 2-25
in expressions, 4-6
list of, 3-3
maintaining, 5-4
retrieving information about, 2-26, 2-27
retrieving list of, 2-24, 2-26
updating, 5-4

OCI
special features of Oracle, 10-20

OKNULLSTATUS option, 6-24, 8-23
OLAP DML

using with composites, 4-8
OLAP DML debugger

accessing, 9-6
tracing nested programs, 9-8
using, 9-7

OPEN statement (SQL), 10-7, 10-10
operators

arithmetic, 4-23
Boolean, 4-29
comparison, 4-29
conditional, 4-37, 4-38
logical, 4-29
substitution, 4-39

options
paging, 8-24, 12-26
restoring previous values, 8-27
saving current values, 8-26

OR operator, 4-29, 4-30
Oracle data types, 10-18
OUTFILE command, 8-23, 8-24, 12-28
outfiles

creating, 8-24
paging options for, 8-24

output
host variables, 10-14
host variables (SQL), 10-12
saving in a file, 8-23, 8-24

OVER attribute (ROW), 12-12

P
PAGE command, 12-27
PAGENUM option, 12-26, 12-27, 12-29
PAGEPAUSE option, 12-29
PAGEPRG option, 12-26, 12-30, 12-31, 12-33
PAGEPROMPT option, 12-30
pages

breaks in reports, 12-27
headings in reports, 12-30
numbers in reports, 12-29

PAGESIZE option, 12-26
PAGING option, 12-25 to 12-27
PAREN attribute (ROW), 12-12
PARENS option, 12-11
parent model, defined, 7-4
PARENTREL property

how to set on a dimension, A-15
PARSE command, 4-14, 4-15
passwords

for analytic workspaces, 2-20
removing, 2-21

path names, specifying, 11-5
pattern matching, 4-36
PAUSE command, 12-29
permission programs, 2-12, 2-21, 5-4
permissions to maintain dimensions, 5-4
PERMIT command, 2-22, 3-25, 5-4
PERMIT_READ program, 2-21

Index-11

PERMIT_WRITE program, 2-21
persistent sessions, 2-19
POP command, 8-27
POPLEVEL command

nesting, 8-28
using, 8-28

PREPARE statement (SQL), 10-15
PRGERR keyword (SIGNAL), 8-33
PRN files, reading, 11-8
PROGRAM command, 3-25
programs

analytic workspace permission, 2-12, 2-21, 5-4
arguments, 8-11
AUTOGO, 2-19
automatic running of, 2-19, 6-19
branching in, 8-23
branching labels, 8-20
comment lines in, 8-7
compilation of, 8-14
compiling, 8-35, 8-36
control structures, 8-19
DBDESCRIBE, 2-9
debugging, 9-1
debugging file for, 9-4
debugging, stepping through, 9-8
declaring arguments in, 8-11, 8-12
defined, 8-2
defining, 8-5
designing, 8-8, 8-19
displaying list of running, 9-8
errors in, 8-29
executing from other programs, 8-15
expressions used as arguments to, 8-15
finding logic errors in, 9-2
importing, 8-36
LISTBY, 2-9
LISTNAMES, 2-24
logging execution of, 9-4
logic errors in, 9-2
maintaining dimensions with, 11-9, 11-13, 11-14
modifying data with, 11-18
permission, 2-12, 2-21, 5-4
PERMIT_READ, 2-21
PERMIT_WRITE, 2-21
preserving environment, 8-25

reading coded dimension values, 11-15
restoring previous values, 8-27
running, 2-19, 8-37
sample, 8-17
saving compiled code, 8-36
saving current values, 8-26
scaling input data, 11-17
skipping invalid records, 11-10
STDHDR, 12-30
stepping through, 9-8
testing by running, 8-37
tracing, 9-6
tracing nested, 9-8
updating, 8-36
using continuation characters in, 8-7
variables in, 8-8, 8-9
watch points, 9-10, 9-11, 9-12

properties required by metadata
DBATTRDIM, A-8
DBDIMDIM, A-5
DBFOLDERDIM, A-10
DBMEASDIM, A-7
DOMAINDIMREL, A-21
DRILLINFOFRM, A-14
EXPOBJVAR, A-23
FULLORDER, A-16
HIERDEFAULT, A-13
HIERDIM, A-11
HIERLDSCVAR, A-13
HIERLEVELVS, A-18
ISECMLOCATOR, A-3
LDSCVAR, A-25
LEVELDEPTHVAR, A-19
LEVELDIM, A-17
LEVELLDSC, A-19
LEVELREL, A-17
MEASINFOLDERVS, A-24
NUMHIERFRM, A-12
PARENTREL, A-15
RANGEDIMREL, A-22
SDSCVAR, A-24

PROPERTY command, 3-25
PUSH command, 8-27

placement, 8-30
using, 8-26

Index-12

PUSHLEVEL command
nesting, 8-28
placement, 8-30

Q
QUAL function, 4-20
qualified data references

ampersand substitution, 4-20
creating, 4-16
defined, 4-16
in programs, 11-17
qualifying a relation, 4-19
replacing dimension of variable, 4-17, 4-19
using with = command, 4-20, 5-17
using with relation, 4-19
with dimensions, 4-16
with relations, 4-19
with variables, 4-17, 4-19

QUARTER data type, 4-5
quotation marks

escape sequences for, 4-3
SQL, 10-3

R
random sparsity, 3-15
range dimension

definition, A-20
RANGEDIMREL property

how to set on the attribute dimension, A-22
RAW DATE attribute

with data-reading commands, 11-19
with program, 11-13

records, reading, 11-19
relation

attribute domain, how to define, A-21
attribute domain, purpose of, A-21
attribute range, how to define, A-21
attribute range, purpose of, A-21
dimension member level, definition, A-17
hierarchy parent, defined, A-14

relational data, 10-1
See also SQL
DATE data type example, 10-32

fetching example, 10-29
updating tables example, 10-38

relational database example, 10-22
relations

assigning values to, 5-17
between two dimensions, 3-8
comparing to text literals, 4-37
defined, 3-7
defining, 3-8, 3-9
dimensionality of, 3-7
example of, 3-8, 3-9, 3-21
how data is stored, 3-8
implicit, 3-7
in expressions, 4-6, 4-9
limiting to single value, 4-19
QDR with, 4-19
replacing dimension of, 4-19
self, 3-9, 3-21
used with programs, 11-17

REPORT command
paging output from, 12-25
with sparse data, 4-8

report programs
FOR loops in, 12-9
writing, 12-2 to 12-34

reports
blank lines, 12-5
calculations, 12-20, 12-24
column calculations, 12-21
column format, 12-6
column headings, 12-17
currency symbols in, 12-15
debugging tips, 12-34
functions in, 12-24
headings, 12-16
headings in, 12-30
looping over dimensions, 12-9
page breaks, 12-27
page headings, 12-30
page numbering, 12-29
PAGEPAUSE message, 12-30
paging with REPORT command, 12-25
paging with ROW command, 12-25
PAUSE message, 12-30
pausing during output, 12-29

Index-13

resetting totals, 12-23, 12-24
row calculations, 12-20
row format, 12-6
running totals, 12-23
side headings, 12-17
skipping columns, 12-7
titles, 12-16
totals, 12-21

RETURN command, 8-16
RIGHT attribute (ROW), 12-12
ROLLBACK statement (SQL), 10-5, 10-14
ROOTOFNEGATIVE option, 4-27
ROUND function, 4-32, 4-33
ROW command

column format, 12-6
format attributes, 12-12
generating blank lines, 12-5
global attributes, 12-8, 12-14
looping over dimensions, 12-9
paging output from, 12-25
reporting data, 12-4
reporting dimension values, 12-5
reporting literal text, 12-4
reporting multiple expressions, 12-5
reporting sparse data, 12-9
reporting values across row, 12-7
row format, 12-6
setting status, 12-8
skipping columns, 12-7

RSET attribute (ROW), 12-12
RUNTOTAL function, 12-20, 12-23

S
scenario model, defined, 7-15
scenarios for financial modeling, 7-15
SDSCVAR property

how to set on an OLAP DML object, A-24
SELECT statement (SQL), 10-4
sessions

preserving environment, 8-25
restoring environment, 8-27
sharing analytic workspaces across, 2-17

setting status. See dimension status
short description variable, A-24

SHORTDECIMAL data type, 4-33
SHORTINTEGER data type, 4-2
side headings in reports, 12-17
SIGNAL command, 8-31
simple blocks (in models), 7-9
simultaneous equations in models, 7-12
single quotes

escape sequence for, 4-3
SQL, 10-3

SKIP keyword (ROW), 12-7
solution variables

defined, 7-2
example of, 7-16

SPACE attribute (ROW), 12-12
sparse data, 3-15

controlled sparsity, 3-15
defined, 3-15, 4-40
eliminating, 3-16 to 3-18
in reports, 12-9
random sparsity, 3-15
setting dimension status, 6-21

SQL, 10-1
See also relational data
command summary, 10-4
data type equivalents, 10-20
definition, 10-2
described, 10-3
error handling, 10-5
null values, 10-12
precompiling code, 10-15
savepoints, 10-20
stored procedures, 10-20
transaction processing, 10-5
triggers, 10-20

SQL command
introduced, 5-3
syntax, 10-3

SQLCODE option, 10-4
SQLERRM option, 10-4
SQLMESSAGES option, 10-4
STATFIRST function, 6-3, 6-27
STATLAST function, 6-3, 6-28
STDHDR program, 12-30
step blocks (in models), 7-9

Index-14

storage
of dimensions, 3-5
of relations, 3-8
of variables, 3-13

stored procedures, 8-2
structured files, reading, 11-8
substitution expressions, 4-39
substitution operator, 4-39

introduced, 4-10
SUBTOTAL function, 12-20, 12-22
SYSINFO function, 2-22

T
tab (escape sequence), 4-3
temporary variables, 8-9, 11-25
text

comparing values, 4-36
comparing values to a pattern, 4-36
data types, 4-3
effects of character set, 4-36
passing arguments as, 8-13

TEXT data type, 4-3
text expressions

dates in, 4-28
defined, 4-27

text literals
comparing to relations, 4-37

time data types
described, 4-5

time dimensions
adding values to, 5-6, 5-7, 5-8
deleting values from, 5-10
limiting, 6-6
limiting using, 6-14
maintaining with programs, 11-13
relations between, 3-7
specifying values for, 4-5

time values
formatting in report headings, 12-18
limiting using, 6-6

titles for reports, 12-16, 12-30
TMARGIN option, 12-26
TOD function, 12-30
TODAY function, 12-30

totals in reports, 12-20
TRACE command, 7-14, 9-6
trace list, 9-7
transactions (SQL), 10-20
TRAP command, 8-29, 8-33, 8-34

U
UNDER attribute (ROW), 12-12
unnamed composites, 3-16, 3-18

defining, 3-18
example of, 3-18
naming, 3-17

UPDATE command, 2-13
update status, 2-9
user-defined functions, 8-16

arguments in, 8-17
calling, 8-4
data type of, 8-16

utilities, command line, 2-18

V
VALONLY attribute (ROW), 12-12
VALUE keyword

used in data-reading commands, 11-18
used in programs, 11-15

values
assigning to dimensions, 5-17
assigning to objects, 5-13
assigning to relations, 5-17
assigning to variables, 5-15
assigning to variables with composites, 5-15,

5-16
assigning, using a QDR, 5-17
in current status list, 6-28
in default status list, 6-28
NA, 3-15
restoring previous, 8-27
saving current, 8-26

VALUES function, 6-4, 6-28
valuesets

creating, 6-25
defined, 6-25
defining, 6-26

Index-15

folder membership, definition of, A-23
folder membership, how to define, A-23
in expressions, 4-6
level-to-hierarchy mapping, definition of, A-18
level-to-hierarchy mapping, how to

define, A-18
limiting using, 6-26
listing dimension positions in, 6-28

VARIABLE command, 8-9
variables

accessing, 4-8
assigning values to, 5-14, 5-15, 5-16, 5-17
attribute name, definition of, A-22
attribute name, how to define, A-22
changing storage type of, 3-25
controlling sparsity in, 3-16
defined, 3-11
defining, 3-14
defining in a program, 8-36
defining with composite, 3-16 to 3-18
defining with unnamed composite, 3-18
dimensioned, 3-11
example of, 3-14
hierarchy description, how to define, A-13
hierarchy full order, how to define, A-15
hierarchy full order, purpose of, A-15
holding, 12-25
how data is stored, 3-13
in expressions, 4-6
level depth, definition, A-18
level depth, how to define, A-18
level long description, definition of, A-19
level long description, how to define, A-19
limiting to single value, 4-17, 4-19
local, 8-8
long description, definition of, A-25
long description, how to define, A-25
NA values in, 3-15
persistence of, 8-8, 8-9
QDR with, 4-17, 4-19
replacing dimension of, 4-17, 4-19
rolling up, 5-19
short description, definition of, A-24
short description, how to define, A-24
sparse data in, 4-8

storage of, 3-13
temporary, 8-9
three-dimensional, 3-14
undimensioned, 3-11
with embedded totals, 3-21
with NA values, 3-16
with single-dimension composite, 3-19

VNF command, 4-5
described, 3-25
for formatting headings, 12-18

VNF format, 4-5, 5-7, 6-6, 11-13

W
WATCH command, 7-14

example of, 9-10, 9-11
introduced, 9-7

watch points, 9-10
disabling, 9-11
enabling, 9-11
example of, 9-11
special, 9-12

WEEK data type, 4-5
WHERE clauses (SQL), 10-9
WIDTH attribute (ROW), 12-12
wildcards, 4-37

Y
YEAR data type, 4-5
YESSPELL function, 4-4

Z
zero

dividing by, 4-27
ZEROTOTAL command, 12-24

Index-16

	Send Us Your Comments
	Preface
	Conventions
	Documentation Accessibility

	1 Basic Concepts
	What Is the OLAP DML?
	Using the OLAP DML
	How Do I Use the OLAP DML to Analyze Data?
	Where Do I Go From Here?

	2 Defining and Working with Analytic Workspaces
	Defining an Analytic Workspace
	How to Gain Access to an Analytic Workspace
	Gaining Access to a Workspace from OLAP Worksheet
	Gaining Access to a Workspace from a Java Application
	Using the OLAP DML to Work with Analytic Workspaces
	Saving Analytic Workspace Changes
	Minimizing Analytic Workspace Growth
	Sharing Analytic Workspaces
	Working with AUTOGO Programs
	Adding Security to an Analytic Workspace
	Obtaining Analytic Workspace Information

	3 Defining Data Objects
	Overview: Defining OLAP DML objects
	Defining Dimensions
	Defining Relations
	Defining Variables
	Defining Variables That Handle Sparse Data Efficiently
	Defining Hierarchical Dimensions and Variables That Use Them
	Defining Metadata
	Changing the Definition of an Object

	4 Working with Expressions
	OLAP DML Data Types
	Using OLAP DML Objects in Expressions
	OLAP DML Operators
	Introducing Expressions
	Expressions and Dimensionality
	Specifying a Single Value for the Dimension of an Expression
	Using Functions in Expressions
	Numeric Expressions
	Text Expressions
	Boolean Expressions
	Conditional Expressions
	Substitution Expressions
	Working with NA Values

	5 Populating OLAP DML Data Objects
	Overview: Populating an Analytic Workspace
	Maintaining Dimensions and Composites
	Assigning Values to Data Objects
	Calculating and Analyzing Data
	Aggregating Data

	6 Limiting an Application’s View of the Data
	Introducing Dimension Status
	Limiting Using a Simple List of Values
	Limiting Using a Boolean Expression
	Limiting to the Top or Bottom Values of a Sorted Dimension
	Limiting to the Values of a Related Dimension
	Limiting Based on the Position of a Value in a Dimension
	Limiting Based on a Relationship Within a Hierarchy
	Limiting Composites and Conjoint Dimensions
	Working with Null Status
	Working with Valuesets

	7 Working with Models
	Using Models to Calculate Data
	Creating a Nested Hierarchy of Models
	Basic Modeling Commands
	Compiling a Model
	Running a Model
	Debugging a Model
	Modeling for Multiple Scenarios

	8 Designing Programs
	Introduction to OLAP DML Programs
	Invoking Programs
	Defining and Editing Programs
	Using Variables in Programs
	Passing Arguments
	Writing User-Defined Functions
	Controlling the Flow of Execution
	Directing Output
	Preserving the Session Environment
	Handling Errors
	Compiling Programs
	Testing Programs

	9 Debugging Programs
	Overview: Debugging in OLAP DML
	Debugging with a Debugging File
	Debugging with OLAP Worksheet
	OLAP DML Debugger Commands
	Working with watch points

	10 Using Embedded SQL
	Using Relational Data
	Obtaining Access to the Relational Database
	Supported SQL Commands
	Checking for Errors
	Fetching Data into an Analytic Workspace
	Declaring a Cursor
	Opening a Cursor
	Fetching the Selected Data
	Closing a Cursor
	Using Dimensions as Output Host Variables
	Writing OLAP DML Data to a Relational Table
	Matching Oracle9i Data Types
	Using the Special Features of an OCI Connection
	Example: SQL Program

	11 Reading Data from Files
	Introducing Data-Reading Programs
	Reading Files
	Specifying File Names in the OLAP DML
	Reading Data from Files
	Reading and Maintaining Dimension Values
	Processing Input Data
	Processing Records Individually
	Processing Several Values for One Variable

	12 Writing Reports
	Introducing the Reporting Commands
	Creating Report Rows
	Creating Report Columns
	Retrieving Data for Rows
	Controlling the Default Format of Report Output
	Modifying the Layout of Columns
	Creating Headings
	Performing Calculations in a Report
	Creating Paginated Reports
	Creating Headings on Each Page
	Guidelines for Writing a Report Program

	A Creating and Using Analytic Workspace Metadata
	What is Analytic Workspace Metadata?
	Analytic Workspace Metadata Prerequisites
	Metadata That Describes Dimension Hierarchies
	Metadata That Describes Dimension Hierarchy Levels
	Metadata That Describes Dimension Attributes
	Metadata That Describes Other Objects

	Glossary
	Index

