

ORACLE JHEADSTART 11g
for ADF

RELEASE 11.1.1.5

DEVELOPER’S GUIDE

SEPTEMBER 2013

JHeadstart Developer’s Guide

Copyright © 2013, Oracle Corporation

All rights reserved.

Authors: Steven Davelaar, Ton van Kooten, Sandra Muller, Jaco Verheul

Contributors: Pieter Biemond, Sigrid Gylseth, Bouke Nijhuis, Evert-Jan de Bruin, Paco van der Linden

The Programs (which include both the software and documentation) contain proprietary information; they

are provided under a license agreement containing restrictions on use and disclosure and are also protected

by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,

or decompilation of the Programs, except to the extent required to obtain interoperability with other

independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in

the documentation, please report them to us in writing. This document is not warranted to be error-free.

Except as may be expressly permitted in your license agreement for these Programs, no part of these

Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any

purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on

behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data

delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"

pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation

and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license

agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial

Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA

94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently

dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,

redundancy and other measures to ensure the safe use of such applications if the Programs are used for such

purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third

parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.

You bear all risks associated with the use of such content. If you choose to purchase any products or services

from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:

(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the

third party, including delivery of products or services and warranty obligations related to purchased

products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from

dealing with any third party.

JHeadstart Developer’s Guide Contents i

CONTENTS

C H A P T E R 1 G E T T I N G S T A R T E D . 1 - 1

1.1. Introduction into JDeveloper, ADF and JHeadstart .. 1-2

1.1.1. Oracle JDeveloper .. 1-2
1.1.2. Oracle Application Development Framework (ADF) ... 1-2
1.1.3. What is Oracle JHeadstart? ... 1-3

1.2. Roadmap to Developing ADF Applications using JHeadstart .. 1-5

1.2.1. Set Up Project for Team-Based Development .. 1-5
1.2.2. Create Business Service using ADF Business Components.. 1-6
1.2.3. Design and Generate Web Pages .. 1-7
1.2.4. Design and Generate Security Structure ... 1-8
1.2.5. Customize Generated Web Tier .. 1-8

C H A P T E R 2 S E T U P P R O J E C T F O R T E A M - B A S E D D E V E L O P M E N T 2 - 1

2.1. Setting Up Version Control System .. 2-2

2.1.1. Version Control Models ... 2-2
2.1.2. Requirements for a Good Version Control System ... 2-3
2.1.3. Which Files to Version? ... 2-4

2.2. Setting up Structure of JDeveloper Workspace and Projects .. 2-6

2.2.1. Installing JDeveloper .. 2-6
2.2.2. Identify Subsystems within your Application ... 2-6
2.2.3. Creating a Workspace and Projects .. 2-6
2.2.4. Creating Database Connection .. 2-9
2.2.5. Initializing Model Project for Business Components ... 2-10
2.2.6. Optimizing ADF BC for Team Development ... 2-10
2.2.7. Switching off Default Creation of ADF BC Java classes .. 2-10
2.2.8. Enabling ViewController Project for JHeadstart .. 2-11

2.3. Organizing JHeadstart Service Definition Files .. 2-12

2.3.1. Naming Conventions for File Location Properties ... 2-12

2.4. Packaging JHeadstart-Generated ViewController Project as ADF Library 2-13

2.4.1. Remove JhsCommon-beans.xml from the ADF Library jar file 2-13
2.4.2. Add reference to resource bundle of ADF Library project ... 2-13
2.4.3. Import JHeadstart service definitions in main ViewController project 2-14

2.5. Defining Java Package Structure and Other Naming Conventions 2-16

2.5.1. Java Packages ... 2-16
2.5.2. Naming ADF Business Components ... 2-17

ii Contents JHeadstart Developer’s Guide

C H A P T E R 3 C R E A T I N G A D F B U S I N E S S C O M P O N E N T S . 3 - 1

3.1. Setting Up ADF BC Base Classes ... 3-2

3.1.1. Using CDM RuleFrame .. 3-4

3.2. Creating the Entity Object Layer... 3-5

3.2.1. Review Database Design .. 3-5
3.2.2. Creating First-Cut Entity Objects and Associations .. 3-5
3.2.3. Renaming Entity Objects and Associations .. 3-6
3.2.4. Generating Primary Key Values ... 3-7
3.2.5. Setting Entity Object Attribute Properties used by JHeadstart 3-8
3.2.6. Implementing Business Rules ... 3-9

3.3. Creating View Objects and Application Modules ... 3-11

3.3.1. Creating View Objects and View Links .. 3-11
3.3.2. Renaming View Objects and View Links ... 3-11
3.3.3. Inspecting and Setting Key Attributes of a View Object .. 3-11
3.3.4. Setting View Object Control Hints ... 3-12
3.3.5. Determining the Order of Displayed Rows ... 3-12
3.3.6. Creating Calculated or Transient Attributes .. 3-13
3.3.7. Setting Up Master-Detail Synchronization ... 3-13
3.3.8. Defining View Links and View Object Usages for Lookups 3-15
3.3.9. Testing the Model ... 3-15

C H A P T E R 4 U S I N G J H E A D S T A R T . 4 - 1

4.1. Understanding the JHeadstart Application Generator Architecture .. 4-2

4.1.1. Input Output .. 4-3

4.2. Using the JHeadstart Enable Project Wizard .. 4-4

4.2.1. Enabling JHeadstart on a new project ... 4-4
4.2.2. Enabling JHeadstart on an existing project ... 4-5
4.2.3. Re-enabling JHeadstart on a project ... 4-6

4.3. Using the Create New Service Definition Wizard ... 4-8

4.3.1. Step 1: Choose Data Control... 4-9
4.3.2. Step 2: Choose Basic Settings ... 4-10
4.3.3. Step 3: Choose List of Values Options ... 4-11
4.3.4. Step 4: Choosing Search Style .. 4-16

4.4. Using the Application Definition Editor ... 4-18

4.4.1. Maintaining the Application Definition .. 4-18
4.4.2. Application ... 4-21
4.4.3. Service .. 4-21
4.4.4. Groups .. 4-22
4.4.5. Items ... 4-22
4.4.6. Lists of Values .. 4-22
4.4.7. Regions ... 4-23
4.4.8. Detail Groups .. 4-24
4.4.9. Domains .. 4-25
4.4.10. Manipulating Objects .. 4-25
4.4.11. Novice Mode and Expert Mode .. 4-28
4.4.12. Synchronize Group with Underlying View Object ... 4-28

4.5. Running the JHeadstart Application Generator ... 4-30

4.6. Running the Generated Application .. 4-32

JHeadstart Developer’s Guide Contents iii

4.6.1. TroubleShooting ... 4-32
4.6.2. Dealing with Code Segment Too Large Error .. 4-33

4.7. What was Generated for What Purpose .. 4-35

C H A P T E R 5 G E N E R A T I N G P A G E L A Y O U T S . 5 - 1

5.1. Choosing a Group Usage .. 5-2

5.1.1. Stand-alone Pages ... 5-2
5.1.2. Region with Page Fragments (Recommended) ... 5-2
5.1.3. Reusing Groups .. 5-5
5.1.4. List of Values Window ... 5-13
5.1.5. Showing a Group in a Popup Window .. 5-13

5.2. Creating Form Pages ... 5-14

5.2.1. Displaying an Item at the Right of Another Item .. 5-15
5.2.2. Hiding Items on the Form Page .. 5-16
5.2.3. Create and Update Mode in Form Layout .. 5-16
5.2.4. Controlling the Page Title in Form Layout ... 5-18

5.3. Creating Select-Form Pages .. 5-19

5.4. Creating Table Pages .. 5-20

5.4.1. Using Table Layout and Stretching .. 5-20
5.4.2. Using a Table Overflow Area ... 5-22
5.4.3. Hiding Items in a Table .. 5-24
5.4.4. Allowing the User to Sort Data in a Table Page ... 5-24
5.4.5. Adding Summary Information to a Table ... 5-24
5.4.6. Change Table-Related ADF Business Components Settings 5-25

5.5. Creating Table-Form Pages .. 5-27

5.6. Creating Master-Detail Pages ... 5-28

5.6.1. Master-Detail on Separate Page .. 5-28
5.6.2. Master-Details on Same Page ... 5-29

5.7. Creating Tree Layouts ... 5-34

5.7.1. Choosing a Tree Layout Style ... 5-34
5.7.2. Generating a Basic Tree.. 5-35
5.7.3. Variation: Basic Tree with non-clickable nodes ... 5-41
5.7.4. Variation: Recursive Tree ... 5-42
5.7.5. Variation: Recursive Tree with Limited Set of Root Nodes 5-43
5.7.6. Variation: Tree showing only Children of selected Parent ... 5-45

5.8. Creating Shuttle Layouts ... 5-48

5.8.1. Creating Parent Shuttles .. 5-48
5.8.2. Creating Intersection Shuttles ... 5-50
5.8.3. Understanding How JHeadstart Runtime Implements Shuttles 5-51

5.9. Creating Wizard Layouts .. 5-54

5.9.1. Launching a Wizard using New Button .. 5-55

5.10. Controlling Page Layout Using Region Containers, Item and Group Regions 5-57

5.10.1. Using Item Regions .. 5-58
5.10.2. Using Group Regions.. 5-60
5.10.3. Mixing Item Regions and Group Regions... 5-61
5.10.4. Generating Content in a Popup Window .. 5-63

iv Contents JHeadstart Developer’s Guide

C H A P T E R 6 G E N E R A T I N G U S E R I N T E R F A C E W I D G E T S . 6 - 1

6.1. Specifying the Prompt ... 6-2

6.2. Default Display Value ... 6-3

6.2.1. Using EL expressions ... 6-3

6.3. Display Type ... 6-4

6.4. Generating a Text Item ... 6-8

6.4.1. Define Item Display Width and Height ... 6-8
6.4.2. Setting Maximum Length .. 6-9

6.5. Generating a Dropdown List ... 6-10

6.5.1. Static Dropdown List based on a Static Domain ... 6-10
6.5.2. Translation of Static Domains ... 6-10
6.5.3. Dynamic Dropdown List based on a Dynamic Domain .. 6-11

6.6. Generating a Radio Group .. 6-13

6.6.1. Static Radio Group based on a Domain .. 6-13
6.6.2. Translation of Static Domains ... 6-13
6.6.3. Dynamic Radio Group based on a Dynamic Domain ... 6-13

6.7. Generating a List of Values (LOV) ... 6-15

6.7.1. ADF Model LOV vs. Custom JHeadstart LOV .. 6-15
6.7.2. Creating an ADF Model LOV .. 6-17
6.7.3. Creating a custom JHeadstart LOV ... 6-17
6.7.4. Creating a (reusable) LOV group .. 6-18
6.7.5. Linking a Reusable LOV group to an item ... 6-18
6.7.6. Defining an LOV on a display item .. 6-19
6.7.7. Use LOV for Validation.. 6-23
6.7.8. Selecting multiple values in a List of Values .. 6-24
6.7.9. Passing Parameters to an LOV .. 6-25
6.7.10. Understanding How JHeadstart Runtime Implements List Of Values 6-26

6.8. Generating a Date (time) Field .. 6-29

6.8.1. Specifying Display Format for Date and Datetime Field .. 6-29

6.9. Generating a Checkbox ... 6-30

6.9.1. Generating a checkbox based on a Boolean attribute ... 6-31

6.10. Generating a Button Item .. 6-32

6.10.1. Positioning of Buttons... 6-32
6.10.2. Appearance of Buttons .. 6-32
6.10.3. Executing a Button Action .. 6-33
6.10.4. Calling a PL/SQL Procedure or Function From a Button ... 6-37

6.11. File Upload, File Download, Showing Image Files, and Playing Audio Files 6-39

6.11.1. Combining File Display Options... 6-40
6.11.2. Showing Properties of Uploaded Files .. 6-41

6.12. Generating a Graph ... 6-43

6.13. Conditionally Dependent Items ... 6-44

6.13.1. Using the Depends On Item(s) Property ... 6-44
6.13.2. Cascading Lists ... 6-46
6.13.3. Row Specific Dropdown Lists in Table .. 6-47

JHeadstart Developer’s Guide Contents v

6.14. Navigating Context-Sensitive to a Group Task Flow (Deep Linking) 6-48

6.14.1. Opening the Linked Group in Popup Window ... 6-49
6.14.2. Using Taskflow Parameters to Customize Appearance of Linked Group 6-50
6.14.3. Opening the Linked Group in a New Dynamic Tab.. 6-52
6.14.4. Deep Linking from an External Source .. 6-54

6.15. Generating Embedded Oracle Forms .. 6-55

6.15.1. Deep Linking to an Oracle Form .. 6-56

C H A P T E R 7 G E N E R A T I N G Q U E R Y B E H A V I O R S . 7 - 1

7.1. Creating a Search Region .. 7-2

7.1.1. Choosing a Technology: ADF Model or Custom JHeadstart .. 7-2
7.1.2. Creating a Model Based Search .. 7-3
7.1.3. Creating a Custom JHeadstart Search ... 7-4
7.1.4. Using JHeadstart Quick Search .. 7-4
7.1.5. Using JHeadstart Advanced Search .. 7-5
7.1.6. Using a JHeadstart Query Operator .. 7-5
7.1.7. Using Query Bind Variables in JHeadstart Quick or Advanced Search 7-6
7.1.8. Runtime Implementation of JHeadstart Quick Search and Advanced Search 7-7

7.2. Configuring the Query .. 7-11

7.2.1. Specifying Auto Query ... 7-11
7.2.2. Using Query Bind Parameters .. 7-11
7.2.3. JHeadstart Runtime Implementation of Query Bind Parameters 7-14

7.3. Forcing a Requery ... 7-16

7.3.1. Implementation of Requery .. 7-17

C H A P T E R 8 G E N E R A T I N G T R A N S A C T I O N A L B E H A V I O R S . 8 - 1

8.1. Enabling Insert Operation ... 8-2

8.1.1. Allowing Inserting Data in a Form Page ... 8-2
8.1.2. Building Insert Only Form Pages .. 8-2
8.1.3. Entering in Insert Mode When No Rows Found ... 8-3
8.1.4. Allowing the User to Insert Data in a Table Page ... 8-3

8.2. Enabling Update Operation... 8-5

8.3. Enabling Delete Operation .. 8-6

8.4. Conditionally Enabling Insert, Update an Delete .. 8-7

8.5. Runtime Implementation of Transactional Behaviors ... 8-8

8.5.1. Multi-Row Insert... 8-8
8.5.2. Single-Row Insert ... 8-9
8.5.3. Single-Row and Multi-Row Delete ... 8-9
8.5.4. Commit Handling ... 8-10
8.5.5. Rollback Handling .. 8-11

C H A P T E R 9 C R E A T I N G M E N U S T R U C T U R E S . 9 - 1

9.1. Static Menu Structure ... 9-2

9.1.1. Preventing Generation of a Menu Tab .. 9-3
9.1.2. Customizing the Static Menu Structure .. 9-3
9.1.3. Using a Static Menu Tree Layout ... 9-4

vi Contents JHeadstart Developer’s Guide

9.1.4. Customizing the Static Menu Layout .. 9-4

9.2. Dynamic Menu Structure .. 9-6

9.2.1. Creating the Database Tables .. 9-6
9.2.2. Enabling Dynamic Menus ... 9-7
9.2.3. Defining the Menu Structure At Runtime ... 9-9
9.2.4. Using a Dynamic Menu Tree Layout .. 9-10
9.2.5. Linking a User Interface Skin to a Module ... 9-10

9.3. Using Dynamic Tabs when Opening a Menu Item .. 9-12

9.3.1. Enabling Dynamic Tabs .. 9-12
9.3.2. Marking the Current Tab Dirty ... 9-13
9.3.3. Displaying Initial Tabs at Startup ... 9-13
9.3.4. Launching a New Tab from the Current Tab Task Flow .. 9-14
9.3.5. Closing a Dynamic Tab... 9-14

C H A P T E R 1 0 A P P L I C A T I O N S E C U R I T Y . 1 0 - 1

10.1. Understanding and Choosing Security Options with ADF and JHeadstart 10-2

10.1.1. Authentication and Authorization Type .. 10-2
10.1.2. Secure All Pages ... 10-3
10.1.3. Authorize Using Group Permissions ... 10-4

10.2. JHeadstart Security Tables and Security Administration Screens 10-6

10.2.1. Creating the Database Tables .. 10-6
10.2.2. Generating Security Administration Pages ... 10-7

10.3. Using ADF/JAAS for Authentication.. 10-9

10.3.1. Changes in web.xml .. 10-9
10.3.2. Login Page and Login Bean .. 10-10
10.3.3. Logout Button ... 10-10
10.3.4. Default Users and Roles in jazn-data.xml ... 10-10

10.4. Using Custom Authentication ... 10-11

10.4.1. JHeadstart Authentication Filter ... 10-11
10.4.2. Nested JhsModelService Application Module .. 10-11
10.4.3. Login Page and Login Bean .. 10-11
10.4.4. Logout Button ... 10-12

10.5. Restricting Access to Groups based on Authorization Information 10-13

10.5.1. Restricting Group Access using Permissions .. 10-13
10.5.2. Nested JhsModelService Application Module .. 10-14
10.5.3. JHeadstart Authorization Proxy .. 10-14

10.6. Restricting Group And Item Operations based on Authorization Information 10-17

10.6.1. Restricting Group Operations using Permissions .. 10-17
10.6.2. Restricting Item Operations .. 10-18

10.7. Using Your Own Security Tables ... 10-19

10.7.1. Changes when Using Custom Authentication ... 10-19
10.7.2. Changes when Using Custom Authorization and/or Permissions 10-19
10.7.3. Changes to SQL Script Templates .. 10-19

C H A P T E R 1 1 I N T E R N A T I O N A L I Z A T I O N A N D U S E R A S S I S T A N C E 1 1 - 1

11.1. National Language Support in JHeadstart ... 11-2

11.1.1. Which Locale is Used at Runtime ... 11-3

JHeadstart Developer’s Guide Contents vii

11.1.2. Supported Locales .. 11-3
11.1.3. Adding a non-supported Locale .. 11-4

11.2. Using a Database Table to Store Translatable Strings .. 11-5

11.2.1. Creating the Database Tables ... 11-5
11.2.2. Running the JHeadstart Application Generator .. 11-6
11.2.3. Running the Application ... 11-7

11.3. Runtime Implementation of National Language Support .. 11-9

11.4. Error Reporting ... 11-11

11.5. Outstanding Changes Warning.. 11-12

11.6. Using Online Help .. 11-13

11.6.1. Using the Resource Bundle Online Help Provider ... 11-13
11.6.2. Using the Help Text and Instruction Text Property .. 11-14
11.6.3. Using Other Online Help Providers .. 11-15

11.7. Using Function Keys ... 11-17

11.7.1. What Gets Generated When Enabling Function Keys .. 11-18
11.7.2. What Happens When You Press a Function Key .. 11-18
11.7.3. Customizing the Function Key Implementation .. 11-19
11.7.4. Adding a New Function Key .. 11-20
11.7.5. Understanding the Difference Between Function Keys and Access Keys 11-21

C H A P T E R 1 2 C U S T O M I Z I N G G E N E R A T O R O U T P U T . 1 2 - 1

12.1. Recommended Approach for Customizing JHeadstart Generator Output 12-2

12.2. Understanding Generator Architecture and Generator Templates 12-4

12.2.1. Velocity and the Velocity Template Language ... 12-4
12.2.2. Understanding the JHeadstart Metadata Model .. 12-4
12.2.3. Referencing JHeadstart Metadata Model in Velocity Templates 12-6
12.2.4. Understanding Application Generators ... 12-7
12.2.5. Configuration of Generator Classes .. 12-9
12.2.6. Structure of Generator Templates ... 12-10

12.3. Creating Custom Templates .. 12-13

12.3.1. Creating a Custom Template File ... 12-13
12.3.2. Finding Out Which Generator Templates Are Used ... 12-15
12.3.3. Grouping Custom Templates .. 12-15
12.3.4. Writing Reusable Custom Templates.. 12-16
12.3.5. Customizing JHeadstart Macro's ... 12-20
12.3.6. Coding and Debugging Tips ... 12-21

12.4. Customizing Pages .. 12-23

12.4.1. Customizing Page Templates .. 12-23
12.4.2. ADF Faces Skinning ... 12-25
12.4.3. Changing the Page Template at Runtime .. 12-27
12.4.4. Adding or Overriding Properties of a Generated Item .. 12-29
12.4.5. Adding Custom Item Display Type .. 12-30

12.5. Customizing Task Flows ... 12-33

12.5.1. Understanding Generated Task Flow Structure .. 12-33
12.5.2. Customizing the Task Flow Template .. 12-35
12.5.3. Customizing the Task Flow Template Reference ... 12-36

viii Contents JHeadstart Developer’s Guide

12.5.4. Adding Custom Task Flow Parameters ... 12-36
12.5.5. Adding Custom Managed Beans ... 12-36
12.5.6. Customizing the Main Router Activity ... 12-38
12.5.7. Adding Custom Task Flow Activities ... 12-38
12.5.8. Adding Custom Control Flow Rules and Cases .. 12-38
12.5.9. Preventing Task Flow Generation ... 12-39

12.6. Customizing Output of the File Generator .. 12-40

12.6.1. How to customize the content of a file generated by the file generator 12-40
12.6.2. How to stop a file from being generated by the file generator 12-40
12.6.3. How to generate additional custom files ... 12-41

12.7. Customizing Page Definitions ... 12-42

12.7.1. Controlling Generation of Value Bindings ... 12-42
12.7.2. Preserving Bindings Added using a Drag-and-drop Action 12-43

C H A P T E R 1 3 R U N T I M E P A G E C U S T O M I Z A T I O N S . 1 3 - 1

13.1. Creating the Database Tables .. 13-2

13.2. Enabling Runtime Usage of Flex Items ... 13-4

13.2.1. Creating a Flexible Region ... 13-4
13.2.2. Running the JHeadstart Application Generator... 13-5

13.3. Defining Flex Items At Runtime ... 13-7

13.4. Creating an Item with Display Type Flex Region ... 13-10

13.5. Internationalization and Flex Items ... 13-11

C H A P T E R 1 4 F O R M S 2 A D F G E N E R A T O R . 1 4 - 1

14.1. Introduction into JHeadstart Forms2ADF Generator (JFG) .. 14-2

14.1.1. Added Value of JHeadstart Forms2ADF Generator ... 14-3

14.2. Roadmap ... 14-5

14.3. Running the JHeadstart Forms2ADF Generator (JFG) ... 14-7

14.3.1. Select Forms Modules... 14-7
14.3.2. Select Form Elements to be Excluded from Processing .. 14-8
14.3.3. Select Database Connection .. 14-9
14.3.4. ADF Business Components Settings ... 14-11
14.3.5. JHeadstart Settings .. 14-13
14.3.6. Processing the Selected Forms .. 14-14
14.3.7. Troubleshooting .. 14-15
14.3.8. Processing the Same Form Multiple Times .. 14-17

14.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator 14-18

14.4.1. Generated ADF Business Components ... 14-18
14.4.2. Generated JHeadstart Service Definition File ... 14-21

14.5. Common Steps After Running the Forms2ADF Generator ... 14-24

14.5.1. Checking and Fixing the Model project .. 14-24
14.5.2. Checking and Enhancing the JHeadstart Service Definition 14-24
14.5.3. Handling Forms PL/SQL Logic .. 14-25

JHeadstart Developer’s Guide Contents ix

C H A P T E R 1 5 O R A F O R M S F A C E S G E N E R A T O R . 1 5 - 1

15.1. Introduction into OraFormsFaces™ ... 15-2

15.1.1. Added Value of the JHeadstart OraFormsFaces Generator 15-2

15.2. Running the JHeadstart OraFormsFaces Generator (OFFG) .. 15-3

15.2.1. Select Forms Modules .. 15-3
15.2.2. Generator Settings .. 15-5
15.2.3. Processing the Selected Forms.. 15-5
15.2.4. Troubleshooting .. 15-7

15.3. Understanding the Outputs of the JHeadstart OraFormsFaces Generator 15-8

15.3.1. Create Application Module If Needed .. 15-8

x Contents JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Getting Started 1 - 1

C H A P T E R

1 Getting Started

Developing complex transactional applications on the Java Enterprise Edition (JEE)
platform is not a straightforward task. Java and JEE are widely perceived as a complex
development platform with relatively low developer productivity. However, if you
choose the right development tools, you will experience that this perception is simply not
true. This developer’s guide is about such a tool set, consisting of Oracle JDeveloper,
Oracle’s Application Development Framework (ADF) and Oracle JHeadstart. This toolset
provides you with an unprecedented productivity and ease of use in building feature-
rich JEE web applications in a flexible and highly maintainable way.

To understand what we mean with unprecedented productivity, we recommend that
you first go through the JHeadstart Tutorial. This tutorial is the best way to get started
with JHeadstart, it does not require any prior Java or ADF knowledge, and provides an
excellent overview of the development process and main features JHeadstart brings to
the table.

JHeadstart Tutorial - Building Enterprise JSF Applications with Oracle

JHeadstart for ADF.

http://download.oracle.com/consulting/jhstutorial1111.pdf

After you have completed the tutorial, you probably can’t wait to build your own
applications. The content of this developer’s guide, together with numerous pointers to
external sources provides you with everything you need to know to build enterprise-class
ADF web applications.

The first section in this chapter provides a brief introduction into the components and
technologies of the toolset, with references to external sources that provide more
information about each of the components.

The last section contains a comprehensive roadmap to build web applications with this
toolset.

http://download.oracle.com/consulting/jhstutorial1111.pdf

1 - 2 Getting Started JHeadstart Developer’s Guide

1.1. Introduction into JDeveloper, ADF and JHeadstart

To get the most out of JHeadstart, it really helps to understand more about the
underlying technologies. If you have used Oracle Designer in the past to generate Oracle
Forms applications you probably agree that good knowledge of Oracle Forms is rather
helpful in generating more complex functionality. This also applies to JHeadstart,
understanding how technologies like ADF Data Binding, ADF Faces and JSF work, is
indispensable for generating complex applications that involve customizations to the
default generator templates used by JHeadstart. This section provides the pointers to
obtain this knowledge.

1.1.1. Oracle JDeveloper

Oracle JDeveloper is the Integrated Development Environment (IDE) that allows us to
work productively. It provides a comprehensive set of integrated tools that support the
complete development lifecycle, from source control, modeling, and coding through
debugging, testing, profiling, and deploying. JDeveloper simplifies Java EE development
by providing wizards, editors, visual design tools, and deployment tools to create high
quality, standard Java EE components including applets, JavaBeans, Java Server Faces
(JSF), servlets, and Enterprise JavaBeans (EJB). JDeveloper also provides a public Add-in
API to extend and customize the development environment and seamlessly integrate it
with external products.

Oracle JDeveloper on OTN. Overview, Online Demo’s, Tutorials, White Papers,

How-to’s, Feature list, and more:

http://www.oracle.com/technology/products/jdev

1.1.2. Oracle Application Development Framework (ADF)

Oracle ADF is an end-to-end J2EE framework, fully integrated with JDeveloper that
simplifies development by providing out of the box infrastructure services and a visual
and declarative development experience. Since it supports multiple technologies you
have the choice to use the components that best fit your situation.

Oracle ADF comes with extended design time facilities. By using simple drag-and-drop
of the model components you can build page by page in a highly productive manner. For
Java Server Faces a very useful page flow modeler is included where you can draw the
logic of your controller structure. The business services can be developed with several
types of wizards (based on UML models), and several types of editors.

Altogether Oracle ADF provides a first class J2EE framework that couples high
development productivity with the flexibility to choose the components that fit your
situation best.

http://www.oracle.com/technology/products/jdev

JHeadstart Developer’s Guide Getting Started 1 - 3

Figure 1-1 Oracle ADF Architecture

Oracle ADF on OTN. Overview, Online Demo’s, Tutorials, Developer Guides,

White Papers, How-to’s and more:

http://www.oracle.com/technology/products/adf

1.1.3. What is Oracle JHeadstart?

JHeadstart is a development toolkit that works on top of ADF, fully integrated with
JDeveloper, which enables rapid component based development of Java EE applications.
It provides you with 4GL-like productivity without jeopardizing the flexibility and
openness of the Java EE architecture.

JHeadstart consists of three main components:

 JHeadstart Runtime Library

The JHeadstart runtime contains reusable components that extend Oracle ADF.
These reusable components implement Oracle ADF best practices that were
developed during custom development projects of Oracle Consulting.

 JHeadstart Application Generator (JAG)

Apart from the runtime components, JHeadstart provides significant design-time
support. The JHeadstart Application Generator (JAG) is a powerful generator that
automates the development of the Controller (JSF/ADFc config files), View (ADF
Faces pages/fragments), and Model components (ADF data controls and data
bindings). The JAG is driven by XML meta-data that you create using JDeveloper
(plug-in) wizards and JHeadstart property editors, providing you with a
declarative, 4GL-like experience in building Java EE applications. To help you to
get started with the meta data, JHeadstart generates a first cut of the meta data
based on your ADF Business Components, which can be retrieved from a UML
class model or database tables.

http://www.oracle.com/technology/products/adf

1 - 4 Getting Started JHeadstart Developer’s Guide

 JHeadstart Forms2ADF Generator (JFG)

In addition, JHeadstart offers you assistance in moving from the Oracle Forms
world to the Java/J2EE world. Using the JHeadstart Forms2ADF Generator, the
Forms .fmb files are read, and based on the Forms elements defined in the form,
the JFG creates ADF Business Components, as well as the XML meta-data
(Service Definition) required by the JHeadstart Application Generator. After
running the JFG, you can then run the JAG to create a fully functional ADF web
application, based on the definitions in the Oracle Form.

Oracle JHeadstart on OTN. Overview, Online Demo’s, Tutorials, White Paper,

How-to’s and more:

http://www.oracle.com/technology/products/adf

JHeadstart Weblog. Tips and tricks, advanced techniques and how to’s on ADF

and JHeadstart.

http://blogs.oracle.com/jheadstart/

http://www.oracle.com/technology/products/adf
http://blogs.oracle.com/jheadstart/

JHeadstart Developer’s Guide Getting Started 1 - 5

1.2. Roadmap to Developing ADF Applications using JHeadstart

This section provides you with a roadmap to build web applications using ADF and
JHeadstart. Although the tasks and task steps are presented here as sequential, it is likely
that you will iterate around some of these steps, refining the details at every pass of the
iteration.

The roadmap provides a short description of each step, and references the section in this
developers guide where you can find more information related to the task. As such, the
roadmap can be seen as an extended table of contents of this developer’s guide, although
the scope is even broader. Some steps will refer to external sources, like the ADF
Developers Guide or articles on the JDeveloper/ADF corners on Oracle’s Technology
Network (OTN).

Since this is a developer’s guide, it does not include activities for project management,
quality control, testing and user documentation. The nature, sequencing, and contents of
these activities is pre-determined by the project approach (Waterfall, Iterative, Agile,
DSDM, XP, etc.) and is beyond the scope of this guide.

1.2.1. Set Up Project for Team-Based Development

1.2.1.1. Setup Version Control System

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Setting up Version Control System”

1.2.1.2. Set up Structure of JDeveloper Application

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Set up Structure of JDeveloper Workspace and Projects”

1.2.1.3. Define Project Standards for Organizing ADF Business Components

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Defining Java Package Structure and Other Naming Conventions”

1.2.1.4. Define Java Package Structure and Other Naming Conventions

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Defining Java Package Structure and Other Naming Conventions”

1.2.1.5. Define Project Standards for Organizing JHeadstart Application Definition
Files

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Organizing JHeadstart Application Definition Files”

1 - 6 Getting Started JHeadstart Developer’s Guide

1.2.2. Create Business Service using ADF Business Components

1.2.2.1. Create Business Component Base Classes

Reference: Chapter 3 “Creating ADF Business Components”, section “Setting

Up ADF BC Base Classes”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework section 37.2. Creating a Layer of Framework
Extensions.:
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm -

BABFDHHB

1.2.2.2. Create Entity Objects and Associations

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating

the Entity Object Layer”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 4: Creating a Business
Domain Layer Using Entity Objects.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm -

sm0124

1.2.2.3. Create View Objects and View Links

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating

View Objects and Application Modules”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 5: Defining SQL Queries
using View Objects

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#s

m0070

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 6: Working with View
Object Query Results.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcqueryresults.htm

#BEIHCBCF

1.2.2.4. Create Application Modules

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating

View Objects and Application Modules”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 9: Implementing Business
Services with Application Modules
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sm

0203

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm#BABFDHHB
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm#BABFDHHB
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm#sm0124
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm#sm0124
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#sm0070
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#sm0070
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcqueryresults.htm#BEIHCBCF
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcqueryresults.htm#BEIHCBCF
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sm0203
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcservices.htm#sm0203

JHeadstart Developer’s Guide Getting Started 1 - 7

1.2.2.5. Implement Business Rules

Reference: Chapter 3 “Creating ADF Business Components”, section
“Implementing Business Rules”

Web Reference: Implementing Business Rules in ADF BC. White paper on
OTN.
http://www.oracle.com/technology/products/jdev/collateral/papers/10131
/businessrulesinadfbctechnicalwp.pdf

1.2.3. Design and Generate Web Pages

1.2.3.1. Understand JHeadstart Generator Architecture and Add Ins

Reference: Chapter 4 “Using JHeadstart”

1.2.3.2. Create Application Definition File

Reference: Chapter 4 “Using JHeadstart”, sections “Using the Create New
Service Definition Wizard”, “Using the Application Definition Editor”.

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Organizing JHeadstart Service Definition Files”

1.2.3.3. Configure Internationalization Options

Reference: Chapter 11 “Internationalization and User Assistance”, section
“National Language Support in JHeadstart”

1.2.3.4. Generate and Run First-cut Web Application

Reference: Chapter 4 “Using JHeadstart”, sections “Running the JHeadstart
Application Generator” an “Running the Generated Application”

1.2.3.5. Design and Generate Page Layouts

Reference: Chapter 5 “Generating Page Layouts”

1.2.3.6. Design and Generate Item Display Types and Item Behavior

Reference: Chapter 6 “Generating User Interface Widgets”

1.2.3.7. Configure Query Behavior in Pages

Reference: Chapter 7 “Generating Query Behaviors”

http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

1 - 8 Getting Started JHeadstart Developer’s Guide

1.2.3.8. Configure Transactional Behavior in Pages

Reference: Chapter 8 “Generating Transactional Behaviors”

1.2.3.9. Design and Generate Menu Structure

Reference: Chapter 9 “Creating Menu Structures”

1.2.4. Design and Generate Security Structure

1.2.4.1. Understand and Choose Authentication and Authorization Options

Reference: Chapter 10 “Application Security”, section “Understanding and
Choosing Security Options with JHeadstart”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 30: Enabling ADF Security
in a Fusion Web Application.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.ht

m#BGBGJEAH

1.2.4.2. Implement User Authentication

Reference: Chapter 10 “Application Security”, sections “Using ADF/JAAS for
Authentication”

Reference: Chapter 10 “Application Security”, sections “Using Custom
Authentication”

1.2.4.3. Implement Role-based and Permission-based Authorization

Reference: Chapter 10 “Application Security”, sections “Restricting Access to

Groups based on Authorization Information”

Reference: Chapter 10 “Application Security”, sections “Restricting Group And

Item Operations based on Authorization Information”

1.2.4.4. Design and Generate Security Administration Pages

Reference: Chapter 10 “Application Security”, sections “JHeadstart Security

Tables and Security Administration Screens”

1.2.5. Customize Generated Web Tier

1.2.5.1. Decide on Customization Approach

Reference: Chapter 12 “Customizing Generation Output”, section
“Recommended Approach for Customizing JHeadstart Generator Output”

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH

JHeadstart Developer’s Guide Getting Started 1 - 9

1.2.5.2. Use ADF Design-Time Tools to Implement Post-Generation Changes

Web Reference: Web User Interface Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/toc.htm

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/toc.htm

1.2.5.3. Move Post-Generation Changes to Custom Templates

Reference: Chapter 12 “Customizing Generator Output”, section “Creating
Custom Templates”

1.2.5.4. Customizing Page Look and Feel

Reference: Chapter 12 “Customizing Generator Output” section
“Customizing Pages”

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 20 ”Customizing the
Appearance Using Styles and Skins”.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJF

EFCJ

1.2.5.5. Customizing Task Flows

Reference: Chapter 12 “Customizing Generator Output” section
“Customizing Task Flows”

1.2.5.6. Customizing Page Definitions

Reference: Chapter 12 “Customizing Generator Output” section
“Customizing Page Definitions”

1.2.5.7. Add New Items and Customize Generated Items at Runtime

Reference: Chapter 12 “Runtime Page Customizations”

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/toc.htm
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/toc.htm
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

1 - 10 Getting Started JHeadstart Developer’s Guide

This page is intentionally left blank.

JHeadstart Developer's Guide Getting Started 2 - 1

C H A P T E R

2 Set Up Project for Team-

 Based Development

his chapter provides guidelines on

 selecting and setting up a version control system

 setting up the structure of the JDeveloper Application

 organizing JHeadstart service definition files

 defining the Java package structure and other naming conventions

T

2 - 2 Getting Started JHeadstart Developer's Guide

2.1. Setting Up Version Control System

Good version control is indispensable when working in teams. There are many version
control systems available on the market. In this section we will provide guidelines and
recommendations for setting up version control. The following topics are discussed:

 Version control models

 Requirements for a good version control system

 Which files to version?

2.1.1. Version Control Models

When selecting a version control system, you have to choose between two basic models of
version control: file locking and version merging. Wikipedia provides the following
definitions for these two models:

 File Locking: The simplest method of preventing concurrent access problems is
to lock files so that only one developer at a time has write access to the central
"repository" copies of those files. Once one developer "checks out" a file, others
can read that file, but no one else is allowed to change that file until that
developer "checks in" the updated version (or cancels the checkout).

File locking has merits and drawbacks. It can provide some protection against
difficult merge conflicts when a user is making radical changes to many sections
of a large file (or group of files). But if the files are left exclusively locked for too
long, other developers can be tempted to simply bypass the revision control
software and change the files locally anyway. That can lead to more serious
problems.

 Version Merging: Most version control systems, such as CVS and SubVersion,
allow multiple developers to be editing the same file at the same time. The first
developer to "check in" changes to the central repository always succeeds. The
system provides facilities to merge changes into the central repository, so the
improvements from the first developer are preserved when the other
programmers check in.

The concept of a reserved edit can provide an optional means to explicitly lock a
file for exclusive write access, even though a merging capability exists.

Revision Control in Wikipedia. Overview and definitions

http://en.wikipedia.org/wiki/Revision_control

For developing applications using JDeveloper, ADF and JHeadstart, we recommend to
use the version merging approach, for the following reasons:

 It is a file-oriented development environment. Even for small to medium-sized
applications, you will easily have hundreds of files to manage. It is inevitable that
at some point multiple developers need to modify the same files. Using the File
Locking approach this means that developers will have to wait for each other to
finish a task and check in again. Although the number of “locking conflicts” can
be reduced by a smart distribution of development tasks, it is our experience that
you can never entirely avoid it.

http://en.wikipedia.org/wiki/Revision_control

JHeadstart Developer's Guide Getting Started 2 - 3

 The files that most often are modified simultaneously by multiple developers are
XML files, which by its structured nature are very well suited for automatic
merging by version control systems. It is our experience that a version control
system like SubVersion is also very good at merging Java files; the other most
used type of file in this development environment.

 When generating your application using JHeadstart, many files are modified
during a generation run. When using the file locking approach, you need to
know upfront which files will be modified by the JHeadstart Application
Generator: all these files need to be checked out prior to generation, otherwise
they remain read only and will not be modified by JHeadstart. It requires in
depth knowledge of JHeadstart and ADF to be able to correctly “predict” which
files will be modified in a specific generation run. With the version merging
approach this is not an issue, once you have finished a development task, the
version control system will tell you which files have been modified and need to
be committed to the version control repository.

2.1.2. Requirements for a Good Version Control System

When selecting a version control system, make sure the system provides functionality to
address the following requirements

 It supports the Version Merging model (see previous section).

 It provides a so-called Atomic Commit. With this we mean that when you have
modified a number of files that you want to commit to the version control
repository, you want either the entire transaction to be committed, or the entire
transaction to be rolled backed when a version conflict is detected which cannot
be solved by an automatic merge. In other words, either all files are committed
succesfully, or none of the files are committed. A version control system like CVS
does not support an atomic commit. This means that some files might be
committed to the repository, and then a version conflict is detected and the rest
of the files cannot be committed. When this happens, you end up with an
inconsistent situation in your version control repository since there are many
interdependencies between files in an ADF environment. Obviously, when other
developers update their local copies with this inconsistent set of files, they are
likely to run into all sorts of problems and error messages.

 It detects file changes by comparing file content rather than the timestamp of the
file. This requirement is particularly important when using JHeadstart: when you
regenerate your application using the JHeadstart Application Generator, the
content of many files might remain the same, although the file is recreated with a
new timestamp. When you commit your work after you completed a
development task, you do not want a new version of all these unmodified files to
be committed to the repository. Otherwise, it will be really hard to find back
versions that contained a real change, being a version you might want to revert to
when you want to undo some work.

 An efficient and easy to use user interface to perform common versioning tasks.
Developers should spend as little time as possible with version control tasks. An
intuitive user interface for common tasks like updating their local copy,
commiting changes, reverting to previous versions, resolving merge conflicts,
and creating application releases is essential to meet this requirement. Ideally, the
versioning user interface is integrated with JDeveloper, although in our
experience it is not a big deal to switch with Alt-Tab to a stand-alone GUI for
versioning when JDeveloper integration is not available, or less feature-rich.

2 - 4 Getting Started JHeadstart Developer's Guide

A popular open source version control system that meets all of the above requirements is
SubVersion (also known as SVN) . SubVersion has been built by the same community
that is responsible for CVS. It is intended as a replacement for CVS, keeping all the good
things of CVS, and fixing the bad things (like the absence of an atomic commit).

TortoiseSVN is an excellent stand-alone SubVersion GUI for the Windows platform,
nicely integrated with MS Windows Explorer. JDeveloper integration is also available.

SubVersion Home Page. Overview, documentation and download.

http://subversion.tigris.org/

TortoiseSVN Home Page. Overview, documentation and download.

http://tortoisesvn.tigris.org/

Using JDeveloper with SubVersion. Managing ADF development across

multiple applications with SubVersion

http://www.oracle.com/technetwork/developer-tools/jdev/svn-adfsharedlibs-

084371.html

Using JDeveloper with SubVersion. Team-development using SubVersion – best

practices

 http://www.oracle.com/technetwork/developer-tools/jdev/teamdevsubversion-

089001.html

The JHeadstart team has succesfully used SubVersion and TortoiseSVN on a number of
projects. This does not imply you should make the same choice. Version control is no
rocket science; any system that meets the above requirements will do the job.

2.1.3. Which Files to Version?

We recommend to version all files in your project, except for

 Derived files like all compiled Java classes and XML and property files that are
copied to the classpath. In SubVersion, the easiest way to exclude these files is by
adding the root directory of the classpath (typically the /classes directory) to the
ignore list. This can be done by a right-mouse-click on the folder, and then choose
Tortoise SVN -> Add to Ignore List …

 Files in the temporary directory created by ADF Faces. When running your
application in JDeveloper, a temp directory will be created under the WEB-INF
directory, which holds cached ADF Faces files like images and stylesheets. This
directory is not required to run your application and does not need to be
versioned.

 The adfc-config diagram files, with extension “.adfc_diagram”. When generating
your application with JHeadstart, the adfc-config diagram typically looks rather
messy, so unless you spend some time in cleaning up the diagram, it doesn’t
make a lot of sense to version these files. They are usually created in a separate
folder (/model by default), so you can exlude the whole folder from versioning.

When using TortoiseSVN, the “Add to Ignore List” option in Windows Explorer is only
available on unversioned folders directly below a versioned folder. When committing a
project for the first time, it is easier to exclude folders using the right-mouse-click popup
menu in the Commit dialog, as shown in the screen shot below.

http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://www.oracle.com/technetwork/developer-tools/jdev/svn-adfsharedlibs-084371.html
http://www.oracle.com/technetwork/developer-tools/jdev/svn-adfsharedlibs-084371.html
http://www.oracle.com/technetwork/developer-tools/jdev/teamdevsubversion-089001.html
http://www.oracle.com/technetwork/developer-tools/jdev/teamdevsubversion-089001.html

JHeadstart Developer's Guide Getting Started 2 - 5

2 - 6 Getting Started JHeadstart Developer's Guide

2.2. Setting up Structure of JDeveloper Workspace and Projects

2.2.1. Installing JDeveloper

It is recommended that all members of the development team use the same version of
JDeveloper. Different JDeveloper versions ship with different ADF libraries, which can
lead to unexpected behavior when running the application using the Embedded
WebLogic server.

We also recommend that each developer installs JDeveloper in the same directory on
their local PC. This is easy when you need to work/help on another PC, but more
important, it prevents problems when you start using the facility to import Business
Components from another project or jar file into your own project. When importing
Business Components, JDeveloper stores path info of the imported components in the
Model.jpx file so they can be displayed properly when using the ADF Business
Component editors. If developers have a different JDeveloper directory, the path info
might be incorrect and JDeveloper will not be able to find the imported business
components.

Note that JHeadstart itself will import JHeadstart Runtime business components into
your own Model project when you use one of the following features:

 Flex items or customizable standard items

 Custom Security

 Database table as resource bundle

 Dynamic menu structure

2.2.2. Identify Subsystems within your Application

It is good practice to organize your application into logical subsystems. These subsystems
can be used as a basis for

 The projects you create within your JDeveloper workspace, see section Creating a
Workspace and Projects.

 The java package structure (see section Defining Java Package Structure and
Other Naming Conventions),

 The structure of your ADF Business Components. We recommend creating one
ADF BC Application Module for each subsystem that holds the View Object
Usages needed to implement the business logic, and web pages for that
subsystem.

 Dividing the work over the developers in the team.

 The structure of the JHeadstart Application Definition files. You will typically
create one Application Definition for each subsystem, which can be based on the
associated subsystem application module. See section Organizing JHeadstart
Application Definition Files.

2.2.3. Creating a Workspace and Projects

JDeveloper offers a convenient wizard for setting up an Application Workspace and
Projects.

JHeadstart Developer's Guide Getting Started 2 - 7

 Select the Application Navigator (choose menu option View – Application
Navigator)

 Choose ‘New Application …’ from the dropdown list at the top of the
Application Navigator.

 Choose a name and directory for the new workspace, and also type in a default
package name (for example, com.mycompany.jhsdemo).

 In the Application Template field, choose Fusion Web Application [ADF] from
the choice list. Although you can use JHeadstart in any kind of JDeveloper
project, the recommended way is to use this application template as it is
configured for building a data-bound web application.

This will create two projects in your workspace: one called Model and one called
ViewController. In the Model project you can set up the ADF Business Components, and
in the ViewController project JHeadstart can generate the View and Controller layers of
your application.

If you are building a large application, based on a database schema of say 100 or more
tables, you might consider creating multiple Model projects.

Reasons to create multiple Model projects include:

 A layer of entity objects and/or view objects, and associated business rules will
be used by multiple applications. In such a situation it makes sense to create a
separate Model project for these entity objects (in a separate workspace if you
like), create a Jar file of this model project which can then be imported into your
application-specific Model project so you can create view objects on top of these
entity objects. Note that the entity objects can only be changed in the owning
Model project, not in the project in which they are imported.

2 - 8 Getting Started JHeadstart Developer's Guide

Fusion Developer’s Guide for ADF, chapter 33 “Reusing Application

Components”. Includes instructions on importing business components into

another project.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_compo

nents.htm#BABCHHHJ

 The application is very large and can be divided into subsystems with few
dependencies on each other. Separate teams of developers work on each sub
system. In this case it makes sense to split the subsystems into multiple model
projects to have a clear separation of responsibilities, and to reduce the load time
of the Model projects in JDeveloper. To handle the few dependencies between the
subsystems, the facility to import business components can be use as described
before.

For a large application, you basically have two options for setting up the ViewControlle
layer:

 Use multiple ViewController projects in combination with ADF Libraries

 Create one ViewController project and use working sets to define “views” over
your project for each subsystem.

2.2.3.1. Using Multiple ViewController Projects

 You can have multiple “helper”ViewController projects, and one “main”ViewController
project. The “main” ViewController project is used to create the WAR deployment file.
The “helper”ViewController projects are used to develop the various subsystems of the
application, packaged as bounded task flows, which are then imported into the
“Main”ViewController project using ADF Libraries. See the above reference to chapter
33 of the Fusion Developer’s Guide for ADF for more general information. See section
Packaging JHeadstart-Generated ViewController Project as ADF Library in this chapter
for JHeadstart-specific steps to make when using ADF Libraries.

ADF – Enterprise Methodology Group. The ADF – EMG is a group of ADF

users, both experts and novice users, both Oracle employees as well as customers

and partners that discuss anything beyong the typical “How do I” questions that

are more suited for the JDeveloper discussion forum. There are some interesting

ADF-EMG discussions about organizing large ADF projects.

http://groups.google.com/group/adf-methodology

2.2.3.2. Using Working Sets

JDeveloper Online Help “Managing Working Sets”. Includes instructions on

creating working sets.

A working set allows you to define a set of files (a subset of project source path contents)
that you want to work with, for example all files related to a subsystem. Typically, you
would perform the following actions scoped to the working set:

 Navigate

 Make

 Build/rebuild

 Search

 Find usages

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BABCHHHJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BABCHHHJ
http://groups.google.com/group/adf-methodology

JHeadstart Developer's Guide Getting Started 2 - 9

 Search in Files

When you have defined some useful working sets, you can exchange them with your
development team members. Here are the steps to do so:

 Open [JDevWLSHome]/jdeveloper/system/systemXXX/o.ide/projects folder
and find the .jws file starting with the name of your JDeveloper Application, for
example Base08345889adfc01e0ffd7dd7bfa1c6234.jws for an application called
Base.

 Open this file, and you will see XML code starting with <hash n="working-sets">
that specifies your working sets.

Now you can either copy this piece of xml code, e-mail it to your colleagues and they can
paste it in their application working sets file, or you can make sure that you all use the
same application working sets file that is available from a common source. The latter is
explained below.

 Copy (and possibly rename) this application working sets file to a location where
it can be maintained centrally, but everyone has a local copy (for example in your
Subversion repository).

 Tell everyone to change the relevant entry in their own
[JDevWLSHome]/jdeveloper/system/systemXXX/o.ide/projects/index2.xml to
let it point to the new file. (And don't forget to do that yourself as well ;-)

2.2.4. Creating Database Connection

You will need to create a Database Connection to the schema that contains the database
tables of your application. In JDeveloper 11 you can create a connection per application
file, which is recommended over IDE (user) specific connections.

Click on View – Database Navigator to show the connections you have. Right click your
application file, and select ‘New connection’. The connection you create there, will appear
in the file [ApplicationRoot]/.adf/META-INF/connections.xml and can thus be stored in
the application itself (rather than a user specific JDeveloper directory).

2 - 10 Getting Started JHeadstart Developer's Guide

2.2.5. Initializing Model Project for Business Components

Go to the Project Properties of the Model project, to the Business Components panel. Tick
the checkbox ‘Initialize Project for Business Components’. Choose the Database
Connection you just created.

2.2.6. Optimizing ADF BC for Team Development

Go to the Model project, Project Properties. On the Business Components | Options
panel, make sure the property named ‘Copy Package XML Files to Class Path’ is
unchecked.

This sets the default setting to be used for new ADF Business Components project. By
unchecking this, the ADF design time no longer uses package XML files to track what
components are in the package, so the package XML files will not be a point of merge
conflicts between team members.

Suggestion: For existing projects, you can also edit this property at any time
by unchecking it on the Business Components | Options panel of the project
properties.

2.2.7. Switching off Default Creation of ADF BC Java classes

When creating entity objects, view objects and application modules, JDeveloper generates
Java classes for all these components that you can use to add custom code. However, in
most cases you will not add custom code to those classes, so it is better to turn off the
creation of these classes since ADF Business Components does not require these classes to
run your application.

If later on you do need to add custom code, you can still generate the Java class by going
to the “Java” tab in the editor of the business component.

You can switch off the default creation of these classes by going to the Tools ->
Preferences menu, and choose Business Components.

JHeadstart Developer's Guide Getting Started 2 - 11

If you plan to implement business rules in ADF Business Components, you typically
code these rules in the entity obbject row classes, so you could decide to create these
classes upfront, and also check the Entity Object Row Class checkbox.

2.2.8. Enabling ViewController Project for JHeadstart

Before you can use JHeadstart in a project, you must first “Enable JHeadstart” on it. See
chapter 4 “Using JHeadstart Addins” for more information

2 - 12 Getting Started JHeadstart Developer's Guide

2.3. Organizing JHeadstart Service Definition Files

As explained in chapter 4 “Using JHeadstart Add-Ins”, the JHeadstart Application
Generator is driven by the Application and Service Definition files that holds the
generator metadata. Since release 11 of JHeadstart it is now possible to separate
application-wide settings (stored in a file called JHeadstartApplicationDefinion.xml)
from service specific settings (stored in files like MyServiceDefinition.xml).

Because of this separation, there is less need to keep settings ‘synchronized’ among
Service Definition files, making team development and file merging an easier task.

We recommend creating multiple service definition files, even when working alone. The
only exception would be a really small application. A typical approach is to create one
service definition file for each logical subsystem. Since a service definition file is based on
one data control (Application Module), the structure of your service definition files will
typically follow the structure of your ADF BC application modules, which in turn should
map your subsystem structure.

2.3.1. Naming Conventions for File Location Properties

To cleanly organize the output produced by the JHeadstart Application Generator, it is
helpful to set naming conventions for the File Location properties thet can be set at the
service-level of a service definition file.

Here are suggested naming conventions.

Property Value

Service Adfc Config /WEB-INF/adfc-config-<subsystem>.xml

For example:
/WEB-INF/adfc-config-hr.xml

Group Adfc Config Directory /<subsystem>/adfcConfig/

UI Pages Directory /<subsystem>/pages/

Page Includes Directory /<subsystem>/regions/

By using a subsystem indication (short name or abbreviation) in the name, all files of a
subsystem can easily be located. Since only one service adfc-config is generated for each
service definition, this file is not organized into a subsystem directory.

Attention: Adfc Config XML files that are located outside the WEB-INF
directory can be viewed in the browser. If you want to prevent this for security
reasons, you should make subsystem subdirectories under the WEB-INF
directory for the Adfc Config files.

JHeadstart Developer's Guide Getting Started 2 - 13

2.4. Packaging JHeadstart-Generated ViewController Project as ADF Library

If you decide to use multiple ViewController projects as described before, and create
ADF Libraries for these projects and add these ADF libraries to the main ViewController
project, then there are some JHeadstart specific changes you need to make:

 Remove JhsCommon-beans.xml from the ADF Library jar file.

 Add reference to resource bundle of ADF Library project

 Import JHeadstart service definitions in main ViewController project

Each of these steps is explained below in more detail.

2.4.1. Remove JhsCommon-beans.xml from the ADF Library jar file

In each ViewController project, JHeadstart will generate an ADFC configuration file
named JhsCommon-beans.xml. This file holds a number of application-wide managed
bean definitions. The ADF Library created for the ViewController project includes this
file, and so does the main ViewController project. If you subsequently run the application
from the main ViewController project you will get warnings in the log file like this:

<MetadataService$Bootstrap><add> ADFc: /WEB-INF/JhsCommon-beans.xml:

<MetadataService$Bootstrap><add> ADFc: Duplicate activity 'Home' detected.

<MetadataService$Bootstrap><add> ADFc: /WEB-INF/JhsCommon-beans.xml:

<MetadataService$Bootstrap><add> ADFc: Duplicate activity 'CallMenuItem' detected.

The application will still run, however, if you want to get rid of these warnings, the ADF
library jar file should not contain the JhsCommon-beans.xml. You can either remove this
file from the jar file after you created the jar file, or you can remove the file alltogether
from the ViewController project that is packaged as ADF library. If you remove the file
from the project, you will no longer be able to run the application subsystem directly in
the supporting ViewController project. Unfortunately, there is currently no option in
JDeveloper to specify specific files that should be excluded when deploying to an ADF
library.

2.4.2. Add reference to resource bundle of ADF Library project

At runtime, JHeadstart uses one generic managed bean named "nls" to provide
translatable resources. Under the covers, this managed bean accesses one or more
resource bundles. When you import a ViewController project as ADF Library, the
JHeadstart-generated resource bundle of this imported project should be specified in the
JHeadstart Application Definition Editor of the main ViewController project, in property
Imported NLS Bundles, which is available at the application level.

2 - 14 Getting Started JHeadstart Developer's Guide

2.4.3. Import JHeadstart service definitions in main ViewController project

The JHeadstart metadata services and groups within the services defined in the
Application Definition Editor of supporting ViewController projects are by default not
available in the Application Definition Editor of the main project.

To make this information available in the main project, you can specify so-called
imported service definitions in the JHeadstartApplicationDefinition.xml file, as shown
below.

You need to add this reference directly in the XML file. Make sure you set the imported
property to true. The location property references the actial service definition xm,l file in
the other project. This can either be a fully qualified absolute path, or a relative path as
shown above.

If you added his imported service definition reference, the following will happen:

 All drop-down list properties in the JHeadstart Application Definition Editor
where you can pick a group will also show the group names of the imported
service library. For example, this enables you to reuse LOV groups defined in
other projects. You can also defined links between groups that are gemnerated
into different projects.

JHeadstart Developer's Guide Getting Started 2 - 15

 The generated menu model will include top-level menu entries for the imported
service definitions.

Note that an imported service definition will NOT show up in the navigator tree within
the JHeadstart Application Definition editor.

2 - 16 Getting Started JHeadstart Developer's Guide

2.5. Defining Java Package Structure and Other Naming Conventions

When working in a team, it is important to have standards on naming java packages and
the various types of (business) components. Everybody seems to have different opinions
on naming conventions, but remember the important thing is to have naming standards
in place and have them applied by all developers. The actual format of the naming
conventions is less important.

As a suggestion, here are the naming conventions as applied on projects by the
JHeadstart Team, use them to your own advantage.

ADF – Enterprise Methodology Group. The ADF – EMG is a group of ADF

users, both experts and novice users, both Oracle employees as well as customers

and partners that discuss anything beyong the typical “How do I” questions that

are more suited for the JDeveloper discussion forum. The ADF-EMG group also

maintains web pages around ADF Coding Standards.

http://groups.google.com/group/adf-methodology/web/adf-coding-standards

2.5.1. Java Packages

The root package of an application is by convention the reverse of your companies’
internet domain name, followed by the application name, for example “com.acme.hr”.

A suggested package structure within the application can be found in the table below.
Subsitute the three dots with your application root package.

 Package Description

….model Base package forbusiness service classes,
classes who contain logic not specific for the
web application built on top of it

….model.adfbc Base package for ADF Business Components.

….model.adfbc.base Package for base classes extended by the ADF
Business Components you create for the
application

….model.adfbc.entity Base package for entity objects and
associations

….model.adfbc.entity.<subsystem> For larger applications, it is good practice to
further organize entity objects into subsystem
packages, for example
“model.adfbc.entity.authorization”.

….model.adfbc.query Base package for view objects and view links

….model.adfbc.query.<subsystem> For larger applications, it is good practice to
further organize view objects into subsystem
packages, for example
“model.adfbc.query.authorization”.

http://groups.google.com/group/adf-methodology/web/adf-coding-standards

JHeadstart Developer's Guide Getting Started 2 - 17

….model.adfbc.service Contains application modules

….controller Base package for classes that contain logic to
control the behavior of the web application.

….controller.jsf Base package for JSF-specific classes that
contain logic to control the behavior of the web
application.

….controller.jsf.bean Contains JSF managed bean classes

….controller.jsf.lifecycle Contains custom JSF Page Lifecycle classes

….view Base package for classes that contain logic to
display web pages and the user interface in
general

….view.pagedefs Contains ADF Model Page Definitions

2.5.2. Naming ADF Business Components

 Entity Object names are self-descriptive and in singular. Remove any table name
prefixes from the name.

example: Department

 Entity Associations are named using the format <master entity><verb describing
relationship><detail entity>.

example: DepartmentHasEmployees

 View Objects names describe the result of the query, are in singular when the
query returns onew row at most, and in plural when the query can return
multiple rows. Any bind parameters defined for the ViewObject, should be
resembled in the name

examples: AllClerks, ClerksByDepartment

 View Links are named using the format <master view object><verb describing
relationship><detail view object>.

example: DepartmentHasEmployees

 Application Modules names are descriptive for the functional area they cover,
and are suffixed with “Service”.

examples: AuthorizationService, HumanResourcesService

2 - 18 Getting Started JHeadstart Developer's Guide

JHeadstart Developer's Guide Creating ADF Business Components 3 - 1

C H A P T E R

3 Creating ADF Business

 Components

his chapter provides you with guidelines on creating ADF Business Components. The
ADF Business Components. The Fusion Developer’s Guide for ADF already contains

Guide for ADF already contains a wealth of information about how to use ADF Business
Components. This chapter will not duplicate that information. It focuses on best practices
collected by Oracle Consulting and guidelines on how you can best set up and prepare
your ADF Business Components when using JHeadstart to generate the View and
Controller layers.

If you are new to ADF Business Components, we strongly recommend to first read
chapters 3 to 12 of the Fusion Developer’s Guide for ADF.

Fusion Developer’s Guide for Oracle Application Development Framework
Release 11.1.1., Chapters 3 to 9 describe the basics for creating ADF Business
Components. Chapters 37 to 41 contain advanced techniques.
0Hhttp://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/toc.htm

T

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/toc.htm

3 - 2 Creating Business Components JHeadstart Developer's Guide

3.1. Setting Up ADF BC Base Classes

Every type of ADF Business Component extends from a Base class. By default, the base
classes are set to the standard ADF BC classes defined in oracle.jbo.server package. You
can check that at global JDeveloper level in menu option Tools – Preferences, or for a
specific project in the Project Properties – ADF Business Components Panel.

In the Fusion Developer’s Guide for ADF it is recommended to create your own layer of
ADF BC Base Classes, also called framework extensions:

Before you begin to develop application-specific business components, Oracle recommends that
you consider creating a complete layer of framework extension classes and setting up your project-
level preferences to use that layer by default. You might not have any custom code in mind to put
in some (or any!) of these framework extension classes yet, but the first time you encounter a need
to:

 Add a generic feature that all your company's application modules require

 Augment a built-in feature with some custom, generic processing

 Workaround a bug you encounter in a generic way

You will be glad you heeded this recommendation. Failure to set up these preferences at the outset
can present your team with a substantial inconvenience if you discover mid-project that all of your
entity objects, for example, require a new generic feature, augmented built-in feature, or a generic
bug workaround. Putting a complete layer of framework classes in place to be automatically used
by JDeveloper at the start of your project is an insurance policy against this inconvenience and the
wasted time related to dealing with it later in the project.

For an explanation how to create such a layer, see section 37.2 of the Fusion Developer’s
Guide for ADF.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 3

The Application Module Object base class can be used to implement functionality that is
needed in all Application Modules of your application. Therefore JHeadstart has created
is own subclass of the standard oracle.jbo.server.ApplicationModuleImpl
class. (The JHeadstart Application Generator can automatically set up the use of this class
if you don’t have your own ADF BC framework extensions.)

If you want additional custom functionality for your application modules, this means that
your custom AppModuleImpl should not extend the standard base class but rather the
JHeadstart base class: JhsApplicationModuleImpl.

To do this, you must first make sure that the JHeadstart Runtime 11.1.1 library is added
to your project.

 Go to the Project Properties

 Select category Libraries and Classpath

 Click Add Library

 Under Extension, select JHeadstart Runtime 11.1.1

 Click OK twice

 Save the project

Now you can use
oracle.jheadstart.model.adfbc.v2.JhsApplicationModuleImpl as the
super class of your custom Application Module framework extension.

3 - 4 Creating Business Components JHeadstart Developer's Guide

Suggestion: In the Base Classes wizard page, use the Browse button to find the
desired base class. In the Search field, type in the first letters of the class name
and the dialog will show all available classes that satisfy the base class
requirements.

3.1.1. Using CDM RuleFrame

CDM RuleFrame is a PL/SQL based framework for implementing business rules in the
database, tightly integrated with Oracle Designer.

Headstart Oracle Designer. Add on to Oracle Designer that includes CDM
RuleFrame:
1Hhttp://www.oracle.com/technology/products/headstart/index.html

If you use CDM RuleFrame to implement business rules, you want the errors reported by
CDM RuleFrame to be displayed nicely in your generated web application. Using
JHeadstart this is easily accomplished by using a special application module super class
shipped with JHeadstart: RuleFrameApplicationModuleImpl. So, when using CDM
RuleFrame, your application module base class should extend
RuleFrameApplicationModuleImpl rather than JhsApplicationModuleImpl.

Note that RuleFrameApplicationModuleImpl extends
JhsApplicationModuleImpl in turn; so all standard JHeadstart functionality is still
available.

http://www.oracle.com/technology/products/headstart/index.html

JHeadstart Developer's Guide Creating ADF Business Components 3 - 5

3.2. Creating the Entity Object Layer

This section discusses the development tasks related to creating the entity object layer.
The following topics are discussed:

 Review Database Design

 Creating First-Cut Entity Objects and Associations

 Renaming Entity Objects and Associations

 Generating Primary Key Values

 Setting Entity Object Attribute Properties used by JHeadstart

 Implementing Business Rules

3.2.1. Review Database Design

A sound database design is critical to successfully building a performant ADF Business
Components layer. Providing guidelines for sound relational database design is outside
the scope of this developer’s guide, however, some guidelines directly impacting the
behavior of your web application are discussed below:

 If you are in the position to create or modify the database design, make sure all
tables have a non-updateable primary key, preferably consisting of only one
column. If you have updateable and/or composite primary keys, introduce a
surrogate primary key by adding an ID column that is automatically populated.
See section 3.2.4 2HGenerating Primary Key Values for more info. Although ADF
Business Components can handle composite and updateable primary keys, this
will cause problems in ADF Faces pages. For example, an ADF Faces table
manages its rows using the key of the underlying row. If this key changes,
unexpected behavior can occur in your ADF Faces page. In addition, if you want
to provide a drop down list on a lookup tables to populate a foreign key, the
foreign key can only consists of one column, which in turn means the referenced
table must have a single primary key column.

 Ensure that all the primary key, unique key, and foreign key constraints and
check constraints that logically exist, are explicitly defined as database
constraints in your database server. When you create ADF Business Components,
these database constraints are stored in the Entity Object XML file. JHeadstart
uses this constraint information to generate user-friendly error messages when a
database constraint is violated.

3.2.2. Creating First-Cut Entity Objects and Associations

Use the JDeveloper wizard Business Components from Tables to create entity objects for
your database tables. You can find this wizard in the New Gallery. On the “Create Entity
Objects” wizard page, press the Query button to see all tables you created in the previous
exercise.

Make sure you specify a proper package name for the entity objects, based on the naming
conventions that you specified for your project. See chapter 2 for more info on naming
conventions.

Do not yet create default updateable or read-only view objects and do not create an
application module using the wizard for two reasons:

3 - 6 Creating Business Components JHeadstart Developer's Guide

 We first rename the entities and associations and the new names will be used
when we create view objects and view links.

 A default application module typically contains many (nested) view object
usages that you do not need in your application. You should set up your
application module data model based on the layout of the pages you will create
to meet the functional requirements of your application.

3.2.3. Renaming Entity Objects and Associations

We recommend renaming entity objects and associations to comply with the naming
standards you have set up for your project (see chapter 2).

Renaming associations and the association accessors is important for the following
reasons:

 By default, associations are named after the foreign key constraint suffixed with
“FkAssoc”. Foreign key names are often not very meaningful, so if you have
many associations, they are easier to manage with meaningful names.

 The accessor properties of an association determine the accessor method names
generated into the entity objects to traverse entity object associations, something
you will often do when coding business rules in your entity objects. Logical
accessor methods make it easier to code this logic.

 The view links that are created when you create default view objects for your
entity objects are named after the underlying associations, saving you an
additional renaming of the view links (although you typically will remove the
“Link” suffix added to the view link name).

For example, when you create entity objects for the EMPLOYEES and DEPARTMENTS
tables in the HR schema of the Oracle database, an association named DeptMgrFkAssoc
is created, with association properties named “Employees” and “Departments”. We
recommend renaming the association to something like
“EmployeeManagesDepartments”, and the association properties to “Manager” and
“DepartmentsManaged”.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 7

Now, if you need to code logic in the Employee Entity Object that requires access to the
departments an employee manages, you can call the getDepartmentsManaged()
method rather than the confusing getEmployees() method.

3.2.4. Generating Primary Key Values

In many cases, artificial primary keys are used (also known as surrogate primary key).
Typically, these primary key columns are called ID. Because they are artificial, they are
meaningless to the user. The system generates the values and uses them internally, but
they should be hidden for the user.

Before starting to generate applications with JHeadstart, examine your Model for
artificial primary keys. Make sure they are correctly populated. Test this with the
Business Components Application Module Tester. See section 3HTest the model.

An artificial primary key can be populated in two ways:

 In the Business components: The create method of the entity object is used for
that.

 In the database: A database trigger is in added to the table that gets the next
value from a database sequence and populates the primary key.

3.2.4.1. Surrogate primary key populated in the Business Components Model layer

In the Entity object implementation, a create method is added that takes the value out of a
database sequence and sets the primary key.

This is described in detail in the JDeveloper Help. Check topic ‘Populating an Attribute
from a Database Sequence’.

3 - 8 Creating Business Components JHeadstart Developer's Guide

Suggestion: If all primary key attributes have the same name, for example Id,
retrieving sequence values from the database in the create method is
something you could implement in your BC base classes. By doing so, you do
not need to implement a create method for each entity object. In the EO base
class you can retrieve from one sequence that is used for all Entity Objects. Or
you can implement a more sophisticated mechanism that derives the sequence
name from the Entity Object name.

3.2.4.2. Surrogate Primary Key populated in the database

The database generates the primary key value, so no Java code is needed to populate the
primary key. However, your Business Components Model needs to know that values get
refreshed in the database after the insert.

When you plan to create screens that insert a master row and one or more detail rows in
one transaction, you will need to ensure that ADF BC first posts the master row and then
the detail rows, otherwise ADF BC will not be able to set the foreign key of the details
rows correctly. To enforce this posting sequence, you should mark the entity association
as “Composite Association”.

Note that when you mark an association as composite, the detail entity object can only be
created as a detail of the master entity object, which means you cannot create a page that
directly creates detail entity object, in addition to the master-detail page. If you try to do
so, you will get error JBO-25030: Failed to find or invalidate owning entity.

Weblog Steve Muench: “Why do I get InvaliOwnerException”.
5Hhttp://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerexc

eption.html

3.2.5. Setting Entity Object Attribute Properties used by JHeadstart

A number of properties that you can set on the Entity Object attribute panel are carried
forward by JHeadstart into the Application Definition file used to generate the
application:

 Mandatory: when this checkbox is checked, the item that is based on this
attribute will be generated with an asterisk in front of the label, and a JavaScript
alert will be displayed when you submit the page when the item is still empty.

 Queryable: when checked, the item created for this attribute in the Application
Definition will have the Show in Quick Search and Show in Advance Search
checkboxes checked by default. Of course, you can uncheck these checkboxes
later on.

http://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerexception.html
http://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerexception.html

JHeadstart Developer's Guide Creating ADF Business Components 3 - 9

 Updateable: when set to “While New” the item will be generated as a read-only
item when an existing row is displayed on the page. When set to “Never” the
item will be read-only in the generated page.

Note that Queryable and Updateable properties can also be defined at the view object
(VO) level. An item that is queryable at EO level can be made non-queryable at VO level.
An item that is updateable at the EO level can be made (partly) read-only at the VO level.
The VO level settings take precedence when JHeadstart creates the Application Definition
file.

3.2.5.1. Specifying Entity Object Control Hints

You can specify Control Hints for an attribute in an Entity Object. See the screenshot
below.

The information you enter in this panel is stored in a resource bundle for the Model
project.

Internationalizing Control Hints. Explained in ADF Developers Guide.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm#sm0

140

By default, JHeadstart will use an EL expression to reference the UI Hints set in the
model. You can also configure JHeadstart to copy the UI hints and not use an EL
expression to reference it. See chapter 11”Internationalization” for more information.

3.2.6. Implementing Business Rules

ADF Business Components has extensive support for implementing business rules, both
declaratively using so-called validators, as well programmatically in the Entity Object
implementation classes. The Fusion Developer’s Guide has extensive information on
implementing business rules, see the references below. In addition, the JHeadstart Team
has written a comprehensive white paper on implementing business rules in ADF
Business Components. This white paper can be downloaded from OTN, and includes a
classification of business rules, and a structured approach to implementing each type of

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm#sm0140
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcentities.htm#sm0140

3 - 10 Creating Business Components JHeadstart Developer's Guide

business rule. While the paper has been written for release 10.1.3, the main concepts are
still applicable.

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 7: Defining Validation and
Business Rules Declaratively
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcvalidation.htm#s

m0231

Web Reference: Fusion Developer’s Guide for Oracle Application
Development Framework Release 11.1.1.4, chapter 8: Defining Validation and
Business Rules Programatically
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcrules.htm#CIHB

BDDB

Implementing Business Rules in ADF BC. White paper on OTN.
7Hhttp://www.oracle.com/technology/products/jdev/collateral/papers/10131
/businessrulesinadfbctechnicalwp.pdf

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcvalidation.htm#sm0231
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcvalidation.htm#sm0231
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcrules.htm#CIHBBDDB
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcrules.htm#CIHBBDDB
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

JHeadstart Developer's Guide Creating ADF Business Components 3 - 11

3.3. Creating View Objects and Application Modules

This section discusses the development tasks related to creating the data model layer,
consisting of View Objects, View Links and Application Modules. The following topics
are discussed:

 Creating View Objects and View Links

 Renaming View Objects and View Links

 Inspecting and Setting Key Attributes of a View Object

 Setting View Object Control Hints

 Determining the Order of Displayed Rows

 Creating Calculated or Transient Attributes

 Setting up Master-Detail Synchronization

 Defining View Links and View Object Usages for Lookups

 Testing the Model

3.3.1. Creating View Objects and View Links

When creating a View Object you need to determine whether the data queried through
the ViewObject should be updateable in the user interface (web pages). If so, you need to
create an updateable ViewObject, which is based on a primary Entity Object. If the data
is read-only in the user interface, it is more efficient to create a read-only View Object,
which is a View Object not based on an entity object with a custom SQL query that you
need to enter manually.

A typical example of read-only View Objects, are View Objects used to populate lookup
data in the user interface, typically exposed through a drop down list, or List of Values
window.

3.3.2. Renaming View Objects and View Links

If you have used the “New Default Data Model Components” wizard, we recommend
that you rename the View Objects and View Links to comply with the naming standards
you have set up for your project (see chapter 2). If you create the View Objects and View
Links one-by-one, you can assign proper names right away.

3.3.3. Inspecting and Setting Key Attributes of a View Object

Under the covers, an ADF Faces table uses the View Object findByKey() method for its
row management. This row management is used by the ADF Faces table to update the
correct underlying row, when a user has changed one or more values in the ADF Faces

table. Built-in ADF Data Binding layer actions like setCurrentRowWithKey and

setCurrentRowWithKeyValue also rely on the findByKey() method. For this method to

behave reliably, the following conditions must be met:

 Each View Object must have at least one key attribute

 Primary keys must be pre-populated for new records.

 The key attribute(s) should be non-updateable

3 - 12 Creating Business Components JHeadstart Developer's Guide

The second condition has rather big implications: your datamodel must use surrogate
primary keys so you can prepopulate them in the Create method of your entity objects
(JDeveloper bug 6894412). If you are building an ADF application against an existing
datamodel with meaningful primary key attributes that are populated by the end user,
you need to add an additional ID column to your database tables, and mark the attribute
for this column as key attribute. Note that you do NOT need to change the existing
database constraint definitions although it is good practice to define a unique key on this
new ID column.

A view Object key that is updateable will result in unexpected behavior in the web tier.
For example, if you update key attribute values in an ADF Faces table, the row
management feature will not work correctly anymore.

3.3.3.1. Set Manage Rows By Key for Read-Only View Objects

When you create a read-only View Object, by default none of the attributes will be
marked as Key attribute. In order to successfully be able to use the findByKey() method
on a read-only view object, you need to perform two additional steps:

1. Ensure that at least one attribute in the view object has the Key Attribute
property set, and make sure this is a non-updateable attribute.

2. Enable a custom Java class for the view object, and override its create() method

to call setManageRowsByKey(true) after calling super.create() like this:

// In custom Java class for read-only view object

public void create()

{

 super.create();

 setManageRowsByKey(true);

}

Suggestion: Rather than adding this create() method to each and every read-
only View Object, you can apply a generic coding technique in the View Object
base class. See section 37.3.2 of the ADF Developer’s Guide:
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm#sm0

296

3.3.4. Setting View Object Control Hints

You can specify Control Hints for an attribute in a View Object.

JHeadstart might use some of these properties in the same way as Control Hints specified
for an Entity Object. See section 9HSetting Entity Object Attribute Properties used by
JHeadstart for more information.

3.3.5. Determining the Order of Displayed Rows

In most situations you want to order the queried records. To accomplish this you must
add an Order By clause to each View Object.

Attention: In general, there is NO DEFAULT sort order you can rely on.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm#sm0296
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvgen.htm#sm0296

JHeadstart Developer's Guide Creating ADF Business Components 3 - 13

1. Select the View Object, right mouse click, select Edit <ViewObject> to open its
Properties dialog.

2. Go to the Query node and enter the Order By clause. You can press the Edit
button to select available attributes. Often, the view is ordered by the Descriptor
attribute. It may also be ordered by a lookup attribute.

3. Be sure to use the 'Test' button to verify the query.

It is also possible to let the user order the records as desired in a page with table format.
See chapter 5, section “Allowing the user to sort data in a table page” for more detail on
how to do this.

3.3.6. Creating Calculated or Transient Attributes

Sometimes you want to show an attribute that does not exist in the correct form in the
database. For example: you want a read-only attribute FULL_NAME based on the
FIRST_NAME and LAST_NAME attributes. In such cases, you need to add a calculated
or transient attribute.

Note the important difference between a calculated and a transient attribute:

 A calculated attribute is present in the SQL query: the calculation is done by SQL
at retrieval time. So a calculated attribute is only recalculated when the query
is re-executed. Imagine a calculated attribute FullName that is a concatenation
of FirstName and LastName. When the FirstName is changed in the
application, the data needs to be requeried to refresh FullName. Only use a
calculated attribute for read-only fields.

 A transient attribute is not present in de SQL query. You have to calculate the
value in a get method in the View Object. Every time the transient attribute
value is needed, the get method is called and the transient value is
recalculated. So you have no synchronization issues when using a transient
attribute. The only drawback of a transient attribute is that you have to code a
get method in the ViewRowImpl class.

Reference: Fusion Developer’s Guide for Oracle Application Development
Framework Release 11.1.1.4, section 5.14: Adding Calculated and Transient
Attributes to an Entity-Based View Object.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#C

HDHJHBI

3.3.7. Setting Up Master-Detail Synchronization

JHeadstart is capable of generating parent-child or master-detail layouts. For example
you want to show a department with all the employees in that department as detail.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#CHDHJHBI
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#CHDHJHBI

3 - 14 Creating Business Components JHeadstart Developer's Guide

When you want to generate master-detail layout, it is important to make some
preparations in the ADF BC Model. Let’s take the Departments with Employees as an
example:

1. A View Link representing the master-detail relation must exist in your Model
project:

2. The master-detail relation must exist in the Data Model of your Application
Module

JHeadstart Developer's Guide Creating ADF Business Components 3 - 15

Attention: You can have multiple levels of nesting. For example Regions,
consisting of Countries, consisting of Locations and so on. See section 5.6 -
Creating Tree Layouts, for an example of deeper nesting.

3.3.8. Defining View Links and View Object Usages for Lookups

JHeadstart is capable of generating dropdown lists or lists of values for entering
references to other rows. For example, when entering or updating an Employee, you
want to set the Employee’s Department by choosing from all available Departments in
the database.

When you want to let the JHeadstart New Application Definition Wizard automatically
include such lookups, you have to make sure that View Links exist between the relevant
View Objects. In the example, a View Link must exist between the Employees View
Object and the Departments View Object.

For the purpose of automatically adding lookups, it is not necessary to include a usage of
the View Link in the data model of the Application Module. The New Application
Definition Wizard will automatically add lookup View Object usages in the Application
Module.

If you later want to add a new lookup to an existing Application Definition, it is not
necessary to have any View Links. However, you do need a View Object usage in the
Application Module for the lookup data collection. We recommend creating a dedicated
View Object usage for lookup purposes, because if the same View Object usage were also
used as the main data collection of a page, applying search criteria would result in not
having the complete list to choose from in the lookup.

3.3.9. Testing the Model

Before starting to generate with JHeadstart, you should be sure you have your Model
right. So make sure you can query, insert, update and delete data with your View
Objects.

Use the Business Components Tester for validating your model. Right-click your
Application Module and choose ‘Run…’ . Check the Database Connection name and click
the Connect button. Now the Oracle Business Component Browser opens.

On the left hand side you will see the Data Model of the Application Module. Double
click one of the View Object Usages to open a browser for it. On the right hand side you
can now browse through the rows, make changes to them, and, using the toolbar, even
create and delete rows.

See the JDeveloper help for further instructions. Topic is ‘Testing with the ADF Business
Components Browser’.

Suggestion: This Tester application is a very convenient way of checking
whether you have correctly specified your Business Components, without
having to create a full-blown application on top of it first. Also, in multi-
layered applications such as these, the exact source of a problem is not always
easy to determine. The Tester application is very useful in determining
whether a problem is located ‘above’ or ‘below’ the ADF Bindings. Finally, it is
a quick and easy way to test virtually any business rule implementation that
was implemented in the Business Components.

3 - 16 Creating Business Components JHeadstart Developer's Guide

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 1

C H A P T E R

4 Using JHeadstart

his chapter provides information on how to use JHeadstart in general. The following
JHeadstart in general. The following topics are covered:

 Understanding the Generator Architecture

 Using the JHeadstart Enable Project Wizard

 Using the Create New Service Definition Wizard

 Using the Application Definition Editor

 Running the JHeadstart Application Generator

 Running the Generated Application

 What Was Generated for What Purpose

T

4 - 2 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.1. Understanding the JHeadstart Application Generator Architecture

This section describes the high level architecture of the JHeadstart Application Generator
(JAG).

The JHeadstart Application Generator provides a simple, highly productive means for
creating a transaction-based J2EE application using ADF.

JHeadstart

Application

Definition

Wizard

JHeadstart

Application

Definition

Wizard

JSF JSP
ADF Faces

JSF JSP
ADF Faces

JSFJSF

ADF
Business

Components

ADF
Business

Components

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

View

Controller

Model

Business
Services

JDeveloper

ADF BC Wizard

Generator
Templates

Generator
Templates

Application
Definition

Application
Definition

JHeadstart

Application

Generator

ADF BC
metadata

ADF BC
metadata

ADF
Business

Components

ADF
Business

Components

ADF
Task Flows

ADF
Task Flows

JSF JSP
ADF Faces

JSF JSP
ADF Faces

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

1

2

3

4 4

5 6

6

6

JSF JSP
ADF Faces

JSF JSP
ADF Faces

JSFJSF

ADF
Business

Components

ADF
Business

Components

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

View

Controller

Model

Business
Services

JSF JSP
ADF Faces

JSF JSP
ADF Faces

JSFJSF

ADF
Business

Components

ADF
Business

Components

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

View

Controller

Model

Business
Services

JDeveloper

ADF BC Wizard

JDeveloper

ADF BC Wizard

Generator
Templates

Generator
Templates

Application
Definition

Application
Definition

Application
Definition

Application
Definition

JHeadstart

Application

Generator

ADF BC
metadata

ADF BC
metadata

ADF
Business

Components

ADF
Business

Components

ADF BC
metadata

ADF BC
metadata
ADF BC

metadata

ADF BC
metadata

ADF
Business

Components

ADF
Business

Components

ADF
Task Flows

ADF
Task Flows

JSF JSP
ADF Faces

JSF JSP
ADF Faces

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

ADF
Task Flows

ADF
Task Flows

JSF JSP
ADF Faces

JSF JSP
ADF Faces

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

ADF
Task Flows

ADF
Task Flows

JSF JSP
ADF Faces

JSF JSP
ADF Faces

ADF Model

Data Bindings

Data Controls

ADF Model

Data Bindings

Data Controls

11

22

33

44 44

55 66

66

66

The high-level development process shown in this diagram follows:

1. Create the business service using ADF Business Components wizards in
JDeveloper. This step is independent of JHeadstart.

2. Use the JHeadstart New Application Definition Wizard to create a first-cut of the
application definition, the metadata file in XML format required to generate the
application. Then, although it is not shown on the diagram, you would refine the
metadata using the Application Definition Editor, and customize the generator
templates using the JDeveloper code editor.

3. Generate the Model (data bindings), View, and Controller layer code using the
JHeadstart Application Generator. This is a highly iterative process, where you
refine the metadata and templates based on previous generation results. For an
example of a generated page see Figure 2.

4. If the results from the JHeadstart generator do not fully match your functional
requirements, you can enhance the generated pages using the JDeveloper ADF
tools (visual editors, property inspectors, and drag-and-drop facilities). There are
several ways to preserve post-generation changes, as we will discuss later.

The Application Definition drives the JHeadstart Application Generator. This is an XML
file that defines the overall structure of the application, including:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 3

 The type of view layer that should be generated (ADF Faces with JSP version 2.0
or 1.2).

 The Data Collections that should be displayed and modified.

 The layout styles that should be used to display and manipulate the Data
Collections.

 Relationships between the Data Collections: parent-child or lookup.

JHeadstart includes the JHeadstart Application Definition Editor, which is a user-friendly
mechanism to edit the Application Definition without having to edit the XML file
directly.

4.1.1. Input Output

In addition to the Application Definition, the JAG uses the following inputs:

 JHeadstart Generator Templates

The JAG parses the Application Definition and generates a Model-View-Controller
(MVC) application using the following technologies:

 Model: ADF Business Components and ADF Model (data bindings).

 View: JSF JSP and ADF Faces (Rich Client).

 Controller: JSF/ADF Controller.

The JAG is capable of generating the following types of output:

 Faces Config files for the JSF Controller.

 JSF JSP files for each displayed page.

 JSF fragments for each displayed region.

 ADF Task Flow configuration files for each group (of pages).

 Page Definitions (data bindings) for generated pages.

 Resource bundles for internationalization.

 SQL scripts for populating the JHeadstart database tables when table-driven
features are enabled (dynamic menu, flex items, security, internationalization)

The output of the JAG, together with the ADF Business Components, results in a fully
functional web application.

Whenever it is required, you can switch on and switch off generation of individual file
types.

4 - 4 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.2. Using the JHeadstart Enable Project Wizard

JDeveloper offers a host of technologies that you might or might not use in a project. The
use of some of these technologies might require the presence of some files or settings in
your project. To facilitate the development process, JDeveloper will usually create these
files and/or settings for you the first time you use such a technology in your project,
often without notice. For instance, the first time you create an ADF Faces page in a
project, JDeveloper will automatically add a number of settings to the web.xml file, and
add a faces-config.xml file to your project

In a similar fashion, the use of JHeadstart also requires such files and settings in your
project. We have chosen to make the use of JHeadstart on a project a deliberate choice.
Before allowing the use of any JHeadstart Addins on a project, you must first ‘enable’
JHeadstart on it. Typically, this only needs to occur on the ‘ViewController’ project: the
project that will hold the JSF Navigation files and the JSF JSP pages. This action will also
trigger the creation of those files and settings needed for a JHeadstart application.

4.2.1. Enabling JHeadstart on a new project

Enabling JHeadstart on a project is a simple operation that you can perform by clicking
the alternative mouse-button on the project, and selecting the option ‘Enable JHeadstart
on this Project’.

The JHeadstart Enable Project Wizard that is invoked by this menu option does not ask
for any input. All you need to do is click ‘Next’ and ‘Finish’. It will then create and add a

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 5

number of files to your project, and make some required project settings. It will report
what it has done in the following dialogue:

4.2.2. Enabling JHeadstart on an existing project

The above screenshot is the result of invoking the JHeadstart Enable Project Wizard on
new project. But it is safe to use this wizard on a project that already contains many files,
possibly even a fully functional ADF web application. That is because, unlike JDeveloper,
this wizard will never overwrite any files or settings without either backing them up or
asking for your feedback on how to proceed. To be more specific, here are the possible
responses of the wizard when trying to create a file that already exists:

1. Backup the file.

This is done for files that are absolutely required, for JHeadstart to function
correctly, such as ‘web.xml’ and ‘faces-config.xml’. If you made manual changes
to these files, you will need to merge them from the backup to the new version
created by JHeadstart!

2. Ignore the file and keep the existing version.

This is done for less vital files such as index.html and log4j.properties

3. Prompt for your resolution.

4 - 6 Using the JHeadstart Addins JHeadstart Developer’s Guide

This is done for all other files, such as Tag Libraries and JHeadstart-specific files.
It is unlikely that you made manual changes to these files, so normally you
would choose ‘Overwrite All’, but you can make your choice to overwrite,
backup or ignore on a per-file basis if you want.

4.2.3. Re-enabling JHeadstart on a project

Because of the safe nature of the wizard, we have allowed the option to re-run the wizard
on a project that you have already used it on. You can do this, for instance, if you receive
a newer version or patch of JHeadstart and want to make sure you are using the latest
runtime files, or if you have made changes to the files that you want to undo by reverting
back to the original version.

To rerun the wizard again, click on the project with the alternative mouse-button and
choose ‘Re-enable JHeadstart on this Project’.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 7

Attention: As you can see, because JHeadstart was already enabled on this
project, you can choose the menu options ‘Edit JHeadstart Application
Definition’ and ‘New JHeadstart Service Definition’, and the menu option to
launch the JHeadstart Enable Project Wizard was renamed to ‘Re-enable
JHeadstart on this Project’.

4 - 8 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.3. Using the Create New Service Definition Wizard

After enabling JHeadstart, you will typically create a JHeadstart Service Definition XML
file. You can create a new Service Definition by right-clicking the ViewController project
and choosing ‘New JHeadstart Service Definition’. You will be presented with a 5 step
wizard.

Before running this wizard, you should inspect the JHeadstart Preferences Settings, as
they affect how the new service definition is created. You access the JHeadstart
Preferences Settings through the Tools -> Preferences menu in JDeveloper.

There are two preferences that are relevant when running the New Service Definition
Wizard:

 Bind Item property to corresponding ADF BC Control Hint?: when checked the
Prompt in Form, Display Width, Display Height and Hint (Tooltip) properties
of items created in the wizard will refer to the corresponding Control Hint set on
the underlying View Object attribute. When not checked, the value of this
Control Hint is copied to the item property of the created JHeadstart item.

 Capitalize only first word of labels/titles: This property is only applicable when
the Bind Item property to corresponding ADF BC Control Hint? preference is
unchecked. If so, this preference determines whether a View Object attribute
name like LastName will result in a default prompt of “Last Name” or “Last
name”.

Attention: The following section assumes you are familiar with the concepts
that are introduced in this wizard (such as List of Values, search and layout
styles, etcetera).
Fortunately, the wizard sets the most commonly used values as default. If you
are not sure what option to choose, leave the default as is.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 9

The first screen of the Wizard (step 0) is an introduction, simply click Next to get to step
1.

4.3.1. Step 1: Choose Data Control

The list on the top of this page lists all the DataControls (i.e. Application Modules) that
are found in all the Model projects within your workspace. For example: if you have 3
Model projects with 2 application modules each, you will see 6 entries here.

A Service Definition always corresponds to exactly one Application Module, so you can
not select multiple DataControls from the list.

The following options are available on this screen:

 Create default groups: when unchecked, the new Service Definition will not
contain any predefined groups. If checked, it will create one group for every root
View Object usage, plus detail groups for every nested VO usage.

 Process Nested Application Modules: when checked, JHeadstart will also create
(detail)Groups for all VO usages within nested application modules.

 Skip Nested JhsModelService Application Module: JHeadstart will nest the
JhsModelService Application Module inside your own Application Module, to
use special JHeadstart features such as dynamic menu, translations etcetera.
Normally, you will not want to create groups for that application module, so
leave this checkbox ticked.

 Create Default Flexible Region: If you want to use ‘flexible regions’ throughout
your service by default then check this box. Of course it is also possible to add
flex regions later on. See section 12.2 about Flex Regions for more information.

Chpt_12_Runtime_Page_Customizations.doc

4 - 10 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.3.2. Step 2: Choose Basic Settings

Here you can specify the name of the Service, which will appear in some filenames and in
the list of ‘Modules’ in your runtime application.

Also the basic layout styles for ‘Parent Groups’ (base groups directly connected to the
service) and ‘Child Groups’ (detail groups that are connected to another group) can be
specified.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 11

4.3.3. Step 3: Choose List of Values Options

Here you can choose various options for the List of Values components (see section 6.7
for more information on Lists of Values).

The following options are available:

 List of Values type: Here you can choose between the various ADF model types
(starting with ADF-) and the JHeadstart types (starting with JHS-). Since you
have to choose one setting for all Lists of Values in your application, you should
try to choose the setting that will occur most often.

 Use existing application modules / Create new shared application module:
These options are only editable when you have selected an ADF Model type
LOV.
Choose the existing application module (base module) if the LOV components in
your application are not only showing “static” content. For example: if your
application needs to show newly added Departments in a dropdown list, you
should choose the base module.
However, the ‘Shared Application Module’ approach is more memory- and
query efficient. So if you show only (fairly) static data in LOV components,
choose either a new Shared Application Module or an existing Shared
Application Module. See the reference below for more information on Shared
Application Modules.

 Create read-only copies: This will create a copy of your lookup View Object in
the package specified without using any Entity Objects. In other words, a read-
only View Object will be created using the SQL statement of the updateable View
Object. Read-only View Objects are a bit faster compared to updateable View
Objects and take fewer resources. They have the same drawback as Shared

Chpt_6_Generating_Items.doc

4 - 12 Using the JHeadstart Addins JHeadstart Developer’s Guide

Application Modules however: so choose this only when you have LOV
components with (reasonably) static data.

 Unselected label: For dropdowns, it can be possible to select a ‘NULL’ or empty
value. This field specifies the label that will be used for that NULL value.

Fusion Dev Guide, chapter 10 “Sharing Application Module View
Instances”. Contains more information on Shared Application Modules.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bclookups.htm

#BABEIAIB

4.3.3.1. Choosing a List of Values Type

There are various options you can choose for as a List of Values type. You should be
careful here in what option to choose, depending on the number of rows that will be
displayed per LOV.

The problem that could occur if you have a dropdown list with a very large number of
rows is twofold. The query performed on the database to retrieve the rows is slow, and
the HTML needed for rendering the page becomes very large and takes a long time to
load. In extreme situations, this might mean that when trying to show the page, the
database hangs and/or the page never shows up.

Rule of thumb: if one or more of the tables you expect to be used for choosing the many-
end of a relationship contains considerably more than 100 rows, then choose a separate
(popup) LOV style. This includes ADF-inputTextLov, ADF-comboBoxLov and JHS-LOV.

4.3.3.2. Understanding What JHeadstart Generates

There are three basic scenarios for LOV generation. Each of these scenarios gives a
different result in terms of files that are generated, view object instances added,
JHeadstart groups that are added, etcetera.

Scenario 1: JHeadstart LOV/dropdown

When you choose a JHeadstart LOV/dropdown in the wizard, the following objects will
be created:

Lookup View Object Usages

For each View Link, JHeadstart will generate a Lookup data collection by default.
JHeadstart adds new instances of the ViewObjects to the Application Module with name
*Lookup. You can inspect this behavior by editing your Application Module after the
wizard has finished:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bclookups.htm#BABEIAIB
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bclookups.htm#BABEIAIB

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 13

The reason is that a lookup needs to maintain its own set of rows. For example, when you
have a page that maintains Employees, and in another page there is a list of values for
selecting an employee, there need to be two instances of the same ViewObject. One
instance holds the rows for the maintenance page, and the other holds the rows for the
list of values. This way you can perform a search in the Employees maintenance page,
without limiting the available values in the lookup.

LOV Groups or Dynamic Domains

If you choose “JHS-dropdown” as LOV type, JHeadstart will create a dynamic domain in
the Service Definition File and set the display type of the item to dropDownList. The
domain of the item will point to the new dynamic domain.
If you choose a JHeadstart LOV, JHeadstart will create a new LOV group (with the same
name as the new Lookup View Usage). Furthermore, it will add a List of Value to the
LOV item that will point to the new LOV group.

Scenario 2: ADF Model LOV without Shared Application Module

In this case, JHeadstart will not create any ‘Lookup’ view usages in the base application
module.

Instead, JHeadstart will create a View Accessor and a List of Values definition for every
View Object attribute that has a View Link. After the wizard has finished, the LOV can be
inspected by looking at the attributes of a View Object:

4 - 14 Using the JHeadstart Addins JHeadstart Developer’s Guide

When we click the ‘edit’ icon on the List of Values, we see the following:

As you can see, JHeadstart has defined a complete List of Values definition in our
attribute, including information on which attributes should be copied from the LOV to
the base page.

The new Service Definition file will not contain any LOV groups or dynamic domains.
Instead, it will simply set the display type of the LOV item to the appropriate value (e.g.
“model-inputTextLov”). This is enough information for JHeadstart to generate the page.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 15

Scenario 3: ADF Model LOV with Shared Application Module

This scenario looks a lot like the second scenario. However, something extra will be done:

Creating a New Shared Application Module

When a New Shared Application Module needs to be created, first a new (empty)
Application Module will be created in the package of your choice. It will also be added as
a session instance to your Business Components project. This means one instance of this
Application Module will be created per session. You can see this when right-clicking your
Model project, choose Properties and go to the Business Components > Application
Module Instances tab:

Here you see that the new ‘SharedLovService’ has been added as a session instance.

Adding Lookup View Usages

When JHeadstart generates a new Shared Application Module, it will also add a Lookup
View Usage to it for every LOV that is generated. This happens in the same way as for
JHeadstart dropdowns/LOVs; except they are not added to the base App Module but to
the Shared Application Module.

4 - 16 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.3.4. Step 4: Choosing Search Style

Here you can choose the different default search styles for quick and advanced search, as
described in section 7.2.

In general, we recommend to use the ADF Model approach, unless you have
requirements that cannot be implemented using the ADF Model search. Such
requirements include:

 Specific layout requirements for the search area, for example, organizing the
search items in groups with headers, or multiple tabs.

 Read-only descriptor items that should be populated by an LOV for a search
item

 Usage of JHeadstart List of Values in the search area.

The compatibility matrix in section 6.7.1 gives you more information on the issue of LOV
and search combinations that are ‘invalid’. The rule of thumb is quite simple: either
choose ADF Model LOV and the ADF Model search together, or choose the JHeadstart
LOV and JHeadstart search together. Do not try to mix the two approaches.

However, if you (really) need to use the JHeadstart search and the ADF Model LOVs
together, this wizard gives you a bit of extra help. If you tick the checkbox on the bottom
of the screen, JHeadstart will create two items for each attribute with an LOV:

1. An ADF-Model based LOV item that will be displayed in your form/table. It
will not be displayed in your JHeadstart search area (since that is not supported).

Chpt_7_Generating_Query_Behaviors.doc
Chpt_6_Generating_Items.doc

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 17

2. A JHeadstart based LOV item that is not shown in the form/table layout, but is
only shown in the JHeadstart search area.

Both items are based on the same attribute in the View Object and have the same settings
(including label).

4 - 18 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.4. Using the Application Definition Editor

JHeadstart uses an Application Definition and (multiple) Service Definitions to define the
structure of your application. These definitions are stored in separate xml files. They
identify which pages you need, how you want these pages related, their layout styles,
what information sources they are based on, and so on. The Application Definition
defines the global settings for your entire application. Each Service in the Application
Definition will be generated with its own menu structure (e.g. tabs). Each (top level)
group in the service corresponds to one item in this menu (e.g. a tab).

One Application Definition can contain multiple services. To create another service, run
the ‘New JHeadstart Service Definition’ again.

Reference: How to create a Service Definition is described in section 4.3, Using

the Create New Service Definition Wizard. This section only discusses how to
create new groups, and how to modify and remove existing groups.

4.4.1. Maintaining the Application Definition

The JHeadstart Application Definition Editor helps you to maintain the Application and
Service Definitions without having to write and edit the XML files yourself. You simply
define or modify the properties as you need, and the XML file will be modified
accordingly.

4.4.1.1. Starting the Application Definition editor

To be able to start the editor you must have enabled JHeadstart on the project. Press the
alternative mouse-button on the Project and click ‘Edit JHeadstart Application Definition’
to open the editor:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 19

4.4.1.2. Using the help in the Application Definition editor

The help in the Application Definition editor explains all the properties that you can set
for each service, group, detail group, lookup and region. This is a very useful aid to help
you determine how and when to set each property.

When you open the Application Definition editor, you will see the properties on the right
hand side of the editor. Below the properties, you see a small area (enlarged in the screen
shot below) with the help text. If you click on a property, the help text appears in the
window for that property:

4 - 20 Using the JHeadstart Addins JHeadstart Developer’s Guide

This area may seem unnecessary small. You can increase or decrease the size of this area,
as you desire, just by placing the mouse cursor on the line above the help text and move
the line up or down.

4.4.1.3. Editing the Properties

There are four types of properties:

1. Text properties

2. Check boxes

3. Dropdown lists

4. Combo boxes or editable dropdown lists

How to edit the first three types is obvious. But the fourth type needs a little explanation.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 21

As you can see in the example of the item-level Required? property above, a combo box
has a dropdown list from which you can choose a value (in this case true or false), but
you can also type in a different value. If you do so, you must confirm this typed-in value
by pressing the Enter key. This is also mentioned in the online help of the property.

Warning: If you type in a value in a combo box, and then press Tab or click the
mouse in a different cell, your typed-in value will be lost. Use Enter to confirm
your changes.

4.4.2. Application

The Application Definition (the top node in the Application Definition Editor) is used for
global settings that affect the whole application.

4.4.3. Service

A service must be seen as a major subset of the application. It includes a set of logically
related functionality on which a user performs tasks that are logically linked together.

4 - 22 Using the JHeadstart Addins JHeadstart Developer’s Guide

A part of a service definition seen through the Application Definition Editor

Attention: When partitioning the application into services, take into account
the following restriction:

A service can only be related to one ADF BC Application Module.
However you can use one Application Module for multiple services.

4.4.4. Groups

A service is made up of one or more groups. A group allows users to query and modify a
single data collection that maps to an ADF BC View Object (VO). Depending on the
layout options you choose, the group may be displayed on a single page or on a number
of related pages.

Groups may be nested to support parent-child relationships between their respective
View Objects.

Compared to a form module defined through Oracle Designer, you would typically
create one group for each first level module component. For detail module components
in a master-detail relationship, you would use nested groups.

A group consists of Items, Regions and Detail Groups. These concepts are discussed
below.

4.4.5. Items

An item is a mapping to an attribute of an ADF View Object (which normally maps to a
database column). All kinds of properties can be set for an item. For instance you can
specify a default value or a label (used when generating prompts). An item can have a
List of Values, which is explained in the next section.

4.4.6. Lists of Values

A List of Values (LOV) construction in an Application Definition links an item to a group
of type LOV, and specifies which items in the LOV group are to be mapped to which
items in the base group. This is required if in the generated application you want to
populate the item using a List of Values popup window instead of using a dropdown list.

 Example The EMPLOYEES table has a foreign key to the DEPARTMENTS table.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 23

When adding an EMPLOYEE, you need to choose the department. Suppose you want to

enter the the department using a List of Values, and you want to put that LOV on

the Department Name instead of the Department Id.

In the Application Definition you then have to create an item DepartmentName

(after first creating it in the ADF BC View Object), and link an LOV to that item.

This is how it looks in the Application Definition editor:

An LOV is populated by means of an LOV group. This is a (top level or nested) group
with the property Use as List of Values? checked.

Within the LOV one can create a mapping of source and target items. In other words
which item of the LOV group should map to which item of the current group. The target
of the first value always automatically maps to the currently selected item.

4.4.7. Regions

The regions folder can contain three different types of objects. If you add a new Region
you can choose which type you want to create.

1. Item Regions

2. Group Regions

3. Region Containers

4 - 24 Using the JHeadstart Addins JHeadstart Developer’s Guide

An Item Region allows you to group items into a named section (region) on a page. You
can define as many item regions as you want for a group.

A Group Region can be used to create a dedicated region for a detail group (nested
group) that has the Same Page property checked.. This way one has more control over
the placement of the detail group on the page. Alternatively, when the Include as ADF
Region checkbox is checked on the Group Region, you can reference another top-level
group that will be included as a reusable region in the page.

A Region Container is, as the name says, a container for regions. The Regions folder is an
example of a Region Container.

For examples of using regions, see chapter 5, section Controlling Page Layout Using
Region Containers, Item and Group Regions.

4.4.8. Detail Groups

Groups can be nested to create master-detail (parent-child) relationships.

 Example A Region can have one or more Countries, and a Country can have one or more
Locations.

This structure can be reflected in the Application Definition like this:

Depending on the layout options you choose, you can display a master group and its
detail(s) on different pages or on a single page.

Attention: JHeadstart has no restrictions on the maximum level of nesting of
groups.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 25

4.4.9. Domains

A domain is a (short) list of values normally used to populate a dropdown list. Two kinds
of domains are distinguished: static and dynamic.

A static domain is nothing else than a list of hard coded domain values. See the Gender
domain in the screenshot below.

A dynamic domain is a domain based on an ADF View Object and therefore based on a
query. See for example the EmployeesViewLookup domain in the screen shot.

Items with Display Type dropDownList, radio-horizontal and radio-vertical have a
Domain property where you can specify a static or dynamic domain.

4.4.10. Manipulating Objects

You can create the objects described above by using the green plus (+) symbol in the
upper left corner of the Application Definition Editor, or by using the right-mouse-click
menu in the left hand panel. Just select the intended parent node in the tree on the left
and press the plus symbol, or right-click and choose Add Child. Whenever it is unclear
what type of object should be created, a list is shown and the user can select the desired
type. Otherwise the only possible type of object is created.

4 - 26 Using the JHeadstart Addins JHeadstart Developer’s Guide

The table below shows what object types can be created when a certain type of node is
selected. The last column indicates the name of the newly created object.

Node Object Type Name

Service Base Group NewGroup

Base Group /
Detail Groups
folder

Item NewItem

Detail Group NewGroup

Items folder /
Item Region

Item NewItem

Item LOV (+ one LOV
Value)

Choose a LOV Group (+
[currentItem] <=
undefined)

LOV LOV Value undefined <= undefined

Regions folder /
Region Container

Region Container NewRegionContainer

Detail Group Region NewGroupRegion

Item Region NewItemRegion

Domains folder Static Domain (+ one
Domain Value)

NewStaticDomain (+
undefined)

Dynamic Domain NewDynamicDomain

Static Domain Domain Value Undefined

After creating a new object, its properties have to be set. A red property is mandatory
(also indicated by a * at the end of the label) and a black one is optional.

4.4.10.1. Moving objects

You can move an object in the Application Definition to a different position under the
same parent by dragging and dropping the object. This way you can influence the order
in which for example level 1 menu tabs or fields in a form layout are generated.

You can also move objects to a different parent, if that parent is capable of holding objects
of that type. For example, you can move a detail group to another top-level group, or you
can move an item from a group to an item region.

4.4.10.2. Copying objects

There are two ways for duplicating objects in the Application Definition.

1. You can right-click an object in the Application Definition Navigator and then
choose Duplicate <object type>.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 27

The new object is an exact copy of the original, except for the name, which is
"Copy of <original name>".

2. You can also copy an object in the Application Definition Navigator by dragging
the object while holding the Ctrl key. The cursor will be decorated with a plus (+)
in a box to indicate that the dragged object will be copied instead of moved.

When releasing the Ctrl key a duplicate of the original object will be created. The
new object is an exact copy of the original (including the name property). The
new object will be created as child of the object currently under the cursor.

4.4.10.3. Deleting objects

You can also quickly delete objects using the editor. Simply select the object you want to
delete, and press the red cross (x) icon in the tool bar or in the right-mouse-click menu:

4 - 28 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.4.10.4. Using the clipboard to copy and paste multiple properties

If the group should only be similar to another group, and you only want to copy a few
properties, then you can also copy the properties you want from one group and paste
them into the new group. Simply select the group you want to copy from, select all the
properties you want to copy and press the button ‘Copy currently selected properties to
clipboard’:

Then navigate to the group you want to copy to, and press the button ‘ Paste properties
from clipboard to currently selected node(s):

4.4.11. Novice Mode and Expert Mode

The Application Definition Editor gives you the possibility to change between novice and
expert mode.

In novice mode only the most relevant properties are displayed. Which properties are
relevant, might depend on the value of other properties. For example, if you change the
Layout Style from ‘form’ to ‘table’, the Form Layout properties are hidden and the Table
Layout properties become visible.

You can switch to expert mode by clicking the icon on the upper right of the editor, as
highlighted in the screen shot above. In expert mode you can see all properties,
regardless if they are applicable or not.

4.4.12. Synchronize Group with Underlying View Object

In best-case scenarios View Objects never change, but in real life they do. Therefore the
synchronize button is added to make life a little easier. Whenever the attributes in a View

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 29

Object change, one can select the corresponding group in the Application Definition
editor and press the synchronize button as highlighted below, or by using the right-
mouse-click menu and choosing Synchronize.

The synchronize action will do the following:

 It will add new items in the group for any new attributes in the view object. If
you manually create a group in the JHeadstart Application Definition Editor, you
can use this option to quickly create all the databound items.

 Existing items that are based on an attribute that no longer exists in the view
object are changed into an unbound item.

 The view attribute control hint Display Hint will be set to "Display" if the item is
displayed in the generated page. (These settings must be in synch, otherwise you
will get a PropertyNotFound exception at runtime).

 The view attribute control hint Label Text will be set to the value of the Prompt
in Form property of the item, if the prompt is a literal string value. If JHeadstart
Preferences Setting Bind item property to corresponding ADF BC Control Hint?
is checked, the Display in Form item property will be set to the EL expression
that references this control hint: #{$HINTS$.label}. (The “$HINTS$” token will be
replaced with the correct EL expression during generation).

 The view attribute control hint Display Height will be set to the value of the
Display Height property of the item, if the property is a literal string value. If
JHeadstart Preferences Setting Bind item property to corresponding ADF BC
Control Hint? is checked, the Display Height item property will be set to the EL
expression that references this control hint: #{$HINTS$.displayHeight}.

 The view attribute control hint Display Width will be set to the value of the
Display Width property of the item, if the property is a literal string value. If
JHeadstart Preferences Setting Bind item property to corresponding ADF BC
Control Hint? is checked, the Display Width item property will be set to the EL
expression that references this control hint: #{$HINTS$.displayWidth}.

 The view attribute control hint Tooltip Text will be set to the value of the Hint
(Tooltip) property of the item, if the property is a literal string value. If
JHeadstart Preferences Setting Bind item property to corresponding ADF BC
Control Hint? is checked, the Hint (Tooltip) item property will be set to the EL
expression that references this control hint: #{$HINTS$.tooltip}.

4 - 30 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.5. Running the JHeadstart Application Generator

Before you start generating your application, make sure you have applied the naming
conventions and other service-level settings as discussed in chapter “Team-based
Development”, section “Organizing JHeadstart Application Definition Files”.

Once you have got the service and group definitions right, you can generate the
application.

There are two ways to start the JHeadstart Application Generator (JAG):

1. Right click the Application Definition File in the Applications Navigator, and
choose Run JHeadstart Application Generator.

2. From within the JHeadstart Application Definition editor, click the third button
from the left.

Now JAG will generate the View and Controller layers of the application, including the
ADF Model data bindings to the ADF Business Components. The progress is logged in
the Jheadstart Application Generator – Log.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 31

You will see logging of what has been generated (the Information messages).
If a (potential) problem is detected that does not prevent the Generator from doing its job,
you will see Warnings.
Finally, if the application cannot be generated, you will see Errors.

4 - 32 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.6. Running the Generated Application

When the JHeadstart Application Generator has completed successfully, you can run and
test your application.

Before running the generated application, it is a good habit to always rebuild it first
(causing the project files to be copied to the class path). You can rebuild it in one of the
following ways:

 Right click the ViewController project in the Navigator, and choose Rebuild

 Click the Rebuild icon in the JDeveloper toolbar

You can run the generated Application in one of the following ways:

 Run the ViewController project (using right-mouse-click in the Navigator or
using the Run button in the JDeveloper tool bar),

The JHeadstart Application Generator has automatically set the first generated
page of the first group to be the default run target

 To directly run a specific page, select one of the generated .jspx files in the
Application Navigator, right-mouse-click and choose Run.

 Open the ‘faces-config.xml’ in Diagram view and right click a .jspx page to run.

4.6.1. TroubleShooting

If the application page does not show, and your browser “hangs” or gives a Gateway
Timeout, it could be that the proxy settings of your browser don't make an exception for
the host name or IP address used by embedded WebLogic Server. Go to the menu option
Tools -> Preferences, and click on Web Browser and Proxy and check the proxy settings.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 33

4.6.2. Dealing with Code Segment Too Large Error

If you have generated large pages, with many groups on the same page, and/or groups
with many items, compilation of such a page might fail with an error like this:

Error: code segment of method _jspService(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse) too large

This error is caused by a limitation in the Java language. The content of a Java method
cannot be larger than 64KB. With a very large JSF page, the compiled servlet might get a
method (like _jspService) that is too big to be compiled.

JHeadstart provides an easy work around for this error: you can move part of the content
of the page to separate ADF Faces region files that are included in the orginal page at
runtime, very similar to the concept of a JSP Include. The look and feel and behavior of
the page remains unchanged, only the way the page is composed at runtime is different.
You can use three properties in the Application Definition Editor to determine which part
of the page is generated into a separate ADF Faces Region:

 Group property Generate Group in Page Fragment?

 Group property Generate Search Area in Page Fragment?

 Item Group Region property Generate in Page Fragment?

4 - 34 Using the JHeadstart Addins JHeadstart Developer’s Guide

Note that all three properties are only visible in expert mode. Typically, when you run
into this error, you first start generating whole groups on the page in a separate ADF
faces page fragments by checking the Generate Group in Page Fragment? checkbox for
one or more groups on the page. In most situations, this will solve the problem. However,
you might have one very big group on the page with very many items. If most of these
items also appear in the advanced search area of the group, you can check the checkbox
Generate Search Area in Page Fragment?. If the problem still persists, the only solution
is to divide the items over multiple item regions, and at the item region container, check
the checkbox Generate in Page Fragment?.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 35

4.7. What was Generated for What Purpose

The table below describes the files you get in your project when generating with
JHeadstart.

File Type / File Location Purpose

DataBindings.cpx View Package property at service
level

Container file for ADF Model layer.

*PageDef.xml Page Definitions Sub Package
property at service level

Page Definitions hold definition of ADF Data
Bindings

JSF pages (*.jspx) UI Pages Directory property at
service level

JSF files define the application page using ADF
Faces.

ADF Faces Fragments (*.jsff) UI Page Regions Directory
property at service level

ADF Faces fragments are reusable pieces of ADF
Faces pages.

ApplicationResources.properties
or .java (or other name)

NLS Resource Bundle property at
service level

Resource Bundles that contain language
dependent texts and date(time) patterns.

adfc-config-[ServiceName].xml Service ADFc Config property at
service level

ADF Faces Navigation Rules between
groups.

JhsCommon-beans.xml (or other
name)

Common Beans Config property at
application level

JSF managed beans that are common to
every group in the Application Definition

Adfc-config-[GroupName].xml Group ADFc Config Directory
property at service level

ADF Faces managed beans specific to
groups in the Application Definition, plus
the navigation rules between the pages in a
group.

Menu_root.xml
Menu_[ServiceName].xml

(Root) Menu Model File property
at application/service level

Defines the menu that is visible for the
entire application and each service.

4 - 36 Using the JHeadstart Addins JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Generating Page Layouts 5 - 1

C H A P T E R

5 Generating Page Layouts

his chapter describes what the various group usages are that JHeadstart can generate.
that JHeadstart can generate. It describes the following group usages:

group usages:

 Standalone Pages

 Reusable Regions with Page Fragments

 List of Values Window

This chapter also describes the various page layout styles that JHeadstart can generate.
The following layout styles are covered:

 Creating Form Pages

 Creating Select-Form Pages

 Creating Table Pages

 Creating Table-Form Pages

 Creating Master-Detail Pages

 Creating Tree Layouts

 Creating Shuttle Layouts

 Creating Wizard Layouts

The last section of this chapter describes how you can create more advanced page layouts
by Controlling Page Layout Using Region Containers, Item and Group Regions.

T

5 - 2 Generating Page Layouts JHeadstart Developer’s Guide

5.1. Choosing a Group Usage

For each top level group, a “group usage” can be selected. As the name suggests, it tells
JHeadstart how a certain group will be used within your application. Especially the new
‘reusable region’ usage is a new and interesting feature introduced with JHeadstart 11,
allowing for more reuse within your application.

JHeadstart offers 3 different ways in which your group can be used within the
application:

 Stand-alone Pages

 Reusable Region with Page Fragments (Recommended)

 List of Values Window

The following paragraphs describe what the best option is in your situation and what
happens when you generate a group with a particular group usage.

Suggestion: There is a service level property called Default Group Usage. If
you specify a value there, you will not need to do this at the group level.

5.1.1. Stand-alone Pages

When you generate a group as stand-alone pages, each page will be generated as a
normal JSPX file (not a fragment). It is therefore not reusable inside other pages.

A stand-alone page is probably a bit easier to understand than a region with page
fragments, but is also less flexible.

There are two main reasons why stand-alone pages are less flexible compared to regions
with page fragments:

1. The generated pages are not reusable. Because the task flow is bounded but does
not use fragments, it cannot be used as a region inside other pages.

2. JHeadstart 11 generates a bounded task flow for each top-level group. For
standalone pages, this means that the entire page is within that bounded task
flow (including the top menu, global buttons, etc). Global navigation rules are
therefore not directly accessible within such a page. We have created a generic
solution for this problem, though.

Reference: This generic solution to abandon implicitly bounded task flows is
documented on the JHeadstart blog:
http://blogs.oracle.com/jheadstart/2009/04/core_adf_11_abandoning_a_bound.html

5.1.2. Region with Page Fragments (Recommended)

When you choose this option, the pages will not be generated as stand-alone pages (.jspx)
but as page fragments (.jsff). The fragment only contains the basic ‘content’ of the group
(i.e. the form or table itself) and not the common items on the screen (such as the menu).

http://blogs.oracle.com/jheadstart/2009/04/core_adf_11_abandoning_a_bound.html

JHeadstart Developer’s Guide Generating Page Layouts 5 - 3

A UIShell page will also be generated, that will act as the container for the fragment.
Therefore the UIShell page only contains the common items on the screen (such as the
menu) and not the content.

To understand how it all works together, we take a look at the following diagram, which
represents the main elements involved in showing a region with page fragments at
runtime. To make it less abstract, it shows the actual files if you would generate a (form
based) group called ‘Countries’.

The end result for the user is that (s)he will see the page UIShell.jspx with the content of
Dynamic Region set to Countries.jsff.

But how does it work?

Step 1

The UIShell page does not contain the fragment (Countries.jsff) directly, but defines the
following region:

So, the region gets is value from the bindings layer, in other words, the page definition
file (UIShellPageDef.xml). If we look there, we see the following binding defined:

5 - 4 Generating Page Layouts JHeadstart Developer’s Guide

Here we see the content of the region is determined by a taskflow.

Reference: An important concept in ADF 11 is “task flows”. The Fusion
Developers Guide has 6 chapters about it, bundled in Part III:
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/partpage3.htm#BA

BHIIAI

The region is also a dynamic region, because the taskFlowId is not hardcoded, but derived
from a managed bean ‘jhsMainRegionManager’. The idea behind this bean is that it
points to the current task flow that should be visible within the UIShell page. So neither
the page, nor the binding file gives us any clue on what the content for the region will be.
This is all stored in jhsMainRegionManager, which also stores the parameters for the
task flow.

Step 2

On each request, ADF will re-evaluate the value of the attribute ‘currentTaskFlowId’ to
see if it needs to ‘reload’ the content of the region. Also when the attribute
‘currentParamMapChanged’ is set to ‘true’ (same taskflow, but different parameters) the
region will be refreshed.

The taskflow-id looks like:
/WEB-INF/adfc-config-Countries.xml#CountriesTaskFlow

It contains the whole path to the ADFC config file that contains the task flow, plus the ID
of the task flow that needs to be started.

Now, if you click a menu tab on the top of the page, it will set the value of
‘currentTaskFlowId’ to another value, which will cause ADF to start another task flow
and reload the region.

Step 3

In this step we enter the task flow itself, defined in the adfc-config XML file. A JHeadstart
generated bounded task flow always contains a start activity (which is the default
activity), plus a create activity and a SetCurrentRow activity. The create activity will be
executed in case of a wizard, for example. Than you want to create a row first, before
displaying the page. SetCurrentRow can be used for deep linking, i.e. going directly to a
specific row in the view object, not the first row.

After these activities are complete, the ‘firstPage’ activity will be executed. This is wired
to the initial <view> that your group will display (the Table page, if you have Table-Form
layout for example). In this case it is simply the form page called Countries:

Step 4

At this point we know which fragment needs to be loaded for our region.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/partpage3.htm#BABHIIAI
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/partpage3.htm#BABHIIAI

JHeadstart Developer’s Guide Generating Page Layouts 5 - 5

ADF will now fetch the contents of the JSFF file and the task flow will now ‘pause’ here,
until the user will do another action.

Notice that the page fragment (Countries.jsff) has another page definition file than
the UIShell. Therefore the Countries task flow is really independent of the context in
which it is used.

Step 5

The content of the fragment that was found, is put inside of the <af:region> and
displayed to the user.

5.1.2.1. Common vs. Group UIShell page

When the group usage is set to ‘Region with Page Fragments’ JHeadstart gives another
choice:

 Generate one UIShell page for the whole application. This means that this
UIShell page will be the single JSPX file used; all other pages in your application
are fragments (JSFF) that are shown within this page.
This approach generates the fewest number of files and is the fastest at runtime.

 Generate a UIShell page per group. The filename of this page will simply be
GroupName.jspx (e.g. Countries.jspx). This group page will work in the same way
as the application-wide UIShell page; except that if you navigate to another
group, it will not simply refresh its region but really navigate to that page.
This approach generates one file extra per group (the group UIShell page). It is
also slightly slower at runtime, because navigating between groups means that
not only the region needs to be refreshed, but the entire page. Use the option if
the page content surrounding the group content should be different from the
standard UIShell content.

5.1.3. Reusing Groups

JHeadstart does not only generate regions with fragments, it also supports reusing them
inside other pages.

Suppose we have an Employees group that will display all Employees in a table layout,
which can be accessed via the top level menu. We also have a Departments group that
needs to display the employees for the current department as well. So we need to display
employees at two levels:

1. We want to see and edit all employees via the top level menu entry

2. We want to see and edit the Employees for a certain department on the
Departments page.

In JHeadstart, we now have two options to do this:

1. Create two groups for the Employees: one top level group, and one nested detail
group inside Departments.

5 - 6 Generating Page Layouts JHeadstart Developer’s Guide

2. Create one top level group for Employees, and reuse that group within the
Departments group.

The first option is perhaps the most straightforward; but it also contains a complete (and
redundant) copy of the Employees group. Especially when you need to do a lot of
maintenance or heavy customizations on these groups this is not desirable.

The second option is much more ‘clean’. It allows for a complete reuse of the Employees
group. Of course, we need to do little adjustments to the group to make it fully reusable;
for example, the group needs to be able to show only the employees for a certain
department.

To re-use a group inside another group, follow the following steps:

5.1.3.1. Create the reusable group

First create the group that you want to re-use, with group-usage set to “Region with Page
Fragments”. In the example below we want to re-use the Employees group in our
application, so make sure the group usage is set correctly.

The group that includes the re-usable group (such as Departments) does not have to be a
reusable group.

5.1.3.2. Add reusable group inside other group

Locate or create the group that will contain your reusable group (the Departments group
in this example). Right click the Regions folder, and create a Group Region.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 7

Give the new Group Region a name, and mark the checkbox ‘Include as ADF Region’.
Now you can select your reusable group from the dropdown box at ‘Group Name’.
Notice that the reusable group does not have to reside in the same Service; you can
choose any reusable group within your application!

We can generate our application now, which will give us the following Departments
page:

5 - 8 Generating Page Layouts JHeadstart Developer’s Guide

So we have already successfully included an Employees table in the Departments page.

However, it needs some customizations. We see all the employees, plus we see another
Save/Cancel button and a search region. This is not what we want in this case.

However, removing the buttons from the Employees region would also remove them
from the top-level page. We do not want this to happen. Therefore we need to make the
Employees region more flexible so we can dynamically set the ‘scope’ of employees (all or
a specific department) and also show or hide the buttons and search area dynamically.

To restrict the query when used as a child of the Departments group, we have two
options:

 We can set up an optional department id bind parameter on the view object and
pass that in when used as child of the Departments group.

 We can use the Data Collection Expression group property to dynamically
switch the view object usage of the employees iterator binding at runtime.

Both techniques are explained below. While more advanced, the second technique is
generally easier and faster to implement.

5.1.3.3. Using a Bind Parameter to Restrict the Employees Query

Double click your View Object and go to the Query tab. Press the Edit icon and type in
the new Where Clause:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 9

We introduced a bind parameter dep_id that can either be NULL (then every employee
will be returned) or contain a Department_ID. In the latter case only the employees for
the department with that ID will be returned.

We also need to define our dep_id as a bind variable, by clicking Bind Variables in the
left column. Click New and set the name and type of the variable to the correct values:

Now our view object is ready to handle both situations: standalone and as a sub-view of
departments.

5 - 10 Generating Page Layouts JHeadstart Developer’s Guide

Now that we have defined our bind variable, we need to set its value. Go to the reusable
group, and create a Parameter:

When JHeadstart generates this group, it will now introduce a new task flow input
parameter called ‘DepId’, which can be accessed with the EL statement
#{pageFlowScope.DepId}.

This is the value we want to put in our bind param, so we go to the Employees group
and set the bind parameter to this value. The dropdown box knows about our defined
input parameter, and already gives you the value. All you need to do is prefix this value
with dep_id=, because we are using named bind variables.

We are finished with our customizations on the Employees group. It is flexible enough
to show all rows (when the parameter DepId is empty) or to show only the employees
for a specific department (when DepId is not null).

Suggestion: The top level group Employees will show all Employees in this
case, because the parameter ‘DepId’ is by default empty (null). If you specify
a value for the parameter however, it will be used as the default value. So if you
enter a value like 20 (Marketing Department) you will only see the Employees
of the Marketing Department on the top level Employees page.

To set the value of the DepId parameter on the Departments page, we go to the
EmployeesInDepartment group region inside the Departments group. Use the green
+ icon or right-click the group region to add a parameter.

All available taskflow parameters are shown in the combo box when you click on the
parameter name, so you can select "DepId" from the list. We want to set the value of the
parameter to the current DepartmentId, which is
#{bindings.DepartmentsDepartmentId.inputValue}. This is same expression as you will
find in the ‘value’ attribute of the DepartmentId component inside the JSF page.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 11

5.1.3.4. Using the Data Collection Expression Property

When you initially create an application based on the HR application, you get a separate
Employees3 group as a detail group of the Departments group. This Employees3 group is
based on the EmployeesView3 view object usage, which is a nested usage in the
application module, as shown below.

Because EmployeesView3 is nested, ADF Business Components takes care of the master-
detail synchronization as explained in section 5.6 Creating Master-Detail Pages.

By using the group-level Data Collection Expression property we can switch at runtime
the view object usage of the employees iterator binding: when the employees group is
used as a top-level group, it should use EmployeesView1 view object usage, when used
as a detail of Departments group, it should use the EmployeesView3 view object usage.

Here are the steps to do this:

 We first define a parameter named dataCollection for the Employees group,
with the (default) value set to EmployeesView1

5 - 12 Generating Page Layouts JHeadstart Developer’s Guide

 Still in the Employees group, we set the Data Collection Expression to the value
of the dataCollection taskflow parameter which can be picked from the combo
box.

 In the Departments group, we go to the EmployeesInDepartment group region,
and we add the same dataCollection parameter, and set the value to
EmployeesView3.

That's all! If you are curious how this works at runtime, then take a look at the
EmployeesIterator generated into the EmployeesPageDef:

As you can see, the Binds property of the iterator binding does not contain the hard
coded value of an employee view object usage, but now gets the value from our task flow
parameter.

5.1.3.5. Hiding Save/Cancel Buttons and the Search Area

On the Departments page, there were also unnecessary Save/Cancel buttons for the
Employees table, as well as a search area that we don’t need in this case.

Fortunately, every reusable group has predefined task flow parameters for hiding those
elements. When you add a new parameter, and click on the name property, the combo
box list already shows all available task flow parameters. Add the parameters
hideSaveButton, hideCancelButton and hideSearchArea and set the value to
true.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 13

When we regenerate our JHeadstart application, we get the desired result:

The Save/Cancel buttons are gone, the search area is no longer visible and only those
employees are shown that belong to the current Department.

You might argue that when used as a child of the departments group, we do not want to
see the DepartmentId column at all in the employees table. Well, this is easy to do,
either by adding an additional taskflow parameter, or using an existing one. For example,
when using the dataCollection parameter to restrict the employees query, we know
that the DepartmentId column should be hidden when the value of the
dataCollection parameter is "EmployeesView3". This can be achieved by setting the
Display in Table Layout property of DepartmentId item to
#{pageFlowScope.dataCollection!='EmployeesView3'}

5.1.4. List of Values Window

When you choose List of Values, JHeadstart will generate:

 One adfc config file with a bounded task flow, plus the beans for the List of
Values component

 One page fragment

 No UI Shell page

The LOV is therefore a completely reusable component throughout your application. For
more information about the JHeadstart LOV, see Chapter 6, section “Generating a List of
Values (LOV)”.

5.1.5. Showing a Group in a Popup Window

It is also possible to show the content of a group in a dialog popup window. This can be
done in two ways:

 By defining an item in the base group with Display Type “groupLink”. See
chapter 6, section “Navigating Context-Sensitive to Another Group Taskflow
(Deep Linking)” for more information.

 By defining a group region inside a region container with display style “Modal
Popup Window” or “Modeless Popup Window” See section 5.10.4 Generating
Content in a Popup Window

5 - 14 Generating Page Layouts JHeadstart Developer’s Guide

5.2. Creating Form Pages

With a form page you can manipulate one row at a time. You typically use a form page
when the row has many attributes and you want to show all of them.

To generate a Form Page you set the Layout Style property to "form".

There are a couple of group properties in the Form Layout category that influence this
layout style:

 The Label Alignment property can be used to position the labels at the left or
above the items.

 The Forms Width property determines the amount of horizontal space the form
layout can consume on the page as a percentage or in pixels. If you set this to
100%, the items will spread out over the whole page. However, the items will
not be aligned with each other, but will be spread over the page to take the full
space available.

 The Label Width property defines the preferred width of the labels. The web
browser may override this dimension if it cannot fit the labels in the space
allocated. You may define the Label Width using any CSS unit such as em, px, or
%. The units used for this value must be identical to the units used in the Field
Width value. If a Label Width is provided as a percentage Label Width and the
Field Width should total up to 100% (regardless of the number of columns). If
the Label Width is not specified, the browser will let the children components
have a natural flowing layout. However, if the Label Width is not specified but a
Field Width is specified as a percentage, the Label Width will be derived as the
appropriate percentage value for you.

 The Field Width property defines the preferred width of the fields. The web
browser may override this dimension if it cannot fit the fields in the space
allocated. You may define the Field Width using any CSS unit such as em, px, or
%. The units used for this value must be identical to the units used in the Label
Width value. If a Field Width is provided as a percentage the Label Width and
the Field Width should total up to 100% (regardless of the number of columns).
If the Field Width is not specified, the browser will let the children components
have a natural flowing layout. However, if the Field Width is not specified but a
Label Width is specified as a percentage, the Field Width will be derived as the
appropriate percentage value for you.

 The Columns property defines the maximum number of columns to show.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 15

 The Rows property defines the number of rows after which to start a new
column. The number of rows actually rendered depends also on the Columns
property. If the children will not fit in the given number of rows and columns,
the number of rows will increase to accomodate the children.

Normally, you can leave the Rows property to the default of 1, and only specify the
Columns property. ADF faces will then equally distribute the items over the number of
columns specified, as shown below.

If you want the first column to have more items, then you should set the Rows property.
For example, the layout shown below is generated with Rows set to 7 and Columns to 2.

See section Controlling Page Layout Using Region Containers, Item and Group Regions
for more info on how you can group items on the page and have more control over the
relative positioning of these item groups.

Attention: The display sequence of the items on the generated page is
determined by the order of the items in the group in the Application
Definition. The items are laid out from top to bottom, and left to right.

Attention: The order of the rows when navigating to the next or previous
record is determined by the Order By clause in the View Object. See section
3.3.5 - Determining the Order of Displayed Rows.

5.2.1. Displaying an Item at the Right of Another Item

Sometimes you want to position an item directly at the right of another item, regardless
of the number of columns specified for the form layout. For example, zip code and city
should always be displayed beside each other, or when using LOV items, additional
items copied back by the LOV should be displayed at the right of the LOV item. To
achieve this you can use the Display at Right of Item property.

5 - 16 Generating Page Layouts JHeadstart Developer’s Guide

In the above screen shot, the ManagerEmail item is configured to be displayed at the
right of the ManagerName item, which results in a generated layout as shown below.

5.2.2. Hiding Items on the Form Page

With the Display in Form Layout? property, you can determine which items will be
generated in the form page.

The Display in Form Layout? property has three possible values:

1. True. The item is generated in the form page

2. False. The item is not present in the generated form page

3. A custom EL expression that is evaluated at runtime (must return true or false).
For example, by using an EL expression, you can conditionally show/hide the
item based on the value of another item, or based on task flow input parameters.

5.2.3. Create and Update Mode in Form Layout

JHeadstart does not generate separate pages for handling the creation of new records, or
the update of existing records in form layout. Instead, one page is used for both

JHeadstart Developer’s Guide Generating Page Layouts 5 - 17

situations. Depending on the page being in ‘Create’ mode or ‘Update’ mode, some
elements on the page act differently:

1. The title of the page is ‘Enter…’ when in ‘Create’ mode and ‘Edit…’ when in
‘Update’ mode. The verb used to prefix the Display Title Singular property
(Enter or Create), is read from the templates/nls/GeneratorText resource bundle
and can easily be changed. If you don’t want a prefix at all, and just use the
Display Title Singular property as is, then you can uncheck the group property
checkbox Add Verb to Form Title. Note that this property is only visible in
expert mode.

2. Components for record browsing are only shown in ‘Update’ mode.

3. New and Delete Buttons are only shown in 'Update' mode.

4. Quick/Advanced search area is hidden.

Page in ‘Update’ mode:

The same page in ‘Create’ mode:

When pressing a ‘New’ button, the execute method on the CreateRowBean is
executed which in turn invokes the ‘CreateInsert’ action in the paged definition. The
execute method stores an entry in a managed bean Hashmap called createModes, with
the name of the Create action binding as the key, and Boolean.TRUE as the value. As a
result of this, the following expression can be used to check whether the Departments
group is in create mode:

#{pageFlowScope.createModes.CreateEmployees}

Note that JHeadstart always suffixes the name of the Create binding with the group
name, to prevent duplicate binding names when multiple groups are displayed on the
same page.

With this knowledge you will understand the expression that is used to display the
correct page title:

5 - 18 Generating Page Layouts JHeadstart Developer’s Guide

<af:panelHeader text="#{pageFlowScope.createModes.CreateEmployees ?

nls['INSERT_TITLE_EMPLOYEESFORM'] :

nls['EDIT_TITLE_EMPLOYEESFOR:#{bindings.EmployeesLastName}'] }"

And the rendered property of the New and Delete buttons looks simply like this:

rendered="#{!pageFlowScope.createModes.CreateEmployees}"

When you press Save in the form page, the execute() method in the CommitBean is
called, and this method will remove all entries from the createModes managed bean
Hashmap when the commit is successful.

5.2.4. Controlling the Page Title in Form Layout

JHeadstart uses the Display Title Singular property to determine the title in form
layouts. If this property is not set, it uses the value of the Display Title Plural property.

You will have noticed that JHeadstart also adds a verb in front of the title based on
whether the form is in create, update or view mode. If you do not want this verb to be
added, and you just want to use the value of the Display Title Singular property, then
you should uncheck the checkbox property Add Verb to Form Title?.

If you do not want to display a title at all, you can uncheck checkbox property Show
Display Title?.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 19

5.3. Creating Select-Form Pages

A Select-Form layout consists of:

 A Select page with a list box where the user can select a row, and

 A Form page to enter or update a single row.

The Select Page contains a list box that displays one unique item from the group’s data
collection. The user can then find the appropriate row, select it, and perform the desired
action (View, Edit, Delete, New). When New, View or Edit is pressed the Form Page is
displayed. That page is similar to the page described in the section 5.1 Creating Form
Pages above.

Use a Select-Form page when the number of records is fairly small.

Make the following changes to your group in the Application Definition to generate a
Select-Form layout:

1. Set the Layout Style property to ‘select-form’.

2. Determine which item value should be displayed in the list box on the Select
Page. Specify that item to be the Descriptor Item of the group. You can only
display one item in the list box, but it could be based on an attribute that contains
a concatenation of a number of fields queried from the database. See section 3.3.6
"Create Calculated or Transient Attributes" on how to create such an attribute.

3. See the section 5.1 Creating Form Pages above to see which properties are
appropriate for the Form Page. All properties that are appropriate to a Form
layout also apply to the Form page of the Select-Form layout.

Attention: The order of the rows in the list box in the Select Page is determined
by the Order By clause in the View Object. See section 3.3.5 - Determining the
Order of Displayed Rows.

5 - 20 Generating Page Layouts JHeadstart Developer’s Guide

5.4. Creating Table Pages

In many situations you want to present multiple records to the user in one page. You can
generate this type of page in a number of ways:

1. Using a Table Page. In a Table Page the data can be manipulated directly in the
table. Use this option when the number of items in the group is small, so the table
fits on the page. See the remainder of this section.

2. Using a Table Page with table overflow. Use this when the number of items is too
large to fit on one row, and it is important to have all items in view with the
entire table. With table overflow you can see some extra data for one of the rows
on the same page as the table. See section Using Table Overflow.

3. Using a Table-Form Page. Use this when the number of items is too large to fit on
one page, and you want a separate page with an overview of an entire row. This
is a combination of a Table Layout with multiple rows and a Form Layout for
manipulating one row. From the table page you can navigate to a form page to
manipulate one row. See section Creating Table-Form Pages.

5.4.1. Using Table Layout and Stretching

Set the Layout Style property of your group to ‘table’ to generate a Table Page:

By default the generated table looks as follows:

The order of the rows in the table is determined by the Order By clause in the View
Object. See section 3.3.5 - Determining the Order of Displayed Rows.

The number of rows displayed is based on the setting of the Table Range Size property
which is set to 10 for the page shown above. The width of the table is determined by the
Table Width property which by default is set to Compute. The Table Width property
has three possible values:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 21

 Compute: JHeadstart computes a default table width in pixels by looping over
the items displayed in the table, and checking the item Column Width property,
and if not set, the maximum length of the underlying view object attribute. The
computed table width value has a maximum as specified by the application-level
property Maximum Table Width.

 Stretch: Table stretches horizontally using the available space

 A custom value in pixels. This value can be typed in, and will be used as table
width.

If you have a table with many columns, we recommend setting the Table Width to
Stretch. When you do this, and the user resizes the browser window, the number of
columns shown will change accordingly, and the horizontal table scrollbar will also
adjust to allow you to see all the columns that are initially not visible. You can also stretch
the table vertically, the number of rows displayed will then be dependent of the amount
of vertical space available. Resizing the browser window will then also change the
number of rows displayed in the table. To enable vertical stretching you check the group-
level checkbox property Enable Stretching?. Note that whether the table stretching
actually occurs depends on a number of rules that must be met, that are also documented
in the help text of the Enable Stretching? Property. These rules can be summarized by
saying that stretching is only possible if no other user interface items are displayed at the
right or below the item within the same stretchable area.

Attention: Enabling horizontal and vertical stretching on tables is also the preferred

solution to accommodate for the situation where various end users might use different

screen resolutions.

If your table has so many columns that it is likely that a horizontal scrollbar will appear,
you can configure which items should be frozen. Frozen items are always displayed at
the left and do not disappear when the user starts using the horizontal scrollbar. The last
frozen item can be set using the Table Freeze Style property, as shown below.

The screen shot below shows the table with the Table Freeze Style set to "Freeze up to
Descriptor Item" and the Descriptor Item set to LastName.

5 - 22 Generating Page Layouts JHeadstart Developer’s Guide

5.4.2. Using a Table Overflow Area

It is also possible to include detail information for the current row of a table within the
table page. This is called table overflow. A table overflow area can be used when it is
important to have the data in view with the entire table, but the user may or may not
want to view the data at all times. You can also use table overflow to prevent horizontal
scrollbars to appear when the table width exceeds the available page width.

You configure a table overflow area using the Table Overflow Style property for the
group.

When set to Inline, each row in the table has an expand/collapse icon. When the user
clicks expand, the overflow area is shown directly below the current row, and above the
next row.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 23

When set to Right, the overflow area is always displayed at the right of the table. When
you change the row by clicking on it, or by using the arrow keys, the information in the
overflow area will be updated for the newly selected row.

When set to Right with Splitter, the overflow area is also displayed to the right of
the table, with a splitter in between. The splitter allows you redivide the amount of
horizontal space (the width) taken by the table versus the amount of space taken by the
overflow area. This setting allows you to continue to use horizontal and vertical table
stretching, which is not possible with overflow style Right. So, this setting only makes
sense if you have enabled stretching as explained in the previous section Using Table
Layout and Stretching.

When set to Below, the overflow area is always shown below the table.

When set to Below with Splitter, the overflow area is displayed below the table,
with a splitter in between. The splitter allows you redivide the amount of vertical space
taken by the table (the height) versus the amount of space taken by the overflow area.
This setting allows you to continue to use horizontal and vertical table stretching, which
is not possible with overflow style Right. So, this setting only makes sense if you have
enabled stretching as explained in the previous section Using Table Layout and
Stretching.

The overflow area displays all items that have the Display in Table Overflow Area?
property set to true, plus any regions you may have defined if they contain items. It is
also possible to show detail groups in the table overflow area, see Creating Master-Detail
Pages.

In the table overflow area you can apply regions similar to the way you use regions in
form layouts, see section Controlling Page Layout Using Region Containers, Item and
Group Regions. Below is an example of an inline table overflow style with two item
regions inside a horizontal region container.

5 - 24 Generating Page Layouts JHeadstart Developer’s Guide

Attention: While the Table Overflow Style property does not have a popup
style, you can generate popup windows that effectively behave as an overflow
area in a popup window. See section Generating Content in a Popup Window
for more information

5.4.3. Hiding Items in a Table

With the Display in Table Layout? property, you can determine which items will be
generated in the table.

The Display in Table Layout? property has three possible values:

 True. The item is generated in the table page

 False. The item is not present in the generated table page

 A custom EL expression that is evaluated at runtime (must return true or false).
For example, by using an EL expression, you can conditionally show/hide the
item based on the value of another item, or based on task flow input parameters.

5.4.4. Allowing the User to Sort Data in a Table Page

It is possible to generate a feature where the user can do an online sort of the records
queried in a table. The user can simply click on one of the order icons that appear
automatically when the user places his pointer over the column header:

To generate the sortable icons, set the Column Sortable property on the item level to
true, for those items you wish to be sortable.

5.4.5. Adding Summary Information to a Table

For numeric columns, you can add summary information in the table footer. You can
choose from 3 types:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 25

1. Sum

2. Average

3. Count

The summary will be displayed in the table footer. The label of the table footer is by
default Total, but you can change that in the Resource Bundle (see Chapter 11
"Internationalization and Messaging").

The example screenshot below shows the average salary in the table footer.

To generate such a table summary, go to the item you want to summarize, and set the
property Display Summary Type in Table to the desired type of summary.

5.4.6. Change Table-Related ADF Business Components Settings

By default, ADF BC View Objects fetch rows from the database one at a time. So for each
row there is a round-trip from the application server to the database.

5 - 26 Generating Page Layouts JHeadstart Developer’s Guide

When retrieving multiple rows at a time, this is an unnecessary slow-down. So we
recommend adapting the settings in the View Object to the settings in the JHeadstart
group as follows:

When Use Table Range? is true, set All Rows in Batches to the value of Table Range
Size + 1. When Use Table Range? Is false or Enable Stretching? is checked , set it to the
number of rows a user can normally see on the screen.

Reference: There is much more to say about ADF Business Components
tuning. This section explains only the ADF BC settings that are directly related
to values of JHeadstart properties. For more information on ADF BC tuning,
see the Fusion Developers Guide, section 39.2 Tuning Your View Objects for
Best Performance:
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvvo.htm#sm03

42

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvvo.htm#sm0342
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcadvvo.htm#sm0342

JHeadstart Developer’s Guide Generating Page Layouts 5 - 27

5.5. Creating Table-Form Pages

A Table-Form page is a combination of a multi-row page called a Table Page and a single
row page called a Form Page. In the Table Page the user can select a row. If the user
selects a row in the Table Page and presses the button or hyperlink to view the details,
then the Form Page opens, and the user can manipulate the selected row, or create a new
row.

Attention: The Table-Form page layout consists of a combination of the Table
layout and the Form layout. You can use the group properties described
specifically for Table layout to layout the Table part of the Table-Form layout.
Similarly, you can use the group properties described specifically for the Form
layout to layout the Form part of the Table-Form layout. View the sections
Creating Form Pages and Creating Table Pages to see which properties are
available.

Steps to create a table-form page:

1. Set the Layout Style property to ‘table-form’ to generate a Table Page and a Form
Page for the group.

2. Set Display in Table Layout? property to true for items you want to have in the
table page.

3. Set Display in Form Layout? property to true for items you want to have in the
form page.

4. Choose between a button or hyperlink for the means of navigation to the form
page by setting the Table-Form link property for the group.

When you choose a link for navigation to the form page, you will get a link on the item
specified as Descriptor Item.

When you choose a button for navigation to the form page, you will get an iconic button
like this:

Note that while not required, it is common to make the table read-only with this layout
style, since editing typically occurs in the form page.

5 - 28 Generating Page Layouts JHeadstart Developer’s Guide

5.6. Creating Master-Detail Pages

You may want to create pages that are related together as in a master-detail (parent-
child) relationship. To be able to generate such master-detail pages you should perform
the following steps:

1. Check the data model of your Application Module. The master-detail relation
should be present as nested View Instances.

2. Create a group in the Application Definition for the master page, and create a
detail group for the detail page. Set the Data Collection of the master group to the
master View Object and the Data Collection of the detail group to the detail View
Object. Note that for the detail group, by default you can only select View Objects
that are detail View Objects of the master View Object. When the View Object
you need does not show up in the Detail Group, go back to step 1 and correct
your Data Model. If you deliberately want to choose a view object usage that is
NOT nested for the detail group, you can uncheck the property Dependent Data
Collection. When this property is unchecked, you can choose any view object
usage from your data model.

5.6.1. Master-Detail on Separate Page

Uncheck the Same Page? property for the detail group. This indicates that the detail
should be generated on a separate page.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 29

 Example In this example the Region and Country groups are displayed on separate pages.

On the Region (master) page, we see the following button to the detail page:

On the detail page, we see the following:

As you can see the Countries are shown on the second page.
The links on the top, so-called breadcrumbs, can be used to navigate back to the Regions
table and form pages.

5.6.2. Master-Details on Same Page

To be able to generate master-detail groups on a single page you must check the Same
Page? property for the detail groups you want to show on the same page as the master
group. For each detail group, you can then set the Same Page Position property to the
desired value.

 Example In this example the Region and the Country groups are defined to be displayed on
the same page.

As you can see the master and the detail group have been generated on the same

page in a master-detail layout.

5 - 30 Generating Page Layouts JHeadstart Developer’s Guide

5.6.2.1. Stretching the Detail Table

If the detail group has a table layout, and you want to vertically stretch the table to show
as many rows as possible, you must check the property Enable Stretching? on both the
detail group AND the master group.

5.6.2.2. Stacking Groups on Same Page

If a master group has several detail groups that need to be displayed on the same page, a
common design is to stack the detail groups using tabs or an accordion. You can achieve
this by setting the Stack Groups on Same Page to the desired value.

 In the generated screen shot below the ManagedDepartments and Subordinates
groups have Same Page checked, and the Same Page Display Position set to "Below
Parent Group with Splitter". The parent Employees group has property Stack
Groups on Same Page set to "Detail Groups Only (Tabbed)". The initial splitter
position is set using the Group Height property on the Employees group

JHeadstart Developer’s Guide Generating Page Layouts 5 - 31

You also stack all groups on the same page, using tabs or an accordion. The screen shot
below shows the layout you get when setting the Stack Groups on Same Page property
to All groups (Accordion).

The advantage of using an accordion over tabs is that the end user can decide how many
groups he wants to see simultaneously.

5.6.2.3. Grand Master-Master-Detail pages

In addition to having multiple sibling detail groups, you can also have detail groups that
in turn have detail groups. Again, you should first make sure the data model of the

5 - 32 Generating Page Layouts JHeadstart Developer’s Guide

application module supports more levels of master-detail nesting. You can nest as deeply
as you want.

In the above screen shot we have set up three levels of nesting. In the JHeadstart
Application Definition Editor, we can create the same group structure.

Again, we have multiple options to position the three groups. In the screen shot below,
the Countries group has Same Page Display Position set to Below Parent Group
while the Locations group has the same property set to At the Right of Parent
group With Splitter.

5.6.2.4. Nested Tables

Using the Table Overflow Style property for the group, you can generate detail group
(or child) tables within the table overflow area.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 33

For this to work, the Layout Style of the parent group must be set to “table” (with layout
style “table-form” the detail table will only be shown on the form page), the Table
Overflow Style of the parent must have a value (for example inline as in the screenshot),
the detail group must have the Same Page? checkbox checked, and the Same Page
Position property of the detail group must be "In Table Overflow Area of Parent Group".
The Layout Style of the detail group does not have to be table. Other layout styles are
also supported.

Note that the nested table could itself have another nested table in the inline table
overflow, allowing you to nest groups on the same page as many levels deep as you
want.

5.6.2.5. More Advanced Layouts for Master-Detail Pages

Using Region Containers, Detail Group Regions and Item Regions, you can create even
more advanced designs for your master-detail pages. For more information, see section
Controlling Page Layout Using Region Containers, Item and Group Regions.

5 - 34 Generating Page Layouts JHeadstart Developer’s Guide

5.7. Creating Tree Layouts

You can use JHeadstart to generate tree controls. A tree control is extremely useful for
showing hierarchical structures in your data model.

Examples:

 Geographical areas subdivided in regions.

 Bill of Material structures: parts consisting of sub parts, consisting of sub-sub
parts and so on.

 Organizational structures.

This section will explain how to generate such a tree control with JHeadstart.

5.7.1. Choosing a Tree Layout Style

There are three group layout styles that you can use to generate tree structures:

 reusableTree: this option only generates a reusable tree component. The tree
component can be used as an alternative menu: you can link the nodes of the tree
component to other groups in your application definition editor, and then the
form page of this linked group will be displayed at the right of the tree, showing
the row that matches the tree node that was clicked.

 tree-form: with this option the group generates both a tree component and
associated form page that shows the row that matches the tree node that was
clicked. The tree component is generated in a group-specific shell page, which
means the tree-form group cannot be reused as a region within other pages. Also,
the tree-form group must be a top-level group, you cannot have a detail group
with tree-form layout while the parent group does not have a tree or tree-form
layout.

 tree: this option generates a non-clickable tree node. It only makes sense to use
this in combination with tree-form groups, if some of the nodes on the tree
should ne non-clickable. If none of the nodes in the tree should be clickable, it is
better to use the reusableTree layout because you can then embed the tree in
other pages.

Using the tree layout is slightly more work to configure in the application definition
editor, but has the following advantages:

 The tree component is generated as a region containing a taskflow with page
fragments that can be reused in other pages. The tree region contains nested
regions that show the form page for each node type.

 You can reuse groups that maintain a data collection and are directly accessible
through the menu. This means that you can provide various ways of accessing
the same data to the end user. An end user can use the menu to navigate to a
group and query a specific row, or he can use the tree component and click on
the tree node to see the desired rowdata.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 35

 When building a recursive tree, you can use the same group for showing the
form page for the root nodes (the nodes where the recursive foreign key is null),
as well as the child nodes. This can save a lot of (duplicate) work if other detail
groups without a tree layout are shown on the same page. In the case of a tree-
form layout, the two groups with tree-form layout that together make up the
recursive tree, both need to have the same detail groups defined.

5.7.2. Generating a Basic Tree

Most of the tree controls you will generate will be of the basic category. There are a few
variations that will be explained in later sections:

 Variation: Basic Tree with non-clickable nodes

 Variation: Recursive Tree

 Variation: Recursive Tree with Limited Set of Root Nodes

 Variation: Tree showing only Children of selected Parent

It is advised to start with the basic steps, before reading the variations.

In the HR sample schema, a geographical structure is present that can be used in a tree
control. We have REGIONS, consisting of multiple COUNTRIES, consisting of multiple
LOCATIONS, consisting of multiple DEPARTMENTS, consisting of multiple
EMPLOYEES.

So this is our database diagram:

We will generate a tree with REGIONS, COUNTRIES and LOCATIONS.

Steps:

5 - 36 Generating Page Layouts JHeadstart Developer’s Guide

1. Check your model. Make sure you have a View Object for each level you want to
show in the tree control. Check the presence of View Links between the View Objects.
In this example, you will need a View Object for REGIONS, for COUNTRIES and for
LOCATIONS and two View Links for the foreign keys between the tables. You can
check this by editing your application module and inspecting the available View
Objects. Each View Object should have the correct child View Objects as shown
below.

2. Add View Object Usages for these View Objects to the Data Model of the Application
Module. Add Countries as a child of Regions and Locations as a child of Countries.
When adding a detail view, it is important to select the subview in the list of
Available View Objects. The subviews are indented in the picture above within the
red rectangles. Then select the intended parent Data Collection in the Data Model,
and click the right arrow button. You should end up with something like this:

3. For each tree node that you want to be clickable, you need a top-level view object
usage that can return any row of that node type. Since the RegionsView1 is already a
top-level usage, you can use that usage both for the top-level tree node, as well as for

JHeadstart Developer’s Guide Generating Page Layouts 5 - 37

the Regions form page.

4. Run the ‘New Service Definition’ wizard based on the above application module
data model. You will end up with something like this:

The remainder of the steps depends on whether you want to generate a reusable or non-
reusable tree

5.7.2.1. Generating a Basic Reusable Tree

Perform the following additional steps to generate a non-reusable tree.

5. You need to make sure the JHeadstart Application Definition has groups and detail
groups for generating both your tree as well as separate groups with “form” or
“table-form” layout you can link to when clicking on a tree node. So, we need to
make a copy of the Regions group, and rename the existing Regions group to
RegionsTree. For clarity, we also rename the Countries2 group to CountriesTreeNode
and the Locations3 group to LocationsTreeNode. Your group structure should look

5 - 38 Generating Page Layouts JHeadstart Developer’s Guide

like this:

6. For the RegionsTree group and all detail groups below it, change the Layout Style
property to 'reusableTree'.

7. For the RegionsTree group add a Group Region named “Regions”, check the
checkbox property Include as ADF Region? And set the Group Name property to
the Regions group in this service.

8. For the CountriesTreeNode group add a Group Region named “Countries”, check
the checkbox property Include as ADF Region? And set the Group Name property
to the Countries group in this service.

9. For the LocationsTreeNode group add a Group Region named “Locations”, check the
checkbox property Include as ADF Region? And set the Group Name property to
the Locations group in this service.

10. For the RegionsTree group and all detail groups below it, check the checkbox
property Enable Stretching? on each group, as wel as on the “Regions” region

JHeadstart Developer’s Guide Generating Page Layouts 5 - 39

container of each group.

11. Select the correct Descriptor Item for each group to determine which item must be
shown in the tree control (for example choose RegionName instead of RegionId).
Note: you could also create a new attribute that combines the values of several other
attributes, and use that as the basis for the descriptor item. See section 3.3.6 "Create
Calculated or Transient Attributes" on how to create such an attribute.

12. By default, the tree is rendered in collapsed mode when it is accessed for the first
time. If you want to show the tree in expanded mode by default, you can achieve this
by checking the property Show Tree Expanded? for the top-level tree group.

13. If you only want to access the “tree target” groups (Regions, Countries and Locations
in the example) through the tree component, and not directly through the menu, you
should switch the application definition editor to expert mode, and uncheck the
checkbox Add Menu Entry for this Group?

5 - 40 Generating Page Layouts JHeadstart Developer’s Guide

That’s it. Your generated tree will look similar to the picture below.

Note that the correct row is shown when clicking on a tree node because the Group
Region property Set Current Row in Region property is checked. When checked, this
property ensures that the rowKey of the selected tree node is passed as a parameter to the
region (with a parameter name like rowKeyGroupName). This property is a shortcut for
defining the rowkeyGroupName parameter explicitly. If you want to define the
parameter explicitly, you can use #{pageFlowScope.treeNodeRowKey} as the value
expression for the parameter.

5.7.2.2. Generating a Basic Non-Reusable Tree

Perform the following additional steps to generate a non-reusable tree.

5. For the Regions group and all detail groups below it, change the Layout Style
property to 'tree-form'.

6. For each of the tree-form groups, we need to specify two Data Collections:

The Data Collection property specifies the usage for selecting a tree node and
viewing / maintaining the data in a form layout. This should reference a separate
View Object Usage at the top level in the Application Module.

The Tree Data Collection property specifies the usage for showing the hierarchical
structure of the tree, and needs to be a child usage of the direct parent group's Tree
Data Collection. If there is no parent group, the Tree Data Collection must reference a
top-level View Object Usage in the Application Module.

If you originally created the groups using the New Service Definition Wizard, change
the Tree Data Collection to be the same as the generated Data Collection property,
and then change the Data Collection property to the top-level View Object Usage of
that view (for example RegionsView1, CountriesView1, LocationsView1) in all tree
detail groups. Only in the tree top-level group, the Data Collection and Tree Data
Collection can have the same value. When you want to use Quick Search or
Advanced Search on the tree top-level group, the two properties must have the same
value.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 41

Attention: The reason why a Data Collection that references a top-level View
Object Usage is required here is the following. If you select a child node in the
tree, and you would use the Tree Data Collection to set the current row for
display in the form area, the row might not be found because the current row
in the parent View Object instance might be different from the parent node in
the tree.

7. Select the correct Descriptor Item for each group to determine which item must be
shown in the tree control (for example choose RegionName instead of RegionId).
Note: you could also create a new attribute that combines the values of several other
attributes, and use that as the basis for the descriptor item. See section 3.3.6 "Create
Calculated or Transient Attributes" on how to create such an attribute.

8. By default, the tree is rendered in collapsed mode when it is accessed for the first
time. If you want to show the tree in expanded mode by default, you can achieve this
by checking the property Show Tree Expanded? for the top-level tree group.

9. Run the JHeadstart Application Generator. You will get something like this:

You can use the tree control to drill down the hierarchical structure.

You can edit records on each level. JHeadstart has added a maintenance page for
REGIONS, COUNTRIES and LOCATIONS. You can navigate to the maintenance page by
clicking on the appropriate hyperlink in the tree.

5.7.3. Variation: Basic Tree with non-clickable nodes

Suppose you do not need editing capability on each level of your tree. For example, you
need REGION and COUNTRY only to drill down to the desired LOCATION.

5 - 42 Generating Page Layouts JHeadstart Developer’s Guide

In case you followed the steps for a reusable tree, you simply remove, the group regions
defined for the Regions and Countries group.

In case you followed the steps for a non-reusable tree, you change the Layout Style
property of the regions and Countries2 group to 'tree'.

Notice the absence of links on the REGIONS ('Americas') and COUNTRIES ('US') level.

5.7.4. Variation: Recursive Tree

In some cases, tree structures are modeled in the database with self-referencing foreign
keys (visible in Entity-Relationship diagrams by the so-called pig's ear).

Example: Employees have a manager. The manager is also an employee, so this is
modeled as a foreign key from EMPLOYEES to EMPLOYEES.

Generating a tree for such a situation is only slightly different. You need the self-
referencing foreign key as a View Link in your ADF Business Components. The wizard
‘New Business Components from Tables’ will automatically create such a View Link if a
self-referencing foreign key is present in the database.

In the data model of the Application Module, it is sufficient to have only one level to
generate a tree with an unlimited level of nesting. For example, to have a tree with
unlimited recursion on Employees, you only need this data model:

Now, follow step 5 and onwards as documented in the section on the basic tree, reusable
or non-reusable. The only difference is that you need to apply the steps to only one
group, instead of three groups.

You will get this (nodes expanded by hand):

JHeadstart Developer’s Guide Generating Page Layouts 5 - 43

As you can see, employees that have a manager are displayed twice in the tree.

5.7.5. Variation: Recursive Tree with Limited Set of Root Nodes

By default, every employee is displayed in the top level of the tree. In most cases, this is
not what you want. In this example, you most likely want only employees without a
manager to appear in the top level of the tree structure, and their subordinates below
them. It is quite easy to do so by applying a named view criteria to the top-level
employee view object usage, and create a nested view object usage based on the same
view object.

These steps assume you have already done the steps described in section Variation:
Recursive Tree.

 Go to the EmployeesView view object in your Business Components project
and create a new View Criteria.

 Name this view criteria "EmployeesWithoutManager" and add ManagerId
as item with operator Is Blank.

5 - 44 Generating Page Layouts JHeadstart Developer’s Guide

 Go to the application module data model, and create a new top-level view
object usage "TopManagers" based on the EmployeesView view object. Assign
the view criteria you just created to this view object usage.

 Add a nested view object usage named "Subordinates" to the
'TopManagers' view object usage, using the self referencing view link on the
EmployeesView view object.

5.7.5.1. Generating a reusable recursive tree

To generate a reusable recursive tree with limited set of root nodes, you need to create a
master group with Layout Style “reusableTree” and Data Collection set to
TopManagers1, and a detail group, also with Layout Style “reusableTree” and Data
Collection set to Subordinates. Both groups have a group region that references the same
Employees group. Note that region names must be unique across parent and detail
groups, therefore the group region of the Subordinates group has suffix “2”.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 45

If you now generate again, only employees without a manager will be shown as root
node. Each record is shown only once in the correct place in the tree structure.

5.7.5.2. Generating a non-reusable recursive tree

To generate a non-reusable recursive tree with limited set of root nodes, you need to
create a master group EmployeesTree with Layout Style “tree-form” and Data
Collection set to TopManagers1 (or EmployeesView1) and Tree Data Collection set to
TopManagers1, and a detail group Subordinates, also with Layout Style “tree-form” and
Data Collection set to EmployeesView1 and Tree Data Collection set to Subordinates.

Note that although the root node and child nodes both show an employee form when
clicked, the generated form layout is created by two different groups. So, if you would
like to display additional information for an employee, for example the departments
managed by the employee, this departments detail groups must be added to both groups.
This is another advantage of reusable trees: when using a reusable tree, the same group is
used to generate the form layout, being the group that is referenced through the group
region in both reusableTree groups.

5.7.6. Variation: Tree showing only Children of selected Parent

The steps described in this section assume that you have already built the tree as
described in section Generating a Basic Tree with the reusableTree flavor.

5 - 46 Generating Page Layouts JHeadstart Developer’s Guide

It is not possible to generate a non-reusable tree as a child group.

You might not want to show a tree of all rows in the database, but only of the child nodes
of a certain parent row. For example, you want the user first to select a region, and then
for that region show a tree of the countries and locations.

With JHeadstart you can easily generate that by having a hierarchy of groups, and only
setting the layout style to reusableTree for a subset of the child groups.

In the example used, you can simply change the layout style of the RegionsTree group to
“table-form”. The detail group CountriesTreeNode is now the tree base group. In the
regions table or form page, you can click the Countries button which navigates to the
page fragment that shows the countries tree for the current region.

Note that you can also use Layout Style reusableTree on a detail group with the Same
Page checkbox property checked. By default, you will get a layout like below.

As you can see, the Save and Cancel buttons are displayed twice. Once for the Regions
master group, and once for the Locations group that is included using an ADF region. To
remove the Save and Cancel buttons for the Locations (and Countries) group, you can
specify additional group region parameters: hideSaveButton and
hideCancelButton with value “true”.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 47

5 - 48 Generating Page Layouts JHeadstart Developer’s Guide

5.8. Creating Shuttle Layouts

You can use JHeadstart to generate Shuttles. A shuttle is used to present a list of records
to the user. The user can move records from the selected list to unselected and vice versa.

Examples of the use of a shuttle:

1. Defining employees as members of a department. The left part of the shuttle
shows all employees in other departments. The right hand shows the employees
that are selected as members of this department. See screenshot below.
(JHeadstart calls this a parent-shuttle).

2. Attaching roles to a user. The left hand of the shuttle shows all the roles not
attached to the user currently. The right hand shows all the roles the user has
already. (JHeadstart calls this an intersection-shuttle)

5.8.1. Creating Parent Shuttles

Use a parent shuttle when you want to attach existing detail records to parents. For
example, you want to attach employees to departments, or customers to sales
representatives. A parent-shuttle does not create new records, but only updates links to
parent records.

With a parent shuttle you can maintain the relation between employees and departments.

In this example we will create a parent shuttle to assign employees to departments.

Steps to create a parent shuttle:

1. Go to the Application Module and add another (top-level) usage of the
EmployeesView. Call the usage “EmployeesShuttle”.

2. Create a new Dynamic Domain in the Application Definition Editor. Call it
EmployeesShuttle and set its Data Collection to EmployeesShuttle. The Value
Attribute should be EmployeeId and the Meaning Attribute LastName

3. Make the following changes to the Employees detail group of the Departments base
group. The Layout Style of Employees should be parent-shuttle. Set the Domain for
Unselected List in Shuttle to “EmployeesShuttle”. Set the Tabname to “Unassigned
Employees”. Check the property Same Page?. Finally set Display Title (plural) to
“Assign Employees to Departments” and Display Title (singular) to “Employees in
the Department”.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 49

4. Generate and you will get something like this:

Attention: When deattaching a record (moving from right to left), the
employee has no relation with any department anymore. In database terms,
the department_id column is set to null. This means it is best to use a parent-
shuttle with an optional foreign key.

5 - 50 Generating Page Layouts JHeadstart Developer’s Guide

5.8.2. Creating Intersection Shuttles

Use an intersection shuttle when you want to maintain an intersection between two
ViewObjects. An intersection typically exists when there is a m:n relation between two
View Objects. Examples:

 An m:n relation exists between Users and their Roles.

 An m:n relation exists between Employees and Projects.

In such cases, you will most likely implement the m:n relation with an intersection table:
a table with two foreign keys to the related tables. With an intersection shuttle, you can
maintain the contents of the intersection table.

Because the HR schema does not have a pure intersection table, we will add one:

create table hirable (id number, employee_id number, department_id

number);

alter table hirable add constraint hir_pk primary key (id);

alter table hirable add constraint hirdeptfk foreign key

(department_id) references departments;

alter table hirable add constraint hirempfk foreign key

(employee_id) references employees;

The hirable table is an intersection between Employees and Departments. It relates
multiple employees to multiple departments. Each department can hire multiple
employees. Each employee is hirable by multiple departments.

Generate Business Components for this new table. You will need an Entity Object,
Associations, a Default View Object and View Links.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 51

Suggestion: It is easiest to start with a new Model project and regenerate all
your business components from scratch. Then you will get all necessary
Associations and View Links.

Steps to create an Intersection Shuttle:

1. Because an Intersection Shuttle will generate new records, have a system in place
to generate primary key values for the intersection table. See section 3.2.4 -
Generating Primary Key Values. Alternatively, you can create an intersection
table with a composite primary key consisting of the two foreign key columns.

2. Go to the Application Module and add another (top-level) usage of the
EmployeesView. Call the usage “EmployeesShuttle”.

3. Create a new Dynamic Domain in the Application Definition Editor. Call it
EmployeesShuttle and set its Data Collection to EmployeesShuttle. The Value
Attribute should be EmployeeId and the Meaning Attribute LastName

4. Make the following changes to the Hirable detail group of the Departments base
group. The Layout Style of Hirable should be intersection-shuttle. Check the
checkbox Same Page?. Set the Domain for Unselected List in Shuttle to
“EmployeesShuttle”. Set the Tabname to “Unassigned”. Set Display Title
(plural) to “Assign Hirable Employees” and Display Title (singular) to
“Assigned”.

5. When you now run the JAG, you will get the following error:

JAG-00126 [Departments / Hirable2] View Object Usage EmployeesShuttle
should have a nested View Object Usage based on HirableView.

The reason you get this error is this: at runtime, JHeadstart needs to know which
foreign key attribute(s) in the HirableView map to the primary key attribute(s) of
EmployeesView. This information is required to correctly insert a row in the
HIRABLE intersection table. JHeadstart uses the ViewLink on which the nested
HirableView usage is based to lookup this attribute mapping. So, open te
Application Module Editor, and add the HirableView as a nested ViewObject
usage under the EmployeesShuttle usage:

6. Generate again. The error should have gone now. Run the application!

5.8.3. Understanding How JHeadstart Runtime Implements Shuttles

A generated parent shuttle looks like this in the ADF Faces page:

5 - 52 Generating Page Layouts JHeadstart Developer’s Guide

This shuttle element references the SubordinatesShuttle managed bean, which is defined
as follows in the group beans faces-config:

When the user has shuttled entries between the two lists and then submits the page, for
example by pressing the Save button, the valueChangeListener method
processValueChange fires during the Process Validations phase. This method registers
the ParentShuttleBean instance as a “Model Updater” in JhsPageLifecycle. Just
before the Model validation phase, JhsPageLifecycle calls the doModelUpdate()
method on the registered “Model Updaters”. In method
ParentShuttleBean.doModelUpdate() the action binding to call the process shuttle
method on JhsApplicationModuleImpl (see below) is executed. This action binding is
passed in through managed property processShuttleMethodBinding.

After calling the action binding the iterator binding of the selected row is requeried, so
the newly shuttled rows will be displayed in the correct list after Commit. Note that at

JHeadstart Developer’s Guide Generating Page Layouts 5 - 53

this stage the actual database commit has not taken place yet, since this does not happen
until Invoke Application phase. However, JHeadstart leverages the ADF BC feature that
merges the query result with "open middle tier" changes.

Reference: See the Javadoc or source of ParentShuttleBean and
IntersectionShuttleBean.

Shuttle Support in ADF BC Application Module

JHeadstart Runtime provides an extension for your Application Module that includes
shuttle support. The JhsApplicationModule interface and the
JhsApplicationModuleImpl class contain the methods processParentShuttle() and
processIntersectionShuttle() that are able to analyze the list of selected and
unselected items and translate that to updates and inserts to the database.

These methods are exported in the Client Interface of the Application Module, which
makes them available as Data Control operations. For such an operation an Action
Binding can then be created in the UI model of the shuttle page (which is of course what
the JHeadstart Application Generator does).

The names of relevant ViewObject usages and attributes are defined in the UI model as
parameters of the Action Binding. Using EL expressions, this is also done for the leading
and trailing lists submitted by the shuttle (see above).

Reference: See the Javadoc or source of JhsApplicationModule and
JhsApplicationModuleImpl, in particular the methods
processParentShuttle() and processIntersectionShuttle().

5 - 54 Generating Page Layouts JHeadstart Developer’s Guide

5.9. Creating Wizard Layouts

A wizard layout can be used enter a new row in multiple steps. JHeadstart can generate
item regions and detail groups to separate steps (pages) of the wizard.

To get the wizard layout, you set the Layout Style to form and check the property
Wizard Style Layout?. To ensure that only inserts can be done in the main wizard group,
we uncheck the Single-Row Update Allowed and Single-Row Delete Allowed
properties. To start the wizard in create mode we set property Display New Row on
Entry to true.

To create three separate pages to insert employee data, we create three item regions as
shown above, and we set the Layout Style of the Regions region container to
separatePages.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 55

Attention: Out-of-the-box the wizard style only works for creating new rows.
The wizard style generation can also be used for updating existing rows. If you
use table-form layout or advancedSearch=separatePage however, you will
have to customize the Next button to perform a current row selection or a
search, respectively.

5.9.1. Launching a Wizard using New Button

When a wizard is only used to enter new rows, a common scenario is to launch the
wizard group from another group based on the same data collection that has pages to
maintain existing rows. You can easily configure this in the JHeadstart Application
Definition editor, and also configure whether the wizard pages should replace the current
page, or should be displayed in a popup window.

Here are the steps to do this:

 In the Employees maintain group, uncheck the Multi-Row Insert Allowed
and/or Single-Row Insert Allowed properties to prevent generation of the
standard new button to create a new row.

 Add a new unbound item called LaunchEmployeeWizard, and set the
properties as shown below.

When you now generate the application and g to the Employees tab, you will see an
iconic new button in the table toolbar that launches the employee wizard.

5 - 56 Generating Page Layouts JHeadstart Developer’s Guide

Instead of setting the Show Linked Group In property to Modal Popup Window, you
can also set it to In Page. This setting makes more sense if you click the New button in
form layout.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 57

5.10. Controlling Page Layout Using Region Containers, Item and Group Regions

This section explains how you can create arbitrary complex page layouts by using region
containers, item regions and group regions.

By default each group has one empty Region Container named Regions. You can
rename it as you like, but you cannot add a second top-level region container. A region
container can contain three types of elements:

 Region container

 Item Region

 Group Region

An Item Region allows you to group items into a named section (region) on a page. You
can define as many item regions as you want for a group.

A Group Region can be used to create a dedicated region for a detail group (nested
group) that has the Same Page property checked. In the section Master-Details on Same
Page we have already seen that we have a number of options to layout master and detail
groups on the same page by using a number of group-level properties. However, some
more advanced layouts cannot be achieved using these simple group properties. By using
a group region, you have fullc ontrol over the relative positioning of the group.

A group region must also be used if you want to reference another top-level group that
will be included as a reusable region in the page. In this case, the Include as ADF Region
checkbox should be checked on the Group Region. See section Reusing Groups for an
extensive example of this technique.

The Layout Style property of the Region Container determines how the child elements
are laid out. It has the following allowable values:

 Horizontal

 Horizontal with Splitter

 Vertical

 Vertical with Splitter

 Tabbed

 Accordion

 Separate Pages

 Grouped Item Regions

 Modal Popup Window

 Modeless Popup Window

In the subsections below, we will provide a number of examples for the various layout
styles, combined with the different element types a region container can contain.

An example of using a region container with Layout Style Separate Pages is already
provided in the section Creating Wizard Layouts.

5 - 58 Generating Page Layouts JHeadstart Developer’s Guide

5.10.1. Using Item Regions

The subsections below show some examples of how you can position item groups.

5.10.1.1. Vertical and Horizontal Positioned Item Regions

Here is the structure we defined in the JHeadstart Application Definition Editor:

The Layout Style of the Regions region container is set to Vertical, the Layout Style of
the nested SubRegionContainer is set to horizontal.The Identification item
region has the Columns property set to 2, the other item regions have this property left to
its default of 1. All item regions have the Title property set. The region containers do not
have the Title property set. This generates a layout as shown below.

5.10.1.2. Grouped Item Regions

The structure defined in the JHeadstart Application Definition Editor is the same as in the
previous section. Changes made to the properties compared to the previous section are:

 The Layout Style of SubRegionContainer is set to Grouped Item Regions.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 59

 The Title of SubRegionContainer is set to Functional.

 The Functional and Financial item regions no longer have the Title
property set.

This generates a layout as shown below.

Note that by default an item region that does not have other elements displayed at the
right, will stretch horizontally. If you do not want that to happen you can specify a
number of pixels in the Width property.

5.10.1.3. Stacked Item Regions

Here is the structure we defined in the JHeadstart Application Definition Editor:

The Layout Style of the Regions region container is set to Tabbed. The
Identification item region has the Columns property set to 2, the other item regions
have this property left to its default of 1. All item regions have the Title property set. The

5 - 60 Generating Page Layouts JHeadstart Developer’s Guide

region containers do not have the Title property set. This generates a layout as shown
below.

As of JDeveloper 11.1.1.4 there is a new property dimensionsFrom="auto" that
JHeadstart will generate which ensures a clean tabbed layout without further
configuration needed. It will auto-resize the tab height based on the currently selected tab
when stretching is not enabled.

Note that if you are still using JDeveloper 11.1.1.3 or even 11.1.1.2, the layout of the
tabbed item regions may need additional configuration by explicitly setting the Width
and Height of the region container, or by checking the Enable Stretching? checkbox on
the group and region container.

5.10.2. Using Group Regions

If the group-level properties Same Page Display Position and Stack Groups on Same
Page are not sufficient to generate the required layout, you can use a combination of
region containers and group regions to generate more complex layouts.

For example, if you want to generate two sibling detail groups side-by-side below the
parent group, you can create a group region for each detail group and set the Regions
region container Layout Style to Horizontal or Horizontal with Splitter as
shown below.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 61

The Employees group structure to generate the above looks as follows:

The ManagedDepartments group region has the Group Name set to Departments2,
and the Subordinates group region has the Group Name property set to
Employees2.

Note that you can only select detail groups in the Group Name property that have the
Same Page checkbox checked, as long as the Include as ADF Region property is
unchecked. If you check the Include as ADF Region property, you can only select top-
level groups that are then reused and added as an ADF region to the page. You can then
also define group region parameters that are passed to the group taskflow that is
embedded as ADF region. See section Reusing Groups for more information.

5.10.3. Mixing Item Regions and Group Regions

Another example where you need to use group regions is when you want to mix items of
the parent group with detail groups. This is often done using tabs or an accordion. In the
picture below, we have set up such a structure with a Regions region container with
Layout Style set to Tabbed, containing two group regions and two item regions.

5 - 62 Generating Page Layouts JHeadstart Developer’s Guide

This results in a page layout as shown below.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 63

5.10.4. Generating Content in a Popup Window

When you set the Layout Style of a region container to Modal Popup Window or
Modeless Popup Window, the child elements of this region container will be displayed
in a popup window. The difference between the two layout styles is that when you
choose Modal Popup Window, the end user cannot access the underlying page until the
popup window is closed again. With a modeless popup window, the user can still use the
base page while the popup window is shown.

Obviously, you need to provide a UI control to launch the popup window. JHeadstart
supports the following methods to do this.

 If the Depends on Item property of the region container is not set, JHeadstart
implicitly generates a button that launches the popup window. The label of the
button is set to the Title property of the region container. The button will be
generated at the position where normally the content of the region container
would have been generated when any of the other layout styles was used.

 If the Depends on Item property of the region container refers to a button item,
then pressing this button will open the popup window. When you use this
technique, you have full control over the position of the button that launches the
popup window. When you set the Display Style to commandButton you can
place the button item in between any other item or in the group toolbar by setting
the Display Type to toolbarButton.

 If the Depends on Item property of the region container refers to a non-button
item, then JHeadstart will generate a context facet for this item that launches the
popup window.

Also note that by specifying a Depends on Item property that is displayed in table
layout, the popup window is also available in table layout. This effectively allows you to
implement a sort of table overflow area in a popup window while the Table Overflow
Style property itself does not have a popup style.

The sections below provide examples of each of the methods.

5.10.4.1. No Depends on Item property specified

In the example below, an item region with Salary and CommissionPct items is
defined inside the region container. No Depends on Item property is specified for the
region container.

5 - 64 Generating Page Layouts JHeadstart Developer’s Guide

When we generate the page, the Financial Info button is generated below the items
not contained by an item region.

Note that if you specified the popup as a modeless window, you can still browse through
the underlying rows, and the popup information will be updated accordingly.

5.10.4.2. Depends on Item property Refers to Button Item

In the example below, an unbound button item ShowFinancialInfo has been added,
and the Regions region container has the Depends on Item property set to this item.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 65

When we generate the page, the Financial Info button is now generated in between
the other items.

We can also change the Display Type to toolbarButton and specify the Icon property.

5 - 66 Generating Page Layouts JHeadstart Developer’s Guide

When we now generate the page, the Financial Info iconic button is generated in the
group toolbar.

Since the ShowFinancialInfo item also has Display in Table Layout? Set to to true,
the item is also generated in the table toolbar.

And just like in form layout, if the window is modal and you click on another row, or use
the arrow keys to browse through the table rows, the information in the popup window
will be refreshed accordingly.

5.10.4.3. Depends on Item property Refers to Non-Button Item

In the screen shots below, the Regions region container has the Depends on Item
property set to LastName. JHeadstart then generates a context facet for the item with
an af:contextInfo element inside it that launches the popup. Because a context facet
is generated, ADF Faces renders a little orange square in the upper left corner of the item.

If you hover the mouse over the orange square, a tool tip "More..."is displayed and
when you click on it, the popup is launched.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 67

5.10.4.4. Showing Lookup Information from Another Group in Popup Window

You can also use any of the three methods discussed above to show detailed lookup
information in a popup that is provided by another group in the JHeadstart Application
Definition Editor. For example, on the JobId item in the Employees group, we want to
provide the option to quickly look up all the details of the job, including the JobTitle,
MinSalary and MaxSalary, as shown below.

This page has been generated with the following settings:

 The Regions region container has the settings as shown above.

 The JobInfo group region has the Include as ADF Region checkbox checked
and has the Group Name property set to Jobs.

 Two parameters are specified to pass the current JobId and to show the Jobs
page in read-only mode

 The readOnlyMode parameter can be set because it is also defined as parameter
against the Jobs group.

 The Insert Allowed, Update Allowed and Delete Allowed expressions in the
Jobs group all have the value #{!pageFlowScope.readOnlyMode}.

5 - 68 Generating Page Layouts JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 1

C H A P T E R

6 Generating User Interface

 Widgets

This chapter describes how you can specify the prompt and default display value of
generated items. After that, the various widget types you can generate with JHeadstart
are explained.

6- 2 Generating User Interface Widgets JHeadstart Developer’s Guide

6.1. Specifying the Prompt

If you don’t include a Prompt in Form Layout, the generated page will not have a label
for that field. If you want to display a prompt, you specify this using the Prompt in Form
/Table Layout property for form/table pages.

If you don't include a Prompt in Table Layout, it will default to the Prompt in Form
Layout.

A separate property Prompt in Search Region allows you to override the Prompt in
Form Layout in search areas:

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 3

6.2. Default Display Value

In the Application Definition Editor you can set the Default Display Value of an item.
This value is used when creating new rows.

For example, a new employee has by default a salary of 1000:

1. Enter the default value with Application Definition Editor.

2. Generate/run your application and create a new record. The default display
value is shown now in the column.

6.2.1. Using EL expressions

In addition to literal values, you can enter Expression Language in the Default Display
Value.

Imagine that for new employees the salary must be calculated based on job and so on.
Assume the result of the calculation is stored on the session context in an object called
Salary with method getDefaultSalary. In such a situation enter for Default Display Value
the EL #{salary.defaultSalary}

Use the same technique to display the current date: store it on the request or session and
enter an EL expression for showing on a page.

6- 4 Generating User Interface Widgets JHeadstart Developer’s Guide

6.3. Display Type

Default display types are set during the creation of the Application Definition. These can
be overridden by using the Display Type property.

You can choose from the following available display types for your items:

textInput

dropDownList

lov

model-choiceList
model-comboBox

model-
comboBoxLov

model-
inputTextLov

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 5

model-listBox

model-radio-
horizontal

model-radio-
vertical

checkbox

graph

list

radio-vertical

radio-horizontal

editor

+

6- 6 Generating User Interface Widgets JHeadstart Developer’s Guide

dateField

datetimeField

secret

fileUpload

+

fileDownload

image

hidden

commandButton,
commandToolbar
Button

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 7

groupLink,
groupLinkButton

FlexRegion See Chapter 13 "Runtime Page Customizations"

OraFormsFaces See section 6.15 “Embedding Oracle Forms in JSF pages”

6- 8 Generating User Interface Widgets JHeadstart Developer’s Guide

6.4. Generating a Text Item

6.4.1. Define Item Display Width and Height

The item display width and height can be set in two ways. The first option is dynamic. EL
expressions are used to get the width and height from the underlying ADF Business
Components. When these properties are not set on the View Object, the Entity Object is
checked for these properties.

By default, an item is displayed with height = 1 (line) and width = the data length of the
underlying table column. When the length of the table column is unknown or larger than
the value of the service level property Default Display Width, the value of this property
is used.

Note that $HINTS$ is a special token replaced by JHeadstart upon generation. This is
done because the actual EL expression to get a UI hint for items in a table layout is
different from items displayed in form layout.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 9

The second option is the static option. The Width and Height properties can be used to
hardcode the values for width and height. So instead of using the EL expressions, use
static numbers.

6.4.2. Setting Maximum Length

The number of characters that can be entered in the HTML page for an item defaults to
the Precision of the underlying attribute. If you want to deviate from this standard you
can do this by specifying the Maximum Length property of the item. The value should
be the number of characters you require, or an EL expression returning such a number.

6- 10 Generating User Interface Widgets JHeadstart Developer’s Guide

6.5. Generating a Dropdown List

Use a dropdown list when the list of values the user can choose from is rather small. You
have to distinguish between two cases:

 The list of values is static; the values are not queried from the database. In this
case you base the dropdown list on a Static Domain or a List Validator.

 The list of values is dynamic. In this case you must base the dropdown list on a
Dynamic Domain.

Suggestion: It is also possible to use ADF Model-based lists and set the display
type to ‘model-choice’ to get the same result for the end user. See section ADF
Model LOV vs. Custom JHeadstart LOV for more information.

6.5.1. Static Dropdown List based on a Static Domain

When using this option, you have to add your domain with its values to the Application
Definition Editor.

You can create a static domain by selecting the Domains node in the Application
Definition Editor. After pressing the green plus (+) symbol select the static domain. A
domain with the name newStaticDomain is created. This name can easily be changed in
something more descriptive.

The last step is adding of values (and their meanings) to the new domain. An undefined
value is already provided with the newStaticDomain. After changing this value new
values can be added by selecting the new static domain and pressing the green plus (+)
symbol. See also the section Domains.

To use the newly created domain set the Display Type of an item to dropDownList,
radio-vertical or radio-horizontal and fill its Domain property with the name of the new
Domain.

6.5.2. Translation of Static Domains

The meaning of the domains in the Application Definition Editor is only in one language.
When you need to be able to translate domain meanings in other languages, set the
service level property Generate NLS-enabled prompts and tabs to true. When this

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 11

property is set, JHeadstart will generate entries for each domain value in the
ApplicationResources.properties file.

Reference: Chapter 11 “Internationalization and Messaging”, section
“National Language Support in JHeadstart”

6.5.3. Dynamic Dropdown List based on a Dynamic Domain

When the list of values must be dynamic, use a Dynamic Domain based on a View Object
Usage to generate the dropdown list.7

Steps to generate a dropdown list based on a Dynamic Domain:

1. Create a Dynamic Domain based on the View Object. Select the View Object
Usage (in the data model of the Application Module) you want, by setting the
Data Collection property for the Dynamic Domain.

2. Set the Value Attribute of the Dynamic Domain to the attribute you want to
store in the item (which uses the domain).

3. Set the Meaning Attribute to the attribute you want to show in the dropdown
list.

4. Set Display Type of the item that uses the domain to ‘dropDownList’ (or ‘radio-
vertical/radio-horizontal’).

5. Set the Domain property to the Dynamic Domain.

6- 12 Generating User Interface Widgets JHeadstart Developer’s Guide

See chapter 7, section 7.2.2 “Using Query Bind Variables” for an example where the
content of a drop down list changes dynamically based on query bind variables.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 13

6.6. Generating a Radio Group

Use a radio group when the list of values the user can choose from is small. You have to
distinguish between two cases:

 The list of values is static; the values are not queried from the database. In this
case you base the radio group on a Static Domain or a List Validator.

 The list of values is dynamic. In this case you must base the radio group on a
Dynamic Domain.

Suggestion: It is also possible to use ADF Model based list and set the display
type to ‘model-radio’ to get the same result for the end user. See section 6.7.2
for more information.

6.6.1. Static Radio Group based on a Domain

When using this option, you have to create a Static Domain as described in Static
dropdown list based on a Static Domain.

The Display Type property must be set to radio-vertical or radio-horizontal.

Generate your application, and you will get a radio group.

6.6.2. Translation of Static Domains

As you see, the meaning of the domains in the Application Definition Editor is only in
one language. When you need to be able to translate domain meanings in other
languages, set the service level property Generate NLS-enabled prompts and tabs to
true. When this property is set, JHeadstart will generate entries for each domain value in
the ApplicationResources.properties file.

6.6.3. Dynamic Radio Group based on a Dynamic Domain

When the radio group must be dynamic, use a Dynamic Domain based on a View Object
Usage to generate the dropdown list.

The steps to create a dynamic radio group are almost identical to the steps for creating a
dynamic dropdown list, see Dynamic dropdown list based on a Dynamic Domain. The

6- 14 Generating User Interface Widgets JHeadstart Developer’s Guide

Meaning Attribute is used to get labels for the radio buttons. Finally the Display Type
should be radio-vertical or –horizontal.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 15

6.7. Generating a List of Values (LOV)

Use a list of values (LOV) when you have a lookup to a related table and the number of
records in the related table is too big for a dropdown list or you want to provide search
functionality on the lookup.

6.7.1. ADF Model LOV vs. Custom JHeadstart LOV

JHeadstart can generate two different kinds of LOV items:

6.7.1.1. ADF Model based LOV

ADF Business Components allows a user to define a List of Values on an attribute in their
View Object.

Fusion Dev Guide, section 5.11 “Working with List of Values (LOV) in
View Object Attributes”. Includes instructions on defining LOV in the ADF

View Object itself.

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.ht

m#CHDHBDDE

Some ADF Faces components can use this information from Business Components. There
are now components like <af: inputListOfValues> that can be bound directly to the LOV
defined in ADF Business Components and deliver full LOV functionality. Those
components do not only support a ‘traditional’ List of Values (popup with search
functionality), but also dropdown lists, radio groups, list boxes and even a clever
combination of a dropdown with commonly used items plus an extra popup LOV for less
commonly used items (called ComboBoxLov). See section 6. 3 Display Type for some
examples.

ADF Model LOV works fine for standard requirements regarding List of Values.
However, the entire popup window that belongs to the LOV is generated by the
component itself. This leaves little coding to the end user (smaller files, faster
development), but it poses some limitations:

1. It is not possible to use multi-select functionality (where one row in the base view
object will be created per selected item).

2. It is not possible to use ‘detail disclosure’ inside the LOV: displaying extra
attributes for a row when the user clicks on that row.

3. It is not possible to change the layout of the List of Values (except for standard
skinning possibilities), or add any extra content.

When these limitations are no problem for your LOV, the standard ADF Model LOV will
work just fine. The advantage of such an LOV is also that the new model-based query
component (see chapter 7) can only use these LOV's (not the custom JHeadstart LOV).

6.7.1.2. Custom JHeadstart LOV

This approach creates a List of Values by generating a custom set of components (text
field, LOV icon, popup, beans, taskflow, etc.) that also implement LOV behavior. Also the
page that is displayed inside the List of Values is completely generated by JHeadstart.

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.htm#CHDHBDDE
http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.htm#CHDHBDDE

6- 16 Generating User Interface Widgets JHeadstart Developer’s Guide

The end result is therefore (much) more code compared to an ADF Model based LOV,
but the limitations of the ADF Model LOV do not apply You have full control over the
layout and behavior of the LOV.

6.7.1.3. Searching and LOVs

There is another dimension to this discussion: search areas. As put forward in chapter 7,
there are two different kinds of search areas:

1. ADF Model based quick/advanced search. This approach uses information out
of Business Components to support a full quick/advanced search area with a
single UIComponent (<af:query> or <af:quickQuery>). Especially the advanced
search area options are quite extensive.

2. Custom JHeadstart quick/advanced search. Like custom LOVs, this approach
generates more code, but customization options are better.

The issue here is: the search and LOV approaches don’t mix well. Here is a compatibility
matrix:

 ADF Model search JHeadstart search

ADF Model LOV Supported Not supported. You will get a
text field instead of an LOV.
Hide this field in the search area
and use a secondary field, with a
custom JHeadstart LOV, to
overcome this situation.

JHeadstart LOV Not supported. You will get a
text field instead of an LOV;
unless you define a Model
LOV on your base view object
attribute as well.

Supported

Unless there are strong reasons to ‘mix’ the two approaches, this is not recommended.
Maintaining double LOV definitions can be tedious, besides they will be slightly different
in terms of look & feel and functionality.

Reference: For more information about ADF Model search vs. custom
JHeadstart search, see chapter 7: “Generating Query Behaviors”.

6.7.1.4. How to choose?

As we have seen, both approaches have their pros and cons.

In general, reasons to choose the ADF Model approach include:

 There are no specific requirements that can’t be implemented.

 ADF Model search must be used

 Generated code should be as compact and easy as possible

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 17

Custom JHeadstart LOV elements supply more features and customization possibilities,
but may also be a bit harder to understand. Reasons to use them include:

 There are (some) customization requirements

 JHeadstart search must be used

 Special features are needed: multi-select LOV, detail disclosure or full control
over the layout in the search area in the LOV.

6.7.2. Creating an ADF Model LOV

Most work in creating an ADF Model LOV is to create the definition of the List of Values
in the View Object itself. See the Fusion Dev Guide how to do this. Note that List of
Values is actually a bit of a confusing terminology here, because such a list could also be a
dropdown list or even a radio group, not necessarily a popup window with a separate
List of Values.

Fusion Dev Guide, section 5.11 “Working with List of Values (LOV) in
View Object Attributes”. Includes instructions on defining LOV in the ADF

View Object itself.

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.ht

m#CHDHBDDE

Once you have created your definition, you only have to set the correct display type for
that attribute in JHeadstart. An overview of available display types (they all begin with
“model-“) are in section 6.3.

Note that the display type set in JHeadstart and the ‘Default List Type’ in the View Object
LOV editor have to match; otherwise you will get a warning. Fortunately, if you use the
New Service Definition Wizard or the item synchronizer, you will get the correct display
type (as defined in the Model LOV) automatically.

6.7.3. Creating a custom JHeadstart LOV

An LOV is actually just a group as all other groups only it has Group Usage set to List of
Values and the Layout Style set to table. This kind of group is called an LOV group.

Furthermore an LOV is always attached to an item. This item gets a little lantern next to it
in the web pages. This item is called the LOV item.

Normally this LOV item (Target Item) is filled with a value from the LOV group (Source
Item). The mapping of Source Item to Target Item is what we call a return value. An LOV
can have several return values.

Steps to create a list of values:

1. Create a (reusable) LOV group

2. Link the LOV group to an item

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.htm#CHDHBDDE
http://download.oracle.com/docs/cd/E12839_01/web.1111/b31974/bcquerying.htm#CHDHBDDE

6- 18 Generating User Interface Widgets JHeadstart Developer’s Guide

6.7.4. Creating a (reusable) LOV group

1. Create (or reuse) a base group that will contain the rows of the LOV (which will
be used as LOV group). The creation of a base group is explained in Creating
objects.

2. Set the Layout Style (of the LOV group) to ‘table’.

3. Set the Group Usage to ‘List of Values Window’.

4. Specify at least one type of search for the LOV group: quick search or advanced
search.

Improvement: In JDeveloper 10.1.3 there were some extra steps
needed when you based your LOV on a read-only View Object
(checking primary key attributes, adding setManagerKeyByRows).
This is no longer necessary in JDeveloper 11.

6.7.5. Linking a Reusable LOV group to an item

1. Set the Display Type of the LOV item (which will have a LOV attached) to ‘lov’.

2. Select the LOV item and press the green plus (+) symbol.

3. Set the LOV Group Name property, and in the first return item, set the Source
Item property. The Source Item should be set to the item from the LOV group
that will be used to populate the LOV item.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 19

3. Generate and you will get something like this. Here the Employees group is used
as LOV group. ManagerId is the LOV item and target item. The source item is
EmployeeId (from the LOV group).

6.7.6. Defining an LOV on a display item

There are situations where you will need to define lookup attributes in the base view
object. Take a look at the screen below. The CountryId column is part of the Locations
View Object. The CountryId is a foreign key referencing the Countries View Object.
However, in many (most) cases, you do not want to show the foreign key column,
particular in the case of artificial keys. Instead you want to show a more meaningful field
from the referenced table, in this case the Country Name.

In that case you must include all the attributes you want to display on the page to become
a part of the view object on which you base your group in the Application Definition. So
the CountryName attribute of the Countries View must be added to the LocationsView.

Perform the following steps to accomplish this:

1. Double click the view object you want to modify

2. Navigate to the Entity Objects tab. You will notice that your base entity is at the
right hand side as the selected entity. To be able to include lookup attributes you
must select the lookup entity and move it from the Available list to the Selected
list.

6- 20 Generating User Interface Widgets JHeadstart Developer’s Guide

3. Set a proper alias for the lookup entity and select the right association end
(dropdown list just below the Selected Entities box).

4. Navigate to the Attributes node. You will notice that all the attributes of the base
entity take part of the selected list. Now, click the button ‘Add from Entity’ on
the top of the screen.

5. In the Available list, select those attributes from the lookup entity object you
want to display in the view object, and move them to the Selected list. Click OK.

6. The key attribute from the lookup entity (let's call it the Lookup Key) is always
included and usually ends up with a strange name. If for example it is called 'Id',
it will be named 'Id1' on the base table. This is not a good name. However, the
name XxxId (where Xxx is the entity alias) is already used by the Foreign Key
attribute of the base entity. Right-click on the attribute and select ‘Rename’.
Rename the Id1 attribute using the naming convention LkpXxxId to avoid
confusion.

7. Uncheck the Key Attribute checkbox of all “Lookup” key attributes that are
automatically added as described in the previous step (see also section 3.3.3.1.
Unchecking Reference Key Attributes for Updateable View Objects). If you
forget this step, the LOV lookup values will not be visible when returning
from the page.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 21

8. It is also a good practice to rename the other lookup attributes so they are
prefixed with the entity alias. This makes them easily identifiable as lookup
attributes.

9. Test the View Object with the ADF BC Tester (see section 3.3.9 "Testing the
Model"). Check whether the LkpCtrCountryName attribute changes when you
change the CountryId attribute.

6.7.6.1. What to do when ADF BC Tester does not update the lookup item

In this example, the LkpCtrCountryName will most likely be updated correctly in the
ADF BC tester. However, in your application this might not work due to one of the
following causes:

 Cause: You did not define the View Object's lookup entity usage on the right
Entity Association (end).
Solution: Correct the View Object Definition.

 Cause: There is no underlying entity association, for example because the LOV
ViewObject is a read-only ViewObject.
Solution: In this case, you need to perform some additional steps. These steps
are explained below using the same Locations/Countries example as above,
although they are not required for this specific example. So, you only need to do
the 4 additional steps below in your own application if this cause applies.

1. Open the Locations ViewObject and create an additional transient attribute
named “LkpCtrCountryNameTransient”. Set updateable to “always” and
uncheck the queryable checkbox.

2. In the Java Tab check the checkbox to create a LocationsViewRowImpl java class.
Click OK to close the ViewObject editor

3. Got to the newly created LocationsViewRowImpl class, and modify the
getLkpCtrCountryNameTransient method as follows:

public String getLkpCtrCountryNameTransient ()

 {

 if (getAttributeInternal(LKPCTRCOUNTRYNAMETRANSIENT)==null)

 {

 return getLkpCtrCountryName();

 }

 return (String) getAttributeInternal(LKPCTRCOUNTRYNAMETRANSIENT);

 }

6- 22 Generating User Interface Widgets JHeadstart Developer’s Guide

4. Continue with the steps below, but base your List of Values on the
LkpCtrCountryNameTransient item rather than on the LkpCtrCountryName
item. Hide the LkpCtrCountryName item in your pages by setting both Display
in Form and Display in Table to false for this item.

Now that we have extended the View Object, we need to make some changes to our
application definition:

1. On the Countries group set the Group Usage to ‘List of Values Window’.

2. Select the Locations group and press the Synchronize button (the circular blue
arrows). This will add the newly created attributes as items to the group.

3. Set the Display Type of LkpCtrCountryName (or
LkpCtrCountryNameTransient) to lov.

4. Change the Prompt in Form Layout property of LkpCtrCountryName (or
LkpCtrCountryNameTransient) to Country.

5. Enable updates on LkpCtrCountryName (or LkpCtrCountryNameTransient) by
setting the Update allowed? property to true.

6. Select item LkpCtrCountryName (or LkpCtrCountryNameTransient) and add a
LOV as described above in Linking a (reusable) LOV group to an item. Use
Countries as LOV group and CountryName as source item.

7. Select the LOV Countries (under LkpCtrCountryName) and add another return
value by pressing the green plus (+) symbol.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 23

8. Change undefined <= undefined to CountryId <= CountryId

9. Make CountryId and LkpCtrCountryId invisible by setting the Display in
Form/Table Layout? properties to false.

10. Generate and you get something like this.

6.7.7. Use LOV for Validation

A List of Values is normally used to assist the user in selecting a value for a foreign key
column. The user can navigate to the List of Values, type some search criteria and select
the value from the list and navigate back to the main page.

However, in most cases, the user will know many values by heart, and needs the List of
Values only for special cases, for example values that are infrequently used. With the Use
LOV for Validation functionality, JHeadstart can generate pages that assist the user in
both cases. It works this way:

1. The user enters (part of) the lookup item value.

2. The JHeadstart runtime checks how many records in the lookup match the value
the user entered.

3. When it is exactly one, the list of values window is not shown, but the JHeadstart
runtime finds the matching record and auto-completes the entered value.

4. When zero or more than 1 records in the lookup match the entered value,
automatically the list of values window is launched and pre-queried with the
value the user entered.

So, the system decides whether the list of values should be launched. This saves the user
from manually invoking the list of values and thus improves end-user productivity.

6- 24 Generating User Interface Widgets JHeadstart Developer’s Guide

The next steps instruct you how to build this. The EMPLOYEES and DEPARTMENTS
tables are used as example. The goal is to see the department name in the Employees
page.

1. Extend the base View Object you want to manipulate with the descriptor
attributes of the lookup View Object. See Defining an LOV on a display item for
instructions. In our example, the DepartmentName attribute should be added to
the EmployeesView View Object. Use LkpDptDepartmentName and
LkpDptDepartmentId as identifiers for the new columns.

2. In the JHeadstart Application Definition, define a group for the base View Object
(Employees). Set group properties as you like.

3. Define a LOV group for looking up the department name (see Creating a
(reusable) LOV group).

4. Add an LOV on the LkpDptDepartmentName (see Linking a (reusable) LOV
group to an item). Set the LOV Group Name to Departments and the Source
Item to DepartmentName.

5. In the LOV, set Use LOV for Validation? to true.

6. Generate and run the application.

7. Navigate to the DepartmentName, enter ‘F’ in the field and press TAB. Because
there is only one department name starting with F, no LOV will be launched and
the department name is auto completed.

8. Navigate to the DepartmentName, enter ‘CO’ in the field and press TAB. Because
multiple department names start with CO, the list of values is launched and
prequeried.

6.7.8. Selecting multiple values in a List of Values

JHeadstart can generate a List of Values where the user can select many values at once.
This improves the usability of the application.

Suppose you have this data model:

An ORDER has multiple ORDER_ITEMS, so you can order multiple PRODUCTS in one
order. Without multi-select, the user has to create a new ORDER_ITEMS records and
select the PRODUCT for that ORDER_ITEM. Imagine the time needed to enter an
ORDER with say 20 products.

With multi-select List of Values, the user selects all the products for the ORDER at once.
When returning in the main page, multiple new rows are created AT ONCE. Of course,
this is only possible when ORDER_ITEMS is a table layout.

How to generate this:

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 25

1. Because multiple ORDER_ITEMS are created at once, you must have added to
your Business Components Model the ability to automatically generate the
primary key values. In this case, the Business Components layer should generate
the LINE_ITEM_ID of the ORDER_ITEMS. See section 3.2.4 - Generating Primary
Key Values.

2. Make sure you have groups defined correctly. In this example, ORDERS can have
form layout, ORDER ITEMS must have table layout and
PRODUCT_INFORMATION is an LOV group with table layout.

3. In the base group of the lov (in this example ORDER ITEMS), set Multi-row
Insert Allowed?

4. In the LOV group, set the property Group Usage to “List of Values Window”
and check Allow Multiple Selection in LOV?.

5. Generate the application.

Suggestion: An alternative user interface for this situation is an Intersection
Shuttle. See section 5.7.2. Creating Intersection Shuttles.

6.7.9. Passing Parameters to an LOV

You can pass parameters to an LOV to restrict the rows that are queried in the LOV based
on the context in which the LOV was invoked. For example, an LOV on the ManagerId
of a Department, might be restricted to see only managers that work in that same
department.

 Here are the steps to do this:

 You first need to define the parameter on the LOV group. Right-mouse-click on
the LOV group, and choose New Parameter... Specify the parameter name, for
example departmentId.

6- 26 Generating User Interface Widgets JHeadstart Developer’s Guide

 In the underlying view object of the LOV group add a where clause that restricts
the values based on a bind variable. For example:

department_id = :b_department_id

 In the LOV group, set the Query Bind Parameters property to pass the group
task flow parameter as a value to the bind variable set up in the query of the
view object. For example:

b_department_id=#{pageFlowScope.departmentId}

 In the LOV item that uses this LOV, add a parameter to pass the parameter value
that should be used. The screen shot below illustrates this and uses the same
example as above

6.7.10. Understanding How JHeadstart Runtime Implements List Of Values

6.7.10.1. Main ideas behind architecture

The implementation of the LOV component in JHeadstart is focused on reusability and
separation. When you need an LOV on Employees, for example, you only have to create
it once in your application and use it from anywhere. The LOV is also completely
separated from the base page, meaning it does not interfere with the state of the base
page.

6.7.10.2. How it all fits together

The implementation of a JHeadstart LOV involves the following components:

 A generic popup component on the page. This popup window displays the LOV
using a dynamic region. The same popup component is used for all LOV’s on the
page, which keeps the page size relatively small so page load time is not
decreased by using many LOV’s in a page.

 A SimpleDynamicRegionManager class with associated managed bean which
controls the taskflow that is displayed inside the LOV dynamic region.

 The LOV group task flow with the LOV table page fragment that is displayed
inside the popup.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 27

 An LovPage bean that handles LOV selection event by passing the selected row
data to the LovItemBean instance. The LovItemBean instance is passed as a task
flow parameter to the LOV task flow.

 An LovItemBean instance for each LOV on the page. This bean contains
information about the task flow that should be displayed in the popup, the
parameters that should be passed in and how selected LOV values should be
copied back to the base page.

 How they all fit together in a normal LOV selection process is shown in the following
diagram:

Step 1

When the user clicks the LOV icon, the popup is opened using the lovIconClicked
method in the LovItemBean. Inside this method, we also “inform” the LOV Dynamic
Region Manager which task flow should be displayed inside the popup and which
parameter s should be passed in. The attribute ‘contentDelivery’ of the popup is set to
‘lazyUncached’, meaning the client will only fetch the contents of the popup when it is
opened (not before that time).

Step 2

When the popup is opened, the LOV dynamic region manager bean will switch to the
taskflow of your LOV. By default, it will point to an empty taskflow, so the content of the
popup is empty and resources are not wasted.

By switching the taskflow ID of the dynamic region manager, the LOV taskflow will be
initiated. This taskflow will instantiate the LovPageBean, and will get the LovItemBean
injected (which is a parameter for every LOV task flow). The purpose of the LovPageBean
is to pass information about the selected row in the LOV to the LovItemBean. We will
need this later on at step 5.

6- 28 Generating User Interface Widgets JHeadstart Developer’s Guide

Step 3

When the taskflow is finished initializing, it will load the LOV fragment. The LOV always
contains a result table. This table is component-bound to the LovPageBean, to enable this
bean access to the selected row in the LOV table.

Now that everything is set up, the LOV is shown inside the popup and the user is now
able to search and make a selection.

Step 4

When the user presses ‘OK’, the method ‘handleLovSelection’ in the LovItemBean is
launched. This method is responsible for fetching the selected data in the LOV table, and
copying those values back to the base page.

Step 5

In this final step, the LovItemBean will copy the values it retrieved from the selected row,
to the fields and underlying value bindings on the base page.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 29

6.8. Generating a Date (time) Field

By default, you will get display type ‘dateField’ when the attribute in the ViewObject is of
type ‘Date’. In a dateField you can enter only the date.

You can change the Display Type property for an attribute to ‘dateTimeField’. In a
dateTimeField you can enter a date and a time.

6.8.1. Specifying Display Format for Date and Datetime Field

By changing the service level properties Date Format and DateTime Format, you can
define the display format of both dates and datetimes. The format strings used here, are
as defined in java.text.SimpleDateFormat. The JAG takes the values of these
properties and puts them in the ApplicationResources.properties file (under datepattern
and datetimepattern). This file is used at runtime. In case of changes in the
Internationalization properties on the service level, these properties can be stored in
another locale.

6- 30 Generating User Interface Widgets JHeadstart Developer’s Guide

6.9. Generating a Checkbox

You can generate a checkbox for attributes that have exactly two allowable values: one
value is shown as checked, and the other as unchecked. Because the HR sample schema
does not have such an attribute, we have added IND_LEASE_CAR to the EMPLOYEES
table, with allowable values Y and N.

Steps to generate a checkbox:

1. Create a static domain with exactly two values (see the section Domains). The
first value in the domain is the checked value, the second value in the domain is
the unchecked value.

2. In the properties of the item that you want to generate as a checkbox, set Display
Type to ‘checkbox’ and Domain to the static domain you just created (for
example YesNo).

3. Set the Default Display Value to one of the values in the Domain.

4. It is customary to change the Prompt to something ending in a question mark, for
example ‘Lease Car?’.

This will generate a field like this in form layouts:

In a table layout it will look like this:

Attention: In a search region, IndLeaseCar will show as a dropdown list and
not as a checkbox.

The reason is that we have three situations when searching:

1. We want to search for rows with IndLeaseCar=’Y’

2. We want to search for rows with IndLeaseCar=’N’.

3. We do not want to consider the value of IndLeaseCar in the search, but
are searching on other criteria.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 31

6.9.1. Generating a checkbox based on a Boolean attribute

If you have defined a transient view object attribute of type java.lang.Boolean, you
do not need to set up a domain. In this case, you only need to set the Display Type to
checkbox, and during the JSF Model Update phase, the setter method of this attribute
will automatically be called with value Boolean.TRUE when the checkbox is checked,
and with value Boolean.FALSE when the checkbox is not checked.

6- 32 Generating User Interface Widgets JHeadstart Developer’s Guide

6.10. Generating a Button Item

JHeadstart provides extensive support for generation of (iconic) buttons, and executing
various types of actions when the button is pressed. In this paragraph, the following
topics are discussed:

 Positioning of buttons

 Appearance of buttons

 Executing a button action

6.10.1. Positioning of Buttons

The position of the button is determined by the Display Type of the item:

 commandButton: the button is located based on the position of the item relative
to other items in the group or item region. In the screen shot below, the Display
At Right of Item property is used to position the button item at the right of the
JobId item.

 toolbarButton: if the Display in Form Layout property evaluates to true, the
button is displayed in the form group toolbar.

If the Display in Table Layout property evaluates to true, the button is displayed
in the table toolbar.

 groupLinkButton: the button is located based on the position of the item
relative to other items in the group or item region.

 groupLinkToolbarButton: if the Display in Form Layout property evaluates
to true, the button is displayed in the form group toolbar. If the Display in Table
Layout property evaluates to true, the button is displayed in the table toolbar.

6.10.2. Appearance of Buttons

The appearance of the button is determined by the following properties:

 The Prompt in Form Layout or Prompt in Table Layout properties are used to
generate a button with a text label.

 The Icon property is used to generate an iconic button. In this property you can
specify a relative path from the html root directory to your image. A number of
useful icon images can be found in the /jheadstart/images folder.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 33

 The Hint (Tooltip) property can be used to generate a tool tip when the user
hovers over the button with the mouse.

When both the prompt and an icon are specified, an iconic button with text is generated
as shown below.

6.10.3. Executing a Button Action

There are a number of methods to associate an action with a button that should be
executed when the button is pressed:

 A popup window is launched when a region container with Display Type
Modal Popup Window or Modeless Popup Window has the Depends on
Item(s) property specified referring to a button item. See chapter 5, section 5.10.4
Generating Content in a Popup Window for more information.

 When the Display Type of the button item is set to groupLinkButton or
toolbarGroupLinkButton, the called group will be displayed, either in page,
or in a modal or modeless popup window, or in a new dynamic tab. See section
Navigating Context-Sensitive to Another Group Taskflow (Deep Linking) for
more information.

 When the Method Call property is set, the business method specified in this
property is executed.

 When the Action property is set the action method specified in the property will
be executed, or when a literal value is specified navigation might take place
based on this value.

 When the ActionListener property is set the action listener method specified in
the property will be executed.

The last three methods are discussed in more detail below.

Attention: By default, the button is generated without the immediate="true"
property. This means that the JSF phases Process Validations and Model
Update are executed before the button action is performed in the Invoke
Application phase. This is useful when the user enters values on the screen,
and then presses a button that should perform an action where these values
are needed. The drawback is that if you have invalid data on your page, an
error message will be displayed and the button action will not be performed.

If you do not want validations to fire, you can use the expert-mode property
Additional Properties and specify immediate"true" as the value. Do
remember that when immediate is set to true, any values just entered on the
screen are not propagated to the ADF binding layer (and subsequently to ADF
Business Components) because the JSF Model Update phase is skipped in this
case.

6- 34 Generating User Interface Widgets JHeadstart Developer’s Guide

6.10.3.1. Using the Method Call Property

To use this property, you need to create a custom method on the application module and
publish this method on the client interface. Once, you have done this, the method appears
in the Method Call dropdown list.

As an example, we will use a method to increase the salary of an employee to illustrate
the steps to make this work.

 Go to the Model project, and find the application module that is specified as data
control in your JHeadstart service definition.

 Go to the Application Module Class. If there is none, generate one using the
Application Module editor, Java category.

 Create a new method as follows (assuming that the EmployeesView is defined
in the Application Module's data model as EmployeesView1):

 public void increaseSalary(String empId, String percentage)

 {

 // 1. Find the Employees view object instance

 ViewObject empView = getEmployeesView1();

 // 2. Construct a new Key to find the Employee with the specified id

 Key empKey = new Key(new Object[]

 { empId });

 // 3. Find the row matching this key

 Row[] empsFound = empView.findByKey(empKey, 1);

 if (empsFound != null && empsFound.length > 0)

 {

 EmployeesViewRowImpl employee = (EmployeesViewRowImpl) empsFound[0];

 // 4. Increase the salary with the specified percentage

 double convertedPercentage = new Double(percentage).doubleValue();

 double multiplyNumber = 1 + convertedPercentage / 100;

 Number newSalary = employee.getSalary().multiply(multiplyNumber);

 employee.setSalary(newSalary);

 }

 }

Attention: The type of the parameters is String, because that is easiest to pass
from the ViewController, and it can be converted to any type you need.

Attention: This code assumes that you created a ViewRowImpl class for the
EmployeesView. You can generate this class by going to the
EmployeesView editor, selecting the Java category and checking the
Generate View Row Class checkbox.

Attention: The Number class referenced is oracle.jbo.domain.Number, not
java.lang.Number.

 Publish this method on the application module client interface. In the
Application Module Editor, go to the Java category and edit the Client Interface
by clicking the pencil icon and shuttle the new increaseSalary method to the
right.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 35

 Optionally, you can run the Application module tester to test the method by
double clicking the application module node.

You can now define a new unbound item named IncreaseSalary with Display Type
commandButton within the JHeadstart Application Definition Editor and set the
Method Call property to call the increaseSalary method.

6- 36 Generating User Interface Widgets JHeadstart Developer’s Guide

To pass in the method parameters, we add two parameters to the item. In the parameter
Name property you will get a dropdown list with the method arguments.

For empId, we need to pass in the value of the current employee. We use the attribute
binding generated for the EmployeeId item for this. JHeadstart-generated attribute
bindings follow the naming convention [group(Short)Name][itemName], so since
the group name is Employees and no Short Name is defined, the name of the attribute
binding is EmployeesEmployeeId. The complete expression to get the value of this
attribute binding is:

#{bindings.EmployeesEmployeeId.inputValue}

For the percentage parameter you can fill in a fixed value like 10, or, if you want to
make this user-enterable, you can define another unbound item in the group where the
user can enter a percentage. If you create an unbound item named Percentage, the EL
expression to pass the value is similar to getting the employee id:

 #{bindings.EmployeesPercentage.inputValue}

You could even show a popup window using the technique described in chapter 5,
section 5.10.4 Generating Content in a Popup Window, where the user can enter the
percentage, and click the increaseSalary button, as shown below.

The steps to do implement this are:

 Set the Layout Style of the Regions region container to Modal Popup
Window.

 Add an item region inside the region container with the Percentage item and
the IncreaseSalary button item.

 Create an additional button item LaunchIncreaseSalaryPopup and set the
Depends on Item(s) property of the region container to this item.

 Set the Depends on Item(s) property of Salary to the IncreaseSalary button
item to immediately see the updated salary after the button has been pressed.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 37

6.10.3.2. Using the Action Property

The use of the Action property is identical to (and generated as) action property of a JSF
command button: you can specify a literal string which is used for navigation, or you can
specify a no-argument managed bean method that returns a string value that can be used
for navigation.

You can easily generate a custom managed bean that contains the method you want to
call in the group task flow. See chapter 13, section 12.5.5 Adding Custom Managed beans
for more information.

6.10.3.3. Using the Action Listener Property

The use of the Action Listener property is identical to (and generated as) action listener
property of a JSF command button: you can specify a void managed bean method that
takes the JSF ActionEvent as the single argument.

You can easily generate a custom managed bean that contains the method you want to
call in the group taskflow. See chapter 13, section 12.5.5 Adding Custom Managed beans
for more information.

6.10.4. Calling a PL/SQL Procedure or Function From a Button

To call PL/SQL logic in the database, you first create an application module method that
calls the database procedure or function, and then you can use the Method Call property
to call the application module method as described in the previous section.

The JHeadstart runtime library contains a convenience class,
oracle.jheadstart.util.DatabaseProcedure, which makes it very easy to call
PL/SQL in an intuitive way. You basically copy the PL/SQL specification of the
procedure or function, and then just call it. The functionality of this class is best explained
through some examples

6.10.4.1. Simple PL/SQL Function Call Example

To call a database function hello_world and get the result of the call in a String
variable, one only needs to use the following lines of code:

 String name = "John";
 DatabaseProcedure helloWorldProc =

DatabaseProcedure.define("function hello_world(p_name in varchar2)

return varchar2");

 String result = (String) helloWorldProc.call(getDBConnection(),

name).getReturnValue();

6.10.4.2. Simple PL/SQL Procedure Call Example

To call a database procedure with several output parameters, do the following.

Integer empId = 100;

DatabaseProcedure getEmpDetailsProc =

DatabaseProcedure.define("procedure get_employee_details

(p_id in number

, p_name out varchar2

, p_address out varchar2

, p_age out number)");

 DatabaseProcedure.Result result =

 getEmpDetailsProc.call(getDBConnection(), empId);

6- 38 Generating User Interface Widgets JHeadstart Developer’s Guide

 String name = (String) result.getOutputValue("p_name");

 String address = (String) result.getOutputValue("p_address");

 Number age = (Number) result.getOutputValue("p_age");

6.10.4.3. Calling a function/procedure inside a package

To call a function or a procedure that resides inside a package, just prefix the name of the
function/procedure with the package name.

DatabaseProcedure helloWorldProc =

DatabaseProcedure.define("function my_package.hello_world(p_name

in varchar2) return varchar2");

6.10.4.4. Recommended Use

 A DatabaseProcedure object can be reused multiple times. It is therefore a best
practice to store the DatabaseProcedure object in a static variable (as a constant). Then
you create an application module method that make the actual database call. The hello
world example shown earlier looks like this:

Publish this method on the application module client interface, test it by running the
application module tester, and if it works correctly, you can use the Method Call
property in the JHeadstart Application Definition Editor and select the method from the
dropdown list.

Attention: The PL/SQL specification you use is parsed by the Java code only once

(using regular expressions). No database call is made until you actually use

the call() method. At that point it simply uses ONE ordinary JDBC call. So no extra

calls have to be made and the behavior is the same as ordinary JDBC. Therefore, it is

very unlikely that you will encounter any measurable performance penalty at all.

Tip: You can directly select and copy the procedure or function specification in
your favorite PL/SQL editor, and then paste it inside the brackets of the
define method argument in JDeveloper. JDeveloper will then nicely add all
the new line feeds you also used in the PL/SQL editor, which makes the code
much more readable when using procedures or functions with many IN or
OUT parameters.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 39

6.11. File Upload, File Download, Showing Image Files, and Playing Audio Files

You can generate File Upload, and depending on the type of file, File Download or Show
Image or Play Audio for database columns of types ORDSYS.ORDDOC,
ORDSYS.ORDIMAGE, ORDSYS.ORDAUDIO and BLOB.

Attention: The abovementioned types that start with ORDSYS are object types
defined in the Oracle interMedia feature of the Oracle database. The
ORDSYS.ORDDOC type can store any heterogeneous media data including
audio, image, and video data in a database column.
ORDSYS.ORDIMAGE can process and automatically extract properties of
images of a variety of popular data formats, and ORDSYS.ORDAUDIO can
process audio specific properties.
For more information, see the interMedia section of the Oracle Technology
Network (http://otn.oracle.com/products/intermedia).

Example of generating a file upload field in the HR sample schema for uploading photos
of employees:

1. Make sure you have a table with a column of the correct datatype. This is
sufficient:
alter table EMPLOYEES add photo ordsys.ordimage;

2. Add the new Photo attribute to the ADF Entity Object and ADF View Object for
Employees.

3. Add the Photo item to the Employees group of your JHeadstart Application
Definition (by synchronizing the group) and generate your application. You will
get something like this:

4. When you click the Update button, you will get a popup that looks like this:

With the Browse button you can select the image file you want to upload for this record.
Click OK to upload the file to the server.

5. If instead, you want that field to display the photo, you can change the Display
Type of the item to image.

6. If instead, you want that field to display a hyperlink that downloads the file in a
separate window, you can change the Display Type of the item to fileDownload.

Attention: The display type ‘image’ means that ADF Faces renders the file as a
download link, image, or audio player, depending on the nature of the
individual file.

After changing the Display Type to image and regenerating, you will get something like
this (do not forget to upload a picture first!):

http://www.oracle.com/technology/products/intermedia

6- 40 Generating User Interface Widgets JHeadstart Developer’s Guide

If the file you uploaded was an audio file (this is possible with the BLOB, ORDDOC and
ORDAUDIO types), you will get something like this:

Suggestion: By default there are limits on the size of the file that can be
uploaded. If they are exceeded, you get a Java exception:
java.io.EOFException: Per-request disk space limits exceeded.

If you want to change the file size limitations, check the Configuration
appendix of the Web User Interface Developers Guide for ADF, at
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/ap_config.htm#sthr

ef2668

6.11.1. Combining File Display Options

For generating both file upload and file download (or image or audio player) for the
same database column, create an extra item as follows:

1. Open the Application Definition Editor.

2. Add an extra item to the group.

3. Copy all properties of the original file item (Photo).

4. Change the Name of the new item (for example to ShowPhoto), and change the
Display Type to fileDownload or image.

5. Consider to change the prompt of one or both of the Photo items

If you don’t change the prompts, you will get something like this:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/ap_config.htm#sthref2668
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/ap_config.htm#sthref2668

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 41

6.11.2. Showing Properties of Uploaded Files

When uploading files, several additional characteristics of the files, like size and mime
type, are stored in the interMedia database column. You can make these properties
visible in your page. What properties are available depends on the object type
(ORDDOC, ORDIMAGE, ORDAUDIO or BLOB).

Reference: For a complete overview of the available properties, see the
interMedia section of the Oracle Technology Network
(http://otn.oracle.com/products/intermedia).

Here are some properties that you might want to show:

Property SQL name ADF BC method Java type

File Size (in bytes) ContentLength getContentLength() int

File Mime Type MimeType getMimeType() String

(Original) File Name source.srcName getSourceName() String

File Upload Time source.updateTime getUpdateTime() Timestamp

The SQL name is what you can use to retrieve the property in a SQL query, for example:

select emp.photo.contentLength, emp.photo.source.srcName

from employees emp

where emp.last_name = 'King';

If you want to show some of these additional file properties in your JHeadstart
application, for example the File Name and the File Size, here is how you do that.

1. In the ADF BC View Object, create new transient attributes for the File Name and
the File Size.

2. Give the attributes the appropriate types (String and Number).

3. In the View Row Class, change the get methods for the new transient attributes
as follows (assuming that the original file attribute is called Photo):

 public String getPhotoFileName()

 {

 String fileName = null;

 if (getPhoto() != null)

 {

 try

 {

 fileName = getPhoto().getSourceName();

 }

 catch (SQLException e)

 {

http://www.oracle.com/technology/products/intermedia

6- 42 Generating User Interface Widgets JHeadstart Developer’s Guide

 throw new JboException(e);

 }

 }

 return fileName;

 }

 public Number getPhotoSize()

 {

 Number size = null;

 if (getPhoto() != null)

 {

 try

 {

 size = new Number(getPhoto().getContentLength());

 }

 catch (SQLException e)

 {

 throw new JboException(e);

 }

 }

 return size;

 }

4. Go to the Application Definition, and synchronize the group to get items for the
new attributes.

5. Change the item properties (for example the Prompt) where desired, and
generate the application.

If you want to use the file name as the label for a download link (in case the file is not
an image, video or audio file), you can use the Hint Text property on the
fileDownload item to refer to the item that holds the name of the file.

For example, if you have a group named “Employees”, an item “DocItem” with
Display Type “fileDownload” that is based on an attribute of type OrdDocDomain,
and an item “DocItemFileName” that returns the name of the uploaded DocItem
using the technique explained above, you can set the Hint Text property of DocItem
as follows:

#{bindings.EmployeesDocItemFileName.inputValue}

This will display the name of the actual file on the download link.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 43

6.12. Generating a Graph

The number of possible types of graphs with the ADF Data Visualization components is
huge, as well as the customization possibilities and wizard options.

Fusion Developers Guide, chapter 26 “Creating Databound ADF Data
Visualization Components”. Includes instructions on defining graphs, gauges,

gantt charts, maps and pivot tables

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/graphs_charts.

htm#CHDIBDEF

We do not aim to copy (a mere subset of) these features in JHeadstart, but let you use the
best of both worlds: the very rich wizards on ADF Data Visualization components, plus
the flexibility to integrate the graphs into your JHeadstart application.

In the screen shot above, we create an item with Display Type graph, and placed in the
overflow right area. As you can see the item generated is just used as a place holder for
the actual graph that you need to add manually using drag and drop, as shown below.

After the graph is displayed correctly, you can create a custom template for the graph
item to preserve your graph customizations when regenerating your application. For
detailed steps on how to do this, see the JHeadstart Tutorial at
http://download.oracle.com/consulting/jhstutorial1111.pdf

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/graphs_charts.htm#CHDIBDEF
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/graphs_charts.htm#CHDIBDEF
http://download.oracle.com/consulting/jhstutorial1111.pdf

6- 44 Generating User Interface Widgets JHeadstart Developer’s Guide

6.13. Conditionally Dependent Items

The ADF Faces components that JHeadstart application generator uses for your web tier
pages cleverly combine Asynchronous JavaScript, XML, and Dynamic HTML to deliver a
much more interactive web client interface for your business applications. In ADF Faces,
the feature is known as partial page rendering because it allows selective parts of a page
to be re-rendered to reflect server-side updates to data, without having to refresh and
redraw the entire page. This combination of web technologies for delivering more
interactive clients is known more popularly by the acronym AJAX. ADF Faces supports
this powerful feature for any JavaServer Faces (JSF) page with no coding. JHeadstart
automatically configures the necessary properties on the controls to enable a maximal use
of this great feature, for example for enabling dynamically-changing, conditionally-
dependent fields.

Sometimes, one field value (or its enabled status or some other characteristic) might
depend on another field. JHeadstart makes it simple to generate pages that support this
kind of conditionally-dependent field.

In this section we first describe the general usage of the Depends On Item(s) property,
and then build on that for describing how to create cascading lists in form layout, search
area, and table layout, where the latter is a special case of row-specific dropdown lists.

6.13.1. Using the Depends On Item(s) Property

For each item, you can specify that it depends on one or more other items in the same
group. The details differ a bit if it depends on multiple items as opposed to depending on
a single item.

6.13.1.1. If an item depends on a single other item

For example, imagine that the commission percentage of an employee only is relevant if
they are an Account Manager. In this section we'll configure a simple example to
implement the disabling of the CommissionPct item in the Employees group unless the
value of the JobId is equal to 'AC_MGR'. To accomplish this task, follow these steps:

 Conditionalize the Value of the Disabled Property Using an Expression: in the
JHeadstart Application Definition Editor, expand the top-level Employees group,
its Items folder, and select the CommissionPct item. Set its Disabled? property to
the expression value:

#{$DEPENDS_ON_ITEM_VALUE$!= 'AC_MGR'}

The token $DEPENDS_ON_ITEM_VALUE$ gets substituted by the JHeadstart
application generator so that the expression ends up referencing the correct value of the
item on which the current item depends. In table layout, you need a different expression
than in form layout. We'll setup this item dependency next...

 Set the CommisionPct Item to Depend on the JobId Item by setting its Depends
on Item property to JobId.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 45

 Choose a value for the Clear/Refresh Value? property. When this checkbox is
checked, and the depends-on-item changes value, this item's value is cleared
before the model binding of the depends-on-item is updated. If you would code
logic in the setter method of the underlying attribute of the depends-on-item to
update this item's value, then this new value will be displayed in the page. If you
don't know what to choose, leave it unchecked.

 After regeneration and running the application, in the Employees tab, if you use
the Quick Search area to find all employees whose LastName starts with the
letter H, and then drill down to the details, you can navigate between employees
like Michael Hartstein and Shelly Higgins to notice that the CommissionPct
field on the screen as disabled for Michael, as shown below, but enabled for
Shelly (whose JobId = 'AC_MGR'). If you change the JobId of Hartstein to
AC_MGR using the dropdown list, you will see that the CommissionPct item is
enabled immediately.

6.13.1.2. If an item depends on multiple other items

The basic steps are the same as when the item depends on a single item, except for the
following:

 Instead of choosing the Depends On item from the dropdown list, type in a
comma-separated list of item names in the field, followed by using the Enter key.

 You cannot use the token $DEPENDS_ON_ITEM_VALUE$ if the item depends
on multiple other items. Instead, use the following expressions depending on the
layout style and search area of the group:

Item usage Expression

6- 46 Generating User Interface Widgets JHeadstart Developer’s Guide

Table layout row.<attributeName>

Form layout bindings.<groupName><itemName>.inputValue

Search area search<groupName>.criteria.<groupName><itemName>

For example, to refer to the value of the JobId in the search area, use the
expression #{searchEmployees.criteria.EmployeesJobId}.

 If in your application you have more than one of the abovementioned item
usages, for example you have the dependency in both form layout and search
area, you will have to create multiple dependent items: one for each usage. Make
sure the copied dependent item is displayed only in table layout, or only in the
form layout, or only in the search area, and use the appropriate expression for
each copied item.

6.13.2. Cascading Lists

If the displayed values in a dropdown list depend on the chosen value in another
dropdown list, we call them cascading lists.

Here are the basic steps to generate this in a form layout using the Region-Countries
example from the HR schema:

 Create a ViewObject on Countries with a where clause named bind param:
region_id = :p_region_id

 define p_region_id on the Bind Params tab of your VO

 Set the Query Bind Parameter property in the dynamic domain created for the
country item drop down list according to the table below, for example:
p_region_id=#{bindings.CountriesRegionId.inputValue}

Item usage Expression

Table layout row.<attributeName>

Form layout bindings.<groupName><itemName>.inputValue

Search area search<groupName>.criteria.<groupName><itemName>

Attention: If you have the same cascading lists in table and form layout,
and/or in a search area, you need to make separate domains, and separate
items for CountryId: one displayed in table layout with the "table" domain
associated, one in form layout with the "form" domain associated, one in
search are with the "search area" domain associated.

 In case of a table layout the domain checkbox Data Collection Changes By Row
must be checked as well.

 Set Depends On Item(s) for CountryId item to the RegionId item

 Check checkbox Clear/Refresh Value? for CountryId

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 47

 Generate and run.

6.13.3. Row Specific Dropdown Lists in Table

This is in fact a more generic case of Cascading Lists in Table Layout, so follow the steps
above!

6- 48 Generating User Interface Widgets JHeadstart Developer’s Guide

6.14. Navigating Context-Sensitive to a Group Task Flow (Deep Linking)

JHeadstart allows you to generate hyperlinks (or buttons) that navigate context-sensitive
to another page. With context-sensitive we mean that the data displayed in the target
page, depends on the data displayed in the source page. This feature is called deep
linking and can be implemented using custom generator templates.

In this example, we will use the JHeadstart deep linking support to generate the JobId in
the Employees group table and form as a hyperlink that navigates to the job edit page,
querying the proper job row.

To get the deep linking to work, follow these steps:

1. Open the JHeadstart Application Definition Editor, and navigate to the item that
you want to display as a hyperlink (in this case: the item JobId in the
Employees group).

2. Set the Display Type to one of the following:

 groupLink: generates a hyperlink to perform the group navigation

 groupLinkButton : generates a text button, or iconic button (if you specify
the Icon property) to perform the group navigation

 groupLinkToolbarButton : generates a text button, or iconic button (if
you specify the Icon property) in the group toolbar to perform the group
navigation

In this example we will use Display Type groupLink.

3. Right click the item, and add a Parameter.

4. Click in the Name property of the parameter and choose rowKeyValueJobs
from the dropdown list. The rowKeyValue[groupName] parameter is one of
the standard parameters generated for each task flow to enable deep linking. For
more information on these standard task flow parameters, see chapter 12, section
12.5.1 Understanding Generated task Flow Structure.

5. Set the Value of the parameter to
#{bindings.BaseGroupNameItemName.inputValue}, which is for the
example #{bindings.EmployeesJobId.inputValue}.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 49

6. That’s it! Save your application definition and generate the application. The
resulting Employees table will now look like this:

When you click the link, you will go to the Jobs page with the Job you clicked on
as the current row:

Note that if you want to generate a button rather than a link to navigate to the other
group, you can easily make a custom template based on the default GROUP_LINK
template and replace the af:commandLink tag with the af:commandButton tag.

6.14.1. Opening the Linked Group in Popup Window

You can use the property Show Linked Group In to determine how the target group is
made visible. The default is “In Page” which causes the above in-page navigation where
the deeplink page of the target group replaces the page with the group link. You can also
show the linked group in a modal or modeless popup window, or in a new dynamic tab
(see next section for this last option). You can then use the items Width and Height
properties to set the size of the popup window.

6- 50 Generating User Interface Widgets JHeadstart Developer’s Guide

If you generate with these settings, clicking the group link launches a popup window
showing the deep link form page of the target group task flow.

6.14.2. Using Taskflow Parameters to Customize Appearance of Linked Group

In addition to the task flow parameters that can be used to set the current row in the
target group, you can use parameters to customize how the pages of the target group
appear. Each group task flow generated by JHeadstart has the following standard
boolean parameters to customize the appearance:

 hideSaveButton

 hideCancelButton

 hideSearchArea

 hideFormBrowseButtons

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 51

Note that these parameters are defined in the bounded task flow template. You can add
additional parameters to all groups by making a custom JHeadstart Velocity template to
generate the bounded task flow template.

You can also add group-specific custom task flow parameters. For example, we can add a
task flow parameter to show the Jobs deep link page in readOnly mode, as follows:

 Right-mouse-click on the Jobs group and choose New -> Parameter.

 Set the name of the parameter to “readOnlyMode”

 Set the Insert Allowed EL Expression, Update Allowed EL Expression and
Delete Allowed EL Expression to the reverse value of the readOnlyMode task
flow parameter, as shown below.

Now that we have added this custom task flow parameter to the Jobs group, we can add
additional parameters to the group link item in the Employees group, to show the Jobs
group in read-only mode without Cancel, Save and Form Browse buttons:

6- 52 Generating User Interface Widgets JHeadstart Developer’s Guide

When we generate with these settings and click the JobId hyperlink, the popup will look
like this:

6.14.3. Opening the Linked Group in a New Dynamic Tab

You can enable dynamic tabs at the application level. When you do this you create a
multi-tasking user interface within the ADF-JHeadstart application where the end user
can open multiple tabs with independent tasks (and independent transaction
boundaries), just like browser tabs. See chapter 9 "Creating Menu Structures" for more
information on enabling dynamic tabs in your application.

If dynamic tabs are enabled at the application level, you can choose the value New
Dynamic Tab in the Show Linked Group In property. A typical use case for this option
is the pattern where you have a search page for a key domain object in your application,
like employees in an human resources application, and then you can select one or more
instances to work with, that open in separate tabs.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 53

Here are the steps to implement this for employees, as shown above:

 Set the application-level property Page Template to
/common/pageTemplates/JhsDynamicTabsPageTemplate.jspx

 Set the application-level property Data Control Scope to Isolated.

 Create two groups, SearchEmployees and EditEmployee that are based on
the EmployeesView1 view object usage.

 SearchEmployees group: Set the Layout Style to table, the tabName to
Search Employees and make the table read-only by unchecking the Multi-
Row Insert/Update/Delete Allowed properties.

 Set the Layout Style for EditEmployee group to form and uncheck the
checkbox Add Menu Entry for this Group

 Create a new unbound item LaunchEditEmployeeTab in the
SearchEmployees group, make this the first item in the group, and set the
properties as shown below.

 Add the rowKeyValueEditEmployee parameter, with value
#{bindings.SearchEmployeesEmployeeId.inputValue}

6- 54 Generating User Interface Widgets JHeadstart Developer’s Guide

 Add the tabUniqueIdentifier parameter, with value
#{bindings.SearchEmployeesEmployeeId.inputValue}. By specifying
this parameter, clicking on the edit icon for an employee that already has an edit
tab open will select this existing tab instead of opening a new tab. Note that if
you do not specify this parameter, JHeadstart uses the first parameter value as
tab unique identifier which in this case would have been OK.

 Add the tabLabel parameter with value
#{nls['EDIT_TITLE_EDITEMPLOYE:

#{bindings.SearchEmployeesLastName.inputValue}'] }

If the tabLabel parameter is not specified, the tabName property of the group is used.

6.14.4. Deep Linking from an External Source

You can also start the application and directly open a specific group task flow and
specific row within this task flow from an external source, like a link in another
application or from e-mail. To do this, you need to specify a request parameter named
jhsTaskFlowName in the URL with a value that matches a group name as defined in the
JHeadstart Application Definition Editor. Any standard or custom task flow parameters
defined for this group task flow can also be specified as request parameter in the URL.
For example the following URL will start the application with the Employees taskflow,
displaying employee with EmployeeId 110:

http://127.0.0.1:7101/MyJhsApp/UIShell?jhsTaskFlowName=Employees

&rowKeyValueEmployees=110

If security is enabled, you will first get a login page, and then you will be redirected to
the specific task flow page.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 55

6.15. Generating Embedded Oracle Forms

OraFormsFaces™ is a JSF component library to integrate Oracle Forms in a JSF web
application. This allows a developer to embed Oracle Forms in a JSF page and truly
integrate the two, including passing context, events, eliminating Forms applet startup
time, and many more features.

OraFormsFaces allows organizations to use the Java stack for new developments while
protecting their investment in Oracle Forms. They can build new JSF or ADF Faces based
web applications and integrate existing Forms applications in them. The JSF web
application can pass parameters to Forms and the other way around. Both Forms and JSF
can raise events (commands or triggers) in the other technology.

OraFormsFaces is a product from Commit Consulting. A trial version can be downloaded
from the Commit Consulting website.

Commit Consulting: For more information on OraFormsFaces and Commit

Consulting, go to http://www.commit-consulting.com/

A special OraFormsFaces page for JHeadstart users is also available:

http://www.commit-consulting.com/jhs

JHeadstart integrates with OraFormsFaces through the item display type
“oraFormsFaces”.

Follow these steps to generate a web page that embeds an Oracle Form using the
OraFormsFaces technology:

 Install OraFormsFaces in JDeveloper, by following the instructions in the
OraFormsFaces Developer’s Guide.

 Add the OraFormsFaces environment entries in the web.xml of your project, as
documented in the OraFormsFaces Developer’s Guide.

 Create a new top-level group in the application definition editor. Uncheck the
checkbox property Bound to Model Data Collection.

 Add an item to the group, uncheck the item checkbox property Bound to Model
Attribute?

 Set the Java Type property to “String”

 Set the Value property to the name of the Oracle Form you want to embed.

 Set the Display Type property to oraFormsFaces.

 Generate the application

http://www.commit-consulting.com/

6- 56 Generating User Interface Widgets JHeadstart Developer’s Guide

 Make sure the forms server is running.

 Run the generated application. When you go to the menu tab for the group you
just created, you will see the Oracle Form embedded in your JSF page. The first
time you access the page, it takes a few seconds because the forms applet must be
started. When you later return to the page, you will notice the form will be
displayed immediately, since the Forms applet is only started once (one of the
many features of the OraFormsFaces library). When you click on the JSF Save
button, you will notice that the Oracle Form is committed!

6.15.1. Deep Linking to an Oracle Form

You can use the normal deep linking facilities in JHeadstart to navigate to an embedded
Oracle Form and query the context in this form. At the Oracle Forms side, the form must
contain a global or forms parameter that will receive the context information required to
query a specific row. And the Oracle Form needs to have a WHEN-NEW-FORM-
INSTANCE or PRE_FORM trigger that will execute the appropriate logic based on the
value of the form parameter or global.

In the following example, we will deep link from a JHeadstart-generated table page that
shows person information to an Oracle Form that can be used to maintain the person
information. The Oracle Forms contains a parameter named PEOPLE_ID.

Here are the steps to follow:

 In the group that contain the oraFormsFaces item, add a parameter named
PEOPLE_ID

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 57

 In the oraFormsFaces item, add a parameter also named PEOPLE_ID, and set the
value to the EL expression that references the group parameter that will be
generated as a taskflow parameter: ${pageFlowScope.PEOPLE_ID}

 In the group that should generate a hyperlink to call the embedded form, create
an item with Display Type “groupLink” and specify the Link Group Name and
Show Linked Group In properties.

 Add a parameter named PEOPLE_ID to this item and set the value to the EL
expression that references the primary key value.

 That’s all. Generate and run the application!

6- 58 Generating User Interface Widgets JHeadstart Developer’s Guide

The calling page with the hyperlink looks like the picture below.

And clicking the link will query the correct row in the Oracle Form as shown below.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 1

C H A P T E R

7 Generating Query

 Behaviors

This chapter discusses how to add query behaviors to a web page. Topics discussed
include:

 Using ADF Model search or JHeadstart custom search

 Using auto-query

 Using Query Bind Parameters

 Quick Search

 Advanced Search

 Forcing a Requery

7 - 2 Generating Query Behaviors JHeadstart Developer’s Guide

7.1. Creating a Search Region

In most cases, you want to give the end-user some query functionality to search for rows
with specific values and reduce the number of rows. This section describes how to do
that.

JHeadstart is able to generate two distinct ways of search functionality:

1. Quick Search: The search region is placed on top of the generated page.
Typically you can only search on one field at a time. Range queries are not
supported with quick search.

2. Advanced Search. The search region can be on top of the page or in a separate
page. The user can search on multiple fields together. Range queries are
supported.

Suggestion: You can use both options together. For example: a Quick Search
for the most frequently used selection, and an Advanced Search for less
frequently used selections. In that case the Quick Search will be shown by
default, with a button to go to the Advanced Search region.

Before generating a Quick Search or Advanced Search page, you have to make some
choices and preparations.

7.1.1. Choosing a Technology: ADF Model or Custom JHeadstart

For both quick and advanced search you can choose between:

1. ADF Model approach. With this approach you define your quick and/or
advanced search in the View Object itself using View Criteria. The page has a
single component (<af:query> or <af:quickQuery>) that renders a complete
search area.

2. Custom JHeadstart approach. Here you don’t specify anything in the View
Object, but use the meta-information in JHeadstart to generate a custom quick or
advanced search area.

The choice of this technology also has to do with the choice for the technology behind List
of Value components (see Chapter 6 and the compatibility matrix there).

In general, we recommend to use the ADF Model approach, unless you have
requirements that cannot be implemented using the ADF Model search. Such
requirements include:

 Specific layout requirements for the search area, for example, organizing the
search items in groups with headers, or multiple tabs.

 Read-only descriptor items that should be populated by an LOV for a search
item

 Usage of JHeadstart List of Values in the search area.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 3

7.1.2. Creating a Model Based Search

To create a model based search, you can optionally specify View Criteria in Business
Components. See the link below how to perform this.

Fusion Developers Guide for ADF, section 5.11 “Working with Named
View Criteria”.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.ht

m#BCGIFHHF

To specify that you want to use ADF Model based advanced or quick search, go to the
JHeadstart Application Definition Editor, and click the applicable group. Go to search
settings and choose ‘model-samePage’ for Advanced Search? and ‘model’ for Quick
Search?

Even if you have not specified any View Criteria, you can now generate your application
and the group will contain a default quick and advanced search, where the user can
search on all attributes. That is, all attributes that have ‘Queryable?’ checked in the View
Object Attribute editor.

You can also select a View Criteria that you have made in your View Object. Suppose we
have a ViewCriteria that selects employees with a salary above 5000 and called it
‘HighSalaryEmployees’. We could now select that for our View Criteria and it will be
used as the default View Criteria:

After generating, the quick search will look like this:

And when you press the ‘Advanced Search’ button, it will look like this:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#BCGIFHHF
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/bcquerying.htm#BCGIFHHF

7 - 4 Generating Query Behaviors JHeadstart Developer’s Guide

Notice how you can only set the attributes that appear in the View Criteria that was
specified (HighSalaryEmployees). If you would not set any ViewCriteria, you would be
able to set any column in the View Object.

Web User Interface Developer's Guide for ADF, section 12 “Using Query
Components”. Explains in more detail how the <af:query> and <af:quickQuery>

components work.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_query.htm#

BABDIHBA

7.1.3. Creating a Custom JHeadstart Search

When creating a custom JHeadstart search, you typically leave the ADF Business
Components untouched and do not define any View Criteria.

Instead, you need to review each group in the JHeadstart Application Definition and
identify items that should not logically be queryable.

If requested to generate search functionality, the JHeadstart Application Generator needs
to know what the queryable items are. You can set the Include in Quick/Advanced
Search properties for each item in a group. Both properties default to true.

1. Select an item in the Application Definition Editor.

2. Check or uncheck the Include in Quick/Advanced Search properties.

7.1.4. Using JHeadstart Quick Search

To generate a Quick Search region for a group, you have two choices:

1. The item used for searching is always the same. Set the Quick Search? property
to the value singleSearchField. Select the search item in the Single or Default
Search Item property.

2. You want the user to be able to select the items to search on. Set the Quick
Search? property to ‘dropdownList’. JHeadstart will populate a dropdown list
with item names so the user can select the item to query on. Only queryable items
are shown in the list (see previous section). The default item is specified by the
Single or Default Search Item property.

You can also completely disable Quick Search by setting Quick Search? to ‘none’.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_query.htm#BABDIHBA
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_query.htm#BABDIHBA

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 5

7.1.5. Using JHeadstart Advanced Search

Again, there are two possibilities when generating Advanced Search functionality:

1. The Search region is in the same page as the rest of the group

2. The Search region is in a separate page.

You control this by setting the Advanced Search? property.

There are several properties that will affect the layout of the Advanced Search Region:

1. The Form Width property indicates the width of the Search Region.

Attention: If you use the Form Width property when generating a
search region for a page of Form layout, this property value will
impact the layout of both the search region and the main form page.

2. The Advanced Search Layout Columns property indicates in how many
columns you want to display your items. By default all the items will be
displayed in one column.

3. Regions of the group. If the items you included in the Advanced Search, are also
included in a region, then by default a region will also be applied to the
advanced search area.

Attention: If you don’t want to apply the item regions to the
advanced search area, you can use a variation on the template
default\search\advancedSearchRegion.vm. Comment out the 3
lines just below the comment ‘Optional RegionContainer…’ by
putting ## in front of each line, and uncomment the 3 lines below
the comment ‘Use the following code instead…’ by removing the ##
in front of each line. Then put those 3 lines instead of the
#ADVANCED_SEARCH_ITEMS() call within the panelForm above. See
the comments in the template.

7.1.6. Using a JHeadstart Query Operator

On item level the Query Operator can be set. This operator determines how to query the
data. Examples are contains, endsWith and greaterThan.

By default, the ‘StartsWith’ operator is used for String items. In all other cases the
equality operator is used.

You can change this behavior by setting the Query Operator property for an item. See the
help in the Application Definition editor for possible values of this operator.

A special case is the value ‘setByUser’ for the Query Operator. ‘setByUser’ means the
user of the application can at runtime choose the operator to be used.

1. Set the Query Operator property to ‘SetByUser’.

2. Generate the application

7 - 6 Generating Query Behaviors JHeadstart Developer’s Guide

3. Go to the ‘Advanced Search’ region in the generated application. You will see
something like this:

4. JHeadstart has generated a dropdown list with applicable query operators for
this field.

7.1.7. Using Query Bind Variables in JHeadstart Quick or Advanced Search

Based on the quick or advanced search items that are set by the user, a query WHERE
clause is appended dynamically to the query (see section Search Support in ADF BC
Application Module).

This approach does not allow for adding sub selects to the WHERE clause that references
other tables. Since it is a common requirement to perform a search based on values in for
example a detail table, JHeadstart allows you to map quick or advanced search items to
query bind variables.

Let’s use an example to illustrate this technique: we want to be able to search all
departments that contain employees with a specific job. In other words, we want to add
Employee JobId as a search item to the Departments group.

Here are the steps to implement this:

 Add an unbound item “EmployeeJobId” to the Departments group. Do not
display this item in form nor table layout, and check the checkboxes “Show in
Advanced Search?” and “Show in Quick Search?”.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 7

 In the Departments View Object, defined a named bind variable after the item
name, prefixed with the group name: DepartmentsEmployeeJobId.

 In the same Departments View Object add a sub-select to EMPLOYEES table
using the value of DepartmentsEmployeeJobId bind variable.

 Generate and run your application!

7.1.8. Runtime Implementation of JHeadstart Quick Search and Advanced Search

The JHeadstart functionalities Quick Search and Advanced Search share some runtime
components: the Search Bean and the search support in the ADF BC Application Module.

Search Bean

A search managed bean definition is generated in the group adfc-config whenever a
group has Quick Search and/or Advanced Search enabled. Here is an example of a
search bean:

7 - 8 Generating Query Behaviors JHeadstart Developer’s Guide

You can see how the generic JhsSearchBean class is configured through the managed
properties for usage in the Departments page. Related functionality like the maximum
number of query hits allowed is also implemented through managed properties.

Note the searchBinding managed property; this property “injects” the ADF Model
action binding that is used to call the advancedSearch() method on
JhsApplicationModuleImpl (see below).

Both the Quick Search Go button and the Advanced Search Find button call a method on
the search bean:

<af:commandButton action="#{searchEmployees.quickSearch}"

 textAndAccessKey="#{nls['GO']}"/>

<af:commandButton textAndAccessKey="#{nls['FIND']}"

 action="#{searchEmployees.advancedSearch}" />

Internally, the quickSearch() and advancedSearch() methods delegate the actual work
to methods createArgumentListForAdvancedSearch() and
executeAdvancedSearchBinding().

7.1.8.2. Search Support in ADF BC Application Module

JHeadstart Runtime provides an extension for your Application Module that includes
advanced search support (which is used for both the Advanced Search and the Quick
Search functionality of JHeadstart). The JhsApplicationModule interface and the
JhsApplicationModuleImpl class contain the method advancedSearch() that takes an
array of JHeadstart QueryCondition objects and translates them to an additional where
clause on the relevant View Object.

This method is exported in the client interface of the Application Module, which makes it
available as a data control operation. For such an operation an action binding can then be
created in the page definition of the page (which is of course what the JHeadstart
Application Generator does when a Search Region is generated).

The QueryCondition object stores information about that part of the search that applies
to a single view attribute:

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 9

 attribute to search on

 operator to use

 search value

 format

 wildcard usage

 case (in)sensitivity

The QueryCondition also translates the query operator names used in the pages by
appropriate SQL operators and wildcard usage. For example, query operator
"startsWith" results in the operator "like" and wildcard usage "suffix".

The advancedSearch() method uses this information to construct ADF BC
ViewCriteria objects, applies them to the View Object, and then executes the (modified)
query of the View Object.

Reference: See the Javadoc or source of the advancedSearch() method of
JhsApplicationModule and JhsApplicationModuleImpl, and the Javadoc of
the QueryModel class.

Reference: See the Javadoc or source of the JhsSearchBean

7.1.8.3. Combining Quick Search and Advanced Search

If you generate both Quick Search and Advanced Search on the same page, by default the
Quick Search region will be visible and the Advanced Search region will be hidden.
Besides the normal Quick Search fields, there will also be a button called 'Advanced
Search', to switch from Quick Search to Advanced Search.

When the user clicks the Advanced Search button, the Quick Search region is hidden and
the Advanced Search region is shown, together with a button called 'Quick Search'.

7 - 10 Generating Query Behaviors JHeadstart Developer’s Guide

Which search region is shown initially, is governed by the JhsSearchBean property
quickSearchMode. The Quick Search and Advanced Search regions both use an EL
expression in the “rendered” property that references the quickSearchMode property in
the search bean.

Partial Page rendering is used to switch between Quick Search and Advanced Search.
The button 'Advanced Search' looks like this:

<af:commandButton id="asButtonEmployees"

 textAndAccessKey="#{nls['ADVANCED_SEARCH']}"

 partialSubmit="true"

 action="#{searchEmployees.switchToAdvancedSearchMode}"/>

When this button is pressed, the switchToAdvancedSearchMode() is executed which
sets the quickSearchMode property of the Search Bean to false. The effect is that
when the user goes to a different page, and later returns to this same page, the
Advanced Search region will still be visible, since the Search Bean is stored on
session scope.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 11

7.2. Configuring the Query

This section describes how you can influence the query behavior of generated pages.

7.2.1. Specifying Auto Query

By default, JHeadstart generates pages with Auto Query on. This means that the records
are automatically retrieved when the user enters a page, potentially retrieving a large
result.

On a group you can set the Auto Query property to false. This means that records are
queried upon request from the user, either by doing a Quick Search or an Advanced
Search. This is particular useful when we want to force the user to restrict the number of
rows retrieved by specifying search criteria.

See also the Maximum Number of Search Hits property. Use this property to force the
user to enter more restrictive search criteria. Note that this property can only be used in
combination with JHeadstart custom search.

7.2.2. Using Query Bind Parameters

Both groups and dynamic domains are based on an ADF View Object. A View Object
contains a SQL query. By default, this is a fixed query. This means the View Object will
always return the same set of rows with each execution (if the database has not changed).
In many cases you want your View Object to be dynamic. For example a View Object that
retrieves the Employees of a Department. You want to pass the DepartmentId into the
ViewObject and have the ViewObject return the correct rows.

ADF BC View Objects have bind variables for this functionality. You can specify a where
clause with bind variables directly against the view object, or you can define bind
parameters in a view criteria, and then apply this view criteria to the view object usage in
the application module. The latter technique is usually faster because you can reuse an
existing view object and associated view links.

 JHeadstart can at runtime pass values into these bind variables using the Query Bind
Parameters property. For JHeadstart, it doesn't matter whether the bind variable is
defined on the view object itself, or on a named view criteria applied on the view object
usage.

We will use the example of departments that have a managing employee:

Base group is departments with Layout Style=’form’. The Display Type of the item
ManagerId is ‘dropDownList’. We want the manager to be an employee of the
department. The dropdown list should only contain employees that are in the
department we are maintaining, in this case the department with DepartmentId=10. We
use a dynamic domain to populate the ManagerId dropdown list

We will implement this requirement by using the Query Bind Parameters of JHeadstart:

1. Go to your Model project, to the Employees view object and create a new
named view criteria EmployeesByDepartment using a new bind variable
p_department_id as shown below.

7 - 12 Generating Query Behaviors JHeadstart Developer’s Guide

2. Add a new view object usage EmployeesInDept based on the Employees
view object to the Data Model of the Application Module. Click the edit icon to
apply the named view criteria EmployeesByDepartment that you just created.

3. In JHeadstart, create a new Dynamic Domain based on the new view object
usage and name it ‘EmployeesInDept’. In the Query Bind Parameters
property enter this expression:
p_department_id=#{bindings.DepartmentsDepartmentId.inputValue}

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 13

4. Set the property Domain (on the ManagerId item) to EmployeesInDept.

5. Generate and run the application again. The dropdown list for ManagerId now
contains only employees of the selected department.

Note that if you want to use this dropdown list in a table layout, you need to use a
different value for Query Bind Parameters property, and you need to check the Data
Collection Changes By Row? checkbox, as shown below.

You can use Query Bind Parameters for both Groups and Dynamic Domains. Using EL,
you can bind to any value available on the request or the session. JHeadstart will
automatically re-query when the value of a bind parameter has changed.

7 - 14 Generating Query Behaviors JHeadstart Developer’s Guide

7.2.3. JHeadstart Runtime Implementation of Query Bind Parameters

When you specify query bind parameters for a group in the Application Definition,
JHeadstart generates a QueryBindParams managed bean in the group adfc-config. If you
specify query bind parameters for a dynamic domain in the Application Definition,
JHeadstart generates such a managed bean in the domains adfc-config. Here is an
example:

The only task of the QueryBindParams class is to hold the last value of the query bind
parameters.

Applying the bind parameters is done by method applyBindParams() in
JhsApplicationModuleImpl. This method compares the old and new values of the bind
parameters and only (re-)executes a query when at least one bind parameter value has
changed.

In the page definition, an action binding is generated to call the applyBindParams()
method:

Note the EL expression for the second method argument that references the namedParams
property of the queryBindParams bean.

The missing link is how this method action is invoked. The query must be executed
before the page is displayed, so we cannot call the method using a button. We use the

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 15

invoke action executable for this purpose. JHeadstart generates an invokeAction
executable as follows:

Reference: See the Javadoc or source of
JhsApplicationModuleImpl.applyBindParams().

7 - 16 Generating Query Behaviors JHeadstart Developer’s Guide

7.3. Forcing a Requery

By default, the ADF Model Iterator Binding created for the data collection of a JHeadstart
group is only queried once, and the query results are cached by ADF Business
Components. JHeadstart supports the option to force a refresh of the cached query data
by using the group level property Requery Condition.

This is a combo box property, the drop down list includes three common conditions that
JHeadstart translates to a Boolean JSF EL expression, and you can also enter a custom
Boolean JSF EL expression.

The predefined values are:

 Always: every time the user navigates to the page, or submits the page itself, the
iterator binding is requeried. This condition translates to the JSF expression
#{true}.

 When Entering the Page: the iterator binding is requeried when the user
navigates from another page to this page. This condition translates to the JSF
expression #{jhsPageChanged}. "jhsPageChanged” is a boolean request
attribute that is set to true in JhsNavigationHandlerImpl class when the old
JSF ViewRoot differs from the new ViewRoot.

 When Entering the Task Flow: the iterator binding is requeried when the user
navigates to a new group task flow. This condition translates to the JSF
expression #{jhsTaskFlowChanged}. "jhsTaskFlowChanged” is a boolean
request attribute that is set to true in JhsNavigationHandlerImpl class when
the old ADF task flow differs from the new task flow.

 After Commit: the iterator binding is requeried when the user submits the page
by clicking on a button that executes the Commit action binding, like the
generated Save button. This condition translates to the JSF expression
#{jhsAfterCommit}. "jhsAfterCommit” is a boolean request attribute that is
set to true in CommitBean class when the transaction is committed successfully.

Note that the Requery Condition property is also available for dynamic domains. If you
want to refresh the content of a drop down list, you can set the Requery Condition on the
dynamic domain.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 17

7.3.1. Implementation of Requery

When the Requery Condition is set, JHeadstart generates two additional entries in the
Page Definition of the group:

 An action binding that executes the query.

 An invokeAction in the executables section. The refreshCondition of this
invokeAction determines whether the executeQuery action binding is invoked or
not.

7 - 18 Generating Query Behaviors JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 1

C H A P T E R

8 Generating Transactional

 Behaviors

This chapter describes how you can influence the transactional behavior of generated
pages. The properties in the Operations group in the Application Definition editor are
used for this.

8- 2 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.1. Enabling Insert Operation

8.1.1. Allowing Inserting Data in a Form Page

When checkbox Single-Row Insert allowed? Is checked, JHeadstart will generate an
iconic ‘New’ button on the page.

8.1.2. Building Insert Only Form Pages

Sometimes you want a page where the user can only enter new records, for example an
application for entering new service requests. In this case, a user must not be able to
query other data.

In such a case, set property Display New Row on Entry? to “true”.

To really disable all query functionality for the group, change the View Object query
settings. Go to the View Object and change the view into an ‘Insert only’ View.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 3

8.1.3. Entering in Insert Mode When No Rows Found

The easiest way to implement this behavior is by setting the property Display New Row
on Entry? to “when no rows found”.

Another way to implement this behavior is to override the executeQueryForCollection
method in your ViewObjectImpl class as follows:

The difference is that with this approach, any default values you have set in the
JHeadstart Application Definition Editor, are not applied. Note however that you can
add custom Java code to the create method of an entity object to add (complex)
defaulting logic.

8.1.4. Allowing the User to Insert Data in a Table Page

If the Multi-Row Insert Allowed checkbox is checked an iconic add Row button is
generated in the header of the table. To quickly create new rows based on data of existing
rows, you can check the Show Duplicate Row Button checkbox. An iconic button to
duplicate a row is then generated in the first column of each row.

The same options are added to the Action drop down menu.

And the duplicate row function is also available on the popup menu accessible through a
right-mouse-click on a row.

8- 4 Generating Transactional Behaviors JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 5

8.2. Enabling Update Operation

Use properties Single-Row Update Allowed? and Multi-Row Update Allowed? to
allow updates in respectively form layouts and table layouts.

Which items will be updateable or not depends on the Update Allowed property of an
item. This property can be used to make items read only, always updateable, or
updateable in a new row.

The Update Allowed property is a combo box, you can choose one of the options from
the drop down list, and you can also enter a boolean JSF EL Expression.

8- 6 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.3. Enabling Delete Operation

Use properties Single-Row delete allowed? and Multi-Row delete allowed? to allow
deletes in respectively form layouts and table layouts.

The JHeadstart Application Generator generates an iconic Delete button on a single row
page, and the same iconic button in each row of a table where delete is allowed.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 7

8.4. Conditionally Enabling Insert, Update an Delete

The previous sections explained how to enable or disable insert, update and delete
functionally for the group, regardless of user roles and permissions or the actual data.

To conditionally enable insert, update and delete operations you can use the Insert
Allowed EL Expression, Update Allowed EL Expression and Delete Allowed EL
Expression. These properties are available both on the Service-level and on Group level.
On service-level, you will typically use them in combination with permission-based
access control. See chapter 10 “Application Security”, section “Restricting Group And
Item Operations based on Authorization Information” for more information.

On the group level you can refer to user roles, and you can make the operation enabled
based on the actual data shown on the page.

For example, if you have a business rule which specifies that users in the
HR_ASSSISTANT role can only delete job PU_CLERK and that HR_MANAGERS can
delete all jobs, then you can specify the following DeleteAllowed EL Expression to
implement this rule:

#{jhsUserRoles[‘HR_MANAGERS’] or (jhsUserRoles[‘HR_ASSISTANT’] and

bindings.JobsJobId.inputValue==’PU_CLERK’)}

8- 8 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.5. Runtime Implementation of Transactional Behaviors

8.5.1. Multi-Row Insert

To implement insert operations in a table, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.TableBean. The corresponding managed bean
definition looks like this:

As you can see, the generic TableBean class is configured for specific usage in the
DepartmentsTable using managed property settings.

When the user clicks the iconic Add Row button, the addRow method in this managed
bean is called. This method performs the folllowing functionality:

 Creates the new row

 Applies any default values if a default values bean is injected as managed
property. This is the case when the Default Display Value property for one or
more items in the group is set.

 Discloses the row when the table is generated with property Table Overflow
Style set to Inline. Note that this only works when the row has an auto-generated
primary key attribute that is assigned in the create() method of the entity
object. Otherwise, the key of the row is not yet known and the row cannot be
disclosed.

 Sets the row as selected in the table.

 Puts the input focus on the first input item of the row.

Reference: See the Javadoc or source of TableBean.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 9

8.5.2. Single-Row Insert

To implement insert operations in form layout, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.CreateRowBean. The corresponding managed
bean definition looks like this:

The execute method in this bean is executed when the iconic ‘New …’ button is pressed.

The execute method in the CreateRowBean first creates the new row using the Create
binding in the page definition, then checks whether a default values managed bean is set
as managed property. When such a bean is found, the applyDefaultValues() method is
called on this bean.

Finally, it populates the createModes managed bean Hashmap with an entry with the
create action binding name as the key and Boolean.TRUE as the value. This entry causes
the page to be rendered in insert mode. See also chapter 5 “Generating Page Layouts”
section “Create/Update Mode”.

Reference: See the Javadoc or source of CreateRowBean

8.5.3. Single-Row and Multi-Row Delete

To implement delete operations in form and table layout, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.DeleteRowBean. The corresponding managed
bean definition looks like this:

The execute method in this bean is executed when the iconic ‘Delete’ button is pressed.
The execute method first passivates the state of the application module, then it deletes the
row, and then it calls the execute() method on the injected jhsCommit bean (see section
“Commit Handling”). The passivation of Application Module state is needed so we can
restore the deleted row in ADF BC when the actual database commit fails.

8- 10 Generating Transactional Behaviors JHeadstart Developer’s Guide

Reference: See the Javadoc or source of DeleteRowBean

8.5.4. Commit Handling

To implement commit operations, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.CommitBean. The corresponding managed bean
definition looks like this:

The execute() method in this bean is executed when the ‘Save’ button is pressed, or
when called from another bean like the DeleteRowBean. The execute() method
performs the following:

 When the user tries to save data without having made any changes, he gets a ‘No
changes to save message’ (JHS-00101). JHeadstart checks the state of the
application module to determine whether there are outstanding changes. The
message is added to the JSF message stack.

 When the commit succeeds, a ‘Transaction completed’ message (JHS-00100) is
added to the JSF message stack.

 When the commit fails, the passivated state of the application module is activated
again to bring back any rows that might already have been removed from the
corresponding ViewObject iterator, when the Commit failed because of a
database error.

8.5.4.1. Add Commit Behavior to a Custom Button

If you want to perform the same Commit handling on a custom button item that invokes
a business method using the Method Call property, you can set the Action property to
call the commit bean as follows:

#{SaveDepartments.execute}

If you want to have a customized transaction completed message, you can create a
custom managed bean based on the CommitBean and set the
transactionCompletedMessageKey property to the resource bundle key of your
custom message. Then in the Action property, specify the execute method of this custom
managed bean.

Alternatively, if you want to add commit behavior inside a custom managed bean
method, you can add code like this (substitute SaveDepartments with the name of your
generated task flow commit bean):

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 11

CommitBean cb =

(CommitBean)JsfUtils.getExpressionValue("SaveDepartments");

cb.execute();

If you want to override the JHS-00100 and JHS-00101 message for this specific button,
you can call methods to set another message key, or to set the message key to null to
prevent a message being displayed alltogether.

CommitBean cb =

(CommitBean)JsfUtils.getExpressionValue("SaveDepartments");

cb.setNoChangesMessageKey(null);

cb.setTransactionCompletedMessageKey("ACM-00004");

cb.execute();

See chapter 12, section 12.5.5 for more info on adding custom managed beans to
JHeadstart-generated group task flows.

Reference: See the Javadoc or source of CommitBean.

8.5.5. Rollback Handling

To implement rollback operations, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.RollbackBean. The corresponding managed bean
definition looks like this:

The execute() method in this bean is executed when the ‘Cancel’ button is pressed, or
when called from another bean like the PendingChangesBean. The execute() method
simply executes the rollback binding.

Since the name of the Rollback binding is the same in all page defnitions, the jhsRollback
bean is only generated in JhsCommon-beans.xml. If you want to change the rollback
behavior in your whole application, you can create a subclass of the RollbackBean and
make a custom template for JhsCommonBeans.vm and change the managed bean class to
the name of your subclass.

If you want to change rollback behavior in one specific task flow, you can add a custom
managed bean by the same name (“jhsRollback”) to the taskflow. The ADF Controller
will first look for the request-scoped bean within the bounded taskflow, if not found, it
will use the “default” jhsRollback bean defined in JhsCommon-beans.xml.

See chapter 12, section 12.5.5 for more info on adding custom managed beans to
JHeadstart-generated group task flows.

8- 12 Generating Transactional Behaviors JHeadstart Developer’s Guide

Reference: See the Javadoc or source of RollbackBean.

JHeadstart Developer’s Guide Generating Menu Structures 9 - 1

C H A P T E R

9 Creating Menu Structures

JHeadstart supports two styles of creating menus:

 a static menu structure defined in XML format, generated based on the service
and group structure of the application definition

 a dynamic menu structure which is table-driven, and can be configured at
runtime using menu administration screens

Both menu styles define the structure of the menu; the page template associated with a
page will determine the actual layout of the menu. In this chapter, we will explain the two
ways of creating a menu structure and how you can change the layout of the menu.

In the last paragraph, we will discuss the use of dynamic tabs that can be opened when
clicking on a menu entry to create a multi-tasking user interface.

9 - 2 Generating Menu Structures JHeadstart Developer’s Guide

9.1. Static Menu Structure

By default, JHeadstart generates a static menu structure that reflects the structure of the
services and groups as defined in the application definition. This static menu structure
uses the Trinidad XML Menu Model facility. The XML Menu Model defines the menu
hierarchy structure in one or more XML files. A managed bean that uses the class
org.apache.myfaces.trinidad.model.XmlMenuModel, or a subclass, gets this XML Menu
Model injected through a managed property named “source”.

ADF Web User Interface Developer's Guide. Section 17.5 Using a Menu Model to

Create a Page Hierarchy.

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31973/af_navigate.htm -

CACIABAD

At application level, you can set the folowing properties to configure menu generation:

Checking the Allow Runtime Customization Menu? Checkbox, will generate the
dynamic, table-driven menu as discussed in the next section.

If you leave this checkbox unchecked, JHeadstart will generate a static menu structure.
The Content First-Level Menu Tabs property determines which menu level is shown
where:

 When set to its default of “Base groups current service”, then in the upper-right
corner, also called the “menu global” area, menu items to switch services and to
go to the home page will be generated, and the first level menu tabs will show
the groups of the current service, as shown in the picture below:

 When set to “All Services”, the first level tabs will show the services and the
home page, and second-level tabs will show the groups within the service, as
shown in the picture below.

 When set to “All base groups”, the first level tabs will show a merged view of all
groups across all services, as shown in the picture below.

http://download.oracle.com/docs/cd/E12839_01/web.1111/b31973/af_navigate.htm#CACIABAD
http://download.oracle.com/docs/cd/E12839_01/web.1111/b31973/af_navigate.htm#CACIABAD

JHeadstart Developer’s Guide Generating Menu Structures 9 - 3

The Tabname property of a group determines the label of the menu tab. When you check
the application-level checkbox Generate NLS-enabled prompts and tabs?, the label of
the menu option will be read from a resource bundle, with the value of the Tabname
property used as default. See the section on Internationalization for more info on multi-
language support.

9.1.1. Preventing Generation of a Menu Tab

If you do not want a menu entry to be generated for a given group, you can uncheck the
group-level property Generate Menu Entry for this group.

Note that this property is only visible when you have switched the Application Definition
Editor to expert mode

9.1.2. Customizing the Static Menu Structure

To understand how to customize the menu structure, it is useful to understand what files
JHeadstart generates for you:

 a Root XML Menu as specified in the Root Menu Model File property. This file
contains the home page item node, and references to all the service-level menu
beans

 A managed bean “RootMenu” in JhsCommon-beans.xml which gets this Root
XML Menu Model injected. This RootMenu bean is passed as an attribute to the
page template of each page, causing the menu to render.

 For each service, an XML menu model file is generated as specified in the
service-level property Menu Model File.

This XML file defines the list of base groups as menu items.

 For each service, a ‘[ServiceName]Menu’ managed bean is generated which gets
the service XML Menu Model injected

If you want to change this generated menu structure, you can simply modify the
generated XML files and uncheck the Generate Menu Model File checkbox. For
example, we want to divide all base groups within the HR Service within two submenu’s
“People Management” and “Geographical Management” as shown below.

9 - 4 Generating Menu Structures JHeadstart Developer’s Guide

To do this, we can change the menu-hrservice.xml and group the items within two
groupNode elements as shown below:

9.1.3. Using a Static Menu Tree Layout

If you want to show the menu structure in a tree layout, you can simply switch the
application-level Page Template to “JhsTreeMenuPageTemplate.jspx”. The tree
menu will look like this:

9.1.4. Customizing the Static Menu Layout

The XML Menu Model can be rendered using the <af:navigationPane/> element
and the <af:tree/> element (as used in the previous section). The default JHeadstart
Page template uses the <af:navigationPane/> element. The value property of this
element can reference a managed bean that uses the XMLMenuModel class, as do the

JHeadstart Developer’s Guide Generating Menu Structures 9 - 5

RootMenu bean and service-level menu beans generated by JHeadstart. The level
property of the navigationPane determines which level in the XML menu structure will
be rendered. It will then stamp out the menu items for that level, with the layout as set in
the hint property. The allowable values for the hint property are: bar, buttons, choice,
list and tabs. The default JHeadstart page template uses buttons for the global menu,
tabs for the first level menu, and bar for the second-level menu.

To change the layout hint used by the navigation panes, you can create your own custom
page template, and set the application-level template to the name of your custom page
template. If you use a layout hint that shows a specific level of menu items vertically, you
probably want to display them at the left of the actual page content instead of at the top.

If you base your custom template on the the JhsTreeMenuPageTemplate, this can be
achieved by replacing the af:panelCollection (which contains the af:tree) with the
navigation pane. Setting the hint property to list will result in a menu level displayed
like this:

9 - 6 Generating Menu Structures JHeadstart Developer’s Guide

9.2. Dynamic Menu Structure

Although the static menu structure can easily be changed, it requires application
developers to change the menu XML files. If you do not want to depend on application
developers to change the menu structure, then you should use the dynamic menu that
can be configured and customized at runtime by a system administrator. JHeadstart uses
a set of database tables to support these dynamic menus. The structure of these tables is
shown below.

The top level of the menu structure is defined by so-called modules. A module can be
seen as a logical subsystem of your application, and will often match with a service
defined in one application definition, but this is not required. Each module has a nested
structure of menu items. A menu item can simply launch the first page of a group as
defined in an application definition file, but you can also specify a custom JSF Navigation
action. You can also associate a user interface skin with a module; this allows you to
support multiple user interface skins depending on the currently selected module.

In the next sections we will explain how you can enable your application to use a
dynamic menu structure.

9.2.1. Creating the Database Tables

Before you can start using dynamic menus, you need to create the above table structure
in your own application database schema. You can do this by running the script
JhsModelCreate.sql against the database connection of your application schema. This
script is located in the scripts directory of your ViewController project. If you don’t see
the scripts directory, make sure you check the “Group By Directory” option in the
projects toolbar of the Application Navigator.

JHeadstart Developer’s Guide Generating Menu Structures 9 - 7

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for flex items,
translations and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

9.2.2. Enabling Dynamic Menus

To enable your application for use of dynamic menus, the first thing to do, is to check the
application-level checkbox Allow Runtime Customization of Menu?.

9.2.2.1. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator again, the following happens to
enable dynamic menus:

 All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying database tables needed for the dynamic menu. Note that
by creating JhsModelService as a nested application module, it will inherit the
database connection of the parent application module.

9 - 8 Generating Menu Structures JHeadstart Developer’s Guide

 An additional Service Definition file, named MenuAdminService.xml is
generated. Click Save All after running the JAG and then in the JHeadstart
Application Definition editor, select the application level node, and click the
synchronize button in the toolbar to see the new MenuAdminService.

This service definition is only generated when it does not exist yet, so after it has
been generated, you can make any changes you want using the Application
Definition Editor, without loosing these changes when you regenerate your
“own” service definition. Note that like every other Service Definition, the Menu
Admin service is treated as another module in your application: the generated
SQL script DynamicMenuDataMenuAdminService.sql has inserted a row in
JHS_MODULES, and rows in JHS_MENU_ITEMS for all level 1 and level 2
groups.

JHeadstart Developer’s Guide Generating Menu Structures 9 - 9

 A SQL Script named DynamicMenuDataServiceName.sql is generated and
executed against the default database connection of your ADF Business
Components project. This script inserts one row in the JHS_MODULES table
for the service, and multiple rows in the JHS_MENU_ITEMS table for each
top-level group and second-level group defined in the Application Definition.
This SQL script is just created to provide you with a default menu structure
that you can use to test your application. Note that if you do not want the JAG
to auto-execute the script, you can uncheck the service-level checkbox “Run
Generated SQL Scripts?”

 A module-switcher drop-down list is generated in the global buttons area of
the page. This drop-down list allows you to switch modules in your
application, which causes a different menu structure to be displayed as well:
the menu items defined for the selected module.

9.2.3. Defining the Menu Structure At Runtime

You are now ready to run the generated application, and change/define the menu
structure at runtime. If you start the application again, you will notice that the menu
structure is quite similar to the static menu structure.

This is because the generated SQL script that inserts rows in the JHS_MODULES and
JHS_MENU_ITEMS tables generates entries using the same algorithm as used for the
static menu structure. Now, using the module drop down list, we can navigate to the
MenuAdmin module, and change the menu structure anyway we want.

For example, within the HRService, lets create only two top-level menu entries “People
Management” with Employees, Departments and Jobs as level-two menu entries, and
“Geographica Management”, with Regions, Countries and Locations underneath. We can
do this by creating new menu items directly under the HRService, and making the
appropriate new menu item the parent menu item of the existing first-level menu items,
effectively changing them into level-two menu entries. The new structure will look like
this:

9 - 10 Generating Menu Structures JHeadstart Developer’s Guide

Now, if you navigate back to the HR Service using the module drop down list, the menu
will look like this:

9.2.4. Using a Dynamic Menu Tree Layout

If you want to show the dynamic menu structure in a tree layout, you can simply switch
the application-level Page Template to “JhsTreeMenuPageTemplate.jspx”.

9.2.5. Linking a User Interface Skin to a Module

If you have the requirement to render each module within your application with a
different look and feel, then you can accomplish this by defining so-called User Interface
Skins, and link such a skin to a module. You can define a skin through the Menu
Administration service.

A JHeadstart User Interface Skin integrates with the ADF Faces Skinning feature as
shown in the above screen shot. The value of the ADF Faces Skin property must be a
value that exists in the adf-faces-skins.xml file, located in web.xml.

Web Link: More information about using ADF Faces Skinning and creating your own

skin can be found in chapter 20 Customizing the Appearance Using Styles and Skins of

the the Web User Interface Developers Guide for ADF:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJF

EFCJ

If you have defined one or more user interface skins, you can associate a skin with a
module.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ

JHeadstart Developer’s Guide Generating Menu Structures 9 - 11

Now, to enable this dynamic skin switching based on the currently selected module, you
need to make a change in trinidad-config.xml, to configure ADF Faces to read the skin to
use from the jhsDynamicMenu.currentUISkin managed bean property:

Modules that do not have a skin specified continue to be rendered with the default oracle
skin.

9 - 12 Generating Menu Structures JHeadstart Developer’s Guide

9.3. Using Dynamic Tabs when Opening a Menu Item

Regardless of using a static or dynamic menu structure, you can choose to use dynamic
tabs when clicking on a menu item. The menu itself is then displayed in tree layout, and
clicking a menu item opens a dynamic tab. Clicking another menu item will open another
tab, leaving the first tab open. By using dynamic tabs, you effectively create a multi-
tasking user interface within your ADF application. Each tab has its own transaction, so a
user can temporarily switch to another tab, and then return to his original task by going
back to the first tab.

JHeadstart provides full support for this dynamic tabs user interface pattern, including:

 A dynamic tabs page template that works with both an XMLMenuModel based
tree menu, as well as the dynamic table-driven tree menu.

 A JSF phase listener that will automatically mark the current tab dirty, showing
the tab label in italics, if there are pending changes in the tab task flow

 The option to initially display one or more dynamic tabs at application start-up

 The option to launch an additional dynamic tab within a group task flow
displayed under the current dynamic tab.

 A tab unique identifier that will be used to re-select an already open tab if the
user clicks a menu item or other button that launches the tab.

 The option to close a tab through the close icon on the tab, or through some
command action in the task flow that closes the current tab. You can also
configure a tab to not being closeable.

The next sections will describe these features in more detail.

9.3.1. Enabling Dynamic Tabs

You enable dynamic tabs by setting the application-level Page Template property to
/common/pageTemplates/JhsDynamicTabsPageTemplate.jspx.

Since each task flow displayed under a tab must have its own transaction scope, you also
need to set the application-level property Data Control Scope to isolated.
Furthermore, all tab task flows are displayed as a region, so you cannot use dynamic tabs
in combination with stand-alone pages. So make sure you leave the application-level
property Default group Usage to its recommended default of Region with Page
Fragments. Since the dynamic tabs are managed at the UIShell page level, you also
should leave the property Default group Region Access to its recommended default of
Common UI Shell Page.

JHeadstart Developer’s Guide Generating Menu Structures 9 - 13

If you have created your own customized dynamic tabs page template, and have set the
Page Template property to your custom page template, you can still use the dynamic tabs
functionality. In this case you need to check the application property Use Dynamic
Tabs?.

9.3.2. Marking the Current Tab Dirty

If you made changes to the data displayed within a dynamic tab, than the moment a
request is send to the server, ths tab will be marked dirty which results in the tab label
being displayed in italics.

In addition, if you close a tab that is marked dirty, you will get a dialog that warns you
about pending changes that might be lost.

The functionality to mark the current tab dirty is implemented in faces-config.xml,
where the Jheadstart Phase Listener is configured that performs this functionality.

So, if you want to switch off this functionality for whatever reason, you create a custom
template for facesConfig.vm and comment out the lines that generated the phase
listener. See chapter 12 Customizing Generator Output for more information on using
custom templates.

9.3.3. Displaying Initial Tabs at Startup

You can also choose to display one or more dynamic tabs at application start up, for
example tabs that allow you to work with the key domain objects of your application. To
initially display a dynamic tab with a group task flow, you check the group-level
property Show as Initial Dynamic Tab?. If you do this, you still have the option to show
a menu entry for this tab. If you don't want the menu option to appear, you can uncheck

9 - 14 Generating Menu Structures JHeadstart Developer’s Guide

the group property Add Menu Entry for this Group?. If you do this, the initial tab will
not be closeable anymore, as there is no menu item anymore to re-open it.

9.3.4. Launching a New Tab from the Current Tab Task Flow

A common user interface pattern in combination with dynamic tabs is a search task flow
that displays search results of some key domain object in a table, and then opening a new
tab to work with one of the rows from the search result, as shown below.

JHeadstart fully supports this pattern. You can create a link, or iconic button that
launches another group in a new dynamic tab. For detailed steps on how to implement
this pattern see chapter 6 section 6.14 "Navigating Context-Sensitive to a group task Flow
(Deep Linking)"

9.3.5. Closing a Dynamic Tab

You can close a tab by clicking on the close icon of the tab. A tab of a group that has
property Show as Initial Dynamic Tab? checked and property Add Menu Entry for this
Group? unchecked is not closeable, as there is no menu item to re-open it.

You can also close the current tab from within the group task flow displayed in the tab.
This is useful if there is a clear last step that when performed by the end user should close
the tab. To generate a button that closes the tab, you can define an unbound item in the
group with the Display Type property set to a value that renders as an (iconic) button or
hyperlink Then, set the Action property of the item to CloseCurrentTab. You can set
the Action Listener property to a custom managed bean method that should be executed
prior to closing the tab. If you conditionally want to close the current tab based on the
success of a last action performed, then set the Action property to a custom managed
bean method that conditionally returns the string CloseCurrentTab or null when the
tab should not be closed.

If you want to close the current tab when clicking one of the standard-generated buttons
like Save or Cancel, you can create a custom template to make sure the
CloseCurrentTab action outcome is used.

See chapter 12 "Customizing Generator Output" for more information on creating custom
templates and custom managed beans.

JHeadstart Developer’s Guide Application Security 10- 1

C H A P T E R

10 Application Security

pplication security in ADF web applications can be implemented at many levels:

implemented at many levels:

 In the browser by using the secure https protocol, and browser certificates.

 In the View and Controller tiers by restricting access to web pages, page
fragments, and bounded taskflows, by hiding UI controls that provide access to
unauthorized application functions, and/or by making UI Input controls
updateable or read only based on user roles.

 In the ADF Model tier by using ADF Security to restrict access to page
definitions, and to executables, taskflows and bindings within the page
definition.

 In the Business Service tier by restricting read, insert and update access to ADF
Business Components.

 In the Database tier by restricting access to specific data objects, for example by
granting select, insert, update and delete privileges to users and user roles.
When all your application users connect to the database using the same database
user (the rule rather than the exception in browser-based applications), you can
use Oracle Row Level Security (RLS) and Oracle Virtual Private Database (VPD)
to implement access privileges.

This chapter explains the security features JHeadstart adds to standard ADF security.

A

10 - 2 Application Security JHeadstart Developer’s Guide

10.1. Understanding and Choosing Security Options with ADF and JHeadstart

The security features in ADF 11 have strongly improved over previous versions. Oracle
ADF Security is built on top of the Oracle Platform Security Services (OPSS) architecture,
which itself is well-integrated with Oracle WebLogic Server. While other security-aware
models exist that can handle user login and resource protection, Oracle ADF Security is
ideally suited to provide declarative, permission-based protection for ADF bounded task
flows, top-level web pages that use ADF bindings (pages that are not contained in a
bounded task flow), and at the lowest level of granularity, rows of data defined by ADF
entity objects and their attributes.

The remainder of this chapter assumes you are familiar with Fusion
Developer’s Guide for ADF, chapter 30 Adding Security to a Fusion Web
Application:
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/add
ing_security.htm#BGBGJEAH

In this paragraph we briefly discuss the various security settings you can make in the
JHeadstart Application Definition editor (at Application level). Subsequent paragraphs
explain in more detail what happen with each setting.

10.1.1. Authentication and Authorization Type

We recommend setting the Authentication Type to ADF/JAAS. By using ADF/JAAS
you can leverage all of the standard ADF security features as explained in chapter 29 of
the Fusion Developer’s Guide, and it allows you to use the runtime customizations
supported by ADF Faces, like reordering table columns and adding saved searches.

If you need to secure application resources based on user roles, then also set the add
Authorization Type property to ‘ADF/JAAS’. You can then secure the ADF Security-
aware resources: bounded taskflows, page definitions of pages in the unbounded
taskflow, entity objects and entity object attributes.

If you want to generate your application with ADF/JAAS security settings, you first need
to run the ADF Security Wizard. If you forget this, you will get an error message upon
generation.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/adding_security.htm#BGBGJEAH

JHeadstart Developer’s Guide Application Security 10- 3

The “custom” authentication option is intended for backwards compatibility. The
“custom” authentication option will use the JHeadstart security tables (or your own
security tables) to authenticate against.

Note that if you do want to authenticate against database tables, you can use a JAAS
Custom Login Module in combination with ADF/JAAS authentication. See the
documentation of your application server for more information on writing JAAS custom
login modules or using predefined login modules provided by the application server.

If you do not need to secure the ADF security-aware resources, but only want to
show/hide application functions based on user roles and/or group permissions (see
below), then set the Authorization Type to “custom”.

10.1.2. Secure All Pages

If you check this option, you will get a login page when trying to access the application.

The application redirects to the login page using the “allPages” web resource collection in
the web.xml:

JHeadstart will add this allPages web resource collection if it is not already present. If
you uncheck this checkbox, you need to manually remove the “allPages” web resource
collection in the web.xml if present. This can happen when you ran the ADF security
wizard in “ADF Authentication” mode, or you generated the application before with this
checkbox checked.

If you generate your application with this checkbox unchecked, then JHeadstart will
generate the page template with an additional “login”link and login popup that allows
the user to access the secure parts of the application.

10 - 4 Application Security JHeadstart Developer’s Guide

After the user logged in, all secured application functions the user has access to will be
displayed, as well as a log out link.

10.1.3. Authorize Using Group Permissions

When you add security to your application, you need to check whether a user is
authorized to perform some application function. The most obvious choice is by checking
the user’s roles. This implies that you need to design the role structure of your
application upfront, and your application code will contain hard-coded role names to
perform the various security checks.

Once in production, administration of application security is limited to assigning the
proper roles to your application users. Although you might have defined the application
roles in database tables for easy administration, adding new roles requires changes to the
application code, adding hardcoded references to the new application role. In other
words, changing the security schema of your application always requires a new release of
your application code.

A more flexible approach is by using the concept of permissions. Each application function
you want to secure can be defined as a permission. A permission is granted to one or
more application roles, which in turn can be granted to one or more users. For example,
in the context of JHeadstart, you might think of the following group permissions:

 The “Jobs” permission provides access to the pages generated from the Jobs
group as defined in the Application Definition Editor. Without this permission,
the user will not see the Jobs menu entry, and will get an access denied error if he
tries to access the page by “hacking” the URL in the browser.

 The “Jobs.Create” permission determines whether the “New Job” button is
rendered.

 The “Jobs.Update” permission determines how the items on the Edit Job page
will be rendered: as read only when the user does not have a role with this
permission, or as updateable when the user does have this permission.

 The “Jobs.Delete” permission determines whether the “Delete Job” button is
rendered.

JHeadstart Developer’s Guide Application Security 10- 5

By hardcoding permission names in application code, the security schema of your
application is fully configurable at runtime, new roles can be added and existing roles can
be deleted or changed by adding or removing permissions, without changes to the
application code. Adding new permissions still requires a new application code release,
but this release was needed anyway to add the new application function that is to be
secured by the new permission.

See section Restricting Access to Groups based on Authorization Information for more
information.

10.1.3.1. JHeadstart Group Permissions and ADF Resource Permissions

If you enabled ADF Authorization in the ADF Security wizard, you are already familiar
with the concept of permissions. For example, you can grant the view permission on a
bounded taskflow to a specific role. ADF resource permissions and JHeadstart group
permissions partly serve the same purposes, although there are some differences as well:

 Both ADF and JHeadstart permissions can be used to prevent access to a
bounded taskflow or page definition in an unbounded taskflow. When trying to
access an unauthorized resource, an error message is thrown.

 Both ADF and JHeadstart permissions can be used to hide application functions
(menu tabs, buttons, links, etc.) in the user interface that provide access to
unauthorized ADF resources.

 JHeadstart permissions can be used to switch off insert and/or update and/or
delete capabilities in a page. See section Restricting Group And Item Operations
based on Authorization Information for more info.

 JHeadstart uses database tables to store the permissions and the roles that have
grants to these permissions. Maintenance screens can easily be generated to
maintain the security information, as explained in the next section.

 ADF resource permissions and associated roles can be maintained through the
jazn-data.xml file at design time in JDeveloper. Once deployed, you can use tools
like Oracle Enterprise Manager to maintain security information. See chapter 29
of the Fusion Developers Guide for more information.

10 - 6 Application Security JHeadstart Developer’s Guide

10.2. JHeadstart Security Tables and Security Administration Screens

JHeadstart uses a set of database tables to support some of the security options discussed
in the previous paragraph. The structure of these tables is shown below.

Depending on the security settings you have made, you will use all, some or none of the
above database objects:

 When Authentication Type is set to “ADF/JAAS”, and Authorization Type is
set to “ADF/JAAS” and checkbox Authorize Using Group Permissions is
unchecked, then none of the above database objects is used.

 When Authentication Type is set to “Custom”, the JHS_USERS table is used to
authenticate the user.

 When Authorization Type is set to “Custom” or “ADF/JAAS and Custom”, the
JHS_USERS, JHS_USER_ROLE_GRANTS and JHS_ROLES tables are used

 When checkbox Authorize Using Group Permissions is checked, the
JHS_ROLES, JHS_ROLE_PERMISSION_GRANTS and JHS_PERMISSIONS tables
are used.

10.2.1. Creating the Database Tables

You create the above database objects by running the script JhsModelCreate.sql against
the database connection of your application schema. This script is located in the scripts
directory of your ViewController project. If you don’t see the scripts directory, make sure
you click the Group by Directories option in the toolbar of the Application Navigator.

JHeadstart Developer’s Guide Application Security 10- 7

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for dynamic menus,
translations and flex items are also created. If you do not plan to use these
other features you can create your own script that only creates the above tables
and view, and the JHS_SEQ sequence that is used to populate the ID column in
these tables.

You can use your own security tables rather than the JHeadstart tables, if you prefer so.
See section Using Your Own Security Tables for more information.

The JHeadstart runtime includes predefined “hooks” where you can plug in your own
security code to access your own security tables. The hooks to use depend on your
security settings, and will be described in the next paragraphs.

10.2.2. Generating Security Administration Pages

If you generate your application with security settings that use one or more JHeadstart
database tables (see above), then as part of the generation run, a separate service
definition SecurityAdminService.xml is generated that can be used to generate the
security administration screens. Click Save All after running the JAG and then in the
JHeadstart Application Definition editor, select the application level node, and click the
synchronize button in the toolbar to see the new SecurityAdminService.

10 - 8 Application Security JHeadstart Developer’s Guide

This service definition is only generated when it does not exist yet, so after it has been
generated, you can make any changes you want using the Application Definition Editor,
without loosing these changes when you regenerate your “own” service definition.

As you can see in the above screen shot, the generated SecurityAdminService contains
groups to maintain all JHeadstart security tables. Depending on your security settings,
you may delete groups that maintain tables you will not use:

 You can remove the Users, UserRoleGrants and RoleUserGrants groups if you
use Authentication Type “ADF/JAAS” and Authorization Type “ADF/JAAS”.

 You can remove the PermissionsLov, Permissions, and RolePermissionGrants
groups if you unchecked the Authorize Using Group Permissions checkbox.

Now, if you are satisfied with the settings, you can run the JAG for the
SecurityAdminService.

JHeadstart Developer’s Guide Application Security 10- 9

10.3. Using ADF/JAAS for Authentication

When you run the JHeadstart Application Generator with service-level property
Authentication Type set to “ADF/JAAS”, the following happens:

 ADF security settings in the web.xml might be modified if needed.

 A login page and associated login bean is generated. The login page can be a full
page, or a popup accessible from a login link. This is determined by property
Secure All Pages as explained before.

 A logout button is generated.

 Default users and roles are defined in jazn-data.xml.

These actions are discussed below in more detail.

10.3.1. Changes in web.xml

To ensure the JHeadstart-generated login page is used, the authentication method is set
to “FORM” and the form-login-page is set to the generated JHeadstart login page.

The following init parameters are set in the adfAuthentication servlet:

The parameters ensure that by default the user is redirected to the home page after login
and logout, however, this destination page can be overridden by including success_url or
end_url as request parameter in the login or logout URL.

10 - 10 Application Security JHeadstart Developer’s Guide

10.3.2. Login Page and Login Bean

An ADF Faces login page is generated in /security/pages subdirectory under the
html root directory. This file is generated through the
default/misc/file/fileGenerator.vm template, which in turn uses
default/misc/file/loginPage.vm template. The login page is only generated
when it does not exist yet, so you can customize the generated login page without loosing
these changes when regenerating.

When clicking the login button on the login page, the authenticateUser method of
the generic oracle.jheadstart.controller.jsf.bean.LoginBean class is
called. This bean is configured in JhsCommonBeans.xml. In case of ADF/JAAS
authentication, this method uses a Weblogic specific JAAS implementation to
authenticate the user, similar to what is documented in the Fusion Developer’s Guide.

By using this JAAS API, we are able to use a normal JSF page as login page, so you can
apply the same ADF Faces look and feel as used by your other application pages, and
you can use ADF drag and drop data binding should you want to add dynamic data to
the login page, like news items read from a database table.

The generated login page contains two “fast login” links for users SKING and
AHUNOLD, the two sample users that are created in the jazn-data.xml file.

10.3.3. Logout Button

Using the /default/misc/file/menuGlobal.vm template, called from the
default/misc/file/fileGenerator.vm template, a logout link is generated in the global
menu area. The logout button redirects to the adfAuthentication filter which takes care of
the log out process.

10.3.4. Default Users and Roles in jazn-data.xml

JHeadstart adds default users and roles in the jazn-data.xml file in the META-INF
directory under the Descriptors folder in the Application Resources pane.

The jazn-data.xml specifies two default users, SKING and AHUNOLD with password
“welcome1”, the Administrator role assigned to SKING and the user role assigned to
AHUNOLD.

JHeadstart Developer’s Guide Application Security 10- 11

10.4. Using Custom Authentication

When you run the JHeadstart Application Generator with service-level property
Authentication Type set to “Custom”, the following happens:

 The JHeadstart authentication servlet filter is configured in the web.xml

 JhsModelService application module is added as a nested application module to
your application module.

 A login page and associated login bean is generated.

 A logout button is generated

 SQL script createSampleUsersAndRoles.sql is generated. See section Sample
Users And Roles for more information.

 The SecurityAdminAppDef application definition file is generated. See section
Generating Security Administration Pages for more information.

10.4.1. JHeadstart Authentication Filter

The JHeadstart runtime includes servlet filter class
oracle.jheadstart.controller.jsf.AuthenticationFilter. This servlet
filter is configured in the web.xml to ensure that the user is redirected to the login page
when the user is not yet logged in. The servlet filter also supports logout, by invalidating
the session and redirecting to the logout destination URL which is specified as filter
parameter.

10.4.2. Nested JhsModelService Application Module

All ADF Business Components included in the JHeadstart Runtime library are imported
into your Model Project, and the JhsModelService application module is added as a
nested usage to your own application module. The JhsModelService includes View
Object Usages that insert, update, delete and query the underlying database tables
needed for the table-driven JHeadstart features, including authentication. Note that by
creating JhsModelService as a nested application module, it will inherit the database
connection of the parent application module.

10.4.3. Login Page and Login Bean

An ADF Faces login page is generated in /security/pages subdirectory under the html
root directory. This file is generated through the default/misc/file/fileGenerator.vm

10 - 12 Application Security JHeadstart Developer’s Guide

template, which in turn uses default/misc/file/loginPage.vm template. The login page is
only generated when it does not exist yet, so you can customize the generated login page
without loosing these changes when regenerating.

When clicking the login button on the login page, the authenticateUser method of
the generic oracle.jheadstart.controller.jsf.bean.LoginBean class is
called. This bean is configured in JhsCommonBeans.xml. In case of custom
authentication, this method calls method authenticateUser(String username,
String password) on the nested JhsModelService application module. This method
uses a ViewObject to access the JHS_USERS table to validate the username and
password. When valid, the method returns the UserContext object that implements the
JhsUser interface. This object is stored on the session using “JhsUser” as key, which is
checked by the authentication filter to determine whether the user is already logged in.

The generated login page contains two “fast login” links for users SKING and
AHUNOLD, the two sample users that are created in SQL script
createSampleUsersAndRoles.sql.

10.4.4. Logout Button

Using the /default/misc/file/menuGlobal.vm template, called from the
default/misc/file/fileGenerator.vm template, a logout button is generated in the global
buttons area. When clicking the logout button, you navigate to a non-existent page using
the URI /faces/security/pages/Logout.jspx. However, this URI is configured in the
JHeadstart Authentication filter as the logout URL, see section JHeadstart Authentication
Filter for more information.

JHeadstart Developer’s Guide Application Security 10- 13

10.5. Restricting Access to Groups based on Authorization Information

When you have selected an Authorization Type, you can restrict access to the pages
generated for each group by specifying roles or permissions. This can be done using the
group level property Authorized Roles/Permissions where you can specify a comma-
separated list of roles and/or permissions. If the user is granted at least one of the roles or
permissions, he is authorized to access the page.

If this property is not set, the pages generated for this group are public, and do not
require a specific user role or permission.

If you protect group pages using this property, JHeadstart will implement this restriction
in both the View and Controller layer:

 View layer (JSF pages): Hide tabs and navigation buttons that go to a page of
that group if the currently logged-in user is not authorized. See section
JHeadstart Authorization Proxy for more information on how this is
implemented.

 Controller Layer: If the user tries to directly access an unauthorized page by
“hacking” the browser URL, he should still be denied access. JHeadstart
performs this check for you. See section JHeadstart Authorization Proxy for more
information on how this is implemented.

10.5.1. Restricting Group Access using Permissions

The above example used role names to restrict access to a particular group. As explained
in section Authorize Using Group Permissions you might prefer to authorize using
permission names. To do so, you check the service-level checkbox Authorize Using
Group Permissions.

Note that this property can be used regardless of the values set for Authentication Type
and Authorization Type.

When you generate your application with this setting, the following happens

 All groups are protected using the group name as permission name. This means
that you do not have to specify the Authorized Role/Permissions property for
each and every group. You can still specify this property at the group level, to
override the default group name permission.

 A SecurityAdminAppDef application definition file is generated that can be used
to generate pages to administer the permissions and grant permissions to roles.
Using a multi-select List of Values, you can easily search and assign multiple
permissions to a role. See section Generating Security Administration Pages for
more information.

10 - 14 Application Security JHeadstart Developer’s Guide

 A SQL script named PermissionsData[ServiceName].sql is generated in the
/scripts directory. The script is automatically executed when service-level
checkbox Run Generate SQL scripts? is checked. The script inserts entries in
JHS_PERMISSIONS table for each group. Four permissions are inserted for each
group, an access permission named after the group, and three “operation”
permissions for creating, updating and deleting. See section Restricting Group
Operations based on Authorization Information for more information on using
these operation permissions. In the same script, all permissions are granted to the
Administrator role as specified in the Administrator Role property. This means
that you when you use the sample user SKING to log in, you should still be able
to access all groups. If you log in as AHUNOLD you will get an access denied
message since the USER role does not have any permissions granted. You can use
the security administration application to grant permission privileges to the
USER role, as shown in the screen shot below. After you granted permissions for
one or more groups, and you will log in as AHUNOLD you will see the group
tabs for which you granted access permission. Depending on the group action
permissions granted, the group pages will allow for insert, update and/or delete.

10.5.2. Nested JhsModelService Application Module

All ADF Business Components included in the JHeadstart Runtime library are imported
into your Model Project, and the JhsModelService application module is added as a
nested usage to your own application module. The JhsModelService includes View
Object Usages that insert, update, delete and query the underlying database tables
needed for the table-driven JHeadstart features, including group permissions. Note that
by creating JhsModelService as a nested application module, it will inherit the database
connection of the parent application module.

10.5.3. JHeadstart Authorization Proxy

The guiding principle behind the security features of JHeadstart is that the way the
application accesses the security information is as independent as possible from the
chosen implementation (ADF/JAAS or custom security).

To accomplish this, the JHeadstart runtime includes a class called
JhsAuthorizationProxy. If you have set the Application-level property
Authorization Type in the Application Definition, a managed bean is generated into
JhsCommon-beans.xml that automatically creates an instance of this class and puts it on
the session.

JHeadstart Developer’s Guide Application Security 10- 15

This JhsAuthorizationProxy instance will be invoked whenevr the application needs
authorization information. So whether ADF/JAAS is used and/or custom authorization
mechanism, whether permission-based authorization is enabled, and whether the
information is needed in the View or in the Controller layer, this ‘authorization proxy’ is
the single point that all authorization questions are being routed through. The
Authorization Proxy will determine whether standard JAAS and/or a custom security
implementation is used, and will forward the ‘authorization question’ accordingly.

When group permissions are used in combination with ADF/JAAS-based authorization,
this class performs the authorization check by first looking up all the roles that provide
access to a permission and then make the isUserInRole()API call to check whether
the user has access to such a role. Note that all authorizations are cached for the duration
of the session.

Reference: See the Javadoc of JhsAuthorizationProxy.

10.5.3.1. Accessing the Authorization Proxy in the View layer

For implementing security features in the View layer, for instance hiding tabs and
buttons or making fields read-only based on authorization information, it would be very
convenient if the Authorization Proxy could be accessed through EL expressions. For that
reason, the JhsAuthorizationProxy implements the Map interface. We can use the
managed bean "jhsUserRoles" that was mentioned in the previous section. For instance, to
hide a menu item if the current user does not belong to the ‘ADMIN’ or
‘HR_MANAGER’ roles, JHeadstart uses the following syntax:

 <af:commandMenuItem … rendered="#{jhsUserRoles['ADMIN,HR_MANAGER']}" …/>

Note that you can use a comma-separated list of role and/or permission names. The
Authentication Proxy will process them left-to-right until it finds a role or permission
granted to the current user, and returns true in that case. If the user belongs to none of
the roles, it will return false.

10.5.3.2. Accessing the Authentication Proxy in the Controller layer

As mentioned before, JHeadstart also performs a roles check in the JSF PageLifecycle.
This is implemented by the method checkRoles() in JhsPageLifecycle, which is
called from the prepareModel() phase.

This method knows which roles to check for which page, because JHeadstart generated a
"roles" parameter into the Page Definition of the page.

10 - 16 Application Security JHeadstart Developer’s Guide

Reference: See the Javadoc of the methods prepareModel() and
checkRoles() in the JhsPageLifecycle class.

JHeadstart Developer’s Guide Application Security 10- 17

10.6. Restricting Group And Item Operations based on Authorization
Information

In addition to restriction group access, you can also restrict the operations based on
authorization information. To do this for individual groups, use the
Insert/Update/Delete Allowed EL Expression properties on group level.

In the above example, both the HR_MANAGER and HR_ASSISTANT roles can access
the Employee group pages. The HR_MANAGER can insert, update and delete employee
information; the HR_ASSISTANT can only update existing employees.

10.6.1. Restricting Group Operations using Permissions

As explained in section Restricting Group Access using Permissions JHeadstart can
generate a SQL script that inserts operation permissions in the JHS_PERMISSIONS table
for each group. These operation permissions are named after the group, suffixed with
“.Create” “.Update” and “.Delete. For example, for the Jobs group the following
permissions are created:

 The “Jobs.Create” permission determines whether the “New Job” button is
rendered.

 The “Jobs.Update” permission determines how the items on the Edit Job page
will be rendered: as read only when the user does not have a role with this
permission, or as updateable when the user does have this permission.

 The “Jobs.Delete” permission determines whether the “Delete Job” button is
rendered

Now, you can use these permissions rather than role names to restrict the create, update
and delete operations. And you can configure this at service-level, which saves you the
work of entering the Insert Allowed, Update Allowed and Delete Allowed EL
expressions for each and every group. The same properties exist at service level, and you
can use the $GROUP_NAME$ token which will be replaced with the actual group name
when generating the pages for each group.

10 - 18 Application Security JHeadstart Developer’s Guide

10.6.2. Restricting Item Operations

Based on the roles/permissions of the currently logged-in user, you can also determine if
individual group items will be visible, enabled, and/or updateable.

 Visibility is determined using the properties Display in Form Layout?, Display
in Table Layout?, and Display in Table Overflow Area?

 Enabledness is determined using the Disabled property

 Updateability is determined using the Update Allowed? property

Like the group access and group operations, you can also use permission names instead
of role names if you enabled the option to authorize using group permissions.

JHeadstart Developer’s Guide Application Security 10- 19

10.7. Using Your Own Security Tables

You can use your own security tables rather than the JHeadstart tables, if you prefer so.
The JHeadstart runtime includes predefined “hooks” where you can plug in your own
security code to access your own security tables. The hooks to use depend on your
security settings, as described in the next sections

10.7.1. Changes when Using Custom Authentication

When you use custom authentication, the authenticateUser method of the nested
JhsModelService application module is called. To hook in your own authentication logic,
you should perform the following steps:

 Create your own application module that extends JhsModelService application
module.

 Add the view object needed to authenticate the user against your own table.

 In this application module, override method authenticateUser and perform
authentication using the view object created in the previous step

 Remove the JhsModelService as nested usage from your root application module

 Add your extended version of JhsModelService application module as nested
usage to your root application module, and make sure the instance name is set
to JhsModelService.

10.7.2. Changes when Using Custom Authorization and/or Permissions

The JHeadstart Authorization Proxy makes use of method

createUserContext(String username, String userDisplayName, boolean

addPermissionForJAASRoles)

on the nested JhsModelService application module. This method creates a user context
object that implements the JhsUser interface, and adds authorized custom roles and
permissions by calling method setRolesAndPermissions on the same
JhsModelService application module.

So, to use your own tables for role and permission information, it is sufficient to override
method setRolesAndPermissions. Override this method in your own application module
that extends JhsModelService, and replace the nested JhsModelService instance with your
subclass.

10.7.3. Changes to SQL Script Templates

JHeadstart uses the following templates to generate entries into the various security
tables:

 CREATE_SAMPLE_ROLES_AND_USERS:
default/misc/file/createSampleUsersAndRoles.vm

 JHS_PERMISSIONS_DATA:
default/misc/file/jhsPermissionsdata.vm

You can make custom templates to generate and execute your custom SQL script. See
chapter 12 "Customizing Generator Output" for more information on creating custom
templates.

10 - 20 Application Security JHeadstart Developer’s Guide

This page is intentionally left blank.

JHeadstart Developer’s Guide Internationalization 11- 1

C H A P T E R

11 Internationalization and

 User Assistance

This chapter discusses the JHeadstart support for multiple languages, as well as various
options to provide user assistance.

The following topics are discussed:

 National Language Support (NLS) in JHeadstart

 Using a Database Table to Store Translatable Strings

 Runtime Implementation of National Language Support

 Error Reporting

 Outstanding Changes Warning

 Using Online Help

 Using Function Keys

11 - 2 Internationalization JHeadstart Developer’s Guide

11.1. National Language Support in JHeadstart

JSF has built-in support for using property files or resource bundle classes as message
resource bundles. Message resource bundles can be used to make your application multi-
lingual. If you do not have internationalization requirements, it is still useful to use
message resource bundles to store “hard coded” text strings in a central place, where
they can be easily found and maintained.

When generating your application, JHeadstart generates a resource bundle that holds
translatable text. The name of the resource bundle can be specified in the Service-level
property NLS Resource Bundle. Using the Resource Bundle Type property you can
specify whether the resource bundle is generated as a property file, a java class or a
database table.

A property file is easiest to maintain by developers, it is a simple text file with key-value
pairs. However, a property file does not handle special symbols well. A Java-based
resource bundle is better suited for this. If you want the page text to be maintained or
translated by a super user or system administrator, then using a database table as
resource bundle is the best choice. See section Using Resource Bundle Type Database
Table for more information.

Button labels, page header titles, and other fixed “boilerplate text” generated by
JHeadstart are always generated into the resource bundle. However, if your application
should be truly multi-lingual, meaning that the generated pages cannot contain
hardcoded text at all, you should check the checkbox Generate NLS-enabled prompts
and tabs as well. When checked, the prompts, tab names and display titles that you
specify in the Application Definition Editor will also be generated into the resource
bundle.

In the Generator Default Locale property, you specify the locale that should be used to
populate the default resource bundle, which is the bundle that does not have the locale
suffixed to the name, for example ApplicationResources.properties. This
resource bundle is used when the user’s browser is set to a locale that is not supported by
your application.

In the Generator Locales property, you can optionally specify all other locales that must
be supported by your application as a comma delimited list. For each locale in this
property JHeadstart generates a resource bundle with the name as specified in the NLS
Resource Bundle property, suffixed with the locale code, for example
ApplicationResources_nl.properties and
ApplicationResources_fr.properties.

JHeadstart Developer’s Guide Internationalization 11- 3

11.1.1. Which Locale is Used at Runtime

The locale used to show the pages, and displayed as selected in the language drop down
list is based on the property Read User Locale From, which defaults to the locale set in
the browser of the end user.

If you do not want to read the locale from a browser, but store it as a user preference,
then you can enter an JSF EL expression in the Read User Locale From property. You will
typically use an expression that reads the locale from the user context object:

When you check the checkbox Generate Locale Switcher, a drop down list will be
generated in the global menu area which allows the end user to choose one of the
supported locales (displayed through the associated language name).

11.1.2. Supported Locales

JHeadstart has built-in support for the following locales:

pt_BR Brazilian Portuguese

hr Croatian

nl Dutch

el Greek

en English

fo Faroese

fr French

de German

ja Japanese

kr Korean

no Norwegian

ro Romanian

sr Serbian

sl Slovenian

es Spanish

Built-in support means that if you specify one or more of these locales in the Application
Definition, the Resource Bundle generated for that locale will contain the correct
translations for button labels, page titles and other fixed boilerplate text generated by
JHeadstart.

If you have checked the checkbox Generate NLS-enabled prompts and tabs then each
resource bundle will also contain entries for the prompts, tab names and display titles,
but these entries are still in the language you used when specifying them in the
Application Definition Editor. You will need to translate these entries manually in the
generated resource bundle. After you have done this, make sure you uncheck the
checkbox Override NLS Resource Bundle Entries to preserve your changes when you
generate your application again.

11 - 4 Internationalization JHeadstart Developer’s Guide

11.1.3. Adding a non-supported Locale

If you want to generate your application using a locale that is not supported out of the
box, you can do so by performing the following steps:

1. Create a new version of GeneratorText.properties for your own locale. You can
find these files in the folder <ViewController project>\templates\nls.

2. Specify the locale in either the Generator Default Locale property or in the
Generator Locales property.

3. Generate the application.

4. Translate the entries in the generated Resource Bundle for your locale.

5. Uncheck checkbox Override NLS Resource Bundles in the Application
Definition, to preserve your translations. JHeadstart will then only add new keys,
not change existing ones.

6. Modify <HTML Root Directory>\jheadstart\messages.js and add messages in
your language. This file contains JavaScript messages.

7. Add entries in your Resource Bundle for the JHS-messages (open
jhsadfrt_source.zip and view the contents of the
JhsUserMessages_<language>.java file for example messages).

Attention: The recommended type for Resource Bundle is java instead of
propertiesfile if you have special characters in your language. Make sure you
compile (rebuild) the Java Resource Bundle after you have added new entries,
otherwise JHeadstart Application Generator will erase them the next time you
run.

8. Make sure that your application users set the same locale in the browser and in
their operating system (Windows: Control Panel – Regional Options). Some
language dependent features (in particular ADF Faces) use the browser locale,
others the Windows locale.

Suggestion: If your language contains special characters that are not properly
shown in the resulting application, consider using Unicode notation. The tool
native2ascii (see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html) can
help you get the right Unicode for a specific text.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html

JHeadstart Developer’s Guide Internationalization 11- 5

11.2. Using a Database Table to Store Translatable Strings

JHeadstart uses two database tables when property Resource Bundle Type is set to
“databaseTable”. The structure of these tables is shown below.

The JHS_LOCALES table contains entries for all supported locales, the
JHS_TRANSLATIONS table contains all translatable strings.

11.2.1. Creating the Database Tables

You need to create the above table structure in your own application database schema.
You can do this by running the script JhsModelCreate.sql against the database connection
of your application schema. This script is located in the scripts directory of your
ViewController project. If you don’t see the scripts directory, make sure you check the
“Group By Directory” option in the projects toolbar of the Application Navigator.

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

11 - 6 Internationalization JHeadstart Developer’s Guide

Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for flex items, dynamic
menus and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

11.2.2. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator with property Resource
Bundle Type set to “databaseTable”, the following happens:

 All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying nls database tables. Note that by creating
JhsModelService as a nested application module, it will inherit the database
connection of the parent application module.

 A SQL Script named ApplicationResources.sql is generated to insert the
translatable text strings in the JHS_TRANSLATIONS table for the default
locale. If not yet present, this script will also create an entry in the
JHS_LOCALES table for the default locale. For each additional locale specified
in the Locales property, a separate SQL script named
ApplicationResources_localecode.sql is generated. The generated SQL scripts
are executed automatically against the database connection of your ADF
Business Components project when the service level checkbox Run Generated
SQL Scripts? is checked.

JHeadstart Developer’s Guide Internationalization 11- 7

 For the default locale, and each additional locale, a java resource bundle is
generated as well. This might come as a surprise since the Resource Bundle
Type is set to “databaseTable”, not “javaClass”. However, since the Java
language has built-in support for resource bundle property files or java classes,
and JSF integrates seamlessly with these files, we use this java class resource
bundle as a “façade” to our database table. If you look at the content of the
generated resource bundles, things will become more clear:

The resource bundle class no longer holds the translatable strings as is the case
when generating with Resource Bundle Type set to “javaClass”. Instead it
delegates retrieval of the translatable strings to the JHeadstart superclass,
which uses a ViewObject in the nested JhsModelService to read the
translatable text strings from the JHS_TRANSLATIONS table for the given
locale.

 Using the default/misc/file/menuGlobal.vm template, a popup dialog
window is generated into the page template that can be used to change and
translate page text in context while running the application.

 Using the default/misc/file/menuGlobal.vm template, two additional links
are generated into the global menu area, one link to record the page text, and
one link to change/translate the page text.

11.2.3. Running the Application

If you now run the generated application, you should see the Record Page Text link in the
global menu area.

11 - 8 Internationalization JHeadstart Developer’s Guide

If you enabled role-based authorization, the Record Page Text button is only visible when
the logged in user has the ADMIN role, but you can easily change this by making a
custom template for menuGlobal.vm.

When you now click this link, the JHeadstart runtime will “record” all translatable text
strings in each page, and the Record Page Text link will be replaced with a link that can
be used to invoke the ChangePageText dialog window.

In this dialog, you can select a page to translate/modify from a drop down list. This drop
down list shows a list of all pages you visited after clicking on the Record Page Text
button. Through the language drop down list, you can select the language for which you
want enter/modify page translations.

JHeadstart Developer’s Guide Internationalization 11- 9

11.3. Runtime Implementation of National Language Support

If you want to access a resource bundle in a JSF JSP page, you normally add a set tag to
your page like this:

 <c:set var="storefrontuiBundle"

 value="#{adfBundle['oracle.storefront.ui.StorefrontUIBundle']}"/>

And then you can access entries in this resource bundle like this:

 <af:panelHeader title="#{ storefrontuiBundle['TITLE_EMPLOYEES'.pageTitle']}">

While this is a simple technique, the drawback is that you explicitly have to name your
resource bundles in your page, and if you have multiple resource bundles, you need to
include multiple <c:set> tags, and you need to know which entry resides in which
bundle.

JHeadstart takes a slightly different approach. Instead of generating <c:set> tags into
the pages, JHeadstart generates a managed bean definition under the key nls which
instantiates a class that provides access to all resource bundles of your application.

In generated pages, you will often see references to this nls managed bean like this:

<af:panelHeader title="#{nls['TITLE_EMPLOYEES']}">

This approach provides you with the flexibility to (re-)organize your resource bundles as
you like, without the need to change the references to resource bundle entries in your
page.

In addition, this approach allows you to override JHeadstart messages. To do so, simply
include the message key, for example JHS-00100 in one of your application resource
bundles. If the key is not found in your default resource bundle(s), the standard
JHeadstart message bundles are used.

To make this all work, the following managed bean definitions are generated into the
JhsCommon-beans.xml:

11 - 10 Internationalization JHeadstart Developer’s Guide

The MessageFactory class is the class that loads all bundles specified through the
bundleNames managed property. The MessageFactoryMap class is just a wrapper around
the MessageFactory class that implements the Map interface, so we can use JSF EL
expressions in the page to get entries from the resource bundle.

Reference: See the Javadoc or source of MessageFactory and
MessageFactoryMap.

JHeadstart Developer’s Guide Internationalization 11- 11

11.4. Error Reporting

JHeadstart uses a custom error handler class to add functionality to how exception
messages are displayed to the user. The customerror handler class is set through the
ErrorHandlerClass property in DataBindings.cpx

This class adds the following behavior the default ADF error reporting:

 Some exceptions are skipped and not displayed to the user, because there is a
more detailed child exception message

 When the underlying exception is a SQLException that indicates a database
constraint violation, a message with the constraint name as key will be added to
the JSF Message stack, so you can provide a user-friendly message to the user by
adding this constraint name as key to your message resource bundle. Note that
the JHeadstart Application Generator already generates such messages into your
message resource bundle for all key constraints defined in the XML file of your
Entity Objects.

If you want to customize or extend this error reporting behavior, you can subclass the
JhsDCErrorHandlerImpl class and specify your own subclass in the
ErrorHandlerClass property of Databindings.cpx.

Reference: See the Javadoc or source of JhsDCErrorHandlerImpl

11 - 12 Internationalization JHeadstart Developer’s Guide

11.5. Outstanding Changes Warning

When the user has made changes to any of the data fields on a page, but then “abandons”
the current task flow by clicking on another menu tab or global menu link, JHeadstart
will show an alert to ask the user how he wants to handle the pending changes.

When the user clicks Cancel, the navigation action is aborted and the user stays in the
original page. When the user licks the Yes button, a Commit operation is executed, and
when the Commit is successful, navigation takes place. If the Commit operation fails
because of user errors, the user stays on the original page, allowing the user to fix the
data entry errors.

This functionality is implemented through an actionListener property specified on the
commandNavigationItem within the menus.

The actionListener calls the handle method on the PendingChangesBean. Take a look at
the javadoc and/or dource code of the PendingChangesBean class to see the details of
this implementation.

Reference: See the javadoc of
oracle.jheadstart.controller.jsf.bean.PendingChangesBean.

Note that to be able to detect changes made by the user that were not yet posted to the
middle tier, the JSF Model Update phase must be executed before we can detect whether
there are pending changes. This means that the commandNavigationItems cannot have
the immediate property set to true, as that would skip the JSF Model Update phase. This
implies that if the user abandons a task flow with invalid data entered, the user will be
presented with error messages, and no menu navigation will take place. To be able to
navigate away in this situation, the user should first click the cancel button that is
generated on every page, which will rollback the pending (invalid) changes.

When using dynamic tabs the outstanding changes alert will not be shown because each
dynamic tab has its own transaction scope, and no data is lost when switching tabs.

JHeadstart Developer’s Guide Internationalization 11- 13

11.6. Using Online Help

ADF Faces provides support for integration with online help systems. The format in
which the online help is stored varies based on the online help system provider.

Web User Interface Developer's Guide for ADF. Section 17.5 Displaying Help

for Components

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_message.ht

m#CHDHIGIA

As explained in section 17.5 'Displaying Help for Components' in the Web User Interface
Developer's Guide for Oracle ADF, ADF faces supports three types of help provider.

11.6.1. Using the Resource Bundle Online Help Provider

JHeadstart provides most support for help text stored in a resource bundle, as JHeadstart
will generate the resource bundle entries for you. Here are the steps to use the resource
bundle help provider with JHeadstart:

 Create the adf-settings.xml file in the META-INF directory of your
ViewController project as described explained in section section 17.5 "Displaying
Help for Components" in the Web User Interface Developer's Guide for Oracle
ADF.

 Make sure you set the help provider prefix property to "RBH_". This value is
used when generating the helpTopicId property against the various ADF Faces
component in the pages generated by JHeadstart.

 The baseName property should be set to the resource bundle generated by
JHeadstart. In other words, this property should have the same value as the NLS
Resource Bundle property that you set at the application level in the JHeadstart
Application Definition Editor.

 Set the Online Help Provider property at application-level to the value shown
below.

 Use the Help Text and Instruction Text properties at group level, group, region
container, group region, item region and item level to specify online help. See
next section for more information.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_message.htm#CHDHIGIA
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_message.htm#CHDHIGIA
custom:external:http://download.oracle.com/docs/cd/E15051_01/web.1111/b31973/af_message.htm#CHDHIGIA
custom:external:http://download.oracle.com/docs/cd/E15051_01/web.1111/b31973/af_message.htm#CHDHIGIA
custom:external:http://download.oracle.com/docs/cd/E15051_01/web.1111/b31973/af_message.htm#CHDHIGIA

11 - 14 Internationalization JHeadstart Developer’s Guide

Note that you can use any value you like for the JHeadstart Resource Bundle Type
property, they will all work with this online help provider, including databaseTable.

If you create a custom subclass for
oracle.adf.view.rich.help.ResourceBundleHelpProvider for example to
supply an external URL to retrieve online help, you need to specify this subclass in adf-
settings.xml. If you want JHeadstart to still generate resource bundle entries, you
should leave the value of the Online Help Provider property to the base class.

11.6.2. Using the Help Text and Instruction Text Property

When you specify the Help Text property against a group, region container, group
region or item region, a help icon will display at the right of the title of this element. In
the Help Text property you can use carriage returns to start new lines and to create
empty lines to divide sections in the help text.

When you specify the Instruction Text property against such an element, it will appear
below the header line. Carriage returns are ignored, and everything will be displayed on
one line, and will wrap to the next line of there is not enough space.

If you hover the mouse over the help icon, the help text appears in a popup window.

Note that both the help icon and the instruction text appear "auto-magically" when the
helpTopicId property is set on the component.

ADF Faces will look up two resource bundle entries using the value of the helpTopicId
property, suffixed with _DEFINITION for the help text, and suffixed with
_INSTRUCTION for the instruction text. If the resource bundle entry does not exist, or
does not have a value, the help icon or instruction text will not be displayed.

JHeadstart Developer’s Guide Internationalization 11- 15

When you specify the Help Text property for an item, the help icon will display in front
of the item label, as shown above.

The value of the Instruction Text property of an item will appear in a popup window
when the focus is in the field. This is similar to the item Hint (Tooltip) property.

As a matter of fact, if you specify both the Hint (Tooltip) property and the Instruction
Text property, they will appear in the same popup window, separated by a dotted line.

11.6.3. Using Other Online Help Providers

You can also use another resource bundle provider as documented in section 17.5
"Displaying Help for Components" in the Web User Interface Developer's Guide for
Oracle ADF. If you do this, you need to specify the correct class name of this provider in
adf-settings.xml and in the JHeadstart Online Help Provider property. When
generating your application with a value for Online Help Provider that differs from
oracle.adf.view.rich.help.ResourceBundleHelpProvider, the helpTopicId
property is still generated in all components, but you will need to supply the online help
resource, like an .XLIFF file yourself.

11 - 16 Internationalization JHeadstart Developer’s Guide

Suggestion: If you still want to record the help and instruction text using the

JHeadstart Application Definition Editor, you can create a Velocity template that loops

over all groups and items to generate a custom file that produces the required output

format, like an .XLIFF help file. See chapter 12, section 12.6.3 "How to generate

additional custom files ".

JHeadstart Developer’s Guide Internationalization 11- 17

11.7. Using Function Keys

JHeadstart provides advanced, context-sensitive, support for function keys. All you need
to do to enable function keys in your application, is to check the Enable Function Keys
property that can be found at application level under the UI Settings category.

When you generate your application with this setting, you can click Ctrl-K to get a list of
function keys. This list is context-sensitive, you only see function keys that are available
based on the UI component that has focus.

As you can see, you switch menu tabs using the Alt+number key, this also works when
using dynamic tabs as discussed in chapter 9 "Creating Menu Structures", section 9.3
"Using Dynamic Tabs when Opening a Menu Item".

By default, the following function keys are supported:

 Ctrl+S: Commit (Save)

 Ctrl+Z: Rollback (Cancel)

 Ctrl+K: ShowKeys

 Ctrl+L: ListOfValues

 F6: CreateRow

 Shift+F6: DuplicateRow

 Shift+F7: DeleteRow

11 - 18 Internationalization JHeadstart Developer’s Guide

 BACKSPACE: Disable when not in enterable field to prevent navigation to
previous page

 Alt+number (1..9) : DoMenuItem

As explained in the next sections, the implementation of the function keys is very flexible,
the function key mapping can easily be changed, and new function keys can be defined,
that can be mapped to custom buttons.

11.7.1. What Gets Generated When Enabling Function Keys

When you generate the application with function keys enabled, the following artifacts are
generated to implement the function key functionality:

 The jhs11.js JavaScript library contains a method to register the function keys,
and a callback method that queues an event for a server listener

 The UI Shell pages contain an af:serverListener to call the managed bean
method that handles the function key event.

 Additional managed beans are generated into JhsCommon-beans.xml: The
jhsKeyboardMappingHandler managed bean contains a method to register
the keyboard mapping. This method is called by the JhsPhaseListener which
is configured as JSF phase listener in faces-config.xml to ensure the function
keys are registered for each page. This managed bean also contains a method to
handle the registered function keys. This method delegates the implementation
of the function key to the handleKeyCode method of the
jhsFunctionKeyHandler managed bean. This managed bean has a list
property which holds a set of supported function keys, for each supported
function key an instance of the FunctionKeyBean is defined in JhsCommon-
beans.xml, and added to this list property. Each FunctionKeyBean instance
has managed properties that define the actual keyboard code for the function
key, the display code and label that should be used to describe the function key,
and the logical action that is associated with the function key.

 In each generated page, the group layout container has a set of f:attribute
tags that map the logical action to the ID of the button, or popup, that also
performs this action.

11.7.2. What Happens When You Press a Function Key

When you press a registered function key, the callback method in the Jhs11.js
JavaScript Library queues an event for the af:serverListener which eventually leads
to a call of the FunctionKeyHandlerImpl.handleFunctionKey method.

JHeadstart Developer’s Guide Internationalization 11- 19

Using JavaScript in ADF Faces Rich Client Applications. The JHeadstart

implementation of function keys is inspired by the techniques discussed in this

white paper.

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-

302460.pdf

In this method, the keyboard code of the function key is passed in as argument, which is
used to lookup the corresponding FunctionKeyBean. The FunctionKeyBean contains
the logical action associated with this function key. The clientId of the UI component in
focus is also passed into this method as an argument. This clientId is used to traverse
up the UI component tree of the page to find a group layout container that has an
attribute by the same name as the logical action of the function key. If this attribute is
found, the value of this attribute is used to find the command component that performs
the same action as the function key. When the command component is found, a new
ActionEvent for this component is queued, which causes the same method to be
executed as when the user pressed the button.

If you have a background in Oracle Forms, you could see this implementation as the
reverse of the DO_KEY built-in. In Oracle Forms the functionality of a button can easily
be implemented by executing the logic behind a KEY trigger using the DO_KEY built-in.
Well, the JHeadstart implementation can be seen as "DO_BUTTON": we lookup the
command component that performs the same action as the function key, and queue an
event as if the end user pressed the button.

The advantages of this implementation include:

 No duplication of code

 The action performed is guaranteed to be identical to the action executed when
the end user presses the associated button.

 When you as a developer modified the default behavior of a standard
JHeadstart-generated button by using a subclass in combination with a custom
template, then the associated function key will automatically execute the
customized method.

 UI components that "listen" to the button through the partialTriggers property
are also automatically refreshed because after the ActionEvent has been
queued, the method AdfFacesContext.partialUpdateNotify is called for
the command component.

Note that when the component found through the value of the f:attribute is a popup
rather than command component, which is the case with the DeleteRow action, the
popup is shown programmatically.

11.7.3. Customizing the Function Key Implementation

All you need to do to modify the mapping of function keys is creating a custom template
for the REGISTER_FUNCTION_KEY template. The default implementation of this
template (default/misc/file/registerFunctionKeys.vm) makes a call to
${JHS.registerFunctionKey} for each supported function key.

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf
http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

11 - 20 Internationalization JHeadstart Developer’s Guide

The registerFunctionKey method takes the following parameters:

 The keyboard function key code

 The function key display code that should be used in the "Show Keys" popup
window

 The function key description/label that should be used in the "Show Keys"
popup window

 The logical action that should be associated with the function key. This action is
used to look up the f:attribute of the group layout container in the page by
the same name, as explained above.

 A boolean that indicates whether it is a page-level action (true), or group or item
level action (false). For page-level actions, only the attributes of the top-level
group layout container are inspected.

If you want to change the implementation of a function key, rather than the mapping,
you can create a subclass of the FunctionKeyHandlerImpl class and override method
handleFunctionKey. To continue to use your subclass when regenerating your
application, you create a custom template for the FUNCTION_KEY_HANDLER_BEAN
template and modify the class name in this custom template.

For more information on creating custom templates, see chapter 12 "Customizing
Generator Output".

Attention: If changes in the function key mapping are not picked up, you might need

to clear your browser cache, to make sure you are using the latest version of the

jhs11.js JavaScript library.

11.7.4. Adding a New Function Key

You can easily add new function keys. We will illustrate the steps needed using an
example: we want to generate a custom toolbar button to increase the salary of an
employee, and use function key Ctrl+I to trigger the salary increase.

JHeadstart Developer’s Guide Internationalization 11- 21

First create the toolbar button item as described in chapter 6, section 6.10 "Generating a
Button Item". The perform the following steps:

 Create a custom template for the TOOLBAR_BUTTON template, based on the
default template, and add the following line:

 Create a custom template for REGISTER_FUNCTION_KEYS template, and add
the following line:

 Generate and run the application, and test the function key.

Note that the value of the second argument of the #ADD_GROUP_ACTION macro call
should be identical to the value of the fourth argument of the
${JHS.registerFunctionKey} call. The #ADD_GROUP_ACTION macro call ensures
that an f:attribute tag is added to the employee group layout container, as shown
below:

11.7.5. Understanding the Difference Between Function Keys and Access Keys

ADF Faces has built-in support for so-called access keys. An access key always uses the
ALT key in combination with a letter. The letter is typically underscored in the label of
the component by using the textAndAccessKey property or just the accessKey property.
JHeadstart allows you to generate access keys by adding an ampersand in front of the
letter that should be underscored in the Prompt in Form Layout or Prompt in Table
Layout property.

11 - 22 Internationalization JHeadstart Developer’s Guide

So, in the above example the IncreaseSalaryButton logic can be invoked by using
the Alt+I access key, or the Ctrl+I function key. You might wonder why we need function
keys if access keys already can do the job. Well, there are a few differences between the
two:

 Access keys always have the format Alt+Letter which limits the number of
meaningful access keys you can have in a page.

 If multiple components have the same access key on a page, the last component
"wins", there is no way to alter this behavior.

 Access keys are not context-sensitive, if you have a master-detail page, and both
the master and detail support insert, you cannot have the same access key for
both CreateRow buttons. Function keys are context-sensitive, and based on the
input focus, the same CreateRow function key will execute on either the master
or detail group.

 If the browser natively defines ALT+letter keys that conflict with your
application access keys, then the browser "wins".

 If you define a function key that conflicts with a native browser function key, it
depends on the key and browser who "wins". For example, Ctrl+N always opens
a new browser window in Google Chrome, and will ignore your custom ADF
function key. In Internet Explorer, your custom Ctrl+N function key wins.

In short, access keys are sometimes too restrictive, in such situations you can use function
keys to enable your end users to only use the keyboard to use the application.

Suggestion: Consult the documentation of the browsers you need to support to

prevent possible conflicts with function keys and access keys. If you do choose to use a

native browser function key then test whether your custom function key "wins".

JHeadstart Developer’s Guide Customizing Generator Output 12- 1

C H A P T E R

12 Customizing Generator

 Output

This chapter discusses how you can customize the different types of files generated by
the JHeadstart Application Generator. While JHeadstart provides a wealth of declarative
settings in the JHeadstart Application Definition Editor to implemented very
sophisticated functionalities, you might have requirements that cannot be fully
implemented by configuring the service definitions in the JHeadstart Application
Definition Editor. This chapter explains how you can customize every aspect of the
generated application.

The following topics are discussed:

 Recommended approach for customizing JHeadstart generator output.

 Understanding generator architecture and generator templates

 Creating custom templates

 Customizing pages

 Customizing task flows

 Customizing output of the file generator

 Customizing page definitions

12 - 2 Customizing Generator Output JHeadstart Developer’s Guide

12.1. Recommended Approach for Customizing JHeadstart Generator Output

It is important to understand that the artifacts produced by JHeadstart are fully ADF
compliant, and implement numerous ADF best practices available on the internet. When
you use ADF drag and drop, ADF creates code snippets in JSF pages, page definitions
and bindings within these page definitions, and managed bean definitions. All these
artifacts are also created by JHeadstart. At any time in your development process you can
start using the visual design-time tools and code editors in JDeveloper to implement
functionality that cannot be generated out-of-the-box.

Now, if you start customizing a generated page, page definition or ADF task flow file,
and then generate your application again, you would loose the changes again. So, you
have three choices once you start customizing JHeadstart-generated output:

1. Do not use the JHeadstart Application Generator anymore on the application
definition that produced the output you customized.

2. Switch off generation of the files you modified. Both at the service-level and at
the group level you have generator switches that you can use to turn off specific
output. The screen shot below shows these group-level switches in the
Application Definition Editor. Note that these properties are only visible in
expert mode.

3. Move the customizations to custom templates, configure JHeadstart to use your
custom template, and keep on generating.

You are free to choose whatever option suits you best, but we would like to share our
own opinion and the experiences of many JHeadstart customers before you make a
decision:

 The first option implies that you only use JHeadstart in the beginning of your
project to get a “head start”. While this is in line with the name of the product,
this is the least attractive option in our view. When requirements change for any
page in the application definition, even pages that are not customized, they need
to be implemented manually. In short, developer productivity will decrease
quickly and dramatically with this approach.

 The second option is easy and fast. It is a good option if you do not expect
(significant) changes in the customized output. The question here is: how reliable
are your expectations? In modern agile application development methods
changing requirements are the rule rather than the exception. If changes are
needed, for example as a result of a database change, then applying these
changes manually will decrease developer productivity as well.

JHeadstart Developer’s Guide Customizing Generator Output 12- 3

 The third option is initially a bit more work and requires you to understand the
JHeadstart templating architecture (explained in the remainder of this chapter).
We have seen quite a few customers that initially decided to go for the second
option. However, once they discovered how easy and fast it is to perform this
additional step of moving custom code to a custom template, they consistently
chose for the third option. This fact is best illustrated by a survey we conducted
amongst JHeadstart customers that showed that the vast majority was able to
keep their application 100% generatable. This might sound unrealistic, but when
you realize that all content of the generated pages and adfc-config files is 100%
driven by generator templates, meaning you can really customize anything you
like, you will better understand the outcome of this survey. Note that a powerful
side-effect of this approach is that you automatically “document” your
customizations by creating a separate tree of custom templates. This is easy for
maintenance; another developer can quickly identify and understand the
customizations, and allows for a smooth transition when migrating to a new
JDeveloper/JHeadstart version. For example, when you have built an application
with JDeveloper/JHeadstart 10.1.3, then regenerating your existing application
with JHeadstart 11 will automatically leverage the ADF Faces Rich Components
and ADF task flows. You only need to modify your custom templates to leverage
the new release 11 features. When choosing option 1 or 2, the page
customizations are “hidden” in the customized page, and it will take a lot more
effort to identify and upgrade these customizations.

12 - 4 Customizing Generator Output JHeadstart Developer’s Guide

12.2. Understanding Generator Architecture and Generator Templates

This paragraph explains what happens when you run the JHeadstart Application
Generator. It explains how generator Java classes and generator templates fit together.
Understanding the information in this paragraph will make it much easier for you to
write your own custom templates to keep your application 100% generatable.

12.2.1. Velocity and the Velocity Template Language

JHeadstart uses the Velocity template engine to generate output. Velocity is a simple yet
powerful Java-based template engine that renders data from plain Java objects to text,
xml, email, SQL, Post Script, HTML etc. The template syntax and rendering engine are
both easy to understand and quick to learn and implement.

Velocity allows web page designers and other template writers to include markup
statements called references in the page. These references are pulled from
a Context object that provides get and set methods for retrieving and setting objects.
Values retrieved through get methods are inserted directly in a page. Velocity provides
basic control statements, that can loop over a collection of values (foreach) or
conditionally show a block of text (if/else). The ability to call arbitrary Java methods,
include other files, and to create macros that can be repeatedly used make this a powerful
yet easy-to-use approach for creating dynamic web page or other text files.

The Velocity Template Language (VTL) is meant to provide the easiest, simplest, and
cleanest way to incorporate dynamic content. Even a developer with little or no
programming experience should soon be capable of using VTL.

Reference: See the following three documents at the Velocity website:

User’s Guide http://velocity.apache.org/engine/devel/user-guide.html

Developer's
Guide

http://velocity.apache.org/engine/devel/developer-guide.html

Reference
Guide

http://velocity.apache.org/engine/devel/vtl-reference-guide.html

12.2.2. Understanding the JHeadstart Metadata Model

Before we start explaining the JHS-specific constructs used in the various generator
templates, it is important to understand a bit more about the generator architecture.
When you start generating an application, JHeadstart first constructs a so-called metadata
model. This is a set of Java classes that is referenced in the velocity templates.

The picture below explains the different layers in the metadata model.

http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/engine/devel/developer-guide.html
http://velocity.apache.org/engine/devel/vtl-reference-guide.html

JHeadstart Developer’s Guide Customizing Generator Output 12- 5

The first layer consists of the XML files you create through the JHeadstart Application
Definition editor. These definitions are stored in XML files, and the structure of these
XML files is defined in an XML Schema Definition (XSD) file. You can find this file in
JDEV_HOME\jdev\extensions\oracle.jheadstart.11.1.1\doc\Application

Definition.xsd.

JHeadstart uses JAXB (Java Architecture for XML binding) to create a set of Java classes
that provide a 1:1 representation of the information stored in these XML files.

After the JAXB classes are constructed, JHeadstart uses the PGModelFactory class to
create so-called PGModel classes for each object type defined in the application and
service definition XML files. These classes wrap the corresponding JAXB class and
contain many convenience methods that are used in the velocity templates. By creating
these convenience methods in Java the content of the templates remains easier. Complex
algorithms to derive information that is to be used in velocity templates are easier to code
in Java than in the velocity templates.

For example, the PGGroupModel class contains a method
getAdvancedSearchItems() which can be used in a template to loop over all items
that should appear in the advanced search area.

The lowest layer consist of two classes: PageModel and PageComponentModel, where
the first class is a subclass of the second class. JHeadstart uses the
ApplicationLayoutGenerator class, and various factory classes to create instances

12 - 6 Customizing Generator Output JHeadstart Developer’s Guide

of PageModel and PageComponent classes. For each page that needs to be generated,
one PageModel instance is created for the first group shown on the page, and additional
PageComponentModel instances are created for any detail groups that should appear
on the same page. For example, if we have a top-level group Departments with Layout
Style "table-form", and a detail group Employees with Layout Style "table", with the
Same Page checkbox checked, the following instances are created:

 PageModel instance with layout style "table" for Departments group

 PageModel instance with layout style "form" for Departments group.

 PageComponentModel instance with layout style "table" for Employees group.

The PageComponentModel superclass has a method getPageComponents() to
retrieve the detail page components, which in the case of the second PageModel class
will return the PageComponentModel instance for the Employees group.

Note that in addition to the metadata model classes, there are other model classes used
by specific generators. These model classes are not directly derived from the XML
metadata, instances of these model classes are created when running specific generators.
See section Understanding Application Generators in this chapter for more information.

The javadoc of all these classes can be found through the JHeadstart Documentation
Index, available from the JDeveloper Help menu.

This javadoc can be helpful to see all the Java methods available to retrieve information
that you can use in a velocity template, as we will see below.

12.2.3. Referencing JHeadstart Metadata Model in Velocity Templates

The top-level context object as required by Velocity is an instance of the
JhsVelocityContext class, and is available through the key "JHS". This is why all
JHeadstart-specific constructs in generator templates start with ${JHS

To access the various PGModel instances, you can use constructs like this:

 ${JHS.application}

 ${JHS.service}

 ${JHS.current.group}

 ${JHS.current.item}

 ${JHS.current.regionContainer}

 ${JHS.current.itemRegion}

 ${JHS.current.groupRegion}

JHeadstart Developer’s Guide Customizing Generator Output 12- 7

 etc.

While these constructs return instances of the PGModel classes, and not the wrapped
JAXB classes, you can directly access the methods of the JAXB classes from here because a
fallback mechanism has been implemented that looks up the JAXB instance if a requested
getter method is not found on the PGModel class. This means that to get an overview of
all methods you can call on the current group, you should look at the Javadoc of both the
PGGroupModel class, as well as the JAXB GroupType class.

For example, you can use ${JHS.current.group.helpText} to get the group help
text. The getHelpText() method is not implemented on PGGroupModel but is
available on the JAXB GroupType class.

The PGGroupModel class itself has a convenience method getParentGroup(), so you
can use ${JHS.current.group.parentGroup.name} to get the name of the parent
group.

Note that to call a getter method without arguments, you can use Java bean-like property
notation, omitting the "get" prefix and brackets. You can also call any Java method
directly by specifying the complete Java method name, including any arguments. So, to
get the help text, you can also use the following notation:
${JHS.current.group.getHelpText()}

If the Java method you want to call has arguments, you can pass in these arguments
within the brackets, just like coding in Java:

${JHS.stripBrackets(${group.updateAllowedExpression})}

To access the PageModel and PageComponentModel instances, you can use:

 ${JHS.page}

 ${JHS.current.pageComponent}

Note that the generator always runs into the context of only one application, one service,
and one page (when generating pages) , this is why these instances have references
without the intermediate .current. construct.

12.2.4. Understanding Application Generators

When you generate an application, and the metadata model as discussed above has been
constructed, various generator classes are used to produce the different file types, as
shown in the table below.

Generator Velocity Template Access Output

Page (Fragment)
Generator

${JHS.pageGenerator} .jspx and .jsff files

AdfcConfig (Task
flow) Generator

${JHS.facesConfigGenerator} Adfc-config XML files

Menu Generator ${JHS.menuGenerator} XMLMenuModel XML files

NLS Generator ${JHS.nlsGenerator} Resource bundles, or SQL scripts

12 - 8 Customizing Generator Output JHeadstart Developer’s Guide

Tree Generator ${JHS.treeGenerator} Tree .jsff files

PageDefinition
generator

${JHS.pageDefGenerator} PageDefinition XML files

File Generator ${JHS.fileGenerator} Miscellaneous files

The sequence in which the generators run is important. This is because some generators
feed the metadata model of other generators. This is a very powerful and important
concept to understand when you start creating your own custom templates. The picture
below shows how the Page (Fragment) Generator reads metadata models and feeds other
generator model classes.

Attention: The generator class and method names still use the standard JSF
naming, as generated in JDeveloper 10.1.3. JHeadstart 11 now generates ADF
task flows, with control flow rules and control flow cases instead of navigation
rules and navigation cases, however the class and method names have not
been changed.

A snippet from the "Details" button template that navigates from the Select page to the
Form page will clarify the above picture:

The textAndAccessKey property references a reusable macro
#EDIT_BUTTON_LABEL, which looks like this:

When this template is parsed, the ${JHS.nls} call creates a new instance of the
NlsEntry model class, which is later picked up by the NLS Generator, to generate the
following entry in the resource bundle:

JHeadstart Developer’s Guide Customizing Generator Output 12- 9

Likewise, the action property contains a method call to
${JHS.facesConfigGenerator.addNavigationCase} which will create a new
instance of the NavigationCaseModel class, which is later picked up by the
AdfcConfig generator to generate the following control-flow-case:

So, by feeding other generator models while generating a page, we ensure that any
translatable string on the page ends up in the resource bundle, and that any button that
should result in page navigation has a corresponding control flow rule and control flow
case. You can use this same feeding mechanism in your custom templates, as is explained
in more detail in the section Creating Custom Templates.

12.2.5. Configuration of Generator Classes

Under the covers, JHeadstart uses the Spring bean factory to instantiate the various
generator classes. The configuration file that defines the bean classes is jag-
config.xml, located in the templates/config directory of your ViewController
project. You typically do not need to modify this file, but you might want to take a look at
the content to further increase your understanding of the generator architecture.

Below, you can see a snippet of this file that instantiates some generator classes. Notice
the properties that specify the root templates that should be used to generate specific
files.

12 - 10 Customizing Generator Output JHeadstart Developer’s Guide

12.2.6. Structure of Generator Templates

The JHeadstart templates are stored in the templates directory of your JHeadstart project.
This folder contains the following files:

 config/jag-config.xml: configurable settings for the JHeadstart Application
Generator, as explained above.

 config/defaultTemplateBindings.jtp: JHeadstart Template Properties file that
defines which Velocity template files are used for what purpose.

 default/*/*.vm: default Velocity template files used for generating the application

Templates are referenced by logical names. The logical name is mapped to a physical
template file in the defaultTemplateBindings.jtp file. Below you see a small part
of the content of this file:

JHeadstart uses a very-fine grained, and deeply nested template structure, as is partly
shown in the structure above. When a file is generated, the generator starts with a root
template that is specified in jag-config.xml.

The root template will then parse a series of nested templates using the #JHS_PARSE
macro. The screen shot of the page shown on the next page used 15 templates during
generation.

JHeadstart Developer’s Guide Customizing Generator Output 12- 11

This is the nested structure of logical template names used for this page:

And here is a snippet of the generated page:

As you can see, it is quite easy to identify which part of the page is generated by which
template, this is added as comments onto the page. This template source information
greatly eases the creation of custom templates as you will see later on.

12 - 12 Customizing Generator Output JHeadstart Developer’s Guide

12.3. Creating Custom Templates

We will start with a word of warning: never customize one of the default JHeadstart
template files directly. When you upgrade to a newer version of JHeadstart they will be
overwritten. Always create a custom template, you can create custom templates from
scratch, or base them on a default template, as explained below.

12.3.1. Creating a Custom Template File

To create a custom template, you click on the Templates tab in the JHeadstart
Application Definition editor. The list of templates you will see is context-sensitive, it is
determined by the node selected in the navigator pane at the left side. For example, if you
click on the top-level application node, all templates will be shown under the Templates
tab. If an item is selected in the navigator, only item-level templates are shown.

When creating a custom template, the node selected in the navigator also determines the
scope to which the custom template will apply. For example, when creating a custom
item for a date field in form layout (FORM_DATE_FIELD) , and the application node is
selected, this custom template will be applied to all date items displayed in form layout in
the entire application. If one specific date item is selected in the navigator pane, the
custom template will only be applied to this one item.

Once you have identified the logical template name for which you want to create a
custom template, you click in the field with the grey velocity template filename; it will
become editable.

Type the name of the (relative) path to the custom template that you wish to use. Best
practice is to start the path with ‘custom/’ (or your application or company name)
instead of ‘default/’; so there will be a clear separation between the default JHeadstart
templates, and your own custom templates.

When you have entered the new filename, press the Enter key to confirm the new
location. A dialog will appear:

JHeadstart Developer’s Guide Customizing Generator Output 12- 13

Click ‘Yes’ to copy the template to the location you specified.

The Application Definition Editor now also gives you the option to edit the template itself
(it does not give you this option for default templates, since you are not supposed to edit
them!).

You can freely type your changes in the window, such as the extra attribute in the
example below. Click Apply to save the changes to the template.

If you do not want to base the custom template on the content of the default template,
you simply clear all content before adding your own template code.

Suggestion: We recommend that you document in the custom template which
changes you made compared to the default template. When a new JHeadstart
version is released, the corresponding default template might be changed, and
you need to reconcile the changes in the default template with your custom
template. This is easier when you clearly documented your changes. You can
use the "##" characters to start a comment line in Velocity as shown above.

12 - 14 Customizing Generator Output JHeadstart Developer’s Guide

12.3.2. Finding Out Which Generator Templates Are Used

The service-level checkbox property Show Template Names In Source is handy to find
out which Generator Templates JHeadstart uses for the various parts of your generated
pages. When checked (the default) you will see that the templates used are included as
comments in the generated file, when you click the Source tab:

In the example screen shot above you can see that for the FirstName column, the
TABLE_TEXT_INPUT template is used which maps to the default template
default/item/table/tableTextInput.vm.

12.3.3. Grouping Custom Templates

If you have multiple custom templates that should be used together to implement some
functionality, you can group these templates in a custom template bindings file. You only
need to specify this custom template binding file to have all custom templates used
together. Again, the node selected in the navigator pane determines the scope to which
the set of custom templates apply.

You can define a custom template binding file to be used for the whole application, a
service, or for a group, or for any other level. You specify it by going to the Templates
and setting the Template Binding File property, always shown at the top, to the name of
your custom template bindings file.

JHeadstart Developer’s Guide Customizing Generator Output 12- 15

Attention: A custom template bindings file must always be placed in the
templates/config directory of your application, in the same directory as the
defaultTemplateBindings.jtp file.

Attention: The Template Binding File you specify in your Application
Definition does not need to include the complete list of templates. Only include
the lines for the templates you have customized. The other templates will be
inherited from the higher level Template Bindings file, or if there is no higher
level, from the JHeadstart default settings.

12.3.4. Writing Reusable Custom Templates

As explained in the first paragraph of this chapter Recommended Approach for
Customizing JHeadstart Generator Output, we recommend to use the JDeveloper visual
design time tools to add functionality you cannot generate out-of-the-box, and then move
the changes you made to a custom template. In this section, we will go through these
steps, and will discuss how to make your custom template code more generic so it can be
reused in multiple places.

We will use an example to explain the steps to take: we want the employee salary to be
updated using a slider component. Here are the steps to implement this:

In the visual design editor, open the generated employee page, right-mouse-click on the
Salary item and choose Convert To.. from the popup menu. Select Input Number
Slider from the list of elements displayed. The following alert will be shown:

It is good to remember the attributes that are no longer valid, because they should be
removed from the reusable custom slider template that we will create later on.

Now, add specific properties for the slider as shown below.

12 - 16 Customizing Generator Output JHeadstart Developer’s Guide

Run the application again to see whether the slider displays and behaves as expected. (Do
NOT generate the application again, this would wipe out the changes you just made!)

If you are satisfied with how the slider looks, you go to the source of the employee page,
and copy the page snippet that renders the slider.

Now, the fastest way to keep your page 100% generatable is to create a custom template
employeeSalarySlider.vm and copy and paste the above page snippet into this
template. This way, the template cannot be reused for other salary items in other groups,
as it contains hard coded references to the employee item.

In order to make the template more reusable, we need to replace the hard coded
references to the employee salary item with dynamic velocity constructs that we can find
in the default formTextInput.vm template. Here is the sample code for such a custom
salarySlider.vm template:

JHeadstart Developer’s Guide Customizing Generator Output 12- 17

To get this template, we made the following changes to the default formTextInput.vm:

 We changed the ADF Faces element from af:inputText to
af:inputNumberSlider.

 We removed the marco calls to #ITEM_MAXIMUM_LENGTH(), #ITEM_ROWS()
and #ITEM_COLUMNS() since these macro's generate properties that are not
applicable for a number slider, as we learned when converting the item in the
visual page editor.

 We added the four properties specifc for the number slides that we set before in
the property palette.

Now we can reuse the template for all salary items in our application. But we can make
the template even more reusable, we can turn it into a generic number slider template.
This means that we need to replace the hard coded values for the four properties specific
to the number slider, since these values are specific for salary items.

There are two ways to do this:

 Using the five custom properties available at most of the element types in the
JHeadstart Application Definition Editor

 Using the item-specific property Additional Properties

12.3.4.1. Using Custom Properties

To be able to set custom properties on an element, you need to switch the JHeadstart
Application Definition Editor to expert mode. You can do this by clicking the chess icon

in the toolbar () which then changes to a "Queen" icon ().

Now, enter the custom properties as shown below.

12 - 18 Customizing Generator Output JHeadstart Developer’s Guide

To get the value of a custom property in your custom template, there are three
expressions you can use, for example for group custom properties you can use:

 ${JHS.current.group.property1}, this is the existing expression that also
works when no name is entered for the property

 ${JHS.current.group.getCustomProperty("propertyName")}, where
propertyName should be substituted with the name you entered for this
property.

 ${JHS.current.group.propertyName}, where propertyName should be
substituted with the name you entered for this property. If you use this
expression and the group does not have this custom property defined, you will
get an error during generation.

We recommend to use the second or third expression, these expressions dot not care
which custom property number you used to enter the name and value. In addition, if you
use the second or third expression, you never run out of custom properties, because you
can also enter a comma-delimited list of names and values in the name and value
property.

We will use the third expression type in our custom template to reference the value
entered for the first custom property. The final, highly reusable formNumberSlider.vm
template looks like this:

JHeadstart Developer’s Guide Customizing Generator Output 12- 19

Note that if you use this generic template with an item that has not all three custom
properties filled in, you will get a generation error like this:

[Employees.jsff, custom/item/form/numberSlider.vm] Getter for
attribute MinIncrement or custom property MinIncrement not found

in PGItemModel (Salary)

If you have a custom template which has optional custom properties, you should use the
following statement (we assume MinIncrement property is optional)

#JHS_PROP("minorIncrement"

${JHS.current.item.getCustomProperty("MinIncrement")})

As a final note, instead of using three custom properties 1, 2 and 3, you could have
defined all three properties using the comma-separated syntax in custom property 1:

12.3.5. Customizing JHeadstart Macro's

The default templates use many reusable macro's that are defined in four Velocity macro
files, located in the templates/default/common directory.

12 - 20 Customizing Generator Output JHeadstart Developer’s Guide

The use of these macro files is configured in jag-config.xml in the libraries
property of the velocityInitializer bean. You can add your own custom macros
file at the end of this property list, and copy any macro you want to customize to your
custom macro file. Because your macro file is added at the end, it takes precedence over
the default macro files, and will Velocity will first search the custom macro file for the
requested macro.

And remember the warning in the previous paragraph, you need to re-apply this change
to jag-config.xml after installing a new JHeadstart version.

12.3.6. Coding and Debugging Tips

Here are some final tips when coding custom Velocity templates:

 The notation $JHS.current.group is a shortcut for
${JHS.current.group}. Always use the extended notation with additional
curly brackets when concatenating a Velocity expression with another expression
or with literal text.

 When a macro calls another macro in the same library or template, the called
macro must be sequenced before the calling macro. Otherwise a confusing error
message is shown!

 Velocity commands cannot wrap, they must be coded on a single line. Wrapping
causes an error message during generation.

JHeadstart Developer’s Guide Customizing Generator Output 12- 21

 If you write a Boolean expression, for example in an if-statement, both sides of
the expression must have a value (and must be of the same type). If a variable
might be null, you should first test whether this variable has a value, as follows:

#if ($myOptionalVar)

 #if ("$myRequiredVar"=="$myOptionalVar")

 ...

 #end

#end

 Add comments using the ## comment line marker to your custom templates to
describe what changes you made compared to the default template the custom
template was based on.

 Carefully read any velocity errors you might in your custom templates when
generating your application.

 If you have problems getting your custom template to work correctly, you can
temporarily add macro #MODEL_POINTER() to your template. It prints all
“current” elements you can refer to. Here is an example of the output we get
when we add this call at the top of our custom number slider template:

12 - 22 Customizing Generator Output JHeadstart Developer’s Guide

12.4. Customizing Pages

The previous general paragraph on creating custom templates already provides most of
the information needed to customize generated pages. This paragraph discusses the
following additional topics that are specific to customizing pages:

 Customizing Page Templates

 ADF Faces Skinning

 Changing the Page Template at Runtime

 Adding Custom Properties to a Generated Item

 Adding Custom Item Display Type

12.4.1. Customizing Page Templates

When generating groups as reusable regions with page fragments (recommended), an
ADF Faces page has the following structure:

 The generated UIShell page uses a page template.

 The page template in turn uses a declarative component menuGlobal.jsff to
provide the content of the upper right corner of the page.

 The page template has a facetref named pageContent that should be used to
include the actual content of the page

 The generated UIShell page uses this pageContent facet to include a dynamic
region that displays one of the generated group regions. The actual region
displayed is determined through the menu.

 The region template, which only displays the breadcrumbs, and in case of a
wizard layout the af:train component, has a facetref named
pageContent that should be used to include the actual content of the page
fragment.

 For each group, page fragments are generated that use the pageContent facet
of the region template to include the actual page fragment content.

JHeadstart Developer’s Guide Customizing Generator Output 12- 23

When using dynamic tabs (see chapter 9 "Generating menu Structures", section 9.3) the
structure is slightly different. The generated dynamic tabs page template does not include
a pageContent facetref. With dynamic tabs, the page template contains the declarative
component DynamicTabs.jsff that can display up to 15 dynamic tabs, that are opened
through the tree menu that is also contained by the page template.

The page template and the declarative components are generated using a velocity
template, the actual content differs based on application-level settings like the type of
menu used and security settings.

When generating the application, JHeadstart always generates three "sample" page
templates:

 JhsPageTemplate: uses a tabbed menu at the top

 JhsTreeMenuPageTemplate: uses a tree menu at the left, and when clicking a
menu item, the dynamic region at the right displays the group content for that
menu item.

 JhsDynamicTabsPageTemplate: uses a tree menu at the left and dynamic tabs at
the right.

Which of the "sample" page templates is actually used, is determined by the application
level property Page Template.

So, to customize the page template, you actually have two options:

 Customize the generation of the sample page templates.

 Create your own page template.

12.4.1.1. Customizing Generation of the Sample Page Templates

You can change the generation of the sample page templates to suit your specific needs.
You do this by creating custom templates for one or more of the templates used to
generate the sample page templates and declarative components:

 JHS_PAGE_TEMPLATE

 PAGE_TEMPLATE_CONTENT

 PAGE_TEMPLATE_TREE_MENU_CONTENT

 PAGE_TEMPLATE_DYNAMIC_TABS_CONTENT

 MENU_GLOBAL

 DYNAMIC_TABS

Note that the JHS_PAGE_TEMPLATE is the "shell" Velocity template. Inside this
template, one of the three page template content templates is parsed, based on the value
of the Page Template property in the JHeadstart Application Definition Editor.

12 - 24 Customizing Generator Output JHeadstart Developer’s Guide

12.4.1.2. Create Your Own Page Template

You can make a copy of one of the generated sample page templates, rename it, and
modify it as you like. Or you can create a page template from scratch. To use your custom
non-generated template, you simply enter the path and name of your custom template in
the Page Template property, instead of choosing one of the sample template names from
the list.

There are some things to keep in mind when creating your own page template:

 When generating without dynamic tabs enabled, the generated shell pages
assume that the page template contains a pageContent facetref, so make sure
this facetref is still present in your custom template.

 Additional managed beans are generated when using the standard dynamic tabs
page template. If you created your own custom template that still relies on these
managed beans, you need to check the application-level property Use Dynamic
Tabs?.

Attention: ADF registers page templates in an XML file named pagetemplate-
metadata.xml, located in the src/META-INF directory. When you use the
JDeveloper wizard to create a new page template, the template is
automatically added to this XML file. However, if you want to base your page
template on the default JHeadstart page template using “Save As…” you need
to manually add your custom template to this XML file.

12.4.1.3. Customizing the Region Template

The region template is not generated. If you want to customize it, then make a copy,
rename it and make your changes. In the Region Template property, specify the name of
your custom region template.

Make sure your custom region template contains a pageContent facetref and a popups
facetref, since the generated page fragments use these facets.

12.4.2. ADF Faces Skinning

In addition to customizing page templates, you can customize the overall page look and
feel by using a custom ADF Faces skin.The advantages of skinning are two-fold:

1. The desired Look and Feel is defined only once in a skin and used throughout
one or more applications.

2. You can apply a (new) skin on existing ADF Faces applications, the applications
themselves do not need to change.

With a custom skin, you can customize layout characteristics that are typically defined
through cascading style sheets: fonts, colors, icons, images, margins and so on. To figure
out how you can change the appearance of the various ADF Faces user interface
components, a Skinning Selectors document is available.

JHeadstart Developer’s Guide Customizing Generator Output 12- 25

Web Reference: Web User Interface Developer’s Guide for Oracle ADF,
chapter 20 ”Customizing the appearance using styles and skins”.
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJF

EFCJ

Web Reference: ADF Faces Skinning Selectors.
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm

The skin used by ADF Faces is defined in a file named trinidad-config.xml, located in the
WEB-INF directory.

As you can see, the default skin is the “fusion”skin. The quickest way to see the
differences between the various skins, is to generate your JHeadstart application with the
application-level checkbox property Generate UI Skin Switcher checked.

This generates a dropdown list in the upper-right corner of your page that by default will
show all the predefined skins that are included with ADF Faces.

The most professional looking skins are the “fusion”skin (see above), and the “blafplus-
rich”skin (see below).

If you define your own custom skin, it will automatically appear in the Skin dropdown
list. When you generate a UI skin switcher, JHeadstart replaces the hardcoded skin-

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31973/af_skin.htm#BAJFEFCJ
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm

12 - 26 Customizing Generator Output JHeadstart Developer’s Guide

family name in trinidad-config.xml with a reference to the “currentSkin” property of a
managed bean named “jhsLookandFeelBean. The skin drop down list changes the value
of the “currentSkin” property in this bean.

This “jhsLookandFeelBean” is defined in JhsCommon-beans.xml and references the
LookAndFeelBean java class that is part of the JHeadstart Runtime library..

Through managed properties you can specify the (default) settings for the skin and page
templates. To change these default values you can create a custom velocity generator
template (not to confuse with ADF Faces page templates) for JhsCommonBeans.vm.

12.4.3. Changing the Page Template at Runtime

You can also change the page template at runtime, this might be useful for user interface
prototyping, or when you want to use specific page templates based on the current ADF

JHeadstart Developer’s Guide Customizing Generator Output 12- 27

faces skin. To make the page and region templates switchable at runtime, use the
following property settings:

By default, this will generate an additional drop-down list in the global menu area to
switch the page template.

The page templates shown in this drop-down list are read from the “jhsLookAndFeel”
bean already discussed in the previous section. To add your custom page templates to
this list, you should make a custom template based on JhsCommonBeans.vm and change
the “pageTemplates” property.

If you don’t want a separate page template drop-down list, but instead want to link the
page template used to the selected skin, you can the do following:

 Leave the Page Template and Region Template to the above values that reference
the jhsLookAndFeel bean.

 Make a custom Velocity template for MENU_GLOBAL (menuGlobal.vm) and
remove the code that generates the Page Template dropdown list

12 - 28 Customizing Generator Output JHeadstart Developer’s Guide

 Make a custom Velocity template for JhsCommonBeans.vm and add an
additional managed property named “skinPageTemplateMapping” to the
managed bean definition. In this property you can specify which page template
should be used with which skin. In the example below, the default tabbed menu
is displayed with the fusion skin and the tree menu is displayed with the
blafplus-rich skin.

Note that you can take this concept even further by creating a subclass of the JHeadstart
LookAndFeelbean. For example, you could add additional bean properties to specify the
mapping between the skin and branding logo used.

12.4.4. Adding or Overriding Properties of a Generated Item

As explained in section 12.3.4.1 Using Custom Properties, you can define custom
properties against most element types in the JHeadstart Application Definition Editor
and then use these properties in custom templates to write more reusable custom
templates. For the item element, there is another alternative to make the template more
generic and reusable, or even better, to stick with the default item template ans still add
additional item properties that are not generated or override generated properties. This
can be done using the item-level property Additional Properties which is only visible in
expert-mode.

The value of this property is free text that will be added directly inside the ADF Faces
Component generated for this item. You can use it to define additional properties like
styleClass and inlineStyle. Use this property with caution, it might result in
duplicate or invalid properties within an element. For example, when this item is a
depends on item, the autoSubmit property will be generated, if you specify the
autoSubmit property here as well, you will get XML parse exceptions at runtime.

All default item templates contain a call to #ITEM_ADDITIONAL_PROPERTIES macro
which will add the content of this property when specified.

The screen shot below shows how we can use this property together with the generic
custom formNumberSlider.vm template that we introduced in section 12.3.4 Writing
Reusable Custom Templates.

The formNumberSlider.vm template itself becomes simpler again, because it already
contains a macro call to add the value of the Additional / OverridingProperties
property, as shown below.

JHeadstart Developer’s Guide Customizing Generator Output 12- 29

You can also use this property to override a generated property that you cannot change
to the desired value using the standard JHeadstart item properties that you can enter in
the application definition editor.

12.4.5. Adding Custom Item Display Type

If you have created a custom item-level template, there is another way to apply this
custom template: you can define a custom item display type that will show up in the item
Display Type property list. You can associate the custom template with this custom
display type, and JHeadstart will then pick up the custom template if you have specified
the custom display type for an item.

We will use the slider number example from the previous paragraph to explain the steps
to take, so we will introduce the custom display type numberSlider.

We first need to add this display type to the list of display types, which is configured in
jag-config.xml. Open this file, and search for a bean named viewTypeAdfFaces.
This bean has a property supportedDisplayTypes where we can add our custom
display type numberSlider , as shown below.

12 - 30 Customizing Generator Output JHeadstart Developer’s Guide

As explained before, JHeadstart creates an instance of PGItemModel for each item it
generates. The properties injected during instantiation of a PGItemModel instance,
including the templates to use, are also specified in jag-config.xml. JHeadstart looks
up a bean named after the value of the display type, suffixed with PGItemModel. So, we
need to create a new bean definition named numberSliderPGtemModel in jag-
config.xml, that looks like this:

Now we need to add these logical template names in a custom template bindings file, and
map them to physical templates. And we need to specify this custom template bindings
file at the application level. See also section Grouping Custom Templates.

JHeadstart Developer’s Guide Customizing Generator Output 12- 31

Finally, we can set the custom display type for employee salary, and regenerate the
application.

Warning: When you install a new JHeadstart version and re-enable JHeadstart
on your project, the jag-config.xml file is overwritten again. So, after
installing a new JHeadstart version you need to re-apply any changes you
made to the jag-config.xml file.

12 - 32 Customizing Generator Output JHeadstart Developer’s Guide

12.5. Customizing Task Flows

This paragraph explains how to customize generated task flows. Note that as explained
in section Recommended Approach for Customizing JHeadstart Generator Output, we
recommend that you first use the Visual ADF task flow diagrammer in JDeveloper to
make any customizations. If your customizations work, then this paragraph explains how
you can preserve these customizations when regenerating your application. This
paragraph first explains the structure of the generated task flows which will make it
easier to make your customizations.

12.5.1. Understanding Generated Task Flow Structure

JHeadstart generates one bounded task flow for each top-level group. The generated task
flows are highly configurable to maximize reuse. They can be configured

 to start in create mode (new row)

 to show one specific row (deeplinking)

 to go to summary or detail page

 to hide action buttons (Save, Cancel, Form brows Buttons)

 to hide search regionto show in read-only modeStandard task flow parameters

To achieve this configurability, each task flow uses a task flow template. The task flow
template defines a number of standard input parameters:

 parentContext

 hideSaveButton

 hideCancelButton

 hideSearchArea

 hideFormBrowseButtons

 jhsBreadcrumbStack

The parentContext parameter is automatically passed by JHeadstart. It contains a map
object that you can use at your convenience. The map is created for the top-level
unbounded task flow, and is passed to all child (region) task flows. It makes it very easy
to share information between parent and child task flows, and even between sibling task
flows, since they all have access to the same instance of the parentContext map. The
parentContext parameter greatly reduces the number of use cases where you need to
use the more complex mechanism of contextual events to implement region interaction.
The drawback is that by relying on information in the parentContext map, the task
flows become less reusable as they are tightlier coupled to other task flows that put the
required information in the parentContext map.

The jhsBreadcrumbStack is automatically passed by JHeadstart when you implement
a groupLink where the new group task flow is shown "In Page". By passing the
jhsBreadcrumbStack, JHeadstart ensures you will get breadcrumb links to navigate
back to the calling group task flow.

The other template task flow parameters are Boolean parameters that can be used to
conditionally show/hide buttons or the search area.

JHeadstart Developer’s Guide Customizing Generator Output 12- 33

In addition, each generated task flow contains the following standard task flow
parameters with a group name suffix:

 create[Groupname]: boolean parameter can be used to start the task flow in
create mode: the form page will open with a new row ready for data entry. The
other parm,eters can be used for deep linking

 rowKeyValue[Groupname]: value of primary key attribute, can only be used
when there is one primary key attribute (which is recommended anyway). The
value is used to call method queryByKeyValue on JhsApplicationModule.

 rowKeyStr[Groupname]: string representation of key, can be used for composite
keys, and is used to call setCurrentRowWithKey on the iterator binding. If you
want to pass the rowKeyStr value of the current row in a source page, you can
use an EL expression like this:

#{bindings.MyGroupNameIterator.currentRowKeyString}

 rowKey[Groupname]: the oracle.jbo.Key object that is used to call
findByKey on the view object. If the primary key of your view object consists of
multiple attributes, you must use this parameter. JHeadstart provides a
convenience method to create this key. Suppose you need to deep link to an
Employee which has a primary key consisting of both FirstName and
LastName. The parameter value would become something like:

#{jhsTypeConverter.listToJboKey['#{bindings.MyGroupEmpFirstN

ame.inputValue},

#{bindings.MyGroupEmpLastName.inputValue}']}

The function listToJboKey takes a comma delimited list as parameter, and
converts that into an oracle.jbo.Key. Any parameter that is an EL-expression
will be evaluated before it is put into the JBO key. If you want to pass the key of
the current row in a source page, you can use an EL expression like this:

#{bindings.MyGroupNameIterator.currentRow.key}

 altKeyName[Groupname]: the name of the alternative key, can be used in
combination with rowKey[Groupname] to call findByAltKey on the view
object.

12.5.1.2. Generated Task Flow Structure

The following picture provides a simplified view of the task flow generated for one top-
level group with table-form layout.

12 - 34 Customizing Generator Output JHeadstart Developer’s Guide

The default activity of each generated task flow is always the "main router" activity that
decides the next activity based on the values of the task flow parameters. By default the
first page of the task flow will be shown. If the create[Groupname] parameter
evaluates to true, a CreateRow activity will be executed followed by navigation to the
"deeplink" page, which is the form page in case of a table-form layout. (In case of a table
layout, the first page and deep link page are the same.)

If one of the row identifying parameters is set, the SetCurrentRow activity is invoked,
followed by navigation to the deep link page.

Note however, that the above picture is a simplified view, when you look at the task flow
diagram of a generated task flow, you will miss the direct lines between the various
activities. This is because all the navigation rules have been generated as so-called
wildcard control flow rules. This is required for implementing the breadcrumb
navigation where the source view activity is unknown. It also makes it easier to change
the default generated flow through the task flow, since you can navigate from any
activity to any other activity. If you do not want this flexibility you can customize
JHeadstart to generate more activity-specific control flow rules.

12.5.2. Customizing the Task Flow Template

JHeadstart generates three task flow templates using the following template names

 BOUNDED_TASK FLOW_TEMPLATE: used to generate task flow template for
task flows that contain stand-alone .jspx pages

 FRAGMENT_TASK FLOW_TEMPLATE: used to generate task flow template for
task flows that contain .jsff page fragments

 LOV_TASK FLOW_TEMPLATE: used to generate task flow template for task
flows generated from JHeadstart LOV groups

JHeadstart Developer’s Guide Customizing Generator Output 12- 35

To customize the generation of these task flow templates, you can follow the standard
procedure of defining a custom Velocity generator template as explained in more detail
in section Creating a Custom Template File.

12.5.3. Customizing the Task Flow Template Reference

If you want base a generated task flow on a manually built task flow template rather than
one of the generated task flow templates, you can create a custom Velocity template for
the TASK_FLOW_TEMPLATE_REFERENCE template.

12.5.4. Adding Custom Task Flow Parameters

The task flow parameters section is generated through template
TASK_FLOW_INPUT_PARAMETERS template. However, you do not need to create a
custom template to add custom task flow parameters. You can add a custom task flow
parameter to the generated task flow by defining a group parameter on a top-level group
in the JHeadstart Application Definition editor. To add the parameter, right-mouse-click
on the group and choose New -> Parameter. The value you specify for the parameter is
used as the default value when invoking the task flow without specifying a value for the
custom parameter. This default value can be a literal or an EL expression.

12.5.5. Adding Custom Managed Beans

To add custom managed beans to a task flow, you can create a custom Velocity template
for the placeholder template TASK_FLOW_CUSTOM_BEANS, which by default is
mapped to the default/common/empty.vm template.

12 - 36 Customizing Generator Output JHeadstart Developer’s Guide

Alternatively, you can implicitly add a custom managed bean by feeding the managed
bean metadata model used by the task flow generator from another template. Typically, a
managed bean is referenced from a page snippet, so in your custom page snippet
template you can add the managed bean by calling addCustomManagedBean on the
JHeadstart FacesConfigGenerator.

For example you can put this in the generator template where you want to add the
managed bean generation (put it in one line, otherwise you will get an error):

#set ($myCustomBean =

 ${JHS.facesConfigGenerator.addCustomManagedBean(

 ${JHS.current.group},

 "custom/myBean.vm",

 "${JHS.current.group.name}MyCustomBean",

 ${JHS.current},

 ${JHS.page},

 true,

 "pageFlowScope"

)})

This code generates the managed bean, and puts its name into a Velocity variable that
you can use in the remainder of the generator template. For example, you can generate
the name of the managed bean into a page by referencing ${myCustomBean}.

The parameters of addCustomManagedBean method are as follows:

1. The Group used to determine in which task flow the bean should be added

2. The Velocity template file to use for this bean

3. Name of the bean

4. Current JHeadstart Model pointer

5. Current page

6. Flag whether the custom bean should be generated within the bounded task flow
(true) or outside of it (false)

7. Prefix for the scope of the bean, can be NULL.

An example of the Velocity template for such a managed bean is:

<managed-bean>

 <managed-bean-name>

 ${JHS.current.managedBean.beanName}

 </managed-bean-name>

 <managed-bean-class>

 com.mycompany.myapp.controller.bean.MyCustomBean

 </managed-bean-class>

 <managed-bean-scope>

 pageFlow

 </managed-bean-scope>

</managed-bean>

Of course you must also create the managed bean class (in the example
com.mycompany.myapp.controller.bean.MyCustomBean). You can then refer to the
properties of the bean class in the properties of the ADF Faces components you generate
into your pages. If for example the bean class has a method getMyProperty(), you can
include the following in the generator template where you called
addCustomManagedBean:

someAdfFacesProperty="#{${myCustomBean}.myProperty}"

JHeadstart Developer’s Guide Customizing Generator Output 12- 37

Reference: See the Javadoc of FacesConfigGenerator, method
addCustomManagedBean().

12.5.6. Customizing the Main Router Activity

You can customize the generated main router activity by creating a custom Velocity
template for the TASK_FLOW_MAIN_ROUTER template.

You can also implicitly customize the main router by feeding the MainRouterCase
metadata model from another custom template. You do this by calling method
addMainRouterCase on the facesConfigGenerator:

 The parameters of addMainRouterCase method are as follows:

1. The Group used to determine in which task flow the main router case should be
added

2. The boolean expression used for the router case

3. The outcome for this router case

12.5.7. Adding Custom Task Flow Activities

To add custom activities to a task flow, you can create a custom Velocity template for the
placeholder template TASK_FLOW_CUSTOM_ACTIVITIES, which by default is mapped
to the default/common/empty.vm template.

When adding a custom activity, you also need additional control flow rules to navigate to
and from the activity, and may be an additional main router case to conditionally go to
the custom activity. You can create all these task flow artifacts within the custom
activities template by feeding the main router case model, as well as the control flow rule
model.

Here is an example:

12.5.8. Adding Custom Control Flow Rules and Cases

To add custom control flow rules and cases to a task flow, you can create a custom
Velocity template for the placeholder template
TASK_FLOW_CUSTOM_CONTROL_FLOW_RULES, which by default is mapped to the
default/common/empty.vm template.

Alternatively, you can implicitly add a control flow rules and cases by feeding the control
flow rule metadata model used by the task flow generator from another template. You

12 - 38 Customizing Generator Output JHeadstart Developer’s Guide

will typically use this technique in the custom template where you add custom activities
that need corresponding control flow rules.

To add the control flow rules from another generator template, you call
addNavigationCase for a specific navigation between two activities, or
addGlobalNavigationCase for a wildcard navigation on the JHeadstart
FacesConfigGenerator.

For an example, see the default generator template for the Details button
(default/button/detailsButton.vm):

…

action="${JHS.facesConfigGenerator.addNavigationCase (${JHS.page.name}, "details",

${JHS.current.pageComponent.detailsPage.name})}"

…

As you can see, the template for a navigation button can also cause the corresponding
navigation case to be generated. The method addNavigationCase takes three
parameters:

1. The "from" page

2. The outcome name

3. The "to" page

Similarly, addGlobalNavigationCase takes two parameters: just the outcome name
and the "to" page.

Reference: See the Javadoc of FacesConfigGenerator, methods
addNavigationCase() and addGlobalNavigationCase().

12.5.9. Preventing Task Flow Generation

If you prefer to switch off generation of a specific task flow altogether, rather then using
custom templates, you can do this using the group-level generator switch Generate
Group Taskflow?.

Note that this property is only visible in expert mode.

JHeadstart Developer’s Guide Customizing Generator Output 12- 39

12.6. Customizing Output of the File Generator

JHeadstart uses a special template, default/misc/file/fileGenerator.vm, as a
means to generate additional files, not directly releated to a group. Examples of these files
are the home page, ADF Faces page and region templates, the login page, and SQL
scripts to populate the JHeadstart database tables for table-driven features.

This section explains how to

 Customize the content of a file generated by the file generator

 Stop a file from being generated by the file generator

 Generate additional custom files.

12.6.1. How to customize the content of a file generated by the file generator

Each file that is generated through the fileGenerator.vm template has its own logical
template name that is used to generate the file content. You can find these template
names when opening up the fileGenerator.vm template.

Once you know the template name, you can create a custom template for it in the
standard way, by going to the Templates tab of the JHeadstart Application Definition
Editor and changing the name of the file template. See section Creating a Custom
Template File for more info.

12.6.2. How to stop a file from being generated by the file generator

To stop a file from being generated, you specify the empty template shipped with
JHeadstart as the "custom" template for this file template.

12 - 40 Customizing Generator Output JHeadstart Developer’s Guide

12.6.3. How to generate additional custom files

The fileGenerator.vm template contains a "place holder" template that you can use to
generate additional custom files using the JHeadstart metadata model

The CUSTOM_FILES template name by default maps to the
default/common/empty.vm template. So, if you want to generate additional files you
create your file generator template and specify this template as the custom template to
use for CUSTOM_FILES.

You can use he following methods on the JHS velocity context are available for
generating files:

 createFile: this will generate a file when the file does not exist yet.

 createOrReplaceFile: this will generate a file, possibly overriding an existing
version of the file

 createApplicationDefinition: this will generate an application definition file
when the file does not exist yet. The application definition file is registered as a
special node in the JDeveloper Navigator to enable the JHeadstart context menu
on the file.

 createSQLScript: this will generate a SQL script when the file does not exist yet.
The generated script will be executed automatically when the service-level
checkbox "Run Generated SQL Scripts" is checked (the default).

 createOrReplaceSQLScript: this will generate a SQL script possibly overriding
an existing version of the file. The generated script will be executed automatically
when the service-level checkbox "Run Generated SQL Scripts" is checked (the
default).

JHeadstart Developer’s Guide Customizing Generator Output 12- 41

12.7. Customizing Page Definitions

12.7.1. Controlling Generation of Value Bindings

By default, JHeadstart will only generate value bindings needed for the items that are
displayed. If the group generates a page with table layout, an Item binding inside the
table tree AttrNames element will be generated.

The value of such a binding can only be retrieved inside the af:table component using the
following EL expression:

#{row.bindings.[attrName].inputValue}

For example:

#{row.bindings.DepartmentId.inputValue}

If the group generates a page with form layout an attributeValues binding will be
generated.

The value of such a binding can be using the following EL expression:

#{bindings.[bindingId].inputValue

For example:

#{bindings.DepartmentsDepartmentId.inputValue}

If you always want to generate form value bindings, even if a group does not generate a
page with form layout (which was the standard behavior in JHeadstart versions prior to
release 11.1.1.4.) you can check the service-level property Always Generate Form Value
Bindings. Note that this property is only visible in expert mode.

12 - 42 Customizing Generator Output JHeadstart Developer’s Guide

If you want to generate a table and or form value binding for hidden items, (which again
was the standard behavior in JHeadstart versions prior to release 11.1.1.4.) you can check
the service-level property Generate Value Bindings for Hidden Items. Note that this
property is only visible in expert mode.

If you want more fine-grained control over the generation of form value bindings, and
generation of value bindings for hidden items, you should leave these two service-level
properties unchecked, and use the item-level properties Always Generate Form Value
Binding and Always Generate Table Value Binding.

12.7.2. Preserving Bindings Added using a Drag-and-drop Action

If you customize a generated page using drag and drop actions in the JDeveloper IDE,
and you want to keep your application 100% generatable, you have two options to
preserve the bindings that are added to the page definition during the drag and drop
action. Firstly, you can uncheck the group-level generation switch Clear page Definition
Before Generation. By unchecking this checkbox any content in the page definition that
is not (re-)generated, will be preserved. The drawback of this approach is that if you have
a large page definition with many bindings, then the re-generation of the page definition
will become slower.

JHeadstart Developer’s Guide Customizing Generator Output 12- 43

An alternative approach is to define the binding in a generator template and instruct the
JHeadstart generator to add the binding to the page definition. Here is an example to
generate a graph item including the required graph binding using a custom template:

As you can see, the XML content of the binding you want to add to the page definition is
defined in a custom macro in the template. Then the binding is “registered”with
JHeadstart by using the addBinding command on the pageDefGenerator. Note that
the macro holding the binding content should be sequenced before the call to add the
binding.

In a similar way, you can add parameters and executables to the page definition using the
following commands:

${JHS.pageDefGenerator.addExecutable($JHS.page, “MyIterator”, “#CUSTOM_BINDING()”)}
${JHS.pageDefGenerator.addParameter($JHS.page, “MyParam”, “#CUSTOM_BINDING()”)}

When adding an executable, you can specify an additional argument after the custom
binding macro reference which specifies the ID of another executable where the new
executable should be sequenced before.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 1

C H A P T E R

13 Runtime Page

 Customizations

When you deliver your application to multiple customers or organization units, these
customers or organization units might have specific requirements for customizing the
application. A typical example is an independent software vendor (ISV) who delivers an
application to multiple customers. Each customer has specific requirements, for example
a customer wants to add additional items to some pages, or they want to hide standard
items. These requirements could be implemented by creating separate code bases for each
customer, but this easily creates a maintenance nightmare.

ADF 11 offers many runtime customizations out-of-the-box.

See chapter 34 ”Customizing Applications with MDS” and chapter 35
“Allowing User Customizations at Runtime” in the Fusion Developers
Guide;
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/par
tpage5.htm

If these features are not sufficient for you, you might want to leverage additional runtime
page customizations offered by JHeadstart. These features are driven by a separate set of
metadata stored in database-tables that come with JHeadstart, which allows you to
support customer-specific requirements without changing the code base, and without
changing the underlying database model.

The JHeadstart runtime customization functionality can be split into two areas:

 Defining additional so-called Flex Items at runtime.

 Customizing standard items at runtime. It is possible to hide an item in create
and/or edit mode, or to make an optional item required.

In the next sections we will explain how you can enable your application to use flex
items. The ability to customize standard items is not yet available in JHeadstart 11.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/partpage5.htm
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/partpage5.htm

13 - 2 Runtime Page Customizations JHeadstart Developer’s Guide

13.1. Creating the Database Tables

JHeadstart uses a set of database tables to support these runtime customizations. The
structure of these tables is shown below.

Before you can start using Flex Items or Customized Standard Items, you need to create
the above table structure in your own application database schema. You can do this by
running the script JhsModelCreate.sql against the database connection of your
application schema. This script is located in the scripts directory of your ViewController
project. If you don’t see the scripts directory, make sure you click the Group by
Directories option in the toolbar of the Application Navigator.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 3

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for dynamic menus,
translations and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

13 - 4 Runtime Page Customizations JHeadstart Developer’s Guide

13.2. Enabling Runtime Usage of Flex Items

To enable your application for use of Flex Items, the first thing to do, is to check the
application-level checkbox “Allow Use of Flex Regions”. Subsequently, in each
JHeadstart service definition where you ant to use flex items, you need to check the same
checkbox property.

Next, you define “place holders” in the Application Definition Editor for a region of flex
items that might be defined at runtime. A flex region placeholder can be defined in two
ways: by creating a Flexible Region, or by creating an item with display type
“flexRegion”.

13.2.1. Creating a Flexible Region

To create a Flexible Region, you can right-mouse-click on the Regions icon within a
group, and choose Add Child => Flexible Region.

Apart from the Name, a Flexible Region has two properties: Display in Form Layout?
and Display in Table Overflow Area? . The first property is only applicable when the
group has a layout style that includes a form page (form, table-form, select-form, tree-
form). The second property is applicable when the group has a layout style that includes
a table page (table, table-form) and the Table Overflow Style property is set on the
group.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 5

Note that you can define multiple Flex Regions for one group. For example, if you
generate a wizard-style layout for your group, you might want to add a Flex Region to
every wizard page.

13.2.2. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator again, the following happens to
enable flex items at runtime:

 All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying database tables needed for the runtime customizations.
Note that by creating JhsModelService as a nested application module, it will
inherit the database connection of the parent application module, allowing for
normal application data and flex region data to be committed in the same
transaction.

 An additional Application Definition file, named FlexRegionService.xml is
generated. Click Save All after running the JAG and then in the JHeadstart
Application Definition editor, select the application level node, and click the
synchronize button in the toolbar to see the new FlexRegionService.

13 - 6 Runtime Page Customizations JHeadstart Developer’s Guide

 You can then click on the FlexRegionService in the Application Definition to
generate the pages that are used to define the content of the Flex Region at
runtime. This service definition is only generated when it does not exist yet, so
after it has been generated, you can make any changes you want using the
Application Definition Editor, without loosing these changes when you
regenerate your “own” service definition.

 A SQL Script named FlexRegionDefsDataServiceName.sql is generated and
executed against the default database connection of your ADF Business
Components project. This script inserts rows in the
JHS_FLEX_REGION_DEFINITIONS table for each Flex Region defined in the
Application Definition. Note that if you do not want the JAG to auto-execute
the script, you can uncheck the service-level checkbox “Run Generated SQL
Scripts?”

 The pages in a group with a Flex Region include ADF Faces elements that
dynamically display the flex items that might be defined at runtime for this
region. Of course, when you run the page just after you added the Flex Region,
no flex items have been defined yet for this Flex Region and the page will look
the same as it did without the flex items enabled.

 An additional global button “Customize Mode” is generated into the page.
Clicking this button will allow you to invoke the flex region admin pages you
are about to generate.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 7

13.3. Defining Flex Items At Runtime

You are now ready to run the generated application, and define some flex items at
runtime. If you start the application again, you will notice an additional button with label
“Customize Mode” in the upper right corner of each page.

Note that if you have enabled role-based security in your application, you will only see
the button when you log in as a user with a role as specified in the service-level property
Admin Role. You can customize the appearance of the Customize Mode button, as well
as the role required to see the button by modifying the menuGlobal.vm template.

If you click the Customize Mode button on a page with a flex region defined, a link will
appear at the location of the flex region.

Clicking this link will launch a dialog window with pages where you can define the
appearance of the Flex Region, and the Flex Items that should appear within the Flex
Region. You just generated these dialog pages using the FlexRegionService.

When you click the New Flex Item Definition button, you will get the following page in
the dialog that allows you to define a flex item within the region.

13 - 8 Runtime Page Customizations JHeadstart Developer’s Guide

 In this page, you can define the display properties of the flex item, as well as
default value logic, validation logic, and allowable values. When you are done
defining the flex items, you can close the dialog. If you now navigate to another
row in your page, you will see the flex items appear. To increase performance,
the flex items are queried only once for each “base” row in a session, that’s why
you do not see the flex items for the employees you already visited in the same
browser session prior to defining the flex item.

In this screen shot, the flex region is displayed below the normal items. You can also
“tab” the flex region as shown below.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 9

Setting up another Item Region and setting the Layout Style of the Regions container to
“tabbed” accomplish this.

13 - 10 Runtime Page Customizations JHeadstart Developer’s Guide

13.4. Creating an Item with Display Type Flex Region

By defining a Flex Region in the Application Definition, the flex items will always be
displayed in their own visual region. You can control how this region is displayed
relative to the standard items as we have seen above.

Now, if you want to display flex items within the same visual region as standard items,
you can use a special item with Display Type “flexRegion” as the place holder for the
flex items defined at runtime. Uncheck the checkbox Bound to Model Attribute for this
item, and set Display In Table Layout to false, since flex items cannot be displayed in a
table, only in a table overflow area.

If we now generate again and run the application, the flex items appear seamlessly with
the standard items, as shown in the screen shot below.

Note that you can define an unlimited number of Flex Regions and Items with Display
Type “flexRegion” in a group.

JHeadstart Developer’s Guide Runtime Page Customizations 13- 11

13.5. Internationalization and Flex Items

Flex regions, and the flex items within a flex region support multiple languages. In the
dialog pages you use to define the flex region and flex items, you might have noticed that
every text item has a corresponding Translation Key item.

When you enter a value in a Translation Key item, this value will be stored as translation
key in the JHS_TRANSLATIONS table. The value of the corresponding text item will be
stored as translation text. For each Locale specified in the Application Definition, an entry
will be created.

JHeadstart must be configured to use the JHS_TRANSLATIONS table to retrieve
translatable strings. This is done through the service-level property NLS Resource
Bundle Type, which must be set to “databaseTable”. If for whatever reason you do not
want to use the JHS_TRANSLATIONS table as your resource bundle, then you should
not enter a value in the Translation Key items. In this case, we recommend you change
the FlexRegionAppDef application definition, and set the Display in Form Layout?
Property of all Translation Key items to “false”.

Please refer to chapter 11 "Internalization and User Assistance" for more information on
resource bundle types, and the option to change and translate your pages at runtime.

After you saved your changes and closed the dialog, the changes will not be visible until
you clicked the “Normal Mode” button, and you navigated to another page. When you
then return to your customized page, the runtime customization is applied.

13 - 12 Runtime Page Customizations JHeadstart Developer’s Guide

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 1

C H A P T E R

14 Forms2ADF Generator

he JHeadstart Forms2ADF Generator (JFG) allows you to reuse Oracle Forms
reuse Oracle Forms elements and properties when creating Oracle ADF applications.

creating Oracle ADF applications.

The JFG creates the Business Services (ADF Business Components) and the JHeadstart
meta data (Service Definition). After that you can run the JHeadstart Application
Generator to generate an ADF web application based on the User Interface definitions
that have been extracted from the Oracle Form.

This chapter explains how the JFG works, and how to use it.

T

14 - 2 Forms2ADF Generator JHeadstart Developer’s Guide

14.1. Introduction into JHeadstart Forms2ADF Generator (JFG)

If you have used Oracle Forms as your development environment over the years, the
JHeadstart Forms2ADF Generator (JFG) can be used in different situations to move to
Oracle ADF. Typical scenarios where the JFG can be of use include:

 You want to add self-service functionality to existing Oracle Forms back-office
applications

 You want to leverage advanced user interfaces features in JDeveloper/ADF
Faces which are hard or impossible to build in Oracle Forms

 You want to disseminate Oracle Forms artifacts in J2EE to prepare for a transition
to a service-oriented architecture (SOA).

 You want to migrate (parts of your) Oracle Forms applications to ADF.

The Forms2ADF generation process looks as follows:

Figure 14-1 JHeadstart Forms2ADF Generator Process

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 3

The JHeadstart Forms2ADF Generator creates two main outputs:

1. ADF Business Components based on the data usages in the Oracle Form:

 ADF BC Entity Objects are created for each table used by a Forms block.

 ADF BC View Objects are created for each Forms data block and each record
group query. Named query Bind parameters are created based on references
to :block.item in the query WHERE clause.

 ADF BC View Accessors and List of Values elements are created for each
LOV when Generator Setting “LOV Implementation” is set to “ADF Model”.
See section 13.3.4 for more information on this setting.

 ADF BC Application Modules are created for each form. All form-based
application modules are nested inside one overall root application module.

2. JHeadstart Service Definition based on the user interface definitions in the form:

 Groups are created for each block.

 LOV Groups are created for each LOV / Record Group when Generator
Setting “LOV Implementation” is set to “JHeadstart”. See section 13.3.4 for
more information on this setting.

 Group Items are created for each item in a block.

 (Stacked) region containers and regions created based on item placement on
(tabbed) canvasses and within framed graphics

 Domains created based on forms item allowable values

 The PL/SQL logic in the form is extracted and added as “documentation”
nodes under the group and item elements.

For m ore detailed description of the mapping between Forms elements and ADF
Business Components and the JHeadstart Application, see section “ 5HUnderstanding the
Outputs of the JHeadstart Forms2ADF Generator”.

14.1.1. Added Value of JHeadstart Forms2ADF Generator

The amount of work that can be saved by using the JHeadstart Forms2ADF Generator
very much depends on the structure of the Oracle Forms application at hand. The
JHeadstart Forms2ADF Generator provides most savings for forms that have the
following characteristics:

 Complex user interface, many (stacked) canvasses, many tabs, many list of
values, and other display types

 Standard-Forms data retrieval and data manipulation through blocks based on
database tables, with master-detail relations defined between the block

 PL/SQL logic mostly limited to user interface dynamics: conditionally
showing/hiding user interface items, and conditionally changing the properties
of user interface items. While JHeadstart does not convert PL/SQL logic, this
type of logic is easily implemented in the ADF application because JHeadstart
provides many declarative property settings to implement this behavior.

JHeadstart has made the deliberate choice to not automatically convert the PL/SQL logic
to Java. The reasons for this are:

14 - 4 Forms2ADF Generator JHeadstart Developer’s Guide

 It is impossible to automate the migration of a two-tier architecture (logic in
Forms or in the database) to a three tier Model-View-Controller architecture as is
common in JEE web applications, including ADF-based applications.

 The architecture of the converted application should be identical to the best-
practice architecture of an ADF application that is build from scratch. If the
architecture is the same, the same skill set can be used to maintain both migrated
applications and ADF applications build from scratch. In addition, by going for a
best practice architecture, the application is more flexible, and can be maintained
easier at lower cost.

 When using the JHeadstart Forms2ADF Generator, you get this best-practice
ADF architecture that is identical to ADF/JHeadstart applications that are built
from scratch.

Note: Other Forms2ADF conversion tools currently available (December 2009) have
taken a different approach. They focus on automating the conversion of PL/SQL to Java.
The architecture of such a converted application is different from a best-practice
JEE/ADF web application. The architecture is more Forms-like, sometimes even
including typical forms constructs like “GO_BLOCK” in the converted Java source code.
The user interface produced by these migration tools is often a Java applet. If your
primary intent is to move away from Oracle Forms, and you are less concerned about the
structure and architecture of the target Java application, then these other conversion tools
might be a valid choice. However, if you want to migrate to a best-practice ADF
architecture, then the JHeadstart Forms2ADF Generator is the best choice.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 5

14.2. Roadmap

When you plan to use the JFG, it is recommended that you follow the steps below:

1. Make sure Forms .fmb file is version 9i or 10i.

The JFG uses the Forms utility to convert a forms .fmb file to XML. This utility is
available as of Forms version 9i. If you built your forms with an older version,
you need to open your forms in version 9i or 10i, and save the .fmb file with this
version. Note that you do NOT need to upgrade your whole forms application to
9i or 10i; the JFG only needs the .fmb file in the proper version.

2. Analyze the forms for elements that should be ignored by the JFG

When running the JFG you can specify names of form elements that should be
ignored during the generation process. To choose the appropriate elements to
exclude from generation, you need to analyze the forms you want to run through
the JFG. Typical candidates to exclude are:

 Common forms elements added through an object library, like a block,
canvas and window to display a calendar popup on date items, or a
canvas and window to display errors.

 Current record indicator items

 Query-Find blocks, windows and canvasses

3. Prepare your project in JDeveloper

Before you can run the JFG you must create and prepare your project in
JDeveloper. See Chapter 1 ‘Getting Started’ on how to prepare your JDeveloper
project, and apply the steps until just before the creation of new ADF Business
Components.

4. Run the JFG

You are now ready to actually run the JHeadstart Forms2ADF Generator in your
Model project. It is recommended that you start with the simplest forms in your
application to build experience with the JFG and the results it produces. See the
next section on how to start and use the JFG.

5. Understand the Forms2ADF Generator outputs

Make sure you understand the meaning and content of the output produced by
the JFG. See section 14.4 Understanding the Outputs of the JHeadstart
Forms2ADF Generator for more information.

6. Check, fix and enhance the migrated ADF Business Components.

It is essential that the model project is valid and functionally correct before you
start generating the web tier. See section 14.5.1 Checking and Fixing the Model
project for more information.

7. Check and enhance migrated JHeadstart service definition

See section 14.5.2 Checking and Enhancing the JHeadstart Service Definition for
more information.

14 - 6 Forms2ADF Generator JHeadstart Developer’s Guide

8. Inspect PL/SQL code in the form and determine whether and how to handle it.

See section 14.5.3 Handling Forms PL/SQL Logic for more information.

9. Create ADF Web Application using the JHeadstart Application Generator

After running the JFG you can generate JHeadstart applications in the same way
as if you would have created your ADF Business Components manually, and as
if you would have run the New JHeadstart Application Definition wizard. See
Chapter 1 ‘Getting Started’, and apply the steps after creation of a JHeadstart
Application Definition.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 7

14.3. Running the JHeadstart Forms2ADF Generator (JFG)

You should start the JHeadstart Forms2ADF Generator from the Model project. To start
the JHeadstart Forms2ADF Generator select your Model project in JDeveloper, right-
mouse click, select New (or from the Menu, select File -> New), go to the Business
Components node below the Business Tier. Select JHeadstart Forms2ADF Generator.

14.3.1. Select Forms Modules

You can select Oracle Forms .fmb files, or you can first use the Forms frmf2xml utility to
convert the forms to xml format, and then select the converted xml files.

14 - 8 Forms2ADF Generator JHeadstart Developer’s Guide

You can use the Browse button to open a File Chooser window to easily select the .fmb or
.xml files from your file system.

If you select Forms .fmb files, then the JFG will first run the Forms frmf2xml utility under
the covers. This utility requires that Oracle Forms be installed on the machine on which
you run JDeveloper. If you do not have Oracle Forms installed, you can run the frmf2xml
utility on another machine where Oracle Forms is installed, and then select the converted
XML files in the File Chooser window.

If you nevertheless select an .fmb file while Oracle Forms is not installed, you will get an
error message when you press the Next button.

14.3.2. Select Form Elements to be Excluded from Processing

Most of the Oracle Forms you want to process typically include elements that you want to
ignore during processing by the JFG. In step 2 of the JFG you can define this list of
elements you want to ignore. The match is based on the name, if you specify the name
“CALENDAR” and your form contains a block, a window and a canvas all named
“CALENDAR”, then all three elements will be ignored.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 9

The default list of elements to exclude provides typical examples of such elements:

 CALENDAR, CALENDAR_TIME: ADF Faces provides its own built-in
functionality for displaying calendar pop ups on date and date time fields

 QMS$*: Elements that start with this name exist in forms generated with the
Template Package of Headstart for Oracle Designer. These are generic elements,
like the current record indicator that are of no use in the ADF environment.

 QF_*: Elements that start with this name implement so-called Query Find
functionality that can be generated with the Template Package of Headstart for
Oracle Designer. Query Find windows do not need to be migrated, since
JHeadstart has built-in support for quick and advanced search, similar to the
Forms query find window.

 CG$CTRL: This block is added to the form when the form is generated using
Oracle Designer. The block contains control items for Forms-specific logic that
does not map to ADF concepts.

 ORAFORMSFACES*: A block and canvas of this name is included in forms that
are enabled for inclusion in a JSF page using the OraFormsFaces component
supplied by Commit Consulting.

 TOOLBAR*: JHeadstart provides its own built-in functionality for toolbar
functionality

Reference: For information about OraFormsFaces, visit the website of Commit
Consulting: 0Hhttp://www.commit-consulting.com/oraformsfaces/

14.3.3. Select Database Connection

The database connection you select in this step is used as the connection for the ADF
Business Components that will be generated. This connection is also used to query the

http://www.commit-consulting.com/oraformsfaces/

14 - 10 Forms2ADF Generator JHeadstart Developer’s Guide

table structures and key constraints from the Oracle Database Data Dictionary. This data
dictionary information is required to create the ADF BC Entity Objects for each table used
by a block in the selected forms. The ADF BC entity objects created by the JFG, are reused
across all forms that are processed by the JFG, only the generated View Objects are form-
specific. Therefore, the entity objects created by the JFG contain attributes for all columns
in the table or view, regardless of whether the column is used in one of the forms.

If the database schema you provide as database connection is not the owner of all tables
and views used by the selected forms, then make sure that the schema has synonyms to
these tables and views, and that the schema user is allowed to query the data dictionary
tables for these tables and views. This can be accomplished by granting the SELECT ANY
DICTIONARY privilege to the schema user. If your forms access tables or view in another
database schema by prefixing the table or view with the schema name, rather then using
synonyms, then the schema user you select should also have the SELECT ANY
DICTIONARY privilege to be able to read the table and view definitions from this other
schema.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 11

14.3.4. ADF Business Components Settings

The following properties need to be set on the Generator Settings panel:

 Service Name: This is the name that is used to create the JHeadstart Application
Definition file

 Entity Objects Package: The package name that will be used to store all entity
objects and their associations. It is good practice to organize the entity objects,
view objects and application modules in separate packages. If you specify a
package name that does not yet exist, it will be created automatically.

 Entity Associations Package: The package name that will be used to store all
entity associations. If you specify a package name that does not yet exist, it will
be created automatically.

 View Objects Package: The name of the package that will be used to store all
view objects created based on Oracle Forms blocks.

 View Links Package: The name of the package that will be used to store all view
links, created based on relations between Oracle Forms blocks.

 LookupView Objects Package: The name of the package that will be used to
store all view objects created based on Oracle Forms record group queries.

 Application Modules Package: The name of the package that will be used to
store all application modules.

 Root Application Module: The name of the root application module that will be
created. For each form that you selected to process, a separate application
module will be created, named after the forms module. All form-specific
application modules are then nested inside one root application module, so they
can share the same application module pool, and database connection pool at
runtime.

 View Controller Project: The name of the project in which the JHeadstart
Application Definition file will be saved.

14 - 12 Forms2ADF Generator JHeadstart Developer’s Guide

 Entity Object Class Extends: The name of the superclass of each entity object
that will be created by the JFG. You can create your own superclass that extends
from the default oracle.jbo.server.EntityImpl class to implement
common behavior across all your entity objects.

 Application Module Class Extends: The name of the superclass of each
application module object that will be created by the JFG. You can create your
own superclass that extends from
oracle.jheadstart.model.adfbc.v2.JhsApplicationModuleImpl
class to implement common behavior across all your application modules. If you
use CDM RuleFrame to implement your business rules in the database, you
should select the
oracle.jheadstart.model.adfbc.v2.RuleFrameApplicationModuleI

mpl class, or your own subclass of this class. By extending from the
RuleFrameApplicationModuleImpl class, your application will nicely
display CDM RuleFrame errors in the web user interface.

 Extract PL/SQL Logic?: If this checkbox is checked, the PL/SQL program units,
and the form-, block- and item-level triggers will be visible in the JHeadstart
Application Definition. This is helpful in assessing the additional functionality
that was implemented in the original form using PL/SQL that might need to be
implemented as well in the web pages generated by the JFG/JAG.

 LOV Implementation: When choosing “ADF Model”, the JFG will create model-
based List of Values within the ADF Business Components. When choosing
“JHeadstart”, the JFG will create LOV groups and LOV item usages in the
JHeadstart Service Definition file.

 Search Implementation: When choosing “ADF Model”, the JFG will set the
Group-level quick and advanced search properties in the Service Definition to
“model”. When choosing “JHeadstart”, these properties will be set to
“samePage” for advanced search and “dropDownList” for quick search. It is
recommended to use the same values for LOV Implementation and Search
Implementation. This is because in an ADF Model-based search area, you can
only include ADF Model based LOV items, and vice versa: in a JHeadstart quick
or advanced search area, you can only include JHeadstart Lov items.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 13

14.3.5. JHeadstart Settings

The following properties need to be set on the Generator Settings panel:

 Service Name: This is the name that is used to create the JHeadstart Application
Definition file

 View Controller Project: The name of the project in which the JHeadstart
Application Definition file will be saved.

 Extract PL/SQL Logic?: If this checkbox is checked, the PL/SQL program units,
and the form-, block- and item-level triggers will be visible in the JHeadstart
Application Definition. This is helpful in assessing the additional functionality
that was implemented in the original form using PL/SQL that might need to be
implemented as well in the web pages generated by the JFG/JAG.

 Migrate Text Graphics?: If this checkbox is checked, any boilerplate text created
through text grpahics will be migrated. A text graphic migrates to an unbound
read-only item with the value set to the text of the item.

 Use Text Graphics as Label?: If you check this checkbox and the Migrate Text
Graphics? checkbox is checked, then a text graphic that is displayed at the left of
an input item, without any other item in between, will be used as the label of the
input item. In other words, such text graphics are not migrated in itself, instead
the text is set as label of the item positioned at the right of the text graphic. Use
this setting when converting older versions of Oracle Forms that did not yet
support the label property on input items.

 LOV Implementation: When choosing “ADF Model”, the JFG will create model-
based List of Values within the ADF Business Components. When choosing
“JHeadstart”, the JFG will create LOV groups and LOV item usages in the
JHeadstart Service Definition file.

14 - 14 Forms2ADF Generator JHeadstart Developer’s Guide

 Search Implementation: When choosing “ADF Model”, the JFG will set the
Group-level quick and advanced search properties in the Service Definition to
“model”. When choosing “JHeadstart”, these properties will be set to
“samePage” for advanced search and “dropDownList” for quick search. It is
recommended to use the same values for LOV Implementation and Search
Implementation. This is because in an ADF Model-based search area, you can
only include ADF Model based LOV items, and vice versa: in a JHeadstart quick
or advanced search area, you can only include JHeadstart Lov items.

14.3.6. Processing the Selected Forms

When you click the Finish button on the Summary panel, the JFG will start processing the
forms.

The processing consists of the following steps:

 Conversion: Each selected .fmb form is converted to XML format using the
FRMF2XML utility. This step is skipped when you already selected xml-
formatted form files.

 Extraction: For each data block in the form, the underlying table or view
definition, including all primary keys, unique key and foreign key constraints are
queried from the data dictionary tables. This information is added to the XML
representation of the form, and the combined information is written to the file
system, in the Java source root directory, in a file named
<module_name>_extracted.xml

 ADF BC Migration: Each extracted XML file is processed by a number of ADF
BC migrators (each target ADF BC element has its own migrator), that together
create an XML structure that is the input for the actual creation (composition) of
ADF BC components. This XML structure is written to the file system, in the Java
source root directory, in a file named <module_name>_migratedAdfbc.xml

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 15

 ADF BC Composition: Based on the migrated ADF BC XML structure of each
form, the entity objects, entity associations, view objects and view links, and the
application modules are created.

 JHeadstart Migration: Each extracted XML file is then processed by a number of
JHeadstart migrators (each target JHeadstart Application Definition element has
its own migrator), that together create an XML structure that is the input for the
actual creation (composition) of the JHeadstart Application Definition file. This
XML structure is written to the file system, in the Java source root directory, in a
file named <module_name>_migratedJhs.xml

 JHeadstart Composition: Based on the migrated JHeadstart XML structure of
each form, the JHeadstart Application Definition file is created, and stored in the
properties directory of the ViewController project.

If the JFG run was successful, you can safely delete the intermediate results of the JFG,
being the extracted and migrated XML files in the Java source root directory. However,
if processing failed with an error, these XML files can be used for troubleshooting as
explained in the next section.

14.3.7. Troubleshooting

When the JHeadstart Forms2ADF Generator fails with an error, the first thing to do is to
assess which form module is causing the error. This information can easily be obtained
from the log window in JDeveloper, which prints an informational message for each
processing phase, for each module, as show in the screen shot below.

14 - 16 Forms2ADF Generator JHeadstart Developer’s Guide

The last printed line in this window will tell you which forms module the JFG was
processing when the error occurred, and in which phase of the processing.

Typically, an unexpected error dialog window will be displayed, which provides more
information about the error that occurred.

For example, the error dialog below will be displayed when no table or view information
could be queried from the Oracle data dictionary tables during the extraction phase of a
form module.

To solve this error, make sure that the database connection you specified has all the
required privileges. See section 7H14.3.3 “Select Database Connection” for more
information.

While you can fix the above error, there might be other unexpected errors that are not
easily solved. In such a situation, we recommend that you e-mail the Oracle JHeadstart
Team (1Hidevcoe_nl@oracle.com), and send us the following information:

 The JHeadstart version you are using. You can see this in JDeveloper by going to
the Help menu -> JHeadstart Documentation Index.

 The name of the form module that is causing the problem.

mailto:idevcoe_nl@oracle.com

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 17

 The error message and error stack trace displayed in the dialog window (if any)

 Any log information written to the JDeveloper JFG log window

 The XML files created during processing for this module: _extracted.xml,
_migratedAdfbc.xml and migratedJhs.xml file. Depending on the phase in which
the error occurred, not all of these files might be available for the form module.
Please send us the files that are available.

 Any other information that can help us understand your issue. For example, if
you expected a different layout of the user interface, then attach screen shots of
the original form, and the generated web page.

14.3.8. Processing the Same Form Multiple Times

You can run the JFG multiple times for the same form. When you do this the following
happens:

 Existing entity objects will not be modified, only new attributes will be added if
there are columns in the table that are not yet mapped to an attribute

 Existing view objects will not be modified, only new attributes will be added if
there are items in the block that are not yet mapped to an attribute

 Existing application modules will not be modified, only new view object usages
will be added if necessary

 The groups generated for the form in the JHeadstart Application Definition will
not be changed at all. If you want the JFG to recreate the group definitions, you
first need to change the top-level group of the form and all its detail groups.

14 - 18 Forms2ADF Generator JHeadstart Developer’s Guide

14.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator

This section will give you an overview of the output and explains how this can be
mapped to Oracle Forms elements and their properties. It also discusses possible changes
you might need to make to the generated outputs.

14.4.1. Generated ADF Business Components

14.4.1.1. Entity Objects

For each table or view used by an Oracle Forms data block, an Entity Object (EO) is
created. These entity objects are shared across all forms modules: when multiple forms
use the same table, only one entity object is created.

The information to create an EO is queried from the data dictionary tables. This means
that attributes are created for each column in the table, regardless of whether the column
is actually used in a forms block.

EO attributes are marked as key attributes based on the primary key definition in the
data dictionary. If the table does not have a primary key, or the block is based on a view,
then the JFG will default all mandatory attributes as primary key attributes. This is done
because ADF Business Components requires each EO to have at least one key attribute.
When this happens, a warning is written to the log window:

When you an encounter such a warning, you should check which attributes really make
up the primary key, and change the Primary Key checkbox in the EO attribute editor
accordingly.

14.4.1.2. Entity Association

Foreign Key constraints as found in the data dictionary are processed into Entity
Associations. These Associations are created between the two EO’s created from the two
tables between which the Foreign Key constraint lies. You can compare this to a client
side implementation of a Foreign Key.

14.4.1.3. View Objects

View Objects (VO) are created for each block in the form with the property Query Data
Source Type set to “Table” or “FROM clause query”. The values “Transactional
Triggers” and “Procedure” are currently not supported.

When set to “Table”, the VO is based on the entity object that maps to the table or view as
specified in the Query Data Source Name property.

When set to “FROM Clause Query”, the view object is created as a read-only view object,
not based on an entity object. Note that this might require manual correction afterwards:

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 19

if the DML Data Source Type is set, the block is updateable, and the View Object should
be based on the entity object that maps to the table as specified in the DML Data Source
Name property. In this case, you should manually re-map the existing read-only
attributes to the corresponding underlying entity object attribute. You can do this on the
Attribute Mappings pane of the Edit Query dialog.

In addition to the VO’s created for data blocks, read-only VO’s are created for each
Record Group Query found in the form that is tied to a List of Values object used by a
migrated item.

The WHERE and ORDER BY clauses of the data blocks are also migrated to the View
Object.

Any references in the SQL Query, the WHERE clause or ORDER BY clause to block items
are replaced with Query Bind variables, and in the JHeadstart Application Definition, the
Query Bind Arguments group property is set up to populate these bind variables with
the correct values. References to Forms globals and system variables cannot be replaced
with bind variables, and therefore these references are changed to literal values by
enclosing them in brackets, to keep the SQL query valid. When the JFG encounters such a
reference to a Forms global or System variable, you are notified in the log window. Make
sure you revisit these View Objects and change the query, where clause or order by
clause as needed.

14.4.1.4. View Object Attributes

A View Object attribute is created for each data bound item (an item based on a column)
within the block, and for each unbound item that is populated through an LOV.

In older forms, lookup data (like the department name in an employee block) is typically
displayed in block items not based on a column. The values in these unbound items are
typically set through a POST-QUERY trigger that performs lookup queries to associated
tables. Since the JFG does not parse any PL/SQL logic, these lookup values will not be
visible in the ADF web application that can be generated using the outputs of the JFG.

However, when the block is updateable, it is quite likely that a List of Values (LOV) has
been defined on an unbound item in the form that populates the foreign key item (for
example department_id), as well as lookup items (for example department_name). If
such an LOV is present, JFG will create so-called calculated attributes for the lookup
items that are populated through an LOV. The calculated attribute gets a SQL expression
that returns the lookup item value based on the Record Group Query associated with the
LOV.

The table below shows the mapping between View Object Attribute properties and
related Item properties in the form.

Attribute
Property

Derived from
Item Property

Comments

Name Item Name Item name is “CamelCapped”, reserved words are
suffixed with “1”

Updateable Insert Allowed,
Update Allowed

Set to true when both properties are true, set to false
when both item properties are false, set to “While
New”when only Insert Allowed is true. If the item is
not visible, it is always made updateable.

14 - 20 Forms2ADF Generator JHeadstart Developer’s Guide

Mandatory Required Value copied when attribute is not based on entity
attribute

Value Initial Value Value copied as literal, except when Default Value is
(variation of) $$DATE$$, then the Value Type is set
to “Expression” and the Value to
“adf.currentDate” or

“adf.currentDateTime” .

Queryable Query Allowed

Precision Maximum
Length

Only set when attribute not based on entity attribute

Type DataType Only set when attribute not based on entity
attribute, SQL type converted to Java Type

Control Hints

Display Hint Visible

Label Text Prompt

Tooltip Text Tooltip, Hint Copied from Tooltip property when set, otherwise
copied from Hint property

Display Width Width Conversion algorithm to Display Width value based
on Forms Coordinate System.

Display
Height

Height Conversion algorithm to Display Height value based
on Forms Coordinate System.

14.4.1.5. View Accessor and List of Values

If you have chosen “ADF Model” as LOV Implementation, then for each LOV that is
based on a Record group Query, and linked to a databound item, a View Accessor
element will be created in the View Object, and a List of Values definition will be created
in the View Object attribute that was created for the LOV item. For each
LOVColumnMapping in the Form LOV a List Return Value is created in the ADF Model
List of Values.

14.4.1.6. View Links

When a relation has been defined between two data blocks in the form, the JFG attempts
to create a view link between the View Objects created for the two blocks involved.

First, the JFG parses the content of the forms Relation Join Condition property. If the
value of this property exists of one or more conditions connected with the AND operator
and each condition uses a simple ‘=’ operator with two item references, JFG creates a
view link based on the attributes created for these items. If the Relation Join Condition is
more complex, or the JFG cannot find matching attributes for the items, the JFG tries to
find a foreign key constraint between the two tables, as defined in the data dictionary. If
such a foreign key constraint exists, the view link is created based on this foreign key. If
no foreign key is found, the JFG will display a warning in the log window:

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 21

In such a situation, the view link will be created without source and destination
attributes. You will need to add those attributes manually by double clicking on the view
link.

14.4.1.7. Application Module

For each form, an application module is created that contains usages for all the View
Objects created for the form. Each form-specific application module is added as a nested
application module usage to the Root Application Module.

To make sure the ADF Business Components created are all valid, we recommend to run
the ADF BC tester on the Root application module, available through the right-mouse-
click menu on the application module. By running the tester, you can check whether:

 your project compiles successfully. If not correct the compilation errors first.

 all View Object queries have been brought forward in a correct manner, and
return the correct data

 you can make updates through the entity-based View Objects, which are all View
Objects that originate from a Forms block.

14.4.2. Generated JHeadstart Service Definition File

The JFG also creates the JHeadstart Service Definition file. The sub sections below
explain how and when each element type in the JHeadstart Application Definition file is
created.

14.4.2.1. Groups

The JFG creates a Group for each block in the forms module. A top-level group is created
for

 The block that is specified as the first navigation block in the form, or if not
specified,

 The first block in the form that is not a detail block of another block

A detail-group is created for

 Each block that is a detail block of the block mapped to the parent group

 All other blocks that are not a detail block, they are created as detail group of the
top-level group. When such a block is based on a table or view, the boolean
Dependent Data Collection property is set to false, as there is no link with the
data collection of the parent group.

For each LOV in the form that has an associated Record Group Query, a group is created
with the property Group Usage set to “List of Values Window”.

14 - 22 Forms2ADF Generator JHeadstart Developer’s Guide

If the JFG created query bind parameters for the underlying View Object of a group, the
Query Bind Arguments property of the group will be set accordingly. This ensures that
the JHeadstart Application Generator will generate the appropriate configurations to
populate these query bind parameters with the correct item values at runtime.

If a block is not based on a table or view, then the boolean group property Bound to
Model Data Collection is set to false.

14.4.2.2. Items

For each item in a block, a corresponding item is added to the group that was created for
the parent block. If the item is not based on a column, the item will have the Databound
property set to false, otherwise it will be set to true, and the matching View Object
attribute will be set in the Attribute Name property.

The item display type is set based on the item type of the source form item.

If the form item has an LOV associated the item display type will be set to “lov”, and a
ListOfValues child element will be added to the JHeadstart item. The ListOfValues
element will have child ReturnValue elements, one for each LOV Column Mapping in the
form.

14.4.2.3. Item List of Values

If you have chosen “JHeadstart” as LOV Implementation, then for each LOV that is based
on a Record group Query, and linked to a databound item, a List of Values item will be
created as a child of the JHeadstart item that was created for the LOV item in the form.

For each LOVColumnMapping in the Form LOV a List of Values Return Value is created
in the JHeadstart Application Definition file.

14.4.2.4. Region Containers, Item Regions and Group Regions

Based on the placement of an item:

 on a content canvas

 on a stacked canvas

 on a tab page

 within a framed graphic

and taking into account placement of parent and detail group items on the same canvas
or tab page, or within the same framed graphic, the JFG will create the appropriate
nested structure of region containers, item regions and group regions.

The number of layout columns set on an item region, is based on the first line of items
within the region in the original form. For example, if 3 items have the same Y position
coordinate within the tab page or graphic, then the Columns property will be set to 3,
regardless of the number of items on subsequent lines.

14.4.2.5. Domains

A static domain will be created for the following form items:

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 23

 Checkbox Items: a domain with two allowable values, the checked and
unchecked value will be created. If the unchecked value is not set, the value ‘N’ is
taken as unchecked value, since ADF only supports boolean value bindings for
checkboxes that require both a checked and unchecked value.

 List Items: for each list element an allowable value will be created within the
domain

 Radio group items: for each radio button element an allowable value will be
created within the domain

Note that the JFG will not create dynamic domains for drop down lists. This is not
possible because Oracle Forms does not support Record Group Queries to be attached to
drop down lists. To populate a drop down list with dynamic values in Oracle Forms,
custom PL/SQL logic needs to be written. Since the JFG does not attempt to parse the
PL/SQL logic, we cannot create dynamic domains for drop down lists. Subsequently
drop down list items that are populated through PL/SQL will be created as a normal text
item by the JFG. Of course, after you ran the JFG, you can easily change the text item into
a drop down list and create the associated dynamic domain manually in the JHeadstart
Application Definition Editor.

14 - 24 Forms2ADF Generator JHeadstart Developer’s Guide

14.5. Common Steps After Running the Forms2ADF Generator

This paragraph provides a checklist of common steps you should consider to perform
after you migrated a form using the Forms2ADF generator.

14.5.1. Checking and Fixing the Model project

Before generating the web application using the JHeadstart Application Generator, you
should ensure you have a valid and correctly working set of ADF Business Component in
the Model project.

 Fix any incomplete view links as reported in the log window.

 Check all view objects for use of bind parameters that need to get a value.
Determine how you will supply these bind variable values.

 Check application data model: are master-detail relations properly carried
forward in the data model? If not, then add the required view links and change
the data model to get the nested view object usages that reflect the view object
usages.

 Compile the Model project: are there any errors or warnings that need attention

 Run the application module tester: do all queries work fine? Do all model-based
list of values work correctly, and do they show the correct values?

 Consider changing view objects that have nested queries to fetch lookup data to
use reference entity objects instead. This can increase performance significantly!

 Create additional view objects, view accessors and list of values for dropdown
lists in the original form: dropdown lists are always populated through PL/SQL
code that performs some query, and are not migrated over because PL/SQL code
is not parsed.

14.5.2. Checking and Enhancing the JHeadstart Service Definition

 Add item prompts where needed.

 Set column sortable where needed

 Simplify group-regions structure if possible. Can group regions be removed? Can
intermediate region containers be removed Can table overflow setting be used to
accomplish same layout with easier structure?

 Modify group-regions structure if generated layout differs from the original form
in an undesirable manner.

 Consider removing groups based on a control block, useful items in such a block
can often be dragged to databound groups. Control block groups used for
searching can often be replaced with standard quick search or advanced search
functionality.

 Enable stretching on groups and region containers if needed.

 Remove all unbound items that are not displayed. If the group containing the
items no longer has any items, remove the group. If the group has detail groups,
then have the first detail group take the location of the unbound group you are
about to remove.

JHeadstart Developer’s Guide Forms2ADF Generator 14 - 25

 For displayed unbound items that are populated through SQL statements in
PL.SQL logic (for example in POST-QUERY or POST-CHANGE triggers): If
possible, modify the SQL query of the base view object of the group and (outer)
join it with the table that contains the column value that should be displayed in
the unbound item. If you can successfully add this to your query (test the query
in the application module tester!), you can change the unbound item to be
databound and set the Attribute Name property to the attribute that you added
to the view object by extending the query.

 Go over the items width Display Type commandButton and determine whether
they are still needed. JHeadstart generates a number of standard buttons that
might provide the same functionality like navigating from a master page to a
detail page. For buttons that are still needed, see chapter 6, section 6.10
"Generating a Button Item" for more information on how you can add
functionality to the button.

 Consider to replace groups migrated from control blocks that act as a search area
in the Oracle form with standard ADF model-base quick search and/or advanced
search on the actual databound group, or if that doesn't suit your needs, with a
JHeadstart quick or advanced search area.

 In form layouts, all items that appear in one line in the original form, also appear
on one line in JHeadstart-generated ADF page. This is accomplished using the
Display at Right of Item property. Consider whether you want to simplify/clean
up the layout using the Columns property on the group or item region to get
nicely aligned columns with items.

 If the generated layout is OK, click the Synchronize button in the toolbar of the
JHeadstart Application Definition Editor afterwards to feed back the new
prompts as UI Hints on the underlying view object.

 Attention: if you make a non-displayed item after the migration displayed in the
JHeadstart application Definition Editor, you should also click the Synchronize
button for this group, to change the UI Display Hint in the view object
accordingly. If you don't do this, you will get a PropertyNotFound exception at
runtime (ADF issue)

14.5.3. Handling Forms PL/SQL Logic

The JHeadstart Forms2ADF Generator allows you to “copy” the PL/SQL logic used in
the form to the JHeadstart Application Definition, so you can easily see the logic in the
editor, and determine what to do with it. Below we have listed common types of PL/SQL
logic, with some suggestions on how you might handle it. Note that this is a high-level
overview, not a detailed cookbook on how to handle each piece of PL/SQL logic. Always
make sure you fully understand the PL/SQL logic before you take a final decision on
how to re-implement it in the ADF/JHeadstart stack.

 Canvas and window management logic: this kind of logic can typically be
ignored, as it is specific to how Oracle Forms works.

 Navigation logic: logic to navigate to detail windows within the same form can
typically be ignored, since JHeadstart will generate buttons to navigate between
parent and detail groups. Navigation logic to call other forms, passing along
context parameter(s) used to query information in the called form can be
implemented using the JHeadstart deep linking functionality. See chapter 6
“Generating User Interface Widgets” section 6.14 “Navigating Context-Sensitive
to a group task Flow (Deep Linking)” for more information.

14 - 26 Forms2ADF Generator JHeadstart Developer’s Guide

 Logic to implement conditionally dependent items: with this we mean PL/SQL
logic that changes the user interface properties like required, enabled, or visible
for one or more “dependent” items based on the value(s) of one or more
“depends on” items. In other words, this kind of logic creates dynamic user
interfaces that change based on the values you enter. JHeadstart offers extensive
declarative support for conditionally dependent items. See chapter 6 “Generating
User Interface Widgets”, section 6.13 “Conditionally Dependent Items” for more
information.

 Calls to PL/SQL stored in the database. JHeadstart contains a convenience class
which makes it very easy to call (packaged) procedures and functions in the
database. See chapter 6 "Generating User Interface Widgets", section 6.10.4.
"Calling a PL/SQL Procedure of Function from a Button" for more information.
(This section is also useful when the database PL/SQL logic should not be called
from a button.)

 Business rule logic: logic that causes error or messages or dialogs to be displayed
when the user enters invalid data or logic that automatically updates other
values either directly in the form or by executing SQL DML statements (change
event rules). This kind of logic can be implemented in ADF Business
Components, as described in the Business Rules White Paper, or can be moved to
the database (in case it is not yet implemented there).

Reference: For information about enforcing business logic within the ADF BC
Business Service, see the whitepaper Business Rules in ADF BC:
2Hotn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbc
technicalwp.pdf

http://otn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://otn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

JHeadstart Developer’s Guide OraFormsFaces Generator 15 - 1

C H A P T E R

15 OraFormsFaces Generator

he JHeadstart OraFormsFaces Generator (OFFG) allows you to quickly embed many
you to quickly embed many Oracle Forms in your ADF Faces web application using

Faces web application using the OraFormsFaces™ product.

This chapter explains what OraFormsFaces is, and how JHeadstart integrates with
OraFormsFaces.

T

15 - 2 OraFormsFaces Generator JHeadstart Developer’s Guide

15.1. Introduction into OraFormsFaces™

OraFormsFaces™ is a JSF component library to integrate Oracle Forms in a JSF web
application. This allows a developer to embed Oracle Forms in a JSF page and truly
integrate the two, including passing context, events, eliminating Forms applet startup
time, and many more features.

OraFormsFaces allows organizations to use the Java stack for new developments while
protecting their investment in Oracle Forms. They can build new JSF or ADF Faces based
web applications and integrate existing Forms applications in them. The JSF web
application can pass parameters to Forms and the other way around. Both Forms and JSF
can raise events (commands or triggers) in the other technology.

OraFormsFaces is a product from Commit Consulting. A trial version can be downloaded
from the Commit Consulting website.

Commit Consulting: For more information on OraFormsFaces and Commit

Consulting, go to http://www.commit-consulting.com/

A special OraFormsFaces page for JHeadstart users is also available:

http://www.commit-consulting.com/jhs

JHeadstart and OraFormsFaces work very well together when you want to transform
existing Oracle Forms applications to ADF.

JHeadstart and OraFormsFaces can be a great combination for a gradual migration from
Oracle Forms to ADF Faces. You can start of with a JHeadstart generated application that
largely consists of existing Oracle Forms modules using OraFormsFaces. Then gradually
you can replace individual pages that embed Oracle Forms with true ADF Faces pages
than can just as easily be configured and generated from JHeadstart. You can either use
the JHeadstart Forms2ADF generator to reuse the Oracle Forms definitions to create the
new ADF pages, or just build the ADF pages from scratch by manually defining ADF
Business Components and associated metadata in the JHeadstart Application Definition
editor.

JHeadstart integrates with OraFormsFaces through the item Display Type property
“oraFormsFaces”. In chapter 6, section “Embedding Oracle Forms in JSF Pages” we
explain how you can define an item in the JHeadstart Application Definition Editor that
uses this display type.

15.1.1. Added Value of the JHeadstart OraFormsFaces Generator

The OFFG simply automates the creation of a group and item with display type
“oraFormsFaces” in a JHeadstart Service Definition. When running the OFFG, you can
select multiple Oracle Forms, and for each selected form a group and oraFormsFaces item
is created, including group parameters for each form parameter found in the form
definition. These group parameters can be used if you want to deeplink from an ADF
page to an embedded Oracle Form and query the context in the form.

So, you don’t per se need the OFFG to embed Oracle Forms in your JHeadstart
application, it just makes your life easier. In particular if you have a large Oracle Forms
application with hundreds of forms, it can be a big time safer to automatically create the
metadata required by JHeadstart to generate ADF pages with Oracle Forms embedded.

http://www.commit-consulting.com/
http://www.commit-consulting.com/jhs

JHeadstart Developer’s Guide OraFormsFaces Generator 15 - 3

15.2. Running the JHeadstart OraFormsFaces Generator (OFFG)

You should start the OFFG from the Model project. To start it select your Model project in
JDeveloper, right-mouse click, select New (or from the Menu, select File -> New), go to
the Business Components node below the Business Tier. Select JHeadstart
OraFormsFaces Generator.

15.2.1. Select Forms Modules

You can select Oracle Forms .fmb files, or you can first use the Forms frmf2xml utility to
convert the forms to xml format, and then select the converted xml files.

15 - 4 OraFormsFaces Generator JHeadstart Developer’s Guide

You can use the Browse button to open a File Chooser window to easily select the .fmb or
.xml files from your file system.

If you select Forms .fmb files, then the OFFG will first run the Forms frmf2xml utility
under the covers. This utility requires that Oracle Forms be installed on the machine on
which you run JDeveloper. If you do not have Oracle Forms installed, you can run the
frmf2xml utility on another machine where Oracle Forms is installed, and then select the
converted XML files in the File Chooser window.

If you nevertheless select an .fmb file while Oracle Forms is not installed, you will get an
error message when you press the Next button.

JHeadstart Developer’s Guide OraFormsFaces Generator 15 - 5

15.2.2. Generator Settings

The following properties need to be set on the Generator Settings panel:

 Service Name: This is the name that is used to create the JHeadstart Application
Definition file

 View Controller Project: The name of the project in which the JHeadstart
Application Definition file will be saved.

15.2.3. Processing the Selected Forms

When you click the Finish button on the Summary panel, the OFFG will start processing
the forms.

15 - 6 OraFormsFaces Generator JHeadstart Developer’s Guide

The processing consists of the following steps:

 Extraction: Each selected .fmb form is converted to XML format using the
FRMF2XML utility. This step is skipped when you already selected xml-
formatted form files.

 JHeadstart Migration: Each XML file is then processed by a number of
JHeadstart migrators (each target JHeadstart Application Definition element has
its own migrator), that together create an XML structure that is the input for the
actual creation (composition) of the JHeadstart Application Definition file. This
XML structure is written to the file system, in the Java source root directory, in a
file named <module_name>_migratedJhs.xml

 JHeadstart Composition: Based on the migrated JHeadstart XML structure of
each form, the JHeadstart Application Definition file is created, and stored in the
properties directory of the ViewController project.

If the OFFG run was successful, you can safely delete the intermediate results of the
OFFG, being the extracted and migrated XML files in the Java source root directory.
However, if processing failed with an error, these XML files can be used for
troubleshooting as explained in the next section.

JHeadstart Developer’s Guide OraFormsFaces Generator 15 - 7

15.2.4. Troubleshooting

When the OFFG fails with an error, the first thing to do is to assess which form module is
causing the error. This information can easily be obtained from the log window in
JDeveloper, which prints an informational message for each processing phase, for each
module, as show in the screen shot below.

The last printed line in this window will tell you which forms module the OFFG was
processing when the error occurred, and in which phase of the processing.

In such a situation, we recommend that you e-mail the Oracle JHeadstart Team
(1Hidevcoe_nl@oracle.com), and send us the following information:

 The JHeadstart version you are using. You can see this in JDeveloper by going to
the Help menu -> JHeadstart Documentation Index.

 The name of the form module that is causing the problem.

 The error message and error stack trace displayed in the dialog window (if any)

 Any log information written to the JDeveloper OFFG log window

 The XML files created during processing for this module: _extracted.xml, and
migratedJhsOff.xml file. Depending on the phase in which the error occurred, not
all of these files might be available for the form module. Please send us the files
that are available.

mailto:idevcoe_nl@oracle.com

15 - 8 OraFormsFaces Generator JHeadstart Developer’s Guide

15.3. Understanding the Outputs of the JHeadstart OraFormsFaces Generator

The JFG creates a JHeadstart Service Definition file. To see and edit this file using the
JHeadstart Application Definition Editor, you first need to enable JHeadstart for the
ViewController project if you didn’t do this yet.

For each selected form module the following content is created:

 A top-level Group is created

 For each Forms parameter, a Group Parameter is created

 An item with Display Type oraFormsFaces is created in the group with the
Value property set to the name of the form.

 For each Forms parameter, an Item Parameter is created, with the value set to the
EL expression that references the group parameter (generated as taskflow
parameter by JHeadstart): #{pageFlowScope.parameterName}

15.3.1. Create Application Module If Needed

If you have run the OFFG in a new project without an existing application module, then
the Data Control property is not set in the generated service definition.

If you then try to run the JHeadstart Application Generator, you will get the following
error:

JHeadstart Developer’s Guide OraFormsFaces Generator 15 - 9

To solve this error, you need to create a “dummy” application module in your Model
project and then set the Data Control property to the data control automatically created
for this application module. Note that the data model of the application module can be
empty; it doesn’t need to contain a view object usage.

You then can generate and run your application. Make sure you have properly installed
OraFormsFaces in your project before you run the application.

If you experience any problems, then first manually create and test an ADF Faces page
that uses the OraFormsFaces JSF components to make sure OraFormsFaces is configured
correctly you in your project. See the OraFormsFaces documentation for more info.

15 - 10 OraFormsFaces Generator JHeadstart Developer’s Guide

	ORACLE JHEADSTART 11g Developer's Guide 11.1.1.5
	1 Getting Started
	1.1. Introduction into JDeveloper, ADF and JHeadstart
	1.1.1. Oracle JDeveloper
	1.1.2. Oracle Application Development Framework (ADF)
	1.1.3. What is Oracle JHeadstart?

	1.2. Roadmap to Developing ADF Applications using JHeadstart
	1.2.1. Set Up Project for Team-Based Development
	1.2.1.1. Setup Version Control System
	1.2.1.2. Set up Structure of JDeveloper Application
	1.2.1.3. Define Project Standards for Organizing ADF Business Components
	1.2.1.4. Define Java Package Structure and Other Naming Conventions
	1.2.1.5. Define Project Standards for Organizing JHeadstart Application Definition Files

	1.2.2. Create Business Service using ADF Business Components
	1.2.2.1. Create Business Component Base Classes
	1.2.2.2. Create Entity Objects and Associations
	1.2.2.3. Create View Objects and View Links
	1.2.2.4. Create Application Modules
	1.2.2.5. Implement Business Rules

	1.2.3. Design and Generate Web Pages
	1.2.3.1. Understand JHeadstart Generator Architecture and Add Ins
	1.2.3.2. Create Application Definition File
	1.2.3.3. Configure Internationalization Options
	1.2.3.4. Generate and Run First-cut Web Application
	1.2.3.5. Design and Generate Page Layouts
	1.2.3.6. Design and Generate Item Display Types and Item Behavior
	1.2.3.7. Configure Query Behavior in Pages
	1.2.3.8. Configure Transactional Behavior in Pages
	1.2.3.9. Design and Generate Menu Structure

	1.2.4. Design and Generate Security Structure
	1.2.4.1. Understand and Choose Authentication and Authorization Options
	1.2.4.2. Implement User Authentication
	1.2.4.3. Implement Role-based and Permission-based Authorization
	1.2.4.4. Design and Generate Security Administration Pages

	1.2.5. Customize Generated Web Tier
	1.2.5.1. Decide on Customization Approach
	1.2.5.2. Use ADF Design-Time Tools to Implement Post-Generation Changes
	1.2.5.3. Move Post-Generation Changes to Custom Templates
	1.2.5.4. Customizing Page Look and Feel
	1.2.5.5. Customizing Task Flows
	1.2.5.6. Customizing Page Definitions
	1.2.5.7. Add New Items and Customize Generated Items at Runtime

	2 Set Up Project for Team-Based Development
	2.1. Setting Up Version Control System
	2.1.1. Version Control Models
	2.1.2. Requirements for a Good Version Control System
	2.1.3. Which Files to Version?

	2.2. Setting up Structure of JDeveloper Workspace and Projects
	2.2.1. Installing JDeveloper
	2.2.2. Identify Subsystems within your Application
	2.2.3. Creating a Workspace and Projects
	2.2.3.1. Using Multiple ViewController Projects
	2.2.3.2. Using Working Sets

	2.2.4. Creating Database Connection
	2.2.5. Initializing Model Project for Business Components
	2.2.6. Optimizing ADF BC for Team Development
	2.2.7. Switching off Default Creation of ADF BC Java classes
	2.2.8. Enabling ViewController Project for JHeadstart

	2.3. Organizing JHeadstart Service Definition Files
	2.3.1. Naming Conventions for File Location Properties

	2.4. Packaging JHeadstart-Generated ViewController Project as ADF Library
	2.4.1. Remove JhsCommon-beans.xml from the ADF Library jar file
	2.4.2. Add reference to resource bundle of ADF Library project
	2.4.3. Import JHeadstart service definitions in main ViewController project

	2.5. Defining Java Package Structure and Other Naming Conventions
	2.5.1. Java Packages
	2.5.2. Naming ADF Business Components

	3 Creating ADF Business Components
	3.1. Setting Up ADF BC Base Classes
	3.1.1. Using CDM RuleFrame

	3.2. Creating the Entity Object Layer
	3.2.1. Review Database Design
	3.2.2. Creating First-Cut Entity Objects and Associations
	3.2.3. Renaming Entity Objects and Associations
	3.2.4. Generating Primary Key Values
	3.2.4.1. Surrogate primary key populated in the Business Components Model layer
	3.2.4.2. Surrogate Primary Key populated in the database

	3.2.5. Setting Entity Object Attribute Properties used by JHeadstart
	3.2.5.1. Specifying Entity Object Control Hints

	3.2.6. Implementing Business Rules

	3.3. Creating View Objects and Application Modules
	3.3.1. Creating View Objects and View Links
	3.3.2. Renaming View Objects and View Links
	3.3.3. Inspecting and Setting Key Attributes of a View Object
	3.3.3.1. Set Manage Rows By Key for Read-Only View Objects

	3.3.4. Setting View Object Control Hints
	3.3.5. Determining the Order of Displayed Rows
	3.3.6. Creating Calculated or Transient Attributes
	3.3.7. Setting Up Master-Detail Synchronization
	3.3.8. Defining View Links and View Object Usages for Lookups
	3.3.9. Testing the Model

	4 Using JHeadstart
	4.1. Understanding the JHeadstart Application Generator Architecture
	4.1.1. Input Output

	4.2. Using the JHeadstart Enable Project Wizard
	4.2.1. Enabling JHeadstart on a new project
	4.2.2. Enabling JHeadstart on an existing project
	4.2.3. Re-enabling JHeadstart on a project

	4.3. Using the Create New Service Definition Wizard
	4.3.1. Step 1: Choose Data Control
	4.3.2. Step 2: Choose Basic Settings
	4.3.3. Step 3: Choose List of Values Options
	4.3.3.1. Choosing a List of Values Type
	4.3.3.2. Understanding What JHeadstart Generates
	Scenario 1: JHeadstart LOV/dropdown
	Lookup View Object Usages
	LOV Groups or Dynamic Domains

	Scenario 2: ADF Model LOV without Shared Application Module
	Scenario 3: ADF Model LOV with Shared Application Module
	Creating a New Shared Application Module
	Adding Lookup View Usages

	4.3.4. Step 4: Choosing Search Style

	4.4. Using the Application Definition Editor
	4.4.1. Maintaining the Application Definition
	4.4.1.1. Starting the Application Definition editor
	4.4.1.2. Using the help in the Application Definition editor
	4.4.1.3. Editing the Properties

	4.4.2. Application
	4.4.3. Service
	4.4.4. Groups
	4.4.5. Items
	4.4.6. Lists of Values
	4.4.7. Regions
	4.4.8. Detail Groups
	4.4.9. Domains
	4.4.10. Manipulating Objects
	4.4.10.1. Moving objects
	4.4.10.2. Copying objects
	4.4.10.3. Deleting objects
	4.4.10.4. Using the clipboard to copy and paste multiple properties

	4.4.11. Novice Mode and Expert Mode
	4.4.12. Synchronize Group with Underlying View Object

	4.5. Running the JHeadstart Application Generator
	4.6. Running the Generated Application
	4.6.1. TroubleShooting
	4.6.2. Dealing with Code Segment Too Large Error

	4.7. What was Generated for What Purpose

	5 Generating Page Layouts
	5.1. Choosing a Group Usage
	5.1.1. Stand-alone Pages
	5.1.2. Region with Page Fragments (Recommended)
	5.1.2.1. Common vs. Group UIShell page

	5.1.3. Reusing Groups
	5.1.3.1. Create the reusable group
	5.1.3.2. Add reusable group inside other group
	5.1.3.3. Using a Bind Parameter to Restrict the Employees Query
	5.1.3.4. Using the Data Collection Expression Property
	5.1.3.5. Hiding Save/Cancel Buttons and the Search Area

	5.1.4. List of Values Window
	5.1.5. Showing a Group in a Popup Window

	5.2. Creating Form Pages
	5.2.1. Displaying an Item at the Right of Another Item
	5.2.2. Hiding Items on the Form Page
	5.2.3. Create and Update Mode in Form Layout
	5.2.4. Controlling the Page Title in Form Layout

	5.3. Creating Select-Form Pages
	5.4. Creating Table Pages
	5.4.1. Using Table Layout and Stretching
	5.4.2. Using a Table Overflow Area
	5.4.3. Hiding Items in a Table
	5.4.4. Allowing the User to Sort Data in a Table Page
	5.4.5. Adding Summary Information to a Table
	5.4.6. Change Table-Related ADF Business Components Settings

	5.5. Creating Table-Form Pages
	5.6. Creating Master-Detail Pages
	5.6.1. Master-Detail on Separate Page
	5.6.2. Master-Details on Same Page
	5.6.2.1. Stretching the Detail Table
	5.6.2.2. Stacking Groups on Same Page
	5.6.2.3. Grand Master-Master-Detail pages
	5.6.2.4. Nested Tables
	5.6.2.5. More Advanced Layouts for Master-Detail Pages

	5.7. Creating Tree Layouts
	5.7.1. Choosing a Tree Layout Style
	5.7.2. Generating a Basic Tree
	5.7.2.1. Generating a Basic Reusable Tree
	5.7.2.2. Generating a Basic Non-Reusable Tree

	5.7.3. Variation: Basic Tree with non-clickable nodes
	5.7.4. Variation: Recursive Tree
	5.7.5. Variation: Recursive Tree with Limited Set of Root Nodes
	5.7.5.1. Generating a reusable recursive tree
	5.7.5.2. Generating a non-reusable recursive tree

	5.7.6. Variation: Tree showing only Children of selected Parent

	5.8. Creating Shuttle Layouts
	5.8.1. Creating Parent Shuttles
	5.8.2. Creating Intersection Shuttles
	5.8.3. Understanding How JHeadstart Runtime Implements Shuttles
	Shuttle Support in ADF BC Application Module

	5.9. Creating Wizard Layouts
	5.9.1. Launching a Wizard using New Button

	5.10. Controlling Page Layout Using Region Containers, Item and Group Regions
	5.10.1. Using Item Regions
	5.10.1.1. Vertical and Horizontal Positioned Item Regions
	5.10.1.2. Grouped Item Regions
	5.10.1.3. Stacked Item Regions

	5.10.2. Using Group Regions
	5.10.3. Mixing Item Regions and Group Regions
	5.10.4. Generating Content in a Popup Window
	5.10.4.1. No Depends on Item property specified
	5.10.4.2. Depends on Item property Refers to Button Item
	5.10.4.3. Depends on Item property Refers to Non-Button Item
	5.10.4.4. Showing Lookup Information from Another Group in Popup Window

	6 Generating User Interface Widgets
	6.1. Specifying the Prompt
	6.2. Default Display Value
	6.2.1. Using EL expressions

	6.3. Display Type
	6.4. Generating a Text Item
	6.4.1. Define Item Display Width and Height
	6.4.2. Setting Maximum Length

	6.5. Generating a Dropdown List
	6.5.1. Static Dropdown List based on a Static Domain
	6.5.2. Translation of Static Domains
	6.5.3. Dynamic Dropdown List based on a Dynamic Domain

	6.6. Generating a Radio Group
	6.6.1. Static Radio Group based on a Domain
	6.6.2. Translation of Static Domains
	6.6.3. Dynamic Radio Group based on a Dynamic Domain

	6.7. Generating a List of Values (LOV)
	6.7.1. ADF Model LOV vs. Custom JHeadstart LOV
	6.7.1.1. ADF Model based LOV
	6.7.1.2. Custom JHeadstart LOV
	6.7.1.3. Searching and LOVs
	6.7.1.4. How to choose?

	6.7.2. Creating an ADF Model LOV
	6.7.3. Creating a custom JHeadstart LOV
	6.7.4. Creating a (reusable) LOV group
	6.7.5. Linking a Reusable LOV group to an item
	6.7.6. Defining an LOV on a display item
	6.7.6.1. What to do when ADF BC Tester does not update the lookup item

	6.7.7. Use LOV for Validation
	6.7.8. Selecting multiple values in a List of Values
	6.7.9. Passing Parameters to an LOV
	6.7.10. Understanding How JHeadstart Runtime Implements List Of Values
	6.7.10.1. Main ideas behind architecture
	6.7.10.2. How it all fits together

	6.8. Generating a Date (time) Field
	6.8.1. Specifying Display Format for Date and Datetime Field

	6.9. Generating a Checkbox
	6.9.1. Generating a checkbox based on a Boolean attribute

	6.10. Generating a Button Item
	6.10.1. Positioning of Buttons
	6.10.2. Appearance of Buttons
	6.10.3. Executing a Button Action
	6.10.3.1. Using the Method Call Property
	6.10.3.2. Using the Action Property
	6.10.3.3. Using the Action Listener Property

	6.10.4. Calling a PL/SQL Procedure or Function From a Button
	6.10.4.1. Simple PL/SQL Function Call Example
	6.10.4.2. Simple PL/SQL Procedure Call Example
	6.10.4.3. Calling a function/procedure inside a package
	6.10.4.4. Recommended Use

	6.11. File Upload, File Download, Showing Image Files, and Playing Audio Files
	6.11.1. Combining File Display Options
	6.11.2. Showing Properties of Uploaded Files

	6.12. Generating a Graph
	6.13. Conditionally Dependent Items
	6.13.1. Using the Depends On Item(s) Property
	6.13.1.1. If an item depends on a single other item
	6.13.1.2. If an item depends on multiple other items

	6.13.2. Cascading Lists
	6.13.3. Row Specific Dropdown Lists in Table

	6.14. Navigating Context-Sensitive to a Group Task Flow (Deep Linking)
	6.14.1. Opening the Linked Group in Popup Window
	6.14.2. Using Taskflow Parameters to Customize Appearance of Linked Group
	6.14.3. Opening the Linked Group in a New Dynamic Tab
	6.14.4. Deep Linking from an External Source

	6.15. Generating Embedded Oracle Forms
	6.15.1. Deep Linking to an Oracle Form

	7 Generating Query Behaviors
	7.1. Creating a Search Region
	7.1.1. Choosing a Technology: ADF Model or Custom JHeadstart
	7.1.2. Creating a Model Based Search
	7.1.3. Creating a Custom JHeadstart Search
	7.1.4. Using JHeadstart Quick Search
	7.1.5. Using JHeadstart Advanced Search
	7.1.6. Using a JHeadstart Query Operator
	7.1.7. Using Query Bind Variables in JHeadstart Quick or Advanced Search
	7.1.8. Runtime Implementation of JHeadstart Quick Search and Advanced Search
	Search Bean
	7.1.8.2. Search Support in ADF BC Application Module
	7.1.8.3. Combining Quick Search and Advanced Search

	7.2. Configuring the Query
	7.2.1. Specifying Auto Query
	7.2.2. Using Query Bind Parameters
	7.2.3. JHeadstart Runtime Implementation of Query Bind Parameters

	7.3. Forcing a Requery
	7.3.1. Implementation of Requery

	8 Generating Transactional Behaviors
	8.1. Enabling Insert Operation
	8.1.1. Allowing Inserting Data in a Form Page
	8.1.2. Building Insert Only Form Pages
	8.1.3. Entering in Insert Mode When No Rows Found
	8.1.4. Allowing the User to Insert Data in a Table Page

	8.2. Enabling Update Operation
	8.3. Enabling Delete Operation
	8.4. Conditionally Enabling Insert, Update an Delete
	8.5. Runtime Implementation of Transactional Behaviors
	8.5.1. Multi-Row Insert
	8.5.2. Single-Row Insert
	8.5.3. Single-Row and Multi-Row Delete
	8.5.4. Commit Handling
	8.5.4.1. Add Commit Behavior to a Custom Button

	8.5.5. Rollback Handling

	9 Creating Menu Structures
	9.1. Static Menu Structure
	9.1.1. Preventing Generation of a Menu Tab
	9.1.2. Customizing the Static Menu Structure
	9.1.3. Using a Static Menu Tree Layout
	9.1.4. Customizing the Static Menu Layout

	9.2. Dynamic Menu Structure
	9.2.1. Creating the Database Tables
	9.2.2. Enabling Dynamic Menus
	9.2.2.1. Running the JHeadstart Application Generator

	9.2.3. Defining the Menu Structure At Runtime
	9.2.4. Using a Dynamic Menu Tree Layout
	9.2.5. Linking a User Interface Skin to a Module

	9.3. Using Dynamic Tabs when Opening a Menu Item
	9.3.1. Enabling Dynamic Tabs
	9.3.2. Marking the Current Tab Dirty
	9.3.3. Displaying Initial Tabs at Startup
	9.3.4. Launching a New Tab from the Current Tab Task Flow
	9.3.5. Closing a Dynamic Tab

	10 Application Security
	10.1. Understanding and Choosing Security Options with ADF and JHeadstart
	10.1.1. Authentication and Authorization Type
	10.1.2. Secure All Pages
	10.1.3. Authorize Using Group Permissions
	10.1.3.1. JHeadstart Group Permissions and ADF Resource Permissions

	10.2. JHeadstart Security Tables and Security Administration Screens
	10.2.1. Creating the Database Tables
	10.2.2. Generating Security Administration Pages

	10.3. Using ADF/JAAS for Authentication
	10.3.1. Changes in web.xml
	10.3.2. Login Page and Login Bean
	10.3.3. Logout Button
	10.3.4. Default Users and Roles in jazn-data.xml

	10.4. Using Custom Authentication
	10.4.1. JHeadstart Authentication Filter
	10.4.2. Nested JhsModelService Application Module
	10.4.3. Login Page and Login Bean
	10.4.4. Logout Button

	10.5. Restricting Access to Groups based on Authorization Information
	10.5.1. Restricting Group Access using Permissions
	10.5.2. Nested JhsModelService Application Module
	10.5.3. JHeadstart Authorization Proxy
	10.5.3.1. Accessing the Authorization Proxy in the View layer
	10.5.3.2. Accessing the Authentication Proxy in the Controller layer

	10.6. Restricting Group And Item Operations based on Authorization Information
	10.6.1. Restricting Group Operations using Permissions
	10.6.2. Restricting Item Operations

	10.7. Using Your Own Security Tables
	10.7.1. Changes when Using Custom Authentication
	10.7.2. Changes when Using Custom Authorization and/or Permissions
	10.7.3. Changes to SQL Script Templates

	11 Internationalization and User Assistance
	11.1. National Language Support in JHeadstart
	11.1.1. Which Locale is Used at Runtime
	11.1.2. Supported Locales
	11.1.3. Adding a non-supported Locale

	11.2. Using a Database Table to Store Translatable Strings
	11.2.1. Creating the Database Tables
	11.2.2. Running the JHeadstart Application Generator
	11.2.3. Running the Application

	11.3. Runtime Implementation of National Language Support
	11.4. Error Reporting
	11.5. Outstanding Changes Warning
	11.6. Using Online Help
	11.6.1. Using the Resource Bundle Online Help Provider
	11.6.2. Using the Help Text and Instruction Text Property
	11.6.3. Using Other Online Help Providers

	11.7. Using Function Keys
	11.7.1. What Gets Generated When Enabling Function Keys
	11.7.2. What Happens When You Press a Function Key
	11.7.3. Customizing the Function Key Implementation
	11.7.4. Adding a New Function Key
	11.7.5. Understanding the Difference Between Function Keys and Access Keys

	12 Customizing Generator Output
	12.1. Recommended Approach for Customizing JHeadstart Generator Output
	12.2. Understanding Generator Architecture and Generator Templates
	12.2.1. Velocity and the Velocity Template Language
	12.2.2. Understanding the JHeadstart Metadata Model
	12.2.3. Referencing JHeadstart Metadata Model in Velocity Templates
	12.2.4. Understanding Application Generators
	12.2.5. Configuration of Generator Classes
	12.2.6. Structure of Generator Templates

	12.3. Creating Custom Templates
	12.3.1. Creating a Custom Template File
	12.3.2. Finding Out Which Generator Templates Are Used
	12.3.3. Grouping Custom Templates
	12.3.4. Writing Reusable Custom Templates
	12.3.4.1. Using Custom Properties

	12.3.5. Customizing JHeadstart Macro's
	12.3.6. Coding and Debugging Tips

	12.4. Customizing Pages
	12.4.1. Customizing Page Templates
	12.4.1.1. Customizing Generation of the Sample Page Templates
	12.4.1.2. Create Your Own Page Template
	12.4.1.3. Customizing the Region Template

	12.4.2. ADF Faces Skinning
	12.4.3. Changing the Page Template at Runtime
	12.4.4. Adding or Overriding Properties of a Generated Item
	12.4.5. Adding Custom Item Display Type

	12.5. Customizing Task Flows
	12.5.1. Understanding Generated Task Flow Structure
	12.5.1.1. Standard task flow parameters
	12.5.1.2. Generated Task Flow Structure

	12.5.2. Customizing the Task Flow Template
	12.5.3. Customizing the Task Flow Template Reference
	12.5.4. Adding Custom Task Flow Parameters
	12.5.5. Adding Custom Managed Beans
	12.5.6. Customizing the Main Router Activity
	12.5.7. Adding Custom Task Flow Activities
	12.5.8. Adding Custom Control Flow Rules and Cases
	12.5.9. Preventing Task Flow Generation

	12.6. Customizing Output of the File Generator
	12.6.1. How to customize the content of a file generated by the file generator
	12.6.2. How to stop a file from being generated by the file generator
	12.6.3. How to generate additional custom files

	12.7. Customizing Page Definitions
	12.7.1. Controlling Generation of Value Bindings
	12.7.2. Preserving Bindings Added using a Drag-and-drop Action

	13 Runtime Page Customizations
	13.1. Creating the Database Tables
	13.2. Enabling Runtime Usage of Flex Items
	13.2.1. Creating a Flexible Region
	13.2.2. Running the JHeadstart Application Generator

	13.3. Defining Flex Items At Runtime
	13.4. Creating an Item with Display Type Flex Region
	13.5. Internationalization and Flex Items

	14 Forms2ADF Generator
	14.1. Introduction into JHeadstart Forms2ADF Generator (JFG)
	14.1.1. Added Value of JHeadstart Forms2ADF Generator

	14.2. Roadmap
	14.3. Running the JHeadstart Forms2ADF Generator (JFG)
	14.3.1. Select Forms Modules
	14.3.2. Select Form Elements to be Excluded from Processing
	14.3.3. Select Database Connection
	14.3.4. ADF Business Components Settings
	14.3.5. JHeadstart Settings
	14.3.6. Processing the Selected Forms
	14.3.7. Troubleshooting
	14.3.8. Processing the Same Form Multiple Times

	14.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator
	14.4.1. Generated ADF Business Components
	14.4.1.1. Entity Objects
	14.4.1.2. Entity Association
	14.4.1.3. View Objects
	14.4.1.4. View Object Attributes
	14.4.1.5. View Accessor and List of Values
	14.4.1.6. View Links
	14.4.1.7. Application Module

	14.4.2. Generated JHeadstart Service Definition File
	14.4.2.1. Groups
	14.4.2.2. Items
	14.4.2.3. Item List of Values
	14.4.2.4. Region Containers, Item Regions and Group Regions
	14.4.2.5. Domains

	14.5. Common Steps After Running the Forms2ADF Generator
	14.5.1. Checking and Fixing the Model project
	14.5.2. Checking and Enhancing the JHeadstart Service Definition
	14.5.3. Handling Forms PL/SQL Logic

	15 OraFormsFaces Generator
	15.1. Introduction into OraFormsFaces™
	15.1.1. Added Value of the JHeadstart OraFormsFaces Generator

	15.2. Running the JHeadstart OraFormsFaces Generator (OFFG)
	15.2.1. Select Forms Modules
	15.2.2. Generator Settings
	15.2.3. Processing the Selected Forms
	15.2.4. Troubleshooting

	15.3. Understanding the Outputs of the JHeadstart OraFormsFaces Generator
	15.3.1. Create Application Module If Needed

