
Oracle Berkeley DB Java Edition

Getting Started with
Berkeley DB Java Edition

Release 3.3

.



Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicense.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these
marks are reserved. No third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=273

Published 6/4/2008

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=273


Table of Contents
Preface ..................................................................................................... vi

Conventions Used in this Book ................................................................... vi
For More Information ....................................................................... vi

1. Introduction to Berkeley DB Java Edition ......................................................... 1
Features .............................................................................................. 1

DPL Features .................................................................................. 3
Base API Features ............................................................................ 4
Which API Should You Use? ................................................................. 4

The JE Application .................................................................................. 5
Database Environments ..................................................................... 5
Key-Data Pairs ................................................................................ 5
Storing Data ................................................................................... 6

Storing Data in the DPL ............................................................... 6
Storing Data using the Base API ..................................................... 6

Duplicate Data ................................................................................ 7
Replacing and Deleting Entries ............................................................. 7
Secondary Keys ............................................................................... 8

Using Secondaries with the DPL ..................................................... 8
Using Secondaries with the Base API. .............................................. 8

Transactions .................................................................................. 9
JE Resources .................................................................................. 9
Application Considerations ............................................................... 10

JE Backup and Restore ........................................................................... 10
JCA Support ........................................................................................ 11
JMX Support ........................................................................................ 11
Getting and Using JE ............................................................................. 12
JE Exceptions ...................................................................................... 12
Six Things Everyone Should Know about JE Log Files ........................................ 13

2. Database Environments .............................................................................. 14
Opening Database Environments ................................................................ 14

................................................................................................. 15
Configuring a Shared Cache for Multiple Environments ............................... 16

Closing Database Environments ................................................................. 17
Environment Properties .......................................................................... 18

The EnvironmentConfig Class ............................................................. 18
EnvironmentMutableConfig ................................................................ 19

Environment Statistics ............................................................................ 20
Database Environment Management Example ................................................ 21

I. Programming with the Direct Persistence Layer ................................................. 24
3. Direct Persistence Layer First Steps ........................................................ 25

Entity Stores ................................................................................. 25
Opening and Closing Environments and Stores .................................. 26

Persistent Objects .......................................................................... 27
Saving a Retrieving Data ................................................................... 28

4. Working with Indices .......................................................................... 30
Accessing Indexes ........................................................................... 30

Page iiGetting Started with JE6/4/2008



Accessing Primary Indices ........................................................... 30
Accessing Secondary Indices ........................................................ 30

Creating Indexes ............................................................................ 31
Declaring a Primary Indexes ........................................................ 31
Declaring Secondary Indexes ....................................................... 32
Foreign Key Constraints ............................................................. 33

5. Saving and Retrieving Objects ............................................................... 35
A Simple Entity Class ....................................................................... 35
SimpleDA.class .............................................................................. 36
Placing Objects in an Entity Store ....................................................... 37
Retrieving Objects from an Entity Store ................................................ 40
Retrieving Multiple Objects ............................................................... 42

Cursor Initialization .................................................................. 42
Working with Duplicate Keys ....................................................... 43
Key Ranges ............................................................................ 44

Join Cursors .................................................................................. 45
Deleting Entity Objects .................................................................... 47
Replacing Entity Objects .................................................................. 47

6. A DPL Example .................................................................................. 49
Vendor.java .................................................................................. 49
Inventory.java ............................................................................... 51
MyDbEnv ...................................................................................... 53
DataAccessor.java .......................................................................... 55
ExampleDatabasePut.java ................................................................. 56
ExampleInventoryRead.java .............................................................. 60

II. Programming with the Base API .................................................................... 65
7. Databases ....................................................................................... 66

Opening Databases ......................................................................... 66
Deferred Write Databases .......................................................... 67
Temporary Databases ................................................................ 70
Closing Databases .................................................................... 71

Database Properties ........................................................................ 72
Administrative Methods .................................................................... 73
Database Example .......................................................................... 75

8. Database Records .............................................................................. 78
Using Database Records .................................................................... 78
Reading and Writing Database Records ................................................. 80

Writing Records to the Database .................................................. 80
Getting Records from the Database ............................................... 81
Deleting Records ..................................................................... 83
Data Persistence ..................................................................... 83

Using the BIND APIs ......................................................................... 84
Numerical and String Objects ...................................................... 84
Serializable Complex Objects ...................................................... 86

Usage Caveats .................................................................. 87
Serializing Objects ............................................................. 87
Deserializing Objects .......................................................... 90

Custom Tuple Bindings .............................................................. 91
Using Comparators .......................................................................... 94

Page iiiGetting Started with JE6/4/2008



Writing Comparators ................................................................. 95
Setting Comparators ................................................................. 95

Database Record Example ................................................................. 97
9. Using Cursors .................................................................................. 108

Opening and Closing Cursors ............................................................. 108
Getting Records Using the Cursor ....................................................... 109

Searching for Records .............................................................. 111
Working with Duplicate Records .................................................. 114

Putting Records Using Cursors ........................................................... 116
Deleting Records Using Cursors ......................................................... 118
Replacing Records Using Cursors ........................................................ 119
Cursor Example ............................................................................ 120

10. Secondary Databases ....................................................................... 125
Opening and Closing Secondary Databases ............................................ 126
Implementing Key Creators ............................................................. 128
Secondary Database Properties ......................................................... 131
Reading Secondary Databases ........................................................... 131
Deleting Secondary Database Records ................................................. 132
Using Secondary Cursors ................................................................. 133
Database Joins ............................................................................. 134

Using Join Cursors .................................................................. 135
JoinCursor Properties .............................................................. 137

Secondary Database Example ........................................................... 138
Opening Secondary Databases with MyDbEnv .................................. 139
Using Secondary Databases with ExampleInventoryRead ..................... 142

III. Administering JE Applications .................................................................... 146
11. Backing up and Restoring Berkeley DB Java Edition Applications ................... 147

Databases and Log Files .................................................................. 147
Log File Overview ................................................................... 147
Cleaning the Log Files .............................................................. 148
The BTree ............................................................................ 148
Database Modifications and Syncs ................................................ 148
Normal Recovery .................................................................... 149

Performing Backups ....................................................................... 149
Performing a Hot Backup .......................................................... 149
Performing an Offline Backup .................................................... 149
Using the DbBackup Helper Class ................................................ 150

Performing Catastrophic Recovery ..................................................... 151
Hot Standby ................................................................................ 152

12. Administering Berkeley DB Java Edition Applications ................................. 154
The JE Properties File .................................................................... 154
Managing the Background Threads ..................................................... 154

The Cleaner Thread ................................................................ 155
The Checkpointer Thread ......................................................... 155

Sizing the Cache ........................................................................... 155
The Command Line Tools ................................................................ 156

DbDump .............................................................................. 157
DbLoad ............................................................................... 158
DbVerify .............................................................................. 160

Page ivGetting Started with JE6/4/2008



A. Concurrent Processing in Berkeley DB Java Edition ........................................... 162
Multithreaded Applications ..................................................................... 162
Multiprocess Applications ....................................................................... 163

Page vGetting Started with JE6/4/2008



Preface
Welcome to Berkeley DB Java Edition (JE). This document introduces JE, version 3.3. It is
intended to provide a rapid introduction to the JE API set and related concepts. The goal of
this document is to provide you with an efficient mechanism with which you can evaluate JE
against your project's technical requirements. As such, this document is intended for Java
developers and senior software architects who are looking for an in-process data management
solution. No prior experience with Berkeley DB Java Edition is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

import com.sleepycat.je.Environment;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

Finally, notes of interest are represented using a note block such as this.☞
For More Information

Beyond this manual, you may also find the following sources of information useful when building
a JE application:

Page viGetting Started with JE6/4/2008



• Berkeley DB Java Edition Getting Started with Transaction Processing [http://
www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/
BerkeleyDB-JE-Txn.pdf]

• Berkeley DB Java Edition Javadoc [http://www.oracle.com/technology/documentation/
berkeley-db/je/java/index.html]

• Berkeley DB Java Edition Collections Tutorial [http://www.oracle.com/technology/
documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf]

Page viiGetting Started with JE6/4/2008

http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf


Chapter 1. Introduction to Berkeley DB Java Edition
Welcome to Berkeley DB Java Edition (JE). JE is a general-purpose, transaction-protected,
embedded database written in 100% Java (JE makes no JNI calls). As such, it offers the Java
developer safe and efficient in-process storage and management of arbitrary data.

You use JE through a series of Java APIs which give you the ability to read and write your data,
manage your database(s), and perform other more advanced activities such as managing
transactions. The Java APIs that you use to interact with JE come in two basic flavors. The
first is a high-level API that allows you to make Java classes persistent. The second is a
lower-level API which provides additional flexibility when interacting with JE databases.

For long-time users of JE, the lower-level API is the traditional API that you are probably
accustomed to using.☞

Regardless of the API set that you choose to use, there are a series of concepts and APIs that
are common across the product. This manual starts by providing a high-level examination of
JE. It then describes the APIs you use regardless of the API set that you choose to use. It then
provides information on using the Direct Persistence Layer (DPL) API, followed by information
on using the more extensive "base" API. Finally, we provide some database administration
information.

Note that the information provided here is intended to focus on only introductory API usage.
Other books describe more advanced topics, such as transactional usage. See the For More
Information (page vi) section for a listing of other titles in the JE documentation set.

Features

JE provides an enterprise-class Java-based data management solution. All you need to get
started is to add a single jar file to your application's classpath. See Getting and Using JE
(page 12) for more information.

JE offers the following major features:

• Large database support. JE databases efficiently scale from one to millions of records. The
size of your JE databases are likely to be limited more by hardware resources than by any
limits imposed upon you by JE.

Databases are described in Databases (page 66).

• Database environments. Database environments provide a unit of encapsulation and
management for one or more databases. Environments are also the unit of management for
internal resources such as the in-memory cache and the background threads. Finally, you
use environments to manage concurrency and transactions. Note that all applications using
JE are required to use database environments.

Database environments are described in Database Environments (page 14).

• Multiple thread and process support. JE is designed for multiple threads of control. Both
read and write operations can be performed by multiple threads. JE uses record-level locking

Page 1Getting Started with JE6/4/2008



for high concurrency in threaded applications. Further, JE uses timeouts for deadlock
detection to help you ensure that two threads of control do not deadlock indefinitely.

Moreover, JE allows multiple processes to access the same databases. However, in this
configuration JE requires that there be no more than one process allowed to write to the
database. Read-only processes are guaranteed a consistent, although potentially out of date,
view of the stored data as of the time that the environment is opened.

• Transactions. Transactions allow you to treat one or more operations on one or more databases
as a single unit of work. JE transactions offer the application developer recoverability,
atomicity, and isolation for your database operations.

Note that transaction protection is optional. Transactions are described in the Berkeley DB
Java Edition Getting Started with Transaction Processing guide.

• In-memory cache. The cache allows for high speed database access for both read and write
operations by avoiding unnecessary disk I/O. The cache will grow on demand up to a
pre-configured maximum size. To improve your application's performance immediately after
startup time, you can preload your cache in order to avoid disk I/O for production requests
of your data.

Cache management is described in Sizing the Cache (page 155).

• Indexes. JE allows you to easily create and maintain secondary indices for your primary data.
In this way, you can obtain rapid access to your data through the use of an alternative, or
secondary, key.

How indices work is dependent upon the API you are using. If you are using the DPL, see
Working with Indices (page 30). Otherwise, see Secondary Databases (page 125).

• Log files. JE databases are stored in one or more numerically-named log files in the
environment directory. The log files are write-once and are portable across platforms with
different endian-ness.

Unlike other database implementations, there is no distinction between database files (that
is, the "material database") and log files. Instead JE employs a log-based storage system to
protect database modifications. Before any change is made to a database, JE writes
information about the change to the log file.

Note that JE's log files are not binary compatible with Berkeley DB's database files. However,
both products provide dump and load utilities, and the files that these operate on are
compatible across product lines.

JE's log files are described in more detail in Backing up and Restoring Berkeley DB Java Edition
Applications (page 147). For information on using JE's dump and load utilities, see The Command
Line Tools (page 156). Finally, for a short list of things to know about log files while you are
learning JE, see Six Things Everyone Should Know about JE Log Files (page 13).

• Background threads. JE provides several threads that manage internal resources for you.
The checkpointer is responsible for flushing database data to disk that was written to cache
as the result of a transaction commit (this is done in order to shorten recovery time). The

Page 2Getting Started with JE6/4/2008



compressor thread removes subtrees from the database that are empty because of deletion
activity. Finally, the cleaner thread is responsible for cleaning and removing unneeded log
files, thereby helping you to save on disk space.

Background thread management is described in Managing the Background Threads (page 154).

• Backup and restore. JE's backup procedure consists of simply copying JE's log files to a safe
location for storage. To recover from a catastrophic failure, you copy your archived log files
back to your production location on disk and reopen the JE environment.

Note that JE always performs normal recovery when it opens a database environment. Normal
recovery brings the database to a consistent state based on change information found in the
database log files.

JE's backup and recovery mechanisms are described in Backing up and Restoring Berkeley
DB Java Edition Applications (page 147).

DPL Features

The DPL is one of two APIs that JE provides for interaction with JE databases. The DPL provides
the ability to cause any Java type to be persistent without implementing special interfaces.
The only real requirement is that each persistent class have a default constructor.

The DPL provides all of the features previously identified in this chapter. In addition, the DPL
offers you:

• A type safe, convenient way to access persistent objects.

• No hand-coding of bindings is required. A binding is a way of transforming data types into a
format which can be stored in a JE database. If you do not use the DPL, you may be required
to create custom bindings for your data types.

See Using the BIND APIs (page 84)for more information on creating data bindings.

Note that Java byte code enhancement is used by the DPL API to provide fully optimized
bindings that do not use Java reflection.

• No external schema is required to define primary and secondary index keys. Java annotations
are used to define all metadata.

• Interoperability with external components is supported using the Java collections framework.
Any index can be accessed using a standard java.util collection.

• Class evolution is explicitly supported. This means you can add fields or widen types
automatically and transparently.

You can also perform many incompatible class changes, such as renaming fields or refactoring
a single class. This is done using a built-in DPL mechanism called mutations. Mutations are
automatically applied as data is accessed so as to avoid downtime to convert large databases
during a software upgrade.

Page 3Getting Started with JE6/4/2008



• Persistent class fields can be private, package-private, protected or public. The DPL can
access persistence fields either by bytecode enhancement or by reflection.

• The performance of the underlying JE engine is safe-guarded. All DPL operations are mapped
directly to the underlying APIs, object bindings are lightweight, and all engine tuning
parameters are available.

• Java 1.5 generic types and annotations are supported.

Base API Features

If you are not using the DPL, then the following concepts and features are likely to be of interest
to you:

• Database records. All database records are organized as simple key/data pairs. Both keys
and data can be anything from primitive Java types to the most complex of Java objects.

Database records are described in Database Records (page 78).

• Direct database read and write. You can use methods of a Database object to read and write
database records. Reading and writing using Database objects are described in Database
Records (page 78).

• Cursors. Cursors give you the ability to sequentially move through a database. Using cursors,
you can seek to a specific point in the database (using search criteria applied to the key
and/or the data portion of a database record) and then either step forward or step backwards
through the database.

Cursors are described in detail in Using Cursors (page 108).

• JCA. JE provides support for the Java Connector Architecture. See JCA Support (page 11)
for more information.

• JMX. JE provides support for Java Management Extensions. See JMX Support (page 11) for
more information.

Which API Should You Use?

Of the two APIs that JE makes available to you, we recommend that you use the DPL if all you
want to do is make classes with a relatively static schema to be persistent.

Further, if you are porting an application between Berkley DB and Berkeley DB Java Edition,
then you should not use the DPL as the base API is a much closer match to the Berkley DB Java
API.

Additionally, if your application uses a highly dynamic schema, then the DPL is probably a poor
choice for your application, although the use of Java annotations can make the DPL work a
little better for you in this situation.

Page 4Getting Started with JE6/4/2008



The JE Application

This section provides a brief overview to the major concepts and operations that comprise a
JE application. This section is concluded with a summary of the decisions that you need to
make when working with JE.

Note that the core JE classes are all contained in the com.sleepycat.je package. In addition,
this book describes some classes that are found in com.sleepycat.je.bind. The bind APIs are
used for converting Java objects in and out of byte arrays.

Database Environments

Regardless of the JE API that you use, your data is stored in databases. If you use the DPL, you
do not manage these databases directly; rather, they are managed for you by the API. On the
other hand, if you use the lower-level JE APIs, then you must manage databases directly. This
is not difficult to do as it mostly involves opening and closing the databases, giving them names,
and so forth. See Databases (page 66) for more information.

That said, JE always requires you to use a database environment. Database environments
provide an unit of encapsulation for one or more databases. Environments correspond to a
directory location on disk, and in them you will find all the files in use by JE. Environments
are also used to manage JE resources such as transactions.

To use a database environment, it must first be created and then opened. In order to create
a database environment, the directory location in which it resides must already exist.

You open a database environment by instantiating an Environment object. Your Environment
instance is called an environment handle.

Once you have opened an environment, what you do with it depends on the nature of your
application; that is, the JE API you are using and whether you are using advanced features such
as transactions. (See Berkeley DB Java Edition Getting Started with Transaction Processing for
details on using transactions). However, at a minimum you will always have to open your
environment before you can access your data stored in JE. Also, before you end your application
you should always close your environment.

Environments are described in greater detail in Database Environments (page 14).

Key-Data Pairs

JE stores and retrieves data using key-data pairs. The data portion of this is the data that you
have decided to store in JE for future retrieval. The key is the information that you want to
use to look up your stored data once it has been placed inside a JE database.

For example, if you were building a database that contained employee information, then the
data portion is all of the information that you want to store about the employees: name,
address, phone numbers, physical location, their manager, and so forth.

The key, however, is the way that you look up any given employee. You can have more than
one key if you wish, but every record in your database must have a primary key. If you are

Page 5Getting Started with JE6/4/2008



using the DPL, then this key must be unique; that is, it must not be used multiple times in the
database. However, if you are using the base API, then this requirement is relaxed. See Duplicate
Data (page 7) for more information.

For example, in the case of an employee database, you would probably use something like the
employee identification number as the primary key as this uniquely identifies a given employee.

You can optionally also have secondary keys that represent indexes into your database. These
keys do not have to be unique to a given record; in fact, they often are not. For example, you
might set up the employee's manager's name as a secondary key so that it is easy to locate all
the employee's that work for a given manager.

Storing Data

How you manage your stored information differs significantly, depending on which API you are
using. Both APIs ultimately are doing the same thing, but the DPL hides a lot of the details
from you.

Storing Data in the DPL

The DPL is used to store Java objects in an underlying series of databases. These databases
are accessed using an EntityStore class object.

To use the DPL, you must decorate the classes you want to store with Java annotations that
identify them as either an entity class or a persistent class.

Entity classes are classes that have a primary key, and optionally one or more secondary keys.
That is, these are the classes that you will save and retrieve directly using the DPL. You identify
an entity class using the @Entity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity class
makes direct use of them. You identify an persistent class using the @Persistent java annotation.

The primary key for an object is obtained from one of the class' data members. You identify
which data member to use as the primary key using the @PrimaryKey java annotation.

Note that all non-transient instance fields of a persistent class, as well as its superclasses and
subclasses, are persistent. Static and transient fields are not persistent. The persistent fields
of a class may be private, package-private (default access), protected or public.

Also, simple Java types, such as java.lang.String and java.util.Date, are automatically
handled as a persistent class when you use them in an entity class; you do not have to do
anything special to cause these simple Java objects to be stored in the EntityStore.

Storing Data using the Base API

When you are not using the DPL, both record keys and record data must be byte arrays and
are passed to and returned from JE using DatabaseEntry instances. DatabaseEntry only supports
storage of Java byte arrays. Complex objects must be marshaled using either Java serialization,
or more efficiently with the bind APIs provided with JE

Page 6Getting Started with JE6/4/2008



Database records and byte array conversion are described in Database Records (page 78).

You store records in a Database by calling one of the put methods on a Database handle. JE
automatically determines the record's proper placement in the database's internal B-Tree using
whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Database handle. Gets are performed by providing
the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism by
which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cursor class.

Databases are described in Databases (page 66). Cursors are described in Using Cursors (page 108).

Duplicate Data

If you are using the base API, then at creation time databases can be configured to allow
duplicate data. Remember that JE database records consist of a key/data pair. Duplicate data,
then, occurs when two or more records have identical keys, but different data. By default, a
Database does not allow duplicate data.

If your Database contains duplicate data, then a simple database get based only on a key
returns just the first record that uses that key. To access all duplicate records for that key,
you must use a cursor.

If you are using the DPL, then you can duplicate date using secondary keys, but not by using
the primary key. For more information, see Retrieving Multiple Objects (page 42).

Replacing and Deleting Entries

If you are using the DPL, then replacing a stored entity object simply consists of retrieving it,
updating it, then storing it again. To delete the object, use the delete() method that is
available on either its primary or secondary keys. If you use the delete() method available on
the secondary key, then all objects referenced by that key are also deleted. See Deleting Entity
Objects (page 47) for more information.

If you are using the base API, then how you replace database records depends on whether
duplicate data is allowed in the database.

If duplicate data is not allowed in the database, then simply calling Database.put() with the
appropriate key will cause any existing record to be updated with the new data. Similarly, you
can delete a record by providing the appropriate key to the Database.delete() method.

If duplicate data is allowed in the database, then you must position a cursor to the record that
you want to update, and then perform the put operation using the cursor.

To delete records using the base API, you can use either Database.delete() or Cursor.delete().
If duplicate data is not allowed in your database, then these two method behave identically.
However, if duplicates are allowed in the database, then Database.delete() deletes every

Page 7Getting Started with JE6/4/2008



record that uses the provided key, while Cursor.delete() deletes just the record at which the
cursor is currently positioned.

Secondary Keys

Secondary keys provide an alternative way to locate information stored in JE, beyond that
which is provided by the primary key. Frequently secondary keys refer to more than one record
in the database. In this way, you can find all the cars that are green (if you are maintaining
an automotive database) or all the people with brown eyes (if you are maintaining a database
about people). In other words, secondary keys represent a index into your data.

How you create and maintain secondary keys differs significantly, depending on whether you
are using the DPL or the base API.

Using Secondaries with the DPL

Under the DPL, you declare a particular field to be a secondary key by using the @SecondaryKey
annotation. When you do this, you must declare what kind of an index you are creating. For
example, you can declare a secondary key to be part of a ONE_TO_ONE index, in which case the
key is unique to the object. Or you could declare the key to be MANY_TO_ONE, in which case the
key can be used for multiple objects in the data store.

Once you have identified secondary keys for a class, you can access those keys by using the
EntityStore.getSecondaryIndex() method.

For more information, see Declaring Secondary Indexes (page 32).

Using Secondaries with the Base API.

When you are using the base API, you create and maintain secondary keys using a special type
of a database, called a secondary database. When you are using secondary databases, the
database that holds the data you are indexing is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the index)
from primary records. Whenever a record in the primary database is added or changed, JE uses
this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, JE automatically updates the secondary
database(s) for you as is appropriate for the operation performed on the primary.

You manage secondary databases using the SecondaryDatabase class. You identify how to create
keys for your secondary databases by supplying an instance of a class that implements the
SecondaryKeyCreator interface.

Secondary databases are described in Secondary Databases (page 125).

Page 8Getting Started with JE6/4/2008



Transactions

Transactions provide a high level of safety for your JE operations by allowing you to manage
one or more operations as if they were a single unit of work. Transactions provide your JE
operations with recoverability, atomicity, and isolation.

Transactions provide recoverability by allowing JE to undo any transactional-protected operations
that may have been in progress at the time of an application or system failure.

Transactions provide atomicity by allowing you to group many operations into a single unit of
work. Either all operations succeed or none of them do. This means that if one write operation
fails for any reason, then all other writes contained within that transaction also fail. This
ensures that the database is never partially updated as the result of an only partially successful
chain of read/write operations.

Transactions provide isolation by ensuring that the transaction will never write to a record that
is currently in use (for either read or write) by another transaction. Similarly, any record to
which the transaction has written can not be read outside of the transaction until the transaction
ends. Note that this is only the default behavior; you can configure your Database, Cursor, or
Transaction handle to relax its isolation guarantees.

Essentially, transactional isolation provides a transaction with the same unmodified view of
the database that it would have received had the operations been performed in a single-threaded
application.

Transactions may be long or short lived, they can encompass as many operations as you want,
and (if using the base API) they can span databases so long as all participating databases reside
in the same environment.

Transaction usage results in a performance penalty for the application because they generally
require more disk I/O than do non-transactional operations. Therefore, while most applications
will use transactions for JE writes, their usage is optional. In particular, processes that are
performing read-only operations might not use transactions. Also, applications that use JE for
an easily recreated cache might also choose to avoid transactions.

Using transactions with your JE applications is described in detail in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

JE Resources

JE has some internal resources that you may want to manage. Most important of these is the
in-memory cache. You should carefully consider how large the JE cache needs to be. If you set
this number too low, JE will perform potentially unnecessary disk I/O which will result in a
performance hit. If you set it too high, then you are potentially wasting RAM that could be put
to better purposes.

Note that the size that you configure for the in-memory cache is a maximum size. At application
startup, the cache starts out fairly small (only about 7% of the maximum allowed size for the
cache). It then grows as is required by your application's database operations. Also, the cache
is not pinned in memory – it can be paged out by your operating system's virtual memory system.

Page 9Getting Started with JE6/4/2008



Beyond the cache, JE uses several background threads to clean the JE log files, to compress
the database by removing unneeded subtrees, and to flush database changes seen in the cache
to the backing data files. For the majority of JE applications, the default behavior for the
background threads should be acceptable and you will not need to manage their behavior. Note
that background threads are started no more than once per process upon environment open.

For more information on sizing the cache and on the background threads, see Administering
Berkeley DB Java Edition Applications (page 154).

Application Considerations

When building your JE application, be sure to think about the following things:

• What data do you want to store? What is best used for the primary key? What is the best
representation for primary record data? If you are using the base API, think about the most
efficient way to move your keys and data in and out of byte arrays. See Database
Records (page 78) for more information.

• Does the nature of your data require duplicate record support? Remember that duplicate
support can be configured only if you are using the base API, and then only at database
creation time. See Opening Databases (page 66) for more information.

If you are supporting duplicate records, you may also need to think about duplicate
comparators (not just key comparators). See Using Comparators (page 94) for more
information.

• What secondary indexes do you need? How can you compute your secondary indexes based
on the data and keys stored in your primary database? Indexes are described in Secondary
Databases (page 125).

• What cache size do you need? See Sizing the Cache (page 155) for information on how to size
your cache.

• Does your application require transactions (most will). Transactions are described in the
Berkeley DB Java Edition Getting Started with Transaction Processing guide.

JE Backup and Restore

To backup your database, copy the .jdb files starting from the lowest numbered log file to the
highest numbered log file to your backup media. Be sure to copy the bytes of the individual
database files in order from the lowest to the highest. You do not have to close your database
or otherwise cease database operations when you do this.

Restoring a JE database from a backup consists of closing your JE environment, copying archived
log files back into your environment directory and then opening your JE environment again.

Note that whenever a JE environment is opened, JE runs normal recovery. This involves bringing
your database into a consistent state given the changed data found in the database. If you are
using transactions during normal operations, then JE automatically runs checkpoints for you

Page 10Getting Started with JE6/4/2008



so as to limit the time required to run this recovery. In any case, running normal recovery is a
routine operation, while performing database restores is not.

For more information on JE backup and restores, and on checkpoints, see Backing up and
Restoring Berkeley DB Java Edition Applications (page 147).

JCA Support

JCA is the Java Connector Architecture. This architecture provides a standard for connecting
the J2EE platform to legacy enterprise information systems (EIS), such as ERP systems, database
systems, and legacy applications not written in Java. JE supports this architecture.

Users who want to run JE within a J2EE Application Server can use the JCA Resource Adapter
to connect to JE through a standard API. Note that the base API is required if you want to do
this. The JE Resource Adapter supports all three J2EE application server transaction types:

• No transaction.

• Local transactions.

• XA transactions.

JCA also includes the Java Transaction API (JTA), which means that JE supports 2 phase commit
(XA). Therefore, JEs can participate in distributed transactions managed by either a J2EE server
or the applications direct use of the JTA API.

The JE distribution includes an example showing JCA usage in a simple EJB. The Resource
Adaptor has been tested using JBoss 3.2.6, and the Sun Java System Application Server, version
8.1. Instructions for how to build the Resource Adapter and run a simple "smoke test" example
for each of the application servers can be found here:

JE_HOME/examples/jca/HOWTO-jboss.txt

and

JE_HOME/examples/jca/HOWTO-sjsas.txt

JMX Support

JMX is the Java Management Extensions. This extension provides tools for managing and
monitoring devices, applications, and service-driven networks. JE supports this extension.

The JE distribution supplies an MBean that can be deployed for monitoring a JE environment
in any JMX server (such as an J2EE application server). Alternatively, applications can use JE
helper classes to add JE monitoring to their own JMX MBean implementations.

For information on how to deploy the standalone JE JMX MBean, or on how to use JE helper
classes to build an application-specific MBean, see:

JE_HOME/examples/jmx/README.txt

Page 11Getting Started with JE6/4/2008



Getting and Using JE

You can obtain JE by visiting the JE download page: http://www.oracle.com/technology/
software/products/berkeley-db/je/index.html.

To install JE, simple untar or unzip the distribution to the directory of your choice. If you use
unzip, make sure to specify the -U option in order to preserve case.

For more information on installing JE, see JE_HOME/docs/relnotes.html, where JE_HOME is
the directory where you unpacked JE.

You can use JE with your application by adding JE_HOME/lib/je-<version>.jar to your
application's classpath.

Beyond this manual, you can find documentation for JE at JE_HOME/docs/index.html directory.
In particular, complete Javadoc for the JE API set is available at
JE_HOME/docs/java/index.html.

JE Exceptions

Before describing the Java API usage, it is first useful to examine the exceptions thrown by
those APIs. So, briefly, this section describes the exceptions that you can expect to encounter
when writing JE applications.

All of the JE APIs throw DatabaseException. DatabaseException extends java.lang.Exception.
Also, the following classes are subclasses of DatabaseException:

• DatabaseNotFoundException

Thrown whenever an operation requires a database, and that database cannot be found.

• DeadlockException

Thrown whenever a transaction is selected to resolve a deadlock. Upon receiving this
exception, any open cursors must be closed and the enclosing transaction aborted.
Transactions are described in the Berkeley DB Java Edition Getting Started with Transaction
Processing guide.

• RunRecoveryException

Thrown whenever JE experiences a catastrophic error such that recovery needs to be run on
the database. If you receive this exception, you must reopen your environment so as to allow
normal recovery to run. See Databases and Log Files (page 147) for more information on how
normal recovery works.

Note that when reopening your environment, you should stop all database read and write
activities, close all your cursors, close all your databases, and then close and reopen your
environment.

Note that DatabaseException and its subclasses belong to the com.sleepycat.je package.

Page 12Getting Started with JE6/4/2008

http://www.oracle.com/technology/software/products/berkeley-db/je/index.html
http://www.oracle.com/technology/software/products/berkeley-db/je/index.html


Six Things Everyone Should Know about JE Log Files

JE log files are not like the log files of other database systems. Nor are they like the log files
or database files created by Berkeley DB C Edition. In this guide you will learn more about log
files as you go along, but it is good to keep the following points in mind as you begin using JE.

1. JE log files are "append only". Record insertions, deletions, and updates are always added
at the end of the current file. The first file is named 00000000.jdb. When that file grows to
a certain size (10 MB by default) a new file named 00000001.jdb becomes the current file,
and so on.

2. There are no separate database files. Unlike Berkeley DB C Edition, databases are not stored
in files that are separate from the transaction log. The transaction log and the database
records are stored together in a single sequential log consisting of multiple log files.

3. The JE cleaner is responsible for reclaiming unused disk space. When the records in a log
file are superseded by deletions or updates recorded in a later log file, the older log file is
no longer fully utilized. The cleaner, which operates by default as a separate thread,
determines the least utilized log files, copies any still utilized records in those files to the
end of the current log file, and finally deletes the now completely un-utilized log file.

See The Cleaner Thread (page 155) for more information on the cleaner.

4. Cleaning does not start immediately and never produces 100% utilization. Until you have
written enough data to create several log files, and some of that data is obsoleted through
deletions and updates, you will not notice any log files being deleted by the cleaner. By
default cleaning occurs in the background and maintains the log files at 50% utilization. You
can configure a higher utilization value, but configuring too high a utilization value will
reduce overall performance.

5. Cleaning is not automatically performed when closing the environment. If you wish to reduce
unused disk space to a minimum at a particular point in time, you must explicitly call a
method to perform log cleaning. See the Closing Database Environments (page 17) for more
information.

6. Log file deletion only occurs after a checkpoint. The cleaner prepares log files to be deleted,
but file deletion must be performed after a checkpoint to ensure that the files are no longer
referenced. Checkpoints occur on their own schedule, which is every 20 MB of log written,
by default. This is part of the reason that you will not see log files being deleted until after
several files have been created.

Page 13Getting Started with JE6/4/2008



Chapter 2. Database Environments
Regardless of whether you are using the DPL or the base API, you must use a database
environment. Database environments encapsulate one or more databases. This encapsulation
provides your threads with efficient access to your databases by allowing a single in-memory
cache to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see the Berkeley DB Java Edition Getting Started with Transaction Processing
guide for more information).

If you are using the base API, most commonly you use database environments to create and
open databases (you close individual databases using the individual database handles). You
can also use environments to delete and rename databases. For transactional applications, you
use the environment to start transactions. For non-transactional applications, you use the
environment to sync your in-memory cache to disk.

If you are using the DPL, all of these things are still being done, but the DPL takes care of it
for you. Under the DPL, the most common thing you will explicitly use an environment for is
to obtain transaction handles.

Regardless of the API that you use, you also use the database environment for administrative
and configuration activities related to your database log files and the in-memory cache. See
Administering Berkeley DB Java Edition Applications (page 154) for more information.

To find out how to use environments with a transaction-protected application, see the Berkeley
DB Java Edition Getting Started with Transaction Processing guide.

Opening Database Environments

You open a database environment by instantiating an Environment object. You must provide
to the constructor the name of the on-disk directory where the environment is to reside. This
directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation property
to true if you want the environment to be created. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnvironment = null;

Page 14Getting Started with JE6/4/2008



try {
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
    // Exception handling goes here
} 

Opening an environment usually causes some background threads to be started. JE uses these
threads for log file cleaning and some administrative tasks. However, these threads will only
be opened once per process, so if you open the same environment more than once from within
the same process, there is no performance impact on your application. Also, if you open the
environment as read-only, then the background threads (with the exception of the evictor
thread) are not started.

Note that opening your environment causes normal recovery to be run. This causes your
databases to be brought into a consistent state relative to the changed data found in your log
files. See Databases and Log Files (page 147) for more information.

Most JE applications only need a single database environment because any number of databases
can be created in a single environment, and the total size of the data in an environment is not
limited. That said, your application can open and use as many environments as you have disk
and memory to manage. Also, you can instantiate multiple Environment objects for the same
physical environment.

The main reason for multiple environments is that an application must manage multiple unique
data sets. By placing each data set in a separate environment, the application can gain real
advantages in manageability of the data, and with application performance. By placing each
data set in a unique environment, a separate set of log files is created and maintained in a
separate directory, and so you can manipulate the log files for each data set separately. That
is, you can:

• Backup, restore or delete a single data set separately by copying or removing the files for
its environment.

• Balance the load between machines by moving the files for a single data set from one machine
to another.

• Improve I/O performance by placing each data set on a separate physical disk.

• Delete individual data sets very efficiently by removing the environment's log files. This is
much more efficient than deleting individual database records and is also move efficient
than removing databases, and so can be a real benefit if you are managing large temporary
data sets that must be frequently deleted.

Be aware that there is a downside to using multiple environments. In particular, understand
that a single transaction cannot include changes made in more than one environment. If you
need to perform a set of operations in more than one data set atomically (with a single
transaction), use a single environment and distinguish the data sets using some other method.

Page 15Getting Started with JE6/4/2008



For example, an application running a hosted service for multiple clients may wish to keep
each client's data set separate. You can do this with multiple environments, but then you can
operate on all data sets atomically. If you need to wrap operations for multiple data sets in a
single transaction, consider some other approach to keeping the data sets separate.

You can, for example, distinguish each data set using a unique key range within a single
database. Or you can create a secondary key that identifies the data set. Or you could use
separate databases for each dataset. All of these approaches allow you to maintain multiple
distinct dataset within a single environment, but each obviously adds a level of complexity to
your code over what is required to simply use a unique environment for each data set.

Configuring a Shared Cache for Multiple Environments

By default, each distinct JE environment has a separate, private in-memory cache. If a single
JVM process will keep open multiple environments at the same time, it is strongly recommended
that all such environments are configured to use a shared cache. A shared cache makes much
more efficient use of memory than separate private caches.

For example, imagine that you open 5 environments in a single process and a total of 500 MB
of memory is available for caching. Using private caches, you could configure each cache to
be 100 MB. If one of the environments has a larger active data set than the others, it will not
be able to take advantage of unused memory in the other environment caches. By using a
shared cache, multiple open environments will make better use of memory because the cache
LRU algorithm is applied across all information in all enviornments sharing the cache.

In order to configure an environment to use a shared cache, set
EnvironmentConfig.setSharedCache() to true. This must be set for every environment in the
process that you want to use the shared cache. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myEnv1 = null;
Environment myEnv2 = null;

try {
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    envConfig.setSharedCache(true);

    myEnv1 = new Environment(new File("/export/dbEnv1"), envConfig);
    myEnv2 = new Environment(new File("/export/dbEnv2"), envConfig);

Page 16Getting Started with JE6/4/2008



} catch (DatabaseException dbe) {
    // Exception handling goes here
} 

Closing Database Environments

You close your environment by calling the Environment.close() method. This method performs
a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly before calling
it. For information on checkpoints, see the Berkeley DB Java Edition Getting Started with
Transaction Processing guide. For information on syncs, see Database Modifications and
Syncs (page 148).

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
    if (myDbEnvironment != null) {
        myDbEnvironment.close();
    } 
} catch (DatabaseException dbe) {
    // Exception handling goes here
} 

If you are using the DPL, then close your environment(s) only after all other store activities
have completed and you have closed any stores currently opened in the environment. If you
are using the base API, then close your environment(s) only after all other database activities
have completed and you have closed any databases currently opened in the environment.

It is possible for the environment to close before JE's cleaner thread has finished its work.
This happens if you perform a large number of deletes immediately before shutting down☞
your environment. The result is that your log files may be quit a lot larger than you expect
them to be because the cleaner thread has not had a chance to finish its work.

See The Cleaner Thread (page 155) for details on the cleaner threads.

If you want to make sure that the cleaner has finished running before the environment is
closed, call Environment.cleanLog() before calling Environment.close():

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
    if (myDbEnvironment != null) {
        myDbEnvironment.cleanLog(); // Clean the log before closing
        myDbEnvironment.close();
    } 
} catch (DatabaseException dbe) {

Page 17Getting Started with JE6/4/2008



    // Exception handling goes here
} 

Closing the last environment handle in your application causes all internal data structures to
be released and the background threads to be stopped. If there are any opened databases,
then JE will complain before closing them as well. At this time, and any on-going transactions
are aborted. Also at this time any open cursors are also closed.

Environment Properties

You set properties for the Environment using the EnvironmentConfig class. You can also set
properties for a specific Environment instance using EnvironmentMutableConfig.

The EnvironmentConfig Class

The EnvironmentConfig class makes a large number of fields and methods available to you.
Describing all of these tuning parameters is beyond the scope of this manual. However, there
are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding getter
method. Also, you can always retrieve the EnvironmentConfig object used by your environment
using the Environment.getConfig() method.

You set environment configuration parameters using the following methods on the
EnvironmentConfig class:

• EnvironmentConfig.setAllowCreate()

If true, the database environment is created when it is opened. If false, environment open
fails if the environment does not exist. This property has no meaning if the database
environment already exists. Default is false.

• EnvironmentConfig.setReadOnly()

If true, then all databases opened in this environment must be opened as read-only. If you
are writing a multi-process application, then all but one of your processes must set this value
to true. Default is false.

You can also set this property using the je.env.isReadOnly parameter in your
env_home/je.properties file.

• EnvironmentConfig.setTransactional()

If true, configures the database environment to support transactions. Default is false.

You can also set this property using the je.env.isTransactional parameter in your
env_home/je.properties file.

For example:

Page 18Getting Started with JE6/4/2008



package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Environment myDatabaseEnvironment = null;
try {
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    envConfig.setTransactional(true);
    myDatabaseEnvironment = 
        new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
   System.err.println(dbe.toString());
   System.exit(1);
} 

EnvironmentMutableConfig

EnvironmentMutableConfig manages properties that can be reset after the Environment object
has been constructed. In addition, EnvironmentConfig extends EnvironmentMutableConfig, so
you can set these mutable properties at Environment construction time if necessary.

The EnvironmentMutableConfig class allows you to set the following properties:

• setCachePercent()

Determines the percentage of JVM memory available to the JE cache. See Sizing the
Cache (page 155) for more information.

• setCacheSize()

Determines the total amount of memory available to the database cache. See Sizing the
Cache (page 155) for more information.

• setTxnNoSync()

Determines whether change records created due to a transaction commit are written to the
backing log files on disk. A value of true causes the data to not be flushed to disk. See the
Berkeley DB Java Edition Getting Started with Transaction Processing guide.

• setTxnWriteNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to true, you potentially gain better performance than if you

Page 19Getting Started with JE6/4/2008



flush the logs on commit, but you do so by losing some of your transaction durability
guarantees.

There is also a corresponding getter method (getTxnNoSync()). Moreover, you can always
retrieve your environment's EnvironmentMutableConfig object by using the
Environment.getMutableConfig() method.

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentMutableConfig;

import java.io.File;

...

try {
    Environment myEnv = new Environment(new File("/export/dbEnv"), null);
    EnvironmentMutableConfig envMutableConfig = 
        new EnvironmentMutableConfig();
    envMutableConfig.setTxnNoSync(true);
    myEnv.setMutableConfig(envMutableConfig); 
} catch (DatabaseException dbe) {
    // Exception handling goes here
} 

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's operations.
The majority of this information involves numbers relevant only to the JE developer and as
such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
EnvironmentStats.getNCacheMiss(). This statistic returns the total number of requests for
database objects that were not serviceable from the cache. This number is important to the
application administrator who is attempting to determine the proper size for the in-memory
cache. See Sizing the Cache (page 155) for details.

To obtain this statistic from your environment, call Environment.getStats() to return an
EnvironmentStats object. You can then call the EnvironmentStats.getNCacheMiss() method.
For example:

import com.sleepycat.je.Environment;

...

Page 20Getting Started with JE6/4/2008



long cacheMisses = myEnv.getStats(null).getNCacheMiss();

...  

Note that Environment.getStats() can only obtain statistics from your application's process.
In order for the application administrator to obtain this statistic, you must either use JMX to
retrieve the statistic (see JMX Support (page 11)) or you must print it for examination (for
example, log the value once a minute).

Remember that what is really important for cache sizing is the change in this value over time,
and not the actual value itself. So you might consider offering a delta from one examination
of this statistic to the next (a delta of 0 is desired while large deltas are an indication that the
cache is too small).

Database Environment Management Example

This example provides a complete class that can open and close an environment. It is both
extended and used in subsequent examples in this book to open and close both environments
and databases. We do this so as to make the example code shorter and easier to manage. You
can find this class in:

JE_HOME/examples/je/gettingStarted/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Example 2.1. Database Environment Management Class

First we write the normal class declarations. We also set up some private data members that
are used to manage environment creation. We use the class constructor to instantiate the
EnvironmentConfig object that is used to configure our environment when we open it.

// File MyDbEnv.java
package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

public class MyDbEnv {

    private Environment myEnv;

    public MyDbEnv() {} 

Next we need a method to open the environment. This is responsible for instantiating our
Environment object. Remember that instantiation is what opens the environment (or creates
it if the creation property is set to true and the environment does not currently exist).

Page 21Getting Started with JE6/4/2008



    public void setup(File envHome, boolean readOnly) 
            throws DatabaseException {

        // Instantiate an environment configuration object
        EnvironmentConfig myEnvConfig = new EnvironmentConfig();
        // Configure the environment for the read-only state as identified by
        // the readOnly parameter on this method call.
        myEnvConfig.setReadOnly(readOnly);
        // If the environment is opened for write, then we want to be able to
        // create the environment if it does not exist.
        myEnvConfig.setAllowCreate(!readOnly);

        // Instantiate the Environment. This opens it and also possibly
        // creates it.
        myEnv = new Environment(envHome, myEnvConfig);
    } 

Next we provide a getter method that allows us to retrieve the Environment directly. This is
needed for later examples in this guide.

    // Getter methods
    public Environment getEnv() {
        return myEnv;
    } 

Finally, we need a method to close our Environment. We wrap this operation in a try block so
that it can be used gracefully in a finally statement.

    // Close the environment
    public void close() {
        if (myEnv != null) {
            try {
                myEnv.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing environment" + 
                     dbe.toString());
            }
        }
    }
} 

This completes the MyDbEnv class. While not particularly useful as it currently exists, we will
build upon it throughout this book so that it will eventually open and close all of the entity
stores or databases required by our applications.

We can now use MyDbEnv to open and close a database environment from the appropriate place
in our application. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

Page 22Getting Started with JE6/4/2008



import com.sleepycat.je.DatabaseException;

import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {    
    exampleDbEnv.setup(new File("/directory/currently/exists"), true);
    ...

} catch(DatabaseException dbe) {
    // Error code goes here
} finally {
    exampleDbEnv.close();
} 

Page 23Getting Started with JE6/4/2008



Part I. Programming with the
Direct Persistence Layer

This section discusses how to build an application using the DPL. The DPL is ideally suited for those
applications that want a mechanism for storing and managing Java class objects in a JE database. Note
that the DPL is best suited for applications that work with classes with a relatively static schema.

The DPL requires Java 1.5.

If you are porting an application from the Berkeley DB API, then you probably want to use the base API
instead of the DPL. For information on using the base API, see Programming with the Base API (page 65).



Chapter 3. Direct Persistence Layer First Steps
This chapter guides you through the first few steps required to use the DPL with your application.
These steps include:

1. Opening your environment as was described in Opening Database Environments (page 14).

2. Opening your entity store.

3. Identifying the classes that you want to store in JE as either a persistent class or an entity.

Once you have done these things, you can write your classes to the JE databases, read them
back from the databases, delete them from the databases, and so forth. These activities are
described in the chapters that follow in this part of this manual.

Entity Stores

Entity stores are the basic unit of storage that you use with the DPL. That is, it is a unit of
encapsulation for the classes that you want to store in JE. Under the hood it actually interacts
with JE databases, but the DPL provides a layer of abstraction from the underlying JE APIs.
The store, therefore, provides a simplified mechanism by which you read and write your stored
classes. By using a store, you have access to your classes that is more simplified than if you
were interacting with databases directly, but this simplified access comes at the cost of reduced
flexibility.

Entity stores have configurations in the same way that environments have configurations. You
can use a StoreConfig object to identify store properties. Among these are methods that allow
you to declare whether:

• the store can be created if it does not exist at the time it is opened. Use the
StoreConfig.setAllowCreate() method to set this.

• deferred writes are allowed for the store. Use the StoreConfig.setDeferredWrite() method
to set this. See Deferred Write Databases (page 67) for general information on deferred write
databases.

• the store is read-only. Use the StoreConfig.setReadOnly() method to set this.

• the store supports transactions. Use the StoreConfig.setTransactional() method to set
this.

Writing JE transactional applications is described in the Berkeley DB Java Edition Getting
Started with Transaction Processing guide.

EntityStore objects also provide methods for retrieving information about the store, such as:

• the store's name. Use the EntityStore.getStoreName() method to retrieve this.

• a handle to the environment in which the store is opened. Use the
EntityStore.getEnvironment method to retrieve this handle.

Page 25Getting Started with JE6/4/2008



You can also use the EntityStore to retrieve all the primary and secondary indexes related to
a given type of entity object contained in the store. See Working with Indices (page 30) for
more information.

Opening and Closing Environments and Stores

As described in Database Environments (page 14), an environment is a unit of encapsulation
for JE databases. It also provides a handle by which activities common across the databases
can be managed.

To use an entity store, you must first open an environment and then provide that environment
handle to the EntityStore constructor.

For example, the following code fragment configures both the environment and the entity
store such that they can be created if they do not exist. Both the environment and the entity
store are then opened.

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.StoreConfig;

...

private Environment myEnv;
private EntityStore store;

try {
    EnvironmentConfig myEnvConfig = new EnvironmentConfig();
    StoreConfig storeConfig = new StoreConfig();

    myEnvConfig.setAllowCreate(!readOnly);
    storeConfig.setAllowCreate(!readOnly);

    // Open the environment and entity store
    myEnv = new Environment(envHome, myEnvConfig);
    store = new EntityStore(myEnv, "EntityStore", storeConfig);
} catch(DatabaseException dbe) {
    System.err.println("Error opening environment and store: " +
                        dbe.toString());
    System.exit(-1);
} 

Page 26Getting Started with JE6/4/2008



As always, before you exit your program you should close both your store and your environment.
Be sure to close your store before you close your environment.

if (store != null) {
    try {
        store.close();
    } catch(DatabaseException dbe) {
        System.err.println("Error closing store: " +
                            dbe.toString());
        System.exit(-1);
    }
}

if (myEnv != null) {
    try {
        // Finally, close environment.
        myEnv.close();
    } catch(DatabaseException dbe) {
        System.err.println("Error closing MyDbEnv: " +
                            dbe.toString());
        System.exit(-1);
    }
} 

Persistent Objects

When using the DPL, you store data in the underlying JE databases by making objects persistent.
You do this using Java annotations that both identify the type of persistent object you are
declaring, as well as the primary and secondary indices.

The following are the annotations you will use with your DPL persistent classes:

DescriptionAnnotation

Declares an entity class; that is, a class with a
primary index and optionally one or more
indices.

@Entity

Declares a persistent class; that is, a class used
by an entity class. They do not have indices

@Persistent

but instead are are stored or retrieved when
an entity class makes direct use of them.

Declares a specific data member in an entity
class to be the primary key for that object.

@PrimaryKey

This annotation must be used one and only one
time for every entity class.

Declares a specific data member in an entity
class to be a secondary key for that object.

@SecondaryKey

This annotation is optional, and can be used
multiple times for an entity class.

Page 27Getting Started with JE6/4/2008



For example, the following is declared to be an entity class:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class ExampleEntity {

    // The primary key must be unique in the database.
    @PrimaryKey
    private String aPrimaryKey;

    @SecondaryKey(relate=MANY_TO_ONE)
    private String aSecondaryKey;

    ...

    // The remainder of the class' implementation is purposefully
    // omitted in the interest of brevity.

    ...
} 

We discuss primary and secondary keys in more detail in Working with Indices (page 30).

Saving a Retrieving Data

All data stored using the DPL has one primary index and zero or more secondary indices
associated with it. (Sometimes these are referred to as the primary and secondary keys.) So
to store data under the DPL, you must:

1. Declare a class to be an entity class.

2. Identify the features on the class which represent indexed material.

3. Retrieve the store's primary index for a given class using the EntityStore.getPrimaryIndex()
method.

4. Put class objects to the store using the PrimaryIndex.put() method.

In order to retrieve an object from the store, you use the index that is most convenient for
your purpose. This may be the primary index, or it may be some other secondary index that
you declared on your entity class.

You obtain a primary index in the same was as when you put the object to the store: using
EntityStore.getPrimaryIndex(). You can get a secondary index for the store using the
EntityStore.getSecondaryIndex() method. Note that getSecondaryIndex() requires you to

Page 28Getting Started with JE6/4/2008



provide a PrimaryIndex class instance when you call it, so a class's primary index is always
required when retrieving objects from an entity store.

Usually all of the activity surrounding saving and retrieving data is organized within a class or
classes specialized to that purpose. We describe the construction of these data accessor classes
in SimpleDA.class (page 36). But before you perform any entity store activity, you need to
understand indexes. We therefore describe them in the next chapter.

Page 29Getting Started with JE6/4/2008



Chapter 4. Working with Indices
All entity classes stored in JE using the DPL must have a primary index, or key, identified for
them. All such classes may also have one or more secondary keys declared for them. This
chapter describes primary and secondary indexes in detail, and shows how to access the indexes
created for a given entity class.

One way to organize access to your primary and secondary indexes is to create a data accessor
class. We show an implementation of a data accessor class in SimpleDA.class (page 36).

Accessing Indexes

In order to retrieve any object from an entity store, you must access at least the primary index
for that object. Different entity classes stored in an entity store can have different primary
indexes, but all entity classes must have a primary index declared for it. The primary index is
just the default index used for the class. (That is, it is the data's primary key for the underlying
database.)

Entity classes can optionally have secondary indexes declared for them. In order to access
these secondary indexes, you must first access the primary index.

Accessing Primary Indices

You retrieve a primary index using the EntityStore.getPrimaryIndex() method. To do this,
you indicate the index key type (that is, whether it is a String, Integer, and so forth) and the
class of the entities stored in the index.

For example, the following retrieves the primary index for an Inventory class (we provide an
implementation of this class in Inventory.java (page 51)). These index keys are of type String.

PrimaryIndex<String,Inventory> inventoryBySku = 
    store.getPrimaryIndex(String.class, Inventory.class); 

Accessing Secondary Indices

You retrieve a secondary index using the EntityStore.getSecondaryIndex() method. Because
secondary indices actually refer to a primary index somewhere in your data store, to access a
secondary index you:

1. Provide the primary index as returned by EntityStore.getPrimaryIndex().

2. Identify the key data type used by the secondary index (String, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the SecondaryIndex object,
you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve a
secondary index. The secondary key is held by the itemName field of the Inventory class.

Page 30Getting Started with JE6/4/2008



PrimaryIndex<String,Inventory> inventoryBySku = 
store.getPrimaryIndex(String.class, Inventory.class); 

SecondaryIndex<String,String,Inventory> inventoryByName = 
    store.getSecondaryIndex(inventoryBySku, String.class, "itemName"); 

Creating Indexes

To create an index using the DPL, you use Java annotations to declare which feature on the
class is used for the primary index, and which features (if any) are to be used as secondary
indexes.

All entity classes stored in the DPL must have a primary index declared for it.

Entity classes can have zero or more secondary indexes declared for them. There is no limit
on the number of secondary indexes that you can declare.

Declaring a Primary Indexes

You declare a primary key for an entity class by using the @PrimaryKey annotation. This
annotation must appear immediately before the data member which represents the class's
primary key. For example:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class Vendor {

    private String address;
    private String bizPhoneNumber;
    private String city;
    private String repName;
    private String repPhoneNumber;
    private String state;

    // Primary key is the vendor's name
    // This assumes that the vendor's name is
    // unique in the database.
    @PrimaryKey
    private String vendor;

    ... 

For this class, the vendor value is set for an individual Vendor class object by the setVendorName()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

Page 31Getting Started with JE6/4/2008



You can avoid the need to explicitly set a value for a class's primary index by specifying a
sequence to be used for the primary key. This results in an unique integer value being used as
the primary key for each stored object.

You declare a sequence is to be used by specifying the sequence keyword to the @PrimaryKey
annotation. You must also provide a name for the sequence. For example: For example:

@PrimaryKey(sequence="Sequence_Namespace")
long myPrimaryKey; 

Declaring Secondary Indexes

To declare a secondary index, we use the @SecondaryKey annotation. Note that when we do
this, we must declare what sort of an index it is; that is, what is its relationship to other data
in the data store.

The kind of indices that we can declare are:

• ONE_TO_ONE

This relationship indicates that the secondary key is unique to the object. If an object is
stored with a secondary key that already exists in the data store, a run time error is raised.

For example, a person object might be stored with a primary key of a social security number
(in the US), with a secondary key of the person's employee number. Both values are expected
to be unique in the data store.

• MANY_TO_ONE

Indicates that the secondary key may be used for multiple objects in the data store. That
is, the key appears more than once, but for each stored object it can be used only once.

Consider a data store that relates managers to employees. A given manager will have multiple
employees, but each employee is assumed to have just one manager. In this case, the
manager's employee number might be a secondary key, so that you can quickly locate all
the objects related to that manager's employees.

• ONE_TO_MANY

Indicates that the secondary key might be used more than once for a given object. Index
keys themselves are assumed to be unique, but multiple instances of the index can be used
per object.

For example, employees might have multiple unique email addresses. In this case, any given
object can be access by one or more email addresses. Each such address is unique in the
data store, but each such address will relate to a single employee object.

• MANY_TO_MANY

There can be multiple keys for any given object, and for any given key there can be many
related objects.

Page 32Getting Started with JE6/4/2008



For example, suppose your organization has a shared resource, such as printers. You might
want to track which printers a given employee can use (there might be more than one). You
might also want to track which employees can use a specific printer. This represents a
many-to-many relationship.

Note that for ONE_TO_ONE and MANY_TO_ONE relationships, you need a simple data member (not
an array or collection) to hold the key. For ONE_TO_MANY and MANY_TO_MANY relationships, you
need an array or collection to hold the keys:

@SecondaryKey(relate=ONE_TO_ONE)
private String primaryEmailAddress = new String();

@SecondaryKey(relate=ONE_TO_MANY)
private Set<String> emailAddresses = new HashSet<String>(); 

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also contained
in the data store. That is, the secondary key might be the primary key for another entity class.
If this is the case, you can declare the foreign key constraint to make data integrity easier to
accomplish.

For example, you might have one class that is used to represent employees. You might have
another that is used to represent corporate divisions. When you add or modify an employee
record, you might want to ensure that the division to which the employee belongs is known to
the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

• When a new secondary key for the object is stored, it is checked to make sure it exists as a
primary key for the related entity object. If it does not, a runtime error occurs.

• When a related entity is deleted (that is, a corporate division is removed from the data
store), some action is automatically taken for the entities that refer to this object (that is,
the employee objects). Exactly what that action is, is definable by you. See below.

When a related entity is deleted from the data store, one of the following actions are taken:

• ABORT

The delete operation is not allowed. A runtime error is raised as a result of the operation.
This is the default behavior.

• CASCADE

All entities related to this one are deleted as well. For example, if you deleted a Division
object, then all Employee objects that belonged to the division are also deleted.

• NULLIFY

Page 33Getting Started with JE6/4/2008



All entities related to the deleted entity are updated so that the pertinent data member is
nullified. That is, if you deleted a division, then all employee objects related to that division
would have their division key automatically set to null.

You declare a foreign key constraint by using the relatedEntity keyword. You declare the
foreign key constraint deletion policy using the onRelatedEntityDelete keyword. For example,
the following declares a foreign key constraint to Division class objects, and it causes related
objects to be deleted if the Division class is deleted:

@SecondaryKey(relate=ONE_TO_ONE, relatedEntity=Division.class, 
    onRelatedEntityDelete=CASCADE)
private String division = new String(); 

Page 34Getting Started with JE6/4/2008



Chapter 5. Saving and Retrieving Objects
To store an object in an EntityStore you must annotate the class appropriately and then store
it using PrimaryIndex.put().

To retrieve and object from an EntityStore you use the get() method from either the
PrimaryIndex or SecondaryIndex, whichever is most appropriate for your application.

In both cases, it simplifies things greatly if you create a data accessor class to organize your
indexes.

In the next few sections we:

1. Create an entity class that is ready to be stored in an entity store. This class will have both
a primary index (required) declared for it, as well as a secondary index (which is optional).

See the next section for this implementation.

2. Create a data accessor class which is used to organize our data.

See SimpleDA.class (page 36) for this implementation.

3. Create a simple class that is used to put objects to our entity store.

See Placing Objects in an Entity Store (page 37) for this implementation.

4. Create another class that retrieves objects from our entity store.

See Retrieving Objects from an Entity Store (page 40) for this implementation.

A Simple Entity Class

For clarity's sake, this entity class is a simple a class as we can write. It contains only two data
members, both of which are set and retrieved by simple setter and getter methods. Beyond
that, by design this class does not do anything or particular interest.

Its implementation is as follows:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;
import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity
public class SimpleEntityClass {

    // Primary key is pKey
    @PrimaryKey

Page 35Getting Started with JE6/4/2008



    private String pKey;

    // Secondary key is the sKey
    @SecondaryKey(relate=MANY_TO_ONE)
    private String sKey;

    public void setPKey(String data) {
        pKey = data;
    }

    public void setSKey(String data) {
        sKey = data;
    }

    public String getPKey() {
        return pKey;
    }

    public String getSKey() {
        return sKey;
    }
} 

SimpleDA.class

As mentioned above, we organize our primary and secondary indexes using a specialize data
accessor class. The main reason for this class to exist is to provide convenient access to all the
indexes in use for our entity class (see the previous section, A Simple Entity Class (page 35),
for that implementation).

For a description on retrieving primary and secondary indexes under the DPL, see Working with
Indices (page 30)

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.PrimaryIndex;
import com.sleepycat.persist.SecondaryIndex;

public class SimpleDA {
    // Open the indices
    public SimpleDA(EntityStore store)
        throws DatabaseException {

        // Primary key for SimpleEntityClass classes
        pIdx = store.getPrimaryIndex(

Page 36Getting Started with JE6/4/2008



            String.class, SimpleEntityClass.class);

        // Secondary key for SimpleEntityClass classes
        // Last field in the getSecondaryIndex() method must be
        // the name of a class member; in this case, an 
        // SimpleEntityClass.class data member.
        sIdx = store.getSecondaryIndex(
            pIdx, String.class, "sKey");
    }

    // Index Accessors
    PrimaryIndex<String,SimpleEntityClass> pIdx;
    SecondaryIndex<String,String,SimpleEntityClass> sIdx;
} 

Placing Objects in an Entity Store

In order to place an object in a DPL entity store, you must:

1. Open the environment and store.

2. Instantiate the object.

3. Put the object to the store using the put() method for the object's primary index.

The following example uses the SimpleDA class that we show in SimpleDA.class (page 36) to
put a SimpleEntityClass object (see A Simple Entity Class (page 35)) to the entity store.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.StoreConfig; 

public class SimpleStorePut {

    private static File envHome = new File("./JEDB");

    private Environment envmnt;
    private EntityStore store;
    private SimpleDA sda; 

Page 37Getting Started with JE6/4/2008



Next we create a method that simply opens our database environment and entity store for us.

   // The setup() method opens the environment and store
    // for us.
    public void setup()
        throws DatabaseException {

        EnvironmentConfig envConfig = new EnvironmentConfig();
        StoreConfig storeConfig = new StoreConfig();

        envConfig.setAllowCreate(true);
        storeConfig.setAllowCreate(true);

        // Open the environment and entity store
        envmnt = new Environment(envHome, envConfig);
        store = new EntityStore(envmnt, "EntityStore", storeConfig);
    } 

We also need a method to close our environment and store.

    // Close our environment and store.
    public void shutdown()
        throws DatabaseException {

        store.close();
        envmnt.close();
    } 

Now we need to create a method to actually write objects to our store. This method creates
a SimpleDA object (see SimpleDA.class (page 36) that we will use to access our indexes. Then
we instantiate a serious of SimpleEntityClass (see A Simple Entity Class (page 35)) instances
that we will place in our store. Finally, we use our primary index (obtained from the SimpleDA
class instance) to actually place these objects in our store.

In Retrieving Objects from an Entity Store (page 40) we show a class that is used to retrieve
these objects.

    // Populate the entity store
    private void run()
        throws DatabaseException {

        setup();

        // Open the data accessor. This is used to store
        // persistent objects.
        sda = new SimpleDA(store);

        // Instantiate and store some entity classes
        SimpleEntityClass sec1 = new SimpleEntityClass();
        SimpleEntityClass sec2 = new SimpleEntityClass();
        SimpleEntityClass sec3 = new SimpleEntityClass();

Page 38Getting Started with JE6/4/2008



        SimpleEntityClass sec4 = new SimpleEntityClass();
        SimpleEntityClass sec5 = new SimpleEntityClass();

        sec1.setPKey("keyone");
        sec1.setSKey("skeyone");

        sec2.setPKey("keytwo");
        sec2.setSKey("skeyone");

        sec3.setPKey("keythree");
        sec3.setSKey("skeytwo");

        sec4.setPKey("keyfour");
        sec4.setSKey("skeythree");

        sec5.setPKey("keyfive");
        sec5.setSKey("skeyfour");

        sda.pIdx.put(sec1);
        sda.pIdx.put(sec2);
        sda.pIdx.put(sec3);
        sda.pIdx.put(sec4);
        sda.pIdx.put(sec5);

        shutdown();
    } 

Finally, to complete our class, we need a main() method, which simply calls our run() method.

    // main
    public static void main(String args[]) {
        SimpleStorePut ssp = new SimpleStorePut();
        try {
            ssp.run();
        } catch (DatabaseException dbe) {
            System.err.println("SimpleStorePut: " + dbe.toString());
            dbe.printStackTrace();
        } catch (Exception e) {
            System.out.println("Exception: " + e.toString());
            e.printStackTrace();
        }
        System.out.println("All done.");
    }

} 

Page 39Getting Started with JE6/4/2008



Retrieving Objects from an Entity Store

You retrieve objects placed in an entity store by using either the object's primary index, or
the appropriate secondary index if it exists. The following application illustrates this by
retrieving some of the objects that we placed in an entity store in the previous section.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.StoreConfig;

public class SimpleStoreGet {

    private static File envHome = new File("./JEDB");

    private Environment envmnt;
    private EntityStore store;
    private SimpleDA sda; 

Next we create a method that simply opens our database environment and entity store for us.

   // The setup() method opens the environment and store
    // for us.
    public void setup()
        throws DatabaseException {

        EnvironmentConfig envConfig = new EnvironmentConfig();
        StoreConfig storeConfig = new StoreConfig();

        envConfig.setAllowCreate(true);
        storeConfig.setAllowCreate(true);

        // Open the environment and entity store
        envmnt = new Environment(envHome, envConfig);
        store = new EntityStore(envmnt, "EntityStore", storeConfig);
    } 

We also need a method to close our environment and store.

    // Close our environment and store.
    public void shutdown()

Page 40Getting Started with JE6/4/2008



        throws DatabaseException {

        store.close();
        envmnt.close();
    } 

Now we retrieve a few objects. To do this, we instantiate a SimpleDA (see
SimpleDA.class (page 36)) class that we use to access our primary and secondary indexes. Then
we retrieve objects based on a primary or secondary index value. And finally, we display the
retrieved objects.

    // Retrieve some SimpleEntityClass objects from the store.
    private void run()
        throws DatabaseException {

        setup();

        // Open the data accessor. This is used to store
        // persistent objects.
        sda = new SimpleDA(store);

        // Instantiate and store some entity classes
        SimpleEntityClass sec1 = sda.pIdx.get("keyone");
        SimpleEntityClass sec2 = sda.pIdx.get("keytwo");

        SimpleEntityClass sec4 = sda.sIdx.get("skeythree");

        System.out.println("sec1: " + sec1.getPKey());
        System.out.println("sec2: " + sec2.getPKey());
        System.out.println("sec4: " + sec4.getPKey());

        shutdown();
    } 

Finally, to complete our class, we need a main() method, which simply calls our run() method.

    // main
    public static void main(String args[]) {
        SimpleStoreGet ssg = new SimpleStoreGet();
        try {
            ssg.run();
        } catch (DatabaseException dbe) {
            System.err.println("SimpleStoreGet: " + dbe.toString());
            dbe.printStackTrace();
        } catch (Exception e) {
            System.out.println("Exception: " + e.toString());
            e.printStackTrace();
        }
        System.out.println("All done.");

Page 41Getting Started with JE6/4/2008



    }

} 

Retrieving Multiple Objects

It is possible to iterate over every object referenced by a specific index. You may want to do
this if, for example, you want to examine or modify every object accessible by a specific
primary index.

In addition, some indexes result in the retrieval of multiple objects. For example, MANY_TO_ONE
secondary indexes can result in more than one object for any given key (also known as duplicate
keys). When this is the case, you must iterate over the resulting set of objects in order to
examine each object in turn.

There are two ways to iterate over a collection of objects as returned by an index. One is to
use a standard Java Iterator, which you obtain using an EntityCursor, which in turn you can
obtain from a PrimaryIndex:

PrimaryIndex<String,SimpleEntityClass> pi =
    store.getPrimaryIndex(String.class, SimpleEntityClass.class);
EntityCursor<SimpleEntityClass> pi_cursor = pi.entities();
try {
    Iterator<SimpleEntityClass> i = pi_cursor.iterator();
    while (i.hasNext()) {
        // Do something here
    }
} finally {
    // Always close the cursor
    pi_cursor.close();
} 

Alternatively, you can use a Java "foreach" statement to iterate over object set:

PrimaryIndex<String,SimpleEntityClass> pi =
    store.getPrimaryIndex(String.class, SimpleEntityClass.class);
EntityCursor<SimpleEntityClass> pi_cursor = pi.entities();
try {
    for (SimpleEntityClass seci : pi_cursor) {
        // do something with each object "seci"
    }
// Always make sure the cursor is closed when we are done with it.
} finally {
    sec_cursor.close();
} 

Cursor Initialization

When a cursor is first opened, it is not positioned to any value; that is, it is not initialized.
Most of the EntityCursor methods that move a cursor will initialize it to either the first or last

Page 42Getting Started with JE6/4/2008



object, depending on whether the operation is moving the cursor forward (all next... methods)
or backwards (all prev...) methods.

You can also force a cursor, whether it is initialized or not, to return the first object by calling
EntityCursor.first(). Similarly, you can force a return of the last object using
EntityCursor.last().

Operations that do not move the cursor (such as EntityCursor.current() or
EntityCursor.delete() will throw an IllegalStateException when used on an uninitialized
cursor.

Working with Duplicate Keys

If you have duplicate secondary keys, you can return an EntityIndex class object for them
using SecondaryIndex.subIndex() Then, use that object's entities() method to obtain an
EntityCursor instance.

For example:

PrimaryIndex<String,SimpleEntityClass> pi =
    store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si = 
    store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor = 
    si.subIndex("skeyone").entities(); 

try {
for (SimpleEntityClass seci : sec_cursor) {
        // do something with each object "seci"
    }
// Always make sure the cursor is closed when we are done with it.
} finally {
    sec_cursor.close(); } 

Note that if you are working with duplicate keys, you can control how cursor iteration works
by using the following EntityCursor methods:

• nextDup()

Moves the cursor to the next object with the same key as the cursor is currently referencing.
That is, this method returns the next duplicate object. If no such object exists, this method
returns null.

• prevDup()

Moves the cursor to the previous object with the same key as the cursor is currently
referencing. That is, this method returns the previous duplicate object in the cursor's set of
objects. If no such object exists, this method returns null.

Page 43Getting Started with JE6/4/2008



• nextNoDup()

Moves the cursor to the next object in the cursor's set that has a key which is different than
the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the next non-duplicate object in the cursor's set of objects. If no such
object exists, this method returns null.

• prevNoDup()

Moves the cursor to the previous object in the cursor's set that has a key which is different
than the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the previous non-duplicate object in the cursor's set of objects. If no
such object exists, this method returns null.

For example:

PrimaryIndex<String,SimpleEntityClass> pi =
    store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si = 
    store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor = 
    si.subIndex("skeyone").entities(); 

try {
    SimpleEntityClass sec;
    Iterator<SimpleEntityClass> i = sec_cursor.iterator();
    while (sec = i.nextNoDup() != null) {
        // Do something here
    }
// Always make sure the cursor is closed when we are done with it.
} finally {
    sec_cursor.close(); } 

Key Ranges

You can restrict the scope of a cursor's movement by specifying a range when you create the
cursor. The cursor can then never be positioned outside of the specified range.

When specifying a range, you indicate whether a range bound is inclusive or exclusive by
providing a boolean value for each range. true indicates that the provided bound is inclusive,
while false indicates that it is exclusive.

You provide this information when you call PrimaryIndex.entities() or
SecondaryIndex.entities(). For example, suppose you had a class indexed by numerical
information. Suppose further that you wanted to examine only those objects with indexed
values of 100 - 199. Then (assuming the numerical information is the primary index), you can
bound your cursor as follows:

Page 44Getting Started with JE6/4/2008



EntityCursor<SomeEntityClass> cursor = 
    primaryIndex.entities(100, true, 200, false);

try {
    for (SomeEntityClass sec : cursor {
        // Do something here to objects ranged from 100 to 199
    }
// Always make sure the cursor is closed when we are done with it.
} finally {
    cursor.close(); } 

Join Cursors

If you have two or more secondary indexes set for an entity object, then you can retrieve sets
of objects based on the intersection of multiple secondary index values. You do this using an
EntityJoin class.

For example, suppose you had an entity class that represented automobiles. In that case, you
might be storing information about automobiles such as color, number of doors, fuel mileage,
automobile type, number of passengers, make, model, and year, to name just a few.

If you created a secondary index based this information, then you could use an EntityJoin to
return all those objects representing cars with, say, two doors, that were built in 2002, and
which are green in color.

To create a join cursor, you:

1. Open the primary index for the entity class on which you want to perform the join.

2. Open the secondary indexes that you want to use for the join.

3. Instantiate an EntityJoin object (you use the primary index to do this).

4. Use two or more calls to EntityJoin.addCondition() to identify the secondary indexes and
their values that you want to use for the equality match.

5. Call EntityJoin.entities() to obtain a cursor that you can use to iterate over the join
results.

For example, suppose we had an entity class that included the following features:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;
import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity

Page 45Getting Started with JE6/4/2008



public class Automobiles {

    // Primary key is the vehicle identification number
    @PrimaryKey
    private String vin;

    // Secondary key is the vehicle's make
    @SecondaryKey(relate=MANY_TO_ONE)
    private String make;

    // Secondary key is the vehicle's color
    @SecondaryKey(relate=MANY_TO_ONE)
    private String color;

    ...

    public String getVIN() {
        return vin;
    }

    public String getMake() {
        return make;
    }

    public String getColor() {
        return color;
    }

    ... 

Then we could perform an entity join that searches for all the red automobiles made by Toyota
as follows:

PrimaryIndex<String,Automobiles> vin_pidx;
SecondaryIndex<String,String,Automobiles> make_sidx;
SecondaryIndex<String,String,Automobiles> color_sidx;

EntityJoin<String,Automobiles> join = new EntityJoin(vin_pidx);
join.addCondition(make_sidx,"Toyota");
join.addCondition(color_sidx,"Red");

// Now iterate over the results of the join operation
ForwardCursor<Automobiles> join_cursor = join.entities();
try {
    for (Automobiles autoi : join_cursor) {
        // do something with each object "autoi"
    }
// Always make sure the cursor is closed when we are done with it.

Page 46Getting Started with JE6/4/2008



} finally {
    join_cursor.close();
} 

Deleting Entity Objects

The simplest way to remove an object from your entity store is to delete it by its primary index.
For example, using the SimpleDA class that we created earlier in this document (see
SimpleDA.class (page 36)), you can delete the SimpleEntityClass object with a primary key
of keyone as follows:

sda.pIdx.delete("keyone");

You can also delete objects by their secondary keys. When you do this, all objects related to
the secondary key are deleted, unless the key is a foreign object.

For example, the following deletes all SimpleEntityClass with a secondary key of skeyone:

sda.sIdx.delete("skeyone");

You can delete any single object by positioning a cursor to that object and then calling the
cursor's delete() method.

PrimaryIndex<String,SimpleEntityClass> pi =
    store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si = 
    store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor = 
    si.subIndex("skeyone").entities(); 

try {
    SimpleEntityClass sec;
    Iterator<SimpleEntityClass> i = sec_cursor.iterator();
    while (sec = i.nextDup() != null) {
        if (sec.getSKey() == "some value") {
            i.delete();
        }
    }
// Always make sure the cursor is closed when we are done with it.
} finally {
    sec_cursor.close(); } 

Finally, if you are indexing by foreign key, then the results of deleting the key is determined
by the foreign key constraint that you have set for the index. See Foreign Key
Constraints (page 33) for more information.

Replacing Entity Objects

To modify a stored entity object, retrieve it, update it, then put it back to the entity store:

Page 47Getting Started with JE6/4/2008



SimpleEntityClass sec = sda.pIdx.get("keyone");
sec.setSKey("skeyoneupdated");
sda.pIdx.put(sec);

Note that because we updated a field on the object that is a secondary key, this object will
now be accessible by the secondary key of skeyoneupdated instead of the previous value, which
was skeyone

Be aware that if you modify the object's primary key, the behavior is somewhat different. In
this case, you cause a new instance of the object to be created in the store, instead of replacing
an existing instance:

// Results in two objects in the store.  One with a
// primary index of "keyfive" and the other with primary index of 
//'keyfivenew'.
SimpleEntityClass sec = sda.pIdx.get("keyfive");
sec.setPKey("keyfivenew");
sda.pIdx.put(sec); 

Finally, if you are iterating over a collection of objects using an EntityCursor, you can update
each object in turn using EntityCursor.update(). Note, however, that you must be iterating
using a PrimaryIndex; this operation is not allowed if you are using a SecondaryIndex.

For example, the following iterates over every SimpleEntityClass object in the entity store,
and it changes them all so that they have a secondary index of updatedskey:

EntityCursor<SimpleEntityClass> sec_pcursor = sda.pIdx.entities();
for (SimpleEntityClass sec : sec_pcursor) {
    sec.setSKey("updatedskey");
    sec_pcursor.update(item);
}
sec_pcursor.close(); 

Page 48Getting Started with JE6/4/2008



Chapter 6. A DPL Example
In order to illustrate DPL usage, we provide a complete working example in this chapter. This
example reads and writes inventory and vendor information for a mythical business. The
application consists of the following classes:

• Several classes used to encapsulate our application's data. See Vendor.java (page 49) and
Inventory.java (page 51).

• A convenience class used to open and close our environment and entity store. See
MyDbEnv (page 53).

• A class that loads data into the store. See ExampleDatabasePut.java (page 56).

• Finally, a class that reads data from the store. See ExampleInventoryRead.java (page 60).

Be aware that this example can be found in your JE distribution in the following location:

JE_HOME/examples/persist/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Vendor.java

The simplest class that our example wants to store contains vendor contact information. This
class contains no secondary indices so all we have to do is identify it as an entity class and
identify the field in the class used for the primary key.

In the following example, we identify the vendor data member as containing the primary key.
This data member is meant to contain a vendor's name. Because of the way we will use our
EntityStore, the value provided for this data member must be unique within the store or
runtime errors will result.

When used with the DPL, our Vendor class appears as follows. Notice that the @Entity annotation
appears immediately before the class declaration, and the @PrimaryKey annotation appears
immediately before the vendor data member declaration.

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class Vendor {

    private String address;
    private String bizPhoneNumber;
    private String city;
    private String repName;
    private String repPhoneNumber;

Page 49Getting Started with JE6/4/2008



    private String state;

    // Primary key is the vendor's name
    // This assumes that the vendor's name is
    // unique in the database.
    @PrimaryKey
    private String vendor;

    private String zipcode;

    public void setRepName(String data) {
        repName = data;
    }

    public void setAddress(String data) {
        address = data;
    }

    public void setCity(String data) {
        city = data;
    }

    public void setState(String data) {
        state = data;
    }

    public void setZipcode(String data) {
        zipcode = data;
    }

    public void setBusinessPhoneNumber(String data) {
        bizPhoneNumber = data;
    }

    public void setRepPhoneNumber(String data) {
        repPhoneNumber = data;
    }

    public void setVendorName(String data) {
        vendor = data;
    }

    public String getRepName() {
        return repName;
    }

    public String getAddress() {
        return address;
    }

Page 50Getting Started with JE6/4/2008



    public String getCity() {
        return city;
    }

    public String getState() {
        return state;
    }

    public String getZipcode() {
        return zipcode;
    }

    public String getBusinessPhoneNumber() {
        return bizPhoneNumber;
    }

    public String getRepPhoneNumber() {
        return repPhoneNumber;
    }
} 

For this class, the vendor value is set for an individual Vendor class object by the setVendorName()
method. If our example code fails to set this value before storing the object, the data member
used to store the primary key is set to a null value. This would result in a runtime error.

Inventory.java

Our example's Inventory class is much like our Vendor class in that it is simply used to
encapsulate data. However, in this case we want to be able to access objects two different
ways: by product SKU and by product name.

In our data set, the product SKU is required to be unique, so we use that as the primary key.
The product name, however, is not a unique value so we set this up as a secondary key.

The class appears as follows in our example:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;
import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity
public class Inventory {

    // Primary key is sku
    @PrimaryKey
    private String sku;

Page 51Getting Started with JE6/4/2008



    // Secondary key is the itemName
    @SecondaryKey(relate=MANY_TO_ONE)
    private String itemName;

    private String category;
    private String vendor;
    private int vendorInventory;
    private float vendorPrice;

    public void setSku(String data) {
        sku = data;
    }

    public void setItemName(String data) {
        itemName = data;
    }

    public void setCategory(String data) {
        category = data;
    }

    public void setVendorInventory(int data) {
        vendorInventory = data;
    }

    public void setVendor(String data) {
        vendor = data;
    }

    public void setVendorPrice(float data) {
        vendorPrice = data;
    }

    public String getSku() {
        return sku;
    }

    public String getItemName() {
        return itemName;
    }

    public String getCategory() {
        return category;
    }

    public int getVendorInventory() {
        return vendorInventory;
    }

Page 52Getting Started with JE6/4/2008



    public String getVendor() {
        return vendor;
    }

    public float getVendorPrice() {
        return vendorPrice;
    }
} 

MyDbEnv

The applications that we are building for our example both must open and close environments
and entity stores. One of our applications is writing to the entity store, so this application
needs to open the store as read-write. It also wants to be able to create the store if it does
not exist.

Our second application only reads from the store. In this case, the store should be opened as
read-only.

We perform these activities by creating a single class that is responsible for opening and closing
our store and environment. This class is shared by both our applications. To use it, callers need
to only provide the path to the environment home directory, and to indicate whether the
object is meant to be read-only. The class implementation is as follows:

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.StoreConfig;

public class MyDbEnv {

    private Environment myEnv;
    private EntityStore store;

    // Our constructor does nothing
    public MyDbEnv() {}

    // The setup() method opens the environment and store
    // for us.
    public void setup(File envHome, boolean readOnly)
        throws DatabaseException {

Page 53Getting Started with JE6/4/2008



        EnvironmentConfig myEnvConfig = new EnvironmentConfig();
        StoreConfig storeConfig = new StoreConfig();

        myEnvConfig.setReadOnly(readOnly);
        storeConfig.setReadOnly(readOnly);

        // If the environment is opened for write, then we want to be 
        // able to create the environment and entity store if 
        // they do not exist.
        myEnvConfig.setAllowCreate(!readOnly);
        storeConfig.setAllowCreate(!readOnly);

        // Open the environment and entity store
        myEnv = new Environment(envHome, myEnvConfig);
        store = new EntityStore(myEnv, "EntityStore", storeConfig);

    }

    // Return a handle to the entity store
    public EntityStore getEntityStore() {
        return store;
    }

    // Return a handle to the environment
    public Environment getEnv() {
        return myEnv;
    }

    // Close the store and environment.
    public void close() {
        if (store != null) {
            try {
                store.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing store: " +
                                    dbe.toString());
               System.exit(-1);
            }
        }

        if (myEnv != null) {
            try {
                // Finally, close the environment.
                myEnv.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing MyDbEnv: " +
                                    dbe.toString());
               System.exit(-1);
            }

Page 54Getting Started with JE6/4/2008



        }
    }
} 

DataAccessor.java

Now that we have implemented our data classes, we can write a class that will provide
convenient access to our primary and secondary indexes. Note that like our data classes, this
class is shared by both our example programs.

If you compare this class against our Vendor and Inventory class implementations, you will see
that the primary and secondary indices declared there are referenced by this class.

See Vendor.java (page 49) and Inventory.java (page 51) for those implementations.

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.PrimaryIndex; 
import com.sleepycat.persist.SecondaryIndex;

public class DataAccessor {
    // Open the indices
    public DataAccessor(EntityStore store)
        throws DatabaseException {

        // Primary key for Inventory classes
        inventoryBySku = store.getPrimaryIndex(
            String.class, Inventory.class);

        // Secondary key for Inventory classes
        // Last field in the getSecondaryIndex() method must be
        // the name of a class member; in this case, an Inventory.class
        // data member.
        inventoryByName = store.getSecondaryIndex(
            inventoryBySku, String.class, "itemName");

        // Primary key for Vendor class
        vendorByName = store.getPrimaryIndex(
            String.class, Vendor.class);
    }

    // Inventory Accessors
    PrimaryIndex<String,Inventory> inventoryBySku;
    SecondaryIndex<String,String,Inventory> inventoryByName;

Page 55Getting Started with JE6/4/2008



    // Vendor Accessors
    PrimaryIndex<String,Vendor> vendorByName;
} 

ExampleDatabasePut.java

Our example reads inventory and vendor information from flat text files, encapsulates this
data in objects of the appropriate type, and then writes each object to an EntityStore.

To begin, we import the Java classes that our example needs. Most of the imports are related
to reading the raw data from flat text files and breaking them apart for usage with our data
classes. We also import classes from the JE package, but we do not actually import any classes
from the DPL. The reason why is because we have placed almost all of our DPL work off into
other classes, so there is no need for direct usage of those APIs here.

package persist.gettingStarted;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import com.sleepycat.je.DatabaseException; 

Now we can begin the class itself. Here we set default paths for the on-disk resources that we
require (the environment home, and the location of the text files containing our sample data).
We also declare DataAccessor and MyDbEnv members. We describe these classes and show their
implementation in DataAccessor.java (page 55) and MyDbEnv (page 53).

public class ExampleDatabasePut {

    private static File myDbEnvPath = new File("/tmp/JEDB");
    private static File inventoryFile = new File("./inventory.txt");
    private static File vendorsFile = new File("./vendors.txt");

    private DataAccessor da;

    // Encapsulates the environment and data store.
    private static MyDbEnv myDbEnv = new MyDbEnv();

Next, we provide our usage() method. The command line options provided there are necessary
only if the default values to the on-disk resources are not sufficient.

    private static void usage() {
        System.out.println("ExampleDatabasePut [-h <env directory>]");
        System.out.println("      [-i <inventory file>] [-v <vendors file>]");

Page 56Getting Started with JE6/4/2008



        System.exit(-1);
    } 

Our main() method is also reasonably self-explanatory. We simply instantiate an
ExampleDatabasePut object there and then call its run() method. We also provide a top-level
try block there for any exceptions that might be thrown during runtime.

Notice that the finally statement in the top-level try block calls MyDbEnv.close(). This method
closes our EntityStore and Environment objects. By placing it here in the finally statement,
we can make sure that our store and environment are always cleanly closed.

    public static void main(String args[]) {
        ExampleDatabasePut edp = new ExampleDatabasePut();
        try {
            edp.run(args);
        } catch (DatabaseException dbe) {
            System.err.println("ExampleDatabasePut: " + dbe.toString());
            dbe.printStackTrace();
        } catch (Exception e) {
            System.out.println("Exception: " + e.toString());
            e.printStackTrace();
        } finally {
            myDbEnv.close();
        }
        System.out.println("All done.");
    } 

Our run() method does four things. It calls MyDbEnv.setup(), which opens our Environment and
EntityStore. It then instantiates a DataAccessor object, which we will use to write data to
the store. It calls loadVendorsDb() which loads all of the vendor information. And then it calls
loadInventoryDb() which loads all of the inventory information.

Notice that the MyDbEnv object is being setup as read-write. This results in the EntityStore
being opened for transactional support. (See MyDbEnv (page 53) for implementation details.)

    private void run(String args[])
        throws DatabaseException {
        // Parse the arguments list
        parseArgs(args);

        myDbEnv.setup(myDbEnvPath,  // Path to the environment home 
                      false);       // Environment read-only?

        // Open the data accessor. This is used to store
        // persistent objects.
        da = new DataAccessor(myDbEnv.getEntityStore());

        System.out.println("loading vendors db....");
        loadVendorsDb();

Page 57Getting Started with JE6/4/2008



        System.out.println("loading inventory db....");
        loadInventoryDb();
    } 

We can now implement the loadVendorsDb() method. This method is responsible for reading
the vendor contact information from the appropriate flat-text file, populating Vendor class
objects with the data and then writing it to the EntityStore. As explained above, each individual
object is written with transactional support. However, because a transaction handle is not
explicitly used, the write is performed using auto-commit. This happens because the EntityStore
was opened to support transactions.

To actually write each class to the EntityStore, we simply call the PrimaryIndex.put() method
for the Vendor entity instance. We obtain this method from our DataAccessor class.

    private void loadVendorsDb()
            throws DatabaseException {

        // loadFile opens a flat-text file that contains our data
        // and loads it into a list for us to work with. The integer
        // parameter represents the number of fields expected in the
        // file.
        List vendors = loadFile(vendorsFile, 8);

        // Now load the data into the store.
        for (int i = 0; i < vendors.size(); i++) {
            String[] sArray = (String[])vendors.get(i);
            Vendor theVendor = new Vendor();
            theVendor.setVendorName(sArray[0]);
            theVendor.setAddress(sArray[1]);
            theVendor.setCity(sArray[2]);
            theVendor.setState(sArray[3]);
            theVendor.setZipcode(sArray[4]);
            theVendor.setBusinessPhoneNumber(sArray[5]);
            theVendor.setRepName(sArray[6]);
            theVendor.setRepPhoneNumber(sArray[7]);

            // Put it in the store.
            da.vendorByName.put(theVendor);
        }
    } 

Now we can implement our loadInventoryDb() method. This does exactly the same thing as
the loadVendorsDb() method.

    private void loadInventoryDb()
        throws DatabaseException {

        // loadFile opens a flat-text file that contains our data
        // and loads it into a list for us to work with. The integer
        // parameter represents the number of fields expected in the

Page 58Getting Started with JE6/4/2008



        // file.
        List inventoryArray = loadFile(inventoryFile, 6);

        // Now load the data into the store. The item's sku is the
        // key, and the data is an Inventory class object.

        for (int i = 0; i < inventoryArray.size(); i++) {
            String[] sArray = (String[])inventoryArray.get(i);
            String sku = sArray[1];

            Inventory theInventory = new Inventory();
            theInventory.setItemName(sArray[0]);
            theInventory.setSku(sArray[1]);
            theInventory.setVendorPrice(
                (new Float(sArray[2])).floatValue());
            theInventory.setVendorInventory(
                (new Integer(sArray[3])).intValue());
            theInventory.setCategory(sArray[4]);
            theInventory.setVendor(sArray[5]);

            // Put it in the store. Note that this causes our secondary key
            // to be automatically updated for us.
            da.inventoryBySku.put(theInventory);
        }
    } 

The remainder of this example simple parses the command line and loads data from a flat-text
file. There is nothing here that is of specific interest to the DPL, but we show this part of the
example anyway in the interest of completeness.

    private static void parseArgs(String args[]) {
        for(int i = 0; i < args.length; ++i) {
            if (args[i].startsWith("-")) {
                switch(args[i].charAt(1)) {
                  case 'h':
                    myDbEnvPath = new File(args[++i]);
                    break;
                  case 'i':
                    inventoryFile = new File(args[++i]);
                    break;
                  case 'v':
                    vendorsFile = new File(args[++i]);
                    break;
                  default:
                    usage();
                }
            }
        }
    }

Page 59Getting Started with JE6/4/2008



    private List loadFile(File theFile, int numFields) {
        List<String[]> records = new ArrayList<String[]>();
        try {
            String theLine = null;
            FileInputStream fis = new FileInputStream(theFile);
            BufferedReader br = 
                new BufferedReader(new InputStreamReader(fis));
            while((theLine=br.readLine()) != null) {
                String[] theLineArray = theLine.split("#");
                if (theLineArray.length != numFields) {
                    System.out.println("Malformed line found in " + 
                        theFile.getPath());
                    System.out.println("Line was: '" + theLine);
                    System.out.println("length found was: " + 
                        theLineArray.length);
                    System.exit(-1);
                }
                records.add(theLineArray);
            }
            // Close the input stream handle
            fis.close();
        } catch (FileNotFoundException e) {
            System.err.println(theFile.getPath() + " does not exist.");
            e.printStackTrace();
            usage();
        } catch (IOException e)  {
            System.err.println("IO Exception: " + e.toString());
            e.printStackTrace();
            System.exit(-1);
        }
        return records;
    }

    protected ExampleDatabasePut() {}
} 

ExampleInventoryRead.java

ExampleInventoryRead retrieves inventory information from our entity store and displays it.
When it displays each inventory item, it also displays the related vendor contact information.

ExampleInventoryRead can do one of two things. If you provide no search criteria, it displays
all of the inventory items in the store. If you provide an item name (using the -s command
line switch), then just those inventory items using that name are displayed.

The beginning of our example is almost identical to our ExampleDatabasePut example program.
We repeat that example code here for the sake of completeness. For a complete walk-through
of it, see the previous section (ExampleDatabasePut.java (page 56)).

Page 60Getting Started with JE6/4/2008



package persist.gettingStarted;

import java.io.File;
import java.io.IOException;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.persist.EntityCursor;

public class ExampleInventoryRead {

    private static File myDbEnvPath =
        new File("/tmp/JEDB");

    private DataAccessor da;

    // Encapsulates the database environment.
    private static MyDbEnv myDbEnv = new MyDbEnv();

    // The item to locate if the -s switch is used
    private static String locateItem;

    private static void usage() {
        System.out.println("ExampleInventoryRead [-h <env directory>]" +
                           "[-s <item to locate>]");
        System.exit(-1);
    }

    public static void main(String args[]) {
        ExampleInventoryRead eir = new ExampleInventoryRead();
        try {
            eir.run(args);
        } catch (DatabaseException dbe) {
            System.err.println("ExampleInventoryRead: " + dbe.toString());
            dbe.printStackTrace();
        } finally {
            myDbEnv.close();
        }
        System.out.println("All done.");
    }

    private void run(String args[])
        throws DatabaseException {
        // Parse the arguments list
        parseArgs(args);

        myDbEnv.setup(myDbEnvPath, // path to the environment home
                      true);       // is this environment read-only?

        // Open the data accessor. This is used to retrieve

Page 61Getting Started with JE6/4/2008



        // persistent objects.
        da = new DataAccessor(myDbEnv.getEntityStore());

        // If a item to locate is provided on the command line,
        // show just the inventory items using the provided name.
        // Otherwise, show everything in the inventory.
        if (locateItem != null) {
            showItem();
        } else {
            showAllInventory();
        }
    } 

The first method that we provide is used to show inventory items related to a given inventory
name. This method is called only if an inventory name is passed to ExampleInventoryRead via
the -s option. Given the sample data that we provide with this example, each matching
inventory name will result in the display of three inventory objects.

To display these objects we use the Inventory class' inventoryByName secondary index to
retrieve an EntityCursor, and then we iterate over the resulting objects using the cursor.

Notice that this method calls displayInventoryRecord() to display each individual object. We
show this method a little later in the example.

    // Shows all the inventory items that exist for a given
    // inventory name.
    private void showItem() throws DatabaseException {

        // Use the inventory name secondary key to retrieve
        // these objects.
        EntityCursor<Inventory> items =
            da.inventoryByName.subIndex(locateItem).entities();
        try {
            for (Inventory item : items) {
                displayInventoryRecord(item);
            }
        } finally {
            items.close();
        }
    } 

Next we implement showAllInventory(), which shows all of the Inventory objects in the store.
To do this, we obtain an EntityCursor from the Inventory class' primary index and, again, we
iterate using that cursor.

    // Displays all the inventory items in the store
    private void showAllInventory()
        throws DatabaseException {

        // Get a cursor that will walk every

Page 62Getting Started with JE6/4/2008



        // inventory object in the store.
        EntityCursor<Inventory> items =
            da.inventoryBySku.entities();

        try {
            for (Inventory item : items) {
                displayInventoryRecord(item);
            }
        } finally {
            items.close();
        }
    } 

Now we implement displayInventoryRecord(). This uses the getter methods on the Inventory
class to obtain the information that we want to display. The only thing interesting about this
method is that we obtain Vendor objects within. The vendor objects are retrieved Vendor
objects using their primary index. We get the key for the retrieval from the Inventory object
that we are displaying at the time.

    private void displayInventoryRecord(Inventory theInventory)
            throws DatabaseException {

            System.out.println(theInventory.getSku() + ":");
            System.out.println("\t " + theInventory.getItemName());
            System.out.println("\t " + theInventory.getCategory());
            System.out.println("\t " + theInventory.getVendor());
            System.out.println("\t\tNumber in stock: " +
                theInventory.getVendorInventory());
            System.out.println("\t\tPrice per unit:  " +
                theInventory.getVendorPrice());
            System.out.println("\t\tContact: ");

            Vendor theVendor =
                    da.vendorByName.get(theInventory.getVendor());
            assert theVendor != null;

            System.out.println("\t\t " + theVendor.getAddress());
            System.out.println("\t\t " + theVendor.getCity() + ", " +
                theVendor.getState() + " " + theVendor.getZipcode());
            System.out.println("\t\t Business Phone: " +
                theVendor.getBusinessPhoneNumber());
            System.out.println("\t\t Sales Rep: " +
                                theVendor.getRepName());
            System.out.println("\t\t            " +
                theVendor.getRepPhoneNumber());
    } 

The last remaining parts of the example are used to parse the command line. This is not very
interesting for our purposes here, but we show it anyway for the sake of completeness.

Page 63Getting Started with JE6/4/2008



    protected ExampleInventoryRead() {}

    private static void parseArgs(String args[]) {
        for(int i = 0; i < args.length; ++i) {
            if (args[i].startsWith("-")) {
                switch(args[i].charAt(1)) {
                    case 'h':
                        myDbEnvPath = new File(args[++i]);
                    break;
                    case 's':
                        locateItem = args[++i];
                    break;
                    default:
                        usage();
                }
            }
        }
    }
} 

Page 64Getting Started with JE6/4/2008



Part II. Programming with the
Base API

This section discusses application that are built using the JE base API. Note that most JE applications can
probably be written using the DPL (see Programming with the Direct Persistence Layer (page 24) for more
information). However, if you are porting an application from the Berkeley DB API, then the base API is
right for you.



Chapter 7. Databases
In Berkeley DB Java Edition, a database is a collection of records. Records, in turn, consist of
key/data pairings.

Conceptually, you can think of a Database as containing a two-column table where column 1
contains a key and column 2 contains data. Both the key and the data are managed using
DatabaseEntry class instances (see Database Records (page 78) for details on this class ). So,
fundamentally, using a JE Database involves putting, getting, and deleting database records,
which in turns involves efficiently managing information encapsulated by DatabaseEntry objects.
The next several chapters of this book are dedicated to those activities.

Note that on disk, databases are stored in sequentially numerically named log files in the
directory where the opening environment is located. JE log files are described Databases and
Log Files (page 147).

Also, note that in the previous section of this book, Programming with the Direct Persistence
Layer (page 24), we described the DPL The DPL handles all database management for you,
including creating all primary and secondary databases as is required by your application. That
said, if you are using the DPL you can access the underlying database for a given index if
necessary. See the Javadoc for the DPL for more information.

Opening Databases

You open a database by using the Environment.openDatabase() method (environments are
described in Database Environments (page 14)). This method creates and returns a Database
object handle. You must provide Environment.openDatabase() with a database name.

You can optionally provide Environment.openDatabase() with a DatabaseConfig() object.
DatabaseConfig() allows you to set properties for the database, such as whether it can be
created if it does not currently exist, whether you are opening it read-only, and whether the
database is to support transactions.

Note that by default, JE does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

Finally, if you configured your environment and database to support transactions, you can
optionally provide a transaction object to the Environment.openDatabase(). Transactions are
described in the Berkeley DB Java Edition Getting Started with Transaction Processing guide.

The following code fragment illustrates a database open:

Page 66Getting Started with JE6/4/2008



package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
    // Open the environment. Create it if it does not already exist.
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

    // Open the database. Create it if it does not already exist.
    DatabaseConfig dbConfig = new DatabaseConfig();
    dbConfig.setAllowCreate(true);
    myDatabase = myDbEnvironment.openDatabase(null, 
                                              "sampleDatabase", 
                                              dbConfig); 
} catch (DatabaseException dbe) {
    // Exception handling goes here
}

Deferred Write Databases

By default, JE database operations that modify the database are written (logged) at the time
of the operation. For transactional databases, changes become durable when the transaction
is committed.

However, deferred write databases operations are not written at the time of the operation.
Writing is deferred for as long as possible. The changes are only guaranteed to be durable after
the Database.sync() method is called or the database is properly closed.

Deferring writes in this manner has two performance advantages when performing database
modifications:

1. When multiple threads are performing writes, Concurrency is increased because the
bottleneck of writing to the log is avoided.

Page 67Getting Started with JE6/4/2008



2. Less total writing takes place. If a single record is modified more than once, or modified
and deleted, then only the final result must be written. If a record is inserted and deleted
before a database sync or close occurs, nothing at all is written to disk. The same advantage
holds for writing internal index information.

Deferred write databases are useful for applications that perform a great deal of database
modifications, record additions, deletions, and so forth. By delaying the data write, you delay
the disk I/O. Depending on your workload, this can improve your data throughput by quite a
lot.

While the durability of a deferred write database is only guaranteed when Database.sync() is
called or the database is properly closed, writing may also occur at other times. For example,
a JE checkpoint will effectively perform a Database.sync() on all deferred write databases
that are open at the time of the checkpoint. If you are using deferred write to load a large
data set, and you want to reduce writing as much as possible during the load, consider disabling
the JE checkpointer.

Also, if the JE cache overflows as database modifications occur, information discarded from
the cache is written to disk in order to avoid losing the changes. If you wish to reduce this
writing to a minimum, configure your cache to be large enough to hold the entire data set
being modified, or as large as possible.

Despite the examples noted in the previous paragraphs, there is no guarantee that changes
to a deferred write database are durable unless Database.sync() is called or the database☞
is closed. If you need guaranteed durability for an operation, consider using transactions
instead of deferred write.

You should also be aware that Database.sync() is a relatively expensive operation because all
outstanding changes to the database are written, including internal index information. If you
find that you are calling Database.sync() frequently, consider using transactions.

All other rules of behavior pertain to deferred write databases as they do to normal databases.
Deferred write databases must be named and created just as you would a normal database. If
you want to delete the deferred write database, you must remove it just as you would a normal
database. This is true even if the deferred write database is empty because its name persists
in the environment's namespace until such a time as the database is removed.

Note that determining whether a database is deferred write is a configuration option. It is
therefore possible to switch a database between "normal" mode and deferred write database.
You might want to do this if, for example, you want to load a lot of data to the database. In
this case, loading data to the database while it is in deferred write state is faster than in
"normal" state, because you can avoid a lot of the normal disk I/O overhead during the load
process. Once the load is complete, sync the database, close it, and and then reopen it as a
normal database. You can then continue operations as if the database had been created as a
"normal" database.

To configure a database as deferred write, set DatabaseConfig.setDeferredWrite() to true
and then open the database with that DatabaseConfig option.

Page 68Getting Started with JE6/4/2008



If you are using the DPL, then you configure your entire store to be deferred write using
StoreConfig.setDeferredWrite(). You can also sync every database in your store using
EntityStore.sync().

☞

For example, the following code fragment opens and closes a deferred write database:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
    // Open the environment. Create it if it does not already exist.
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

    // Open the database. Create it if it does not already exist.
    DatabaseConfig dbConfig = new DatabaseConfig();
    dbConfig.setAllowCreate(true);
    // Make it deferred write
    dbConfig.setDeferredWrite(true);
    myDatabase = myDbEnvironment.openDatabase(null, 
                                              "sampleDatabase", 
                                              dbConfig); 

    ...
    // do work
    ...
    // Do this when you want the work to be persistent at a
    // specific point, prior to closing the database.
    myDatabase.sync();

    // then close the database and environment here
    // (described later in this chapter).

} catch (DatabaseException dbe) {

Page 69Getting Started with JE6/4/2008



    // Exception handling goes here
}

Temporary Databases

By default, all JE databases are durable; that is, the data that you put in them will remain in
them across program runs, unless you explicitly delete the data. However, it is possible to
configure a temporary database that is not durable. A temporary database is automatically
deleted when it is closed or after a crash occurs.

Temporary databases are essentially in-memory only databases. Therefore, they are particularly
useful for applications that want databases which are truly temporary.

Note that temporary databases do not always avoid disk I/O. It is particularly important to
realize that temporary databases can page to disk if the cache is not large enough to hold the
database's entire contents. Therefore, temporary database performance is best when your
in-memory cache is large enough to hold the database's entire data-set.

A temporary database operates internally in deferred write mode and has the same performance
advantages as described above for deferred write databases (see Deferred Write
Databases (page 67)). However, unlike deferred write databases, a temporary database is not
written during checkpoints and this provides an additional performance advantage.

Temporary databases must be named and created just as you would a normal database. To
configure a database as temporary, set DatabaseConfig.setTemporary to true and then open
the database with that DatabaseConfig instance.

For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
    // Open the environment. Create it if it does not already exist.
    EnvironmentConfig envConfig = new EnvironmentConfig();
    envConfig.setAllowCreate(true);
    myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

Page 70Getting Started with JE6/4/2008



    // Open the database. Create it if it does not already exist.
    DatabaseConfig dbConfig = new DatabaseConfig();
    dbConfig.setAllowCreate(true);
    // Make it a temporary database
    dbConfig.setTemporary(true);
    myDatabase = myDbEnvironment.openDatabase(null, 
                                              "sampleDatabase", 
                                              dbConfig); 

    ...
    // do work
    ...

    // then close the database and environment here
    // (see the next section)

} catch (DatabaseException dbe) {
    // Exception handling goes here
}

Closing Databases

Once you are done using the database, you must close it. You use the Database.close() method
to do this.

Closing a database causes it to become unusable until it is opened again. If any cursors are
opened for the database, JE warns you about the open cursors, and then closes them for you.
Active cursors during a database close can cause unexpected results, especially if any of those
cursors are writing to the database in another thread. You should always make sure that all
your database accesses have completed before closing your database.

Remember that for the same reason, you should always close all your databases before closing
the environment to which they belong.

Cursors are described in Using Cursors (page 108) later in this manual.

The following illustrates database and environment close:

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;

...

try {
        if (myDatabase != null) {
            myDatabase.close();
        }

Page 71Getting Started with JE6/4/2008



        if (myDbEnvironment != null) {
            myDbEnvironment.close();
        }
} catch (DatabaseException dbe) {
    // Exception handling goes here
} 

Database Properties

You can set database properties using the DatabaseConfig class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve the
DatabaseConfig object used by your database using the Database.getConfig() method.

The database properties that you can set are:

• DatabaseConfig.setAllowCreate()

If true, the database is created when it is opened. If false, the database open fails if the
database does not exist. This property has no meaning if the database currently exists.
Default is false.

• DatabaseConfig.setBtreeComparator()

Sets the class that is used to compare the keys found on two database records. This class is
used to determine the sort order for two records in the database. By default, byte for byte
comparison is used. For more information, see Using Comparators (page 94).

• DatabaseConfig.setDuplicateComparator()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Using Comparators (page 94).

• DatabaseConfig.setSortedDuplicates()

If true, duplicate records are allowed in the database. If this value is false, then putting a
duplicate record into the database results in an error return from the put call. Note that
this property can be set only at database creation time. Default is false.

Note that your database must not support duplicates if it is to be associated with one or
more secondary indices. Secondaries are described in Secondary Databases (page 125).

• DatabaseConfig.setExclusiveCreate()

If true, the database open fails if the database currently exists. That is, the open must result
in the creation of a new database. Default is false.

• DatabaseConfig.setReadOnly()

If true, the database is opened for read activities only. Default is false.

• DatabaseConfig.setTransactional()

Page 72Getting Started with JE6/4/2008



If true, the database supports transactions. Default is false. Note that a database cannot
support transactions if the environment is non-transactional.

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;

...
// Environment open omitted for brevity
...

Database myDatabase = null;
try {
    DatabaseConfig dbConfig = new DatabaseConfig();
    dbConfig.setAllowCreate(true);
    dbConfig.setSortedDuplicates(true);
    myDatabase = 
        myDbEnv.openDatabase(null, 
                             "sampleDatabase", 
                             dbConfig); 
} catch (DatabaseException dbe) {
    // Exception handling goes here.
}

Administrative Methods

Both the Environment and Database classes provide methods that are useful for manipulating
databases. These methods are:

• Database.getDatabaseName()

Returns the database's name.

String dbName = myDatabase.getDatabaseName();

• Database.getEnvironment()

Returns the Environment that contains this database.

Environment theEnv = myDatabase.getEnvironment();

• Database.preload()

Preloads the database into the in-memory cache. Optionally takes a long that identifies the
maximum number of bytes to load into the cache. If this parameter is not supplied, the
maximum memory usage allowed by the evictor thread is used.

Page 73Getting Started with JE6/4/2008



myDatabase.preload(1048576l); // 1024*1024

• Environment.getDatabaseNames()

Returns a list of Strings of all the databases contained by the environment.

import java.util.List;
...
List myDbNames = myDbEnv.getDatabaseNames();
for(int i=0; i < myDbNames.size(); i++) {
    System.out.println("Database Name: " + (String)myDbNames.get(i));
}

• Environment.removeDatabase()

Deletes the database. The database must be closed when you perform this action on it.

String dbName = myDatabase.getDatabaseName();
myDatabase.close();
myDbEnv.removeDatabase(null, dbName);

• Environment.renameDatabase()

Renames the database. The database must be closed when you perform this action on it.

String oldName = myDatabase.getDatabaseName();   
String newName = new String(oldName + ".new", "UTF-8");
myDatabase.close();
myDbEnv.renameDatabase(null, oldName, newName);

• Environment.truncateDatabase()

Deletes every record in the database and optionally returns the number of records that were
deleted. Note that it is much less expensive to truncate a database without counting the
number of records deleted than it is to truncate and count.

int numDiscarded = 
    myEnv.truncate(null,                          // txn handle
                   myDatabase.getDatabaseName(),  // database name
                   true);                         // If true, then the 
                                                  // number of records 
                                                  // deleted are counted.
System.out.println("Discarded " + numDiscarded +
                   " records from database " + 
                   myDatabase.getDatabaseName()); 

Page 74Getting Started with JE6/4/2008



Database Example

In Database Environment Management Example (page 21) we created a class that manages an
Environment. We now extend that class to allow it to open and manage multiple databases.
Again, remember that you can find this class in:

JE_HOME/je/gettingStarted/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Example 7.1. Database Management with MyDbEnv

First, we need to import a few additional classes, and setup some global variables to support
databases. The databases that we are configuring and creating here are used by applications
developed in examples later in this guide.

// File MyDbEnv.java

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database; 
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;

import java.io.File;

public class MyDbEnv {

    private Environment myEnv;
private Database vendorDb;

    private Database inventoryDb;

    public MyDbEnv() {} 

Next we need to update the MyDbEnv.setup() method to instantiate a DatabaseConfig object.
We also need to set some properties on that object. These property values are determined by
the value of the readOnly parameter. We want our databases to be read-only if the environment
is also read-only. We also want to allow our databases to be created if the databases are not
read-only.

    public void setup(File envHome, boolean readOnly)
            throws DatabaseException {

        // Instantiate an environment and database configuration object
        EnvironmentConfig myEnvConfig = new EnvironmentConfig();

DatabaseConfig myDbConfig = new DatabaseConfig();
        // Configure the environment and databases for the read-only
        // state as identified by the readOnly parameter on this 

Page 75Getting Started with JE6/4/2008



        // method call.
        myEnvConfig.setReadOnly(readOnly);

myDbConfig.setReadOnly(readOnly);
        // If the environment is opened for write, then we want to be
        // able to create the environment and databases if 
        // they do not exist.
        myEnvConfig.setAllowCreate(!readOnly);

myDbConfig.setAllowCreate(!readOnly);

        // Instantiate the Environment. This opens it and also possibly
        // creates it.
        myEnv = new Environment(envHome, myEnvConfig);

// Now create and open our databases.
        vendorDb = myEnv.openDatabase(null,
                                       "VendorDB",
                                       myDbConfig); 

        inventoryDb = myEnv.openDatabase(null,
                                         "InventoryDB",
                                         myDbConfig);
    } 

Next we need some additional getter methods used to return our database handles.

     // Getter methods
    public Environment getEnvironment() {
        return myEnv;
    }

public Database getVendorDB() {
        return vendorDb;
    }

    public Database getInventoryDB() {
        return inventoryDb;
    }

Finally, we need to update the MyDbEnv.close() method to close our databases.

    // Close the environment
    public void close() {
        if (myEnv != null) {
            try {

vendorDb.close();
                inventoryDb.close();
                myEnv.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing MyDbEnv: " + 
                                    dbe.toString());

Page 76Getting Started with JE6/4/2008



                System.exit(-1);
            }
        }
    }
}

We can now use MyDbEnv to open and close both database environments and databases from
the appropriate place in our application. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;

import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {
    exampleDbEnv.setup(new File("/directory/currently/exists"), true);

Database vendorDb = exampleDbEnv.getVendorDB();
    Database inventoryDB = exampleDbEnv.getInventoryDB();

    ...

} catch(DatabaseException dbe) {
    // Error code goes here
} finally {
    exampleDbEnv.close();
} 

Page 77Getting Started with JE6/4/2008



Chapter 8. Database Records
JE records contain two parts — a key and some data. Both the key and its corresponding data
are encapsulated in DatabaseEntry class objects. Therefore, to access a JE record, you need
two such objects, one for the key and one for the data.

DatabaseEntry can hold any kind of data from simple Java primitive types to complex Java
objects so long as that data can be represented as a Java byte array. Note that due to
performance considerations, you should not use Java serialization to convert a Java object to
a byte array. Instead, use the Bind APIs to perform this conversion (see Using the BIND
APIs (page 84) for more information).

This chapter describes how you can convert both Java primitives and Java class objects into
and out of byte arrays. It also introduces storing and retrieving key/value pairs from a database.
In addition, this chapter describes how you can use comparators to influence how JE sorts its
database records.

Using Database Records

Each database record is comprised of two DatabaseEntry objects — one for the key and another
for the data. The key and data information are passed to- and returned from JE using
DatabaseEntry objects as byte arrays. Using DatabaseEntrys allows JE to change the underlying
byte array as well as return multiple values (that is, key and data). Therefore, using
DatabaseEntry instances is mostly an exercise in efficiently moving your keys and your data in
and out of byte arrays.

For example, to store a database record where both the key and the data are Java String
objects, you instantiate a pair of DatabaseEntry objects:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

String aKey = "key";
String aData = "data";

try {
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
} catch (Exception e) {
    // Exception handling goes here
}

    // Storing the record is described later in this chapter 

Notice that we specify UTF-8 when we retrieve the byte array from our String object.
Without parameters, String.getBytes() uses the Java system's default encoding. You☞

Page 78Getting Started with JE6/4/2008



should never use a system's default encoding when storing data in a database because the
encoding can change.

When the record is retrieved from the database, the method that you use to perform this
operation populates two DatabaseEntry instances for you, one for the key and another for the
data. Assuming Java String objects, you retrieve your data from the DatabaseEntry as follows:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

// theKey and theData are DatabaseEntry objects. Database
// retrieval is described later in this chapter. For now, 
// we assume some database get method has populated these
// objects for us.

// Use DatabaseEntry.getData() to retrieve the encapsulated Java
// byte array.

byte[] myKey = theKey.getData();
byte[] myData = theData.getData();

String key = new String(myKey, "UTF-8");
String data = new String(myData, "UTF-8"); 

There are a large number of mechanisms that you can use to move data in and out of byte
arrays. To help you with this activity, JE provides the bind APIs. These APIs allow you to
efficiently store both primitive data types and complex objects in byte arrays.

The next section describes basic database put and get operations. A basic understanding of
database access is useful when describing database storage of more complex data such as is
supported by the bind APIs. Basic bind API usage is then described in Using the BIND
APIs (page 84).

Page 79Getting Started with JE6/4/2008



Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight differences
in behavior depending on whether your database supports duplicate records. Two or more
database records are considered to be duplicates of one another if they share the same key.
The collection of records sharing the same key are called a duplicates set.

By default, JE databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are used to access all of the records in the duplicates set.

JE provides two basic mechanisms for the storage and retrieval of database key/data pairs:

• The Database.put() and Database.get() methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records. Cursors and their
database access methods are described in Using Cursors (page 108).

Writing Records to the Database

Database records are stored in the internal BTree based on whatever sorting routine is available
to the database. Records are sorted first by their key. If the database supports duplicate
records, then the records for a specific key are sorted by their data.

By default, JE sorts both keys and the data portion of duplicate records using unsigned
byte-by-byte lexicographic comparisons. This default comparison works well for the majority
of cases. However, in some case performance benefits can be realized by overriding the default
comparison routine. See Using Comparators (page 94) for more information.

You can use the following methods to put database records:

• Database.put()

Puts a database record into the database. If your database does not support duplicate records,
and if the provided key already exists in the database, then the currently existing record is
replaced with the new data.

• Database.putNoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided key
already exists in the database, then this method returns OperationStatus.KEYEXIST even if
the database supports duplicates.

Page 80Getting Started with JE6/4/2008



• Database.putNoDupData()

Puts a database record into the database. If the provided key and data already exists in the
database (that is, if you are attempting to put a record that compares equally to an existing
record), then this returns OperationStatus.KEYEXIST.

When you put database records, you provide both the key and the data as DatabaseEntry
objects. This means you must convert your key and data into a Java byte array. For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;

...

// Environment and database opens omitted for clarity.
// Environment and database must NOT be opened read-only.

String aKey = "myFirstKey";
String aData = "myFirstData";

try {
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
    myDatabase.put(null, theKey, theData);
} catch (Exception e) {
    // Exception handling goes here
} 

Getting Records from the Database

The Database class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever return
the first record in a duplicate set. For this reason, if your database supports duplicates, you
should use a cursor to retrieve records from it. Cursors are described in Using Cursors (page 108).

You can use either of the following methods to retrieve records from the database:

• Database.get()

Retrieves the record whose key matches the key provided to the method. If no records exists
that uses the provided key, then OperationStatus.NOTFOUND is returned.

Page 81Getting Started with JE6/4/2008



• Database.getSearchBoth()

Retrieve the record whose key matches both the key and the data provided to the method.
If no record exists that uses the provided key and data, then OperationStatus.NOTFOUND is
returned.

Both the key and data for a database record are returned as byte arrays in DatabaseEntry
objects. These objects are passed as parameter values to the Database.get() method.

In order to retrieve your data once Database.get() has completed, you must retrieve the byte
array stored in the DatabaseEntry and then convert that byte array back to the appropriate
datatype. For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

// Environment and database opens omitted for clarity.
// Environment and database may be opened read-only.  

String aKey = "myFirstKey";

try {
    // Create a pair of DatabaseEntry objects. theKey
    // is used to perform the search. theData is used
    // to store the data returned by the get() operation.
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry();

    // Perform the get.
    if (myDatabase.get(null, theKey, theData, LockMode.DEFAULT) ==
        OperationStatus.SUCCESS) {

        // Recreate the data String.
        byte[] retData = theData.getData();
        String foundData = new String(retData, "UTF-8");
        System.out.println("For key: '" + aKey + "' found data: '" + 
                            foundData + "'.");
    } else {
        System.out.println("No record found for key '" + aKey + "'.");
    } 
} catch (Exception e) {
    // Exception handling goes here
}

Page 82Getting Started with JE6/4/2008



Deleting Records

You can use the Database.delete() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key are
deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are described
in Using Cursors (page 108).

You can also delete every record in the database by using Environment.truncateDatabase().

For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;

...

// Environment and database opens omitted for clarity.
// Environment and database can NOT be opened read-only.  

try {
    String aKey = "myFirstKey";
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

    // Perform the deletion. All records that use this key are
    // deleted.
    myDatabase.delete(null, theKey); 
} catch (Exception e) {
    // Exception handling goes here
}

Data Persistence

When you perform a database modification, your modification is made in the in-memory cache.
This means that your data modifications are not necessarily flushed to disk, and so your data
may not appear in the database after an application restart.

Therefore, if you care if your data is durable across system failures, and to guard against the
rare possibility of database corruption, you should use transactions to protect your database
modifications. Every time you commit a transaction, JE ensures that the data will not be lost
due to application or system failure. Transaction usage is described in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for example,
you are using JE to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some guarantee
that your database modifications are persistent, then you should periodically run environment

Page 83Getting Started with JE6/4/2008



syncs. Syncs cause any dirty entries in the in-memory cache and the operating system's file
cache to be written to disk. As such, they are quite expensive and you should use them sparingly.

Note that by default, a sync is run every time you close an environment. You can also run a
sync by calling the Environment.sync() method.

For a brief description of how JE manages its data in the cache and in the log files, and how
sync works, see Databases and Log Files (page 147).

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte arrays
for storage in a database can be a nontrivial operation. To help you with this problem, JE
provides the Bind APIs. While these APIs are described in detail in the Berkeley DB Java Edition
Collections Tutorial, this section provides a brief introduction to using the Bind APIs with:

• Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Double, or
String.

• Complex objects that implement Java serialization.

Use this if you are storing objects that implement Serializable and if you do not need to
sort them.

• Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your own
custom tuple bindings. Note that you should use custom tuple bindings even if your objects
are serializable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a DatabaseEntry object. That is, you can
store a single field containing one of the following types:

• String

• Character

• Boolean

• Byte

• Short

• Integer

• Long

Page 84Getting Started with JE6/4/2008



• Float

• Double

To store primitive data using the Bind APIs:

1. Create an EntryBinding object.

When you do this, you use TupleBinding.getPrimitiveBinding() to return an appropriate
binding for the conversion.

2. Use the EntryBinding object to place the numerical object on the DatabaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever manner
you wish. For example:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

// Need a key for the put.
try {
    String aKey = "myLong";
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));    

    // Now build the DatabaseEntry using a TupleBinding
    Long myLong = new Long(123456789l);
    DatabaseEntry theData = new DatabaseEntry();
    EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);
    myBinding.objectToEntry(myLong, theData);

    // Now store it
    myDatabase.put(null, theKey, theData);
} catch (Exception e) {
    // Exception handling goes here
}

Retrieval from the DatabaseEntry object is performed in much the same way:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;

Page 85Getting Started with JE6/4/2008



import com.sleepycat.je.OperationStatus;

...

Database myDatabase = null;
// Database open omitted for clarity

try {
    // Need a key for the get
    String aKey = "myLong";
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

    // Need a DatabaseEntry to hold the associated data.
    DatabaseEntry theData = new DatabaseEntry();

    // Bindings need only be created once for a given scope
    EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);

    // Get it
    OperationStatus retVal = myDatabase.get(null, theKey, theData, 
                                            LockMode.DEFAULT);
    String retKey = null;
    if (retVal == OperationStatus.SUCCESS) {
        // Recreate the data.
        // Use the binding to convert the byte array contained in theData
        // to a Long type.
        Long theLong = (Long) myBinding.entryToObject(theData);
        retKey = new String(theKey.getData(), "UTF-8");
        System.out.println("For key: '" + retKey + "' found Long: '" + 
                            theLong + "'.");
    } else {
        System.out.println("No record found for key '" + retKey + "'.");
    }
} catch (Exception e) {
    // Exception handling goes here
} 

Serializable Complex Objects

Frequently your application requires you to store and manage objects for your record data
and/or keys. You may need to do this if you are caching objects created by another process.
You may also want to do this if you want to store multiple data values on a record. When used
with just primitive data, or with objects containing a single data member, JE database records
effectively represent a single row in a two-column table. By storing a complex object in the
record, you can turn each record into a single row in an n-column table, where n is the number
of data members contained by the stored object(s).

In order to store objects in a JE database, you must convert them to and from a byte array.
The first instinct for many Java programmers is to do this using Java serialization. While this

Page 86Getting Started with JE6/4/2008



is functionally a correct solution, the result is poor space-performance because this causes the
class information to be stored on every such database record. This information can be quite
large and it is redundant — the class information does not vary for serialized objects of the
same type.

In other words, directly using serialization to place your objects into byte arrays means that
you will be storing a great deal of unnecessary information in your database, which ultimately
leads to larger databases and more expensive disk I/O.

The easiest way for you to solve this problem is to use the Bind APIs to perform the serialization
for you. Doing so causes the extra object information to be saved off to a unique Database
dedicated for that purpose. This means that you do not have to duplicate that information on
each record in the Database that your application is using to store its information.

Note that when you use the Bind APIs to perform serialization, you still receive all the benefits
of serialization. You can still use arbitrarily complex object graphs, and you still receive built-in
class evolution through the serialVersionUID (SUID) scheme. All of the Java serialization rules
apply without modification. For example, you can implement Externalizable instead of
Serializable.

Usage Caveats

Before using the Bind APIs to perform serialization, you may want to consider writing your own
custom tuple bindings. Specifically, avoid serialization if:

• If you need to sort based on the objects your are storing. The sort order is meaningless for
the byte arrays that you obtain through serialization. Consequently, you should not use
serialization for keys if you care about their sort order. You should also not use serialization
for record data if your Database supports duplicate records and you care about sort order.

• You want to minimize the size of your byte arrays. Even when using the Bind APIs to perform
the serialization the resulting byte array may be larger than necessary. You can achieve
more compact results by building your own custom tuple binding.

• You want to optimize for speed. In general, custom tuple bindings are faster than serialization
at moving data in and out of byte arrays.

• You are using custom comparators. In JE, comparators are instantiated and called internally
whenever databases are not accessible. Because serial bindings depend on the class catalog,
a serial binding binding cannot be used during these times. As a result, attempting to use a
serial binding with a custom comparator will result in a NullPointerException during
environment open or close.

For information on building your own custom tuple binding, see Custom Tuple Bindings (page 91).

Serializing Objects

To store a serializable complex object using the Bind APIs:

1. Implement java.io.Serializable in the class whose instances that you want to store.

Page 87Getting Started with JE6/4/2008



2. Open (create) your databases. You need two. The first is the database that you use to store
your data. The second is used to store the class information.

3. Instantiate a class catalog. You do this with com.sleepycat.bind.serial.StoredClassCatalog,
and at that time you must provide a handle to an open database that is used to store the
class information.

4. Create an entry binding that uses com.sleepycat.bind.serial.SerialBinding.

5. Instantiate an instance of the object that you want to store, and place it in a DatabaseEntry
using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data. Then
you might create a class that looks something like this:

package je.gettingStarted;    

import java.io.Serializable;

public class MyData implements Serializable {
    private long longData;
    private double doubleData;
    private String description;

    MyData() {
        longData = 0;
        doubleData = 0.0;
        description = null;
    }

    public void setLong(long data) {
        longData = data;
    }

    public void setDouble(double data) {
        doubleData = data;
    }

    public void setDescription(String data) {
        description = data;
    }

    public long getLong() {
        return longData;
    }

    public double getDouble() {
        return doubleData;
    }

Page 88Getting Started with JE6/4/2008



    public String getDescription() {
        return description;
    }
}

You can then store instances of this class as follows:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;

...

// The key data.
String aKey = "myData";

// The data data
MyData data2Store = new MyData();
data2Store.setLong(123456789l);
data2Store.setDouble(1234.9876543);
data2Store.setDescription("A test instance of this class");

try {
    // Environment open omitted for brevity

    // Open the database that you will use to store your data
    DatabaseConfig myDbConfig = new DatabaseConfig();
    myDbConfig.setAllowCreate(true);
    myDbConfig.setSortedDuplicates(true);
    Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

    // Open the database that you use to store your class information.
    // The db used to store class information does not require duplicates
    // support.
    myDbConfig.setSortedDuplicates(false);
    Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig); 

    // Instantiate the class catalog
    StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

    // Create the binding
    EntryBinding dataBinding = new SerialBinding(classCatalog, 
                                                 MyData.class);

Page 89Getting Started with JE6/4/2008



    // Create the DatabaseEntry for the key
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

    // Create the DatabaseEntry for the data. Use the EntryBinding object
    // that was just created to populate the DatabaseEntry
    DatabaseEntry theData = new DatabaseEntry();
    dataBinding.objectToEntry(data2Store, theData);

    // Put it as normal
    myDatabase.put(null, theKey, theData);

    // Database and environment close omitted for brevity 
} catch (Exception e) {
    // Exception handling goes here
}

Deserializing Objects

Once an object is stored in the database, you can retrieve the MyData objects from the retrieved
DatabaseEntry using the Bind APIs in much the same way as is described above. For example:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;

...

// The key data.
String aKey = "myData";

try {
    // Environment open omitted for brevity.

    // Open the database that stores your data
    DatabaseConfig myDbConfig = new DatabaseConfig();
    myDbConfig.setAllowCreate(false);
    Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

    // Open the database that stores your class information.
    Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig); 

Page 90Getting Started with JE6/4/2008



    // Instantiate the class catalog
    StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

    // Create the binding
    EntryBinding dataBinding = new SerialBinding(classCatalog, 
                                                 MyData.class);

    // Create DatabaseEntry objects for the key and data
    DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry();

    // Do the get as normal
    myDatabase.get(null, theKey, theData, LockMode.DEFAULT);

    // Recreate the MyData object from the retrieved DatabaseEntry using
    // the EntryBinding created above
    MyData retrievedData = (MyData) dataBinding.entryToObject(theData);

    // Database and environment close omitted for brevity
} catch (Exception e) {
    // Exception handling goes here
}

Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings to do
this. While they are more work to write and maintain than if you were to use serialization, the
byte array conversion is faster. In addition, custom tuple bindings should allow you to create
byte arrays that are smaller than those created by serialization. Custom tuple bindings also
allow you to optimize your BTree comparisons, whereas serialization does not.

For information on using serialization to store complex objects, see Serializable Complex
Objects (page 86).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not have to
implement the Serializable interface.

2. Write a tuple binding using the com.sleepycat.bind.tuple.TupleBinding class.

3. Open (create) your database. Unlike serialization, you only need one.

4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a DatabaseEntry
using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

Page 91Getting Started with JE6/4/2008



package je.gettingStarted;

public class MyData2 {
    private long longData;
    private Double doubleData;
    private String description;

    public MyData2() {
        longData = 0;
        doubleData = new Double(0.0);
        description = "";
    }

    public void setLong(long data) {
        longData = data;
    }

    public void setDouble(Double data) {
        doubleData = data;
    }

    public void setString(String data) {
        description = data;
    }

    public long getLong() {
        return longData;
    }

    public Double getDouble() {
        return doubleData;
    }

    public String getString() {
        return description;
    }
} 

In this case, you need to write a tuple binding for the MyData2 class. When you do this, you
must implement the TupleBinding.objectToEntry()and TupleBinding.entryToObject()abstract
methods. Remember the following as you implement these methods:

• You use TupleBinding.objectToEntry() to convert objects to byte arrays. You use
com.sleepycat.bind.tuple.TupleOutput to write primitive data types to the byte array. Note
that TupleOutput provides methods that allows you to work with numerical types (long,
double, int, and so forth) and not the corresponding java.lang numerical classes.

• The order that you write data to the byte array in TupleBinding.objectToEntry() is the
order that it appears in the array. So given the MyData2 class as an example, if you write

Page 92Getting Started with JE6/4/2008



description, doubleData, and then longData, then the resulting byte array will contain these
data elements in that order. This means that your records will sort based on the value of
the description data member and then the doubleData member, and so forth. If you prefer
to sort based on, say, the longData data member, write it to the byte array first.

• You use TupleBinding.entryToObject() to convert the byte array back into an instance of
your original class. You use com.sleepycat.bind.tuple.TupleInput to get data from the byte
array.

• The order that you read data from the byte array must be exactly the same as the order in
which it was written.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class MyTupleBinding extends TupleBinding {

    // Write a MyData2 object to a TupleOutput
    public void objectToEntry(Object object, TupleOutput to) {

        MyData2 myData = (MyData2)object;

        // Write the data to the TupleOutput (a DatabaseEntry).
        // Order is important. The first data written will be
        // the first bytes used by the default comparison routines.
        to.writeDouble(myData.getDouble().doubleValue());
        to.writeLong(myData.getLong());
        to.writeString(myData.getString());
    }

    // Convert a TupleInput to a MyData2 object
    public Object entryToObject(TupleInput ti) {

        // Data must be read in the same order that it was
        // originally written.
        Double theDouble = new Double(ti.readDouble());
        long theLong = ti.readLong();
        String theString = ti.readString();

        MyData2 myData = new MyData2();
        myData.setDouble(theDouble);
        myData.setLong(theLong);
        myData.setString(theString);

        return myData;

Page 93Getting Started with JE6/4/2008



    }
} 

In order to use the tuple binding, instantiate the binding and then use:

• MyTupleBinding.objectToEntry() to convert a MyData2 object to a DatabaseEntry.

• MyTupleBinding.entryToObject() to convert a DatabaseEntry to a MyData2 object.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

TupleBinding keyBinding = new MyTupleBinding();

MyData2 theKeyData = new MyData2();
theKeyData.setLong(123456789l);
theKeyData.setDouble(new Double(12345.6789));
theKeyData.setString("My key data");

DatabaseEntry myKey = new DatabaseEntry();

try {
    // Store theKeyData in the DatabaseEntry
    keyBinding.objectToEntry(theKeyData, myKey);

    ...
    // Database put and get activity omitted for clarity
    ...

    // Retrieve the key data
    theKeyData = (MyData2) keyBinding.entryToObject(myKey);
} catch (Exception e) {
    // Exception handling goes here
}

Using Comparators

Internally, JE databases are organized as BTrees. This means that most database operations
(inserts, deletes, reads, and so forth) involve BTree node comparisons. This comparison most
frequently occurs based on database keys, but if your database supports duplicate records then
comparisons can also occur based on the database data.

By default, JE performs all such comparisons using a byte-by-byte lexicographic comparison.
This mechanism works well for most data. However, in some cases you may need to specify

Page 94Getting Started with JE6/4/2008



your own comparison routine. One frequent reason for this is to perform a language sensitive
lexical ordering of string keys.

Writing Comparators

You override the default comparison function by providing a Java Comparator class to the
database. The Java Comparator interface requires you to implement the Comparator.compare()
method (see http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

JE passes your Comparator.compare() method the byte arrays that you stored in the database.
If you know how your data is organized in the byte array, then you can write a comparison
routine that directly examines the contents of the arrays. Otherwise, you have to reconstruct
your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses String.compareTo(),
which performs a Unicode comparison of two strings (note that for single-byte roman characters,
Unicode comparison and UTF-8 byte-by-byte comparisons are identical – this is something you
would only want to do if you were using multibyte unicode characters with JE). In this case,
your comparator would look like the following:

package je.gettingStarted;

import java.util.Comparator;

public class MyDataComparator implements Comparator {

    public MyDataComparator() {}

    public int compare(Object d1, Object d2) {

        byte[] b1 = (byte[])d1;
        byte[] b2 = (byte[])d2;

        String s1 = new String(b1, "UTF-8");
        String s2 = new String(b2, "UTF-8");
        return s1.compareTo(s2);
    }
} 

Setting Comparators

You specify a Comparator using the following methods. Note that by default these methods can
only be used at database creation time, and they are ignored for normal database opens. Also,
note that JE uses the no-argument constructor for these comparators. Further, it is not allowable
for there to be a mutable state in these comparators or else unpredictable results will occur.

• DatabaseConfig.setBtreeComparator()

Sets the Java Comparator class used to compare two keys in the database.

Page 95Getting Started with JE6/4/2008

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html


• DatabaseConfig.setDuplicateComparator()

Sets the Java Comparator class used to compare the data on two duplicate records in the
database. This comparator is used only if the database supports duplicate records.

You can use the above methods to set a database's comparator after database creation time
if you explicitly indicate that the comparator is to be overridden. You do this by using the
following methods:

If you override your comparator, the new comparator must preserve the sort order
implemented by your original comparator. That is, the new comparator and the old☞
comparator must return the same value for the comparison of any two valid objects. Failure
to observe this constraint will cause unpredictable results for your application.

If you want to change the fundamental sort order for your database, back up the contents
of the database, delete the database, recreate it, and then reload its data.

• DatabaseConfig.setOverrideBtreeComparator()

If set to true, causes the database's Btree comparator to be overridden with the Comparator
specified on DatabaseConfig.setBtreeComparator(). This method can be used to change the
comparator post-environment creation.

• DatabaseConfig.setOverrideDuplicateComparator()

If set to true, causes the database's duplicates comparator to be overridden with the
Comparator specified on DatabaseConfig.setDuplicateComparator().

For example, to use the Comparator described in the previous section:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;

import java.util.Comparator;    

...

// Environment open omitted for brevity

try {
    // Get the database configuration object
    DatabaseConfig myDbConfig = new DatabaseConfig();
    myDbConfig.setAllowCreate(true);

    // Set the duplicate comparator class
    myDbConfig.setDuplicateComparator(MyDataComparator.class);

Page 96Getting Started with JE6/4/2008



    // Open the database that you will use to store your data
    myDbConfig.setSortedDuplicates(true);
    Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig); 
} catch (DatabaseException dbe) {
    // Exception handling goes here
}

Database Record Example

In Database Example (page 75), we created MyDbEnv, a class that manages DatabaseEnvironment
and Database opens and closes. We will now write an application that takes advantage of this
class to open databases, put a series of records in them, and then close the databases and
environment.

Remember that all of the classes and programs presented here can be found in the following
directory:

JE_HOME/examples/je/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Note that in this example, we are going to save two types of information. First there are a
series of inventory records that identify information about some food items (fruits, vegetables,
and desserts). These records identify particulars about each item such as the vendor that the
item can be obtained from, how much the vendor has in stock, the price per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and phone
number, the sales representative's name and his phone number, and so forth.

Example 8.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because this
class is not serializable, we need a custom tuple binding in order to place it on a DatabaseEntry
object. Because the TupleInput and TupleOutput classes used by custom tuple bindings support
Java numerical types and not Java numerical classes, we use int and float here instead of
the corresponding Integer and Float classes.

// File Inventory.java
package je.gettingStarted;

public class Inventory {

    private String sku;
    private String itemName;
    private String category;
    private String vendor;
    private int vendorInventory;
    private float vendorPrice;

    public void setSku(String data) {

Page 97Getting Started with JE6/4/2008



            sku = data;
    }

    public void setItemName(String data) {
            itemName = data;
    }

    public void setCategory(String data) {
            category = data;
    }

    public void setVendorInventory(int data) {
            vendorInventory = data;
    }

    public void setVendor(String data) {
            vendor = data;
    }

    public void setVendorPrice(float data) {
            vendorPrice = data;
    }

    public String getSku() { return sku; }
    public String getItemName() { return itemName; }
    public String getCategory() { return category; }
    public int getVendorInventory() { return vendorInventory; }
    public String getVendor() { return vendor; }
    public float getVendorPrice() { return vendorPrice; }

} 

Example 8.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we are
using serialization with this class simply to demonstrate serializing a class instance.

// File Vendor.java
package je.gettingStarted;

import java.io.Serializable;

public class Vendor implements Serializable {

    private String repName;
    private String address;
    private String city;
    private String state;
    private String zipcode;

Page 98Getting Started with JE6/4/2008



    private String bizPhoneNumber;
    private String repPhoneNumber;
    private String vendor;

    public void setRepName(String data) {
        repName = data;
    }

    public void setAddress(String data) {
        address = data;
    }

    public void setCity(String data) {
        city = data;
    }

    public void setState(String data) {
        state = data;
    }

    public void setZipcode(String data) {
        zipcode = data;
    }

    public void setBusinessPhoneNumber(String data) {
        bizPhoneNumber = data;
    }

    public void setRepPhoneNumber(String data) {
        repPhoneNumber = data;
    }

    public void setVendorName(String data) {
        vendor = data;
    }

    ...
    // Corresponding getter methods omitted for brevity.
    // See examples/je/gettingStarted/Vendor.java
    // for a complete implementation of this class.

} 

Because we will not be using serialization to convert our Inventory objects to a DatabaseEntry
object, we need a custom tuple binding:

Page 99Getting Started with JE6/4/2008



Example 8.3. InventoryBinding.java

// File InventoryBinding.java
package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class InventoryBinding extends TupleBinding {

    // Implement this abstract method. Used to convert
    // a DatabaseEntry to an Inventory object.
    public Object entryToObject(TupleInput ti) {

        String sku = ti.readString();
        String itemName = ti.readString();
        String category = ti.readString();
        String vendor = ti.readString();
        int vendorInventory = ti.readInt();
        float vendorPrice = ti.readFloat();

        Inventory inventory = new Inventory();
        inventory.setSku(sku);
        inventory.setItemName(itemName);
        inventory.setCategory(category);
        inventory.setVendor(vendor);
        inventory.setVendorInventory(vendorInventory);
        inventory.setVendorPrice(vendorPrice);

        return inventory;
    }

    // Implement this abstract method. Used to convert a
    // Inventory object to a DatabaseEntry object.
    public void objectToEntry(Object object, TupleOutput to) {

        Inventory inventory = (Inventory)object;

        to.writeString(inventory.getSku());
        to.writeString(inventory.getItemName());
        to.writeString(inventory.getCategory());
        to.writeString(inventory.getVendor());
        to.writeInt(inventory.getVendorInventory());
        to.writeFloat(inventory.getVendorPrice());
    }
} 

Page 100Getting Started with JE6/4/2008



In order to store the data identified above, we write the ExampleDatabasePut application. This
application loads the inventory and vendor databases for you.

Inventory information is stored in a Database dedicated for that purpose. The key for each such
record is a product SKU. The inventory data stored in this database are objects of the Inventory
class (see Inventory.java (page 97) for more information). ExampleDatabasePut loads the
inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.

2. Uses java.lang.String to create a key based on the item's SKU.

3. Uses an Inventory class instance for the record data. This object is stored on a DatabaseEntry
object using InventoryBinding, a custom tuple binding that we implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Database dedicated for that purpose. The vendor data
stored in this database are objects of the Vendor class (see Vendor.java (page 98) for more
information). To load this Database, ExampleDatabasePut does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.

2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a DatabaseEntry
object using com.sleepycat.bind.serial.SerialBinding.

Example 8.4. Stored Class Catalog Management with MyDbEnv

Before we can write ExampleDatabasePut, we need to update MyDbEnv.java to support the class
catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:

// File MyDbEnv.java
package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;

import java.io.File;

import com.sleepycat.bind.serial.StoredClassCatalog;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

Page 101Getting Started with JE6/4/2008



public class MyDbEnv {

    private Environment myEnv;
    private Database vendorDb;
    private Database inventoryDb;

private Database classCatalogDb;

    // Needed for object serialization
    private StoredClassCatalog classCatalog;

    public MyDbEnv() {} 

Next we need to update the MyDbEnv.setup() method to open the class catalog database and
create the class catalog.

    public void setup(File envHome, boolean readOnly)
            throws DatabaseException {

        ...
        // Database and environment configuration omitted for brevity
        ...

        // Instantiate the Environment. This opens it and also possibly
        // creates it.
        myEnv = new Environment(envHome, myEnvConfig);

        // Now create and open our databases.
        vendorDb = myEnv.openDatabase(null, "VendorDB", myDbConfig);

        inventoryDb = myEnv.openDatabase(null, "InventoryDB", myDbConfig);

// Open the class catalog db. This is used to
        // optimize class serialization.
        classCatalogDb =
            myEnv.openDatabase(null,
                               "ClassCatalogDB",
                               myDbConfig);

        // Create our class catalog
        classCatalog = new StoredClassCatalog(classCatalogDb);
    } 

Next we need a getter method to return the class catalog. Note that we do not provide a getter
for the catalog database itself – our application has no need for that.

// Getter methods
    public Environment getEnvironment() {
        return myEnv;
    }

Page 102Getting Started with JE6/4/2008



    public Database getVendorDB() {
        return vendorDb;
    }

    public Database getInventoryDB() {
        return inventoryDb;
    }

public StoredClassCatalog getClassCatalog() {
        return classCatalog;
    }

Finally, we need to update the MyDbEnv.close() method to close the class catalog database.

    // Close the environment
    public void close() {
        if (myEnv != null) {
            try {
                vendorDb.close();
                inventoryDb.close();

classCatalogDb.close()
                myEnv.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing MyDbEnv: " +
                                    dbe.toString());
                System.exit(-1);
            }
        }
    }
}

So far we have identified the data that we want to store in our databases and how we will
convert that data in and out of DatabaseEntry objects for database storage. We have also
updated MyDbEnv to manage our databases for us. Now we write ExampleDatabasePut to actually
put the inventory and vendor data into their respective databases. Because of the work that
we have done so far, this application is actually fairly simple to write.

Example 8.5. ExampleDatabasePut.java

First we need the usual series of import statements:

//File ExampleDatabasePut.java
package je.gettingStarted;

// Bind classes used to move class objects in an out of byte arrays.
import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

// Standard JE database imports

Page 103Getting Started with JE6/4/2008



import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;

// Most of this is used for loading data from a text file for storage
// in the databases.
import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

Next comes the class declaration and the private data members that we need for this class.
Most of these are setting up default values for the program.

Note that two DatabaseEntry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a MyDbEnv object is instantiated here. We
can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbEnv (page 101) for its implementation details.

Finally, the inventory.txt and vendors.txt file can be found in the GettingStarted examples
directory along with the classes described in this extended example.

public class ExampleDatabasePut {

    private static File myDbEnvPath = new File("/tmp/JEDB");
    private static File inventoryFile = new File("./inventory.txt");
    private static File vendorsFile = new File("./vendors.txt");

    // DatabaseEntries used for loading records
    private static DatabaseEntry theKey = new DatabaseEntry();
    private static DatabaseEntry theData = new DatabaseEntry();

    // Encapsulates the environment and databases.
    private static MyDbEnv myDbEnv = new MyDbEnv();

Next comes the usage() and main() methods. Notice the exception handling in the main()
method. This is the only place in the application where we catch exceptions. For this reason,
we must catch DatabaseException which is thrown by the com.sleepycat.je.* classes.

Also notice the call to MyDbEnv.close() in the finally block. This is the only place in the
application where MyDbEnv.close() is called. MyDbEnv.close() is responsible for closing the
Environment and all open Database handles for you.

    private static void usage() {
        System.out.println("ExampleDatabasePut [-h <env directory>]");
        System.out.println("    [-s <selections file>] [-v <vendors file>]");
        System.exit(-1);

Page 104Getting Started with JE6/4/2008



    }

    public static void main(String args[]) {
        ExampleDatabasePut edp = new ExampleDatabasePut();
        try {
            edp.run(args);
        } catch (DatabaseException dbe) {
            System.err.println("ExampleDatabasePut: " + dbe.toString());
            dbe.printStackTrace();
        } catch (Exception e) {
            System.err.println("Exception: " + e.toString());
            e.printStackTrace();
        } finally {
            myDbEnv.close();
        }
        System.out.println("All done.");
    } 

Next we write the ExampleDatabasePut.run() method. This method is responsible for initializing
all objects. Because our environment and databases are all opened using the MyDbEnv.setup()
method, ExampleDatabasePut.run() method is only responsible for calling MyDbEnv.setup()
and then calling the ExampleDatabasePut methods that actually load the databases.

    private void run(String args[]) throws DatabaseException {
        // Parse the arguments list
        parseArgs(args);

        myDbEnv.setup(myDbEnvPath, // path to the environment home
                      false);      // is this environment read-only?

        System.out.println("loading vendors db.");
        loadVendorsDb();
        System.out.println("loading inventory db.");
        loadInventoryDb();
    } 

This next method loads the vendor database. This method uses serialization to convert the
Vendor object to a DatabaseEntry object.

   private void loadVendorsDb() 
            throws DatabaseException {

        // loadFile opens a flat-text file that contains our data
        // and loads it into a list for us to work with. The integer
        // parameter represents the number of fields expected in the
        // file.
        List<String[]> vendors = loadFile(vendorsFile, 8);

        // Now load the data into the database. The vendor's name is the
        // key, and the data is a Vendor class object.

Page 105Getting Started with JE6/4/2008



        // Need a serial binding for the data
        EntryBinding dataBinding =
            new SerialBinding(myDbEnv.getClassCatalog(), Vendor.class);

        for (int i = 0; i < vendors.size(); i++) {
            String[] sArray = vendors.get(i);
            Vendor theVendor = new Vendor();
            theVendor.setVendorName(sArray[0]);
            theVendor.setAddress(sArray[1]);
            theVendor.setCity(sArray[2]);
            theVendor.setState(sArray[3]);
            theVendor.setZipcode(sArray[4]);
            theVendor.setBusinessPhoneNumber(sArray[5]);
            theVendor.setRepName(sArray[6]);
            theVendor.setRepPhoneNumber(sArray[7]);

            // The key is the vendor's name.
            // ASSUMES THE VENDOR'S NAME IS UNIQUE!
            String vendorName = theVendor.getVendorName();
            try {
                theKey = new DatabaseEntry(vendorName.getBytes("UTF-8"));
            } catch (IOException willNeverOccur) {}

            // Convert the Vendor object to a DatabaseEntry object
            // using our SerialBinding
            dataBinding.objectToEntry(theVendor, theData);

            // Put it in the database. These puts are transactionally
            // protected (we're using autocommit).
            myDbEnv.getVendorDB().put(null, theKey, theData);
        }
    } 

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 100)) to convert the Inventory object to a DatabaseEntry object.

    private void loadInventoryDb() 
        throws DatabaseException {

        // loadFile opens a flat-text file that contains our data
        // and loads it into a list for us to work with. The integer
        // parameter represents the number of fields expected in the
        // file.
        List<String[]> inventoryArray = loadFile(inventoryFile, 6);

        // Now load the data into the database. The item's sku is the
        // key, and the data is an Inventory class object.

Page 106Getting Started with JE6/4/2008



        // Need a tuple binding for the Inventory class.
        TupleBinding inventoryBinding = new InventoryBinding();

        for (int i = 0; i < inventoryArray.size(); i++) {
            String[] sArray = inventoryArray.get(i);
            String sku = sArray[1];
            try {
                theKey = new DatabaseEntry(sku.getBytes("UTF-8"));
            } catch (IOException willNeverOccur) {}

            Inventory theInventory = new Inventory();
            theInventory.setItemName(sArray[0]);
            theInventory.setSku(sArray[1]);
            theInventory.setVendorPrice((new Float(sArray[2])).floatValue());
            theInventory.setVendorInventory(
                            (new Integer(sArray[3])).intValue());
            theInventory.setCategory(sArray[4]);
            theInventory.setVendor(sArray[5]);

            // Place the Vendor object on the DatabaseEntry object using our
            // the tuple binding we implemented in InventoryBinding.java
            inventoryBinding.objectToEntry(theInventory, theData);

            // Put it in the database.
            myDbEnv.getInventoryDB().put(null, theKey, theData);

        }
    }

The remainder of this application provides utility methods to read a flat text file into an array
of strings and parse the command line options. From the perspective of this document, these
things are relatively uninteresting. You can see how they are implemented by looking at:

JE_HOME/examples/je/gettingStarted/ExampleDataPut.java 

where JE_HOME is the location where you placed your JE distribution.

    private static void parseArgs(String args[]) {
        // Implementation omitted for brevity.
    }

    private List loadFile(File theFile, int numFields) {
        List<String[]> records = new ArrayList<String[]>();
        // Implementation omitted for brevity.
        return records;
    }

    protected ExampleDatabasePut() {}
} 

Page 107Getting Started with JE6/4/2008



Chapter 9. Using Cursors
Cursors provide a mechanism by which you can iterate over the records in a database. Using
cursors, you can get, put, and delete database records. If a database allows duplicate records,
then cursors are the only mechanism by which you can access anything other than the first
duplicate for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them to
modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Database.openCursor() method. When you open a
cursor, you can optionally pass it a CursorConfig object to set cursor properties. The cursor
properties that you can set allows you to determine whether the cursor will perform committed
or uncommitted reads. See the Berkeley DB Java Edition Getting Started with Transaction
Processing guide for more information.

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;

import java.io.File;

...
Environment myDbEnvironment = null;
Database myDatabase = null;
Cursor myCursor = null;

try {
    myDbEnvironment = new Environment(new File("/export/dbEnv"), null);
    myDatabase = myDbEnvironment.openDatabase(null, "myDB", null);

    myCursor = myDatabase.openCursor(null, null);
} catch (DatabaseException dbe) {
    // Exception handling goes here ...
}

To close the cursor, call the Cursor.close() method. Note that if you close a database that
has cursors open in it, then it will throw an exception and close any open cursors for you. For
best results, close your cursors from within a finally block.

Page 108Getting Started with JE6/4/2008



package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;

...
try {
    ...
} catch ... {
} finally {
    try {
        if (myCursor != null) {
            myCursor.close();
        }

        if (myDatabase != null) {
            myDatabase.close();
        }

        if (myDbEnvironment != null) {
            myDbEnvironment.close();
        }
    } catch(DatabaseException dbe) {
        System.err.println("Error in close: " + dbe.toString());
    }
} 

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor and
then use the Cursor.getNext() method. For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;  
import com.sleepycat.je.OperationStatus; 

...

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...

Page 109Getting Started with JE6/4/2008



    // Open the cursor. 
    cursor = myDatabase.openCursor(null, null);

    // Cursors need a pair of DatabaseEntry objects to operate. These hold
    // the key and data found at any given position in the database.
    DatabaseEntry foundKey = new DatabaseEntry();
    DatabaseEntry foundData = new DatabaseEntry();

    // To iterate, just call getNext() until the last database record has been 
    // read. All cursor operations return an OperationStatus, so just read 
    // until we no longer see OperationStatus.SUCCESS
    while (cursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
        OperationStatus.SUCCESS) {
        // getData() on the DatabaseEntry objects returns the byte array
        // held by that object. We use this to get a String value. If the
        // DatabaseEntry held a byte array representation of some other data
        // type (such as a complex object) then this operation would look 
        // considerably different.
        String keyString = new String(foundKey.getData(), "UTF-8");
        String dataString = new String(foundData.getData(), "UTF-8");
        System.out.println("Key | Data : " + keyString + " | " + 
                       dataString + "");
    }
} catch (DatabaseException de) {
    System.err.println("Error accessing database." + de);
} finally {
    // Cursors must be closed.
    cursor.close();
}

To iterate over the database from the last record to the first, instantiate the cursor, and then
use Cursor.getPrev() until you read the first record in the database. For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;  
import com.sleepycat.je.OperationStatus; 

...

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity

Page 110Getting Started with JE6/4/2008



    ...

    // Open the cursor. 
    cursor = myDatabase.openCursor(null, null);

    // Get the DatabaseEntry objects that the cursor will use.
    DatabaseEntry foundKey = new DatabaseEntry();
    DatabaseEntry foundData = new DatabaseEntry();

    // Iterate from the last record to the first in the database
    while (cursor.getPrev(foundKey, foundData, LockMode.DEFAULT) == 
        OperationStatus.SUCCESS) {

        String theKey = new String(foundKey.getData(), "UTF-8");
        String theData = new String(foundData.getData(), "UTF-8");
        System.out.println("Key | Data : " +  theKey + " | " + theData + "");
    }
} catch (DatabaseException de) {
    System.err.println("Error accessing database." + de);
} finally {
    // Cursors must be closed.
    cursor.close();
}

Searching for Records

You can use cursors to search for database records. You can search based on just a key, or you
can search based on both the key and the data. You can also perform partial matches if your
database supports sorted duplicate sets. In all cases, the key and data parameters of these
methods are filled with the key and data values of the database record to which the cursor is
positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and OperationStatus.NOTFOUND
is returned.

The following Cursor methods allow you to perform database searches:

• Cursor.getSearchKey()

Moves the cursor to the first record in the database with the specified key.

• Cursor.getSearchKeyRange()

Moves the cursor to the first record in the database whose key is greater than or equal to
the specified key. This comparison is determined by the comparator that you provide for the
database. If no comparator is provided, then the default unsigned byte-by-byte lexicographical
sorting is used.

For example, suppose you have database records that use the following Strings as keys:

Page 111Getting Started with JE6/4/2008



Alabama
Alaska
Arizona

Then providing a search key of Alaska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Alabama), providing a search key of
Alas moves the cursor to the second key (Alaska), and providing a key of Ar moves the cursor
to the last key (Arizona).

• Cursor.getSearchBoth()

Moves the cursor to the first record in the database that uses the specified key and data.

• Cursor.getSearchBothRange()

Moves the cursor to the first record in the database whose key matches the specified key
and whose data is greater than or equal to the specified data. If the database supports
duplicate records, then on matching the key, the cursor is moved to the duplicate record
with the smallest data that is greater than or equal to the specified data.

For example, suppose you have database records that use the following key/data pairs:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence 

then providing:

moves the cursor to ...and a search data of ...a search key of ...

Alaska/FairbanksFaAlaska

Arizona/FlorenceFlArizona

Alaska/AnchorageAnAlaska

For example, assuming a database containing sorted duplicate records of U.S. States/U.S Cities
key/data pairs (both as Strings), then the following code fragment can be used to position the
cursor to any record in the database and print its key/data values:

Page 112Getting Started with JE6/4/2008



package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus; 

...

// For this example, hard code the search key and data
String searchKey = "Alaska";
String searchData = "Fa";

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...

    // Open the cursor. 
    cursor = myDatabase.openCursor(null, null);

    DatabaseEntry theKey = 
         new DatabaseEntry(searchKey.getBytes("UTF-8"));
    DatabaseEntry theData = 
         new DatabaseEntry(searchData.getBytes("UTF-8"));

    // Open a cursor using a database handle
    cursor = myDatabase.openCursor(null, null);

    // Perform the search
    OperationStatus retVal = cursor.getSearchBothRange(theKey, theData, 
                                                       LockMode.DEFAULT);
    // NOTFOUND is returned if a record cannot be found whose key 
    // matches the search key AND whose data begins with the search data.
    if (retVal == OperationStatus.NOTFOUND) {
        System.out.println(searchKey + "/" + searchData + 
                           " not matched in database " + 
                           myDatabase.getDatabaseName());
    } else {
        // Upon completing a search, the key and data DatabaseEntry 
        // parameters for getSearchBothRange() are populated with the 
        // key/data values of the found record.
        String foundKey = new String(theKey.getData(), "UTF-8");
        String foundData = new String(theData.getData(), "UTF-8");
        System.out.println("Found record " + foundKey + "/" + foundData + 
                           "for search key/data: " + searchKey + 

Page 113Getting Started with JE6/4/2008



                           "/" + searchData);
    }

} catch (Exception e) {
    // Exception handling goes here
} finally {
   // Make sure to close the cursor
   cursor.close();
}

Working with Duplicate Records

If your database supports duplicate records, then it can potentially contain multiple records
that share the same key. Using normal database get operations, you can only ever obtain the
first such record in a set of duplicate records. To access subsequent duplicates, use a cursor.
The following Cursor methods are interesting when working with databases that support
duplicate records:

• Cursor.getNext(), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate of
the current record. For an example of using these methods, see Getting Records Using the
Cursor (page 109).

• Cursor.getSearchBothRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 111) for more information.

• Cursor.getNextNoDup(), Cursor.getPrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip over
all the duplicates in a set of duplicate records. If you call Cursor.getPrevNoDup(), then the
cursor is positioned to the last record for the previous key in the database. For example, if
you have the following records in your database:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

and your cursor is positioned to Alaska/Fairbanks, and you then call Cursor.getPrevNoDup(),
then the cursor is positioned to Alabama/Florence. Similarly, if you call
Cursor.getNextNoDup(), then the cursor is positioned to the first record corresponding to
the next key in the database.

If there is no next/previous key in the database, then OperationStatus.NOTFOUND is returned,
and the cursor is left unchanged.

Page 114Getting Started with JE6/4/2008



• Cursor.getNextDup(), Cursor.getPrevDup()

Gets the next/previous record that shares the current key. If the cursor is positioned at the
last record in the duplicate set and you call Cursor.getNextDup(), then
OperationStatus.NOTFOUND is returned and the cursor is left unchanged. Likewise, if you call
getPrevDup() and the cursor is positioned at the first record in the duplicate set, then
OperationStatus.NOTFOUND is returned and the cursor is left unchanged.

• Cursor.count()

Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and, if the key contains
duplicate records, displays all the duplicates. Note that the following code fragment assumes
that the database contains only String objects for the keys and data.

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus; 

...

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...

    // Create DatabaseEntry objects
    // searchKey is some String.
    DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry();

    // Open a cursor using a database handle
    cursor = myDatabase.openCursor(null, null);

    // Position the cursor
    // Ignoring the return value for clarity
    OperationStatus retVal = cursor.getSearchKey(theKey, theData, 
                                                 LockMode.DEFAULT);

    // Count the number of duplicates. If the count is greater than 1, 
    // print the duplicates.
    if (cursor.count() > 1) {
        while (retVal == OperationStatus.SUCCESS) {

Page 115Getting Started with JE6/4/2008



            String keyString = new String(theKey.getData(), "UTF-8");
            String dataString = new String(theData.getData(), "UTF-8");
            System.out.println("Key | Data : " +  keyString + " | " + 
                               dataString + "");

            retVal = cursor.getNextDup(theKey, theData, LockMode.DEFAULT);
        }
    }
} catch (Exception e) {
    // Exception handling goes here
} finally {
   // Make sure to close the cursor
   cursor.close();
}

Putting Records Using Cursors

You can use cursors to put records into the database. JE's behavior when putting records into
the database differs depending on whether the database supports duplicate records. If duplicates
are allowed, its behavior also differs depending on whether a comparator is provided for the
database. (Comparators are described in Using Comparators (page 94)).

Note that when putting records to the database using a cursor, the cursor is positioned at the
record you inserted.

You can use the following methods to put records to the database:

• Cursor.put()

If the provided key does not exist in the database, then the order that the record is put into
the database is determined by the BTree (key) comparator in use by the database.

If the provided key already exists in the database, and the database does not support sorted
duplicates, then the existing record data is replaced with the data provided on this method.

If the provided key already exists in the database, and the database does support sorted
duplicates, then the order that the record is inserted into the database is determined by the
duplicate comparator in use by the database.

• Cursor.putNoDupData()

If the provided key and data already exists in the database, then this method returns
OperationStatus.KEYEXIST.

If the key does not exist, then the order that the record is put into the database is determined
by the BTree (key) comparator in use by the database.

Page 116Getting Started with JE6/4/2008



• Cursor.putNoOverwrite()

If the provided key already exists in the database, then this method returns
OperationStatus.KEYEXIST.

If the key does not exist, then the order that the record is put into the database is determined
by the BTree (key) comparator in use by the database.

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.OperationStatus; 

...

// Create the data to put into the database
String key1str = "My first string";
String data1str = "My first data";
String key2str = "My second string";
String data2str = "My second data";
String data3str = "My third data";

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...

    DatabaseEntry key1 = new DatabaseEntry(key1str.getBytes("UTF-8"));
    DatabaseEntry data1 = new DatabaseEntry(data1str.getBytes("UTF-8"));
    DatabaseEntry key2 = new DatabaseEntry(key2str.getBytes("UTF-8"));
    DatabaseEntry data2 = new DatabaseEntry(data2str.getBytes("UTF-8"));
    DatabaseEntry data3 = new DatabaseEntry(data3str.getBytes("UTF-8"));

    // Open a cursor using a database handle
    cursor = myDatabase.openCursor(null, null);

    // Assuming an empty database.

    OperationStatus retVal = cursor.put(key1, data1); // SUCCESS
    retVal = cursor.put(key2, data2); // SUCCESS
    retVal = cursor.put(key2, data3); // SUCCESS if dups allowed, 
                                      // KEYEXIST if not.    

} catch (Exception e) {

Page 117Getting Started with JE6/4/2008



    // Exception handling goes here
} finally {
   // Make sure to close the cursor
   cursor.close();
}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want to
delete and then call Cursor.delete(). Note that after deleting a record, the value of
Cursor.getCurrent() is unchanged until such a time as the cursor is moved again. Also, if you
call Cursor.delete() two or more times in a row without repositioning the cursor, then all
subsequent deletes result in a return value of OperationStatus.KEYEMPTY.

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus; 

...

Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...
    // Create DatabaseEntry objects
    // searchKey is some String.
    DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry();

    // Open a cursor using a database handle
    cursor = myDatabase.openCursor(null, null);

    // Position the cursor. Ignoring the return value for clarity
    OperationStatus retVal = cursor.getSearchKey(theKey, theData, 
                                                 LockMode.DEFAULT);

    // Count the number of records using the given key. If there is only
    // one, delete that record.
    if (cursor.count() == 1) {
            System.out.println("Deleting " + 
                               new String(theKey.getData(), "UTF-8") +
                               "|" + 

Page 118Getting Started with JE6/4/2008



                               new String(theData.getData(), "UTF-8"));
            cursor.delete();
    }
} catch (Exception e) {
    // Exception handling goes here
} finally {
   // Make sure to close the cursor
   cursor.close();
}

Replacing Records Using Cursors

You replace the data for a database record by using Cursor.putCurrent(). This method takes
just one argument — the data that you want to write to the current location in the database.

import com.sleepycat.je.Cursor;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus; 

...
Cursor cursor = null;
try {
    ...
    // Database and environment open omitted for brevity
    ...
    // Create DatabaseEntry objects
    // searchKey is some String.
    DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
    DatabaseEntry theData = new DatabaseEntry();

    // Open a cursor using a database handle
    cursor = myDatabase.openCursor(null, null);

    // Position the cursor. Ignoring the return value for clarity
    OperationStatus retVal = cursor.getSearchKey(theKey, theData, 
                                                LockMode.DEFAULT);

    // Replacement data
    String replaceStr = "My replacement string";
    DatabaseEntry replacementData = 
        new DatabaseEntry(replaceStr.getBytes("UTF-8"));
    cursor.putCurrent(replacementData);
} catch (Exception e) {
    // Exception handling goes here
} finally {
   // Make sure to close the cursor

Page 119Getting Started with JE6/4/2008



   cursor.close();
}

Note that this method cannot be used if the record that you are trying to replace is a member
of a duplicate set. This is because records must be sorted by their data and replacement would
violate that sort order.

If you want to replace the data contained by a duplicate record, delete the record and create
a new record with the desired key and data.

Cursor Example

In Database Example (page 75) we wrote an application that loaded two Database objects with
vendor and inventory information. In this example, we will use those databases to display all
of the items in the inventory database. As a part of showing any given inventory item, we will
look up the vendor who can provide the item and show the vendor's contact information.

To do this, we create the ExampleInventoryRead application. This application reads and displays
all inventory records by:

1. Opening the environment and then the inventory, vendor, and class catalog Database objects.
We do this using the MyDbEnv class. See Stored Class Catalog Management with
MyDbEnv (page 101) for a description of this class.

2. Obtaining a cursor from the inventory Database.

3. Steps through the Database, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 100) is used.

5. Database.get() is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the DatabaseEntry returned by the get() to a Vendor
object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 98). We implemented the Inventory
class in Inventory.java (page 97).

The full implementation of ExampleInventoryRead can be found in:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Example 9.1.  ExampleInventoryRead.java

To begin, we import the necessary classes:

Page 120Getting Started with JE6/4/2008



// file ExampleInventoryRead.java
package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding; 

import com.sleepycat.je.Cursor;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

import java.io.File;
import java.io.IOException; 

Next we declare our class and set up some global variables. Note a MyDbEnv object is instantiated
here. We can do this because its constructor never throws an exception. See Database
Example (page 75) for its implementation details.

public class ExampleInventoryRead {

        private static File myDbEnvPath =
            new File("/tmp/JEDB");

        // Encapsulates the database environment and databases.
        private static MyDbEnv myDbEnv = new MyDbEnv();

        private static TupleBinding inventoryBinding;
        private static EntryBinding vendorBinding;

Next we create the ExampleInventoryRead.usage() and ExampleInventoryRead.main()methods.
We perform almost all of our exception handling from ExampleInventoryRead.main(), and so
we must catch DatabaseException because the com.sleepycat.je.* APIs throw them.

   private static void usage() {
        System.out.println("ExampleInventoryRead [-h <env directory>]");
        System.exit(0);
    }

    public static void main(String args[]) {
        ExampleInventoryRead eir = new ExampleInventoryRead();
        try {
            eir.run(args);
        } catch (DatabaseException dbe) {
            System.err.println("ExampleInventoryRead: " + dbe.toString());
            dbe.printStackTrace();
        } finally {
            myDbEnv.close();
        }

Page 121Getting Started with JE6/4/2008



        System.out.println("All done.");
    }

In ExampleInventoryRead.run(), we call MyDbEnv.setup() to open our environment and
databases. Then we create the bindings that we need for using our data objects with
DatabaseEntry objects.

    private void run(String args[]) throws DatabaseException {
        // Parse the arguments list
        parseArgs(args);

        myDbEnv.setup(myDbEnvPath, // path to the environment home
                      true);       // is this environment read-only?

        // Setup our bindings.
        inventoryBinding = new InventoryBinding();
        vendorBinding =
             new SerialBinding(myDbEnv.getClassCatalog(),
                               Vendor.class);
        showAllInventory();
    }

Now we write the loop that displays the Inventory records. We do this by opening a cursor on
the inventory database and iterating over all its contents, displaying each as we go.

    private void showAllInventory() 
        throws DatabaseException {
        // Get a cursor
        Cursor cursor = myDbEnv.getInventoryDB().openCursor(null, null);

        // DatabaseEntry objects used for reading records
        DatabaseEntry foundKey = new DatabaseEntry();
        DatabaseEntry foundData = new DatabaseEntry();

        try { // always want to make sure the cursor gets closed.
            while (cursor.getNext(foundKey, foundData,
                        LockMode.DEFAULT) == OperationStatus.SUCCESS) {
                Inventory theInventory =
                    (Inventory)inventoryBinding.entryToObject(foundData);
                displayInventoryRecord(foundKey, theInventory);
            }
        } catch (Exception e) {
            System.err.println("Error on inventory cursor:");
            System.err.println(e.toString());
            e.printStackTrace();
        } finally {
            cursor.close();
        }

    } 

Page 122Getting Started with JE6/4/2008



We use ExampleInventoryRead.displayInventoryRecord() to actually show the record. This
method first displays all the relevant information from the retrieved Inventory object. It then
uses the vendor database to retrieve and display the vendor. Because the vendor database is
keyed by vendor name, and because each inventory object contains this key, it is trivial to
retrieve the appropriate vendor record.

   private void displayInventoryRecord(DatabaseEntry theKey,
                                        Inventory theInventory)
        throws DatabaseException {

        DatabaseEntry searchKey = null;
        try {
            String theSKU = new String(theKey.getData(), "UTF-8");
            System.out.println(theSKU + ":");
            System.out.println("\t " + theInventory.getItemName());
            System.out.println("\t " + theInventory.getCategory());
            System.out.println("\t " + theInventory.getVendor());
            System.out.println("\t\tNumber in stock: " +
            theInventory.getVendorInventory());
            System.out.println("\t\tPrice per unit:  " +
                theInventory.getVendorPrice());
            System.out.println("\t\tContact: ");

            searchKey =
             new DatabaseEntry(theInventory.getVendor().getBytes("UTF-8"));
        } catch (IOException willNeverOccur) {}
        DatabaseEntry foundVendor = new DatabaseEntry();

        if (myDbEnv.getVendorDB().get(null, searchKey, foundVendor,
                LockMode.DEFAULT) != OperationStatus.SUCCESS) {
            System.out.println("Could not find vendor: " +
                theInventory.getVendor() + ".");
            System.exit(-1);
        } else {
            Vendor theVendor =
                (Vendor)vendorBinding.entryToObject(foundVendor);
            System.out.println("\t\t " + theVendor.getAddress());
            System.out.println("\t\t " + theVendor.getCity() + ", " +
                theVendor.getState() + " " + theVendor.getZipcode());
            System.out.println("\t\t Business Phone: " +
                theVendor.getBusinessPhoneNumber());
            System.out.println("\t\t Sales Rep: " +
                                theVendor.getRepName());
            System.out.println("\t\t            " +
                theVendor.getRepPhoneNumber());
       }
    }

Page 123Getting Started with JE6/4/2008



The remainder of this application provides a utility method used to parse the command line
options. From the perspective of this document, this is relatively uninteresting. You can see
how this is implemented by looking at:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 124Getting Started with JE6/4/2008



Chapter 10. Secondary Databases
Usually you find database records by means of the record's key. However, the key that you use
for your record will not always contain the information required to provide you with rapid
access to the data that you want to retrieve. For example, suppose your Database contains
records related to users. The key might be a string that is some unique identifier for the person,
such as a user ID. Each record's data, however, would likely contain a complex object containing
details about people such as names, addresses, phone numbers, and so forth. While your
application may frequently want to query a person by user ID (that is, by the information stored
in the key), it may also on occasion want to locate people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn for a
given person's name, you create indexes based on names and then just search that index for
the name that you want. You can do this using secondary databases. In JE, the Database that
contains your data is called a primary database. A database that provides an alternative set
of keys to access that data is called a secondary database, and these are managed using
SecondaryDatabase class objects. In a secondary database, the keys are your alternative (or
secondary) index, and the data corresponds to a primary record's key.

You create a secondary database by using a SecondaryConfig class object to identify an
implementation of a SecondaryKeyCreator class object that is used to create keys based on
data found in the primary database. You then pass this SecondaryConfig object to the
SecondaryDatabase constructor.

Once opened, JE manages secondary databases for you. Adding or deleting records in your
primary database causes JE to update the secondary as necessary. Further, changing a record's
data in the primary database may cause JE to modify a record in the secondary, depending on
whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. While methods exist on
SecondaryDatabase and SecondaryCursor that appear to allow this, they in fact always throw
UnsupportedOperationException. To change the data referenced by a SecondaryDatabase record,
modify the primary database instead. The exception to this rule is that delete operations are
allowed on the SecondaryDatabase object. See Deleting Secondary Database Records (page 132)
for more information.

Secondary database records are updated/created by JE only if the
SecondaryKeyCreator.createSecondaryKey() method returns true. If false is returned,☞
then JE will not add the key to the secondary database, and in the event of a record update
it will remove any existing key.

See Implementing Key Creators (page 128) for more information on this interface and
method.

When you read a record from a secondary database, JE automatically returns the key and data
from the corresponding record in the primary database.

Page 125Getting Started with JE6/4/2008



Opening and Closing Secondary Databases

You manage secondary database opens and closes using the
Environment.openSecondaryDatabase() method. Just as is the case with primary databases,
you must provide Environment.openSecondaryDatabase() with the database's name and,
optionally, other properties such as whether duplicate records are allowed, or whether the
secondary database can be created on open. In addition, you must also provide:

• A handle to the primary database that this secondary database is indexing. Note that this
means that secondary databases are maintained only for the specified Database handle. If
you open the same Database multiple times for write (such as might occur when opening a
database for read-only and read-write in the same application), then you should open the
SecondaryDatabase for each such Database handle.

• A SecondaryConfig object that provides properties specific to a secondary database. The
most important of these is used to identify the key creator for the database. The key creator
is responsible for generating keys for the secondary database. See Secondary Database
Properties (page 131) for details.

Primary databases must not support duplicate records. Secondary records point to primary
records using the primary key, so that key must be unique.☞

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your SecondaryConfig object.

4. Set your key creator object on your SecondaryConfig object.

5. Open your secondary database, specifying your primary database and your SecondaryConfig
at that time.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

import java.io.File;

Page 126Getting Started with JE6/4/2008



...

DatabaseConfig myDbConfig = new DatabaseConfig();
SecondaryConfig mySecConfig = new SecondaryConfig();
myDbConfig.setAllowCreate(true);
mySecConfig.setAllowCreate(true);
// Duplicates are frequently required for secondary databases.
mySecConfig.setSortedDuplicates(true);

// Open the primary
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
    String dbName = "myPrimaryDatabase";

    myEnv = new Environment(new File("/tmp/JEENV"), null);
    myDb = myEnv.openDatabase(null, dbName, myDbConfig);

    // A fake tuple binding that is not actually implemented anywhere
    // in this manual. The tuple binding is dependent on the data in use.
    // Tuple bindings are described earlier in this manual.
    TupleBinding myTupleBinding = new MyTupleBinding();

    // Open the secondary.
    // Key creators are described in the next section.
    FullNameKeyCreator keyCreator = new FullNameKeyCreator(myTupleBinding);

    // Get a secondary object and set the key creator on it.
    mySecConfig.setKeyCreator(keyCreator);

    // Perform the actual open
    String secDbName = "mySecondaryDatabase";
    mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb, 
                                          mySecConfig); 
} catch (DatabaseException de) {
    // Exception handling goes here ...
}

To close a secondary database, call its close() method. Note that for best results, you should
close all the secondary databases associated with a primary database before closing the primary.

For example:

try {
    if (mySecDb != null) {
        mySecDb.close();
    }

    if (myDb != null) {

Page 127Getting Started with JE6/4/2008



        myDb.close(); 
    }

    if (myEnv != null) {
        myEnv.close();
    }
} catch (DatabaseException dbe) {
    // Exception handling goes here
}

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary records.
You identify this class using the SecondaryConfig.setKeyCreator() method.

You can create keys using whatever data you want. Typically you will base your key on some
information found in a record's data, but you can also use information found in the primary
record's key. How you build your keys is entirely dependent upon the nature of the index that
you want to maintain.

You implement a key creator by writing a class that implements the SecondaryKeyCreator
interface. This interface requires you to implement the
SecondaryKeyCreator.createSecondaryKey() method.

One thing to remember when implementing this method is that you will need a way to extract
the necessary information from the data's DatabaseEntry and/or the key's DatabaseEntry that
are provided on calls to this method. If you are using complex objects, then you are probably
using the Bind APIs to perform this conversion. The easiest thing to do is to instantiate the
EntryBinding or TupleBinding that you need to perform the conversion, and then provide this
to your key creator's constructor. The Bind APIs are introduced in Using the BIND APIs (page 84).

SecondaryKeyCreator.createSecondaryKey() returns a boolean. A return value of false indicates
that no secondary key exists, and therefore no record should be added to the secondary database
for that primary record. If a record already exists in the secondary database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package je.gettingStarted;

public class PersonData {
    private String userID;
    private String surname;
    private String familiarName;

    public PersonData(String userID, String surname, String familiarName) {
        this.userID = userID;
        this.surname = surname;
        this.familiarName = familiarName;
    }

Page 128Getting Started with JE6/4/2008



    public String getUserID() {
        return userID;
    }

    public String getSurname() {
        return surname;
    }

    public String getFamiliarName() {
        return familiarName;
    }
} 

Also, suppose that you have created a custom tuple binding, PersonDataBinding, that you use
to convert PersonData objects to and from DatabaseEntry objects. (Custom tuple bindings are
described in Custom Tuple Bindings (page 91).)

Finally, suppose you want a secondary database that is keyed based on the person's full name.

Then in this case you might create a key creator as follows:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.SecondaryKeyCreator;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;

import java.io.IOException;

public class FullNameKeyCreator implements SecondaryKeyCreator {

    private TupleBinding theBinding;

    public FullNameKeyCreator(TupleBinding theBinding1) {
            theBinding = theBinding1;
    }

    public boolean createSecondaryKey(SecondaryDatabase secDb,
                                      DatabaseEntry keyEntry, 
                                      DatabaseEntry dataEntry,
                                      DatabaseEntry resultEntry) {

        try {
            PersonData pd = 
                (PersonData) theBinding.entryToObject(dataEntry);
                String fullName = pd.getFamiliarName() + " " + 
                    pd.getSurname();

Page 129Getting Started with JE6/4/2008



                resultEntry.setData(fullName.getBytes("UTF-8"));
        } catch (IOException willNeverOccur) {}
        return true;
    }
} 

Finally, you use this key creator as follows:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

...
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
    // Environment and primary database open omitted for brevity
...

    TupleBinding myDataBinding = new MyTupleBinding();
    FullNameKeyCreator fnkc = new FullNameKeyCreator(myDataBinding);

    SecondaryConfig mySecConfig = new SecondaryConfig();
    mySecConfig.setKeyCreator(fnkc);

    //Perform the actual open
    String secDbName = "mySecondaryDatabase";
    mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb, 
                                          mySecConfig);
} catch (DatabaseException de) {
    // Exception handling goes here
} finally {
    try {
        if (mySecDb != null) {
            mySecDb.close();
        }

        if (myDb != null) {
            myDb.close(); 
        }

        if (myEnv != null) {

Page 130Getting Started with JE6/4/2008



            myEnv.close();
        }
    } catch (DatabaseException dbe) {
        // Exception handling goes here
    }
}

Secondary Database Properties

Secondary databases accept SecondaryConfig objects. SecondaryConfig is a subclass of
DatabaseConfig, so it can manage all of the same properties as does DatabaseConfig. See
Database Properties (page 72) for more information.

In addition to the DatabaseConfig properties, SecondaryConfig also allows you to manage the
following properties:

• SecondaryConfig.setAllowPopulate()

If true, the secondary database can be auto-populated. This means that on open, if the
secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

• SecondaryConfig.setKeyCreator()

Identifies the key creator object to be used for secondary key creation. See Implementing
Key Creators (page 128) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by using
the SecondaryDatabase.get() method, or by using a SecondaryCursor. The main difference
between reading secondary and primary databases is that when you read a secondary database
record, the secondary record's data is not returned to you. Instead, the primary key and data
corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full name:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;

...
try {
    // Omitting all database and environment opens
    ...

    String searchName = "John Doe";

Page 131Getting Started with JE6/4/2008



    DatabaseEntry searchKey = 
        new DatabaseEntry(searchName.getBytes("UTF-8"));
    DatabaseEntry primaryKey = new DatabaseEntry();
    DatabaseEntry primaryData = new DatabaseEntry();

    // Get the primary key and data for the user 'John Doe'.
    OperationStatus retVal = mySecondaryDatabase.get(null, searchKey, 
                                                     primaryKey, 
                                                     primaryData, 
                                                     LockMode.DEFAULT); 
} catch (Exception e) {
    // Exception handling goes here
}

Note that, just like Database.get(), if your secondary database supports duplicate records
then SecondaryDatabase.get() only return the first record found in a matching duplicates set.
If you want to see all the records related to a specific secondary key, then use a SecondaryCursor
(described in Using Secondary Cursors (page 133)).

Deleting Secondary Database Records

In general, you can not modify a secondary database directly. In order to modify a secondary
database, you should modify the primary database and simply allow JE to manage the secondary
modifications for you.

However, as a convenience, you can delete SecondaryDatabase records directly. Doing so causes
the associated primary key/data pair to be deleted. This in turn causes JE to delete all
SecondaryDatabase records that reference the primary record.

You can use the SecondaryDatabase.delete() method to delete a secondary database record.
Note that if your database supports duplicate records, then only the first record in the matching
duplicates set is deleted by this method. To delete all the duplicate records that use a given
key, use a SecondaryCursor.

SecondaryDatabase.delete() causes the previously described delete operations to occur
only if the primary database is opened for write access.☞

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;

...
try {
    // Omitting all database and environment opens
    ...

Page 132Getting Started with JE6/4/2008



    String searchName = "John Doe";
    DatabaseEntry searchKey = 
        new DatabaseEntry(searchName.getBytes("UTF-8"));

    // Delete the first secondary record that uses "John Doe" as
    // a key. This causes the primary record referenced by this secondary
    // record to be deleted.
    OperationStatus retVal = mySecondaryDatabase.delete(null, searchKey);
} catch (Exception e) {
    // Exception handling goes here
}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors to
search for specific records in a database, to seek to the first or last record in the database, to
get the next duplicate record, to get the next non-duplicate record, and so forth. For a complete
description on cursors and their capabilities, see Using Cursors (page 108).

However, when you use secondary cursors:

• Any data returned is the data contained on the primary database record referenced by the
secondary record.

• SecondaryCursor.getSearchBoth() and related methods do not search based on a key/data
pair. Instead, you search based on a secondary key and a primary key. The data returned is
the primary data that most closely matches the two keys provided for the search.

For example, suppose you are using the databases, classes, and key creators described in
Implementing Key Creators (page 128). Then the following searches for a person's name in the
secondary database, and deletes all secondary and primary records that use that name.

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryCursor;

...
try {
    // Database and environment opens omitted for brevity
    ...

    String secondaryName = "John Doe";
    DatabaseEntry secondaryKey = 
        new DatabaseEntry(secondaryName.getBytes("UTF-8"));

Page 133Getting Started with JE6/4/2008



    DatabaseEntry foundData = new DatabaseEntry();

    SecondaryCursor mySecCursor = 
        mySecondaryDatabase.openSecondaryCursor(null, null);

    OperationStatus retVal = mySecCursor.getSearchKey(secondaryKey, 
                                                      foundData, 
                                                      LockMode.DEFAULT);
    while (retVal == OperationStatus.SUCCESS) {
        mySecCursor.delete();
        retVal = mySecCursor.getNextDup(secondaryKey, 
                                        foundData, 
                                        LockMode.DEFAULT);
    } 
} catch (Exception e) {
    // Exception handling goes here
}

Database Joins

If you have two or more secondary databases associated with a primary database, then you
can retrieve primary records based on the intersection of multiple secondary entries. You do
this using a JoinCursor.

Throughout this document we have presented a class that stores inventory information on
grocery items. That class is fairly simple with a limited number of data members, few of which
would be interesting from a query perspective. But suppose, instead, that we were storing
information on something with many more characteristics that can be queried, such as an
automobile. In that case, you may be storing information such as color, number of doors, fuel
mileage, automobile type, number of passengers, make, model, and year, to name just a few.

In this case, you would still likely be using some unique value to key your primary entries (in
the United States, the automobile's VIN would be ideal for this purpose). You would then create
a class that identifies all the characteristics of the automobiles in your inventory. You would
also have to create some mechanism by which you would move instances of this class in and
out of Java byte arrays. We described the concepts and mechanisms by which you can perform
these activities in Database Records (page 78).

To query this data, you might then create multiple secondary databases, one for each of the
characteristics that you want to query. For example, you might create a secondary for color,
another for number of doors, another for number of passengers, and so forth. Of course, you
will need a unique key creator for each such secondary database. You do all of this using the
concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you have
is the ability to retrieve automobile records based on a single characteristic. You can, for
example, find all the automobiles that are red. Or you can find all the automobiles that have
four doors. Or all the automobiles that are minivans.

Page 134Getting Started with JE6/4/2008



The next most natural step, then, is to form compound queries, or joins. For example, you
might want to find all the automobiles that are red, and that were built by Toyota, and that
are minivans. You can do this using a JoinCursor class instance.

Using Join Cursors

To use a join cursor:

• Open two or more secondary cursors. These cursors must be obtained from secondary
databases that are associated with the same primary database.

• Position each such cursor to the secondary key value in which you are interested. For example,
to build on the previous description, the cursor for the color database is positioned to the
red records while the cursor for the model database is positioned to the minivan records,
and the cursor for the make database is positioned to Toyota.

• Create an array of secondary cursors, and place in it each of the cursors that are participating
in your join query.

• Obtain a join cursor. You do this using the Database.join() method. You must pass this
method the array of secondary cursors that you opened and positioned in the previous steps.

• Iterate over the set of matching records using JoinCursor.getNext() until OperationStatus
is not SUCCESS.

• Close your join cursor.

• If you are done with them, close all your secondary cursors.

For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.JoinCursor;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryCursor;
import com.sleepycat.je.SecondaryDatabase;

...

// Database and secondary database opens omitted for brevity.
// Assume a primary database handle:
//   automotiveDB
// Assume 3 secondary database handles:
//   automotiveColorDB  -- index based on automobile color
//   automotiveTypeDB  -- index based on automobile type
//   automotiveMakeDB   -- index based on the manufacturer

Page 135Getting Started with JE6/4/2008



// Query strings:
String theColor = "red";
String theType = "minivan";
String theMake = "Toyota";

// Secondary cursors used for the query:
SecondaryCursor colorSecCursor = null;
SecondaryCursor typeSecCursor = null;
SecondaryCursor makeSecCursor = null;

// The join cursor
JoinCursor joinCursor = null;

// These are needed for our queries
DatabaseEntry foundKey = new DatabaseEntry();
DatabaseEntry foundData = new DatabaseEntry();

// All cursor operations are enclosed in a try block to ensure that they
// get closed in the event of an exception.

try {
    // Database entries used for the query:
    DatabaseEntry color = new DatabaseEntry(theColor.getBytes("UTF-8"));
    DatabaseEntry type = new DatabaseEntry(theType.getBytes("UTF-8"));
    DatabaseEntry make = new DatabaseEntry(theMake.getBytes("UTF-8"));

    colorSecCursor = automotiveColorDB.openSecondaryCursor(null, null); 
    typeSecCursor = automotiveTypeDB.openSecondaryCursor(null, null); 
    makeSecCursor = automotiveMakeDB.openSecondaryCursor(null, null); 

    // Position all our secondary cursors to our query values.
    OperationStatus colorRet = 
        colorSecCursor.getSearchKey(color, foundData, LockMode.DEFAULT);
    OperationStatus typeRet = 
        typeSecCursor.getSearchKey(type, foundData, LockMode.DEFAULT);
    OperationStatus makeRet = 
        makeSecCursor.getSearchKey(make, foundData, LockMode.DEFAULT);

    // If all our searches returned successfully, we can proceed
    if (colorRet == OperationStatus.SUCCESS &&
        typeRet == OperationStatus.SUCCESS &&
        makeRet == OperationStatus.SUCCESS) {

        // Get a secondary cursor array and populate it with our
        // positioned cursors
        SecondaryCursor[] cursorArray = {colorSecCursor,
                                         typeSecCursor, 
                                         makeSecCursor};

Page 136Getting Started with JE6/4/2008



        // Create the join cursor
        joinCursor = automotiveDB.join(cursorArray, null);

        // Now iterate over the results, handling each in turn
        while (joinCursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
                        OperationStatus.SUCCESS) {

            // Do something with the key and data retrieved in
            // foundKey and foundData
        }
    }
} catch (DatabaseException dbe) {
    // Error reporting goes here
} catch (Exception e) {
    // Error reporting goes here
} finally {
    try {
        // Make sure to close out all our cursors
        if (colorSecCursor != null) {
            colorSecCursor.close();
        }
        if (typeSecCursor != null) {
            typeSecCursor.close();
        }
        if (makeSecCursor != null) {
            makeSecCursor.close();
        }
        if (joinCursor != null) {
            joinCursor.close();
        }
    } catch (DatabaseException dbe) {
        // Error reporting goes here
    }
} 

JoinCursor Properties

You can set JoinCursor properties using the JoinConfig class. Currently there is just one
property that you can set:

• JoinConfig.setNoSort()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted from
the one that refers to the least number of data items to the one that refers to the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with fewer

Page 137Getting Started with JE6/4/2008



data items. Turning off sorting permits applications to specify cursors in the proper order
given this scenario.

The default value is false (automatic cursor sorting is performed).

For example:

// All database and environments omitted
JoinConfig config = new JoinConfig();
config.setNoSort(true);
JoinCursor joinCursor = myDb.join(cursorArray, config); 

Secondary Database Example

In previous chapters in this book, we built applications that load and display several JE
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

• In Stored Class Catalog Management with MyDbEnv (page 101) we built a class that we can
use to open and manage a JE Environment and one or more Database objects. In Opening
Secondary Databases with MyDbEnv (page 139) we will extend that class to also open and
manage a SecondaryDatabase.

• In Cursor Example (page 120) we built an application to display our inventory database (and
related vendor information). In Using Secondary Databases with
ExampleInventoryRead (page 142) we will extend that application to show inventory records
based on the index we cause to be loaded using ExampleDatabasePut.

Before we can use a secondary database, we must implement a class to extract secondary keys
for us. We use ItemNameKeyCreator for this purpose.

Example 10.1. ItemNameKeyCreator.java

This class assumes the primary database uses Inventory objects for the record data. The
Inventory class is described in Inventory.java (page 97).

In our key creator class, we make use of a custom tuple binding called InventoryBinding. This
class is described in InventoryBinding.java (page 100).

You can find the following class in:

JE_HOME/examples/je/gettingStarted/ItemNameKeyCreator.java

where JE_HOME is the location where you placed your JE distribution.

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryKeyCreator;

Page 138Getting Started with JE6/4/2008



import com.sleepycat.bind.tuple.TupleBinding;

import java.io.IOException;

public class ItemNameKeyCreator implements SecondaryKeyCreator {

    private TupleBinding theBinding;

    // Use the constructor to set the tuple binding
    ItemNameKeyCreator(TupleBinding binding) {
        theBinding = binding;
    }

    // Abstract method that we must implement
    public boolean createSecondaryKey(SecondaryDatabase secDb,
        DatabaseEntry keyEntry,    // From the primary
        DatabaseEntry dataEntry,   // From the primary
        DatabaseEntry resultEntry) // set the key data on this.
        throws DatabaseException {

        try {
            // Convert dataEntry to an Inventory object
            Inventory inventoryItem = 
                (Inventory) theBinding.entryToObject(dataEntry);
            // Get the item name and use that as the key
            String theItem = inventoryItem.getItemName();
            resultEntry.setData(theItem.getBytes("UTF-8"));
        } catch (IOException willNeverOccur) {}
        return true;
    }
} 

Now that we have a key creator, we can use it to generate keys for a secondary database. We
will now extend MyDbEnv to manage a secondary database, and to use ItemNameKeyCreator to
generate keys for that secondary database.

Opening Secondary Databases with MyDbEnv

In Stored Class Catalog Management with MyDbEnv (page 101) we built MyDbEnv as an example
of a class that encapsulates Environment and Database opens and closes. We will now extend
that class to manage a SecondaryDatabase.

Example 10.2. SecondaryDatabase Management with MyDbEnv

We start by importing two additional classes needed to support secondary databases. We also
add a global variable to use as a handle for our secondary database.

Page 139Getting Started with JE6/4/2008



// File MyDbEnv.java

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.je.SecondaryDatabase;

import java.io.File;

public class MyDbEnv {

    private Environment myEnv;

    // The databases that our application uses
    private Database vendorDb;
    private Database inventoryDb;
    private Database classCatalogDb;

private SecondaryDatabase itemNameIndexDb;

    // Needed for object serialization
    private StoredClassCatalog classCatalog;

    // Our constructor does nothing
    public MyDbEnv() {}

Next we update the MyDbEnv.setup() method to open the secondary database. As a part of
this, we have to pass an ItemNameKeyCreator object on the call to open the secondary database.
Also, in order to instantiate ItemNameKeyCreator, we need an InventoryBinding object (we
described this class in InventoryBinding.java (page 100)). We do all this work together inside of
MyDbEnv.setup().

    public void setup(File envHome, boolean readOnly)
        throws DatabaseException {

        EnvironmentConfig myEnvConfig = new EnvironmentConfig();
        DatabaseConfig myDbConfig = new DatabaseConfig();

SecondaryConfig mySecConfig = new SecondaryConfig();

        // If the environment is read-only, then
        // make the databases read-only too.
        myEnvConfig.setReadOnly(readOnly);

Page 140Getting Started with JE6/4/2008



        myDbConfig.setReadOnly(readOnly);
mySecConfig.setReadOnly(readOnly);

        // If the environment is opened for write, then we want to be
        // able to create the environment and databases if
        // they do not exist.
        myEnvConfig.setAllowCreate(!readOnly);
        myDbConfig.setAllowCreate(!readOnly);

mySecConfig.setAllowCreate(!readOnly);

        ...
        // Environment and database opens omitted for brevity
        ...

// Open the secondary database. We use this to create a
        // secondary index for the inventory database

        // We want to maintain an index for the inventory entries based
        // on the item name. So, instantiate the appropriate key creator
        // and open a secondary database.
        ItemNameKeyCreator keyCreator =
            new ItemNameKeyCreator(new InventoryBinding());

        // Set up the secondary properties
        mySecConfig.setAllowPopulate(true); // Allow autopopulate
        mySecConfig.setKeyCreator(keyCreator);
        // Need to allow duplicates for our secondary database
        mySecConfig.setSortedDuplicates(true);

        // Now open it
        itemNameIndexDb =
            myEnv.openSecondaryDatabase(
                    null,     
                    "itemNameIndex", // Index name
                    inventoryDb,     // Primary database handle. This is
                                     // the db that we're indexing. 
                    mySecConfig);    // The secondary config
    } 

Next we need an additional getter method for returning the secondary database.

    public SecondaryDatabase getNameIndexDB() {
        return itemNameIndexDb;
    } 

Finally, we need to update the MyDbEnv.close() method to close the new secondary database.
We want to make sure that the secondary is closed before the primaries. While this is not
necessary for this example because our closes are single-threaded, it is still a good habit to
adopt.

Page 141Getting Started with JE6/4/2008



    public void close() {
        if (myEnv != null) {
            try {
                //Close the secondary before closing the primaries

itemNameIndexDb.close();
                vendorDb.close();
                inventoryDb.close();
                classCatalogDb.close();

                // Finally, close the environment.
                myEnv.close();
            } catch(DatabaseException dbe) {
                System.err.println("Error closing MyDbEnv: " +
                                    dbe.toString());
                System.exit(-1);
            }
        }
    }
} 

That completes our update to MyDbEnv. You can find the complete class implementation in:

JE_HOME/examples/je/gettingStarted/MyDbEnv.java 

where JE_HOME is the location where you placed your JE distribution.

Because we performed all our secondary database configuration management in MyDbEnv, we
do not need to modify ExampleDatabasePut at all in order to create our secondary indices.
When ExampleDatabasePut calls MyDbEnv.setup(), all of the necessary work is performed for
us.

However, we still need to take advantage of the new secondary indices. We do this by updating
ExampleInventoryRead to allow us to query for an inventory record based on its name. Remember
that the primary key for an inventory record is the item's SKU. The item's name is contained
in the Inventory object that is stored as each record's data in the inventory database. But our
new secondary index now allows us to easily query based on the item's name.

Using Secondary Databases with ExampleInventoryRead

In the previous section we changed MyDbEnv to cause a secondary database to be built using
inventory item names as the secondary keys. In this section, we will update
ExampleInventoryRead to allow us to query our inventory records based on the item name. To
do this, we will modify ExampleInventoryRead to accept a new command line switch, -s, whose
argument is the name of an inventory item. If the switch is present on the command line call
to ExampleInventoryRead, then the application will use the secondary database to look up and
display all the inventory records with that item name. Note that we use a SecondaryCursor to
seek to the item name key and then display all matching records.

Remember that you can find the following class in:

Page 142Getting Started with JE6/4/2008



JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Example 10.3. SecondaryDatabase usage with ExampleInventoryRead

First we need to import a few additional classes in order to use secondary databases and cursors,
and then we add a single global variable:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryCursor;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

import java.io.File;
import java.io.IOException; 

public class ExampleInventoryRead {

    private static File myDbEnvPath =
        new File("/tmp/JEDB");

    // Encapsulates the database environment and databases.
    private static MyDbEnv myDbEnv = new MyDbEnv();

    private static TupleBinding inventoryBinding;
    private static EntryBinding vendorBinding;

// The item to locate if the -s switch is used
    private static String locateItem;

Next we update ExampleInventoryRead.run() to check to see if the locateItem global variable
a value. If it does, then we show just those records related to the item name passed on the -s
switch.

    private void run(String args[]) 
        throws DatabaseException {
            // Parse the arguments list
            parseArgs(args);
            myDbEnv.setup(myDbEnvPath, // path to the environment home
                          true);      // is this environment read-only?

Page 143Getting Started with JE6/4/2008



            // Setup our bindings.
            inventoryBinding = new InventoryBinding();
            vendorBinding =
                 new SerialBinding(myDbEnv.getClassCatalog(),
                                   Vendor.class);

if (locateItem != null) {
                showItem();
            } else {
                showAllInventory();

}
    } 

Finally, we need to implement ExampleInventoryRead.showItem(). This is a fairly simple method
that opens a secondary cursor, and then displays every primary record that is related to the
secondary key identified by the locateItem global variable.

    private void showItem() throws DatabaseException {
            SecondaryCursor secCursor = null;
            try {
                // searchKey is the key that we want to find in the 
                // secondary db.
                DatabaseEntry searchKey = 
                    new DatabaseEntry(locateItem.getBytes("UTF-8"));

                // foundKey and foundData are populated from the primary
                // entry that is associated with the secondary db key.
                DatabaseEntry foundKey = new DatabaseEntry();
                DatabaseEntry foundData = new DatabaseEntry();

                // open a secondary cursor
                secCursor =
                  myDbEnv.getNameIndexDB().openSecondaryCursor(null, null);

                // Search for the secondary database entry.
                OperationStatus retVal =
                    secCursor.getSearchKey(searchKey, foundKey,
                        foundData, LockMode.DEFAULT);

                // Display the entry, if one is found. Repeat until no more
                // secondary duplicate entries are found
                while(retVal == OperationStatus.SUCCESS) {
                    Inventory theInventory =
                      (Inventory)inventoryBinding.entryToObject(foundData);
                    displayInventoryRecord(foundKey, theInventory);
                    retVal = secCursor.getNextDup(searchKey, foundKey,
                        foundData, LockMode.DEFAULT);
                }

Page 144Getting Started with JE6/4/2008



            } catch (Exception e) {
                System.err.println("Error on inventory secondary cursor:");
                System.err.println(e.toString());
                e.printStackTrace();
            } finally {
                if (secCursor != null) {
                    secCursor.close();
                }
            }
        }

The only other thing left to do is to update ExampleInventoryRead.parseArgs() to support the
-s command line switch. To see how this is done, see:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 145Getting Started with JE6/4/2008



Part III. Administering JE
Applications

This section discusses concepts and mechanisms useful for the administration of any JE application,
regardless of the API used to build that application.



Chapter 11. Backing up and Restoring Berkeley DB
Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage location.
To restore your database from a backup, you copy those files to an appropriate directory on
disk and reopen your JE application

Beyond these simple activities, there are some differing backup strategies that you may want
to consider. These topics are described in this chapter.

Databases and Log Files

Before describing JE backup and restore, it is necessary to describe some of JE's internal
workings. In particular, a high-level understanding of JE log files and the in-memory cache is
required. You also need to understand a little about how JE is using its internal data structures
in order to understand why checkpoints and/or syncs are required.

You can skip this section so long as you understand that:

• JE databases are stored in log files contained in your environment directory.

• Every time a JE environment is opened, normal recovery is run.

• For transactional applications, checkpoints should be run in order to bound normal recovery
time. Checkpoints are normally run by the checkpointer thread. Transactional applications
and the checkpointer thread are described in the Berkeley DB Java Edition Getting Started
with Transaction Processing guide.

• For non-transactional applications, environment syncs must be performed if you want to
guarantee the persistence of your database modifications. Environment syncs are manually
performed by the application developer. See Data Persistence (page 83) for details.

Log File Overview

Your JE database is stored on-disk in a series of log files. JE uses no-overwrite log files, which
is to say that JE only ever appends data to the end of a log file. It will never delete or modify
an existing log file record.

JE log files are named NNNNNNNN.jdb where NNNNNNNN is an 8-digit hexadecimal number that
increases by 1 (starting from 00000000) for each log file written to disk.

JE creates a new log file whenever the current log file has reached a pre-configured size
(10000000 bytes by default). This size is controlled by the je.log.fileMax properties parameter.
See The JE Properties File (page 154) for information on setting JE properties.

Page 147Getting Started with JE6/4/2008



Cleaning the Log Files

Because JE uses no-overwrite log files, the logs must be compacted or cleaned so as to conserve
disk space.

JE uses the cleaner background thread to perform this task. When it runs, the cleaner thread
picks the log file with the smallest number of active records and scans each log record in it.
If the record is no longer active in the database tree, the cleaner does nothing. If the record
is still active in the tree, then the cleaner copies the record forward to a newer log file.

Once a log file is no longer needed (that is, it no longer contains active records), then the
cleaner thread deletes the log file for you. Or, optionally, the cleaner thread can simply rename
the discarded log file with a del suffix.

JE uses a minimum log utilization property to determine how much cleaning to perform. The
log files contain both obsolete and utilized records. Obsolete records are records that are no
longer in use, either because they have been modified or because they have been deleted.
Utilized records are those records that are currently in use. The je.cleaner.minUtilization
property identifies the minimum percentage of log space that must be used by utilized records.
If this minimum percentage is not met, then log files are cleaned until the minimum percentage
is met.

For information on managing the cleaner thread, see The Cleaner Thread (page 155).

The BTree

JE databases are internally organized as a BTree. In order to operate, JE requires the complete
BTree be available to it.

When database records are created, modified, or deleted, the modifications are represented
in the BTree's leaf nodes. Beyond leaf node changes, database record modifications can also
cause changes to other BTree nodes and structures.

Database Modifications and Syncs

When a write operation is performed in JE, the modified data is written to a leaf node contained
in the in-memory cache. If your JE writes are performed without transactions, then the
in-memory cache is the only location guaranteed to receive a database modification without
further intervention on the part of the application developer.

For some class of applications, this lack of a guaranteed write to disk is ideal. By not writing
these modifications to the on-disk logs, the application can avoid most of the overhead caused
by disk I/O.

However, if the application requires its data to persist persist at a specific point in time, then
the developer must manually sync database modifications to the on-disk log files (again, this
is only necessary for non-transactional applications). This is done using Environment.sync().

Note that syncing the cache causes JE to write all modified objects in the cache to disk. This
is probably the most expensive operation that you can perform in JE.

Page 148Getting Started with JE6/4/2008



Normal Recovery

Every time a JE environment is opened, normal recovery is run. Because of the way that JE
organizes and manages its BTrees, all it needs is leaf nodes in order to recreate the rest of the
BTree. Essentially, this is what normal recovery is doing – recreating any missing parts of the
internal BTree from leaf node information stored in the log files.

Unlike a traditional database system, JE performs recovery for both transactional and
non-transactional operations. The integrity of the Btree is guaranteed by JE in the face of both
application and OS crashes.

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery is
possible for non-transactional applications. Note that this same material is repeated in the
Berkeley DB Java Edition Getting Started with Transaction Processing guide, but for transactional
applications. If you are writing transactional applications, you may want to skip the rest of
this chapter and go straight to that book.

To backup your database, you can either take a hot backup or an offline backup. A hot backup
is performed while database write operations are in progress.

Do not confuse hot and offline backups with the concept of a full and incremental backup.
Both a hot and an offline backup are full backups – you back up the entire database. The only
difference between them is how much of the contents of the in-memory cache are contained
in them. On the other hand, an incremental backup is a backup of just those log files modified
or created since the time of the last backup. Most backup software is capable of performing
both full and incremental backups for you.

Performing a Hot Backup

To perform a hot backup of your JE databases, copy all log files (*.jdb files) from your
environment directory to your archival location or backup media. The files must be copied in
alphabetical order (numerical in effect). You do not have to stop any database operations in
order to do this.

To make this process a bit easier, you may want to make use of the DbBackup helper class. See
Using the DbBackup Helper Class (page 150) for details.

Note that any modifications made to the database since the time of the last environment sync
are not guaranteed to be contained in these log files. In this case, you may want to consider
running an offline backup in order to guarantee the availability of all modifications made to
your database.

Performing an Offline Backup

An offline backup guarantees that you have captured the database in its entirety, including all
contents of your in-memory cache, at the moment that the backup was taken. To do this, you
must make sure that no write operations are in progress and all database modifications have
been written to your log files on disk. To obtain an offline backup:

Page 149Getting Started with JE6/4/2008



1. Stop writing your databases.

2. Run Environment.sync() so as to ensure that all database modifications are written to disk.
Note that cleanly closing your environment will also ensure that all database modifications
are written to disk.

3. Copy all log files (*.jdb) from your environment directory to your archival location or backup
media. To make this process a bit easier, you may want to make use of the DbBackup helper
class. See the next section for details.

You can now resume normal database operations.

Using the DbBackup Helper Class

In order to simplify backup operations, JE provides the DbBackup helper class. This class stops
and restarts JE background activity in an open environment. It also lets the application create
a backup which can support restoring the environment to a specific point in time.

Because you do not have to stop JE write activity in order to take a backup, it is usually
necessary to examine your log files twice before you decide that your backup is complete. This
is because JE may create a new log file while you are running your backup. A second pass over
your log files allows you to ensure that no new files have been created and so you can declare
your backup complete.

For example:

 time    files in                    activity
         environment

  t0     000000001.jdb     Backup starts copying file 1
         000000003.jdb
         000000004.jdb

  t1     000000001.jdb     JE log cleaner migrates portion of file 3 to newly
         000000004.jdb     created file 5 and deletes file 3. Backup finishes
         000000005.jdb     file 1, starts copying file 4. Backup MUST include
                           file 5 for a consistent backup!

  t2     000000001.jdb     Backup finishes copying file 4, starts and finishes
         000000004.jdb     file 5, has caught up. Backup ends.
         000000005.jdb

DbBackup works around this problem by defining the set of files that must be copied for each
backup operation, and freezes all changes to those files. The application can copy that defined
set of files and finish operation without checking for the ongoing creation of new files. Also,
there will be no need to check for a newer version of the last file on the next backup.

In the example above, if DbBackup was used at t0, the application would only have to copy files
1, 3 and 4 to back up. On a subsequent backup, the application could start its copying at file
5. There would be no need to check for a newer version of file 4.

Page 150Getting Started with JE6/4/2008



The following code fragment illustrates this class' usage:

package je.gettingStarted;

...
import com.sleepycat.je.util.DbBackup;
...

    Environment env = new Environment(...);
    DbBackup backupHelper = new DbBackup(env);

    // Find the file number of the last file in the previous backup
    // persistently, by either checking the backup archive, or saving
    // state in a persistent file.
    long lastFileCopiedInPrevBackup =  ...

    // Start backup, find out what needs to be copied.
    backupHelper.startBackup();
    try {
        String[] filesForBackup =
             backupHelper.getLogFilesInBackupSet(lastFileCopiedInPrevBackup);

        // Copy the files to archival storage.
        myApplicationCopyMethod(filesForBackup)
        // Update our knowlege of the last file saved in the backup set,
        // so we can copy less on the next backup
        lastFileCopiedInPrevBackup = backupHelper.getLastFileInBackupSet();
        myApplicationSaveLastFile(lastFileCopiedInBackupSet);
    }
    finally {
        // Remember to exit backup mode, or all log files won't be cleaned
        // and disk usage will bloat.
       backupHelper.endBackup();
   } 

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have been
lost or corrupted due to a media failure (disk failure, for example). Catastrophic recovery is
also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full back up of your databases. You
will use this backup to restore your database. See Performing Backups (page 149) for information
on running back ups.

To perform catastrophic recovery:

1. Shut down your application.

Page 151Getting Started with JE6/4/2008



2. Delete the contents of your environment home directory (the one that experienced a
catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment directory,
copy any log files generated since the time of your last full backup. Be sure to restore all
log files in the order that they were written. The order is important because it is possible
the same log file appears in multiple archives, and you want to run recovery using the most
recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your database
to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Standby

As a final backup/recovery strategy, you can create a hot standby. Note that using hot standbys
requires your application to be able to specify its environment home directory at application
startup time. Most application developers allow the environment home directory to be identified
using a command line option or a configuration or properties file. If your application has its
environment home hard-coded into it, you cannot use hot standbys.

You create a hot standby by periodically backing up your database to an alternative location
on disk. Usually this alternative location is on a separate physical drive from where you normally
keep your database, but if multiple drives are not available then you should at least put the
hot standby on a separate disk partition.

You failover to your hot standby by causing your application to reopen its environment using
the hot standby location.

Note that a hot standby should not be used as a substitute for backing up and archiving your
data to a safe location away from your operating environment. Even if your data is spread
across multiple physical disks, a truly serious catastrophe (fires, malevolent software viruses,
faulty disk controllers, and so forth) can still cause you to lose your data.

To create and maintain a hot standby:

1. Copy all log files (*.jdb) from your environment directory to the location where you want
to keep your standby. Either a hot or an offline backup can be used for this purpose, but
typically a hot standby is initially created by taking an offline backup of your database. This
ensures that you have captured the contents of your in-memory cache.

2. Periodically copy to your standby directory any log files that were changed or created since
the time of your last copy. Most backup software is capable of performing this kind of an
incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data that is
at risk due to catastrophic failures. For example, if you perform the incremental copy once

Page 152Getting Started with JE6/4/2008



an hour then at most your hot standby is an hour behind your production database, and so
you are risking at most an hours worth of database changes.

3. Remove any *.jdb files from the hot standby directory that have been removed or renamed
to .del files in the primary directory. This is not necessary for consistency, but will help to
reduce disk space consumed by the hot standby.

Page 153Getting Started with JE6/4/2008



Chapter 12. Administering Berkeley DB Java Edition
Applications

There are a series of tools and parameters of interest to the administrator of a Berkeley DB
Java Edition database. These tools and parameters are useful for tuning your JE database's
behavior once it is in a production setting, and they are described here. This chapter, however,
does not describe backing up and restoring your JE databases. See Backing up and Restoring
Berkeley DB Java Edition Applications (page 147) for information on how to perform those
procedures.

The JE Properties File

JE applications can be controlled through a Java properties file. This file must be placed in
your environment home directory and it must be named je.properties.

The parameters set in this file take precedence over the configuration behavior coded into the
JE application by your application developers.

Usually you will use this file to control the behavior of JE's background threads, and to control
the size of your in-memory cache. These topics, and the properties parameters related to
them, are described in this chapter. Beyond the properties described here, there are other
properties identified throughout this manual that may be of interest to you. However, the
definitive identification of all the property parameters available to you is described in the
javadoc for the EnvironmentConfig class. Each property has a String constant in
EnvironmentConfig that describes its meaning, default value, and so forth.

Managing the Background Threads

JE uses some background threads to keep your database resources within pre-configured limits.
If they are going to run, the background threads are started once per application per process.
That is, if your application opens the same environment multiple times, the background threads
will be started just once for that process. See the following list for the default conditions that
gate whether an individual thread is run. Note that you can prevent a background thread from
running by using the appropriate je.properties parameter, but this is not recommended for
production use and those parameters are not described here.

The background threads are:

• Cleaner thread.

Responsible for cleaning and deleting unused log files. See The Cleaner Thread (page 155) for
more information.

This thread is run only if the environment is opened for write access.

Page 154Getting Started with JE6/4/2008



• Compressor thread.

Responsible for cleaning up the internal BTree as database records are deleted. The
compressor thread ensures that the BTree does not contain unused nodes. There is no need
for you to manage the compressor and so it is not described further in this manual.

This thread is run only if the environment is opened for write access.

• Checkpointer thread.

Responsible for running checkpoints on your environment. See The Checkpointer
Thread (page 155) for more information.

This thread always runs.

The Cleaner Thread

The cleaner thread is responsible for cleaning, or compacting, your log files for you. Log file
cleaning is described in Cleaning the Log Files (page 148).

The following two properties may be of interest to you when managing the cleaner thread:

• je.cleaner.minUtilization

Identifies the percentage of the log file space that must be used for utilized records. If the
percentage of log file space used by utilized records is too low, then the cleaner removes
obsolete records until this threshold is reached. Default is 50%.

• je.cleaner.expunge

Identifies the cleaner's behavior in the event that it is able to remove a log file. If true, the
log files that have been cleaned are deleted from the file system. If false, the log files that
have been cleaned are renamed from NNNNNNNN.jdb to NNNNNNNN.del. You are then responsible
for deleting the renamed files.

Note that the cleaner thread runs only if the environment is opened for write access. Also, be
aware that the cleaner is not guaranteed to finish running before the environment is closed,
which can result in unexpectedly large log files. See Closing Database Environments (page 17)
for more information.

The Checkpointer Thread

Automatically runs checkpoints. Checkpoints and the administration of this thread are described
in the Berkeley DB Java Edition Getting Started with Transaction Processing guide.

Sizing the Cache

By default, your cache is limited to a percentage of the JVM maximum memory as specified
by the -Xmx parameter. You can change this percentage by using the je.maxMemoryPercent

Page 155Getting Started with JE6/4/2008



property or through EnvironmentMutableConfig.setCachePercent(). That is, the maximum
amount of memory available to your cache is normally calculated as:

je.maxMemoryPercent * JVM_maximum_memory

You can find out what the value for this property is by using
EnvironmentConfig.getCachePercent().

Note that you can cause JE to use a fixed maximum cache size by using je.maxMemory or by
using EnvironmentConfig.setCacheSize().

Also, not every JVM is capable of identifying the amount of memory requested via the -Xmx
parameter. For those JVMs you must use je.maxMemory to change your maximum cache size.
The default maximum memory available to your cache in this case is 38M.

Of the amount of memory allowed for your cache, 93% is used for the internal BTree and the
other 7% is used for internal buffers. When your application first starts up, the 7% for buffers
is immediately allocated. The remainder of the cache grows lazily as your application reads
and writes data.

In order for your application to start up successfully, the Java virtual machine must have enough
memory available to it (as identified by the -Xmx command line switch) for both your application
and 7% of your maximum cache value. In order for your application to run continuously (all the
while loading data into the cache), you must make sure your JVM has enough memory for your
application plus the maximum cache size.

The best way to determine how large your cache needs to be is to put your application into a
production environment and watch to see how much disk I/O is occurring. If the application is
going to disk quite a lot to retrieve database records, then you should increase the size of your
cache (provided that you have enough memory to do so).

In order to determine how frequently your application is going to disk for database records not
found in the cache, you can examine the value returned by EnvironmentStats.getNCacheMiss().

EnvironmentStats.getNCacheMiss() identifies the total number of requests for database objects
that were not serviceable from the cache. This value is cumulative since the application started.
The faster this number grows, the more your application is going to disk to service database
operations. Upon application startup you can expect this value to grow quite rapidly. However,
as time passes and your cache is seeded with your most frequently accessed database records,
what you want is for this number's growth to be zero or at least very small.

Note that this statistic can only be collected from within the application itself or using the JMX
extension (see JMX Support (page 11)).

For more information on collecting this statistic, see Environment Statistics (page 20).

The Command Line Tools

JE ships with several command line tools that you can use to help you manage your databases.
They are:

Page 156Getting Started with JE6/4/2008



• DbDump

Dumps a database to a user-readable format.

• DbLoad

Loads a database from the output produced by DbDump

• DbVerify

Verifies the structure of a database.

DbDump

Dumps a database to a flat-text representation. Options are:

-f

Identifies the file to which the output from this command is written. The console
(standard out) is used by default.

-h

Identifies the environment's directory. This parameter is required.

-l

Lists the databases contained in the environment. If the -s is not provided, then this
argument is required.

-p

Prints database records in human-readable format.

-r

Salvage data from a possibly corrupt file. When used on a uncorrupted database, this
option should return data equivalent to a normal dump, but most likely in a different
order.

This option causes the ensuing output to go to a file named dbname.dump where dbname
is the name of the database you are dumping. The file is placed in the current working
directory.

-R

Aggressively salvage data from a possibly corrupt file. This option differs from the -r
option in that it will return all possible data from the file at the risk of also returning
already deleted or otherwise nonsensical items. Data dumped in this fashion will almost
certainly have to be edited by hand or other means before the data is ready for reload
into another database.

This option causes the ensuing output to go to a file named dbname.dump where dbname
is the name of the database you are dumping. The file is placed in the current working
directory.

Page 157Getting Started with JE6/4/2008



-s

Identifies the database to be dumped. If this option is not specified, then the -l is
required.

-v

Prints progress information to the console for -r or -R mode.

-V

Prints the database version number and then quits. All other command line options are
ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -p -s VendorDB
VERSION=3
format=print
type=btree
database=VendorDB
dupsort=false
HEADER=END
 Mom's Kitchen
 sr\01\01xpt\00\0d53 Yerman Ct.t\00\0c763 554 9200t\00\0bMiddle Townt\00
 \0eMaggie Kultgent\00\10763 554 9200 x12t\00\02MNt\00\0dMom's Kitchent\00
 \0555432
 Off the Vine
 sr\01\01xpt\00\10133 American Ct.t\00\0c563 121 3800t\00\0aCentennialt\00
 \08Bob Kingt\00\10563 121 3800 x54t\00\02IAt\00\0cOff the Vinet\00\0552002
 Simply Fresh
 sr\01\01xpt\00\1115612 Bogart Lanet\00\0c420 333 3912t\00\08Harrigant\00
 \0fCheryl Swedbergt\00\0c420 333 3952t\00\02WIt\00\0cSimply Fresht\00\0
 553704
 The Baking Pan
 sr\01\01xpt\00\0e1415 53rd Ave.t\00\0c320 442 2277t\00\07Dutchint\00\09
 Mike Roant\00\0c320 442 6879t\00\02MNt\00\0eThe Baking Pant\00\0556304
 The Pantry
 sr\01\01xpt\00\111206 N. Creek Wayt\00\0c763 555 3391t\00\0bMiddle Town
 t\00\0fSully Beckstromt\00\0c763 555 3391t\00\02MNt\00\0aThe Pantryt\00
 \0555432
 TriCounty Produce
 sr\01\01xpt\00\12309 S. Main Streett\00\0c763 555 5761t\00\0bMiddle Townt
 \00\0dMort Dufresnet\00\0c763 555 5765t\00\02MNt\00\11TriCounty Producet
 \00\0555432
DATA=END
> 

DbLoad

Loads a database from the output produced by DbDump. Options are:

Page 158Getting Started with JE6/4/2008



-c

Specifies configuration options. The options supplied here override the corresponding
options that appear in the data that is being loaded. This option takes values of the
form name=value, where name is the configuration option that you are overriding and
value is the new value for the option.

The following options can be specified:

• database

The name of the database to be loaded. This option duplicates the functionality of
this command's -s command line option.

• dupsort

Indicates whether duplicates are allowed in the database. A value of true allows
duplicates in the database.

-f

Identifies the file from which the database is to be loaded.

-n

Do not overwrite existing keys in the database when loading into an already existing
database. If a key/data pair cannot be loaded into the database for this reason, a
warning message is displayed on the standard error output, and the key/data pair are
skipped

-h

Identifies the environment's directory. This parameter is required.

-l

Allows loading databases that were dumped with the Berkeley DB C product, when the
dump file contains parameters not known to JE.

-s

Overrides the database name, causing the data to be loaded into a database that uses
the name supplied to this parameter.

-T

Causes a flat text file to be loaded into the database.

The input must be paired lines of text, where the first line of the pair is the key item,
and the second line of the pair is its corresponding data item.

A simple escape mechanism, where newline and backslash (\) characters are special,
is applied to the text input. Newline characters are interpreted as record separators.
Backslash characters in the text will be interpreted in one of two ways: If the backslash
character precedes another backslash character, the pair will be interpreted as a literal
backslash. If the backslash character precedes any other character, the two characters
following the backslash will be interpreted as a hexadecimal specification of a single
character; for example, \0a is a newline character in the ASCII character set.

Page 159Getting Started with JE6/4/2008



For this reason, any backslash or newline characters that naturally occur in the text
input must be escaped to avoid misinterpretation by db_load.

-v

Report periodic load status to the console.

-V

Prints the database version number and then quits. All other command line options are
ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -s VendorDB -f vendordb.txt
> java com.sleepycat.je.util.DbLoad -h . -f vendordb.txt
> 

DbVerify

Examines the identified database for errors. Options are:

-h

Identifies the environment's directory. This parameter is required.

-q

Suppress the printing of any error descriptions. Instead, simply exit success or failure.

-s

Identifies the database to be verified. This parameter is required.

-V

Prints the database version number and then quits. All other command line options are
ignored.

-v

Report intermediate statistics every N leaf nodes, where N is the value that you provide
this parameter.

For example:

> java com.sleepycat.je.util.DbVerify -h . -s VendorDB

<BtreeStats>
<BottomInternalNodesByLevel total="1">
  <Item level="1" count="1"/>
</BottomInternalNodesByLevel>
<InternalNodesByLevel total="1">
  <Item level="2" count="1"/>
</InternalNodesByLevel>
<LeafNodes count="6"/>
<DeletedLeafNodes count="0"/>
<DuplicateCountLeafNodes count="0"/>
<MainTreeMaxDepth depth="2"/>

Page 160Getting Started with JE6/4/2008



<DuplicateTreeMaxDepth depth="0"/>
</BtreeStats>

Page 161Getting Started with JE6/4/2008



Appendix A. Concurrent Processing
in Berkeley DB Java Edition

An in-depth description of concurrent processing in JE is beyond the scope of this manual.
However, there are a few things that you should be aware of as you explore JE. Note that many
of these topics are described in greater detail in other parts of this book. This section is intended
only to summarize JE concurrent processing.

Also, this appendix touches on a topic not discussed in any detail in this manual: transactions.
Transactional usage is optional but nevertheless very commonly used for JE applications,
especially when writing multi-threaded or multi-process applications. However, transactions
also represent a topic that is too large for this book. To read a thorough description of JE and
transactional processing, see the Berkeley DB Java Edition Getting Started with Transaction
Processing guide.

This appendix first describes concurrency with multithreaded applications. It then goes on to
describe Multiprocess Applications (page 163).

Multithreaded Applications

Note the following if you are writing an application that will use multiple threads for reading
and writing JE databases:

• JE database and environment handles are free-threaded (that is, are thread safe), so from
a mechanical perspective you do not have to synchronize access to them when they are used
by multiple threads of control.

• It is dangerous to close environments and databases when other database operations are in
progress. So if you are going to share handles for these objects across threads, you should
architect your application such that there is no possibility of a thread closing a handle when
another thread is using that handle.

• If a transaction is shared across threads, it is safe to call transaction.abort() from any
thread. However, be aware that any thread that attempts a database operation using an
aborted transaction will throw a DatabaseException. You should architect your application
such that your threads are able to gracefully deal with some other thread aborting the current
transaction.

• If a transaction is shared across threads, make sure that transaction.commit() can never
be called until all threads participating in the transaction have completed their database
operations.

• JE always performs locking and deadlock detection. Locking is performed at the database
record level. In the event that a deadlock is detected, DeadlockException is thrown.

• A non-transactional operation that reads a record locks it for the duration of the read. While
locked for read, a write lock can not be obtained on that record. However, another read

Page 162Getting Started with JE6/4/2008



lock can be obtained for that record. This means that for threaded applications, multiple
threads can simultaneously read a record, but no thread can write to the record while a read
is in progress.

Note that if you are performing uncommitted reads, then no locking is performed for that
read. Instead, JE uses internal mechanisms to ensure that the data you are reading is
consistent (that is, it will not change mid-read).

Finally, it is possible to specify that you want a write lock for your read operation. You do
this using LockMode.RMW. Use RMW when you know that your read will subsequently be followed
up with a write operation. Doing so can help to avoid deadlocks.

• An operation that writes to a record obtains a write lock on that record. While the write
lock is in progress, no other locks can be obtained for that record (either read or write).

• All locks, read or write, obtained from within a transaction are held until the transaction is
either committed or aborted.

This means that the longer a transaction lives, the more likely other threads in your
application are to run into deadlocks. That is, write operations performed outside of the
scope of the transaction will not be able to obtain a lock on those records while the
transaction is in progress. Also, by default, reads performed outside the scope of the
transaction will not be able to lock records written by the transaction. However, this behavior
can be overridden by configuring your reader to perform uncommitted reads.

Multiprocess Applications

Note the following if you are writing an application that wants to access JE databases from
multiple processes:

• In JE, you must use environments. Further, a database can be opened for write access only
if the environment is opened for write access. Finally, only one process may have an
environment opened for write access at a time.

• If your process attempts to open an environment for write, and another process has already
opened that environment for write, then the open will fail. In this event, the process must
either exit or open the environment as read-only.

• A process that opens an environment for read-only receives a snapshot of the data in that
environment. If another process modifies the environment's databases in any way, the
read-only version of the data will not be updated until the read-only process closes and
reopens the environment (and by extension all databases in that environment).

Page 163Getting Started with JE6/4/2008


	Getting Started with Berkeley DB Java Edition
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information


	Chapter 1. Introduction to Berkeley DB Java Edition
	Features
	DPL Features
	Base API Features
	Which API Should You Use?

	The JE Application
	Database Environments
	Key-Data Pairs
	Storing Data
	Storing Data in the DPL
	Storing Data using the Base API

	Duplicate Data
	Replacing and Deleting Entries
	Secondary Keys
	Using Secondaries with the DPL
	Using Secondaries with the Base API.

	Transactions
	JE Resources
	Application Considerations

	JE Backup and Restore
	JCA Support
	JMX Support
	Getting and Using JE
	JE Exceptions
	Six Things Everyone Should Know about JE Log Files

	Chapter 2. Database Environments
	Opening Database Environments
	
	Configuring a Shared Cache for Multiple Environments

	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics
	Database Environment Management Example

	Part I. Programming with the Direct Persistence Layer
	Chapter 3. Direct Persistence Layer First Steps
	Entity Stores
	Opening and Closing Environments and Stores

	Persistent Objects
	Saving a Retrieving Data

	Chapter 4. Working with Indices
	Accessing Indexes
	Accessing Primary Indices
	Accessing Secondary Indices

	Creating Indexes
	Declaring a Primary Indexes
	Declaring Secondary Indexes
	Foreign Key Constraints


	Chapter 5. Saving and Retrieving Objects
	A Simple Entity Class
	SimpleDA.class
	Placing Objects in an Entity Store
	Retrieving Objects from an Entity Store
	Retrieving Multiple Objects
	Cursor Initialization
	Working with Duplicate Keys
	Key Ranges

	Join Cursors
	Deleting Entity Objects
	Replacing Entity Objects

	Chapter 6. A DPL Example
	Vendor.java
	Inventory.java
	MyDbEnv
	DataAccessor.java
	ExampleDatabasePut.java
	ExampleInventoryRead.java


	Part II. Programming with the Base API
	Chapter 7. Databases
	Opening Databases
	Deferred Write Databases
	Temporary Databases
	Closing Databases

	Database Properties
	Administrative Methods
	Database Example

	Chapter 8. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Using Comparators
	Writing Comparators
	Setting Comparators

	Database Record Example

	Chapter 9. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 10. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbEnv
	Using Secondary Databases with ExampleInventoryRead



	Part III. Administering JE Applications
	Chapter 11. Backing up and Restoring Berkeley DB Java Edition Applications
	Databases and Log Files
	Log File Overview
	Cleaning the Log Files
	The BTree
	Database Modifications and Syncs
	Normal Recovery

	Performing Backups
	Performing a Hot Backup
	Performing an Offline Backup
	Using the DbBackup Helper Class

	Performing Catastrophic Recovery
	Hot Standby

	Chapter 12. Administering Berkeley DB Java Edition Applications
	The JE Properties File
	Managing the Background Threads
	The Cleaner Thread
	The Checkpointer Thread

	Sizing the Cache
	The Command Line Tools
	DbDump
	DbLoad
	DbVerify



	Appendix A. Concurrent Processing in Berkeley DB Java Edition
	Multithreaded Applications
	Multiprocess Applications


