
Oracle Berkeley DB Java Edition

Getting Started with
Transaction Processing

Release 3.1

.

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle
Corporation. All rights to these marks are reserved. No third-party use is permitted without the express prior
written consent of Oracle Corporation.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumID=273

Published 9/19/2006

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html
http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents
Preface .. iv

Conventions Used in this Book ... iv
For More Information .. v

1. Introduction .. 1
Transaction Benefits ... 1

A Note on System Failure ... 2
Application Requirements .. 2
Multi-threaded Applications ... 3

Recoverability .. 4
Performance Tuning ... 4

2. Enabling Transactions ... 5
Opening a Transactional Environment and Database 5

3. Transaction Basics ... 7
Committing a Transaction .. 8

Non-Durable Transactions .. 9
Aborting a Transaction ... 10
Auto Commit .. 11
Transactional Cursors .. 12
Secondary Indices with Transaction Applications 13
Configuring the Transaction Subsystem ... 15

4. Concurrency .. 17
Which JE Handles are Free-Threaded ... 18
Locks, Blocks, and Deadlocks ... 18

Locks ... 18
Lock Resources ... 19
Types of Locks ... 19
Lock Lifetime ... 20

Blocks .. 20
Blocking and Application Performance 21
Avoiding Blocks ... 22

Deadlocks .. 22
Deadlock Avoidance ... 23

JE Lock Management ... 24
Managing JE Lock Timeouts ... 24
Managing Deadlocks .. 24

Isolation .. 26
Supported Degrees of Isolation .. 26
Reading Uncommitted Data .. 27
Committed Reads .. 29
Configuring Serializable Isolation .. 31

Transactional Cursors and Concurrent Applications 33
Using Cursors with Uncommitted Data .. 34

Read/Modify/Write ... 35
5. Backing up and Restoring Berkeley DB, Java Edition Applications 37

Normal Recovery .. 37
Checkpoints .. 37

Page iiUsing Transactions with JE9/19/2006

Performing Backups .. 38
Performing a Hot Backup ... 38
Performing an Offline Backup .. 38
Using the DbBackup Helper Class .. 39

Performing Catastrophic Recovery ... 41
Hot Failover ... 41

6. Summary and Examples ... 43
Anatomy of a Transactional Application .. 43
Transaction Example ... 44

TxnGuide.java .. 45
PayloadData.java ... 48
DBWriter.java ... 49

Page iiiUsing Transactions with JE9/19/2006

Preface
This document describes how to use transactions with your Berkeley DB, Java Edition
applications. It is intended to describe how to transaction protect your application's data.
The APIs used to perform this task are described here, as are the environment
infrastructure and administrative tasks required by a transactional application. This book
also describes multi-threaded JE applications and the requirements they have for deadlock
detection.

This book is aimed at the software engineer responsible for writing a transactional JE
application.

This book assumes that you have already read and understood the concepts contained in
the Getting Started with Berkeley DB Java Edition guide.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import com.sleepycat.je.Environment;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

Page ivUsing Transactions with JE9/19/2006

Finally, notes of special interest are represented using a note block such as this.☞
For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional JE application:

• Getting Started with Berkeley DB Java Edition
[http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf]

• Berkeley DB Java Edition Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html]

• Berkeley DB Java Edition Collections Tutorial
[http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf]

• Berkeley DB Java Edition Getting Started with the Direct Persistence Layer
[http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf]

Page vUsing Transactions with JE9/19/2006

Conventions Used in this Book

http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf

Page viUsing Transactions with JE9/19/2006

Chapter 1. Introduction
This book provides a thorough introduction and discussion on transactions as used with
Berkeley DB, Java Edition (JE). It begins by offering a general overview to transactions,
the guarantees they provide, and the general application infrastructure required to obtain
full transactional protection for your data.

This book also provides detailed examples on how to write a transactional application.
Both single threaded and multi-threaded are discussed. A detailed description of various
backup and recovery strategies is included in this manual, as is a discussion on performance
considerations for your transactional application.

You should understand the concepts from the Getting Started with Berkeley DB Java
Edition guide before reading this book.

The examples presented in this book use the Berkeley DB, Java Edition API, not the Direct
Persistence Layer API. However, all of the concepts presented here in terms of transactional☞
benefits, transaction usage, and deadlock handling also apply to the Direct Persistence
Layer.

Transaction Benefits

Transactions offer your application's data protection from application or system failures.
That is, JE transactions offer your application full ACID support:

• Atomicity

Multiple database operations are treated as a single unit of work. Once committed,
all write operations performed under the protection of the transaction are saved to
your databases. Further, in the event that you abort a transaction, all write operations
performed during the transaction are discarded. In this event, your database is left
in the state it was in before the transaction began, regardless of the number or type
of write operations you may have performed during the course of the transaction.

Note that JE transactions can span one or more database handles.

• Consistency

Your databases will never see a partially completed transaction. This is true even if
your application fails while there are in-progress transactions. If the application or
system fails, then either all of the database changes appear when the application next
runs, or none of them appear.

In other words, whatever consistency requirements your application has will never be
violated by JE. If, for example, your application requires every record to include an
employee ID, and your code faithfully adds that ID to its database records, then JE
will never violate that consistency requirement. The ID will remain in the database
records until such a time as your application chooses to delete it.

• Isolation

Page 1Using Transactions with JE9/19/2006

While a transaction is in progress, your databases will appear to the transaction as if
there are no other operations occurring outside of the transaction. That is, operations
wrapped inside a transaction will always have a clean and consistent view of your
databases. They never have to see updates currently in progress under the protection
of another transaction. Note, however, that isolation guarantees can be increased
and relaxed from the default setting. See Isolation (page 26) for more information.

• Durability

Once committed to your databases, your modifications will persist even in the event
of an application or system failure. Note that like isolation, your durability guarantee
can be relaxed. See Non-Durable Transactions (page 9) for more information.

A Note on System Failure

From time to time this manual mentions that transactions protect your data against
'system or application failure.' This is true up to a certain extent. However, not all failures
are created equal and no data protection mechanism can protect you against every
conceivable way a computing system can find to die.

Generally, when this book talks about protection against failures, it means that transactions
offer protection against the likeliest culprits for system and application crashes. So long
as your data modifications have been committed to disk, those modifications should
persist even if your application or OS subsequently fails. And, even if the application or
OS fails in the middle of a transaction commit (or abort), the data on disk should be either
in a consistent state, or there should be enough data available to bring your databases
into a consistent state (via a recovery procedure, for example). You may, however, lose
whatever data you were committing at the time of the failure, but your databases will
be otherwise unaffected.

Of course, if your disk fails, then the transactional benefits described in this book are
only as good as the backups you have taken.

Finally, by following the programming examples shown in this book, you can write your
code so as to protect your data in the event that your code crashes. However, no
programming API can protect you against logic failures in your own code; transactions
cannot protect you from simply writing the wrong thing to your databases.

Application Requirements

In order to use transactions, your application has certain requirements beyond what is
required of non-transactional protected applications. They are:

• Transaction subsystem.

In order to use transactions, you must explicitly enable the transactional subsystem
for your application, and this must be done at the time that your environment is first
created.

• Transaction handles.

Page 2Using Transactions with JE9/19/2006

Transaction Benefits

In order to obtain the atomicity guarantee offered by the transactional subsystem
(that is, combine multiple operations in a single unit of work), your application must
use transaction handles. These handles are obtained from your Environment objects.
They should normally be short-lived, and their usage is reasonably simple. To complete
a transaction and save the work it performed, you call its commit() method. To
complete a transaction and discard its work, you call its abort() method.

In addition, it is possible to use auto commit if you want to transactional protect a
single write operation. Auto commit allows a transaction to be used without obtaining
an explicit transaction handle. See Auto Commit (page 11) for information on how to
use auto commit.

• Database open requirements.

Your application must transaction protect the database opens, and any secondary
index associations, if subsequent operations on the databases are to be transaction
protected. The database open and secondary index association are commonly
transaction protected using auto commit.

• Deadlock detection.

Typically transactional applications use multiple threads of control when accessing
the database. Any time multiple threads are used on a single resource, the potential
for lock contention arises. In turn, lock contention can lead to deadlocks. See Locks,
Blocks, and Deadlocks (page 18) for more information.

Therefore, transactional applications must frequently include code for detecting and
responding to deadlocks. Note that this requirement is not specific to transactions –
you can certainly write concurrent non-transactional JE applications. Further, not
every transactional application uses concurrency and so not every transactional
application must manage deadlocks. Still, deadlock management is so frequently a
characteristic of transactional applications that we discuss it in this book. See
Concurrency (page 17) for more information.

Multi-threaded Applications

JE is designed to support multi-threaded applications, but their usage means you must
pay careful attention to issues of concurrency. Transactions help your application's
concurrency by providing various levels of isolation for your threads of control. In addition,
JE provides mechanisms that allow you to detect and respond to deadlocks (but strictly
speaking, this is not limited to just transactional applications).

Isolation means that database modifications made by one transaction will not normally
be seen by readers from another transaction until the first commits its changes. Different
threads use different transaction handles, so this mechanism is normally used to provide
isolation between database operations performed by different threads.

Note that JE supports different isolation levels. For example, you can configure your
application to see uncommitted reads, which means that one transaction can see data
that has been modified but not yet committed by another transaction. Doing this might

Page 3Using Transactions with JE9/19/2006

Transaction Benefits

mean your transaction reads data "dirtied" by another transaction, but which subsequently
might change before that other transaction commits its changes. On the other hand,
lowering your isolation requirements means that your application can experience improved
throughput due to reduced lock contention.

For more information on concurrency, on managing isolation levels, and on deadlock
detection, see Concurrency (page 17).

Recoverability

An important part of JE's transactional guarantees is durability. Durability means that
once a transaction has been committed, the database modifications performed under its
protection will not be lost due to system failure.

JE supports a normal recovery that runs against a subset of your log files. This is a routine
procedure used whenever your environment is first opened upon application startup, and
it is intended to ensure that your database is in a consistent state. JE also supports archival
backup and recovery in the case of catastrophic failure, such as the loss of a physical disk
drive.

This book describes several different backup procedures you can use to protect your
on-disk data. These procedures range from simple offline backup strategies to hot failovers.
Hot failovers provide not only a backup mechanism, but also a way to recover from a fatal
hardware failure.

This book also describes the recovery procedures you should use for each of the backup
strategies that you might employ.

For a detailed description of backup and restore procedures, see the Getting Started with
Berkeley DB Java Edition guide.

Performance Tuning

From a performance perspective, the use of transactions is not free. Depending on how
you configure them, transaction commits usually require your application to perform disk
I/O that a non-transactional application does not perform. Also, for multi-threaded
applications, the use of transactions can result in increased lock contention due to extra
locking requirements driven by transactional isolation guarantees.

There is therefore a performance tuning component to transactional applications that is
not applicable for non-transactional applications (although some tuning considerations
do exist whether or not your application uses transactions). Where appropriate, these
tuning considerations are introduced in the following chapters.

Page 4Using Transactions with JE9/19/2006

Recoverability

Chapter 2. Enabling Transactions
In order to use transactions with your application, you must turn them on. To do this you
must:

• Turn on transactions for your environment. You do this by using the
EnvironmentConfig.setTransactional() method, or by using the
je.env.isTransactional je.properties parameter.

• Transaction-enable your databases. You do this by using the
DatabaseConfig.setTransactional() method, and then opening the database from
within a transaction. Note that the common practice is for auto commit to be used to
transaction-protect the database open. To use auto-commit, you must still enable
transactions as described here, but you do not have to explicitly use a transaction
when you open your database. An example of this is given in the next section.

Opening a Transactional Environment and Database

To enable transactions for your environment, you must initialize the transactional
subsystem:

package je.txn;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

} catch (DatabaseException de) {
 // Exception handling goes here
}

You then create and open your database(s) as you would for a non-transactional system.
The only difference is that you must set DatabaseConfig.setTransactional() to true.
Note that your database open must be transactional-protected. However, if you do not
give the openDatabase() method a transaction handle, then the open is automatically
protected using auto commit. Typically auto commit is used for this purpose. For example:

Page 5Using Transactions with JE9/19/2006

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);
 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

// Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null,
 "sampleDatabase",
 dbConfig);

} catch (DatabaseException de) {
 // Exception handling goes here
}

Never close a database that has active transactions. Make sure all transactions are resolved
(either committed or aborted) before closing the database.☞

Page 6Using Transactions with JE9/19/2006

Opening a Transactional
Environment and Database

Chapter 3. Transaction Basics
Once you have enabled transactions for your environment and your databases, you can
use them to protect your database operations. You do this by acquiring a transaction
handle and then using that handle for any database operation that you want to participate
in that transaction.

You obtain a transaction handle using the Environment.beginTransaction() method.

Once you have completed all of the operations that you want to include in the transaction,
you must commit the transaction using the Transaction.commit() method.

If, for any reason, you want to abandon the transaction, you abort it using
Transaction.abort().

Any transaction handle that has been committed or aborted can no longer be used by
your application.

Finally, you must make sure that all transaction handles are either committed or aborted
before closing your databases and environment.

If you only want to transaction protect a single database write operation, you can use auto
commit to perform the transaction administration. When you use auto commit, you do not
need an explicit transaction handle. See Auto Commit (page 11) for more information.

☞

For example, the following example opens a transactional-enabled environment and
database, obtains a transaction handle, and then performs a write operation under its
protection. In the event of any failure in the write operation, the transaction is aborted
and the database is left in a state as if no operations had ever been attempted in the
first place.

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Transaction;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

Page 7Using Transactions with JE9/19/2006

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 // Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null,
 "sampleDatabase",
 dbConfig);

 String keyString = "thekey";
 String dataString = "thedata";
 DatabaseEntry key =
 new DatabaseEntry(keyString.getBytes("UTF-8"));
 DatabaseEntry data =
 new DatabaseEntry(dataString.getBytes("UTF-8"));

 Transaction txn = myEnv.beginTransaction(null, null);

 try {
 myDatabase.put(txn, key, data);
 txn.commit();
 } catch (Exception e) {
 if (txn != null) {
 txn.abort();
 txn = null;
 }
 }

} catch (DatabaseException de) {
 // Exception handling goes here
}

Committing a Transaction

In order to fully understand what is happening when you commit a transaction, you must
first understand a little about what JE is doing with its log files. Logging causes all database
write operations to be identified in log files (remember that in JE, your log files are your
database files; there is no difference between the two). Enough information is written
to restore your entire BTree in the event of a system or application failure, so by
performing logging, JE ensures the integrity of your data.

Remember that all write activity made to your database is identified in JE's logs as the
writes are performed by your application. However, JE maintains logs in memory.
Eventually this information is written to disk, but especially in the case of a transactional
application this data may be held in memory until the transaction is committed, or JE
runs out of buffer space for the logging information.

When you commit a transaction, the following occurs:

Page 8Using Transactions with JE9/19/2006

Committing a Transaction

• A commit record is written to the log. This indicates that the modifications made by
the transaction are now permanent. By default, this write is performed synchronously
to disk so the commit record arrives in the log files before any other actions are taken.

• Any log information held in memory is (by default) synchronously written to disk. Note
that this requirement can be relaxed, depending on the type of commit you perform.
See Non-Durable Transactions (page 9) for more information.

Note that a transaction commit only writes the BTree's leaf nodes to JE's log files. All
other internal BTree structures are left unwritten.

• All locks held by the transaction are released. This means that read operations
performed by other transactions or threads of control can now see the modifications
without resorting to uncommitted reads (see Reading Uncommitted Data (page 27)
for more information).

To commit a transaction, you simply call Transaction.commit().

Remember that transaction commit causes only the BTree leaf nodes to be written to JE's
log files. Any other modifications made to the the BTree as a result of the transaction's
activities are not written to the log file. This means that over time JE's normal recovery
time can greatly increase (remember that JE always runs normal recovery when it opens
an environment).

For this reason, JE by default runs the checkpointer thread. This background thread runs
a checkpoint on a periodic interval so as to ensure that the amount of data that needs
to be recovered upon environment open is minimized. In addition, you can also run a
checkpoint manually. For more information, see Checkpoints (page 37).

Note that once you have committed a transaction, the transaction handle that you used
for the transaction is no longer valid. To perform database activities under the control
of a new transaction, you must obtain a fresh transaction handle.

Non-Durable Transactions

As previously noted, by default transaction commits are durable because they cause the
modifications performed under the transaction to be synchronously recorded in your
on-disk log files. However, it is possible to use non-durable transactions.

You may want non-durable transactions for performance reasons. For example, you might
be using transactions simply for the isolation guarantee. In this case, you might want to
relax the synchronized write to disk that JE normally performs as part of a transaction
commit. Doing so means that your data will still make it to disk; however, your application
will not necessarily have to wait for the disk I/O to complete before it can perform another
database operation. This can greatly improve throughput for some workloads.

There are several ways to relax the synchronized write requirement for your transactions:

• Specify true to the EnvironmentMutableConfig.setTxnNoSync() method. This causes
JE to not synchronously force any data to disk upon transaction commit. That is, the

Page 9Using Transactions with JE9/19/2006

Committing a Transaction

modifications are held entirely inside the JVM and the modifications are not forced
to the file system for long-term storage. Note, however, that the data will eventually
make it to the filesystem (assuming no application or OS crashes) as a part of JE's
management of its logging buffers and/or cache.

This form of a commit provides a weak durability guarantee because data loss can
occur due to an application, JVM, or OS crash.

This behavior is specified on a per-environment handle basis. In order for your
application to exhibit consistent behavior, you need to specify this for all of the
environment handles used in your application.

You can achieve this behavior on a transaction by transaction basis by using
Transaction.commitNoSync() to commit your transaction, or by specifying true to the
TransactionConfig.setNoSync() method when starting the transaction.

• Specify true to the EnvironmentConfig.setTxnWriteNoSync()method. This causes data
to be synchronously written to the OS's file system buffers upon transaction commit.
The data will eventually be written to disk, but this occurs when the operating system
chooses to schedule the activity; the transaction commit can complete successfully
before this disk I/O is performed by the OS.

This form of commit protects you against application and JVM crashes, but not against
OS crashes. This method offers less room for the possibility of data loss than does
EnvironmentConfig.setTxnNoSync().

This behavior is specified on a per-environment handle basis. In order for your
application to exhibit consistent behavior, you need to specify this for all of the
environment handles used in your application.

You can achieve this behavior on a transaction by transaction basis by using
Transaction.commitWriteNoSync() to commit your transaction, or by specifying true
to TransactionConfig.setWriteNoSync() method when starting the transaction.

Aborting a Transaction

When you abort a transaction, all database modifications performed under the protection
of the transaction are discarded, and all locks currently held by the transaction are
released. In this event, your data is simply left in the state that it was in before the
transaction began performing data modifications.

Note that aborting a transaction may result in disk I/O. It is possible that during the course
of your transaction, logging data and/or database records were written to backing files
on disk. For this reason, JE notes that the abort occurred in its log files so that at a
minimum the database can be brought into a consistent state at recovery time.

Also, once you have aborted a transaction, the transaction handle that you used for the
transaction is no longer valid. To perform database activities under the control of a new
transaction, you must obtain a fresh transactional handle.

Page 10Using Transactions with JE9/19/2006

Aborting a Transaction

To abort a transaction, call Transaction.abort().

Auto Commit

While transactions are frequently used to provide atomicity to multiple database
operations, it is sometimes necessary to perform a single database operation under the
control of a transaction. Rather than force you to obtain a transaction, perform the single
write operation, and then either commit or abort the transaction, you can automatically
group this sequence of events using auto commit.

To use auto commit:

1. Open your environment and your databases so that they support transactions. See
Enabling Transactions (page 5) for details.

2. Do not provide a transactional handle to the method that is performing the database
write operation.

Note that auto commit is not available for cursors. You must always open your cursor
using a transaction if you want the cursor's operations to be transactional protected. See
Transactional Cursors (page 12) for details on using transactional cursors.

For example, the following uses auto commit to perform the database write operation:

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);
 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 // Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null,
 "sampleDatabase",

Page 11Using Transactions with JE9/19/2006

Auto Commit

 dbConfig);

 String keyString = "thekey";
 String dataString = "thedata";
 DatabaseEntry key =
 new DatabaseEntry(keyString.getBytes("UTF-8"));
 DatabaseEntry data =
 new DatabaseEntry(dataString.getBytes("UTF-8"));

 // Perform the write. Because the database was opened to
 // support transactions, this write is performed using auto commit.
 myDatabase.put(null, key, data);

} catch (DatabaseException de) {
 // Exception handling goes here
}

Transactional Cursors

You can transaction-protect your cursor operations by specifying a transaction handle at
the time that you create your cursor. Beyond that, you do not ever provide a transaction
handle directly to a cursor method.

Note that if you transaction-protect a cursor, then you must make sure that the cursor
is closed before you either commit or abort the transaction. For example:

package je.txn;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.Transaction;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {

 // Database and environment opens omitted

Page 12Using Transactions with JE9/19/2006

Transactional Cursors

 String replacementData = "new data";

 Transaction txn = myEnv.beginTransaction(null, null);
 Cursor cursor = null;
 try {
 // Use the transaction handle here
 cursor = db.openCursor(txn, null);
 DatabaseEntry key, data;

 DatabaseEntry key, data;
 while(cursor.getNext(key, data, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 data.setData(replacementData.getBytes("UTF-8"));
 // No transaction handle is used on the cursor read or write
 // methods.
 cursor.putCurrent(data);
 }

 cursor.close();
 cursor = null;
 txn.commit();
 } catch (Exception e) {
 if (cursor != null) {
 cursor.close();
 }
 if (txn != null) {
 txn.abort();
 txn = null;
 }
 }

} catch (DatabaseException de) {
 // Exception handling goes here
}

Secondary Indices with Transaction Applications

You can use transactions with your secondary indices so long as you open the secondary
index so that it is transactional.

All other aspects of using secondary indices with transactions are identical to using
secondary indices without transactions. In addition, transaction-protecting secondary
cursors is performed just as you protect normal cursors — you simply have to make sure
the cursor is opened using a transaction handle, and that the cursor is closed before the
handle is either either committed or aborted. See Transactional Cursors (page 12) for
details.

Page 13Using Transactions with JE9/19/2006

Secondary Indices with
Transaction Applications

Note that when you use transactions to protect your database writes, your secondary
indices are protected from corruption because updates to the primary and the secondaries
are performed in a single atomic transaction.

For example:

package je.txn;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseType;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

import java.io.FileNotFoundException;

...

// Environment and primary database opens omitted.

SecondaryConfig mySecConfig = new SecondaryConfig();
mySecConfig.setAllowCreate(true);
mySecConfig.setTransactional(true);

SecondaryDatabase mySecDb = null;
try {
 // A fake tuple binding that is not actually implemented anywhere.
 // The tuple binding is dependent on the data in use.
 // See the Getting Started Guide for details
 TupleBinding myTupleBinding = new MyTupleBinding();

 // Open the secondary. FullNameKeyCreator is not actually implemented
 // anywhere. See the Getting Started Guide for details.
 FullNameKeyCreator keyCreator = new FullNameKeyCreator(myTupleBinding);

 // Set the key creator on the secondary config object.
 mySecConfig.setKeyCreator(keyCreator);

 // Perform the actual open. Because this database is configured to be
 // transactional, the open is automatically wrapped in a transaction.
 // - myEnv is the environment handle.
 // - myDb is the primary database handle.
 String secDbName = "mySecondaryDatabase";
 mySecDb = myEnv.openSecondary(null, secDbName, null, myDb, mySecConfig);
} catch (DatabaseException de) {

Page 14Using Transactions with JE9/19/2006

Secondary Indices with
Transaction Applications

 // Exception handling goes here ...
}

Configuring the Transaction Subsystem

When you configure your transaction subsystem, you need to consider your transaction
timeout value. This value represents the longest period of time a transaction can be
active. Note, however, that transaction timeouts are checked only when JE examines its
lock tables for blocked locks (see Locks, Blocks, and Deadlocks (page 18) for more
information). Therefore, a transaction's timeout can have expired, but the application
will not be notified until JE has a reason to examine its lock tables.

Be aware that some transactions may be inappropriately timed out before the transaction
has a chance to complete. You should therefore use this mechanism only if you know your
application might have unacceptably long transactions and you want to make sure your
application will not stall during their execution. (This might happen if, for example, your
transaction blocks or requests too much data.)

Note that by default transaction timeouts are set to 0 seconds, which means that they
never time out.

To set the maximum timeout value for your transactions, use the
EnvironmentConfig.setTxnTimeout() method. This method configures the entire
environment; not just the handle used to set the configuration. Further, this value may
be set at any time during the application's lifetime.

This value can also be set using the je.txn.timeout property in your JE properties file.

For example:

package je.txn;

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

 // Configure a maximum transaction timeout of 1 second.
 myEnvConfig.setTxnTimeout(1000000);

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

Page 15Using Transactions with JE9/19/2006

Configuring the Transaction
Subsystem

 // From here, you open your databases, proceed with your
 // database operations, and respond to deadlocks as
 // is normal (omitted for brevity).

 ...

Page 16Using Transactions with JE9/19/2006

Configuring the Transaction
Subsystem

Chapter 4. Concurrency
JE offers a great deal of support for multi-threaded applications even when transactions
are not in use. Many of JE's handles are thread-safe and JE provides a flexible locking
subsystem for managing databases in a concurrent application. Further, JE provides a
robust mechanism for detecting and responding to deadlocks. All of these concepts are
explored in this chapter.

Before continuing, it is useful to define a few terms that will appear throughout this
chapter:

• Thread of control

Refers to a thread that is performing work in your application. Typically, in this book
that thread will be performing JE operations.

• Locking

When a thread of control obtains access to a shared resource, it is said to be locking
that resource. Note that JE supports both exclusive and non-exclusive locks. See
Locks (page 18) for more information.

• Free-threaded

Data structures and objects are free-threaded if they can be shared across threads of
control without any explicit locking on the part of the application. Some books,
libraries, and programming languages may use the term thread-safe for data structures
or objects that have this characteristic. The two terms mean the same thing.

For a description of free-threaded JE objects, see Which JE Handles are
Free-Threaded (page 18).

• Blocked

When a thread cannot obtain a lock because some other thread already holds a lock
on that object, the lock attempt is said to be blocked. See Blocks (page 20) for more
information.

• Deadlock

Occurs when two or more threads of control attempt to access conflicting resource
in such a way as none of the threads can any longer may further progress.

For example, if Thread A is blocked waiting for a resource held by Thread B, while at
the same time Thread B is blocked waiting for a resource held by Thread A, then
neither thread can make any forward progress. In this situation, Thread A and Thread
B are said to be deadlocked.

For more information, see Deadlocks (page 22).

Page 17Using Transactions with JE9/19/2006

Which JE Handles are Free-Threaded

The following describes to what extent and under what conditions individual handles are
free-threaded.

• Environment

This class is free-threaded.

• Database

This class is free-threaded.

• SecondaryDatabase

This class is free-threaded.

• Cursor

If the cursor is a transactional cursor, it can be used by multiple threads of control so
long as the application serializes access to the handle. If the cursor is not a
transactional cursor, it can not be shared across multiple threads of control at all.

• SecondaryCursor

Same conditions apply as for Cursor handles.

• Transaction

This class is free-threaded.

All classes found in the bind APIs (com.sleepycat.bind.*) are free-threaded.☞

Locks, Blocks, and Deadlocks

It is important to understand how locking works in a concurrent application before
continuing with a description of the concurrency mechanisms JE makes available to you.
Blocking and deadlocking have important performance implications for your application.
Consequently, this section provides a fundamental description of these concepts, and
how they affect JE operations.

Locks

When one thread of control wants to obtain access to an object, it requests a lock for
that object. This lock is what allows JE to provide your application with its transactional
isolation guarantees by ensuring that:

• no other thread of control can read that object (in the case of an exclusive lock), and

Page 18Using Transactions with JE9/19/2006

Which JE Handles are
Free-Threaded

• no other thread of control can modify that object (in the case of an exclusive or
non-exclusive lock).

Lock Resources

When locking occurs, there are conceptually three resources in use:

1. The locker.

This is the thing that holds the lock. In a transactional application, the locker is a
transaction handle. For non-transactional operations, the locker is the current thread.

2. The lock.

This is the actual data structure that locks the object. In JE, a locked object structure
in the lock manager is representative of the object that is locked.

3. The locked object.

The thing that your application actually wants to lock. In a JE application, the locked
object is usually a database record.

JE has not set a limit for the maximum number of these resources you can use. Instead,
you are only limited by the amount of memory available to your application.

The following figure shows a transaction handle, Txn A, that is holding a lock on database
record 002. In this graphic, Txn A is the locker, and the locked object is record 002. Only
a single lock is in use in this operation.

Txn A

001

002 003003002

Types of Locks

JE applications support both exclusive and non-exclusive locks. Exclusive locks are granted
when a locker wants to write to an object. For this reason, exclusive locks are also
sometimes called write locks.

An exclusive lock prevents any other locker from obtaining any sort of a lock on the object.
This provides isolation by ensuring that no other locker can observe or modify an exclusively
locked object until the locker is done writing to that object.

Page 19Using Transactions with JE9/19/2006

Locks, Blocks, and Deadlocks

Non-exclusive locks are granted for read-only access. For this reason, non-exclusive locks
are also sometimes called read locks. Since multiple lockers can simultaneously hold read
locks on the same object, read locks are also sometimes called shared locks.

A non-exclusive lock prevents any other locker from modifying the locked object while
the locker is still reading the object. This is how transactional cursors are able to achieve
repeatable reads; by default, the cursor's transaction holds a read lock on any object that
the cursor has examined until such a time as the transaction is committed or aborted.

In the following figure, Txn A and Txn B are both holding read locks on record 002, while
Txn C is holding a write lock on record 003:

Txn A

Txn B Txn C

001

002 003003002

Lock Lifetime

A locker holds its locks until such a time as it does not need the lock any more. What this
means is:

1. A transaction holds any locks that it obtains until the transaction is committed or
aborted.

2. All non-transaction operations hold locks until such a time as the operation is
completed. For cursor operations, the lock is held until the cursor is moved to a new
position or closed.

Blocks

Simply put, a thread of control is blocked when it attempts to obtain a lock, but that
attempt is denied because some other thread of control holds a conflicting lock. Once
blocked, the thread of control is temporarily unable to make any forward progress until
the requested lock is obtained or the operation requesting the lock is abandoned.

Be aware that when we talk about blocking, strictly speaking the thread is not what is
attempting to obtain the lock. Rather, some object within the thread (such as a cursor)
is attempting to obtain the lock. However, once a locker attempts to obtain a lock, the
entire thread of control must pause until the lock request is in some way resolved.

For example, if Txn A holds a write lock (an exclusive lock) on record 002, then if Txn B
tries to obtain a read or write lock on that record, the thread of control in which Txn B
is running is blocked:

Page 20Using Transactions with JE9/19/2006

Locks, Blocks, and Deadlocks

Txn A

Txn B

001

002 003003002

However, if Txn A only holds a read lock (a shared lock) on record 002, then only those
handles that attempt to obtain a write lock on that record will block.

Txn A

Txn B

Txn C

001

003003002

Read locks
acquired

Write lock
blocked

Blocking and Application Performance

Multi-threaded applications typically perform better than simple single-threaded
applications because the application can perform one part of its workload (updating a
database record, for example) while it is waiting for some other lengthy operation to
complete (performing disk or network I/O, for example). This performance improvement
is particularly noticeable if you use hardware that offers multiple CPUs, because the
threads can run simultaneously.

That said, concurrent applications can see reduced workload throughput if their threads
of control are seeing a large amount of lock contention. That is, if threads are blocking
on lock requests, then that represents a performance penalty for your application.

Consider once again the previous diagram of a blocked write lock request. In that diagram,
Txn C cannot obtain its requested write lock because Txn A and Txn B are both already
holding read locks on the requested record. In this case, the thread in which Txn C is
running will pause until such a time as Txn C either obtains its write lock, or the operation
that is requesting the lock is abandoned. The fact that Txn C's thread has temporarily
halted all forward progress represents a performance penalty for your application.

Moreover, any read locks that are requested while Txn C is waiting for its write lock will
also block until such a time as Txn C has obtained and subsequently released its write
lock.

Page 21Using Transactions with JE9/19/2006

Locks, Blocks, and Deadlocks

Avoiding Blocks

Reducing lock contention is an important part of performance tuning your concurrent JE
application. Applications that have multiple threads of control obtaining exclusive (write)
locks are prone to contention issues. Moreover, as you increase the numbers of lockers
and as you increase the time that a lock is held, you increase the chances of your
application seeing lock contention.

As you are designing your application, try to do the following in order to reduce lock
contention:

• Reduce the length of time your application holds locks.

Shorter lived transactions will result in shorter lock lifetimes, which will in turn help
to reduce lock contention.

In addition, by default transactional cursors hold read locks until such a time as the
transaction is completed. For this reason, try to minimize the time you keep
transactional cursors opened, or reduce your isolation levels – see below.

• If possible, access heavily accessed (read or write) items toward the end of the
transaction. This reduces the amount of time that a heavily used record is locked by
the transaction.

• Reduce your application's isolation guarantees.

By reducing your isolation guarantees, you reduce the situations in which a lock can
block another lock. Try using uncommitted reads for your read operations in order to
prevent a read lock being blocked by a write lock.

In addition, for cursors you can use degree 2 (read committed) isolation, which causes
the cursor to release its read locks as soon as it is done reading the record (as opposed
to holding its read locks until the transaction ends).

Be aware that reducing your isolation guarantees can have adverse consequences for
your application. Before deciding to reduce your isolation, take care to examine your
application's isolation requirements. For information on isolation levels, see
Isolation (page 26).

• Consider your data access patterns.

Depending on the nature of your application, this may be something that you can not
do anything about. However, if it is possible to create your threads such that they
operate only on non-overlapping portions of your database, then you can reduce lock
contention because your threads will rarely (if ever) block on one another's locks.

Deadlocks

A deadlock occurs when two or more threads of control are blocked, each waiting on a
resource held by the other thread. When this happens, there is no possibility of the threads

Page 22Using Transactions with JE9/19/2006

Locks, Blocks, and Deadlocks

ever making forward progress unless some outside agent takes action to break the
deadlock.

For example, if Txn A is blocked by Txn B at the same time Txn B is blocked by Txn A
then the threads of control containing Txn A and Txn B are deadlocked; neither thread
can make any forward progress because neither thread will ever release the lock that is
blocking the other thread.

Txn A

Txn B

001

003

003

002

Txn A blocked
by Txn B

Txn B blocked
by Txn A

Txn A and Txn B are deadlocked

When two threads of control deadlock, the only solution is to have a mechanism external
to the two threads capable of recognizing the deadlock and notifying at least one thread
that it is in a deadlock situation. Once notified, a thread of control must abandon the
attempted operation in order to resolve the deadlock. JE is capable of notifying your
application when it detects a deadlock. See Managing Deadlocks (page 24) for more
information.

Note that when one locker in a thread of control is blocked waiting on a lock held by
another locker in that same thread of the control, the thread is said to be self-deadlocked.

Note that in JE, a self-deadlock can occur only if two or more transactions (lockers) are
used in the same thread. A self-deadlock cannot occur for non-transactional usage, because
the thread is the locker.

Deadlock Avoidance

The things that you do to avoid lock contention also help to reduce deadlocks (see Avoiding
Blocks (page 22)). Beyond that, you should also make sure all threads access data in the
same order as all other threads. So long as threads lock records in the same basic order,
there is no possibility of a deadlock (threads can still block, however).

Be aware that if you are using secondary databases (indices), then locking order is different
for reading and writing. For this reason, if you are writing a concurrent application and
you are using secondary databases, you should expect deadlocks.

Page 23Using Transactions with JE9/19/2006

Locks, Blocks, and Deadlocks

JE Lock Management

To manage locks in JE, you must do two things:

1. Manage lock timeouts.

2. Detect and respond to deadlocks.

Managing JE Lock Timeouts

Like transaction timeouts (see Configuring the Transaction Subsystem (page 15)), JE allows
you to identify the longest period of time that it is allowed to hold a lock. This value
plays an important part in performing deadlock detection, because the only way JE can
identify a deadlock is if a lock is held past its timeout value.

However, unlike transaction timeouts, lock timeouts are on a true timer. Transaction
timeouts are only identified when JE is has a reason to examine its lock table; that is,
when it is attempting to acquire a lock. If no such activity is occurring in your application,
a transaction can exist for a long time past its expiration timeout. Conversely, lock
timeouts are managed by a timer maintained by the JVM. Once this timer has expired,
your application will be notified of the event (see the next section on deadlock detection
for more information).

You can set the lock timeout on a transaction by transaction basis, or for the entire
environment. To set it on a transaction basis, use Transaction.setLockTimeout(). To set
it for your entire environment, use EnvironmentConfig.setLockTimeout() or use the
je.lock.timeout parameter in the je.properties file.

The value that you specify for the lock timeout is in microseconds. 500000 is used by
default.

Note that changing this value can have an affect on your application's performance. If
you set it too low, locks may expire and be considered deadlocked even though the thread
is in fact making forward progress. This will cause your application to abort and retry
transactions unnecessarily, which can ultimately harm application throughput. If you set
it too high, threads may deadlock for too long before your application receives notification
and is able to take corrective action. Again, this can harm application throughput.

Note that for single-threaded applications in which you will have extremely long-lived
locks, you may want to set this value to 0. Doing so disables lock timeouts entirely.

Managing Deadlocks

When a lock times out in JE, the thread of control holding that lock is notified of the
deadlock event via a DeadlockException exception. When this happens, the thread must:

1. Cease all read and write operations.

2. Close all open cursors.

Page 24Using Transactions with JE9/19/2006

JE Lock Management

3. Abort the transaction.

4. Optionally retry the operation. If your application retries deadlocked operations, the
new attempt must be made using a new transaction.

If a thread has deadlocked, it may not make any additional database calls using the
transaction handle that has deadlocked.☞

For example:

// retry_count is a counter used to identify how many times
// we've retried this operation. To avoid the potential for
// endless looping, we won't retry more than MAX_DEADLOCK_RETRIES
// times.

// txn is a transaction handle.
// key and data are DatabaseEntry handles. Their usage is not shown here.
while (retry_count < MAX_DEADLOCK_RETRIES) {
 try {
 txn = myEnv.beginTransaction(null, null);
 myDatabase.put(txn, key, data);
 txn.commit();
 return 0;
 } catch (DeadlockException de) {
 try {
 // Abort the transaction and increment the
 // retry counter
 txn.abort();
 retry_count++;
 if (retry_count >= MAX_DEADLOCK_RETRIES) {
 System.err.println("Exceeded retry limit. Giving up.");
 return -1;
 }
 } catch (DatabaseException ae) {
 System.err.println("txn abort failed: " + ae.toString());
 return -1;
 }
 } catch (DatabaseException e) {
 try {
 // Abort the transaction.
 txn.abort();
 } catch (DatabaseException ae) {
 System.err.println("txn abort failed: " + ae.toString());
 }
 return -1;
 }
}

Page 25Using Transactions with JE9/19/2006

JE Lock Management

Isolation

Isolation guarantees are an important aspect of transactional protection. Transactions
ensure the data your transaction is working with will not be changed by some other
transaction. Moreover, the modifications made by a transaction will never be viewable
outside of that transaction until the changes have been committed.

That said, there are different degrees of isolation, and you can choose to relax your
isolation guarantees to one degree or another depending on your application's
requirements. The primary reason why you might want to do this is because of
performance; the more isolation you ask your transactions to provide, the more locking
that your application must do. With more locking comes a greater chance of blocking,
which in turn causes your threads to pause while waiting for a lock. Therefore, by relaxing
your isolation guarantees, you can potentially improve your application's throughput.
Whether you actually see any improvement depends, of course, on the nature of your
application's data and transactions.

Supported Degrees of Isolation

JE supports the following levels of isolation:

DefinitionANSI TermDegree

Uncommitted reads means that one transaction will
never overwrite another transaction's dirty data. Dirty
data is data that a transaction has modified but not
yet committed to the underlying data store. However,
uncommitted reads allows a transaction to see data
dirtied by another transaction. In addition, a
transaction may read data dirtied by another
transaction, but which subsequently is aborted by that
other transaction. In this latter case, the reading
transaction may be reading data that never really
existed in the database.

READ UNCOMMITTED1

Committed read isolation means that degree 1 is
observed, except that dirty data is never read.

In addition, this isolation level guarantees that data
will never change so long as it is addressed by the
cursor, but the data may change before the reading
cursor is closed. In the case of a transaction, data at
the current cursor position will not change, but once
the cursor moves, the previous referenced data can
change. This means that readers release read locks
before the cursor is closed, and therefore, before the
transaction completes. Note that this level of isolation
causes the cursor to operate in exactly the same way
as it does in the absence of a transaction.

READ COMMITTED2

Page 26Using Transactions with JE9/19/2006

Isolation

DefinitionANSI TermDegree

Committed read is observed, plus the data read by a
transaction, T, will never be dirtied by another
transaction before T completes. This means that both
read and write locks are not released until the
transaction completes.

This is JE's default isolation level.

REPEATABLE READ(undefined)

Committed read is observed, plus no transactions will
see phantoms. Phantoms are records returned as a
result of a search, but which were not seen by the
same transaction when the identical search criteria
was previously used.

SERIALIZABLE3

By default, JE transactions and transactional cursors offer repeatable read isolation. You
can optionally reduce your isolation level by configuring JE to use uncommitted read
isolation. See Reading Uncommitted Data (page 27) for more information. You can also
configure JE to use committed read isolation. See Committed Reads (page 29) for more
information. Finally, you can configure your transactions and transactional cursors to use
serializable isolation. See Configuring Serializable Isolation (page 31) for more information.

Reading Uncommitted Data

You can configure your application to read data that has been modified but not yet
committed by another transaction; that is, dirty data. When you do this, you may see a
performance benefit by allowing your application to not have to block waiting for write
locks. On the other hand, the data that your application is reading may change before
the transaction has completed.

When used with transactions, uncommitted reads means that one transaction can see
data modified but not yet committed by another transaction. When used with transactional
cursors, uncommitted reads means that any database reader can see data modified by
the cursor before the cursor's transaction has committed.

Because of this, uncommitted reads allow a transaction to read data that may subsequently
be aborted by another transaction. In this case, the reading transaction will have read
data that never really existed in the database.

To configure your application to read uncommitted data, specify that you want to use
uncommitted reads when you create a transaction or open the cursor. To do this, you use
the setReadUncommitted()method on the relevant configuration object (TransactionConfig
or CursorConfig).

For example:

Page 27Using Transactions with JE9/19/2006

Isolation

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.TransactionConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 // Open the database.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null, "sampleDatabase", dbConfig);

 TransactionConfig txnConfig = new TransactionConfig();
 txnConfig.setReadUncommitted(true); // Use uncommitted reads
 // for this transaction.
 Transaction txn = myEnv.beginTransaction(null, txnConfig);

 // From here, you perform your database reads and writes as normal,
 // committing and aborting the transactions as is necessary, and
 // testing for deadlock exceptions as normal (omitted for brevity).

 ...

You can also configure uncommitted read isolation on a read-by-read basis by specifying
LockMode.READ_UNCOMMITTED:

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;

Page 28Using Transactions with JE9/19/2006

Isolation

import com.sleepycat.je.Transaction;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 txn = myEnv.beginTransaction(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.READ_UNCOMMITTED);
} catch (Exception e) {
 // Exception handling goes here
}

Committed Reads

You can configure your transaction so that the data being read by a transactional cursor
is consistent so long as it is being addressed by the cursor. However, once the cursor is
done reading the record, the cursor releases its lock on that record. This means that the
data the cursor has read and released may change before the cursor's transaction has
completed.

For example, suppose you have two transactions, Ta and Tb. Suppose further that Ta has
a cursor that reads record R, but does not modify it. Normally, Tb would then be unable
to write record R because Ta would be holding a read lock on it. But when you configure
your transaction for committed reads, Tb can modify record R before Ta completes, so
long as the reading cursor is no longer addressing the record.

When you configure your application for this level of isolation, you may see better
performance throughput because there are fewer read locks being held by your
transactions. Read committed isolation is most useful when you have a cursor that is
reading and/or writing records in a single direction, and that does not ever have to go
back to re-read those same records. In this case, you can allow JE to release read locks
as it goes, rather than hold them for the life of the transaction.

To configure your application to use committed reads, do one of the following:

Page 29Using Transactions with JE9/19/2006

Isolation

• Create your transaction such that it allows committed reads. You do this by specifying
true to TransactionConfig.setReadCommitted().

• Specify true to CursorConfig.setReadCommitted().

For example, the following creates a transaction that allows committed reads:

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.TransactionConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 // Open the database.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null, "sampleDatabase", dbConfig);

 // Open the transaction and enable committed reads. All cursors open
 // with this transaction handle will use read committed isolation.
 TransactionConfig txnConfig = new TransactionConfig();
 txnConfig.setReadCommitted(true); // Use committed reads
 // for this transaction.
 Transaction txn = myEnv.beginTransaction(null, txnConfig);

 // From here, you perform your database reads and writes as normal,
 // committing and aborting the transactions as is necessary, and
 // testing for deadlock exceptions as normal (omitted for brevity).

 ...

Page 30Using Transactions with JE9/19/2006

Isolation

You can also configure read committed isolation on a read-by-read basis by specifying
LockMode.READ_COMMITTED:

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.Transaction;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 txn = myEnv.beginTransaction(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.READ_COMMITTED);
} catch (Exception e) {
 // Exception handling goes here
}

Configuring Serializable Isolation

You can configure JE to use serializable isolation. Serializable isolation prevents
transactions from seeing phantoms. Phantoms occur when a transaction obtains inconsistent
results when performing a given query.

Suppose a transaction performs a search, S, and as a result of that search NOTFOUND is
returned. If you are using only repeatable read isolation (the default isolation level), it
is possible for the same transaction to perform S at a later point in time and return
SUCCESS instead of NOTFOUND. This can occur if another thread of control modified the
database in such a way as to cause S to successfully locate data, where before no data
was found. When this situation occurs, the results returned by S are said to be a phantom.

To prevent phantoms, you can use serializable isolation. Note that this causes JE to
perform additional locking in order to prevent keys from being inserted until the

Page 31Using Transactions with JE9/19/2006

Isolation

transaction ends. However, this additional locking can also result in reduced concurrency
for your application, which means that your database access can be slowed.

You configure serializable isolation for all transactions in your environment by using
EnvironmentConfig.setTxnSerializableIsolation():

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.LockMode;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Open an environment
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 envConfig.setTransactional(true);

 // Use serializable isolation
 envConfig.setTxnSerializableIsolation(true);

 myEnv = new Environment(myHomeDirectory, envConfig);

 // Database open omitted

 ...

 txn = myEnv.beginTransaction(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

Page 32Using Transactions with JE9/19/2006

Isolation

If you do not configure serializable isolation for all transactions, you can configure
serializable isolation for a specific transaction using
TransactionConfig.setSerializableIsolation():

package je.txn;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.TransactionConfig;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 TransactionConfig tc = new TransactionConfig();
 tc.setSerializableIsolation(true); // Use serializable isolation
 txn = myEnv.beginTransaction(null, tc);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

Transactional Cursors and Concurrent Applications

When you use transactional cursors with a concurrent application, remember that in the
event of a deadlock you must make sure that you close your cursor before you abort and
retry your transaction.

Also, remember that when you are using the default isolation level, every time your cursor
reads a record it locks that record until the encompassing transaction is resolved. This
means that walking your database with a transactional cursor increases the chance of
lock contention.

Page 33Using Transactions with JE9/19/2006

Transactional Cursors and
Concurrent Applications

For this reason, if you must routinely walk your database with a transactional cursor,
consider using a reduced isolation level such as read committed.

Using Cursors with Uncommitted Data

As described in Reading Uncommitted Data (page 27) above, it is possible to relax your
transaction's isolation level such that it can read data modified but not yet committed
by another transaction. You can configure this when you create your transaction handle,
and when you do so then all cursors opened inside that transaction will automatically use
uncommitted reads.

You can also do this when you create a cursor handle from within a serializable transaction.
When you do this, only those cursors configured for uncommitted reads uses uncommitted
reads.

The following example shows how to configure an individual cursor handle to read
uncommitted data from within a serializable (full isolation) transaction. For an example
of configuring a transaction to perform uncommitted reads in general, see Reading
Uncommitted Data (page 27).

package je.txn;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.CursorConfig;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {

 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setTransactional(true);

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 // Open the database.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 myDatabase = myEnv.openDatabase(null, // txn handle
 "sampleDatabase", // db file name
 dbConfig);

Page 34Using Transactions with JE9/19/2006

Transactional Cursors and
Concurrent Applications

 // Open the transaction. Note that this is a repeatable
 // read transaction.
 Transaction txn = myEnv.beginTransaction(null, null);
 Cursor cursor = null;
 try {
 // Use the transaction handle here
 // Get our cursor. Note that we pass the transaction
 // handle here. Note also that we cause the cursor
 // to perform uncommitted reads.
 CursorConfig cconfig = new CursorConfig();
 cconfig.setReadUncommitted(true);
 cursor = db.openCursor(txn, cconfig);

 // From here, you perform your cursor reads and writes
 // as normal, committing and aborting the transactions as
 // is necessary, and testing for deadlock exceptions as
 // normal (omitted for brevity).

 ...

Read/Modify/Write

If you are retrieving a record from the database for the purpose of modifying or deleting
it, you should declare a read-modify-write cycle at the time that you read the record.
Doing so causes JE to obtain write locks (instead of a read locks) at the time of the read.
This helps to prevent deadlocks by preventing another transaction from acquiring a read
lock on the same record while the read-modify-write cycle is in progress.

Note that declaring a read-modify-write cycle may actually increase the amount of blocking
that your application sees, because readers immediately obtain write locks and write
locks cannot be shared. For this reason, you should use read-modify-write cycles only if
you are seeing a large amount of deadlocking occurring in your application.

In order to declare a read/modify/write cycle when you perform a read operation, specify
com.sleepycat.je.LockMode.RMW to the database or cursor get method.

For example:

// Begin the deadlock retry loop as is normal.
while (retry_count < MAX_DEADLOCK_RETRIES) {
 try {
 txn = myEnv.beginTransaction(null, null);

 ...
 // key and data are DatabaseEntry objects.
 // Their usage is omitted for brevity.
 ...

 // Read the data. Declare the read/modify/write cycle here
 myDatabase.get(txn, key, data, LockMode.RMW);

Page 35Using Transactions with JE9/19/2006

Read/Modify/Write

 // Put the data. Note that you do not have to provide any
 // additional flags here due to the read/modify/write
 // cycle. Simply put the data and perform your deadlock
 // detection as normal.
 myDatabase.put(txn, key, data);
 txn.commit();
 return 0;
 } catch (DeadlockException de) {
 // Deadlock detection and exception handling omitted
 // for brevity
 ...

Page 36Using Transactions with JE9/19/2006

Read/Modify/Write

Chapter 5. Backing up and Restoring
Berkeley DB, Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage
location. To restore your database from a backup, you copy those files to an appropriate
directory on disk and restart your JE application.

Beyond these simple activities, there are some differing backup strategies that you may
want to consider. These topics are described in this chapter.

Before continuing, before you review the information on log files and background threads
in the Getting Started with Berkeley DB Java Edition guide. Those topics contain important
information that is basic to the following discussion on backups and restores.

Normal Recovery

Remember that internally JE databases are organized in a BTree, and that in order to
operate JE requires the complete BTree be available to it.

When database records are created, modified, or deleted, the modifications are
represented in the BTree's leaf nodes. Beyond leaf node changes, database record
modifications can also cause changes to other BTree nodes and structures.

Now, if your writes are transaction-protected, then every time a transaction is committed
the leaf nodes (and only the leaf nodes) modified by that transaction are written to the
JE log files on disk. Also, remember that the durability of the write (whether a flush or
fsync is performed) depends on the type of commit that is requested. See Non-Durable
Transactions (page 9) for more information.

Normal recovery, then, is the process of recreating the entire BTree from the information
available in the leaf nodes. You do not have to do anything special to cause normal
recovery to be run; this occurs every time a JE environment is opened.

Checkpoints

Running normal recovery can become expensive if over time all that is ever written to
disk is BTree leaf nodes. So in order to limit the time required for normal recovery, JE
runs checkpoints. Checkpoints write to your log files all the internal BTree nodes and
structures modified as a part of write operations. This means that your log files contain
a complete BTree up to the moment in time when the checkpoint was run. The result is
that normal recovery only needs to recreate the portion of the BTree that has been
modified since the time of the last checkpoint.

Checkpoints typically write more information to disk than do transaction commits, and
so they are more expensive from a disk I/O perspective. You will therefore need to consider
how frequently to run checkpoints as a part of your performance tuning activities. When
you do this, balance the cost of the checkpoints against the time it will take your
application to restart due to the cost of running normal recovery.

Page 37Using Transactions with JE9/19/2006

Checkpoints are normally performed by the checkpointer background thread, which is
always running. Like all background threads, it is managed using the je.properties file.
Currently, the only checkpointer property that you may want to manage is
je.checkpointer.bytesInterval. This property identifies how much JE's log files can grow
before a checkpoint is run. Its value is specified in bytes. Decreasing this value causes
the checkpointer thread to run checkpoints more frequently. This will improve the time
that it takes to run recovery, but it also increases the system resources (notably, I/O)
required by JE.

Note that checkpoints are also always performed when the environment is closed normally.
Therefore, normal recovery only has work to do if the application crashes or otherwise
ends abnormally without calling Environment.close().

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery
is possible.

To backup your database, you can either take a hot backup or an offline backup. A hot
backup is performed while database write operations are in progress.

Do not confuse offline and hot backups with the concept of a full and incremental backup.
Both an offline and a hot backup are full backups – you back up the entire database. The
only difference between them is how much of the contents of the in-memory cache are
contained in them. On the other hand, an incremental backup is a backup of just those
log files modified or created since the time of the last backup. Most backup software is
capable of performing both full and incremental backups for you.

Performing a Hot Backup

To perform a hot backup of your JE databases, copy all log files (*.jdb files) from your
environment directory to your archival location or backup media. The files must be copied
in alphabetical order (numerical in effect). You do not have to stop any database operations
in order to do this.

To make this process a bit easier, you may want to make use of the DbBackup helper class.
See Using the DbBackup Helper Class (page 39) for details.

Performing an Offline Backup

An offline backup guarantees that you have captured the database in its entirety, including
all contents of your in-memory cache, at the moment that the backup was taken. To do
this, you must make sure that no write operations are in progress and all database
modifications have been written to your log files on disk. To obtain an offline backup:

1. Stop writing your databases.

2. Make sure all your in-memory changes have been flushed to disk. How you do this
depends on the type of transactions that you are using:

Page 38Using Transactions with JE9/19/2006

Performing Backups

• If you are using transactions that writes all dirty data to disk on commit (this is
the default behavior), you simply need to make sure all on-going transactions are
committed or aborted.

• If you are using transactions that do not synchronously write on commit, you must
run a checkpoint. Remember that closing your environment causes a checkpoint
to be run, so if your application is shutting down completely before taking the
backup, you have met this requirement.

For information on changing the transactional sync behavior, see Non-Durable
Transactions (page 9). For information on running a checkpoint, see
Checkpoints (page 37).

3. If you are using durable transactions, then optionally run a checkpoint. Doing this
can shorten the time required to restore your database from this back up.

4. Copy all log files (*.jdb) from your environment directory to your archival location
or backup media. To make this process a bit easier, you may want to make use of
the DbBackup helper class. See the next section for details.

You can now resume normal database operations.

Using the DbBackup Helper Class

In order to simplify backup operations, JE provides the DbBackup helper class. This class
stops and restarts JE background activity in an open environment. It also lets the
application create a backup which can support restoring the environment to a specific
point in time.

Because you do not have to stop JE write activity in order to take a backup, it is usually
necessary to examine your log files twice before you decide that your backup is complete.
This is because JE may create a new log file while you are running your backup. A second
pass over your log files allows you to ensure that no new files have been created and so
you can declare your backup complete.

For example:

 time files in activity
 environment

 t0 000000001.jdb Backup starts copying file 1
 000000003.jdb
 000000004.jdb

 t1 000000001.jdb JE log cleaner migrates portion of file 3 to newly
 000000004.jdb created file 5 and deletes file 3. Backup finishes
 000000005.jdb file 1, starts copying file 4. Backup MUST include
 file 5 for a consistent backup!

 t2 000000001.jdb Backup finishes copying file 4, starts and finishes

Page 39Using Transactions with JE9/19/2006

Performing Backups

 000000004.jdb file 5, has caught up. Backup ends.
 000000005.jdb

DbBackup works around this problem by defining the set of files that must be copied for
each backup operation, and freezes all changes to those files. The application can copy
that defined set of files and finish operation without checking for the ongoing creation
of new files. Also, there will be no need to check for a newer version of the last file on
the next backup.

In the example above, if DbBackup was used at t0, the application would only have to
copy files 1, 3 and 4 to back up. On a subsequent backup, the application could start its
copying at file 5. There would be no need to check for a newer version of file 4.

The following code fragment illustrates this class' usage:

package je.gettingStarted;

...
import com.sleepycat.je.util.DbBackup;
...

 Environment env = new Environment(...);
 DbBackup backupHelper = new DbBackup(env);

 // Find the file number of the last file in the previous backup
 // persistently, by either checking the backup archive, or saving
 // state in a persistent file.
 long lastFileCopiedInPrevBackup = ...

 // Start backup, find out what needs to be copied.
 backupHelper.startBackup();
 try {
 String[] filesForBackup =
 backupHelper.getLogFilesInBackupSet(lastFileCopiedInPrevBackup);

 // Copy the files to archival storage.
 myApplicationCopyMethod(filesForBackup)
 // Update our knowlege of the last file saved in the backup set,
 // so we can copy less on the next backup
 lastFileCopiedInPrevBackup = backupHelper.getLastFileInBackupSet();
 myApplicationSaveLastFile(lastFileCopiedInBackupSet);
 }
 finally {
 // Remember to exit backup mode, or all log files won't be cleaned
 // and disk usage will bloat.
 backupHelper.endBackup();
 }

Page 40Using Transactions with JE9/19/2006

Performing Backups

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have
been lost or corrupted due to a media failure (disk failure, for example). Catastrophic
recovery is also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full backup of your databases.
You will use this backup to restore your database. See the previous section for information
on running back ups.

To perform catastrophic recovery:

1. Shut down your application.

2. Delete the contents of your environment home directory (the one that experienced
a catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment
directory, copy any log files generated since the time of your last full backup. Be
sure to restore all log files in the order that they were written. The order is important
because it is possible the same log file appears in multiple archives, and you want
to run recovery using the most recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your
database to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Failover

As a final backup/recovery strategy, you can create a hot failover. Note that using hot
failovers requires your application to be able to specify its environment home directory
at application startup time. Most application developers allow the environment home
directory to be identified using a command line option or a configuration or properties
file. If your application has its environment home hard-coded into it, you cannot use hot
failovers.

You create a hot failover by periodically backing up your database to an alternative
location on disk. Usually this alternative location is on a separate physical drive from
where you normally keep your database, but if multiple drives are not available then you
should at least put the hot failover on a separate disk partition.

You failover by causing your application to reopen its environment using the failover
location.

Note that a hot failover should not be used as a substitute for backing up and archiving
your data to a safe location physically remote from your computing environment. Even
if your data is spread across multiple physical disks, a truly serious catastrophe (fires,

Page 41Using Transactions with JE9/19/2006

Performing Catastrophic
Recovery

malevolent software viruses, faulty disk controllers, and so forth) can still cause you to
lose your data.

To create and maintain a hot failover:

1. Copy all log files (*.jdb) from your environment directory to the location where you
want to keep your failover. Either an offline or a hot backup can be used for this
purpose, but typically a hot failoveris initially created by taking an offline backup of
your database. This ensures that you have captured the contents of your in-memory
cache.

2. Periodically copy to your failover directory any log files that were changed or created
since the time of your last copy. Most backup software is capable of performing this
kind of an incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data
that is at risk due to catastrophic failures. For example, if you perform the incremental
copy once an hour then at most your hot failover is an hour behind your production
database, and so you are risking at most an hours worth of database changes.

3. Remove any *.jdb files from the hot failover directory that have been removed or
renamed to .del files in the primary directory. This is not necessary for consistency,
but will help to reduce disk space consumed by the hot failover.

Page 42Using Transactions with JE9/19/2006

Hot Failover

Chapter 6. Summary and Examples
Throughout this manual we have presented the concepts and mechanisms that you need
to provide transactional protection for your application. In this chapter, we summarize
these mechanisms, and we provide a complete example of a multi-threaded transactional
JE application.

Anatomy of a Transactional Application

Transactional applications are characterized by performing the following activities:

1. Create your environment handle.

2. Open your environment, specifying that the transactional subsystem is to be used.

3. Open your database handles, indicating that they are to support transactions.

4. Spawn off worker threads. How many of these you need and how they split their JE
workload is entirely up to your application's requirements. However, any worker
threads that perform write operations against your databases will do the following:

a. Begin a transaction.

b. Perform one or more read and write operations against your databases.

c. Commit the transaction if all goes well.

d. Abort and retry the operation if a deadlock is detected.

e. Abort the transaction for most other errors.

5. On application shutdown:

a. Make sure there are no opened cursors.

b. Make sure there are no active transactions. Either abort or commit all transactions
before shutting down.

c. Close your databases

d. Close your environment.

Robust applications should monitor their database worker threads to make sure they have
not died unexpectedly. If a thread does terminate abnormally, you must shutdown all your☞
worker threads and then run normal recovery (you will have to reopen your environment to
do this). This is the only way to clear any resources (such as a lock or a mutex) that the
abnormally exiting worker thread might have been holding at the time that it died.

Page 43Using Transactions with JE9/19/2006

Failure to perform this recovery can cause your still-functioning worker threads to eventually
block forever while waiting for a lock that will never be released.

In addition to these activities, which are entirely handled by code within your application,
you also need to periodically back up your log files. This is required in order to obtain
the durability guarantee made by JE's transaction ACID support. See Backing up and
Restoring Berkeley DB, Java Edition Applications (page 37) for more information.

Transaction Example

The following Java code provides a fully functional example of a multi-threaded
transactional JE application. The example opens an environment and database, and then
creates 5 threads, each of which writes 500 records to the database. The keys used for
these writes are pre-determined strings, while the data is a class that contains randomly
generated data. This means that the actual data is arbitrary and therefore uninteresting;
we picked it only because it requires minimum code to implement and therefore will stay
out of the way of the main points of this example.

Each thread writes 10 records under a single transaction before committing and writing
another 10 (this is repeated 50 times). At the end of each transaction, but before
committing, each thread calls a function that uses a cursor to read every record in the
database. We do this in order to make some points about database reads in a transactional
environment.

Of course, each writer thread performs deadlock detection as described in this manual.
In addition, normal recovery is performed when the environment is opened.

To implement this example, we need three classes:

• TxnGuide.java

This is the main class for the application. It performs environment and database
management, spawns threads, and creates the data that is placed in the database.
See TxnGuide.java (page 45) for implementation details.

• DBWriter.java

This class extends java.lang.Thread, and as such it is our thread implementation. It
is responsible for actually reading and writing to the database. It also performs all of
our transaction management. See DBWriter.java (page 49) for implementation details.

• PayloadData.java

This is a data class used to encapsulate several data fields. It is fairly uninteresting,
except that the usage of a class means that we have to use the bind APIs to serialize
it for storage in the database. See PayloadData.java (page 48) for implementation
details.

Page 44Using Transactions with JE9/19/2006

Transaction Example

TxnGuide.java

The main class in our example application is used to open and close our environment and
database. It also spawns all the threads that we need. We start with the normal series
of Java package and import statements, followed by our class declaration:

// File TxnGuide.java

package je.txn;

import com.sleepycat.bind.serial.StoredClassCatalog;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
import java.io.FileNotFoundException;

public class TxnGuide {

Next we declare our class' private data members. Mostly these are used for constants
such as the name of the database that we are opening and the number of threads that
we are spawning. However, we also declare our environment and database handles here.

 private static String myEnvPath = "./";
 private static String dbName = "mydb.db";
 private static String cdbName = "myclassdb.db";

 // DB handles
 private static Database myDb = null;
 private static Database myClassDb = null;
 private static Environment myEnv = null;

 private static final int NUMTHREADS = 5;

Next, we implement our usage() method. This application optionally accepts a single
command line argument which is used to identify the environment home directory.

 private static void usage() {
 System.out.println("TxnGuide [-h <env directory>]");
 System.exit(-1);
 }

Now we implement our main() method. This method simply calls the methods to parse
the command line arguments and open the environment and database. It also creates the
stored class catalog that we use for serializing the data that we want to store in our
database. Finally, it creates and then joins the database writer threads.

Page 45Using Transactions with JE9/19/2006

Transaction Example

 public static void main(String args[]) {
 try {
 // Parse the arguments list
 parseArgs(args);
 // Open the environment and databases
 openEnv();
 // Get our class catalog (used to serialize objects)
 StoredClassCatalog classCatalog =
 new StoredClassCatalog(myClassDb);

 // Start the threads
 DBWriter[] threadArray;
 threadArray = new DBWriter[NUMTHREADS];
 for (int i = 0; i < NUMTHREADS; i++) {
 threadArray[i] = new DBWriter(myEnv, myDb, classCatalog);
 threadArray[i].start();
 }

 // Join the threads. That is, wait for each thread to
 // complete before exiting the application.
 for (int i = 0; i < NUMTHREADS; i++) {
 threadArray[i].join();
 }
 } catch (Exception e) {
 System.err.println("TxnGuide: " + e.toString());
 e.printStackTrace();
 } finally {
 closeEnv();
 }
 System.out.println("All done.");
 }

Next we implement openEnv(). This method is used to open the environment and then a
database in that environment. Along the way, we make sure that the transactional
subsystem is correctly initialized.

For the database open, notice that we open the database such that it supports duplicate
records. This is required purely by the data that we are writing to the database, and it
is only necessary if you run the application more than once without first deleting the
environment.

 private static void openEnv() throws DatabaseException {
 System.out.println("opening env");

 // Set up the environment.
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 myEnvConfig.setAllowCreate(true);
 myEnvConfig.setTransactional(true);
 // Environment handles are free-threaded by default in JE,
 // so we do not have to do anything to cause the

Page 46Using Transactions with JE9/19/2006

Transaction Example

 // environment handle to be free-threaded.

 // Set up the database
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(true);
 myDbConfig.setTransactional(true);
 myDbConfig.setSortedDuplicates(true);

 // Open the environment
 myEnv = new Environment(new File(myEnvPath), // Env home
 myEnvConfig);

 // Open the database. Do not provide a txn handle. This open
 // is auto committed because DatabaseConfig.setTransactional()
 // is true.
 myDb = myEnv.openDatabase(null, // txn handle
 dbName, // Database file name
 myDbConfig);

 // Used by the bind API for serializing objects
 // Class database must not support duplicates
 myDbConfig.setSortedDuplicates(false);
 myClassDb = myEnv.openDatabase(null, // txn handle
 cdbName, // Database file name
 myDbConfig);
 }

Finally, we implement the methods used to close our environment and databases, parse
the command line arguments, and provide our class constructor. This is fairly standard
code and it is mostly uninteresting from the perspective of this manual. We include it
here purely for the purpose of completeness.

 private static void closeEnv() {
 System.out.println("Closing env and databases");
 if (myDb != null) {
 try {
 myDb.close();
 } catch (DatabaseException e) {
 System.err.println("closeEnv: myDb: " +
 e.toString());
 e.printStackTrace();
 }
 }

 if (myClassDb != null) {
 try {
 myClassDb.close();
 } catch (DatabaseException e) {
 System.err.println("closeEnv: myClassDb: " +

Page 47Using Transactions with JE9/19/2006

Transaction Example

 e.toString());
 e.printStackTrace();
 }
 }

 if (myEnv != null) {
 try {
 myEnv.close();
 } catch (DatabaseException e) {
 System.err.println("closeEnv: " + e.toString());
 e.printStackTrace();
 }
 }
 }

 private TxnGuide() {}

 private static void parseArgs(String args[]) {
 for(int i = 0; i < args.length; ++i) {
 if (args[i].startsWith("-")) {
 switch(args[i].charAt(1)) {
 case 'h':
 myEnvPath = new String(args[++i]);
 break;
 default:
 usage();
 }
 }
 }
 }
}

PayloadData.java

Before we show the implementation of the database writer thread, we need to show the
class that we will be placing into the database. This class is fairly minimal. It simply allows
you to store and retrieve an int, a String, and a double. We will be using the JE bind
API from within the writer thread to serialize instances of this class and place them into
our database.

package je.txn;

import java.io.Serializable;

public class PayloadData implements Serializable {
 private int oID;
 private String threadName;
 private double doubleData;

Page 48Using Transactions with JE9/19/2006

Transaction Example

 PayloadData(int id, String name, double data) {
 oID = id;
 threadName = name;
 doubleData = data;
 }

 public double getDoubleData() { return doubleData; }
 public int getID() { return oID; }
 public String getThreadName() { return threadName; }
}

DBWriter.java

DBWriter.java provides the implementation for our database writer thread. It is responsible
for:

• All transaction management.

• Responding to deadlock exceptions.

• Providing data to be stored into the database.

• Serializing and then writing the data to the database.

In order to show off some of the ACID properties provided by JE's transactional support,
DBWriter.java does some things in a less efficient way than you would probably decide
to use in a true production application. First, it groups 10 database writes together in a
single transaction when you could just as easily perform one write for each transaction.
If you did this, you could use auto commit for the individual database writes, which means
your code would be slightly simpler and you would run a much smaller chance of
encountering blocked and deadlocked operations. However, by doing things this way, we
are able to show transactional atomicity, as well as deadlock handling.

At the end of each transaction, DBWriter.java runs a cursor over the entire database by
way of counting the number of records currently existing in the database. There are better
ways to discover this information, but in this case we want to make some points regarding
cursors, transactional applications, and deadlocking (we get into this in more detail later
in this section).

To begin, we provide the usual package and import statements, and we declare our class:

package je.txn;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.StringBinding;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.CursorConfig;

Page 49Using Transactions with JE9/19/2006

Transaction Example

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DeadlockException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.Transaction;

import java.io.UnsupportedEncodingException;
import java.util.Random;

public class DBWriter extends Thread
{

Next we declare our private data members. Notice that we get handles for the environment
and the database. We also obtain a handle for an EntryBinding. We will use this to serialize
PayloadData class instances (see PayloadData.java (page 48)) for storage in the database.
The random number generator that we instantiate is used to generate unique data for
storage in the database. The MAX_RETRY variable is used to define how many times we
will retry a transaction in the face of a deadlock. And, finally, keys is a String array that
holds the keys used for our database entries.

 private Database myDb = null;
 private Environment myEnv = null;
 private EntryBinding dataBinding = null;
 private Random generator = new Random();

 private static final int MAX_RETRY = 20;

 private static String[] keys = {"key 1", "key 2", "key 3",
 "key 4", "key 5", "key 6",
 "key 7", "key 8", "key 9",
 "key 10"};

Next we implement our class constructor. The most interesting thing we do here is
instantiate a serial binding for serializing PayloadData instances.

 // Constructor. Get our DB handles from here
 DBWriter(Environment env, Database db, StoredClassCatalog scc)
 throws DatabaseException {
 myDb = db;
 myEnv = env;
 dataBinding = new SerialBinding(scc, PayloadData.class);
 }

Now we implement our thread's run() method. This is the method that is run when
DBWriter threads are started in the main program (see TxnGuide.java (page 45)).

Page 50Using Transactions with JE9/19/2006

Transaction Example

 // Thread method that writes a series of records
 // to the database using transaction protection.
 // Deadlock handling is demonstrated here.
 public void run () {

The first thing we do is get a null transaction handle before going into our main loop.
We also begin the top transaction loop here that causes our application to perform 50
transactions.

 Transaction txn = null;

 // Perform 50 transactions
 for (int i=0; i<50; i++) {

Next we declare a retry variable. This is used to determine whether a deadlock should
result in our retrying the operation. We also declare a retry_count variable that is used
to make sure we do not retry a transaction forever in the unlikely event that the thread
is unable to ever get a necessary lock. (The only thing that might cause this is if some
other thread dies while holding an important lock. This is the only code that we have to
guard against that because the simplicity of this application makes it highly unlikely that
it will ever occur.)

 boolean retry = true;
 int retry_count = 0;
 // while loop is used for deadlock retries
 while (retry) {

Now we go into the try block that we use for deadlock detection. We also begin our
transaction here.

 // try block used for deadlock detection and
 // general db exception handling
 try {

 // Get a transaction
 txn = myEnv.beginTransaction(null, null);

Now we write 10 records under the transaction that we have just begun. By combining
multiple writes together under a single transaction, we increase the likelihood that a
deadlock will occur. Normally, you want to reduce the potential for a deadlock and in
this case the way to do that is to perform a single write per transaction. In other words,
we should be using auto commit to write to our database for this workload.

However, we want to show deadlock handling and by performing multiple writes per
transaction we can actually observe deadlocks occurring. We also want to underscore the
idea that you can combing multiple database operations together in a single atomic unit
of work. So for our example, we do the (slightly) wrong thing.

Further, notice that we store our key into a DatabaseEntry using
com.sleepycat.bind.tuple.StringBinding to perform the serialization. Also, when we
instantiate the PayloadData object, we call getName() which gives us the string

Page 51Using Transactions with JE9/19/2006

Transaction Example

representation of this thread's name, as well as Random.nextDouble() which gives us a
random double value. This latter value is used so as to avoid duplicate records in the
database.

 // Write 10 records to the db
 // for each transaction
 for (int j = 0; j < 10; j++) {
 // Get the key
 DatabaseEntry key = new DatabaseEntry();
 StringBinding.stringToEntry(keys[j], key);

 // Get the data
 PayloadData pd = new PayloadData(i+j, getName(),
 generator.nextDouble());
 DatabaseEntry data = new DatabaseEntry();
 dataBinding.objectToEntry(pd, data);

 // Do the put
 myDb.put(txn, key, data);
 }

Having completed the inner database write loop, we could simply commit the transaction
and continue on to the next block of 10 writes. However, we want to first illustrate a few
points about transactional processing so instead we call our countRecords() method before
calling the transaction commit. countRecords() uses a cursor to read every record in the
database and return a count of the number of records that it found.

Because countRecords() reads every record in the database, if used incorrectly the thread
will self-deadlock. The writer thread has just written 500 records to the database, but
because the transaction used for that write has not yet been committed, each of those
500 records are still locked by the thread's transaction. If we then simply run a
non-transactional cursor over the database from within the same thread that has locked
those 500 records, the cursor will block when it tries to read one of those transactional
protected records. The thread immediately stops operation at that point while the cursor
waits for the read lock it has requested. Because that read lock will never be released
(the thread can never make any forward progress), this represents a self-deadlock for
the thread.

There are three ways to prevent this self-deadlock:

1. We can move the call to countRecords() to a point after the thread's transaction has
committed.

2. We can allow countRecords() to operate under the same transaction as all of the
writes were performed.

3. We can reduce our isolation guarantee for the application by allowing uncommitted
reads.

Page 52Using Transactions with JE9/19/2006

Transaction Example

For this example, we choose to use option 3 (uncommitted reads) to avoid the deadlock.
This means that we have to open our cursor handle so that it knows to perform
uncommitted reads.

 // commit
 System.out.println(getName() + " : committing txn : "
 + i);

 // Using uncommitted reads to avoid the deadlock, so null
 // is passed for the transaction here.
 System.out.println(getName() + " : Found " +
 countRecords(null) + " records in the database.");

Having performed this somewhat inelegant counting of the records in the database, we
can now commit the transaction.

 try {
 txn.commit();
 txn = null;
 } catch (DatabaseException e) {
 System.err.println("Error on txn commit: " +
 e.toString());
 }
 retry = false;

If all goes well with the commit, we are done and we can move on to the next batch of
10 records to add to the database. However, in the event of an error, we must handle
our exceptions correctly. The first of these is a deadlock exception. In the event of a
deadlock, we want to abort and retry the transaction, provided that we have not already
exceeded our retry limit for this transaction.

 } catch (DeadlockException de) {
 System.out.println("################# " + getName() +
 " : caught deadlock");
 // retry if necessary
 if (retry_count < MAX_RETRY) {
 System.err.println(getName() +
 " : Retrying operation.");
 retry = true;
 retry_count++;
 } else {
 System.err.println(getName() +
 " : out of retries. Giving up.");
 retry = false;
 }

In the event of a standard, non-specific database exception, we simply log the exception
and then give up (the transaction is not retried).

 } catch (DatabaseException e) {
 // abort and don't retry

Page 53Using Transactions with JE9/19/2006

Transaction Example

 retry = false;
 System.err.println(getName() +
 " : caught exception: " + e.toString());
 e.printStackTrace();

And, finally, we always abort the transaction if the transaction handle is not null. Note
that immediately after committing our transaction, we set the transaction handle to null
to guard against aborting a transaction that has already been committed.

 } finally {
 if (txn != null) {
 try {
 txn.abort();
 } catch (Exception e) {
 System.err.println("Error aborting txn: " +
 e.toString());
 e.printStackTrace();
 }
 }
 }
 }
 }
 }

The final piece of our DBWriter class is the countRecords() implementation. Notice how
in this example we open the cursor such that it performs uncommitted reads:

 // A method that counts every record in the database.

 // Note that this method exists only for illustrative purposes.
 // A more straight-forward way to count the number of records in
 // a database is to use the Database.getStats() method.
 private int countRecords(Transaction txn) throws DatabaseException {
 DatabaseEntry key = new DatabaseEntry();
 DatabaseEntry data = new DatabaseEntry();
 int count = 0;
 Cursor cursor = null;

 try {
 // Get the cursor
 CursorConfig cc = new CursorConfig();
 cc.setReadUncomitted(true);
 cursor = myDb.openCursor(txn, cc);
 while (cursor.getNext(key, data, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 count++;
 }
 } finally {
 if (cursor != null) {

Page 54Using Transactions with JE9/19/2006

Transaction Example

 cursor.close();
 }
 }

 return count;

 }
}

This completes our transactional example. If you would like to experiment with this code,
you can find the example in the following location in your JE distribution:

JE_HOME/examples/je/txn

Page 55Using Transactions with JE9/19/2006

Transaction Example

	Getting Started with Berkeley DB, Java Edition Transaction Processing
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction
	Transaction Benefits
	A Note on System Failure
	Application Requirements
	Multi-threaded Applications

	Recoverability
	Performance Tuning

	Chapter 2. Enabling Transactions
	Opening a Transactional Environment and Database

	Chapter 3. Transaction Basics
	Committing a Transaction
	Non-Durable Transactions

	Aborting a Transaction
	Auto Commit
	Transactional Cursors
	Secondary Indices with Transaction Applications
	Configuring the Transaction Subsystem

	Chapter 4. Concurrency
	Which JE Handles are Free-Threaded
	Locks, Blocks, and Deadlocks
	Locks
	Lock Resources
	Types of Locks
	Lock Lifetime

	Blocks
	Blocking and Application Performance
	Avoiding Blocks

	Deadlocks
	Deadlock Avoidance

	JE Lock Management
	Managing JE Lock Timeouts
	Managing Deadlocks

	Isolation
	Supported Degrees of Isolation
	Reading Uncommitted Data
	Committed Reads
	Configuring Serializable Isolation

	Transactional Cursors and Concurrent Applications
	Using Cursors with Uncommitted Data

	Read/Modify/Write

	Chapter 5. Backing up and Restoring Berkeley DB, Java Edition Applications
	Normal Recovery
	Checkpoints
	Performing Backups
	Performing a Hot Backup
	Performing an Offline Backup
	Using the DbBackup Helper Class

	Performing Catastrophic Recovery
	Hot Failover

	Chapter 6. Summary and Examples
	Anatomy of a Transactional Application
	Transaction Example
	TxnGuide.java
	PayloadData.java
	DBWriter.java

