
Oracle Berkeley DB Java Edition

Getting Started with
Berkeley DB Java Edition

Release 3.1

.

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle
Corporation. All rights to these marks are reserved. No third-party use is permitted without the express prior
written consent of Oracle Corporation.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumID=273

Published 9/19/2006

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html
http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents
Preface ... v

Conventions Used in this Book ... v
For More Information ... vi

1. Introduction to Berkeley DB Java Edition ... 1
Features ... 1
The JE Application ... 3

Databases and Database Environments .. 3
Database Records .. 4
Putting and Getting Database Records ... 4
Duplicate Data ... 4
Replacing and Deleting Entries .. 5
Secondary Databases .. 5
Transactions .. 5
JE Resources .. 6
Application Considerations .. 7

JE Backup and Restore .. 7
JCA Support ... 8
JMX Support ... 8
Getting and Using JE .. 9
JE Exceptions ... 9
Six Things Everyone Should Know about JE Log Files 10

2. Database Environments ... 11
Opening Database Environments ... 11
Closing Database Environments .. 12
Environment Properties .. 13

The EnvironmentConfig Class .. 13
EnvironmentMutableConfig ... 14

Environment Statistics ... 16
Database Environment Management Example .. 16

3. Databases ... 19
Opening Databases ... 19

Deferred Write Databases .. 20
Closing Databases .. 22

Database Properties .. 23
Administrative Methods .. 25
Database Example .. 26

4. Database Records .. 30
Using Database Records .. 30
Reading and Writing Database Records ... 32

Writing Records to the Database .. 32
Getting Records from the Database ... 33
Deleting Records ... 35
Data Persistence ... 35

Using the BIND APIs ... 36
Numerical and String Objects .. 36
Serializable Complex Objects .. 38

Page iiGetting Started with JE9/19/2006

Usage Caveats .. 39
Serializing Objects ... 40
Deserializing Objects .. 42

Custom Tuple Bindings .. 43
Using Comparators .. 47

Writing Comparators ... 47
Setting Comparators ... 48

Database Record Example ... 49
5. Using Cursors ... 61

Opening and Closing Cursors .. 61
Getting Records Using the Cursor .. 62

Searching for Records ... 64
Working with Duplicate Records ... 67

Putting Records Using Cursors .. 69
Deleting Records Using Cursors ... 71
Replacing Records Using Cursors ... 72
Cursor Example ... 73

6. Secondary Databases .. 78
Opening and Closing Secondary Databases ... 79
Implementing Key Creators .. 81
Secondary Database Properties ... 84
Reading Secondary Databases .. 84
Deleting Secondary Database Records ... 85
Using Secondary Cursors .. 86
Database Joins .. 87

Using Join Cursors .. 88
JoinCursor Properties .. 91

Secondary Database Example ... 91
Opening Secondary Databases with MyDbEnv 93
Using Secondary Databases with ExampleInventoryRead 96

7. Backing up and Restoring Berkeley DB Java Edition Applications 99
Databases and Log Files ... 99

Log File Overview .. 99
Cleaning the Log Files .. 100
The BTree .. 100
Database Modifications and Syncs .. 100
Normal Recovery .. 101

Performing Backups ... 101
Performing a Hot Backup .. 101
Performing an Offline Backup .. 102
Using the DbBackup Helper Class .. 102

Performing Catastrophic Recovery ... 104
Hot Standby .. 104

8. Administering Berkeley DB Java Edition Applications 106
The JE Properties File .. 106
Managing the Background Threads ... 106

The Cleaner Thread .. 107
The Checkpointer Thread ... 108

Sizing the Cache ... 108

Page iiiGetting Started with JE9/19/2006

The Command Line Tools .. 109
DbDump .. 109
DbLoad ... 111
DbVerify .. 112

Page ivGetting Started with JE9/19/2006

Preface
Welcome to Berkeley DB Java Edition (JE). This document introduces JE, version 3.1. It
is intended to provide a rapid introduction to the JE API set and related concepts. The
goal of this document is to provide you with an efficient mechanism with which you can
evaluate JE against your project's technical requirements. As such, this document is
intended for Java developers and senior software architects who are looking for an
in-process data management solution. No prior experience with Berkeley DB Java Edition
is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import com.sleepycat.je.Environment;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

Finally, notes of interest are represented using a note block such as this.☞

Page vGetting Started with JE9/19/2006

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a JE application:

• Berkeley DB Java Edition Getting Started with Transaction Processing
[http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf]

• Berkeley DB Java Edition Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html]

• Berkeley DB Java Edition Collections Tutorial
[http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf]

• Berkeley DB Java Edition Getting Started with the Direct Persistence Layer
[http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf]

Page viGetting Started with JE9/19/2006

Conventions Used in this Book

http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf

Chapter 1. Introduction to Berkeley DB Java
Edition

Welcome to Berkeley DB Java Edition (JE). JE is a general-purpose, transaction-protected,
embedded database written in 100% Java (JE makes no JNI calls). As such, it offers the
Java developer safe and efficient in-process storage and management of arbitrary data.

JE requires Java J2SE 1.4.2 or later.

In addition to the APIs described in this book, JE also offers the Direct Persistence Layer
(DPL). The DPL is implemented as a layer on top of JE. Using it, you can cause any Java
type to be persistent without implementing special interfaces.

☞

We recommend that you use the DPL if all you want is to make classes with relatively static
schemas to be persistent.

The only caveat to this recommendation is that the DPL requires Java 1.5, while JE does
not. If you want to use Java 1.4, you must use the JE APIs.

You can find a brief introduction to the DPL in the Berkeley DB Java Edition Getting Started
with the Direct Persistence Layer guide.

Features

JE provides an enterprise-class Java-based data management solution. You use JE through
a series of Java APIs. All you need to get started is to add a single jar file to your
application's classpath. See Getting and Using JE (page 9) for more information.

JE offers the following major features:

• Large database support. JE databases efficiently scale from one to millions of records.
The size of your JE databases are likely to be limited more by hardware resources
than by any limits imposed upon you by JE.

Databases are described in Databases (page 19).

• Multiple thread and process support. JE is designed for multiple threads of control.
Both read and write operations can be performed by multiple threads. JE uses
record-level locking for high concurrency in threaded applications. Further, JE uses
timeouts for deadlock detection to help you ensure that two threads of control do not
deadlock indefinitely.

Moreover, JE allows multiple processes to access the same databases. However, in
this configuration JE requires that there be no more than one process allowed to write
to the database. Read-only processes are guaranteed a consistent, although potentially
out of date, view of the stored data as of the time that the environment is opened.

• Database records. All database records are organized as simple key/data pairs. Both
keys and data can be anything from primitive Java types to the most complex of Java
objects.

Page 1Getting Started with JE9/19/2006

Database records are described in Database Records (page 30).

• Transactions. Transactions allow you to treat one or more operations on one or more
databases as a single unit of work. JE transactions offer the application developer
recoverability, atomicity, and isolation for your database operations.

Note that transaction protection is optional. Transactions are described in the Berkeley
DB Java Edition Getting Started with Transaction Processing guide.

• Indexes. JE allows you to easily create and maintain secondary indices for your primary
data through the use of secondary databases. In this way, you can obtain rapid access
to your data through the use of an alternative, or secondary, key.

Indexes are described in Secondary Databases (page 78).

• In-memory cache. The cache allows for high speed database access for both read and
write operations by avoiding unnecessary disk I/O. The cache will grow on demand up
to a pre-configured maximum size. To improve your application's performance
immediately after startup time, you can preload your cache in order to avoid disk I/O
for production requests of your data.

Cache management is described in Sizing the Cache (page 108).

• Log files. JE databases are stored in one or more sequential numerically-named log
files in the environment directory. The log files are write-once and are portable across
platforms with different endian-ness.

Note that unlike other database implementations, there is no distinction between
database files (that is, the "material database") and log files. Instead JE employs a
log-based storage system to protect database modifications. Before any change is
made to a database, JE writes information about the change to the log file.

Note that JE's log files are not binary compatible with Berkeley DB's database files.
However, both products provide dump and load utilities, and the files that these
operate on are compatible across product lines.

JE's log files are described in more detail in Backing up and Restoring Berkeley DB Java
Edition Applications (page 99). For information on using JE's dump and load utilities,
see The Command Line Tools (page 109). Finally, for a short list of things to know about
log files while you are learning JE, see Six Things Everyone Should Know about JE Log
Files (page 10).

• Background threads. JE provides several threads that manage internal resources for
you. The checkpointer is responsible for flushing database data to disk that was written
to cache as the result of a transaction commit (this is done in order to shorten recovery
time). The compressor thread removes subtrees from the database that are empty
because of deletion activity. Finally, the cleaner thread is responsible for cleaning
and removing unneeded log files, thereby helping you to save on disk space.

Background thread management is described in Managing the Background
Threads (page 106).

Page 2Getting Started with JE9/19/2006

Features

• Database environments. Database environments provide a unit of encapsulation and
management for one or more databases. In addition, an environment is the unit of
management for internal resources such as the in-memory cache and the background
threads. Environments are also used to manage concurrency and transactions. Note
that all applications using JE are required to use database environments.

Database environments are described in Database Environments (page 11).

• Backup and restore. JE's backup procedure consists of simply copying JE's log files to
a safe location for storage. To recover from a catastrophic failure, you copy your
archived log files back to your production location on disk and reopen the JE
environment.

Note that JE always performs normal recovery when it opens a database environment.
Normal recovery brings the database to a consistent state based on change information
found in the database log files.

JE's backup and recovery mechanisms are described in Backing up and Restoring
Berkeley DB Java Edition Applications (page 99).

• JCA. JE provides support for the Java Connector Architecture. See JCA
Support (page 8) for more information.

• JMX. JE provides support for Java Management Extensions. See JMX Support (page 8)
for more information.

The JE Application

This section provides a brief overview to the major concepts and operations that comprise
a JE application. This section is concluded with a summary of the decisions that you need
to make when building a JE application.

Note that the core JE classes are all contained in the com.sleepycat.je package. In
addition, this book describes some classes that are found in com.sleepycat.je.bind. The
bind APIs are used for converting Java objects in and out of byte arrays.

Databases and Database Environments

To use a JE database, you must first create or open a JE database environment. Database
environments require you to identify the directory on disk where the environment lives.
This location must exist before you create the environment.

You open a database environment by instantiating an Environment object. Your Environment
instance is called an environment handle.

Once you have opened an environment, you can use it to open any number of databases
within that environment. Each such database is encapsulated by a Database object. You
are required to provide a string that uniquely identifies the database when you open it.
Like environments, the Database instance is sometimes referred to as a database handle.

Page 3Getting Started with JE9/19/2006

The JE Application

You use the environment handle to manage database environments and database opens
through methods available on the Environment class. You use the database handle to
manage individual databases through methods available on the Database class. Further,
You use environment handles to close environments, and you use database handles to
close databases.

Note that for both databases and environments, you can optionally allow JE to create
them if they do not exist at open time.

Environments are described in greater detail in Database Environments (page 11).
Databases are described in greater detail in Databases (page 19).

Database Records

Database records are represented as simple key/data pairs. Both record keys and record
data must be byte arrays and are passed to and returned from JE using DatabaseEntry
instances. DatabaseEntry only supports storage of Java byte arrays. Complex objects must
be marshalled using either Java serialization, or more efficiently with the bind APIs
provided with JE

Database records and byte array conversion are described in Database Records (page 30).

Putting and Getting Database Records

You store records in a Database by calling one of the put methods on a Database handle.
JE automatically determines the record's proper placement in the database's internal
B-Tree using whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Database handle. Gets are performed by
providing the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism
by which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cursor
class.

Databases are described in Databases (page 19). Cursors are described in Using
Cursors (page 61).

Duplicate Data

At creation time, databases can be configured to allow duplicate data. Remember that
JE database records consist of a key/data pair. Duplicate data, then, occurs when two
or more records have identical keys, but different data. By default, a Database does not
allow duplicate data.

If your Database contains duplicate data, then a simple database get based only on a
key returns just the first record that uses that key. To access all duplicate records for
that key, you must use a cursor.

Page 4Getting Started with JE9/19/2006

The JE Application

Replacing and Deleting Entries

How you replace database records depends on whether duplicate data is allowed in the
database.

If duplicate data is not allowed in the database, then simply calling Database.put() with
the appropriate key will cause any existing record to be updated with the new data.
Similarly, you can delete a record by providing the appropriate key to the
Database.delete() method.

If duplicate data is allowed in the database, then you must position a cursor to the record
that you want to update, and then perform the put operation using the cursor.

To delete records, you can use either Database.delete() or Cursor.delete(). If duplicate
data is not allowed in your database, then these two method behave identically. However,
if duplicates are allowed in the database, then Database.delete() deletes every record
that uses the provided key, while Cursor.delete() deletes just the record at which the
cursor is currently positioned.

Secondary Databases

Secondary Databases provide a mechanism by which you can automatically create and
maintain secondary keys or indices. That is, you can access a database record using a key
other than the one used to store the record in the first place.

When you are using secondary databases, the database that holds the data you are indexing
is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the
index) from primary records. Whenever a record in the primary database is added or
changed, JE uses this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, JE automatically updates the
secondary database(s) for you as is appropriate for the operation performed on the
primary.

You manage secondary databases using the SecondaryDatabase class. You identify how to
create keys for your secondary databases by supplying an instance of a class that
implements the SecondaryKeyCreator interface.

Secondary databases are described in Secondary Databases (page 78).

Transactions

Transactions provide a high level of safety for your database operations by allowing you
to manage one or more database operations as if they were a single unit of work.
Transactions provide your database operations with recoverability, atomicity, and isolation.

Page 5Getting Started with JE9/19/2006

The JE Application

Transactions provide recoverability by allowing JE to undo any transactional-protected
operations that may have been in progress at the time of an application or system failure.

Transactions provide atomicity by allowing you to group many database operations into
a single unit of work. Either all operations succeed or none of them do. This means that
if one write operation fails for any reason, then all other writes contained within that
transaction also fail. This ensures that the database is never partially updated as the
result of an only partially successful chain of read/write operations.

Transactions provide isolation by ensuring that the transaction will never write to a record
that is currently in use (for either read or write) by another transaction. Similarly, any
record to which the transaction has written can not be read outside of the transaction
until the transaction ends. Note that this is only the default behavior; you can configure
your Database, Cursor, or Transaction handle to relax its isolation guarantees.

Essentially, transactional isolation provides a transaction with the same unmodified view
of the database that it would have received had the operations been performed in a
single-threaded application.

Transactions may be long or short lived, they can encompass as many database operations
as you want, and they can span databases so long as all participating databases reside in
the same environment.

Transaction usage results in a performance penalty for the application because they
generally require more disk I/O than do non-transactional operations. Therefore, while
most applications will use transactions for database writes, their usage is optional. In
particular, processes that are performing read-only access to JE databases might not use
transactions. Also, applications that use JE for an easily recreated cache might also choose
to avoid transactions.

Using transactions with your JE applications is described in detail in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

JE Resources

JE has some internal resources that you may want to manage. Most important of these is
the in-memory cache. You should carefully consider how large the JE cache needs to be.
If you set this number too low, JE will perform potentially unnecessary disk I/O which
will result in a performance hit. If you set it too high, then you are potentially wasting
RAM that could be put to better purposes.

Note that the size that you configure for the in-memory cache is a maximum size. At
application startup, the cache starts out fairly small (only about 7% of the maximum
allowed size for the cache). It then grows as is required by your application's database
operations. Also, the cache is not pinned in memory – it can be paged out by your operating
system's virtual memory system.

Beyond the cache, JE uses several background threads to clean the JE log files, to compress
the database by removing unneeded subtrees, and to flush database changes seen in the
cache to the backing data files. For the majority of JE applications, the default behavior

Page 6Getting Started with JE9/19/2006

The JE Application

for the background threads should be acceptable and you will not need to manage their
behavior. Note that background threads are started no more than once per process upon
environment open.

For more information on sizing the cache and on the background threads, see Administering
Berkeley DB Java Edition Applications (page 106).

Application Considerations

When building your JE application, be sure to think about the following things:

• What data do you want to store? What is best used for the primary key? What is the
best representation for primary record data? Think about the most efficient way to
move your keys and data in and out of byte arrays. See Database Records (page 30)
for more information.

• Does the nature of your data require duplicate record support? Remember that
duplicate support can be configured only at database creation time. See Opening
Databases (page 19) for more information.

If you are supporting duplicate records, you may also need to think about duplicate
comparators (not just key comparators). See Using Comparators (page 47) for more
information.

• What secondary indexes do you need? How can you compute your secondary indexes
based on the data and keys stored in your primary database? Indexes are described in
Secondary Databases (page 78).

• What cache size do you need? See Sizing the Cache (page 108) for information on how
to size your cache.

• Does your application require transactions (most will). Transactions are described in
the Berkeley DB Java Edition Getting Started with Transaction Processing guide.

JE Backup and Restore

To backup your database, copy the .jdb files starting from the lowest numbered log file
to the highest numbered log file to your backup media. Be sure to copy the bytes of the
individual database files in order from the lowest to the highest. You do not have to close
your database or otherwise cease database operations when you do this.

Restoring a JE database from a backup consists of closing your JE environment, copying
archived log files back into your environment directory and then opening your JE
environment again.

Note that whenever a JE environment is opened, JE runs normal recovery. This involves
bringing your database into a consistent state given the changed data found in the
database. If you are using transactions during normal operations, then JE automatically
runs checkpoints for you so as to limit the time required to run this recovery. In any case,

Page 7Getting Started with JE9/19/2006

JE Backup and Restore

running normal recovery is a routine operation, while performing database restores is
not.

For more information on JE backup and restores, and on checkpoints, see Backing up and
Restoring Berkeley DB Java Edition Applications (page 99).

JCA Support

JCA is the Java Connector Architecture. This architecture provides a standard for
connecting the J2EE platform to legacy enterprise information systems (EIS), such as ERP
systems, database systems, and legacy applications not written in Java. JE supports this
architecture.

Users who want to run JE within a J2EE Application Server can use the JCA Resource
Adapter to connect to JE through a standard API. The JE Resource Adapter supports all
three J2EE application server transaction types:

• No transaction.

• Local transactions.

• XA transactions.

JCA also includes the Java Transaction API (JTA), which means that JE supports 2 phase
commit (XA). Therefore, JEs can participate in distributed transactions managed by either
a J2EE server or the applications direct use of the JTA API.

The JE distribution includes an example showing JCA usage in a simple EJB. The Resource
Adaptor has been tested using JBoss 3.2.6, and the Sun Java System Application Server,
version 8.1. Instructions for how to build the Resource Adapter and run a simple "smoke
test" example for each of the application servers can be found here:

JE_HOME/examples/jca/HOWTO-jboss.txt

and

JE_HOME/examples/jca/HOWTO-sjsas.txt

JMX Support

JMX is the Java Management Extensions. This extension provides tools for managing and
monitoring devices, applications, and service-driven networks. JE supports this extension.

The JE distribution supplies an MBean that can be deployed for monitoring a JE environment
in any JMX server (such as an J2EE application server). Alternatively, applications can
use JE helper classes to add JE monitoring to their own JMX MBean implementations.

For information on how to deploy the standalone JE JMX MBean, or on how to use JE
helper classes to build an application-specific MBean, see:

JE_HOME/examples/jmx/README.txt

Page 8Getting Started with JE9/19/2006

JCA Support

Getting and Using JE

You can obtain JE by visiting the JE download page:
http://www.oracle.com/technology/software/products/berkeley-db/je/index.html.

To install JE, simple untar or unzip the distribution to the directory of your choice. If you
use unzip, make sure to specify the -U option in order to preserve case.

For more information on installing JE, see JE_HOME/docs/relnotes.html, where JE_HOME
is the directory where you unpacked JE.

You can use JE with your application by adding JE_HOME/lib/je-<version>.jar to your
application's classpath.

Beyond this manual, you can find documentation for JE at JE_HOME/docs/index.html
directory. In particular, complete Javadoc for the JE API set is available at
JE_HOME/docs/java/index.html.

JE Exceptions

Before describing the Java API usage, it is first useful to examine the exceptions thrown
by those APIs. So, briefly, this section describes the exceptions that you can expect to
encounter when writing JE applications.

All of the JE APIs throw DatabaseException. DatabaseException extends
java.lang.Exception. Also, the following classes are subclasses of DatabaseException:

• DatabaseNotFoundException

Thrown whenever an operation requires a database, and that database cannot be
found.

• DeadlockException

Thrown whenever a transaction is selected to resolve a deadlock. Upon receiving this
exception, any open cursors must be closed and the enclosing transaction aborted.
Transactions are described in the Berkeley DB Java Edition Getting Started with
Transaction Processing guide.

• RunRecoveryException

Thrown whenever JE experiences a catastrophic error such that recovery needs to be
run on the database. If you receive this exception, you must reopen your environment
so as to allow normal recovery to run. See Databases and Log Files (page 99) for more
information on how normal recovery works.

Note that when reopening your environment, you should stop all database read and
write activities, close all your cursors, close all your databases, and then close and
reopen your environment.

Page 9Getting Started with JE9/19/2006

Getting and Using JE

http://www.oracle.com/technology/software/products/berkeley-db/je/index.html

Note that DatabaseException and its subclasses belong to the com.sleepycat.je package.

Six Things Everyone Should Know about JE Log Files

JE log files are not like the log files of other database systems. Nor are they like the log
files or database files created by Berkeley DB C Edition. In this guide you will learn more
about log files as you go along, but it is good to keep the following points in mind as you
begin using JE.

1. JE log files are "append only". Record insertions, deletions, and updates are always
added at the end of the current file. The first file is named 00000000.jdb. When that
file grows to a certain size (10 MB by default) a new file named 00000001.jdb becomes
the current file, and so on.

2. There are no separate database files. Unlike Berkeley DB C Edition, databases are
not stored in files that are separate from the transaction log. The transaction log
and the database records are stored together in a single sequential log consisting of
multiple log files.

3. The JE cleaner is responsible for reclaiming unused disk space. When the records in
a log file are superseded by deletions or updates recorded in a later log file, the
older log file is no longer fully utilized. The cleaner, which operates by default as a
separate thread, determines the least utilized log files, copies any still utilized records
in those files to the end of the current log file, and finally deletes the now completely
un-utilized log file.

See The Cleaner Thread (page 107) for more information on the cleaner.

4. Cleaning does not start immediately and never produces 100% utilization. Until you
have written enough data to create several log files, and some of that data is
obsoleted through deletions and updates, you will not notice any log files being
deleted by the cleaner. By default cleaning occurs in the background and maintains
the log files at 50% utilization. You can configure a higher utilization value, but
configuring too high a utilization value will reduce overall performance.

5. Cleaning is not automatically performed when closing the environment. If you wish
to reduce unused disk space to a minimum at a particular point in time, you must
explicitly call a method to perform log cleaning. See the Closing Database
Environments (page 12) for more information.

6. Log file deletion only occurs after a checkpoint. The cleaner prepares log files to be
deleted, but file deletion must be performed after a checkpoint to ensure that the
files are no longer referenced. Checkpoints occur on their own schedule, which is
every 20 MB of log written, by default. This is part of the reason that you will not
see log files being deleted until after several files have been created.

Page 10Getting Started with JE9/19/2006

Six Things Everyone Should Know
about JE Log Files

Chapter 2. Database Environments
Berkeley DB Java Edition requires that all databases be placed in a database environment.
Database environments encapsulate one or more databases. This encapsulation provides
your threads with efficient access to your databases by allowing a single in-memory cache
to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see the Berkeley DB Java Edition Getting Started with Transaction Processing
guide for more information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments
to delete and rename databases. For transactional applications, you use the environment
to start transactions. For non-transactional applications, you use the environment to sync
your in-memory cache to disk.

Finally, you also use the database environment for administrative and configuration
activities related to your database log files and the in-memory cache. See Administering
Berkeley DB Java Edition Applications (page 106) for more information.

For information on managing databases using database environments, see
Databases (page 19). To find out how to use environments with a transaction-protected
application, see the Berkeley DB Java Edition Getting Started with Transaction Processing
guide.

Opening Database Environments

You open a database environment by instantiating an Environment object. You must
provide to the constructor the name of the on-disk directory where the environment is
to reside. This directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation
property to true if you want the environment to be created. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnvironment = null;

try {
 EnvironmentConfig envConfig = new EnvironmentConfig();

Page 11Getting Started with JE9/19/2006

 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Your application can open and use as many environments as you have disk and memory
to manage, although most applications will use just one environment. Also, you can
instantiate multiple Environment objects for the same physical environment.

Opening an environment usually causes some background threads to be started. JE uses
these threads for log file cleaning and some administrative tasks. However, these threads
will only be opened once per process, so if you open the same environment more than
once from within the same process, there is no performance impact on your application.
Also, if you open the environment as read-only, then the background threads (with the
exception of the evictor thread) are not started.

Note that opening your environment causes normal recovery to be run. This causes your
databases to be brought into a consistent state relative to the changed data found in your
log files. See Databases and Log Files (page 99) for more information.

Closing Database Environments

You close your environment by calling the Environment.close() method. This method
performs a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly
before calling it. For information on checkpoints, see the Berkeley DB Java Edition Getting
Started with Transaction Processing guide. For information on syncs, see Database
Modifications and Syncs (page 100).

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

You should close your environment(s) only after all other database activities have
completed and you have closed any databases currently opened in the environment.

It is possible for the environment to close before JE's cleaner thread has finished its work.
This happens if you perform a large number of deletes immediately before shutting down☞
your environment. The result is that your log files may be quit a lot larger than you expect
them to be because the cleaner thread has not had a chance to finish its work.

Page 12Getting Started with JE9/19/2006

Closing Database Environments

See The Cleaner Thread (page 107) for details on the cleaner threads.

See the Getting Started with Berkeley DB Java Edition guide for information on the cleaner
threads.

If want to make sure that the cleaner has finished running before the environment is closed,
call Environment.cleanLog() before calling Environment.close():

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
 if (myDbEnvironment != null) {
 myDbEnvironment.cleanLog(); // Clean the log before closing
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Closing the last environment handle in your application causes all internal data structures
to be released and the background threads to be stopped. If there are any opened
databases, then JE will complain before closing them as well. At this time, any open
cursors are also closed, and any on-going transactions are aborted. At this time, and any
on-going transactions are aborted.

Environment Properties

You set properties for the Environment using the EnvironmentConfig class. You can also
set properties for a specific Environment instance using EnvironmentMutableConfig.

The EnvironmentConfig Class

The EnvironmentConfig class makes a large number of fields and methods available to
you. Describing all of these tuning parameters is beyond the scope of this manual. However,
there are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the EnvironmentConfig object used by your
environment using the Environment.getConfig() method.

You set environment configuration parameters using the following methods on the
EnvironmentConfig class:

• EnvironmentConfig.setAllowCreate()

Page 13Getting Started with JE9/19/2006

Environment Properties

If true, the database environment is created when it is opened. If false, environment
open fails if the environment does not exist. This property has no meaning if the
database environment already exists. Default is false.

• EnvironmentConfig.setReadOnly()

If true, then all databases opened in this environment must be opened as read-only.
If you are writing a multi-process application, then all but one of your processes must
set this value to true. Default is false.

You can also set this property using the je.env.isReadOnly parameter in your
env_home/je.properties file.

• EnvironmentConfig.setTransactional()

If true, configures the database environment to support transactions. Default is false.

You can also set this property using the je.env.isTransactional parameter in your
env_home/je.properties file.

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

Environment myDatabaseEnvironment = null;
try {
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 envConfig.setTransactional(true);
 myDatabaseEnvironment =
 new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
 System.err.println(dbe.toString());
 System.exit(1);
}

EnvironmentMutableConfig

EnvironmentMutableConfig manages properties that can be reset after the Environment
object has been constructed. In addition, EnvironmentConfig extends
EnvironmentMutableConfig, so you can set these mutable properties at Environment
construction time if necessary.

Page 14Getting Started with JE9/19/2006

Environment Properties

The EnvironmentMutableConfig class allows you to set the following properties:

• setCachePercent()

Determines the percentage of JVM memory available to the JE cache. See Sizing the
Cache (page 108) for more information.

• setCacheSize()

Determines the total amount of memory available to the database cache. See Sizing
the Cache (page 108) for more information.

• setTxnNoSync()

Determines whether change records created due to a transaction commit are written
to the backing log files on disk. A value of true causes the data to not be flushed to
disk. See the Berkeley DB Java Edition Getting Started with Transaction Processing
guide.

• setTxnWriteNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to true, you potentially gain better performance than
if you flush the logs on commit, but you do so by losing some of your transaction
durability guarantees.

There is also a corresponding getter method (getTxnNoSync()). Moreover, you can always
retrieve your environment's EnvironmentMutableConfig object by using the
Environment.getMutableConfig() method.

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentMutableConfig;

import java.io.File;

...

try {
 Environment myEnv = new Environment(new File("/export/dbEnv"), null);
 EnvironmentMutableConfig envMutableConfig =
 new EnvironmentMutableConfig();
 envMutableConfig.setTxnNoSync(true);
 myEnv.setMutableConfig(envMutableConfig);
} catch (DatabaseException dbe) {

Page 15Getting Started with JE9/19/2006

Environment Properties

 // Exception handling goes here
}

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's
operations. The majority of this information involves numbers relevant only to the JE
developer and as such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
EnvironmentStats.getNCacheMiss(). This statistic returns the total number of requests
for database objects that were not serviceable from the cache. This number is important
to the application administrator who is attempting to determine the proper size for the
in-memory cache. See Sizing the Cache (page 108) for details.

To obtain this statistic from your environment, call Environment.getStats() to return an
EnvironmentStats object. You can then call the EnvironmentStats.getNCacheMiss()
method. For example:

import com.sleepycat.je.Environment;

...

long cacheMisses = myEnv.getStats(null).getNCacheMiss();

...

Note that Environment.getStats() can only obtain statistics from with your application's
process. In order for the application administrator to obtain this statistic, you must either
use JMX to retrieve the statistic (see JMX Support (page 8)) or you must print it for
examination (for example, log the value once a minute).

Remember that what is really important for cache sizing is the change in this value over
time, and not the actual value itself. So you might consider offering a delta from one
examination of this statistic to the next (a delta of 0 is desired while large deltas are an
indication that the cache is too small).

Database Environment Management Example

This example provides a complete class that can open and close an environment. It is
both extended and used in subsequent examples in this book to open and close both
environments and databases. We do this so as to make the example code shorter and
easier to manage. You can find this class in:

JE_HOME/examples/je/gettingStarted/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Page 16Getting Started with JE9/19/2006

Environment Statistics

Example 2.1. Database Environment Management Class

First we write the normal class declarations. We also set up some private data members
that are used to manage environment creation. We use the class constructor to instantiate
the EnvironmentConfig object that is used to configure our environment when we open
it.

// File MyDbEnv.java
package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

public class MyDbEnv {

 private Environment myEnv;

 public MyDbEnv() {}

Next we need a method to open the environment. This is responsible for instantiating our
Environment object. Remember that instantiation is what opens the environment (or
creates it if the creation property is set to true and the environment does not currently
exist).

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 // Instantiate an environment configuration object
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 // Configure the environment for the read-only state as identified by
 // the readOnly parameter on this method call.
 myEnvConfig.setReadOnly(readOnly);
 // If the environment is opened for write, then we want to be able to
 // create the environment if it does not exist.
 myEnvConfig.setAllowCreate(!readOnly);

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);
 }

Next we provide a getter method that allows us to retrieve the Environment directly. This
is needed for later examples in this guide.

 // Getter methods
 public Environment getEnv() {

Page 17Getting Started with JE9/19/2006

Database Environment
Management Example

 return myEnv;
 }

Finally, we need a method to close our Environment. We wrap this operation in a try
block so that it can be used gracefully in a finally statement.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing environment" +
 dbe.toString());
 }
 }
 }
}

This completes the MyDbEnv class. While not particularly useful as it currently exists, we
will build upon it throughout this book so that it will eventually open and close all of the
databases required by our applications.

We can now use MyDbEnv to open and close a database environment from the appropriate
place in our application. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;

import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {
 exampleDbEnv.setup(new File("/directory/currently/exists"), true);
 ...

} catch(DatabaseException dbe) {
 // Error code goes here
} finally {
 exampleDbEnv.close();
}

Page 18Getting Started with JE9/19/2006

Database Environment
Management Example

Chapter 3. Databases
In Berkeley DB Java Edition, a database is a collection of records. Records, in turn, consist
of key/data pairings.

Conceptually, you can think of a Database as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using DatabaseEntry class instances (see Database Records (page 30) for details on this
class). So, fundamentally, using a JE Database involves putting, getting, and deleting
database records, which in turns involves efficiently managing information encapsulated
by DatabaseEntry objects. The next several chapters of this book are dedicated to those
activities.

Note that on disk, databases are stored in sequentially numerically named log files in the
directory where the opening environment is located. JE log files are described Databases
and Log Files (page 99).

Opening Databases

You open a database by using the Environment.openDatabase() method (environments
are described in Database Environments (page 11)). This method creates and returns a
Database object handle. You must provide Environment.openDatabase() with a database
name.

You can optionally provide Environment.openDatabase() with a DatabaseConfig() object.
DatabaseConfig() allows you to set properties for the database, such as whether it can
be created if it does not currently exist, whether you are opening it read-only, and whether
the database is to support transactions.

Note that by default, JE does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

Finally, if you configured your environment and database to support transactions, you
can optionally provide a transaction object to the Environment.openDatabase().
Transactions are described in the Berkeley DB Java Edition Getting Started with
Transaction Processing guide.

The following code fragment illustrates a database open:

Page 19Getting Started with JE9/19/2006

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
 // Open the environment. Create it if it does not already exist.
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

 // Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setAllowCreate(true);
 myDatabase = myDbEnvironment.openDatabase(null,
 "sampleDatabase",
 dbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Deferred Write Databases

By default, JE's databases are all persistent. That is, the data they contain is stored on
disk so that it can be accessed across program runs. However, it is possible to configure
JE's databases so that they are by default not persistent. JE calls databases configured
in this way to be deferred write databases.

Deferred write databases are essentially in-memory only databases. Therefore, they are
particularly useful for applications that want databases which are truly temporary.

Note that deferred write databases do not always avoid disk I/O. It is particularly important
to realize that deferred write databases can page to disk if the cache is not large enough
to hold the database's entire contents. Therefore, deferred write database performance
is best if your in-memory cache is large enough to hold the database's entire data-set.

Page 20Getting Started with JE9/19/2006

Opening Databases

Beyond that, you can deliberately cause data modifications made to a deferred write
database to be made persistent. If Database.sync() is called before the application is
shutdown, the contents of the deferred write database is saved to disk.

In short, upon reopening an environment and a deferred write database, the database is
guaranteed to be in at least the same state it was in at the time of the last database
sync. (It is possible that due to a full in-memory cache, the database will page to disk
and so the database might actually be in a state sometime after the last sync.) This means
that if the deferred write database is never sync'd, it is entirely possible for it to open
as an empty database.

Because modifications made to a deferred write databases can be made persistent at a
time that is easily controlled by the programmer, these types of databases are also useful
for applications that perform a great deal of database modifications, record additions,
deletions, and so forth. By delaying the data write, you delay the disk I/O. Depending on
your workload, this can improve your data throughput by quite a lot.

Be aware that you lose modifications to a deferred write database only if you (1) do not
call sync, (2) close the deferred write database and (3) also close the environment. If you
only close the database but leave the environment opened, then all operations performed
on that database since the time of the last environment open may be retained.

All other rules of behavior pertain to deferred write databases as they do to normal
databases. Deferred write databases must be named and created just as you would a
normal database. If you want to delete the deferred write database, you must remove it
just as you would a normal database. This is true even if the deferred write database is
empty because its name persists in the environment's namespace until such a time as the
database is removed.

Note that determining whether a database is deferred write is a configuration option. It
is therefore possible to switch a database between "normal" mode and deferred write
database. You might want to do this if, for example, you want to load a lot of data to
the database. In this case, loading data to the database while it is in deferred write state
is faster than in "normal" state, because you can avoid a lot of the normal disk I/O overhead
during the load process. Once the load is complete, sync the database, close it, and and
then reopen it as a normal database. You can then continue operations as if the database
had been created as a "normal" database.

To configure a database as deferred write, set DatabaseConfig.setDeferredWrite() to
true and then open the database with that DatabaseConfig option.

For example, the following code fragment opens and closes a deferred write database:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

Page 21Getting Started with JE9/19/2006

Opening Databases

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
 // Open the environment. Create it if it does not already exist.
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

 // Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setAllowCreate(true);
 // Make it deferred write
 dbConfig.setDeferredWrite(true);
 myDatabase = myDbEnvironment.openDatabase(null,
 "sampleDatabase",
 dbConfig);

 ...
 // do work
 ...
 // Do this if you want the work to persist across
 // program runs
 // myDatabase.sync();

 // then close the database and environment here
 // (see the next section)

} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Closing Databases

Once you are done using the database, you must close it. You use the Database.close()
method to do this.

Closing a database causes it to become unusable until it is opened again. If any cursors
are opened for the database, JE warns you about the open cursors, and then closes them
for you. Active cursors during a database close can cause unexpected results, especially
if any of those cursors are writing to the database in another thread. You should always
make sure that all your database accesses have completed before closing your database.

Page 22Getting Started with JE9/19/2006

Opening Databases

Remember that for the same reason, you should always close all your databases before
closing the environment to which they belong.

Cursors are described in Using Cursors (page 61) later in this manual.

The following illustrates database and environment close:

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;

...

try {
 if (myDatabase != null) {
 myDatabase.close();
 }

 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Database Properties

You can set database properties using the DatabaseConfig class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve
the DatabaseConfig object used by your database using the Database.getConfig()method.

The database properties that you can set are:

• DatabaseConfig.setAllowCreate()

If true, the database is created when it is opened. If false, the database open fails if
the database does not exist. This property has no meaning if the database currently
exists. Default is false.

• DatabaseConfig.setBtreeComparator()

Sets the class that is used to compare the keys found on two database records. This
class is used to determine the sort order for two records in the database. By default,
byte for byte comparison is used. For more information, see Using
Comparators (page 47).

• DatabaseConfig.setDuplicateComparator()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Using Comparators (page 47).

Page 23Getting Started with JE9/19/2006

Database Properties

• DatabaseConfig.setSortedDuplicates()

If true, duplicate records are allowed in the database. If this value is false, then
putting a duplicate record into the database results in an error return from the put
call. Note that this property can be set only at database creation time. Default is
false.

Note that your database must not support duplicates if it is to be associated with one
or more secondary indices. Secondaries are described in Secondary Databases (page 78).

• DatabaseConfig.setExclusiveCreate()

If true, the database open fails if the database currently exists. That is, the open
must result in the creation of a new database. Default is false.

• DatabaseConfig.setReadOnly()

If true, the database is opened for read activities only. Default is false.

• DatabaseConfig.setTransactional()

If true, the database supports transactions. Default is false. Note that a database
cannot support transactions if the environment is non-transactional.

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;

...
// Environment open omitted for brevity
...

Database myDatabase = null;
try {
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setAllowCreate(true);
 dbConfig.setSortedDuplicates(true);
 myDatabase =
 myDbEnv.openDatabase(null,
 "sampleDatabase",
 dbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here.
}

Page 24Getting Started with JE9/19/2006

Database Properties

Administrative Methods

Both the Environment and Database classes provide methods that are useful for
manipulating databases. These methods are:

• Database.getDatabaseName()

Returns the database's name.

String dbName = myDatabase.getDatabaseName();

• Database.getEnvironment()

Returns the Environment that contains this database.

Environment theEnv = myDatabase.getEnvironment();

• Database.preload()

Preloads the database into the in-memory cache. Optionally takes a long that identifies
the maximum number of bytes to load into the cache. If this parameter is not supplied,
the maximum memory usage allowed by the evictor thread is used.

myDatabase.preload(1048576l); // 1024*1024

• Environment.getDatabaseNames()

Returns a list of Strings of all the databases contained by the environment.

import java.util.List;
...
List myDbNames = myDbEnv.getDatabaseNames();
for(int i=0; i < myDbNames.size(); i++) {
 System.out.println("Database Name: " + (String)myDbNames.get(i));
}

• Environment.removeDatabase()

Deletes the database. The database must be closed when you perform this action on
it.

String dbName = myDatabase.getDatabaseName();
myDatabase.close();
myDbEnv.removeDatabase(null, dbName);

• Environment.renameDatabase()

Renames the database. The database must be closed when you perform this action
on it.

Page 25Getting Started with JE9/19/2006

Administrative Methods

String oldName = myDatabase.getDatabaseName();
String newName = new String(oldName + ".new", "UTF-8");
myDatabase.close();
myDbEnv.renameDatabase(null, oldName, newName);

• Environment.truncateDatabase()

Deletes every record in the database and optionally returns the number of records
that were deleted. Note that it is much less expensive to truncate a database without
counting the number of records deleted than it is to truncate and count.

int numDiscarded =
 myEnv.truncate(null, // txn handle
 myDatabase.getDatabaseName(), // database name
 true); // If true, then the
 // number of records
 // deleted are counted.
System.out.println("Discarded " + numDiscarded +
 " records from database " +
 myDatabase.getDatabaseName());

Database Example

In Database Environment Management Example (page 16) we created a class that manages
an Environment. We now extend that class to allow it to open and manage multiple
databases. Again, remember that you can find this class in:

JE_HOME/je/gettingStarted/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Example 3.1. Database Management with MyDbEnv

First, we need to import a few additional classes, and setup some global variables to
support databases. The databases that we are configuring and creating here are used by
applications developed in examples later in this guide.

// File MyDbEnv.java

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;

import java.io.File;

Page 26Getting Started with JE9/19/2006

Database Example

public class MyDbEnv {

 private Environment myEnv;
private Database vendorDb;

 private Database inventoryDb;

 public MyDbEnv() {}

Next we need to update the MyDbEnv.setup() method to instantiate a DatabaseConfig
object. We also need to set some properties on that object. These property values are
determined by the value of the readOnly parameter. We want our databases to be
read-only if the environment is also read-only. We also want to allow our databases to
be created if the databases are not read-only.

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 // Instantiate an environment and database configuration object
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();

DatabaseConfig myDbConfig = new DatabaseConfig();
 // Configure the environment and databases for the read-only
 // state as identified by the readOnly parameter on this
 // method call.
 myEnvConfig.setReadOnly(readOnly);

myDbConfig.setReadOnly(readOnly);
 // If the environment is opened for write, then we want to be
 // able to create the environment and databases if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);

myDbConfig.setAllowCreate(!readOnly);

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);

// Now create and open our databases.
 vendorDb = myEnv.openDatabase(null,
 "VendorDB",
 myDbConfig);

 inventoryDb = myEnv.openDatabase(null,
 "InventoryDB",
 myDbConfig);
 }

Next we need some additional getter methods used to return our database handles.

 // Getter methods
 public Environment getEnvironment() {
 return myEnv;

Page 27Getting Started with JE9/19/2006

Database Example

 }

public Database getVendorDB() {
 return vendorDb;
 }

 public Database getInventoryDB() {
 return inventoryDb;
 }

Finally, we need to update the MyDbEnv.close() method to close our databases.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {

vendorDb.close();
 inventoryDb.close();
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

We can now use MyDbEnv to open and close both database environments and databases
from the appropriate place in our application. For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;

import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {
 exampleDbEnv.setup(new File("/directory/currently/exists"), true);

Database vendorDb = exampleDbEnv.getVendorDB();
 Database inventoryDB = exampleDbEnv.getInventoryDB();

 ...

} catch(DatabaseException dbe) {

Page 28Getting Started with JE9/19/2006

Database Example

 // Error code goes here
} finally {
 exampleDbEnv.close();
}

Page 29Getting Started with JE9/19/2006

Database Example

Chapter 4. Database Records
JE records contain two parts — a key and some data. Both the key and its corresponding
data are encapsulated in DatabaseEntry class objects. Therefore, to access a JE record,
you need two such objects, one for the key and one for the data.

DatabaseEntry can hold any kind of data from simple Java primitive types to complex
Java objects so long as that data can be represented as a Java byte array. Note that due
to performance considerations, you should not use Java serialization to convert a Java
object to a byte array. Instead, use the Bind APIs to perform this conversion (see Using
the BIND APIs (page 36) for more information).

This chapter describes how you can convert both Java primitives and Java class objects
into and out of byte arrays. It also introduces storing and retrieving key/value pairs from
a database. In addition, this chapter describes how you can use comparators to influence
how JE sorts its database records.

Using Database Records

Each database record is comprised of two DatabaseEntry objects — one for the key and
another for the data. The key and data information are passed to- and returned from JE
using DatabaseEntry objects as byte arrays. Using DatabaseEntrys allows JE to change
the underlying byte array as well as return multiple values (that is, key and data).
Therefore, using DatabaseEntry instances is mostly an exercise in efficiently moving your
keys and your data in and out of byte arrays.

For example, to store a database record where both the key and the data are Java String
objects, you instantiate a pair of DatabaseEntry objects:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

String aKey = "key";
String aData = "data";

try {
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
} catch (Exception e) {
 // Exception handling goes here
}

 // Storing the record is described later in this chapter

Notice that we specify UTF-8 when we retrieve the byte array from our String object.
Without parameters, String.getBytes() uses the Java system's default encoding. You should☞

Page 30Getting Started with JE9/19/2006

never use a system's default encoding when storing data in a database because the encoding
can change.

When the record is retrieved from the database, the method that you use to perform this
operation populates two DatabaseEntry instances for you, one for the key and another
for the data. Assuming Java String objects, you retrieve your data from the DatabaseEntry
as follows:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

// theKey and theData are DatabaseEntry objects. Database
// retrieval is described later in this chapter. For now,
// we assume some database get method has populated these
// objects for us.

// Use DatabaseEntry.getData() to retrieve the encapsulated Java
// byte array.

byte[] myKey = theKey.getData();
byte[] myData = theData.getData();

String key = new String(myKey, "UTF-8");
String data = new String(myData, "UTF-8");

There are a large number of mechanisms that you can use to move data in and out of
byte arrays. To help you with this activity, JE provides the bind APIs. These APIs allow
you to efficiently store both primitive data types and complex objects in byte arrays.

The next section describes basic database put and get operations. A basic understanding
of database access is useful when describing database storage of more complex data such
as is supported by the bind APIs. Basic bind API usage is then described in Using the BIND
APIs (page 36).

Page 31Getting Started with JE9/19/2006

Using Database Records

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight
differences in behavior depending on whether your database supports duplicate records.
Two or more database records are considered to be duplicates of one another if they
share the same key. The collection of records sharing the same key are called a duplicates
set.

By default, JE databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are used to access all of the records in the duplicates set.

JE provides two basic mechanisms for the storage and retrieval of database key/data
pairs:

• The Database.put() and Database.get() methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records. Cursors and
their database access methods are described in Using Cursors (page 61).

Writing Records to the Database

Database records are stored in the internal BTree based on whatever sorting routine is
available to the database. Records are sorted first by their key. If the database supports
duplicate records, then the records for a specific key are sorted by their data.

By default, JE sorts both keys and the data portion of duplicate records using unsigned
byte-by-byte lexicographic comparisons. This default comparison works well for the
majority of cases. However, in some case performance benefits can be realized by
overriding the default comparison routine. See Using Comparators (page 47) for more
information.

You can use the following methods to put database records:

• Database.put()

Puts a database record into the database. If your database does not support duplicate
records, and if the provided key already exists in the database, then the currently
existing record is replaced with the new data.

• Database.putNoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided
key already exists in the database, then this method returns OperationStatus.KEYEXIST
even if the database supports duplicates.

Page 32Getting Started with JE9/19/2006

Reading and Writing Database
Records

• Database.putNoDupData()

Puts a database record into the database. If the provided key and data already exists
in the database (that is, if you are attempting to put a record that compares equally
to an existing record), then this returns OperationStatus.KEYEXIST.

When you put database records, you provide both the key and the data as DatabaseEntry
objects. This means you must convert your key and data into a Java byte array. For
example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;

...

// Environment and database opens omitted for clarity.
// Environment and database must NOT be opened read-only.

String aKey = "myFirstKey";
String aData = "myFirstData";

try {
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
 myDatabase.put(null, theKey, theData);
} catch (Exception e) {
 // Exception handling goes here
}

Getting Records from the Database

The Database class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever
return the first record in a duplicate set. For this reason, if your database supports
duplicates, you should use a cursor to retrieve records from it. Cursors are described in
Using Cursors (page 61).

You can use either of the following methods to retrieve records from the database:

• Database.get()

Retrieves the record whose key matches the key provided to the method. If no records
exists that uses the provided key, then OperationStatus.NOTFOUND is returned.

Page 33Getting Started with JE9/19/2006

Reading and Writing Database
Records

• Database.getSearchBoth()

Retrieve the record whose key matches both the key and the data provided to the
method. If no record exists that uses the provided key and data, then
OperationStatus.NOTFOUND is returned.

Both the key and data for a database record are returned as byte arrays in DatabaseEntry
objects. These objects are passed as parameter values to the Database.get() method.

In order to retrieve your data once Database.get() has completed, you must retrieve the
byte array stored in the DatabaseEntry and then convert that byte array back to the
appropriate datatype. For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

// Environment and database opens omitted for clarity.
// Environment and database may be opened read-only.

String aKey = "myFirstKey";

try {
 // Create a pair of DatabaseEntry objects. theKey
 // is used to perform the search. theData is used
 // to store the data returned by the get() operation.
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Perform the get.
 if (myDatabase.get(null, theKey, theData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 // Recreate the data String.
 byte[] retData = theData.getData();
 String foundData = new String(retData, "UTF-8");
 System.out.println("For key: '" + aKey + "' found data: '" +
 foundData + "'.");
 } else {
 System.out.println("No record found for key '" + aKey + "'.");
 }
} catch (Exception e) {
 // Exception handling goes here
}

Page 34Getting Started with JE9/19/2006

Reading and Writing Database
Records

Deleting Records

You can use the Database.delete() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key
are deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are
described in Using Cursors (page 61).

You can also delete every record in the database by using
Environment.truncateDatabase().

For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;

...

// Environment and database opens omitted for clarity.
// Environment and database can NOT be opened read-only.

try {
 String aKey = "myFirstKey";
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Perform the deletion. All records that use this key are
 // deleted.
 myDatabase.delete(null, theKey);
} catch (Exception e) {
 // Exception handling goes here
}

Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily flushed to disk, and
so your data may not appear in the database after an application restart.

Therefore, if you care if your data is durable across system failures, and to guard against
the rare possibility of database corruption, you should use transactions to protect your
database modifications. Every time you commit a transaction, JE ensures that the data
will not be lost due to application or system failure. Transaction usage is described in the
Berkeley DB Java Edition Getting Started with Transaction Processing guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for
example, you are using JE to cache data relevant only to the current application runtime.

Page 35Getting Started with JE9/19/2006

Reading and Writing Database
Records

If, however, you are not using transactions for some reason and you still want some
guarantee that your database modifications are persistent, then you should periodically
run environment syncs. Syncs cause any dirty entries in the in-memory cache and the
operating system's file cache to be written to disk. As such, they are quite expensive and
you should use them sparingly.

Note that by default, a sync is run every time you close a database. You can also run a
sync by calling the Environment.sync() method.

For a brief description of how JE manages its data in the cache and in the log files, and
how sync works, see Databases and Log Files (page 99).

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte
arrays for storage in a database can be a nontrivial operation. To help you with this
problem, JE provides the Bind APIs. While these APIs are described in detail in the Berkeley
DB Java Edition Collections Tutorial, this section provides a brief introduction to using
the Bind APIs with:

• Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Double,
or String.

• Complex objects that implement Java serialization.

Use this if you are storing objects that implement Serializable and if you do not need
to sort them.

• Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your
own custom tuple bindings. Note that you should use custom tuple bindings even if
your objects are serializable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a DatabaseEntry object. That is, you
can store a single field containing one of the following types:

• String

• Character

• Boolean

• Byte

• Short

Page 36Getting Started with JE9/19/2006

Using the BIND APIs

• Integer

• Long

• Float

• Double

To store primitive data using the Bind APIs:

1. Create an EntryBinding object.

When you do this, you use TupleBinding.getPrimitiveBinding() to return an
appropriate binding for the conversion.

2. Use the EntryBinding object to place the numerical object on the DatabaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever
manner you wish. For example:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

// Need a key for the put.
try {
 String aKey = "myLong";
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Now build the DatabaseEntry using a TupleBinding
 Long myLong = new Long(123456789l);
 DatabaseEntry theData = new DatabaseEntry();
 EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);
 myBinding.objectToEntry(myLong, theData);

 // Now store it
 myDatabase.put(null, theKey, theData);
} catch (Exception e) {
 // Exception handling goes here
}

Retrieval from the DatabaseEntry object is performed in much the same way:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;

Page 37Getting Started with JE9/19/2006

Using the BIND APIs

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

Database myDatabase = null;
// Database open omitted for clarity

try {
 // Need a key for the get
 String aKey = "myLong";
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Need a DatabaseEntry to hold the associated data.
 DatabaseEntry theData = new DatabaseEntry();

 // Bindings need only be created once for a given scope
 EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);

 // Get it
 OperationStatus retVal = myDatabase.get(null, theKey, theData,
 LockMode.DEFAULT);
 String retKey = null;
 if (retVal == OperationStatus.SUCCESS) {
 // Recreate the data.
 // Use the binding to convert the byte array contained in theData
 // to a Long type.
 Long theLong = (Long) myBinding.entryToObject(theData);
 retKey = new String(theKey.getData(), "UTF-8");
 System.out.println("For key: '" + retKey + "' found Long: '" +
 theLong + "'.");
 } else {
 System.out.println("No record found for key '" + retKey + "'.");
 }
} catch (Exception e) {
 // Exception handling goes here
}

Serializable Complex Objects

Frequently your application requires you to store and manage objects for your record
data and/or keys. You may need to do this if you are caching objects created by another
process. You may also want to do this if you want to store multiple data values on a
record. When used with just primitive data, or with objects containing a single data
member, JE database records effectively represent a single row in a two-column table.
By storing a complex object in the record, you can turn each record into a single row in

Page 38Getting Started with JE9/19/2006

Using the BIND APIs

an n-column table, where n is the number of data members contained by the stored
object(s).

In order to store objects in a JE database, you must convert them to and from a byte
array. The first instinct for many Java programmers is to do this using Java serialization.
While this is functionally a correct solution, the result is poor space-performance because
this causes the class information to be stored on every such database record. This
information can be quite large and it is redundant — the class information does not vary
for serialized objects of the same type.

In other words, directly using serialization to place your objects into byte arrays means
that you will be storing a great deal of unnecessary information in your database, which
ultimately leads to larger databases and more expensive disk I/O.

The easiest way for you to solve this problem is to use the Bind APIs to perform the
serialization for you. Doing so causes the extra object information to be saved off to a
unique Database dedicated for that purpose. This means that you do not have to duplicate
that information on each record in the Database that your application is using to store its
information.

Note that when you use the Bind APIs to perform serialization, you still receive all the
benefits of serialization. You can still use arbitrarily complex object graphs, and you still
receive built-in class evolution through the serialVersionUID (SUID) scheme. All of the
Java serialization rules apply without modification. For example, you can implement
Externalizable instead of Serializable.

Usage Caveats

Before using the Bind APIs to perform serialization, you may want to consider writing your
own custom tuple bindings. Specifically, avoid serialization if:

• If you need to sort based on the objects your are storing. The sort order is meaningless
for the byte arrays that you obtain through serialization. Consequently, you should
not use serialization for keys if you care about their sort order. You should also not
use serialization for record data if your Database supports duplicate records and you
care about sort order.

• You want to minimize the size of your byte arrays. Even when using the Bind APIs to
perform the serialization the resulting byte array may be larger than necessary. You
can achieve more compact results by building your own custom tuple binding.

• You want to optimize for speed. In general, custom tuple bindings are faster than
serialization at moving data in and out of byte arrays.

• You are using custom comparators. In JE, comparators are instantiated and called
internally whenever databases are not accessible. Because serial bindings depend on
the class catalog, a serial binding binding cannot be used during these times. As a
result, attempting to use a serial binding with a custom comparator will result in a
NullPointerException during environment open or close.

Page 39Getting Started with JE9/19/2006

Using the BIND APIs

For information on building your own custom tuple binding, see Custom Tuple
Bindings (page 43).

Serializing Objects

To store a serializable complex object using the Bind APIs:

1. Implement java.io.Serializable in the class whose instances that you want to store.

2. Open (create) your databases. You need two. The first is the database that you use
to store your data. The second is used to store the class information.

3. Instantiate a class catalog. You do this with
com.sleepycat.bind.serial.StoredClassCatalog, and at that time you must provide
a handle to an open database that is used to store the class information.

4. Create an entry binding that uses com.sleepycat.bind.serial.SerialBinding.

5. Instantiate an instance of the object that you want to store, and place it in a
DatabaseEntry using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data.
Then you might create a class that looks something like this:

package je.gettingStarted;

import java.io.Serializable;

public class MyData implements Serializable {
 private long longData;
 private double doubleData;
 private String description;

 MyData() {
 longData = 0;
 doubleData = 0.0;
 description = null;
 }

 public void setLong(long data) {
 longData = data;
 }

 public void setDouble(double data) {
 doubleData = data;
 }

 public void setDescription(String data) {
 description = data;
 }

Page 40Getting Started with JE9/19/2006

Using the BIND APIs

 public long getLong() {
 return longData;
 }

 public double getDouble() {
 return doubleData;
 }

 public String getDescription() {
 return description;
 }
}

You can then store instances of this class as follows:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;

...

// The key data.
String aKey = "myData";

// The data data
MyData data2Store = new MyData();
data2Store.setLong(123456789l);
data2Store.setDouble(1234.9876543);
data2Store.setDescription("A test instance of this class");

try {
 // Environment open omitted for brevity

 // Open the database that you will use to store your data
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(true);
 myDbConfig.setSortedDuplicates(true);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

 // Open the database that you use to store your class information.
 // The db used to store class information does not require duplicates
 // support.

Page 41Getting Started with JE9/19/2006

Using the BIND APIs

 myDbConfig.setSortedDuplicates(false);
 Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig);

 // Instantiate the class catalog
 StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

 // Create the binding
 EntryBinding dataBinding = new SerialBinding(classCatalog,
 MyData.class);

 // Create the DatabaseEntry for the key
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Create the DatabaseEntry for the data. Use the EntryBinding object
 // that was just created to populate the DatabaseEntry
 DatabaseEntry theData = new DatabaseEntry();
 dataBinding.objectToEntry(data2Store, theData);

 // Put it as normal
 myDatabase.put(null, theKey, theData);

 // Database and environment close omitted for brevity
} catch (Exception e) {
 // Exception handling goes here
}

Deserializing Objects

Once an object is stored in the database, you can retrieve the MyData objects from the
retrieved DatabaseEntry using the Bind APIs in much the same way as is described above.
For example:

package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;

...

// The key data.
String aKey = "myData";

try {

Page 42Getting Started with JE9/19/2006

Using the BIND APIs

 // Environment open omitted for brevity.

 // Open the database that stores your data
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(false);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

 // Open the database that stores your class information.
 Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig);

 // Instantiate the class catalog
 StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

 // Create the binding
 EntryBinding dataBinding = new SerialBinding(classCatalog,
 MyData.class);

 // Create DatabaseEntry objects for the key and data
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Do the get as normal
 myDatabase.get(null, theKey, theData, LockMode.DEFAULT);

 // Recreate the MyData object from the retrieved DatabaseEntry using
 // the EntryBinding created above
 MyData retrievedData = (MyData) dataBinding.entryToObject(theData);

 // Database and environment close omitted for brevity
} catch (Exception e) {
 // Exception handling goes here
}

Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings
to do this. While they are more work to write and maintain than if you were to use
serialization, the byte array conversion is faster. In addition, custom tuple bindings should
allow you to create byte arrays that are smaller than those created by serialization.
Custom tuple bindings also allow you to optimize your BTree comparisons, whereas
serialization does not.

For information on using serialization to store complex objects, see Serializable Complex
Objects (page 38).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not
have to implement the Serializable interface.

Page 43Getting Started with JE9/19/2006

Using the BIND APIs

2. Write a tuple binding using the com.sleepycat.bind.tuple.TupleBinding class.

3. Open (create) your database. Unlike serialization, you only need one.

4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a
DatabaseEntry using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

package je.gettingStarted;

public class MyData2 {
 private long longData;
 private Double doubleData;
 private String description;

 public MyData2() {
 longData = 0;
 doubleData = new Double(0.0);
 description = "";
 }

 public void setLong(long data) {
 longData = data;
 }

 public void setDouble(Double data) {
 doubleData = data;
 }

 public void setString(String data) {
 description = data;
 }

 public long getLong() {
 return longData;
 }

 public Double getDouble() {
 return doubleData;
 }

 public String getString() {
 return description;
 }
}

Page 44Getting Started with JE9/19/2006

Using the BIND APIs

In this case, you need to write a tuple binding for the MyData2 class. When you do this,
you must implement the TupleBinding.objectToEntry()and TupleBinding.entryToObject()
abstract methods. Remember the following as you implement these methods:

• You use TupleBinding.objectToEntry() to convert objects to byte arrays. You use
com.sleepycat.bind.tuple.TupleOutput to write primitive data types to the byte
array. Note that TupleOutput provides methods that allows you to work with numerical
types (long, double, int, and so forth) and not the corresponding java.lang numerical
classes.

• The order that you write data to the byte array in TupleBinding.objectToEntry() is
the order that it appears in the array. So given the MyData2 class as an example, if
you write description, doubleData, and then longData, then the resulting byte array
will contain these data elements in that order. This means that your records will sort
based on the value of the description data member and then the doubleData member,
and so forth. If you prefer to sort based on, say, the longData data member, write it
to the byte array first.

• You use TupleBinding.entryToObject() to convert the byte array back into an instance
of your original class. You use com.sleepycat.bind.tuple.TupleInput to get data from
the byte array.

• The order that you read data from the byte array must be exactly the same as the
order in which it was written.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class MyTupleBinding extends TupleBinding {

 // Write a MyData2 object to a TupleOutput
 public void objectToEntry(Object object, TupleOutput to) {

 MyData2 myData = (MyData2)object;

 // Write the data to the TupleOutput (a DatabaseEntry).
 // Order is important. The first data written will be
 // the first bytes used by the default comparison routines.
 to.writeDouble(myData.getDouble().doubleValue());
 to.writeLong(myData.getLong());
 to.writeString(myData.getString());
 }

 // Convert a TupleInput to a MyData2 object
 public Object entryToObject(TupleInput ti) {

Page 45Getting Started with JE9/19/2006

Using the BIND APIs

 // Data must be read in the same order that it was
 // originally written.
 Double theDouble = new Double(ti.readDouble());
 long theLong = ti.readLong();
 String theString = ti.readString();

 MyData2 myData = new MyData2();
 myData.setDouble(theDouble);
 myData.setLong(theLong);
 myData.setString(theString);

 return myData;
 }
}

In order to use the tuple binding, instantiate the binding and then use:

• MyTupleBinding.objectToEntry() to convert a MyData2 object to a DatabaseEntry.

• MyTupleBinding.entryToObject() to convert a DatabaseEntry to a MyData2 object.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

TupleBinding keyBinding = new MyTupleBinding();

MyData2 theKeyData = new MyData2();
theKeyData.setLong(123456789l);
theKeyData.setDouble(new Double(12345.6789));
theKeyData.setString("My key data");

DatabaseEntry myKey = new DatabaseEntry();

try {
 // Store theKeyData in the DatabaseEntry
 keyBinding.objectToEntry(theKeyData, myKey);

 ...
 // Database put and get activity omitted for clarity
 ...

 // Retrieve the key data
 theKeyData = (MyData2) keyBinding.entryToObject(myKey);

Page 46Getting Started with JE9/19/2006

Using the BIND APIs

} catch (Exception e) {
 // Exception handling goes here
}

Using Comparators

Internally, JE databases are organized as BTrees. This means that most database operations
(inserts, deletes, reads, and so forth) involve BTree node comparisons. This comparison
most frequently occurs based on database keys, but if your database supports duplicate
records then comparisons can also occur based on the database data.

By default, JE performs all such comparisons using a byte-by-byte lexicographic
comparison. This mechanism works well for most data. However, in some cases you may
need to specify your own comparison routine. One frequent reason for this is to perform
a language sensitive lexical ordering of string keys.

Writing Comparators

You override the default comparison function by providing a Java Comparator class to the
database. The Java Comparator interface requires you to implement the
Comparator.compare() method (see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

JE passes your Comparator.compare() method the byte arrays that you stored in the
database. If you know how your data is organized in the byte array, then you can write
a comparison routine that directly examines the contents of the arrays. Otherwise, you
have to reconstruct your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses
String.compareTo(), which performs a Unicode comparison of two strings (note that for
single-byte roman characters, Unicode comparison and UTF-8 byte-by-byte comparisons
are identical – this is something you would only want to do if you were using multibyte
unicode characters with JE). In this case, your comparator would look like the following:

package je.gettingStarted;

import java.util.Comparator;

public class MyDataComparator implements Comparator {

 public MyDataComparator() {}

 public int compare(Object d1, Object d2) {

 byte[] b1 = (byte[])d1;
 byte[] b2 = (byte[])d2;

 String s1 = new String(b1, "UTF-8");
 String s2 = new String(b2, "UTF-8");

Page 47Getting Started with JE9/19/2006

Using Comparators

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

 return s1.compareTo(s2);
 }
}

Setting Comparators

You specify a Comparator using the following methods. Note that by default these methods
can only be used at database creation time, and they are ignored for normal database
opens. Also, note that JE uses the no-argument constructor for these comparators. Further,
it is not allowable for there to be a mutable state in these comparators or else
unpredictable results will occur.

• DatabaseConfig.setBtreeComparator()

Sets the Java Comparator class used to compare two keys in the database.

• DatabaseConfig.setDuplicateComparator()

Sets the Java Comparator class used to compare the data on two duplicate records in
the database. This comparator is used only if the database supports duplicate records.

You can use the above methods to set a database's comparator after database creation
time if you explicitly indicate that the comparator is to be overridden. You do this by
using the following methods:

If you override your comparator, the new comparator must preserve the sort order
implemented by your original comparator. That is, the new comparator and the old☞
comparator must return the same value for the comparison of any two valid objects. Failure
to observe this constraint will cause unpredictable results for your application.

If you want to change the fundamental sort order for your database, back up the contents
of the database, delete the database, recreate it, and then reload its data.

• DatabaseConfig.setOverrideBtreeComparator()

If set to true, causes the database's Btree comparator to be overridden with the
Comparator specified on DatabaseConfig.setBtreeComparator(). This method can be
used to change the comparator post-environment creation.

• DatabaseConfig.setOverrideDuplicateComparator()

If set to true, causes the database's duplicates comparator to be overridden with the
Comparator specified on DatabaseConfig.setDuplicateComparator().

For example, to use the Comparator described in the previous section:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;

Page 48Getting Started with JE9/19/2006

Using Comparators

import java.util.Comparator;

...

// Environment open omitted for brevity

try {
 // Get the database configuration object
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(true);

 // Set the duplicate comparator class
 myDbConfig.setDuplicateComparator(MyDataComparator.class);

 // Open the database that you will use to store your data
 myDbConfig.setSortedDuplicates(true);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Database Record Example

In Database Example (page 26), we created MyDbEnv, a class that manages
DatabaseEnvironment and Database opens and closes. We will now write an application
that takes advantage of this class to open databases, put a series of records in them, and
then close the databases and environment.

Remember that all of the classes and programs presented here can be found in the
following directory:

JE_HOME/examples/je/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Note that in this example, we are going to save two types of information. First there are
a series of inventory records that identify information about some food items (fruits,
vegetables, and desserts). These records identify particulars about each item such as the
vendor that the item can be obtained from, how much the vendor has in stock, the price
per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and
phone number, the sales representative's name and his phone number, and so forth.

Example 4.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because
this class is not serializable, we need a custom tuple binding in order to place it on a
DatabaseEntry object. Because the TupleInput and TupleOutput classes used by custom

Page 49Getting Started with JE9/19/2006

Database Record Example

tuple bindings support Java numerical types and not Java numerical classes, we use int
and float here instead of the corresponding Integer and Float classes.

// File Inventory.java
package je.gettingStarted;

public class Inventory {

 private String sku;
 private String itemName;
 private String category;
 private String vendor;
 private int vendorInventory;
 private float vendorPrice;

 public void setSku(String data) {
 sku = data;
 }

 public void setItemName(String data) {
 itemName = data;
 }

 public void setCategory(String data) {
 category = data;
 }

 public void setVendorInventory(int data) {
 vendorInventory = data;
 }

 public void setVendor(String data) {
 vendor = data;
 }

 public void setVendorPrice(float data) {
 vendorPrice = data;
 }

 public String getSku() { return sku; }
 public String getItemName() { return itemName; }
 public String getCategory() { return category; }
 public int getVendorInventory() { return vendorInventory; }
 public String getVendor() { return vendor; }
 public float getVendorPrice() { return vendorPrice; }

}

Page 50Getting Started with JE9/19/2006

Database Record Example

Example 4.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we
are using serialization with this class simply to demonstrate serializing a class instance.

// File Vendor.java
package je.gettingStarted;

import java.io.Serializable;

public class Vendor implements Serializable {

 private String repName;
 private String address;
 private String city;
 private String state;
 private String zipcode;
 private String bizPhoneNumber;
 private String repPhoneNumber;
 private String vendor;

 public void setRepName(String data) {
 repName = data;
 }

 public void setAddress(String data) {
 address = data;
 }

 public void setCity(String data) {
 city = data;
 }

 public void setState(String data) {
 state = data;
 }

 public void setZipcode(String data) {
 zipcode = data;
 }

 public void setBusinessPhoneNumber(String data) {
 bizPhoneNumber = data;
 }

 public void setRepPhoneNumber(String data) {
 repPhoneNumber = data;
 }

Page 51Getting Started with JE9/19/2006

Database Record Example

 public void setVendorName(String data) {
 vendor = data;
 }

 ...
 // Corresponding getter methods omitted for brevity.
 // See examples/je/gettingStarted/Vendor.java
 // for a complete implementation of this class.

}

Because we will not be using serialization to convert our Inventory objects to a
DatabaseEntry object, we need a custom tuple binding:

Example 4.3. InventoryBinding.java

// File InventoryBinding.java
package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class InventoryBinding extends TupleBinding {

 // Implement this abstract method. Used to convert
 // a DatabaseEntry to an Inventory object.
 public Object entryToObject(TupleInput ti) {

 String sku = ti.readString();
 String itemName = ti.readString();
 String category = ti.readString();
 String vendor = ti.readString();
 int vendorInventory = ti.readInt();
 float vendorPrice = ti.readFloat();

 Inventory inventory = new Inventory();
 inventory.setSku(sku);
 inventory.setItemName(itemName);
 inventory.setCategory(category);
 inventory.setVendor(vendor);
 inventory.setVendorInventory(vendorInventory);
 inventory.setVendorPrice(vendorPrice);

 return inventory;
 }

 // Implement this abstract method. Used to convert a
 // Inventory object to a DatabaseEntry object.

Page 52Getting Started with JE9/19/2006

Database Record Example

 public void objectToEntry(Object object, TupleOutput to) {

 Inventory inventory = (Inventory)object;

 to.writeString(inventory.getSku());
 to.writeString(inventory.getItemName());
 to.writeString(inventory.getCategory());
 to.writeString(inventory.getVendor());
 to.writeInt(inventory.getVendorInventory());
 to.writeFloat(inventory.getVendorPrice());
 }
}

In order to store the data identified above, we write the ExampleDatabasePut application.
This application loads the inventory and vendor databases for you.

Inventory information is stored in a Database dedicated for that purpose. The key for
each such record is a product SKU. The inventory data stored in this database are objects
of the Inventory class (see Inventory.java (page 49) for more information).
ExampleDatabasePut loads the inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.

2. Uses java.lang.String to create a key based on the item's SKU.

3. Uses an Inventory class instance for the record data. This object is stored on a
DatabaseEntry object using InventoryBinding, a custom tuple binding that we
implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Database dedicated for that purpose. The vendor
data stored in this database are objects of the Vendor class (see Vendor.java (page 51)
for more information). To load this Database, ExampleDatabasePut does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.

2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a
DatabaseEntry object using com.sleepycat.bind.serial.SerialBinding.

Example 4.4. Stored Class Catalog Management with MyDbEnv

Before we can write ExampleDatabasePut, we need to update MyDbEnv.java to support
the class catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:

// File MyDbEnv.java
package je.gettingStarted;

Page 53Getting Started with JE9/19/2006

Database Record Example

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;

import java.io.File;

import com.sleepycat.bind.serial.StoredClassCatalog;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

public class MyDbEnv {

 private Environment myEnv;
 private Database vendorDb;
 private Database inventoryDb;

private Database classCatalogDb;

 // Needed for object serialization
 private StoredClassCatalog classCatalog;

 public MyDbEnv() {}

Next we need to update the MyDbEnv.setup() method to open the class catalog database
and create the class catalog.

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 ...
 // Database and environment configuration omitted for brevity
 ...

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);

 // Now create and open our databases.
 vendorDb = myEnv.openDatabase(null, "VendorDB", myDbConfig);

 inventoryDb = myEnv.openDatabase(null, "InventoryDB", myDbConfig);

// Open the class catalog db. This is used to
 // optimize class serialization.
 classCatalogDb =
 myEnv.openDatabase(null,

Page 54Getting Started with JE9/19/2006

Database Record Example

 "ClassCatalogDB",
 myDbConfig);

 // Create our class catalog
 classCatalog = new StoredClassCatalog(classCatalogDb);
 }

Next we need a getter method to return the class catalog. Note that we do not provide
a getter for the catalog database itself – our application has no need for that.

// Getter methods
 public Environment getEnvironment() {
 return myEnv;
 }

 public Database getVendorDB() {
 return vendorDb;
 }

 public Database getInventoryDB() {
 return inventoryDb;
 }

public StoredClassCatalog getClassCatalog() {
 return classCatalog;
 }

Finally, we need to update the MyDbEnv.close() method to close the class catalog
database.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {
 vendorDb.close();
 inventoryDb.close();

classCatalogDb.close()
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

So far we have identified the data that we want to store in our databases and how we
will convert that data in and out of DatabaseEntry objects for database storage. We have
also updated MyDbEnv to manage our databases for us. Now we write ExampleDatabasePut

Page 55Getting Started with JE9/19/2006

Database Record Example

to actually put the inventory and vendor data into their respective databases. Because
of the work that we have done so far, this application is actually fairly simple to write.

Example 4.5. ExampleDatabasePut.java

First we need the usual series of import statements:

//File ExampleDatabasePut.java
package je.gettingStarted;

// Bind classes used to move class objects in an out of byte arrays.
import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

// Standard JE database imports
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;

// Most of this is used for loading data from a text file for storage
// in the databases.
import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

Next comes the class declaration and the private data members that we need for this
class. Most of these are setting up default values for the program.

Note that two DatabaseEntry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a MyDbEnv object is instantiated here.
We can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbEnv (page 53) for its implementation details.

Finally, the inventory.txt and vendors.txt file can be found in the GettingStarted
examples directory along with the classes described in this extended example.

public class ExampleDatabasePut {

 private static File myDbEnvPath = new File("/tmp/JEDB");
 private static File inventoryFile = new File("./inventory.txt");
 private static File vendorsFile = new File("./vendors.txt");

 // DatabaseEntries used for loading records
 private static DatabaseEntry theKey = new DatabaseEntry();
 private static DatabaseEntry theData = new DatabaseEntry();

Page 56Getting Started with JE9/19/2006

Database Record Example

 // Encapsulates the environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

Next comes the usage() and main() methods. Notice the exception handling in the main()
method. This is the only place in the application where we catch exceptions. For this
reason, we must catch DatabaseException which is thrown by the com.sleepycat.je.*
classes.

Also notice the call to MyDbEnv.close() in the finally block. This is the only place in the
application where MyDbEnv.close() is called. MyDbEnv.close() is responsible for closing
the Environment and all open Database handles for you.

 private static void usage() {
 System.out.println("ExampleDatabasePut [-h <env directory>]");
 System.out.println(" [-s <selections file>] [-v <vendors file>]");
 System.exit(-1);
 }

 public static void main(String args[]) {
 ExampleDatabasePut edp = new ExampleDatabasePut();
 try {
 edp.run(args);
 } catch (DatabaseException dbe) {
 System.err.println("ExampleDatabasePut: " + dbe.toString());
 dbe.printStackTrace();
 } catch (Exception e) {
 System.err.println("Exception: " + e.toString());
 e.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

Next we write the ExampleDatabasePut.run() method. This method is responsible for
initializing all objects. Because our environment and databases are all opened using the
MyDbEnv.setup()method, ExampleDatabasePut.run()method is only responsible for calling
MyDbEnv.setup() and then calling the ExampleDatabasePut methods that actually load the
databases.

 private void run(String args[]) throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 false); // is this environment read-only?

 System.out.println("loading vendors db.");
 loadVendorsDb();

Page 57Getting Started with JE9/19/2006

Database Record Example

 System.out.println("loading inventory db.");
 loadInventoryDb();
 }

This next method loads the vendor database. This method uses serialization to convert
the Vendor object to a DatabaseEntry object.

 private void loadVendorsDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 List vendors = loadFile(vendorsFile, 8);

 // Now load the data into the database. The vendor's name is the
 // key, and the data is a Vendor class object.

 // Need a serial binding for the data
 EntryBinding dataBinding =
 new SerialBinding(myDbEnv.getClassCatalog(), Vendor.class);

 for (int i = 0; i < vendors.size(); i++) {
 String[] sArray = (String[])vendors.get(i);
 Vendor theVendor = new Vendor();
 theVendor.setVendorName(sArray[0]);
 theVendor.setAddress(sArray[1]);
 theVendor.setCity(sArray[2]);
 theVendor.setState(sArray[3]);
 theVendor.setZipcode(sArray[4]);
 theVendor.setBusinessPhoneNumber(sArray[5]);
 theVendor.setRepName(sArray[6]);
 theVendor.setRepPhoneNumber(sArray[7]);

 // The key is the vendor's name.
 // ASSUMES THE VENDOR'S NAME IS UNIQUE!
 String vendorName = theVendor.getVendorName();
 try {
 theKey = new DatabaseEntry(vendorName.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}

 // Convert the Vendor object to a DatabaseEntry object
 // using our SerialBinding
 dataBinding.objectToEntry(theVendor, theData);

 // Put it in the database. These puts are transactionally
 // protected (we're using autocommit).
 myDbEnv.getVendorDB().put(null, theKey, theData);

Page 58Getting Started with JE9/19/2006

Database Record Example

 }
 }

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 52)) to convert the Inventory object to a DatabaseEntry
object.

 private void loadInventoryDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 List inventoryArray = loadFile(inventoryFile, 6);

 // Now load the data into the database. The item's sku is the
 // key, and the data is an Inventory class object.

 // Need a tuple binding for the Inventory class.
 TupleBinding inventoryBinding = new InventoryBinding();

 for (int i = 0; i < inventoryArray.size(); i++) {
 String[] sArray = (String[])inventoryArray.get(i);
 String sku = sArray[1];
 try {
 theKey = new DatabaseEntry(sku.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}

 Inventory theInventory = new Inventory();
 theInventory.setItemName(sArray[0]);
 theInventory.setSku(sArray[1]);
 theInventory.setVendorPrice((new Float(sArray[2])).floatValue());
 theInventory.setVendorInventory(
 (new Integer(sArray[3])).intValue());
 theInventory.setCategory(sArray[4]);
 theInventory.setVendor(sArray[5]);

 // Place the Vendor object on the DatabaseEntry object using our
 // the tuple binding we implemented in InventoryBinding.java
 inventoryBinding.objectToEntry(theInventory, theData);

 // Put it in the database.
 myDbEnv.getInventoryDB().put(null, theKey, theData);

 }
 }

The remainder of this application provides utility methods to read a flat text file into an
array of strings and parse the command line options. From the perspective of this

Page 59Getting Started with JE9/19/2006

Database Record Example

document, these things are relatively uninteresting. You can see how they are implemented
by looking at:

JE_HOME/examples/je/gettingStarted/ExampleDataPut.java

where JE_HOME is the location where you placed your JE distribution.

 private static void parseArgs(String args[]) {
 // Implementation omitted for brevity.
 }

 private List loadFile(File theFile, int numFields) {
 List records = new ArrayList();
 // Implementation omitted for brevity.
 return records;
 }

 protected ExampleDatabasePut() {}
}

Page 60Getting Started with JE9/19/2006

Database Record Example

Chapter 5. Using Cursors
Cursors provide a mechanism by which you can iterate over the records in a database.
Using cursors, you can get, put, and delete database records. If a database allows duplicate
records, then cursors are the only mechanism by which you can access anything other
than the first duplicate for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them
to modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Database.openCursor() method. When you
open a cursor, you can optionally pass it a CursorConfig object to set cursor properties.
Currently, the only available property tells the cursor to perform uncommitted reads.
(For a description of uncommitted reads, see the Berkeley DB Java Edition Getting Started
with Transaction Processing guide.)

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.CursorConfig;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;

import java.io.File;

...
Environment myDbEnvironment = null;
Database myDatabase = null;
Cursor myCursor = null;

try {
 myDbEnvironment = new Environment(new File("/export/dbEnv"), null);
 myDatabase = myDbEnvironment.openDatabase(null, "myDB", null);

 myCursor = myDatabase.openCursor(null, null);
} catch (DatabaseException dbe) {
 // Exception handling goes here ...
}

To close the cursor, call the Cursor.close() method. Note that if you close a database
that has cursors open in it, then it will throw an exception and close any open cursors for
you. For best results, close your cursors from within a finally block.

Page 61Getting Started with JE9/19/2006

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;

...
try {
 ...
} catch ... {
} finally {
 try {
 if (myCursor != null) {
 myCursor.close();
 }

 if (myDatabase != null) {
 myDatabase.close();
 }

 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
 } catch(DatabaseException dbe) {
 System.err.println("Error in close: " + dbe.toString());
 }
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the Cursor.getNext() method. For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

Page 62Getting Started with JE9/19/2006

Getting Records Using the Cursor

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 // Cursors need a pair of DatabaseEntry objects to operate. These hold
 // the key and data found at any given position in the database.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 // To iterate, just call getNext() until the last database record has been
 // read. All cursor operations return an OperationStatus, so just read
 // until we no longer see OperationStatus.SUCCESS
 while (cursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {
 // getData() on the DatabaseEntry objects returns the byte array
 // held by that object. We use this to get a String value. If the
 // DatabaseEntry held a byte array representation of some other data
 // type (such as a complex object) then this operation would look
 // considerably different.
 String keyString = new String(foundKey.getData(), "UTF-8");
 String dataString = new String(foundData.getData(), "UTF-8");
 System.out.println("Key | Data : " + keyString + " | " +
 dataString + "");
 }
} catch (DatabaseException de) {
 System.err.println("Error accessing database." + de);
} finally {
 // Cursors must be closed.
 cursor.close();
}

To iterate over the database from the last record to the first, instantiate the cursor, and
then use Cursor.getPrev() until you read the first record in the database. For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity

Page 63Getting Started with JE9/19/2006

Getting Records Using the Cursor

 ...

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 // Get the DatabaseEntry objects that the cursor will use.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 // Iterate from the last record to the first in the database
 while (cursor.getPrev(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 String theKey = new String(foundKey.getData(), "UTF-8");
 String theData = new String(foundData.getData(), "UTF-8");
 System.out.println("Key | Data : " + theKey + " | " + theData + "");
 }
} catch (DatabaseException de) {
 System.err.println("Error accessing database." + de);
} finally {
 // Cursors must be closed.
 cursor.close();
}

Searching for Records

You can use cursors to search for database records. You can search based on just a key,
or you can search based on both the key and the data. You can also perform partial
matches if your database supports sorted duplicate sets. In all cases, the key and data
parameters of these methods are filled with the key and data values of the database
record to which the cursor is positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and OperationStatus.NOTFOUND
is returned.

The following Cursor methods allow you to perform database searches:

• Cursor.getSearchKey()

Moves the cursor to the first record in the database with the specified key.

• Cursor.getSearchKeyRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. This comparison is determined by the comparator that you provide
for the database. If no comparator is provided, then the default unsigned byte-by-byte
lexicographical sorting is used.

For example, suppose you have database records that use the following Strings as
keys:

Page 64Getting Started with JE9/19/2006

Getting Records Using the Cursor

Alabama
Alaska
Arizona

Then providing a search key of Alaska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Alabama), providing a search
key of Alas moves the cursor to the second key (Alaska), and providing a key of Ar
moves the cursor to the last key (Arizona).

• Cursor.getSearchBoth()

Moves the cursor to the first record in the database that uses the specified key and
data.

• Cursor.getSearchBothRange()

Moves the cursor to the first record in the database whose key matches the specified
key and whose data is greater than or equal to the specified data. If the database
supports duplicate records, then on matching the key, the cursor is moved to the
duplicate record with the smallest data that is greater than or equal to the specified
data.

For example, suppose you have database records that use the following key/data pairs:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

then providing:

moves the cursor to ...and a search data of ...a search key of ...

Alaska/FairbanksFaAlaska

Arizona/FlorenceFlArizona

Alaska/AnchorageAnAlaska

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as Strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

Page 65Getting Started with JE9/19/2006

Getting Records Using the Cursor

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

// For this example, hard code the search key and data
String searchKey = "Alaska";
String searchData = "Fa";

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData =
 new DatabaseEntry(searchData.getBytes("UTF-8"));

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Perform the search
 OperationStatus retVal = cursor.getSearchBothRange(theKey, theData,
 LockMode.DEFAULT);
 // NOTFOUND is returned if a record cannot be found whose key
 // matches the search key AND whose data begins with the search data.
 if (retVal == OperationStatus.NOTFOUND) {
 System.out.println(searchKey + "/" + searchData +
 " not matched in database " +
 myDatabase.getDatabaseName());
 } else {
 // Upon completing a search, the key and data DatabaseEntry
 // parameters for getSearchBothRange() are populated with the
 // key/data values of the found record.
 String foundKey = new String(theKey.getData(), "UTF-8");
 String foundData = new String(theData.getData(), "UTF-8");
 System.out.println("Found record " + foundKey + "/" + foundData +
 "for search key/data: " + searchKey +

Page 66Getting Started with JE9/19/2006

Getting Records Using the Cursor

 "/" + searchData);
 }

} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Working with Duplicate Records

If your database supports duplicate records, then it can potentially contain multiple
records that share the same key. Using normal database get operations, you can only ever
obtain the first such record in a set of duplicate records. To access subsequent duplicates,
use a cursor. The following Cursor methods are interesting when working with databases
that support duplicate records:

• Cursor.getNext(), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate
of the current record. For an example of using these methods, see Getting Records
Using the Cursor (page 62).

• Cursor.getSearchBothRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 64) for more information.

• Cursor.getNextNoDup(), Cursor.getPrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip
over all the duplicates in a set of duplicate records. If you call Cursor.getPrevNoDup(),
then the cursor is positioned to the last record for the previous key in the database.
For example, if you have the following records in your database:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

and your cursor is positioned to Alaska/Fairbanks, and you then call
Cursor.getPrevNoDup(), then the cursor is positioned to Alabama/Florence. Similarly,
if you call Cursor.getNextNoDup(), then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then OperationStatus.NOTFOUND is
returned, and the cursor is left unchanged.

Page 67Getting Started with JE9/19/2006

Getting Records Using the Cursor

• Cursor.getNextDup(), Cursor.getPrevDup()

Gets the next/previous record that shares the current key. If the cursor is positioned
at the last record in the duplicate set and you call Cursor.getNextDup(), then
OperationStatus.NOTFOUND is returned and the cursor is left unchanged. Likewise, if
you call getPrevDup() and the cursor is positioned at the first record in the duplicate
set, then OperationStatus.NOTFOUND is returned and the cursor is left unchanged.

• Cursor.count()

Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and, if the key
contains duplicate records, displays all the duplicates. Note that the following code
fragment assumes that the database contains only String objects for the keys and data.

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor
 // Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Count the number of duplicates. If the count is greater than 1,
 // print the duplicates.
 if (cursor.count() > 1) {
 while (retVal == OperationStatus.SUCCESS) {

Page 68Getting Started with JE9/19/2006

Getting Records Using the Cursor

 String keyString = new String(theKey.getData(), "UTF-8");
 String dataString = new String(theData.getData(), "UTF-8");
 System.out.println("Key | Data : " + keyString + " | " +
 dataString + "");

 retVal = cursor.getNextDup(theKey, theData, LockMode.DEFAULT);
 }
 }
} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Putting Records Using Cursors

You can use cursors to put records into the database. JE's behavior when putting records
into the database differs depending on whether the database supports duplicate records.
If duplicates are allowed, its behavior also differs depending on whether a comparator is
provided for the database. (Comparators are described in Using Comparators (page 47)).

Note that when putting records to the database using a cursor, the cursor is positioned
at the record you inserted.

You can use the following methods to put records to the database:

• Cursor.put()

If the provided key does not exist in the database, then the order that the record is
put into the database is determined by the BTree (key) comparator in use by the
database.

If the provided key already exists in the database, and the database does not support
sorted duplicates, then the existing record data is replaced with the data provided
on this method.

If the provided key already exists in the database, and the database does support
sorted duplicates, then the order that the record is inserted into the database is
determined by the duplicate comparator in use by the database.

• Cursor.putNoDupData()

If the provided key and data already exists in the database, then this method returns
OperationStatus.KEYEXIST.

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

Page 69Getting Started with JE9/19/2006

Putting Records Using Cursors

• Cursor.putNoOverwrite()

If the provided key already exists in the database, then this method returns
OperationStatus.KEYEXIST.

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.OperationStatus;

...

// Create the data to put into the database
String key1str = "My first string";
String data1str = "My first data";
String key2str = "My second string";
String data2str = "My second data";
String data3str = "My third data";

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 DatabaseEntry key1 = new DatabaseEntry(key1str.getBytes("UTF-8"));
 DatabaseEntry data1 = new DatabaseEntry(data1str.getBytes("UTF-8"));
 DatabaseEntry key2 = new DatabaseEntry(key2str.getBytes("UTF-8"));
 DatabaseEntry data2 = new DatabaseEntry(data2str.getBytes("UTF-8"));
 DatabaseEntry data3 = new DatabaseEntry(data3str.getBytes("UTF-8"));

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Assuming an empty database.

 OperationStatus retVal = cursor.put(key1, data1); // SUCCESS
 retVal = cursor.put(key2, data2); // SUCCESS
 retVal = cursor.put(key2, data3); // SUCCESS if dups allowed,
 // KEYEXIST if not.

} catch (Exception e) {

Page 70Getting Started with JE9/19/2006

Putting Records Using Cursors

 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want
to delete and then call Cursor.delete(). Note that after deleting a record, the value of
Cursor.getCurrent() is unchanged until such a time as the cursor is moved again. Also,
if you call Cursor.delete() two or more times in a row without repositioning the cursor,
then all subsequent deletes result in a return value of OperationStatus.KEYEMPTY.

For example:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...
 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor. Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Count the number of records using the given key. If there is only
 // one, delete that record.
 if (cursor.count() == 1) {
 System.out.println("Deleting " +
 new String(theKey.getData(), "UTF-8") +
 "|" +

Page 71Getting Started with JE9/19/2006

Deleting Records Using Cursors

 new String(theData.getData(), "UTF-8"));
 cursor.delete();
 }
} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Replacing Records Using Cursors

You replace the data for a database record by using Cursor.putCurrent(). This method
takes just one argument — the data that you want to write to the current location in the
database.

import com.sleepycat.je.Cursor;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...
Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...
 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor. Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Replacement data
 String replaceStr = "My replacement string";
 DatabaseEntry replacementData =
 new DatabaseEntry(replaceStr.getBytes("UTF-8"));
 cursor.putCurrent(replacementData);
} catch (Exception e) {
 // Exception handling goes here
} finally {

Page 72Getting Started with JE9/19/2006

Replacing Records Using Cursors

 // Make sure to close the cursor
 cursor.close();
}

Note that this method cannot be used if the record that you are trying to replace is a
member of a duplicate set. This is because records must be sorted by their data and
replacement would violate that sort order.

If you want to replace the data contained by a duplicate record, delete the record and
create a new record with the desired key and data.

Cursor Example

In Database Example (page 26) we wrote an application that loaded two Database objects
with vendor and inventory information. In this example, we will use those databases to
display all of the items in the inventory database. As a part of showing any given inventory
item, we will look up the vendor who can provide the item and show the vendor's contact
information.

To do this, we create the ExampleInventoryRead application. This application reads and
displays all inventory records by:

1. Opening the environment and then the inventory, vendor, and class catalog Database
objects. We do this using the MyDbEnv class. See Stored Class Catalog Management
with MyDbEnv (page 53) for a description of this class.

2. Obtaining a cursor from the inventory Database.

3. Steps through the Database, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 52) is used.

5. Database.get() is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the DatabaseEntry returned by the get() to a
Vendor object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 51). We implemented the Inventory
class in Inventory.java (page 49).

The full implementation of ExampleInventoryRead can be found in:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 73Getting Started with JE9/19/2006

Cursor Example

Example 5.1. ExampleInventoryRead.java

To begin, we import the necessary classes:

// file ExampleInventoryRead.java
package je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

import java.io.File;
import java.io.IOException;

Next we declare our class and set up some global variables. Note a MyDbEnv object is
instantiated here. We can do this because its constructor never throws an exception. See
Database Example (page 26) for its implementation details.

public class ExampleInventoryRead {

 private static File myDbEnvPath =
 new File("/tmp/JEDB");

 // Encapsulates the database environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

 private static TupleBinding inventoryBinding;
 private static EntryBinding vendorBinding;

Next we create the ExampleInventoryRead.usage() and ExampleInventoryRead.main()
methods. We perform almost all of our exception handling from
ExampleInventoryRead.main(), and so we must catch DatabaseException because the
com.sleepycat.je.* APIs throw them.

 private static void usage() {
 System.out.println("ExampleInventoryRead [-h <env directory>]");
 System.exit(0);
 }

 public static void main(String args[]) {
 ExampleInventoryRead eir = new ExampleInventoryRead();
 try {
 eir.run(args);
 } catch (DatabaseException dbe) {

Page 74Getting Started with JE9/19/2006

Cursor Example

 System.err.println("ExampleInventoryRead: " + dbe.toString());
 dbe.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

In ExampleInventoryRead.run(), we call MyDbEnv.setup() to open our environment and
databases. Then we create the bindings that we need for using our data objects with
DatabaseEntry objects.

 private void run(String args[]) throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 true); // is this environment read-only?

 // Setup our bindings.
 inventoryBinding = new InventoryBinding();
 vendorBinding =
 new SerialBinding(myDbEnv.getClassCatalog(),
 Vendor.class);
 showAllInventory();
 }

Now we write the loop that displays the Inventory records. We do this by opening a cursor
on the inventory database and iterating over all its contents, displaying each as we go.

 private void showAllInventory()
 throws DatabaseException {
 // Get a cursor
 Cursor cursor = myDbEnv.getInventoryDB().openCursor(null, null);

 // DatabaseEntry objects used for reading records
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 try { // always want to make sure the cursor gets closed.
 while (cursor.getNext(foundKey, foundData,
 LockMode.DEFAULT) == OperationStatus.SUCCESS) {
 Inventory theInventory =
 (Inventory)inventoryBinding.entryToObject(foundData);
 displayInventoryRecord(foundKey, theInventory);
 }
 } catch (Exception e) {
 System.err.println("Error on inventory cursor:");
 System.err.println(e.toString());
 e.printStackTrace();

Page 75Getting Started with JE9/19/2006

Cursor Example

 } finally {
 cursor.close();
 }

 }

We use ExampleInventoryRead.displayInventoryRecord() to actually show the record.
This method first displays all the relevant information from the retrieved Inventory object.
It then uses the vendor database to retrieve and display the vendor. Because the vendor
database is keyed by vendor name, and because each inventory object contains this key,
it is trivial to retrieve the appropriate vendor record.

 private void displayInventoryRecord(DatabaseEntry theKey,
 Inventory theInventory)
 throws DatabaseException {

 DatabaseEntry searchKey = null;
 try {
 String theSKU = new String(theKey.getData(), "UTF-8");
 System.out.println(theSKU + ":");
 System.out.println("\t " + theInventory.getItemName());
 System.out.println("\t " + theInventory.getCategory());
 System.out.println("\t " + theInventory.getVendor());
 System.out.println("\t\tNumber in stock: " +
 theInventory.getVendorInventory());
 System.out.println("\t\tPrice per unit: " +
 theInventory.getVendorPrice());
 System.out.println("\t\tContact: ");

 searchKey =
 new DatabaseEntry(theInventory.getVendor().getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 DatabaseEntry foundVendor = new DatabaseEntry();

 if (myDbEnv.getVendorDB().get(null, searchKey, foundVendor,
 LockMode.DEFAULT) != OperationStatus.SUCCESS) {
 System.out.println("Could not find vendor: " +
 theInventory.getVendor() + ".");
 System.exit(-1);
 } else {
 Vendor theVendor =
 (Vendor)vendorBinding.entryToObject(foundVendor);
 System.out.println("\t\t " + theVendor.getAddress());
 System.out.println("\t\t " + theVendor.getCity() + ", " +
 theVendor.getState() + " " + theVendor.getZipcode());
 System.out.println("\t\t Business Phone: " +
 theVendor.getBusinessPhoneNumber());
 System.out.println("\t\t Sales Rep: " +
 theVendor.getRepName());

Page 76Getting Started with JE9/19/2006

Cursor Example

 System.out.println("\t\t " +
 theVendor.getRepPhoneNumber());
 }
 }

The remainder of this application provides a utility method used to parse the command
line options. From the perspective of this document, this is relatively uninteresting. You
can see how this is implemented by looking at:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 77Getting Started with JE9/19/2006

Cursor Example

Chapter 6. Secondary Databases
Usually you find database records by means of the record's key. However, the key that
you use for your record will not always contain the information required to provide you
with rapid access to the data that you want to retrieve. For example, suppose your
Database contains records related to users. The key might be a string that is some unique
identifier for the person, such as a user ID. Each record's data, however, would likely
contain a complex object containing details about people such as names, addresses, phone
numbers, and so forth. While your application may frequently want to query a person by
user ID (that is, by the information stored in the key), it may also on occasion want to
location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn
for a given person's name, you create indexes based on names and then just search that
index for the name that you want. You can do this using secondary databases. In JE, the
Database that contains your data is called a primary database. A database that provides
an alternative set of keys to access that data is called a secondary database, and these
are managed using SecondaryDatabase class objects. In a secondary database, the keys
are your alternative (or secondary) index, and the data corresponds to a primary record's
key.

You create a secondary database by using a SecondaryConfig class object to identify an
implementation of a SecondaryKeyCreator class object that is used to create keys based
on data found in the primary database. You then pass this SecondaryConfig object to the
SecondaryDatabase constructor.

Once opened, JE manages secondary databases for you. Adding or deleting records in
your primary database causes JE to update the secondary as necessary. Further, changing
a record's data in the primary database may cause JE to modify a record in the secondary,
depending on whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. While methods exist on
SecondaryDatabase and SecondaryCursor that appear to allow this, they in fact always
throw UnsupportedOperationException. To change the data referenced by a
SecondaryDatabase record, modify the primary database instead. The exception to this
rule is that delete operations are allowed on the SecondaryDatabase object. See Deleting
Secondary Database Records (page 85) for more information.

Secondary database records are updated/created by JE only if the
SecondaryKeyCreator.createSecondaryKey() method returns true. If false is returned, then☞
JE will not add the key to the secondary database, and in the event of a record update it
will remove any existing key.

See Implementing Key Creators (page 81) for more information on this interface and method.

When you read a record from a secondary database, JE automatically returns the key and
data from the corresponding record in the primary database.

Page 78Getting Started with JE9/19/2006

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the
Environment.openSecondaryDatabase()method. Just as is the case with primary databases,
you must provide Environment.openSecondaryDatabase() with the database's name and,
optionally, other properties such as whether duplicate records are allowed, or whether
the secondary database can be created on open. In addition, you must also provide:

• A handle to the primary database that this secondary database is indexing. Note that
this means that secondary databases are maintained only for the specified Database
handle. If you open the same Database multiple times for write (such as might occur
when opening a database for read-only and read-write in the same application), then
you should open the SecondaryDatabase for each such Database handle.

• A SecondaryConfig object that provides properties specific to a secondary database.
The most important of these is used to identify the key creator for the database. The
key creator is responsible for generating keys for the secondary database. See Secondary
Database Properties (page 84) for details.

Primary databases must not support duplicate records. Secondary records point to primary
records using the primary key, so that key must be unique.☞

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your SecondaryConfig object.

4. Set your key creator object on your SecondaryConfig object.

5. Open your secondary database, specifying your primary database and your
SecondaryConfig at that time.

For example:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

import java.io.File;

Page 79Getting Started with JE9/19/2006

Opening and Closing Secondary
Databases

...

DatabaseConfig myDbConfig = new DatabaseConfig();
SecondaryConfig mySecConfig = new SecondaryConfig();
myDbConfig.setAllowCreate(true);
mySecConfig.setAllowCreate(true);
// Duplicates are frequently required for secondary databases.
mySecConfig.setSortedDuplicates(true);

// Open the primary
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
 String dbName = "myPrimaryDatabase";

 myEnv = new Environment(new File("/tmp/JEENV"), null);
 myDb = myEnv.openDatabase(null, dbName, myDbConfig);

 // A fake tuple binding that is not actually implemented anywhere
 // in this manual. The tuple binding is dependent on the data in use.
 // Tuple bindings are described earlier in this manual.
 TupleBinding myTupleBinding = new MyTupleBinding();

 // Open the secondary.
 // Key creators are described in the next section.
 FullNameKeyCreator keyCreator = new FullNameKeyCreator(myTupleBinding);

 // Get a secondary object and set the key creator on it.
 mySecConfig.setKeyCreator(keyCreator);

 // Perform the actual open
 String secDbName = "mySecondaryDatabase";
 mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb,
 mySecConfig);
} catch (DatabaseException de) {
 // Exception handling goes here ...
}

To close a secondary database, call its close() method. Note that for best results, you
should close all the secondary databases associated with a primary database before closing
the primary.

For example:

try {
 if (mySecDb != null) {
 mySecDb.close();
 }

Page 80Getting Started with JE9/19/2006

Opening and Closing Secondary
Databases

 if (myDb != null) {
 myDb.close();
 }

 if (myEnv != null) {
 myEnv.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary
records. You identify this class using the SecondaryConfig.setKeyCreator() method.

You can create keys using whatever data you want. Typically you will base your key on
some information found in a record's data, but you can also use information found in the
primary record's key. How you build your keys is entirely dependent upon the nature of
the index that you want to maintain.

You implement a key creator by writing a class that implements the SecondaryKeyCreator
interface. This interface requires you to implement the
SecondaryKeyCreator.createSecondaryKey() method.

One thing to remember when implementing this method is that you will need a way to
extract the necessary information from the data's DatabaseEntry and/or the key's
DatabaseEntry that are provided on calls to this method. If you are using complex objects,
then you are probably using the Bind APIs to perform this conversion. The easiest thing
to do is to instantiate the EntryBinding or TupleBinding that you need to perform the
conversion, and then provide this to your key creator's constructor. The Bind APIs are
introduced in Using the BIND APIs (page 36).

SecondaryKeyCreator.createSecondaryKey() returns a boolean. A return value of false
indicates that no secondary key exists, and therefore no record should be added to the
secondary database for that primary record. If a record already exists in the secondary
database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package je.gettingStarted;

public class PersonData {
 private String userID;
 private String surname;
 private String familiarName;

 public PersonData(String userID, String surname, String familiarName) {
 this.userID = userID;
 this.surname = surname;

Page 81Getting Started with JE9/19/2006

Implementing Key Creators

 this.familiarName = familiarName;
 }

 public String getUserID() {
 return userID;
 }

 public String getSurname() {
 return surname;
 }

 public String getFamiliarName() {
 return familiarName;
 }
}

Also, suppose that you have created a custom tuple binding, PersonDataBinding, that you
use to convert PersonData objects to and from DatabaseEntry objects. (Custom tuple
bindings are described in Custom Tuple Bindings (page 43).)

Finally, suppose you want a secondary database that is keyed based on the person's full
name.

Then in this case you might create a key creator as follows:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.SecondaryKeyCreator;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;

import java.io.IOException;

public class FullNameKeyCreator implements SecondaryKeyCreator {

 private TupleBinding theBinding;

 public FullNameKeyCreator(TupleBinding theBinding1) {
 theBinding = theBinding1;
 }

 public boolean createSecondaryKey(SecondaryDatabase secDb,
 DatabaseEntry keyEntry,
 DatabaseEntry dataEntry,
 DatabaseEntry resultEntry) {

 try {

Page 82Getting Started with JE9/19/2006

Implementing Key Creators

 PersonData pd =
 (PersonData) theBinding.entryToObject(dataEntry);
 String fullName = pd.getFamiliarName() + " " +
 pd.getSurname();
 resultEntry.setData(fullName.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 return true;
 }
}

Finally, you use this key creator as follows:

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

...
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
 // Environment and primary database open omitted for brevity
...

 TupleBinding myDataBinding = new MyTupleBinding();
 FullNameKeyCreator fnkc = new FullNameKeyCreator(myDataBinding);

 SecondaryConfig mySecConfig = new SecondaryConfig();
 mySecConfig.setKeyCreator(fnkc);

 //Perform the actual open
 String secDbName = "mySecondaryDatabase";
 mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb,
 mySecConfig);
} catch (DatabaseException de) {
 // Exception handling goes here
} finally {
 try {
 if (mySecDb != null) {
 mySecDb.close();
 }

 if (myDb != null) {

Page 83Getting Started with JE9/19/2006

Implementing Key Creators

 myDb.close();
 }

 if (myEnv != null) {
 myEnv.close();
 }
 } catch (DatabaseException dbe) {
 // Exception handling goes here
 }
}

Secondary Database Properties

Secondary databases accept SecondaryConfig objects. SecondaryConfig is a subclass of
DatabaseConfig, so it can manage all of the same properties as does DatabaseConfig. See
Database Properties (page 23) for more information.

In addition to the DatabaseConfig properties, SecondaryConfig also allows you to manage
the following properties:

• SecondaryConfig.setAllowPopulate()

If true, the secondary database can be auto-populated. This means that on open, if
the secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

• SecondaryConfig.setKeyCreator()

Identifies the key creator object to be used for secondary key creation. See
Implementing Key Creators (page 81) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by
using the SecondaryDatabase.get() method, or by using a SecondaryCursor. The main
difference between reading secondary and primary databases is that when you read a
secondary database record, the secondary record's data is not returned to you. Instead,
the primary key and data corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full
name:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;

...

Page 84Getting Started with JE9/19/2006

Secondary Database Properties

try {
 // Omitting all database and environment opens
 ...

 String searchName = "John Doe";
 DatabaseEntry searchKey =
 new DatabaseEntry(searchName.getBytes("UTF-8"));
 DatabaseEntry primaryKey = new DatabaseEntry();
 DatabaseEntry primaryData = new DatabaseEntry();

 // Get the primary key and data for the user 'John Doe'.
 OperationStatus retVal = mySecondaryDatabase.get(null, searchKey,
 primaryKey,
 primaryData,
 LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

Note that, just like Database.get(), if your secondary database supports duplicate records
then SecondaryDatabase.get() only return the first record found in a matching duplicates
set. If you want to see all the records related to a specific secondary key, then use a
SecondaryCursor (described in Using Secondary Cursors (page 86)).

Deleting Secondary Database Records

In general, you can not modify a secondary database directly. In order to modify a
secondary database, you should modify the primary database and simply allow JE to
manage the secondary modifications for you.

However, as a convenience, you can delete SecondaryDatabase records directly. Doing so
causes the associated primary key/data pair to be deleted. This in turn causes JE to delete
all SecondaryDatabase records that reference the primary record.

You can use the SecondaryDatabase.delete() method to delete a secondary database
record. Note that if your database supports duplicate records, then only the first record
in the matching duplicates set is deleted by this method. To delete all the duplicate
records that use a given key, use a SecondaryCursor.

SecondaryDatabase.delete() causes the previously described delete operations to occur
only if the primary database is opened for write access.☞

For example:

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;

Page 85Getting Started with JE9/19/2006

Deleting Secondary Database
Records

...
try {
 // Omitting all database and environment opens
 ...

 String searchName = "John Doe";
 DatabaseEntry searchKey =
 new DatabaseEntry(searchName.getBytes("UTF-8"));

 // Delete the first secondary record that uses "John Doe" as
 // a key. This causes the primary record referenced by this secondary
 // record to be deleted.
 OperationStatus retVal = mySecondaryDatabase.delete(null, searchKey);
} catch (Exception e) {
 // Exception handling goes here
}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors
to search for specific records in a database, to seek to the first or last record in the
database, to get the next duplicate record, to get the next non-duplicate record, and so
forth. For a complete description on cursors and their capabilities, see Using
Cursors (page 61).

However, when you use secondary cursors:

• Any data returned is the data contained on the primary database record referenced
by the secondary record.

• SecondaryCursor.getSearchBoth() and related methods do not search based on a
key/data pair. Instead, you search based on a secondary key and a primary key. The
data returned is the primary data that most closely matches the two keys provided
for the search.

For example, suppose you are using the databases, classes, and key creators described
in Implementing Key Creators (page 81). Then the following searches for a person's name
in the secondary database, and deletes all secondary and primary records that use that
name.

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryCursor;

Page 86Getting Started with JE9/19/2006

Using Secondary Cursors

...
try {
 // Database and environment opens omitted for brevity
 ...

 String secondaryName = "John Doe";
 DatabaseEntry secondaryKey =
 new DatabaseEntry(secondaryName.getBytes("UTF-8"));

 DatabaseEntry foundData = new DatabaseEntry();

 SecondaryCursor mySecCursor =
 mySecondaryDatabase.openSecondaryCursor(null, null);

 OperationStatus retVal = mySecCursor.getSearchKey(secondaryKey,
 foundData,
 LockMode.DEFAULT);
 while (retVal == OperationStatus.SUCCESS) {
 mySecCursor.delete();
 retVal = mySecCursor.getNextDup(secondaryKey,
 foundData,
 LockMode.DEFAULT);
 }
} catch (Exception e) {
 // Exception handling goes here
}

Database Joins

If you have two or more secondary databases associated with a primary database, then
you can retrieve primary records based on the intersection of multiple secondary entries.
You do this using a JoinCursor.

Throughout this document we have presented a class that stores inventory information
on grocery items. That class is fairly simple with a limited number of data members, few
of which would be interesting from a query perspective. But suppose, instead, that we
were storing information on something with many more characteristics that can be queried,
such as an automobile. In that case, you may be storing information such as color, number
of doors, fuel mileage, automobile type, number of passengers, make, model, and year,
to name just a few.

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile's VIN would be ideal for this purpose). You would
then create a class that identifies all the characteristics of the automobiles in your
inventory. You would also have to create some mechanism by which you would move
instances of this class in and out of Java byte arrays. We described the concepts and
mechanisms by which you can perform these activities in Database Records (page 30).

Page 87Getting Started with JE9/19/2006

Database Joins

To query this data, you might then create multiple secondary databases, one for each of
the characteristics that you want to query. For example, you might create a secondary
for color, another for number of doors, another for number of passengers, and so forth.
Of course, you will need a unique key creator for each such secondary database. You do
all of this using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you
have is the ability to retrieve automobile records based on a single characteristic. You
can, for example, find all the automobiles that are red. Or you can find all the automobiles
that have four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example,
you might want to find all the automobiles that are red, and that were built by Toyota,
and that are minivans. You can do this using a JoinCursor class instance.

Using Join Cursors

To use a join cursor:

• Open two or more secondary cursors. These cursors must be obtained from secondary
databases that are associated with the same primary database.

• Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned
to the minivan records, and the cursor for the make database is positioned to Toyota.

• Create an array of secondary cursors, and place in it each of the cursors that are
participating in your join query. Note that this array must be null terminated.

• Obtain a join cursor. You do this using the Database.join() method. You must pass
this method the array of secondary cursors that you opened and positioned in the
previous steps.

• Iterate over the set of matching records using JoinCursor.getNext() until
OperationStatus is not SUCCESS.

• Close your join cursor.

• If you are done with them, close all your secondary cursors.

For example:

package je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.JoinCursor;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

Page 88Getting Started with JE9/19/2006

Database Joins

import com.sleepycat.je.SecondaryCursor;
import com.sleepycat.je.SecondaryDatabase;

...

// Database and secondary database opens omitted for brevity.
// Assume a primary database handle:
// automotiveDB
// Assume 3 secondary database handles:
// automotiveColorDB -- index based on automobile color
// automotiveTypeDB -- index based on automobile type
// automotiveMakeDB -- index based on the manufacturer

// Query strings:
String theColor = "red";
String theType = "minivan";
String theMake = "Toyota";

// Secondary cursors used for the query:
SecondaryCursor colorSecCursor = null;
SecondaryCursor typeSecCursor = null;
SecondaryCursor makeSecCursor = null;

// The join cursor
JoinCursor joinCursor = null;

// These are needed for our queries
DatabaseEntry foundKey = new DatabaseEntry();
DatabaseEntry foundData = new DatabaseEntry();

// All cursor operations are enclosed in a try block to ensure that they
// get closed in the event of an exception.

try {
 // Database entries used for the query:
 DatabaseEntry color = new DatabaseEntry(theColor.getBytes("UTF-8"));
 DatabaseEntry type = new DatabaseEntry(theType.getBytes("UTF-8"));
 DatabaseEntry make = new DatabaseEntry(theMake.getBytes("UTF-8"));

 colorSecCursor = automotiveColorDB.openSecondaryCursor(null, null);
 typeSecCursor = automotiveTypeDB.openSecondaryCursor(null, null);
 makeSecCursor = automotiveMakeDB.openSecondaryCursor(null, null);

 // Position all our secondary cursors to our query values.
 OperationStatus colorRet =
 colorSecCursor.getSearchKey(color, foundData, LockMode.DEFAULT);
 OperationStatus typeRet =
 typeSecCursor.getSearchKey(type, foundData, LockMode.DEFAULT);
 OperationStatus makeRet =

Page 89Getting Started with JE9/19/2006

Database Joins

 makeSecCursor.getSearchKey(make, foundData, LockMode.DEFAULT);

 // If all our searches returned successfully, we can proceed
 if (colorRet == OperationStatus.SUCCESS &&
 typeRet == OperationStatus.SUCCESS &&
 makeRet == OperationStatus.SUCCESS) {

 // Get a secondary cursor array and populate it with our
 // positioned cursors
 SecondaryCursor[] cursorArray = {colorSecCursor,
 typeSecCursor,
 makeSecCursor,
 null};

 // Create the join cursor
 joinCursor = automotiveDB.join(cursorArray, null);

 // Now iterate over the results, handling each in turn
 while (joinCursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 // Do something with the key and data retrieved in
 // foundKey and foundData
 }
 }
} catch (DatabaseException dbe) {
 // Error reporting goes here
} catch (Exception e) {
 // Error reporting goes here
} finally {
 try {
 // Make sure to close out all our cursors
 if (colorSecCursor != null) {
 colorSecCursor.close();
 }
 if (typeSecCursor != null) {
 typeSecCursor.close();
 }
 if (makeSecCursor != null) {
 makeSecCursor.close();
 }
 if (joinCursor != null) {
 joinCursor.close();
 }
 } catch (DatabaseException dbe) {
 // Error reporting goes here
 }
}

Page 90Getting Started with JE9/19/2006

Database Joins

JoinCursor Properties

You can set JoinCursor properties using the JoinConfig class. Currently there is just one
property that you can set:

• JoinConfig.setNoSort()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted
from the one that refers to the least number of data items to the one that refers to
the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with
fewer data items. Turning off sorting permits applications to specify cursors in the
proper order given this scenario.

The default value is false (automatic cursor sorting is performed).

For example:

// All database and environments omitted
JoinConfig config = new JoinConfig();
config.setNoSort(true);
JoinCursor joinCursor = myDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several JE
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

• In Stored Class Catalog Management with MyDbEnv (page 53) we built a class that we
can use to open and manage a JE Environment and one or more Database objects. In
Opening Secondary Databases with MyDbEnv (page 93) we will extend that class to
also open and manage a SecondaryDatabase.

• In Cursor Example (page 73) we built an application to display our inventory database
(and related vendor information). In Using Secondary Databases with
ExampleInventoryRead (page 96) we will extend that application to show inventory
records based on the index we cause to be loaded using ExampleDatabasePut.

Before we can use a secondary database, we must implement a class to extract secondary
keys for us. We use ItemNameKeyCreator for this purpose.

Example 6.1. ItemNameKeyCreator.java

This class assumes the primary database uses Inventory objects for the record data. The
Inventory class is described in Inventory.java (page 49).

Page 91Getting Started with JE9/19/2006

Secondary Database Example

In our key creator class, we make use of a custom tuple binding called InventoryBinding.
This class is described in InventoryBinding.java (page 52).

You can find the following class in:

JE_HOME/examples/je/gettingStarted/ItemNameKeyCreator.java

where JE_HOME is the location where you placed your JE distribution.

package je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryKeyCreator;

import com.sleepycat.bind.tuple.TupleBinding;

import java.io.IOException;

public class ItemNameKeyCreator implements SecondaryKeyCreator {

 private TupleBinding theBinding;

 // Use the constructor to set the tuple binding
 ItemNameKeyCreator(TupleBinding binding) {
 theBinding = binding;
 }

 // Abstract method that we must implement
 public boolean createSecondaryKey(SecondaryDatabase secDb,
 DatabaseEntry keyEntry, // From the primary
 DatabaseEntry dataEntry, // From the primary
 DatabaseEntry resultEntry) // set the key data on this.
 throws DatabaseException {

 try {
 // Convert dataEntry to an Inventory object
 Inventory inventoryItem =
 (Inventory) theBinding.entryToObject(dataEntry);
 // Get the item name and use that as the key
 String theItem = inventoryItem.getItemName();
 resultEntry.setData(theItem.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 return true;
 }
}

Page 92Getting Started with JE9/19/2006

Secondary Database Example

Now that we have a key creator, we can use it to generate keys for a secondary database.
We will now extend MyDbEnv to manage a secondary database, and to use
ItemNameKeyCreator to generate keys for that secondary database.

Opening Secondary Databases with MyDbEnv

In Stored Class Catalog Management with MyDbEnv (page 53) we built MyDbEnv as an
example of a class that encapsulates Environment and Database opens and closes. We will
now extend that class to manage a SecondaryDatabase.

Example 6.2. SecondaryDatabase Management with MyDbEnv

We start by importing two additional classes needed to support secondary databases. We
also add a global variable to use as a handle for our secondary database.

// File MyDbEnv.java

package je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.je.SecondaryDatabase;

import java.io.File;

public class MyDbEnv {

 private Environment myEnv;

 // The databases that our application uses
 private Database vendorDb;
 private Database inventoryDb;
 private Database classCatalogDb;

private SecondaryDatabase itemNameIndexDb;

 // Needed for object serialization
 private StoredClassCatalog classCatalog;

 // Our constructor does nothing
 public MyDbEnv() {}

Page 93Getting Started with JE9/19/2006

Secondary Database Example

Next we update the MyDbEnv.setup() method to open the secondary database. As a part
of this, we have to pass an ItemNameKeyCreator object on the call to open the secondary
database. Also, in order to instantiate ItemNameKeyCreator, we need an InventoryBinding
object (we described this class in InventoryBinding.java (page 52)). We do all this work
together inside of MyDbEnv.setup().

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 DatabaseConfig myDbConfig = new DatabaseConfig();

SecondaryConfig mySecConfig = new SecondaryConfig();

 // If the environment is read-only, then
 // make the databases read-only too.
 myEnvConfig.setReadOnly(readOnly);
 myDbConfig.setReadOnly(readOnly);

mySecConfig.setReadOnly(readOnly);

 // If the environment is opened for write, then we want to be
 // able to create the environment and databases if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);
 myDbConfig.setAllowCreate(!readOnly);

mySecConfig.setAllowCreate(!readOnly);

 ...
 // Environment and database opens omitted for brevity
 ...

// Open the secondary database. We use this to create a
 // secondary index for the inventory database

 // We want to maintain an index for the inventory entries based
 // on the item name. So, instantiate the appropriate key creator
 // and open a secondary database.
 ItemNameKeyCreator keyCreator =
 new ItemNameKeyCreator(new InventoryBinding());

 // Set up the secondary properties
 mySecConfig.setAllowPopulate(true); // Allow autopopulate
 mySecConfig.setKeyCreator(keyCreator);
 // Need to allow duplicates for our secondary database
 mySecConfig.setSortedDuplicates(true);

 // Now open it
 itemNameIndexDb =
 myEnv.openSecondaryDatabase(
 null,

Page 94Getting Started with JE9/19/2006

Secondary Database Example

 "itemNameIndex", // Index name
 inventoryDb, // Primary database handle. This is
 // the db that we're indexing.
 mySecConfig); // The secondary config
 }

Next we need an additional getter method for returning the secondary database.

 public SecondaryDatabase getNameIndexDB() {
 return itemNameIndexDb;
 }

Finally, we need to update the MyDbEnv.close() method to close the new secondary
database. We want to make sure that the secondary is closed before the primaries. While
this is not necessary for this example because our closes are single-threaded, it is still a
good habit to adopt.

 public void close() {
 if (myEnv != null) {
 try {
 //Close the secondary before closing the primaries

itemNameIndexDb.close();
 vendorDb.close();
 inventoryDb.close();
 classCatalogDb.close();

 // Finally, close the environment.
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

That completes our update to MyDbEnv. You can find the complete class implementation
in:

JE_HOME/examples/je/gettingStarted/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Because we performed all our secondary database configuration management in MyDbEnv,
we do not need to modify ExampleDatabasePut at all in order to create our secondary
indices. When ExampleDatabasePut calls MyDbEnv.setup(), all of the necessary work is
performed for us.

However, we still need to take advantage of the new secondary indices. We do this by
updating ExampleInventoryRead to allow us to query for an inventory record based on its

Page 95Getting Started with JE9/19/2006

Secondary Database Example

name. Remember that the primary key for an inventory record is the item's SKU. The
item's name is contained in the Inventory object that is stored as each record's data in
the inventory database. But our new secondary index now allows us to easily query based
on the item's name.

Using Secondary Databases with ExampleInventoryRead

In the previous section we changed MyDbEnv to cause a secondary database to be built
using inventory item names as the secondary keys. In this section, we will update
ExampleInventoryRead to allow us to query our inventory records based on the item name.
To do this, we will modify ExampleInventoryRead to accept a new command line switch,
-s, whose argument is the name of an inventory item. If the switch is present on the
command line call to ExampleInventoryRead, then the application will use the secondary
database to look up and display all the inventory records with that item name. Note that
we use a SecondaryCursor to seek to the item name key and then display all matching
records.

Remember that you can find the following class in:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Example 6.3. SecondaryDatabase usage with ExampleInventoryRead

First we need to import a few additional classes in order to use secondary databases and
cursors, and then we add a single global variable:

package je.gettingStarted;

import com.sleepycat.je.Cursor;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryCursor;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

import java.io.File;
import java.io.IOException;

public class ExampleInventoryRead {

 private static File myDbEnvPath =
 new File("/tmp/JEDB");

Page 96Getting Started with JE9/19/2006

Secondary Database Example

 // Encapsulates the database environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

 private static TupleBinding inventoryBinding;
 private static EntryBinding vendorBinding;

// The item to locate if the -s switch is used
 private static String locateItem;

Next we update ExampleInventoryRead.run() to check to see if the locateItem global
variable a value. If it does, then we show just those records related to the item name
passed on the -s switch.

 private void run(String args[])
 throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);
 myDbEnv.setup(myDbEnvPath, // path to the environment home
 true); // is this environment read-only?

 // Setup our bindings.
 inventoryBinding = new InventoryBinding();
 vendorBinding =
 new SerialBinding(myDbEnv.getClassCatalog(),
 Vendor.class);

if (locateItem != null) {
 showItem();
 } else {
 showAllInventory();

}
 }

Finally, we need to implement ExampleInventoryRead.showItem(). This is a fairly simple
method that opens a secondary cursor, and then displays every primary record that is
related to the secondary key identified by the locateItem global variable.

 private void showItem() throws DatabaseException {
 SecondaryCursor secCursor = null;
 try {
 // searchKey is the key that we want to find in the
 // secondary db.
 DatabaseEntry searchKey =
 new DatabaseEntry(locateItem.getBytes("UTF-8"));

 // foundKey and foundData are populated from the primary
 // entry that is associated with the secondary db key.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

Page 97Getting Started with JE9/19/2006

Secondary Database Example

 // open a secondary cursor
 secCursor =
 myDbEnv.getNameIndexDB().openSecondaryCursor(null, null);

 // Search for the secondary database entry.
 OperationStatus retVal =
 secCursor.getSearchKey(searchKey, foundKey,
 foundData, LockMode.DEFAULT);

 // Display the entry, if one is found. Repeat until no more
 // secondary duplicate entries are found
 while(retVal == OperationStatus.SUCCESS) {
 Inventory theInventory =
 (Inventory)inventoryBinding.entryToObject(foundData);
 displayInventoryRecord(foundKey, theInventory);
 retVal = secCursor.getNextDup(searchKey, foundKey,
 foundData, LockMode.DEFAULT);
 }
 } catch (Exception e) {
 System.err.println("Error on inventory secondary cursor:");
 System.err.println(e.toString());
 e.printStackTrace();
 } finally {
 if (secCursor != null) {
 secCursor.close();
 }
 }
 }

The only other thing left to do is to update ExampleInventoryRead.parseArgs() to support
the -s command line switch. To see how this is done, see:

JE_HOME/examples/je/gettingStarted/ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 98Getting Started with JE9/19/2006

Secondary Database Example

Chapter 7. Backing up and Restoring
Berkeley DB Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage
location. To restore your database from a backup, you copy those files to an appropriate
directory on disk and reopen your JE application

Beyond these simple activities, there are some differing backup strategies that you may
want to consider. These topics are described in this chapter.

Databases and Log Files

Before describing JE backup and restore, it is necessary to describe some of JE's internal
workings. In particular, a high-level understanding of JE log files and the in-memory cache
is required. You also need to understand a little about how JE is using its internal data
structures in order to understand why checkpoints and/or syncs are required.

You can skip this section so long as you understand that:

• JE databases are stored in log files contained in your environment directory.

• Every time a JE environment is opened, normal recovery is run.

• For transactional applications, checkpoints should be run in order to bound normal
recovery time. Checkpoints are normally run by the checkpointer thread. Transactional
applications and the checkpointer thread are described in the Berkeley DB Java Edition
Getting Started with Transaction Processing guide.

• For non-transactional applications, environment syncs must be performed if you want
to guarantee the persistence of your database modifications. Environment syncs are
manually performed by the application developer. See Data Persistence (page 35) for
details.

Log File Overview

Your JE database is stored on-disk in a series of log files. JE uses no-overwrite log files,
which is to say that JE only ever appends data to the end of a log file. It will never delete
or modify an existing log file record.

JE log files are named NNNNNNNN.jdb where NNNNNNNN is an 8-digit hexadecimal number
that increases by 1 (starting from 00000000) for each log file written to disk.

JE creates a new log file whenever the current log file has reached a pre-configured size
(10000000 bytes by default). This size is controlled by the je.log.fileMax properties
parameter. See The JE Properties File (page 106) for information on setting JE properties.

Page 99Getting Started with JE9/19/2006

Cleaning the Log Files

Because JE uses no-overwrite log files, the logs must be compacted or cleaned so as to
conserve disk space.

JE uses the cleaner background thread to perform this task. When it runs, the cleaner
thread picks the log file with the smallest number of active records and scans each log
record in it. If the record is no longer active in the database tree, the cleaner does nothing.
If the record is still active in the tree, then the cleaner copies the record forward to a
newer log file.

Once a log file is no longer needed (that is, it no longer contains active records), then
the cleaner thread deletes the log file for you. Or, optionally, the cleaner thread can
simply rename the discarded log file with a del suffix.

JE uses a minimum log utilization property to determine how much cleaning to perform.
The log files contain both obsolete and utilized records. Obsolete records are records
that are no longer in use, either because they have been modified or because they have
been deleted. Utilized records are those records that are currently in use. The
je.cleaner.minUtilization property identifies the minimum percentage of log space
that must be used by utilized records. If this minimum percentage is not met, then log
files are cleaned until the minimum percentage is met.

For information on managing the cleaner thread, see The Cleaner Thread (page 107).

The BTree

JE databases are internally organized as a BTree. In order to operate, JE requires the
complete BTree be available to it.

When database records are created, modified, or deleted, the modifications are
represented in the BTree's leaf nodes. Beyond leaf node changes, database record
modifications can also cause changes to other BTree nodes and structures.

Database Modifications and Syncs

When a write operation is performed in JE, the modified data is written to a leaf node
contained in the in-memory cache. If your JE writes are performed without transactions,
then the in-memory cache is the only location guaranteed to receive a database
modification without further intervention on the part of the application developer.

For some class of applications, this lack of a guaranteed write to disk is ideal. By not
writing these modifications to the on-disk logs, the application can avoid most of the
overhead caused by disk I/O.

However, if the application requires its data to persist persist at a specific point in time,
then the developer must manually sync database modifications to the on-disk log files
(again, this is only necessary for non-transactional applications). This is done using
Environment.sync().

Page 100Getting Started with JE9/19/2006

Databases and Log Files

Note that syncing the cache causes JE to write all modified objects in the cache to disk.
This is probably the most expensive operation that you can perform in JE.

Normal Recovery

Every time a JE environment is opened, normal recovery is run. Because of the way that
JE organizes and manages its BTrees, all it needs is leaf nodes in order to recreate the
rest of the BTree. Essentially, this is what normal recovery is doing – recreating any missing
parts of the internal BTree from leaf node information stored in the log files.

Unlike a traditional database system, JE performs recovery for both transactional and
non-transactional operations. The integrity of the Btree is guaranteed by JE in the face
of both application and OS crashes.

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery
is possible for non-transactional applications. Note that this same material is repeated
in the Berkeley DB Java Edition Getting Started with Transaction Processing guide, but
for transactional applications. If you are writing transactional applications, you may want
to skip the rest of this chapter and go straight to that book.

To backup your database, you can either take a hot backup or an offline backup. A hot
backup is performed while database write operations are in progress.

Do not confuse hot and offline backups with the concept of a full and incremental backup.
Both a hot and an offline backup are full backups – you back up the entire database. The
only difference between them is how much of the contents of the in-memory cache are
contained in them. On the other hand, an incremental backup is a backup of just those
log files modified or created since the time of the last backup. Most backup software is
capable of performing both full and incremental backups for you.

Performing a Hot Backup

To perform a hot backup of your JE databases, copy all log files (*.jdb files) from your
environment directory to your archival location or backup media. The files must be copied
in alphabetical order (numerical in effect). You do not have to stop any database operations
in order to do this.

To make this process a bit easier, you may want to make use of the DbBackup helper class.
See Using the DbBackup Helper Class (page 102) for details.

Note that any modifications made to the database since the time of the last environment
sync are not guaranteed to be contained in these log files. In this case, you may want to
consider running an offline backup in order to guarantee the availability of all modifications
made to your database.

Page 101Getting Started with JE9/19/2006

Performing Backups

Performing an Offline Backup

An offline backup guarantees that you have captured the database in its entirety, including
all contents of your in-memory cache, at the moment that the backup was taken. To do
this, you must make sure that no write operations are in progress and all database
modifications have been written to your log files on disk. To obtain an offline backup:

1. Stop writing your databases.

2. Run Environment.sync() so as to ensure that all database modifications are written
to disk. Note that cleanly closing your environment will also ensure that all database
modifications are written to disk.

3. Copy all log files (*.jdb) from your environment directory to your archival location
or backup media. To make this process a bit easier, you may want to make use of
the DbBackup helper class. See the next section for details.

You can now resume normal database operations.

Using the DbBackup Helper Class

In order to simplify backup operations, JE provides the DbBackup helper class. This class
stops and restarts JE background activity in an open environment. It also lets the
application create a backup which can support restoring the environment to a specific
point in time.

Because you do not have to stop JE write activity in order to take a backup, it is usually
necessary to examine your log files twice before you decide that your backup is complete.
This is because JE may create a new log file while you are running your backup. A second
pass over your log files allows you to ensure that no new files have been created and so
you can declare your backup complete.

For example:

 time files in activity
 environment

 t0 000000001.jdb Backup starts copying file 1
 000000003.jdb
 000000004.jdb

 t1 000000001.jdb JE log cleaner migrates portion of file 3 to newly
 000000004.jdb created file 5 and deletes file 3. Backup finishes
 000000005.jdb file 1, starts copying file 4. Backup MUST include
 file 5 for a consistent backup!

 t2 000000001.jdb Backup finishes copying file 4, starts and finishes
 000000004.jdb file 5, has caught up. Backup ends.
 000000005.jdb

Page 102Getting Started with JE9/19/2006

Performing Backups

DbBackup works around this problem by defining the set of files that must be copied for
each backup operation, and freezes all changes to those files. The application can copy
that defined set of files and finish operation without checking for the ongoing creation
of new files. Also, there will be no need to check for a newer version of the last file on
the next backup.

In the example above, if DbBackup was used at t0, the application would only have to
copy files 1, 3 and 4 to back up. On a subsequent backup, the application could start its
copying at file 5. There would be no need to check for a newer version of file 4.

The following code fragment illustrates this class' usage:

package je.gettingStarted;

...
import com.sleepycat.je.util.DbBackup;
...

 Environment env = new Environment(...);
 DbBackup backupHelper = new DbBackup(env);

 // Find the file number of the last file in the previous backup
 // persistently, by either checking the backup archive, or saving
 // state in a persistent file.
 long lastFileCopiedInPrevBackup = ...

 // Start backup, find out what needs to be copied.
 backupHelper.startBackup();
 try {
 String[] filesForBackup =
 backupHelper.getLogFilesInBackupSet(lastFileCopiedInPrevBackup);

 // Copy the files to archival storage.
 myApplicationCopyMethod(filesForBackup)
 // Update our knowlege of the last file saved in the backup set,
 // so we can copy less on the next backup
 lastFileCopiedInPrevBackup = backupHelper.getLastFileInBackupSet();
 myApplicationSaveLastFile(lastFileCopiedInBackupSet);
 }
 finally {
 // Remember to exit backup mode, or all log files won't be cleaned
 // and disk usage will bloat.
 backupHelper.endBackup();
 }

Page 103Getting Started with JE9/19/2006

Performing Backups

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have
been lost or corrupted due to a media failure (disk failure, for example). Catastrophic
recovery is also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full back up of your databases.
You will use this backup to restore your database. See Performing Backups (page 101) for
information on running back ups.

To perform catastrophic recovery:

1. Shut down your application.

2. Delete the contents of your environment home directory (the one that experienced
a catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment
directory, copy any log files generated since the time of your last full backup. Be
sure to restore all log files in the order that they were written. The order is important
because it is possible the same log file appears in multiple archives, and you want
to run recovery using the most recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your
database to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Standby

As a final backup/recovery strategy, you can create a hot standby. Note that using hot
standbys requires your application to be able to specify its environment home directory
at application startup time. Most application developers allow the environment home
directory to be identified using a command line option or a configuration or properties
file. If your application has its environment home hard-coded into it, you cannot use hot
standbys.

You create a hot standby by periodically backing up your database to an alternative
location on disk. Usually this alternative location is on a separate physical drive from
where you normally keep your database, but if multiple drives are not available then you
should at least put the hot standby on a separate disk partition.

You failover to your hot standby by causing your application to reopen its environment
using the hot standby location.

Note that a hot standby should not be used as a substitute for backing up and archiving
your data to a safe location away from your operating environment. Even if your data is
spread across multiple physical disks, a truly serious catastrophe (fires, malevolent

Page 104Getting Started with JE9/19/2006

Performing Catastrophic
Recovery

software viruses, faulty disk controllers, and so forth) can still cause you to lose your
data.

To create and maintain a hot standby:

1. Copy all log files (*.jdb) from your environment directory to the location where you
want to keep your standby. Either a hot or an offline backup can be used for this
purpose, but typically a hot standby is initially created by taking an offline backup
of your database. This ensures that you have captured the contents of your in-memory
cache.

2. Periodically copy to your standby directory any log files that were changed or created
since the time of your last copy. Most backup software is capable of performing this
kind of an incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data
that is at risk due to catastrophic failures. For example, if you perform the incremental
copy once an hour then at most your hot standby is an hour behind your production
database, and so you are risking at most an hours worth of database changes.

3. Remove any *.jdb files from the hot standby directory that have been removed or
renamed to .del files in the primary directory. This is not necessary for consistency,
but will help to reduce disk space consumed by the hot standby.

Page 105Getting Started with JE9/19/2006

Hot Standby

Chapter 8. Administering Berkeley DB Java
Edition Applications

There are a series of tools and parameters of interest to the administrator of a Berkeley
DB Java Edition database. These tools and parameters are useful for tuning your JE
database's behavior once it is in a production setting, and they are described here. This
chapter, however, does not describe backing up and restoring your JE databases. See
Backing up and Restoring Berkeley DB Java Edition Applications (page 99) for information
on how to perform those procedures.

The JE Properties File

JE applications can be controlled through a Java properties file. This file must be placed
in your environment home directory and it must be named je.properties.

The parameters set in this file take precedence over the configuration behavior coded
into the JE application by your application developers.

Usually you will use this file to control the behavior of JE's background threads, and to
control the size of your in-memory cache. These topics, and the properties parameters
related to them, are described in this chapter. Beyond the properties described here,
there are other properties identified throughout this manual that may be of interest to
you. However, the definitive identification of all the property parameters available to
you is in the sample example.properties located in the directory where your JE distribution
was unpacked.

Managing the Background Threads

JE uses some background threads to keep your database resources within pre-configured
limits. If they are going to run, the background threads are started once per application
per process. That is, if your application opens the same environment multiple times, the
background threads will be started just once for that process. See the following list for
the default conditions that gate whether an individual thread is run. Note that you can
prevent a background thread from running by using the appropriate je.properties
parameter, but this is not recommended for production use and those parameters are
not described here.

The background threads are:

• Cleaner thread.

Responsible for cleaning and deleting unused log files. See The Cleaner Thread (page 107)
for more information.

This thread is run only if the environment is opened for write access.

Page 106Getting Started with JE9/19/2006

• Compressor thread.

Responsible for cleaning up the internal BTree as database records are deleted. The
compressor thread ensures that the BTree does not contain unused nodes. There is no
need for you to manage the compressor and so it is not described further in this manual.

This thread is run only if the environment is opened for write access.

• Checkpointer thread.

Responsible for running checkpoints on your environment. See The Checkpointer
Thread (page 108) for more information.

This thread always runs.

The Cleaner Thread

The cleaner thread is responsible for cleaning, or compacting, your log files for you. Log
file cleaning is described in Cleaning the Log Files (page 100).

The following two properties may be of interest to you when managing the cleaner thread:

• je.cleaner.minUtilization

Identifies the percentage of the log file space that must be used for utilized records.
If the percentage of log file space used by utilized records is too low, then the cleaner
removes obsolete records until this threshold is reached. Default is 50%.

• je.cleaner.expunge

Identifies the cleaner's behavior in the event that it is able to remove a log file. If
true, the log files that have been cleaned are deleted from the file system. If false,
the log files that have been cleaned are renamed from NNNNNNNN.jdb to NNNNNNNN.del.
You are then responsible for deleting the renamed files.

Note that the cleaner thread runs only if the environment is opened for write access.
Also, be aware that the cleaner is not guaranteed to finish running before the environment
is closed, which can result in unexpectedly large log files. See Closing Database
Environments (page 12) for more information.

Page 107Getting Started with JE9/19/2006

Managing the Background
Threads

The Checkpointer Thread

Automatically runs checkpoints. Checkpoints and the administration of this thread are
described in the Berkeley DB Java Edition Getting Started with Transaction Processing
guide.

Sizing the Cache

By default, your cache is limited to a percentage of the JVM maximum memory as specified
by the -Xmx parameter. You can change this percentage by using the je.maxMemoryPercent
property or through EnvironmentMutableConfig.setCachePercent(). That is, the maximum
amount of memory available to your cache is normally calculated as:

je.maxMemoryPercent * JVM_maximum_memory

You can find out what the value for this property is by using
EnvironmentConfig.getCachePercent().

Note that you can cause JE to use a fixed maximum cache size by using je.maxMemory or
by using EnvironmentConfig.setCacheSize().

Also, not every JVM is capable of identifying the amount of memory requested via the
-Xmx parameter. For those JVMs you must use je.maxMemory to change your maximum
cache size. The default maximum memory available to your cache in this case is 38M.

Of the amount of memory allowed for your cache, 93% is used for the internal BTree and
the other 7% is used for internal buffers. When your application first starts up, the 7% for
buffers is immediately allocated. The remainder of the cache grows lazily as your
application reads and writes data.

In order for your application to start up successfully, the Java virtual machine must have
enough memory available to it (as identified by the -Xmx command line switch) for both
your application and 7% of your maximum cache value. In order for your application to
run continuously (all the while loading data into the cache), you must make sure your
JVM has enough memory for your application plus the maximum cache size.

The best way to determine how large your cache needs to be is to put your application
into a production environment and watch to see how much disk I/O is occurring. If the
application is going to disk quite a lot to retrieve database records, then you should
increase the size of your cache (provided that you have enough memory to do so).

In order to determine how frequently your application is going to disk for database records
not found in the cache, you can examine the value returned by
EnvironmentStats.getNCacheMiss().

EnvironmentStats.getNCacheMiss() identifies the total number of requests for database
objects that were not serviceable from the cache. This value is cumulative since the
application started. The faster this number grows, the more your application is going to
disk to service database operations. Upon application startup you can expect this value
to grow quite rapidly. However, as time passes and your cache is seeded with your most

Page 108Getting Started with JE9/19/2006

Sizing the Cache

frequently accessed database records, what you want is for this number's growth to be
zero or at least very small.

Note that this statistic can only be collected from within the application itself or using
the JMX extension (see JMX Support (page 8)).

For more information on collecting this statistic, see Environment Statistics (page 16).

The Command Line Tools

JE ships with several command line tools that you can use to help you manage your
databases. They are:

• DbDump

Dumps a database to a user-readable format.

• DbLoad

Loads a database from the output produced by DbDump

• DbVerify

Verifies the structure of a database.

DbDump

Dumps a database to a flat-text representation. Options are:

-f

Identifies the file to which the output from this command is written. The console
(standard out) is used by default.

-h

Identifies the environment's directory. This parameter is required.

-l

Lists the databases contained in the environment. If the -s is not provided, then
this argument is required.

-p

Prints database records in human-readable format.

-r

Salvage data from a possibly corrupt file. When used on a uncorrupted database,
this option should return data equivalent to a normal dump, but most likely in a
different order.

This option causes the ensuing output to go to a file named dbname.dump where
dbname is the name of the database you are dumping. The file is placed in the
current working directory.

Page 109Getting Started with JE9/19/2006

The Command Line Tools

-R

Aggressively salvage data from a possibly corrupt file. This option differs from
the -r option in that it will return all possible data from the file at the risk of also
returning already deleted or otherwise nonsensical items. Data dumped in this
fashion will almost certainly have to be edited by hand or other means before
the data is ready for reload into another database.

This option causes the ensuing output to go to a file named dbname.dump where
dbname is the name of the database you are dumping. The file is placed in the
current working directory.

-s

Identifies the database to be dumped. If this option is not specified, then the -l
is required.

-v

Prints progress information to the console for -r or -R mode.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -p -s VendorDB
VERSION=3
format=print
type=btree
database=VendorDB
dupsort=false
HEADER=END
 Mom's Kitchen
 sr\01\01xpt\00\0d53 Yerman Ct.t\00\0c763 554 9200t\00\0bMiddle Townt\00
 \0eMaggie Kultgent\00\10763 554 9200 x12t\00\02MNt\00\0dMom's Kitchent\00
 \0555432
 Off the Vine
 sr\01\01xpt\00\10133 American Ct.t\00\0c563 121 3800t\00\0aCentennialt\00
 \08Bob Kingt\00\10563 121 3800 x54t\00\02IAt\00\0cOff the Vinet\00\0552002
 Simply Fresh
 sr\01\01xpt\00\1115612 Bogart Lanet\00\0c420 333 3912t\00\08Harrigant\00
 \0fCheryl Swedbergt\00\0c420 333 3952t\00\02WIt\00\0cSimply Fresht\00\0
 553704
 The Baking Pan
 sr\01\01xpt\00\0e1415 53rd Ave.t\00\0c320 442 2277t\00\07Dutchint\00\09
 Mike Roant\00\0c320 442 6879t\00\02MNt\00\0eThe Baking Pant\00\0556304
 The Pantry
 sr\01\01xpt\00\111206 N. Creek Wayt\00\0c763 555 3391t\00\0bMiddle Town
 t\00\0fSully Beckstromt\00\0c763 555 3391t\00\02MNt\00\0aThe Pantryt\00
 \0555432
 TriCounty Produce

Page 110Getting Started with JE9/19/2006

The Command Line Tools

 sr\01\01xpt\00\12309 S. Main Streett\00\0c763 555 5761t\00\0bMiddle Townt
 \00\0dMort Dufresnet\00\0c763 555 5765t\00\02MNt\00\11TriCounty Producet
 \00\0555432
DATA=END
>

DbLoad

Loads a database from the output produced by DbDump. Options are:

-c

Specifies configuration options. The options supplied here override the
corresponding options that appear in the data that is being loaded. This option
takes values of the form name=value, where name is the configuration option
that you are overriding and value is the new value for the option.

The following options can be specified:

• database

The name of the database to be loaded. This option duplicates the functionality
of this command's -s command line option.

• dupsort

Indicates whether duplicates are allowed in the database. A value of true
allows duplicates in the database.

-f

Identifies the file from which the database is to be loaded.

-n

Do not overwrite existing keys in the database when loading into an already
existing database. If a key/data pair cannot be loaded into the database for this
reason, a warning message is displayed on the standard error output, and the
key/data pair are skipped

-h

Identifies the environment's directory. This parameter is required.

-l

Allows loading databases that were dumped with the Berkeley DB C product, when
the dump file contains parameters not known to JE.

-s

Overrides the database name, causing the data to be loaded into a database that
uses the name supplied to this parameter.

-T

Causes a flat text file to be loaded into the database.

Page 111Getting Started with JE9/19/2006

The Command Line Tools

The input must be paired lines of text, where the first line of the pair is the key
item, and the second line of the pair is its corresponding data item.

A simple escape mechanism, where newline and backslash (\) characters are
special, is applied to the text input. Newline characters are interpreted as record
separators. Backslash characters in the text will be interpreted in one of two
ways: If the backslash character precedes another backslash character, the pair
will be interpreted as a literal backslash. If the backslash character precedes any
other character, the two characters following the backslash will be interpreted
as a hexadecimal specification of a single character; for example, \0a is a newline
character in the ASCII character set.

For this reason, any backslash or newline characters that naturally occur in the
text input must be escaped to avoid misinterpretation by db_load.

-v

Report periodic load status to the console.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -s VendorDB -f vendordb.txt
> java com.sleepycat.je.util.DbLoad -h . -f vendordb.txt
>

DbVerify

Examines the identified database for errors. Options are:

-h

Identifies the environment's directory. This parameter is required.

-q

Suppress the printing of any error descriptions. Instead, simply exit success or
failure.

-s

Identifies the database to be verified. This parameter is required.

-V

Prints the database version number and then quits. All other command line options
are ignored.

-v

Report intermediate statistics every N leaf nodes, where N is the value that you
provide this parameter.

For example:

Page 112Getting Started with JE9/19/2006

The Command Line Tools

> java com.sleepycat.je.util.DbVerify -h . -s VendorDB

<BtreeStats>
<BottomInternalNodesByLevel total="1">
 <Item level="1" count="1"/>
</BottomInternalNodesByLevel>
<InternalNodesByLevel total="1">
 <Item level="2" count="1"/>
</InternalNodesByLevel>
<LeafNodes count="6"/>
<DeletedLeafNodes count="0"/>
<DuplicateCountLeafNodes count="0"/>
<MainTreeMaxDepth depth="2"/>
<DuplicateTreeMaxDepth depth="0"/>
</BtreeStats>

Page 113Getting Started with JE9/19/2006

The Command Line Tools

	Getting Started with Berkeley DB Java Edition
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction to Berkeley DB Java Edition
	Features
	The JE Application
	Databases and Database Environments
	Database Records
	Putting and Getting Database Records
	Duplicate Data
	Replacing and Deleting Entries
	Secondary Databases
	Transactions
	JE Resources
	Application Considerations

	JE Backup and Restore
	JCA Support
	JMX Support
	Getting and Using JE
	JE Exceptions
	Six Things Everyone Should Know about JE Log Files

	Chapter 2. Database Environments
	Opening Database Environments
	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics
	Database Environment Management Example

	Chapter 3. Databases
	Opening Databases
	Deferred Write Databases
	Closing Databases

	Database Properties
	Administrative Methods
	Database Example

	Chapter 4. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Using Comparators
	Writing Comparators
	Setting Comparators

	Database Record Example

	Chapter 5. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 6. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbEnv
	Using Secondary Databases with ExampleInventoryRead

	Chapter 7. Backing up and Restoring Berkeley DB Java Edition Applications
	Databases and Log Files
	Log File Overview
	Cleaning the Log Files
	The BTree
	Database Modifications and Syncs
	Normal Recovery

	Performing Backups
	Performing a Hot Backup
	Performing an Offline Backup
	Using the DbBackup Helper Class

	Performing Catastrophic Recovery
	Hot Standby

	Chapter 8. Administering Berkeley DB Java Edition Applications
	The JE Properties File
	Managing the Background Threads
	The Cleaner Thread
	The Checkpointer Thread

	Sizing the Cache
	The Command Line Tools
	DbDump
	DbLoad
	DbVerify

