
Oracle Berkeley DB Java Edition

Getting Started with
Direct Persistence Layer

Release 3.1

.

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle
Corporation. All rights to these marks are reserved. No third-party use is permitted without the express prior
written consent of Oracle Corporation.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumID=273

Published 9/19/2006

http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents
Preface .. iii

Conventions Used in this Book .. iii
For More Information ... iii

1. Introduction .. 1
Java 1.5 Features .. 2
Bytecode Enhancement ... 2
Library Dependencies .. 2

2. Database Environments ... 4
Opening Database Environments ... 4
Closing Database Environments .. 5
Environment Properties ... 6

The EnvironmentConfig Class .. 6
EnvironmentMutableConfig .. 7

Environment Statistics ... 8
3. Getting Going with the Direct Persistence Layer ... 10

Persistent Objects .. 10
Entity versus Persistent ... 10
Vendor.class .. 11
Inventory.class .. 13

Secondary Indices .. 15
Foreign Key Constraints ... 16

Entity Stores ... 17
MyDbEnv ... 18

Accessing Indices ... 20
Accessing Primary Indices ... 20
Accessing Secondary Indices .. 20
DataAccessor.class ... 20

4. Writing to Entity Stores ... 22
ExampleDatabasePut.class .. 22

5. Reading Data From Entity Stores .. 29
Retrieving a Single Object ... 29
Retrieving Multiple Objects ... 29
ExampleInventoryRead.class .. 30

6. Other Operations ... 35
Deleting Entity Objects .. 35
Replacing Entity Objects .. 35

Page iiUsing the DPL with JE9/19/2006

Preface
This document describes how to use the Direct Persistence Layer (DPL) to store and
retrieve Java object data. The DPL is introduced in this document in a tutorial-style
fashion. This document describes the DPL concepts and the scenarios under which you
would use it.

This book is aimed at the software engineer responsible for writing an application in which
the ability to persist object data is a desired feature.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment() constructor returns an Environment class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

Finally, notes of special interest are represented using a note block such as this.☞
For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional JE application:

• Berkeley DB Java Edition Getting Started with Transaction Processing
[http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf]

• Getting Started with Berkeley DB Java Edition
[http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf]

• Berkeley DB Java Edition Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html]

Page iiiUsing the DPL with JE9/19/2006

http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html

Page ivUsing the DPL with JE9/19/2006

Chapter 1. Introduction
This document provides an introduction to the concepts and APIs used to store Java objects
in Berkeley DB, Java Edition using the Direct Persistence Layer (DPL). The DPL is a layer
on top of the Berkeley DB, Java Edition library, and as such it offers the same high-quality
data guarantees as does JE.

By using the DPL, you can cause any Java type to be persistent without implementing
special interfaces. The only real requirement is that each persistent class have a default
constructor.

The DPL offers the following features:

• Type safe, convenient way of accessing persistent objects.

• No hand-coding of bindings is required.

• Bytecode enhancement provides fully optimized bindings that do not use Java
reflection.

• No external schema is required to define primary and secondary keys. Java annotations
are used to define all metadata.

• Interoperability with external components is supported using the Java collections
framework. Any index can be accessed using a standard java.util collection.

• Class evolution is explicitly supported. This means you can add fields or widen types
automatically and transparently.

You can also perform many incompatible class changes, such as renaming fields or
refactoring a single class. This is done using a built-in DPL mechanism called mutations.
Mutations are automatically applied as data is accessed so as to avoid downtime to
convert large databases during a software upgrade.

• Persistent class fields can be private, package-private, protected or public. The DPL
can access persistence fields either by bytecode enhancement or by reflection.

• The performance of the underlying JE engine is safe-guarded. All DPL operations are
mapped directly to the underlying APIs, object bindings are lightweight, and all engine
tuning parameters are available.

• Java 1.5 generic types and annotations are supported.

• Transactions can be used with the DPL.

Note that we recommend you use the DPL if all you want to do is make classes with a
relatively static schema to be persistent. However, the DPL requires Java 1.5, so if you
want to use Java 1.4 then you must use the Berkeley DB, Java Edition APIs.

Further, if you are porting an application between Berkeley DB and Berkeley DB, Java
Edition, then you should use the Berkeley DB, Java Edition APIs instead of the DPL APIs.

Page 1Using the DPL with JE9/19/2006

Additionally, if your application uses a highly dynamic schema, then you might want to
use the Berkeley DB, Java Edition API instead of the DPL, although the use of annotations
can weaken this recommendation to a degree.

Java 1.5 Features

The DPL makes use of two features that are specific to Java 1.5.

The Java 1.5 features used by the DPL are:

• Generic Types

These are used to provide type safety for index and cursor objects. If you want to use
the DPL, and you are content to avoid this feature, do not declare your index and
cursor objects using generic type parameters.

• Annotations

Annotations allow you to provide metadata about your classes. In particular, you use
annotations to identify whether a class is an entity or persistent class. You also use
annotations to declare whether data members are primary or secondary keys.

You do not have to use annotations. As an alternative, you can provide an alternate
source of metadata by implementing an EntityModel class. Naming conventions, static
members or an XML configuration file can be used as a source of metadata if you go
this route.

Bytecode Enhancement

Bytecode enhancement may be used to fully optimize binding performance and to avoid
the use of Java reflection. In applications that are CPU bound, avoiding Java reflection
can have a significant performance impact.

Bytecode enhancement may be performed either at runtime or at build time (offline).
When enhancement is performed at runtime, persistent classes are enhanced as they are
loaded. When enhancement is performed offline, class files are enhanced during a
post-compilation step; both a main program and an Ant task are provided for performing
offline enhancement. In either case, enhanced classes are used to efficiently access all
fields and default constructors, including non-public members.

Please see Bytecode Enhancement
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/persist/package-summary.html#bytecode]
and ClassEnhancer
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/persist/model/ClassEnhancer.html]
for more information.

Library Dependencies

To use the DPL:

Page 2Using the DPL with JE9/19/2006

Java 1.5 Features

http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/persist/package-summary.html#bytecode
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/persist/model/ClassEnhancer.html

• You must use Java 1.5.

• Use the Berkeley DB, Java Edition version 3.0 jar file, just as if you were using the
Berkeley DB, Java Edition APIs themselves (see the Getting Started with Berkeley DB
Java Edition guide for more information). This jar file includes all the APIs that you
need in order to use the DPL.

Page 3Using the DPL with JE9/19/2006

Library Dependencies

Chapter 2. Database Environments
The DPL requires you to use a database environment. The environment is used by the DPL
to manage the databases that it maintains for you, and to manage transactions.

You also use the database environment for administrative and configuration activities
related to your database log files and the in-memory cache. See the Getting Started with
Berkeley DB Java Edition guide for more information.

Opening Database Environments

You open a database environment by instantiating an Environment object. You must
provide to the constructor the name of the on-disk directory where the environment is
to reside. This directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation
property to true if you want the environment to be created. For example:

package persist.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnvironment = null;

try {
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Your application can open and use as many environments as you have disk and memory
to manage, although most applications will use just one environment. Also, you can
instantiate multiple Environment objects for the same physical environment.

Opening an environment usually causes some background threads to be started. JE uses
these threads for log file cleaning and some administrative tasks. However, these threads
will only be opened once per process, so if you open the same environment more than
once from within the same process, there is no performance impact on your application.
Also, if you open the environment as read-only, then the background threads (with the
exception of the evictor thread) are not started.

Page 4Using the DPL with JE9/19/2006

Note that opening your environment causes normal recovery to be run. This causes the
underlying databases used by the DPL to be brought into a consistent state relative to
the changed data found in your log files. See the Getting Started with Berkeley DB Java
Edition for more information on background threads and database log files.

Closing Database Environments

You close your environment by calling the Environment.close() method. This method
performs a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly
before calling it. For information on checkpoints, see the Berkeley DB Java Edition Getting
Started with Transaction Processing guide. For information on syncs, see the Getting
Started with Berkeley DB Java Edition guide.

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

You should close your environment(s) only after all other store activities have completed
and you have closed any stores currently opened in the environment.

It is possible for the environment to close before JE's cleaner thread has finished its work.
This happens if you perform a large number of deletes immediately before shutting down☞
your environment. The result is that your log files may be quit a lot larger than you expect
them to be because the cleaner thread has not had a chance to finish its work.

If want to make sure that the cleaner has finished running before the environment is closed,
call Environment.cleanLog() before calling Environment.close():

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.Environment;

...

try {
 if (myDbEnvironment != null) {
 myDbEnvironment.cleanLog(); // Clean the log before closing
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Page 5Using the DPL with JE9/19/2006

Closing Database Environments

Closing the last environment handle in your application causes all internal data structures
to be released and the background threads to be stopped. If there are any opened stores,
then JE will complain before closing them as well.

Environment Properties

You set properties for the Environment using the EnvironmentConfig class. You can also
set properties for a specific Environment instance using EnvironmentMutableConfig.

The EnvironmentConfig Class

The EnvironmentConfig class makes a large number of fields and methods available to
you. Describing all of these tuning parameters is beyond the scope of this manual. However,
there are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the EnvironmentConfig object used by your
environment using the Environment.getConfig() method.

You set environment configuration parameters using the following methods on the
EnvironmentConfig class:

• EnvironmentConfig.setAllowCreate()

If true, the database environment is created when it is opened. If false, environment
open fails if the environment does not exist. This property has no meaning if the
database environment already exists. Default is false.

• EnvironmentConfig.setReadOnly()

If true, then all databases opened in this environment must be opened as read-only.
If you are writing a multi-process application, then all but one of your processes must
set this value to true. Default is false.

You can also set this property using the je.env.isReadOnly parameter in your
env_home/je.properties file.

• EnvironmentConfig.setTransactional()

If true, configures the database environment to support transactions. Default is false.

You can also set this property using the je.env.isTransactional parameter in your
env_home/je.properties file.

For example:

package persist.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

Page 6Using the DPL with JE9/19/2006

Environment Properties

import java.io.File;

...

Environment myDatabaseEnvironment = null;
try {
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 envConfig.setTransactional(true);
 myDatabaseEnvironment =
 new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
 System.err.println(dbe.toString());
 System.exit(1);
}

EnvironmentMutableConfig

EnvironmentMutableConfig manages properties that can be reset after the Environment
object has been constructed. In addition, EnvironmentConfig extends
EnvironmentMutableConfig, so you can set these mutable properties at Environment
construction time if necessary.

The EnvironmentMutableConfig class allows you to set the following properties:

• setCachePercent()

Determines the percentage of JVM memory available to the JE cache. See the Getting
Started with Berkeley DB Java Edition guide for more information.

• setCacheSize()

Determines the total amount of memory available to the database cache. See the
Getting Started with Berkeley DB Java Edition guide for more information.

• setTxnNoSync()

Determines whether change records created due to a transaction commit are written
to the backing log files on disk. A value of true causes the data to not be flushed to
disk. See the Berkeley DB Java Edition Getting Started with Transaction Processing
guide.

• setTxnWriteNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to true, you potentially gain better performance than
if you flush the logs on commit, but you do so by losing some of your transaction
durability guarantees.

Page 7Using the DPL with JE9/19/2006

Environment Properties

There is also a corresponding getter method (getTxnNoSync()). Moreover, you can always
retrieve your environment's EnvironmentMutableConfig object by using the
Environment.getMutableConfig() method.

For example:

package persist.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentMutableConfig;

import java.io.File;

...

try {
 Environment myEnv = new Environment(new File("/export/dbEnv"), null);
 EnvironmentMutableConfig envMutableConfig =
 new EnvironmentMutableConfig();
 envMutableConfig.setTxnNoSync(true);
 myEnv.setMutableConfig(envMutableConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's
operations. The majority of this information involves numbers relevant only to the JE
developer and as such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
EnvironmentStats.getNCacheMiss(). This statistic returns the total number of requests
for database objects that were not serviceable from the cache. This number is important
to the application administrator who is attempting to determine the proper size for the
in-memory cache. See the Getting Started with Berkeley DB Java Edition guide for details.

To obtain this statistic from your environment, call Environment.getStats() to return an
EnvironmentStats object. You can then call the EnvironmentStats.getNCacheMiss()
method. For example:

import com.sleepycat.je.Environment;

...

long cacheMisses = myEnv.getStats(null).getNCacheMiss();

...

Page 8Using the DPL with JE9/19/2006

Environment Statistics

Note that Environment.getStats() can only obtain statistics from with your application's
process. In order for the application administrator to obtain this statistic, you must either
use JMX to retrieve the statistic (see the Getting Started with Berkeley DB Java Edition
for more information) or you must print it for examination (for example, log the value
once a minute).

Remember that what is really important for cache sizing is the change in this value over
time, and not the actual value itself. So you might consider offering a delta from one
examination of this statistic to the next (a delta of 0 is desired while large deltas are an
indication that the cache is too small).

Page 9Using the DPL with JE9/19/2006

Environment Statistics

Chapter 3. Getting Going with the Direct
Persistence Layer

In this chapter we will build a couple of basic applications that use the DPL to store and
retrieve objects. To do this, we will create two applications that use fictional inventory
and vendor information. The first application, ExampleDatabasePut, is used to create
inventory and vendor objects that are stored for later retrieval. The second application,
ExampleInventoryRead, is used to retrieve and display this data.

The examples that we use here are identical to the examples provided in the Getting Started
with Berkeley DB Java Edition guide. The only difference is that the DPL is used instead of
the JE API. We did this to make it easier to compare the two APIs.

☞

Before we begin building our main applications, which are used to perform data reads
and writes, we have to build several other classes that provide important infrastructure
for our application. These classes encapsulate the data we want to store, provide data
access to the data store, and open and close our data store.

Persistent Objects

To begin, we build the classes that we actually want to store. In our case, we build two
such classes; a class that contains product inventory information and a class that contains
vendor contact information.

These classes look pretty much the same as any class might that encapsulates data. They
have private data members that hold the information and they have getter and setter
methods for data access and retrieval.

However, to use these with the DPL, the classes must be decorated with Java annotations
that identify the classes as either an entity class or a persistent class. Java annotations
are also used to identify primary and secondary indices.

Entity versus Persistent

The DPL is used to store Java objects in an underlying series of databases (accessed via
an EntityStore). To do this, you must identify classes to be stored as either entity classes
or persistent classes.

Entity classes are classes that have a primary index, and optionally one or more secondary
indices. That is, these are the classes that you will save and retrieve directly using the
DPL. You identify an entity class using the @Entity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity
class makes direct use of them. You identify an persistent class using the @Persistent
java annotation.

Page 10Using the DPL with JE9/19/2006

Note that all non-transient instance fields of a persistent class, as well as its superclasses
and subclasses, are persistent. static and transient fields are not persistent. The persistent
fields of a class may be private, package-private (default access), protected or public.

Note that simple Java types, such as java.lang.String and java.util.Date, are
automatically handled as a persistent class when you use them in an entity class; you do
not have to do anything special to cause these simple Java objects to be stored in the
EntityStore.

Vendor.class

The simplest class that our example wants to store contains vendor contact information.
This class contains no secondary indices so all we have to do is identify it as an entity
class and identify the field in the class used for the primary key.

Primary and secondary indices are described in detail in the Getting Started with Berkeley
DB Java Edition guide, but essentially a primary index is the main information you use to
organize and retrieve a given object. Primary index keys are always unique to the object
in order to make it easier to locate them in the data store.

Conversely, secondary indices represent other information that you might use to locate
an object. We discuss these more in the next section.

In the following example, we identify the vendor data member as containing the primary
key. This data member is meant to contain a vendor's name. Because of the way we will
use our EntityStore, the value provided for this data member must be unique within the
store or runtime errors will result.

When used with the DPL, our Vendor class appears as follows. Notice that the @Entity
annotation appears immediately before the class declaration, and the @PrimaryKey
annotation appears immediately before the vendor data member declaration.

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class Vendor {

 private String address;
 private String bizPhoneNumber;
 private String city;
 private String repName;
 private String repPhoneNumber;
 private String state;

 // Primary key is the vendor's name
 // This assumes that the vendor's name is
 // unique in the database.

Page 11Using the DPL with JE9/19/2006

Persistent Objects

 @PrimaryKey
 private String vendor;

 private String zipcode;

 public void setRepName(String data) {
 repName = data;
 }

 public void setAddress(String data) {
 address = data;
 }

 public void setCity(String data) {
 city = data;
 }

 public void setState(String data) {
 state = data;
 }

 public void setZipcode(String data) {
 zipcode = data;
 }

 public void setBusinessPhoneNumber(String data) {
 bizPhoneNumber = data;
 }

 public void setRepPhoneNumber(String data) {
 repPhoneNumber = data;
 }

 public void setVendorName(String data) {
 vendor = data;
 }

 public String getRepName() {
 return repName;
 }

 public String getAddress() {
 return address;
 }

 public String getCity() {
 return city;
 }

Page 12Using the DPL with JE9/19/2006

Persistent Objects

 public String getState() {
 return state;
 }

 public String getZipcode() {
 return zipcode;
 }

 public String getBusinessPhoneNumber() {
 return bizPhoneNumber;
 }

 public String getRepPhoneNumber() {
 return repPhoneNumber;
 }
}

For this class, the vendor value is set for an individual Vendor class object by the
setVendorName() method. If our example code fails to set this value before storing the
object, the data member used to store the primary key is set to a null value. This would
result in a runtime error.

You can avoid the need to explicitly set a value for a class' primary index by specifying a
sequence to be used for the primary key. This results in an unique integer value being
used as the primary key for each stored object.

You declare a sequence is to be used by specifying the sequence keyword to the
@PrimaryKey annotation. For example:

@PrimaryKey(sequence="")
long myPrimaryKey;

If you provide the sequence keyword with a name, then the sequence is obtained from
that named sequence. For example:

@PrimaryKey(sequence="Sequence_Namespace")
long myPrimaryKey;

Inventory.class

Our example's Inventory class is much like our Vendor class in that it is simply used to
encapsulate data. However, in this case we want to be able to access objects two different
ways: by product SKU and by product name.

In our data set, the product SKU is required to be unique, so we use that as the primary
key. The product name, however, is not a unique value so we set this up as a secondary
key.

The class appears as follows in our example:

Page 13Using the DPL with JE9/19/2006

Persistent Objects

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;
import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity
public class Inventory {

 // Primary key is sku
 @PrimaryKey
 private String sku;

 // Secondary key is the itemName
 @SecondaryKey(relate=MANY_TO_ONE)
 private String itemName;

 private String category;
 private String vendor;
 private int vendorInventory;
 private float vendorPrice;

 public void setSku(String data) {
 sku = data;
 }

 public void setItemName(String data) {
 itemName = data;
 }

 public void setCategory(String data) {
 category = data;
 }

 public void setVendorInventory(int data) {
 vendorInventory = data;
 }

 public void setVendor(String data) {
 vendor = data;
 }

 public void setVendorPrice(float data) {
 vendorPrice = data;
 }

 public String getSku() {
 return sku;

Page 14Using the DPL with JE9/19/2006

Persistent Objects

 }

 public String getItemName() {
 return itemName;
 }

 public String getCategory() {
 return category;
 }

 public int getVendorInventory() {
 return vendorInventory;
 }

 public String getVendor() {
 return vendor;
 }

 public float getVendorPrice() {
 return vendorPrice;
 }
}

Secondary Indices

To declare a secondary index, we use the @SecondaryKey annotation. Note that when we
do this, we must declare what sort of an index it is; that is, what is its relationship to
other data in the data store.

The kind of indices that we can declare are:

• ONE_TO_ONE

This relationship indicates that the secondary key is unique to the object. If an object
is stored with a secondary key that already exists in the data store, a run time error
is raised.

For example, a person object might be stored with a primary key of a social security
number (in the US), with a secondary key of the person's employee number. Both
values are expected to be unique in the data store.

• MANY_TO_ONE

Indicates that the secondary key may be used for multiple objects in the data store.
That is, the key appears more than once, but for each stored object it can be used
only once.

Consider a data store that relates managers to employees. A given manager will have
multiple employees, but each employee is assumed to have just one manager. In this

Page 15Using the DPL with JE9/19/2006

Persistent Objects

case, the manager's employee number might be a secondary key, so that you can
quickly locate all the objects related to that manager's employees.

• ONE_TO_MANY

Indicates that the secondary key might be used more than once for a given object.
Index keys themselves are assumed to be unique, but multiple instances of the index
can be used per object.

For example, employees might have multiple unique email addresses. In this case,
any given object can be access by one or more email addresses. Each such address is
unique in the data store, but each such address will relate to a single employee object.

• MANY_TO_MANY

There can be multiple keys for any given object, and for any given key there can be
many related objects.

For example, suppose your organization has a shared resource, such as printers. You
might want to track which printers a given employee can use (there might be more
than one). You might also want to track which employees can use a specific printer.
This represents a many-to-many relationship.

Note that for ONE_TO_ONE and MANY_TO_ONE relationships, you need a simple data member
(not an array or collection) to hold the key. For ONE_TO_MANY and MANY_TO_MANY
relationships, you need an array or collection to hold the keys:

@SecondaryKey(relate=ONE_TO_ONE)
private String primaryEmailAddress = new String();

@SecondaryKey(relate=ONE_TO_MANY)
private Set<String> emailAddresses = new HashSet<String>();

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also
contained in the data store. That is, the secondary key might be the primary key for
another entity class. If this is the case, you can declare the foreign key constraint to make
data integrity easier to accomplish.

For example, you might have one class that is used to represent employees. You might
have another that is used to represent corporate divisions. When you add or modify an
employee record, you might want to ensure that the division to which the employee
belongs is known to the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

• When a new secondary key for the object is stored, it is checked to make sure it exists
as a primary key for the related entity object. If it does not, a runtime error occurs.

Page 16Using the DPL with JE9/19/2006

Persistent Objects

• When a related entity is deleted (that is, a corporate division is removed from the
data store), some action is automatically taken for the entities that refer to this object
(that is, the employee objects). Exactly what that action is, is definable by you. See
below.

When a related entity is deleted from the data store, one of the following actions are
taken:

• ABORT

The delete operation is not allowed. A runtime error is raised as a result of the
operation. This is the default behavior.

• CASCADE

All entities related to this one are deleted as well. For example, if you deleted a
Division object, then all Employee objects that belonged to the division are also
deleted.

• NULLIFY

All entities related to the deleted entity are updated so that the pertinent data member
is nullified. That is, if you deleted a division, then all employee objects related to
that division would have their division key automatically set to null.

You declare a foreign key constraint by using the relatedEntity keyword. You declare
the foreign key constraint deletion policy using the onRelatedEntityDelete keyword. For
example, the following declares a foreign key constraint to Division class objects, and
it causes related objects to be deleted if the Division class is deleted:

@SecondaryKey(relate=ONE_TO_ONE, relatedEntity=Division.class,
 onRelatedEntityDelete=CASCADE)
private String division = new String();

Entity Stores

All entity and persistent objects are saved to and retrieved from an entity store. Entity
stores can contain multiple class types. In fact, you typically only need one entity store
for a given application.

To use an entity store, you must first open an environment and then provide that
environment handle to the EntityStore constructor. When you shutdown your application,
first close your entity store and then close your environment.

Entity stores have configurations in the same way that environments have configurations.
You can use a StoreConfig object to identify store properties, such as whether is it allowed
to create the store if it does not currently exist or if the store is read-only. You also use
the StoreConfig to declare whether the store is transactional.

EntityStore objects also provide methods for retrieving information about the store,
such as the store's name or a handle to the underlying environment. You can also use the

Page 17Using the DPL with JE9/19/2006

Entity Stores

EntityStore to retrieve all the primary and secondary indices related to a given type of
entity object contained in the store. See Accessing Indices (page 20) for more information.

MyDbEnv

The applications that we are building for our example both must open and close
environments and entity stores. One of our applications is writing to the entity store, so
this application needs to open the store as read-write. It also wants the store to be
transactional, and it wants to be able to create the store if it does not exist.

Our second application only reads from the store. In this case, the store should be opened
as read-only.

We perform these activities by creating a single class that is responsible for opening and
closing our store and environment. This class is shared by both our applications. To use
it, callers need to only provide the path to the environment home directory, and to
indicate whether the object is meant to be read-only. The class implementation is as
follows:

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.StoreConfig;

public class MyDbEnv {

 private Environment myEnv;
 private EntityStore store;

 // Our constructor does nothing
 public MyDbEnv() {}

 // The setup() method opens the environment and store
 // for us.
 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 StoreConfig storeConfig = new StoreConfig();

 myEnvConfig.setReadOnly(readOnly);
 storeConfig.setReadOnly(readOnly);

 // If the environment is opened for write, then we want to be

Page 18Using the DPL with JE9/19/2006

Entity Stores

 // able to create the environment and entity store if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);
 storeConfig.setAllowCreate(!readOnly);

 // Allow transactions if we are writing to the store.
 myEnvConfig.setTransactional(!readOnly);
 storeConfig.setTransactional(!readOnly);

 // Open the environment and entity store
 myEnv = new Environment(envHome, myEnvConfig);
 store = new EntityStore(myEnv, "EntityStore", storeConfig);

 }

 // Return a handle to the entity store
 public EntityStore getEntityStore() {
 return store;
 }

 // Return a handle to the environment
 public Environment getEnv() {
 return myEnv;
 }

 // Close the store and environment.
 public void close() {
 if (store != null) {
 try {
 store.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing store: " +
 dbe.toString());
 System.exit(-1);
 }
 }

 if (myEnv != null) {
 try {
 // Finally, close environment.
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

Page 19Using the DPL with JE9/19/2006

Entity Stores

Accessing Indices

Before we write the main parts of our example programs, there is one last common piece
of code that we need. Both our examples are required to work with primary and secondary
indices contained within our EntityStore. We could just refer to these directly every
time we need to access a primary or secondary index, but instead we choose to encapsulate
this information in a class so as to share that code between the applications.

Accessing Primary Indices

You retrieve a primary index using the EntityStore.getPrimaryIndex() method. To do
this, you indicate the index key type (that is, whether it is a String, Integer, and so forth)
and the class of the entities stored in the index.

For example, the following retrieves the primary index for the Inventory class. These
index keys are of type String.

PrimaryIndex<String,Inventory> inventoryBySku =
 store.getPrimaryIndex(String.class, Inventory.class);

Accessing Secondary Indices

You retrieve a secondary index using the EntityStore.getSecondaryIndex() method.
Because secondary indices actually refer to a primary index somewhere in your data store,
to access a secondary index you:

1. Provide the primary index as returned by EntityStore.getPrimaryIndex().

2. Identify the key data type used by the secondary index (String, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the SecondaryIndex
object, you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve
a secondary index. The secondary key is held by the itemName field of the Inventory class.

PrimaryIndex<String,Inventory> inventoryBySku =
store.getPrimaryIndex(String.class, Inventory.class);

SecondaryIndex<String,String,Inventory> inventoryByName =
 store.getSecondaryIndex(inventoryBySku, String.class, "itemName");

DataAccessor.class

Now that you understand how to retrieve primary and secondary indices, we can implement
our DataAccessor class. Again, this class is shared by both our example programs and it
is used to access the primary and secondary indices that our programs use.

If you compare this class against our Vendor and Inventory class implementations, you
will see that the primary and secondary indices declared there are referenced by this
class.

Page 20Using the DPL with JE9/19/2006

Accessing Indices

See Vendor.class (page 11) and Inventory.class (page 13) for those implementations.

package persist.gettingStarted;

import java.io.File;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.PrimaryIndex;
import com.sleepycat.persist.SecondaryIndex;

public class DataAccessor {
 // Open the indices
 public DataAccessor(EntityStore store)
 throws DatabaseException {

 // Primary key for Inventory classes
 inventoryBySku = store.getPrimaryIndex(
 String.class, Inventory.class);

 // Secondary key for Inventory classes
 // Last field in the getSecondaryIndex() method must be
 // the name of a class member; in this case, an Inventory.class
 // data member.
 inventoryByName = store.getSecondaryIndex(
 inventoryBySku, String.class, "itemName");

 // Primary key for Vendor class
 vendorByName = store.getPrimaryIndex(
 String.class, Vendor.class);
 }

 // Inventory Accessors
 PrimaryIndex<String,Inventory> inventoryBySku;
 SecondaryIndex<String,String,Inventory> inventoryByName;

 // Vendor Accessors
 PrimaryIndex<String,Vendor> vendorByName;
}

Page 21Using the DPL with JE9/19/2006

Accessing Indices

Chapter 4. Writing to Entity Stores
Once you have implemented your classes for storage using the DPL, then writing your
instances to the entity store is straight-forward. Simply open the EntityStore and then
put the instance to it using the appropriate primary index (which you retrieve from the
entity store).

There are a few caveats that you should consider before we proceed.

First, if you have not provided a value to the primary key field for the object you are
storing, then you will see runtime errors when you try to write the object to the store.
The primary key is not allowed to be null.

As described in Vendor.class (page 11), you can avoid the need to explicitly set a primary
key by declaring a sequence for the primary key. In our example, however, we explicitly
set a primary key value.

Secondly, you need to decide if you want to use transactions to write to the entity store.
Transactions are a mechanism that allow you to group multiple write operations in a single
atomic unit; either all the operations succeed or none of them succeed. Transactions also
provide isolation guarantees for multi-threaded applications.

Transactions represent a large topic that are described in the Berkeley DB Java Edition
Getting Started with Transaction Processing guide. For our purposes here, it is important
to know the following:

• Once you open an EntityStore as transactional, all write operations are performed
using a transaction whether or not you explicitly use transactions. If you do not
explicitly use a transaction, then each individual write operation is performed under
a transaction using auto-commit.

• If you explicitly use a transaction, then you must either commit or abort the transaction
when you are done performing write operations for that transaction instance.

All of these topics, and more, are described in detail in the Transaction Processing guide
noted above.

Because it is likely that your application will use transactions, we show their usage here
in a minimal way.

ExampleDatabasePut.class

Our example reads inventory and vendor information from flat text files, encapsulates
this data in objects of the appropriate type, and then writes each object to an
EntityStore.

Vendor objects are written one at a time without use of an explicit transaction handle.
Because the store is opened for transactional writes, this means that each such write
operation is performed under a transaction using auto-commit.

Page 22Using the DPL with JE9/19/2006

Inventory class objects are all written using a single transaction. This means that if any
failures are encountered during the data write, the entire operation is aborted and the
store will have no inventory information in it.

There only reason why we use transactions in this way is for illustrative purposes. You
could just as easily use auto-commit for all the operations, or wrap both the vendor and
the inventory writes in a single giant transaction, or do something in between.

To begin, we import the Java classes that our example needs. Most of the imports are
related to reading the raw data from flat text files and breaking them apart for usage
with our data classes. We also import classes from the JE package, but we do not actually
import any classes from the DPL. The reason why is because we have placed almost all
of our DPL work off into other classes, so there is no need for direct usage of those APIs
here.

package persist.gettingStarted;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Transaction;

Now we can begin the class itself. Here we set default paths for the on-disk resources
that we require (the environment home, and the location of the text files containing our
sample data). We also declare DataAccessor and MyDbEnv members. We describe these
classes and show their implementation in DataAccessor.class (page 20) and
MyDbEnv (page 18).

public class ExampleDatabasePut {

 private static File myDbEnvPath = new File("/tmp/JEDB");
 private static File inventoryFile = new File("./inventory.txt");
 private static File vendorsFile = new File("./vendors.txt");

 private DataAccessor da;

 // Encapsulates the environment and data store.
 private static MyDbEnv myDbEnv = new MyDbEnv();

Next, we provide our usage() method. The command line options provided there are
necessary only if the default values to the on-disk resources are not sufficient.

 private static void usage() {
 System.out.println("ExampleDatabasePut [-h <env directory>]");

Page 23Using the DPL with JE9/19/2006

ExampleDatabasePut.class

 System.out.println(" [-i <inventory file>] [-v <vendors file>]");
 System.exit(-1);
 }

Our main() method is also reasonably self-explanatory. We simply instantiate an
ExampleDatabasePut object there and then call it's run() method. We also provide a
top-level try block there for any exceptions that might be thrown during runtime.

Notice that the finally statement in the top-level try block calls MyDbEnv.close(). This
method closes our EntityStore and Environment objects. By placing it here in the finally
statement, we can make sure that our store and environment are always cleanly closed.

 public static void main(String args[]) {
 ExampleDatabasePut edp = new ExampleDatabasePut();
 try {
 edp.run(args);
 } catch (DatabaseException dbe) {
 System.err.println("ExampleDatabasePut: " + dbe.toString());
 dbe.printStackTrace();
 } catch (Exception e) {
 System.out.println("Exception: " + e.toString());
 e.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

Our run() method does four things. It calls MyDbEnv.setup(), which opens our Environment
and EntityStore. It then instantiates a DataAccessor object, which we will use to write
data to the store. It calls loadVendorsDb() which loads all of the vendor information. And
then it calls loadInventoryDb() which loads all of the inventory information.

Notice that the MyDbEnv object is being setup as read-write. This results in the EntityStore
being opened for transactional support. (See MyDbEnv (page 18) for implementation
details.)

 private void run(String args[])
 throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // Path to the environment home
 false); // Environment read-only?

 // Open the data accessor. This is used to store
 // persistent objects.
 da = new DataAccessor(myDbEnv.getEntityStore());

 System.out.println("loading vendors db....");

Page 24Using the DPL with JE9/19/2006

ExampleDatabasePut.class

 loadVendorsDb();

 System.out.println("loading inventory db....");
 loadInventoryDb();
 }

We can now implement the loadVendorsDb() method. This method is responsible for
reading the vendor contact information from the appropriate flat-text file, populating
Vendor class objects with the data and then writing it to the EntityStore. As explained
above, each individual object is written with transactional support. However, because a
transaction handle is not explicitly used, the write is performed using auto-commit. This
happens because the EntityStore was opened to support transactions.

To actually write each class to the EntityStore, we simply call the PrimaryIndex.put()
method for the Vendor entity instance. We obtain this method from our DataAccessor
class.

 private void loadVendorsDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 List vendors = loadFile(vendorsFile, 8);

 // Now load the data into the store.
 for (int i = 0; i < vendors.size(); i++) {
 String[] sArray = (String[])vendors.get(i);
 Vendor theVendor = new Vendor();
 theVendor.setVendorName(sArray[0]);
 theVendor.setAddress(sArray[1]);
 theVendor.setCity(sArray[2]);
 theVendor.setState(sArray[3]);
 theVendor.setZipcode(sArray[4]);
 theVendor.setBusinessPhoneNumber(sArray[5]);
 theVendor.setRepName(sArray[6]);
 theVendor.setRepPhoneNumber(sArray[7]);

 // Put it in the store. Because we do not explicitly set
 // a transaction here, and because the store was opened
 // with transactional support, auto commit is used for each
 // write to the store.
 da.vendorByName.put(theVendor);
 }
 }

Now we can implement our loadInventoryDb() method. This does exactly the same thing
as the loadVendorsDb() method except that the entire contents of the inventory data is
loaded using a single transaction.

Page 25Using the DPL with JE9/19/2006

ExampleDatabasePut.class

Again, the transactional activity shown here is described in detail in the Berkeley DB Java
Edition Getting Started with Transaction Processing guide.

 private void loadInventoryDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 List inventoryArray = loadFile(inventoryFile, 6);

 // Now load the data into the store. The item's sku is the
 // key, and the data is an Inventory class object.

 // Start a transaction. All inventory items get loaded using a
 // single transaction.
 Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);

 for (int i = 0; i < inventoryArray.size(); i++) {
 String[] sArray = (String[])inventoryArray.get(i);
 String sku = sArray[1];

 Inventory theInventory = new Inventory();
 theInventory.setItemName(sArray[0]);
 theInventory.setSku(sArray[1]);
 theInventory.setVendorPrice(
 (new Float(sArray[2])).floatValue());
 theInventory.setVendorInventory(
 (new Integer(sArray[3])).intValue());
 theInventory.setCategory(sArray[4]);
 theInventory.setVendor(sArray[5]);

 // Put it in the store. Note that this causes our secondary key
 // to be automatically updated for us.
 try {
 da.inventoryBySku.put(txn, theInventory);
 } catch (DatabaseException dbe) {
 System.out.println("Error putting entry " +
 sku.getBytes("UTF-8"));
 txn.abort();
 throw dbe;
 }
 }
 // Commit the transaction. The data is now safely written to the
 // store.
 txn.commit();
 }

Page 26Using the DPL with JE9/19/2006

ExampleDatabasePut.class

The remainder of this example simple parses the command line and loads data from a
flat-text file. There is nothing here that is of specific interest to the DPL, but we show
this part of the example anyway in the interest of completeness.

 private static void parseArgs(String args[]) {
 for(int i = 0; i < args.length; ++i) {
 if (args[i].startsWith("-")) {
 switch(args[i].charAt(1)) {
 case 'h':
 myDbEnvPath = new File(args[++i]);
 break;
 case 'i':
 inventoryFile = new File(args[++i]);
 break;
 case 'v':
 vendorsFile = new File(args[++i]);
 break;
 default:
 usage();
 }
 }
 }
 }

 private List loadFile(File theFile, int numFields) {
 List<String[]> records = new ArrayList<String[]>();
 try {
 String theLine = null;
 FileInputStream fis = new FileInputStream(theFile);
 BufferedReader br =
 new BufferedReader(new InputStreamReader(fis));
 while((theLine=br.readLine()) != null) {
 String[] theLineArray = theLine.split("#");
 if (theLineArray.length != numFields) {
 System.out.println("Malformed line found in " +
 theFile.getPath());
 System.out.println("Line was: '" + theLine);
 System.out.println("length found was: " +
 theLineArray.length);
 System.exit(-1);
 }
 records.add(theLineArray);
 }
 // Close the input stream handle
 fis.close();
 } catch (FileNotFoundException e) {
 System.err.println(theFile.getPath() + " does not exist.");
 e.printStackTrace();
 usage();

Page 27Using the DPL with JE9/19/2006

ExampleDatabasePut.class

 } catch (IOException e) {
 System.err.println("IO Exception: " + e.toString());
 e.printStackTrace();
 System.exit(-1);
 }
 return records;
 }

 protected ExampleDatabasePut() {}
}

This completes our example application. Be aware that this example and supporting
classes can be found in your JE distribution in the following location:

JE_HOME/examples/persist/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Page 28Using the DPL with JE9/19/2006

ExampleDatabasePut.class

Chapter 5. Reading Data From Entity Stores
Once you have written objects to an EntityStore you can read them back again at a later
time. To do this, you use either the primary or the secondary key used by the entity that
you want to retrieve.

It is possible to retrieve a single object by using its primary key. You can also retrieve
multiple objects in the form of a collection, if the key that you use is capable of referring
to more than one object.

Retrieving a Single Object

To retrieve a single object, you must use an index that is capable of returning just one
object. A primary index is one such index, as is a ONE_TO_ONE or ONE_TO_MANY secondary
index.

To retrieve the object, use the index's get() method, providing to it the index value that
is used by the desired object. For example, the following uses the primary key for the
Inventory class to retrieve the object with SKU Trifdess2zJsGi:

PrimaryIndex<String,Inventory> inventoryBySku =
 store.getPrimaryIndex(String.class, Inventory.class);
Inventory inventory = inventoryBySku.get("Trifdess2zJsGi");

Retrieving Multiple Objects

Some indices result in the retrieval of multiple objects. For example, MANY_TO_ONE indices
can result in more than one object for any given key. When this is the case, you must
iterate over the resulting set of objects in order to examine each object in turn.

To retrieve a set of objects, use the SecondaryIndex.subIndex() method to return an
EntityIndex class object. Then, use that object's entities() method to obtain an
EntityCursor. This cursor allows you to iterate over the object set.

For example:

PrimaryIndex<String,Inventory> inventoryBySku =
 store.getPrimaryIndex(String.class, Inventory.class);

SecondaryIndex<String,String,Inventory> inventoryByName =
 store.getSecondaryIndex(inventoryBySku, String.class, "itemName");

EntityCursor<Inventory> items =
 inventoryByName.subIndex("Lemon").entities();

Now that we have the entity cursor, we can iterate over the resulting objects. Here we
use the new Java 1.5 enhanced for notation to perform the iteration:

try {
 for (Inventory item : items) {

Page 29Using the DPL with JE9/19/2006

 // do something with each Inventory object "item"
 }
// Always make sure the cursor is closed when we are done with it.
} finally {
 items.close();
}

Note that it is also possible to iterate over every entity object of a given type in the entity
store. You do this using the entity's primary index, and then call its entities() method
to obtain an EntityCursor:

PrimaryIndex<String,Inventory> inventoryBySku =
 store.getPrimaryIndex(String.class, Inventory.class);

EntityCursor<Inventory> items = inventoryBySku.entities();

try {
 for (Inventory item : items) {
 // do something with each Inventory object "item"
 }
// Always make sure the cursor is closed when we are done with it.
} finally {
 items.close();
}

ExampleInventoryRead.class

To illustrate the points that we make in the previous sections, we wrote
ExampleInventoryRead example application. This program retrieves inventory information
from our entity store and displays it. When it displays each inventory item, it also displays
the related vendor contact information.

ExampleInventoryRead can do one of two things. If you provide no search criteria, it
displays all of the inventory items in the store. If you provide an item name (using the -s
command line switch), then just those inventory items using that name are displayed.

The beginning of our example is almost identical to our ExampleDatabasePut example
program. We repeat that example code here for the sake of completeness. For a complete
walk-through of it, see ExampleDatabasePut.class (page 22).

package persist.gettingStarted;

import java.io.File;
import java.io.IOException;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.persist.EntityCursor;

public class ExampleInventoryRead {

Page 30Using the DPL with JE9/19/2006

ExampleInventoryRead.class

 private static File myDbEnvPath =
 new File("/tmp/JEDB");

 private DataAccessor da;

 // Encapsulates the database environment.
 private static MyDbEnv myDbEnv = new MyDbEnv();

 // The item to locate if the -s switch is used
 private static String locateItem;

 private static void usage() {
 System.out.println("ExampleInventoryRead [-h <env directory>]" +
 "[-s <item to locate>]");
 System.exit(-1);
 }

 public static void main(String args[]) {
 ExampleInventoryRead eir = new ExampleInventoryRead();
 try {
 eir.run(args);
 } catch (DatabaseException dbe) {
 System.err.println("ExampleInventoryRead: " + dbe.toString());
 dbe.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

 private void run(String args[])
 throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 true); // is this environment read-only?

 // Open the data accessor. This is used to retrieve
 // persistent objects.
 da = new DataAccessor(myDbEnv.getEntityStore());

 // If a item to locate is provided on the command line,
 // show just the inventory items using the provided name.
 // Otherwise, show everything in the inventory.
 if (locateItem != null) {
 showItem();
 } else {
 showAllInventory();

Page 31Using the DPL with JE9/19/2006

ExampleInventoryRead.class

 }
 }

The first method that we provide is used to show inventory items related to a given
inventory name. This method is called only if an inventory name is passed to
ExampleInventoryRead via the -s option. Given the sample data that we provide with this
example, each matching inventory name will result in the display of three inventory
objects.

To display these objects we use the Inventory class' inventoryByName secondary index to
retrieve an EntityCursor, and then we iterate over the resulting objects using the cursor.

Notice that this method calls displayInventoryRecord() to display each individual object.
We show this method a little later in the example.

 // Shows all the inventory items that exist for a given
 // inventory name.
 private void showItem() throws DatabaseException {

 // Use the inventory name secondary key to retrieve
 // these objects.
 EntityCursor<Inventory> items =
 da.inventoryByName.subIndex(locateItem).entities();
 try {
 for (Inventory item : items) {
 displayInventoryRecord(item);
 }
 } finally {
 items.close();
 }
 }

Next we implement showAllInventory(), which shows all of the Inventory objects in the
store. To do this, we obtain an EntityCursor from the Inventory class' primary index and,
again, we iterate using that cursor.

 // Displays all the inventory items in the store
 private void showAllInventory()
 throws DatabaseException {

 // Get a cursor that will walk every
 // inventory object in the store.
 EntityCursor<Inventory> items =
 da.inventoryBySku.entities();

 try {
 for (Inventory item : items) {
 displayInventoryRecord(item);
 }
 } finally {

Page 32Using the DPL with JE9/19/2006

ExampleInventoryRead.class

 items.close();
 }
 }

Now we implement displayInventoryRecord(). This uses the getter methods on the
Inventory class to obtain the information that we want to display. The only thing
interesting about this method is that we obtain Vendor objects within. The vendor objects
are retrieved Vendor objects using their primary index. We get the key for the retrieval
from the Inventory object that we are displaying at the time.

 private void displayInventoryRecord(Inventory theInventory)
 throws DatabaseException {

 System.out.println(theInventory.getSku() + ":");
 System.out.println("\t " + theInventory.getItemName());
 System.out.println("\t " + theInventory.getCategory());
 System.out.println("\t " + theInventory.getVendor());
 System.out.println("\t\tNumber in stock: " +
 theInventory.getVendorInventory());
 System.out.println("\t\tPrice per unit: " +
 theInventory.getVendorPrice());
 System.out.println("\t\tContact: ");

 Vendor theVendor =
 da.vendorByName.get(theInventory.getVendor());
 assert theVendor != null;

 System.out.println("\t\t " + theVendor.getAddress());
 System.out.println("\t\t " + theVendor.getCity() + ", " +
 theVendor.getState() + " " + theVendor.getZipcode());
 System.out.println("\t\t Business Phone: " +
 theVendor.getBusinessPhoneNumber());
 System.out.println("\t\t Sales Rep: " +
 theVendor.getRepName());
 System.out.println("\t\t " +
 theVendor.getRepPhoneNumber());
 }

The last remaining parts of the example are used to parse the command line. This is not
very interesting for our purposes here, but we show it anyway for the sake of completeness.

 protected ExampleInventoryRead() {}

 private static void parseArgs(String args[]) {
 for(int i = 0; i < args.length; ++i) {
 if (args[i].startsWith("-")) {
 switch(args[i].charAt(1)) {
 case 'h':
 myDbEnvPath = new File(args[++i]);
 break;

Page 33Using the DPL with JE9/19/2006

ExampleInventoryRead.class

 case 's':
 locateItem = args[++i];
 break;
 default:
 usage();
 }
 }
 }
 }
}

This completes our example application. Be aware that this example and supporting
classes can be found in your JE distribution in the following location:

JE_HOME/examples/persist/gettingStarted

where JE_HOME is the location where you placed your JE distribution.

Page 34Using the DPL with JE9/19/2006

ExampleInventoryRead.class

Chapter 6. Other Operations
While we are done with our example application, there are several common activities
that we have not yet explained: deleting entity objects and replacing them. This are
fairly simple tasks, so we cover them briefly here.

Deleting Entity Objects

The simplest way to remove an object from your entity store is to delete it by its primary
index. For example, using the DataAccessor class that we created earlier in this document
(see DataAccessor.class (page 20)), you can delete the Inventory object with SKU
AlmofruiPPCLz8 as follows:

Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
try {
 da.inventoryBySku.delete(txn, "AlmofruiPPCLz8");
 txn.commit();
} catch (Exception e) {
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

You can also delete objects by their secondary keys. When you do this, all objects related
to the secondary key are deleted, unless the key is a foreign object.

For example, the following deletes all Inventory objects that use the product name
Almonds:

Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
try {
 da.inventoryByName.delete(txn, "Almonds");
 txn.commit();
} catch (Exception e) {
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

Finally, if you are indexing by foreign key, then the results of deleting the key is
determined by the foreign key constraint that you have set for the index. See Foreign
Key Constraints (page 16) for more information.

Replacing Entity Objects

To modify a stored entity object, retrieve it, update it, then put it back to the entity
store:

Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
try {

Page 35Using the DPL with JE9/19/2006

 Inventory iv = da.inventoryBySku.get(txn, "AlmofruiPPCLz8",
 LockMode.DEFAULT);
 iv.setVendorPrice(1.45);
 da.inventoryBySku.put(txn, iv);
 txn.commit();
} catch (Exception e) {
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

Note that if you modify the object's primary key, then the object is stored as a new object
in the entity store rather than replacing the existing object:

// Results in two objects in the store. One with SKU
// 'AlmofruiPPCLz8' and the other with SKU 'my new sku'.
Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
try {
 Inventory iv = da.inventoryBySku.get(txn, "AlmofruiPPCLz8",
 LockMode.DEFAULT);
 iv.setSku("my new sku");
 da.inventoryBySku.put(txn, iv);
 txn.commit();
} catch (Exception e) {
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

Similarly, if you modify a secondary key for the object, the object will subsequently be
accessible by that new key, not by the old one.

// Object 'AlmofruiPPCLz8' can now be looked up using "Almond Nuts"
// instead of the original value, "Almonds".
Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
try {
 Inventory iv = da.inventoryBySku.get(txn, "AlmofruiPPCLz8",
 LockMode.DEFAULT);
 iv.setItemName("Almond Nuts");
 da.inventoryBySku.put(txn, iv);
 txn.commit();
} catch (Exception e) {
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

Finally, if you are iterating over a collection of objects using an EntityCursor, you can
update each object in turn using EntityCursor.update(). Note, however, that you must

Page 36Using the DPL with JE9/19/2006

Replacing Entity Objects

be iterating using a PrimaryIndex; this operation is not allowed if you are using a
SecondaryIndex.

For example, the following iterates over every Inventory object in the entity store, and
it changes them all so that they have a vendor price of 1.45.

Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);
EntityCursor<Inventory> items =
 da.inventoryBySku.entities(txn, null);
try {
 for (Inventory item : items) {
 item.setVendorPrice(1.45);
 items.update(item);
 }
 items.close();
 txn.commit();
} catch (Exception e) {
 items.close();
 txn.abort();
 System.out.println("Aborted txn: " + e.toString());
 e.printStackTrace();
}

Page 37Using the DPL with JE9/19/2006

Replacing Entity Objects

	Getting Started with the Berkeley DB, Java Edition Direct Persistence Layer
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction
	Java 1.5 Features
	Bytecode Enhancement
	Library Dependencies

	Chapter 2. Database Environments
	Opening Database Environments
	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics

	Chapter 3. Getting Going with the Direct Persistence Layer
	Persistent Objects
	Entity versus Persistent
	Vendor.class
	Inventory.class
	Secondary Indices
	Foreign Key Constraints

	Entity Stores
	MyDbEnv

	Accessing Indices
	Accessing Primary Indices
	Accessing Secondary Indices
	DataAccessor.class

	Chapter 4. Writing to Entity Stores
	ExampleDatabasePut.class

	Chapter 5. Reading Data From Entity Stores
	Retrieving a Single Object
	Retrieving Multiple Objects
	ExampleInventoryRead.class

	Chapter 6. Other Operations
	Deleting Entity Objects
	Replacing Entity Objects

